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CHAPTER 1
Problem statement,
research objectives

and outline



Abstract

The aim of a modelling exercise is to obtain a mathematical model that adequately de-

scribes and even predicts the process behavior. However, it is important to realize that

the lack of insight in the modelled process may result in the proposal of several so-called

rival models, each of which represents a certain hypothesis of how the process works. The

problem of identifying the best model from a set of rival models, often referred to as the

problem of model discrimination, is dealt with in this dissertation. In this chapter, the

objectives of this research are described and a number of research questions are formulated

in order to meet these research objectives. In addition, this chapter provides an overview

of how this dissertation is organized.
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1.1 Introduction

A (mechanistic) mathematical model can be defined as a mathematical representation of

the mechanism that governs the behavior of a process being studied, and the aim of a

modelling exercise is to obtain a mathematical model that adequately describes and even

predicts the process behavior. Although the complexity of most processes generally makes

it impossible to exactly describe all aspects of the process behavior, mathematical models

that are able to describe the most important ones have already shown to be very useful

tools for both scientists and engineers.

The main use of a mathematical model is probably to act as a surrogate for the actual pro-

cess, making it possible to investigate the process behavior under various input conditions

both rapidly and inexpensively, and without necessarily tampering with the actual process

(Ogunnaike and Ray, 1994). Examples of such applications are found in the context of

process design, optimization and control. For instance, the performance of different oper-

ating conditions for a given process can be evaluated based on model predictions and the

one for which the expected operating costs are minimal can eventually be implemented.

Or, different control strategies for a given process can be developed, tested and compared

in silico, without risking process failure. Mathematical models can also be used for on-

line process control. Indeed, information obtained from online process measurements can

be analyzed in real-time using mathematical models, that represent knowledge about the

process. In this way, process failures can be detected in an early stage and appropriate

control actions can be proposed to restore the process.

However, if the model is intended to increase the understanding of the (often complex)

process, it may be more important that the model is able to capture all the different

aspects and mechanisms that govern the behavior of the process. In such a case, some

deviation from reality can be accepted as long as the model structure permits an acceptable

description of the overall process. The models used to predict global warming are examples

of such models. Given the enormous complexity of the climate system, simplifications are

unavoidable when trying to capture its behavior. But even then, the system is too complex

for a human being to grasp, and therefore mathematical models are used to integrate the

many different aspects. Model simulations are then used to get an idea of how our climate

will evolve over the next decades. Although these predictions may not be perfectly accurate

nor precise, these models are useful decision support tools for policy makers.
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1.2 Problem statement

From the discussion above, it is clear that once a proper mathematical model is available,

it becomes a powerful tool for both scientists and engineers (Wiechert, 2002). However, it

is important to realize that the lack of insight in the modelled process may result in the

proposal of several so-called rival models, each of which represents a certain hypothesis of

how the process works. Obviously, one is especially interested in the model that describes

the process behavior in the best way. The problem of identifying the best model from a

set of rival models, often referred to as the problem of model discrimination, is dealt with

in this dissertation. As additional experiments have to be performed to identify the most

appropriate model, optimal experimental design will be of crucial importance in order to

minimize the required experimental effort.

1.3 Objectives of this research

To address the problem of model discrimination described above in a systematic way, the

following research objectives were formulated:

1. obtain insight in the different aspects of the problem of model discrimination and

how they influence each other,

2. propose a general procedure to discriminate among a set of rival models,

3. provide methods to design optimal discriminatory experiments,

4. position the model discrimination procedure in a more general procedure for building

mathematical models.

If these research objectives are met, a systematic framework should become available to

deal with a situation where several models are proposed to describe a particular process.

To meet these research objectives, the five research questions described in the following

section will be answered throughout this dissertation.
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1.4 Research questions

When confronted with a situation where several rival models are proposed for a given

process, it is of crucial importance to have an idea of how the problem can be dealt with

in a systematic way. The first research question can thus be stated as:

1. What is the general procedure to identify the most appropriate model from a set of

rival models?

When a number of rival models is proposed for a given process, it is clear that some of

these models may not be able to accurately describe the experimental data. Of course, it

is important to be able to detect these inadequate models. The second research question

is related to the adequacy of mathematical models and can be formulated as:

2. How can the adequacy of a model be evaluated and (how) can this be translated into

quantitative model evaluation criteria?

Often, it is necessary to collect new information about the modelled system to allow (fur-

ther) model discrimination, and thus new experiments have to be performed. The third

research question deals with model-based experimental design methods, in which the rival

models themselves are used to predict the outcome of an experiment and the experiment

is evaluated based on these model predictions.

3. If additional experimental data has to be collected to allow further model discrimi-

nation, how can experiments be designed such that model discrimination is achieved

with a minimum of additional experimental effort?

As the parameters of the models used in the experimental design have to be estimated

from experimental data which may not contain the information required to get accurate

parameter estimates, the resulting uncertainty on the model predictions has to be taken into

account in the experimental design. Since the design of optimal discriminatory experiments

may become problematic when the uncertainty on the model predictions is too large, a

fourth research question is formalulated as follows:

4. What is the importance of the uncertainty on the parameter estimates with regard to

the design of optimal discriminatory experiments?
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Since experimental design methods have been developed to design experiments that allow

a more accurate estimation of the model parameters, they may be applied in this context

as well. It is therefore important to investigate how these experimental design methods

for more precise parameter estimation can be integrated in or combined with the model

discrimination procedure. So, a fifth research question can be formulated as follows:

5. Can optimal experimental design for parameter estimation be integrated with the pro-

cedure for model discrimination, and is it beneficial to do so?

The following section describes how this dissertation is organized.

1.5 Roadmap through this dissertation

This dissertation consists of three main parts. In the first part, some basic modelling

concepts are explained and a general procedure to discriminate among a number of rival

models is proposed. The second part of this dissertation is devoted to the design of op-

timal discriminatory experiments. The integration of model discrimination with optimal

experimental design for parameter estimation is dealt with in the third part.

The first part consists of two chapters. In a first chapter, basic modelling concepts such as

parameter estimation, uncertainty on the parameter estimates and on the model predictions

are described (Chapter 2). These will reappear regularly in the subsequent chapters and

a good understanding of these concepts is crucial. In addition, this chapter describes a

general procedure to discriminate among rival models. Chapter 3 contains a description

of the working example which will be used throughout this dissertation. In this chapter,

nine rival models are proposed to describe the kinetics of an enzyme (glucokinase).

The second part also consists of two chapters and deals with the design of optimal dis-

criminatory experiments. In Chapter 4 an overview is given of the most important design

criteria that were described in literature to design such experiments. One of these design

criteria will be further improved and will be called the anticipatory approach to design

optimal discriminatory experiments. The performance of this approach will be studied

and compared to the performance of three existing approaches by applying them to a case

study. Several design strategies are possible when the number of rival models is larger

than two. Some design strategies are formalized and evaluated in Chapter 5 after applying

them to the working example discussed in Chapter 3.
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The third part consists of three chapters and deals with the integration of optimal ex-

perimental design for parameter estimation and model discrimination. In Chapter 6, the

theory on optimal experimental design for parameter estimation is explained and its rela-

tion with model discrimination is briefly discussed. Chapter 7 is devoted to the design of

compromise experiments. For this purpose, two methods are proposed, the kernel-based

method and the ideal point method, and the performance to design such compromise ex-

periments is evaluated after applying them to three case studies. The benefit of using such

a compromise experiment is investigated in Chapter 8, by comparing its performance to

the classical sequential procedure in which no compromise experiment is used. In addi-

tion, a simultaneous procedure is presented in this chapter, where model discrimination

and optimal experimental design for parameter estimation are combined in a joint design

criterion.

Finally, the conclusions drawn from the results and some suggestions for future research

are formulated in Chapter 9. To structure the conclusions section, the research questions

formulated above will be used and an answer will be provided for each of them.





PART I
MATHEMATICAL MODELLING AND

MODEL DISCRIMINATION





CHAPTER 2
Introduction to mathematical modelling

and model discrimination

“Essentially, all models are wrong, but some are useful.”

George Box, statistician



Abstract

In this chapter, some basic modelling concepts such as parameter estimation, uncertainty

on the parameter estimates and on the model predictions are described. These concepts will

reappear regularly in the following chapters and a good understanding of these concepts

is of crucial importance to understand what follows. In addition, a general procedure for

model discrimination is described which consists of four steps that are performed in an

iterative manner until the best model is identified, all models appear to be inadequate and

new models thus have to be proposed, or when discrimination among the remaining model

candidates is no longer possible. Further, some approaches to evaluate the adequacy of a

model are discussed and the difference between model discrimination, model evaluation,

model selection and model validation is explained. Finally, the optimization algorithm

used in this work (for parameter estimation and experimental design) is briefly described.
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2.1 Introduction

In this introductory chapter, some basic modelling concepts are described, which will

reappear regularly in the following chapters and a good understanding of these concepts is

crucial to understand what follows. In addition, this chapter will introduce some notations

that will be used in the subsequent chapters. Further, a general procedure to discriminate

among rival models is presented.

2.2 Mathematical model representation

In what follows, general deterministic models in the form of a set of (possibly mixed)

differential and algebraic equations are considered, using the following notations:

dx

dt
= f (x, ξ,θ, t) ; x (t0) = x0 , (2.1)

ŷ = g (x, ξ,θ, t) , (2.2)

where x represents an ns-dimensional vector of time-dependent state variables, θ represents

an np-dimensional vector of model parameters taken from a continuous, realizable set

Θ, and ŷ represents an nm-dimensional vector of measured response variables that are

function of the state variables, x. An experiment is denoted as ξ and is determined by

the experimental degrees of freedom, such as sampling times, initial conditions and time-

varying or constant process inputs. Quite often, g simply acts as a selector, selecting those

state variables that are actually measured. Note that this will also be the case for the

models used in this dissertation.

As explained in the introductory chapter, mathematical models are used as a surrogate

for the actual process and are used to predict the behavior of the studied process under

specified conditions. For instance, the outcome of an experiment can be predicted using a

mathematical model, and the results of this virtual experiment can then be used to evaluate

the information content of the experiment. Generally, the term model simulation is used to

refer to the act of solving a model (defined through Eqs. (2.1) and (2.2)) for given values

of the model parameters, initial values for the different state variables and well-defined

process inputs. Note that in many cases, it is not possible to solve the mathematical

model analytically and numerical techniques (or solvers) are required (Vanrolleghem and

Dochain, 1998).
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2.3 Parameter estimation

The values of the model parameters, which by definition do not change during the course

of the simulation, have to be determined from experimental data. This process is called

parameter estimation, and typically consists of minimizing the weighted sum of squared

errors (WSSE) functional by optimal choice of the parameters θ. The optimal parameter

estimates, denoted as θ̂, are thus given by

θ̂ = arg min
θ∈Θ

WSSE (θ) . (2.3)

Here, WSSE (θ) is calculated as

WSSE (θ) =

ne∑
k=1

nspk∑
l=1

∆ŷ (ξk,θ, tl)
′ ·Q ·∆ŷ (ξk,θ, tl) (2.4)

and

∆ŷ (ξk,θ, tl) = y (ξk, tl)− ŷ(ξk,θ, tl) (2.5)

represents the difference between the vector of the nm measured response variables and the

model predictions at time tl (l = 1, . . . , nspk
) of experiment ξk (k = 1, . . . , ne). Further, ne

represents the number of experiments from which data are used for estimating the param-

eters, nspk
represents the number of samples in experiment ξk, and Q is an nm-dimensional

matrix of user-supplied weighting coefficients. Typically, Q is chosen as the inverse of the

measurement error covariance matrix Σ (Marsili–Libelli et al., 2003; Omlin and Reichert,

1999; Vanrolleghem and Dochain, 1998). In this way, the measurement uncertainty is

incorporated in the WSSE, and the resulting equation is given as

WSSE (θ) =

ne∑
k=1

nspk∑
l=1

∆ŷ (ξk,θ, tl)
′ ·Σ (ξk, tl)

−1 ·∆ŷ (ξk,θ, tl) , (2.6)

where Σ (ξk, tl) represents the measurement error covariance matrix at sampling time tl of

experiment ξk.
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2.4 Sensitivities of the state variables to the values of the model pa-
rameters

The model predictions are directly determined by the values of the model parameters. In

this respect, it is often interesting to calculate the so-called parameter sensitivities, which

indicate how sensitive the model predictions are to a change in the values of the parameters.

A response variable is called sensitive to a certain parameter when a small change in the

value of that parameter results in a significant change of the response variable, and vice

versa.

For a model with nm measured response variables (ŷ) and np parameters (θ), one has

to calculate nm × np parameter sensitivities. Usually, these parameter sensitivities are

collected in an (nm × np)-dimensional matrix, given by

∂ŷ (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂

=



∂ŷ1(x,ξ,θ,tl)
∂θ1

∣∣∣
θ̂

∂ŷ1(x,ξ,θ,tl)
∂θ2

∣∣∣
θ̂

· · · ∂ŷ1(x,ξ,θ,tl)
∂θnp

∣∣∣
θ̂

· · · · · · · · · · · ·

∂ŷnms(x,ξ,θ,tl)
∂θ1

∣∣∣
θ̂

∂ŷnm (x,ξ,θ,tl)
∂θ2

∣∣∣
θ̂

· · · ∂ŷnm (x,ξ,θ,tl)
∂θnp

∣∣∣
θ̂


. (2.7)

Here, the sensitivity of the predicted response variable ŷi (i ∈ {1, . . . , nm}) to a change in

parameter θj (j ∈ {1, . . . , np}) is denoted as

∂ŷi (ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

, (2.8)

where θ̂ represents the np-dimensional vector containing the available estimates of the

model parameters and tl represents the time at which the parameter sensitivity is calcu-

lated. From Eq. (2.2) one can see that the predicted response variables ŷ are a function

of the state variables x. Therefore, the effect of a change in parameter θj on the value of

response variable ŷi at time tl can be calculated after applying the chain rule to determine

the total differential of g (x, ξ,θ, t). This results in the following equation:

∂ŷi (ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

=
∂gi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

+
∂gi (x, ξ,θ, t)

∂x

∣∣∣∣
θ̂

· ∂x (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

. (2.9)
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Here, x represents the ns-dimensional vector of state variables and Eq. (2.9) can also

be written with the explicit summation over all ns state variables, which results in the

following equation:

∂ŷi (ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

=
∂gi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

+
ns∑
k=1

∂gi (x, ξ,θ, t)

∂xk

∣∣∣∣
θ̂

· ∂xk (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

. (2.10)

Equation (2.10) clearly shows that a change in the value of a particular parameter θj has

a direct effect on the value the response variable (first term of Eq. (2.10)), and an indirect

effect (second term of Eq. (2.10)). The latter represents the change in ŷi caused by the fact

that also the values of the state variables will be influenced by the change in the parameter

value, which on their turn change the value of ŷi. The equations required to calculate
∂xk(x,ξ,θ,t)

∂θj

∣∣∣
θ̂

are derived in what follows.

As shown in Eq. (2.1), the change of the state variables over time
(
dx
dt

)
is a function of the

state variables themselves, the experimental degrees of freedom ξ, the model parameters θ

and time t. For dynamic models, the effect of a changed parameter value on the value of

state variable xi will propagate over time, which results in the following equation (Ternbach

et al., 2005):

∂xi (x, ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

=
∂xi (x, ξ,θ, 0)

∂θj

∣∣∣∣
θ̂

+

∫ tl

t=0

d

dt

(
∂xi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

)
· dt . (2.11)

Here, xi (x, ξ,θ, 0) represents the initial value of state variable xi. When parameter θj is

different from xi (x, ξ,θ, 0), which is generally the case, the first term of Eq. (2.11) is equal

to zero and can thus be omitted. Sometimes, however, the initial value(s) of one or some of

the state variables of the model has to be estimated from experimental data. If this is the

case, xi (x, ξ,θ, 0) can be considered as a model parameter (say θj), and then the first term

of Eq. (2.11) is equal to one (Leis and Kramer, 1988). In the following, however, it will be

assumed that the first term of Eq. (2.11) can be omitted because it would unnecessarily

complicate the derivation.

To solve Eq. (2.11), one can apply Scharwz’ theorem (Ellwein et al., 2008; Turányi and

Rabitz, 2000), which states that

d

dt

(
∂xi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

)
=

∂

∂θj

(
dxi (x, ξ,θ, t)

dt

)∣∣∣∣
θ̂

. (2.12)
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As seen from Eq. (2.1), the value of xi is not only directly dependent on the parameters,

but also on the values of the (other) state variables x, which on their turn depend on the

parameters. So, a change in parameter θj will directly affect the value of state variable

xi through its corresponding differential equation, but it will also have an indirect effect

because the change in the parameter will also affect the other state variables. Therefore,

the chain rule has to be applied to calculate the total differential of fi (x, ξ,θ, t). After

substituting Eq. (2.12) into Eq. (2.11) and applying the chain rule, the following equation

is found

∂xi (x, ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

=

∫ tl

t=0

(
∂fi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

+
∂fi (x, ξ,θ, t)

∂x

∣∣∣∣
θ̂

· ∂x (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

)
· dt .
(2.13)

The first term of Eq. (2.13) can be seen as the direct effect of a change in parameter θj,

whereas the second term reflects the indirect effect caused by the changes of the other state

variables. As in Eq. (2.9), x represents the ns-dimensional vector that contains the state

variables, and Eq. (2.13) can therefore be written with the explicit summation over all ns

state variables. This results in the following equation:

∂xi (x, ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

=

∫ tl

t=0

(
∂fi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

+
ns∑
k=1

∂fi (x, ξ,θ, t)

∂xk

∣∣∣∣
θ̂

· ∂xk (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

)
· dt ,

(2.14)

which can be rewritten as

d

dt

(
∂xi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

)
=
∂fi (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

+
ns∑
k=1

∂fi (x, ξ,θ, t)

∂xk

∣∣∣∣
θ̂

· ∂xk (x, ξ,θ, t)

∂θj

∣∣∣∣
θ̂

. (2.15)

From Eq. (2.15), one can see that the differential equations that describe the parameter

sensitivities are coupled. So, to calculate the parameter sensitivities of the response vari-

ables to the parameters (Eq. (2.7)), ns×np additional ordinary differential equations have

to be defined and solved together with the actual model, which is given by Eqs. (2.1) and

(2.2) (Atherton et al., 1975; Leis and Kramer, 1988; Li et al., 2000; Munack, 1989). This

system of coupled differential equations can also be written in matrix notation, as follows:

d

dt

(
∂x (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂

)
=
∂f (x, ξ,θ, t)

∂θ

∣∣∣∣
θ̂

+
∂f (x, ξ,θ, t)

∂x

∣∣∣∣
θ̂

· ∂x (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂

(2.16)
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and

∂ŷ (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂

=
∂g (x, ξ,θ, t)

∂θ

∣∣∣∣
θ̂

+
∂g (x, ξ,θ, t)

∂x

∣∣∣∣
θ̂

· ∂x (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂

. (2.17)

Note that, as already stated in Section 2.2, it is often the case that some of the measured

response variables ŷ are equal to one of the state variables x. It is obvious that the

parameter sensitivities of these response variables equal those of the corresponding state

variables.

Note also that the equations used to calculate the parameter sensitivities (that is, Eqs. (2.16)

and (2.17)) may become very complicated when one is working with large and complex

models. In such cases, it may not be practically feasible to calculate the parameter sensi-

tivities directly from these equations and they have to be approximated using numerical

techniques. A nice overview of the existing methods is given in De Pauw and Vanrolleghem

(2006b). In what follows, only the simplest approach, usually called finite difference ap-

proximation, is briefly discussed. In this approach, the sensitivity of response variable ŷi

to a change in parameter θj is approximated as

∂ŷi (ξ,θ, tl)

∂θj

∣∣∣∣
θ̂

= lim
∆θj→0

ŷi (ξ,θ + ∆θj, tl)− ŷi (ξ,θ, tl)
∆θj

, (2.18)

where ŷi (ξ,θ + ∆θj, tl) represents the value of ŷi obtained when ∆θj is added to the value

of parameter θj. It is clear that Eq. (2.18) is only valid when ∆θj is infinitesimally small

(and thus approaches zero). However, in practice, it is not possible to choose such a small

value for ∆θj because this would result in numerical inaccuracies. On the other hand, ∆θj

should not become too large either, because then the non-linearity of the model will start

to play an important role in the calculation of the parameter sensitivities. Despite the fact

that the choice of a good value for ∆θj is not straightforward, this approach is frequently

applied because of its simplicity. In this dissertation, however, the parameter sensitivities

will be calculated from Eqs. (2.16) and (2.17).

2.5 Uncertainty on the parameter estimates

Since the parameters are estimated from noise-corrupted experimental data, the result-

ing parameter estimates will be uncertain to some extent. The parameter estimates by

themselves thus only become meaningful when they are accompanied by their so-called
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confidence region. This is the region in which their true values are expected to lie with a

given level of confidence. According to Seber and Wild (1989), it is justifiable to base the

confidence region of the parameter estimates on the contours of the WSSE functional, since

the latter gives an indication of how well the experimental data is described by the model.

An exact confidence region can be determined from the following equation (Marsili–Libelli

et al., 2003; Seber and Wild, 1989){
θ : WSSE (θ) ≤ c ·WSSE

(
θ̂
)}

(2.19)

for any c > 1. This region can be regarded as exact in the sense that it is not based on

any approximation. However, when the model is nonlinear, it is difficult to select a value

for c with any statistical significance. Rather than trying to find this exact confidence

region, one most often uses linear approximations to construct the confidence region. This

approach was also adopted in this dissertation and is explained below.

The parameter estimation error covariance matrix, denoted as Φ, is used to represent the

uncertainty on the parameter estimates. Obviously, the quality of these parameter esti-

mates is determined by the information content of the experimental data from which they

are determined. The latter can be quantified by means of the so-called Fisher information

matrix (FIM). According to the Cramér–Rao inequality (Ljung, 1999), the inverse of the

FIM is equal to the lower bound of the parameter estimation error covariance matrix if the

measurement errors are independent samples from a normal distribution with zero mean

(which is assumed in what follows).

The inverse of the FIM is therefore often used as an approximation of the parameter esti-

mation error covariance matrix (Asprey and Macchietto, 2000; Atkinson and Donev, 1992;

Goodwin and Payne, 1977; Ljung, 1999; Mehra, 1974; Munack, 1991; Shirt et al., 1994;

Vanrolleghem and Dochain, 1998; Walter and Pronzato, 1997). The FIM is calculated as

FIM =
ne∑
k=1

FIM (ξk) , (2.20)

where

FIM (ξk) =

nspk∑
l=1

(
∂ŷ (ξk,θ, tl)

∂θ

∣∣∣∣
θ̂

)′
·Σ (ξk, tl)

−1 ·
(
∂ŷ (ξk,θ, tl)

∂θ

∣∣∣∣
θ̂

)
. (2.21)



20 2.5 UNCERTAINTY ON THE PARAMETER ESTIMATES

Here, ∂ŷ/∂θ represents the nm × np-dimensional parameter sensitivity matrix (Eq. (2.7))

associated with measurement time tl of experiment ξk, and is calculated as explained in

Section 2.4. For a derivation of Eq. (2.21), the reader is referred to Chapter 6 where the

calculation of the FIM is discussed in more detail.

A closer look at Eq. (2.21) shows that the FIM is composed of two components, the

parameter sensitivities (∂ŷ/∂θ) and the measurement error covariance matrix (Σ). The

sensitivity of a certain state variable with respect to a parameter expresses how much that

state variable will change when this parameter is slightly perturbed. A state variable that

is highly sensitive to a certain parameter will therefore contain a lot of information about

this parameter, while a variable that is insensitive to the parameter does not contribute

to the information content for that parameter. The role of the measurement error covari-

ance matrix in the calculation of the FIM is rather straightforward, since it is obvious

that a measurement associated with a large measurement error will contribute less to the

information content than a measurement with a small measurement error.

The diagonal elements of the parameter estimation error covariance matrix are the vari-

ances of the errors of the parameter estimates and the off-diagonal elements are the covari-

ances between the parameter estimation errors. Based on these variances and covariances

the elements of the linear correlation matrix, denoted as ρΦ, can be calculated as (De

Pauw, 2005; Marsili–Libelli et al., 2003; Walter and Pronzato, 1997):

ρΦ (i, j) =
Φ (i, j)√

Φ (i, i) ·Φ (j, j)
. (2.22)

These elements give a measure for the linear correlation between two parameters and

can range between -1 and 1. If the linear correlation coefficient is close to -1 or 1 the

parameters are said to be highly correlated, while correlation coefficients close to zero

imply low correlations.

From the parameter estimation error covariance matrix, the 100·(1− α) percent confidence

interval associated with parameter estimate i can be calculated as (Marsili–Libelli et al.,

2003; Walter and Pronzato, 1997)

√
Φ (i, i) · tα/2n−np

, (2.23)

where Φ (i, i) represents the (i, i)-th element of Φ, n represents the total number of data

points, np represents the number of parameters that were estimated from them, and t
α/2
n−np
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θ̂1

θ̂2

Figure 2.1: The shaded ellipse represents the joint 95% confidence region for parameter es-
timates θ̂1 and θ̂2, whereas the confidence intervals of the individual parameter
estimates are indicated by the thick lines.

represents the upper α/2 quantile of Student’s t distribution for the given confidence level

α and n− np degrees of freedom.

Note that only the diagonal elements of the parameter estimation error covariance matrix

are considered in the calculation of the confidence intervals, and the covariance between

the parameter estimates is thus ignored. This is illustrated in Fig. 2.1, where the joint

confidence region is shown, as well as the confidence intervals calculated from Eq. (2.23).

The latter only consider the uncertainty on the corresponding parameter estimate and do

not take the correlation or covariance with other parameter estimates into account.

2.6 Model prediction uncertainty

The uncertainty on the parameter estimates will propagate when simulating the model,

and the model predictions will consequently be uncertain as well. Also for model predic-

tions, a covariance matrix is used to quantify the uncertainty. The model prediction error

covariance matrix associated with time tl of experiment ξk, denoted as Ω (ξk, tl), is calcu-

lated by propagating the uncertainty on the parameter estimates, denoted as Φ, according

to (Omlin and Reichert, 1999)

Ω (ξk, tl) =

(
∂ŷ (ξk,θ, tl)

∂θ

∣∣∣∣
θ̂

)
·Φ ·

(
∂ŷ (ξk,θ, tl)

∂θ

∣∣∣∣
θ̂

)′
. (2.24)
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The correlation matrix and the confidence intervals associated with the model predictions

are calculated in a similar way as those of the parameter estimates (Eqs. (2.22) and (2.23),

respectively). The correlation matrix, denoted as ρΩ, is calculated as (Omlin and Reichert,

1999; Walter and Pronzato, 1997; Seber and Wild, 1989)

ρΩ (i, j) =
Ω (i, j)√

Ω (i, i) ·Ω (j, j)
. (2.25)

whereas the 100 · (1− α) percent confidence interval associated with the model prediction

of response variable ŷi can be calculated from the corresponding element in the covariance

matrix

√
Ω (i, i) · tα/2n−np

, (2.26)

where n represents the total number of data points used for parameter estimation, np

represents the number of parameters that were estimated, and t
α/2
n−np

represents the upper

α/2 quantile of Student’s t distribution for the given confidence level α and n−np degrees

of freedom.

2.7 Model discrimination

As described earlier, this dissertation mainly deals with the problem of model discrimina-

tion. Here, the term model discrimination is defined as the procedure in which the most

appropriate model has to be identified from a set of rival models. Model discrimination

differs from model selection, which will be discussed in Section 2.9, by the fact that addi-

tional experiments are designed and performed during the model discrimination procedure.

In model selection, on the other hand, the best performing model is selected from a set of

adequate models based on the available data and the characteristics of the model structures

(for instance, the number of parameters). Note that model discrimination has also been

called model structure characterization to emphasize that the aim is to identify the most

appropriate model structure (Spriet, 1985; Vanrolleghem and Dochain, 1998), but in the

following the term model discrimination will be used because it is more common.

A general procedure to discriminate among m rival models is depicted in Fig. 2.2. It

basically consists of four steps that are performed in an iterative manner until a stopping

criterion is met. In the first step, the parameters of the rival models are estimated from
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perform parameter
estimation

model evaluation

perform preliminary
experiments

propose rival models perform designed
experiment

m = ?
design optimal
discriminatory

experiment

T > ? model selection

best model

m > 1

m = 1

m = 0

yes

no

Figure 2.2: General procedure to discriminate among m rival models (adapted from Chen and
Asprey (2003) and Schwaab et al. (2006)).

all the data that is available by minimizing the WSSE-functional described in Section 2.3.

A second step involves an evaluation of the model’s adequacy to describe the available

data and is thus performed in order to find out which models are able to describe the data

in a reasonable manner and which ones do not. Models that pass this test are used in a

third step, where an optimal discriminatory experiment is designed using one of the design

criteria that will be described in Chapter 4. This experiment is then performed in a fourth

and last step, after which the loop is closed by re-estimating the parameters of all rival

models using all data available at that time. By reconsidering all models in the model

evaluation step, one accounts for the possibility that one (or more) models were wrongly

rejected by chance in a previous iteration (Buzzi-Ferraris et al., 1990).

The iterative procedure described above continues until the best model is identified (m = 1),

all models appear to be inadequate and new models thus have to be proposed (m = 0),

or when discrimination among the remaining model candidates is no longer possible. The

latter is indicated by the fact that T is smaller than a predefined cut-off value, where T rep-

resents the discriminatory potential of the designed experiment. In the latter case, the best

model is selected from the remaining rival models as a trade-off between model fit, model

parsimony and identifiability (Spriet, 1985), as will be briefly discussed in Section 2.9.
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2.8 Model evaluation

From the discussion above, it is clear that the model evaluation step is a crucial step in

the model discrimination procedure (Dochain and Vanrolleghem, 2001). Model evaluation

is the step in which the model predictions of the response variables are confronted with

the measured data, and the adequacy of the rival models is questioned. According to

Vanrolleghem and Dochain (1998), the methods that have been developed for this purpose

can be classified in two categories: so-called a priori model evaluation methods and a

posteriori model evaluation methods. The former comprises those methods that are capa-

ble of determining whether a model is adequate or not without the need to estimate the

model parameters from the available data, while parameter estimation is required for the

latter group of methods. In this dissertation, only the methods for a posteriori structure

characterization are considered because successful applications of the a priori model eval-

uation methods are limited and parameter estimation is required anyhow when the model

discrimination procedure described in the previous section is applied.

The model evaluation step deals with the model structure itself and one is interested in

its ability to represent the available data or, put differently, in its inability to capture

the dynamics of the studied process. Since the model parameters are estimated prior

to the model evaluation step, the observed model fit is the best one possible given that

particular model structure. If the model structure appears to be able to describe the

available data, the model is considered adequate. If not, it is labeled inadequate and the

model is not considered for the experimental design step. This rationale is illustrated in

Fig. 2.3, which explains the difference between accuracy and precision using the analogy

of a target practice. If the gray dots represent the measurements and if the center of the

bullseye represents the model prediction, one could state that the adequate models are

those that correspond to cases 1 and 2.

Note that the information content of the data used to estimate the model parameters

will determine the quality of the parameter estimates, and thus the uncertainty on the

model predictions. However, although the latter is important and is one of the required

characteristics of what is considered a good model, it is not taken into account here.

To evaluate the adequacy of a model, several approaches are possible. They can roughly

be categorized in two groups: model adequacy tests (statistical tests developed with the

purpose of detecting lack-of-fit) and so-called model evaluation criteria (measures developed
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Figure 2.3: Illustration of the notions of accuracy versus precision using the analogy of a target
practice. Case 1 is accurate and imprecise, case 2 is accurate and precise, case 3 is
inaccurate and imprecise, and case 4 is inaccurate and precise. Note that the figure
was adopted from Tedeschi (2006).

to evaluate the quality of the model fit). These approaches are respectively discussed in

Section 2.8.1 and Section 2.8.2.

2.8.1 Model adequacy testing

After estimating the model parameters, the residual error between the measurements and

the model predictions (WSSE) has two components: the model variance error and the

model bias error. The model variance error is caused by the measurement errors that are

associated with the experimental data from which the parameters were estimated, while the

model bias error reflects the unmodeled dynamics of the process. This can be formalized

by rewriting the WSSE as follows

WSSE = WSSEξ + WSSELOF . (2.27)

Here, WSSEξ represents the contribution due to measurement error (model variance error)

and WSSELOF represents the contribution due to lack-of-fit (model bias error). Since

WSSEξ is known or estimated from data, the statistical tests described below evaluate
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whether the contribution due to lack-of-fit is significant. If so, the model is rejected and

thus considered inadequate.

The lack-of-fit test used in this dissertation is based on the property of the WSSE functional

being a sample from a χ2-distribution with n−np degrees of freedom (Buzzi-Ferraris et al.,

1990; Chen and Asprey, 2003; de Brauwere et al., 2005; Franceschini and Macchietto, 2008).

However, this property only holds under two assumptions (de Brauwere et al., 2005): (i)

the measurements are disturbed with random zero mean normally distributed noise with

known (or a priori estimated) variance, and are not subject to systematic errors; and (ii)

no model errors are present.

In this work, data is generated by adding noise to the simulation results of which the

characteristics are known, so the first assumption is always valid. Consequently, when the

WSSE is significantly larger than the expected value of the appropriate χ2
n−np

-distribution,

one can conclude that the model is not able to describe the experimental data in a rea-

sonable manner and the model can thus be rejected. Chen and Asprey (2003) recommend

the use of this χ2-test for simulation studies where noise is added to simulated data.

The χ2-test described above is valid when the characteristics of the measurement errors

are known. If this is not the case, a different statistical test has to be used because

the variance of the measurements has to be estimated from the available data (Chen

and Asprey, 2003; Dochain and Vanrolleghem, 2001; Franceschini and Macchietto, 2008).

For this purpose, repeated measurements are required at each sampling time. When nr

represents the number of repetitions, the variance of the measured response variable yi at

sampling time tl, denoted as s2
i (tl), can be estimated as follows:

s2
i (tl) =

∑nr

r=1 (yi (tl,r)− yi (tl))2

nr − 1
, (2.28)

where yi (tl) represents the mean of the repeated measurements at sampling time tl. Using

the estimated variances of each measured response variable, possible lack-of-fit can be

detected using an F-test. Therefore, the following test statistic has to be compared with

the reference value of an F-distribution with (n− np − nr) and (nr − 1) degrees of freedom:

F =
WSSELOF

WSSEξ
∼ Fn−np−nr,nr−1 . (2.29)

When the value of F is larger than the reference value, the contribution of WSSELOF is

considered significant and the model is considered as inadequate.
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2.8.2 Model evaluation criteria

The statistical tests described above in a way assume that a true model exists. However,

in reality, the processes being studied are often very complex, and it is not realistic to

assume that such a model can be found. Indeed, a mathematical model is an abstract

representation of reality, and it can never mimic reality under all conditions. Nevertheless,

mathematical models are often very useful tools, as discussed in the introduction (Sec-

tion 1.1). Therefore, the use of a statistical test may not be a good option for practical

applications, because it may reject these useful models.

As an alternative to the statistical tests described above, literature provides many criteria

or measures that are developed to evaluate the model fit or the adequacy of a particular

model. The WSSE is one of them and is often used for this purpose, but also the modelling

efficiency and the index of agreement are promising ones (Janssen and Heuberger, 1995;

Krause et al., 2005; Moriasi et al., 2007; Willmott et al., 1985). These two criteria are

discussed in the following.

The modelling efficiency (MEF), which is also known as the Nash-Sutcliffe efficiency (Nash

and Sutcliffe, 1970), is calculated as

MEF = 1−
∑ne

k=1

∑nm

i=1

∑nspk
l=1

(
yi (ξk, tl)− ŷi

(
ξk, θ̂, tl

))2

∑ne

k=1

∑nm

i=1

∑nspk
l=1 (yi (ξk, tl)− yi (ξk))2 . (2.30)

Here, yi (ξk, tl) represents the measured response variable at sampling time tl of experiment

ξk, ŷi

(
ξk, θ̂, tl

)
represents the model prediction of that response variable, and yi

(
ξk, θ̂

)
represents the mean of the response variables that is calculated as

yi (ξk) =

∑nspk
l=1 yi (ξk, tl)

nspk

. (2.31)

The denominator of Eq. (2.30), used to calculate the modelling efficiency, represents the

variance of the measured response variables. The sum of the absolute differences between

the measured and the predicted response variables is normalized by dividing it by this

variance. The modelling efficiency ranges between −∞ and 1, with MEF = 1 being the

optimal value. A value of zero indicates that the model performs as good as the mean of

the measured response variables, whereas values below zero indicate that the mean of the

measured response variables is a better predictor than the model prediction. Therefore,
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values between zero and one are generally viewed as acceptable levels of performance,

and negative values indicate unacceptable performance (Krause et al., 2005; Legates and

McCabe Jr., 1999; Moriasi et al., 2007; Nash and Sutcliffe, 1970).

The index of agreement, denoted as d, was developed by Willmott (1981) as a standardized

measure of the degree of model prediction error and varies between 0 and 1. A value of

1 indicates a perfect agreement between the measured and predicted response variables,

and 0 indicates no agreement at all (Willmott, 1981; Legates and McCabe Jr., 1999). The

index of agreement is calculated as:

d = 1−
∑ne

k=1

∑nm

i=1

∑nspk
l=1

(
yi (ξk, tl)− ŷi

(
ξk, θ̂, tl

))2

∑ne

k=1

∑nm

i=1

∑nspk
l=1

( ∣∣∣ŷi (ξk, θ̂, tl)− yi (ξk)∣∣∣+∣∣∣ yi (ξk, tl)− yi (ξk)∣∣∣)2 . (2.32)

The denominator of Eq. (2.32) represents the so-called potential error (Willmott, 1981).

This potential error represents the largest value that the squared difference of the pairs

of measured and predicted values can attain and it is used to normalize the sum of the

absolute differences between the observed and the predicted values.

Note that in both criteria, MEF and d, the differences between the measured response

variables and the predicted ones are squared. Because of this, both criteria (as well as

the WSSE) are sensitive to extreme values, whereas lower values are neglected (Legates

and McCabe Jr., 1999; Krause et al., 2005). To overcome this issue, Legates and McCabe

Jr. (1999) proposed modified versions of these criteria by taking the absolute values of

the differences. In a comparative study, Krause et al. (2005) showed that these modified

versions outperformed the original criteria for the examples they considered. Also note

that the differences between the measured response variables and the predicted ones are

not weighed using the uncertainty associated with the measurements, as for instance in

the calculation of the WSSE (Eq. (2.4)). It may however be a good idea to include this

weighing in the calculation of both the modeling efficiency and the index of agreement. If

the information on the measurement errors is not included, these criteria may reject an

adequate model in situations where the measurements are imprecise (as depicted in case 1

of Fig. 2.3).
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2.9 Model selection

As suggested in Section 2.7, a situation may occur in which it is very difficult or even

impossible to further discriminate among a number of remaining rival models with the

available experimental setup. In such a case, one of the remaining rival models can be cho-

sen or selected. Model selection can be defined as the task of selecting the best performing

model from a set of adequate models based on the available data and the characteristics

of the model structures. Spriet (1985) argued that the best model is selected as a trade-off

between model fit, model parsimony and balanced accuracy. Each of these aspects is briefly

discussed below.

Model fit deals with the ability of the different models to describe the available data. From

the discussion in the previous section, it is clear that this is an important aspect that also

has to be reflected in the model selection criterion. Early methods for model selection only

considered this aspect, and the model with the smallest WSSE was selected (Spriet, 1985).

Next to the ability of the model to fit the data, also the model parsimony is important and

has to be considered. Model parsimony is related with the complexity of the model. A par-

ticular model structure is believed to be most effective and plausible if it is simple. Indeed,

the model fit can be made as good as wanted by increasing its complexity, that is, by adding

additional parameters. When the number of parameters becomes too high compared to the

information content of the data, the ability of the model to generalize beyond the available

experiments is reduced. This phenomenon is called overfitting, and can be detected by

adding an additional term to the model selection criterion that penalizes for the number of

parameters. Therefore, a more complicated model will only be accepted if its improvement

in model fit is large enough, and thus balances the penalty term. Two popular criteria

that take into account the model complexity are the Akaike information criterion (AIC)

and the Bayesian information criterion (BIC). These are respectively given by Eqs. (2.33)

and (2.34) (de Brauwere et al., 2005; Spriet, 1985; Vanrolleghem and Dochain, 1998):

AIC = n · log

(
WSSE

n

)
+ 2 · np , (2.33)

BIC = n · log

(
WSSE

n

)
+ np · log (n) , (2.34)

where n represent the number of data points and np represents the number of model

parameters.
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A third and final aspect that has to be taken into account is balanced accuracy, which

we prefer to call structural identifiability. The notion of identifiability is related to the

possibility to give a unique value to each of the model parameters (Bellman and Aström,

1970; Vanrolleghem and Dochain, 1998), and the outcome of a structure identifiability

analysis is a yes or no answer. A lack of identifiability can be related to the model structure

itself (structural identifiability) or to the quantity and quality of the experimental data

(practical identifiability). The structural identifiability of a particular model structure is

examined under the assumption that perfect or error-free measurements are available for

the response variables. From the structural identifiability analysis, one may conclude that

only certain combinations of the model parameters can be identified. For instance, in the

model y = a ·x1 +b ·x2 +c · (x1 + x2), it is impossible to give a unique value to a, b or c and

only two parameters will be identifiable if the other one is known a priori. This becomes

clear after rewriting the model as y = (a+ c) · x1 + (b+ c) · x2. Practical identifiability,

on the other hand, determines whether the available data is sufficiently informative to

identify the model parameters. When selecting a model, there is little sense in retaining

a possibly more valid model structure if its parameters can only be poorly estimated. An

approximate model structure of which the parameters can be estimated more accurately

may be more adequate, and thus a better model. To our knowledge, there are currently

no model selection criteria that explicitly take this identifiability into account.

2.10 Model validation

Once a model is selected, its validity has to be examined before it can actually be used.

Therefore, the model predictions are confronted with new experimental data, that is, data

that have not been used for estimating the model parameters. Model validation may seem

a simple and straightforward task, but it is not. One reason why this is a difficult task

is because model validation is strongly linked with the purpose of the model, and thus

its intended use (Mitchell, 1997; Moriasi et al., 2007; Power, 1993; Rykiel, 1996; Tedeschi,

2006). Indeed, the term valid model has different meanings to different users, and one must

maintain some flexibility as to what is considered as a valid model.

Mathematical models can be classified according to many different criteria, but an interest-

ing classification is the one where a distinction is made between models for prediction and

models for understanding (Vanrolleghem and Dochain, 1998). Models for prediction are

used in applications where it is required that the model is able to predict the behavior of

the studied process very accurately. In such applications, the model will primarily be used
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to make predictions that may eventually replace real observations of the process. Often,

this may require extrapolation, for which the mechanisms that govern the behavior of the

process must be included adequately in the model. However, good predictions can also be

achieved without understanding the basic mechanisms of the studied process. This is, for

instance, the case with empirical, so-called black box models. The second type of mod-

els are intended to increase the understanding in the (often complex) process. Although

a full understanding of the process is too ambitious, some applications may require that

the model captures most or at least the most important mechanisms that determine the

behavior of the process. In such applications, the model holds until significant deviations

from reality are observed.

From the above discussion, one can conclude that a mathematical model can thus not be

proved valid as such. But one can only evaluate whether it is appropriate for its intended

purpose for given conditions or not (Tedeschi, 2006). Based on an extensive review of the

vast amount of literature on this subject, Rykiel (1996) define model validation as “the

process of demonstrating that a model possesses a satisfactory range of accuracy consistent

with the intended application of the model within its domain of applicability”. This indicates

that the model is acceptable for use, not that it embodies any absolute truth, nor that it

is the best model available.

2.11 Optimization algorithms

Both parameter estimation and optimal experimental design are optimization problems.

To find the optimum, the use of an optimization algorithm is required. In this work,

the SIMPSA optimization algorithm proposed by Cardoso et al. (1996) was used. This

algorithm combines the nonlinear simplex (Nelder and Mead, 1965) and the simulated an-

nealing algorithm (Kirkpatrick et al., 1983), and it showed good performance for both the

parameter estimation and the experimental design problems encountered in this work. Be-

low, these optimization algorithms will be briefly described. For more detailed information

on these optimization algorithms, the reader is referred to the cited literature.

2.11.1 Local and global optima

Before describing the optimization algorithms, this section briefly discusses the difference

between local and global optima and its importance with regard to the (choice of the)

optimization algorithm. Suppose one is dealing with a minimization problem, then a
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Figure 2.4: Illustrating the difference between local and global optima for a hypothetical opti-
mization problem in which the minimum of function f (x, y) is sought. The global
minimum is indicated by the arrow with the large arrow head in the left figure and
the • symbol in the right figure, while the local minimum is indicated by the small
arrow and the × symbol.

global minimum is defined as the lowest objective function value in the whole parameter

space. For the hypothetical optimization problem shown in Fig. 2.4, the global minimum

is indicated by the arrow with the largest arrow head. As indicated by the other arrow,

the objective function also has a so-called local minimum, which is defined as the lowest

objective function value in a bounded neighborhood around it.

Despite the fact that a significant amount of research has been done to develop efficient

optimization algorithms that guarantee that the global optimum for a given optimization

problem is found, no perfect optimization algorithm exists (so far) (Dochain and Vanrol-

leghem, 2001). It is thus important to be aware of this problem, and care must be taken

to maximize the confidence in the result of the optimization. Nevertheless, some opti-

mization algorithms are more sensitive to this problem than others and the choice of the

optimization algorithm is thus important.

2.11.2 Steepest descent algorithm

A wide range of optimization algorithms has been developed for locating the minimum of

a given objective function, and many among them make use of information about the gra-
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dient of the objective function with respect to the variables to be optimized (Dochain and

Vanrolleghem, 2001). One of these algorithms is the so-called steepest descent algorithm.

The basic idea of this algorithm is that the minimum is sought in that direction in the

variable space where the decrease in the objective function is largest. So, first, the direction

in the variable space along which the objective function decreases fastest is determined

(based on the gradient), and once the direction of steepest descent is identified, this path

is followed until the minimum along this direction is reached. If so, the optimization

variables are changed accordingly, and a new direction of steepest descent is identified.

It is clear that this approach does not guarantee that the global optimum is found. Indeed,

this algorithm will converge to the optimum that is closest to the initial guess, regardless

of its nature (local or global). In addition, this algorithm requires information on the

gradient of the objective function. The latter is not always available, and its computation

by numerical approximation is often computationally demanding.

2.11.3 Nonlinear simplex algorithm

The nonlinear simplex optimization algorithm was proposed by Nelder and Mead (1965).

This algorithm uses the geometrical concept of a simplex, which is the n-dimensional

analogue of a triangle in two dimensions. In n dimensions, the simplex is the geometrical

figure that arises when n + 1 points (or vertices) are connected. This is illustrated in

Fig. 2.5a, where a simplex is shown for the case of three dimensions.

low
high

(a) simplex at start (b) reflection (c) reflection and expansion

(d) contraction (e) multiple contraction

Figure 2.5: Elementary operations in the simplex optimization algorithm, illustrated on a hy-
pothetical case in three dimensions.
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Figure 2.6: Illustration of the nonlinear simplex algorithm on the example shown in Fig. 2.4.
The simplex algorithm converges to the global minimum in (a) and to the local
minimum in (b).

Starting from an initial simplex (Fig. 2.5a), the optimum (here, minimum) is found by

evaluating the objective function value at the vertices of the simplex and replacing the

vertex with the highest value by a new point in n-dimensional space for which the corre-

sponding objective value is lower. To determine this new point, a number of operations

can be performed on the working simplex. For instance, the objective function value of

the point obtained by reflecting the worst vertex is calculated, and the worst performing

vertex is replaced by this new point if its corresponding objective value is smaller. If not,

the points obtained from the operations shown in Fig. 2.5c and Fig. 2.5d are evaluated in

a similar way. The optimization process is terminated when the working simplex becomes

sufficiently small and the vertices thus almost coincide, or when the objective function

values of the different vertices are nearly identical.

The nonlinear simplex algorithm is less sensitive to local optima than the steepest descent

algorithm described in the previous section, although better alternatives are available (for

instance, the simulated annealing algorithm described in the next section). However, the

simplex optimization algorithm is appreciated for its ease of implementation, the fact that

it does not require information on the gradient and because of its reasonable convergence

rate (Dochain and Vanrolleghem, 2001).
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2.11.4 Simulated annealing algorithm

Algorithms based on simulated annealing employ a stochastic generation of solution vec-

tors and employ similarities between the physical process of annealing in metallurgy (Kirk-

patrick et al., 1983). The latter is a technique involving heating and controlled cooling of

a material to increase the size of its crystals and reduce their defects. The heat causes

the atoms to become unstuck from their initial positions (a local minimum of the internal

energy) and wander randomly through states of higher energy; the slow cooling gives them

more chances of finding configurations with lower internal energy than the initial one. In

other words, during the cooling process, transitions are accepted to occur from a low to a

high energy level through a Boltzmann probability distribution.

By analogy with this physical process, each step of the simulated annealing algorithm

replaces the current solution by a random nearby solution, chosen with a probability that

depends on the difference between the corresponding objective function values and on a

global parameter called the temperature, which is gradually decreased during the process.

The dependency is such that the current solution changes almost randomly when the

temperature is large, but increasingly downhill as the temperature goes to zero. The

allowance for uphill moves prevent the method from becoming stuck at local minima, which

is for instance the case with the steepest descent algorithm described in Section 2.11.2.

2.11.5 SIMPSA algorithm

The SIMPSA algorithm is based on the combination of the nonlinear simplex and simulated

annealing algorithms (Cardoso et al., 1996). In principle, the SIMPSA algorithm is not

much different from the simulated annealing algorithm described above. The difference

between both algorithms lies in the way in which the new solutions are chosen. In the

original simulated annealing algorithm, these new solutions are chosen randomly in the

neighborhood of the current solution. The SIMPSA algorithm, on the other hand, works

with simplexes (as discussed in Section 2.11.3) and the new solutions are determined by the

simplex operations shown in Fig. 2.5. So, the role of the nonlinear simplex is to generate

potential solutions for the optimization problem.

The SIMPSA algorithm was selected among the many different optimization algorithms

described in literature (for instance, in Banga et al. (2003, 2005); Mendes and Kell (1998);

Moles et al. (2003)) for two reasons. First, because it is a global optimization algorithm.

This is important because both parameter estimation and experimental design problems
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can suffer from local minima/maxima, and the use of a global optimization algorithm is

therefore required. Several examples can be found in literature where such algorithms were

used, both for parameter estimation (Checchi and Marsili-Libelli, 2005; Moles et al., 2003;

Rodriguez-Fernandez et al., 2006) and experimental design exercises (Banga et al., 2002;

De Pauw and Vanrolleghem, 2006a; Moles et al., 2003; Ternbach et al., 2005). Second,

because it requires little to no configuration. Typically, several parameters are available

to tune an algorithm, and the values at which they are set determine the efficiency of the

optimization algorithm. However, the optimal settings are mostly problem specific, and

manual tuning is typically required. With the SIMPSA algorithm, some of the parameters

are automatically tuned and only two parameters remain to be tuned manually.

2.11.6 Handling constraints

Often, the optimization variables, which can be parameters and experimental degrees of

freedom in the context of this dissertation, are only allowed to vary between well-defined

boundaries. Nevertheless, the unconstrained optimization algorithm presented above may

propose a value for these variables that lies beyond these boundaries. To handle constraints

on the optimization variables, a penalty function is used (Dochain and Vanrolleghem, 2001).

When the optimization algorithm proposes a value lying beyond the upper or lower bound,

the corresponding value of the objective function is decreased (maximization) or increased

(minimization) with a large penalty term that increases as the proposed value is further

away from the bound (as illustrated in Fig. 2.7). By adding a gradient to the penalty

function, the optimization algorithm gets an idea about the direction in which it should

progress.

2.12 Summary and conclusions

In this introductory chapter, a number of important aspects of mathematical modelling

were explained and the notations used throughout this dissertation were introduced. One

should remember from this chapter that the mathematical models considered in the fol-

lowing are given by a set of coupled differential and algebraic equations, which constitute

the model structure. These equations describe the evolution of the state variables over

time and the models are therefore called dynamic models. Some of these state variables

correspond to actually measured response variables, while other ones can be calculated

from one or more state variables. To be able to simulate a well-defined experiment with

a given model, values for the model parameters have to be supplied. These parameter
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J (x)

xupper bound

Figure 2.7: Illustrating of the approach used in this work to deal with constraint violation.
When the optimization algorithm proposes a value of a particular variable which
lies beyond the upper boundary (dotted vertical line), a penalty is added to the
objective function value (J (x)), which decreases in the direction of the allowed
variable range. In this way, the values proposed in the following iterations are more
likely to be within the allowed variable range.

values have to be determined from experimental data, which are inevitably corrupted by

measurements errors/noise. As a consequence, some uncertainty will be associated with

the parameter estimates, which will propagate to the model predictions when the model is

used for simulation. These uncertainties are very important and the methods described in

this chapter can be used to quantify them.

In addition, this chapter presented a general procedure to discriminate among a number

of rival models, which consisted of four steps that are performed in an iterative manner.

After estimating the parameters of the rival models from the available experimental data

sets, the adequacy of the models are evaluated. The models that are found to be adequate

are considered in the design of optimal discriminatory experiments that are eventually

performed and the procedure is repeated. Ideally, this procedure is repeated until the

most appropriate model is identified. As the case studies described in this dissertation are

simulation studies, statistical tests can be described to evaluate the adequacy of the rival

models. However, in practical applications, these test may reject useful models because

it is unrealistic to expect that the true model can be found. Therefore, some alternative

methods to evaluate the adequacy of a model were presented as well. The design of optimal

discriminatory experiments is dealt with in the following chapters.





CHAPTER 3
Rival kinetic models for glucokinase:

working example

“The purpose of computing is insight, not numbers.”

Richard Hamming, mathematician



Abstract

The experimental design methods described in this work will be evaluated after applying

them (in silico) to the model discrimination problem described in this chapter. In this

working example, nine rival models are proposed to describe the kinetics of the enzymatic

reaction catalyzed by glucokinase. In addition, the approach used throughout this work to

generate experimental data is discussed.
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3.1 Introduction

Throughout this dissertation, the mathematical modelling and experimental design con-

cepts will be illustrated on a working example in which nine rival models are proposed to

describe the enzymatic conversion of glucose (GLU) and adenosine triphosphate (ATP) to

glucose-6-phosphate (G6P) and adenosine diphosphate (ADP). The enzyme that catalyzes

this biochemical conversion is called glucokinase (glk, EC: 2.7.1.2), and is reported to be

inhibited by phosphoenolpyruvate (PEP) (Ogawa et al., 2007). For illustratory purposes,

a three-dimensional representation of this enzyme is shown in Fig. 3.1.

Glucokinase is found in several micro-organisms, for instance in Escherichia coli, where it

catalyzes the first reaction of the so-called glycolysis. The latter is a pathway present in

most organisms and consists of a sequence of reactions that converts glucose into pyruvate

with the concomitant production of ATP. This ATP plays a crucial role in the cell’s

metabolism (Madigan et al., 2000; Mathews et al., 2000). It is generated in the cell by

energy-releasing processes and is broken down by energy-consuming processes. In this way,

ATP transfers cellular energy between spatially-separate metabolic reactions.

To determine the kinetics of an enzyme, so-called in vitro enzyme assays can be conducted.

In such an enzyme assay, the isolated and purified enzyme is brought together with its

substrates in a reaction vessel, and the consumption of the substrate(s) or the production

of the product(s) are measured over time. The concentration profiles obtained in this way

can then be used to determine the enzyme kinetics.

In the following, nine rival models will be proposed to describe the kinetics of glucoki-

nase, each of which can be seen as a mathematical representation of a plausible reaction

mechanism. Based on information found in literature on glucokinase, one of these models

was assumed to represent the true reaction mechanism. This presumed reaction mecha-

nism is discussed in the next section, and the corresponding kinetic equation is derived in

Section 3.3. The corresponding model will be used to generate experimental data in the

in silico examples described in the remainder of this dissertation. The kinetic equations

corresponding to the other reaction mechanisms are described in Section 3.5.
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Figure 3.1: Three-dimensional represenatation of glucokinase found in Escherichia coli, adopted
from Lunin et al. (2004)
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3.2 Reaction mechanism of glucokinase

The reaction catalyzed by glucokinase is a reaction in which two substrates are converted

into two products, and it is therefore called a bi-reactant system (Segel, 1975). For such

enzymes, two reaction mechanisms are possible, random and ordered. If both substrates

can bind to the enzyme independently, the reaction is called a random bi-reactant system.

The conversion takes place as soon as the two substrates are bound to the enzyme, and

the products are released subsequently. However, such a mechanism may not always be

possible. Often, one of the substrate has to bind to the enzyme first, before the other

substrate can bind. Therefore, the first binding substrate is often called the activator. This

activator might induce a conformational change in the enzyme so that substrate binding

groups become available, or the activator itself is modified by the enzyme to a form that

then participates in positioning the substrate properly in relation to the catalytic groups

of the enzyme (Segel, 1975).

As stated in the introduction, Ogawa et al. (2007) reported that glucokinase is inhibited

by PEP. An inhibitor is defined as any substance that reduces the velocity of an enzyme-

catalyzed reaction, and inhibition can occur in many different forms (Fersht, 1999; Segel,

1975). According to Ogawa et al. (2007), PEP inhibits glucokinase because it acts as a

competitive inhibitor for ATP. Competitive inhibition occurs when a substance (here,

PEP) combines with free enzyme in a manner that prevents subsequent substrate binding

(Segel, 1975). In other words, PEP can bind with glucokinase and this binding prevents

the binding of ATP. This of course slows down the overall conversion rate. Monasterio

and Cárdenas (2003) state that it has been postulated that the reaction mechanism is

ordered with glucose as the first binding substrate, although this subject is not closed and

it remains unclear whether the reaction mechanism is totally ordered.

The presumed reaction mechanism of glucokinase is shown in Fig. 3.2, where A and B

stand for glucose and ATP, and A′ and B′ stand for G6P and ADP, respectively. The

inhibitor is represented by I, and corresponds with PEP in the case of glucokinase. Note

that these notations (A, B, A′, A′ and I) were introduced for simplicity. In the following

section, a kinetic equation will be derived that allows a mathematical description of the

enzymatic conversion process that works according to this reaction mechanism.
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Figure 3.2: Ordered reaction mechanism for an enzyme (E) that catalyzes the conversion of
A and B into A′ and B′, where A is the first binding substrate and I inhibits the
binding of the second substrate to the enzyme (competitive inhibition). For the
case of glucokinase, A and B stand for glucose and ATP, respectively, A′ and B′

stand for G6P and ADP, and the inhibitor I is PEP.

3.3 Kinetic equation for glucokinase

To derive an equation that describes the kinetics of an enzyme, the so-called rapid equi-

librium approach can be followed (Segel, 1975). The kinetics derived in this way are often

called steady state kinetics (Fersht, 1999). In the rapid equilibrium approach, it is assumed

that all binding and dissociation steps are very rapid compared to the catalytic step, in

which the products are formed and released from the enzyme. For the presumed reaction

mechanism of glucokinase, this catalytic step (as depicted in Fig. 3.2) is represented by

EAB
k−→ E + A′ + B′ . (3.1)

This step is thus assumed to be the rate-limiting step, and the velocity-dependence equa-

tion states that the velocity at which the conversion proceeds is equal to the product of

the concentrations of all product-forming species, each multiplied by their catalytic rate

constant. In the case of glucokinase, there is only one product-forming species (that is,

EAB) and the velocity equation can be written as

v = k · [EAB] . (3.2)

Here, k represents the so-called catalytic rate constant and [EAB] stands for the concentra-

tion of the EAB complex. To continue the derivation, both terms of Eq. (3.2) are divided

by [E]t. The latter expresses the concentration of the enzyme in all its forms, that is, the
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free enzyme [E] as well as the different enzyme complexes. With the notations introduced

in Fig. 3.2, [E]t can be calculated as

[E]t = [E] + [EA] + [EAB] + [EAI] . (3.3)

This results in the following equation for v:

v

[E]t
= k · [EAB]

[E] + [EA] + [EAB] + [EAI]
. (3.4)

To express the concentration of each enzyme species in terms of the concentration of free

enzyme, the dissociation or equilibrium constants (K) for the different reactions preceding

the catalytic step (see Fig. 3.2) are integrated in Eq. (3.4). These equilibrium constants

are defined as follows

KA =
[E] · [A]

[EA]
, KB =

[EA] · [B]

[EAB]
and KI =

[EA] · [I]
[EAI]

.

Substitution of these equilibrium constants into Eq. (3.4) results in the following equation

for v:

v = k · [E]t ·
[A]·[B]
KA·KB

1 + [A]
KA

+ [A]·[B]
KA·KB

+ [A]·[I]
KA·KI

. (3.5)

In the case of glucokinase, this equation can be rewritten as:

vglk = k ·GLK ·
GLU·ATP
KGLU·KATP

1 + GLU
KGLU

+ GLU·ATP
KGLU·KATP

+ GLU·PEP
KGLU·KPEP

, (3.6)

where the GLK stands for the concentration of glucokinase, and GLU, ATP and PEP stand

for the concentrations of glucose, ATP and PEP, respectively. The catalytic rate constant

or maximum specific reaction rate is represented by k, and the equilibrium constants are

represented by KGLU, KATP and KPEP. With this equation, it is thus possible to calculate

the rate of conversion for given concentrations of GLK, GLU, ATP and PEP. However, to

describe the outcome of an in vitro enzyme assay, this kinetic equation has to be plugged

into a more general model, the structure of which is discussed in the next section.
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3.4 General model

Before describing the (nine) different kinetics for glucokinase, a general mass balance model

for the enzymatic conversion process is formulated. For this, it is assumed that the exper-

imental setup used for the in vitro enzyme assay allows the experimenter to give a pulse

of glucose, ATP and PEP, or a mixture thereof.

The volume of the reaction vessel [L], denoted as V, is determined by the pulse and

the sampling (frequency and volume). The flowrate of the pulse [L/s], denoted as Fp, is

calculated as the ratio between the volume of the pulse [L] and the time in which the pulse

is given [s]. In this example, the sampling volume will be neglected and the volume can

thus be described by

dV

dt
= Fp . (3.7)

For the concentration of glucokinase [mg/L], denoted as GLK, only a dilution effect is

considered. Inactivation of the enzyme is neglected, which is a reasonable assumption

since a typical experiment ends after 20 minutes. The resulting equation for describing the

enzyme concentration is given as

dGLK

dt
= −Fp

V
·GLK . (3.8)

The equations used to describe the other state variables (all of which are expressed in

[mM]) are given as:

dGLU

dt
=

Fp
V
· (GLUp −GLU)− vglk , (3.9)

dATP

dt
=

Fp
V
· (ATPp − ATP)− vglk , (3.10)

dG6P

dt
= −Fp

V
·G6P + vglk , (3.11)

dADP

dt
= −Fp

V
· ADP + vglk , (3.12)

dPEP

dt
=

Fp
V
· (PEPp − PEP) . (3.13)
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Here, GLUp, ATPp and PEPp represent the concentrations [mM] of glucose, ATP and PEP

in the pulse, respectively, and vglk represents the velocity equation describing the kinetic

behavior of glucokinase [mM/s].

3.5 Rival models

As stated above, the conversion catalyzed by glucokinase is a bi-reactant system (Segel,

1975) for which two reaction mechanisms are possible: random and ordered. Recently, it

was suggested that glucokinase may be inhibited by phosphoenolpyruvate (PEP) (Ogawa

et al., 2007). Based on these considerations, nine different models were defined to describe

the enzyme kinetics (Segel, 1975), each of which is based on a particular hypothesis of how

the enzyme works. The derivation of their respective kinetic equations is not explicitly

described here for brevity, but these derivations are very similar to the one described in

Section 3.3. Although the resulting kinetic equations are different for each of the rival

models. Each one is of the following form:

vglk = k ·GLK ·
GLU
KGLU

· ATP
KATP

ϕ (GLU,ATP,PEP)
, (3.14)

where the parameter k expresses the maximum specific reaction rate [U/mg], where one

unit [U] is defined as that amount of enzyme that catalyzes one µmol of substrate in one

minute. The denominator ϕ (GLU,ATP,PEP) is different for each rival model and the

equations for each of the models are derived below.

For models m1, m2 and m3, it is assumed that the reaction mechanism is random. With

regard to the inhibition by PEP, three scenarios are possible (also for the other models

described further on): there is no inhibition by PEP (Eq. (3.15)), PEP inhibits the binding

of ATP (Eq. (3.16)) and PEP inhibits the binding of glucose (Eq. (3.17)). This results in

the following equations for ϕ (GLU,ATP,PEP):

1 +
GLU

KGLU

+
ATP

KATP

+
GLU

KGLU

· ATP

KATP

, (3.15)

1 +
GLU

KGLU

+
ATP

KATP

+
PEP

KPEP

+
GLU

KGLU

· PEP

KPEP

+
GLU

KGLU

· ATP

KATP

, (3.16)

1 +
GLU

KGLU

+
ATP

KATP

+
PEP

KPEP

+
ATP

KATP

· PEP

KPEP

+
GLU

KGLU

· ATP

KATP

. (3.17)
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Figure 3.3: Random reaction mechanism for an enzyme (E) that catalyzes the conversion of
A and B into A′ and B′, where A is the first binding substrate and I inhibits the
binding of the second substrate to the enzyme (competitive inhibition). For the
case of glucokinase, A and B stand for glucose and ATP, respectively, A′ and B′

stand for G6P and ADP, and the inhibitor I is PEP.

A schematic representation of the random reaction mechanism with a competitive inhibitor

is given in Fig. 3.3. This figure is similar to Fig. 3.2, where an ordered reaction mechanism

was presented and where the binding of the second binding substrate was competitively

inhibited.

For the other six models, an ordered reaction mechanism is assumed. For models m4,

m5 and m6, it is assumed that glucose is the first binding substrate, which results in the

following equations for ϕ (GLU,ATP,PEP):

1 +
GLU

KGLU

+
GLU

KGLU

· ATP

KATP

, (3.18)

1 +
GLU

KGLU

+
GLU

KGLU

· PEP

KPEP

+
GLU

KGLU

· ATP

KATP

, (3.19)

1 +
GLU

KGLU

+
ATP

KATP

· PEP

KPEP

+
GLU

KGLU

· ATP

KATP

. (3.20)

The equations associated with models m7, m8 and m9 are similar, but ATP is assumed to

be the first binding substrate. The equations for ϕ (GLU,ATP,PEP) are given by:

1 +
ATP

KATP

+
GLU

KGLU

· ATP

KATP

, (3.21)
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Table 3.1: Overview of the kinetic equations of the nine rival models described in Section 3 and
used as a working example throughout this dissertation.

rival random ordered inhibition by PEP kinetic

model glucose ATP glucose ATP equation

m1 × - - - - Eq. (3.15)

m2 × - - - × Eq. (3.16)

m3 × - - × - Eq. (3.17)

m4 - × - - - Eq. (3.18)

m5 - × - - × Eq. (3.19)

m6 - × - × - Eq. (3.20)

m7 - - × - - Eq. (3.21)

m8 - - × - × Eq. (3.22)

m9 - - × × - Eq. (3.23)

1 +
ATP

KATP

+
GLU

KGLU

· PEP

KPEP

+
GLU

KGLU

· ATP

KATP

, (3.22)

1 +
ATP

KATP

+
ATP

KATP

· PEP

KPEP

+
GLU

KGLU

· ATP

KATP

. (3.23)

An overview of the kinetics of the rival models is given in Table 3.1. Note that the kinetic

equation for model m5 corresponds to the one that was described in Section 3.3, and thus

corresponds to the presumed reaction mechanism of glucokinase.

3.6 Real model and data generation

According to literature (Monasterio and Cárdenas, 2003; Ogawa et al., 2007), the reaction

mechanism of glucokinase is ordered, with glucose as the first binding substrate, and PEP

inhibits the binding of ATP to the enzyme (as discussed in Section 3.2). Based on these

considerations, the fifth model was chosen as the real model (m?
5). This model was used

to generate experimental data by simulating the experiment and adding random noise to

mimic the measurement error. The parameters used to generate experimental data are

given in Table 3.2. The standard deviations of the measurements were calculated in the

same way as suggested by Ternbach et al. (2005):
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σy = ŷ · ςy ·

1 +
1(

ŷ
lby

)2

+ ŷ
lby

 . (3.24)

Here, ςy and lby respectively represent a constant minimal relative error and a lower ac-

curacy bound on the measurement of y. In this way, the standard deviations of the mea-

surements are proportional to the value of ŷ, but increase when the latter approaches the

detection limit or the lower accuracy bound of the measured state variable.

Table 3.2: Parameters of the real model (m?
5) that were used to generate experimental data.

k KGLU KATP KPEP

[U/mg] [mM] [mM] [mM]

312.00 0.1500 0.1300 0.1000

3.7 Some typical simulation results

In this section, some simulation results will be briefly described in order to increase the

understanding of the kinetic equations presented above.

Example one

In this example, two experiments are simulated using model m5. At the start of both

experiments, the concentrations of glucose and ATP are 1.5 and 0.5 mM, respectively. In

the first experiment, PEP is not present in the reaction medium, while the concentration

of PEP is set at 0.5 mM in the second experiment. So, except for the PEP concentration,

both experiments are the same. The experiment (and the enzymatic reaction) is initiated

by adding glucokinase to the reaction medium (upto 0.016 mg/mL).

The concentration profiles of glucose, ATP, ADP and G6P obtained when simulating the

experiment without PEP using the parameter values shown in Table 3.2 are shown in the

left graphs of Fig. 3.4. The simulation results obtained for the experiment with PEP are

shown in the middle graphs of Fig. 3.4. The graphs on the left represent the simulation

results (for the experiment with PEP) obtained using a larger value for KPEP, that is used

to characterize the inhibitory effect of PEP.
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Figure 3.4: Simulation results obtained with model m5. The PEP concentration is indicated in
the figures as well as the value for parameter KPEP.

The results shown in left graphs of Fig. 3.4, for instance, clearly illustrate that the reaction

can only take place when both substrates (glucose and ATP) are present. One can also see

that the concentration of the substrates decrease almost linearly when both substrates are

abundant. Comparing the results obtained for the experiments with and without PEP (left

versus middle graphs) clearly show that the presence of PEP slows down the enzymatic

reaction. The results in the graphs in the right side of Fig. 3.4 show that the inhibition

effect of PEP reduces for larger values of parameter KPEP. Or, put differently, when the

inhibitory effect of a given molecule (here, PEP) is small, the value obtained for parameter

KPEP after estimating the model parameter is expected to be large.

Example two

In this example, the experiment with PEP described above is simulated with models m4,

m5 and m6. The parameter values shown in Table 3.2 were used for all three models.
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Figure 3.5: Simulation results obtained after simulating the experiment with PEP using model
m4, m5 and m6.

Note, however, that model m4 does not consider inhibition by PEP and the corresponding

kinetic equation does not contain parameter KPEP. Model m6 differs from model m5 by

the fact that PEP inhibits the binding of ATP instead of the binding of glucose.

The simulation results are shown in Fig. 3.5. As expected, one can see that the results

obtained with model m4 are the same as the ones obtained with m5 for the experiment

without PEP (left graphs in Fig. 3.4). One can also see that the reaction simulated with

model m6 proceeds faster than with model m5. This is because model m6 assumes that

PEP competitively inhibits the binding of glucose. As glucose is more abundant than ATP,

the reaction proceeds relatively faster.
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CHAPTER 4
Criteria for the design of

optimal discriminatory experiments

“What is important cannot always be measured,

and what can be measured is not always important.”

Albert Einstein, theoretical physicist



Abstract

The problem of model discrimination arises when several models are proposed to describe

one and the same process. To identify the best model from the set of rival models, it may

be necessary to collect new information about the process, and thus additional experiments

have to be performed. This chapter deals with the experimental design methodologies that

are used to find the experimental conditions that allow to discriminate among rival models

with the least experimental effort. For this, the expected experimental results should

be predicted differently by the rival models, and the uncertainty on the measurements

and on the model predictions should not be too large. These aspects were included in

the approach developed by Buzzi-Ferraris and co-workers (1984), but in their approach

the uncertainties are estimated from the information content of the already performed

experiments. This work presents a modification of the Buzzi-Ferraris approach in which

the expected information content of the newly designed experiment is considered, even

before the experiment is performed (anticipatory design). In this way, a better estimate of

the uncertainties is achieved, and an experiment with an increased discriminatory potential

is obtained. The approaches were illustrated and compared by applying them to a case

study in which two rival models are proposed to describe the in vitro kinetics of an enzyme.
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4.1 Introduction

As advocated before, mathematical models are useful tools for scientists and engineers.

Next to increasing insight in often complex processes, mathematical models are used in

process design, optimization and control. How one obtains such models will not be dis-

cussed here. However, it is important to realize that the lack of insight in the modelled

process may result in the proposal of several rival models. Obviously, one is especially

interested in the model that describes the process under study in the best way. To identify

this model from a set of rival models, it may be necessary to collect new information about

the process, and thus additional experiments have to be performed.

The methods to design experiments that allow discriminating among rival models, often

referred to as optimal experimental design for model discrimination (OED/MD) or optimal

experimental design for (model) structure characterization (Vanrolleghem and Van Daele,

1994), will be the main focus of this chapter. As explained in Section 2.7, these experimen-

tal design methods are part of a more general procedure for model discrimination in which

four steps are performed in an iterative manner until a stopping criterion is met (Fig. 2.2).

The rival models and the preliminary experimental data are used in a first step, in which

the parameters of the rival models are estimated. A second step involves an evaluation of

the adequacy of the models, and the adequate models are used in a third step, where an

optimal discriminatory experiment is designed using one of the approaches developed and

discussed in this chapter. The optimal discriminatory experiment is then performed in a

fourth and last step, after which the loop is closed by re-estimating the parameters of all

rival models using all data available at that time. This iterative procedure continues until

the best model is identified. Of course, when all models appear to be inadequate, new

models have to be proposed.

This chapter is organized as follows. After describing the most important design criteria for

OED/MD in Section 4.4, a new approach will be proposed in Section 4.5 that is based on

the design criterion originally proposed by Buzzi-Ferraris et al. (1984). In this approach,

the expected information content of the newly designed experiment is considered, even

before the experiment is performed. Therefore, this approach is called the anticipatory

approach. Further, the most promising design criteria found in literature and the antici-

patory approach are applied to the working example described in Chapter 3, where nine

rival models are proposed to describe the kinetics of glucokinase.
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4.2 Characteristics of a discriminatory experiment and the impor-
tance of uncertainty for its design

Before explaining how one can design an experiment that allows to discriminate among a

number of rival models, the characteristics of such an experiment are discussed, as well as

the importance of uncertainty for the experimental design. The illustrations depicted in

Fig. 4.1 will be used to facilitate this discussion. They represent hypothetical situations

one might encounter when trying to discriminate between two rival models m1 and m2.

Figure 4.1a depicts a situation in which both models are able to describe the experimental

data in an adequate manner. It is clear that it will not be possible to discriminate between

model m1 and m2 in such a situation, as both models describe the data (or the process)

equally well. However, if an experiment is performed that results in the data shown in

Fig. 4.1b, it it is clear that model m2 is able to adequately describe the experimental

data, while the other model does not. This example clearly illustrates the basic idea

behind optimal experimental design for model discrimination. When designing an optimal

discriminatory experiment, the rival models themselves are used to evaluate an experiment

for its discriminatory potential, which is basically determined by the difference between

the model predictions. Indeed, when designing the experiment, one assumes that one of

the rival models is the true model and that the outcome of the designed experiment can

be predicted by this model. Under this assumption, one expects that it will be possible

to identify the most appropriate model when the other model predicts this experiment

totally different (for instance as depicted in Fig. 4.1b). In other words, the design of an

optimal discriminatory experiment basically comes down to finding that experiment that

maximizes the difference between the model predictions.

However, when designing optimal discriminatory experiments, one should be aware of the

fact that the experimental data that will be collected from the designed experiment will

inevitably be corrupted with experimental error. Indeed, no measurement is free from

experimental error and the uncertainty on the measurements, which can be seen as a

measure of the reproducibility of the experiment(al) data, has to be taken into account

when designing a discriminatory experiment. When this uncertainty is not considered, a

situation may occur as depicted by the black dots in Fig. 4.1c. Here, it is not possible to

appoint which of the two models is the most appropriate one, although the difference in the

model predictions is significantly large. When the measurement error is not considered, the

discriminatory potential of the experiment may thus be wrongly evaluated. In such a case,
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Figure 4.1: Hypothetical situations illustrating the required characteristics of a discriminatory
experiment. In a situation as depicted in (a), model discrimination is not possible,
whereas this is possible in situation (b). This illustrates that a discriminatory ex-
periment should be predicted differently by the rival models. When the uncertainty
on the measurements is considered (c), model discrimination will be possible in the
beginning of the experiment, and not at the end. This is also the case when the
uncertainty on the model predictions is taken into account (d).
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more additional experiments may be required to achieve model discrimination compared to

approaches that do take the measurement uncertainty into account. In this hypothetical

example, it would have been better to sample in the beginning of the experiment (as

indicated by the white dots), where the observed difference in the model predictions is

small(er), but significant when the measurement error is considered.

The design of optimal discriminatory experiments is also hampered when the uncertainty

on the model predictions is too large (Box and Hill, 1967; Burke et al., 1997; Buzzi-

Ferraris et al., 1984). As stated above, the design of experiments is model-based and

the evaluation of an experiment is based on how it is predicted by the rival models. In

this respect, it is obvious that the uncertainty on these model predictions is important

and has to be considered when designing the optimal discriminatory experiment. This is

illustrated in Fig. 4.1d where the model predictions (the black lines) represent an estimate

of the behavior of the real process, and the uncertainties on these estimates are represented

by the confidence limits (dashed lines). The latter represent the limits within which the

real values of the process variables are expected to lie according to the corresponding

model, for a specified level of significance (Kennedy and Neville, 1985). If the limits

associated with the predictions of the rival models (almost) overlap, there is a possibility

that the expected difference in the model predictions will disappear once the newly collected

information is considered and model discrimination may not be possible afterall (Box and

Hill, 1967; Buzzi-Ferraris and Forzatti, 1983; Buzzi-Ferraris et al., 1984). In other words, if

the uncertainty on the model predictions is not considered during the experimental design,

the discriminatory potential of the experiment can be misjudged and the experiment may

not result in model discrimination as was expected before performing it.

4.3 OED/MD as an optimization problem

In general, optimal experimental design is an optimization problem, where the optimum

of a well-defined objective function, denoted as T , is sought by varying the experimental

degrees of freedom. This can be formalized as follows

ξ? = arg max
ξ∈Ξ

T (ξ) . (4.1)

The experimental degrees of freedom, ξ, are restricted by a number of constraints that

define a set of possible experiments, denoted as Ξ. These constraints are determined

by the experimental setup and are specified before the start of the experimental design
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exercise. Note that in this context, the objective functions are also called design criteria,

and these terms will be used as synonyms in the following. This chapter is devoted to the

design criteria one can use to design optimal discriminatory experiments.

4.4 Design criteria for OED/MD

Suppose, for simplicity, that one has to design an experiment to discriminate between

two rival models (m = 2). To discriminate between more than two rival models (m > 2),

several strategies can be followed. For instance, one can design an optimal discriminatory

experiment for each model pair, and eventually perform the one associated with the highest

value of the design criterion (Buzzi-Ferraris et al., 1990; Schwaab et al., 2006). In this way,

it should be possible to eliminate the worst models faster. Some other strategies are further

discussed in Chapter 5, but it is important to be aware of the fact that the design criteria

described in the following are also applicable to experimental design problems with more

than two models.

4.4.1 Design criterion proposed by Hunter and Reiner (1965)

From the hypothetical examples discussed in Section 4.2, it is clear that the data expected

from the designed experiment should be predicted differently by the two models to allow for

model discrimination. Hunter and Reiner (1965) translated this heuristic into an objective

function denoted as Tij (ξ) and given by

Tij (ξ) =

nsp∑
l=1

∆ŷij

(
ξ, θ̂i, θ̂j, tl

)′
·∆ŷij

(
ξ, θ̂i, θ̂j, tl

)
, (4.2)

where

∆ŷij

(
ξ, θ̂i, θ̂j, tl

)
= ŷi

(
ξ, θ̂i, tl

)
− ŷj

(
ξ, θ̂j, tl

)
(4.3)

represents the difference between the nm-dimensional vectors of the predicted outcomes of

experiment ξ by model i and model j at time tl, and nsp represents the number of samples

taken. Note that this notation will be simplified to ∆ŷij (ξ, tl) in the following.

The design criterion of Hunter and Reiner (1965) represents the basic idea behind OED/MD.

However, it is important to point out that this design criterion does not take into account
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the uncertainty on the measurements, nor on the model predictions. Why it is important

to do so was discussed in Section 4.2, and some design criteria that do take these sources

of uncertainty into account are described in the next section.

4.4.2 Design criterion proposed by Atkinson and Fedorov (1975)

In the original approach of Atkinson and Fedorov (1975), which was later modified by

Munack (1992), it is assumed that one of the two rival models is the true one and the

experiment proposed by the optimization algorithm (ξ) is simulated with this model, giving

rise to an additional data set. If mi is assumed to be the true model, the parameters of

the other model (mj) are re-estimated using the already available data and the new data

set generated by model mi. Under the assumption that model mi is the true model, it is

clear that the optimal discriminatory experiment is that experiment for which the residual

sum of squared errors is largest. Indeed, under these conditions, one expects that model

mj will not be able to describe the newly collected data properly and that the failure of

model mj to adequately describe the experimental data will become most apparent when

performing this experiment.

Since Atkinson and Fedorov (1975) did not consider the uncertainty on the measurements

to estimate the model parameters, this residual sum of squared errors (denoted as SSE)

can be calculated as follows

SSE
(
θ̂j

)
=

nsp∑
l=1

∆ŷij

(
ξ, θ̂i,θj, tl

)′
·∆ŷij

(
ξ, θ̂i,θj, tl

)
, (4.4)

where ∆ŷij

(
ξ, θ̂i,θj, tl

)
is calculated as

∆ŷij

(
ξ, θ̂i,θj, tl

)
= ŷi

(
ξ, θ̂i, tl

)
− ŷj (ξ,θj, tl) (4.5)

and represents the difference between the new data obtained by simulating the experiment

with model mi, denoted as ŷi(ξ, θ̂i, tl), and the predictions obtained with model mj for

parameter values θj, denoted as ŷj(ξ,θj, tl).

The optimal discriminatory experiment is then found by maximizing the residual sum of

squared errors, and the design criterion can thus be formalized as
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Tij (ξ) = min
θj∈Θ

nsp∑
l=1

∆ŷij

(
ξ, θ̂i,θj, tl

)′
·∆ŷij

(
ξ, θ̂i,θj, tl

)
. (4.6)

Note that, if the uncertainty on the measurements is considered when the model parameters

are estimated, the design criterion will be similar to the modified design criterion of Hunter

and Reiner (1965), which will be discussed in Section 4.4.6.

4.4.3 Modified design criterion of Atkinson and Fedorov (1975)

As already stated above, this design criterion represented by Eq (4.6) was adapted by

Munack (1992). In his approach, the experiment proposed by the optimization algorithm

(ξ) is simulated with both rival models, giving rise to two additional data sets. Each

data set corresponds to a scenario in which one of the rival models is assumed to be the

true model and for each scenario the design criterion formalized in Eq. (4.6) is evaluated.

The smallest design criterion value is eventually used as a measure of the discriminatory

potential of the proposed experiment and is maximized. This design criterion can thus be

formalized as follows:

Tij (ξ) = min
(
T jij (ξ) , T iij (ξ)

)
, (4.7)

where

T jij (ξ) = min
θj∈Θ

nsp∑
l=1

∆ŷij

(
ξ, θ̂i,θj, tl

)′
·∆ŷij

(
ξ, θ̂i,θj, tl

)
, (4.8)

and

T iij (ξ) = min
θi∈Θ

nsp∑
l=1

∆ŷij

(
ξ,θi, θ̂j, tl

)′
·∆ŷij

(
ξ,θi, θ̂j, tl

)
. (4.9)

The discriminatory potential of the proposed experiment in the scenario where mi repre-

sents the true model and the parameters of model mj are re-estimated, is thus represented

by T jij (ξ).
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4.4.4 Design criterion proposed by Munack (1992)

In another approach, also proposed by Munack (1992), the experimental design is based

on the level of dependence of the parameter estimates on the experimental conditions.

The latter in fact corresponds to a kind of adequacy evaluation of the rival models, where

adequate models are characterized by the fact that the parameter values obtained after

estimating them from experimental data are independent of the experimental conditions

(Box and Hunter, 1967; Munack, 1992). In other words, if the parameters have to change

considerably in order to obtain a significantly good fit to the newly collected experimental

data, the model structure is probably inadequate.

To quantify the change in the values of the parameter estimates, Munack (1992) proposed

to use the so-called Mahalanobis distance function. One can use this distance function

to calculate the distance of a certain point to a distribution and thus differs from the

Euclidian distance function by the fact that it allows to take into account the variance-

covariance matrix of the distribution. This is illustrated in Fig. 4.2a where a contour plot

of a two-dimensional multivariate normal distribution with mean x and an unspecified

variance-covariance matrix is shown. As indicated by the contour lines, the points xa and

xb are both located on the same Mahalanobian distance from the mean.

The fact that uncertainty is considered is the reason why Munack (1992) proposed to use

the Mahalanobis distance function. Indeed, in this context, the parameter estimates are

uncertain to some extent (as discussed in Section 2.5) and this has to be taken into account

to quantify the change in their values. Suppose that θ̂ represents an np-dimensional vector

of parameter estimates and Φ represents the corresponding parameter estimation error

covariance matrix, then one can calculate the Mahalanobis distance, denoted as d, from

an arbitrarily chosen vector of parameters θ as follows

d2
(
θ̂,Φ,θ

)
=
(
θ̂ − θ

)′
·Φ−1 ·

(
θ̂ − θ

)
. (4.10)

Now, the procedure proposed by Munack (1992) to design an optimal discriminatory exper-

iment is very similar to the one described in Section 4.4.3. However, instead of evaluating

the discriminatory potential of the experiment based on the differences in the model pre-

dictions (through Eqs. (4.7)–(4.9)), the change in the model parameter values is assessed.

Indeed, if the values of the model parameters are expected to change significantly after

performing a particular experiment, the latter may succeed in appointing an inappropriate
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Figure 4.2: The principle of the Mahalanobis distance is illustrated in subfigure (a) where the
contour plot of a two-dimensional multivariate normal distribution with mean x is
shown. The vectors xa and xb are located on the same Mahalanobian distance from
the mean. How the Mahalanobis distance function is used to quantify the expected
change in parameter estimates while designing an optimal discriminatory experi-
ment according to Munack (1992) is illustrated in subfigure (b) for the scenario in
which model mi is assumed to be the true model.

model and the experiment can thus be considered as a discriminatory experiment. There-

fore, the optimal discriminatory experiment is found by maximizing the change in the

parameter values observed when re-estimating the parameters of one of the rival model

from the experimental data generated by simulating the proposed experiment with the

other rival model.

However, the expected difference between the parameter estimates before (θ̂j) and after

(θ̂ij) performing the proposed experiment cannot simply be calculated from Eq. (4.10),

because both sets of parameter estimates are uncertain. Therefore, the expected change in

the parameter estimates is defined as the minimal Mahalanobis distance that any vector

θ may have to both the original parameter estimates (θ̂j) and the re-estimated param-

eter estimates (θ̂ij), taking into account their corresponding parameter estimation error

covariance matrices. This is illustrated in Fig. 4.2b for the scenario in which model mi is

assumed to be the true model and the parameters of model mj have to be re-estimated.

The change in the parameters of model mj can thus be formalized as
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djij = arg min
θj∈Θ

d
(
θ̂j,Φj,θj

)
, (4.11)

subject to

djij

(
θ̂j,Φj,θj

)
= djij

(
θ̂ij (ξ) ,Φi

j (ξ) ,θj

)
. (4.12)

Here, θ̂ij (ξ) represents the vector containing the parameter estimates for model mj after

re-estimating them from the experiment data generated by simulating the proposed exper-

iment (ξ) with model mi, and Φi
j (ξ) represents the corresponding parameter estimation

error covariance matrix. Similar to Eq. (4.9), the design criterion is then given by

T iij (ξ) = min
(
djij (ξ) , diij (ξ)

)
, (4.13)

and has to be maximized.

4.4.5 Design criterion proposed by Box and Hill (1967)

The importance of incorporating the uncertainties in the design criterion as discussed

in Section 4.2, was also noted by Box and Hill (1967). They proposed an alternative

design criterion that takes into account both the uncertainty on the measurements and the

uncertainty on the model predictions. Their design criterion is based on Shannon’s concept

of entropy (Shannon, 1948; Kullback, 1959), which has been developed in the context of

information theory. In the context of model discrimination, entropy (denoted as S) is used

as a measure of the uncertainty as to which of the m rival models is the most appropriate

one (Box and Hill, 1967; Hunter et al., 1968). It is defined as

S = −
m∑
i=1

πi · ln πi , (4.14)

where m represents the number of rival models, and πi represents the probability that

the i-th model is the true or most appropriate one. The least possible information as to

which of the rival models is the appropriate model occurs when π1 = π2 = · · · = πm =
1
m

, and corresponds to maximum entropy. On the other hand, the entropy is minimal

when one particular model, say model mk, is undoubtedly the most appropriate one, and
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πk ≈ 1.0. Since
∑m

i=1 πi = 1, the model probabilities associated with the other models are

(approximately) zero when this occurs.

At the start of a model discrimination exercise, the model probabilities are chosen such

that they reflect the belief in the correctness of the particular rival models, or defined as
1
m

when such information is absent. When a new experiment is performed, the results

are analyzed by updating the model probabilities according to Bayes’ theorem (Box and

Hill, 1967; Burke et al., 1995; Hill, 1978). The posterior model probability for model mi,

denoted as πi (ξ1, . . . , ξne , ξne+1), is then calculated as

πi (ξ1, . . . , ξne , ξne+1) =
πi (ξ1, . . . , ξne) · pi (ξne+1)∑m
k=1 πk (ξ1, . . . , ξne) · pk (ξne+1)

, (4.15)

where πi (ξ1, . . . , ξne) represents the prior model probability, and pi (ξne+1) represents the

probability density function for the outcome of experiment ξne+1 under the assumption

that model mi is adequate.

The original design criterion of Box and Hill (1967) was formulated for steady state experi-

ments, where only one sample was taken in each experiment. However, the design criterion

can be extended for dynamic experiments by assuming that the different samples are inde-

pendent, as suggested by Takors et al. (1997). Indeed, under this assumption, the outcome

of a dynamic experiment can be considered as a set of samples taken at the different sam-

pling times, and an experiment ξ can thus be defined as {ŷ (ξ, tj) | ∀j = 1, . . . , nsp},
where nsp represents the number of samples taken in experiment ξ. Using this notation,

Eq. (4.15) can be rewritten as

πi (ξ1, . . . , ξne , ξne+1) =
πi (ξ1, . . . , ξne) ·

∏nsp

j=1 pi (y (ξne+1, tj))∑m
k=1 πk (ξ1, . . . , ξne) ·

∏nsp

j=1 pk (y (ξne+1, tj))
, (4.16)

where pk (y (ξne+1, tj)) represents the probability density function for y (ξne+1, tj) under

the assumption that model mk is adequate. Assuming that the residuals (calculated as

y (ξ, tj)− ŷi (ξ, tj)) are normally distributed, pi (y (ξ, tj)) can be calculated as

pi (y (ξ, tj)) =
1

(2π)np/2 · |Σ + Ωi|1/2
·

exp

(
−1

2
· (y (ξ, tj)− ŷi (ξ, tj)) · (Σ + Ωi)

−1 · (y (ξ, tj)− ŷi (ξ, tj))′
)
, (4.17)
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where Σ represents the measurement error covariance matrix, Ωi represents the model

prediction covariance matrix associated with model mi, and np represents the number of

parameters of model mi. Note that the notations Σ and Ωi were used instead of Σ (ξ, tj)

and Ωi (ξ, tj) to avoid complexity in the notations.

With Eqs. (4.15), (4.16) and (4.17) it is possible to update the model probabilities when

new experimental data become available. To design an optimal discriminatory experiment,

a design criterion is derived from the idea that the designed experiment should maximize

the information gained when proceeding from a given state of uncertainty (on which rival

model is the best one) to a state of lower uncertainty. Or, in other words, the experiment

should be designed with the aim to maximize the rate at which the probability of the best

model approaches one. A measure of this can be obtained from the expected change in

entropy that will occur after performing the designed experiment. Box and Hill (1967)

presented an upper bound of this expected change in entropy, which was extended for

dynamic experiments by Ternbach (2005). The latter is denoted as T (ξne+1) and can be

calculated as

T (ξne+1) =
m−1∑
i=1

m∑
j=i+1

nsp∑
k=1

πi (ξ1, . . . , ξne) · πj (ξ1, . . . , ξne) ·(∫ y=+∞

y=−∞
pi (y (ξne+1, tk)) · ln pi (y (ξne+1, tk))

pj (y (ξne+1, tk))
· dy +∫ y=+∞

y=−∞
pj (y (ξne+1, tk)) · ln pj (y (ξne+1, tk))

pi (y (ξne+1, tk))
· dy

)
. (4.18)

After substitution of Eq. (4.17) into Eq. (4.18) and integration of the resulting equation,

one finds that the optimal discriminatory experiment is found through the maximization

of

T (ξne+1) =
m−1∑
i=1

m∑
j=i+1

nsp∑
k=1

πi (ξ1, . . . , ξne) · πj (ξ1, . . . , ξne) ·(
(Ωi −Ωj)

2

(Σ + Ωi) · (Σ + Ωj)
+

(
1

Σ + Ωi

+
1

Σ + Ωj

)
· (ŷi (ξne+1, tk)− ŷj (ξne+1, tk))

2

)
.

(4.19)
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An important and interesting characteristic of this design criterion is the fact that it

focuses on the discrimination between the most probable models. Indeed, from Eq. (4.19)

one can see that the factor which represents the discriminatory potential of the proposed

experiment is multipled by πi (ξ1, . . . , ξne) · πj (ξ1, . . . , ξne), which represents the product

of the model probabilities of the model pair mi and mj. In this way, the most probable

models will be favored compared to models with low model probabilities.

Note that, in this approach, the experimental design and the evaluation of the adequacy

of the rival models are carried out together (Hill, 1978; Buzzi-Ferraris and Forzatti, 1983).

Indeed, the posterior model probabilities play an important role in both the design of the

optimal discriminatory experiment (Eq. (4.18)) and the model evaluation, which simply

consists of comparing the model probabilities. In the frequentist approach, discussed in

the following section, this is not the case, and an optimal discriminatory experiment is

designed and performed first, after which the adequacy of the model is evaluated using one

of the approaches discussed in Section 2.8.

Despite the fact that the procedure proposed by Box and Hill (1967) has proved to be

effective in practice and popular among researchers in a reasonable range of problems,

there are several issues with this criterion (Hill, 1978). These are briefly discussed below.

• Buzzi-Ferraris and Forzatti (1983) showed that results obtained with the criterion of

Box and Hill (1967) depend on how experimental observations are ordered because

of the recursive law that is used to update model probabilities (Eq. (4.15)). This is

unacceptable, as model probabilities should depend on the available information and

not on the particular order used to present the data.

• In addition (and possibly related to the previous issue), some authors have seen

that the model probabilities may oscillate considerably from iteration to iteration

in the sequential strategy (for instance, Froment and Mezaki (1970)). The informal

stopping rule suggested by Box and Hill (1967) to stop when the posterior model

probabilities indicate that one of the rival models is clearly superior to the other

ones, must therefore be applied very cautiously and a model should not be readily

accepted on the basis of a small number of discriminatory experiments. In addition,

Buzzi-Ferraris and Manenti (2009) state that if all rival models are bad, the use of

model probabilities forces the selection of the least bad model.

• Buzzi-Ferraris and Forzatti (1983) also noted that the structure of Eq. (4.19) makes

it possible that experiments are selected such that the difference in the model pre-



70 4.4 DESIGN CRITERIA FOR OED/MD

diction variance is large (first term in Eq. (4.19)) rather than the difference of model

predictions (second term in Eq. (4.19)). Such experiments are obviously not desired,

as they are not expected to have any discriminatory potential.

• The fact that the approach proposed by Box and Hill (1967) maximizes an upper

bound of the expected change in entropy, may also lead to problems. Indeed, an

increased upper bound does not guarantee that the expected change in entropy it-

self has increased (accordingly). Hsiang and Reilly (1971) also noted this problem

and derived different approximations to the expected entropy change, but the ex-

periments obtained with these design criteria were not significantly different from

the ones obtained using Eq. (4.19). For a detailed discussion hereon, the reader is

referred to the cited paper. Note, however, that also in optimal experimental de-

sign for parameter estimation (discussed in Chapter 6) experiments are designed by

maximizing an upper bound.

4.4.6 Modified design criterion of Hunter and Reiner (1965)

To incorporate the uncertainty on the measurements, the differences in the model predic-

tions are weighed such that a high measurement error decreases the contribution to the

value of Tij (ξ). This results in

Tij (ξ) =

nsp∑
l=1

∆ŷij (ξ, tl)
′ ·Σ (ξ, tl)

−1 ·∆ŷij (ξ, tl) , (4.20)

where Σ (ξ, tl) represents the measurement error covariance matrix at time tl of experiment

ξ. Note that the approach followed here to incorporate the uncertainty of the measurement

is similar to the one used in Eq. (2.4) for parameter estimation (Espie and Macchietto,

1989).

4.4.7 Design criterion proposed by Buzzi-Ferraris et al. (1984)

The design criterion proposed by Buzzi-Ferraris and co-workers (Buzzi-Ferraris et al., 1984)

builds further on the modified version of Hunter and Reiner’s design criterion (Eq. (4.20))

and also incorporates the uncertainty on the model predictions. This is done by weighing

the difference in the predicted outcomes of an experiment, denoted as ∆ŷij (ξ, tl), with the

uncertainty associated with it. As discussed in Section 4.2, this uncertainty originates from

two sources: the uncertainty on the model predictions as such, as well as the uncertainty on
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the measurements. In contrast to the modified design criterion of Hunter and Reiner (1965)

discussed above, that only considers the uncertainty on the measurements (denoted as

Σ (ξ, tl)), the design criterion of Buzzi-Ferraris et al. (1984) also considers the uncertainty

on the model predictions (denoted as Ω (ξ, tl)).

When Σ (ξ, tl) and Ω (ξ, tl) are assumed to be independent, the uncertainty on the pre-

dicted outcome of an experiment can be estimated as Σ (ξ, tl) + Ω (ξ, tl). Although this

assumption is not entirely valid, it is a reasonable one in this context because the objec-

tive function is practically useful and helps to identify the most appropriate model. Now,

under a similar assumption of independence, the uncertainty on the difference between the

predicted outcomes of an experiment ξ by model i and j, denoted as Ψij (ξ, tl), is given by

Ψij (ξ, tl) = Σ (ξ, tl) + Ωi (ξ, tl) + Σ (ξ, tl) + Ωj (ξ, tl)

= 2 ·Σ (ξ, tl) + Ωi (ξ, tl) + Ωj (ξ, tl) . (4.21)

The objective function thus becomes

Tij (ξ) =

nsp∑
l=1

∆ŷij (ξ, tl)
′ ·Ψij (ξ, tl)

−1 ·∆ŷij (ξ, tl) , (4.22)

where Ψij (ξ, tl) represents the uncertainty on the difference between the predicted out-

comes of an experiment by models i and j at time tl.

4.4.8 Design criterion proposed by Schwaab et al. (2006)

A noteworthy extension of the design criterion of Buzzi-Ferraris et al. (1984) is described

in Schwaab et al. (2006). As stated in Section 4.4.5, they remarked that the fact that the

design criterion of Box and Hill (1967) focuses on the most probable models, is actually

an interesting one. This is not included in the design criterion of Buzzi-Ferraris et al.

(1984), and they therefore proposed to include this as follows. For each model mi, the

model probability, denoted as ρi, was defined by exploiting the characteristic of the WSSE

to be a sample from a χ2-distribution with n− np degrees of freedom, where n represents

the total amount of data points from which the np model parameters were estimated. The

probability associated with model mi is calculated as
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ρi = 1− P
[
χ2
n−np

6 WSSE
]
, (4.23)

from which the relative model probability, denoted as πi, is calculated as

πi =
ρi∑m
k=1 ρk

. (4.24)

The basic idea behind the use of Eq. (4.23) is that bad models are likely to exhibit large

values of WSSE, and consequently a low value of ρi (and πi). These model probabilities

are then used in a similar way as in Eq. (4.19), which results in the following equation for

Tij:

Tij (ξ) = (πi · πj)z ·
nsp∑
l=1

∆ŷij (ξ, tl)
′ ·Ψij (ξ, tl)

−1 ·∆ŷij (ξ, tl) . (4.25)

The parameter z, introduced in Eq. (4.25), can be used to emphasize the most probable

models. Indeed, when z is is chosen larger than one, the (difference in the) relative model

probabilities are accentuated and the sequential procedure is biased towards the discrim-

ination among the best models. When one chooses values of z that are smaller than one,

the effect of the model probabilities is diminished and is totally neglected when z equals

zero. It is clear that high values of z correspond to a high fidelity that the best model is

one of those with the highest probability. If so, this may lead to model discrimination in

fewer experiments, but experimental effort may be wasted if this was not the case afterall.

The model discrimination procedure stops when one of the model relative model probability

that is higher than a predefined value (for instance, 0.95). Note that, differently from the

design criterion proposed by Box and Hill (1967), the model discrimination procedure does

not depend on the particular sequence in which the experiments are performed, which was

a serious shortcoming of the design criterion of Box and Hill (1967). This is because the

model probabilities are not updated using Bayes’ theorem (Eq. (4.16)).
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4.5 Anticipatory approach to optimal experimental design for model
discrimination

From a conceptual point of view, the design criterion proposed by Buzzi-Ferraris and co-

workers is superior to the other ones because of the importance it gives to the uncertainty

with regard to model discrimination. In addition, this design criterion has been successfully

applied by others (for instance, Burke et al. (1995), Burke et al. (1996), Kremling et al.

(2004) and Schwaab et al. (2006)). The so-called anticipatory approach proposed in this

section also uses this design criterion, but the methodological framework is modified.

In the original methodology of Buzzi-Ferraris, the parameter estimation error covariance

matrix, needed to calculate Ω (ξ, tl) in Eq.(4.21) from Eq. (2.24), is estimated from the

information present in the experiments that have already been performed, and thus from

the corresponding Fisher information matrix (as explained in Section 2.5). This results in

the following equation:

Φ−1 =
ne∑
k=1

FIM (ξk) . (4.26)

In this equation, ne represents the number of experiments performed prior to the exper-

imental design step, and FIM (ξk) represents the Fisher information matrix associated

with experiment ξk. By doing so, the information that is to be gathered when performing

the (ne + 1)th experiment (and that would eventually be used when the model adequacy

is tested) is simply ignored.

In our modified version of Buzzi-Ferraris’s methodology, the parameter estimation error

covariance matrix is recalculated for each proposed experiment by also including the ex-

pected FIM associated with this new experiment. In this way, the expected information

content of the newly designed experiment is accounted for, even before the experiment is

performed (anticipatory design). This can be formalized as follows

Φ−1 =
ne∑
k=1

FIM (ξk) + FIM (ξne+1) , (4.27)

where the expected information content of the newly designed experiment is represented

by FIM (ξne+1), and calculated using Eq. (2.21).
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propose experiment

simulate experiment with
rival models

calculate parameter
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calculate model prediction
error covariance matrix
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covariance matrix

recalculate Fisher
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parameter estimation error
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Figure 4.3: The full-line boxes in this figure represent the different steps currently performed
when designing an optimal discriminatory experiment according to the Buzzi-
Ferraris methodology. In the modified Buzzi-Ferraris methodology a number of
additional steps are performed, indicated by the dashed-line boxes.

Because it may not be easy to extract the different steps that have to be performed from

the equations given above, the sequence of steps is depicted in Fig. 4.3. The full-line boxes

in Fig. 4.3 represent the different steps performed when designing an optimal discrimi-

natory experiment according to the methodology of Buzzi-Ferraris, while the dashed-line

boxes represent the additional steps to be performed when applying the modified version of

Buzzi-Ferraris’s methodology proposed in this work (which will be called the anticipatory

approach in the following). The original Buzzi-Ferraris methodology starts from an esti-

mate of the parameter estimation error covariance matrix, that is calculated prior to the

experimental design step (from Eqs. (4.26) and (2.20)) and remains the same throughout

the experimental design. In the anticipatory approach, the parameter estimation error

covariance matrix is recalculated for each proposed experiment (using Eq. (4.27)), and is

then used in the calculation of Tij through Eqs. (2.24) and Eqs. (4.21)–(4.22).
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4.6 Similarity between anticipatory approach and optimal experi-
mental design for parameter estimation

As will be discussed in more detail in Chapter 6, the FIM is also used in optimal exper-

imental design for parameter estimation (OED/PE), the aim of which is to obtain more

accurate parameter estimates with a minimal additional experimental effort. Several scalar

measures of the FIM (for instance, its determinant or trace) are used as design criteria

and, as with the anticipatory approach, the FIM is calculated from Eq. (4.27). Taking

into account the information of the designed experiment is thus already common practice

in OED/PE, but (to our knowledge) this was never done in the context of OED/MD until

it was introduced here. Note, however, that the rational behind the anticipatory approach

was developed simultaneously and independently by Schwaab et al. (2008).

However, although the parameter estimation error covariance matrix is approximated in

the same way as with the anticipatory approach for OED/MD presented in the previous

section, one should not expect that performing the experiment obtained using the antici-

patory approach to OED/MD automatically results in more accurate parameter estimates.

Indeed, although the FIM plays a significant role in the calculation of Tij (ξ) (anticipatory

approach), the latter is primarily driven by the difference in the model predictions.

This can be seen from the equation used to calculate the design criterion proposed by

Buzzi-Ferraris et al. (1984) (Eq. (4.22)), which is repeated here for clarity:

Tij (ξ) =

nsp∑
l=1

∆ŷij (ξ, tl)
′ ·Ψij (ξ, tl)

−1 ·∆ŷij (ξ, tl) , (4.28)

where

Ψij (ξ, tl) = 2 ·Σ (ξ, tl) + Ωi (ξ, tl) + Ωj (ξ, tl) . (4.29)

That the FIM plays an important role in the calculation of Tij (ξ) becomes apparent when

the equation to calculate Ωi (ξ, tl) is rewritten as follows (a similar equation can be written

for Ωj (ξ, tl))

Ωi (ξ, tl) =

(
∂ŷi (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂i

)
· FIMi (ξ, tl)

−1 ·
(
∂ŷi (ξ,θ, tl)

∂θ

∣∣∣∣
θ̂i

)′
. (4.30)
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From these equations, one can see that a larger FIMi (ξ) results in a smaller Ωi (ξ)

(Eq. (4.30)), which results in a smaller Ψij (ξ) (Eq. (4.29)) and thus in a larger Tij (ξ)

(Eq. (4.28)). However, from Eq. (4.28), one can see that the effect of the FIMi (ξ) will

act together with the effect of the difference in the model predictions, denoted as ∆ŷij (ξ).

Indeed, Ψij (ξ) merely acts as a weighing matrix for the difference in the model predictions,

and one could state that the latter has a steering effect on the experimental design. Note,

however, that this should be interpreted from a conceptual point of view, as one deals

with matrices and not with scalar values. Still, the reasoning described above helps us to

interpret the logic with which the different equations are connected.

Nevertheless, both the design criteria used in OED/PE and the anticipatory approach

to OED/MD benefit from the larger information content obtained by considering the de-

signed experiment, and thus a larger FIM. Therefore, one can state that an experiment

designed using the anticipatory approach to OED/MD is more likely to result in more

precise parameter estimates than an experiment designed using the original approach of

Buzzi-Ferraris. Although this was observed by Schwaab et al. (2008) in the case studies

they have performed, it may not be entirely correct to state that the anticipatory approach

as such tackles the dual problem of model discrimination and parameter estimation because

a mixed design criterion is optimized that may result in a compromise. The performance

of the anticipatory approach with regard to model discrimination, as well as its connection

with the precision of the parameter estimates, will be investigated and further discussed

in Section 4.11.

4.7 Criterion to evaluate the discriminatory potential of the designed
experiment

When discussing the general procedure for model discrimination in Section 2.7, it was al-

ready mentioned that a situation may arise where (further) model discrimination appears

to be impossible (given the experimental setup). In such a situation, it would be very

interesting if the experimenter could be informed about this. In other words, a criterion

that evaluates the discriminatory potential of the designed experiment such that the exper-

imenter would be informed whether model discrimination can be expected after performing

the experiment or not, would definitely be a merit.
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Such a criterion was proposed by Buzzi-Ferraris and Forzatti (1983), where the design

criterion formalized in Eq. (4.22) was described for the first time for the special case where

an experiment consisted of one single measurement, that is, one measured state variable

and one sampling time (or, nm = 1 and nsp = 1). In such experiments, the sample is usually

taken at the end of the experiment, when steady state conditions are reached. For such

applications, it was stated that the experiment may not result in model discrimination (and

may not be worth performing) when the value of Tij (ξ) < 1. The rationale behind this

criterion is that a Tij (ξ)-value smaller than one indicates that the variance of the difference

between the model predictions can be explained in terms of the measurement error (Σ)

and the uncertainty on the model predictions (Ωi + Ωj). In other words, one expects that

no significant difference in the model predictions will be observed after performing the

designed experiment.

This criterion was extrapolated by Buzzi-Ferraris et al. (1984) for applications where more

state variables are measured (nm ≥ 1), by stating that the Tij (ξ)-value associated with

the designed experiment should be larger than the number of measured state variables

(Tij (ξ) > nm). This rationale was further extrapolated in Chen and Asprey (2003) for

experiments where several samples are taken during the course of the experiment (nm ≥ 1

and nsp ≥ 1). They state that the discriminatory potential of the experiment is sufficiently

high to expect that model discrimination will occur, when the Tij (ξ)-value is larger than

the total number of samples taken, which is equal to nm × nsp. So, when adopting their

criterion, the designed experiment is performed when Tij (ξ) > nm × nsp.

Although these extrapolations have been used in literature (for instance, Burke et al.

(1995), Schwaab et al. (2006) and Schwaab et al. (2008)), in our opinion, both extrapola-

tions of the original evaluation criterion are problematic in their suggested forms. Indeed,

the evaluation of the discriminatory potential of the designed experiment is based on the

overall (or average) discriminatory potential of the different measurements, but the inabil-

ity of one of the rival models to describe one or some of the measurements (or measured

state variables) may be sufficient to discriminate between them. Suppose, for instance, a

situation where one sample is taken at the end of the experiment (as with the original for-

mulation of the evaluation criterion) and suppose that the Tij (ξ)-value for this experiment

(or measurement) is significantly larger than one. In other words, one expects that this

experiment (or measurement) will enable us to identify the most probable model. After

adding a sufficient number of uninformative measurements (that is, without any discrim-

inatory potential), the experiment will be rejected by the extrapolated versions of the
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evaluation criterion, although it does contain the information required to identify the most

appropriate model.

Our doubts about the correctness of these evaluation criteria is confirmed by the results

presented in Schwaab et al. (2008). In one of the case studies they performed, model

discrimination was achieved even though the Tij (ξ)-value was below the required thresh-

old. The authors stated that the evaluation criterion appeared to be too pessimistic and

indicated this may be related to the fact that it does not take into account that the

model parameters will change when the designed experiment is actually performed. Un-

fortunately, they simply noted this problem and did not give an alternative criterion to

evaluate the discriminatory potential of the designed experiments.

4.8 Computational costs of the different approaches

In the search for an optimal discriminatory experiment, many experiments are proposed

by the optimization algorithm for which the discriminatory potential has to be assessed.

The latter requires some prior calculations of which the computational costs differ for the

presented approaches.

When the design criterion of Hunter and Reiner (1965) is used (Eq. (4.2)), simulating

the experiment with the rival models brings forth all information necessary to calculate

the trajectory of the objective function. When its modified version is used (Eq. (4.20)),

the measurement uncertainties are needed as well. Although these are calculated from

the simulation results in the in silico examples described in this dissertation, in practical

applications they need to be determined from the experimental setup and are thus not cal-

culated. Hence, the computational costs associated with these design criteria are identical

in real applications, and comparable in in silico examples.

When the parameter and model prediction uncertainty have to be estimated, which is the

case when the design criterion of Box and Hill (1967) or Buzzi-Ferraris et al. (1984) is used

(Eqs. (4.19) and (4.22), respectively), the model is extended with additional ordinary differ-

ential equations to calculate the parameter sensitivities (as explained in Section 2.4). This

will obviously result in a larger computational cost compared to the approach of Hunter

and Reiner (1965) and its modified version. The additional computational cost caused by

the fact that the parameter estimation error covariance matrix has to be recalculated in

the anticipatory approach is minor and only involves some extra matrix manipulations, as

can be concluded from Eqs. (2.20) and (4.27).
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Note that in the special case where only the measurement times are to be optimized

(as for instance in the case study presented in Section 4.10), the use of an optimization

algorithm is only necessary when the anticipatory approach is used. This is because the

choice of the sampling times has no effect on the model predictions, nor on the model

prediction uncertainties. In other words, the trajectory of Tij is calculated once, and the

optimal sampling times are easily determined from this trajectory. For the anticipatory

approach, this is not the case, and a new trajectory of Tij has to be calculated for each

set of the sampling times. However, the extra computational costs are relatively small,

because the values of the parameter sensitivities at the proposed sampling times can be

obtained by sampling from the (detailed) parameter sensitivity profiles calculated prior to

the experimental design exercise.

The approaches proposed by Atkinson and Fedorov (1975) and Munack (1992), described

in Sections 4.4.2, 4.4.3 and 4.4.4, are computationally demanding because two parameter

estimation exercises have to be performed before the proposed experiment can be eval-

uated. Indeed, it is reasonable to assume that the data set generated by one particular

model can only be described by its rival model after a new estimation of its parameters.

However, the search for the new parameter estimates might be very efficient, as the new

parameter estimates may be similar to the original ones. On the other hand, because of

the large number of optimizations that have to be performed, the chances of ending in a

local optimum will obviously increase. If this occurs, an experiment will be designed based

on non-optimal values for the parameter estimates. In addition, the approach proposed

by Munack (1992) requires the calculation of the parameter sensitivities, but the compu-

tational costs associated with this are negligible compared to the ones of the parameter

estimation. Because of the requirement to re-estimate the model parameters, these ap-

proaches are computationally demanding for OED/MD purposes and they may not be a

feasible option in many applications (Vanrolleghem and Dochain, 1998).

4.9 Selection of the most promising approaches

Given the theoretical aspects outlined in Section 4.4 and the discussion of the computa-

tional costs of the different approaches in the previous section, four approaches are selected

for the design of optimal discriminatory experiments. To simplify the discussion of the case

studies presented in Sections 4.10 and 4.11, a (shorter) notation is also introduced here.
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Table 4.1: Overview of the selected approaches to design optimal discriminatory experiments
(denoted as Ta, Tb, Tc and Td).

Ta Tb Tc Td

experimental design driven by the difference in the model predictions × × × ×
uncertainty on the measurements taken into account - × × ×
uncertainty on the model predictions taken into account - - × ×
information content of the designed experiment taken into account - - - ×

The approach proposed by Hunter and Reiner (1965) (Section 4.4.1) is selected for its sim-

plicity and because it represents the basic idea behind OED/MD. In a way, this approach

can be seen as a reference approach with which the effects of the conceptual improvements

incorporated in the other approaches can be compared. Also, the modified version of this

approach (Section 4.4.6) is selected because this approach is the only one that takes into

account the measurement error without considering the uncertainty on the model predic-

tions as well. The notations Ta and Tb will be used to indicate these approaches, which,

for clarity, use the objective functions given by Eqs. (4.2) and (4.20).

The approach proposed by Buzzi-Ferraris et al. (1984), described in Section 4.4.7, is also se-

lected because it incorporates both the uncertainty on the measurements and on the model

predictions, and because it has already been used frequently in literature (for instance in

Burke et al. (1995, 1996); Kremling et al. (2004); Schwaab et al. (2006)). The objective

function used in this approach (Eq. (4.22)), is the same as the one used in the anticipatory

approach described in Section 4.5, which is the fourth approach that is selected. These

approaches will respectively be referred to as Tc and Td, in the discussion below.

As discussed in Section 4.4.5, the approach of Box and Hill (1967) has a number of prob-

lems associated with it. Because of these issues, this approach was not considered in the

following. The design criteria proposed by Atkinson and Fedorov (1975) and Munack

(1992), respectively presented in Sections 4.4.2 and 4.4.4, were not withheld because of the

computational costs associated with them.
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4.10 Case study I: Improving the insight in the selected approaches
to design discriminatory experiments

In this section, the experimental design concepts introduced in the previous sections will

be illustrated by applying them on the working example discussed in Section 3. However,

to facilitate the discussion of the obtained results, only two of the nine models will be

considered.

4.10.1 Objective of this case study

The aim of this case study is to gain more insight in the selected approaches to design

optimal discriminatory experiments. By applying approaches to a case study with only

two rival models, the effect of the conceptual improvements of the design criterion of Hunter

and Reiner (1965) will be investigated. Because the aim is to increase our insight into the

different approaches, the experimental design exercise was limited to finding the optimal

sampling times, while keeping the other experimental degrees of freedom fixed. This should

make the discussion of the obtained results easier to understand.

4.10.2 Preliminary experiment

To initiate the case study, a preliminary experiment was defined and performed in silico.

For this experiment, the volume of the reaction vessel was set to 10 mL and the initial

glucokinase concentration was set such that 5 units were present in the reaction mixture.

Further, it was assumed that no G6P, ADP and PEP were present at the start of the

experiment, and the initial concentrations of glucose and ATP were set to 1.5 mM and

0.5 mM, respectively.

During the experiment, two pulses were given, both with a pulse volume of 1 mL. The

first pulse was given five minutes after the start of the experiment, and contained only

ATP. The ATP concentration in the pulse was chosen such that the ATP concentration in

the reaction mixture was raised to 1.5 mM. The second pulse, given ten minutes after the

start of the experiment, contained glucose and PEP, and their concentrations in the pulse

were chosen such that the resulting concentrations in the reaction mixture were 1.5 mM

and 0.1 mM, respectively.

The experiment stopped after 20 minutes, and ten measurements of glucose, ATP, G6P

and ADP were taken in duplicate at arbitrarily chosen times (see Fig. 4.4). The minimal
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Figure 4.4: Preliminary experiment simulated with the true model (m?
5) and the experimental

data derived from it (represented by the • symbols).

relative errors (ς) were set to 0.05 for all measured state variables, and the lower accuracy

bounds on the measurements were defined as 0.1 mM.

4.10.3 Parameter estimation

The parameters of the rival models were estimated using the data from the preliminary

experiment (Fig. 4.10.2) and using the optimization algorithm described in Section 2.11.

Since negative parameter values would not make any sense, the lower bounds were set to

zero. The upper bounds were arbitrarily set to 1000 U/mg for parameter k, 2 mM for

parameter KGLU, and 25 mM for both parameters KATP and KPEP.

The results of this parameter estimation exercise are shown in Table 4.2, and Fig. 4.5

shows how both models describe the experimental data after estimating their parameters.

The figure also shows the 95 percent confidence intervals on these model predictions. As

one can see from Table 4.2, the uncertainty on the parameter estimates is very large,
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Table 4.2: Parameters of the real model (m?
5) that were used to generate experimental data, and

the parameter estimates obtained after fitting the rival models (m2 and m5) to the
data from the preliminary experiment, together with the 95% confidence intervals
and the corresponding WSSE values.

model k KGLU KATP KPEP WSSE

m?
5 312.00 0.1500 0.1300 0.1000 –

m2 308.05 ± 82.86 0.01 ± 0.15 0.14 ± 0.06 2.87 ± 855.20 57.1080

m5 309.81 ± 34.42 0.24 ± 1.41 0.12 ± 0.09 0.03 ± 0.18 56.9285

which indicates that the information content of the preliminary experiment with regard

to these parameters is considerably low. One can also see that these confidence intervals

sometimes become negative, which is of course unrealistic and is due to the fact that the

model prediction uncertainties were obtained by linearly propagating the uncertainty on

the parameter estimates (as explained in Section 2.6).

4.10.4 Model adequacy testing

The good agreement between the data and the model predictions is obviously reflected

in the value of the weighted sum of squared errors (WSSE). As shown in Table 4.2, the

WSSE values for models m2 and m5 were 57.1080 and 56.9285, respectively. According

to the model adequacy test outlined in Section 2.8, these values have to be compared to

the critical χ2 value taken from a χ2
76 distribution (n = 80 and np = 4) with a chosen

confidence level of 95 percent. The latter is equal to 97.3510, so one can conclude that

both models adequately describe the data from the preliminary experiment.

4.10.5 Design of optimal discriminatory experiments

Since both models passed the model adequacy test, the model discrimination procedure

asks for an experiment that is designed to discriminate between them. As already stated in

the introduction of the section, the experimental design was restricted to only optimizing

the measurement times, while keeping the other experimental degrees of freedom fixed. In

this way, the differences between the selected approaches for OED/MD should be easier

to explain and interpret. In addition, this restriction led to a drastic decrease of required

computation time, as discussed in Section 4.8.
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For this experimental design exercise, a new experiment was defined and the optimal

sampling times were determined using the different approaches (Ta, Tb, Tc and Td). In

this experiment, three pulses were given, each with a volume of 1 mL. The first pulse was

given five minutes after the start of the experiment, and contained ATP and PEP. The

ATP concentration in the pulse was chosen such that the ATP concentration in the reactor

was raised to 1.5 mM. The concentration of PEP in the pulse was set to 0.5 mM, which

was also the case for the other pulses. The second pulse, given ten minutes after the start

of the experiment, contained glucose and PEP, and the glucose concentration was chosen

such that the resulting concentration was 1.5 mM. The third pulse contained ATP and

PEP, and the concentration of the former was set to 3 mM. The experiment stopped after

20 minutes, and only glucose and ADP were measured. These measurements were taken

in duplicate, and the minimal relative errors (ς) were set to 0.015 for the measured state

variables, and the lower accuracy bounds on the measurements were defined as 0.1 mM.

Further, the minimum time interval between two measurements was set to 15 seconds.

Using the parameters tabulated in Table 4.2, the two models predict this experiment as

shown in Fig. 4.6. To gain insight into the different methodologies, ten scenarios were

defined with the number of sampling times ranging from one to ten. The results of the

scenario in which ten optimal sampling times were determined will be discussed in Sec-

tion 4.10.6, and the other scenarios will be discussed in Section 4.10.7.

4.10.6 Discussion of the experiment with ten sampling times

The results of the scenario in which ten optimal sampling times were determined are shown

in Fig. 4.7. For each of the presented approaches (Ta, Tb, Tc and Td), the discriminatory

potential at a given point in time can be calculated using the appropriate objective func-

tion (Eq. (4.2), (4.20) or (4.22)), by assuming that one only samples at that time. The

trajectories of the objective functions obtained in this way are shown in Fig. 4.7, as well

as the optimal sampling times obtained from them.

The upper graph of Fig. 4.7 shows the trajectory of the objective function used in the

Ta approach. This objective function (calculated using Eq. (4.2)) represents the difference

between the two model predictions. From the graph, one can see that the difference between

the models is rather small, with the largest difference occurring around 12 minutes. So,

the optimal sampling times are predominantly located in this region when only the model

predictions are considered (Ta approach).
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Figure 4.5: Preliminary experiment, predicted by model m2 and m5 after estimating their pa-
rameters. The dashed lines represent the 95 percent confidence intervals on the
model predictions.
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Figure 4.6: Rival models predicting the experiment for which the sampling times were opti-
mized. The dashed lines represent the 95 percent confidence intervals on the model
predictions.

The second graph of Fig. 4.7 shows the trajectory of the objective function used in the Tb

approach, which differs from the Ta approach by the fact that the measurement uncertainty

is accounted for. The latter is more or less proportional to the value of the corresponding

measured state variables (see Eq. (3.24)), which explains the obtained results. Indeed,

from Figs. 4.6 and 4.7, one can see that the largest difference in the model prediction

occurs at relatively high values of the measured state variables, which are thus associated

with relatively high measurements errors. The optimal sampling times are therefore partly

shifted to the regions around 7 minutes and 17 minutes, where the measurement errors are

smaller.

In the Tc approach, the model prediction uncertainties (shown in Fig. 4.6) are also taken

into account. These uncertainties are quite high, especially at time instants where a large

difference between the model predictions is observed. This results in very low values

of the objective function (Eq. (4.22)), and thus in a low discriminatory potential of the

experiment. In fact, the value of Tij, which is obtained as the sum of the values of the

individual sampling times, is merely equal to 1.14. According to Chen and Asprey (2003),

the experiment is only worth performing when this value is larger than nsp · nm, which is

40 in our example (two measured state variables, two repetitions and ten sampling times).
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Figure 4.8: Rival models predicting the experiment for which the sampling times were opti-
mized. The dashed lines represent the 95 percent confidence intervals on the model
predictions as they were used when applying the anticipatory approach.

When applying the anticipatory approach (Td approach), the parameter and model pre-

diction uncertainties are recalculated for each experiment the optimization algorithm pro-

poses. The optimal sampling times that were obtained in this way are spread out over

the three regions where the difference in the model predictions is significant (see Fig. 4.7),

which was also the case for the Tb and Tc approach. The model prediction uncertainties

associated with this optimal experiment, which were also used when calculating the objec-

tive function (Eq. (4.22)), are shown in Fig. 4.8. As can be seen from a comparison with

Fig. 4.6, it appears to be possible to significantly reduce the model prediction uncertainty

by anticipating for the new data, and an experiment was obtained that resembles the one

found with the Tb approach.

4.10.7 Apparent similarity between Tb and Td

As discussed in the previous section, the Td approach seemed to bring forth a similar

experiment as the one obtained by the Tb approach, although the latter differs from the

anticipatory approach by the fact that it does not consider the uncertainty on the model

predictions. The reason why both approaches result in a similar experiment is that the

information content of the designed experiment is large enough to decrease the prediction
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Figure 4.9: Optimal sampling times obtained after applying the Ta, Tb, Tc and Td approaches
for the ten different scenarios in which the number of sampling times ranges from
one to ten.

uncertainty to a level where its impact on the experimental design becomes rather limited.

To investigate this similarity in more detail, nine additional experimental design exercises

were performed, where the number of samples to be optimized ranged from one to nine.

The results are shown in Fig. 4.9, together with the scenario with ten samples.

One clearly sees that the similarity between the experiments designed using the Tb and the

Td approach does not always hold. In fact, some interesting observations can be made from

Fig. 4.9 that clearly illustrate the anticipatory nature and the power of the Td approach.

For instance, when only one or two samples are optimized, the region with the largest

difference in the model predictions (around 12 minutes) cannot be exploited because the

uncertainty in this region cannot be sufficiently reduced. However, when three and more

samples are optimized, this is no longer the case. In addition, three sampling times appear

to be enough, since the fourth, fifth and sixth samples are used to reduce the uncertainty

in the region around 17 minutes. Another example that illustrates the difference between



90 4.10 CASE STUDY I: IMPROVING THE INSIGHT IN THE SELECTED APPROACHES FOR OED/MD

the Tb and the Td approach is found when comparing the scenarios with seven, eight and

nine samples. These show that it appears to be beneficial to place the eighth sample in the

region around 12 minutes, rather than placing it in the region around 7 minutes. However,

when nine samples are optimized, two samples are placed in this region. Apparently, one

sample cannot achieve a sufficient decrease in model prediction uncertainty, while two

samples can.

From the discussion above, it is clear that the Tb and the Td approaches do not always lead

to the same experiments. In fact, this is only the case when the information content of the

designed experiment is high enough to reduce the model prediction uncertainty beyond a

certain level. If that is the case, the impact of Ωi and Ωj in Eq. (4.21) will become so

small, that the experimental design will be dominated by the measurement error (Σ), and

thus a similar experiment will be found as with the Tb approach. It is of course impossible

to foresee this, and one cannot know beforehand whether the experiments designed using

these approaches will be similar or not. The premise that both approaches lead to similar

experiments is thus not a valid one.

4.10.8 A note on the estimate of the uncertainty on the model predictions

As advocated in Section 4.4, the uncertainty on the model predictions is important with

regard to model discrimination, and more specifically for the design of discriminatory

experiments. In principle, both the Tc and the Td approach will select the experimental

degrees of freedom such that the expected model prediction uncertainty is small at the times

when samples are taken, thereby increasing the discriminatory potential of the resulting

experiment. However, the anticipatory nature of the Td approach is likely to result in more

reliable estimates of the model prediction uncertainties that will eventually be obtained

after performing the designed experiment and re-estimating the model parameters.

This is illustrated in Fig. 4.10. Here, the uncertainties on the model predictions of glucose

are shown (the results for ADP are similar). For clarity, these are the values that are added

to/subtracted from the model predictions to obtain the confidence intervals in figures like

Fig. 4.6 and 4.8. Figure 4.10 compares the model prediction uncertainties as they are used

in the Tc approach (dashed lines in the upper graphs) and in the Td approach (dashed lines

in the lower graphs) to those obtained after the experiment is performed and the model

parameters were re-estimated from the actual data (dotted lines). From this figure, one

can clearly see that the model prediction uncertainties used in the experimental design

(dashed lines) are closer to the dotted lines when the Td approach is used. Also note the
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Figure 4.10: The 95 percent confidence intervals associated with the model predictions of the
glucose concentration as used when designing an experiment according to the Tc
approach (dashed lines in the upper graphs), and according to the Td approach
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tervals obtained after performing the designed experiment and after re-estimating
the parameters from the actual data.

difference in the order of magnitude between the confidence intervals (the Y-axes) obtained

for the two approaches.

4.11 Case study II: Performance of the selected approaches to de-
sign discriminatory experiments

In the previous section, a case study was described, the aim of which was to improve our

insight into the (four) selected approaches to design optimal discriminatory experiments

(Ta, Tb, Tc and Td). In this section, these four approaches will be applied to a case

study where the sequential model discrimination procedure presented in Section 2.7 will

be performed until the best model from a set of nine rival models (the ones that were

described in Chapter 3) is identified, or until all models are rejected.

4.11.1 Objective of this case study

The objective of this case study is to determine whether the four selected approaches differ

in their ability to bring forth a series of (informative) discriminatory experiments. In the
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evaluation of their performance, four aspects are considered. The first aspect (which will

be discussed in Section 4.11.6) has to do with the outcome of the model discrimination

procedure, that is, how the procedure ends (most appropriate model identified or all rival

models rejected). The second aspect (discussed in Section 4.11.7) is related to the number

of additional experiments that have to be (designed and) performed before the most ap-

propriate model can be identified. It is clear that this is very important, as one obviously

wants to minimize the number of additional experiments. The third aspect (discussed in

Section 4.11.8) is related to the quality of the parameter estimates of the model that is

eventually identified as the best one (if any). The fourth and last aspect of the perfor-

mance evaluation is related to the rate at which the inadequate models are identified and

is discussed in Section 4.11.9.

4.11.2 Design of the case study

To evaluate the performance of the different approaches, the model discrimination proce-

dure was performed for five different scenarios. The only difference between these scenarios

is the preliminary experiment used to initiate the model discrimination procedure (as shown

in Fig. 4.11). These preliminary experiments are denoted as ξi1, with i = 1, . . . , 5, and are

described in Section 4.11.3. This was done because the information content of the pre-

liminary experiment determines the quality of the parameter estimates at the start of the

model discrimination exercise. The latter may have an influence on the performance of the

different approaches, and this has to be taken into account.

As in the previous case study, the experimental data were generated by simulating the

experiment with the real model (m?
5) and the measurement error was simulated by adding

random noise according to Eq. (3.24). Although the first discriminatory experiment that

is designed in the model discrimination procedure is the same in each repetition of the

procedure, the data obtained from this experiment are different due to these randomly

generated measurement errors. Consequently, the discriminatory experiments designed in

the following iterations of the procedure are different as well, because the differences in the

experimental data sets lead to differences in the parameter estimates. To account for this,

each model discrimination exercise was repeated thirty times (as indicated in Fig. 4.11).

In total, the model discrimination procedure discussed in Section 2.7 is performed 5 ×
4 × 30 = 600 times. Indeed, there are 5 scenarios (each with a different preliminary

experiment), 4 different approaches for OED/MD (Ta, Tb, Tc and Td) and the model dis-

crimination procedure was repeated 30 times. Note that each application of the model
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discrimination procedure consists of an number of iterations, which differs from one rep-

etition to another. In every iteration, an experiment is designed and performed, and the

number of iterations is equal to the number of additional experiments that have to be

performed before the most appropriate model can be identified. The data obtained from

this simulation study will be presented and discussed in the following sections.
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Figure 4.11: Illustration of the design of the case study (Section 4.11), where the aim was to
evaluate and compare the performance to discriminate among rival models.

4.11.3 Preliminary experiments

The five preliminary experiments were all identical to the one used in the previous case

study (Fig. 4.4), except for the ten sampling times which were chosen randomly. This

resulted in five experiments with a different information content with regard to the param-

eters of the individual rival models, as assessed by calculating the so-called D-optimality

criterion value. This D-optimality criterion is discussed in detail in Chapter 6, but for

now it is sufficient to know that a large D-optimality criterion value indicates that the

experiment contains a lot of information on the parameters of the corresponding model.

An experiment with a large D-optimality criterion value is thus preferred. The criterion

values associated with the five preliminary experiments are shown in Fig. 4.12. For the in-
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Figure 4.12: D-optimality criterion values for the different rival models for the five preliminary
experiments (ξ1

1 till ξ5
1).

terpretation of the result depicted in this figure, one should be aware that the D-optimality

criterion values reflect the information content with regard to the parameters of one par-

ticular model, and the criterion values obtained for different models can thus not simply

be compared.

4.11.4 Parameter estimation

The parameters of the rival models were estimated using the data from the preliminary

experiments, using the optimization algorithm described in Section 2.11. As in the previous

case study, the lower bounds were set to zero and the upper bounds were set to 1000 U/mg

for parameter k, 2 mM for parameter KGLU, and 25 mM for parameters KATP and KPEP.

4.11.5 Design of optimal discriminatory experiments

For the design of the optimal discriminatory experiments, the experimental degrees of

freedom were the same as in the preliminary experiment except for the sampling times and

the initial concentrations of glucose, ATP and PEP, which were optimized. The initial

concentrations were allowed to take values between 0 mM and 2 mM, and ten optimal
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sampling times were determined with the constraint that the time interval between two

subsequent samples was 15 seconds or more. As in the previous case study (Section 4.10.4),

the χ2 lack-of-fit test described in Section 2.8.1 was used to evaluate the adequacy of the

rival models.

The design criteria described in Section 4.4 were developed for model discrimination prob-

lems with two rival models. However, when the number of rival mathematical models is

larger than two (as in this case study), several strategies are thinkable to steer the model

discrimination procedure (Buzzi-Ferraris et al., 1990; Schwaab et al., 2006), irrespective

of which design criterion is chosen. For this case study, the so-called pairwise strategy is

chosen. Here, an optimal discriminatory experiment is designed for each model pair, and

the experiment with the largest Tij value is eventually performed.

4.11.6 Outcome of the model discrimination procedure

Ideally, the model discrimination procedure ends when one of the rival models is identified

as the most appropriate one. In this case study, the experimental data were generated

using model m?
5 and it can thus be expected that model m5 is identified as the most

appropriate model in the majority of the runs, regardless of the approach used to design

the discriminatory experiments. However, the possibility that another model is identified

as the most appropriate one cannot be excluded. A second possible outcome of the model

discrimination procedure is that all models appear to be inadequate. Indeed, the adequacy

of the rival models is evaluated based on the WSSE value, and even for the true model

(m?
5) this WSSE value can in some situations be larger than the reference value (χ2

n−np
)

because of the (simulated) error on the measurements. Note that a third possibility, where

the discriminatory potential of the designed experiment is conceived as too low to enable

further discrimination among the remaining rival models, is not considered here as the

correctness of the currently used criterion to evaluate the discriminatory potential of an

experiment is questionable (as discussed in Section 4.4.7).

The results obtained in this case study are presented in Table 4.3. For the Td approach,

for instance, one can see that model m5 was identified as the most appropriate one in

134 of the 150 applications (or runs) of the model discrimination procedure (5 scenarios

with a different preliminary experiment and 30 repetitions of each scenario). The results

indicate that also for the other approaches the true model (m?
5) is found in most of the

runs. From the results obtained for the Td approach, on can also see that another model

was identified as the best model in 7 percent of the runs of the model discrimination
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procedure. For brevity, it is not indicated which of the other rival models is eventually

identified as the best model, but, in the majority of the runs where this occurred, model

m2 was selected. This is not surprising because models m2 and m5 only differ by the

fact that the former assumes a random binding mechanism, whereas the latter assumes an

ordered reaction mechanism. In other words, the models are very similar. In the other

runs of the procedure, all rival models were rejected. It is, however, noteworthy that the

true model was always identified as the most appropriate one when the Tc approach was

used. Although a profound explanation for this observation cannot be given, it might be

the result of the conservative character of the Tc approach, which will be discussed in the

following.

4.11.7 Required number of experiments to achieve model discrimination

The number of additional experiments that have to be performed before the most appro-

priate model can be identified is an important aspect that should be taken into account

when evaluating the performance of a certain OED/MD approach. Before starting the

discussion of the obtained results, it is interesting to note that even with fifty randomly

generated experiments it was not possible to identify the most appropriate model, while

model discrimination could be achieved in far less experiments with any of the selected

OED/MD approaches. The fifty random experiments were generated by randomly choos-

ing the sampling times (between 0 and 20 min) and the initial concentrations of glucose,

ATP and PEP (between 0 and 2 mM). This result clearly illustrates the necessity or at

least the importance of performing experiments that are designed in a rational way, that

is, designed with the aim to achieve model discrimination.

As explained earlier (Section 4.11.2), the model discrimination procedure was initiated

with one of the five preliminary experiments and each of these was repeated thirty times to

account for the influence of the measurement error. The number of experiments that were

required in the different model discrimination runs are presented as boxplots in Fig. 4.13.

This figure contains five subfigures with a white background (entitled ξi1, with i = 1, . . . , 5)

and one subfigure with a gray background (entitled ξ1
1 − ξ5

1). The former presents the

results obtained for the simulations where the model discrimination procedure was initiated

with the preliminary experiment indicated in the title of the corresponding subfigure,

whereas the one with the gray background gives an overall picture of the number of required

experiments and presents the values of all model discrimination runs (4 × 150 = 600 in

total). Note that in these figures, the preliminary experiment corresponds to experiment
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Table 4.3: Overview of the observed outcomes of the 150 runs of the model discrimination
procedure for the different approaches (Ta, Tb, Tc and Td) and the five scenarios
(each with a different preliminary experiment, ξi1 with i = 1, . . . , 5).

Ta Tb Tc Td

model m5 ξ1
1 30 30 30 27

ξ2
1 30 27 30 29

ξ3
1 28 27 30 25

ξ4
1 30 20 30 27

ξ5
1 28 24 30 26

ξ1
1 − ξ5

1 146 128 150 134
97% 85% 100% 89%

other model ξ1
1 0 0 0 0

ξ2
1 0 3 0 1

ξ3
1 0 3 0 4

ξ4
1 0 5 0 3

ξ5
1 1 2 0 2

ξ1
1 − ξ5

1 1 13 0 10
1% 9% 0% 7%

all models rejected ξ1
1 0 0 0 3

ξ2
1 0 0 0 0

ξ3
1 2 0 0 1

ξ4
1 0 5 0 0

ξ5
1 1 4 0 2

ξ1
1 − ξ5

1 3 9 0 6
2% 6% 0% 4%
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Figure 4.13: Boxplots showing the number of experiments that are required to achieve model
discrimination starting from each of the five preliminary experiments (ξ1

1 till ξ5
1)

(white background). The subfigure with the gray background gives an overall
picture of the number of required experiments and were made using the results
obtained from all starting situations. The numbers in the upper right corners
represent the median of the number of required experiments.

number one. In other words, Fig. 4.13 shows the number of required experiments, and

not the number of required additional experiments. Also note that the median of the

number of required experiments, which will be used frequently in the discussion below,

can not always be determined unambiguously from these boxplots (more precisely, when

the horizontal line that indicates the median coincides with one of the edges of the box).

Therefore, the median of the number of required experiments is also given in the upper

right corners.

From the results shown in Fig. 4.13, one can see that the highest number of required

experiments occurs when the Ta approach is used, regardless of the information content of

the preliminary experiment. As discussed earlier, the Ta approach is the most naive one.

Therefore, the discriminatory potential of the proposed experiments is often misjudged,

and it is not surprising that the Ta approach is the worst performing one when it comes to
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Figure 4.14: Histograms showing the number of experiments required to achieve model discrim-
ination for each of the selected approaches (Ta, Tb, Tc and Td), thereby using the
results obtained from all starting situations (gray figure from Fig. 4.13). The solid
vertical lines indicate the median of the number of required experiments, while
the dashed lines indicate the mean number of required experiments.

the required number of experiments. In addition, one can see that the number of required

experiments varies significantly among the repetitions. The latter can be observed for

each of the starting situations, except for ξ1
1. This large variability can be explained

by the fact that the Ta approach allows to take samples when the measurement error is

high. Indeed, although the first discriminatory experiment is the same for each of the runs

that were initiated with a certain preliminary experiment, the generated data sets of the

other experiments can differ significantly because of this measurement error. Since the

model parameters are estimated from these data sets, large differences in these parameter

estimates can be expected. These obviously affect the model discrimination runs that

follow and lead to the observed variability among the different repetitions. This variability

also reflects the importance to include the information on the measurement errors when

designing the discriminatory experiment.
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For both the Tb and the Tc approaches, the median of the number of required experiments

equals five and one could conclude that both approaches perform equally well. That these

approaches perform better than the Ta approach can be seen as an illustration of the

importance of considering the measurement errors in the design of the experiments, and

it confirms some of the conclusions drawn from the results for the Ta approach discussed

above. However, a close(r) investigation of the boxplots in Fig. 4.13 and especially of the

histograms in Fig. 4.14 indicates that the Tb approach is preferred over the Tc approach.

Although the median of the number of required experiments is the same, the distributions

are clearly different and in favor of the Tb approach. Knowing that the Tc approach has

frequently been applied in literature (for instance by Burke et al. (1995, 1996); Kremling

et al. (2004) and Schwaab et al. (2006)) and that it was originally introduced as a conceptual

improvement of the Tb approach, this result is somewhat surprising and may be related to

the fact that the information content of the designed experiment in not fully considered

during the design. This will be further discussed below, together with the results of the Td

approach.

The anticipatory approach (Td) does take the information content of the to-be-performed

experiment into account and performs better than the other approaches, regardless of the

information content of the preliminary experiment. Indeed, for each of the starting situ-

ations, model discrimination was achieved with the least amount of experimental effort.

However, one can see that the variability among the different repetitions is slightly larger

than the variability observed for the Tc approach. The latter can be explained as follows.

Both approaches use the currently available parameter estimates to predict the outcome

of the proposed experiment and the uncertainty associated with it, but the Tc approach

is more conservative than the Td approach because it only uses the information of the

already performed experiments to evaluate the proposed experiment for its discriminatory

potential. In other words, the Td approach is more sensitive to the accuracy of the available

parameter estimates, but when the available parameter estimates are close to their actual

values, the discriminatory potential of the designed experiment is assessed in a better way

compared to the other approaches (as discussed in the previous case study). However, when

the parameter estimates used in the experimental design differ significantly from the ones

obtained after performing the designed experiment, the discriminatory potential of the ex-

periment may not be as good as one expected. If this occurs, the designed experiment may

not significantly contribute to the discriminatory potential of the experiments performed

so far, and, in the end, an increased number of required experiments will be required before

the most appropriate model can be identified. This might explain why a large tail can be
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Figure 4.15: Boxplots showing the number of experiments that are required to identify the most
appropriate model starting from each of the five preliminary experiments (ξ1

1 till
ξ5

1) (white background). The subfigure with the gray background gives an overall
picture of the number of required experiments and were made using the results
obtained from all starting situations. The numbers in the upper right corners
represent the median of the number of required experiments.

observed for the histogram of the Td approach. Nevertheless, the results in Figs. 4.13 and

4.14 show that the Td approach generally results in faster model discrimination compared

to the Tc approach, which may indicate that, at least in this case study, the parameter

estimates did not change considerably during the model discrimination procedure.

To conclude this discussion, note that Figs. 4.13 and 4.14 represent the number of experi-

ments that are performed until the model discrimination procedure stops, as explained in

Section 4.11.6, regardless of the outcome. In this respect, one could argue that only those

runs should be considered in the evaluation where model m5 was identified as the most ap-

propriate model, but the results nor the discussion are significantly influenced when doing

so (as shown in Figs. 4.15 and 4.16). In other words, the runs in which, for instance, all

rival models are rejected are not systematically those for which a high or low number of

experiments are required.
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Figure 4.16: Histograms showing the number of experiments required to identify the most ap-
propriate model for each of the selected approaches (Ta, Tb, Tc and Td), thereby
using the results obtained from all starting situations (gray figure from Fig. 4.15).
The solid vertical lines indicate the median of the number of required experiments,
while the dashed lines indicate the mean number of required experiments.

4.11.8 Evaluation of the quality of the parameter estimates

A third aspect that has to be considered in the evaluation of the approaches is the quality

of the parameter estimates, and especially the quality of the parameter estimates of the

model that is eventually identified as the most appropriate one. Indeed, model discrimina-

tion is only one step of a more general model building procedure, and once an appropriate

model is identified through model discrimination, the quality of its parameter estimates

often has to be improved before the model can actually be applied for its intended use.

This is important because inaccurate parameter estimates result in inaccurate (or uncer-

tain) model predictions, which are obviously not desired. To increase the quality of the

parameter estimates, dedicated experiments have to be designed (using the experimental

design techniques (OED/PE) explained in Chapter 6) and performed. In this respect, it

would be interesting to see whether there is a difference among the approaches with regard
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to the evolution of the quality of the parameter estimates throughout the model discrim-

ination procedure because this may have an influence on the overall required number of

experiments. In other words, if the parameter estimates are already of a high quality when

the model discrimination procedure ends, less additional experiments will be required to

refine the parameter estimates afterwards.

The value of the D-optimality criterion, briefly described in Section 4.11.2, is used to eval-

uate the quality of the parameter estimates. This criterion is frequently used in optimal

experimental design for parameter estimation (OED/PE) to quantify the information con-

tent of an experiment with regard to the parameters of a particular model. Its value is

inversely proportional to the volume of the confidence region of the parameter estimates,

and experiments that are characterized by a large criterion value are thus expected to bring

forth more accurate parameter estimates than experiments with a small criterion value.

For more information on the D-optimality criterion, the reader is referred to Chapter 6

where this and other design criteria for OED/PE purposes are described in more detail.

In Fig. 4.17, the evolution of the D-optimality criterion values of model m5 are shown in

gray for each of the (thirty) runs that were initiated with experiment ξ1
1 and where the Td

approach was used to design the experiments. At first sight, it may seem strange that the

criterion values are not (always) monotonically increasing with the number of performed

experiments. Indeed, the D-optimality criterion value represents the information content

of the set of experiments and one would expect that this information content can only

increase when new information is collected from an additional experiment. However, the

decreases in the criterion values can be explained by the fact that the model parameters

are re-estimated after performing the new experiment. Since the D-optimality criterion

value is dependent on these parameter estimates, a non-monotonic profile can be obtained.

From Fig. 4.17 and from the discussion held in the previous section, it is clear that the

number of required experiments differs among the runs. When the results are represented

as in Fig. 4.17, their interpretation would be hampered and it would be difficult to compare

the results obtained for the different starting situations and with the different approaches

to OED/MD. Therefore, the results will be presented differently in the following. The

median of the D-optimality criterion values will be used to visualize how the quality of the

parameter estimates changes during the model discrimination procedure. The number of

criterion values from which the median was determined will be indicated and will also be

reflected in the size of a bullet symbol (•). The results obtained when the model discrimi-

nation procedure was initiated with ξ1
1 and ξ4

1 are presented accordingly in Figs. 4.18 and
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Figure 4.17: Evolution of the D-optimality criterion values of model m5 (in gray) for each of
the (thirty) runs of the model discrimination procedure that was initiated with
experiment ξ1

1.

4.19, respectively. The results obtained starting from the other preliminary experiments

are similar and are shown in Chapter A. In these figures, the median of the D-optimality

criterion values for a certain approach to OED/MD is shown in black, while the values of

the other approaches are shown in gray to facilitate their mutual comparison.

From these figures, one can conclude that the Ta, Tb and Td approaches perform better than

the Tc approach, in the sense that the rate at which the D-optimality criterion values (or the

quality of the parameter estimates) increases is faster. Indeed, one can see that, except for

the runs starting from ξ2
1, the Tc approach is the worst performing one, and its performance

is significantly worse (Figs. 4.18 and 4.19) when the model discrimination procedure is

initialized with preliminary experiments ξ1
1 and ξ4

1. The similarity in the performance of

the Ta, Tb and Td approaches agrees with what was observed and concluded in the previous

case study. Indeed, it indicates that the information one expects to collect by performing

the designed experiment will reduce the uncertainty on the model predictions such that the

experimental design becomes primarily driven by the difference in the model predictions

(and the uncertainty on the measurements). Still, one can state that the Td approach

performs slightly better than the other ones, or, in other words, the Td approach generally

results in experiments with a larger information content with regard to the parameter

estimates compared to the other approaches.

That the Tc approach can result in a poor performance with regard to the quality of

the parameter estimates, is in agreement with the concepts from which it is derived. As

the Tc approach seeks a balance between the difference in the model predictions and the

uncertainty associated with it, it will obviously avoid to take samples where the uncertainty



CHAPTER 4 CRITERIA FOR THE DESIGN OF OPTIMAL DISCRIMINATORY EXPERIMENTS 105

0 5 10 15

10
11

10
13

10
15

10
17

30 30

29

29

16
4

D
−

op
tim

al
ity

 c
rit

er
io

n

T
a

0 5 10 15

10
11

10
13

10
15

10
17

30 30

27

26
2

1

T
b

0 5 10 15

10
11

10
13

10
15

10
17

30
30 30

29 15

2

D
−

op
tim

al
ity

 c
rit

er
io

n

experiment

T
c

0 5 10 15

10
11

10
13

10
15

10
17

30 30

24

15
8 3

2

experiment

T
d

Figure 4.18: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ1

1,
for each of the selected approaches for OED/MD. The evolution of the median
criterion values of the other approaches are shown in gray to ease the comparison.
The number of criterion values from which the median was determined will be
indicated by the size of a bullet symbol and the corresponding integer.
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Figure 4.19: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ4

1,
for each of the selected approaches for OED/MD. The evolution of the median
criterion values of the other approaches are shown in gray to ease the comparison.
The number of criterion values from which the median was determined will be
indicated by the size of a bullet symbol and the corresponding integer.
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on the model predictions is (too) large. However, since the latter is to a large extent

determined by (and often even correlates with) the sensitivities of these predictions to the

values of the model parameters, this also has an impact on the information content of

the designed experiment. Indeed, as will be explained in more detail in Chapter 6, the

highest information content with regard to the model parameters are found where these

sensitivities are large. In other words, the Tc approach will not exploit the information

present in regions where the model prediction uncertainty is large, unless the difference in

the model predictions is significantly larger.

When the Td approach is used, the information that will be collected on the model pa-

rameters when performing the designed experiment is already considered in the evaluation

of its discriminatory potential. This (small) conceptual difference with the Tc approach

has important consequences (as already briefly stated in Section 4.6). Indeed, experiments

that are informative with regard to the model parameters will indirectly contribute to a

reduction of the uncertainty on the model predictions. Therefore, the balance between the

difference in model predictions and the uncertainty associated with it will shift towards the

former compared to the Tc approach. In other words, the regions where the information

content with regard to the model parameters is highest, will more likely be exploited by

the Td approach, whereas they will be avoided by the Tc approach.

4.11.9 Rate at which inadequate models are identified

In the discussion above, it was assumed that both time and money were available to

perform experiments until the most appropriate model was identified. However, in practice,

these resources may be limited and the model discrimination procedure must be stopped

after a particular number of experiments. In this respect, it is important to look at the

rate at which inadequate models are identified. Indeed, when the model discrimination

procedure is stopped before the most appropriate model is identified, it has to be selected

from the remaining adequate models. It is clear that model selection (as explained in

Section 2.9) is less challenging when the number of models to choose from is limited. To

investigate this aspect of the performance evaluation, the median value of the number of

adequate models obtained for the different runs of the model discrimination procedure are

shown in Figs. 4.20a, 4.20b and 4.20c for the scenarios with preliminary experiments ξ2
1,

ξ4
1 and ξ5

1, respectively. Note that the results obtained when the model discrimination

procedure is initialized with the other preliminary experiments are similar and can be

found in Appendix A.
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Figure 4.20: The median values of the number of adequate models as a function of the number
of experiments that have been performed, starting from preliminary experiment
ξ2

1 (a), ξ4
1 (b) and ξ5

1 (c). The evolution of these median values shows the rate
at which the number of adequate models decreases for the different approaches to
design optimal discriminatory experiments (Ta, Tb, Tc and Td). The number of
values (runs) from which the median was determined will be indicated by the size
of a bullet symbol and the corresponding integer.
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Table 4.4: The median value of the number of adequate models obtained after performing the
first discriminatory experiment designed using the different approaches (Ta, Tb, Tc
and Td). To increase the interpretability of these results, the lowest median values
for a given preliminary experiment are indicated in bold.

preliminary

experiment Ta Tb Tc Td

ξ1
1 2 2 2 2

ξ2
1 5 3 3 2

ξ3
1 3 2 2 2

ξ4
1 3 2 9 3

ξ5
1 3 3.5 2 2

From the results shown in Fig. 4.20, one can clearly see that, in general, the largest

decrease in the number of adequate models is achieved after performing the first optimal

discriminatory experiment. Therefore, the median of the number of adequate models after

performing the first designed experiment is tabulated in Table 4.4 and will be used to

facilitate the discussion. Although the results presented in Fig. 4.20 and Table 4.4 are

rather inconclusive, one can still observe that the Ta approach is the worst performing

approach in most of the cases (although its performance is not bad). The performance of

the Tb and the Tc approaches is comparable, while the Td approach performs slightly better

than the other ones.

Note that an interesting remark can be made when looking at the results presented in

Fig. 4.20b. Here, one can see that the number of adequate models increases from five

to nine after performing the first discriminatory experiment designed according to the

Tc approach. Although this observation only has a minor influence on the performance

evaluation of the different approaches, it is an interesting one because it clearly indicates

the need to reconsider all models when new experimental data becomes available and

illustrates that one should be aware of the possibility that a good model can accidentally

be appointed as inadequate. It is therefore recommended to reconsider all models after

performing new(ly designed) experiments.
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4.12 Discussion of the work of Schwaab et al. (2008)

As already noted in Section 4.6, the idea of the anticipatory approach (that is, taking

into account the information content of the newly designed experiment when evaluating

its discriminatory potential) was developed simultaneously and independently by Schwaab

et al. (2008) and applied to a number of case studies taken from the context of chemi-

cal engineering. Although their approach is identical to the one presented here and the

conclusions drawn from their case studies, in general, agreed with ours, some remarks are

given below.

However, before starting the discussion, it is important to note that the type of models

considered in the work of Schwaab et al. (2008) differs from the ones considered here.

Indeed, in this dissertation, dynamic models were considered. Such models describe the

modelled process by a set of (coupled) differential and algebraic equations (as discussed

in Section 2.2) and make it possible to describe the evolution of the modelled process

over time, as already shown in the case studies described above. The models considered in

Schwaab et al. (2008), on the other hand, are so-called static (or steady state) models. Such

models are not intended to describe the dynamic behavior of the process, and can, in fact,

be considered as a subclass of the type of models considered here (they are only described

by algebraic equations, as in Eq. (2.2)). Although the experimental design methods are

the same for both types of models, it should be noted that the computational requirements

to simulate an experiment with dynamic models are much larger since a numerical solver

is necessary to obtain the model predictions (as discussed in Section 2.2).

A first remark is related to the interpretation of the Tij (ξ)-values. Schwaab et al. (2008)

state that the main advantage of the anticipatory approach is that the Tij (ξ)-value obtained

with the original approach of Buzzi-Ferraris et al. (1984) (the Tc approach) is lower than the

one obtained with the anticipatory approach (the Td approach), which indicates an “easier

discrimination among the rival models”. Although we agree with the authors that the

experiments obtained with the anticipatory approach typically have a higher discriminatory

potential (as discussed in the previous section/case study), we do not agree that this can

be concluded by comparing the Tij (ξ)-values obtained with the two approaches. From

the discussion held in Section 4.6, it is clear that one can expect a smaller value of Tij (ξ)

when the information of the designed experiment is taken into account. The following

thought experiment illustrates that the statement of Schwaab et al. (2008) is incorrect.

Suppose that both approaches result in exactly the same discriminatory experiment. Since
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the Tij (ξ)-value calculated as prescribed by the anticipatory approach will be larger than

with the original approach of Buzzi-Ferraris et al. (1984), one would conclude that the

anticipatory approach results in an experiment with a larger discriminatory potential. But

this is not true, as the experiment is identical.

A second remark has to do with the similarity between the anticipatory approach and op-

timal experimental design for parameter estimation. This similarity was already discussed

in Section 4.6, and the results from the case study discussed in Section 4.11 confirmed

that regions with the highest information content about the model parameters will more

likely be exploited by the anticipatory approach, whereas they will be avoided by the ap-

proach proposed by Buzzi-Ferraris et al. (1984). Schwaab et al. (2008) have also noted

this and state in their discussion that “the use of [the anticipatory approach] allows for

simultaneous improvement of model discrimination and parameter estimation, as pursued

by many researches in the field.” In their conclusions, they state that “... [the anticipatory

approach] leads to simultaneous improvement of the variances of the parameter estimates

along the experimental design, as reduction of the variances of the parameter estimates also

contributes to the increase of the model discrimination power”. However, although these

statements are in agreement with what was observed in this work, they should not be seen

as an absolute truth. Indeed, although the uncertainty on the parameter estimates plays

its role in the design of discriminatory experiments, the latter is primarily driven by the

difference in the model predictions. It may thus well be that the informative regions with

regard to the parameters do not coincide with the regions that are interesting with regard

to model discrimination. In such cases, the optimal discriminatory experiment may not be

informative at all with respect to the parameters and no significant improvement of the

parameter estimates would be observed. In addition, it should be kept in mind that the

experiments are designed based on the predictions of both rival models. The regions (or

experiments) that are informative for model mi may not be informative at all for model

mj, and also in this case their statements may not be valid.

4.13 Summary and conclusions

Conceptually, the design of optimal discriminatory experiments comes down to finding that

experiment that maximizes the difference between the model predictions, preferably taking

into account the uncertainty associated with this difference. This uncertainty originates

from two sources, that is, the uncertainty on the measurements and the uncertainty on the

model predictions. Hunter and Reiner (1965) proposed a design criterion that did not con-
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sider any of these uncertainties, but their design criterion could be easily modified to take

into account the uncertainty on the measurements. The design criterion proposed by Buzzi-

Ferraris et al. (1984) does consider both sources of uncertainty and is thus the superior

one from a conceptual point of view. However, in the original approach of Buzzi-Ferraris

et al. (1984), the discriminatory potential of the designed experiment is evaluated using

the information content of the already performed experiments. In this chapter, this ap-

proach was modified by taking into account the information content of the newly designed

experiment when evaluating its discriminatory potential, and was therefore called the an-

ticipatory approach to optimal experimental design for model discrimination (OED/MD).

These approaches to OED/MD were applied in two case studies in which two and nine of

rival models, respectively, were proposed to describe the kinetics of an enzyme.

In a first case study, the experimental design exercise consisted of determining the opti-

mal sampling times for a given dynamic profile of the manipulatory variables. The results

showed that the anticipatory approach arranges the experimental degrees of freedom such

that the expected model prediction uncertainty is small at the times when samples are

taken, thereby increasing the discriminatory potential of the resulting experiment. The re-

sults also showed that applying the anticipatory approach can result in an experiment that

is similar to the one found with the simpler and less computationally expensive approach

that only considers the uncertainty on the measurements. This was the case when the

information content of the designed experiment was large enough to decrease the model

prediction uncertainty to a level where its impact on the experimental design was rather

limited, and the experimental design became dominated by the uncertainty due to the

measurement error. In addition, the results showed that, compared to the original ap-

proach, the anticipatory approach led to more reliable estimates of the model prediction

uncertainties that are eventually obtained after performing the designed experiment and re-

estimating the model parameters. This is important because when this estimate is far from

the one eventually obtained after performing the designed experiment, its discriminatory

potential may not be as high as expected during the experimental design.

In a second case study, the performance of the selected approaches was evaluated by look-

ing at four aspects: (1) the outcome of the model discrimination procedure, (2) the number

of experiments that were required before the model discrimination procedure ended, (3)

the evolution of the uncertainty on (or the quality of) the parameter estimates during the

model discrimination procedure, and (4) the rate at which the number of adequate models

decreases. The results indicated that it definitely makes sense to design discriminatory ex-
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periment (regardless of the approach used to design them), as model discrimination could

not be achieved from random experiments. One could also conclude that the approach

proposed by Buzzi-Ferraris et al. (1984) appeared to be a rather conservative one. The

true model was always identified as the most appropriate one when this approach was used,

but, on average, more experiments were required compared to the other approaches. In

addition, the information content (with regard to the parameter estimates) of the exper-

iments designed using this approach was often lower than those obtained from the other

approaches. With the anticipatory approach, on the other hand, model discrimination was

achieved in the lowest number of experiments, and it generally resulted in experiments

with a larger information content compared to the other approaches. The reason why the

anticipatory approach performs better than the original approach of Buzzi-Ferraris et al.

(1984) is related to the uncertainty on the parameter estimates, and can be explained by

the similarity between the anticipatory approach and optimal experimental design for pa-

rameter estimation (both design criteria benefit from a larger information content of the

designed experiment with regard to the model parameters). In addition, the rate at which

the inadequate models were identified was largest for the anticipatory approach. Based on

the results obtained in this case study, one can conclude that the anticipatory approach to

design optimal discriminatory experiments is preferred.





CHAPTER 5
Evaluation of experimental design

strategies to discriminate among
several rival models

“However beautiful the strategy, you should occasionally look at the results.”

Winston Churchill, former Prime Minister of the United Kingdom



Abstract

Because the experimental design methods developed to discriminate among rival mathe-

matical models are model-based, the optimal discriminatory experiments depend on the

currently available parameter estimates. As a consequence of this dependence on the pa-

rameter estimates, model discrimination has to be seen as an iterative procedure. In every

iteration, an optimal discriminatory experiment is designed using only those models that

are considered adequate at that stage. When the number of rival models is larger than

two, several design strategies are possible to steer the model discrimination exercise, irre-

spective of which design criterion is chosen. In this chapter, a number of design strategies

that are interesting from a conceptual point of view are formalized and applied to a case

study. The results indicate that the design strategy in which the average discriminatory

potential of the designed experiment is maximized, is to be preferred.
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5.1 Introduction

When more than one mathematical model is proposed for one and the same system, one is

confronted with a model discrimination problem. Typically, one is interested only in that

model that describes the process under study in the most appropriate way, and additional

experiments are necessary to identify this most appropriate model. For this purpose, one of

the design criteria described in the previous chapter can be used to design so-called optimal

discriminatory experiments. Basically, the design comes down to finding that experiment

that maximizes the difference between the model predictions, preferably taking into account

the uncertainty associated with this difference.

In this respect, it is important to be aware of the fact that the experimental design is

model-based and thus dependent on the currently available parameter estimates. It can

therefore not be guaranteed that one or more rival models will fail to describe the newly

collected data. Indeed, the parameter estimates used for the experimental design may

not reflect their true values and may change considerably when re-estimating them using

the new information that is collected from the process being studied. Nevertheless, given

the information available at the experimental design stage, performing this discriminatory

experiment is the best one can do.

As a consequence of this dependency on the parameter estimates, model discrimination

has to be seen as an iterative procedure. This model discrimination procedure has already

been described in Section 2.2, but for clarity this is briefly repeated here (Fig. 5.1). In

every iteration, an optimal discriminatory experiment is designed using only those models

that are considered adequate at that stage. After performing the designed experiment, the

parameters of all models (and not only the adequate ones) are re-estimated (Buzzi-Ferraris

et al., 1990) and the adequacy of the models is evaluated after taking the newly collected

information (or experimental data) into account. By reconsidering all models during the

model evaluation phase, one accounts for the possibility that one (or more) models were

wrongly rejected by chance in a previous iteration (Buzzi-Ferraris et al., 1990).

When the number of rival mathematical models is larger than two, several design strate-

gies are thinkable to steer the model discrimination exercise (Buzzi-Ferraris et al., 1990;

Schwaab et al., 2006), irrespective of which design criterion is chosen. Indeed, one can opt

for a design strategy that tries to eliminate as many models as possible in each iteration,

or one can choose a design strategy that maximizes the expectation that (at least) one

of the rival models becomes inadequate after performing the experiment. In this chapter,
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Figure 5.1: General procedure to discriminate among m rival models (adapted from Chen and
Asprey (2003) and Schwaab et al. (2006)).

a number of design strategies that are interesting from a conceptual point of view are

formalized and applied to a case study.

5.2 OED/MD as an optimization problem

Before discussing the different design strategies for model discrimination, the general idea

of optimal experimental design for model discrimination is briefly repeated. In general,

optimal experimental design is an optimization problem, where the optimum of a well-

defined objective function, denoted as T , is sought by varying the experimental degrees of

freedom. This can be formalized as follows

ξ? = arg max
ξ∈Ξ

T (ξ) . (5.1)

The experimental degrees of freedom, ξ, are restricted by a number of constraints that

define a set of possible experiments, denoted as Ξ. These constraints are determined

by the experimental setup and are specified before the start of the experimental design

exercise. So, the optimal discriminatory experiment is thus that experiment for which

T (ξ) is maximal.
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5.3 Strategies for the design of optimal discriminatory experiments

In the following, three design strategies will be described. Each of these design strategies

originates from a particular view on how the discriminatory potential of the designed

experiment should be defined. Indeed, one can, for instance, design an experiment by

maximizing the expectation that at least one of the rival models becomes inadequate after

performing the experiment. By adopting this rationale of designing the discriminatory

experiments, one tries to avoid situations where the number of adequate models stays the

same after performing the experiment. This design strategy corresponds to the so-called

pairwise design strategy discussed in Section 5.3.1. Two other design strategies will be

discussed below.

5.3.1 Pairwise design strategy

As a first design strategy (Buzzi-Ferraris et al., 1990; Schwaab et al., 2006), an optimal

discriminatory experiment is designed for each model pair. When m models are proposed,

this means that m!
(m−2)!·2!

experiments have to be designed. From these experiments, the one

associated with the highest Tij (ξ) value, represented as ξ? in the following, will eventually

be performed. This design strategy can be formalized as follows:

ξ? = arg max
i=1,...,m−1
j=i+1,...,m

Tij
(
ξ?ij
)
, (5.2)

where Tij
(
ξ?ij
)

represents the Tij (ξ) value associated with the optimal discriminatory ex-

periment to discriminate between model mi and model mj, which is denoted as ξ?ij and

calculated as

ξ?ij = arg max
ξ∈Ξ

Tij (ξ) . (5.3)

From a conceptual point of view, one could state that this design strategy maximizes

the expectation that one of the rival models becomes inadequate after performing the

experiment and one could state that one tries to avoid the situation in which the number

of adequate models does not change after performing the experiment.

The experiment that is eventually obtained using this design strategy may be very good to

discriminate between model mi and mj, but not for the other model pairs. Indeed, besides
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the fact that the discriminatory potential of the optimal discriminatory experiments for the

individual model pairs is mutually compared (as formalized in Eq. (5.2)), the other model

pairs are not considered in the design of experiment ξ?ij, as can be seen from Eq. (5.3).

As the focus of the experimental design is primarily on that model pair for which model

discrimination is most likely, this design strategy might not lead to a fast reduction of

the number of adequate models and many iterations might be required before the most

appropriate model can be identified from the m rival models available at the start of the

model discrimination procedure.

5.3.2 Averaged design strategy

The fact that the pairwise design strategy ignores the discriminatory potential of the ex-

periment with regard to the other model pairs, may have as a consequence that more

experiments are required to achieve model discrimination (as discussed above). This dis-

advantage is less pronounced in the averaged design strategy, where the optimal discrim-

inatory experiment is found after optimizing the average of the design criterion values

obtained for each of the model pairs (Schwaab et al., 2006; Burke et al., 1997; Dumez,

1977). This design strategy can be formalized as follows

ξ? = arg max
ξ∈Ξ

m−1∑
i=1

m∑
j=i+1

Tij (ξ) . (5.4)

Note that, in principle, one should divide the right-hand side of Eq. (5.4) by the number of

model pairs to get a true average. However, this was omitted for simplicity because it does

not have an influence on the optimum of the design criterion, and thus the same optimal

discriminatory experiment is found.

5.3.3 Maximin design strategy

For both design strategies presented above, a situation may occur where the discriminatory

potential of the designed experiment is very small for one or more model pairs. That this

may occur was already mentioned and discussed for the pairwise design strategy, but it

might also occur for the averaged design strategy. Indeed, it is possible that the value of∑m−1
i=1

∑m
j=i+1 Tij (ξ) is dominated by one or more model pairs, while the discriminatory

potential of the proposed experiment is (too) small for the other model pairs. This can be

avoided by determining the optimal discriminatory experiment as follows:
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ξ? = arg max
ξ∈Ξ

min
i=1,...,m−1
j=i+1,...,m

Tij (ξ) . (5.5)

In this so-called maximin design strategy, the Tij-value is calculated for each model pair

and the smallest one is maximized. In this way, one should be protected from a situation

where the discriminatory potential of the designed experiment is too small for one or more

model pairs.

5.3.4 Focus on the best model pairs

To complement the design strategies discussed above, it is interesting to note that one can

also choose to focus the experimental design on the best models. Indeed, one can assume

that the worst performing models will eventually be found inadequate as the number

of performed experiments increases. Following this rationale, the optimal discriminatory

experiment is predominantly determined by the most probable models and may lead to a

reduction of the number of required experiments since no experimental effort is spent on

the discrimination among rival models that will drop out anyway.

Such weighing can be performed using the model probabilities introduced by Schwaab et al.

(2006) (described in Section 4.4.5, and more specifically in Eq. (4.16)). For instance, the

design criterion used in the averaged design strategy then becomes

ξ? = arg max
ξ∈Ξ

m−1∑
i=1

m∑
j=i+1

πi · πj · Tij (ξ) , (5.6)

where πi represents the model probability associated with model mi. Apart from mention-

ing this possibility, this will not be dealt with in more detail in this dissertation.

5.4 Case study III: Evaluating the performance of the strategies for
OED/MD

In this section, the discriminatory potential of the experiments designed by applying the

different design strategies described above will be examined. Therefore, the model discrim-

ination procedure depicted in Fig. 5.1 will be applied to the working example described in

Chapter 3, where nine rival models are proposed to describe the kinetics of glucokinase.
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5.4.1 Objective of this case study

The objective of this case study is to compare the performance of the three strategies in

the design of optimal discriminatory experiments. In particular, the objective is to find out

whether the rationale that is incorporated in their corresponding mathematical formula-

tions (or equations) is also reflected in the performance of the designed experiments. The

latter will be evaluated based on (1) the rate at which model discrimination is achieved (as

in the previous case study, described in Section 4.11) and (2) on the overall discriminatory

potential of the designed experiment.

5.4.2 Preliminary experiments

As in the case study described in Section 4.11, the model discrimination procedure was

performed starting from the five preliminary experiments, denoted as ξi1, with i = 1, . . . , 5,

and described in Section 4.11.3. As in the previous case study, this was done to account for

the difference in the information content of the preliminary experiments. The latter has an

influence on the quality of the parameter estimates at the start of the model discrimination

procedure, and thus on the model discrimination itself.

5.4.3 Design of optimal discriminatory experiments

For the design of the optimal discriminatory experiments, the experimental degrees of

freedom were the same as in the preliminary experiments except for the sampling times

and the initial concentrations of glucose and ATP, which were to be optimized. The initial

concentrations were allowed to take values between 0 mM and 2 mM, and ten optimal

sampling times were determined with the constraint that the time interval between two

subsequent samples was 15 seconds or more. However, for reasons that will become clear

during the discussion of the results, the duration of the designed experiments was limited

here to 6 minutes, whereas this is 20 minutes in the other case studies that are performed

in this dissertation. For the same reasons, the initial concentration of PEP was set to

0 mM, but the liquid used for the pulse contained PEP with a concentration of 1.2 mM.

Since the anticipatory approach showed the best performance in the case studies discussed

in the previous chapter, this approach was used to design the discriminatory experiments.
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5.4.4 Rate at which inadequate models are identified

The objective of optimal experimental design for model discrimination is to identify the

most appropriate model with as few additional experiments as possible. A design strategy

that identifies the inadequate models faster (that is, in less experiments) is thus preferred

and the rate at which the inadequate models are identified is investigated in this section.

Note that this aspect becomes especially relevant when the resources (for instance, time

and money) are scarce and only a limited number of experiments can be performed, as

already discussed in Section 4.11.9. In such a case, the model discrimination procedure

must be halted before the most appropriate model is identified and one of the remaining

adequate models is selected. The latter is obviously less problematic when the number of

adequate models is small.

To investigate the rate at which model discrimination is achieved, the number of adequate

models is presented as a function of the number of (designed) experiments that have been

performed. As one can expect that the difference between the design strategies is primarily

apparent in the beginning of the model discrimination procedure (and thus when there

are still a large number of adequate rival models), the procedure was stopped after five

iterations. Similar to the case study described in Section 4.11, the model discrimination

procedure was repeated thirty times to account for the uncertainty on the measurements

(as discussed in Section 4.11.2).

Fig. 5.2 shows the evolution of the number of adequate models (using histograms) obtained

for the scenario with preliminary experiments ξ1
1, ξ2

1 and ξ3
1 and for which the experiments

are designed according to the pairwise design strategy. To make a comparison among the

design strategies, the median value of the number of adequate models obtained for the

different runs of the model discrimination procedure are shown in Fig. 5.3 for the scenarios

with preliminary experiments ξ1
1, ξ2

1 and ξ3
1 and for the three design strategies. In these

figures, experiment number one corresponds with the preliminary experiment. Note that

the results obtained with the other preliminary experiments are similar and are therefore

not discussed here for brevity. They can, however, be found in Appendix B.

From these results, one can see that some of the rival models already appear to be unable

to describe the data obtained in this preliminary experiment. This is, for instance, the

case in Fig. 5.3a, where the number of adequate models is reduced to only four (out of

nine) after performing the preliminary experiment. For the interpretation of the results

depicted in Fig. 5.3, it is important to keep in mind that the number of values from which
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Figure 5.2: Evolution of the number of adequate models as experimentation progresses (top to
bottom) by means of histograms determined from the (thirty) runs of the model
discrimination procedure that were initiated with experiments ξ1

1 (left), ξ2
1 (middle)

and ξ3
1 (right), and for which the experiments are designed according to the pairwise

design strategy. The number of runs in which model discrimination has not been
achieved yet is indicated in the upper right corner of each graph and the median of
the number of adequate models is represented by the gray line.
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the median was determined, differs (as indicated by the size of the bullet and the integer

accompanying it). This is because the number of experiments that is required to achieve

model discrimination varies between the different repetitions of the model discrimination

procedure (similar to the results reported in Fig. 4.17).

From the results presented in Fig. 5.3, one can also see that the number of adequate models

decreases slightly faster when the averaged design strategy is applied instead of the two

other design strategies, although the difference between the pairwise and the averaged de-

sign strategy is minor. The maximin design strategy seems to be the worst performing one,

which is most apparent when looking at the results obtained with preliminary experiment

ξ2
1 (Fig. 5.3b). However, one can observe that these results do not allow to draw a definite

conclusion.

In Fig. 5.3a, one can see that the median value increases from one to two after performing

the fifth experiment in the scenario where the pairwise strategy is used for the experimental

design. However, even though it is possible that the number of adequate models increases

after performing a new experiment, this was not the case here and the observation can

be explained by the fact that the number of values from which the median is determined

differs as experimentation progresses. This phenomenon can more easily be understood

from Fig. 5.2 where the evolution of the number of adequate models is presented by means

of histograms. An example where the number of models does increase after performing a

new experiment is found in Figs. 5.3c and 5.2 (right column), for the scenario where the

pairwise design strategy was used. After performing the first designed experiment, the

median of the number of adequate models increases from six to seven even though none of

the thirty repetitions of the model discrimination procedure ended yet.

Note that the results presented in Fig. 5.3a do not contribute to the study of the difference

between the three design strategies. Indeed, regardless of the design strategy used, the

number of adequate models drops from four to two after performing the first designed

experiment. When the number of rival models is equal to two, the three design strategies

are equivalent. This example clarifies why the experimental degrees of freedom used for the

design of the optimal discriminatory experiments were different from the ones used in the

other case studies that are discussed in this dissertation (as mentioned in Section 5.4.3).

When the same exercise as described above is performed with the original experimental

degrees of freedom (described in Section 4.11.5), the obtained results are similar to the ones

shown in Fig. 5.3a and did not contribute to the study of the design strategies. Therefore,
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Figure 5.3: The median of the number of adequate models, determined from the (thirty) repe-
titions of the model discrimination procedure that were initiated with experiment
ξ1

1 (a), ξ2
1 (b) and ξ3

1 (c). In each of the subfigures, the results of one of the design
strategies are presented in black, while the evolution of the median values of the
other design strategies are shown in gray to ease their mutual comparison. The
number of values (runs) from which the median is determined are indicated by the
size of a bullet symbol and the corresponding integer (in blue).
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the experimental degrees of freedom were defined in a different way, in order to impose

differences between the results obtained with the different design strategies.

5.4.5 Overall discriminatory potential of the designed experiment

A second aspect that is considered in the evaluation is the overall discriminatory potential

of the designed experiment. The latter gives insight in the different design strategies and

helps us to interpret the observed evolution of the number of adequate models as more

discriminatory experiments are performed.

Regardless of the design strategy used, the outcome of the experimental design step is a

single well-defined experiment. For the pairwise design strategy, for instance, an optimal

discriminatory experiment is designed for each model pair, and the experiment for which

the corresponding Tij-value is largest, is chosen. As already discussed in Section 5.3.1,

the experiment is (designed and) expected to discriminate between these two models only,

although it is possible that after performing this experiment other models are found to

be inadequate too. The latter is, however, not guaranteed since the other models are

not considered in the design of this experiment. From a conceptual point of view, one

can thus expect that only a limited number of models will be rejected after performing

an experiment designed using the pairwise design strategy. In other words, the overall

discriminatory potential of the designed experiment could, in principle, be limited.

To investigate the overall discriminatory potential of the experiment designed using the dif-

ferent design strategies, the following approach was adopted. For each design strategy, the

discriminatory potential of the first designed experiment was calculated from Eqs. (4.22)

and (4.27) (anticipatory approach) for each of the model pairs. Since this experiment

is performed right after the preliminary experiment, it is in fact the second experiment

that is eventually performed. Therefore, it will be denoted as ξ?2, and the corresponding

discriminatory potential will be denoted as Tij (ξ?2). When starting the model discrim-

ination procedure with one particular preliminary experiment, this experiment (and its

corresponding Tij (ξ?2)-value) should in theory be the same in each of the repetitions of

the procedure. Indeed, when designing the first experiment, the parameter estimates are

identical for each repetition. However, when this experiment is performed, the simulated

experimental data will not be the same in the different repetitions of the procedure, and

the parameter estimates obtained from these data will be different as well. Therefore,

the experiments designed in the second iteration of the model discrimination procedure

will be different from one another and cannot simply be compared. The evaluation of the



128 5.4 CASE STUDY III: EVALUATING THE PERFORMANCE OF THE DESIGN STRATEGIES

discriminatory potential discussed below is thus restricted to experiment ξ?2, and thus to

the Tij (ξ?2)-values only.

As stated above, the Tij (ξ?2)-values were calculated for all model pairs. These are shown in

Figs. 5.4 and 5.5, where the Tij (ξ?2)-values are presented for the scenarios with preliminary

experiments ξ1
1 and ξ2

1, respectively. Note that the results obtained for the other scenarios

are similar. They are not shown here for brevity, but can be found in Appendix B. As

some of the models can already be rejected after performing the preliminary experiment

(as described in the previous section), the number of model pairs can be different for

scenarios that are initiated with another preliminary experiment. Indeed, as explained

when discussing the model discrimination procedure in Section 2.7, only the adequate

models are considered to design the optimal discriminatory experiment, which explains

why the number of model pairs is different in Figs. 5.4 and 5.5.

The overall performance of the designed experiment is evaluated by looking at the mean

of all Tij (ξ?2)-values obtained for that particular design strategy. The latter is indicated

in Figs. 5.4 and 5.5 by the vertical line. From these lines, is clear that the overall dis-

criminatory potential is more or less the same for the pairwise and the averaged design

strategies, but significantly lower for the maximin design strategy. This is in agreement

with the discussion held in the previous section, where the rate at which inadequate models

are identified was found to be (slightly) lower for the maximin design strategy than for the

other design strategies.

However, one can also see that the minimum Tij (ξ?2)-value is significantly larger for the

maximin design strategy than the minimum value obtained with the other design strate-

gies. This is in accordance with the conceptual idea from which this design strategy was

derived and its importance should not be underestimated. Indeed, it may well be that

the experiment obtained using the pairwise (or the averaged) design strategy allows to

discriminate among those model pairs for which the corresponding Tij (ξ?2)-value is larger

than 102, but that it is not possible to discriminate between the model pairs for which

this is not the case. If so, a second experiment has to be designed to further discriminate

among these remaining models. However, because the minimum Tij (ξ?2)-value is signifi-

cantly larger for the maximin design strategy, it might be possible to discriminate among

all model pairs in one single experiment. In this respect, it would be good if there existed

a workaround that combines the idea of maximizing the minimal Tij-value with the one

of maximizing the overall (or average) Tij-values. One idea to achieve this would be to

use a strategy where the product of the Tij-values is maximized (instead of the sum in
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Figure 5.4: Boxplots of the Tij (ξ?2)-values calculated for each of the model pairs, where ξ?2 refers
to the first experiment that is designed when applying the model discrimination
procedure, and is performed after preliminary experiment ξ1

1. The mean of these Tij-
values is indicated by the vertical line and gives an idea of the overall discriminatory
potential of the designed experiment.
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Figure 5.5: Boxplots of the Tij (ξ?2)-values calculated for each of the model pairs, where ξ?2 refers
to the first experiment that is designed when applying the model discrimination
procedure, and is performed after preliminary experiment ξ2

1. The mean of these Tij-
values is indicated by the vertical line and gives an idea of the overall discriminatory
potential of the designed experiment. Note that due the large number of model
pairs, their labels were omitted for brevity.
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the averaged design criterion). This would prevent situations where one or several of the

Tij-values become too small and the Tij-values of all model pairs are still considered as

such in the objective function.

Despite the fact that the Tij (ξ?2)-values for a given model pair should in theory be identical

for each of the thirty repetitions (as discussed above), one can see from the results in

Figs. 5.4 and 5.5 that this is not the case in practice. Although one should not forget

to take into account that a logarithmic scale was used to represent the Tij (ξ?2)-values,

one can clearly observe a significant variability among the Tij (ξ?2)-values. This variability

can, however, be explained by the fact that the optimal discriminatory experiments are

found using an optimization algorithm to solve the problem formalized by Eq. (5.1). Given

the complexity of this optimization problem, it is not realistic to expect that the optimal

solution is always the same, nor that the global optimum is always found. Note that this

issue is partly dealt with by repeating each model discrimination procedure thirty times.

5.5 Conclusions

Model discrimination has to be seen as an iterative procedure, because the designed ex-

periments depend on the currently available parameter estimates. In every iteration, an

optimal discriminatory experiment is designed using only those models that are considered

as adequate models at that stage. When the number of rival models is larger than two,

several design strategies are thinkable to steer the model discrimination exercise, irrespec-

tive of which design criterion is chosen. In this chapter, some design strategies that are

interesting from a conceptual point of view were formulated and applied to a case study.

The performance of the design strategies was evaluated by investigating (1) the rate at

which the number of adequate models decreased as the model discrimination procedure

progresses, and (2) the overall discriminatory potential of the designed experiment. Al-

though the results are not conclusive, they did suggest that the design strategy in which

the average discriminatory potential of the designed experiment is maximized, might be

preferred over the other design strategies. However, although the overall discriminatory

potential of the experiment obtained with the maximin design strategy was lower than

with the other design strategies, discrimination among a larger number of rival models

can be expected as it focuses on that model pair for which model discrimination is most

challenging.
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CHAPTER 6
Optimal experimental design for

parameter estimation and its relation with
model discrimination

“Without deviation from the norm, progress is not possible.”

Frank Zappa, musician



Abstract

A mathematical model contains model parameters, the value of which has to be estimated

from experimental data. The quality of the parameter estimates is highly dependent on the

information content of the available experiments. Therefore, experimental design methods

have been developed to design experiments with a maximal information content with regard

to the model parameters. These methods are described in this chapter and discusses its

relevance for model discrimination.
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6.1 Introduction

In most modelling exercises, the aim is to identify a mathematical model which describes

the studied process with the desired accuracy. When such a model is available, it can be

used as a surrogate for the actual process, making it possible to investigate the process

behavior under various input conditions both rapidly and inexpensively, and without nec-

essarily tampering with the actual process (Ogunnaike and Ray, 1994). This makes models

very useful tools for process design, control and optimization, but they can also be of great

value to increase the insight in very complex processes.

The optimal experimental design techniques described in the previous chapters are used

to identify the most appropriate model from a set of rival models. Here, the term model

refers to the model structure. However, as explained earlier, the model structure contains

model parameters that have to be determined from experimental data. In order to obtain

an accurate and reliable prediction of the behavior of the studied process, it is not sufficient

to have an adequate model structure. Indeed, it is also important that the quality of the

parameter estimates is sufficiently good, as this determines the uncertainty on the model

predictions.

This chapter deals with the experimental design techniques that are used to increase the

quality of the parameter estimates. The latter are often called optimal experimental de-

sign for parameter estimation (Vanrolleghem and Dochain, 1998) or parameter precision

(Franceschini and Macchietto, 2008). For clarity, the theoretical considerations on the

estimation of the model parameters are briefly explained before describing the experimen-

tal design techniques themselves. Its relation with model discrimination will be shortly

discussed in Section 6.8.

6.2 Parameter estimation

The values of the model parameters, which by definition do not change during the course

of the simulation, have to be determined from experimental data. This process is called

parameter estimation, and typically consists of minimizing the weighted sum of squared

errors (WSSE) functional by optimal choice of the parameters θ. The optimal parameter

estimates, denoted as θ̂, are thus given by

θ̂ = arg max
θ∈Θ

WSSE (θ) . (6.1)
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Here, WSSE (θ) is calculated as

WSSE (θ) =

ne∑
k=1

nspk∑
l=1

∆ŷ (ξk,θ, tl)
′ ·Q ·∆ŷ (ξk,θ, tl) (6.2)

and

∆ŷ (ξk,θ, tl) = y (ξk, tl)− ŷ(ξk,θ, tl) (6.3)

represents the difference between the vector of the nm measured response variables and the

model predictions at time tl (l = 1, . . . , nspk
) of experiment ξk (k = 1, . . . , ne). Further,

ne represents the number of experiments from which data are used for estimating the

parameters, nspk
represents the number of samples in experiment ξk, and Q is an nm-

dimensional matrix of user-supplied weighting coefficients. Typically, Q is chosen as the

inverse of the measurement error covariance matrix Σ (Marsili–Libelli et al., 2003; Omlin

and Reichert, 1999; Vanrolleghem and Dochain, 1998). In this way, the measurement

uncertainty is incorporated in the WSSE.

6.3 Fisher information matrix

In order to have accurate parameter estimates, the minimum of the WSSE functional has to

be clearly defined, meaning that a parameter set that is slightly different from the optimal

one should result in a WSSE that is significantly higher than the minimum WSSE value.

In that case, there will be little doubt about the parameter values that minimize WSSE

(Eq. (6.2)). Mathematically, this can be formalized as follows (Munack, 1991; Vanrolleghem

and Dochain, 1998).

Suppose one is estimating the parameters of a model using data from ne experiments

ξ1, . . . , ξne . The expected value of the WSSE for a parameter set that is slightly different

(δθ) from the optimal one can be written as (Munack, 1989)

E
[
WSSE

(
ξ1, . . . , ξne , θ̂ + δθ

)]
=

ne∑
k=1

nspk∑
l=1

∆ŷ
(
ξk, θ̂ + δθ, tl

)′
·Σ−1 ·∆ŷ

(
ξk, θ̂ + δθ, tl

)
, (6.4)



CHAPTER 6 OED/PE AND ITS RELATION WITH MODEL DISCRIMINATION 139

where E stands for the expectation operator and ξk stands for the k-th experiment. Now,

one can linearize the model with respect to the parameters (Taylor series approximation),

which results in the following equation

ŷ(ξk, θ̂ + δθ, tl) ≈ ŷ(ξk, θ̂, tl) +
∂ŷ

∂θ
(ξk,θ, tl)

∣∣∣∣
θ̂

· δθ. (6.5)

Introducing Eq. (6.5) into Eq. (6.4), one finds that Eq. (6.4) can be approximated as

E
[
WSSE

(
ξ1, . . . , ξne , θ̂ + δθ

)]
≈

E
[
WSSE

(
ξ1, . . . , ξne , θ̂

)]
+

ne∑
k=1

nspk∑
l=1

δθ′ · FIM
(
ξk, θ̂, tl

)
· δθ, (6.6)

where FIM
(
ξk, θ̂, tl

)
represents the so-called Fisher information matrix, calculated as

FIM
(
ξk, θ̂, tl

)
=

(
∂ŷ (ξk,θ, tl)

∂θ

∣∣∣∣
θ̂

)′
·Σ−1 ·

(
∂ŷ (ξk,θ, tl)

∂θ

∣∣∣∣
θ̂

)
. (6.7)

In order to get a clearly defined minimum for WSSE, it is necessary that the difference

between WSSE(ξ1, . . . , ξne , θ̂) and WSSE(ξ1, . . . , ξne , θ̂ + δθ) is maximized (as illustrated

in Fig. 6.1). From Eq. (6.6) one can see that this can be done by maximizing the Fisher

information matrix, which will briefly be called FIM in the following.

As can be seen from Eq. (6.7), the FIM is composed of two components, the parameter

sensitivities (∂ŷ/∂θ) and the measurement error covariance matrix (Σ). The sensitivity of

a certain state variable with respect to a parameter expresses how much that state variable

will change when this parameter is slightly perturbed. A state variable that is highly sensi-

tive to a certain parameter will therefore contain a lot of information about this parameter,

while a variable that is insensitive to the parameter does not contribute to the information

content for that parameter. The role of the measurement error covariance matrix in the

calculation of the FIM is rather straightforward, since it is obvious that a measurement

associated with a large measurement error will contribute less to the information content

than a measurement with a small measurement error.
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6.4 Central rationale behind optimal experimental design for pa-
rameter estimation

In general, optimal experimental design is an optimization problem, where the optimum of

a well-defined objective function is sought by varying the experimental degrees of freedom.

The experimental degrees of freedom, ξ, are restricted by a number of constraints that

define a set of possible experiments, denoted as Ξ. These constraints are determined

by the experimental setup and are specified before the start of the experimental design

exercise.

The Fisher information matrix described in the previous section expresses the information

content of the ne experiments with regard to the model parameters, and its maximization is

the central rationale behind optimal experimental design for parameter estimation (Asprey

and Macchietto, 2000; Goodwin and Payne, 1977; Ljung, 1999; Mehra, 1974; Munack, 1991;

Shirt et al., 1994; Vanrolleghem and Dochain, 1998; Walter and Pronzato, 1997). The

(ne + 1)th experiment is obtained as

ξ?ne+1 = arg max
ξ∈Ξ

FIM
(
ξ1, . . . , ξne+1, θ̂ne

)
, (6.8)

with

FIM
(
ξ1, . . . , ξne+1, θ̂ne

)
=

ne∑
k=1

FIM
(
ξk, θ̂ne

)
+ FIM

(
ξne+1, θ̂ne

)
. (6.9)

The information content of the proposed (ne + 1)th experiment, which is represented by

FIM(ξne+1, θ̂ne), is thus maximized, given the information content of the already per-

formed experiments (denoted as FIM(ξ1, . . . , ξne , θ̂ne)) and the parameter values derived

from these experiments (denoted as θ̂ne). For simplicity, FIM(ξ1, . . . , ξne+1, θ̂ne) will be

denoted as FIM in the following.

The effect of the maximization of the FIM on the WSSE is illustrated in Fig. 6.1 for a

hypothetical example in which only one parameter has to be estimated. The figure shows

the trajectories of the WSSE functional for a parameter estimation based on data from two

experiments, a non-optimal experiment (outer curve) and an optimal experiment (inner

curve). The parameter estimation based on the data from the optimal experiment, which

was obtained after maximization of the FIM, results in a smaller confidence interval and

thus in a more accurate parameter estimate.
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Figure 6.1: Effect of FIM maximization on the trajectory of the WSSE (θ) functional for a
single parameter estimation problem and the corresponding confidence intervals,
constructed based on a cut-off value of c ·WSSE

(
θ̂
)

(see Eq. (2.19)).

6.5 Experimental design criteria based on the FIM

Since the FIM is a matrix, it cannot be maximized as such. Therefore, several crite-

ria/objective functions have been proposed based on the FIM, all of which exploit the

inversely proportional relationship between the FIM and the parameter estimation error

covariance matrix (Atkinson and Donev, 1992; Munack, 1991; Petersen, 2000; Vanrolleghem

and Dochain, 1998). This relationship is dictated by the Cramér-Rao inequality (Ljung,

1999; Walter and Pronzato, 1997), which states that under certain conditions (that is,

uncorrelated white measurement noise), the inverse of the FIM gives a lower bound of the

parameter estimation error covariance matrix. In this way, properties of the FIM deter-

mine the size, shape and orientation of the confidence region of the parameter estimates,

and thus their precision. Some of the criteria are briefly described below (partly adapted

from Petersen (2000)).

A-optimality design criterion: minξ∈Ξ tr
(
FIM−1

)
With this criterion, the trace of the inverse of the FIM is minimized, which is equivalent

to minimizing the sum of the variances of the parameter estimates. In other words, this

criterion minimizes the arithmetic average of the variances of the parameter estimate.

Because this criterion is based on an inversion of the FIM, numerical problems will arise

when the FIM is close to singular.
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Modified A-optimality design criterion: maxξ∈Ξ tr (FIM)

This criterion is similar to the A-optimal design criterion, but the trace of the FIM is

maximized instead of the trace of the inverse of the FIM. Since this criterion does not

require an inversion of the FIM, the numerical problems that might occur with the A-

optimal design criterion do not occur here. However, this advantage is also a disadvantage

because when an unidentifiable experiment is evaluated (that is a case where the FIM is

singular and thus the confidence region goes to infinity in a certain direction because one

of the eigenvalues of the FIM is zero) the trace can still be optimized and the problem of

unidentifiability will not be noticed (Goodwin and Payne, 1977). This is less of a problem

with the A-optimal design criterion since an inversion of the FIM will not be possible and

the problem of unidentifiability will thereby be exposed.

D-optimality design criterion: maxξ∈Ξ det (FIM)

Here, the idea is to maximize the determinant of the FIM (Box and Lucas, 1959). The

latter is inversely proportional to the volume of the confidence region of the parameter es-

timates, and this volume is thus minimized when maximizing det (FIM). In other words,

one minimizes the geometric average of the variances of the parameter estimates. More-

over, D-optimal experiments possess the property of being invariant with respect to any

rescaling of the parameters (Petersen, 2000; Seber and Wild, 1989). According to Walter

and Pronzato (1997), the D-optimal design criterion is the most used criterion. However,

several authors have pointed out that this criterion tends to give excessive importance to

the parameter which is most influential (Franceschini and Macchietto, 2008; Pinto et al.,

1990).

E-optimality design criterion: maxξ∈Ξ λmin (FIM)

The E-optimal design criterion maximizes the smallest eigenvalue of the FIM and thereby

minimizes the length of the largest axis of the confidence ellipsoid. Thus, these designs

aim at minimizing the largest parameter estimation variance and thereby at maximizing

the distance from the singular, unidentifiable case.

ModE-optimality design criterion: minξ∈Ξ
λmax(FIM)
λmin(FIM)

With this criterion, the focus is on the minimization of the condition number, which is

the ratio between the largest and the smallest eigenvalue, or, in other words, the ratio

of the shortest and the longest ellipsoid axes. The minimum of this ratio is one, which

corresponds to the case where the shape of the confidence ellipsoid is a (hyper)sphere.
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Figure 6.2: Illustration of (a) the D-optimal design criterion that causes the volume of the
confidence region to decrease, and (b) the modified E-optimal design criterion that
causes the shape of the confidence region to become as circular as possible (both
figures adopted from De Pauw (2005); De Pauw and Vanrolleghem (2006a)).

The effect on the confidence region of the D-optimal design criterion and the modE-optimal

design criterion is illustrated in Fig. 6.2 for an estimation problem with two parameters

(θ1 and θ2). The size, shape and orientation of the confidence region, which is an ellipse

in the case of two parameters, are determined by the eigenvalues and eigenvectors of the

FIM. The largest axis of the confidence ellipse is inversely proportional to the square root

of the smallest eigenvalue (λmin), while the smallest axis is inversely proportional to the

square root of the largest eigenvalue (λmax).

Note that some other design criteria are also described in literature. For a detailed discus-

sion of other, less frequently used design criteria such as G-, L-, C- and Ds-optimality, the

reader is referred to the work of Atkinson and Donev (1992), Mehra (1974), Sidoli et al.

(2004) and Walter and Pronzato (1990).

6.6 On the approximation of the parameter estimation error covari-
ance matrix

The common approaches to determine the parameter and model prediction uncertainties

are based on linear propagations of uncertainties (as discussed in Chapter 2). Consequently,

they should only be considered as approximate estimates when working with (highly)
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nonlinear models. Nevertheless, it is common practice to use these approximations for

experimental design purposes. When designing experiments to increase the precision of

the parameter estimates, for instance, scalar functions of the FIM are maximized (as

discussed above), and also the design of optimal discriminatory experiments often relies on

linear approximations of the parameter estimates (and model prediction uncertainties), as

discussed in Chapter 4.

Because the use of the linear approximations of the parameter estimation error covariance

matrix can result in poor experimental designs, Benabbas et al. (2005) proposed to take into

account the curvature of the WSSE functional in the experimental design. Their approach

to design the optimal experiment is the same as the one described above (Eq. (6.8)), but

a constraint is added which assures that the observed curvature is below a predefined

acceptable level of curvature. In other words, the linear approximation of the parameter

estimation error covariance matrix (or the FIM) is used, but only if it can be trusted and

used. The optimal experimental design problem is thus given by

ξ?ne+1 = arg max
ξ∈Ξ

FIM
(
θ̂, ξ
)
, (6.10)

subject to

ζ
(
θ̂, ξ
)
< ε , (6.11)

where ζ
(
θ̂, ξ
)

represents the curvature and ε represents the acceptable level of curvature.

To calculate this curvature, the second-order sensitivities are required. For detailed in-

formation on the calculation of these sensitivities and the curvature itself, the reader is

referred to the cited paper, but it is important to realize that this requires an additional

ns×np×np differential equations, on top of the ns differential equations used to define the

model as such (Eq. (2.1)) and the ns×np additional differential equations used to calculate

the first-order sensitivities (Eq. (2.17)). It is clear that this is a serious drawback, since

these additional differential equations drastically increase the computational burden.

Alternatively, Joshi et al. (2006) proposed a bootstrap method to obtain a better ap-

proximation of (possibly) asymmetric confidence regions for parameter estimates. In their

approach, the mean and variance of the available experimental data are assumed to be

known, and they are used to define a probability density function of the measured data.

By sampling from this distribution, a number of new experimental data sets is generated,
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from each of which the model parameters are estimated. This results in an equal number

of parameter estimates, and the variability among these estimates gives an idea about the

uncertainty associated with them. Apart from the fact that this approach strongly depends

on the distribution of the measured data, a great number of parameter estimation exer-

cises are required to obtain a representative estimate of the uncertainty on the parameter

estimates.

As already indicated above, these approaches are computationally intensive, which cur-

rently makes them less suited for optimal experimental design purposes (Franceschini and

Macchietto, 2008; Joshi et al., 2006). It should be noted however that, although the

experimental designs based on a linear approximation of the parameter estimation error

covariance matrix can be less informative than expected (Benabbas et al., 2005), they are

still very useful from a practical point of view.

6.7 Locally versus robust optimal experimental designs

Next to the fact that the common approaches to optimal experimental design for parame-

ter estimation are based on an approximation of the parameter estimation error covariance

matrix, a second and probably more important issue has not been discussed so far. Indeed,

since the Fisher information matrix (FIM) is calculated using the currently available pa-

rameter estimates, the optimal experimental designs are dependent on them and can thus

only be considered optimal in their proximity. In principle, they should thus be called

locally optimal experimental designs, as noted by several authors including Atkinson and

Donev (1992), Balsa-Canto et al. (2007), Bernaerts et al. (2000), De Pauw (2005), Versyck

et al. (1999) and Vanrolleghem and Dochain (1998). The effectiveness of the design thus

depends on how well these parameter estimates match those of the actual process, which

is problematic since the ultimate aim of optimal experimental design for parameter esti-

mation is exactly to find the true parameter values, or at least to approximate them with

a reasonable precision.

The most often used approach to deal with this problem is to design the experiments in

a sequential way by alternating parameter estimation and experimental design (Walter

and Pronzato, 1997; Vanrolleghem and Dochain, 1998). After each parameter estimation

the knowledge of the process parameters improves and this is reflected in an increased

quality of the experiment designed subsequently. Many authors acknowledge the useful-

ness of this approach (for instance, Ford et al. (1989), Walter and Pronzato (1990) and
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Atkinson (2003)), but many iterations (and thus experiments) may be required before the

parameters converge to their true values. However, it may not be possible to perform that

many experiments on the same system due to limitations in time or resources, or simply

because the experimental setup does not allow it. In addition, it is not guaranteed that

the parameters converge to the true values.

For this reason, several authors have emphasized the need of experimental design methods

that are less sensitive (or more robust) to the starting values of the parameter estimates.

Several approaches have been described in literature to deal with the robustness of exper-

imental design for parameter estimation (Asprey and Macchietto, 2002; De Pauw, 2005;

Franceschini and Macchietto, 2008; Walter and Pronzato, 1997). One of these approaches,

the so-called maximin approach, will be briefly discussed below.

With the maximin approach, the experiment is selected that optimizes the worst possible

performance for any value of θ ∈ Θ (Pronzato and Walter, 1988). Using the D-optimality

design criterion, for instance, this approach is given by

ξ?ne+1 = arg max
ξ∈Ξ

min
θ∈Θ

|FIM (θ, ξ)| . (6.12)

In other words, for each experiment that is proposed by the optimization algorithm, those

parameters are determined for which the D-optimality design criterion value is lowest and

this value is returned to the optimization algorithm and is eventually maximized. For

this approach, the necessary prior information on the possible parameter values is limited

to the upper and lower bounds, but the computational burden introduced by the nested

optimization limits its application.

6.8 Integration of OED/PE and model discrimination

The experimental design techniques discussed so far are appropriate when the experimenter

either wants to discriminate among rival models (Chapter 4) or to estimate the model

parameters (this chapter). However, from the discussion held in the introduction of this

chapter, it is clear that both the model structure and (the quality of) its parameters are

important. This is obviously reflected in the classical strategy for building a mathematical

model, which basically consists of two steps (Asprey and Macchietto, 2000; Box and Hill,

1967; Buzzi-Ferraris, 1999; Espie and Macchietto, 1989; Vanrolleghem and Dochain, 1998).

First, the adequate model structure is identified, and then the quality of its parameters is
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(further) improved to permit reliable model predictions. This sequential strategy can thus

be achieved by first applying the model discrimination procedure discussed in Chapter 4

to select the best model, and then using a parameter estimation procedure on this model.

From the discussion held in Chapters 4 and 5, however, it is known that the uncertainty on

the model predictions is of crucial importance for model discrimination. This is because

the experimental design methods are model-based, and high model prediction uncertainties

obviously hamper the efficacy and efficiency of the model discrimination procedure. These

model prediction uncertainties are determined by the quality of the available data, since

low quality data will result in poorly estimated parameters, which on their turn result

in uncertain model predictions. The discrimination among several rival models may thus

become more efficient and effective if this uncertainty could be reduced prior to the start

of the model discrimination procedure. In other words, from a conceptual point of view, it

may be interesting to perform optimal experimental design for parameter estimation first,

before proceeding with model discrimination. This rationale is challenged in the following

chapters.





CHAPTER 7
Design of compromise experiments to

simultaneously estimate the parameters of
several rival models

“Ik heb altijd gelijk.”

Isabelle Gheysen, mijn lief kleintje



Abstract

When several mathematical models are proposed for one and the same process, experimen-

tal design techniques are available to design optimal discriminatory experiments. However,

because these design techniques are model-based, it is important that the required model

predictions are not too uncertain. This uncertainty is determined by the quality of the

already available data, since low quality data results in poorly estimated parameters, and

subsequently in uncertain model predictions, which prevent that significant differences be-

tween the models can be found. Therefore, model discrimination may become more efficient

and effective if this uncertainty is reduced first. This can be achieved by performing dedi-

cated experiments, designed to increase the precision of the parameter estimates. However,

performing such an additional experiment for each rival model may undermine the overall

goal of optimal experimental design, which is to minimize the experimental effort. There-

fore, this chapter is dedicated to the design of so-called compromise experiments, which

are defined as experiments that are sufficiently informative to improve the overall precision

of the parameters of all rival models in a single experiment. For this purpose, two methods

are proposed: the kernel-based method and the ideal point method. The ability of both

methods to design such compromise experiments is evaluated after applying them to a case

study where nine rival models are defined to describe the kinetics of an enzymatic reaction

(glucokinase).
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7.1 Introduction

Many experimental studies are performed (1) to determine the model structure that ad-

equately describes the process under study (often called model discrimination), or (2)

to obtain (more) accurate estimates of the model parameters. For both problems, ex-

perimental design methods have been developed that help the experimenter to plan the

experiments. For the problem of model discrimination, the methods described in Chapter 4

can be used, while the ones described in Chapter 6 can be used to design experiments that

result in an increased precision of the parameter estimates. Common to these experimen-

tal design methods is the overall goal to maximize the information content of the designed

experiments, and thus to minimize the experimental effort needed.

As discussed before, the most intuitive approach to address the problems of model discrim-

ination and accurate parameter estimation is to deal with them successively (Hill et al.,

1968; Walter and Pronzato, 1997). First, experiments are designed and performed to choose

between the rival model structures, and then, once the most promising model structure has

been selected, experiments are designed and performed to accurately estimate its param-

eters. Alternatively, one could deal with both problems simultaneously. For this purpose,

a joint criterion has been described by Hill et al. (1968) (see Section 8.3) where the basic

design strategy is to emphasize model discrimination when there is considerable doubt as

to which model is best, and gradually shift the emphasis to parameter estimation as exper-

imentation progresses, and model discrimination becomes possible. Both approaches thus

deal with model discrimination first, and then the focus is (gradually) shifted to parameter

estimation.

From the discussion held in Chapters 4 and 5, however, it is known that the uncertainty on

the model predictions is of crucial importance for model discrimination. This is because

the experimental design methods are model-based, and high model prediction uncertainties

obviously hamper the efficacy and efficiency of the model discrimination procedure. These

model prediction uncertainties are determined by the quality of the available data, since low

quality data will result in poorly estimated parameters, which in turn result in uncertain

model predictions. The discrimination among several rival models may thus become more

efficient and effective if this uncertainty could be reduced prior to the start of the model

discrimination procedure.

Reducing the uncertainty on the model predictions can be achieved by designing and per-

forming experiments dedicated to reducing the uncertainty on the parameter estimates.
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However, performing an additional experiment for each rival model may undermine the

overall goal of optimal experimental design, since this would require at least as many

experiments as the number of rival models. Therefore, this chapter investigates the pos-

sibility to design a compromise experiment, which is not optimal for one or more of the

individual rival models, but is sufficiently informative to improve the overall precision of

the parameters of all rival models.

In Section 7.2 of this chapter, a kernel-based method is presented to design a compromise

experiment for experimental design problems where only the sampling times are to be op-

timized. The idea of designing a compromise experiment is further explored in Section 7.3,

by treating it as a multi-objective problem. The so-called ideal point method proposed

in this section can be used for experimental design problems with experimental degrees of

freedom of any type (manipulations, initial conditions and sampling times), whereas this

would be difficult or even impossible with the kernel-based method.

Both the kernel-based method and the ideal point method are illustrated on the case

study (described in Chapter 3 and used throughout this dissertation), where nine models

are proposed to describe the kinetics of the enzyme glucokinase. For each method, the

ability to design compromise experiments is evaluated (Sections 7.5, 7.6 and 7.7) and the

conclusions drawn from these results are listed in Section 7.8.

7.2 A kernel-based method to determine compromise sampling
times

As stated above, this chapter investigates the possibility to design a compromise experi-

ment, that is, an experiment which may not be optimal for each individual rival model,

but sufficiently informative to improve the overall precision of the parameters of all rival

models. In this section, a first method is presented to determine such a compromise ex-

periment. It is inspired by what is called kernel density estimation or the Parzen window

approach (Jenssen et al., 2006; Rosenblatt, 1956).

7.2.1 Introduction to kernel density estimation

Kernel density estimation (Rosenblatt, 1956) is a non-parametric method for estimating

the probability density function (pdf) of a random variable from its independent and

identically distributed (i.i.d.) samples (Duda et al., 2001; Jenssen et al., 2006). The term
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non-parametric refers to the fact that it is not necessary to assume a particular model for

the pdf prior to the density estimation exercise (Duda et al., 2001).

Suppose n samples of a random variable (x) are drawn i.i.d. according to the (unknown)

probability function p (x). The kernel density estimation of this probability density func-

tion, denoted as p̂ (x), is given by

p̂ (x) =
1

n · h ·
n∑
i=1

κ

(
x− xi
h

)
(7.1)

where xi represents the ith sample, κ represents the so-called kernel function (or Parzen

window), and h represents the smoothing parameter (or bandwidth parameter). Quite

often, κ is taken to be a standard Gaussian function with zero mean and a variance equal

to one, given by

κ (u) =
1√
2π
· e− 1

2
·u2

. (7.2)

Apart from this Gaussian kernel function, other kernel functions have been proposed, but

the choice of the kernel function seems to be less important than the choice of the smoothing

parameter (Jenssen et al., 2006).

The principle of kernel density estimation and the importance of the smoothing parameter

are illustrated in Fig. 7.1, where it is applied to an illustrative example for three different

values of the smoothing parameter h. The dots represent six samples from an unknown

probability density function, the dashed lines represent the individual kernel functions, and

the full line represents the estimated probability density function that is calculated as the

sum of the individual kernel functions.

7.2.2 Kernel-based method for experimental design

This section explains how the concepts of kernel density estimation described above can

be useful in an experimental design context, and focuses on its application for those cases

where only the optimal sampling times are determined. The possibility to extend the

kernel-based method for applications where experimental degrees of freedom of all types

(manipulations, initial conditions and sampling times) are considered, is further discussed

in Section 7.2.5.
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(a) h = 0.20

(b) h = 0.50

(c) h = 1.00

Figure 7.1: Kernel density estimation applied to an illustrative example for three different val-
ues of the smoothing parameter h. The dots represent six samples from an unknown
probability density function, the dashed lines represent the individual kernel func-
tions, and the full line represents the estimated probability density function that is
calculated as the sum of the individual kernel functions.

Suppose nsp optimal sampling times were determined for each of the m rival models by

optimizing one of the optimal design criteria described in Chapter 6. Then, similarly to

what is done in kernel density estimation, a function is defined, given by

p̂ (t) =
m∑
i=1

nsp∑
j=1

κ

(
t− tij
h

)
(7.3)

where tij represents the jth sampling time that was found to be optimal for model i, h

represents the smoothing parameter, and κ represents the kernel function, for which a

Gaussian-like function is chosen, given by
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κ (u) = e−u
2

. (7.4)

The reason why the factors 1/ (n · h), 1/
√

2π and 1/2 were omitted from Eqs. (7.1) and

(7.2) to form Eqs. (7.3) and (7.4), is that in kernel density estimation p̂ (x) represents

an estimate of a probability density function for which
∫ +∞
−∞ p (x) dx has to be equal to

one. Since this is not required when applying this method for optimal experimental design

purposes, these factors were omitted for simplicity. Note that this does not influence the

resulting experiment.

Now, to select nsp,c compromise sampling times from the nsp ·m optimal sampling times

(nsp,c ≤ m · nsp), the following approach is adopted. The compromise sampling times are

those that maximize p̂ (t), under the constraint that a minimum time interval between two

sampling times is required by the experimental setup. Basically, the compromise sampling

times correspond to those points of p̂ (t) that a horizontal line through max (p̂ (t)) encoun-

ters while going down, taking into account the requirement of a minimum time interval.

This is illustrated in Fig. 7.2, where three compromise sampling times are determined. In

this figure, the black and gray dots represent optimal sampling times for two rival models.

The compromise sampling times correspond to those points that maximize p̂ (t) (repre-

sented by the full line) under the constraint that a minimum time interval between two

sampling times is maintained, and their location is indicated by the white dots. Note that,

in principle, the presented approach allows the compromise sampling times to coincide.

Indeed, one can always select (some of) the compromise sampling times more than once,

at the expense of sampling times with lower p̂ (t)-values that were originally selected as

compromise sampling times.

7.2.3 Choice of the smoothing parameter

An interesting feature of the proposed method is the fact that neighboring samples intensify

each other, because the associated kernel functions overlap. The extent to which this

intensifying effect occurs not only depends on the time interval between the individual

sampling times, but also on the smoothing parameter h (as illustrated in Fig. 7.1). The

intensifying effect is hardly present for small values of h (as in Fig. 7.1a), where an erratic

and noisy estimate of p (x) is found. For too large values of h, a very smooth and out-of-

focus estimate of p (x) is obtained, as in Fig. 7.1c. The latter is obviously explained by

the fact that higher values of the smoothing parameter result in broader kernel functions
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Figure 7.2: The black dots represent the optimal sampling times for model i, whereas the gray
ones represents those for model j. The compromise sampling times correspond to
those points that maximize p̂ (t) (represented by the full line) under the constraint
that a minimum time interval between two sampling times is maintained. Their
location is indicated by the white dots.

(dashed lines in Fig. 7.1), which overlap with those of other samples. For the sharp kernel

functions obtained with the lower value of the smoothing parameter, no significant overlap

occurs.

Note that techniques are available to determine an optimal smoothing parameter in the

context of kernel density estimation, but for this the reader is referred to Jenssen et al.

(2006), Jones et al. (1996) or Turlach (1993), and the references therein. However, in this

context, we prefer to link this parameter to the minimum time interval, denoted as tmin.

Since tmin is dictated by the experimental setup, the choice of the smoothing parameter is

then straightforward, general and objective. More specifically, we suggest to define h as

0.25 · tmin.

This suggestion is based on a compromise. On the one hand, a high value for h is desired

because the intensifying effect becomes more apparent (as explained above), but on the

other hand, the value for h must not be too high. The latter is illustrated in Fig. 7.3,

where two sampling times are shown that are located as close to each other as allowed

by the minimum time interval (the black dots). Since both sampling times are equally

important, they should both be selected as compromise sampling times (indicated by the

white dots). This is the case when a value of 0.25 · tmin is chosen for the smoothing

parameter (see Fig. 7.3a), whereas higher values of h result in compromise sampling times

that are different from the optimal ones and lower values of h will decrease the intensifying

effect (see Fig. 7.3d).
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(a) h = 0.25 · tmin

(b) h = 0.45 · tmin

(c) h = 0.75 · tmin

h

h = 0.25 · tmin

h = 0.45 · tmin

h = 0.75 · tmin

(d)

Figure 7.3: Kernel density estimation applied to an illustrative example for three different values
of the smoothing parameter h. The time interval between the two sampling times
(black dots) is equal to the minimum time interval (tmin), and the location of
the compromise sampling times is indicated by the white dots. The lower graph
(d) indicates where the compromise sampling times will be located for values of h
between 0 and 1 times the minimum time interval.
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7.2.4 Weighing of the sampling times

The contribution of the individual sampling times to the information content of the exper-

iment varies, and some sampling times are thus more important/informative than others.

With the presented method, it is possible to give weights to the nsp individual sampling

times, representing their importance. The higher their contribution to the information con-

tent of the experiment, the higher their weight. For this, Eq. (7.3) can be easily modified

into

p̂ (t) =
m∑
i=1

nsp∑
j=1

wij · κ
(
t− tij
h

)
, (7.5)

where wij represents the weight of the jth sampling time of the optimal experiment for

model i (tij).

The weight of an individual sampling time is defined relative to the extent to which a chosen

optimality criterion (see Section 6.5) diminishes when that sampling time is removed from

the set of optimal sampling times. Below, an approach is presented to determine the

weights for two cases, one with the D-optimality design criterion and one with the modE-

optimality design criterion. Similar approaches can be formulated for the other design

criteria that were described in Section 6.5.

In the case where the D-optimality design criterion is used (maximized), the weight can

be determined as follows. Suppose ξ?i represents the optimal experiment for model i, and

ξi\tj represents the same experiment, but without sampling time tj. Then, the weight of

this sampling time can be determined as

wij =
D (ξ?i )−D

(
ξi\tj

)
D (ξ?i )

, 0 ≤ wij ≤ 1 , (7.6)

where D (ξ) represents the D-optimality design criterion value associated with experiment

ξ. When sampling time tj is not important with regard to the information content of the

experiment, det
(
FIM

(
ξi\tj

))
will only be slightly smaller than det (FIM (ξ?i )) and wij

will be close to zero. Besides, it would not be realistic that det
(
FIM

(
ξi\tj

))
is larger than

det (FIM (ξ?i )) since information is lost when a sampling time is discarded. Taking into

account that the eigenvalues and thus the determinant of the FIM cannot take negative

values (the FIM is a positive definite matrix (Walter and Pronzato, 1997)), the value of

wij cannot be negative.
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Contrary to the D-optimality design criterion, the modE-optimality design criterion has to

be minimized. A similar equation for the calculation of the weights can be formulated as

follows:

wij = max

(
0,

modE
(
ξi\tj

)−modE (ξ?i )

modE
(
ξi\tj

) )
, 0 ≤ wij ≤ 1 , (7.7)

where modE (ξ) represents the modE-optimality design criterion value associated with

experiment ξ. When sampling time tj does not have a significant influence on the value

of the modE-optimality design criterion, the weight will be close to zero. In this case,

however, it cannot be guaranteed that discarding an additional sampling time leads to a

worse (larger) value of the modE-optimality design criterion. Therefore, wij can in principle

take negative values. For the case studies described in the following, such a situation did

not occur, but if it occurs one can set the weight of the corresponding sampling time to

zero. The latter is achieved using the max (0, ·) operation in Eq. (7.7).

7.2.5 Extending the kernel-based method for all types of experimental degrees
of freedom

The kernel-based method presented above was developed to determine compromise sam-

pling times. However, it is often the case that more experimental degrees of freedom are

available to the experimenter, for instance when the initial conditions of one or more state

variables can be chosen and/or when certain process inputs can be manipulated during the

course of the experiment. When additional experimental degrees of freedom become avail-

able, a wider palette of process conditions can be reached and experiments with a higher

information content may be (designed and) performed. Therefore, it would be interesting

to know if the kernel-based method could be extended such that it could also be used for

such experimental design problems.

At first sight, it may seem straightforward to extend the method for more complicated

experimental design problems. Indeed, the black and gray dots from Fig. 7.2, in which the

rationale of the kernel-based method is presented, represent the optimal sampling times of

two rival models, but they can also be seen as the optimal initial values of a certain state

variable, the optimal timings to alter the value of one of the process inputs, or the optimal

values of any other experimental degree of freedom available to the experimenter.
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As explained in Section 7.2.2, the kernel-based method requires the choice of a so-called

smoothing parameter that determines the width of the kernel functions. For the case

where only the sampling times are optimized, this smoothing parameter can be linked to

and calculated from the required minimum time interval between two measurements (as

explained in Section 7.2.5). Since the latter is dictated by the experimental setup, this

smoothing parameter can be determined in a systematic and objective manner. For other

experimental degrees of freedom, such as the initial conditions of certain process variables

or the timing of a pulse, such an approach is not (readily) available.

However, the biggest challenge (or problem) may arise when several types of experimental

degrees of freedom are combined or when the manipulations are optimized. Suppose, for

instance, that one is dealing with an experimental design exercise where both the sampling

times and the initial conditions are to be optimized. The kernel-based method determines

the compromise values for these experimental degrees of freedom from the optimal values

obtained for each of the individual rival models prior to the application of the kernel-based

method. However, one cannot guarantee that the compromise sampling times determined

with the kernel-based method will be informative in combination with the compromise

values obtained for the initial conditions. A similar reasoning holds when one or more

manipulatory variables (or process inputs) are optimized. For instance, when one of the

manipulatory variables (the feed rate or the concentration of one of the process variables)

is set at another value a certain time after the start of the experiment, the task of the

experimental design then consists of finding the optimal new value for the manipulatory

variable and the optimal time to change it. It is clear that both experimental degrees of

freedom are dependent of each other and the optimal value for the one depends on the

values given to the other. They can thus not simply be determined separately, as done

when the kernel-based method is applied for one experimental degree of freedom. In a way,

one could state that as more experimental degrees of freedom become available, the optimal

experiments will become more and more specific for the corresponding (rival) models, and

the rationale of the kernel-based method may be too simple to cope with this specificity.

Note that this will be further investigated and discussed in Section 7.6, where the kernel-

based method is applied to an experimental design problem where the initial conditions

are optimized for fixed sampling times.
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7.3 Ideal point method for the design of compromise experiments

As discussed above, the use of the kernel-based method is limited to experimental de-

sign problems where the sampling times are the only experimental degrees of freedom.

Therefore, an alternative method is presented in this section, that is able to cope with

experimental design problems where experimental degrees of freedom of all types are con-

sidered (manipulations, initial conditions, sampling times and combinations thereof). Since

the optimal experiment for model mi may not be optimal for model mj, the experimental

design problem can be seen as a multi-objective problem, where the aim is to systemat-

ically and simultaneously optimize (that is, maximize or minimize) a number of possibly

conflicting objectives, each of which is translated into an objective function. Without loss

of generality, it is assumed in the following that the aim of the optimization exercise is to

minimize these objective functions.

7.3.1 Multi-objective optimization problems

A general multi-objective optimization problem is posed as (Deb, 2001; Marler and Arora,

2004):

min
x∈X

F (x) ≡ [f1 (x) , f2 (x) , . . . , fd (x)]′ , (7.8)

where x = [x1, x2, . . . , xq]
′ ∈ X represents the q-dimensional design or decision vector, X

represents the feasible design or decision space, and F (x) represents the d-dimensional

vector containing the individual objective function values fi (x). The feasible criterion

space, denoted as Z, is defined as the set {F (x) | x ∈X} (Deb, 2001; Marler and Arora,

2004).

In this respect, it is important to realize that each point in the design space maps to a

point in the criterion space (see Fig. 7.4), but the reverse may not be true. For instance, in

general, there does not exist a vector x for which each objective function is minimal. The

point in criterion space that is formed by the individual minima of the different objective

functions is called the ideal point (Deb, 2001), denoted as f ◦ and defined as follows:

f ◦ =

[
min
x∈X

f1 (x) ,min
x∈X

f2 (x) , . . . ,min
x∈X

fd (x)

]′
. (7.9)
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f2 (x)

f1 (x)

X

x2

x1

P
f ◦ Z

Figure 7.4: Feasible design space (X) and feasible criterion space (Z) for a hypothetical multi-
objective problem with two design variables (x1 and x2) where the aim is to simul-
taneously minimize two objective functions (f1 and f2). In addition, the Pareto-
optimal front (P) and the ideal point (f◦) are shown.

In an experimental design context, x represents an experiment, denoted as ξ, and X

represents the set of all possible experiments, denoted as Ξ. The objective functions

correspond to the D-optimality design criteria associated with each of the rival models.

So, the number of objective functions equals the number of rival models. Note that also

the other design criteria that were described in Section 6.5 could have been used (for

instance, the A-optimality criterion or the modE-optimality criterion), but one could also

use the cost or the duration of the experiment as a design criterion. For more information

on these design criteria, the reader is referred to Chapter 6 and the work of Atkinson and

Donev (1992), Munack (1991), Petersen (2000) and Vanrolleghem and Dochain (1998).

7.3.2 Solving multi-objective optimization problems

In contrast to single-objective optimization, a solution to a multi-objective problem is

more a concept than a definition. In the case of conflicting objective functions, the resulting

multi-objective optimization problem gives rise to a set of points that all fit a predetermined

definition of an optimum (Deb, 2001). The predominant concept in defining an optimal

point is that of Pareto-optimality, which is best explained and defined through the concept

of dominance (Deb, 2001; Marler and Arora, 2004; Smith et al., 2004).

Definition 7.1:

A point, a ∈ X, dominates another point, b ∈ X, if fi (a) ≤ fi (b) for all i = 1, . . . , d;

and fi (a) < fi (b) for at least one i.
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Often, the notation a ≺ b is used to indicate that a dominates b. It is clear that this

relationship is not a total order and two points can be mutually non-dominating if neither

dominates the other. Pareto-optimality is closely related to dominance, and is defined as

follows:

Definition 7.2:

A point, x? ∈X, is Pareto-optimal if there does not exist another point, x ∈X, such that

f (x) ≤ f (x?), and fi (x) < fi (x
?) for at least one objective function.

In words, a point is Pareto-optimal if there is no other point that improves at least one

objective function without worsening another objective function. Or, a point is said to

be Pareto-optimal if no other point dominates it. The set of all Pareto-optimal or non-

dominated points is known as the Pareto-front, denoted as P and shown in Fig. 7.4. Each

point located on this front may thus in a sense be considered as optimal. In practice, one

or some of the Pareto-optimal points will eventually be selected by the decision maker.

However, although several optimization algorithms are described in literature to deter-

mine the Pareto front (Deb, 2001), it often appears to be a difficult and computationally

demanding task (Deb, 2001; Goel et al., 2007). This is especially true for the optimal

experimental design applications focused on in this work, where the evaluation of an ex-

periment proposed by the optimization algorithm involves several model simulations. In

addition, the problem of finding the Pareto front may become prohibitively complex as the

number of objectives increases, and visualizing the Pareto front is difficult for problems

with more than three dimensions. The latter is important because the Pareto front will

eventually be used as a reference by the decision maker/experimenter, who has to choose

which experiment will be performed.

7.3.3 Ideal point method (for experimental design)

To overcome the issues raised above, multi-objective problems are often translated into

single-objective problems. Such an approach is also proposed here, where the optimal

solution is defined as the point that is as close as possible to the ideal point (defined

above), and for which all individual objective functions are thus as close as possible to

their corresponding minima (Deb, 2001; Marler and Arora, 2004). The presented method

is often called the ideal point method (Deb, 2001), and this terminology will be used in

the following.
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To define closeness, different mathematical measures of distance can be used, such as the

`p distance function (or Minkowski distance function) (Deb, 2001). The `p distance of any

point in criterion space x from the ideal point f ◦ can be calculated as

`p (x) =

(
d∑
i=1

|fi (x)− f ◦i |p
)1/p

, (7.10)

where p can take any value between 1 and +∞. In this work, only the `1, the `2 and the

`∞ distance functions are considered.

When the `1 distance function (p = 1) is used, the multi-objective problem reduces to a

single-objective problem where the different objective functions are simply summed. Note

that this `1 distance function is also known as the taxicab or Manhattan distance function.

When the `2 distance function (p = 2) is used, the Euclidean distance between the ideal

point and any point in criterion space is minimized. For larger values of p, the largest term

of Eq. (7.10) will dominate the value of `p (x) more and more, and the distance function

associated with p = +∞ (also called the Chebyshev distance function) eventually becomes

`∞ (x) = max
i=1,...,d

|fi (x)− f ◦i | . (7.11)

The multi-objective problem thus reduces to a problem where the maximal deviation from

the ideal point is minimized. The working principle of the ideal point method for each

of these three distance functions discussed above is shown in Figs. 7.5, 7.6 and 7.7, re-

spectively. In these figures, the feasible criterion space is indicated by the gray area and

the Pareto front is represented by the thick black line. The dotted gray lines indicate

those points that are equally far from the ideal point (f ◦) according to the corresponding

distance functions and the optimal solution is indicated by the ◦ symbol.

In an experimental design context, the ideal point is defined by the optimal experiments

for the individual models. When the D-optimality design criterion is used, the compromise

experiment, denoted as ξc, is found and defined as follows:

ξc = arg min
ξ∈Ξ

(
d∑
i=1

|D (mi, ξ
?
i )−D (mi, ξ)|p

)1/p

. (7.12)

Here, D (mi, ξ) represents the D-optimality design criterion value for model mi associated

with experiment ξ, D (mi, ξ
?
i ) represents the D-optimality design criterion value for model
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Figure 7.5: Illustration of the ideal point (f◦) method for a hypothetical multi-objective prob-
lem with two design variables (x1 and x2), where the aim is to simultaneously
minimize two objective functions (f1 and f2) and where the `1 distance function is
used (Manhattan distance).

mi associated with its corresponding D-optimal experiment (ξ?i ), and p is equal to 1, 2 or

+∞.

7.4 Evaluating the capability to design compromise experiments

To evaluate the presented method on its capability to design a compromise experiment,

the following approach was adopted. Since an optimal experiment was designed for each

model, each of these experiments could have been performed instead of the compromise

experiment. The information that is lost or gained when doing so, is used for the evaluation.

Because the information content of an experiment is reflected by the value of the design

criterion, the basis of the evaluation lies in the comparison of these criterion values. In

this respect, it is important to realize that the information content or the quality of an

experiment with regard to the parameters of a particular model can be compared to that of

another experiment, but it is not meaningful to compare design criterion values of different

models.

When the D-optimality criterion is used, the criterion values are calculated for each of the

D-optimal experiments (ξ?j , with j = 1, . . . ,m), and these are compared to the criterion

value associated with the compromise experiment (ξc). The ratio between these criterion

values, denoted as ΓDij
, is eventually used for the evaluation, and is calculated as
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Figure 7.6: Illustration of the ideal point (f◦) method for a hypothetical multi-objective prob-
lem with two design variables (x1 and x2), where the aim is to simultaneously
minimize two objective functions (f1 and f2) and where the `2 distance function is
used (Euclidean distance).
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Figure 7.7: Illustration of the ideal point (f◦) method for a hypothetical multi-objective prob-
lem with two design variables (x1 and x2), where the aim is to simultaneously
minimize two objective functions (f1 and f2) and where the `∞ distance function
is used (Chebyshev distance).
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ΓDij
=

D (mi, ξc)

D
(
mi, ξ?j

) , (7.13)

where D (mi, ξc) represents the D-optimality criterion value for model mi associated with

experiment ξc and D
(
mi, ξ

?
j

)
represents the D-optimality criterion value for model mi

associated with experiment ξ?j .

Since a higher information content is represented by a higher value of the D-optimality

design criterion, it holds that ΓDij
> 1 when the compromise experiment contains more

information with regard to the parameters of model mi than the optimal experiment for

model mj (ξ?j ). In other words, when ΓDij
> 1, the estimates of the parameters of model

mi should be more accurate when the compromise experiment is performed instead of

experiment ξ?j .

For the modE-optimality design criterion, which has to be minimized, smaller criterion

values are associated with better experiments. The expression used to quantify the designed

compromise experiment is therefore given by

ΓmodEij
=

modE
(
mi, ξ

?
j

)
modE (mi, ξc)

, (7.14)

where modE (mi, ξ) represents the value of the modE-optimality design criterion for ex-

periment ξ with regard to the parameters of model mi. Since a lower modE-optimality

design criterion corresponds to a better experiment, ΓmodEij
> 1 when the compromise

experiment (ξc) is preferred to the optimal experiment for model j (ξ?j ) with regard to the

estimation of the parameters of model mi.

7.5 Case study IV: Kernel-based method to determine optimal sam-
pling times for the simultaneous estimation of the parameters of
rival mathematical models

In this case study, the kernel-based method will be used for the design of a compromise

experiment in a case where the sampling times are the only experimental degrees of freedom

available to the experimenter. As described in Section 7.2, this method was developed to

determine those sampling times that are optimal for the simultaneous estimation of the

parameters of rival models, and in the following the ability of the kernel-based method to

design such a compromise experiment will be evaluated.
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7.5.1 Objective of this case study

The objective of this case study is to investigate whether compromise sampling times can

be determined using the kernel-based method. In other words, the capability of the kernel-

based method to design a compromise experiment will be evaluated for cases where the

sampling times are optimized.

7.5.2 Preliminary experiment

To initiate the case study, a preliminary experiment was defined and performed in silico.

For this experiment, the volume of the reaction vessel was set to 10 mL, and the initial

glucokinase concentration was set such that 5 units were present in the reaction mixture.

Further, it was assumed that no G6P, ADP or PEP were present at the start of the

experiment, and the initial concentrations of glucose and ATP were set to 1.5 mM and

0.5 mM, respectively.

Two pulses were given during the course of the experiment, both with a volume of 1 mL.

The first pulse was given five minutes after the start of the experiment, and only contained

ATP. The ATP concentration was chosen such that the ATP concentration in the reaction

mixture was raised to 1.5 mM. The second pulse, given ten minutes after the start of the

experiment, contained glucose and PEP, and their concentrations were chosen such that

the resulting concentrations were 1.5 mM and 0.1 mM, respectively.

The experiment stopped after 20 minutes, and ten measurements of GLU, ATP, G6P and

ADP were taken in duplicate (see Fig. 7.8). To mimic the error on the measurements, the

approach described in Section 3.6 was used. For this purpose, the minimal relative errors

(ς) were arbitrarily set to 0.05 for all measured state variables, and the lower accuracy

bounds on the measurements were defined as 0.1 mM.

7.5.3 Parameter estimation

The parameters of the rival models were estimated from the data of the preliminary exper-

iment (Fig. 7.8) using the optimization algorithm described in Section 2.11. Since negative

parameter values would not make any sense, the lower bounds were set to zero. The upper

bounds were set to 1000 U/mg for parameter k, 2 mM for parameter KGLU, 50 mM for

parameter KATP, and 25 mM for parameter KPEP. The results of this parameter estimation

exercise are shown in Table 7.1. From these results, one can conclude that the precision
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Figure 7.8: Preliminary experiment simulated with the true model (m?
5) and the experimental

data derived from it (represented by the • symbols).

of the parameter estimates is quite low, indicating that it may be beneficial to perform a

compromise experiment to increase the precision of the parameter estimates prior to the

start of the model discrimination procedure.

7.5.4 Optimal experimental design for parameter estimation

For each rival model, an experiment was designed to accurately estimate its parameters.

The experimental degrees of freedom were chosen as in the preliminary experiment, except

for the ten sampling times, which were optimized. This experimental design exercise was

performed both for the case where the D-optimality design criterion was optimized and

the case where the modE-optimality design criterion was optimized. The results of these

experimental design exercises are shown in Figs. 7.9 and 7.10, respectively. Then, for

both cases, a compromise experiment is designed based on the corresponding optimal

experiments, the results of which are discussed in the following.
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Table 7.1: Parameters of the real model (m?
5) that were used to generate experimental data,

and the parameter estimates obtained after fitting the rival models to the data from
the preliminary experiment, together with the 95% confidence intervals and the cor-
responding WSSE values.

model k KGLU KATP KPEP WSSE
m?

5 312 0.15 0.13 0.10 –
m1 314.13 ± 90.48 0.0173 ± 0.1135 0.1407 ± 0.0694 – 61.5287
m2 336.14 ± 107.66 0.0451 ± 0.1341 0.1533 ± 0.0772 0.1466 ± 0.2198 57.1080
m3 317.21 ± 93.38 0.0191 ± 0.1162 0.1412 ± 0.0705 0.0091 ± 0.0544 56.9125
m4 307.64 ± 49.17 0.1299 ± 0.8481 0.1245 ± 0.0441 – 61.2821
m5 312.41 ± 51.28 0.2011 ± 0.9320 0.1207 ± 0.0461 0.1261 ± 0.2145 56.9285
m6 319.87 ± 55.23 0.3112 ± 1.0616 0.1182 ± 0.0491 0.1076 ± 0.3577 57.1491
m7 412.58 ± 180.30 0.0099 ± 0.1706 27.9603 ± 464.53 – 94.2223
m8 428.11 ± 236.59 0.0148 ± 0.2146 19.4047 ± 265.68 8.7458 ± 127.33 77.5805
m9 543.60 ± 438.34 0.1102 ± 0.3893 3.6812 ± 9.2598 0.0127 ± 0.0327 88.2185
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Figure 7.9: Optimal sampling times (•) found for the case where the D-optimality design crite-
rion is optimized. The graph at the bottom is obtained by plotting the ten optimal
sampling times of the nine individual models on the same axis.
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Figure 7.10: Optimal sampling times (•) found for the case where the modE-optimality design
criterion is optimized. The graph at the bottom is obtained by plotting the ten
optimal sampling times of the nine individual models on the same axis.
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Figure 7.11: Weighted kernel functions associated with the D-optimal sampling times obtained
for model m1.

7.5.5 Compromise experiment obtained from D-optimal experimental designs

This section describes the results for the case where the D-optimality design criterion is

optimized (maximized). To clearly illustrate the different steps of the methodology, these

results will be discussed in more detail than the results for the case where the modE-

optimality design criterion is used (Section 7.5.6).

Based on the D-optimal experiments corresponding to the individual models (shown in

Fig. 7.9), the weighted kernel functions were determined after weighing the sampling times

as explained in Section 7.2.4. As an example, the kernel functions associated with the

D-optimal sampling times for model m1 are shown in Fig. 7.11. This figure clearly illus-

trates that the contribution of the individual sampling times to the information content of

the experiment differs, and that it makes sense to weigh the different sampling times.

The weighted kernel functions associated with the different models are used to calculate

p̂ (t) according to Eq. (7.5), and the resulting trajectory of p̂ (t) is shown in Fig. 7.12.

The compromise sampling times are determined from this trajectory as explained in Sec-

tion 7.2.2, and their location is indicated by the white dots. One can see that the optimal

sampling times are located in four groups, and that the compromise sampling times are

(not surprisingly) spread over these groups as well. An interesting observation in Fig. 7.9

is that the optimal experiments for models m7 to m9 contain sampling times in the first

minute of the experiment, while this is not the case for models m1 to m6. The fact that this

region is important for one third of the models is reflected in the compromise experiment,

where one of the sampling times is put in this region. This example clearly illustrates that

the presented method considers the optimal sampling times for each of the models when

designing the compromise experiment.



CHAPTER 7 DESIGN OF COMPROMISE EXPERIMENTS 173

0 2 4 6 8 10 12 14 16 18 20
time

p^
(t

)

Figure 7.12: Trajectory of p̂ (t) for the case where the D-optimality design criterion is applied,
and illustration of how the compromise sampling times (◦) are obtained from it.
The optimal sampling times for the different models are represented by the black
dots (•), and are the same as the ones presented in Fig. 7.9 (bottom).

The capability of the presented method to design a compromise experiment was evaluated

as explained in Section 7.4. The results of this evaluation are presented in Fig. 7.13.

For each model mi, the value of ΓDi1
is represented by the black bar (ξ?1), and the bars

become increasingly white as the model number increases (ξ?1 → ξ?9). To present the

results in a systematic and easily interpretable form, the values of ΓDij
are represented

on a logarithmic scale. In this way, it is easy to see when ΓDij
> 1. Some interesting

observations are discussed below.

The results for model m1, for example, show that ΓD1j
< 1 for experiments ξ?1, ξ?3 and

ξ?4, which indicates that the experimental designs to optimally estimate the parameters of

models m1, m2 and m3, respectively, contain more information with regard to the param-

eters of model m1 than the compromise experiment. For the other optimal experiments,

this is not the case and the compromise experiment is preferred. If one would perform ξ?4
instead of the compromise experiment, the information content would indeed be higher for

model m1, but it would be lower for the other models (except for model m4, of course). The

latter can be seen when comparing the bars corresponding to ξ?4 for the different models.

Similar observations can be made for the other models/optimal experiments, which clearly

shows the ability of the proposed method to design an experiment with the characteristics

of a compromise experiment. That the compromise experiment is not optimal for the indi-

vidual models is a direct result of the fact that the timings of the optimal sampling times

are different for the individual models (see Fig 7.9). Yet, the compromise experiment seems

to be sufficiently informative to improve the overall precision of the parameter estimates.
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Figure 7.13: Comparison of the D-optimality design criterion values obtained when performing
the compromise experiment, with those that would be obtained when the optimal
experiments for the individual models were performed instead. In the figure, the
ratio between these criterion values is shown for each model, and this for the
optimal experiments associated with models m1 (black bars) to m9 (white bars).
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7.5.6 Compromise experiment obtained from modE-optimal experimental de-
signs

This section describes the results for the case where the modE-optimality design criterion

is optimized (minimized). From Fig. 7.10, one can see that the optimal sampling times are

not located in distinct groups as was the case for the D-optimality design criterion (see

Fig. 7.9). This makes this exercise more challenging than the previous one.

The trajectory of p̂ (t) and the compromise sampling times derived from it are shown

in Fig. 7.14. The results of the evaluation are presented in Fig. 7.15 and indicate that

the capability of the presented method to design a compromise experiment is at least

as good as for the case where the D-optimality design criterion was used. Here too, it

is clear that the presented method leads to an experiment with the characteristics of a

compromise experiment. For each model, some of the optimal experiments are preferred

to the compromise experiment (ΓmodEij
< 1), and vice verse (ΓmodEij

> 1). The results

also show that for some of the models, a significant amount of information is lost when

an experiment that is optimal for another model is performed instead of the compromise

experiment. For instance, if experiments ξ?7, ξ?8 or ξ?9 were performed, a substantial amount

of information would be lost with regard to the parameters of models m1 to m6, while the

gain in information for models m7 to m9 is not that large.

7.5.7 Dependence of the experimental designs on the parameter estimates

The values of the D-optimality design criterion shown in Fig. 7.13 represent the expected

information content of the designed experiments. As explained in Section 6.4, the latter

is assessed based on the FIM. For linear models, the parameter sensitivities (∂ŷ/∂θ)

are, by definition, independent of the parameters to be estimated. Hence, the FIM is

independent of the parameter estimates as well (Eq. (2.21)). However, for nonlinear models

(as the ones used in this dissertation), this is not the case, and the FIM, as well as the

design criteria derived from it, are dependent on the values of the parameter estimates

available at the experimental design step. Thus, at the start of a modelling exercise,

when the parameter estimates are still uncertain, the designed experiment may be less

informative/optimal than expected, and the resulting parameter estimates may not be

that accurate after all. Therefore, the designed experiments are often called locally optimal

instead of optimal (Atkinson and Donev, 1992).
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This effect of the parameter uncertainty is illustrated for the case where the D-optimality

design criterion is used. First, the ten different experiments were performed in silico (ξc

and the nine ξ?j ), and using the data from these experiments the parameters of each of the

nine models were re-estimated. Then, a figure similar to Fig. 7.13 is created (Fig. 7.16),

but now with the better estimates of the parameters. As expected from the discussion

above, the results in Fig. 7.16 show that the values for ΓDij
are not entirely the same as

the ones presented in Fig. 7.13, which indicates that the parameter estimates changed after

re-estimating them.

Nevertheless, the overall precision of the parameter estimates of all individual models has

improved by performing the compromise experiment. This can be concluded from Ta-

ble 7.2, in which the parameter estimates and their corresponding 95% confidence intervals

are reported and from Table 7.3 where the procentual improvement of these 95% confi-

dence intervals are reported. One should note, however, that the covariance or correlation

between the parameter estimates is not considered in the calculation of the confidence

intervals and may give an incomplete picture. Since the D-optimality criterion values are

proportional to the volume of the confidence region of the parameter estimates (as ex-

plained in Section 6.5), they can also be interpreted as an overall measure for the precision

of the parameter estimates. Therefore, a better picture of the uncertainty or precision of

the parameter estimates can be obtained from Fig. 7.16.

7.6 Case study V: (In)ability of the kernel-based method to deter-
mine optimal initial conditions for the simultaneous estimation
of the parameters of rival mathematical models

The kernel-based method was originally developed for experimental design exercises where

one is interested in finding the optimal sampling times (Section 7.2). In Section 7.2.5, it

was advocated that extending the kernel-based method so that is also able to produce com-

promise experiments in experimental design exercises with other (or more) experimental

degrees of freedom is not straightforward. In this case study, the kernel-based method will

be applied to an experimental design problem in which the initial values of the state vari-

ables are optimized. As the ideal point method was introduced as an alternative method,

and should be thus able to cope with such experimental design problems. Although the

results obtained with the ideal point method are discussed in detail in the following section

(Section 7.7), they will also be presented here as a reference.
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Figure 7.14: Trajectory of p̂ (t) for the case where the modE-optimality design criterion is ap-
plied, and illustration of how the compromise sampling times (◦) were obtained
from it. The optimal sampling times for the different models are represented by
the black dots (•).

Table 7.2: Parameters of the real model (m?
5) that were used to generate experimental data,

and the parameter estimates obtained after fitting the rival models to the data from
both the preliminary experiment and the compromise experiment, together with the
95% confidence intervals and the corresponding WSSE values.

model k KGLU KATP KPEP WSSE
m?

5 312 0.15 0.13 0.10 –
m1 356.75 ± 26.76 0.0383 ± 0.0191 0.2275 ± 0.0304 – 506.14
m2 328.35 ± 22.16 0.0332 ± 0.0177 0.1504 ± 0.0245 0.1182 ± 0.0273 128.50
m3 323.27 ± 20.49 0.0252 ± 0.0163 0.1458 ± 0.0230 0.0059 ± 0.0038 126.58
m4 341.31 ± 18.64 0.1930 ± 0.0891 0.1894 ± 0.0189 – 503.37
m5 317.09 ± 14.99 0.2063 ± 0.1097 0.1264 ± 0.0172 0.0945 ± 0.0219 128.78
m6 322.97 ± 15.62 0.1759 ± 0.1043 0.1351 ± 0.0252 0.0293 ± 0.0141 137.27
m7 583.38 ± 123.24 0.0095 ± 0.0618 49.9430 ± 315.47 – 1362.41
m8 358.86 ± 36.15 0.0034 ± 0.0329 40.4657 ± 394.03 17.6839 ± 174.29 630.45
m9 459.68 ± 66.39 0.0406 ± 0.0489 5.7254 ± 6.5114 0.0026 ± 0.0028 817.53
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Figure 7.15: Comparison of the modE-optimality design criterion values obtained when per-
forming the compromise experiment, with those that would be obtained when the
optimal experiments for the individual models were performed instead. In the
figure, the ratio between these criterion values is shown for each model, and this
for the optimal experiments associated with models m1 (black bars) to m9 (white
bars).
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Figure 7.16: Comparison of the D-optimality design criterion values obtained after performing
the compromise experiment and re-estimating the parameters, with those that
were obtained when the optimal experiments for the individual models were per-
formed instead. In the figure, the ratio between these criterion values is shown for
models m1 (black bars) to m9 (white bars), and this for each optimal experiment.
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Table 7.3: Procentual improvement of the 95% confidence intervals of the parameter estimates
obtained after fitting the rival models to the data from both the preliminary experi-
ment and the compromise experiment.

model k KGLU KATP KPEP

m1 70% 83% 56% –
m2 79% 87% 68% 88%
m3 78% 86% 67% 93%
m4 62% 89% 57% –
m5 71% 88% 63% 90%
m6 72% 90% 49% 96%
m7 32% 64% 32% –
m8 85% 85% 148% 137%
m9 85% 87% 30% 91%

7.6.1 Objective of this case study

The objective of this case study is to explore the potential of the kernel-based method to

design compromise experiments for experimental design problems where the initial con-

ditions are to be optimized. The ultimate aim is, however, to investigate whether the

kernel-based method, or at least the rationale behind it, can also be useful for cases where

not only the sampling times are available for optimization, but also other experimental

degrees of freedom such as the initial conditions and the manipulations.

7.6.2 Preliminary experiment and parameter estimation

To initiate the case study, a preliminary experiment was defined and performed in silico.

The experiment was identical to the preliminary experiment from the case study discussed

in the previous section (Fig. 7.8). Obviously, also the parameter estimates obtained from

this preliminary experiment are identical to the ones presented earlier (Table 7.1).

7.6.3 Optimal experimental design for parameter estimation

The optimal values for the initial concentrations obtained after optimizing the D-optimality

design criterion are shown in Fig. 7.17. The sampling times and the manipulations (the

pulses) were fixed to the ones from the preliminary experiment, but the initial concentra-
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Figure 7.17: Optimal initial concentrations of glucose, ATP and PEP associated with the
D-optimal experiments of the nine rival models (m1 corresponds to the black bar,
and the bars become increasingly white as the model number increases).

tions of glucose, ATP and PEP were optimized. For this, the lower bounds were set to

0 mM and the upper bounds to 2 mM. Because both the characteristics of the two pulses

(timing and concentrations of glucose, ATP and PEP) and the sampling times are fixed,

the initial conditions are chosen such that the information with regard to the parameters

of the individual models is maximal at the given sampling times. This explains why the

optimal experiments are very different for the individual rival models.

7.6.4 Design of the compromise experiment for the case with two rival models

In this section, the results that were obtained are shown for the case where only two rival

models are considered in the experimental design exercises performed in this case study.

From the nine rival models that were described in Chapter 3, 36 different model pairs can

be defined and for each of these model pairs a compromise experiment was designed. It

is true that one can discuss about the usefulness of designing a compromise experiment

when there are only two rival models, but it is very difficult, if not impossible, to visualize



182 7.6 CASE STUDY V: KERNEL-BASED METHOD TO DESIGN COMPROMISE EXPERIMENTS (INITIAL CONDITIONS)

the results from a nine-dimensional optimization problem. The results obtained for nine

of these model pairs are shown in Fig. 7.18 and discussed in Section 7.6.5.

As discussed in Section 7.2.5, one problem encountered when applying the kernel-based

method for experimental design problems where the initial conditions are to be optimized,

is the absence of an approach to determine the smoothing parameter in a systematic

and objective manner. Therefore, a compromise experiment was designed for a range of

smoothing parameters (h = 0.05, 0.10, . . . , 0.95, 2) and the D-optimality design criterion

values obtained for each of these experiments are shown in Fig. 7.18 for the corresponding

models (+ symbols). The compromise experiments obtained with the ideal point method

using the `1, `2 and `∞ distance functions are indicated by the �, � and H symbols, re-

spectively. The ideal point itself is indicated by the • symbol. Because these compromise

experiments are determined after an optimization exercise, a whole range of experiments

are evaluated before the compromise experiment is found. Because these experiments give

an idea of the feasible criterion space (see Fig. 7.4), they are also indicated on this figure

as gray dots.

From these results, one can see that the D-optimality design criterion values associated

with the compromise experiments found using the kernel-based method (indicated by the

+ symbols) are significantly different from the ones found using the ideal point method,

regardless of the distance function used (indicated by the �, � and H symbols). This is not

the case for the model pairs m3−m6 and m6−m9 (Figs. 7.18(f) and 7.18(i), respectively),

but these models are very similar to each other (ATP is the first binding substrate) and

the optimal values for the initial concentrations of glucose, ATP and PEP are more or less

the same (see Fig. 7.17). It is therefore not surprising that an experiment is obtained that

is optimal for both rival models, and that both methods result in the same experiment.

Nevertheless, the results obtained for the other model pairs clearly indicate that the kernel-

based method is less suited than the ideal point method when it comes to the design of

compromise experiments for cases where the initial conditions are to be optimized. Indeed,

regardless of the value of the smoothing parameter, the points in criterion space that

correspond with the experiments found using this method are far from the so-called ideal

point, which is associated with a generally non-existing experiment that is (D-)optimal

for each of the rival models. An experiment that is close to this ideal point is thus likely

to have the characteristics of a compromise experiment, as the information content of the

experiment is large for both rival models (the D-optimality design criterion values are

large). In addition, it is important to note that no value of the smoothing parameter could
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Figure 7.18: D-optimality criterion values of the experiments found by the kernel-based method
for a range of smoothing parameters (+ symbols), and of the experiments found
by the ideal point method using the `1, `2 and `∞ distance functions (respectively
represented by the �, � and H symbols). The ideal point itself is represented by the
• symbol. The D-optimality criterion values associated with the experiments that
were encountered during the application of the ideal point method (optimization)
are represented by the gray dots.
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be observed that systematically resulted in better experiments, which obviously limits the

applicability of this method.

7.6.5 Design of the compromise experiment for the case with nine rival models

As discussed in Section 7.2.5, the choice of the smoothing parameter (h) is one problem

that arises when applying the kernel-based method to experimental design problems where

not (only) the sampling times are to be optimized, but also other experimental degrees

of freedom. The results presented in the previous section, where only two rival models

were considered, already suggested that the ideal point method performs better than the

kernel-based method for experimental design problems where the initial conditions are to

be optimized. Here, the kernel-based method and the ideal point method are applied to

the same case study, but all nine rival models are considered.

To investigate the performance of the kernel-based method, a range of smoothing param-

eter values (h = 0.1, 0.2, . . . , 2.4, 2.5) were defined and for each of them a compromise

experiment was determined. The ΓDij
-values were calculated for each of the nine models

and these are presented to the right of the dotted vertical line in Fig. 7.19 using boxplots.

The same experimental design exercise was performed for the ideal point method and the

ΓDij
-values obtained with the three distance functions are shown on the left of the dotted

vertical line in the same figure (from left to right: `1, `2 and `∞). Note that the results ob-

tained with the ideal point method will be discussed in detail in Section 7.7.4 and are only

shown here as a reference. To interpret the results presented in Fig. 7.19, it is important to

know that a median value larger than one indicates that the compromise experiment per-

forms better with regard to the parameters of the corresponding model than the majority

of the D-optimal experiments (obtained for the other models).

From these results one can conclude that the performance of the kernel-based method is

quite good, but not as good as the performance of the ideal point method. Indeed, despite

the fact that the median of the ΓDij
-values is predominantly larger than one, no value for

the smoothing parameter could be identified for which this is the case for each of the rival

models. For instance, for models m1, m4 and m7, the best experiments were obtained for

small values of h while these experiments were the worst performing ones for the other

models (for which higher values of h are preferred). In other words, there is no value for

the smoothing parameter for which the median values are all above one. This, as well as

the lack of a systematic approach to determine the smoothing parameter, obviously limits

the applicability of the kernel-based method.
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Figure 7.19: ΓDij -values for the scenario in which the initial conditions are optimized. The
ΓDij -values obtained when the ideal point method is used are shown on the left
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kernel-based method are shown for a range of values for the smoothing parameter
(denoted as h).
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7.7 Case study VI: Ideal point method to determine compromise
experiments for the simultaneous estimation of the parameters
of rival mathematical models

In this case study, the ideal point method is applied to design a compromise experiment

for three different scenarios: optimization of the sampling times, optimization of the initial

conditions of the experiment, and optimization of both the sampling times and the initial

conditions. Because the preliminary experiment is the same as the one used in the case

study described in Section 7.5, the results for the scenario where the sampling times are

available for optimization obtained using the ideal point method can be compared with

those obtained with the kernel-based method (discussed in Section 7.5).

7.7.1 Objective of this case study

With these examples, a number of research questions are addressed. First of all, the case

study should demonstrate the capability or incapability of the ideal point method to design

compromise experiments. In addition, it should indicate whether the choice of the distance

function (`1, `2 and `∞) matters, and, if so, which of these metrics is preferred. Finally, it

would be interesting to compare the performance of the ideal point method to that of the

kernel-based method where possible.

7.7.2 Preliminary experiment and parameter estimation

To initiate the case study, a preliminary experiment was defined and performed in silico.

The experiment was identical to the preliminary experiment from the case study discussed

in section 7.5 (and depicted in Fig. 7.8). Obviously, also the parameter estimates obtained

from this preliminary experiment are identical to the ones presented earlier (Table 7.1).

7.7.3 Optimization of sampling times

This section describes the results for the scenario in which ten sampling times were opti-

mized. The initial concentrations and the characteristics of the two pulses that are given

during the course of the experiment are fixed to the ones of the preliminary experiment.

Further, it is assumed that a minimum time interval of 15 seconds is required by the exper-

imental setup between two subsequent sampling times. To clearly illustrate the different

steps of the ideal point method, the results of this scenario will be discussed in more detail
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Figure 7.20: Optimal sampling times (•) found for the nine rival models for the case where the
D-optimality design criterion was optimized by varying the sampling times. The
graph at the bottom was obtained by plotting the ten optimal sampling times of
the nine individual models on the same axis.

than the ones for the other scenarios. In addition, they will be compared to the results

obtained and discussed in Section 7.5, where the kernel-based method was applied to the

same case study.

The compromise experiment is found after minimizing the distance between the ideal point

and the point in criterion space that corresponds with the experiment being proposed by

the optimization algorithm (as explained in Section 7.3.2). Obviously, the ideal point has

to be determined first. For this purpose, an experiment is designed for each of the rival

models by optimizing the D-optimality design criterion (Eq. (7.9))). The results of these

(nine) experimental design exercises are shown in Fig. 7.20.

Once the ideal point is determined, the compromise experiment is found by applying the

optimization algorithm described in Section 2.11 to solve the optimization problem formal-

ized in Eq. (7.9). This optimization exercise is done for each of the three distance functions

described earlier (`1, `2 and `∞). The resulting compromise sampling times are shown in
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Figure 7.21: Optimal sampling times for the individual models (•) and the compromise sam-
pling times (◦) found using the kernel-based method, and the ideal point method
using the different distance functions (`1, `2 and `∞).

Fig. 7.21, as well as the compromise sampling times found using the kernel-based method

(Fig. 7.12). From these results, one can see that, except for the `∞ distance function, the

compromise sampling times are similar for the different methods.

To evaluate the capability of the presented method to design a compromise experiment, the

approach outlined in Section 7.4 is also adopted here. For this purpose, the ΓDi1
-values are

calculated from Eq. (7.13) and presented as a barplot (see Fig. 7.22). For each model mi,

the value of ΓDi1
is represented by the black bar (ξ?1), and the bars become increasingly

white as the model number increases (ξ?1 → ξ?9). When ΓDij
> 1, the estimates of the

parameters of model mi should be more accurate when the compromise experiment is

performed instead of experiment ξ?j . To present the results in a systematic and easily

interpretable form, the values of ΓDij
are represented on a logarithmic scale. In this way,

it is easy to see when ΓDij
> 1.

For brevity, the results of this evaluation will only be discussed in detail for the case where

the `2 distance function was used. The results are shown in Fig. 7.22, and clearly illustrate

the ability of the presented method to design an experiment with the characteristics of a

compromise experiment. For instance, the ΓDi1
-values for model m1 show that ΓD1j

< 1 for

experiments ξ?1, ξ?3 and ξ?4, which indicates that these experiments contain more information

with regard to the parameters of model m1 than the compromise experiment. For the other

optimal experiments, this is not the case and the compromise experiment is preferred. If

one would perform ξ?4 instead of the compromise experiment, the information content would

indeed be higher for model m1, but it would be lower for the other models (except for model

m4, of course). The latter can be seen when comparing the bars corresponding to ξ?4 for

the different models. That the compromise experiment is not optimal for the individual
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Figure 7.22: ΓDij -values for the scenario in which the sampling times are optimized according
to the `2 distance function. The black bars correspond to the optimal experiments
associated with model m1, and the bars become increasingly white as the model
number increases.

models is a direct result of the fact that the optimal sampling times are different for the

individual models (see Fig. 7.20). Yet, the compromise experiment seems to be sufficiently

informative to improve the overall precision of the parameter estimates.

Another, even more striking observation can be made from the results for the models m7,

m8 and m9. Apparently, each of the D-optimal experiments of the other models is sig-

nificantly less informative with regard to their parameters compared to the compromise

experiment, which performs quite well. This indicates that one or more compromise sam-

pling times that are not present in the D-optimal experiments of the other models contain

a lot of information on the parameters of models m7, m8 and m9. Indeed, from Fig. 7.20

one can see that the D-optimal experiments for models m7, m8 and m9 have one or two

sampling times around 0.5 min, while this is not the case for models m1 till m6. Because

one of the compromise sampling times is located in this time range (as shown in Fig. 7.21),

the compromise experiment performs significantly better for these models m7, m8 and m9
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Figure 7.23: ΓDij -values for the scenario in which the sampling times are optimized, and where
the `1, `2 and `∞ distance functions are used.

than the D-optimal experiments from the other models. In addition, one can see that the

D-optimal experiments for models m7 and m9 have two sampling points at about 0.5 min,

while the D-optimal experiment for model m8 and the compromise experiment have only

one. The latter explains why this phenomenon is slightly less pronounced for models m7

and m9.

To evaluate the results obtained with the other distance functions, the values of ΓDij
were

calculated as well, but to facilitate the comparison between the distance functions, these

values are presented in one figure using boxplots (Fig. 7.23). By presenting the ΓDij
-values

in this way, information is lost on which of the D-optimal experiments performs better or

worse than the compromise experiment for the individual models, but this information is

not essential for this purpose. In fact, the median is of great importance. If the median is

above one, it indicates that the compromise experiment performs better than the majority

of the D-optimal experiments.

That it is possible to design a compromise experiment using the `2 distance function can

of course be concluded from these boxplots as well. Indeed, the medians (indicated by the
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horizontal lines in the box) are always larger than one, but on top of that, a larger part of

the box is above this level. So, for each of the rival models, the compromise experiment

performs better than the majority of the D-optimal experiments, which is in accordance

with the required characteristics of a compromise experiment.

From Fig. 7.23, one can also observe that the results obtained with the `1 distance function

are very similar to the ones obtained with the `2 distance function, which is not surprising

given the fact that the compromise sampling times are nearly identical (Fig. 7.20). Indeed,

situations can occur where the Pareto front is such that the solutions obtained with the

different distance functions are the same. Although this is not the case for the hypothetical

Pareto front shown in Figs. 7.5, 7.6 and 7.7, it would for instance be the case when the

Pareto front looks like the one shown in Fig. 7.4. An example of this can also be found in

Figs. 7.18(a), 7.18(f) and 7.18(i).

For the `∞ distance function, the compromise sampling times are slightly different. This is

also reflected in the values of ΓDij
, from which one can conclude that the majority of the

D-optimal experiments perform slightly better than the designed compromise experiment

for models m1 to m6. For models m7, m8 and m9, which are the models where ATP is

the first binding substrate and for which the model structures resemble each other, this is

not the case. This suggests that for this example the `∞ distance function may not be the

most suitable one to design a compromise experiment.

To conclude this section, the results obtained using the ideal point method are compared to

the ones obtained with the kernel-based method. Although the compromise sampling times

obtained with these methods are not identical (as shown in Fig. 7.21), the ΓDij
-values are

very similar (Figs. 7.13 and 7.22). From these results, one can conclude that the considered

methods perform equally well for experimental design exercises where only the sampling

times are optimized. Note, however, that the ideal point method is computationally more

demanding, because next to the optimizations required to determine the ideal point, one

additional optimization is needed to solve Eq. (7.9). This is not necessary when the kernel-

based method is used, where the compromise sampling times are directly calculated from

the optimal sampling times.

7.7.4 Optimization of initial conditions

This section describes the results for the scenario in which the sampling times and the

manipulations (the pulses) were fixed to the ones of the preliminary experiment (described
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Figure 7.24: Initial concentrations of glucose, ATP and PEP associated with the D-optimal
experiments of the rival models (m1 corresponds to the black bar, and the bars
become increasingly white as the model number increases), as well as those as-
sociated with the compromise experiment found using the ideal point method
(horizontal lines) after using the `1 (– –), the `2 (—) and the `∞ (· · · ) distance
function. Note that the lines for `1 and `2 coincide for GLU0 and ATP0.

in Section 7.7.2), but the initial concentrations of glucose, ATP and PEP were optimized.

For this, the lower bounds were set to 0 mM and the upper bounds to 2 mM.

The optimal values for the initial concentrations are shown in Fig. 7.24 and are the same

as the ones presented in the previous case study (Fig. 7.17). As explained in Section 7.6.3,

optimal experiments are very different for the individual rival models because both the

characteristics of the two pulses (timing and concentrations of glucose, ATP and PEP) and

the sampling times are fixed, the initial conditions are chosen such that the information

with regard to the parameters of the individual models is maximal at the given sampling

times.

Based on the D-optimality criterion values associated with these optimal experiments,

the ideal point was defined and a compromise experiment was designed using the three
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Figure 7.25: ΓDij -values for the scenario in which the initial conditions are optimized, and
where the `1, `2 and `∞ distance functions are used.

distance functions described above. In Fig. 7.24, the initial concentrations of the obtained

compromise experiments (horizontal lines) are compared to the initial concentrations of

the D-optimal experiments of the rival models. One can clearly see that the compromise

experiments found using the `1 and `2 distance function are very similar, while a different

experiment is found with the `∞ distance function.

The similarity between the compromise experiments found using the `1 and the `2 distance

function is obviously reflected in the ΓDij
-values, shown in Fig. 7.25. For both cases,

the boxplots indicate that the majority of these values are larger than one, indicating

that it is advisable to perform the compromise experiment instead of the corresponding

D-optimal experiments. Note, however, that the performance was not that good for models

m1 and m7. For the case where the `∞ distance function is used, on the other hand, the

barplots indicate that, although the majority of the medians is larger than one, some of

the ΓDij
-values are significantly lower (for instance, for models m1, m3, m6 and m7). In

conclusion, one can state that also for this scenario, the `∞ distance function seems to be

the least suitable one as it does not really aim for a compromise (experiment).
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7.7.5 Optimization of initial conditions and sampling times

The scenario in which both the sampling times and the initial conditions are optimized, is

described in this section. As in the previous scenarios, the initial conditions were allowed

to take values between 0 mM and 2 mM, ten samples were allowed to be taken and the

minimum time between two samples was set to 15 seconds.

The D-optimal experiments and the compromise experiments found using the `1, `2 and

`∞ distance functions are represented in Figs. 7.26, 7.27 and 7.28. Note that for several

models the values of PEP0 are zero, as well as those associated with the compromise

experiments found using the `2 and `∞ distance functions. These results indicate that, as

more experimental degrees of freedom become available, the D-optimal experiments become

more and more specific for the individual models. This is especially clear when considering

the optimal sampling times shown in Fig. 7.26. This specificity obviously makes the design

of a compromise experiment more challenging.

From the ΓDij
-values shown in Fig. 7.29, one can conclude that also for this scenario a

compromise experiment is found when the `2 distance function is used. However, the values

of ΓDij
obtained for the two other distance functions are systematically smaller than the

ones obtained with the `2 distance function. In addition, for several models, the medians

are smaller than one. This means that for the majority of the D-optimal experiments more

accurate parameter estimates can be obtained than if the designed compromise experiment

would be performed. This indicates that the characteristics of the experiments designed

using the `1 and `∞ distance functions are not consistent with the ones of a compromise

experiment.

To conclude this section, the reader is pointed to the fact that the specificity discussed

above can also be observed from the ΓDij
-values shown in Fig. 7.29. These ΓDij

-values are

generally larger than the ones obtained in the other scenarios (Figs. 7.23 and 7.25) and

the variation among these values is much higher. This indicates that for some models,

a significant amount of information on its parameters can be lost when performing an

optimal experiment for another model instead of the compromise experiment. In other

words, an optimal experiment for one model is often all but optimal for another one. Note

that this specificity may also be the reason why the kernel-based method failed to provide

compromise experiments for more complicated experimental design problems (as discussed

in Section 7.2.5).



CHAPTER 7 DESIGN OF COMPROMISE EXPERIMENTS 195

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

0 2 4 6 8 10 12 14 16 18 20
time (min)

m
1
...m

9

Figure 7.26: Optimal sampling times (•) found for the nine rival models for the case where the
D-optimality design criterion is optimized by varying both the sampling times and
the initial concentrations of glucose, ATP and PEP. The graph at the bottom is
obtained by plotting the ten optimal sampling times of the nine individual models
on the same axis.

7.7.6 Further discussion of the performance of the distance functions

From the results and discussion above, one can conclude that the `2 distance function

is the preferred one for this case study. However, the fact that the `1 distance function

performed well in the first two scenarios but was not the best option in the third scenario,

indicates that the performance of a particular distance function is case specific. Indeed,

the performance of the distance function depends on the shape of the Pareto front, which,

unfortunately, is not known. And even it is was known, it cannot be clearly visualized for

multi-objective problems with more than three objectives. Nevertheless, when the ideal

point method is applied in another case study, the approach used here to evaluate the

capability to design a compromise experiment can also be used to judge the experiments

obtained.
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Figure 7.27: Optimal sampling times for the individual models (•) and the compromise sam-
pling times (◦) found using the ideal point method using the different distance
functions (`1, `2 and `∞).
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sociated with the compromise experiment found using the ideal point method
(horizontal lines) after using the `1 (– –), the `2 (—) and the `∞ (· · · ) distance
function.
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Figure 7.29: ΓDij -values for the scenario in which both the initial conditions and the sampling
times are optimized, and where the `1, `2 and `∞ distance functions are used.

7.8 Summary and conclusions

Model discrimination may become more efficient and effective if the uncertainty on the

parameter estimates and consequently on the model predictions, is reduced first. This can

be achieved by performing dedicated experiments, but performing such an additional ex-

periment for each rival model may increase the experimental effort instead of minimizing it.

Therefore, this chapter was dedicated to the design of a so-called compromise experiment,

which is defined as an experiment that is sufficiently informative to improve the overall

precision of the parameters of all rival models in a single experiment. For this purpose,

two methods were proposed: the kernel-based method and the ideal point method.

The kernel-based method was developed to obtain the optimal sampling times to simul-

taneously improve the precision of the parameter estimates of several rival models. The

method is inspired by kernel density estimation and uses the optimal sampling times for

the individual models to design a compromise experiment. The fact that the contribution

of the individual sampling times to the information content of the experiment varies, and
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some sampling times are thus more important/informative than others, could be taken

into account. To illustrate the kernel-based method, it was applied to our working exam-

ple where nine rival models are defined to describe the kinetics of an enzyme-catalyzed

reaction (glucokinase). The capability of the kernel-based method to design compromise

experiments was evaluated, and the results of this evaluation clearly showed that the

kernel-based method is capable to design compromise experiments.

Although the kernel-based method was originally developed to determine compromise sam-

pling times, it would be desirable if this method could be extended for experimental design

problem where more experimental degrees of freedom are available to the experimenter.

To investigate this, the rationale of the kernel-based method was applied in an experimen-

tal design problem where the initial conditions were optimized. The results showed that

the kernel-based method is less suited for the design of compromise experiments in such a

case, and given the relative simplicity of the experimental design problem (only the initial

conditions were optimized), one could conclude that the kernel-based method is not suited

for more advanced experimental design exercises.

As an alternative to the kernel-based method, the ideal point method was developed to

design an experiment to simultaneously improve the precision of the parameter estimates of

several rival models. In the rationale of the ideal point method, the problem of designing

a compromise experiment was approached as a multi-objective problem. This method

searches for the experiment that is as close to possible to the optimal experiments of the

individual rival models. Because closeness can be defined in several ways, the `1, `2 and `∞
distance functions were considered. The ideal point method can be applied to experimental

design problems with experimental degrees of freedom of all types (manipulations, initial

conditions and sampling times), which appeared to be difficult, if not impossible, with the

kernel-based method. The ideal point method was applied to the same working example

as with the kernel-based method. This was done for a scenario in which only the sampling

times were optimized, one in which the initial conditions were optimized, and one in which

both the initial conditions and the sampling times were optimized. The results showed

that when more experimental degrees of freedom are available, the optimal experiments

for the individual models become more and more specific, which makes the design of a

compromise increasingly challenging. Nevertheless, the ideal point method proved to be

capable of designing compromise experiments in each of the scenarios. The results also

suggested that the use of the `2 distance function is preferred over the use of the `1 and

`∞ distance functions.
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Abstract

To obtain a practically useful model, it is required that the model structure is adequate

and that its parameters are estimated with a satisfactory level of precision. In this chap-

ter, three approaches to integrate model discrimination and optimal experimental design

for parameter estimation were investigated. In a first procedure, both aspects are dealt

with sequentially, that is, the model discrimination procedure is performed first, and then

the parameters of the selected model are further refined through the design of optimally

informative experiments. The second procedure, is similar, except that a compromise

experiment is designed and performed prior to the start of the model discrimination pro-

cedure to improve the quality of the parameter estimates. In the third procedure, both

issues are dealt with simultaneously. For this purpose, the joint design criterion proposed

by Hill et al. (1968) is modified such that the anticipatory approach can be used to quantify

the discriminatory potential of the proposed experiments. Further, these three procedures

are applied to a case study, the results of which showed that, although model discrimina-

tion was not achieved in less experiments compared to the sequential procedure without

a compromise experiment, the quality of the parameter estimates improved faster when a

compromise experiment was performed. The performance of the simultaneous procedure

was worse compared to the performance of the sequential procedures, as a wrong model

was selected more often than with the sequential procedures.
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8.1 Introduction

To obtain a practically useful model, it is required that the model structure is adequate

and that its parameters are estimated with a satisfactory level of precision. One can only

exploit the potential of a mathematical model when it produces reliable predictions of the

actual behavior of the modeled process. In the previous chapters (Part II), a procedure to

identify the most appropriate model (structure) from a set of rival models was presented,

in which the design of discriminatory experiments is of crucial importance. Indeed, when

several models are able to describe the available experimental data, additional information

has to be collected to further discriminate among these rival models. Once the most

appropriate model is identified, experimental design methods are available that help the

experimenter to design experiments that result in an increased precision of its parameter

estimates.

The procedure described above corresponds to the classical, sequential procedure to build

a mathematical model. Indeed, when building a mathematical model, experiments are typ-

ically designed and performed until the most appropriate model is identified, and then its

parameters are refined. However, model discrimination and optimal experimental design

for parameter estimation are closely related (as discussed in the previous chapters). There-

fore, it is important to investigate and explore alternative approaches to integrate model

discrimination and optimal experimental design for parameter estimation. In this chapter,

some possibilities are proposed and applied to the working example used throughout this

dissertation.

8.2 Sequential procedure to integrate model discrimination and op-
timal experimental design for parameter estimation

In essence, an experimental design procedure is said to be sequential if model discrimination

and precise parameter estimation are treated separately. In this section, two possibilities

to integrate optimal experimental design for parameter estimation (OED/PE) with the

procedure to discriminate among rival models (MD) are described.

8.2.1 Classical sequential procedure

The classical sequential procedure for building a mathematical model basically consists of

two steps (Asprey and Macchietto, 2000; Espie and Macchietto, 1989; Franceschini and
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Macchietto, 2008; Vanrolleghem and Dochain, 1998) and is depicted in Fig. 8.1. First, the

adequate model structure is identified, and then the quality of its parameters is (further)

improved to enable reliable model predictions. This sequential procedure can thus be

achieved by first applying the model discrimination procedure discussed in Chapters 2

and 4 to identify the most appropriate model. The optimal experimental design methods

described in Chapter 6 can then be used to improve its parameter estimates until a desired

level of precision is achieved.

Note that the model that is finally obtained has to be validated, that is, confronted with

experimental data that has not been used during model building, nor during the estimation

of its parameters. If the model, with its estimated parameters, is able to describe this new

experimental data set, the model is said to be a valid model. Although model validation is

only briefly discussed in Section 2.10, it should be noted that it is an important step in the

model building procedure which should not be neglected in practical modeling applications.

8.2.2 Sequential procedure with a compromise experiment

As advocated in the previous chapters, the uncertainty associated with the parameter

estimates is important with regard to the design of optimal discriminatory experiments.

This is because the uncertainty on the parameter estimates will to a large extent determine

the uncertainty on the model predictions. When the latter is high, it becomes difficult to

design an experiment that enables the discrimination among the rival models. Following

this rationale, the idea of designing a compromise experiment prior to the start of the

model discrimination procedure was developed in Chapter 7. Performing this compromise

experiment should improve the quality of the parameter estimates of the different models

and thus decrease the uncertainty on their predictions, making the design of discriminatory

experiments more effective. How such a compromise experiment can be obtained was

explained in the previous chapter.

The procedure for building a model that arises from this rationale is depicted in Fig. 8.2.

Although only one compromise experiment will be designed and performed in the examples

discussed below, the procedure presented in this figure includes the possibility to design

several compromise experiments before moving on to model discrimination (indicated by

the “D > ?” decision node). Indeed, one could do this until a desired level of precision is

reached, but a criterion to judge this is currently unavailable.
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Figure 8.1: Classical, sequential procedure for building a mathematical model. First, the most
appropriate model structure is identified through the design of (a) discriminatory
experiment(s), and then the quality of its parameters is (further) improved through
the design of experiments with a maximal information content with regard to the
parameters.
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Figure 8.2: Sequential procedure for building a mathematical model. When the quality of
the parameter estimates is insufficient, a compromise experiment is designed and
performed before starting the model discrimination procedure. After the most ap-
propriate model is identified, the quality of its parameters is (further) improved to
enable reliable model predictions through the design of experiments with a maximal
information content with regard to the parameters.
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8.3 Simultaneous procedure to integrate model discrimination and
optimal experimental design for parameter estimation

Instead of dealing with model discrimination and precise parameter estimation sequentially,

one could also try to deal with both aspects simultaneously. A number of design criteria

have been proposed that seek a balance between model discrimination and parameter

estimation (for instance in Atkinson (2008), Hill et al. (1968) and Waterhouse et al. (2005)),

but here, only the design criterion proposed by Hill et al. (1968) will be discussed. For the

other design criteria the reader is referred to the cited papers.

Hill et al. (1968) stated that an experimental design procedure that deals with both aspects

should emphasize model discrimination when there is substantial uncertainty as to which

model is the most appropriate one and should emphasize parameter estimation when one

of the rival models seems to be overwhelmingly superior to the others. The authors suggest

that the same result (that is, an adequate model structure with precise estimates of its

parameters) might be obtained in fewer experiments compared to the classical sequential

procedure discussed in Section 8.2.1.

In addition, Hill et al. (1968) stated that it is more likely that the selected model is in

fact the correct model if a joint design criterion is used that takes both objectives into

account from the onset of the model discrimination exercise. A joint design criterion can

be developed such that the experimenter is not likely to prematurely choose a wrong model

and then concentrate on parameter estimation for this model. By taking both objectives

into account from the beginning of a model discrimination exercise, one essentially starts by

performing optimal discriminatory experiments. However, as the investigation proceeds,

those experimental degrees of freedom are selected that provide for both discrimination

among the important rival models at that stage and, hopefully, for precise estimates of the

parameters of the model that will ultimately be selected as the correct one.

As stated by Hill et al. (1968), a logical choice for a design criterion of this kind, although

by no means unique, is given by

ξ? = max
ξ∈Ξ

(w1 ·Υ (ξ) + w2 ·∆ (ξ)) , (8.1)

where Υ (ξ) represents a measure of the discriminatory potential of experiment ξ, ∆ (ξ)

represents a measure of the parameter estimation precision, and w1 and w2 are non-negative
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weights whose values evolve as experimentation progresses to reflect the relative emphasis

that is given to each of the objectives. Below, the original formulation provided by Hill

et al. (1968) is described, as well as a modified version that can be used when one prefers

to use the design criterion of Buzzi-Ferraris et al. (1984).

8.3.1 Original formulation of the joint design criterion proposed by Hill et al.
(1968)

In their original formulation of the joint design criterion to tackle the problems of model

discrimination and precise parameter estimation, Hill et al. (1968) built further on the

design criterion developed by Box and Hill (1967) to discriminate among rival models

(discussed in Section 4.4.5), and Υ (ξ) is calculated as follows

Υ (ξ) =
T (ξ)

T (ξ?T )
, (8.2)

where T (ξ) is calculated from Eq. (4.19) and ξ?T represents the optimal discriminatory

experiment found after optimizing Eq. (4.19). To quantify the precision of the parameter

estimates, the D-optimality design criterion is used, and ∆ (ξ) is calculated as

∆ (ξ) =
m∑
i=1

πi · Di (ξ)

Di (ξ?D)
. (8.3)

Here, πi represents the relative probability that model mi is the true model (calculated from

Eq. (4.16)), and ξ?D represents the experiment that was found to be optimal to estimate

the parameters of model mi.

The weights, w1 and w2 in Eq. (8.1), reflect the relative emphasis that is given to model

discrimination on the one hand, and precise parameter estimation on the other hand. These

weights are calculated as follows

w1 =

(
m · 1−maxi∈{1,...,m} πi

m− 1

)λ
, (8.4)

w2 = 1− w1 . (8.5)

From Eq. (8.5), one can see that when the model probabilities are all equal to 1/m, w2

equals zero and the experimental design is thus concentrated on the discrimination among
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the m rival models. On the other hand, when the probability of one of the models ap-

proaches one, w2 will approach one as well and the focus is moved to the precise estimation

of the parameters of the most probable model. The parameter λ (with 0 < λ < +∞)

is used to control the rate at which this transition of model discrimination to precise pa-

rameter estimation occurs. As illustrated in Fig. 8.3, a large λ-value results in a faster

decrease of w1 and thus in a faster transition to precise parameter estimation.
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Figure 8.3: The weight w1 as a function of the probability of the most probable rival model
(indicated as πmax and calculated as maxi∈{1,...,m} πi) for different values of λ and
for m = 10. This weight indicates the relative emphasis that is given to model
discrimination. The weight given to precise parameter estimation (w2) is obtained
as w2 = 1− w1.

In this respect, it is important to note that the rationale behind the calculation of ∆ (ξ)

from Eq. (8.3) is similar to the rationale of the compromise experiment. Indeed, since

the D-optimality criterion values of all rival models are considered in its calculation, it is

expected that the resulting experiment, at least to some extent, has the characteristics

of a compromise experiment. Also the fact that the Di (ξ)-values are compared with the

D-optimality design criterion value of the most informative experiment, denoted as ξ?D,

resembles the concept of the ideal point method.

Nevertheless, both procedures are significantly different. The most striking difference be-

tween the simultaneous procedure and the sequential procedure with (a) compromise ex-
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periment(s) is of course the fact that the latter focuses on the parameter estimates first,

while in the former the emphasis is shifted to the parameter estimates as model discrimi-

nation procedure progresses. In addition, the relative model probabilities are considered in

the calculation of ∆ (ξ), while all rival models are treated equally in the approach proposed

in Chapter 7 for the design of compromise experiments. Note, however, that the latter can

easily be incorporated in the ideal point as proposed in Chapter 7.

8.3.2 Modified joint design criterion of Hill et al. (1968)

Contrary to the original formulation of the joint design criterion discussed above, the design

criterion proposed by Buzzi-Ferraris et al. (1984) is used in this dissertation to quantify

the potential of an experiment to discriminate among a number of rival models. Below,

one way of modifying the joint design criterion formalized in Eq. (8.1) is proposed, such

that the design criterion of Buzzi-Ferraris et al. (1984) can be used instead of the one of

Box and Hill (1967).

In the original formulation of the joint design criterion, the discriminatory potential of

the proposed experiment, denoted as T (ξ), is based on the sum of the discriminatory

potentials over the different model pairs (Eq. (4.19)). Therefore, it is proposed to calculate

T (ξ) in Eq. (8.2) as follows

T (ξ) =
m−1∑
i=1

m∑
j=i+1

Tij (ξ) (8.6)

and the optimal discriminatory experiment is thus given by

ξ? = arg max
ξ∈Ξ

m−1∑
i=1

m∑
j=i+1

Tij (ξ) . (8.7)

To calculate ∆ (ξ), the D-optimality design criterion is used (as in the original formulation),

and the relative model probabilities are calculated as proposed by Schwaab et al. (2006).

The latter was discussed in Section 4.4.7, and is repeated here for clarity. For each model

mi, the model probability, denoted as ρi, is defined by exploiting the characteristic of

the WSSE to be a sample from a χ2-distribution with n − np degrees of freedom, where

n represents the total number of data points from which the np model parameters were

estimated. The probability associated with model mi is calculated as
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ρi = 1− P
[
χ2
n−np

6 WSSE
]
, (8.8)

from which the relative model probability, denoted as πi, is calculated as

πi =
ρi∑m
k=1 ρk

. (8.9)

The basic idea behind the use of Eq. (8.8) is that bad models are likely to exhibit large

values of WSSE, and consequently a low value of ρi (and πi).

8.4 Case study VII: Comparison of the sequential procedures to in-
tegrate model discrimination and OED/PE

This section describes the results of a case study in which the sequential procedures to

integrate model discrimination and OED/PE (Section 8.2) are applied to the working

example used throughout this dissertation. The procedure in which model discrimination

and optimal experimental design for parameter estimation are considered simultaneously

(Section 8.3.2) will be investigated in a separate case study (described in Section 8.5)

because it is difficult to compare its performance with that of the sequential procedures

(as will be discussed in more detail in Section 8.5).

8.4.1 Objective of this case study

The main objective of this case study is to investigate the performance of the sequential

procedures presented in Section 8.2 to integrate model discrimination and optimal exper-

imental design for parameter estimation. In addition, it will be investigated whether a

difference in the performance can be observed between the procedure with and without

a compromise experiment (respectively described in Sections 8.2.2 and 8.2.1) or, in other

words, whether it is beneficial or useful to design and perform a compromise experiment

before starting the model discrimination procedure or not.

8.4.2 Design of the case study

As the objective of this case study is to investigate the usefulness of performing a com-

promise experiment prior to the model discrimination procedure, the performance of the
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Figure 8.4: Illustration of the design of the case study (Section 8.4), where the aim was to
evaluate and compare the performance to discriminate among rival models.

sequential procedure with and without compromise experiment has to be compared. Note

that the classical sequential procedure to integrate OED/PE and MD described in Sec-

tion 8.2.1 was already applied in a previous case study (the one described in Section 4.11).

The results discussed in the mentioned case study will be confronted and compared with

the ones obtained here, where the sequential procedure with compromise experiment is

applied to the same case study.

Obviously, the case study presented in this section was designed in an identical manner

as the case study of Section 4.11 (depicted in Fig. 8.4). Also in this case study, five

scenarios are considered, in each of which the model discrimination procedure is performed

starting from a different preliminary experiment. Each of these scenarios is then repeated

thirty times to account for the effect of the measurement error on the performance of the

experimental design.

8.4.3 Preliminary experiments

To allow a mutual comparison of the results obtained from both case studies, the pre-

liminary experiments used to initiate the model discrimination procedure in the different

scenarios were identical to the ones used in the case study of Section 4.11. For brevity, the

characteristics of these preliminary experiments are not discussed here and the reader is

referred to Section 4.11.3. Obviously, in the case study described here, the first experiment
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that is performed after the preliminary experiment is the compromise experiment, while

an optimal discriminatory experiment was performed in the case study described earlier.

8.4.4 Design of the compromise experiments

For each of the five scenarios, the compromise experiment was designed based on the

information available after performing the preliminary experiment. As the information

(for instance, the parameter estimates and the Fisher information matrix of the already

performed (preliminary) experiment) is the same for each repetition of a particular scenario,

the design of the compromise experiments will also be identical.

To design the compromise experiments, the experimental degrees of freedom were the same

as in the preliminary experiment except for the sampling times and the initial concentra-

tions of glucose, ATP and PEP, which were optimized. The initial concentrations were

allowed to take values between 0 mM and 2 mM, and ten optimal sampling times were

determined with the constraint that the time interval between two subsequent samples was

at least 15 seconds. These experimental degrees of freedom are identical to the ones used in

the case studies described in Section 4.11. As the results obtained in Chapter 7 indicated

that the compromise experiment is preferably designed using the ideal point method and

the `2 distance function, this approach was also followed here.

Note that in this case study, only one compromise experiment is performed prior to the

model discrimination procedure. In principle, several compromise experiments could be

performed until the quality of the parameter estimates is sufficiently good, as depicted in

the sequential procedure shown in Fig. 8.2. The reason why only one compromise experi-

ment is performed here, is that no real criterion has been proposed yet to evaluate whether

the overall quality of the parameter estimates of the rival models is too low (indicated as

“D > ?” in Fig. 8.2).

8.4.5 Design of the optimal discriminatory experiments

For the design of the optimal discriminatory experiments, the experimental degrees of

freedom were the same as for the design of the compromise experiments (discussed in the

previous section). Since the anticipatory approach showed the best performance in the

case studies discussed in Chapter 4, this approach was used to design the discriminatory

experiments. In addition, the pairwise design strategy was adopted (as in the case study
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of Section 4.11), in which an optimal discriminatory experiment is designed for each model

pair, and that experiment is chosen for which the corresponding Tij-value is largest.

8.4.6 Design of optimal experiments for parameter estimation

Also for the design of optimally informative experiments, the experimental degrees of

freedom were the same as for the design of the compromise experiment. The experiments

were performed as explained in Chapter 6 and the D-optimality design criterion was used

to quantify the information content with regard to the model parameters.

8.4.7 Outcome of the model discrimination procedure

Ideally, the model discrimination procedure ends when one of the rival models is identified

as the most appropriate one. In this case study, the experimental data were generated

using model m?
5 and it can thus be expected that model m5 is identified as the most

appropriate model in the majority of the runs, regardless of the approach used to design

the discriminatory experiments. However, the possibility that another model is identified

as the most appropriate one cannot be excluded.

A second possible outcome of the model discrimination procedure is that all models appear

to be inadequate. Indeed, the adequacy of the rival models is evaluated based on the WSSE

value, and even for the true model (m?
5) this WSSE value can in some situations be larger

than the reference value (χ2
n−np

) because of the (simulated) error on the measurements.

In Table 8.1, the outcomes of the model discrimination procedure obtained with and with-

out using a compromise experiment are shown for the five scenarios initiated with a different

preliminary experiment. As one can see, no significant difference can be observed between

the two sequential procedures and one can thus conclude that the use of one compromise

experiment before starting the model discrimination procedure does not affect the outcome

of the model discrimination procedure.

8.4.8 Required number of experiments to achieve model discrimination

The number of additional experiments that have to be performed before the most appro-

priate model can be identified is an important aspect that should be taken into account

when evaluating the performance of a certain model discrimination procedure. Indeed,

experiments can be time and money consuming, and limiting the experimental effort is the
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Table 8.1: Overview of the observed outcomes of the 150 runs of the sequential procedures
with and without performing a compromise experiment (ξ?c ) prior to the start of
the model discrimination procedure, and this for the five scenarios initiated with a
different preliminary experiment, ξi1 with i = 1, . . . , 5.

− ξ?c
model m5 ξ1

1 30 24

ξ2
1 29 29

ξ3
1 25 25

ξ4
1 27 27

ξ5
1 26 26

ξ1
1 − ξ5

1 134 131
89% 87%

other model ξ1
1 0 0

ξ2
1 1 0

ξ3
1 4 3

ξ4
1 3 2

ξ5
1 2 4

ξ1
1 − ξ5

1 10 9
7% 6%

all models rejected ξ1
1 3 6

ξ2
1 0 1

ξ3
1 1 2

ξ4
1 0 1

ξ5
1 2 0

ξ1
1 − ξ5

1 6 10
4% 7%
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ultimate aim of each experimental design exercise. In this section, the effect of performing

a compromise experiment prior to the start of the model discrimination procedure is inves-

tigated by looking at the number of experiments that have to be designed and performed

until the model discrimination procedure ends.

The number of experiments required to achieve model discrimination is presented in Fig. 8.5

for the sequential procedures with and without performing a compromise experiment (ξ?c )

prior to the model discrimination procedure. This figure contains five subfigures with a

white background (entitled ξi1, with i = 1, . . . , 5) and one subfigure with a gray background

(entitled ξ1
1 − ξ5

1). The former present the results obtained for the simulations where the

model discrimination procedure was initiated with the preliminary experiment indicated

in the title of the corresponding subfigure, whereas the one with the gray background

gives an overall idea of the number of required experiments and presents the values of

all model discrimination runs (30 × 5 = 150 in total). Note that in these figures, the

preliminary experiment corresponds to experiment number one and, if applicable, the

(single) compromise experiment corresponds to experiment number two.

From these results, one can conclude that the number of experiments that is required to

achieve model discrimination does not significantly change when a compromise experiment

is performed, and also the variability of the number of experiments needed according to

the two procedures is very similar. Indeed, when the results of all scenarios are consid-

ered, the median of the number of required experiments is the same for both sequential

procedures. In a way, one could even state that one additional experiment is required

to achieve model discrimination when no compromise experiment is performed, although

this statement is not entirely true as model discrimination can also occur after performing

the compromise experiment. Note that, for the scenario with preliminary experiment ξ4
1,

model discrimination was achieved in three experiments instead of four without the use

of a compromise experiment, while for the scenario with preliminary experiment ξ2
1 (at

least) one additional experiment was required. These observations could however not be

explained or linked with, for instance, the information content of the mentioned prelimi-

nary experiments. As an overall conclusion, one can state that, on the basis of the results

obtained in this case study, an equal number of experiments is required when a compromise

experiment is performed before starting the model discrimination procedure.
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Figure 8.5: Boxplots showing the number of experiments (median in upper right corner) re-
quired to achieve model discrimination for the scenario where the sequential proce-
dure is applied with (right) and without (left) the use of a compromise experiment
(ξc), and this starting from each of the five preliminary experiments (ξ1

1 till ξ5
1)

(white background). The boxplots with the gray background give an overall idea of
the number of required experiments and were made using the results obtained from
all starting situations.
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8.4.9 Evaluation of the quality of the parameter estimates during model dis-
crimination

In this section, the quality of the parameter estimates is investigated, and especially the

quality of the parameter estimates of the model that is eventually identified as the most

appropriate one (see overall procedure of Fig. 8.1 and 8.2). Obviously, this is important

because once an appropriate model is identified through model discrimination, the quality

of its parameter estimates typically has to be improved before the model can actually be

applied for its intended use (as illustrated and discussed in the following section).

To quantify the quality of the parameter estimates of model m5, the D-optimality crite-

rion values were calculated and their evolution as a function of the number of performed

experiments is presented in Fig. 8.6(a-c) for the scenarios initiated with preliminary exper-

iments ξ1
1, ξ2

1 and ξ3
1. The figures for the other scenarios are not shown here for brevity,

but are shown in Appendix C. From these results, one can clearly see that the quality of

the parameter estimates increases faster when a compromise experiment is performed. In

a way, this was expected since the compromise experiment was especially designed for this

purpose. However, one can also see that as the experimentation progresses, the quality

of the parameter estimates obtained for the cases with and without the compromise ex-

periment converges for the scenarios with preliminary experiment ξ1
1 (and ξ4

1, the results

of which are shown in Fig. C.1). For the scenario with preliminary experiment ξ2
1 (shown

in Fig. 8.6(b)) and with a compromise experiment, the D-optimality criterion values ob-

tained after four experiments were even slightly lower than the ones obtained after an equal

number of experiments for the scenario without a compromise experiment. As the model

discrimination is not achieved after four experiments when a compromise was used, the

procedure continues and consequently also the corresponding D-optimality criterion values

further increase.

The observation that the quality of the parameter estimates increases faster in the begin-

ning of the procedure should, however, not be underestimated. Indeed, as already discussed

in the previous section, performing experiments may be time and money consuming. Be-

cause of this, the number of experiments that can be designed given the available resources

(that is, time and/or money), may be limited and it may not be possible to perform

experiments until complete model discrimination is achieved. In such a situation, it is

obviously beneficial that the quality of the parameter estimates increases quickly as the

model discrimination procedure progresses.
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Figure 8.6: Evolution of the median of the D-optimality criterion values of model m5 for the
(thirty) runs of the model discrimination procedure initiated with (a) experiment
ξ1

1, (b) experiment ξ2
1 and (c) experiment ξ3

1. The results obtained without the
use of a compromise experiment are shown in the left subfigure and the results
obtained with a compromise experiment are shown in the right subfigure. The
evolution of the median criterion values of the other strategy is shown in gray to
ease the comparison. The number of criterion values from which the median was
determined is mentioned and also indicated by the size of the bullet symbol.
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8.4.10 Further improvement of the parameter estimates of the most appropriate
model

As discussed in Section 8.2, once the most appropriate model is identified, its parameters

are typically further improved until a desired level of precision is reached, through the

design of optimally informative experiments. For illustratory purposes, this is also done in

this case study, where optimally informative experiments are designed and performed to

improve the precision of the parameters of model m5 (the true model) if it was selected.

Below, the evolution of the D-optimality criterion values for model m5 will be presented

for the sequential procedures with and without the use of a compromise experiment. This

application of optimal experimental design for parameter estimation is stopped after ten

experiments (in total). Since the model discrimination procedure stops after a varying

number of optimal discriminatory experiments, the number of optimally informative ex-

periment that are designed and performed will also differ.

The results obtained for the scenario with preliminary experiment ξ1
1 are shown in Fig. 8.7

for the procedures (a) with and (b) without the use of a compromise experiment. These

figures have to be interpreted as follows. The black lines and dots in the subfigures show

the evolution of the median of the D-optimality criterion values as the number of performed

optimal discriminatory experiments increases (model discrimination part of the sequential

procedure). In the first subfigure of Fig. 8.7(a), for instance, one can see that model

discrimination is achieved after performing the first designed discriminatory experiment

(the second experiment that is performed) in six of the thirty repetitions or runs of the

procedure. When model m5 was identified as the most appropriate model, which was

most often the case (as discussed in Section 4.11.6), its parameters were further refined

by designing and performing a series of optimally informative experiments until, in total,

ten experiments were performed. So, for this specific example, eight optimally informative

experiments were designed and performed. The evolution of the median of the D-optimality

criterion values obtained after performing these experiments (designed to obtain more

precise parameter estimates) is represented by the gray line and dots. The size of these

dots (and also of the black ones) indicates the number of criterion values from which the

median was determined and corresponds to the number of repetitions where model m5

was identified as the most appropriate model after one discriminatory experiment and is

indicated by the number in the upper right corner of the corresponding subfigure.
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In the second subfigure, the same information is presented, but for the repetitions of the

model discrimination procedure where model m5 was identified as the most appropriate

model after the second discriminatory experiment. The interpretation of the other sub-

figures and the subfigures from Fig. 8.7(b) have to be interpreted in a similar way. The

results obtained from the scenarios with the other preliminary experiments are shown in

Appendix C.

From the results shown in Fig. 8.7, one can see that regardless of the number of dis-

criminatory experiments that were needed to identify model m5 as the most appropriate

model, the D-optimality design criterion values converge to more or less the same value

after performing ten experiments. This suggests that the experiments designed with this

procedure are informative with regard to the parameters of model m5, which illustrates

the similarity between OED/PE and the anticipatory approach for optimal experimental

design for model discrimination (as discussed in Chapter 4). Indeed, if the optimal dis-

criminatory experiment were not informative with regards to the parameters (of model

m5), the D-optimality design criterion values obtained after performing ten experiments

would be significantly higher for those runs in which model m5 was identified in fewer

discriminatory experiments, because in those runs more experiments would be performed

that were especially designed to improve the precision of its parameters.

8.5 Case study VIII: Application of the simultaneous procedure to
integrate model discrimination and OED/PE

In this case study, the simultaneous procedure to integrate model discrimination and opti-

mal experimental design for parameter estimation presented in Section 8.3 is applied to our

working example. To be able to compare (at least to some extent) the obtained results with

those obtained with the sequential procedures, the modified version of the simultaneous

procedure will be applied. Indeed, the original version uses the design criteria proposed

by Box and Hill (1967) to design optimal discriminatory experiments, whereas the antici-

patory approach (which is based on the design criterion proposed by Buzzi-Ferraris et al.

(1984)) was used in the sequential procedures and in the modified joint design criterion.

8.5.1 Objective of this case study

The objective of this case study is to investigate the performance of the simultaneous pro-

cedure to identify the most appropriate model from a set of rival models and estimate
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its parameters. In the original paper of Hill et al. (1968), it was argued that less experi-

ments may be required to identify the most appropriate model with precise estimates of its

parameters when applying the simultaneous procedure instead (of one) of the sequential

procedure(s). Where possible, the results will be compared to those obtained with the

sequential procedures with and without the use of a compromise experiment.

8.5.2 Design of the case study

Also for this case study, the procedure was performed for five scenarios (each with a different

preliminary experiment) and each scenario was repeated thirty times. As the design is

identical to the one used in previous case studies, the reader is referred to Section 4.11.2

for more details hereon.

8.5.3 Preliminary experiments and experimental design

The preliminary experiments used in this case study are identical to the ones used in

the previous case studies and the reader is referred to Section 4.11.3 for a more detailed

description of these experiments. Also for the design of the optimally informative and

optimal discriminatory experiments, the experimental degrees of freedom were defined in

the same way as the ones used in the previous case studies (see, for instance, Section 4.11.5).

The experiments are designed as explained in Section 8.3.2, with λ = 1. The relative

model probabilities at the start of the procedure were calculated from the WSSE value

obtained after estimating their parameters from the data of the corresponding preliminary

experiment (according to Eq. (8.8)).

8.5.4 Model evaluation

In the sequential procedure, the models are evaluated using a so-called model adequacy

test. As explained in Section 2.8.1, the χ2-test can be used in this context since the

measurement errors are known (and calculated from Eq. (3.24)). The models that are

rejected by this test are considered to be inadequate and are not used for the design of

discriminatory experiments. When the (modified version of the) simultaneous procedure is

used, on the other hand, such a test is not performed and the adequacy of the rival model

is evaluated based on their relative model probabilities. However, in principle, a bad model

is never rejected as such, but a very low relative model probability will be associated with

it. As a result, all models are considered in the design of the discriminatory experiments,
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Figure 8.8: Relative model probabilities obtained for three (of the thirty) runs of the simul-
taneous procedure after performing preliminary experiment ξ1

1 (upper graph) and
after performing the first designed experiment (lower graph).

together with their corresponding relative model probabilities, which will determine their

relative contribution to the experimental design.

In this case study, the simultaneous procedure was stopped when the relative model prob-

ability of one of the models was larger than a predefined and arbitrarily chosen value of

0.95. Note, however, that Schwaab et al. (2006), who introduced the approach to calculate

the relative probabilities (Section 4.4.8), considered a model inadequate when its relative

model probability is below a certain value (for instance, 0.025) and the inadequate model

is discarded from the experimental design. Although this is an interesting approach, it was

not adopted in the following. In other words, all models were considered in the experimen-

tal design procedure until the end.

For illustratory purposes, the relative model probabilities obtained after performing pre-

liminary experiment ξ1
1 and after performing the first designed experiment are shown in

Fig. 8.8 for three (of the thirty) runs of the simultaneous procedure. As one can see, the

relative model probabilities of most models have similar values after performing the pre-

liminary experiment. This clearly indicates that at least six of the nine models are able

to describe the data obtained from the preliminary experiment. After performing the first

designed experiment (which is identical for the different repetitions or runs of the proce-

dure, but not the data obtained from it) the model probabilities change considerably. In

the first example (left), one can observe that four models still have a high relative model

probability, whereas this is the case for only two models in the second example (middle).

In the third example (right), it even appeared to be possible to identify the (correct) most

appropriate model.
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8.5.5 Outcome of the simultaneous procedure

It is clear that also with this procedure the ultimate aim is to identify the most appropriate

model from the set of rival models. As explained in the previous section, the simultaneous

procedure is stopped when the relative model probability of one of the models is larger

than 0.95. To investigate the performance of the simultaneous procedure, the procedure

was performed for the five different scenarios, and here too the procedure was repeated

thirty times (as explained in Section 8.5.2). The results obtained in this way, are shown in

Table 8.2.

From the result in Table 8.2, one can clearly see that the model that is identified as the

most appropriate model is often different from model m5 (more precisely, in 26% of the

repetitions). It is clear that this is not desired and is in contrast with the statement of

Hill et al. (1968), saying that the use of their joint design criterion in a way protects the

experimenter to prematurely choose a wrong model and then concentrate on parameter

estimation for this model (as discussed in Section 8.3.1). This observation may however be

related with the criticism raised by several authors (including Froment and Mezaki (1970)

and Buzzi-Ferraris and Forzatti (1983)), that a model should not be accepted too rapidly

when (relative) model probabilities are used to evaluate the adequacy of the models. One

of the reasons is that the model probabilities may oscillate considerably as experimentation

progresses.

One can also see that in many cases, no model was selected. In principle, even if all rival

models are wrong, there will always be a model for which the model probability is largest.

In other words, in the end, there will always be one model that will be identified as the

most appropriate one. However, as a result of numerical problems, this was not the case

here. Indeed, when a model is inadequate, it will fail to describe the available experimental

data and the WSSE will consequently be very large. It is thus possible that the WSSE

is so large, that P
[
χ2
n−np

6 WSSE
]
≈ 1. If that is the case, the model probability of the

corresponding model, denoted as ρ, will approximate zero (Eq. (8.8)). Although, in theory,

ρ can only be equal to zero when WSSE =∞, it occurs in practice for large values of WSSE

due to rounding errors. This explains why the simultaneous procedure stopped in some of

the repetitions without selecting one of the models as the most probable model. However,

it should be noted that these large WSSE values might be caused by local optima in the

parameter estimation step. Indeed, it can occur that the optimization algorithm fails to
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Table 8.2: Overview of the observed outcomes of the 150 runs of the simultaneous procedure
to integrate model discrimination and optimal experimental design for parameter
estimation, and this for the five scenarios with a different preliminary experiment,
ξi1 with i = 1, . . . , 5.

simultaneous

model m5 ξ1
1 16

ξ2
1 15

ξ3
1 21

ξ4
1 23

ξ5
1 18

ξ1
1 − ξ5

1 93
62%

other model ξ1
1 8

ξ2
1 11

ξ3
1 4

ξ4
1 6

ξ5
1 10

ξ1
1 − ξ5

1 39
26%

all models rejected ξ1
1 6

ξ2
1 4

ξ3
1 5

ξ4
1 1

ξ5
1 2

ξ1
1 − ξ5

1 18
12%
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locate the global optimum. For the evaluation of the procedure, this issue is partly dealt

with by repeating each model discrimination procedure thirty times.

8.5.6 Required number of experiments

Obviously, the number of additional experiments that have to be performed before the most

appropriate model can be identified is an important aspect of the evaluation, especially

in view of the claim of Hill et al. (1968) regarding the efficiency of their approach. In

this section, the results obtained for the simultaneous procedure will be presented and

compared to the ones obtained with the sequential procedures (using the averaged design

strategy). However, it should be kept in mind that the approaches to evaluate the adequacy

of the rival models (that will determine when the procedure is stopped) are different.

The number of experiments required to achieve model discrimination are presented in

Fig. 8.9. This figure contains five subfigures with a white background (entitled ξi1, with

i = 1, . . . , 5) and one subfigure with a gray background (entitled ξ1
1 − ξ5

1). The former

present the results obtained for the simulations where the model discrimination procedure

was initiated with the preliminary experiment indicated in the title of the corresponding

subfigure, whereas the one with the gray background gives an overall picture of the number

of required experiments and presents the values of all model discrimination runs (5 ×
30 = 150 in total). Note that in these figures, the preliminary experiment corresponds

to experiment number one and, if applicable, the compromise experiment corresponds to

experiment number two.

From the results in Fig. 8.9, one can see that no significant difference can be observed

based on the overall number of required experiments. However, the results obtained for

the individual scenarios (that is, for the different preliminary experiments) show that the

simultaneous procedure is always (one of the) best performing one(s). However, it should

be noted that, although no significant differences were observed between the two sequential

procedures in this particular case study, it could very well be that the conceptual differences

between both procedures become more apparent when they are applied to another case

study.
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Figure 8.9: Boxplots showing the number of experiments (median in upper right corner) re-
quired to achieve model discrimination for the scenario where the where the se-
quential procedure is applied with (middle) and without (left) the use of a com-
promise experiment (ξc) and where the simultaneous procedure is applied (right),
and this starting from each of the five preliminary experiments (ξ1
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number of required experiments and were made using the results obtained from all
starting situations.
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Figure 8.10: Evolution of the relative model probabilities (π) of models m2 (◦) and m5 (•) as
the number of performed experiments increases for some of the repetitions of the
simultaneous procedure starting with preliminary experiment ξ1

1.

8.5.7 Evolution of the relative model probabilities

As explained in Section 8.3.2, the (relative) model probabilities are recalculated when a new

experiment is performed. The way in which the relative model probabilities (π) of models

m2 (◦) and m5 (•) evolve as the number of performed experiments increases, is shown

in Figs. 8.10 and 8.11 for ten (of the thirty) repetitions of the simultaneous procedure

starting with preliminary experiments ξ1
1 and ξ3

1, respectively. As already stated above,

the procedure stops when the relative probability of one of the rival models is above 0.95,

which is indicated by the gray bar in the figures. Note that the results for the other models

are not shown, because their relative probabilities decrease to zero very rapidly and do not

really contribute to the evaluation of the simultaneous procedure.

From these results, one can see that the evolution of the relative model probabilities of mod-

els m2 and m5 differ considerably among the different repetitions of the procedure. How-

ever, the relative model probabilities of these models often approaches 0.5 after performing

the first designed experiment. This indicates that both models describe the available ex-

perimental data equally well and that the other models (which were not shown for brevity)
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Figure 8.11: Evolution of the relative model probabilities (π) of models m2 (◦) and m5 (•) as
the number of performed experiments increases for some of the repetitions of the
simultaneous procedure starting with preliminary experiment ξ3

1.

do not describe the data in an adequate manner as
∑

i πi = 1. In some cases, discrimina-

tion is achieved after one or two additional experiments, but sometimes more experiments

are required before the relative model probability tends to one (see Section 8.5.6).

Note that the results shown in Figs. 8.10 and 8.11 may give the impression that the relative

model probabilities are the same for each of the rival models at the start of the procedure

(for instance, equal to 1/m as in the original formulation of the simultaneous procedure

discussed in Section 8.3.1). This is, however, not the case. It would make less sense

to do this when the model probabilities are calculated as suggested by Schwaab et al.

(2006). Indeed, in the original formulation of Hill et al. (1968) the model probabilities

are updated according to Bayes’ theorem, while here the relative model probabilities are

simply calculated from the corresponding WSSE values.

As already stated in Section 4.4.5, some authors have observed that the model probabil-

ities may oscillate considerably from iteration to iteration in the sequential strategy (for

instance, Froment and Mezaki (1970)). Although this behavior could also be observed in

some of the repetitions of the procedure, it was generally not the case here. However, it

should be noted this may be due to the fact that, in this case study, the (relative) model
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probabilities are not calculated using Bayes’ theorem, where the current model proba-

bilities (that is, the ones before performing the newly designed experiment) are used to

(re)calculate the new ones after performing the designed experiment. One can also notice

that the procedure sometimes stopped without selecting one of the models as the most

appropriate one (for instance in the upper left subfigure of Fig. 8.10). The reason why this

occurs has already been discussed in Section 8.5.5 and was related to numerical issues or

possibly to problems with the optimization, which are inherent to this kind of simulation

studies.

8.5.8 Evaluation of the quality of the parameter estimates

In the section, the quality of the parameter estimates of the model that is eventually iden-

tified as the most appropriate one is presented by means of the D-optimality criterion

value. However, as the modified version of the simultaneous procedure uses the averaged

design strategy to quantify the discriminatory potential of an experiment (Eq. (8.6)), the

results obtained here cannot simply be compared with the ones obtained with the sequen-

tial procedures discussed in the previous section (which were obtained using the pairwise

design strategy). Therefore, the case study was also performed for the sequential proce-

dures where the averaged design strategy was used to design the optimal discriminatory

experiments. In this way, the performance between the simultaneous procedure and the

sequential procedures can be investigated.

The evolution of the median of the (thirty) D-optimality criterion values of model m5

is shown in Fig. 8.12(a-c) for the scenarios starting from ξ2
1 (a), experiment ξ3

1 (b) and

experiment ξ4
1 (c) and for the three procedures. In these figures, the results shown in black

were obtained for the procedure indicated in the title of the subfigure, whereas the gray

lines show the results obtained for the other procedures. The latter are shown to facilitate

the comparison among the results. The results obtained for the other scenarios are shown

in Appendix C and are similar to the ones shown in Fig. 8.12.

In Section 8.4.9, the effect of performing a compromise experiment was investigated for the

sequential procedure where the pairwise design strategy was used to design the optimal

discriminatory experiments. From these results presented here, one can see that also with

the averaged design strategy, the quality of the parameter estimates increases faster when

a compromise experiment is performed. When looking at the results obtained with the

simultaneous procedure (joint design criterion), one can see that the D-optimality criterion

values obtained after the performing the first designed experiment are slightly larger than
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Figure 8.12: Evolution of the median of the D-optimality criterion values of model m5 for the
(thirty) repetitions of the model discrimination procedure that were initiated with
experiment ξ2

1 (a), experiment ξ3
1 (b) and experiment ξ4

1 (c). The results obtained
with and without the use of a compromise experiment are shown in the middle
and left subfigures, respectively, whereas the ones obtained with the simultaneous
procedure are shown in the right subfigure. The evolution of the median criterion
values of the other strategy is shown in gray to ease the comparison. The number
of criterion values from which the median was determined will be indicated by the
size of a bullet symbol and the corresponding integer (in blue).
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the ones obtained using the sequential procedure without a compromise experiment (but

lower than the ones obtained with the compromise experiment). In a way, this is in

agreement with the rationale of the joint design criterion. For instance, for the scenario with

preliminary experiment ξ1
1, the value of w1 is equal to 0.83 (Eq. 8.5), which indicates that

the information content of the designed experiment with regard to the parameters of the

rival models will already contribute in the designed experiment. As the relative probability

of model m5 is more or less equal to 0.25 after performing the preliminary experiment (see

Figs. 8.10 and 8.11), it is clear that information content of the experiment with regard to

its parameters is already taken into account when designing the first experiment.

However, as the number of performed experiments increases, the D-optimality criterion

values obtained for the three procedures converge to more or less the same value and no

systematic difference can thus be observed. Note that a similar behavior was observed

in Section 8.4.10 (Fig. 8.7) where the results obtained with the two sequential procedures

(using the pairwise design strategy) were compared.

8.5.9 Further improvement of the parameter estimates of the most appropriate
model

As in the previous case study, the evolution of the D-optimality criterion values for model

m5 was determined from the moment it was identified as the most appropriate model and

experiments could be designed only focusing on parameter estimation. For illustratory

purposes, the evolution of the D-optimality criterion values for model m5 is presented in

Fig. 8.13 for the first ten experiments that are performed. For more information on the

interpretation of this figure, the reader is referred to Section 8.4.10.

As with the sequential procedures discussed in Section 8.4, one can see that after ten

experiments, the D-optimality design criterion values converge to more or less the same

value (in Fig. 8.13). In other words, also for the simultaneous procedure it does not really

matter how much effort is spent on model discrimination. As discussed in Section 8.4.10,

this observation can be explained by the similarity between OED/PE and the anticipa-

tory approach for optimal experimental design for model discrimination (as discussed in

Chapter 4) as the discriminatory potential of the experiment was evaluated accordingly.
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Figure 8.13: Evolution of the median of the D-optimality criterion values of model m5 for the
(thirty) runs of the model discrimination procedure that was initiated with experi-
ment ξ2

1 for the simultaneous procedures. The black lines indicate the D-optimality
criterion values obtained in the model discrimination procedure, whereas the gray
lines shows how the D-optimality criterion values evolves after model m5 has been
identified as the most appropriate model.

8.6 Conclusions

To obtain a practically useful model, it is required that the model structure is adequate

and that its parameters are estimated with a satisfactory level of precision. As methods

are available to deal with both aspects individually (model discrimination and optimal

experimental design for parameter estimation (OED/PE), respectively), it is important to

investigate how these methods can be integrated in a more general procedure for model

building. In this chapter, three possibilities were proposed and applied to the working

example used throughout this dissertation.

In the first procedure, both aspects are dealt with sequentially, that is, the model discrim-

ination procedure is performed first, and then the parameters of the selected model are

further refined through the design of optimally informative experiments. The second pro-

cedure, is similar, except that a compromise experiment is designed and performed prior

to the start of the model discrimination procedure to improve the quality of the parameter

estimates. In the third procedure to integrate model discrimination and OED/PE, both

aspects were dealt with simultaneously. For this purpose, the joint criterion proposed by

Hill et al. (1968) was modified such that the anticipatory approach could be used to quan-

tify the discriminatory potential of the proposed experiments. The basic design strategy of

the joint design criterion is to emphasize model discrimination when there is considerable

doubt as to which model is best, and gradually shift the emphasis to parameter estimation

as experimentation progresses and model discrimination becomes possible.
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The results obtained after applying the two sequential procedures to the working example

showed that it is interesting to design and perform a compromise experiment before starting

the model discrimination procedure. Even though model discrimination was not achieved in

fewer experiments compared to the sequential procedure without a compromise experiment,

the quality of the parameter estimates improved faster when a compromise experiment was

performed first. As resources may be limited in practical applications, this should not be

underestimated as it may not be possible to perform experiments until model discrimination

is achieved. However, one could observe the quality of the parameter estimates converged

as the number of performed experiments increased and the benefit of the compromise

experiment disappeared.

The performance of the simultaneous procedure was also investigated by applying it to

the working example, and it appeared to be worse than the performance of the sequential

procedures. This was concluded from the observation that the wrong model was identified

as the most appropriate one in 26% of the repetitions of the procedure, while this was

much lower for the sequential procedures (6 - 7%). However, this may be due to the way

in which the adequacy of the models is evaluated in the simultaneous procedure and may

not necessarily be associated with the rationale of the joint design criterion used in the

procedure.

In addition, the results also confirmed the similarity between the anticipatory approach

developed to design optimal discriminatory experiments on the one hand, and optimal ex-

perimental design for parameter estimation on the other hand. No matter which procedure

was applied, the D-optimality design criterion values converged to more or less the same

value after performing ten experiments, regardless of the number of discriminatory experi-

ments that were needed to identify the most appropriate model. In other words, it did not

really matter how much effort is spent on model discrimination, since the discriminatory

experiments were informative with regard to the model parameters as they were designed

using the anticipatory approach.
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CHAPTER 9
General conclusions and
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Abstract

In the opening chapter of this dissertation, the problem statement and the objectives of

this research were described, and a number of research questions were formulated. In this

final chapter, these research questions are revisited and an answer is provided based on

the results obtained in this work. In addition, a number of suggestions are given for future

research.
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9.1 Problem statement and research objectives

The objectives of the research performed in the scope of this dissertation were formulated

as follows:

1. obtain insight in the different aspects of the problem of model discrimination and

how they influence each other,

2. propose a general procedure to discriminate among a set of rival models,

3. provide methods to design optimal discriminatory experiments,

4. position the model discrimination procedure in a more general procedure for building

mathematical models.

To meet these research objectives, five research questions were formulated that allowed

performing this research in a systematic way. These research questions will be repeated

in the next sections and answers will be provided based on the results and experience

gathered when performing this work.

9.2 Research question I

What is the general procedure to identify the most appropriate model from a set

of rival models?

A general procedure to discriminate among a number of rival models consists of four steps

that are performed in an iterative manner until a stopping criterion is met (as depicted in

Fig. 9.1). In the first step, the parameters of the rival models are estimated from all the

data that is available at that time. A second step involves an evaluation of the adequacy

of the models and is thus performed in order to find out which models are able to describe

the available data in a reasonable manner and which ones do not. Models that pass this

test are used in a third step, where an optimal discriminatory experiment is designed.

This experiment is then performed in a fourth and last step, after which the loop is closed

by re-estimating the parameters of all rival models using all data available at that time.

By reconsidering all models in the model evaluation step, one accounts for the possibility

that one (or more) models were wrongly rejected by chance in a previous iteration. The
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Figure 9.1: General procedure to discriminate among m rival models (adapted from Chen and
Asprey (2003) and Schwaab et al. (2006)).

iterative procedure described above continues until the best model is identified, all models

appear to be inadequate and new models thus have to be proposed, or when discrimination

among the remaining model candidates is no longer possible. The latter occurs when

the discriminatory potential of the designed experiment is too low, and (further) model

discrimination appears to be impossible given the experimental setup. In the latter case,

the best model is selected from the remaining rival models as a trade-off between model

fit, model parsimony and their parameter identifiability characteristics (Section 2.9).

9.3 Research question II

How can the adequacy of a model be evaluated and (how) can this be translated

into quantitative model evaluation criteria?

In the model evaluation step of the model discrimination procedure, a model is considered

adequate when it is able to describe the available experimental data in a reasonable manner.

In other words, the model evaluation step deals with the model structure itself and one is

interested in its ability to represent the available data or, put differently, in its inability

to capture the dynamics of the studied process. Since the model parameters are estimated

prior to the model evaluation step, the observed model fit is the best one possible given

that particular model structure.
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In case studies performed in this dissertation, experimental data was generated by adding

noise to the simulation results obtained with one particular model, that was assumed to be

the true model, and for given values of its parameters. Therefore, a statistical test (χ2 test,

described in Section 2.8.1) could be used to evaluate whether the residual error between the

measurements and the model predictions can be explained by the (simulated) measurement

error. If not, the contribution to the residual error due to lack-of-fit is significant and the

model is considered inadequate.

However, in practical applications, the processes being studied are often very complex and

it is not realistic to assume that the true model can be found. Indeed, a mathematical

model is an abstract representation of reality, and it can never mimic reality under all

conditions. Therefore, a statistical test would often detect a significant lack-of-fit and

reject useful models. After a literature review, two promising model evaluation criteria

were suggested (in Section 2.8.2) but not further investigated: the modeling efficiency

and the index of agreement. These model evaluation criteria were selected from the vast

number of alternative model evaluation criteria because of their interpretability.

9.4 Research question III

If additional experimental data has to be collected to allow further model dis-

crimination, how can experiments be designed such that model discrimination

is achieved with a minimum of additional experimental effort?

When several models are able to describe the available experimental data in an adequate

manner and one wants to retain only the most appropriate one, new information about

the process has to be collected and thus new experiments have to be performed. As

performing experiments may be time and money consuming, it is advisable to design these

experiments in a rational manner in order to minimize the experimental effort. For this

purpose, experimental design methods have been developed (Chapter 4).

In general, the design of experiments is approached as an optimization problem, where

the optimum of a well-defined design criterion is sought by varying the experimental de-

grees of freedom. When designing an optimal discriminatory experiment, the rival models

themselves are used to evaluate an experiment for its discriminatory potential, which is

basically determined by the difference between the model predictions (Hunter and Reiner,

1965), preferably by taking into account the uncertainty associated with this difference
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(Buzzi-Ferraris et al., 1984). This uncertainty originates from two sources: the uncertainty

on the measurements and the uncertainty on the model predictions.

These aspects are incorporated in the design criterion proposed by Buzzi-Ferraris et al.

(1984), which was taken as a starting point because it is appealing from a conceptual point

of view and because it was already used successfully by others. However, this design cri-

terion only uses the information content of the already performed experiments to evaluate

the discriminatory potential of the designed experiment and, therefore, a modified design

criterion was proposed in this dissertation (Section 4.5), where the expected information

content of the newly designed experiment is considered, even before the experiment is per-

formed. Hence, this approach was called the anticipatory approach to optimal experimental

design for model discrimination.

The results obtained after applying the original approach of Buzzi-Ferraris et al. (1984)

and the anticipatory approach to a first case study showed that the anticipatory approach

led to more reliable estimates of the model prediction uncertainties that are eventually ob-

tained after performing the designed experiment and re-estimating the model parameters.

In addition, the results showed that the anticipatory approach arranges the experimen-

tal degrees of freedom such that the expected model prediction uncertainty is small for

the measurements taken, thereby increasing the discriminatory potential of the resulting

experiment. One could also observe that when the information content of the designed ex-

periment is large enough, the anticipatory approach results in an experiment that is similar

to the one found with the simpler and less computationally expensive approach that only

considers uncertainty on the measurements (and not the model prediction uncertainty).

As this condition not always holds, it is not advised to design the optimal discriminatory

experiments without considering the uncertainty on the model predictions.

In a second case study, the approaches were evaluated for their ability to bring forth

a sequence of (informative) discriminatory experiments. From the results obtained in

this dissertation, one could conclude that the approach proposed by Buzzi-Ferraris et al.

(1984) appeared to be a rather conservative one. Even though the true model was always

identified as the most appropriate one, more experiments were generally required compared

to the anticipatory approach. In addition, the information content (with regard to the

parameter estimates) of the experiments designed using this approach was often lower

than the information content of the experiments obtained from the anticipatory approach.

Based on the results obtained in this case study, one can conclude that the anticipatory

approach to design optimal discriminatory experiments is to be preferred.
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9.5 Research question IV

What is the importance of the uncertainty on the parameter estimates with

regard to the design of optimal discriminatory experiments?

The uncertainty on the parameter estimates is determined by the information content of

the already performed experiments. If this information content is low, the uncertainty on

the parameter estimates will be high and this will propagate to the model predictions when

the model is used to simulate the outcome of an experiment. This obviously hampers the

design of optimal discriminatory experiments, as a better evaluation of the discriminatory

potential of an experiment can be obtained when the model predictions are more reliable.

As the uncertainty on the parameters plays a central role in the discrimination among rival

models, considerable attention was given to this issue throughout this dissertation.

A first contribution that is related to the uncertainty on the parameter estimates and its

importance for model discrimination, is the anticipatory approach to design discriminatory

experiments. Indeed, the reason why the anticipatory approach performs better than the

original approach of Buzzi-Ferraris et al. (1984) is related to the uncertainty on the param-

eter estimates, and can be explained by the similarity between the anticipatory approach

and optimal experimental design for parameter estimation. Both the design criteria used

in optimal experimental design for parameter estimation and the anticipatory approach to

design discriminatory experiments take into account the information of the newly designed

experiment. In addition, both design criteria benefit from a larger information content of

the designed experiment with regard to the model parameters. Therefore, one can state

that an experiment designed using the anticipatory approach is more likely to result in more

precise parameter estimates than an experiment designed using the original approach of

Buzzi-Ferraris et al. (1984).

A second contribution of this dissertation related to the uncertainty on the parameter es-

timates is the design of so-called compromise experiments (Chapter 7). Regardless of the

design criterion used, it would be beneficial if the uncertainty of the parameter estimates

of the different rival models could be reduced prior to the start of the model discrimination

procedure. This can be achieved by performing dedicated experiments, designed using

optimal experimental design methods. However, performing such an additional experi-

ment for each rival model may increase the experimental effort instead of minimizing it.

Therefore, the design of a compromise experiment was investigated, where a compromise

experiment is defined as a single experiment that is sufficiently informative to improve the
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overall precision of the parameters of all rival models. For this purpose, two methods were

developed and applied: the kernel-based method (Section 7.2) and the ideal point method

(Section 7.3). The kernel-based method was developed for the specific problem of opti-

mally selecting sampling times to simultaneously improve the precision of the parameter

estimates of several rival models, whereas the ideal point method proved to be capable

of designing compromise experiments in experimental design problems with experimental

degrees of freedom of all types (manipulations, initial conditions and sampling times).

9.6 Research question V

Can optimal experimental design for parameter estimation be integrated with

the procedure for model discrimination, and is it beneficial to do so?

In the classical sequential procedure to integrate model discrimination and optimal exper-

imental design for parameter estimation, both aspects are dealt with sequentially, that is,

the model discrimination procedure is performed first, and then the parameters of the se-

lected model are further refined through the design of optimally informative experiments.

However, two other approaches to integrate model discrimination and optimal experimental

design for parameter estimation were described and applied in this dissertation (Chapter 8).

A first alternative procedure (Section 8.2.2) is similar to the classical sequential procedure,

but a compromise experiment is designed and performed before starting the model discrim-

ination procedure. Performing this compromise experiment should improve the quality of

the parameter estimates of the different models and thus decrease the uncertainty on their

predictions, making the design of discriminatory experiments more effective. In the second

alternative procedure (Section 8.3), both aspects are dealt with simultaneously. For this

purpose, the joint criterion proposed by Hill et al. (1968) was modified such that the an-

ticipatory approach could be used to quantify the discriminatory potential of the proposed

experiments. The basic design strategy of this joint design criterion is to emphasize model

discrimination when there is considerable doubt as to which model is best, and gradu-

ally shift the emphasis to parameter estimation as experimentation progresses and model

discrimination becomes possible.

The results obtained after applying the two sequential procedures (with and without the

use of a compromise experiment) to a case study showed that it is interesting to design

and perform a compromise experiment before starting the model discrimination proce-

dure. Although model discrimination was not achieved in less experiments compared to
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the sequential procedure without a compromise experiment, the quality of the parame-

ter estimates improved faster when a compromise experiment was performed first. The

performance of the simultaneous procedure was not as good as the performance of the

sequential procedures, because the wrong model was identified as the most appropriate

more frequently than with the sequential procedures. However, this may be due to the

way in which the adequacy of the models is evaluated in the simultaneous procedure and

may not necessarily be associated with the rationale of the joint design criterion used in

the procedure. The simultaneous procedure, which is interesting from a conceptual point

of view, may still be further improved.

In addition, the results also confirmed the similarity between the anticipatory approach

developed to design optimal discriminatory experiments on the one hand, and optimal

experimental design for parameter estimation on the other hand. No matter which pro-

cedure was applied (sequential or simultaneous), the D-optimality design criterion values

converged to more or less the same value after performing ten experiments, regardless of

the number of discriminatory experiments that were needed to identify the most appro-

priate model. In other words, it did not really matter how much effort is spent on model

discrimination, since the discriminatory experiments were informative with regard to the

model parameters as they were designed using the anticipatory approach.

9.7 Suggestions for further research

In the following sections, some suggestions for further research are briefly discussed.

9.7.1 Application to other (real-world) model discrimination problems

In this dissertation, the general procedure for model discrimination and its related methods

were evaluated by applying them to the working example described in Chapter 3. Applying

these methods to in silico case studies has the big advantage that the characteristics of

the generated experimental data are known as the characteristics of the random noise

that is added to the simualation results in order to mimic experimental data (Section 3.6)

are well-defined. This is important because in this context/dissertation, the focus lies on

the methods and the presence of experimental abnormalities, that are unavoidable when

performing actual experiments, may hamper the interpretability of the results with regard

to the methods used.
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Still, the ultimate test for the proposed procedure for model discrimination would be to

apply it to a real-world case study. When doing so, some issues may arise that do not

occur when performing in silico case studies. Some of them are briefly discussed below:

• In this dissertation, the uncertainty on the measurements was well defined through

the choice of ςy and lby, which respectively represent a constant minimal relative

error and a lower accuracy bound on the measurement of y (Section 3.6). However,

in practice, it may be difficult to get an idea of the precision and/or accuracy of the

measurements.

• Another issue that may arise in practical applications is the presence of outliers. As

the latter may result in wrong parameter estimates, the evaluation of the experiments

in the experimental design steps may be misleading. Therefore, it would be advisable

if the presence of outliers in the experimental data could be detected before actually

using the experimental data. Several techniques have been developed for so-called

outlier detection. The work of Liang and Kvalheim (1996); Pell (2000); Rousseeuw

and Leroy (1987); Vankeerberghen et al. (1995) deal with these techniques and may

be good starting points.

9.7.2 Experimental identifiability

In Section 2.9, the notions of structural and practical identifiability were defined. The

structural identifiability of a particular model structure is examined under the assumption

that perfect or error-free measurements are available for the response variables. From the

structural identifiability analysis, one may conclude that only certain combinations of the

model parameters can be identified. Practical identifiability, on the other hand, determines

whether the available data is sufficiently informative to identify the model parameters.

It would make sense to define experimental identifiability, where the possibilities of the

experimental setup to collect information about the studied process are considered. Indeed,

structural identifiability does not consider the practical aspects of the experimentation

process because it assumes perfect and continuous data, whereas practical identifiability

only considers the data from the already performed experiments. It would therefore be

interesting to look at the potential of the experimental setup, and to detect an imbalance

between the complexity of the model structure and the possibilities of the experimental

setup. One could define experimental identifiability as follows: Given the experimental
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setup, is it possible to collect the necessary information from dedicated experiments allowing

to give a unique value to the parameters?.

9.7.3 Anticipatory approach to OED/MD in a sequential procedure

In the case studies described in Chapter 4, it was shown that model discrimination was

achieved in the lowest number of experiments with the anticipatory approach and that this

approach generally resulted in experiments with a larger information content compared to

the other approaches to design optimal discriminatory experiments. The reason why the

anticipatory approach performed better than the original approach of Buzzi-Ferraris et al.

(1984) could be related to the uncertainty on the parameter estimates and by the simi-

larity between the anticipatory approach and optimal experimental design for parameter

estimation (both design criteria benefit from a larger information content of the designed

experiment with regard to the model parameters). However, it would be interesting for

future research to examine whether the following theory holds.

In optimal experimental design for parameter estimation, the expected uncertainty on the

parameter estimates is taken as an objective function (for instance, using the D-optimality

design criterion). When applying the anticipatory approach to design optimal discrimina-

tory experiments, on the other hand, the optimal experiment is the one where the expected

difference in the model predictions is high and where the uncertainty on the model predic-

tions is low. However, although the latter is an important feature of the objective function,

it is not considered as such when evaluating the adequacy of the rival models. Following

the same reasoning as with optimal experimental design for parameter estimation, one

could argue why this is done so.

However, the fact that the designed experiment is expected to result in a decreased un-

certainty on the model predictions in potentially informative regions with regard to model

discrimination, may be very important in a sequential procedure (as the one proposed

in Section 2.7). Indeed, the latter may have as a consequence that the discriminatory

potential of the next designed experiment is higher.

9.7.4 Design criteria proposed by Munack (1992)

In Sections 4.4.3 and 4.4.4, the design criteria proposed by Munack (1992) were described.

However, it should be noted that, to our knowledge, these design criteria were never ap-

plied or further investigated (for dynamic models). Although it is not easy to predict the
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performance of these design criteria, they seem appealing from a conceptual point of view.

Indeed, because the model parameters are re-estimated based on the predictions obtained

with the rival model(s), one can expect that these approaches to design discriminatory

experiments are more robust, in the sense that they are less dependent on the currently

available parameter estimates. However, two important remarks should be make with

respect to these design criteria:

• As discussed in Sections 4.4.3 and 4.4.4, the experiment proposed by the optimization

algorithm is simulated with both rival models, giving rise to two additional data sets.

Each data set corresponds to a scenario in which one of the rival models is assumed to

be the true model and for each scenario the design criterion is evaluated, that is, the

difference between the model predictions (Section 4.4.3) or the expected change in the

parameter estimates (Section 4.4.4). The smallest design criterion value is eventually

used as a measure of the discriminatory potential of the proposed experiment and

is maximized. However, in our opinion, it would be better to take the largest value

as a measure of the discriminatory power of the proposed experiment, and not the

smallest.

• As the results obtained in this dissertation showed that one preferably uses the antici-

patory approach to evaluate the discriminatory potential of the proposed experiment,

it is suggested to also use the anticipatory approach for the design criterion described

in Section 4.4.3.

• The rationale behind the anticipatory approach (that is, take into account the infor-

mation content of the newly designed experiment into account when evaluating its

discriminatory potential) could also be applied for the design criterion described in

Section 4.4.4 (as illustrated in Fig. 9.2). Indeed, the uncertainty on the currently

available parameter estimates (dotted lines in Fig. 9.2) of the model that was not

assumed to be the true model (or that is put under jeopardy, say model mj) is

compared with the uncertainty of its parameters obtained after re-estimating them

based on the in-silico generated data set generated with the other model (which was

assumed to be the true one, say model mi). However, in our opinion, it would be

better to compare this uncertainty with the uncertainty obtained when the informa-

tion content of the proposed experiment into account, but without re-estimating the

model parameters. The discriminatory potential of the proposed experiment should

thus be evaluated as indicated by the full lines in Fig. 9.2, where, for clarity, the

dotted lines represent the uncertainty on the currently available parameter estimates
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Figure 9.2: Illustration of the Mahalanobis distance function is used to quantify the expected
change in parameter estimates while designing an optimal discriminatory experi-
ment according to Munack (1992) for the scenario in which model mi is assumed
to be the true model. The dotted lines represent the uncertainty on the currently
available parameter estimates of model mj calculated without taking into account
the information content of the designed experiment, whereas the full lines do take
this into account.

of model mj calculated without taking into account the information content of the

designed experiment.

9.7.5 Criterion to evaluate the discriminatory potential of an experiment

As advocated in Section 4.7 it would be very interesting if a criterion were available that

could be used to indicate whether (further) model discrimination may be expected from

a given experiment or not. In other words, if (further) model discrimination is impossible

given the experiment(al setup), it would be very interesting if the experimenter could be

informed about this. However, the currently available criterion to evaluate the discrim-

inatory potential of an experiment is not appropriate for experiments where more than

one response variable is measured and/or when measurements are taken at several time

instants (as discussed in Section 4.7). One shortcoming of the currently available evalu-

ation criterion is that it is based on the overall (or average) discriminatory potential of

the different measurements, whereas the fact that, at least in theory, the most appropriate
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model can be identified from a set of rival models when the other models fail to describe

one single experimental data point is not considered.

However, the evaluation criterion does makes sense for situation with one response variable

and one measurement thereof (as considered in Buzzi-Ferraris and Forzatti (1983), where

this evaluation criterion was proposed for the first time). The evaluation criterion states

that an experiment is expected to result in model discrimination if the corresponding

Tij (ξ)-value is larger than one. The rationale behind this criterion is that a Tij (ξ)-value

smaller than one indicates that the variance of the difference between the model predictions

can be explained in terms of the measurement error (Σ) and the uncertainty on the model

predictions (Ωi + Ωj). In other words, one expects that no significant difference in the

model predictions will be observed after performing the designed experiment. Instead of

using the, in our opinion, incorrect extrapolations of the original evaluation criterion for

more general applications (with more response variables and/or more sampling times), one

could, for instance, determine the Tij-values of the individual measurements.

For the special cases with only one measured response variable, the Tij-values of the in-

dividual samples, denoted as Tij (ξ (tk)) with k = 1, . . . , nsp, can be simply calculated as

follows

Tij (ξ) =

nsp∑
l=1

∆ŷij (ξ, tl)
′ ·Ψij (ξ, tl)

−1 ·∆ŷij (ξ, tl) , (9.1)

when the design criterion proposed by Buzzi-Ferraris et al. (1984) is used (see Section 4.4.7

for more information on this design criterion). As one can see in Eq. (9.1), ŷij and Ψij are

scalar values when only one response variable is measured. Each individual sampling time

would then contribute to the discriminatory potential of the experiment if its corresponding

Tij (ξ (tk))-value is larger than one. One way of formulating an evaluation criterion would

be to state that a given percentage of the Tij (ξ (tk))-values is larger than one (as illustrated

in Fig. 9.3).

However, the calculation of the Tij (ξ (tk))-values is not straightforward for cases with

more than one response variable because it is possible that correlations exist between

them. Indeed, in such cases, one can see from Eq. (9.1) that the Tij (ξ (tk))-values at

the individual sampling times can only be calculated (independently) if Ψij (ξ, tl)
−1 is a

diagonal matrix, which is generally not the case.
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Figure 9.3: Histogram of hypothetical Tij (ξ (tk))-values.

9.7.6 Optimal experimental design for more accurate and precise parameter
estimates

The established methods to perform optimal experimental design for parameter estimation

(OED/PE) basically assume that the currently available parameter estimates are the true

ones and design an experiment such that the corresponding uncertainty (assessed by means

of the parameter estimation covariance matrix) is expected to reduce after it is performed.

However, it would be interesting if a method were available that did not only consider

the uncertainty on the parameter estimates, but also aims at finding the true parameter

estimates. In other words, where the established methods for OED/PE were developed

to improve the precision of the parameter estimates, it would be interesting to develop

methods that also aim at an improved accuracy of the parameter estimates.

However, this is not only important for OED/PE, but also for optimal experimental design

for model discrimination (OED/MD). Indeed, the discriminatory potential of the designed

experiment may not be (as large) as expected because the currently available parameter

estimates differ too much from the true ones. If the designed experiment is performed and

the parameters re-estimated using the newly obtained experimental data, their values may

change considerably and consequently also the discriminatory potential will change. If the

true values of the model parameters are found faster, the performance of the overall model

discrimination procedure may improve.

Suppose, for instance, that only a limited number of samples can be taken and that the

time interval around tk is particularly informative with regard to the model parameters (if

OED/PE) or the discriminatory potential (if OED/MD). When designing an experiment
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using the methods described in this dissertation, one would expect that the samples will

be scheduled in the time interval around tk, where the information content is largest.

However, if this time interval is rather small (compared with the duration of the entire

experiment), one will not capture the overall dynamics of the process, which may result in

wrong parameter estimates. The latter is obviously not desired.

One approach to include the accuracy of the parameter estimates in the experimental

design, could be to make sure that the sampling times are spread over the whole duration

of the experiment such that the dynamics of the process are captured. One could of course

distribute the sampling times uniformly over the length of the experiment, but it would be

better if the evolution of the information content over time could be taken into account.

For OED/MD problems, for instance, one could possibly achieve this as follows. In Chap-

ter 4 it was explained that the trajectory of Tij (ξ) can be calculated for a given experiment

ξ, as the discriminatory potential at a given point in time can be calculated using the ap-

propriate design criterion by assuming that one only samples at that time (for instance, as

shown in Fig. 4.7). Suppose that such a trajectory is shown in the upper graph of Fig. 9.4.

The cumulated sum of the trajectory of this design criterion is shown in the lower graph.

Ten uniformly distributed sampling times are obtained as illustrated by the gray, dashed

lines in the figure. Indeed, when the values of the design criterion are low, the cumulated

sum will increase slowly, whereas the latter will increase rapidly in important/informative

regions and these will eventually contain more sampling times.

Note that it is not possible to calculate a similar trajectory of the design criterion in

the context of OED/PE as the latter is given by the determinant of FIM (ξ), which is

calculated as

FIM (ξ) =

nsp∑
k=1

FIM (ξ (tk)) , (9.2)

and the information content of all sampling times is thus required to evaluate the design

criterion. In other words, one cannot simply evaluate the value of the design criterion

at the individual sampling times. For OED/PE problems, however, the design criteria

recently described by Buzzi-Ferraris and Manenti (2009) in order to obtain an optimal

filling of the experimental design space for a sequence of (steady-state) experiments may

be useful. Although these design criteria originated from another problem statement and
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Figure 9.4: Illustration of an undeveloped method to distribute the sampling times uniformly
over the length of the experiment (indicated by �), thereby taking into account
the information content with regard to the parameters (if OED/PE) or the dis-
criminatory potential (if OED/MD). The upper graph shows the trajectory of the
design criterion and its cumulative sum is shown in the lower graph. Ten uniformly
distributed sampling times are obtained as illustrated by the gray, dashed lines.

they were not applied (yet) for dynamic models (or experiments), it would be interesting

to investigate whether these design criteria could be used in this context as well.

9.7.7 Ds-optimality, combined with parameter subset selection

The nine rival models proposed in Chapter 3 to describe the kinetics glucokinase were

rather simple models. In many applications, however, the models are much more complex

and contain more parameters that obviously have to be estimated from experimental data.

It is clear that the information content of the experiment has to be higher when more model

parameters have to be estimated. In addition, one can expect that some model parameters

will be more important than others, in the sense that the sensitivity of the state variables

to the values of these parameters is higher. In literature, several approaches have been

described to identify which parameters are the most important ones (Brun et al., 2002; De

Pauw, 2005; Li et al., 2004). Sometimes, the least important model parameters are fixed

and the original set of model parameters is thus reduced to the set of most important ones.
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It could, however, be interesting to combine this with the so-called Ds-optimality design

criterion. The Ds-optimality design criterion is used when one is especially interested in

estimating a subset of the np parameters as precisely as possible (Atkinson and Donev,

1992). As stated above, the most intuitive approach to do this would be to ignore the other

parameters and design an experiment after removing their corresponding rows and columns

from the FIM. In other words, by treating these model parameters as constants. However,

this is a naive approach because in this way one ignores the fact that the uncertainty on

the estimates of the parameter of special interest is also determined by the uncertainty of

the other parameter estimates. A better approach is described below.

Without loss of generality, we may consider this subset to consist of the first nps elements

of parameter vector θ that can be partitioned as

θ =

[
θ1

θ2

]
(9.3)

with θ1 being the vector of the nps parameters of special interest and θ2 the vector of the

remaining np − nps parameters. The FIM can be partitioned accordingly as

FIM =

[
FIM11 FIM12

FIM12 FIM22

]
, (9.4)

where FIM11 is the nps×nps matrix containing the rows and columns of the original FIM

that are related to the parameters of special interest, FIM22 is the (np − nps)× (np − nps)

matrix with those of the other parameters, and FIM12 is the nps × (np − nps) matrix

containing the other elements of the FIM (those that represent the interaction between

the parameters of special interest and the other ones).

The parameter estimation error covariance matrix corresponding with the nps parameters

of special interest, denoted as Φ11, can be calculated as

Φ11 =
(
FIM11 − FIM12 · FIM−1

22 · FIM′
12

)−1
. (9.5)

The Ds-optimality design criterion can thus be found by maximizing the determinant

∣∣FIM11 − FIM12 · FIM−1
22 · FIM′

12

∣∣ =
|FIM|
|FIM22| . (9.6)
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Note that, as with the D-optimality design criterion, problems arise when particular pa-

rameters are unidentifiable. Indeed, if this is the case, the FIM will be singular and it will

not be possible to calculate Φ11 (as seen from Eqs. (9.5) and (9.6)).

9.7.8 Extention of the kernel-based method to design compromise experiments

In Section 7.2.5, the difficulties encountered when extending the kernel-based method for

more general experimental design problems were discussed. One of the problem occurs

when one or more manipulatory variables (or process inputs) are optimized. For instance,

when one of the manipulatory variables (the feed rate or the concentration of one of the

process variables) is set at another value a certain time after the start of the experiment,

the task of the experimental design then consists of finding the optimal new value for the

manipulatory variable and the optimal time to change it. It is clear that both experimental

degrees of freedom are dependent of eachother and the optimal value for the one is depends

on the values given to the other. They can thus not simply be determined separately, as

done when the kernel-based method is applied.

One possible approach to extend the kernel-based method as it was proposed in Section 7.2,

is to use multivariate kernel density estimation instead of univariate kernel density estima-

tion. In multivariate kernel density estimation (Wand and Jones, 1993), the general form

of the kernel estimator of the multivariate probability density function, denoted as p̂ (x),

is given by

p̂ (x) =
1

n
·

n∑
i=1

κH (x− xi) (9.7)

where x represents a d-dimensional (random) vector with density p (x) and n represents

the number of vectors xi. Similar to univariate kernel density estimation, κH is taken to

be a standard Gaussian function with zero mean and a variance equal to one, given by

κH (x− xi,H) =
1

(2π)
d
2 · |H| 12

· exp

(
−1

2
· (x− xi)′ ·H−1 · (x− xi)

)
. (9.8)

The symmetric d× d matrix H is called the bandwidth matrix and has a similar function

as the bandwidth or smoothing parameter (h) used in univariate kernel density estimation

(and the kernel-based method). For more detailed information on multivariate kernel

density estimation, the reader is referred to Wand and Jones (1993).
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Figure A.1: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ2

1,
for each of the selected approaches for OED/MD. The evolution of the median
criterion values of the other approaches are shown in gray to ease the comparison.
The number of criterion values from which the median was determined will be
indicated by the size of a bullet symbol and the corresponding integer.
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Figure A.2: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ3

1,
for each of the selected approaches for OED/MD. The evolution of the median
criterion values of the other approaches are shown in gray to ease the comparison.
The number of criterion values from which the median was determined will be
indicated by the size of a bullet symbol and the corresponding integer.
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Figure A.3: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ5

1,
for each of the selected approaches for OED/MD. The evolution of the median
criterion values of the other approaches are shown in gray to ease the comparison.
The number of criterion values from which the median was determined will be
indicated by the size of a bullet symbol and the corresponding integer.
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Figure A.4: The median values of the number of adequate models as a function of the number
of experiments that have been performed, starting from preliminary experiment ξ1

1

(a) and ξ3
1 (b). The evolution of these median values shows the rate at which the

number of adequate models decreases for the different approaches to design optimal
discriminatory experiments (Ta, Tb, Tc and Td). The number of values (runs) from
which the median was determined will be indicated by the size of a bullet symbol
and the corresponding integer.
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1. In
each of the subfigures, the results of one of the strategies are presented in black,
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Figure B.3: Boxplots of the Tij (ξ?2)-values calculated for each of the model pairs, where ξ?2 refers
to the first experiment that is designed when applying the model discrimination
procedure, and is performed after preliminary experiment ξ3

1. The mean of these
Tij-values is indicated by the vertical (blue) line and gives an idea of the overall
discriminatory potential of the designed experiment. Note that because the large
number of model pairs, their labels were omitted for brevity.
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Figure B.4: Boxplots of the Tij (ξ?2)-values calculated for each of the model pairs, where ξ?2 refers
to the first experiment that is designed when applying the model discrimination
procedure, and is performed after preliminary experiment ξ4

1. The mean of these
Tij-values is indicated by the vertical (blue) line and gives an idea of the overall
discriminatory potential of the designed experiment. Note that because the large
number of model pairs, their labels were omitted for brevity.
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Figure B.5: Boxplots of the Tij (ξ?2)-values calculated for each of the model pairs, where ξ?2 refers
to the first experiment that is designed when applying the model discrimination
procedure, and is performed after preliminary experiment ξ5

1. The mean of these
Tij-values is indicated by the vertical (blue) line and gives an idea of the overall
discriminatory potential of the designed experiment. Note that because the large
number of model pairs, their labels were omitted for brevity.
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Figure C.1: Evolution of the median of the D-optimality criterion values of model m5 for the
(thirty) runs of the model discrimination procedure initiated with (a) experiment
ξ4

1 and (b) experiment ξ5
1. The results obtained without the use of a compromise

experiment are shown in the left subfigure and the results obtained with a com-
promise experiment are shown in the right subfigure. The evolution of the median
criterion values of the other strategy is shown in gray to ease the comparison. The
number of criterion values from which the median was determined is mentioned
and also indicated by the size of the bullet symbol.
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Figure C.2: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ2

1

for the procedures with (a) and without the use of a compromise experiment (b).
The black lines and dots indicate the D-optimality criterion values obtained in
the model discrimination procedure, whereas the gray lines and dots shows how
the D-optimality criterion values evolves after model m5 has been identified as the
most appropriate model. The latter occurs after a varying number of experiments,
and the results obtained for the different occurrences are presented in the different
subfigures.
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Figure C.3: Evolution of the median D-optimality criterion values of model m5 for the (thirty)
runs of the model discrimination procedure that was initiated with experiment ξ3

1

for the procedures with (a) and without the use of a compromise experiment (b).
The black lines and dots indicate the D-optimality criterion values obtained in
the model discrimination procedure, whereas the gray lines and dots shows how
the D-optimality criterion values evolves after model m5 has been identified as the
most appropriate model. The latter occurs after a varying number of experiments,
and the results obtained for the different occurrences are presented in the different
subfigures.
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The black lines and dots indicate the D-optimality criterion values obtained in
the model discrimination procedure, whereas the gray lines and dots shows how
the D-optimality criterion values evolves after model m5 has been identified as the
most appropriate model. The latter occurs after a varying number of experiments,
and the results obtained for the different occurrences are presented in the different
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1
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The black lines and dots indicate the D-optimality criterion values obtained in
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and Gilles, E. D. (2004). A benchmark for methods in reverse engineering and model

discrimination: Problem formulation and solution. Genome Research, 14:1773–1785.

Kullback, S. (1959). Information Theory and Statistics. John Wiley & Sons, Inc.

Legates, D. R. and McCabe Jr., G. J. (1999). Evaluating the use of “goodness-of-fit”

measures in hydrologic and hydroclimatic model validation. Water Resources Research,

35(1):233–241.

Leis, J. and Kramer, M. (1988). The simultaneous solution and sensitivity analysis of sys-

tems described by ordinary differential equations. ACM Transactions on Mathematical

Software, 14(1):45–60.

Li, R., Henson, M., and Kurtz, M. (2004). Selection of model parameters for off-line

parameter estimation. IEEE on Control Systems Technology, 12(3):402–412.

Li, S., Petzold, L., and Zhu, W. (2000). Sensitivity analysis of differential-algebraic equa-

tions: a comparison of methods on a special problem. Applied Numerical Mathematics,

32:161–174.

Liang, Y.-Z. and Kvalheim, O. M. (1996). Robust methods for multivariate analysis – a

tutorial review. Chemometrics and Intelligent Laboratory Systems, 32(1):1–10.

Ljung, L. (1999). System Identification: Theory for the user. Prentice–Hall.

Lunin, V. V., Li, Y., Schrag, J. D., Iannuzzi, P., Cygler, M., and Matte, A. (2004). Crystal

structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose.

Journal of Bacteriology, 186(20):6915–6927.

Madigan, M. T., Martinko, J. M., and Parker, J. (2000). Brock Biology of Microorganisms,

9th edition. Prentice–Hall.

Marler, R. and Arora, J. (2004). Survey of multi-objective optimization methods for

engineering. Structural and Multidisciplinary Optimization, 26:369–395.

Marsili–Libelli, S., Guerrizio, S., and Checchi, N. (2003). Confidence regions of estimated

parameters for ecological systems. Ecological Modelling, 165:127–146.

Mathews, C. K., van Holde, K., and Ahern, K. G. (2000). Biochemistry. Addison Wesley

Longman, Inc.



BIBLIOGRAPHY 283

Mehra, R. (1974). Optimal input signals for parameter estimation in dynamic systems –

survey and new results. IEEE Transactions on Automatic Control, 19(6):753–768.

Mendes, P. and Kell, D. (1998). Non-linear optimization of biochemical pathways: appli-

cations to metabolic engineering and parameter estimation. Bioinformatics, 14(10):869–

883.

Mitchell, P. (1997). Misuse of regression for emperical validation of models. Agricultural

Systems, 54(3):313–326.

Moles, C., Mendes, P., and Banga, J. (2003). Parameter estimation in biochemical path-

ways: a comparison of global optimization methods. Genome Research, 13:2467–2475.

Monasterio, O. and Cárdenas, M. (2003). Kinetic studies of rat liver hexokinase D (’glu-

cokinase’) in non-co-operative conditions showing an ordered mechanism with MgADP

as the last product to be released. Biochemical Journal, 371:29–38.

Moriasi, D., Arnold, J., Liew, M. V., Bingner, R., Harmel, R., and Veith, T. (2007).

Model evaluation guidelines for systematic quantification of accuracy in watershed sim-

ulations. Transactions of the American Society of Agricultural and Biological Engineers,

50(3):885–900.

Munack, A. (1989). Optimal feeding strategy for identification of monod-type models by

fed-batch experiments. In Fish, N., Fox, R., and Thornhill, N., editors, Computer appli-

cations in fermentation technology: Modelling and control of biotechnological processes

(4th edition), pages 195–204. SCI Elsevier Applied Science Publishing, Amsterdam.

Munack, A. (1991). Optimization of sampling. In Schugerl, K., editor, Biotechnology,

a Multi-volume Comprehensive Treatise, Volume 4. Measuring, Modelling and Control,

pages 251–264. VCH, Weinheim.

Munack, A. (1992). Some improvements in the identification of bioprocesses. In Karim, M.

and Stephanoloulos, G., editors, Modelling and Control of Biotechnical Processes, pages

89–94. Pergamon Press, Oxford.

Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models: Part

I – a discussion of principles. Journal of Hydrology, 10:282–290.

Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Computer

Journal, 7:308–313.



284 BIBLIOGRAPHY

Ogawa, T., Mori, H., Tomita, M., and Yoshino, M. (2007). Inhibitory effect of phos-

phoenolpyruvate on glycolytic enzymes in Escherichia coli. Research in Microbiology,

158:159–163.

Ogunnaike, B. A. and Ray, W. H. (1994). Process Dynamics, Modeling and Control. Oxford

University Press.

Omlin, M. and Reichert, P. (1999). A comparison of techniques for the estimation of model

prediction uncertainty. Ecological Modelling, 115:45–59.

Pell, R. J. (2000). Multiple outlier detection for multivariate calibration using robust

statistical techniques. Chemometrics and Intelligent Laboratory Systems, 52(1):87–104.

Petersen, B. (2000). Calibration, identifiability and optimal experimental design of activated

sludge models. PhD thesis, Ghent University.

Pinto, J., Lobao, M., and Monteiro, J. (1990). Sequential experimental design for parameter

estimation: a different approach. Chemical Engineering Science, 45:883–892.

Power, M. (1993). The predictive validation of ecological and environmental models. Eco-

logical Modelling, 68:33–50.

Pronzato, L. and Walter, E. (1988). Robust experiment design via maximin optimization.

Mathematical Biosciences, 89(2):161–176.

Rodriguez-Fernandez, M., Mendes, P., and Banga, J. R. (2006). A hybrid approach for

efficient and robust parameter estimation in biochemical pathways. Biosystems, 83(2–

3):248–265.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function.

Annals of Mathematical Statistics, 27:832–837.

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression and Outlier Detection. John

Wiley & Sons, New York.

Rykiel, E. J. J. (1996). Testing ecological models: the meaning of validation. Ecological

modeling, 90:229–244.

Schwaab, M., Monteiro, J. L., and Pinto, J. C. (2008). Sequential experimental design for

model discrimination. Taking into account the posterior covariance matrix of differences

between model predictions. Chemical Engineering Science, 63:2408–2419.



BIBLIOGRAPHY 285

Schwaab, M., Silva, F. M., Queipo, C. A., Jr., A. G. B., Nele, M., and Pinto, J. C. (2006).

A new approach for sequential experimental design for model discrimination. Chemical

Engineering Science, 61:5791–5806.

Seber, G. and Wild, C. (1989). Nonlinear Regression. John Wiley & Sons, Inc.

Segel, I. H. (1975). Enzyme Kinetics – Behaviour and Analysis of Rapid Equilibrium and

Steady–State Enzyme Systems. John Wiley & Sons, Inc.

Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical

Journal, 27(4):623–656.

Shirt, R., Harris, T., and Bacon, D. (1994). Experimental design considerations for dynamic

systems. Industrial and Engineering Chemistry Research, 33:2656–2667.

Sidoli, F. R., Mantalaris, A., and Asprey, S. P. (2004). Modelling of mammalian cells and

cell culture processes. Cytotechnology, 44:27–46.

Smith, K. I., Everson, R. M., and Fieldsend, J. E. (2004). Dominance measures for multi-

objective simulated annealing. In Proceedings of Congress on Evolutionary Computation,

CEC04, pages 23–30.

Spriet, J. (1985). Structure characterization: an overview. In Baker, H. and Young, P.,

editors, Identification and System Parameter Estimation 1985 – Proceedings of the 7th

IFAC/IFORS Symposium, pages 749–756. Pergamon Press.

Takors, R., Wiechert, W., and Weuster–Botz, D. (1997). Experimental design for the

identification of macrokinetic models and model discrimination. Biotechnology and Bio-

engineering, 56(5):564–576.

Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural

Systems, 89:225–247.

Ternbach, M. A. B. (2005). Modeling based process development of fed-batch bioprocesses:

L-valine production by Corynebacterium glutamicum. PhD thesis, RWTH Aachen Uni-

versity.

Ternbach, M. B., Bollman, C., Wandrey, C., and Takors, R. (2005). Application of model

discriminating experimental design for modeling and development of a fermentative fed-

batch L-valine production process. Biotechnology and Bioengineering, 91(3):356–368.



286 BIBLIOGRAPHY
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Summary

A mathematical model can be defined as a mathematical representation of the mechanisms

that govern the behavior of a process being studied, and the aim of a modeling exercise is

to obtain a mathematical model that adequately describes and even predicts the process

behavior. Once a proper model has been identified, it becomes a powerful tool for both

scientists and engineers. However, it is important to realize that the lack of insight in the

modeled process may result in the proposal of several so-called rival models, each of which

represents a certain hypothesis of how the process works. Obviously, one is especially

interested in the model that describes the process behavior in the best way. The problem

of identifying the best model from a set of rival models, often referred to as the problem of

model discrimination, was dealt with in this dissertation.

A general procedure to deal with the problem of model discrimination consists of four steps

that are performed in an iterative manner until a stopping criterion is met. In the first

step, the parameters of the rival models are estimated from all the data that is available.

A second step involves an evaluation of the model’s adequacy to describe the available

data and is thus performed in order to find out which models are able to describe the data

in a reasonable manner and which ones do not. Models that pass this test are used in a

third step, where an optimal discriminatory experiment is designed. This experiment is

then performed in a fourth and last step, after which the loop is closed by re-estimating

the parameters of all rival models using all data available at that time.

To identify the best model from the set of rival models, it is thus necessary to collect new

information about the process, and thus additional experiments have to be performed.

Since performing experiments can be time and money consuming, carefully designing them

can significantly reduce the required experimental effort. To achieve model discrimination

in a minimal number of experiments, a number of design criteria have been developed.

A detailed study of these design criteria revealed that the experimental design basically



comes down to finding that experiment that maximizes the difference between the model

predictions, preferably taking into account the uncertainty associated with this difference.

Indeed, when designing the experiment, one assumes that one the rival models is the true

model and that the outcome of the designed experiment can be predicted by this model.

Under this assumption, one expects that it will be possible to identify the most appropriate

model when the other models predict this experiment in a totally different way.

The uncertainty associated with the difference in the model predictions originates from two

sources: the uncertainty on the measurements and the uncertainty on the model predic-

tions. Indeed, the uncertainty on the measurements, which can be seen as a measure of the

reproducibility of the experiment(al) data, has to be taken into account when designing a

discriminatory experiment, as well as the uncertainty on the model predictions since the

evaluation of the discriminatory potential of an experiment is based on how it is predicted

by the rival models.

These aspects are incorporated in the design criterion proposed by Buzzi-Ferraris et al.

(1984), which was taken as a starting point because it is appealing from a conceptual

point of view. However, this design criterion only uses the information content of the

already performed experiments to evaluate the discriminatory potential of the designed

experiment and, therefore, a modified design criterion was proposed in this dissertation,

where the expected information content of the newly designed experiment is considered,

even before the experiment is performed. Hence, this approach was called the anticipatory

approach to optimal experimental design for model discrimination.

After applying the approaches to design optimal discriminatory experiments to a case

study, one could conclude that the anticipatory approach performed better than the orig-

inal approach of Buzzi-Ferraris et al. (1984). The reason why the anticipatory approach

performs better than the original approach of Buzzi-Ferraris et al. (1984) is related to the

uncertainty on the parameter estimates, and can be explained by the similarity between

the anticipatory approach and optimal experimental design for parameter estimation (both

design criteria benefit from a larger information content of the designed experiment with

regard to the model parameters).

It is clear that high model prediction uncertainties hamper the efficacy and efficiency of

the model discrimination procedure. These model prediction uncertainties are determined

by the quality of the available data, since low quality data will result in poorly estimated

parameters, which in turn result in uncertain model predictions. The discrimination among



several rival models may thus become more efficient and effective if this uncertainty could

be reduced prior to the start of the model discrimination procedure. Reducing the uncer-

tainty on the model predictions can be achieved by designing and performing experiments

dedicated to reducing the uncertainty on the parameter estimates. However, performing

an additional experiment for each rival model may undermine the overall goal of optimal

experimental design, since this would require at least as many experiments as the number

of rival models. Therefore, the possibility to design a so-called compromise experiment

was investigated. Such a compromise experiment is defined as an experiment that is not

optimal for one or more of the individual rival models, but is sufficiently informative to

improve the overall precision of the parameters of all rival models.

To design compromise experiments, two methods were developed: the kernel-based method

and the ideal point method. The kernel-based method was developed to design a compro-

mise experiment for experimental design problems where only the sampling times are to

be optimized. Because the use of this method is limited to such experimental design prob-

lems, the idea of designing a compromise experiment was further explored by treating it

as a multi-objective problem. As a result, the so-called ideal point method was proposed,

which can be used for experimental design problems with experimental degrees of freedom

of any type (manipulations, initial conditions and sampling times).

Finally, three approaches to integrate optimal experimental design for parameter estima-

tion and model discrimination were investigated. In a first procedure, both aspects are

dealt with sequentially, that is, the model discrimination procedure is performed first, and

then the parameters of the selected model are further refined through the design of opti-

mally informative experiments. The second procedure, is similar, except that a compromise

experiment is designed and performed prior to the start of the model discrimination proce-

dure to improve the quality of the parameter estimates. In the third procedure, both issues

are dealt with simultaneously. For this purpose, the joint design criterion proposed by Hill

et al. (1968) is modified such that the anticipatory approach can be used to quantify the

discriminatory potential of the proposed experiments. The results obtained after applying

the three procedures to a case study showed that, although model discrimination was not

achieved in less experiments compared to the sequential procedure without a compromise

experiment, the quality of the parameter estimates improved faster when a compromise

experiment was performed first. The performance of the simultaneous procedure appeared

to be worse than the performance of the sequential procedures, because the wrong model

was identified as the most appropriate more frequently than with the sequential procedures.



In addition, the results confirmed the similarity between the anticipatory approach to de-

sign optimal discriminatory experiments and optimal experimental design for parameter

estimation.



Samenvatting

Een wiskundig model kan gedefinieerd worden als een mathematische beschrijving van

de mechanismen die het gedrag van een bepaald proces bepalen, en het doel van een

modelleeroefening is het identificeren van een wiskundig model dat in staat is om het

bestudeerde proces adequaat te beschrijven en zelfs te voorspellen. Eens dergelijk model

is gëıdentificeerd, vormt het een krachtig hulpmiddel voor wetenschappers en ingenieurs.

Het is echter van groot belang te beseffen dat het inzicht in het gemodelleerde proces vaak

onvolledig is en dat dit leidt tot het voorstellen van verschillende, rivaliserende modellen

voor eenzelfde proces. Elk van deze modellen is de wiskundige vertaling van een bepaalde

hypothese over hoe het proces werkt. Het spreekt voor zich dat men vooral gëınteresseerd

is in dat model dat het verloop van het proces het beste beschrijft. De zoektocht naar

het beste model uit een set van rivaliserende modellen wordt dikwijls het modeldiscrimi-

natieprobleem genoemd en werd in dit doctoraat bestudeerd.

Een algemene procedure om dit modeldiscriminatieprobleem aan te pakken bestaat uit vier

stappen die op iteratieve wijze worden uitgevoerd tot aan een stopcriterium is voldaan.

In de eerste stap worden de parameters van de rivaliserende modellen geschat op basis

van alle experimentele data die op dat ogenblik voor handen zijn. In een tweede stap

wordt nagegaan welke van de rivaliserende modellen (nog) in staat zijn om de beschikbare

data voldoende adequaat te beschrijven. De modellen die adequaat werden bevonden,

worden gebruikt in de derde stap waarin een optimaal discriminerend experiment wordt

ontworpen. Vervolgens, wordt dit experiment uitgevoerd (vierde en laatste stap) en wordt

de lus gesloten door de parameters van alle rivaliserende modellen opnieuw te schatten.

Om het beste model te identificeren uit een set van rivaliserende modellen is het dus

nodig om nieuwe informatie te verzamelen over het bestudeerde proces en moeten nieuwe

experimenten worden uitgevoerd. Aangezien dit dikwijls veel tijd en geld kost, is het belan-

grijk deze experimenten zodanig te ontwerpen dat het aantal bijkomende experimenten tot



het minimum beperkt wordt. Om modeldiscriminatie te verwezenlijken werden reeds een

aantal ontwerpcriteria ontwikkeld. In wezen komt het ontwerp van een optimaal discrim-

inerend experiment neer op het zoeken naar dat experiment dat zo verschillend mogelijk

wordt voorspeld door de rivaliserende modellen, rekening houdende met de onzekerheid

die hiermee gepaard gaat. Inderdaad, bij het ontwerpen van het experiment wordt veron-

dersteld dat een van de rivaliserende modellen het echte model is en dat de uitkomst van

het experiment dus kan voorspeld worden door dit model. Onder deze veronderstelling,

verwacht men dat dit model zal kunnen worden gëıdentificeerd als het experiment anders

wordt voorspeld door de andere, rivaliserende modellen.

De onzekerheid die gerelateeerd is aan het verschil tussen de modelvoorspellingen wordt

bepaald door de onzekerheid op de experimentele data enerzijds, en door de onzekerheid op

de modelvoorspellingen anderzijds. Inderdaad, de onzekerheid op de experimentele data

moet in rekening gebracht worden bij het ontwerpen van een optimaal discriminerend ex-

periment, odat dit kan gezien worden als een maat voor de reproduceerbaarheid ervan.

Maar ook de onzekerheid op de modelvoorspellingen is van belang aangezien het evalueren

van het discriminerend vermogen van een experiment gebeurt op basis van deze modelvoor-

spellingen.

Deze aspecten zijn vervat in het ontwerpcriterium dat werd ontwikkeld door Buzzi-Ferraris

et al. (1984) en dit ontwerpcriterium werd als vertrekpunt genomen in dit onderzoek. Bij

het evalueren van het discriminerend vermogen van een bepaald experiment gebruikt dit

criterium echter enkel de informatie van de op dat ogenblik reeds uitgevoerde experimenten.

Vandaar dat dit ontwerpcriterium werd aangepast zodat de verwachte informatie-inhoud

van het ontworpen experiment reeds in rekening kon worden gebracht voordat het effectief

wordt uitgevoerd. Vandaar dat deze aanpak de anticiperende aanpak voor het ontwerpen

van optimaal discriminerende experimenten werd genoemd.

Na het toepassen van de methoden voor het ontwerpen van optimaal discriminerende ex-

perimenten, kon geconcludeerd worden dat de anticiperende aanpak beter werkt dan de

originele aanpak van Buzzi-Ferraris et al. (1984). Een verklaring hiervoor is gerelateeerd

aan de onzekerheid op de parameterschattingen, en kan worden verklaard door de analogie

tussen de anticiperende aanpak en de methoden om experimenten te ontwerpen waarvan

verwacht wordt dat die een maximum aan informatie over de parameters zullen oplev-

eren. Beide methoden hebben er namelijk voordeel bij dat het ontworpen experiment

informatierijk is met betrekking tot de modelparameters.



Het is duidelijk dat een grote onzekerheid op de modelvoorspellingen niet ten goede komt

aan de effectiviteit en de efficiëntie van de modeldiscriminatieprocedure. Nu is het zo dat

de onzekerheid op de modelvoorspellingen wordt bepaald door de kwaliteit van de beschik-

bare data, aangezien data van lage kwaliteit zullen resulteren in slecht geschatte parameters

die op hun beurt zullen leiden tot onbetrouwbare modelvoorspellingen. Het lijkt dus mo-

gelijk om de modeldiscriminatie tussen verschillende rivaliserende modellen efficienter te

maken door deze onzekerheid te reduceren alvorens de modeldiscriminatieprocedure te be-

ginnen. Een reductie van de onzekerheid op de modelvoorspellingen kan worden bekomen

door experimenten uit te voeren die ontworpen zijn met als doel de onzekerheid op de

parameterschattingen te verminderen. Het uitvoeren van dergelijk experiment voor elk

van de rivaliserende modellen kan echter het ultieme doel van optimale proefopzet onder-

mijnen aangezien minstens zoveel experimenten nodig zijn als er rivaliserende modellen

zijn. Vandaar dat in dit doctoraat de mogelijkheid werd onderzocht om een zogenaamd

compromis-experiment te ontwerpen. Dergelijk compromis-experiment werd gedefinieerd

als een experiment dat niet optimaal is voor een of meer individuele modellen, maar vol-

doende informatierijk om de globale precisie van de parameterschattingen van alle rivalis-

erende modellen te verbeteren.

Om dergelijke compromis-experimenten te ontwerpen werden twee methoden ontwikkeld:

de kernel -gebaseerde methode en de ideaalpuntmethode. De kernel -gebaseerde methode

werd ontwikkeld om compromis-experimenten te ontwerpen voor problemen waarbij enkel

de meettijdstippen worden geoptimaliseerd. Aangezien het toepassingsgebied van deze

methode beperkt is, werd het idee van het compromis-experiment verder verkend door het

te benaderen als een multi-objectief probleem. De ideaalpuntmethode werd voorgesteld

en kan worden gebruikt voor problemen met experimentele vrijheidsgraden van alle types

(manipulaties, initiële condities en meettijdstippen).

Tot slot werden drie verschillende procedures onderzocht om het ontwerp van experimenten

voor precieze parameterschattingen en modeldiscriminatie te integreren. In een eerst proce-

dure worden beide aspecten sequentieel behandeld. De modeldiscriminatieprocedure wordt

eerst uitgevoerd, en vervolgens wordt de precisie van de parameterschattingen verbeterd

door het uitvoeren van gerichtte experimenten. Een tweede procedure is gelijkaardig, be-

halve dat een compromis-experiment wordt uitgevoerd alvorens de modeldiscriminatiepro-

cedure te starten. In een derde procedure worden beide aspecten simultaan behandeld.

Hiervoor werd het ontwerpcriterium ontwikkeld door Hill et al. (1968) aangepast zodat de

anticiperende aanpak kon worden gebruikt voor het kwantificeren van het discriminerend



potentieel van de voorgestelde experimenten. Verder werden deze procedures toegepast in

een gevalstudie waarin duidelijk werd dat het gebruik van een compromis-experiment nut-

tig is. Hoewel er evenveel experimenten nodig waren om modeldiscriminatie te bekomen,

verbeterde de kwaliteit van de parameterschattingen sneller dan met de procedure zonder

compromis-experiment. De performantie van de simultane procedure was minder goed dan

de performantie van de twee sequentiele procedures omdat het verkeerde model frequenter

werd geselecteerd als beste model.






