

Greenhouse gas emissions from and storm impacts on wastewater treatment plants: Process modelling and control

Thèse

Li Sha Guo

Doctorat en génie des eaux

Philosophiae doctor (Ph.D)

Québec, Canada

© Li Sha Guo, 2014

Abstract

This PhD thesis studied the interaction between wastewater treatment plants (WWTPs) and climate change, i.e. the production and emission of greenhouse gases (GHGs), especially nitrous oxide (N_2O), from WWTPs and the effect of the climate change induced more intense rain events on WWTPs. Both field measurements and full-scale modelling were pursued in this research.

A one-month measurement campaign was performed by installing on-line sensors at the aeration zone of the bioreactor of a 750,000 person equivalents WWTP, i.e. the Eindhoven WWTP in the Netherlands. The models of a full-scale virtual plant, i.e. the Benchmark Simulation Model No.2 (BSM2), and a full-scale real plant, i.e. the Eindhoven WWTP in the Netherlands, were extended with respect to GHG emissions, especially the pathways involving N₂O. Two types of extended Activated Sludge Models (ASM) were developed, i.e. ASMG1 for COD/N removal and ASMG2d for COD/N/P removal. Besides heterotrophic N₂O production, both proposed models include N₂O production by nitrite denitrification by ammonia-oxidizing bacteria (AOB) and describe the DO effect on AOB N₂O production by a modified Haldane kinetics term.

Results showed that AOB are the major producer of N_2O while the heterotrophs consume N_2O considerably. The high N_2O emissions occurred under high NH_4^+ and intermediate DO concentrations (up to 2.5 mg O_2/I in this work). Such conditions can be created by NH_4^+ -DO cascade control which aims at reducing energy consumption by lowering the DO concentrations when the NH_4^+ concentration is sufficiently low. Moreover, this cascade controller is a low-gain feedback control strategy, i.e. a significant delay will occur between the detection of a NH_4^+ increase and the increase in aeration. All these properties lead to conditions favourable to N_2O production by AOB.

Different alternative scenarios and control strategies were compared in terms of effluent quality, operational cost and GHG emissions. In the framework of BSM2, a good balance among effluent quality, operational cost and GHG emissions was realized by implementing a pure DO feedback controller in the first aeration zone and a NH₄⁺-DO cascade controller in the following two aeration zones and using either step feed or sludge recycling control to deal with hydraulic shocks.

Keywords:

Activated sludge, wastewater treatment, process control, field measurements, full-scale mathematical modelling, greenhouse gases, nitrous oxide, wet weather conditions