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Résumé 

La détérioration des ressources en eau et la grande quantité d’eau polluée générée dans les sociétés 

industrialisées donnent une importance fondamentale aux procédés de traitement des eaux usées pour 

préserver les ressources, conformément à l’objectif 6 des 17 objectifs de développement durable des Nations 

Unies. Le rejet de nutriments tels que l’ammoniac par les eaux usées est un problème important, l’élimination 

de l’azote (N) est donc l’un des processus critiques de toute station de récupération des ressources en eau 

(StaRRE). L’objectif de ce projet de recherche doctoral est d’améliorer la compréhension des mécanismes 

d’élimination de l’azote dans le traitement biologique des eaux usées grâce à la modélisation, et d’optimiser les 

StaRRE existantes pour réduire la consommation d’énergie et de ressources. Dans ce cadre, 3 études 

différentes ont été réalisées. 

Tout d’abord, un modèle de décanteur réactif unidimensionnel a été développé. Celui-ci prédit le comportement 

de décantation de boues à des concentrations élevées de boues ainsi que les conversions biocinétiques dans 

le processus de décantation secondaire (DS). Il a été constaté qu’une description précise des réactions 

biocinétiques dans la DS impose des défis de calibration élevés pour le modèle de décantation, car ce dernier 

doit capturer les profils de concentration complets de la biomasse active dans la couverture de boues. Le modèle 

calibré a pu prédire avec précision les profils de concentration des effluents et du lit de boues dans la DS. Le 

modèle développé peut être utilisé pour le contrôle et la simulation des StaRRE afin d’obtenir de meilleures 

prédictions des concentrations d’effluents et des boues de retour, et aussi de calculer correctement le bilan 

massique d’azote d’une StaRRE.  

Deuxièmement, un modèle à l’échelle de l’usine a été mis en place pour un système de pré-dénitrification 

conventionnel pour la StaRRE pilEAUte à l’échelle pilote. Une méthodologie de calibration du modèle par étapes 

a été adoptée en fusionnant les principaux protocoles de calibration de modèle, tout en mettant l’accent sur le 

modèle biocinétique. Le modèle de la StaRRE pilEAUte, y compris le décanteur réactif développé, a été calibré 

et validé pour simuler les variables de modèle sélectionnées, puis utilisé pour une analyse de scénarios plus 

approfondie de l’optimisation de la consommation d’énergie et des ressources. Les résultats de l’analyse des 

scénarios ont montré le potentiel d’optimisation du système conventionnel d’élimination d’azote grâce à ‘la 

réduction de ‘l’aération et du retour interne des nitrates. Ils ont également démontré que la dénitrification dans 

le décanteur secondaire peut avoir une contribution significative à la capacité globale d’élimination d’azote d’une 

StaRRE lorsque la liqueur mixte peut traverser le lit de boues.  

Troisièmement, l’étude visait à évaluer l’applicabilité des stratégies de commande continu et intermittent du 

rapport de l’ammoniac par rapport aux NOX-N (commande AvN) sur la StaRRE pilEAUte. Les stratégies de 

commande de l’aération par AvN sont appliquées en amont d’un réacteur de désammonification, qui est un 
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processus d’élimination efficace d’azote avec un besoin de ressources réduit (en termes d’aération et carbone) 

par rapport aux systèmes conventionnels. Les deux stratégies de commande testées pourraient être réalisées 

grâce à une commande automatique. Cependant, le maintien du rapport AvN dans l’effluent à la valeur souhaitée 

(1) dépend fortement des conditions opérationnelles telles que les variations de l’affluent, le temps de rétention 

des boues et la fiabilité des capteurs. 

Même si la recherche est guidée par les études de StaRRE à l’échelle pilote’, les méthodologies développées 

pour démontrer et modéliser les processus et les conditions opérationnelles économes en énergie et en 

ressources sont applicables et transférables à d’autres études de cas à plein échelle. 

 

  



 

iv 

Abstract 

Deterioration of water resources and the large amount of polluted water generated in industrialized societies 

gives fundamental importance to wastewater treatment processes to preserve resources in accordance with 

goal 6 of the 17 sustainable development goals of the United Nations. Discharge of nutrients such as ammonia 

with wastewater is a significant issue, thus nitrogen (N) removal is one of the critical processes of any water 

resource recovery facilities (WRRF). The objective of this PhD research project was to improve the 

understanding of N-removal mechanisms in biological treatment of wastewater through modelling and to 

optimize existing WRRFs to reduce energy and resource consumption. Within this context, 3 different studies 

were carried out. 

First, a one dimensional reactive settler model was developed that predicts the settling behaviour at high sludge 

concentrations together with biokinetic conversions in the secondary settling process. It was found that an 

accurate description of biokinetic reactions in the SST puts high calibration requirements on the settling model 

as it must properly capture the full concentration profiles of active biomass in the sludge blanket. The calibrated 

model was able to accurately predict the effluent and sludge blanket concentration profiles in the SST. The 

developed model can be used for control and simulation of WRRFs for better predictions of SST effluent and 

underflow concentrations and also properly calculate the nitrogen mass balance of a WRRF.  

Second, a plant-wide model was set up for a conventional pre-denitrification system for the pilot-scale pilEAUte 

WRRF. A step-wise model calibration methodology was adopted by merging main existing model calibration 

protocols while placing emphasis on the biokinetic model. The pilEAUte model, including the developed reactive 

settler, was calibrated and validated to simulate the selected model variables and used for further scenario 

analysis for energy and resource optimization. The scenario analysis results showed the optimization potential 

of conventional N removal systems through application of reduced aeration and internal nitrate recycling. It also 

demonstrated that denitrification in the secondary settler can contribute significantly to the overall N removal 

capacity of the WRRF when mixed liquor can pass through the sludge blanket.  

Third, it was aimed to evaluate the applicability of continuous and intermittent Ammonia vs NOX-N (AvN) control 

strategies on the pilEAUte WRRF. The AvN aeration control strategies are applied prior to a deammonification 

stage which is a short-cut N removal process with reduced resource (aeration and carbon) requirements in 

comparison to conventional systems. Both strategies could be achieved through automatic control. However, 

keeping the AvN ratio in the effluent on the desired value highly depends on operational conditions such as 

influent variations, sludge retention time and the sensor’s measurement reliability.  
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Even though this research is driven by case studies applied to a pilot-scale WRRF, the developed methodologies 

to demonstrate and model the energy and resource-efficient processes and operational conditions are applicable 

and transferable to other full-scale case studies.  



 

vi 

Contents 

Résumé ............................................................................................................................................................... ii 

Abstract............................................................................................................................................................... iv 

Contents ............................................................................................................................................................. vi 

List of Figures ...................................................................................................................................................... x 

List of Tables .................................................................................................................................................... xiv 

List of Abbreviations .......................................................................................................................................... xv 

Acknowledgements ........................................................................................................................................... xvi 

INTRODUCTION .................................................................................................................................................1 

1. LITERATURE REVIEW ..........................................................................................................................4 

1.1 Water Resource and Recovery Concept and Challenges ..............................................................4 

1.2 Energy & Resource Consumption in WRRFs ................................................................................5 

1.3 Modelling of Wastewater Treatment Processes .............................................................................8 

1.4 State-of-the-Art Biokinetic Models Including N-Removal .............................................................10 

1.4.1 ASM1 ..................................................................................................................................11 

1.4.2 ASM2 & ASM2d ..................................................................................................................12 

1.4.3. ASM3 ..................................................................................................................................12 

1.4.4. 2-Step Nitrification and 4-Step Denitrification ......................................................................13 

1.5 Energy & Resource Efficient N-Removal Processes & Modelling ................................................14 

1.5.1 Deammonification ...............................................................................................................14 

1.5.2 Simultaneous Nitrification and Denitrification ......................................................................21 

1.5.3 Process Control in N-Removal Processes ..........................................................................23 

1.6 Modelling Reactive Secondary Settling Process ..........................................................................26 

1.6.1 One-Dimensional Settling Models .......................................................................................28 

1.6.2 Reactive Settling Models .....................................................................................................29 

1.6.3 CFD Models ........................................................................................................................32 

2. PROBLEM STATEMENT & OBJECTIVES ...........................................................................................33 

3. MATERIALS & METHODS ...................................................................................................................35 

3.1 pilEAUte WWRF & Data Sources ................................................................................................35 

3.2 Modelling Methodology ................................................................................................................40 

3.2.1 Modelling Protocol ...............................................................................................................40 

3.2.2 Modelling Platform – WEST ................................................................................................45 



 

vii 

4. DEVELOPMENT of a 1-D REACTIVE SETTLER MODEL ...................................................................48 

4.1 Data Collection .............................................................................................................................49 

4.2 Model Development .....................................................................................................................54 

4.2.1 Implementation of Clarifier Geometry ..................................................................................54 

4.2.2 Modelling Hindered Settling Behaviour ...............................................................................55 

4.2.3 Modelling Compression Settling Behaviour .........................................................................55 

4.2.4 Modelling Biokinetic Reactions............................................................................................56 

4.2.5 Numerical Solution ..............................................................................................................57 

4.3 Model Calibration and Testing .....................................................................................................57 

4.3.1 Calibration of Hindered Settling Behaviour .........................................................................57 

4.3.2 Testing the Inclusion of Clarifier Geometry .........................................................................60 

4.3.3 Calibration of Sludge Compression Behaviour ....................................................................63 

4.3.4 Calibration of ASM1 biological reactions in BD settler model ..............................................68 

4.4 Conclusions .................................................................................................................................70 

5. MODELLING of BIOLOGICAL N-REMOVAL PROCESSES ................................................................72 

5.1 pilEAUte Model – Conventional Nitrogen Removal ......................................................................72 

5.2 Model Input Data ..........................................................................................................................73 

5.1.1 Influent Data ........................................................................................................................73 

5.1.2 System Operational Data ....................................................................................................77 

5.1.3 Effluent Data .......................................................................................................................79 

5.3 Hydraulic Model ...........................................................................................................................80 

5.3.1 Reference Case ..................................................................................................................81 

5.3.2 Step-Feed Case ..................................................................................................................83 

5.3.3 Final Hydraulic Model .......................................................................................................................84 

5.4 Aeration Model .............................................................................................................................86 

5.5 SST Model Calibration .................................................................................................................89 

5.6 Calibration of Biokinetic Model .....................................................................................................89 

5.6.1 Pre-selection of the Model Parameters ...............................................................................89 

5.6.2 Pre-screening of Model Parameters ....................................................................................89 

5.6.3 Parameter Subsets Selection ..............................................................................................90 

5.6.4 Calibration of Parameter Subsets .......................................................................................91 

5.7 Validation .....................................................................................................................................95 

5.8 Conclusions .................................................................................................................................97 



 

viii 

6. APPLICATION of CONTINUOUS & INTERMITTENT AVN CONTROL STRATEGIES FOR 

ENERGY & RESOURCE CONSUMPTION .......................................................................................................99 

6.1 Application of AvN at pilEAUte WRRF ....................................................................................... 100 

6.2 Implementation of the AvN Controllers and Experimental Work ................................................ 102 

6.3 Manual AvN Control ................................................................................................................... 105 

6.3.1 Application of Continuous AvN .......................................................................................... 107 

6.3.2 Application of Intermittent AvN .......................................................................................... 112 

6.3.3 Comparison of Continuous & Intermittent AvN Systems under Manual Control................ 116 

6.4 Automatic AvN Control ............................................................................................................... 121 

6.4.1 AvN Controller Algorithm and Implementation in pilEAUte WRRF .................................... 121 

6.4.2 Application of Automatic Continuous AvN ......................................................................... 124 

6.4.3 Application of Intermittent AvN .......................................................................................... 126 

6.4.4 Comparison of Continuous & Intermittent AvN Control Strategies with Automatic Control .....

  .......................................................................................................................................... 128 

6.5 Conclusions & Perspectives ...................................................................................................... 131 

6.5.1 Influent Characteristics ...................................................................................................... 131 

6.5.2 Sensor Reliability .............................................................................................................. 131 

6.5.3 Sludge Retention Time ...................................................................................................... 132 

6.5.4 Temperature ...................................................................................................................... 132 

6.5.5 Feedforward Control Necessity ......................................................................................... 132 

6.5.6 Energy Consumption ......................................................................................................... 133 

7. SCENARIO ANALYSES for ENERGY & RESOURCE OPTIMIZATION of N-REMOVING WRRF ..... 134 

7.1 pilEAUte Model – Conventional Nitrogen Removal .................................................................... 134 

7.1.1 Evaluation Criteria for the Scenario Analyses Outputs...................................................... 134 

7.1.2 Scenario Analysis I - Optimization of DO Set-Point and Internal Recycle Flowrate .......... 136 

7.1.3 Scenario Analysis II - Implementation of Individual DO Controllers .................................. 141 

7.1.4 Scenario Analysis III – Taking Advantage of Reactive Settling ......................................... 144 

7.1.5 Conclusions ....................................................................................................................... 149 

CONCLUSIONS & PERSPECTIVES ............................................................................................................... 151 

Conclusions ................................................................................................................................................. 151 

Perspectives ................................................................................................................................................ 154 

REFERENCES ................................................................................................................................................ 155 

Appendix I – Reactive Settler Model Details .................................................................................................... 170 

Reactive Settler Measurement Campaign Results ...................................................................................... 170 



 

ix 

Clarifier Geometry Implementation .............................................................................................................. 171 

Mass Balance in Each Layer of the Reactive SST Model ........................................................................... 172 

Appendix II – Biokinetic Model Calibration Details ........................................................................................... 174 

Pre-selection of the Model Parameters (5.6.1) ............................................................................................ 174 

Pre-screening of Model Parameters (5.6.2) ................................................................................................ 175 

Parameter Subsets Selection (5.6.3) ........................................................................................................... 179 

Calibration of Parameter Subsets (5.6.4) .................................................................................................... 184 

Appendix III – Automatic AvN Control Results for the Time Periods that Successful Control Achieved .......... 188 

Continuous AvN .......................................................................................................................................... 188 

Intermittent AvN ........................................................................................................................................... 191 

 

  



 

x 

List of Figures 

Figure 1.1 Energy Consumption in a Conventional Activated Sludge Plant (WEF 2010; McCormick and 

Chakrabarti 2013) ............................................................................................................................................... 6 

Figure 1.2 Conventional Nitrification/Denitrification Reactions Route vs. Deammonification with Anammox ... 15 

Figure 1.3 Deammonification with Partial Denitrification and Anammox ........................................................... 19 

Figure 1.4 Nitrogen Removal through Simultaneous Nitrification and Denitrification ........................................ 22 

Figure 1.5 DO Controller Mechanism ............................................................................................................... 24 

Figure 1.6 ABAC Controller Mechanism ........................................................................................................... 24 

Figure 1.7 AvN Controller Mechanism .............................................................................................................. 25 

Figure 1.8 Layered Settler Model (Takács et al. 1991) ..................................................................................... 29 

Figure 1.9 Illustration of the Different Reactive Settler Models Adopted in Gernaey et al. (2006) .................... 30 

Figure 3.1 pilEAUte WRRF Pumping Station .................................................................................................... 35 

Figure 3.2 Storage Tank and Primary Settler Flow Scheme ............................................................................. 36 

Figure 3.3 Biological Reactors (Pilot and Co-Pilot) Flow Schema .................................................................... 37 

Figure 3.4 pilEAUte WRRF Secondary Clarifiers .............................................................................................. 37 

Figure 3.5 Monitoring of pilEAUte ..................................................................................................................... 40 

Figure 3.6 BIOMATH Calibration Protocol ........................................................................................................ 42 

Figure 3.7 Calibration Protocol for the Biokinetic Model (based on Mannina et al. 2011) ................................. 46 

Figure 3.8 General Modelling Methodology of the PhD Project (based on Rieger et al. 2012) ......................... 47 

Figure 4.1 Sampling Points in the Studied SST ................................................................................................ 49 

Figure 4.2 Measurement Results for TSS (left) and NO3-N (right) for the Tested Operational Scenarios ........ 52 

Figure 4.3 Cross-sections of the Oxley Creek and Roeselare circular SSTs respectively (De Clercq 2003; Torfs 

2015) ................................................................................................................................................................. 54 

Figure 4.4 Reactive Settler Model Layout in WEST .......................................................................................... 57 

Figure 4.5 Settling Curves of Batch Settling Tests for Different Initial TSS Concentrations ............................. 58 

Figure 4.6 Exponential vs Power-Law Hindered Settling Functions Calibrated to the Batch Settling Test Results

 .......................................................................................................................................................................... 59 

Figure 4.7 Best TSS Concentration Profiles Obtained with SST Models with Rectangular Geometry for Takács 

(left) and Diehl (right) Settling Velocity Functions with Parameters Obtained from the Batch Settling Curves . 61 

Figure 4.8 Comparison of Measured TSS Profiles of the Three Scenarios with BD Model Simulations with Takács 

(left) and Diehl (right) Hindered Settling Functions Calibrated Using Batch Settling Tests* ............................. 62 

Figure 4.9 Exponential vs Power-Law Hindered Settling Functions Behaviour at High TSS Concentrations ... 63 

Figure 4.10 Central Relative Sensitivities (CRS) of Diehl Settling Function Model Parameters Based on Local 

Sensitivity Analysis ........................................................................................................................................... 65 

Figure 4.11 Diehl Settling Functions Calibrated to Batch Settling Curves (q:1.5826) and Different q Values ... 65 

Figure 4.12 Comparison of Model Results with Final Set of Calibrated Parameters Measurement Results for 

TSS for the Three Tested Operational Scenarios ............................................................................................. 67 

Figure 4.13 Model Predictions of NO3-N (left) and DO (right) using the Calibrated Settling Model and ASM1 

Default Parameter Values Corrected for Temperature (Henze et al. 2006) (Temperature in all scenarios 26⁰C) 

for the Three Scenarios .................................................................................................................................... 69 

Figure 5.1 pilEAUte WRRF Model Layout......................................................................................................... 72 

Figure 5.2 Influent Flowrate .............................................................................................................................. 73 

Figure 5.3 Primary Effluent Total COD vs Soluble COD Measured with Spectro::lyser .................................... 74 



 

xi 

Figure 5.4 Primary Effluent Nitrogen Concentrations ........................................................................................ 75 

Figure 5.5 Primary Effluent Alkalinity Concentration ......................................................................................... 76 

Figure 5.6 Primary Effluent pH .......................................................................................................................... 77 

Figure 5.7 TSS Concentration in Biological Reactors vs Sludge Recycle ......................................................... 78 

Figure 5.8 Dissolved Oxygen Concentration in Biological Reactor vs Air Flowrate Utilized ............................. 78 

Figure 5.9 Temperature in Biological Reactors ................................................................................................. 79 

Figure 5.10 Effluent Ammonium and Nitrate Nitrogen Concentrations ............................................................. 79 

Figure 5.11 Effluent Turbidity ............................................................................................................................ 80 

Figure 5.12 Backflow between Basins 3 and 2 due to Aeration ........................................................................ 81 

Figure 5.13 Hydraulic Model Layout (Zhao & Vanrolleghem, 2015) ................................................................. 82 

Figure 5.14 Hydraulic Model Results for Reference Case Tracer Experiment .................................................. 82 

Figure 5.15 Hydraulic Model Layout for Step-Feed Case ................................................................................. 83 

Figure 5.16 Hydraulic Model Results for Step-Feed Case ................................................................................ 84 

Figure 5.17 Final Hydraulic Model Layout for Reference Case ........................................................................ 84 

Figure 5.18 Updated (Final) Hydraulic Model Results for Reference Case ...................................................... 85 

Figure 5.19 Measured vs Predicted Air Flowrate and kLa in Basin 4 ................................................................. 87 

Figure 5.20 pilEAUte WRRF Aeration Model Layout and kLA Manipulation ...................................................... 87 

Figure 5.21 kLA Values Applied to the Three Aerated Basins ............................................................................ 88 

Figure 5.22 DO Concentration Predictions in Aerated Basins with the Applied kLA Values .............................. 88 

Figure 5.23 Calibration Order of Parameter Subsets ........................................................................................ 92 

Figure 5.24 Calibrated Model Results vs Measurements ................................................................................. 94 

Figure 5.25 Calibrated Model Results vs Measurements for the Validation Time Period ................................. 96 

Figure 6.1 pilEAUte WRRF AvN Project Configuration ................................................................................... 100 

Figure 6.2 The Influent Feeding and the Installed Sludge Recycle Line ......................................................... 101 

Figure 6.3 The Increased Baffle Height and Flow from 4th to 5th Basin ........................................................... 101 

Figure 6.4 AvN Project Timeline ..................................................................................................................... 102 

Figure 6.5 Hourly Dynamic Influent Flowrate Applied ..................................................................................... 102 

Figure 6.6 Influent Flowrate together with Concentrations of NH4-N (top), CODtotal (middle) and CODsoluble 

(bottom) .......................................................................................................................................................... 106 

Figure 6.7 NH4-N load and the Load Ratio for NH4-N to CODtotal (top) and CODsoluble (bottom) ...................... 106 

Figure 6.8 Temperature in Biological Reactors (°C) (March 2019-March 2020) ............................................. 107 

Figure 6.9 SRT in Continuous AvN System w/Manual AvN Control ............................................................... 107 

Figure 6.10 SSVI in Continuous AvN System with Manual AvN Control......................................................... 108 

Figure 6.11. TSS Balance in the Continuous AVN Application ....................................................................... 109 

Figure 6.12 DO Concentration and Air Consumption in Aerated Basins (R350 is where DO Control Applied) – 

Dynamic Influent Load .................................................................................................................................... 110 

Figure 6.13 Lab Measurement Results at the Effluent (composite samples) and Available Sensor Measurements 

– Dynamic Influent Load ................................................................................................................................. 110 

Figure 6.14 DO Concentration in Aerated Basins (R350 is where DO Control Applied) – Constant Influent Load

 ........................................................................................................................................................................ 111 

Figure 6.15 Lab Measurement Results at the Effluent (Composite Samples) and Available Sensor 

Measurements and AvN ratio – Constant Influent Load ................................................................................. 111 

Figure 6.16 SRT in Intermittent AvN System with Manual AvN Control .......................................................... 112 

Figure 6.17 SSVI in Intermittent AvN System with Manual AvN Control ......................................................... 113 



 

xii 

Figure 6.18 TSS Balance in the Intermittent AVN System .............................................................................. 113 

Figure 6.19 AF Averaged DO Concentration and Air Flowrate Applied in the Aerated Basins (R250 is where DO 

Control is Applied) – Dynamic Influent Load ................................................................................................... 114 

Figure 6.20. Lab Measurement Results at the Effluent (Composite Samples) and Available Sensor 

Measurements and AvN ratio ......................................................................................................................... 115 

Figure 6.21 Average DO Concentration in Aerated Basins (R350 is where DO control is Applied) – Constant 

Influent Load ................................................................................................................................................... 115 

Figure 6.22 Lab Measurement Results at the Effluent (Composite Samples) and Available Sensor 

Measurements – Constant Influent Load ........................................................................................................ 116 

Figure 6.23 Comparison of AOB and NOB Conversion Rates for both AvN Control Strategies with Manual AvN 

Control ............................................................................................................................................................ 117 

Figure 6.24 N Removal Performance Comparison of both AvN Control Stratgeies with Lower SRT (Dynamic 

Influent) ........................................................................................................................................................... 118 

Figure 6.25 N Removal Performance Comparison of both AvN Control Strategies with Higher SRT (Dynamic 

Influent) ........................................................................................................................................................... 119 

Figure 6.26 N Removal Performance Comparison of both AvN Control Strategies with Higher SRT (Constant 

Influent) ........................................................................................................................................................... 119 

Figure 6.27 Continuous AvN Performance with Dynamic and Constant Influent Loads ................................. 120 

Figure 6.28 Intermittent AvN Performance with Dynamic and Constant Influent Loads ................................. 121 

Figure 6.29 AvN Controller Algorithms in pilEAUte WRRF ............................................................................. 123 

Figure 6.30. Schematic Overview of the Software Architecture behind the Supervisory Control of the pilEAUte 

WRRF with AvN Algorithms ............................................................................................................................ 123 

Figure 6.31. SRT in Continuous AvN System with Automatic AvN Control .................................................... 124 

Figure 6.32. SSVI in Continuous AvN System with Automatic AvN Control ................................................... 125 

Figure 6.33. Continuous AvN Application Results over a 3 Day Time Period ................................................. 126 

Figure 6.34. SRT in Intermittent AvN System with Automatic AvN Control ..................................................... 127 

Figure 6.35. SSVI in Intermittent AvN System w/Automatic AvN Control ....................................................... 127 

Figure 6.36. Intermittent AvN Application Results over a 3 Day Time Period ................................................. 128 

Figure 6.37. Measurement Campaign Sampling Points .................................................................................. 129 

Figure 6.38. N Mass Balance Results for both Control Strategies .................................................................. 130 

Figure 7.1 Average Effluent Concentrations for N Components for Scenario Analysis I ................................ 138 

Figure 7.2 Average Energy Consumption for Scenario Analysis I .................................................................. 139 

Figure 7.3 Comparison of Effluent N Components Concentrations for Reference vs Optimized Operational 

Conditions for Scenario Analysis I .................................................................................................................. 141 

Figure 7.4 Comparison of DO Concentrations for Reference vs Optimized Operational Conditions for Scenario 

Analysis I ........................................................................................................................................................ 141 

Figure 7.5 Model Layout with Individual DO Controllers in each Aerated Basin for Scenario Analysis II ....... 142 

Figure 7.6 Average Effluent Concentrations for the Different N Components* for Scenario Analysis II (TIN top-

left, NO3-N top-right, NO2-N bottom-left, NH4-N bottom-right) ......................................................................... 143 

Figure 7.7 Average Aeration (left) and Total Energy Consumption (right) for Scenario Analysis II................. 143 

Figure 7.8 TSS Concentrations in Reference Case (left) vs Reactive SST Operational Cases (right) for Scenario 

Analysis II ....................................................................................................................................................... 144 

Figure 7.9 TSS Concentrations Profiles in Reference Case (top) vs Reactive SST Operational Cases (bottom) 

for Scenario Analysis II with the Locations of Feed Layers ............................................................................. 145 



 

xiii 

Figure 7.10 Effluent N Components Concentrations in Reference Case (left) vs Reactive SST with Bottom 

Feeding Operational Case (right) for Scenario Analysis II .............................................................................. 146 

Figure 7.11 An Example of a Height-Varible Inlet Structure (hydrograv 2020) ............................................... 147 

  



 

xiv 

List of Tables 

Table 1.1 Application Types of Deammonification Process in Full-scale .......................................................... 21 

Table 3.1 Online Monitoring Equipment of pilEAUte ......................................................................................... 39 

Table 4.1 Experimental Work Operational Scenarios ....................................................................................... 49 

Table 4.2 SST Mass Balance of TSS for Each Scenarios ................................................................................ 51 

Table 4.3 Settling Functions Evaluated and Estimated Parameter Values ....................................................... 59 

Table 4.4 Properties of the LHS Sampling for the Monte Carlo Approach to Find Optimal Compression Parameter 

Values for Three Scenarios .............................................................................................................................. 64 

Table 4.5 Properties of the LHS Sampling for the Monte Carlo Approach to Find Optimal Compression and q 

Parameter Values for Three Scenarios ............................................................................................................. 66 

Table 4.6 Optimal Parameter Set for Settling Model Calibration ...................................................................... 66 

Table 5.1 Model Input Data Time Periods......................................................................................................... 73 

Table 5.2 COD Fractionation of Primary Effluent (based on Li et al. (2019)) .................................................... 75 

Table 5.3 Primary Effluent Total Nitrogen Fractionation ................................................................................... 76 

Table 5.4 Parameter Subsets and Output Variable Groups .............................................................................. 90 

Table 5.5 Calibrated Biokinetic Model Parameter Values ................................................................................. 93 

Table 6.1 Lab Analyses Locations and Measured Parameters during Manual AvN Control ........................... 103 

Table 6.2 Online Monitoring Locations and Measured Parameters during Automatic AvN Control ................ 104 

Table 6.3. N Mass Balance Calculation Results (g/d) ..................................................................................... 130 

Table 6.4. Air consumption & N Removal Comparison for both Control Strategies ........................................ 131 

Table 7.1 Scenario Analyses I – WEST Grid Scenario Analysis Properties ................................................... 137 

Table 7.2 Comparison of Energy and Effluent Quality Criteria for Reference vs Optimized Operational Conditions 

for Scenario Analysis I .................................................................................................................................... 140 

Table 7.3 Scenario Analysis II – WEST Grid Scenario Analysis Properties.................................................... 142 

Table 7.4 Comparison of Reference vs Reactive Settler Operational Conditions for Scenario Analysis III .... 148 

 

  



 

xv 

List of Abbreviations 

AOB: Ammonia oxidizing bacteria  

AvN: Ammonia vs NOX-N control 

ASM: Activated sludge model 

BD model: Bürger-Diehl model 

BOD: Biochemical oxygen demand 

CFD: Computational fluid dynamics  

COD: Chemical oxygen demand 

DO: Dissolved oxygen  

GHG: Greenhouse gas  

GMP: Good modelling practice  

HB: Heterotrophic bacteria 

IR: Internal recycle 

NOB: Nitrite-oxidizing bacteria 

ODE: Ordinary differential equation 

PAO: Phosphorus accumulating organisms  

SBH: Sludge blanket height  

SBR: Sequencing batch reactor  

SND: Simultaneous nitrification and denitrification 

SRT: Sludge retention time 

SST: Secondary settling tank 

TIN: Total inorganic nitrogen 

TKN: Total Kjeldahl nitrogen 

TN: Total nitrogen 

TSS: Total suspended solids  

VSS: Volatile suspended solids  

WRRF: Water resource recovery facility  

 

  



 

xvi 

Acknowledgements 

This academic journey has been a surging and enjoyable adventure in my life. This big leap would not be 

possible to achieve without the support and guidance of many people. I would like to express my gratitude to 

the people who have contributed to the completion of this work. I would like to thank all of you from the bottom 

of my heart and hope to work with you again in future. 

I would like to express my sincere gratitude to my supervisor Prof. Peter A. Vanrolleghem who gave me the 

opportunity to be one of his PhD students in the modelEAU research team and his continuous support during 

my PhD. It was a great pleasure to work with you and learn from you Peter! Thank you so much for this great 

experience and the occasion to work at the pilEAUte! Also, I am extremely grateful for all your support to my 

extracurricular activities and the invaluable network that I gained during my PhD through the International Water 

Association, the Young Water Professionals Canada, the Modelling and Integrated Assessment Specialist Group 

and more. I would also like to thank to my co-supervisor Dr. Elena Torfs who guided me since the first day of my 

PhD. Thank you so much Elena for all your support, insights and contributions all along the way. Your support 

was really influential in shaping my experimental campaigns, model development and evaluating my results. 

I would also like to express my gratitude towards the members of my jury Prof. Paul Lessard, Prof. Ulf Jeppsson 

and Dr. Charles Bott, whose in-depth comments and feedback were not only very much appreciated but also 

greatly improved the final version of this PhD dissertation. 

I would also like to thank the former and the current modelEAU research team members, especially to Romain 

Philippe, Andreia Amaral, and Sovanna Tik. It had been such a pleasure to work with you all and it will always 

be remembered. Thanks for the research discussions, your support and friendship! Also, thanks to the pilEAUte 

team which gave me the opportunity to lead, learn and teamwork!Thanks to my dearest friends Oluş Uyar and 

Dafni Synodinou for being my family in Québec! I am very lucky that I have you guys in my life and thank you 

for all your support! And then there is Titouan Royal as well who was a great company and source of motivation. 

Thanks Titu for being on my side and encouraging me to finalize this work! 

Last but not the least, I would like to thank my family: my parents and to my brother for supporting me spiritually 

throughout this journey and my life in general. 

  



 

1 

INTRODUCTION 

Water is the most valuable natural resource in the world and the necessity for clean water resources increases 

rapidly due to the progressive increment of population and urbanization, development of industrial production 

activities and agriculture, and also climate change. On the other hand, more than half of the global population 

does not have access to safe sanitation (Unicef 2021), and 80% of the world’s wastewater is released into the 

environment without adequate treatment (World Bank 2020). Therefore, deterioration of water resources and 

the large amount of polluted water generated in industrialized societies gives fundamental importance to 

wastewater treatment processes to preserve resources.  

Discharge of nutrients with wastewater such as ammonia at high concentrations causes negative effects on 

receiving water bodies. Many industrial and agricultural activities generate high nitrogen (N) content 

wastewaters, and ammonium is one of the major pollutants in municipal wastewater. It is highly toxic in aquatic 

environments and nitrification consumes dissolved oxygen which results in oxygen depletion. Also, it causes 

eutrophication which is one of the most widespread environmental problems of inland waters (UNEP 2001). 

Thus, N-removal is a significant issue. Today, a reliable wastewater management system is one of the critical 

elements of any urban utility’s infrastructure insofar as it enables society to have an acceptable quality of life 

and ensures economic development in industry and trade. Besides this, the recovery of resources from 

wastewater, especially nutrients and energy, is attracting attention, like the water itself. 

National and international regulations enforce the adoption of specific quality indexes for the treated wastewater 

in many parts of the world. Taking into account current environmental problems, it is not unrealistic to believe 

that this trend will continue. The Pan-Canadian Strategy for the Management of Municipal Wastewaters and the 

Municipal Wastewater Treatment Regulations and Environmental Quality Act restrict effluent wastewater quality 

for Québec in terms of organic material such as biochemical oxygen demand and total suspended solids. These 

restrictions are also extended by the introduction of a toxicity standard that is often directly related to the 

presence of ammonia nitrogen in non-ionized form (CCME 2009) (LégisQuébec 2017). Wastewater Systems 

Effluent Regulations limit wastewater discharges in the scope of the Fisheries Act (SOR/2012-139) in many parts 

of Canada. It imposes discharge criteria as in the Pan-Canadian Strategy but also requires the maximum 

concentration of un-ionized ammonia in the effluent to be less than 1.25 mg/L explicitly. As effluent criteria 

become more stringent and available funds for upgrades/expansions become less available, efficient treatment 

processes are gaining importance in terms of energy and resource consumption and also effluent water quality.  

The challenges in wastewater treatment and discharge criteria lead to the need for process optimization. 

Researchers are now focusing on the design and optimization of processes through imitation and simulation of 
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environmental problems with the help of mathematical modelling. Modelling can be used to evaluate different 

process alternatives or to design process control to improve the operation of existing plants. It can also be helpful 

for process understanding and for identification of more efficient process modifications (Gernaey et al. 2004). 

The advantage of having to simultaneously ensure effluent requirements, process safety, investment and 

operation costs makes modelling a useful tool for designers (Rivas et al. 2008). Accordingly, modelling serves 

as a time and cost-saving tool for the evaluation of new wastewater treatment concepts and it helps to bridge 

the gap between lab and full-scale applications (Salem et al. 2002). 

The objective of this PhD research project is to improve the understanding of N-removal mechanisms in the 

biological treatment of wastewater through modelling and optimize existing water resource recovery facilities 

(WRRFs) to reduce energy and resource consumption. Within this context, three different studies were carried 

out. First, a one dimensional reactive settler model was developed that predicts the settling behaviour at high 

sludge concentrations together with biokinetic conversions in the secondary settling process. It is the first 

modelling work that combines the full set-of ASM1 biokinetics with the 1-D Bürger-Diehl settling model, which 

includes compression and is supported with pilot-scale measurement campaign data. The developed model can 

be used for control and simulation of WRRFs with scenario analysis. Second, a plant-wide model was set up for 

a conventional pre-denitrification system. The model is calibrated and validated with pilot-scale WRRF data and 

the inclusion of the developed reactive settler model allows it to be used to demonstrate the optimization potential 

through the use of reactions in the settling tanks. Third, a simultaneous nitrification-denitrification (SND) process 

was applied in the pilot-scale WRRF to demonstrate the applicability of different aeration control approaches 

called Ammonia vs NOX-N (AvN) control.  

This PhD dissertation includes 9 chapters as follows.  

Introduction: A short introduction to shortly present the need for appropriate wastewater treatment processes 

and the objectives. 

Chapter 1 – Literature Review: The definition of water resource and recovery, energy and resource consumption 

in WRRFs and how modelling can be used as a tool to optimize the facilities. The chapter also provides an 

overview of the available mathematical models for biokinetics and the settling process. 

Chapter 2 – Problem Statement & Objectives: Explains the motivation of this PhD research project and its main 

objectives. 

Chapter 3 – Materials & Methods: Describes the pilot-scale WRRF as the data source, the modelling 

methodology applied and the modelling platform that was used in this research project.  
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Chapter 4 – Development of a 1-D Reactive Settler Model: Describes the developed reactive settler model and 

its calibration procedure with the results. 

Chapter 5 – Modelling of Biological N-removal Processes: Describes the model set-up for the conventional N-

removal process and focuses on the calibration methodology. 

Chapter 6 – Application of Aeration Control Strategies for Simultaneous N-Removal: Explains the application of 

the intermittent and continuous AvN control systems in the pilot-scale WRRF. 

Chapter 7 – Scenario Analysis: Describes the different scenarios applied in the conventional N-removal process 

model for process optimization together with their results. 

Conclusions & Perspectives: The main results of the PhD research project and future perspectives. 
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1. LITERATURE REVIEW 

1.1 Water Resource and Recovery Concept and Challenges 

Wastewater is considered a resource due to the energy and chemicals contained within it. Water resource 

recovery facilities (WRRFs) - previously called wastewater treatment plants - are no longer waste disposal 

facilities thanks to the resources that can be recovered, such as clean water production, nutrient recovery & the 

potential to produce and use renewable energy and implement energy conservation (WEF 2015). WRRFs 

directly contribute to the circular economy and create valuable products while reducing the amount of waste 

produced (WEF 2020). The first value that is produced by the WRRFs is the clean, treated effluent which can 

be reused for beneficial purposes, such as agriculture and irrigation, potable water supply, groundwater 

replenishment, industrial processes, and environmental restoration (EPA 2021). Biogas is another in-situ source 

of energy produced in WRRFs with the digestion of organic material of the primary and wasted biological sludge 

(Metcalf&Eddy 2014). Also, many streams in a WRRF are rich in nitrogen and phosphorus. Different processes 

for the recovery of nutrients from wastewater are being applied and end products have market potential 

(Vaneeckhaute et al. 2017; Kehrein et al. 2020).  

The energy embodied in wastewater can be divided into three main types. The largest portion of recoverable 

energy from wastewater is thermal energy which, as low-grade heat, could be captured to heat or cool houses 

or to generate electricity. Chemical energy is the second type due to the organic matter content of wastewater 

which can be broken down and transformed into fuels such as biogas. The third one is hydraulic energy that can 

be captured when water flowing downhill or under pressure can be reused in mechanical systems in the plant 

(WERF & NYSERDA 2015; NSF, DOE & EPA 2015). 

However, many WRRFs are not able to operate optimally due to their design and operation. This situation 

requires focusing on accurate process application and process optimization in WRRFs to reduce environmental 

impact, meet the discharge criteria, improve effluent quality and reduce the excess operating costs (Hackworth 

2013). On the other hand, as effluent criteria become more stringent with legislation and available funds for 

upgrades/expansions become less available, efficient treatment processes are gaining importance in terms of 

energy and chemical consumption and effluent water quality (EPA 1972; EU 2000; SOR/2012-139).  

Resource consumption in wastewater treatment also has significant environmental consequences and it is 

important to view WRRF performance holistically including electricity consumption for aeration and pumping, 

carbon, alkalinity, or chemical coagulants which are used to improve treatment and sludge handling efficiency 

(Fitzsimons et al. 2012; World Bank 2019). WRRFs will be obligated to reduce the energy consumption per unit 

of water treated to be able to become energy-neutral or net energy positive. However, current WRRFs require 
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several energy-intensive processes, led by aeration (Ramirez 2015). On the other hand, consumption of energy 

and biokinetic conversion processes lead to the production of GHGs in WRRFs - especially in biological N-

removal processes - such as methane, nitrous oxide, and carbon dioxide, thus contributing to global warming 

(IPCC 2019) 

WRRFs capable of removing nitrogen are crucial to treat the wastewater and produce clean and safe effluent 

through the removal of nutrients, organics, and many pollutants, thus reducing the environmental impacts 

caused by human activities. However, they still face the challenges mentioned above and thus require optimizing 

existing processes or apply more efficient treatment processes. All these challenges in wastewater treatment 

lead to the need for process optimization.  

1.2 Energy & Resource Consumption in WRRFs 

Wastewater treatment is an energy-intensive process and WRRFs are one of the major energy consumers at 

the municipal level worldwide (McCormick and Chakrabarti 2013; Capodaglio and Olsson 2020). Energy is 

required in all stages of treatment, from the collection of raw sewage to the discharge of the effluent and primary 

energy uses are those directly associated with on-site electrical power and fuel requirements (Daw et al. 2012; 

Li et al. 2021). The International Energy Agency (2016) estimates a 130% increment in total energy consumption 

for the water treatment industry until 2040. Therefore, energy consumption is one of the largest expenses in 

operating a WRRF and operating costs for electricity are now raised as a major concern. Reducing energy costs 

is not only an economical challenge for the future but also an environmental necessity due to their carbon 

footprints (EPA 2013). Studies show that especially energy cost is a significant part of the overall operational 

cost depending on the treatment processes (Kolisch et al. 2008; Trapote et al. 2014; Gikas 2017; WERF 2010).  

Energy is consumed throughout the plant, but the most intensive use is during the primary and secondary stages 

of conventional wastewater treatment (U.S. Department of Energy 2017). Figure 1.1 shows a typical breakdown 

of the energy consumption of a WRRF using activated sludge (Adapted from (WEF 2010) & (McCormick and 

Chakrabarti 2013)). Generally, aeration is the largest energy user, followed by pumping actions, sludge handling, 

and mixing processes. 
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Figure 1.1 Energy Consumption in a Conventional Activated Sludge Plant (WEF 2010; McCormick and 

Chakrabarti 2013) 

Aeration provides oxygen for metabolizing autotrophic and heterotrophic microorganisms that grow and remove 

pollutants under aerobic conditions and also provide mixing which assures that microorganisms consume 

organic matter and nutrients in wastewater. The aerobic process is dependent on the dissolved oxygen (DO) 

concentration in the reactor and it serves as the electron acceptor for the decomposition of organic carbon and 

oxidation of ammonia. In order to prevent oxygen diffusion from becoming the rate-limiting step, the air is 

continuously added to the reactor (International Energy Agency 2016). The energy used for aeration can vary 

40-65% of the total energy consumption in activated sludge systems including N-removal (Metcalf&Eddy 2014; 

Olsson 2012; Rosso, et al. 2011). In extended aeration activated sludge systems the energy devoted to aeration 

can reach 75% of the plant’s total energy consumption (Rosso et al. 2008).Thus, it is worth investing in aeration 

optimisation as it holds enormous saving potential (Amaral et al. 2017). 

Energy consumption in aeration systems is related to several key factors such as diffuser type, oxygen transfer 

rate, oxygen transfer efficiency and DO concentration in the mixed liquor (EPA 2010). Generally, DO 

concentrations in suspended growth activated sludge systems for organic carbon and N-removal should be 

between 0.5 to 2.0 mg/L depending on the influent characteristics and the treatment level (WEF 2009); 1.0-2.0 

mg/L reported by EPA (2010). If the necessary DO concentration can be decreased, the aeration rate would 

also decrease thanks to the increased driving force, which results in energy savings.  

Short-cut N-removal processes with lower aeration need than the conventional processes are still in the 

development phase and challenging to apply in mainstream treatment (Cao et al. 2017; Le et al. 2019; Kirim et 

al. 2022). On the other hand, it is important to improve the general understanding of oxygen transfer for 
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enhanced aeration efficiency in aerobic biological wastewater treatment (Amaral et al. 2019). Technologies and 

energy-efficient solutions across the treatment system are urgently needed to reduce the energy requirements 

of aeration or alternative processes should be provided. Auditing and applying best practices on the less energy-

consuming parts of the WRRFs - such as pumping or heating - can also reduce the total energy consumed for 

wastewater treatment. Still, to become net-energy positive or energy neutral WRRFs, energy reduction efforts 

should focus on aeration (NSF, DOE & EPA 2015). 

Pumping of wastewater (in-plant) is usually the second most energy consuming component of wastewater 

treatment that may take up to 14% of the total energy consumption (WEF 2010). In a conventional N-removing 

WRRF, pumping is needed to mainly lift the wastewater to primary treatment units and then to biological 

treatment units. Also, it includes the transfer of mixed liquor from the biological tanks to secondary clarifiers and 

sometimes the discharge of effluent to the receiving environment. Sludge pumping activities include sludge 

recycling, internal sludge recycle, sludge wasting and transfer of sludge in the sludge handling facilities. 

Pumping-associated energy demand is generally proportional to the volume of wastewater or sludge that must 

be moved around the plant. These pumps would require less energy if the waste streams are better separated 

initially to reduce volume and increase their homogeneity (NSF, DOE & EPA 2015). Depending on the adopted 

system boundaries, some assessments may include energy for pumping wastewater to the plant, while others 

do not, hence a wide range of reported values exist in literature. Since most of the WRRFs are constructed on 

flat terrain, pumping cannot be avoided, however, energy consumption can be minimized with the proper design 

of the internal hydraulic profile (Capodaglio and Olsson 2020). 

Especially the internal sludge recycle in pre-denitrification systems cause a significant energy consumption due 

to the high volumes of mixed liquor to be transferred (Metcalf&Eddy 2014; Qasim and Zhu 2018). Indeed, when 

N-removal is part of the wastewater treatment process, an internal sludge recycle is often required. Denitrification 

is essential to remove the nitrate which is produced in the aerated biological reactor. For that reason, the mixed 

liquor in the activated sludge tank is sent to the anoxic part of the reactor -where fresh COD is supplied from the 

wastewater- through an internal recycle stream in pre-denitrification configurations. The internal recycle flow rate 

varies between 1 to 6 times the influent flow rate depending on the treatment process (Metcalf&Eddy 2014; 

Wang et al. 2009). As a result, the internal recycle can be an important energy consumer due to the required 

energy for pumping. To reduce the internal sludge recycle energy consumption, alternative tank designs can be 

applied in WRRFs, which fulfil internal recycle through the recirculation of nitrified mixed liquor within the 

bioreactor; e.g. Carrousel® and Orbal® systems.  

Sludge handling and management require a substantial portion of energy consumption and chemical addition 

(Chen and Chen 2013; Kato et al. 2019 ). Sludge handling generally covers thickening, digestion, dewatering 
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and drying of excess sludge. Sludge treatment is not in the scope of this PhD project, and for that reason, it is 

not discussed in detail here. However, it is known that the physical unit processes to increase the solids 

concentration in the activated sludge may consume up to 10% of the overall energy consumption in WRRFs 

(McCormick and Chakrabarti 2013; WEF 2013; Tao and Chengwen 2012). It is another aspect of operating cost 

in wastewater treatment and the method of sludge dewatering and disposal can have a significant impact on 

total energy use in WRRF (Fitzsimons et al. 2012). So, it is quite important to control the excess sludge amount 

and characterization both for the performance of the activated sludge system and the sludge treatment facilities 

(WEF 2013; Tao and Chengwen 2012). 

Besides energy, chemicals are another resource that is being consumed in wastewater treatment that can either 

be necessary directly for the chemical treatment of wastewater or improve physical and biological treatment 

processes (Metcalf&Eddy 2014). Biological N-removal in wastewater with high nitrogen contents can become a 

major cost factor due to chemical consumption, in particular when the wastewater contains insufficient amounts 

of biodegradable carbon compounds (Seyfried et al. 2011). It is also possible to achieve N-removal by post-

denitrification which necessitates two reactors in series, the first aerobic and the second anoxic. The anoxic 

reactor receives the nitrate-rich effluent of the first aerated tank and performs denitrification at a relatively slow 

rate dictated by endogenous decay. Therefore, a very large anoxic volume or carbon addition may be required 

to reach a high denitrification efficiency (Orhon and Artan 1994). Also, the alkalinity consumption in the 

nitrification process may necessitate alkalinity addition to the process. Indeed, a significant amount of 

bicarbonate (HCO3
-) is consumed in the oxidation of ammonia (𝑁𝐻4

+) to nitrite (𝑁𝑂3
−-) (EPA 2002). 

Stoichiometric calculations indicate 7.14 mg/L of alkalinity destroyed for the oxidation of 1 mg/L 𝑁𝐻4
+-N to 𝑁𝑂3

−-

N and pH will be reduced (Benninger and Sherrard 1978). A model developed by Gujer and Jenkins (1975) 

indicates that 8.64 mg/L of bicarbonate will be utilized for each mg/L of 𝑁𝐻4
+-N oxidized. Lack of carbonate 

alkalinity stops nitrification since the organism is pH-sensitive and rates of nitrification will reduce significantly at 

pH values below 6.8 (Evans and Sober 2015). It can also be used as a control parameter to limit nitrification in 

short-cut N-removing processes (Bagchi et al. 2010). Denitrification only partially compensates the alkalinity loss 

caused by nitrification in pre-denitrification systems, as the alkalinity gain per mg of N is only one-half of the loss 

caused by nitrification (Metcalf&Eddy 2014). Thus, alkalinity can be a significant source of chemical consumption 

in N-removing activated sludge systems depending on the ammonia and alkalinity content of wastewater and of 

course the volume of wastewater to be treated.  

1.3 Modelling of Wastewater Treatment Processes 

The challenges in wastewater treatment, high energy and resource consumption mentioned in Chapter 1.2, lead 

to the need for process optimization. Researchers are focusing on the design, control and optimization of the 

processes through imitation and simulation of environmental problems with the help of mathematical modelling 
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(Zhang et al. 2009; Kim et al. 2015; Ortiz-Martínez et al. 2021). A model is an approximate representation of a 

real system that is used to simulate its behaviour. A system or a process can be defined with mathematical 

models and can be analyzed instead of the real system. Then it is possible to apply what is learnt from the 

behaviour of the models to the real systems (Gujer 2008). Modelling and dynamic simulation of WRRFs has 

become a commonly used tool for design, control and optimization of treatment processes with the family of 

Activated Sludge Models (Henze et al. 2006). 

Modelling can be used to evaluate different process alternatives or to design control to improve the operation of 

existing plants. It can also be helpful for process understanding and an indication of more efficient process 

modifications (Gernaey et al. 2004). It can identify the conditions to better understand the microbial competition 

under different operational and environmental conditions to optimize the processes (Shourjeh et al. 2021). 

Dynamic simulation not only became an important tool for scientific studies but also confirmed its usefulness in 

general wastewater treatment practice (Langergraber et al. 2004). The advantage of having to simultaneously 

ensure effluent requirements, process safety, investment, and operation costs make modelling a useful tool for 

designers (Rivas et al. 2008). Another advantage is the ability to run a large number of different scenarios which 

would not be possible to try out in practice (due to time, economic and physical constraints). Accordingly, 

modelling serves as a time and cost-saving tool for the evaluation of new wastewater treatment concepts and it 

helps to bridge the gap between lab and full-scale applications (Salem et al. 2002). 

Despite all innovations related to computational work, it is still not an easy task to develop a well-calibrated and 

validated model. Modelling of wastewater treatment processes still faces some major challenges such as data 

collection, calibration, validation, parameter identifiability and uncertainty. Many variables in the dataset can be 

strongly coupled. The data can be noisy, uncertain, and incomplete which enforce data treatment before one 

can use them as model inputs (Rieger et al. 2010). Another challenge is that the activated sludge models might 

be large and over-parameterized (i.e. they have many stoichiometric and kinetic parameters) that suffer 

identifiability problems. They are also highly nonlinear and dynamic. Model parameters, as well as the model 

structure, may have to be adjusted according to the WRRFs with different influent characteristics or operation 

schemes (Zhu et al. 2015). Poorly identifiable parameters make it harder to provide reliable estimates of all 

parameters simultaneously (Dochain and Vanrolleghem 2001). Thus, providing reliable input data for model 

calibration and validation without knowing the importance of model parameters and without a proper 

experimental design may lead to excessive experimental effort and cost.  

There are several models that describe the biological processes in activated sludge systems. The Activated 

Sludge Models (ASMs) developed by the IWA task group on mathematical modelling of the activated sludge 
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process (Henze et al. 2006) and other mathematical descriptions of biological wastewater treatment processes 

such as presented by Barker and Dold (1997), are commonly used for simulation of activated sludge systems.  

1.4 State-of-the-Art Biokinetic Models Including N-Removal 

Nitrogen may exist in seven oxidation states, from -3 to +5, thus is found in many compounds (Sawyer and 

McCarty 1978). In wastewater, nitrogen may be found in four forms: organic, ammonia or ammonium, nitrite and 

nitrate nitrogen. Organic nitrogen and ammonia are the main nitrogen components that exist in raw wastewater 

and decomposition by heterotrophic bacteria, known as ammonification, readily converts organic nitrogen to 

ammonia nitrogen. Ammonia nitrogen may exist in an aqueous solution either as ammonium ion or unionized 

ammonia, depending on the pH and expressed by the following equation. When the pH increases, the reaction 

in Equation 1.1 is displaced to the left (Cheremisinoff 1997). 

𝑁𝐻3 + 𝐻2𝑂 ↔  𝑁𝐻4
+ + 𝑂𝐻− 

Equation 1.1 Ammonia and pH Dependency 

The removal of nitrogen by biological nitrification and denitrification is a two-step process (Metcalf&Eddy 2014). 

The first step is nitrification which is the conversion of ammonium nitrogen (NH4-N) to nitrate nitrogen which in 

itself is a two-step reaction: conversion of ammonium to nitrite (NO2-N), followed by conversion to nitrate (NO3-

N) by distinct groups of autotrophic bacteria: ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria 

(NOB) (Equation 1.2). The second step is denitrification in which nitrate is converted to nitrous oxide (N2O) or 

nitrogen gas (N2) under anoxic conditions by heterotrophic microorganisms (HB) using organic matter as the 

electron donor (Equation 1.3). N-removal with the coupling of nitrification and denitrification processes is still the 

conventional method for the design of WRRFs. However, this conventional process has some disadvantages, 

such as high energy consumption for oxygen supply, need for large tank volumes and often addition of external 

carbon sources.  

𝑁𝐻4
+  + 

3

2
 𝑂2  →  𝑁𝑂2

− + 2𝐻+ + 𝐻2𝑂 

𝑁𝑂2
−  + 

1

2
 𝑂2  →  𝑁𝑂3

− 

Equation 1.2 Stoichiometry of Nitrification 

𝑁𝑂3
−  +  6𝐻+  →  

1

2
𝑁2 + 3𝐻2𝑂 

Equation 1.3 Stoichiometry of Denitrification 
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Several alternative systems for N-removal have been developed in the last decades to reduce aeration costs, 

external carbon sources and sludge production. Examples include bio-augmentation of 

nitrification/denitrification, N-removal by nitration and denitration (nitrite shunt), partial nitrification and Anammox, 

partial denitrification and Anammox processes. These processes are still under development to be applied in 

mainstream wastewater treatment and scientific studies continue to develop understanding, improve and apply 

these concepts in full-scale (Chen et al. 2015; Regmi et al. 2015; Jimenez et al. 2015; Valverde Pérez et al. 

2016; Salmistraro et al. 2017; Wang et al. 2016; Li et al. 2018; Le et al. 2019; Zhang et al. 2020; Gao and Xiang 

2021; Kirim et al. 2022). These innovative processes will be detailed later in this chapter (Chapter 1.5). 

Because ammonia oxidation is typically the rate-limiting step under municipal conditions, ASMs describe both 

nitrification and denitrification as a single step process, with ammonia being directly oxidized to nitrate and nitrate 

being directly reduced to nitrogen gas. Depending on the aim of the modelling study, modifications and 

extensions of the state-of-the-art models have been applied to represent novel processes or detail some 

processes in the model like Anammox (Hao et al. 2002; Volcke et al. 2005), coupled SHARON/Anammox (Volcke 

et al. 2002; Volcke et al. 2006; Valverde Pérez et al. 2016), 2-step nitrification (Sin et al. 2008a; Kaelin et al. 

2009; Ostace et al. 2011), 4-step denitrification including the electron competition (Hiatt and Grady 2008; Pan 

et al. 2013; Domingo-Félez and Smets 2020), partial nitritation and Anammox (Trojanowicz et al. 2017) and 

partial denitrification with Anammox (Al-Omari et al. 2021). 

In this chapter, a brief overview of the most popular mathematical models for N-removal is given and their specific 

properties are discussed. 

1.4.1 ASM1 

The Activated Sludge Model No. 1 (ASM1) which was published by Henze et al. in the year 1987 can be 

considered as the reference model and is generally still accepted as the state-of-the-art (Hauduc et al. 2013). 

ASM1 was primarily developed for municipal activated sludge WRRFs to model the removal of organic carbon 

and nitrogen by simultaneously considering the consumption of oxygen and nitrate as electron acceptors. The 

model also aims to accurately describe sludge production and oxygen consumption. COD was adopted as the 

measure of the concentration of organic matter and the wide variety of organic carbon compounds and 

nitrogenous compounds were condensed into a limited number of fractions based on biodegradability and 

solubility considerations (Gernaey et al. 2004).  

In ASMs the Monod relationship is used to describe the growth rate of both heterotrophic and autotrophic 

organisms. Nitrification is represented as aerobic growth of autotrophic biomass and ammonia is oxidized to 

nitrate via a single-step process resulting in the production of autotrophic biomass. Denitrification is the anoxic 
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growth of heterotrophic biomass in the absence of oxygen. The heterotrophic organisms are capable of using 

nitrate as an electron acceptor with organic matter as electron donor. The process leads to the production of 

heterotrophic biomass and nitrogen gas. Also, aerobic growth of autotrophs and anoxic growth of heterotrophs 

are considered. Two other important reactions are described by the model in relation to nitrogen: hydrolysis of 

entrapped organic nitrogen and ammonification of soluble organic nitrogen (Henze et al. 2006). During hydrolysis 

biodegradable particulate organic nitrogen is broken down to soluble organic nitrogen. For ammonification, 

biodegradable soluble organic nitrogen is converted to ammonia in a first-order process mediated by 

heterotrophs. 

The model assumes the death-regeneration hypothesis to single out the different reactions that take place when 

organisms die. According to death regeneration, decayed cell material is released again through lysis. One 

fraction is non-biodegradable and remains as an inert residue while the remaining fraction is considered to be 

slowly biodegradable and used for cell growth (Jeppsson 1996). The death (decay) regeneration cycle of the 

heterotrophs and autotrophs are strongly interrelated in ASM1 and it does not include the possibility to 

differentiate decay rates of autotrophs under aerobic and anoxic conditions. 

1.4.2 ASM2 & ASM2d 

The Activated Sludge Model No. 2 (ASM2) is an extension of ASM1 and uses the same concepts for N-removal. 

The main difference is that ASM2 includes additional biological processes to deal with phosphorus removal. 

Those processes do not have any effect on nitrification and denitrification kinetics. However, hydrolysis of 

particulate organic nitrogen is no longer included as a separate process and it is assumed that particulate 

biodegradable organic matter contains a constant fraction of nitrogen. Also, the ammonification process is 

ignored in ASM2 due to the assumption of fermentable substrates that contain a constant fraction of nitrogen. 

This assumption was made to eliminate the addition of new processes, components and increase model 

complexity. In addition to the biological processes, ASM2 includes chemical processes which may be used to 

model chemical P precipitation (Henze et al. 2006). 

The Activated Sludge Model No. 2d (ASM2d) was first published in 1999 as an extension of ASM2. ASM2d is 

superior to ASM2 for modelling nitrogen and phosphorus dynamics because of the incorporation of denitrification 

by phosphorus accumulating organisms (PAOs) which is not considered in ASM2.  

1.4.3. ASM3 

The Activated Sludge Model No. 3 (ASM3) is a modified version of ASM1 representing the removal of organic 

carbon and nitrogen by correcting some defects of ASM1 such as the ammonia limitation of the heterotrophic 

growth process. The most remarkable change is that the model includes the storage of organic substrate as a 
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process. Also, the death-regeneration decay process is exchanged for endogenous respiration (Gujer et al. 

1999). 

In the model, all conversion processes of the two groups of organisms are clearly separated and the decay 

processes are described with identical models for both groups. In addition to these, the degradation of soluble 

and particulate organic nitrogen is integrated into the hydrolysis, decay and growth processes in ASM3 (Henze 

et al. 2006). 

1.4.4. 2-Step Nitrification and 4-Step Denitrification 

Because ammonia oxidation is typically the rate-limiting step under municipal conditions, many traditional 

activated sludge models include nitrification as a single step process. However, this simplification is not suitable 

for elevated nitrogen conditions or in cases of inhibition, because nitrite is an environmentally important 

intermediate product of both nitrification and denitrification (Hiatt and Grady 2008). Nitrite accumulation and 

ammonia inhibition may occur in WRRFs under compelling operating conditions (low dissolved oxygen, low 

temperature, high temperature, high loadings such as side stream and industrial wastewater treatment 

processes) and as a consequence nitrite needs to be included in a model of these systems (Sin et al. 2008a). 

Therefore, many studies in the literature have extended traditional ASMs with 2-step nitrification (Equation 1.2). 

The model comparison done by Sin and Vanrolleghem (2006) concludes that the common aspect of all these 

models is that the growth rate is assumed rate-limiting and is used to describe the rate of other substrate 

conversions via stoichiometric yields similar to the ASM1 convention.  

Hiatt & Grady (2008) first published the Activated Sludge Model for Nitrogen (ASMN), which describes the 

activated sludge process behaviour under elevated nitrogen conditions. The model is an extension of ASM1 and 

includes 2-step nitrification and the effect of pH and temperature on nitrification. In addition, ASMN includes 

microbial growth using nitrate (in the absence of ammonia) as the nitrogen source. Denitrification in the model 

involves four process steps instead of direct reduction of nitrate to nitrogen gas (Equation 1.3). The process 

includes reduction of nitrate into nitrite, nitrous oxide and nitric oxide as intermediate products where the 

emission of nitrous oxide has attracted a lot of attention (Equation 1.4). 

𝑁𝑂3
−  → 𝑁𝑂2

− → 𝑁𝑂 → 𝑁2𝑂 → 𝑁2 

Equation 1.4 Stoichiometry of 4-Step Denitrification 

During denitrification, competition among the four reduction steps for electrons occurs. It usually occurs if the 

electron supply rate from the oxidation process cannot meet the demand for electrons by the four reduction 

steps and leads to nitrous oxide (N2O) accumulation which is not desired (Richardson et al. 2009). For that 
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reason, a denitrification model which considers the electron competition in 4 step-denitrification was first 

developed by Pan et al. (2013) through the use of different affinity constants with respect to the reduced electron 

carriers for different enzymes and called as Activated Sludge Model – Indirect coupling of electrons. Later, the 

Activated Sludge Model – Electron competition was developed which describes denitrification as an analogy to 

how current intensity varies through a parallel set of resistors in electric circuits (Domingo-Félez and Smets 

2020). The model was calibrated with data for different carbon sources. 

1.5 Energy & Resource Efficient N-Removal Processes & Modelling 

The application of short-cut biological nitrogen removal processes (SBNR) in mainstream wastewater treatment 

has received considerable attention over the last decade from both academia and industry in order to reduce 

the overall energy and resource consumption in N-removal. The applicable treatment processes are given in 

this chapter together with the process control algorithms to achieve them. 

1.5.1 Deammonification 

Compared to nitrification-denitrification over nitrate, the application of short-cut N removal processes in 

mainstream wastewater treatment has significant potential to save energy (oxygen demand) and resources 

(carbon demand) and pursue energy neutrality of WRRFs. A recently developed way to remove nitrogenous 

compounds is the anammox (anaerobic ammonia oxidation) process in which ammonium is oxidised using nitrite 

as electron acceptor under anaerobic conditions (Equation 1.5). The process relies on preventing the oxidation 

of nitrite to nitrate and making nitrite available for anammox (Zhang et al. 2019). Thanks to its outstanding 

energy-saving potential, anammox-based processes have received considerable attention over the last decade 

from both academia and industry. The reaction pathways for the conventional N-removal process and the 

anammox process are schematized in Figure 1.2 which can be achieved by anaerobic ammonium-oxidizing 

bacteria (AnAOB).  

𝑁𝐻4
+ +  1.32 𝑁𝑂2

− + 0.066 𝐻𝐶𝑂3
− + 13 𝐻+

→  1.02 𝑁2 + 0.26 𝑁𝑂3
− + 0.26 𝐶𝐻2𝑂0.5𝑁0.15 + 2.03 𝐻2𝑂 

Equation 1.5 Stoichiometry of Anammox Reaction 
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Figure 1.2 Conventional Nitrification/Denitrification Reactions Route vs. Deammonification with 

Anammox 

*: General nitrogen turnover is represented in the schema.  

1.5.1.1. Partial Nitrification - Anammox 

The application of anammox relies on the ability to shunt nitrification at nitrite (Lackner et al. 2014). Partial 

oxidation of ammonium (nitritation) is required for the successful application of partial nitritation and anammox 

(PNA) and the overall process is called deammonification. Deammonification provides an efficient biological 

pathway compared to conventional nitrification/denitrification. The demonstrated advantages of applying 

deammonification to mainstream treatment are reduction of aeration energy, and reduction in external carbon 

and alkalinity demands (O'Shaughnessy 2016). 

Application of the anammox process together with partial nitrification can reduce the required oxygen input by 

60%, eliminate the carbon source demand and reduce the sludge production by 90% in comparison to the 

conventional N-removing systems (Morales et al. 2015; Miao et al. 2016). Early PNA implementations applied 

two-stage reactor configurations or made use of already existing nitrite shunt systems like SHARON type 

reactors (Lackner et al. 2014). The SHARON process (Single reactor High activity Ammonia Removal Over 

Nitrite) is based on the nitrite shunt which is the partial nitrification of ammonium to nitrite by AOB and the 

denitrification (Hellinga et al. 1998). The denitrification step in the nitrite-shunt process can be replaced with 

anammox and becomes more advantageous in terms of the need for external carbon sources. Based on the 

review of Lackner et al. (2014) the number of partial nitritation/Anammox (PNA) WRRFs had reached over 100 

full-scale installations in operation worldwide by 2014. It is expected that the number of installations increased 

by many more nowadays; however, there is no certain number in the current literature about this. On the other 

hand, full-scale applications are currently limited to side-stream treatment and only a few successful mainstream 

applications are reported so far (Cao et al. 2017; O’Shaughnessy 2016; Klaus et al. 2020a). 

The successful application of the process could be achieved mainly on side-stream treatment of high-strength 

NH4-N wastewater. However, for low-strength domestic and municipal wastewater, it is still a major challenge to 

maintain stable nitrogen removal performance (Ciudad et al. 2005; Deng et al. 2021). The application of 
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deammonification for mainstream wastewater treatment is still in laboratory and pilot-scale studies (Kirim et al. 

2022). Only a few examples of mainstream full-scale deammonification applications exist such as the Changi 

Recycling Water Plant in Singapore where the water temperature can be maintained above 28⁰C (Cao et al. 

2017; Gao and Xiang 2021) and the Strass WRRF in Austria where Anammox seeds are fed to the mainstream 

to enhance the process (O'Shaughnessy 2016).  

The application of PNA on mainstream wastewater treatment strongly relies on process control and the out-

selection of NOBs. The main challenge is the high influent COD/N ratio in the raw wastewater which leads to 

large fractions of heterotrophic bacteria in the system and less active AnAOB and AOB, and thus limited removal 

rates. (Cao et al. 2017). Also, HB and AOB compete for oxygen in the system which results in the washout of 

AOBs and destruction of the deammonification process (Zhang et al. 2015). Another main challenge is the 

difficulties with the suppression of NOB. The out-selection of NOB has been proven to be quite effective in warm 

nitrogen-rich wastewater streams (Lackner et al. 2014); partly due to the high free ammonia (FA) and free nitrous 

acid (FNA) concentrations in side-stream liquors which inhibit the growth of NOB (Lackner and Agrawal 2015). 

However, FA inhibition is not possible in mainstream treatment due to the lower influent ammonium 

concentration (Cao et al. 2017). There are also reports of NOB out-selection achieved through side-stream 

generated FNA exposure (Wang et al. 2016) and more recent studies show that alternating the sludge treatment 

strategy between FA and FNA can result in a more stable nitrite-shunt with nitrite accumulation above 95% in 

the mainstream (Duan et al. 2019). The operating conditions to favour AOB and wash out NOB are thoroughly 

investigated in literature based on DO, pH, temperature and inhibitors. The intrinsic kinetics of these two groups 

of microorganisms including their maximum growth rate and substrate half-saturations are crucial (Liu et al. 

2020). DO affects the diversity and kinetics significantly, thus DO control to manipulate the competition for 

oxygen between AOB and NOB is one of the main strategies for efficient out-selection of NOB in mainstream 

conditions (Pérez et al. 2014; Jimenez et al., 2020). The oxygen half-saturation constant for AOB is generally 

accepted to be lower than the constant for NOB which creates a disadvantage for NOB to compete for oxygen 

at low concentrations (Sin et al. 2008a; Cao et al. 2017). On the other hand, the predominance of Nitrobacter or 

Nitrospira -which are the two main species of NOB- affect the performance of NOB out-selection through DO 

control. The systems enriched with Nitrospira rather than Nitrobacter have a higher oxygen affinity, thus have 

lower oxygen half-saturation than AOBs and can be well adapted to low DO conditions (Regmi et al. 2014a). 

The use of transient anoxia is another approach to achieve NOB out-selection by causing a lag-time for NOB to 

transition from anoxic to aerobic condition or nitrite limitation (Zekker et al. 2012; Gilbert et al. 2014). By 

consuming nitrite in anoxic conditions, heterotrophs restrict substrate availability for NOB in the aerobic phase 

(Regmi et al. 2014a). Moreover, the AOB growth rate is higher than the NOB’s at high temperatures (above 

20⁰C) in mainstream treatment under limited DO (Regmi et al. 2014a; Yang et al. 2016). This allows operating 
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the system at a SRT that is suitable for the AOB and wash out the NOB (Blackburne et al. 2008). There are also 

lab-scale works that support that NOB out-selection can be achieved at lower temperatures depending on the 

dominant NOB species in the system and the reactor configuration (De Clippeleir et al. 2013; Gilbert et al. 2015; 

Cao et al. 2017).  

Another drawback of the deammonification process is the low growth rate of anammox bacteria and the need 

for very long sludge retention systems (Valverde Pérez et al. 2016). Anammox bacteria grow about 8 times 

slower than nitrifying bacteria (Tony Farina 2012). Besides, the optimal ammonium/nitrite influent ratio for the 

anammox reactor is quite important and may have to increase to 1/1.32, depending on the actual growth yield 

(Dongenet al. 2001). Also, under the anoxic conditions of the anammox process, part of the produced nitrate 

can be denitrified to nitrite to affect the ammonium/nitrite ratio needed.  

Last but not least, the deammonification process also has to face lower wastewater temperatures and alkalinity 

reserves, especially in mainstream applications. Lackner et al. (2014) surveyed 14 full-scale PNA plants and 

reported that temperature variations do not affect the process significantly on side-stream treatment, since the 

temperature is elevated (above 30⁰C). However, the raw wastewater temperature of mainstream treatment is 

much lower and affects the growth rates. Laureni et al. (2015) stated that reducing the temperature from 29⁰C 

to 12.5⁰C resulted in an increment in the doubling time of Anammox bacteria from 18 to 79 days. pH is also a 

very important environmental condition and different studies recommended optimum pH range for Anammox is 

between 6.5-8.3 (Tomaszewski et al. 2017). 

1.5.1.2 Modelling and Process Control 

Overall process control is quite important to adjust the ammonium/nitrite ratio and sustain N-removal by 

anammox. Microorganism species involved in the processes are sensitive to operational and environmental 

conditions such as pH, DO level, temperature, SRT and the presence of inhibitors as previously mentioned. 

Some strategies were applied for process control to optimize N-removal performance (Volcke et al. 2005). 

Several control strategies were adopted such as low or high DO operation, aerobic SRT, real-time aeration or 

oxidation-reduction potential control to take advantage of the growth characteristics and the kinetics difference 

between the microorganisms (Gao and Xiang 2021; Liu et al. 2020). However, the shift and adaptation of 

microbial communities’ growth characteristics to different conditions in mainstream conditions remain a 

challenge (Agrawal et al. 2018; Gao and Xiang 2021). The control strategies are based on different control loops 

by considering set points for the key variables in the process, such as pH or dissolved oxygen (O'Shaughnessy 

2016). Wu et al. (2016) dealt with the selection of AOB over NOB based on conversion rates by using 

mathematical modelling to identify the optimal range of influent NH4-N, alkalinity and operational conditions to 

achieve partial nitritation successfully based on pH changes. Qi et al. (2016) developed a biofilm model to 
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simulate the performance of the granular sludge system and determined the optimum range of operational 

parameters to continuously inhibit the NOB activity. Based on sensitivity analysis, it is found out that the oxygen 

half-saturation coefficients for AOBs and NOBs are the most influential parameters. Gut et al. (2007) used 

multivariate data analysis methods for modelling the PNA process to improve process efficiency with an 

extensive data set. It was observed that a parallel increase in the influent nitrogen load to the partial nitritation 

and the anammox processes extends the N-removal capacity. Conductivity was mentioned as one of the key 

parameters for monitoring these systems. Stewart et al. (2017) focused on substrate limitations and microbial 

behaviour of the deammonification process by using biokinetic models for system design and optimization. 

Dissolved oxygen, nitrite and ammonium limitation effects on growth of NOBs and Anammox bacteria were 

investigated and a dual substrate model was developed which allowed improving the process performance by 

75% based on simulations of a full-scale mainstream deammonification system.  

The mathematical modelling approach of the ASM has proved to be an excellent tool for modelling single-step 

nitrification-denitrification processes and has triggered further modelling research (Henze et al. 2006). 

Nevertheless, considering the development of the short-cut processes, nitrite should be considered as an 

intermediary step in nitrification and denitrification. Modelling the two-step nitrification process is well established 

where NOB out-selection can be modelled through distinctly defined growth kinetics, substrate affinities, and 

temperature and pH effects on AOB and NOB (Sin et al. 2008a; Shourjeh et al. 2021). However, most simulation 

studies so far deal with side-stream conditions associated with high-strength nitrogenous wastewater where 

NOB out-selection can be achieved much easier with direct pH and temperature effects on the NOB (>1000 

mgN/L) (Volcke et al. 2006; Van Hulle et al. 2007; Wett et al. 2010; Volcke et al. 2012; Hubaux et al. 2015). Al-

Omari et al. (2015) modelled 2 different control strategies to achieve nitrite shunt for the mainstream 

deammonification process: Control based on the online measured ammonia and control based on a target ratio 

of 1 for the Ammonia vs NOX-N (AvN). Results indicated that the AvN controller is successful for NOB-out 

selection and it promotes better management of incoming organics and bicarbonate. There are also modelling 

studies within the same context through bioaugmentation of AOBs from side-stream to mainstream reactors (Cui 

et al. 2017) and also the treatment of activated sludge with free ammonia to favour AOBs (Wang et al. 2017; 

Peng et al. 2020). Many studies tackle challenges such as low DO and temperature to enrich AOB biomass and 

suppress NOBs (Wett et al. 2013; Salmistraro et al. 2017; Wang et al. 2016; Nifong et al. 2015), but the 

challenges remain.  

1.5.1.3 N2O Emissions 

In addition, like conventional N-removal systems, due to high nitrite accumulation and ammonia conversion rates 

the short-cut processes inevitably generate nitrous oxide (N2O) as a by-product which is one of the most 

significant greenhouse gases (Castro-Barros et al. 2016; Li et al. 2020). N2O production occurs in three different 
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pathways; i.e. the AOB denitrification, the hydroxylamine oxidation and the heterotrophic denitrifiers 

denitrification (Li et al. 2020). Process control modelling studies are generally focused on optimizing the 

deammonification process performance and low emissions separately. Leix et al. (2017), on the other hand, 

investigated optimizing deammonification performance while simultaneously reducing N2O emissions. In this 

study, two models were developed for the prediction of the N-removal rate and N2O emissions during single-

stage deammonification considering pH, feeding and aeration strategy. Zheng et al. (2018) used mathematical 

modelling to investigate the N2O emissions by AOBs and enhance the nitrogen removal efficiency by controlling 

the DO and NO2-N.  

1.5.1.4 Partial Denitrification - Anammox 

Due to the challenges with NOB out-selection and stability of the partial nitritation, recent studies propose 

another route to achieve deammonification in mainstream treatment (Ma et al. 2017; Le et al. 2019; Lu et al. 

2021a). The process allows fully autotrophic nitrification of ammonium into nitrate and then partial denitrification 

to nitrate, followed by anammox (Figure 1.3). Thus, the process is called partial denitrification anammox (PdNA) 

and does not require NOB out-selection. However, it requires carbon addition to achieve the partial denitrification 

(Zhang et al. 2019). The PdNA process consumes more resources; aeration and organic matter, than the PNA 

route, however, the nitrite generating pathway is found more stable (Ma et al. 2017). Also, it is possible to remove 

the nitrate generated by the anammox process with reduction of it into nitrite, thus achieving lower effluent total 

nitrogen concentration (Wang et al. 2019; Lu et al. 2021a).  

 

Figure 1.3 Deammonification with Partial Denitrification and Anammox 

*: General nitrogen turnover is represented in the schema.  

With rapidly consumed carbon sources such as acetate, nitrite accumulation has been reported as an indicator 

of partial denitrification which further led to the use of nitrate residual as the key parameter to control and achieve 

PdNA (Du et al. 2016; Le et al. 2019). However, the type of carbon source is critically important to create the 

nitrite sink for the deammonification process and it is found that acetate or glycerol was preferred by the 

denitrifiers for efficient partial denitrification due to their electron transport pathways (Le et al. 2018). Al-Omari 
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et al. (2021) could model the PdN selection mechanism by introducing a logistic inhibition term applied on the 

NO2-N reduction rate where the electron transport chain is dependent on carbon source and NO3-N residual. 

However, the model is only valid for acetate as external carbon source. Also recently, the role of internally stored 

carbon is being investigated since the endogenous organic matter can also be used to reduce nitrate in partial 

denitrification (Deng et al. 2021; Lu et al. 2021b).  

1.5.1.5 Mainstream Application 

Current application types of deammonification implementations for mainstream treatment include a variety of 

processes in laboratory and pilot scales (Table 1.1 with examples). Processes can be suspended or attached 

growth or hybrid systems in single-stage or 2-stage reactors (Hoekstra et al. 2018; Le et al. 2019a; Huang et al. 

2020). Due to the slow growth rate of anammox bacteria, an anammox retention mechanism is required to allow 

for SRT separation (Kirim et al., 2022). In a single-stage process, all PNA or PdNA reactions occur in one basin 

which decreases both the investment and the operational costs (Pérez et al. 2014). Biofilm systems such as 

granular sludge (Lotti et al. 2015), moving bed biofilm reactors (MBBR) (Gustavsson et al. 2020) or hybrid 

systems that combine suspended sludge with the biofilm systems such as integrated fixed-film activated sludge 

system (IFAS) (Cao et al. 2017) are mostly used in these single-stage systems (Ma et al. 2020) to maintain 

AnAOB. In these attached growth systems, AOB and NOB are usually distributed in the outer aerobic layer of 

the biofilm while AnAOB exist in the inner part. Thus, a thicker biofilm layer makes AnAOB advantageous for 

NO2-N competition with NOB and DO penetration is avoided. On the other hand, when the biofilm has reached 

the optimal thickness, the N-removal capacity does not improve even if the biofilm keeps developing. Indeed, 

the thick biofilm is not conducive to the formation of a DO gradient and eventually suppresses the activity of AOB 

and AnAOB (Liu et al. 2017).  

In 2-stage systems, partial nitritation or full-nitrification (aerobic environment) and the deammonification 

processes (anoxic environment) occur in separate basins. Suspended or biofilm processes can be used in the 

aerated basin and biofilm-based processes may be used in the anammox basin (Regmi et al. 2014b; Pérez et 

al. 2015). The processes can be more easily optimized separately in the 2-stage systems and control algorithms 

can be applied easier.  

Mathematical models and model-based control strategies are under development to overcome implementation 

challenges and to deal with the complexity of mainstream deammonification (Kirim et al. 2022). Through 

modelling, it is possible to identify the proper conditions for microbial competition under different operational and 

environmental conditions and to optimize the processes and implement deammonification successfully 

(Shourjeh et al. 2021). However, the mechanistic models that are currently being used for modelling the nitrogen 

removal are not sufficiently accurate to model short-cut N removal processes and require specific attention. For 

example, while the models include the key microbial groups, they do not consider the individual species which 
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is crucial to reflect the competition among them and predict a community shift. Also, different process 

configurations such as biofilm systems require specific sub-models such as the mass transport between the bulk 

liquid and the microorganisms inside the biofilm (Baeten et al. 2019). Thus, the pilot and full-scale applications 

reported provide invaluable information for model development and to overcome bottlenecks while modelling 

efforts accelerate the success of practical applications (Kirim et al. 2022).  

Table 1.1 Application Types of Deammonification Process in Full-scale 

Process Description Scale Application examples 

Single-stage 
PNA 

PN and Anammox processes occur in 
the same reactor. The processes are 
achieved either by suspended or 
attached growth system. 

Lab-scale 
 

(Lotti et al. 2015) 
(Han et al. 2016) 

(Huang et al. 2020) 

Pilot-scale (Hoekstra et al. 2018) 

Full-scale side-stream (Klaus 2019) 

Full-scale mainstream 
(O’Shaughnessy 2016) 

(Veuillet et al. 2015) 

2-stage 
PNA 

PN and Anammox processes occur in 
separate reactors. PN is achieved by a 
suspended growth activated sludge 
system and the Anammox process can 
be suspended or biofilm growth 
systems. 

Lab-scale 
(Ma et al. 2011) 

(Dosta et al. 2015) 

Pilot-scale 
 

(Regmi et al. 2014) 
(Klaus et al. 2020b) 

Single-stage 
PdNA 

After the full nitrification of ammonium to 
nitrate; PdN and Anammox processes 
are achieved by suspended or attached 
growth systems in the same reactor. 

Pilot-scale (Du et al. 2017) 

2-stage 
PdNA 

After the full nitrification of ammonium to 
nitrate; PdN and Anammox processes 
occur in separate reactors. PdN is 
achieved by a suspended growth 
activated sludge system and the 
Anammox process can be suspended or 
biofilm growth systems. 

Lab-scale (Wang et al. 2019) 

Pilot-scale 
(Le et al. 2019) 
(Klaus 2019) 

1.5.2 Simultaneous Nitrification and Denitrification 

Nitrification and denitrification processes can occur concurrently in the same reactor at low dissolved oxygen 

concentrations (Bertanza 1997). The process is so-called simultaneous nitrification and denitrification (SND) and 

is defined as nitrogen loss in aerated reactors. SND is finding widespread usage especially for the treatment of 

high strength wastewater in terms of nitrogen content. The process may occur via partial oxidation of ammonium 

to nitrite or full nitrification to nitrate and then reduction to nitrogen gas and can significantly reduce energy and 

COD demand for nitrogen removal (Yoo et al. 1999; Zeng et al. 2003). A schematic representation of nitrogen 

removal through SND is presented in Figure 1.4. In comparison to the conventional nitrification-denitrification 

system, SND eliminates the need for two separate tank operations, utilizes 22-40% less carbon source, results 
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in a lower sludge yield, lower alkalinity demand since the consumed alkalinity during nitrification is provided 

during denitrification and finally less energy requirement due to the reduction in aeration (Ohandja et al. 2008; 

Yoo et al. 1999; Hirata et al. 2003; Gibbs et al. 2005). However, controllable SND is hard to achieve and the 

mechanisms are not well understood yet (Jimenez et al. 2020). The optimal DO concentration for effective 

nitrogen removal via SND varies from 0.2 to 1 mg/L (Schlegel 1992; Jimenez et al. 2010; Lim et al. 2019). 

Successful application of the nitrite-shunt in mainstream treatment is desired to occur through SND since it has 

the opportunity to remove the organic matter in the influent. However, it is not easy to achieve because the 

denitritation relies solely on utilizing the influent COD and thus on the efficiency of carbon pre-treatment process 

(Kirim et al. 2022).  

 

Figure 1.4 Nitrogen Removal through Simultaneous Nitrification and Denitrification 

Several mechanisms can be responsible for SND occurrence. One of the main mechanisms is the DO gradient 

created within the floc, granule or biofilm that provides anoxic conditions for denitrification (Daigger et al. 2007; 

Layer et al. 2020; Seifi and Fazaelipoor 2012). The second mechanism consists of bioreactor macro 

environments that anoxic and aerobic zones may develop within the reactor as a result of mixing patterns 

(Daigger et al. 2007). Diffusion of dissolved oxygen through activated sludge flocs can be achieved either with 

continuous aeration at low DO concentrations or intermittent aeration by which anoxic zones develop during a 

brief period of the aerated phase (Jimenez et al. 2010; Layer et al. 2020). It is also possible to achieve the 

process by favouring different microbial species such as combining heterotrophic nitrifiers and aerobic 

denitrifiers or denitrifying phosphorus accumulating organisms (Gupta et al. 2022; Zaman et al. 2021).  

Keene et al.’s (2017) pilot-scale study demonstrated that an average DO concentration of 0.33 mg/L DO with 

stable operation can maintain efficient nitrification with nearly 70% of the nitrogen being denitrified, without the 

need for internal recycling of high nitrate mixed liquor from the aeration basin to the anoxic zone. At the lowest 

DO conditions used, a 25% reduction is estimated in energy use for aeration compared to conventional biological 
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nutrient removal. Klaus and Bott (2020) could achieve 88% total inorganic nitrogen removal efficiency through 

SND at 0.2-0.3 mg/L DO under continuous aeration and determined that carbon availability for denitrification is 

more likely to be the limiting factor once low DO conditions are met. It is also reported that different carbon 

sources applied to enhance the SND have a great impact on microbial communities and lead to different nitrogen 

removal mechanisms. Acetate addition was the most efficient organic source (Wang et al. 2017). 

1.5.3 Process Control in N-Removal Processes 

In order to check meeting the effluent criteria, to reduce the carbon footprint and to minimize resource 

consumption for cost-effectiveness in the WRRFs, many performance indicators and control algorithms have 

been defined (Revollar et al. 2020). To fulfil the effluent quality standards and keep the operational costs low, it 

is imperative to use control strategies that meet the wastewater treatment process demanding requirements 

(Ostace et al. 2011). Process control involves maintaining the treatment process at a desired set of conditions 

by adjusting the selected variables in the plant. The adjustments can be either made manually or by using 

automatic controllers (Katebi et al. 1999). Aeration control is widely applied for N-removing systems. The 

nitrification capacity can be varied in relation to DO control either by adjusting the aeration intensity or by 

adjusting the aerated volume. Return activated sludge, wasted sludge and nitrate recycle or external carbon 

dosage (for plants with denitrification) are other control handles that may affect the nitrification performance 

(Åmand et al. 2013). One or more of those control handles can be combined and applied for energy and process 

optimization purposes (Palatsi et al. 2021). Also, model-based control has been found in literature for nitrogen 

removing activated sludge systems, especially for control of dissolved oxygen and energy efficiency (Holenda 

et al. 2008; Revollar et al. 2018).  

1.5.3.1 DO Control 

The DO concentration is crucial for N-removing systems since it determines the dominant processes in the 

biological reactor. A high DO inhibits denitrification, whereas a low DO can lead to the limitation of ammonia 

oxidation (Nourmohammadi et al. 2013). Aeration equipment must be designed to supply the oxygen demand 

of the microorganisms under a wide range of influent loads, while at the same time assuring that some minimum 

DO concentration is met. In DO control systems, the output of the aerator is adjusted to meet the changing 

demands based on the DO measurements in the aeration tank (Figure 1.5) (Metcalf&Eddy 2014). Also, a 

maximum DO concentration which is defined in the controller properties might help to save energy. A minimum 

DO concentration of about 0.5 mg/L is required to initiate the nitrification and operation at low DO concentrations 

below 1.0 mg/L can save energy in nitrogen removing systems through SND or partial nitrification followed by 

post-treatment such as Anammox (Chapters 1.5.1 & 1.5.2). 
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Figure 1.5 DO Controller Mechanism 

1.5.3.2 Ammonia-based Aeration Control 

Ammonia-based aeration control (ABAC) is a cascade control concept for controlling total ammonia nitrogen in 

the effluent or influent of activated sludge processes to reduce aeration costs together with eliminating the 

effluent ammonia peaks (Figure 1.6) (Rieger et al. 2014). ABAC control is composed of an open-loop and closed-

loop controller that sets DO set-points in the aeration tank to maintain a predetermined ammonia set-point at the 

effluent (Medinilla et al. 2020). It tailors the aeration intensity to the ammonia loading and maintains consistent 

nitrification to meet effluent limits but minimize energy consumption (Schraa et al. 2019). The control of aeration 

can be implemented either with intermittent aeration or continuous aeration (Klaus and Bott 2020). ABAC can 

be used to initiate and control SND as well if the DO set-points are low enough (Jimenez et al. 2010).  

Schraa et al. (2019) improved the ABAC control strategy by adding a supervisory controller that is used to ensure 

that the sludge retention time is always optimal for ABAC. By that, the DO set-point for continuous aeration or 

aerobic fraction in the intermittent aeration is no longer a user input and is determined by the SRT. There are 

also recent studies that used neural networks and fuzzy logic control schemes for ABAC systems to improve 

effluent quality (Husin et al. 2019; Kumar and Latha 2021). 

 

Figure 1.6 ABAC Controller Mechanism 
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1.5.3.3 Ammonia vs. NOX-N AvN 

Ammonia vs. NOX-N control, the so-called AvN control, was first developed as an intermittent aeration application 

for the nitrite-shunt process and achieve NOB out-selection (Regmi et al. 2014a). It is a control algorithm that 

determines the extent of aeration in the aerobic reactor based on the sum of NO2-N and NO3-N (NOX-N) and the 

NH4-N ratio with a set-point of 1, followed by the anammox process (USA Patent No. 20140263041 A1, 2014). 

It can also be applied through continuous low DO operation and it is considered easier and more practical than 

intermittent aeration, due to the limitations on the operation of blowers (Klaus and Bott 2020c).  

 

Figure 1.7 AvN Controller Mechanism 

The difference and the advantage of AvN control over ABAC is that it is possible to oxidize only the amount of 

ammonia that can be denitrified by utilizing the carbon amount available in the system which leads to efficient 

resource usage (Regmi et al. 2014b; Al-Omari et al. 2015). Sadawski (2015) investigated intermittent AvN vs. 

continuous aeration DO control and ABAC control and found that all control strategies gave similar nitrogen 

removal performance. However, AvN control effluent was amenable to anammox polishing for additional total 

inorganic nitrogen (TIN) removal. Also, AvN required less supplemental alkalinity than other strategies. Klaus 

and Bott (2020c) compared the SND performance of continuous low DO control with continuous and intermittent 

ABAC and AvN strategies and demonstrated that intermittent aeration application with ABAC and AvN results 

in the highest TIN removal efficiencies compared to continuous low DO operations (both for ABAC and AvN 

controls) since it allows for more denitrification in the aerobic zone. On the other hand, it should be noted that 

low DO concentrations in the conventional activated sludge systems can induce growth of filamentous 

microorganisms and, thus, sludge bulking problems may occur in the aerated basins and secondary clarifier 

(Rossetti et al. 2005; Van den Akker et al. 2010; Nittami et al. 2019). Also, nitrogen gas bubbles can be formed 

due to denitrification in the settler and may lead to rising sludge problems (Metcalf&Eddy 2014).  
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The AvN control modelling study by Al-Omari (2015) was conducted with scenario analysis, simulating the 

hypothetical optimized performance and estimated a potential saving of 60% in carbon addition for nitrogen 

removal by implementing the AvN for full-scale mainstream deammonification. Regmi and Jimenez (2018) 

modelled the intermittent AvN aeration control in a nitrogen and phosphorus removing WRRF with 76.000 m3/d 

capacity. The promising model results showed that effluent ammonia and NOX-N concentration ranging between 

2-3.5 mg/L could be achieved. Also, a low NOB/AOB ratio below 0.45 was obtained and the NOB out-selection 

was thus ensured.  

1.6 Modelling Reactive Secondary Settling Process 

The activated sludge process basically consists of two consecutive steps: first, the removal of contaminants by 

microorganisms in a bioreactor which is followed by the separation of the microorganisms from the effluent in a 

secondary settling tank (SST). The clarification process occurs in the upper zone while thickening occurs near 

the bottom and the result is the effluent from the top, low in suspended solids and concentrated solids from the 

bottom for recycling or disposal (Li and Stenstrom 2014). The SST has a crucial function in WRRFs as it directly 

affects the effluent quality as well as the biomass concentration in the system. As biomass is the driving force 

for the treatment processes, secondary clarifier operation will affect the performance of the entire facility (Torfs 

et al. 2015).  

Biological reactions occurring in the secondary settler have been mentioned to be an important factor to consider, 

especially for nitrogen removal (Siegrist et al. 1995). In many full-scale WRRFs, a considerable amount of the 

overall sludge inventory is stored at the bottom of the settler and it was shown that up to 20% of the incoming 

total nitrogen can be removed by denitrification in the secondary settling tank (Koch et al. 1999). At long 

residence times and if incomplete denitrification occurs in the biological reactors, denitrification can indeed take 

place at the bottom of the settling tank, where the concentration of sludge is high, nitrate levels are still 

substantial, biomass decay operates, and no oxygen is present (Siegrist et al. 1995). These biokinetic processes 

and physical settling phenomena occurring in the settler lead to so-called reactive settlers and it is a research 

topic that warrants further investigation to correctly analyse a WRRF’s overall capacity for nitrogen removal.  

Several parameters may affect denitrification in the SST, such as the presence of carbon source, dissolved 

oxygen, nitrate and pH and temperature in the settling tank and the most important one: sludge concentration. 

It has been found that there is a strong positive correlation between the efficiency of denitrification and both the 

solids flux and the location of the sludge blanket. These result in increasing the suspended solids concentration 

(biomass) in the SST (Chavan et al. 2007). The performance of reactive settler models can be improved by 

including the effect of compression settling (Torfs et al. 2015). On the other hand, strong denitrification during 

overloaded clarifier conditions can be detrimental to the plant’s efficiency, because nitrogen gas bubbles can be 
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formed due to denitrification leading to the rise of the sludge to the surface of the SST (Metcalf&Eddy 2014). 

Suspended solids attached to the bubbles result in an increased suspended solids concentration in the clarifier 

effluent, affecting the overall removal efficiency of the plant with respect to BOD, TSS, TN, and TP. It has been 

reported that that denitrification may lead to bubble formation when more than 6-8 mg/L NO3-N is denitrified in 

the sludge blanket (Henze et al. 1993). Detailed process understanding is thus needed to ensure safe and 

efficient system operation and control denitrification in the settling tanks. 

Thanks to the recent developments in 1-D settling models, the quality and reliability of the numerical solution of 

the underlying PDE of settling processes have been improved (Plosz et al. 2011; Bürger et al. 2013; Li and 

Stenstrom 2014; Bürger et al. 2021). In addition, accurate modelling of hindered and compression settling has 

received increased attention in view of appropriate prediction of the SST performance (De Clercq et al. 2008; 

Ramin et al. 2014a; Li and Stenstrom 2016; Torfs et al. 2017). Multiple settling velocity functions exist to describe 

hindered settling under standard operating conditions in SST (Takács et al. 1991; Cho et al. 1993; Plósz et al. 

2007; Diehl 2015). At higher sludge concentrations at the bottom of SSTs, sludge compression is known to take 

place and therefore compression functions have been defined to augment 1-D settling models (e.g. Zhang et al. 

2006; De Clercq et al. 2008; Ramin et al. 2014a). Since compression is a force that slows down the hindered 

settling at high TSS concentrations, the choice of hindered settling function will influence the compression 

behaviour especially at long residence times leading to elevated sludge concentrations (Torfs et al. 2017). 

Despite these recent SST model improvements, model calibration remains challenging and settling parameters 

are very influential key performance indicators of wastewater treatment such as effluent quality or sludge 

production (Ramin et al. 2014b; Li and Stenstrom 2016). Thus, accurate predictions of the sludge blanket heught 

(SBH) and especially the concentration profiles are still a big challenge in SST models. While for traditional 

activated sludge models, it often suffices to have good calculations of effluent and underflow concentrations, 

reactive settler models are more demanding: the biological conversion is directly dependent on the local sludge 

concentrations along with the whole sludge blanket. Hence, in order to develop a reactive SST model and to 

apply it to properly calculate the nitrogen mass balance, specific attention needs to be paid to the accurate 

description of the settling process and the calibration of the sludge concentration profile.  

Past modelling efforts have mostly focused on modelling the biological processes in the bioreactor and the SST 

models used are typically simplified. The settling process is usually considered non-reactive, but several studies 

reported that biological reactions also occur in SSTs (Chapter 1.6.2). Mathematical models that can capture the 

sedimentation–compression process in settling tanks in combination with biological reactions are urgently 

needed from a practical perspective to further improve nitrogen removal (Gernaey et al. 2006).  



 

28 

1.6.1 One-Dimensional Settling Models 

The one-dimensional (1-D) SST models predict the time-dependent responses to transient process inputs of 

SSTs (Li and Stenstrom 2014). The mass conservation and transfer are described mathematically in 1-D. 

Generally, these types of models are applied for the study of operation and control of SSTs as they can be easily 

combined with biokinetic models for other unit processes in an integrated WRRF model due to their lower 

computational demand. The 1-D modelling of SSTs is based on the flux theory of Kynch (1952) which assumes 

that the settling velocity depends on the local sludge concentration and describes sludge transport by a scalar 

conservation partial differential equation (PDE). The theory states that the transport of particles is the result of a 

gravitational settling flux combined with a bulk flux due to bulk movement or convective flow.  

In WRRF modelling the SST model is coupled to biokinetic mass balance models which typically consist of a set 

of Ordinary Differential Equations (ODEs). To be able to do this more easily and use the numerical solvers 

available in typical WRRF modelling software, the PDE which describes the SST process is discretized into a 

set of ODEs. In this way, the numerical solution can be handled by standard ODE solvers. To achieve this, the 

settling tank is divided into horizontal layers with a uniform concentration within each layer. This approach is 

known as the Layer Approach and is the base for 1-D models of SSTs. 

1.6.1.1 Takács Settling Model 

In the model of Takács et al. (1991) the settler is divided into 10 layers of equal thickness. There are five groups 

of layers present in the model: the top layer, the layers above the feed point, the feed layer, the layers below the 

feed point and the bottom layer (Figure 1.8). The model considers 3 phenomena, i.e. feeding, settling and bulk 

liquid flux, in each layer. The Takács model (1991) is commonly used in many simulation programs (e.g. WEST, 

GPS-X, BioWin, Simba, SUMO) for modelling of WRRFs. The model performs reasonably well under dry weather 

conditions. However, under peak flow events (due to rain events) and situations that diverge from normal 

operating conditions the model’s predictions lose realism. Also, the Takács settling model considers the number 

of layers as a model parameter which is not considered appropriate based on the proposed consistent modelling 

methodology for SSTs (Bürger et al. 2013). In order to obtain proper predictions of underflow and effluent 

concentrations and sludge blanket height (SBH) under different flow conditions, a more sophisticated model is 

required (Torfs et al. 2017).  
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Figure 1.8 Layered Settler Model (Takács et al. 1991) 

1.6.1.2 Bürger-Diehl Settling Model 

The model of Bürger-Diehl (2011) (BD model) is the most recent 1-D SST model which corrects for unsatisfying 

elements of the commonly used Takács model (1991) and has several superior properties. The BD model 

ensures the solution of the governing PDE by reliable numerical methods for ODEs and it includes extra 

functionalities in the model structure to obtain a more detailed description of the sludge settling behaviour. The 

model considers sludge compression and inlet dispersion phenomena. 

These properties are on/off functions that can be set by the user depending on the requirements of the modelling 

study. The BD model includes several phenomena in a modular way instead of trying to lump different 

phenomena in a single parameter or function (Bürger et al. 2013). In the BD model, the number of layers can be 

set by the user. Thus, it can be arranged depending on the level of detail and the aim of the modelling study by 

considering the computational time and resources available.  

These advantages and the flexibility of the user-dependent model terms make the BD model very flexible and 

more realistic. The compression and dispersion terms can be switched on/off depending on the modeller’s needs 

without affecting the solvability of the model. Moreover, the constitutive functions for hindered settling, 

compression settling and dispersion in the BD model can easily be updated or replaced whenever further 

research provides more insight into these phenomena (Bürger et al., 2013; Torfs, 2015). 

1.6.2 Reactive Settling Models 

The biological reactions occurring in the SST are an important factor to take into consideration when modelling 

nutrient removal biokinetic processes. The denitrification process can occur due to the high MLSS 
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concentrations and the anoxic environment in the sludge blanket despite mass transfer limitations such as 

concentration gradients and preferential pathways (Guerrero et al. 2013).  

Several modelling approaches for reactive settling can be found in the literature. Gernaey et al. (2006) and 

Flores-Alsina et al. (2012) presented reactive settler models in which overall N removal performance was 

evaluated by comparing nonreactive and reactive settling in SST. Gernaey et al. (2006) combined the standard 

Takács model with an extra model block in the return sludge line (Figure 1.9). This block provides for an 

empirical, algebraic elimination of oxygen/nitrate via heterotrophic growth which results in a production of 

heterotrophic biomass that is transported to the bioreactor. According to that model, the WWTP overall 

denitrification efficiency improves compared to the non-reactive settling model predictions. However, the model 

predictions were not found realistic because the organic matter is also removed in the reactor included in the 

return sludge line. In the same study, a fully reactive settler model was developed based on the Takács model 

by extending the description of suspended solids sedimentation and transport of soluble components in the 

layers with the full set of ASM1 equations. As a result, each layer of this reactive settler model acts as an 

activated sludge tank in the simulations (Figure 1.9). The model predicted a 15.3% and 7.4% improvement of 

the simulated N removal performance, for steady-state and dynamic conditions respectively. However, the 

predicted positive effect on the denitrification process resulting from including the reactive settler model is 

accompanied by a decrease in the nitrification efficiency of the plant. This is caused by increased heterotrophic 

and autotrophic biomass decay in the settler, and the increased ammonia production due to hydrolysis and 

ammonification in the settler (Gernaey et al., 2006). Recalibration of the biokinetic model would be needed to 

obtain the same results. 

 

Figure 1.9 Illustration of the Different Reactive Settler Models Adopted in Gernaey et al. (2006) 

Flores-Alsina et al. (2012) made the same comparison for 2 different WRRFs but for different biokinetic models, 

i.e. ASM1, ASM2d and ASM3, integrated with a reactive settler. The general results showed that incorporation 

of a reactive settler increases the hydrolysis of particulates, reduces the nitrate concentration at the bottom of 

the clarifier; increases the oxidation of organic matter and increases the decay of biomass. The study also found 

differences between different biokinetic models for the reactive settler. For example; the death-regeneration in 
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the ASM1 and ASM2d leads to the generation of a new substrate in the SST, whereas the endogenous 

respiration in ASM3 affects the biomass differently. Another important observation relates to the fact that the 

denitrification in the SST is affected by the reduction of dissolved oxygen and the increase of the particulate 

COD hydrolysis rate in the lower layers of the secondary settler. The consideration of these processes is 

important because the whole denitrification potential of the WWTP might be underestimated when using a 

standard non-reactive settler model. Still, the results of Gernaey et al. (2006) and Flores-Alsina et al. (2012) 

showed that using the Takács settling model coupled with a biokinetic model seems to overestimate the reactive 

capacity of the settler since the rate expressions to account for biological reactions seem to overestimate the 

biological growth in the settling tank and mass transport limitations were not considered.  

Ostace et al. (2011) and Ostace et al. (2012) considered the reactions in the settling tank as the combination of 

Takács settling model with an extended ASM1 (with two-step nitrification and two-step denitrification) and ASM3 

(two-step nitrification and three-step denitrification) biokinetic models respectively. Guerrero et al. (2013) also 

used the Takács settling model coupled with ASM3 biokinetics and evaluated the impact of different treatment 

configurations. However, these studies overestimated the reactive capacity of the settler. To compensate for the 

over-estimation of the 10-layer reactive settler model, Guerrero et al. (2013) introduced a reduction factor to the 

kinetics which is not present in the original mass balances. Similar to those studies, Walega et al. (2019) adopted 

a reactive settler model considering ASM2d biokinetics to make their simulation model more realistic for the 

secondary settler and achieve a proper nitrogen mass balance and control nutrient removal processes. However, 

the SST performance and its contribution to the overall nitrogen removal of the plant is not presented in detail. 

Another, related application is the reactive settling occurring in sequencing batch reactors (SBRs), for which 

modelling approaches without PDEs can be found in Kazmi et al. (2001) and Alex et al. (2011). Also, Giberti et 

al. (2020) developed a dual-layer aeration tank settling model where the biokinetic reactions and settling 

phenomena occur when the aeration is switched off in the aeration tank based on an empirical relationship to 

predict the SBH in the aeration tank with ASM1 biokinetics. 

In Bürger et al. (2016) the BD settling model is extended with a simplified biological model where only 

denitrification reactions are considered to describe the last settling stage of a sequencing batch reactor with 

denitrification. Reactive settling is modelled with a consistent modelling methodology by starting with the mass 

balances and using appropriate numerical methods for the discretization of the model PDEs. Results of this 

study indicate that the suggested numerical scheme works well and that the expected denitrification process is 

simulated correctly. Furthermore, numerical tests with other initial data, resulting in non-monotone concentration 

profiles and movement of particles upwards, indicate that the numerical method could be extended to the case 

of continuous sedimentation in SSTs of WRRFs. Bürger et al. (2016) was the first study to combine an advanced 



 

32 

SST model (including hindered and compression settling) with biological reactions. However, a simplified 

biological submodel was used, and the model was only simulated for a batch case.  

Bürger et al. (2018) improved the numerical solution of the developed reactive settler model. In this study, the 

derived model includes the volume, the mass balances and common constitutive assumptions on the relative 

velocity between the solid and liquid phases and on the reactions between them. It is possible to insert any 

suitable constitutive function to model the effects of hindered settling, compression and biochemical reactions 

with the updated numerical scheme. Thereafter, the study of Bürger et al. (2021) extended the 1-D reactive 

settler model for varying cross-sectional area and attempted to obtain a numerical method to make its 

implementation suitable in simulators that are being used for modelling of WRRFs. The developed models 

presented in these studies were theoretical and not calibrated on experimental data. 

1.6.3 CFD Models 

CFD models have become increasingly popular in the last decade as tools to improve insights and/or 

optimization of the settling processes in the SST. Their success results from their ability to predict the 

performance of a settling tank by modelling the internal flow pattern and transport phenomena of solids and 

solutes in 2-D or 3-D (Wicklein and Samstag 2009). With proper boundary conditions, CFD models can 

approximate the velocity vectors and turbulent mixing coefficients with a good accuracy (Ramin 2014). These 

models are also applied to perform dynamic simulations of wet weather events and the development of wet 

weather strategies by combining them with whole-plant simulators (Parker et al. 2008; Griborio et al. 2010). The 

major disadvantage is their high computational needs (Plosz et al. 2011). CFD models are very useful to model 

the flocculator at the center of a settler and determine its effect on settling phenomena. However, within this PhD 

research project, rather than mixing behaviour of the activated sludge in the feed zone and the flow pattern, it is 

aimed to model the biological reactions that take place in the SSTs. For that reason, CFD models will not be 

used in this PhD project.  
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2. PROBLEM STATEMENT & OBJECTIVES 

Typically, 60% of the energy demand in the water sector goes to wastewater treatment and 40% to drinking 

water production (in case surface water is the source). In wastewater treatment, nutrient removal and 

micropollutant removal increase the energy and resource demand further. Nitrification significantly increases the 

energy consumption of the process due to additional oxygen consumption and it is known that 50% of the 

process energy is typically used in aeration in N removing WRRFs followed by pumping actions (14%) 

(McCormick and Chakrabarti 2013). In addition to that, secondary settling processes have been mostly 

considered as non-reactive and their contribution to the overall nitrogen mass balance of the WRRFs is 

neglected. However, enhanced denitrification in the SST is important to accurately describe the N mass balance 

in the plant and to capture the risk of nitrogen gas formation in SSTs. In addition, it would allow us to investigate 

-for the same N-removal- reducing internal recycle pumping in the biological reactors and lead to savings in 

energy consumption and costs. 

Within this PhD research project, it is aimed to investigate energy and resource-efficient processes and 

operational conditions for nitrogen removal systems. For this purpose, modelling will be used which serves as 

an excellent tool for process optimization and moving forward towards energy neutral operation of WRRFs. 

Objective 1: Improving the understanding of the reactive settling process and its potential for 

denitrification 

Denitrification in the secondary settling tank can make significant contributions to the overall N mass balance of 

a WRRF. It is aimed to develop a reliable reactive settling model to improve the understanding of reactive settling 

processes, the hindered and compression behaviour at high sludge concentrations and to better predict the 

sludge blanket height and sludge concentration profile over the depth of the settler. This would allow to better 

determine the biological reaction rates (and in particular the denitrification rate) occurring inside the secondary 

clarifier and its contribution to overall total inorganic nitrogen removal in the system. This PhD research project 

aims to develop the first modelling work that combines the full set of ASM1 biokinetics with the 1-D Bürger-Diehl 

model which includes compression and is supported with a full-scale measurement campaign. The developed 

model can be used for control and optimization of WRRFs. 

Objective 2: Energy and resource optimization in conventional N removal systems 

Conventional nitrogen removal (nitrification and denitrification systems) is still the most widely applied N removal 

process for wastewater treatment which is an energy and resource-intensive process: nitrification needs a lot of 

oxygen and alkalinity and denitrification requires carbon (either utilizing influent wastewater carbon or 
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supplemental carbon). In addition, due to the large safety margins of plant design and the different influent 

characteristics, many N removing WRRFs are not operated optimally. Strict effluent criteria and high operational 

costs enforce process optimization and application of energy efficient processes in N removing WRRFs. Within 

this PhD research project, a pilot-scale pre-denitrification N removal WRRF will be modelled and used for 

scenario analysis to optimize energy consumption for aeration and pumping of sludge. It aims to determine the 

optimum DO set-points, aeration strategy, sludge and internal recycles for the conventional N removal process 

by using a well-calibrated and validated model. The reactive settler model will be tested within this plant-wide 

model and optimal operational conditions will be investigated to improve total inorganic nitrogen removal and 

optimize sludge and internal recycles for reduction of energy consumption. 

Objective 3: Testing the process improvements under aeration with AvN control and short-cut N removal 

processes 

Compared to nitrification-denitrification over nitrate, the application of short-cut N removal processes in 

mainstream wastewater treatment has significant potential to save energy (oxygen demand) and resources 

(carbon demand) and pursue energy independence of WRRFs. For that reason, the deammonification process 

that relies on partial nitritation and anammox (anaerobic ammonia oxidation) has received considerable attention 

over the last decade in both academia and industry.  

Within this PhD research project, it is aimed to evaluate the applicability of continuous and intermittent AvN 

control strategies on a pilot-scale WRRF and compare their performance. The objective of the AvN control is to 

maintain an equal concentration of NH4-N and NO3-N (NOx-N preferably) in the effluent of the B-stage of an A/B 

biological wastewater treatment process, by manipulating the extent of aeration in the aerobic reactor 

compartment (Regime et al. 2015, US Patent 2014/0069864). By maintaining this ratio the effluent can be 

optimized for downstream anammox treatment, and as such the overall energy budget due to aeration, required 

to remove COD and N, can be reduced. It is aimed to identify the 2 key operational factors while optimizing 

simultaneous nitrification denitrification in the aerated reactors: minimum applicable dissolved oxygen 

concentration and sludge retention time for both AvN control strategies. They are both crucial for the growth 

kinetics of AOB and NOB thus achieving a stabilized AvN control. In addition, lowing the SRT would lead to less 

sludge accumulation in the system thus lowering the aeration cost and higher N removal through sludge wasting 

(N associated growth of microorganisms). Overall, this research aims at finding out if the simultaneous 

nitrification denitrification performance and effluent concentrations can be sustained over long time for both AvN 

control strategies.  
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3. MATERIALS & METHODS 

3.1 pilEAUte WWRF & Data Sources 

The pilEAUte is a pilot-scale WRRF located in the Adrien-Pouliot Building (Department of Civil Engineering and 

Water Engineering) at Université Laval. The plant is fed by domestic wastewater originated from the student 

residence and kinder garden, and rainwater from the parking lot in the university campus. The plant configuration 

consists of a pumping station, a storage tank, a primary settler and two parallel biological reactors called pilot 

and co-pilot. Each biological reactor has two anoxic basins followed by three aerobic basins and a secondary 

clarifier. Every unit of the pilot-scale plant is made of stainless steel and PVC piping is used to transfer the water 

within the plant. 

The pumping station (Figure 3.1) transfers the wastewater from the campus sewer system to the inlet of the 

pilEAUte. There are 2 Flygt shredder pumps installed in the pumping station which shred the large particles 

present in the raw wastewater in order to protect the pumps and pipes further down the treatment line.  

 

Figure 3.1 pilEAUte WRRF Pumping Station 

From the pumping station, the wastewater is pumped to a storage tank. The storage tank has a volume of 5 m3 

and is equipped with a mechanical stirrer to maintain homogenized influent. After the equalization in the storage 

tank, wastewater is conveyed to a primary settler with a dry-screw type pump (brand Mono and Moyno) at a flow 

rate of 1.1 m3/h. A Y-strainer (mesh size 7/8 in) is installed on the pipe between the store tank and the primary 

settler to screen the large solid particles from the influent wastewater to protect the pump. All pumps in the 

pilEAUte plant are equipped with variable frequency drive (VDF) to adjust the pump’s flow or pressure to the 

actual demand. 
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The primary settler (volume = 2.8 m3, surface = 1.2 m2) is designed to allow gravity settling of particles in the 

wastewater. The primary effluent is conveyed to 2 biological reactors called pilot and co-pilot at a flow rate of 

0.5 m3/h per reactor (Figure 3.2). The excess primary effluent and the waste primary sludge are returned to the 

sewer system. 

 

Figure 3.2 Storage Tank and Primary Settler Flow Scheme 

Each biological reactor has the same design and is capable of carbon and nitrogen removal using a pre-

denitrification configuration (Figure 3.3). The reactors are divided into anoxic and aerobic basins. The anoxic 

basins (the first 2 basins) of each biological reactor are equipped with mechanical stirrers. The aerobic basins 

that follow are equipped with industry-standard diffusers at the bottom and aerated with compressed air. It is 

possible to control the aeration rate for each basin through mass flow controllers connected to the SCADA 

system. Each basin has separate air flow lines and the air flow can be set with the controllers.  

Each biological reactor has an internal recycle from the 5th basin to the 1st basin to sustain pre-denitrification. 

The internal recycle flow rate is set at default 1.5 m3/h which is 3 times the influent flow rate. Heat exchangers 

are installed in the internal recycle streams to be able to change the temperature of the mixed liquor. There is 

also a sludge recycle loop (0.5 m3/h) from the secondary clarifiers to the first basins of the biological reactors to 

ensure the mixed liquor concentration in the biological reactors. Excess sludge is wasted to ensure a sufficient 

sludge age for nitrifier growth.  
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Figure 3.3 Biological Reactors (Pilot and Co-Pilot) Flow Schema 

The secondary clarifiers have a total volume of 2.8 m3 each and a surface of 1.2 m2. The total height of the 

clarifiers is 2.5 m and the feeding point is located at 1.1 m above the bottom where the conical shape starts 

(Figure 3.4). The conical part is equipped with a chain which is hourly rotating against the wall to facilitate sludge 

transport to the bottom. The inflow of the SST from the biological reactors is 1.0 m3/h and the underflow rate is 

0.5 m3/h under standard operational conditions. The effluent and sludge wastage of the secondary clarifier is 

discharged back to the sewer system.  

 

Figure 3.4 pilEAUte WRRF Secondary Clarifiers 

The pilEAUte WRRF described above offers great operational flexibility to run under different conditions. Its set-

up allows parallel experimentation on the efficiency of control systems for nutrient removal. It is possible to 
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bypass the primary clarifier and feed the raw wastewater from the storage tank directly to the biological reactors. 

Also, the influent flow rate (to the primary settling tank) can be increased to approx. 2 m3/h. Sludge recycling 

can be done from pilot to co-pilot and from co-pilot to pilot to allow the mixing of both sludges and provide equal 

start-up conditions. As can be seen from Figure 3.3, it is possible to pump influent wastewater to the 3rd basin 

of the biological reactors to allow step-feeding of the system or to operate biological reactors only with 

nitrification. It is also possible to feed the return sludge and internal recycling to the 3rd basin instead of the 1st 

basin to allow operational flexibility. With the heat exchangers, it is possible to run the biological reactors at 

different temperatures. Sludge wastage can be done from both the sludge recycle line (from the secondary 

clarifier) and from the aeration tank (Ekama 2010). Thus, the pilEAUte WRRF is a great workspace to collect 

data and understand system behaviour under different operational conditions for research studies in the field of 

WRRF modelling and control. Within the PhD project, the operational flexibility of the pilEAUte WRRF was 

exploited to collect detailed data for modelling and testing different N-removal processes (e.g. conventional 

nitrification/denitrification, simultaneous nitrification/denitrification and AvN operation). 

The monitoring data of the pilEAUte are collected by 2 different data acquisition systems: SCADA and monEAU. 

All data from these sources (including their metadata) are automatically stored in an extensive SQL database 

called datEAUbase. The database is accessible through a user-friendly interface which allows easy access to 

data for different sensors and time periods as defined by the user (Plana et al. 2017). 

The pilEAUte is monitored with sensors at the outlet of the primary clarifier, the biological reactors, the recycle 

streams and the outlet of the secondary clarifiers (Figure 3.5). Besides these, it is possible to take grab and 

continuous samples from different points with refrigerated autosamplers. Information about the pilEAUte online 

monitoring system is given in Table 3.1. 
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Table 3.1 Online Monitoring Equipment of pilEAUte 

Location of 
Sensor 

Sensor name Manufacturer 
Monitored 
Parameters 

Principle 
Monitoring 
System 

Primary 
effluent 

 

Spectro::lyser S::CAN 
CODtotal, 
CODsoluble, TSS 

UV-VIS 
spectrophotometr
y 

monEAU 

Ammo::lyser S::CAN 
NH4-N, K, 
Temperature, pH 

Ion selective 
electrode 

monEAU 

Varion WTW 
NH4-N, K, 
Temperature, pH 

Ion selective 
electrode 

monEAU 

Conductivity 
meter 

(Inductive) 

Hach 
Conductivity, 
Temperature 

Potentiometric SCADA 

RODTOX Hach 
BODshort_term and 
Toxicity 

Respirometry monEAU 

Biological 
reactors – 
Basin 2 

Solitax Hach TSS 
Infrared duo-
scattered light 
technique  

SCADA 

Biological 
reactors – 
Basin 4 

DO meter (LDO) Hach 
Dissolved 
oxygen, 
Temperature 

Luminescent SCADA 

Biological 
reactors – 
Basins 2&5, 
Secondary 
effluent 

Trescon/Purcon Hach 
NH4-N, NO2-N, 
NOX-N (NO2-N & 
NO3-N total) 

Potentiometric or 
Photometric 

 

monEAU 

Sludge recycle 
line 

Solitax Hach TSS 
Infrared duo-
scattered light 
technique 

SCADA 

Secondary 
effluent 

Turbidity meter WTW Turbidity Nephelometric monEAU 

Varion WTW 
NH4-N, NO3-N, K, 
Cl 

Ion selective 
electrode 

monEAU 

pH meter Hach pH, Temperature Potentiometric monEAU 
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Figure 3.5 Monitoring of pilEAUte 

3.2 Modelling Methodology 

Within this PhD project, the model development was based on the Good Modelling Practice (GMP) Unified 

Protocol presented by the IWA Task Group on Good Modelling Practise (Rieger et al. 2012). The models were 

developed in the software platform WEST (DHI, Denmark; Vanhooren et al. 2003). 

3.2.1 Modelling Protocol 

The GMP Unified Protocol presents a framework to deal with the practical application of commonly used process 

models such as ASM-type models. The GMP Unified Protocol is based on other wastewater oriented protocols 

such as STOWA (Hulsbeek et al. 2002), BIOMATH (Vanrolleghem et al. 2003) and WERF (Melcer et al. 2004). 

It is an approach that unifies the main steps of the existing protocols while extending them with some key 

elements provided in general guidelines. The general scheme of the GMP Unified Protocol is explained below.  

Step 1. Project Definition: This step includes the definition of the objectives of the modelling study and 

identification of stakeholders and their responsibilities as well as the determination of the budget. The objectives 

of each model developed in the scope of this Project were already presented in detail in Chapter 2. 

Step 2. Data Collection and Reconciliation: This step aims to collect, assess and reconcile data sets 

necessary for the simulation project. A stepwise procedure to analyse collected data is provided including 

statistical analyses suggested by the GMP group, engineering expertise and mass balancing. The data required 

for this modelling study is supplied from the pilEAUte WRRF by continuous monitoring specific to the modelling 

goals. Measurement campaigns were carried out for different modelling purposes (e.g. tracer test for the 
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hydraulic model, reactive settler model development, aeration control through AvN). Also, existing data from 

previous measurement campaigns were considered for hydraulic model and influent characterization (e.g. COD 

and N fractionation).  

Step 3. Plant Model Set-Up: This step involves setting up the model of the WRRF by translating real-world data 

into a simplified mathematical description of reality. It involves setting up the models’ layout and determination 

of the sub-model structures. At this step, model output graphs and tables should also be set-up. The plant model 

set-up requires checks of the general functionality of the model to ensure it gives sensible outputs.  

Within this PhD project, a previous modelling study which analysed the hydraulic situation of the pilEAUte will 

be considered as initial model set-up (Zhao and Vanrolleghem 2015). The biokinetic model selection should also 

be done at this step by considering the objective of the modelling study and the desired level of detail of the 

model. In this case, the ASM1 biokinetic model extended with 2 step nitrification and denitrification is to be used 

as the biokinetic model to represent carbon and N removal processes.  

Step 4. Calibration and Validation: Model calibration is the process of modifying the values of the parameters 

until simulation results match an observed set of data. The process is completed when the model outputs are 

within an acceptable error to the real data. Validation is the second step that ensures the calibrated model is 

able to perform predictions with a level of confidence in accordance with the modelling objectives. Overall the 

aim of the GMP Unified Protocol is to provide a roadmap for the practical application of WRRF models. However, 

it does not provide answers to the detailed questions that this PhD project poses. For this reason, the calibration 

step in the GMP protocol is further detailed by using parts of the BIOMATH Calibration Protocol. 

The BIOMATH research group from Ghent University (Belgium) proposed a generic calibration procedure 

(Vanrolleghem et al. 2003), using state-of-the-art parameter estimation methods. The protocol focuses on model 

calibration by considering hydraulics, settling and aeration individually as well as the interaction between those 

phenomena. The procedure requires a high level of experimental results and expert knowledge for systems 

analysis (Rieger et al. 2012). The protocol’s targeted users are researchers and other modellers dealing with 

advanced modelling issues such as parameter estimation and identifiability of parameters, sensitivity and 

uncertainty analysis (Sin et al. 2005). 

The BIOMATH calibration protocol is visualised in Figure 3.6. This calibration procedure is integrated within the 

GMP Unified Protocol for the calibration step as it is much more detailed and meets the requirements of the PhD 

project (e.g. the need to model the measured backflows between different basins of the biological reactor, 

integrating the developed reactive settler model). It requires the calibration of the hydraulic model, the settler 

model and the biological model to be done sequentially.  
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Figure 3.6 BIOMATH Calibration Protocol 

The mass transfer characterization is suggested to be done first in the protocol. In the mass transfer 

characterization two main aspects have to be considered: oxygen transfer characterization and hydraulic 

characterization of the WRRF. Because one of the aims of the PhD project is energy optimization through 

aeration control, the determination of parameters related to aeration, especially the oxygen transfer efficiency 

(kLa), is quite important. Regarding the determination of the kLa for aeration, first, the influence of operational and 

biological factors on the oxygen transfer have to be considered, e.g. temperature. Properly quantifying daily air 

consumption in each aerated basin is considered while constituting the aeration model. 

Mass balances of the system for mixing are also checked at this step. The protocol promotes the application of 

well-designed tracer tests for the hydraulic characterization of the WRRF. Within this PhD project, a tracer test 

and a hydraulic model had already been developed for the pilEAUte WRRF (Zhao and Vanrolleghem 2015). 

Another tracer test was designed and applied to determine the suspected backflows between the different basins 

of the biological reactors (Souidi et al. 2018). 
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Mass balances of sludge, COD and N in the WRRF are to be developed in the next step. They are important as 

a necessary data quality check (e.g. to properly determine sludge age). In this work, the settling process is to 

be modelled as a reactive settler. The developed reactive settler model is to be calibrated in terms of its settling 

characteristics with detailed measurement campaign data (Chapter 4) and is to be integrated into the plant-wide 

pilEAUte models (Chapter 5). The influent characterization, fractionation and hindered settling velocity 

parameters are obtained from the measurement campaign. A Monte Carlo-based calibration procedure is 

adopted for the calibration of sludge compression behaviour. 

The next step is the biological characterization of the activated sludge and the set-up of the biological model. 

Mass transfer characterization of the WRRF, influent fractionation and biokinetics characterisation are to be 

done in this step. The ASM1_AN model developed by Van Hulle (2005), which is implemented in the modelling 

platform WEST’s model library, was chosen as biokinetic model for both the biological reactors and the reactive 

settler. The ASM1_AN model is an extension of ASM1 with Anammox and two-step nitrification and denitrification 

(details of the state-of-the-art biokinetic models are presented in Chapter 1.4). The aerobic growth of 

heterotrophic biomass is described as in ASM1. Autotrophic nitrification of ammonium into nitrite and then nitrate 

is described as a 2-step process with distinct groups of AOB and NOB. Denitrification of nitrate into nitrite and 

then N2 is also described as 2-step process and denitrifying heterotrophs use nitrite and nitrate when oxygen 

becomes limiting. For the nitrification and denitrification model, ammonia rather than ammonium, and nitrous 

acid rather than nitrite are used as actual substrates for AOB and NOB growth, respectively. The reason to 

choose ASM1_AN is that the model includes nitrite as an intermediate variable and the developed model can 

be further used for modelling of short-cut N removal process (albeit not in the scope of this PhD project). 

The calibration of the ASM-type biokinetic model is done by first selecting the identifiable model parameters. 

Selection of the most influential parameters is done by considering previous literature reports on methods for 

calibration of nutrient removal WRRF models. In this context, sensitivity analysis allows, based on the target of 

the modelling exercise, to discriminate between the relatively less influential and the most influential parameters.  

Following Mannina et al. (2011), a step-wise Monte Carlo-based calibration protocol was slightly modified to 

calibrate the biokinetic model (Figure 3.7) (Chapter 5).  

 First, a pre-selection of model parameters is done based on engineering expertise and the available 

data.  

 Second, a pre-screening of parameters is done based on local sensitivity analysis (LSA). This allows 

to determine the influential model parameters on the selected model outputs/variables individually and eliminate 

non-influential parameters. LSA-based pre-screening of model parameters also reduces the number of model 
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parameters to be calibrated in this step. The central relative sensitivity (CRS) of each model parameter on the 

selected model variables is to be calculated and used as the evaluation criterion.  

 Third, different parameter subsets are determined prior to calibration, each focusing on a different group 

of output variables (e.g. N variables (NO3-N, NO2-N, NH4-N), COD variables (CODS, CODP)). Monte Carlo 

simulation and global sensitivity analysis (GSA) are to be applied in this step to determine the parameter subsets. 

Multivariate linear regression between the sampled resulting model parameters and variables is performed. 

Standardized regression coefficients (SRC) of each model parameter for each model output individually are to 

be used as the evaluation criterion. Based on this evaluation, some model parameters might be influential on 

more than one model variable since those parameters influence more than one process. This means, a model 

parameter can be included into more than one parameter subset and needed to be recalibrated.  

 Finally, the model calibration is performed by a step-wise Monte Carlo-based calibration of the subset 

of influential parameters on the relevant group of model outputs/variables (Weijers & Vanrolleghem 1997; 

Mannina et al. 2011). The parameter subset calibration procedure is started with the parameter subset which 

has the highest number of parameters that is influential only on one group of model variables. That way, the 

model parameter subsets that have parameters influential on multiple model output groups, are left to be 

calibrated later. Thus, this calibration protocol (Mannina et al., 2011) allows an appropriate calibration hierarchy 

for the parameter subsets based on the interdependency of state variables, and determines the optimized 

parameter values based on multiple model outputs/variables. Monte Carlo simulation is to be applied in this step 

as well. The Sum of Squared Errors (SSE) between the model predictions and the measurements of the relevant 

group of variables is to be used as the evaluation criteria (objective function). Each model variable within the 

group is weighted to calculate one single objective value for each Monte Carlo run. Then, the parameter set of 

the Monte Carlo run that gives the minimum overall objective value is chosen as the optimal parameter set. If 

none of the model parameters within the relevant subset is influential for another group of outputs/variables, all 

parameter values for the subset can be fixed to the calibrated values and the next parameter subset is to be 

calibrated. If not, the non-influential model parameters are fixed and the influential ones are to be recalibrated 

within the next parameter subset. When all the parameter subsets are calibrated, the final set of calibrated model 

parameters is obtained. Then, the calibrated model is used to simulate a different time period than the calibration 

time period for model validation.  

Note that the plant-wide model of the pilEAUte WRRF is to be calibrated and validated with the available 

monitoring data. Even though the proposed biokinetic model calibration procedure adopts the local and global 

sensitivity analyses to determine the model parameter subsets and the relevant model variable groups for 

calibration, practical identifiability issues may arise with the parameter subset calibrations.  Practical identifiability 
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analysis challenges the quality and quantity of the data and is used to verify whether the available data are 

sufficiently informative to identify model parameters and give them an accurate value (Vanrolleghem et al. 1995). 

To eliminate this issue and check the quality of the parameter estimations, confidence intervals can be 

determined with statistical methods such as the Fisher Information Matrix or the generalized likelihood 

uncertainty estimation (GLUE) (Weijers & Vanrolleghem 1997; Asprey & Macchietto 2000; Mannina et al. 2011).  

Step 5. Simulation and Result Interpretation: The calibrated and validated model is used to run simulations 

to meet the objectives laid out in the Project objectives (Chapter 2). This step includes the scenario analyses for 

energy and resource optimization in N removing process. The overall modelling protocol adopted within the 

scope of this PhD Project is presented in Figure 3.8. 

3.2.2 Modelling Platform – WEST 

The models are built in the modelling and simulation platform WEST (DHI, Denmark; Vanhooren et al. 2003). 

The simulation platform can be used to model physical, chemical and biological processes in WRRFs, sewer 

systems and rivers. It is a user-friendly simulator thanks to its extensive and transparent default model library 

and adequate flexibility to develop customised model libraries. The models included in WEST are programmed 

in MSL-USER which is an open source modelling language. Thus, it is possible to modify, improve and integrate 

existing models as well as efficiently introduce new models. The main application areas of WEST in wastewater 

treatment are process optimization, design and the development of control strategies. 
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Figure 3.7 Calibration Protocol for the Biokinetic Model (based on Mannina et al. 2011) 
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Figure 3.8 General Modelling Methodology of the PhD Project (based on Rieger et al. 2012)  
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4. DEVELOPMENT of a 1-D REACTIVE SETTLER 

MODEL 

Secondary settling tanks (SSTs) are mainly used for gravity separation of microorganisms from the effluent in 

water resource recovery facilities (WRRF) and they bring the thickened sludge back to the biological reactors. 

Through settling and thickening, a significant amount of the overall sludge inventory of the treatment plant can 

be stored at the bottom of the SST. This accumulated sludge mass can turn the bottom of the settling tank into 

an additional biological reactor Particularly at long residence times in the settler and with incomplete 

denitrification in the biological reactors, denitrification can take place at the bottom of the settling tank, where 

the concentration of sludge is high, nitrate levels are still substantial, oxygen is no longer present and organic 

matter is available through the decay of biomass or internally stored carbon (Siegrist et al. 1995; Koch et al. 

1999; Bürger et al. 2016). Simultaneous occurrence of biokinetic processes and physical settling phenomena in 

a settler leads to the concept of a so-called reactive settler. Its dynamics should be investigated to correctly 

determine the effluent and underflow characteristics, and also analyse the contribution of SST denitrification to 

the overall N removal in a WRRF (for details see Chapter 1.6.2). In addition, strong denitrification during 

overloaded clarifier conditions can lead to N2 gas bubble induced rising sludge and be detrimental to the plant’s 

efficiency (Henze et al., 1993). Detailed process understanding is thus needed to ensure safe and efficient 

system operation and control of denitrification in the settling tanks. Note that anaerobic conditions within the 

sludge blanket can lead to the release of phosphorus in secondary clarifiers as well but this is outside the scope 

of this work. 

Within this PhD research project, an improved 1-D reactive settler model is pursued to increase the 

understanding of reactive settling processes and obtain a better prediction of the nitrogen mass balance in 

wastewater treatment systems. To achieve that, a good prediction of the hindered and compression behaviour 

at high sludge concentrations and a better prediction of sludge blanket height (SBH) and sludge concentration 

profile over the depth of the settler are needed. This allows determining the biological reaction rates (and in 

particular the denitrification rate) occurring inside the sludge blanket. The presented work demonstrates the 

relevance of considering reactive settling for a good nitrogen mass balance in a plant-wide model and highlights 

the importance of the clarifier geometry and the choice of settling functions in SST models. It is the first modelling 

work that combines the full set-of ASM1 biokinetics with the 1-D Bürger-Diehl (BD) model which includes 

compression and is supported by a full-scale measurement campaign. The developed model can be used for 

control and optimization of WRRFs. 
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4.1 Data Collection 

A unique measurement campaign was carried out with different operational scenarios to quantify the 

denitrification in a secondary settling tank. The measurement campaign was carried out on the pilEAUte WRRF 

that is located at Université Laval (Chapter 3.1 for details). During this campaign, it was aimed to quantify the N-

removal rates inside a SST and to obtain data for development and calibration of the reactive settler model. 

Measuring reactive settling requires the presence of a minimum sludge mass inside the SST. Therefore, the 

sludge blanket height (SBH) was raised by reducing the underflow rate. During this experimental work, different 

operational scenarios were applied to create different SBH and different denitrifying activity levels. 

The three different operational scenarios are presented in Table 4.1 and Figure 4.1. Each operational scenario 

was applied for a week till the system reached steady-state.  

Table 4.1 Experimental Work Operational Scenarios 

Scenario Operational Change NO3-N load SBH Aim 

1 - Average (~10 mg/L) - Reference conditions 

2 Reduced RAS Average (~8 mg/L) Increased Effect of high SBH 

3 Reduced RAS & IR High (~14 mg/L) Increased 
Effect of high NO3-N load 

and high SBH 

 

 

Figure 4.1 Sampling Points in the Studied SST 

The reference scenario refers to normal operating conditions of the SST (no significant denitrification in the SST) 

with an average underflow rate (sludge recycle – RAS) (0.5 m3/h) and low SBH. The SBH was increased in 

Scenarios 2 and 3 by reducing the underflow rate (0.15 m3/h) to increase the reactive volume for substantial 
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denitrification in the SST. In order to determine at which point SST denitrification might lead to rising sludge, the 

nitrate loading to the settler was increased in Scenario 3 by reducing the internal recycle (IR) in the biological 

reactor leading to reduced denitrification in the pre-denitrification zone.  

For each scenario, when the system reached steady-state, grab samples were taken with a ⅜” diameter tube 

brought down to different locations in the settler: from SST influent and effluent as well as at different depths of 

the SST, particularly in the sludge blanket (Figure 4.1). At least four measurements were collected throughout 

the depth of the sludge blanket and at least one measurement was collected in the clarification zone. The flow 

velocity in the sampling tube (0.13 m/s) was sufficiently high to prevent settling in the tube. Samples were 

analysed for the following parameters: NH4-N, NO3-N, NO2-N, TN, CODP, CODS, TSS, pH, alkalinity and 

temperature (COD and pH measurements were not used for modelling particularly thus the results are not 

shown). Dissolved oxygen (DO) concentrations at each sampling point were also measured with a portable DO 

sensor. Moreover, for each scenario, the SBH was measured and a series of batch settling tests was performed 

to determine the hindered settling velocity. The batch tests were performed in a cylinder with a top diameter of 

8 cm and a volume of 2 L. 

Figure 4.2 shows the steady-state measurement results for the three different scenarios, for TSS and NO3-N. 

SST influent (SSTin), effluent (SSTe) and underflow (SSTu) are shown in grey with concentration profiles along 

the height of the SST shown in black. 

The TSS measurements for each scenario were validated by comparing the measured underflow TSS 

concentrations to the expected underflow concentration based on the steady-state mass balance over the SST 

(based on the influent and effluent concentrations and known flow rates in the system) (Table 4.2). Given typical 

measurement errors up to 15%, the mass balance is deemed acceptable. 
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Table 4.2 SST Mass Balance of TSS for Each Scenarios 

 Scenario 1 Scenario 2 Scenario 3 

SBH (m) 0.77 1.01 1.35 

Qinfluent (m3/h) 1 0.65 0.65 

Qunderflow (m3/h) 0.5 0.15 0.15 

Qeffluent (m3/h) 0.5 0.5 0.5 

TSSinfluent (mg/L) 2850 2473 3544 

TSSeffluent (mg/L) 15 8 9 

TSSunderflow calculated (mg/L) 

(based on mass balance) 
5686 10692 15330 

TSSunderflow measured (mg/L) 5867 9234 15025 

Mass balance error -3% 14% 2% 
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Figure 4.2 Measurement Results for TSS (left) and NO3-N (right) for the Tested Operational Scenarios 
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The nitrate concentration profiles (Figure 4.2) show that no denitrification is occurring in the clarification zones 

for all scenarios. Only minor denitrification is occurring in the less concentrated sludge blanket of Scenario 1 and 

the top layers of the sludge blanket for Scenario 2. 90-95% nitrate removal is achieved in the more concentrated 

bottom layers of Scenario 2 and over most of the sludge blanket for Scenario 3 (even in face of the high nitrate 

loading in Scenario 3). 

The DO concentration profiles reveal that DO consistently drops inside the sludge blanket layers and that this is 

accelerated when the sludge blanket is more concentrated. As expected, denitrification can only be observed in 

layers where DO has been entirely consumed. Alkalinity increment in the bottom layers in Scenario 2 and 3 also 

supports that denitrification occurs (Appendix I-Reactive settler measurement campaign results). 

Given the very low soluble COD concentrations measured in the mixed liquor entering the SST, it can be 

concluded that all readily biodegradable COD was utilized in the biological reactors prior to the secondary settling 

process. As electron donor for the denitrification organic matter originating from biomass decay and hydrolysis 

of particulate degradable COD in biomass is utilized. Biomass decay is confirmed by the presence of increased 

NH4-N concentration in the bottom layers under increased TSS concentrations. DO, NH4-N and alkalinity 

measurement results for the campaign are presented in Appendix I - Reactive settler measurement campaign 

results. 

Even though denitrification clearly occurred in the sludge blanket, no direct impact on the effluent NO3-N was 

observed for any of the scenarios. Whereas this can be expected for Scenarios 1 and 2 where the sludge blanket 

is located below the feed point, this observation is surprising for Scenario 3 where the sludge blanket exceeds 

the inlet point (inlet hopper). It is highly probable that a short-circuiting effect in the inlet zone of the clarifier 

exists. DO was also measured in the effluent of Scenario 3 (above 3 mg/L) which was consumed in the sludge 

blanket above the feed layer (Appendix I-Reactive settler measurement campaign results) and supports the 

short-circuiting effect. This warrants a closer look at its design, but, a detailed study of the inlet structure and 

upflow pattern is out of the scope of this study which focuses on denitrification in the sludge blanket.  

Inside the sludge blanket, high NO3-N removal rates indicate that denitrification inside the SST can have a 

significant contribution to the overall denitrification capacity of the WRRF. Explicitly modelling this behaviour in 

SST models is therefore important to accurately describe the nitrate balance in the plant (NO3-N recycling from 

the underflow to the biological reactors) and to capture the risk of nitrogen gas formation in SSTs. 
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4.2 Model Development 

The 1-D BD settling model, which includes compression at high TSS concentrations, was used as a starting 

point for the development of the reactive settling model (Bürger et al., 2013). Based on the mass conservation 

law, the settling process can be described by a partial differential equation (PDE) (Equation 4.1). 

Equation 4.1: 
𝝏𝑪

𝝏𝒕
+ 

𝝏

𝝏𝒛
𝑭(𝑪, 𝒛, 𝒕) =

𝝏

𝝏𝒛
(𝒅𝒄𝒐𝒎𝒑(𝑪)

𝝏𝑪

𝝏𝒛
 ) +  

𝑸𝒇(𝒕)𝑪𝒇(𝒕)

𝑨
 𝜹(𝒛) 

where C: =C(z,t) is the total solid concentration as function of depth z and time t, 𝐹(𝐶, 𝑧, 𝑡) is the flux function 

comprised of both the advective and hindered settling flux and dcomp is the compression function. The feed source 

term contains the feed flow (Qf), the feed concentration (Cf) and the Dirac function (𝛿(𝑧)). 

4.2.1 Implementation of Clarifier Geometry 

The BD settling model only considers the vertical dimension along the SST and mass balance equations are 

formulated based on a constant surface area for each layer. However, the bottom of a real SST may be sloped 

and the surface area thus varies with depth (see examples in Figure 4.3). By not considering this typical 

geometry, the model may overpredict the SST volume by up to 30-50%. The pilEAUte SST that is modelled in 

this work, has an approximate 32% error when the bottom part is not considered conical for the total volume 

calculation (Chapter 3.1-Figure 3.4).  

 

Figure 4.3 Cross-sections of the Oxley Creek and Roeselare circular SSTs respectively (De Clercq 

2003; Torfs 2015) 

This surface area variation along the depth of the SST affects the downward (advective) bulk velocity (present 

in the term F(C,z,t). When assuming a flat-bottom geometry, the downward bulk velocity will be underpredicted 

in the bottom layers leading to a higher hydraulic retention time. In reality, the reduced surface area at the bottom 

of the SST causes the bottom velocity to increase and thus sludge to leave the layer faster. Hence, the 

assumption of constant surface area leads to a severe overprediction of the sludge residence time in the settler 

and to an unrealistic sludge mass accumulation. Also, the extent of biokinetic reactions (such as denitrification) 
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is overpredicted due to the too high hydraulic retention time in the sludge blanket for the constant area settler. 

For that reason, to improve the model predictions, the actual clarifier geometry was implemented in the reactive 

settler model in order to correct the model structural error originating from the constant area assumption. Some 

theoretical works on extension of 1-D settling models with varying surface area are available in literature, e.g. 

(Bürger et al., 2017; Bürger et al. 2021). The implementation of clarifier geometry within the scope of this 

modelling work is presented in Appendix I- Clarifier Geometry Implementation in detail. 

4.2.2 Modelling Hindered Settling Behaviour 

To describe hindered settling behaviour, the double exponential function by Takács et al. (1991) and the power-

law function by Diehl (2015) were evaluated (Equation 4.2 & Equation 4.3). In these equations, X represents the 

TSS concentration and V0, rH, rP, �̅� and q are the model parameters to be calibrated. Since previous research 

indicated that power-law functions appear more suited to describe hindered settling behaviour at high sludge 

concentrations and high sludge blanket heights (Torfs et al. 2017), this work verified whether these previous 

observations could be confirmed by comparing the suitability of both settling functions to describe the 

concentration profiles in the SST.  

Equation 4.2: 𝒗𝒔(𝑿) = 𝑽𝟎 (𝒆−𝒓𝑯𝑿 −  𝒆−𝒓𝑷𝑿) 

Equation 4.3: 𝒗𝒔(𝑿) =
𝑽𝟎

𝟏+(
𝑿

�̅�
)

𝒒 

4.2.3 Modelling Compression Settling Behaviour 

Compression of the network of flocculated particles takes place when the TSS concentration in the sludge 

blanket exceeds a critical concentration (De Clercq et al. 2008). Many compression functions are available in 

literature (De Clercq et al. 2008; Bürger et al. 2011; Ramin et al. 2014a). In the current work, the compression 

function given in Equation 4.4 was used (Torfs et al. 2015) as it has only two parameters to estimate (γ – effective 

solids stress and Xcrit – critical TSS concentration) thus simplifying implementation and calibration. Here, ρs and 

ρf are the densities of the solids and the fluid, respectively, and g is the constant of gravity. 

Equation 4.4: 𝒅𝒄𝒐𝒎𝒑 (𝑿) =
𝝆𝒔 𝜸 𝒗𝒔 (𝑿)

𝒈(𝝆𝒔−𝝆𝒇)
              𝑿 ≥ 𝑿𝒄𝒓𝒊𝒕 

Implementation of the PDE (Equation 4.1) in a method of lines approach requires integration of the compression 

function dcomp. However, when using a power-law function for hindered settling, the integral of the resulting 

compression function does not have an analytical solution. Hence, a numeric approximation of the compression 

flux is implemented based on Algorithms 2&3 given by Bürger et al. (2013). As proposed by Bürger et al. (2013), 

the compression function was discretized over 400 points corresponding to the square of the number of layers. 
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A dispersion function is not included in the reactive settler model which is developed in the scope of this PhD 

research project, since dispersion around the inlet only influences concentrations locally and the effluent 

concentrations, so that the underflow concentration is not influenced (Bürger et al 2013). The main focus of this 

work is predicting the correct TSS concentrations within the sludge blanket and in the underflow. 

4.2.4 Modelling Biokinetic Reactions 

A continuous reactive settler model in which biological conversions and physical sedimentation occur 

simultaneously is developed by including the full set of Activated Sludge Model 1 (ASM1) biokinetic equations 

(Henze et al. 2006) into the BD 1-D settling model. The reactive settling process can be described by the 

extended PDE (Equation 4.5), where for each model component i, its concentration is represented by Ci: = Ci 

(z,t) as a function of depth z and time t. 

Equation 4.5: 
𝝏𝑪𝒊

𝝏𝒕
+  

𝝏

𝝏𝒛
𝑭(𝑪, 𝑪𝒊, 𝒛, 𝒕) =

𝝏

𝝏𝒛
(

𝒅𝒄𝒐𝒎𝒑(𝑪)

𝑪𝒊

𝝏𝑪

𝝏𝒛
 ) 𝑪𝒊 +  

𝑸𝒇(𝒕)𝑪𝒊,𝒇(𝒕)

𝑨
 𝜹(𝒛) +  𝒓𝒊(𝒛) 

In this extended PDE, the flux function and compression behaviour are function of both the total solids 

concentration C=∑Cp,i(z,t) and the specific component concentration Cp,i. Cp,i hereby represents the 

concentration of the ith particulate component. For soluble components, the hindered settling and compression 

terms vanish.  

The last term represents the reactions (ri) for each model component i (ASM1- Henze et al. 2006). The 

temperature dependence of the reaction rates is implemented in the biokinetic model with the Arrhenius equation 

using reference temperature 20⁰C (Ruano et al. 2007).  

The total flux 𝐹(𝐶, 𝐶𝑖, 𝑧, 𝑡) per particulate component can be written as follows (Equation 4.6).  

Equation 4.6: 𝑭(𝑪, 𝑪𝒊, 𝒛, 𝒕)𝒂𝒃𝒐𝒗𝒆 𝒇𝒆𝒆𝒅 =   𝒗𝒉𝒔(𝑪)𝑪𝒊 −
𝑸𝒆(𝒕)𝑪𝒊

𝑨(𝒛)
 

𝑭(𝑪, 𝑪𝒊, 𝒛, 𝒕)𝒇𝒆𝒆𝒅 =   𝒗𝒉𝒔(𝑪)𝑪𝒊 +
(−𝑸𝒖(𝒕) − 𝑸𝒆(𝒕))𝑪𝒊

𝑨(𝒛)
 

𝑭(𝑪, 𝑪𝒊, 𝒛, 𝒕)𝒃𝒆𝒍𝒐𝒘 𝒇𝒆𝒆𝒅 = 𝒗𝒉𝒔(𝑪)𝑪𝒊 +  
𝑸𝒖(𝒕)𝑪𝒊

𝑨(𝒛)
 

In Equation 4.6, note that the advective flux is surface area dependent and changes with depth. Qe and Qu 

represent the effluent and under flowrates respectively. Hindered (𝑣ℎ𝑠) and compression settling (dcomp) are only 

active for particulate components and zero for soluble components. 
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4.2.5 Numerical Solution 

For numerical solution, the PDE describing the settling behaviour over the depth of the settler is discretized in 

layers. The overall mass balance in each layer accounts for the hindered settling flux, the upward or downward 

bulk advective flux, a flux due to sludge compression and biokinetic reactions based on ASM1. The reactive SST 

was modelled with 20 layers (16 layers along the height of the SST and 4 boundary layers) to have at least one 

measurement point in each layer so as to facilitate comparison of model predictions with measured 

concentrations. A discretization in 20 layers was found sufficiently accurate after comparison with a more 

detailed discretization (99 layers, results not shown). The mass balances for each of the 7 soluble and 6 

particulate components are solved over the 16 layers of the SST model (Appendix I). No reaction takes place in 

the boundary layers.  

The model was implemented in the WEST modelling and simulation software (Chapter 3.2.2). The input file was 

defined based on the measurement results in the influent of the SST using a constant outflow of a bioreactor 

with typical COD fractionation of mixed liquor concentrations (Henze et al. 2006) (Figure 4.4). Simulations were 

run for 5 days to ensure reaching a steady state SBH for each scenario. 

 

Figure 4.4 Reactive Settler Model Layout in WEST 

4.3 Model Calibration and Testing 

4.3.1 Calibration of Hindered Settling Behaviour 

Data collected from the batch settling tests for different initial sludge concentrations (Figure 4.5) were used to 

estimate the hindered settling parameters. The hindered settling velocities were determined by calculating the 

maximum slopes of the batch curves and plot them as function of the initial solids concentration. The data points 

of hindered settling velocity as function of initial TSS concentrations were subsequently used to perform 
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parameter estimations for the settling functions of Takács et al. (1991) and Diehl (2015) by minimizing the Sum 

of Squared Errors between the model predictions and the experimental data.  

 

Figure 4.5 Settling Curves of Batch Settling Tests for Different Initial TSS Concentrations 

Most of the (2 parameter) power-law hindered settling functions in literature (e.g. Cole 1968) have very high 

settling velocities at low sludge concentrations, leading to unrealistic effluent concentration predictions. The 

function of Diehl compensates for this effect by introducing a third parameter (similar as to the rP parameter in 

the double exponential function of Takács et al. (1991) (Equation 4.2)). It is, however, not possible to identify 

this parameter on a series of batch settling curves collected at concentration above 1 g/L. �̅� and rP were therefore 

fixed at typical values and only respectively V0 and q, and V0 and rH were estimated. As shown in the results, 

this gives sufficient degrees of freedom to capture the hindered settling behaviour. (Note that in dynamic 

modelling studies, �̅� and rP can be further calibrated based on the effluent TSS concentrations but this work 

does not focus on predicting effluent TSS precisely). Figure 4.6 shows the resulting model fit for both hindered 

settling functions. 
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Figure 4.6 Exponential vs Power-Law Hindered Settling Functions Calibrated to the Batch Settling Test 

Results 

Figure 4.6 shows that both settling functions agree well with the velocities in the TSS concentration range for 

which batch settling curves with a clear hindered settling region could be performed (1.1 g/L to 3.2 g/L). It is thus 

not possible to distinguish between the exponential and power-law model structure based on the batch settling 

data. The estimated settling function parameter values based on these batch settling tests are given in Table 

4.3.  

Table 4.3 Settling Functions Evaluated and Estimated Parameter Values 

Settling function Optimal Parameter Values 

Takács: 𝑣𝑠(𝑋) = 𝑉0 (𝑒−𝑟𝐻𝑋 −  𝑒−𝑟𝑃𝑋) V0 (m/d) : 193.88 

rH (m3/kg) : 0.00062 

rP (m3/kg) : 28.99* (Takács et al. 1991) 

Diehl: 𝑣𝑠(𝑋) =
𝑉0

1+(
𝑋

�̅�
)

𝑞 V0 (m/d) : 223.23 

�̅� (kg/m3) : 1.00* (assumed, see text) 

q (-) : 1.5826 

* Fixed parameter value  
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4.3.2 Testing the Inclusion of Clarifier Geometry 

4.3.2.1 Rectangular Geometry (Flat-Bottom) 

In most modelling studies, the settling tank is considered rectangular (i.e. having a constant cross-sectional area 

over its entire depth) for simplicity reasons. Through calibration of the settling functions, underflow 

concentrations can be captured even if this assumption does not hold. In the current work too, the assumption 

of constant cross-sectional area was originally applied. However, accurate modelling of reactive settling requires 

a good description of the overall sludge mass and its distribution over the sludge blanket, putting more emphasis 

on proper settling model calibration. The measured hindered settling velocity parameter for different settling 

velocity functions are tested on the reactive settler model with constant cross-sectional area. However, it was 

impossible to capture the sludge concentration profiles of all three scenarios with a single parameter set for the 

settling velocity function. Figure 4.7 illustrates the simulated sludge concentration profiles for the SST under 

study with constant cross-sectional area for both settling functions tested: the Takács exponential hindered 

settling function and Diehl’s power-law hindered settling function.  

For both settling velocity functions, it was not possible to obtain a good fit with the rectangular geometry. Both 

functions result in high sludge settling velocities for Scenario 1 and underestimate the SBH which could be 

corrected by including the sludge compression behaviour. However, the Takács settling function is severely 

overestimating the SBH and the sludge mass prediction inside the sludge blanket for Scenarios 2 and 3. In this 

case, including the sludge compression would lead to much higher SBH predictions and sludge overflow. On 

the other hand, the Diehl’s settling function gives high sludge settling velocities at high TSS concentrations as 

expected and result in very low SBH predictions in all scenarios. Before including the sludge compression, the 

actual clarifier geometry is included to the reactive settler model to see how it affects the TSS concentration 

profiles. 
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Figure 4.7 Best TSS Concentration Profiles Obtained with SST Models with Rectangular Geometry for 

Takács (left) and Diehl (right) Settling Velocity Functions with Parameters Obtained from the Batch 

Settling Curves 

4.3.2.2 Actual Geometry (Conic-Bottom) 

After this unsuccessful calibration attempt of the model with constant cross-sectional area, it was decided to 

implement the actual clarifier geometry according to the procedure explained in Chapter 4.2.1 and Appendix I-

Clarifier Geometry Implementation. The calculated surface area and volume for each layer can then be applied 

directly to the mass balance equations. 

In order to select the best hindered settling function to be used, the calibrated Takács and Diehl settling functions 

were implemented in the BD settling model with correct geometry of the clarifier and their performance in 
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predicting the TSS profiles of the measurement campaign was compared in Figure 4.8. Specific attention is 

given to high TSS concentrations as this is crucial for a reactive settler model (as explained above) and since 

information on high TSS concentrations is not present in the settling velocity data of Figure 4.6. Note that no 

additional calibration was performed at this point but simulations were performed with the parameter sets of 

Table 4.3. Compression settling was not considered in these first simulations. 

 

 

 

Figure 4.8 Comparison of Measured TSS Profiles of the Three Scenarios with BD Model Simulations 

with Takács (left) and Diehl (right) Hindered Settling Functions Calibrated Using Batch Settling Tests* 

* No compression modelled.  

As can be seen in Figure 4.8 when adopting the correct geometry, both settling functions give good predictions 

for both the TSS concentration profile and SBH prediction in Scenario 1 which represents the normal operating 
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conditions of a SST. However, in Scenarios 2 and 3 the Takács settling function is again severely overestimating 

the SBH and fails to capture the concentration profile and thus sludge mass prediction inside the sludge blanket. 

It even led to sludge overflow of the settler for simulations under the operating conditions of Scenario 3. With 

conical geometry implemented, it becomes apparent that the Takács settling function calibrated on batch settling 

data is thus underpredicting the settling velocities at high TSS concentrations whereas the Diehl power-law 

function clearly performs better at high TSS concentrations.  

The difference between both settling functions at high TSS concentrations is illustrated in Figure 4.9. Note that 

adding compression, which will reduce settling velocities further at high TSS concentrations, would only 

exacerbate this poor performance of the Takács-based SST model. These observations confirm previous 

findings from literature (Torfs et al. 2017). Thus, based on these modelling results and the previous modelling 

efforts, the Diehl settling function was selected in the proposed 1-D reactive settler model. 

 

Figure 4.9 Exponential vs Power-Law Hindered Settling Functions Behaviour at High TSS 

Concentrations 

4.3.3 Calibration of Sludge Compression Behaviour 

Although the model results with only hindered settling according to Diehl’s model already show quite a good fit 

for the concentration profiles in all three scenarios, a slight underestimation of the sludge concentrations and 

the sludge blanket height can be observed in Scenario 3. To further improve the model results and accurately 

capture the active biomass concentration, compression settling is included in the developed 1-D reactive settler 

model. The compression function adopted within this model includes 2 parameters to calibrate: γ – the effective 

solids stress and Xcrit – the critical TSS concentration at which compression starts (Equation 4.4). The Monte 
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Carlo approach of Sin et al. (2007) was used for model calibration with Latin Hypercube Sampling (LHS) of the 

parameter values from the defined parameter space (Table 4.4).  

Table 4.4 Properties of the LHS Sampling for the Monte Carlo Approach to Find Optimal Compression 

Parameter Values for Three Scenarios 

Parameter Parameter range sampled 

γ , effective solids stress (m2/s2) 0.01 – 0.0001 

Xcrit , critical TSS concentration (mg/L) 3000 - 8000 

Number of Monte Carlo Runs for each scenario  200 

 

For each parameter set (𝜃), model predictions (𝑦𝑚,𝑖) and measured (𝑦𝑖) TSS concentration profiles along the 

sludge blanket were used to calculate the Sum of Squared Errors (SSE) (Equation 4.7), for each scenario. The 

final objective function was calculated as the average SSE of the three scenarios. The parameter set that gives 

the minimum overall objective value is chosen as the optimal parameter set. 

Equation 4.7: 𝑺𝑺𝑬 = ∑ (𝒚𝒊 − 𝒚𝒎,𝒊(𝜽))𝟐𝑵
𝒊=𝟏  ; N: number of data points & i:variable 

Based on the evaluation of the objective values (Equation 4.7) calculated for each Monte Carlo run, it was not 

possible to obtain a good model fit for each scenario with a unique parameter set. Since the compression function 

also includes the hindered settling velocity in its structure (see Equation 4.4) the parameter values of the 

hindered settling function might have a significant effect on the compression behaviour. As these parameters 

were estimated based on batch settling data within the concentration range of hindered settling behaviour (1.1-

3.2g/l) and the transferability of the parameter values from batch settling conditions to continuous flow conditions 

might not be perfect, it was decided to evaluate whether further fine-tuning of the hindered settling parameters 

could allow achieving a good model fit for the three full concentration profiles.  

To avoid overfitting the model, a local sensitivity analysis (LSA) was carried out for the parameters of the Diehl 

hindered settling velocity function in order to assess which parameter has the highest influence at high TSS 

concentrations and thus may be the most appropriate for further fine-tuning. The sensitivity analysis was 

performed based on the central relative sensitivity (CRS) of the settling velocity on each model parameter (V0, 

�̅� and q) (Claeys 2008). The LSA results confirm that parameter q is the most influential model parameter in the 

Diehl hindered settling velocity function at high TSS concentrations (>3 mg/L) (Equation 4.7). 
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Figure 4.10 Central Relative Sensitivities (CRS) of Diehl Settling Function Model Parameters Based on 

Local Sensitivity Analysis 

Figure 4.11 shows the Diehl settling velocity function versus experimental data with the q value calibrated on 

the batch settling test results (Table 4.3) and with slightly different values for q to see how the values of q 

influence the curve. It can be concluded that the upper and lower values of q still show a good fit with the batch 

settling data within the hindered settling zone, but those have a significant influence on the settling velocity at 

high TSS concentrations.  

 

Figure 4.11 Diehl Settling Functions Calibrated to Batch Settling Curves (q:1.5826) and Different q 

Values 
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Motivated by the significant influence of the parameter q at high solids concentrations, another set of Monte 

Carlo simulations was carried out including the parameter q values within the range given in Table 4.5. 

Table 4.5 Properties of the LHS Sampling for the Monte Carlo Approach to Find Optimal Compression 

and q Parameter Values for Three Scenarios 

Parameter Parameter range sampled 

γ , effective solids stress (m2/s2) 0.01 – 0.0001 

Xcrit , critical TSS concentration (mg/L) 3000 - 8000 

q , Diehl settling function parameter (-) 1.5 – 1.8 

Number of Monte Carlo Runs for each scenario  500 

This additional analysis made it possible to find a unique parameter set for all three scenarios with a good fit to 

each of the TSS concentration profiles. The optimal parameter set also gives good predictions for both total 

sludge mass and SBH. The final set of calibrated model parameters is presented in Table 4.6 and the TSS 

concentration profiles for all scenarios are given in Figure 4.12.  

Table 4.6 Optimal Parameter Set for Settling Model Calibration 

q – Diehl settling function parameter (-) 1.69 

V0  – Diehl settling function parameter (m/d) 223.23* 

�̅� (kg/m3) 1.00** 

γ – effective solids stress (m2/s2) 3.21×10-4 

Xcrit – critical TSS concentration (mg/L) 5550 

See details in Chapter 4.3.1 for: * Fixed parameter value on batch settling curves, ** Fixed parameter value 
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Figure 4.12 Comparison of Model Results with Final Set of Calibrated Parameters Measurement 

Results for TSS for the Three Tested Operational Scenarios 
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To be fair, the reactive settler model with Takács settling velocity function was also attempted to be calibrated 

by changing the settling velocity parameters and including the sludge compression behaviour. However, Takács 

function required significant changes on the settling velocity parameters in order to accelerate the hindered 

settling velocities at high TSS concentrations and to give a good estimation of the SBH and TSS concentration 

profiles. The estimated parameter values were much different than the measured values from the batch settling 

tests, thus requiring to make unrealistic changes on the model parameter values. However, the final version of 

the reactive settler model with Diehl’s settling function only required to do a fine-tuning on one of the settling 

velocity parameters to obtain a good fit for the three operational scenarios. 

4.3.4 Calibration of ASM1 biological reactions in BD settler model 

Figure 4.13 shows the model results for NO3-N and DO along the 16 layers in the SST for all scenarios with the 

calibrated settling parameters and the default ASM1 model parameter values for biokinetic reactions with 

temperature correction (temperature in all scenarios was 26⁰C) (Henze et al. 2006). It is remarkable that without 

calibration of the kinetic parameters, the model is able to capture the general trends of the biokinetic reactions 

quite well.  

The NO3-N concentration decreases in the bottom layers of the SST (where the TSS concentration is substantial) 

due to denitrification after DO is consumed completely in the sludge blanket. Scenario 1, which has the lowest 

sludge mass in the clarifier, does not have significant denitrification in the sludge blanket, which is well predicted 

by the model. In Scenario 2 and 3, the model predicts high denitrification rates in the concentrated bottom layers 

of the sludge blanket as was observed in the measurement campaign.  

The main discrepancy between the model and measurements can be found in the clarification zone for Scenario 

3. In this scenario, the sludge blanket extends above the feed layer of the SST (observed and simulated). Hence, 

the model predicts significant denitrification in these upper layers of the sludge blanket, thus predicting reduced 

effluent NO3-N and DO concentrations. However, the measured NO3-N and DO concentrations in the effluent 

were close to the SST influent concentrations. As explained in Chapter 4.1, it is hypothesized that this is due to 

short circuiting in the inlet zone of the clarifier which is not reflected in the 1-D model. Further analysis of the 

hydraulics would be needed to confirm this hypothesis, but this is beyond the scope of this study. The effect of 

observed short-circuiting in full-scale could in theory be compensated in the model by calibrating the biokinetic 

model and reducing the denitrification efficiency in the clarifier. However, the developed reactive settler model 

is further to be used as part of the plant-wide pilEAUte model and the biokinetic model parameters are to be the 

same for the biological reactor and the reactive SST. 
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Figure 4.13 Model Predictions of NO3-N (left) and DO (right) using the Calibrated Settling Model and 
ASM1 Default Parameter Values Corrected for Temperature (Henze et al. 2006) (Temperature in all 

scenarios 26⁰C) for the Three Scenarios 

The calibrated model is thus giving promising results for biokinetic reactions and the resulting concentration 

profile of the soluble components. The small differences between the model predictions with default ASM1 

parameters and the measurement results – except for the short-circuiting effect – are found acceptable. 

Therefore, there is no need for further calibration of the biokinetic model parameters in the developed and 

calibrated 1-D reactive settler model. The default biokinetic parameter values of ASM1 were not changed (Henze 

et al. 2006). In addition, note that the pilEAUte plant is receiving municipal wastewater originated from the 

university campus (Chapter 3.1), and ASM1 default model parameters are proposed for treatment of wastewater 

with municipal characteristics (Henze et al. 2006). If needed, it would be appropriate to calibrate the biokinetic 
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model parameters in a plant-wide model and the same parameter values would be applied in both the biological 

reactor and the reactive SST. The plant-wide pilEAUte model including the developed reactive settler model is 

presented in Chapter 5. 

An interesting feature of a reactive settler model like the one proposed would be to estimate the risk of N2 

production (indicating a risk of rising sludge). However, specific modelling of the liquid-gas mass transfer for 

prediction of N2 production and especially bubble formation would unnecessarily increase model complexity. On 

the other hand, it has been suggested that denitrification may lead to bubble formation when more than 6-8 mg/L 

NO3-N is denitrified in the sludge blanket (Henze et al. 1993). N2 gas bubble induced sludge rising problem is 

also observed in the measurement camping of this study as well while high nitrate and readily biodegradable 

COD is loaded to the clarifier (results not presented). Hence, the reliable prediction of SST denitrification in the 

developed model allows to evaluate the risk of N2 gas formation by setting up a warning signal once a threshold 

NO3-N removal is exceeded.  

In addition to that, theoretically, enhanced denitrification in the SST can -for the same overall N-removal- allow 

for reducing internal recycle pumping and thus result in energy and carbon source savings. Based on calibrated 

model results, it was found that up to 160 g/d NO3-N can be removed through reactive settling provided the 

sludge blanket height is controlled at approximately 50% of the total SST height in the pilEAUte WRRF. 

Within the scope of this PhD research project, the developed reactive settler model which is only calibrated for 

the settling model parameter at this stage, is further used to model the plant-wide pilEAUte WRRF.  

4.4 Conclusions 

The key findings of the reactive settler model development is presented here. Within this study, a reactive settler 

model was developed, calibrated and tested on a unique dataset in order to better incorporate the potential 

importance of reactions in the sludge blanket of secondary settling tanks.  

 A detailed measurement campaign was performed on a pilot-scale settler under different sludge blanket 

and NO3 loading conditions. It was confirmed that significant denitrification in the SST can occur depending on 

the biomass concentration and the hydraulic retention time in the sludge blanket.  

 The 1-D settler model was developed based on the Bürger-Diehl framework including hindered settling 

and compression processes, a full set of ASM1 biokinetic equation and proper attention for the actual (conical) 

clarifier geometry. It was found that accurate description of biokinetic reactions in the SST puts high calibration 

demands on the settling model as it should capture the full concentration profiles of active biomass in the sludge 

blanket. 
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 An extensive calibration and model selection effort was performed. The Diehl hindered settling function 

(a 3 parameter power-law function) was found to be the most adequate to describe the hindered settling process 

over the entire TSS concentration range and particularly at high TSS concentrations. The developed reactive 

settler model was able to predict concentration profiles and sludge blanket height for three different operational 

scenarios with a unique parameter set for hindered and compression parameters. Approximate hindered settling 

parameters could be obtained from batch settling experiments with only minor fine-tuning required for one of the 

hindered settling parameters in the full-scale model. This one parameter was the one to which high TSS 

concentrations were most sensitive. 

 The calibrated model was subsequently able to accurately predict the TSS, NO3-N and DO 

concentration profiles, sludge mass in the SST and sludge blanket height without the need to calibrate the 

biokinetic model parameters at this stage. They could be maintained at typical values for municipal wastewater 

treatment which agrees with the pilot’s behaviour. 

The developed reactive settler model can be used for better predictions of effluent and underflow concentrations 

of a SST together with the concentration profile of the sludge blanket. It can be integrated in a plant-wide model 

and used for scenario analysis to properly calculate the nitrogen mass balance of a WRRF. Moreover, it can 

also be used to demonstrate the denitrification potential of the secondary settling process in a plant-wide model 

or to avoid the N2 gas bubble induced rising sludge problem.   



 

72 

5. MODELLING of BIOLOGICAL N-REMOVAL 

PROCESSES 

5.1 pilEAUte Model – Conventional Nitrogen Removal 

The objective of this PhD research project was to improve the understanding of N-removal mechanisms in the 

biological treatment of wastewater through modelling and optimizing the existing WRRFs to reduce energy and 

resource consumption. For this purpose, the pilEAUte WRRF (only the pilot lane) was modelled and scenario 

analyses were applied. The model layout of the pilEAUte WRRF which consists of 5 biological tanks and a 

secondary clarifier is presented in Figure 5.1.  

 The process units’ volumes and flowrates (internal & sludge recycle, waste sludge) were selected 

based on the plant’s design and operational values as explained in Chapter 3.1.  

 The data used for the model input (influent, operational and effluent data) is described in Chapter 5.2.  

 The BIOMATH calibration protocol was applied for the model calibration and for the biokinetic model 

calibration, the calibration methodology of Mannina et al. (2011) was modified and applied (Chapter 

3.2.1).  

 The additional backflows in between the basins on the model layout were added based on the hydraulic 

model results presented in Chapter 5.3.  

 The developed 1-D reactive settler model was used for the secondary settling process in the pilEAUte 

plant-wide model (Chapters 4 & 5.5).  

 The ASM1_AN biokinetic model which is an extension of ASM1 was used as the biokinetic model. The 

model calibration details are presented in Chapter 5.6. 

 

Figure 5.1 pilEAUte WRRF Model Layout 
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5.2 Model Input Data 

The pilEAUte WRRF operational data for the time period February 1st − March 31st 2018 were used for the 

model. The time period was chosen to reflect the normal operational conditions (the whole system is operated 

under dry weather conditions) and was selected in view of the sensors’ reliability. The raw monitoring data was 

treated with the univariate data validation method of Alferes and Vanrolleghem (2016) and the outlier detection 

and data smoothing filters were applied prior to modelling (Alferes and Vanrolleghem 2016; Philippe 2018). The 

time periods used for the different modelling purposes are presented in Table 5.1. 

Table 5.1 Model Input Data Time Periods 

Modelling purpose Period Days Number of days 

Model initialization 01 - 23 February 0-23 23 

Model calibration 24 February - 17 March 24-47 23 

Model validation 18 March - 31 March 48-59 11 

5.1.1 Influent Data 

The influent flowrate used for the model is shown in Figure 5.2. As can be seen, the influent flowrate is most of 

the time 12 m3/d with, sometimes, an influent pump stop. The stop is mostly temporarily (for a couple hours 

max.) and it does not affect the biological processes. From day 49 to 51, the influent pump completely stopped 

working, thus there was no influent to the system. This period is included as part of the model validation time 

period to see if the calibrated model is able to predict the plant performance and the effluent concentrations 

under these conditions. 

 

Figure 5.2 Influent Flowrate 
(In day 20, due to an operational mistake on the SCADA, the influent flowrate was doubled to 24 m3/d for 15 minutes which would not impact the biological 
process significantly.) 



 

74 

The influent total COD vs soluble COD is shown in Figure 5.3. Note that the pilEAUte is known to behave very 

similar to a traditional predenitrifying municipal WRRF, with classic municipal wastewater composition (Li et al., 

2019). The total COD varies between 250 and 400 mg/L while the soluble COD is around 100-150 mg/L. The 

ratio of soluble COD to total COD is around 40%. 

 

Figure 5.3 Primary Effluent Total COD vs Soluble COD Measured with Spectro::lyser 

The influent COD fractionation study for the pilEAUte by Li et al. (2019) was used for the fractionation of COD. 

However, this influent characterization study was performed for the influent of the primary clarifier. However, the 

COD data that is used for this model is taken at the outlet of the primary clarifier where the sensors are located 

(influent of biological reactors). Thus, a backward calculation had to be done by considering the average 

concentrations of total and soluble COD at the outlet of primary clarification. The particulate material removal 

efficiency of the primary clarifier was measured as 50% (Ponzelli et al. 2019) and the average particulate COD 

was calculated at the inlet of the clarifier (for which the backward calculation takes place). Then the COD 

fractionation by Li et al. (2019) can be applied and the final COD fractionation for the outlet of the primary clarifier 

is calculated (by considering the 50% removal efficiency in the primary clarification again) and used as model 

input (Table 5.2).  
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Table 5.2 COD Fractionation of Primary Effluent (based on Li et al. (2019)) 

COD Component Ratio over Total COD 

Inert particulate COD (XI) 15.9% 
63% 

Biodegradable particulate COD (XS) 47.4% 

Inert soluble COD (SI) 8.6% 
37% 

Readily biodegradable COD (SS) 28.2% 

The influent ammonium (NH4-N), soluble organic nitrogen and particulate organic nitrogen concentrations are 

presented in Figure 5.4. NH4-N is the only parameter that is measured at the primary effluent, but organic 

nitrogen is also present in the influent in soluble and particulate forms. To determine the organic nitrogen 

concentrations, an influent total nitrogen fractionation was performed (based on the monitoring data presented 

in Chapter 6) and based on the ratios in Table 5.3, the soluble and particulate organic nitrogen concentrations 

are calculated from the ammonium data. Note that the soluble organic nitrogen is not a model variable in the 

used biokinetic model (ASM1_AN), thus the calculated soluble organic nitrogen concentration is included in the 

influent ammonium concentration. 

 

Figure 5.4 Primary Effluent Nitrogen Concentrations 
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Table 5.3 Primary Effluent Total Nitrogen Fractionation 

Nitrogen Component Fraction of Total Nitrogen 

Ammonium nitrogen (SNH) 71% 

Soluble organic nitrogen (SND) 11% 

Particulate organic nitrogen (XND) 18% 

Influent alkalinity is another parameter that needs to be considered for the model. However, no continuous 

alkalinity measurement is available for the pilEAUte. For that reason, influent alkalinity data was produced prior 

to modelling. For their study of fermentation in the primary clarifier, Ponzelli et al. (2019) monitored and evaluated 

the daily variation of alkalinity for the pilEAUte influent wastewater, both primary influent and effluent. In addition, 

Tohidi (2019) demonstrated the relation between the influent ammonium concentration and alkalinity. By 

considering this daily pattern and the influent ammonium sensor data, an influent alkalinity time series was 

created (Figure 5.5). 

 

Figure 5.5 Primary Effluent Alkalinity Concentration 

The pH of the influent wastewater is also considered for the model. The pH is quite stable, located between 6.5-

8.5 and suitable for the growth of both heterotrophs and nitrifiers. The average value of the influent pH given in 

Figure 5.6 is used in the model (on average 7.5).  



 

77 

 

Figure 5.6 Primary Effluent pH 

5.1.2 System Operational Data 

The TSS concentrations measured in the biological reactors (anoxic basin 2) are compared to the sludge recycle 

TSS concentrations in Figure 5.7. The MLSS concentration in the biological reactors varies between 2500-4000 

g/m3. The sludge recycle TSS concentration data were corrected by considering the TSS mass balance around 

the secondary clarifier. The orange line in Figure 5.7 represents the data calculated based on the mass balance. 

The grey line in Figure 5.7 represents the data that was actually used for modelling. It uses the sensor 

measurement data if it is 20% below or above the value calculated with the mass balance. If not, the mass 

balance calculated value is assumed as the recycle TSS. Note that around day 20 and 50, the sludge recycle 

TSS concentration becomes equal to the one in the biological reactors because there was no influent fed to the 

plant.  
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Figure 5.7 TSS Concentration in Biological Reactors vs Sludge Recycle 

The dissolved oxygen concentration in the biological reactors is controlled (with a set-point of 3 mg/L) and 

measured only in Basin 4. Figure 5.8 compares the measured DO concentration with the air consumed in Basin 

4. Note that the same air flowrate is applied to Basin 3 and Basin 5, thus the overall air consumption of the 

pilEAUte is three times the air flow time series of Figure 5.8. 

 

Figure 5.8 Dissolved Oxygen Concentration in Biological Reactor vs Air Flowrate Utilized 

The temperature measured in the biological reactors (Basin 4) and used for the model is given in Figure 5.9. 

The reactor temperature is implemented as a model input and used in the Arrhenius temperature dependency 

of the biokinetic model. On average, the temperature was around 20⁰C, thus prior to model calibration the ASM1 

default biokinetic model parameters for 20⁰C are used.  
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Figure 5.9 Temperature in Biological Reactors 

5.1.3 Effluent Data 

The effluent concentrations that were used for model calibration are presented in Figure 5.10 and Figure 5.11. 

Based on Figure 5.10, the ammonium in the effluent is quite low, so the nitrification works well for the selected 

time period. The effluent nitrate nitrogen varies between 4 to 14 mg/L probably reflecting the influent N load.  

 

Figure 5.10 Effluent Ammonium and Nitrate Nitrogen Concentrations 

The effluent turbidity data in Figure 5.11 shows that the sludge settles well in the secondary clarifier for the given 

time period. 
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Figure 5.11 Effluent Turbidity 

5.3 Hydraulic Model 

The first step of the model calibration consists of the hydraulic characterization of the plant and to calibrate the 

hydraulic model. This evaluation is quite important for the pilEAUte WRRF since important backflows were 

observed between the different basins of the biological reactors. As previously mentioned (Chapter 3.1), the 

wastewater flows through basin 1 to basin 5 in the plant (Figure 3.3). However, the baffles between basins 4&5 

and also basins 2&3 were found insufficient to divide the reactors when aeration is on in the reactors, leading to 

important, undesired backflows. A tracer test and a hydraulic model (Zhao and Vanrolleghem 2015) had already 

been developed for the pilEAUte WRRF. It was concluded that the baffles in between the basins cannot prevent 

backflow and the backflows between basins 4&5 are such that these basins have to be considered as one 

completely mixed reactor. There is also an important backflow from basin 3 to basin 2 which is increasing with 

the air flowrate in basin 3 (Figure 5.12). Note that the tracer test data was obtained for the normal operational 

conditions of pilEAUte where the average air flowrate applied in each aerated basin is 200 L/min. Rhodamine 

was used as the tracer in the experiments from Zhao and Vanrolleghem (2015) and analyzed in the laboratory. 

In addition to that, another tracer test was designed and applied to confirm and determine the backflows between 

the different basins of the biological reactors (Souidi et al. 2018). For this tracer test, ammonium and nitrate were 

used as the tracer and the measurements were done with the ion-selective sensors that measure the ammonium 

and nitrate concentrations continuously. Within this study, two tracer tests were conducted, one for reference 

operational conditions and one for step-feed conditions to the 3rd basin.  
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Figure 5.12 Backflow between Basins 3 and 2 due to Aeration 

Within this PhD research project, the data obtained from the different tracer tests were used to determine the 

backflow flowrates and calibrate the hydraulic model. The tracer applied to the measurement campaigns is 

defined in the model as inert soluble COD (SI). By applying different backflow flowrates in between the basins, 

the SI concentrations in different basins were compared with the tracer concentration data (model versus 

measurement results). 

5.3.1 Reference Case 

The reference case represents the normal operational conditions of the pilEAUte WRRF. Zhao & Vanrolleghem 

(2015) had already demonstrated backflows from basin 5 to 4 and from basin 3 to 2. This model layout (Figure 

5.13) was used as the starting point and tested with the data from the measurement campaign of Souidi et al. 

(2018). The secondary clarifier model was replaced with the reactive settler model developed within the scope 

of this PhD research project (Chapter 4).  
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Figure 5.13 Hydraulic Model Layout (Zhao & Vanrolleghem, 2015) 

In order to simplify the model, the backflow from basin 5 to 4 is tested for 1800 m3/d instead of the 1900 m3/d 

proposed by Zhao & Vanrolleghem (2015). Thus, the backflow becomes 150 times the influent flowrate of the 

plant. The model was tested with the 2018 measurement data and presented for each basin in Figure 5.14. Note 

that no data was available for Basin 5 from the 2018 measurement campaign.  

 

 

Figure 5.14 Hydraulic Model Results for Reference Case Tracer Experiment 

Based on the model predictions versus the measurement data (2018) of Figure 5.14, the applied backflowrates 

(Figure 5.13 by Zhao and Vanrolleghem (2015)) are considered valid. The model predictions in the first three 

basins correspond well with the added tracer amount. The time of the peaks in each of the basins and the curves’ 

shapes correspond with the measurement data of the 2018 campaign. However, a difference is observed 

QInternal Recycle= 36 m3/d 

QSludge Recycle= 12 m3/d 

QInfluent = 

12 m3/d QWaste = 

0 m3/d 

QEffluent = 

12 m3/d 

QBackflow Basin 5 to 4= 1900 m3/d QBackflow Basin 3 to 2= 60 m3/d 
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between the simulated and the measurement data curves in Basin 4 which might be due to a loss of tracer or a 

measurement error of the sensor installed in this basin. 

5.3.2 Step-Feed Case 

The step-feed case refers here to another operational case applied in the measurement campaign of 2018 which 

feeds the influent and the internal sludge recycle to Basin 3 (instead of Basin 1). This operational scenario is 

carried out to verify whether the backflows applied in the reference case (Chapter 5.3.1) are still valid in different 

operational cases. The 2018 measurement campaign data showed an additional backflow from Basin 2 to Basin 

1. Thus, this backflow was added to the model layout in Figure 5.15 and its value was determined to be 25 m3/d 

by fitting the model to the measurement results given in Figure 5.16. Model results without the backflow from 

Basin 2 to 1 are also shown in Figure 5.16 to see the improvement in model predictions. 

 

Figure 5.15 Hydraulic Model Layout for Step-Feed Case 

QInfluent = 

12 m3/d 

QEffluent = 

12 m3/d 

QWaste = 

0 m3/d 

QInternal Recycle= 36 m3/d QBackflow Basin 2 to 1= 25 m3/d 

QBackflow Basin 3 to 2= 60 m3/d 

QBackflow Basin 5 to 4= 1800 m3/d 
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Figure 5.16 Hydraulic Model Results for Step-Feed Case 

5.3.3 Final Hydraulic Model 

The updated model layout (Figure 5.17) with the backflows in between the different basins were tested for the 

reference case to determine whether the predictions fit the reference case measurement data of 2018.  

 

Figure 5.17 Final Hydraulic Model Layout for Reference Case 

The final hydraulic model predictions versus the 2018 measurement data are shown in Figure 5.19. The time of 

the peaks in each of the basins and the curves’ shapes correspond with the measurement data and, thus, this 

configuration is accepted as the final model layout for the pilEAUte WRRF. The curves are slightly different in 

basin 4, a finding also mentioned in Chapter 5.3.1. The difference is probably due to measurement errors in the 

sensor installed in basin 4. 

QInternal Recycle= 36 m3/d 

QSludge Recycle= 12 m3/d 

QBackflow Basin 3 to 2= 60 m3/d QBackflow Basin 5 to 4= 1800 m3/d 

QBackflow Basin 2 to 1= 25 m3/d 

QInfluent = 

12 m3/d 

QEffluent = 

12 m3/d 

QWaste = 

0 m3/d 
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Figure 5.18 Updated (Final) Hydraulic Model Results for Reference Case  
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5.4 Aeration Model 

Aeration model calibration and oxygen transfer characterization make up the second step of the BIOMATH 

model calibration. Since one of the aims of the PhD project is energy optimization through aeration control, 

determination of the parameters related to aeration and predicting the air flowrate is important. The pilEAUte 

model implemented in WEST describes each basin as an ideally mixed, activated sludge tank with constant 

volume and the oxygen transfer coefficient (kLa) is the most important parameter to characterize the aeration 

and the gas-liquid mass transfer. The model is able to predict the kLa
 for each time step by considering the reactor 

temperature, and the aeration energy consumption is calculated based on the kLa as follows: 

Equation 5.1: 𝑷𝑨𝒆𝒓 =
𝑺𝑶,𝒔𝒂𝒕∗𝒌𝑳𝒂∗𝑽

𝟐𝟒∗𝑶𝑻𝑹
 

where the saturation oxygen concentration (SO,sat), tank volume (V), and standard oxygen transfer rate (OTR) 

are also considered. However, the air flowrate is the only measured parameter that allows to quantify the aeration 

in the real system. Thus, the air flowrate must be used for the aeration model calibration. It is also well-known 

that the value of kLa is a function of the air flowrate applied (Equation 5.2) and the correlation between these two 

parameters is adopted to predict the aeration in WRRF models and scenario analysis (Boyle et al. 1989; Rosso 

et al. 2005).  

Equation 5.2: 𝒌𝑳𝒂 =
𝝆∗𝑸𝑨𝒊𝒓∗𝑶𝑻𝑬

(𝜷∗𝑺𝑶,𝒔𝒂𝒕−𝑺𝑶)∗𝑽
    →    

𝒌𝑳𝒂
𝝆∗𝑶𝑻𝑬

(𝜷∗𝑺𝑶,𝒔𝒂𝒕−𝑺𝑶)∗𝑽

= 𝒌𝑳𝒂 ∗ Ɣ = 𝑸𝑨𝒊𝒓 

where 𝝆 is the density of air, 𝜷 denotes a correction factor for the oxygen saturation, 𝑆𝑂,𝑠𝑎𝑡 and 𝑆𝑂 are the 

standard oxygen saturation and the dissolved oxygen concentration in the aerated tank and 𝑽 is the volume of 

the tank. This relation can be simplified as in the right side of the Equation 5.2 and the air flowrate becomes at 

dependent on kLa based on an “Ɣ” conversion factor. 

By considering the relationship between air flowrate and kLa, the air flowrate consumption in Basin 4 (where the 

DO is controlled) is added to the model as a WEST calculator variable. The “Ɣ” conversion factor is determined 

to be 1.9 by comparing the calculated air flowrate with the measured values (Figure 5.19) and Equation 5.3 is 

adopted. As can be seen in Figure 5.19, the predicted air flowrate dynamics in Basin 4 correspond well with the 

measured air flowrate calculated from the kLa predictions. 

Equation 5.3 : 𝑸𝑨𝒊𝒓 𝑩𝒂𝒔𝒊𝒏𝟒 = 𝟏. 𝟗 𝒌𝑳𝒂 𝑩𝒂𝒔𝒊𝒏𝟒 
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Figure 5.19 Measured vs Predicted Air Flowrate and kLa in Basin 4 

As stated before (Chapters 3.1 & 5.1.2), the DO is controlled in Basin 4 and the same air flowrate is applied to 

all basins. To be able to include this in the model, the inverse relation between the reactor volume and the kLa 

(Equation 5.2) is used. Ratio controllers are used to manipulate the aeration in Basin 3 and 5, based on the kLa 

in Basin 4 (Figure 5.20). The volume of Basin 3 is equal to Basin 4, thus the same kLa is applied in both basins. 

The volume of Basin 5 (1.94 m3) is larger than that of Basin 4 (1.08 m3), thus the kLa is applied using the ratio of 

their volumes (0.56). The kLa values applied to the different basins in the model are shown in Figure 5.21. 

 

Figure 5.20 pilEAUte WRRF Aeration Model Layout and kLA Manipulation 

k
La  (1

/d
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Figure 5.21 kLA Values Applied to the Three Aerated Basins 

Based on the kLa applied to each basin, the DO concentrations predicted by the model with the default biokinetic 

model parameters (before calibration of the biokinetic model) is presented in Figure 5.22. Note that the DO 

measurement is only available in Basin 4. As expected, the DO concentration predicted in Basin 3 is low since 

it is the first aerated tank which is fed with the highest pollutant loads. In Basin 4, the DO is always around 3 

mg/L since the controller is installed there. Finally, the DO concentration in Basin 5 is also around 3 mg/L even 

if the applied kLa is low because it is the last aerated tank and little pollution is left there. Also, Basin 4 and 5 are 

known to be in fact a single completely mixed bioreactor based on the hydraulic characterization of the plant 

(Chapter 5.3), thus the same DO concentration is expected to occur. 

 

Figure 5.22 DO Concentration Predictions in Aerated Basins with the Applied kLA Values 
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5.5 SST Model Calibration 

The developed reactive settler model (Chapter 4) which was so far only calibrated for the settling model 

parameters (Chapter 4) is used for the plant-wide pilEAUte model. The ASM1 biokinetic model within the reactive 

settler model was thus replaced with the ASM1_AN model that is one of the models available in the model library 

of the WEST simulation platform. Calibration of the biokinetic model is done for the plant-wide model by 

considering the biological reactors and the reactive settler at the same time. Thus, the same parameter values 

are applied in both the biological reactor and the reactive SST for the biokinetic model (Chapter 5.6). 

5.6 Calibration of Biokinetic Model 

The ASM1_AN biokinetic model is used to model the pilEAUte WRRF which is an extension of ASM1 with 

Anammox and two-step nitrification and denitrification processes. Thus, the model considers NO2-N as an 

intermediate model variable and distinguishes the growth of ammonium oxidizers (AOB) and nitrite oxidizers 

(NOB). Because this model will further be used to investigate process optimization scenarios and applicability 

of short-cut N removal processes, it is important to consider the different microorganism species involved in 

nitrification and also NO2-N as a denitrification intermediate (Kirim et al. 2022). 

A step-wise Monte Carlo-based calibration methodology inspired by Mannina et al. (2011) was adopted as 

explained in Chapter 3 Step 4. The pilEAUte operational data (TSS concentrations in biological reactors and 

underflow, air flowrate-Qair) and effluent data (NH4-N and NO3-N) were considered for the calibration of the 

biokinetic model and chosen as representative model outputs/variables.  

5.6.1 Pre-selection of the Model Parameters 

The biokinetic model used includes 51 model parameters in total. Before starting the model calibration, model 

parameters were pre-selected based on engineering expertise and the available data. Measured parameters 

(pH, temperature), conversion factors (fractions BOD/COD, TSS/COD), yield coefficients and temperature 

correction factors were excluded from the model calibration and kept at their default values. Twenty-seven model 

parameters including all the kinetics remained to be calibrated after this pre-selection (Appendix II-Table 1). 

5.6.2 Pre-screening of Model Parameters 

A preliminary sensitivity analysis was carried out to determine the influential model parameters and reduce the 

number of parameters that need to be calibrated reliably. Local sensitivity analysis (LSA) was applied in this 

step in order to quantify the influence of model parameters on the relevant model outputs. The central relative 

sensitivity (CRS) of each model parameter was calculated for each model output. To do that, the finite difference 

approach already implemented in the WEST simulator was used (Claeys 2008). Based on the LSA results 

presented in Appendix II, the parameters which have CRS values equal or higher than 0.05 on any model 
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output/variable are chosen as influential. Thus, 17 model parameters were selected for calibration (Appendix II-

Table 2) (Table 5.4). 

5.6.3 Parameter Subsets Selection 

Prior to calibration, different parameter subsets were selected, each focusing on a different group of output 

variables (Mannina et al. 2011). Global sensitivity analysis (GSA) was applied in this step to determine the 

parameter subsets based on the standardized regression coefficients (SRC) for each model output. To obtain 

the SRCs, Monte Carlo simulations were performed and the multivariate linear regression between each of the 

model parameters and the variable of interest was calculated. The variation range of the model parameters for 

the GSA was determined by considering the relevant literature and engineering expertise (Appendix II-Table 2). 

Parameter sampling was done with Latin Hypercube Sampling (LHS).  

The model output variable groups were formed by putting together all variables related to TSS and N. 

Parameters which have SRCs equal or higher than 0.1 were chosen for the subsets. Based on the GSA results 

and calculated SRC values presented in Appendix II, 3 parameter subsets were selected for the groups of output 

variables (Table 5.4).  

Table 5.4 Parameter Subsets and Output Variable Groups 

 Parameter Variables 

Subset 1 

(TSS variables) 

b_H Decay Coefficient for Heterotrophic Biomass TSS in 
biological 
reactor 

TSS underflow 

f_XI Fraction of Biomass Converted to Particulate Inert Matter 

k_h Maximum Specific Hydrolysis Rate 

Subset 2 

(N variables) 

b_NH Decay Coefficient for NH4 Oxidizing Autotrophic Biomass 

Effluent NH4-N 
Effluent NO3-N 

Qair 

b_NO Decay Coefficient for NO Oxidizing Autotrophic Biomass 

K_HNO2_NO Nitrous Acid Half-Saturation Coefficient for NO Oxidizing Autotrophic Biomass 

K_NH3_NH Ammonia Half-Saturation Coefficient for NH4 Oxidizing Autotrophic Biomass 

K_SH Substrate Half-Saturation Coefficient for Heterotrophic Biomass 

mu_H Maximum Specific Growth Rate for Heterotrophic Biomass 

mu_NH Maximum Specific Growth Rate for NH4 Oxidizing Autotrophic Biomass 

mu_NO Maximum Specific Growth Rate for NO Oxidizing Autotrophic Biomass 

Subset 3 

(All parameters) 

K_NO2_H Nitrite Half-Saturation Coefficient for Denitrifying Heterotrophic Biomass 

TSS in 
biological 
reactor 

TSS underflow 
Effluent NH4-N 
Effluent NO3-N 

Qair 

K_O_NH Oxygen Half-Saturation Coefficient for NH4 Oxidizing Autotrophic Biomass 

K_O_NO Oxygen Half-Saturation Coefficient for NO Oxidizing Autotrophic Biomass 

K_OH Oxygen Half-Saturation Coefficient for Heterotrophic Biomass 

n_NO2 Correction Factor for Anoxic Growth of Heterotrophs on Nitrite 

n_NO3 Correction Factor for Anoxic Growth of Heterotrophs on Nitrate 
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TSS in the biological reactor and underflow are the variables to be considered for the calibration of parameter 

subset 1. Effluent NH4-N and NO3-N concentrations and the air flowrate in Basin 4 are the variables to be used 

for the calibration of parameter subset 2. Finally, the parameters which have influence on all variables (and the 

parameters which were not yet grouped in subset 1 or 2) are selected as parameter subset 3. These parameters 

are present because they influence more than one process (Mannina et al. 2011). Also, note that parameter b_H 

which is chosen for subset 1, is also highly influential for Qair and effluent NO3-N. This parameter is therefore 

also included in subset 3 and recalibrated within the subset 3 based on all output variables. 

5.6.4 Calibration of Parameter Subsets 

Following the global sensitivity analysis, the set of model parameters to be calibrated is organized into the sets 

of influential ones grouped according to a number of related model variables. The next step is the group 

calibration of the model parameters given in Table 5.4. Each model parameter subset is calibrated according to 

the model outputs and the objective function by carrying out Monte Carlo simulations. The same variation range 

of the model parameters is used as in Chapter 5.6.3 (Appendix II-Table 2) and parameter sampling is done with 

LHS. 

For each Monte Carlo run, the sum of squared errors (SSE) between the model predictions and the 

measurements is calculated for each model variable. A weighted average of the square root of the SSEs is used 

as the overall objective function for each parameter set (for details see Appendix II - Calibration of parameter 

subsets (6.6.4)). Then, the parameter set (or the Monte Carlo run) that gives the minimum overall objective value 

is chosen as the optimal parameter set. Details of the objective function and model calibration is given in 

Appendix II. 

The calibration order of the parameter subsets is given in Figure 5.23. Calibration of parameter subsets 1 and 2 

could be done simultaneously because their evaluation criteria (influenced model variables) are independent of 

each other. Then, the calibrated parameter values for subset 1 and 2 are fixed and used in the Monte Carlo 

simulation to calibrate the parameters of subset 3 which covers all the model variables considered for the 

biokinetic model calibration. Note that parameter b_H is recalibrated within subset 3. 
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Figure 5.23 Calibration Order of Parameter Subsets 

The 17 calibrated model parameter values are presented in Table 5.5. As can be seen, they are mostly in the 

range given in the literature and similar to default values. Only the model parameters K_HNO2_NO and 

K_NH3_NH related to the biokinetics of the 2-step nitrification process are calibrated to much lower values than 

their default values. These model parameter values in the literature are mostly calibrated for side-stream 

applications which are operated at much higher substrate concentrations leading to higher half-saturation 

concentration of the substrates for the growth of AOBs and NOBs. The same situation holds for the oxygen half-

saturation concentrations (K_O_NH & K_O_NO). The calibrated values of these parameters are mostly case-

specific and not transferable to other models (Kirim et al. 2022). Also note that the effluent NH4-N data which 

was used for the model calibration were at low values continuously and no dynamics were observed (Figure 

5.10). All these estimated parameter values related to nitrification kinetics might have also been affected due 

this stable data set and might be unidentifiable. It would have been more appropriate to use NH4-N 

concentrations along the different basins of the biological reactor to calibrate these parameters. However, such 

data set was not available for this project. 

Figure 5.24 shows the calibrated model predictions and the measurement results for each model variable for 

the calibration time period (days 24-47). For TSS, the model predictions mostly meet with the measurements 

and the trends of change are the same. There are small deviations in the underflow TSS concentration on days 

24-30 and 36-42 which can be attributed to measurement errors. The air flowrate model predictions and 

measurements are meeting quite well. The measurement data varies a lot at each time step, while the model 

predictions are more stable and in parallel to the trends of the measurement data. Finally, model predictions for 

the effluent ammonia are low in accordance with the measurement data, i.e. the model describes the observed 

full nitrification of the influent nitrogen. Effluent nitrate predictions are meeting the measurement data on average 
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but there are occasional deviations (e.g. day 25 or 37). Possible reasons are the assumptions related to influent 

nitrogen fractionation or measurement errors of the effluent nitrate (e.g. a sudden change in the influent ammonia 

on day 25 results in high effluent nitrate prediction in the model, but not in the measurement – see Figure 5.4). 

Table 5.5 Calibrated Biokinetic Model Parameter Values 

 Parameter 
Default 
Value 

Calibrated 
Value 

Unit 

Subset 1 

b_H Decay Coefficient for Heterotrophic Biomass 0.62 0.70 1/d 

f_XI 
Fraction of Biomass Converted to Particulate 

Inert Matter 
0.1 0.13 - 

k_h Maximum Specific Hydrolysis Rate 3 3.20 gCOD/(gCOD*d) 

Subset 2 

b_NH 
Decay Coefficient for NH4 Oxidizing 

Autotrophic Biomass 
0.05 0.06 1/d 

b_NO 
Decay Coefficient for NO Oxidizing 

Autotrophic Biomass 
0.033 0.04 1/d 

K_HNO2_NO 
Nitrous Acid Half-Saturation Coefficient for 

NO Oxidizing Autotrophic Biomass 
0.000872 0.000061 gCOD/m3 

K_NH3_NH 
Ammonia Half-Saturation Coefficient for NH4 

Oxidizing Autotrophic Biomass 
0.75 0.0057 gNH3-N/m3 

K_SH 
Substrate Half-Saturation Coefficient for 

Heterotrophic Biomass 
20 8.74 gCOD/m3 

mu_H 
Maximum Specific Growth Rate for 

Heterotrophic Biomass 
6 4.77 1/d 

mu_NH 
Maximum Specific Growth Rate for NH4 

Oxidizing Autotrophic Biomass 
0.8 0.71 1/d 

mu_NO 
Maximum Specific Growth Rate for NO 

Oxidizing Autotrophic Biomass 
0.79 0.95 1/d 

Subset 3 

K_NO2_H 
Nitrite Half-Saturation Coefficient for 
Denitrifying Heterotrophic Biomass 

1 3.31 gCOD/m3 

K_O_NH 
Oxygen Half-Saturation Coefficient for NH4 

Oxidizing Autotrophic Biomass 
0.6 0.25 gO2/m3 

K_O_NO 
Oxygen Half-Saturation Coefficient for NO 

Oxidizing Autotrophic Biomass 
1.5 0.27 gO2/m3 

K_OH 
Oxygen Half-Saturation Coefficient for 

Heterotrophic Biomass 
0.2 0.10 gO2/m3 

n_NO2 
Correction Factor for Anoxic Growth of 

Heterotrophs on Nitrite 
0.6 0.92 - 

n_NO3 
Correction Factor for Anoxic Growth of 

Heterotrophs on Nitrate 
0.6 0.49 - 
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Figure 5.24 Calibrated Model Results vs Measurements 



 

95 

5.7 Validation 

For validation, the calibrated model is run with the influent data for the validation time period (from Day 48 to 

59). Figure 5.25 shows the model predictions for TSS concentrations, air flowrate and effluent N components. 

As can be noticed from the graphs, the plant did not receive influent wastewater between the days 49-51 (see 

Figure 5.2). This of course affects the system and sudden drops are observed both in measurement and model 

prediction data.  

The TSS concentration predictions for the biological reactor and the sludge recycle agree with the measurement 

data for the validation time period. For the time that there was no influent, the TSS concentration in the SST 

underflow (thus the sludge recycle) becomes equal to the TSS in the biological reactors. In the subsequent days, 

similar behaviour is seen as well for shorter time periods (e.g. days 51.5, 52.2, 55). After day 55, the model 

predictions are no longer overlapping with the measurement data, however they still have the same order of 

magnitude. The difference might be due to sensor drift (lack of calibration) or an error in the amount of sludge 

wasting within that time period. Unfortunately, no laboratory measurements are available to confirm the sensor 

reliability issues. 

For the air flowrate, model predictions and measured values are agreeing well during the whole validation time 

period. It is also known that the oxygen transfer coefficient (kLa), thus the air flowrate, is heavily dependent on 

the gas-liquid mass transfer and not directly to the biokinetic processes. Thus, the model is able to predict the 

air flowrate in accordance with the DO set-point of the controller and the influent flowrate. The model predictions 

in the validation time period also confirm that the assumptions for the aeration model are valid and working well 

in a different time period than the calibration period (Chapter 5.4).  

Finally, the model predictions and the measurements of the effluent ammonium concentration correspond well 

at very low values. The model confirms that the pilEAUte is fully nitrifying the influent nitrogen during the 

validation time period. However, the effluent nitrate is not agreeing as well with the measurements. The order of 

magnitude is the same for most of the validation time period, but there are significant differences for days 48-

53. It is also the time period for which there was no influent (the measurement NO3-N data are removed from 

the dataset when there is no influent). The reason of the sudden peak at the effluent nitrate predictions for the 

days 51-53 might be due to the high ammonium load to the plant just after the no influent time period. On the 

other hand, it is known that the sensors measuring the effluent nitrate may be problematic and the measured 

values may not be reliable. This problem could not be confirmed though since no laboratory measurements were 

conducted during this time period.  
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Figure 5.25 Calibrated Model Results vs Measurements for the Validation Time Period 
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5.8 Conclusions 

The pilEAUte WRRF was modelled to improve the understanding of N-removal mechanisms in the biological 

treatment of wastewater through modelling and optimizing the existing WRRF. The pilEAUte WRRF operational 

data for the time period February 1st − March 31st 2018 were used. The influent flowrate, total and soluble COD, 

ammonium, alkalinity and pH were evaluated in detail for the selected time period and the model input file was 

created based on that. For the fractionation of COD, a backward calculation was done between the effluent and 

influent of the primary clarifier to be able to apply the influent COD fractionation study for the pilEAUte by Li et 

al. (2019). Since NH4-N is the only parameter that is measured at the primary effluent, an influent total nitrogen 

fractionation was performed based on the monitoring data which was collected during another measurement 

campaign in the scope of this PhD (presented in Chapter 6). Air flowrate, dissolved oxygen (DO) and TSS 

concentrations measured in the biological reactors and the sludge recycle TSS concentrations were used as the 

system operational data for the model calibration. The sludge recycle TSS concentration data were corrected 

by considering the TSS mass balance around the secondary clarifier. Effluent ammonium and nitrate nitrogen 

were also used for the model calibration.  

To constitute and calibrate the hydraulic model of the plant, two tracer test data sets were used. Important 

backflows were observed despite the baffles between basins 4&5, basins 2&3 and also basins 1&2 were found 

insufficient to divide the reactors. The backflows between basins 4&5 are such that these basins have to be 

considered as one completely mixed reactor. Standard (reference) and step-feed (which feeds the influent and 

the internal sludge recycle to Basin 3) operational conditions were tested. By considering the tracer tests data, 

different backflow flowrates in between the basins were determined and included to the final model layout. 

Aeration model calibration and oxygen transfer characterization were also performed. The developed model is 

able to predict the oxygen transfer coefficient (kLa) for each time step from the air flowrate by considering the 

reactor temperature, and the aeration energy consumption is calculated based on the kLa. The air flowrate is the 

only measured parameter at the pilEAUte’s biological reactors that allows quantifying the aeration in the real 

system. Thus, the air flowrate is used for the aeration model calibration. To do that, the correlation between the 

kLa and the air flowrate was adopted to predict the aeration in the pilEAUte model and during subsequent 

scenario analysis. In the pilEAUte, the DO is controlled in Basin 4 and the same air flowrate is applied to all 

basins. To include this in the model, the inverse relation between the reactor volume and the kLa is used and 

ratio controllers are used to adjust the aeration in Basins 3 and 5, based on the kLa in Basin 4. The calibrated 

aeration model gave promising results to predict the DO concentrations in the biological reactors and the air 

consumption. 
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The ASM1_AN biokinetic model which is an extension of ASM1 was used as the biokinetic model. The developed 

reactive settler model which was so far only calibrated for the settling model parameters was used for the plant-

wide pilEAUte model and the biokinetic model within the reactive settler model was replaced with the ASM1_AN 

model. Calibration of biokinetic model parameters were done at the same time for the biological reactors and 

the reactive SST. A step-wise Monte Carlo-based calibration methodology inspired by Mannina et al. (2011) was 

adopted for the calibration of the biokinetic model. The biokinetic model used includes 51 model parameters in 

total and these model parameters were pre-selected based on engineering expertise and the available data. 

Twenty-seven model parameters including all the kinetics remained to be calibrated after this pre-selection. 

Next, a preliminary sensitivity analysis was carried out to determine the influential model parameters and reduce 

the number of parameters that need to be calibrated. For that, local sensitivity analysis (LSA) was applied and 

the central relative sensitivity (CRS) of each model output was calculated for each model parameter. Seventeen 

model parameters were selected for calibration in this step. Then, different parameter subsets were selected, 

each focusing on a different group of output variables. Global sensitivity analysis (GSA) was applied in this step 

to determine the parameter subsets based on the standardized regression coefficients (SRC) for each model 

output. The model output variable groups were formed by putting together all variables related to TSS (TSS in 

the biological reactor and underflow) and N (effluent NH4-N and NO3-N concentrations and the air flowrate). 

Three parameter subsets were selected for the groups of output variables. Then, the group calibration of the 

model parameters was executed according to the model outputs and the objective function (the sum of squared 

errors - SSE) by carrying out Monte Carlo simulations. The 17 model parameters’ calibrated values are 

presented in Table 5.5. The calibrated parameter values are mostly in the range given in the literature and 

remain quite similar to the model’s default values. Only the model parameters K_HNO2_NO and K_NH3_NH 

related to the biokinetics of the 2-step nitrification process are calibrated to much lower values than their default 

values. 

Finally, the calibrated model predictions were compared with the measurements of the chosen variables. For 

the TSS in the biological reactor and the underflow, the air flowrate and the effluent ammonium, the predictions 

and measurements are found to be meeting quite well. Effluent nitrate predictions are meeting the measurement 

data on average but there are occasional deviations which might be due to the assumptions related to influent 

nitrogen fractionation or measurement errors. Similar conclusions were drawn for the model validation results. 

The model confirms that the pilEAUte is fully nitrifying the influent nitrogen during the validation time period. 

However, the effluent nitrate is not agreeing as well with the measurements. The order of magnitude is the same 

for most of the validation time period, but significant differences were observed for a few days. The reason of 

this might be that the validation time period includes a few days during which no influent was available or that 

the sensors measuring the effluent nitrate may have been problematic and the measured values may not be 

reliable.  
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6. APPLICATION of CONTINUOUS & 

INTERMITTENT AVN CONTROL STRATEGIES 

FOR ENERGY & RESOURCE CONSUMPTION 

This chapter of this PhD dissertation provides a summary of the activities performed in the scope of the industrial 

collaboration between Université Laval, DC Water and Hampton Roads Sanitation District. It discusses the 

results obtained and provides perspectives for the application of both continuous and intermittent Ammonia vs. 

NOX-N (AvN) control strategies in view of mainstream anammox treatment (see Chapter 1.5.3.3 for details).  

The duration of this project was anticipated to be 1 year, including the time for implementing modifications to the 

pilEAUte WRRF needed to test the AvN control strategies in both manual and automatic operation. The main 

objective was to quantify the improvements that can be obtained by application of continuous and intermittent 

AvN control strategies on a pilot-scale WRRF which is designed for carbon and nitrogen removal. Performance 

comparison of these two control strategies was made possible by making used of the 2 identical treatment lanes 

of the pilEAUte WRRF. 

The objective of AvN controllers is to maintain an equal concentration of NH4-N and NO3-N (NOx-N preferably) 

in the effluent by manipulating the extent of aeration in the aerobic reactors. By maintaining this ratio, the effluent 

is optimized for a downstream deammonification process (anammox treatment), and as such the overall energy 

budget for aeration, required to remove COD and N, can be reduced. Of course, the deammonification process 

requires equal amounts of NH4-N and NO2-N and this can be achieved through partial nitrification and out-

selection of NOB. However, it would also be possible to convert an excess amount of NO3-N into NO2-N through 

partial denitrification (by adding external COD) and then achieve the short-cut N removal with the anammox 

process (details related to application of the deammonification processes were already presented in Chapter 

1.5.1). The partial denitrification anammox process consumes more resources; aeration and organic matter, 

than the partial nitrification anammox route, but this nitrite generating pathway is found more stable (Ma et al. 

2017; Kirim et al., 2022). Through AvN control, nitrogen removal in the aerated biological reactors is also 

expected to occur through simultaneous nitrification and denitrification (SND) under low DO operation (see 

Chapter 1.5.2 for SND process details).  

AvN is a cascade control where the AvN controller uses measurements both NH4-N and NO3-N and cascades 

the DO controller to manipulate the DO concentration in the aerated tank (details presented in Chapter 1.5.3.3). 

Two different AvN control strategies were applied to manipulate aeration for N removing systems. Continuous 

AvN, which provides a low but continuous DO set-point and intermittent AvN, which provides a modulated 
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ON/OFF aeration pattern that results in the reactor switching between aerobic and anoxic phases. Both AvN 

control strategies rely on a PID controller to maintain the measured AvN ratio close to its desired value. 

Within this PhD research project, it is aimed to identify the minimum applicable sludge retention time (SRT) for 

both AvN control strategies while optimizing N removal in the aerated reactors. In addition to that, this research 

aims at finding out if SND and low effluent concentrations can be sustained to the same extent for both AvN 

control strategies. 

6.1 Application of AvN at pilEAUte WRRF 

Several modifications were made on the pilEAUte WRRF to be able to apply the AvN control strategies (the 

normal operational conditions of the pilEAUte WRRF were presented in Chapter 3.1). For this purpose, the active 

bioreactor volume of the two biological reactors (pilot and co-pilot) were reduced by installing a by-pass of the 

two first basins. The 3rd basin was converted into an anoxic basin and the 4th and 5th basins remained aerobic 

basins (Figure 6.1). As such, the influent wastewater is by-passed directly to the 3rd basin and is fed to the 

system with an hourly varying or a constant flowrate. Also, the internal recycling from basin 5 to 1 was stopped, 

thus NO3-N was not recycled for denitrification. The 3rd basin was anoxic and the 4th and 5th basins were aerobic 

during the AvN Project. Thus, in continuous AvN, it is expected to remove the NO3-N only in basin 3 through 

denitrification, but SND is also expected in the aerated basins (basins 4 & 5) under low DO operation. For the 

intermittent aeration AvN, denitrification can occur during the non-aerated periods. The fraction of aerated basins 

to the overall reactor volume is 74% which is used to determine the aerobic sludge retention time. 

 

Figure 6.1 pilEAUte WRRF AvN Project Configuration 

To achieve the objectives of this project, new piping was installed for the sludge recycle. The new pipe is an 

addition to the existing recycle line that transfers the sludge to the 3rd basin. It is activated by regulating the valve 
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manually (Figure 6.2). In addition to that, the baffle height between the 4th and 5th basins was increased to 

prevent any possible backflow due to changes in air flowrate in the aerobic basins (Figure 6.3). 

 

Figure 6.2 The Influent Feeding and the Installed Sludge Recycle Line 

 

Figure 6.3 The Increased Baffle Height and Flow from 4th to 5th Basin 
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6.2 Implementation of the AvN Controllers and Experimental Work 

The project started with the implementation of the necessary modifications to the pilEAUte WRRF as well as the 

operational changes required to operate under AvN conditions. The experimental work and controller activation 

started in April 2019. The project time line can be seen in Figure 6.4. 

 

Figure 6.4 AvN Project Timeline 

During the first phase of the project, AvN control was imposed manually (until August 2019). For continuous 

AvN, different low DO set-points were adjusted manually; for intermittent AvN, different cycle times and aerobic 

fractions were applied manually. Initially, both systems were fed with hourly dynamic influent based on the 

detailed influent monitoring study of pilEAUte (Li et al. 2019) (Figure 6.5). However, due to the challenges this 

dynamic operation causes to interpret the results, the system was fed with constant influent flowrate with 0.5 

m3/h (12 m3/d) starting July 2019.  

 

Figure 6.5 Hourly Dynamic Influent Flowrate Applied 

COVID-stop 
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A measurement campaign was carried out during the time of manual AvN operation based on composite 

samples. Table 6.1 shows the locations and parameters that were analysed in the lab. 

Table 6.1 Lab Analyses Locations and Measured Parameters during Manual AvN Control 

 

Influent Effluent 

Total suspended solids (TSS) Total suspended solids (TSS) 

Total chemical oxygen demand (COD) Total chemical oxygen demand (COD) 

Soluble chemical oxygen demand (CODsol) Soluble chemical oxygen demand (CODsol) 

Total nitrogen (TN) Total nitrogen (TN) 

Soluble total nitrogen (TNsol) Soluble total nitrogen (TNsol) 

Ammonium nitrogen (NH4-N) Ammonium nitrogen (NH4-N) 

 Nitrate nitrogen (NO3-N) 

 Nitrite nitrogen (NO2-N) 

Given the large array of sensors installed on the pilEAUte WRRF, continuous monitoring of the plant is also 

possible, using the various online sensors given in Table 6.2. During the second phase of the project, the 

automatic AvN controllers were implemented in the pilEAUte WRRF SCADA system. Implementation of the 

continuous AvN controller was achieved in August 2019 whereas the intermittent AvN controller was 

implemented in September 2019. From that point onwards, both AvN control strategies could be applied as long 

as the online effluent sensors provided reliable measurements needed to calculate the AvN ratio.  
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Table 6.2 Online Monitoring Locations and Measured Parameters during Automatic AvN Control 

 

 

Influent Biological Reactors Effluent 

Total suspended solids 
(spectro::lyser) 

Total suspended solids (Solitax) Ammonium nitrogen (Varion) 

Total chemical oxygen demand 
(spectro::lyser) 

Dissolved Oxygen (LDO) Nitrate nitrogen (Varion) 

Soluble chemical oxygen demand 
(spectro::lyser) 

Ammonium nitrogen (TresCon) Turbidity (Turbidity meter) 

Ammonium nitrogen 
(ammo::lyser) 

Nitrate + Nitrite (NOx-N) (TresCon) pH (Varion) 

Nitrate nitrogen (spectro::lyser) Nitrite nitrogen (TresCon) Temperature (Varion) 

pH (ammo::lyser)   

Potassium (ammo::lyser)   

 

In November 2019, for both systems, the effluent NH4-N concentration were observed to be too high for an 

extended period of time (concentrations nearly equal to the influent NH4-N concentrations, ~30 mg/L). Based on 

multiple lab measurements performed at different times of the day, it was concluded that the nitrifiers were not 

working properly and might have been washed out of the system. The reason for this washout might be related 

to a brief change of operations because of a tracer test conducted on the primary clarifier by the pilEAUte team. 
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When the test finished, the sludge wasting of the primary clarifier was not returned to its ON position. Hence, 

the sludge blanket level and suspended solids concentrations increased in the primary clarifier which might have 

led to septic conditions with the production of sulfide which is known to inhibit nitrification. Sludge wasting from 

the primary clarifier was re-started immediately after realizing this (approximately 5 days later). To recover the 

nitrifiers, secondary sludge wasting was paused to increase sludge retention time. AvN controllers were stopped 

and the aeration in both reactors was switched to continuous aeration at a high DO of 2.0 mg/L. The system 

was kept at these operational conditions during December 2019 and January 2020 new-year’s break.  

Note that the system continued to be operated with manual AvN control due to effluent sensor problems (Varion) 

used to calculate the AvN ratio. After many calibration attempts and regular maintenance of the sensor, it was 

concluded that it was not possible to accurately monitor the effluent NH4-N and NO3-N concentration.  

Finally, in March 2020 the pilEAUte WRRF had to be shut down due to a lack of influent wastewater produced 

at the university campus due to the application of COVID-19 confinement measures. 

6.3 Manual AvN Control 

This section includes the general outcomes when AvN control was applied manually to both treatment trains. 

Note that continuous and intermittent DO control is performed in the last aerobic basin (basin 5) of each system. 

Based on the DO control in basin 5, the same air flowrate was applied in basin 4 as in 5 

(𝑘𝐿𝑎𝑏 𝑎𝑠𝑖𝑛 5
𝑘𝐿𝑎 𝑏𝑎𝑠𝑖𝑛 4⁄ =1 and this ratio is adjustable). However, in some periods of the manual AvN control, 

the air flowrate capacity in basin 4 was not sufficient to reach the desired DO concentration. 

Figure 6.6 shows the concentration dynamics for NH4-N, CODtotal and CODsoluble respectively and Figure 6.7 

shows the load ratio for NH4-N to CODtotal and CODsoluble. It can be seen that the concentrations are relatively 

stable whereas the dynamic influent flowrate applied leads to dynamic influent loads applied to the system. 
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Figure 6.6 Influent Flowrate together with Concentrations of NH4-N (top), CODtotal (middle) and 

CODsoluble (bottom) 

 

Figure 6.7 NH4-N load and the Load Ratio for NH4-N to CODtotal (top) and CODsoluble (bottom) 

The influent NH4-N/CODtotal ratio is changing between 0.10 and 0.15 (Figure 6.7) which allows nitrifier growth in 

the system (CODtotal/ NH4-N ~ 10-15). Also, the temperature in the biological reactors is changing between 18 

and 25°C which should not impact nitrifiers negatively (Figure 6.8).  



 

107 

 

Figure 6.8 Temperature in Biological Reactors (°C) (March 2019-March 2020) 

6.3.1 Application of Continuous AvN 

6.3.1.1 Sludge Retention Time 

The SRT in the continuous AvN system can be seen in Figure 6.9. The SRT calculation is performed based on 

the daily average TSS in the biological reactors, the recycle stream and the effluent. Between 18-28 June the 

SRT is around 5-6 days which is a result of higher sludge wasting in the system (0.35 m3/d). However, this led 

to a sharp decrease in the reactor TSS concentration and in the recycle stream. In order not to lose the sludge, 

the sludge wasting was reduced (0.25 m3/d) and the SRT was kept around 8-10 days (aerobic SRT 6-7.5 d). 

This was the optimum achievable SRT for this system during most of the project. 

 

Figure 6.9 SRT in Continuous AvN System w/Manual AvN Control 
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6.3.1.2 Sludge Volume Index 

A bulking sludge problem existed in the continuous AvN system, probably due to the operation of the system at 

low DO concentrations (Rossetti et al. 2005; Van den Akker et al. 2010; Nittami et al. 2019). The SSVI (stirred 

sludge volume index) measurements of the sludge are varying between 150-180 ml/g for the period shown in 

Figure 6.9. Figure 6.10 shows all SSVI measurement results during the manual AvN control of the continuous 

AvN system. 

 

Figure 6.10 SSVI in Continuous AvN System with Manual AvN Control 

6.3.1.3 Biological Reactor and Secondary Clarifier TSS Balance 

It was observed that the dynamic influent led to the movement of sludge from the biological reactors to the 

secondary clarifier during daytime while the influent load is high (Figure 6.11). At night, the sludge came back to 

the biological reactors from the secondary clarifier as the influent loads were reduced due to the lower influent 

flowrates. 
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Figure 6.11. TSS Balance in the Continuous AVN Application 

6.3.1.4 Application Results 

Figure 6.12 shows the observed DO concentration in the aerated basins during the same period with manual 

AvN control and dynamic influent load. On June 29th, the DO set-point was reduced from 0.5 mg/L to 0.25 mg/L. 

As can been on Figure 6.12, the DO concentration in Basin 5 is maintained close to the set-point for most of the 

time. Even though the same air flowrate was applied to basin 4 as to basin 5, the DO concentration changes in 

Basin 4 depending on the influent load during the day and the DO set-point could not be achieved there. Note 

that the DO was controlled only in Basin 5 during this time period.  

On June 30th and July 1st, unexpected peaks above the set-point were observed in the DO concentration and 

the air flowrate in both basins became minimum. This could be explained by the fact that there was no influent 

fed to the system during these periods due to an influent pump problem.  

Starting from July 3rd, the ratio of the applied air flowrate between basins 5 and 4 was increased from 1 to 1.2 

(thus decreased air flowrate in basin 4). In this way, it was expected to decrease the nitrification rate in basin 4 

and improve AvN ratio at the effluent (Figure 6.13). This led a more stable DO concentration in basin 4, but it 

was still higher than the DO control set-point of 0.25.  
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Applied DO set point 0.50 mg/L Applied DO set point 0.25 mg/L 

 

Figure 6.12 DO Concentration and Air Consumption in Aerated Basins (R350 is where DO Control 

Applied) – Dynamic Influent Load 

Figure 6.13 shows the observed effluent NH4-N and NO3-N concentrations based on the lab analysis of 

composite samples collected during manual AvN application and dynamic influent load. It can be seen that NH4-

N could only be observed with the reduced DO set-point and increased 𝑘𝐿𝑎𝑏 𝑎𝑠𝑖𝑛 5
𝑘𝐿𝑎  𝑏𝑎𝑠𝑖𝑛 4⁄  ratio. Since the 

NH4-N sensor in the effluent was not working properly in this period, it is not possible to see the dynamics of 

AvN ratio. 

 

Figure 6.13 Lab Measurement Results at the Effluent (composite samples) and Available Sensor 

Measurements – Dynamic Influent Load 

Changing the influent flowrate from time-varying to constant made the AvN control more stable and more reliable 

and easier to interpret. Figure 6.14 shows the observed DO concentration in the aerated basins during the 

manual AvN application and constant influent load. The 𝑘𝐿𝑎𝑏 𝑎𝑠𝑖𝑛 5
𝑘𝐿𝑎  𝑏𝑎𝑠𝑖𝑛 4⁄  ratio was applied as 1.5 in this 

period. As can be seen, the DO concentration in the aerated basins is much more stable and could be maintained 

no influent 
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around the applied set-point, especially in Basin 4 where the DO is not controlled and only manipulated through 

the applied air flowrate.  

 

0.25 mg/L 0.20 mg/L 

Applied DO set point 

 

Figure 6.14 DO Concentration in Aerated Basins (R350 is where DO Control Applied) – Constant 

Influent Load 

Figure 6.15 shows the observed effluent NH4-N and NO3-N concentrations based on the lab analysis of 

composite samples collected under manual AvN control and constant influent load. It can be seen that the AvN 

ratio calculated based on the sensor data is more stable than before (dynamic influent load). Still, because the 

system is operated with manual AvN control, a completely stable AvN ratio could not be achieved as desired. 

 

Figure 6.15 Lab Measurement Results at the Effluent (Composite Samples) and Available Sensor 

Measurements and AvN ratio – Constant Influent Load 

*NH4 val and NO3 val correspond to the sensor validation data based on lab measurement. 

no influent 
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6.3.2 Application of Intermittent AvN 

6.3.2.1 Sludge Retention Time 

The SRT in the intermittent AvN system is shown in Figure 6.16. Between June 18 and 28, the SRT is around 

5-6 days which is the result of higher sludge wasting in the system (0.35 m3/d). However, this led to a sharp 

decrease in the reactor TSS concentration and in the recycle stream. In order not to lose the sludge, the sludge 

wasting was reduced (0.25 m3/d) and the SRT was kept around 8-10 days (aerobic SRT 6-7.5 d). This was the 

optimum achievable SRT of the system during the Project. 

 

Figure 6.16 SRT in Intermittent AvN System with Manual AvN Control 

6.3.2.2 Sludge Volume Index  

As in the continuous system, bulking sludge was observed in the intermittent AvN system as well, probably due 

to the operation of the system with low DO concentrations. The SSVI measurements of the sludge are varying 

between 180-200 ml/g for the period shown in Figure 6.16. See Figure 6.17 for all the SSVI measurement results 

during the manual AvN control in the continuous AvN system. 
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Figure 6.17 SSVI in Intermittent AvN System with Manual AvN Control 

6.3.2.3 Biological Reactor and Secondary Clarifier TSS Balance 

It should be noted that the dynamic influent led to the movement of sludge from the biological reactors to the 

secondary clarifier during daytime while the influent load is high (Figure 6.18) similar to the continuous AvN 

application (Figure 6.11).  

 

Figure 6.18 TSS Balance in the Intermittent AVN System 

6.3.2.4 Application Results 

Figure 6.19 shows the DO concentration in the aerated basins averaged over each cycle’s aerobic fraction (AF) 

with the manual AvN application and dynamic influent load. The 𝑘𝐿𝑎𝑏 𝑎𝑠𝑖𝑛 5
𝑘𝐿𝑎 𝑏𝑎𝑠𝑖𝑛 4⁄  ratio applied was 1 and 

DO control was done in basin 5. Different AF’s were applied (with the same DO set-point in the aerated periods) 
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to see its effect on the observed average DO concentrations. As can be deduced from Figure 6.19, the average 

DO concentration that could be achieved in the aerated phases was similar and independent of the applied AF 

and cycle time. The desired 2.0 mg/L DO set-point for the aerated periods was however not achieved for the 

whole aerated period, hence the average value of DO concentration of only 1.2 mg/L. In the last 2 days of this 

period, there was a SCADA issue causing that the intermittent AvN not to be applied properly. The average of 

the air flowrate applied in each cycle is also given in Figure 6.19. In the first phase, when the AF was low, the 

applied air flowrate was not stable for both aerated basins. However, the overall applied average air flowrate 

looks the same for both basins. 

 

30 min aeration/90 min no 
aeration 

15 min aeration/15 min no aeration 30 min aeration/30 
min no aeration 

DO set point 2.0 mg/L in the aeration period 

 
Figure 6.19 AF Averaged DO Concentration and Air Flowrate Applied in the Aerated Basins (R250 is 

where DO Control is Applied) – Dynamic Influent Load 

Figure 6.20 shows the observed effluent NH4-N and NO3-N concentrations based on lab analysis of composite 

samples. In the beginning with 25% AF, NH4-N is too low and the system is completely nitrifying, most probably 

due to the low influent loads. Later, 50% AF was applied in the system together with a reduced cycle time. There 

is no significant difference in the effluent concentration until the 2nd of July when the effluent NH4-N starts to 

increase. The AvN ratio is calculated based on the available online monitoring data and varies between 0.1-1.5 

during the day. 
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30 min aeration/90 min 
no aeration 

15 min aeration/15 min no aeration 30 min aeration/30 min 
no aeration 

DO set point 2.0 mg/L in the aeration period 

Figure 6.20. Lab Measurement Results at the Effluent (Composite Samples) and Available Sensor 

Measurements and AvN ratio 

Figure 6.21 shows the observed average DO concentration and averaged air flowrate (for the aerated periods) 

during the manual AvN application but this time constant influent load for each cycle time. The 

𝑘𝐿𝑎𝑏 𝑎𝑠𝑖𝑛 5
𝑘𝐿𝑎 𝑏𝑎𝑠𝑖𝑛 4⁄  ratio applied was 1.5 and DO control was done in basin 5. The constant influent did 

affect the DO concentrations. Again, it was not possible to achieve the desired DO setpoint of 2 mg/L in the 

aerated periods. 

 

35 min aeration/25 min 
no aeration 

40 min aeration/20 min no aeration 30 min aeration/30 
min no aeration 

32 min aeration/28 
min no aeration 

DO set point 2.0 mg/L in the aeration period 

 

Figure 6.21 Average DO Concentration in Aerated Basins (R350 is where DO control is Applied) – 

Constant Influent Load 
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By changing the influent flowrate from time-varying to constant flow, the AvN control was made more stable and 

easier for intermittent AvN as can be seen in Figure 6.22. In the beginning of the period, the NH4-N concentration 

is higher than the NO3-N concentration, which leads to an AvN ratio > 1. To decrease the NH4-N and increase 

the NO3-N concentration, the AF was extended starting from 25th July. However, NH4-N was still too high, 

probably because of the high influent loads. The NH4-N concentration decreased around the 31st of July then 

the AF was reduced to bring the AvN ratio closer to 1.  

Based on these observations, it can be stated that the system is responding according to expectations when 

changing the AF (i.e. higher AF results in more nitrification and reduced NH4-N, while increasing NO3-N). 

However, it is still not possible to achieve a stable AvN ratio of 1 in the effluent. This might be due to the imperfect 

tuning of the DO controller or due to the frequent problems with the sensors. Also, the system is operating with 

a manual AvN controller here, which definitely affects the stability of the N removal performance and effluent 

AvN ratio. 

 
35 min 

aeration/25 min 
no aeration 

40 min aeration/20 min no aeration 30 min aeration/30 
min no aeration 

32 min aeration/28 
min no aeration 

DO set-point 2.0 mg/L in the aeration period 

Figure 6.22 Lab Measurement Results at the Effluent (Composite Samples) and Available Sensor 

Measurements – Constant Influent Load 

*NH4 val and NO3 val correspond to the sensor validation data based on lab measurement. 

6.3.3 Comparison of Continuous & Intermittent AvN Systems under Manual 

Control 

6.3.3.1 Sludge Activity Comparison for AvN Control Strategies 

A sludge activity test for both control strategies was performed while the system was operated with manual AvN. 

It aimed to determine the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) under 

non-limiting substrate conditions. As stated before, the objective of AvN controllers is to maintain an equal 

concentration of NH4-N and NO3-N (NOx-N preferably) in the effluent for a downstream deammonification 

processes and this deammonification process requires equal amounts of NH4-N and NO2-N through partial 

nitrification and out-selection of NOB. The sludge activity test was used to determine whether the NOB out-

selection could be achieved or not with the application of manual AvN control.  
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For the test, sludge samples were taken from continuous and intermittent AvN applied bioreactors and they were 

aerated until all the ammonia and nitrite were removed. Then, samples were taken to evaluate the initial 

conditions and measure ammonia and nitrite levels. Following that, a spiking solution was added (including a 

certain amount of ammonia, nitrite and bicarbonate) and samples were taken to measure the NH4-N, NO2-N and 

NO3-N evolution with time and to calculate the maximum rate of AOB and NOB conversions. The trend of nitrite 

concentrations during the test (accumulation or decrement) is an indicator of the ratio of the AOB over NOB 

conversion rates. The test procedure was provided by DC Water and it was applied by using the RODTOX 

sensor (Kelma, Niel, Belgium).  

Results for the sludge activity test are given for both the continuous and intermittent AvN system (Figure 6.23). 

According to the results, the activity of AOB and NOB are close to each other for both systems. This shows that, 

at this stage of the project, it was not possible to suppress the NOBs and increase the rate of AOBs above the 

one of NOBs through manual AvN, which would be desirable for a downstream anammox process. 

 

 Continuous AvN Intermittent AvN 

NOB rate 0.22 mg N/L/min 
169 mg N/g VSS/d 

0.18 mg N/L/min 
150 mg N/g VSS/d 

AOB rate 0.25 mg N/L/min 
191 mg N/g VSS/d 

0.24 mg N/L/min 
200 mg N/g VSS/d 

Figure 6.23 Comparison of AOB and NOB Conversion Rates for both AvN Control Strategies with 

Manual AvN Control 

6.3.3.2 Performance Comparison of AvN Control Strategies 

Manual AvN control was applied for both strategies while adapting the system into operation at low DO 

concentrations and to understand the system behaviour. It was possible to compare the N removal performance 

of both control strategies based on the influent and effluent N components. It is also important to consider the 

air consumption for both control strategies to interpret the results correctly. To do that and evaluate the TN 

removal and air flowrate consumption, the performance of both control strategies was evaluated in this section. 
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The evaluation was done separately for the time period with dynamic and constant influent loads and for different 

SRTs. 

Figure 6.24 shows the TN removal comparison of continuous and intermittent AvN systems with the average 

DO concentrations achieved and average airflow rate consumptions in the system for lower SRTs. The 

evaluation is done for the SRT of 5-6 days in the time period 19-28 June 2019 (see the SRTs in Figure 6.9 & 

Figure 6.16). Based on that, intermittent AvN was shown to have a greater N removal performance than 

continuous AvN. However, on average, it also has a higher air flowrate applied. 

 

 Continuous AvN Intermittent AvN 

Average DO (mg/L) 0.5 (Figure 6.12) 1.25* (Figure 6.19) 

Average airflow rate (L/min) 180 250** 

*In aerated periods, **Average for each cycle - not only aerated periods 

Figure 6.24 N Removal Performance Comparison of both AvN Control Stratgeies with Lower SRT 

(Dynamic Influent) 

Figure 6.25 shows the TN removal comparison of continuous and intermittent AvN systems with the average 

DO concentrations and air consumptions in the system at higher SRTs. The evaluation is done for the SRT of 

8-10 days in the time period 29 June-9 July 2019 (see the SRTs on Figure 6.9 & Figure 6.16) with dynamic 

influent loads. Similar to the lower SRT period, intermittent AvN has a greater N removal performance than 

continuous AvN, however on average, it also has a higher air flowrate applied. Of course, higher SRTs mean 

lower sludge wasting which also affects the overall N removal and increases air consumption. For that reason, 

this project aimed to achieve N removal with as low as possible SRTs to maximize energy savings per gram of 

N removed. 
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 Continuous AvN  Intermittent AvN 

Average DO (mg/L) 0.25 (Figure 6.12) 1.25 mg/L* (Figure 6.19) 

Average airflow rate (L/min) 210 250** 

*In aerated periods, **Average for each cycle - not only aerated periods 

Figure 6.25 N Removal Performance Comparison of both AvN Control Strategies with Higher SRT 

(Dynamic Influent) 

Figure 6.26 shows the comparison of both AvN systems with the average DO concentrations and average air 

consumptions in the system for higher SRTs (8-10 days for the time period 21 July-4 August 2019) but this time 

with constant influent loads. Interestingly, the removal performance of both systems is close to each other albeit 

with different averaged observed DO concentrations. However, in the same way, the applied air flowrates are 

relatively close for both systems. 

 

 Continuous AvN  Intermittent AvN 

Average DO (mg/L) 0.20-0.25 mg/L (Figure 6.14) 1.3 mg/L* (Figure 6.21) 

Average airflow rate (L/min) 370 400** 

*In aerated periods,**Average for each cycle - not only aerated periods 

Figure 6.26 N Removal Performance Comparison of both AvN Control Strategies with Higher SRT 

(Constant Influent) 
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It can also be seen that the averaged effluent NH4-N of the continuous AvN system is lower than that for 

intermittent one. This could be due to the better adaptation of the continuous system’s biomass to operation at 

lower DO values than the intermittent system, thus allowing to maintain a better nitrification performance. The 

difference can also be due to the loss of nitrogen through floating sludge in the continuous system. When the 

continuous AvN (Figure 6.15) and the intermittent AvN (Figure 6.22) effluent concentrations are compared, it 

can be seen that the intermittent system effluent NH4-N concentration was high even with increased AF. So, it 

could also simply be a lab measurement error in the intermittent system (however, the lab NH4-N measurements 

and the sensor measurements are parallel to each other in Figure 6.22). 

To compare the performance of both control strategies under dynamic and constant influent load, we evaluated 

the July 2019 data collected when the influent flowrate changed to constant was evaluated. Figure 6.27 shows 

the DO concentrations and the effluent N concentrations of the continuous AvN. At the beginning of the period, 

the system was operated with dynamic influent. In this period, the DO concentration in the aerobic basins is 

more unstable which affects the nitrification performance in the system and results in quite unstable AvN ratios 

during the day. When the influent loads become constant, the DO concentration in the aerated basins becomes 

more stable and the effluent AvN ratio gets closer to 1 and varies only in a narrow range. 

 

Figure 6.27 Continuous AvN Performance with Dynamic and Constant Influent Loads 

A similar effect is found for the intermittent AvN (Figure 6.28). It is clear that the AvN ratio becomes much more 

stable with constant influent loads.  
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Figure 6.28 Intermittent AvN Performance with Dynamic and Constant Influent Loads 

However, for both control strategies, the AvN ratio is varying during the day independent of the influent loads 

being dynamic or constant. The reason for this is of course the application of both control strategies through 

manual manipulation of the DO controller. As stated before, manual AvN control for both strategies was 

performed as works were underway to modify the SCADA system for automatic control. It allowed studying 

operation at low DO concentrations and understand the system behaviour under AvN control, but it is not 

effective in tackling dynamic changes. 

6.4 Automatic AvN Control 

This section includes the general outcomes of the project while the AvN controllers were applied automatically 

for both systems. Note that DO control is done in the last aerobic basin of each system (continuous and 

intermittent). 

6.4.1 AvN Controller Algorithm and Implementation in pilEAUte WRRF 

Both AvN control strategies rely on PID control. For continuous AvN the low DO set-point is the manipulated 

variable, whereas for intermittent AvN control the aeration fraction (AF) width is modulated (i.e. considering a 

fixed cycle time, the relative duration of the aerobic and anoxic periods is changed). The controlled variable in 

both cases is the difference between the NH4-N and NO3-N concentration, with a set-point value of 0 (i.e. AvN=1).  

It should be noted that the controlled variable could also be defined as the ratio NH4-N/NO3-N, and a set-point 

value of 1. However, this option is not chosen as it leads to non-linear behaviour when calculating the control 

error. This is easily verified by considering a fixed value for the NH4-N concentration and letting the NO3-N 

concentration change. In case the difference is chosen as controlled variable, a positive and negative change of 

the same magnitude in the NO3-N concentration will result in a similar change of the error. However, when 
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considering the ratio as the control variable, a positive and negative change of the same magnitude in the NO3-

N concentration will result in very different changes of the error. Hence, simple linear behaviour is therefore not 

guaranteed in the latter case. Controlling the ratio of NH4-N/NO3-N is, therefore, more complex as compared to 

controlling the difference between NH4-N and NO3-N. The control error is thus calculated as in Equation 6.1. 

Equation 6.1: 𝒆 = 𝒚𝒔𝒑 − 𝒚𝒎 =  𝟎 − ([𝑵𝑯𝟒] − [𝑵𝑶𝟑]) = [𝑵𝑶𝟑] − [𝑵𝑯𝟒] 

Note that Equation 6.1 will result in a reverse acting control law:  

If  [NO3-N] > [NH4-N]  then  e > 0  then decrease aeration 

If  [NO3-N] < [NH4-N] then  e < 0  then increase aeration 

Meaning that depending on the sign of the error the aeration needs to respond inversely. One way of taking this 

into account is by providing a negative sign to the control parameters. Often this leads to confusion. Therefore, 

the definition of the error is slightly modified to end up with a direct-acting control law as in Equation 6.2. 

Equation 6.2: 𝒆 =  [𝑵𝑯𝟒] −  [𝑵𝑶𝟑] 

which has the property that the sign of the error is the same as that of the control action, and therefore it is easier 

to interpret.  

The implementation of both AvN controllers in the SCADA system is visualized in Figure 6.29. The effluent data 

(for NH4-N and NO3-N) is stored in the datEAUbase which is the database of the pilEAUte WRRF. The script of 

AvN controllers queries the datEAUbase for the latest values of the measurements of interest (effluent NH4-N 

and NO3-N). Then, it filters the data using a rolling average and calculates the control action to be applied in the 

SCADA system.  
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Figure 6.29 AvN Controller Algorithms in pilEAUte WRRF 

Figure 6.30 provides a schematic of the software architecture used for supervisory control of the pilEAUte. The 

AvN control algorithm which is running on the SCADA computer outputs a CSV file containing the set-point for 

one of the low-level controllers of the pilEAUte. This set-point file is subsequently read by the SCADA software 

(i.e. FactoryTalk) which transfers the set-point to the PLC. The latter is in charge of the low-level process 

automation and ensures that the set-point value is achieved. 

 

Figure 6.30. Schematic Overview of the Software Architecture behind the Supervisory Control of the 

pilEAUte WRRF with AvN Algorithms 
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6.4.2 Application of Automatic Continuous AvN 

6.4.2.1 Sludge Retention Time 

The SRT in the continuous AvN system is shown in Figure 6.31. The overall SRT was kept between 7-9 days 

generally (stated with the grey area). The sludge lost through floating (effluent TSS) was also considered in the 

SRT calculation. The temperature effect was considered to calculate the minimum SRT needed to prevent the 

washout of autotrophs (then the safety factor could be calculated based on the minimum SRT needed and the 

SRT calculated based on the sludge mass in the system). However, reactor temperature was not significantly 

affecting the minimum SRT as it was not changing a lot (See Figure 6.8 for the reactor temperature). Since the 

aerobic volume of the biological reactor is 74% of the overall volume, the aerobic SRT of the system was around 

5-7 days. 

 

Figure 6.31. SRT in Continuous AvN System with Automatic AvN Control 

*SRT 7-9 days is stated with the grey area. 

6.4.2.2 Sludge Volume Index 

The SSVI (stirred sludge volume index) of the sludge is varying between 100-160 ml/g for the period that the 

continuous AvN control was running successfully (Figure 6.32). 
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Figure 6.32. SSVI in Continuous AvN System with Automatic AvN Control 

6.4.2.3 Application Results 

Figure 6.33 shows an example of a 3 days period of continuous AvN application. It can be seen that the AvN 

controller is changing the DO set-point – and thus also the aeration intensity – to keep the AvN ratio around 1. 

It can be seen that when the influent NH4-N concentration increased, the effluent NH4-N concentration was 

increasing as well. As a response to that, the AvN controller is increasing the DO set-point and thus the aeration 

to increase NH4-N oxidation and achieve the NH4-N equals NO3-N objective in the effluent. This demonstrates 

that the controller is correctly working, albeit a bit slow. 

The results of the continuous AvN application are presented in more detail in Appendix- III. 
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Figure 6.33. Continuous AvN Application Results over a 3 Day Time Period 

6.4.3 Application of Intermittent AvN 

6.4.3.1 Sludge Retention Time 

The SRT in the intermittent AvN system can be seen in Figure 6.34. The overall SRT was kept between 9-11 

days (stated with the grey area). The sludge lost through floating (effluent TSS) was also considered in the SRT 

calculation. Similar to the period with application of automatic continuous AvN, the reactor temperature was not 

significantly impacting the minimum SRT since it was not changing a lot. The aerobic SRT of the system was 

around 6.5-8 days. 
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Figure 6.34. SRT in Intermittent AvN System with Automatic AvN Control 

*SRT 9-11 days is stated with the grey area. 

6.4.3.2 Sludge Volume Index 

The SSVI (stirred sludge volume index) of the sludge is changing between 60-110 ml/g for the period that the 

intermittent AvN control was done successfully (Figure 6.35). 

 

Figure 6.35. SSVI in Intermittent AvN System w/Automatic AvN Control 

6.4.3.3 Application Results 

Figure 6.36 shows an example of a 3-day time period of intermittent AvN application. It can be seen that the 

AvN controller is changing the AF applied in a cycle time – so the aeration amount – to keep the AvN ratio around 

1. It can be seen that when the effluent NH4-N concentration increased the AvN controller increased the AF 
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applied in a cycle time and thus the aeration to achieve the NH4-N equal to NO3-N objective in the effluent. The 

results of the intermittent AvN application are presented in more detail in Appendix- III. 

 

 

Figure 6.36. Intermittent AvN Application Results over a 3 Day Time Period 

6.4.4 Comparison of Continuous & Intermittent AvN Control Strategies with 

Automatic Control 

Continuous and intermittent AvN control were applied successfully in the pilEAUte WRRF starting from 

September 2019 until February 2020, as long as the sensors that measure the effluent nitrogen concentrations 

worked without any failure. In this section, both control strategies are compared based on a detailed 

measurement campaign for 24 hours (for the date October 30th 2019). The objective was to calculate the overall 

N removal performance in both systems and also the N removal in the aerated basins thanks to SND. The 

sampling points and measured parameters for both systems can be seen in Figure 6.37. It is assumed that the 

effluent concentrations are equal to those in the outlet of the aerobic basins. Based on the results of the 24-hour 

measurement campaign, a nitrogen mass balance of the system could be established based on daily average 

data.  
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Figure 6.37. Measurement Campaign Sampling Points 

 Overall TN removal in both control systems is calculated based on the influent and effluent TN 

concentrations and flowrates.  

TNremoval_overall = (Qinfluent * TNinfluent) – (Qeffluent * TNeffluent) 

 SND removals are calculated based on the total inorganic nitrogen (TIN) load difference at the outlet of the 

anoxic basin and the outlet of the aerobic basin.  

Nremoval_SND = (Qinfluent + Qsludge_recycle) * (TINBasin3_Outlet - TINBasin5_Outlet) 

 Removal in the secondary clarifiers (through denitrification) is calculated based on the TIN load difference 

between the outlet of the aerobic basin, effluent and, the sludge recycle stream.  

Nremoval_SST = (Qinfluent + Qsludge_recycle)* TINBasin5_Outlet - (Qeffluent * TNeffluent) – (Qsludge_recycle * TNeffluent) 

 Removal in the anoxic basins through denitrification is calculated based on the TIN load difference by 

considering the influent and underflow loads together and subtracting the outlet of the anoxic basin load.  

Nremoval_anoxic = Qsludge_recycle * (NO3-Nsludge_recycle + NO2-Nsludge_recycle) – (Qinfluent + Qsludge_recycle) * (NO3-NBasin3_Outlet+ 

NO2-NBasin3_Outlet) 

 Finally, the difference between overall TN removal with the sum of TIN removal with SND, secondary clarifier 

and anoxic basin denitrification is assigned as the N removal through sludge wasting.  

TNremoval_sludge_wasting= TNremoval_overall - Nremoval_SND - Nremoval_SST - Nremoval_anoxic 

Based on these mass balance calculations, N removal for both control strategies is given in Table 6.3. 
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Table 6.3. N Mass Balance Calculation Results (g/d) 

 Continuous AvN Intermittent AvN 

TN load 454.3 454.3 

Removal in the aerated basin through SND 121.1 227.5 

Removal in the anoxic basin through denitrification 9.9 17.2 

Removal in secondary clarifier through denitrification 20.6 13.8 

Removal with sludge wasting 81.1 54.8 

Overall N removal 234.6 314.5 

Results shown in Table 6.3 are converted into percentages to interpret the removal efficiencies easier in Figure 

6.38. In this figure, the overall N removal in both systems is shown in the top charts and, the details of the N 

removal processes are given in the bottom charts. Note that, SRTs for this measurement date were calculated 

as 9 and 12 days for the continuous and intermittent AvN systems respectively. 

 

Figure 6.38. N Mass Balance Results for both Control Strategies 

Based on the results in Table 6.3 and Figure 6.38, the overall N removal efficiency is found to be higher in the 

intermittent AvN system. With continuous AvN 52% of the TN in the influent is removed. Of this removed 

percentage, 52% could be achieved through SND in the aerated basins. With intermittent AvN 69% of the TN in 

the influent is removed. Of this removed percentage, 73% is achieved through SND in the aerated basins. So, 

overall, the SND performance is also higher in the intermittent AvN system. The removal in the SST and the 

anoxic basin are quite low for both systems, as expected (TIN concentrations in the sludge recycle system for 

Continuous AvN 

SRT: 7-8 d 

Intermittent AvN 

SRT: 11-12 d 
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both systems were too low, around 2-3 mg/L). N removal due to sludge wasting (N incorporated in biomass) is 

higher in the continuous system, but this also expected since the calculated SRT of the continuous system is 

lower which indicates higher sludge production and thus more N incorporated in waste sludge. 

On the other hand, the average airflow consumption is also evaluated (Table 6.4). Based on this evaluation, 

actually, the airflow consumption per gram of N removed in both systems is not significantly different, so the 

energy consumption for aeration is similar. 

Table 6.4. Air consumption & N Removal Comparison for both Control Strategies 

 
Unit Continuous AvN Intermittent AvN 

Volume m3 4.1 4.1 

SRT d 7-8 8-9 

Average MLSS g/m3 2200 1750 

TN removal g/d 234.6 314.5 

Air flow m3/d 311 405 

Air consumption/g N removed m3/g 1.33 1.29 

 

6.5 Conclusions & Perspectives 

Based on the project results, it is found possible to achieve successfully AvN control for both continuous and 

intermittent control strategies. However, keeping the AvN ratio in the effluent at the desired value (1) highly 

depends on the operational conditions such as influent variations, SRT and sensors’ measurement reliability. 

The general outcomes of the project in parallel to the project goals are given below. 

6.5.1 Influent Characteristics 

It was found that the dynamic influent flow leads to dynamic influent loads which make it harder to achieve AvN 

control. On the other hand, dynamic influent load could only be tested during the manual AvN application period 

which might be deceptive. Automatic AvN control could be achieved with stable influent loads, but could not be 

tested with dynamic influent load during the project time period. It is also known that influent NH4-N/CODsoluble is 

important for AvN systems. In this project, the influent NH4-N/CODsoluble was around 0.4 while the NH4-N/CODtotal 

ratio was varying between 0.10 to 0.15. Both were quite stable. 

6.5.2 Sensor Reliability 

The successful application of automatic AvN control heavily depends on sensor reliability. During this project, it 

was possible to achieve the AvN control successfully for both control strategies but it was only temporary 

because of the operational problems with the sensors. In case of drifts in the sensor signal or when a failure 
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occurs, the control action is not correct which affects the performance of both control strategies. The experience 

in this project is that ion-selective NH4-N and NO3-N sensors need a lot of maintenance and suffer from faults 

during operation. The reason could be that the ion-selective sensors operation heavily depends on the water 

matrix and they are recommended to be used at higher N concentrations. On the other hand, wet chemistry 

analysers (such as the TresCon system installed at the pilEAUte) are more reliable measurements for AvN 

systems. However, use of those sensors at the outlet of the pilot scale system could not be achieved during the 

project.  

6.5.3 Sludge Retention Time 

A successful AvN ratio of 1 at the effluent could be achieved for an aerobic SRT of 5-7 days for the continuous 

AvN and 6.5-8 days for the intermittent AvN. Higher sludge wasting to reduce the SRT in the pilEAUte WRRF 

resulted in a sharp decrease in the reactor TSS concentration and in the recycle stream, thus leading to unstable 

effluent nitrogen concentrations. Lower SRT values could not be applied in the AvN system during the project 

time. Also, the SRT of the continuous AvN system was always lower than the intermittent one. 

6.5.4 Temperature 

During the project, the operational temperature of the system was around 20⁰C in the pilEAUte WRRF which 

was enough to successfully achieve AvN control around 1. However, full-scale WRRFs in the Quebec region 

would have a 10-15⁰C operational temperature. Since the pilot plant is in a closed space with higher room 

temperatures, the impact of lower temperatures on the system performance could not be investigated. 

6.5.5 Feedforward Control Necessity  

In this study, the principle of a cascade feedback aeration control strategy was applied in the AvN controller. 

Another approach to maintain the desired AvN ratio would be through the use of what is called a feedforward 

control or a combination of feedback and feedforward control strategies. Instead of solely monitoring the 

ammonia concentration in the effluent, feedforward control relies directly on ammonia measurements in the 

influent. This way, sudden changes in influent load can be anticipated by the controller and thereby prevent the 

propagation of ammonia peaks to the effluent. Such an approach has been shown to be beneficial for plants that 

encounter unusually high influent disturbances (Rieger et al. 2014). The latter observation also holds for the 

pilEAUte treatment plant during the operation with dynamic influent flowrate. Since it depends entirely on the 

wastewater generated by a small university community, the ammonia load fluctuations arrive undamped in the 

pilEAUte system. Hence, large variations in ammonia loads are observed which could make a combination of 

feedforward and feedback AvN control more appropriate. Also, the influent COD needs to be considered for the 

feedforward control since the NH4-N/COD ratio is important for system operation to oxidize only the amount of 

ammonia that can be denitrified by utilizing the carbon available to the system. On the downside, feedforward 
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control requires a mathematical understanding of how load disturbances influence aeration demands. In practice 

it might be hard to establish such relation due to unknown or complex process behaviours. 

6.5.6 Energy Consumption 

Based on the results of a short-term detailed measurement campaign during the project, the overall N removal 

efficiency and SND performance was higher in the intermittent AvN system than the continuous one. However, 

the average airflow consumption per removed gram of N in both systems were not significantly different, and 

were thus the energy consumption due to aeration. Still, application of the AvN controller to the pilEAUte WRRF 

resulted in a 36% total volume reduction and also a 50% SRT reduction which makes a significant gain in 

comparison to the conventional operation of the plant. If the airflow consumption of the AvN operation (with an 

average air flow consumption 400 m3/d) and the conventional operation of the pilEAUte plant are compared, 

then more than 60% reduction is observed.  
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7. SCENARIO ANALYSES for ENERGY & 

RESOURCE OPTIMIZATION of N-REMOVING 

WRRF 

This chapter of the PhD dissertation presents the results of scenario analyses on the pilEAUte model presented 

in Chapter 5 to optimize energy and resource consumption by aeration and pumping of sludge. For that purpose,  

grid scenario analyses were performed to determine the optimal operational conditions for the pilEAUte WRRF 

while ensuring effluent water quality.  

7.1 pilEAUte Model – Conventional Nitrogen Removal 

Scenario analyses were conducted on the calibrated pilEAUte model of Chapter 5. Three scenarios were 

investigated. As evaluation criteria total air consumption, aeration and pumping energy consumption, overall 

nitrogen removal efficiency and effluent quality (in terms of nitrogen components) were used. The model results 

for these criteria during the calibration and validation periods were taken as the reference case to compare the 

scenario analysis results with and to determine optimal operational conditions. Note that many N-removing 

WRRFs are not operated optimally due to the large safety margins applied during plant design, lack of process 

control or ensuring the effluent criteria under dynamic loading conditions (Fiter et al. 2004; Vanrolleghem and 

Vaneeckhaute 2014; Sweetapple et al. 2014). The results of these scenario analyses were 

evaluated/investigated as proof of a concept for energy and resource optimization for conventional nitrogen 

removal processes.  

7.1.1 Evaluation Criteria for the Scenario Analyses Outputs 

Key variables (which are calculated by the model as an output of each simulation) and the criteria to evaluate 

the scenario analyses are stated below. Average air flowrate consumption, aeration and pumping energy, TN 

load removed in the overall plant, including the reactive settler, and effluent nitrogen concentrations were 

calculated for the time period between day 24 and 59 for the reference case and each scenario analysis. Also, 

the average total sludge mass in the WRRF for the given time period was calculated and the sludge accumulation 

in the system is evaluated by considering the wasted sludge. 
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Operational Energy:  

𝑛: Number of time steps; 𝑡𝑖: Start time of calibration-validation time period (Day 24); 𝑡𝑙: End time of calibration-

validation time period (Day 59); V: volume 

 Total average air consumption (m3/d): 

𝑄𝑎𝑖𝑟 𝑡𝑜𝑡𝑎𝑙 =  
∑ (𝑄𝑎𝑖𝑟 𝐵𝑎𝑠𝑖𝑛 3𝑡

+ 𝑄𝑎𝑖𝑟 𝐵𝑎𝑠𝑖𝑛 4𝑡

𝑡𝑙
𝑡𝑖

+ 𝑄𝑎𝑖𝑟 𝐵𝑎𝑠𝑖𝑛 5𝑡
)

𝑛𝑡𝑙
− 𝑛𝑡𝑖

 

 Aeration energy (kWh/m3):  

𝐴𝐸𝑡𝑜𝑡𝑎𝑙 =  
∑ (𝐴𝐸𝐵𝑎𝑠𝑖𝑛 3𝑡

+ 𝐴𝐸𝐵𝑎𝑠𝑖𝑛 4𝑡

𝑡𝑙
𝑡𝑖

+ 𝐴𝐸𝐵𝑎𝑠𝑖𝑛 5𝑡
)

∑ 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑡𝑙
𝑡𝑖

𝑛𝑡𝑙
− 𝑛𝑡𝑖

∗ (𝑡𝑙 − 𝑡𝑖)

 

AE is the aeration energy calculated by the model, given in Equation 5.1. 

 Pumping energy (kWh/m3):  

𝑃𝐸𝑡𝑜𝑡𝑎𝑙 =  
∑ (𝑃𝐸Internal Recycle𝑡

+ 𝑃𝐸Sludge Recycle𝑡
+ 𝑃𝐸Sludge Waste𝑡

𝑡𝑙
𝑡𝑖

)

∑ 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑡𝑙
𝑡𝑖

𝑛𝑡𝑙
− 𝑛𝑡𝑖

∗ (𝑡𝑙 − 𝑡𝑖)

 

Nitrogen Removal Efficiency 

 Total nitrogen removal in the overall WRRF (g/m3): 

𝑇𝑁 =  𝑁𝐻4
+ − 𝑁 + 𝑁𝑂3

− − 𝑁 + 𝑁𝑂3
− − 𝑁 

Soluble and particulate organic nitrogen is considered to be part of the influent NH4-N since it is not a model 

variable in the ASM1_AN biokinetic model used.  

𝑇𝑁𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑
𝑇𝑁𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑡

∗ 𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑡
− 𝑇𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

∗ 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑡𝑙

𝑡𝑖

 

 Total nitrogen removal in the reactive secondary settling tank (g/m3): 

𝑇𝑁𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑆𝑇 = ∑
𝑇𝑁𝐵𝑎𝑠𝑖𝑛 5𝑡

∗ (𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 𝑡+𝑄𝑢𝑛𝑑𝑒𝑟𝑓𝑙𝑜𝑤 𝑡) − 𝑇𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡
∗ 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑄𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑡𝑙

𝑡𝑖
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Effluent Quality 

 Average effluent total inorganic nitrogen over the evaluation time period (g/m3/d): 

𝑇𝐼𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 =
∑ 𝑇𝐼𝑁𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

∗ 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑡𝑙
𝑡𝑖

( 𝑛𝑡𝑙
− 𝑛𝑡𝑖

) ∗  𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

 

 Average effluent ammonium nitrogen over the evaluation time period (g/m3/d): 

𝑁𝐻4𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 =
∑ 𝑁𝐻4𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

𝑡𝑙
𝑡𝑖

∗ 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

( 𝑛𝑡𝑙
− 𝑛𝑡𝑖

) ∗ 𝑄𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡𝑡

 

Sludge Mass Accumulation 

 Average sludge mass in the system over the evaluation time period (g/d): 

∑ 𝑇𝑆𝑆𝐵𝑎𝑠𝑖𝑛 1𝑡
∗𝑉𝐵𝑎𝑠𝑖𝑛 1+𝑇𝑆𝑆𝐵𝑎𝑠𝑖𝑛 2𝑡

∗𝑉𝐵𝑎𝑠𝑖𝑛 2+𝑇𝑆𝑆𝐵𝑎𝑠𝑖𝑛 3𝑡
∗𝑉𝐵𝑎𝑠𝑖𝑛 3+𝑇𝑆𝑆𝐵𝑎𝑠𝑖𝑛 4𝑡

∗𝑉𝐵𝑎𝑠𝑖𝑛 4+𝑇𝑆𝑆𝐵𝑎𝑠𝑖𝑛 5𝑡
∗𝑉𝐵𝑎𝑠𝑖𝑛 5+𝑆𝑙𝑢𝑑𝑔𝑒 𝑚𝑎𝑠𝑠𝑆𝑆𝑇𝑡

𝑡𝑙
𝑡𝑖

 𝑛𝑡𝑙
−𝑛𝑡𝑖

  

 Sludge mass difference over the evaluation time period (g): 𝑆𝑙𝑢𝑑𝑔𝑒 𝑚𝑎𝑠𝑠𝑡𝑙
− 𝑆𝑙𝑢𝑑𝑔𝑒 𝑚𝑎𝑠𝑠𝑡𝑖

 

 Sludge mass accumulation in the overall WRRF over the evaluation time period (g/d): 

𝑆𝑙𝑢𝑑𝑔𝑒 𝑀𝑎𝑠𝑠𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

=  
[𝑆𝑙𝑢𝑑𝑔𝑒 𝑀𝑎𝑠𝑠𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 +  ∑ 𝑇𝑆𝑆𝑢𝑛𝑑𝑒𝑟𝑓𝑙𝑜𝑤 ∗  𝑄𝑤𝑎𝑠𝑡𝑒 

𝑡𝑙
𝑡𝑖

∗ ( 𝑛𝑡𝑙
− 𝑛𝑡𝑖

)]

( 𝑛𝑡𝑙
− 𝑛𝑡𝑖

)
  

7.1.2 Scenario Analysis I - Optimization of DO Set-Point and Internal Recycle 

Flowrate 

The goal of this scenario is to determine whether the pilEAUte WRRF can be operated at lower dissolved oxygen 

(DO) concentrations in the aerated basins and whether the internal nitrate recycle (IR) flowrate can be reduced 

without influencing the overall nitrogen removal performance. In this way, the reduced aeration and IR flowrate 

would lead to lower energy consumption for the same N removal performance in the plant. To do that, the set-

point of the DO controller (which is installed in Basin 4) and the internal sludge recycle from Basin 5 to Basin 1 

were selected as the operational parameters to be optimized. The aeration strategy of the plant which is 

described in Chapter 5.4, was not changed. Simulations for a WEST “grid scenario analysis” were run with the 

properties given in Table 7.1. The evaluation criteria given in Chapter 7.1.1 were calculated for each run. 
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Table 7.1 Scenario Analyses I – WEST Grid Scenario Analysis Properties 

Number of simulation runs 55 

Parameter ranges DO set-point in Basin 4  : 0.5 – 3 mg/L → 11 values 

Internal recycle flowrate : 12 – 36 m3/d → 5 values 

Parameter sampling Uniform within the given range 

Based on the simulation results, the dependency of the average concentration of effluent N components (NH4-

N, NO2-N, NO3-N and TIN) on the operational conditions is shown in Figure 7.1. It shows that effluent ammonium 

is quite low for all simulations (max value around 1 mg/L) and the plant can achieve full nitrification even if the 

DO concentration is lowered to 0.5 mg/L. On the other hand, effluent nitrate decreases, as the DO concentration 

and the internal recycle flowrate are lowered, probably thanks to simultaneous nitrification and denitrification 

(SND) occurring in the aerated basins. The results generally show that the pilEAUte plant is being operated with 

a higher DO set-point and internal recycle than needed. This might be due to the fact that the plant was designed 

using standard design guidelines and standard operating conditions (DO set-point 2 mg/L, IR=3Qinfluent).  

The continuous low DO operation results in the scope of the AvN control application in the pilEAUte WRRF 

(Chapter 6) support the outcomes of this scenario analysis. It had already been demonstrated when the 

biological reactors are operated continuously at 0.5 mg/L DO, all the influent ammonia is removed and up to 10 

mg/L nitrate is found in the effluent (Figure 6.12 & Figure 6.13). There was also no internal recycling in the AvN 

control operation which proves that simultaneous nitrification denitrification can take place in the aerated basins 

at low DO and contribute to overall nitrogen removal. Note that, within this scenario analysis reducing the DO 

set-point down to 0.5 mg/L and reducing the internal recycle flowrate down to 18 m3/d improves total nitrogen 

removal in the plant. However, this adjustment is also increasing the nitrite concentration in comparison to normal 

operating conditions which might lead to N2O emissions. The risk of greenhouse gas emissions is of course not 

desired, but still, the results are in favour of reducing the DO set-point and internal recycling which would lead 

to significant reduction and optimization in energy consumption and operational cost.  
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Figure 7.1 Average Effluent Concentrations for N Components for Scenario Analysis I 

The aeration and pumping energy consumption and the overall energy consumption are shown in Figure 7.2. In 

this figure, the average energy consumption for the scenario analysis time period (day 24-59) is given for each 

simulation. The gain in energy consumption in corporation to standard operational conditions is much more 

visible with the adjusted operational conditions. As expected, lowering the DO set-point in the aerated basins 

reduces the aeration energy by up to 20% in comparison to normal (reference) operational conditions. In 

addition, pumping energy significantly reduces with the reduced internal nitrate recycle flowrate. Up to 50% of 

total pumping energy can be gained when the internal recycle flowrate is reduced from 36 to 12 m3/d. In 

accordance with the aeration and pumping energy, the overall energy consumption is also decreased thanks to 

reduced aeration and internal recycling. 

In order to determine the optimized operational conditions to reduce energy consumption while ensuring effluent 

water quality, an effluent TIN limit of 10 mg/L on average over the day was chosen as limit. Based on the 

evaluation of each simulation result within the scenario analysis, operating the pilEAUte WRRF with a DO set-

point of 0.5 mg/L and 18 m3/d internal sludge recycle flowrate can reduce the energy consumption significantly 

without hampering the overall nitrogen removal performance.  

A detailed comparison of the reference versus the optimized operational conditions is presented in Table 7.2 

based on the different evaluation criteria. Note that the presented values in Table 7.2 are the averages of the 

scenario analysis time period (day 24-59) next to the maximum concentrations reached for effluent N 

components. Based on the results, average effluent ammonium and total inorganic nitrogen concentrations 
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increase slightly due to reduced aeration. However, aeration and pumping energy are reduced by 21% and 37% 

respectively in comparison to normal operational conditions with optimized DO set-point and internal sludge 

recycle flowrate. Following that, the total energy consumption can be decreased by up to 26% which would lead 

to a significant reduction in operational costs.  

 

Figure 7.2 Average Energy Consumption for Scenario Analysis I 
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Table 7.2 Comparison of Energy and Effluent Quality Criteria for Reference vs Optimized Operational 

Conditions for Scenario Analysis I 

 Reference Operational 
Conditions 

Optimized Operational 
Conditions 

Operational Conditions 

Qinternal recycle (m3/d) 36 18 

DO set-point (Basin 4) 3.0 0.5 

Energy Consumption 

Qair (m3/d) 1165 916 

Aeration Energy (kWh) (total) 147.37 115.81 

Pumping Energy (kWh) (total) 67.02 42.38 

Aeration Energy (kWh/m3) 0.38 0.30 

Pumping Energy (kWh/m3) 0.17 0.11 

Total energy consumption (kWh/m3) 0.55 0.40 

   

Effluent Quality 

Effluent NH4-N (g/m3) (average) 0.20 0.93 

Effluent NO3-N (g/m3) (average) 8.71 8.53 

Effluent TIN (g/m3) (average) 8.93 9.68 

Effluent TN (g/m3) (average) 10.70 11.19 

Effluent NH4-N (g/m3) (max.) 0.44 4.53 

Effluent NO3-N (g/m3) (max.) 19.74 14.66 

Effluent TIN (g/m3) (max.) 20.05 16.67 

Effluent TN (g/m3) (max.) 21.76 18.27 

Sludge Mass Accumulation 

Sludge mass in the system (g/d) (average) 18089 18089 

Sludge waste (g/d) (average) 721 722 

Sludge mass accumulation (g) 769 770 

To compare the dynamic behaviour of the reference and optimized operational conditions, times series of 

effluent N components are presented in Figure 7.3. It can be observed that, on the one hand, the average and 

maximum observed NH4-N concentrations increase with reduced aeration, but that, on the other hand, NO3-N 

concentrations decrease. The low DO concentration in the biological reactors leads to lower nitrate 

concentrations in the effluent on average. This might also be due to reduced aeration creating anoxic conditions 

in Basin 3 and promoting denitrification there (Figure 7.4). As stated before, the effluent TIN concentration 

increases on average, but its maximum value during the simulation time period is reduced which may indicate a 

safer operation in terms of the TIN discharge criterion.  

Noteworthy, the optimized operational conditions do not influence the growth of biomass, thus there is no 

significant change in overall the sludge mass in the system. 
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Figure 7.3 Comparison of Effluent N Components Concentrations for Reference vs Optimized 

Operational Conditions for Scenario Analysis I 

 

Figure 7.4 Comparison of DO Concentrations for Reference vs Optimized Operational Conditions for 

Scenario Analysis I 

7.1.3 Scenario Analysis II - Implementation of Individual DO Controllers 

The evaluation of the DO and air consumption in the first aerated basin (Basin 3) of the biological reactors shows 

that the aeration intensity is much lower than in the following basins (Figure 5.21, Figure 5.22, Figure 7.4) for 

the reference operational conditions. Inspired by Vanrolleghem and Gillot (2002), the aeration strategy of the 

pilEAUte WRRF model was changed and individual DO controllers were applied in each aerated basin. The 

second scenario analysis presented here aims at finding out whether the overall aeration energy consumption 

can be reduced with separate DO control in each aerated basin and also at determining how it affects the 

nitrogen removal performance of the plant. To do that, the model layout was updated with 3 DO controllers for 

the aerated basins. The same controller properties as in the original model for basin 4 were used for basin 3 and 

5 (Figure 7.5).  
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The set-points of the 3 DO controllers are the operational parameters to be optimized. Another scenario analysis 

was run with the properties given in Table 7.3 and the evaluation criteria given in Chapter 7.1.1 were calculated 

for each run. 

 

Figure 7.5 Model Layout with Individual DO Controllers in each Aerated Basin for Scenario Analysis II 

Table 7.3 Scenario Analysis II – WEST Grid Scenario Analysis Properties 

Number of simulation runs 216 

Parameter ranges DO set-point in Basin 3: 0.5 – 3 mg/L → 6 values 

DO set-point in Basin 4: 0.5 – 3 mg/L → 6 values 

DO set-point in Basin 5: 0.5 – 3 mg/L → 6 values 

Parameter sampling Uniform within the given range 

For each simulation, the average of the effluent N components was calculated and presented in Figure 7.6 as 

function of the DO set-point in each basin. Similar to the results of the previous scenario analysis, the effluent 

ammonium is quite low for all simulations (max value around 0.4 mg/L) and the plant can achieve full nitrification 

even if the DO concentration is lowered to 0.5 mg/L in each aerated basin. The effluent TIN and nitrate 

concentrations increase as the applied DO set-point is increased. It can be seen that the effluent TIN is mostly 

composed of nitrate and the decrease in the DO set-point can lead to up to a 5 mg/L reduction in the effluent 

TIN and NO3-N concentrations. On the other hand, nitrite concentration is at its highest value when the DO set-

point is 0.5 mg/L in each basin which indicates the potential for N2O emission in full-scale application.  

The aeration and the overall energy consumption (including the pumping energy which is not shown since it 

does not change) for each run are shown in Figure 7.7. It is clear that the aeration energy needs can be reduced 

by lowering the DO set-point in the aerated basins by up to 30% when the simulation results are compared to 

each other for scenario analysis II. However, in none of these simulations, the aeration energy is getting lower 

than the reference operational case. Note that, with the applied aeration strategy in normal operational 

DO Controller 1 DO Controller 2 
DO Controller 3 
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conditions, the plant is operated with a 3 mg/L DO concentration in basins 4 and 5 and a lower than 0.5 mg/L 

DO concentration in basin 3 (Figure 7.4). Thus, the proposed aeration strategy with scenario analysis II does 

not improve either the energy consumption or the overall nitrogen removal efficiency compared to the reference 

situation. Still, operating the aerated basins with individual DO controllers might be important in long-term 

operation to ensure nitrogen removal efficiency in case of peak nitrogen loads to the WRRF. 

 

Figure 7.6 Average Effluent Concentrations for the Different N Components* for Scenario Analysis II 

(TIN top-left, NO3-N top-right, NO2-N bottom-left, NH4-N bottom-right) 

 

 

Figure 7.7 Average Aeration (left) and Total Energy Consumption (right) for Scenario Analysis II 
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7.1.4 Scenario Analysis III – Taking Advantage of Reactive Settling 

Within this scenario analysis, it is aimed to investigate whether: 

 reactive settling can be used to contribute to the overall nitrogen removal in the plant through 

denitrification  

 the internal sludge recycle flowrate can be reduced.  

The developed and calibrated reactive settler model presented in Chapter 4 is used and the operational 

conditions to achieve reactive settling tested in Chapter 4 are adopted in the plant-wide pilEAUte model. Herein, 

the model is run with 2 different operational conditions and compared with the reference case.  

1. The sludge recycle flow is reduced from 12 m3/d to 3.6 m3/d to accumulate sludge in the settler, and 

enhance biological reactions in the SST. Also, the internal nitrate recycle flowrate is reduced to 18 m3/d 

to increase the nitrate loading to the clarifier.  

2. In addition to the conditions above, the feed layer of the SST is changed from Layer 11 to Layer 16, 

thus the SST is fed from its bottom. In this way, the hydraulic retention time of the mixed liquor within 

the sludge blanket is increased to be able to see the influence of reactive settling on effluent 

concentrations. 

The TSS concentrations in the biological reactor and the sludge recycle with the adjusted operational conditions 

are given in Figure 7.8. As compared to normal operational conditions (reference case), the SST underflow TSS 

concentration significantly increases with the reduced underflow rate. Sludge blanket concentration profiles and 

the SST feeding points for the reference and reactive settler operational cases are shown in Figure 7.9. 

 

Figure 7.8 TSS Concentrations in Reference Case (left) vs Reactive SST Operational Cases (right) for 

Scenario Analysis II 
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Figure 7.9 TSS Concentrations Profiles in Reference Case (top) vs Reactive SST Operational Cases 

(bottom) for Scenario Analysis II with the Locations of Feed Layers 

Based on the simulation results for the different operational cases applied for scenario analysis III, the TIN 

removal for the overall pilEAUte WRRF and the secondary clarifier are calculated and compared in Table 7.4. 

The reactive settler operational cases significantly reduce the pumping energy consumption, thus optimising the 

overall energy consumption of the plant (up to 20% gain) thanks to the reduced internal sludge recycle. There 

is no significant difference in the air flowrate and aeration energy consumption since the DO set-point and 

aeration strategy are not changed in the different operational cases. Aeration is directly related to the nitrification 

process, and in this scenario analysis denitrification process efficiency is being investigated. 

The goal of the scenario analysis is not only energy optimization, but also to take advantage of the denitrification 

in the SST to improve nitrate removal and effluent quality. When the SST is fed from its existing feed point (Layer 

11 which is at the height of 1.1 m. from the bottom of the tank), there is no direct impact on the effluent nitrate 

even though denitrification clearly occurred in the sludge blanket based on the underflow concentrations. In this 

case, only the water going to the underflow passes through the sludge blanket, thus the nitrate in the effluent 

remains. On the other hand, when the feed layer is lowered and the SST is fed from closer to its bottom (in this 

case Layer 16 which is at the height of 0.4 m. from the bottom of the tank), the mixed liquor passes through the 

sludge blanket with a higher retention time and the effluent nitrate concentration significantly reduces. The high 

Feed Layer 

(Layer 11) 

SSTunderflow 

SSTeffluent 

Feed Layer 

(Layer 11) 

SSTunderflow 

SSTeffluent 

Feed Layer 

(Layer 16) 
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nitrate removal rate in the SST leads to a significant contribution to the overall denitrification capacity of the 

WRRF. 

In reactive settler operation with bottom-feeding and a large sludge blanket, effluent ammonia seems to increase, 

probably due to the decay of biomass or hydrolysis of slowly biodegradable particulate matter, and it affects the 

effluent concentration due to the upward bulk flux. The effluent nitrate concentration decreases below 1 mg/L 

on average, but the nitrite concentration in the effluent increases up to 1.2 mg/L. This might indicate incomplete 

denitrification in the sludge blanket and trigger N2O emission through heterotrophic denitrification. Figure 7.10 

shows the N component (NH4-N, NO2-N, NO3-N) time series for the normal operational conditions (reference 

case) versus the reactive settler operation with bottom-feeding. As can be seen, the nitrate concentration 

significantly decreases in the reactive settler operational case (up to 90% lower NO3-N in the effluent in 

comparison to the reference case). However, the nitrite concentration is much higher and changes in parallel to 

the nitrate concentration. Also, the ammonium concentration significantly increases. 

 

Figure 7.10 Effluent N Components Concentrations in Reference Case (left) vs Reactive SST with 

Bottom Feeding Operational Case (right) for Scenario Analysis II 

On the other hand, the effluent TIN concentration is reduced thanks to the significant removal of nitrate in the 

reactive settling process (Figure 7.10). The nitrogen mass balance of the SST and the overall pilEAUte WRRF 

shows that up to 18% of the TIN can be removed in the SST when the reactive settler is fed from the bottom 

(layer 16). Thus, this type of operational strategy can both improve the nitrogen removal and effluent TIN 

concentration, but can also reduce the operational costs thanks to the reduced internal sludge recycle rates.  

Finally, reactive settler operation requires increasing the sludge blanket in the clarifier and also feeding the SST 

from the bottom of the tank (thus through the sludge blanket). Operation of the SST under these conditions, in 

reality, might be challenging due to the upward bulk flux being continuously passed through the sludge blanket 

which may disturb the sludge blanket concentration profile and may even lead to an overflow. This effect can be 

seen by comparing the effluent TIN and TN concentrations in the effluent (Table 7.4). The effluent TN is higher 
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than the TIN which indicates more organic nitrogen is present in the effluent in particulate form. The increased 

effluent TSS concentration confirms this. Thus, reactive settler operation requires monitoring the effluent quality 

carefully and adjusting the operational parameters (such as underflow rate, sludge blanket height, feed layer) if 

needed. There are commercially available technologies to adjust the SST feed point and install a height-variable 

inlet structure (e.g. hydrograv 2020) (Figure 7.11). This type of inlet structure is mostly oriented to eliminate 

sludge overflow and keep the sludge blanket at low levels, but it could also be adopted to operate the SST as a 

reactive settler to optimize nitrogen removal. Also, the effluent of the SST can be treated with downstream 

filtration to comply with effluent TN and TSS discharge criteria. In addition, with the reactive settler conditions 

applied in this simulation, more than 8 mg/L nitrate is being removed through settler denitrification which may 

cause N2 gas bubble induced rising sludge in the SST in full-scale application (Henze et al. 1993). Note that this 

simulation was done to demonstrate the highest possible denitrification potential in the SST to determine how a 

reactive settler process can contribute to the overall N removal in a WRRF and can be used for energy 

optimization through reduced need for internal sludge recycle flows.  

 

Figure 7.11 An Example of a Height-Varible Inlet Structure (hydrograv 2020) 

When the sludge mass accumulations are compared, reactive settler operational cases have higher sludge 

accumulation than the reference case. While the sludge wasting flowrate was not changed in these simulations, 

a higher amount of sludge was wasted due to the higher concentrations in the bottom of the SST. When the 

reactive settler operational cases are compared to each other, the bottom-feeding case accumulates less sludge 

because a higher TSS concentration is observed in the effluent. Thus, sludge is lost through the effluent as well.  
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Table 7.4 Comparison of Reference vs Reactive Settler Operational Conditions for Scenario Analysis III 

 Reference Operational 
Conditions 

Reactive Settler Operational 
Conditions 

Operational Conditions  

Qsludge recycle (Qunderflow rate) (m3/d) 12 3.6 3.6 

Qinternal recycle (m3/d) 36 18 18 

SST feed layer Layer 11* Layer 11* Layer 16** 

DO set-point (Basin 4) 3.0 3.0 3.0 

Energy Consumption  

Qair (m3/d) 1165 1179 1065 

Aeration Energy (kWh) (total) 147.37 148.59 138.49 

Pumping Energy (kWh) (total) 67.02 30.24 30.24 

Aeration Energy (kWh/m3) 0.38 0.38 0.35 

Pumping Energy (kWh/m3) 0.17 0.08 0.08 

Total energy consumption (kWh/m3) 0.55 0.46 0.43 

Effluent Quality  

Effluent NH4-N (g/m3) (average) 0.20 0.26 2.56 

Effluent NO3-N (g/m3) (average) 8.71 10.24 0.83 

Effluent NO2-N (g/m3) (average 0.02 0.03 1.20 

Effluent TIN (g/m3) (average) 8.93 10.54 4.59 

Effluent TN (g/m3) (average) 10.70 12.21 14.18 

Effluent TSS (g/m3) (average) 9.63 9.29 53.68 

Underflow Concentrations    

Underflow NH4-N (g/m3) (average) 0.32 1.85 0.56 

Underflow NO3-N (g/m3) (average) 6.36 1.20 8.51 

Underflow NO2-N (g/m3) (average) 2.11 1.35 2.21 

TIN Removal    

TIN removal of overall WRRF (g/d) 384.94 358.73 425.35 

TIN removal in the reactive SST (g/d) 6.01 21.06 76.78 

%  
𝑇𝐼𝑁 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑆𝑆𝑇

𝑇𝐼𝑁 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑓 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑅𝑅𝐹 
 1.56% 5.87% 18.05% 

Sludge Mass Accumulation  

Sludge mass in the system (g/d) (average) 18089 17546 19418 

Sludge waste (g/d) (average) 721 1575 1067 

Sludge mass accumulation (g) 769 1635 1186 

* Layer 11 is at 1.1 m. height from the bottom of the SST. ** Layer 16 is at 0.4 m. height from the bottom of the SST. 
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7.1.5 Conclusions 

Scenario analyses were performed with the pilEAUte model to optimize energy and resource consumption by 

aeration and pumping of sludge. Grid scenario analyses were conducted to determine the optimal operational 

conditions for the pilEAUte WRRF while ensuring effluent water quality for scenarios I and II. In Scenario III, the 

model was simply run with operational conditions that take full advantage of denitrification in the SST so as to 

determine the maximum settler denitrification potential in the pilEAUte WRRF.  

The first scenario analysis to optimize the DO set-point in the biological reactors and the internal nitrate recycle 

flowrate showed that the pilEAUte plant is being operated with a higher DO set-point and internal nitrate recycle 

than needed. This might be due to the fact that it was designed using standard design guidelines and for standard 

operational conditions. Reducing the DO set-point to 0.5 mg/L and the internal nitrate recycle flowrate to 18 m3/d 

could improve total nitrogen removal in the plant, because the effluent ammonium was quite low (∼1 mg/L) while 

the effluent nitrate concentration could be decreased in comparison the one obtained under to normal 

operational conditions. Thus, the overall TIN removal of the conventional N removal plant can be improved by 

adjusting the operational conditions to lower values and aeration and pumping energy could be reduced by 21% 

and 37% respectively in comparison to normal operational conditions.  

Implementation of individual DO controllers in each aerated basin in the second scenario analysis gave similar 

results as the scenario analysis I, i.e. the plant can achieve full nitrification even if the DO concentration is 

lowered to 0.5 mg/L in each aerated basin. Effluent TIN and nitrate concentrations increase as the DO set-point 

is increased. However, the aeration energy consumed was not lower than the normal operational case. Note 

that for both scenario analyses (I & II), the reduced DO set-point in the aerated basins also led to higher NO2-N 

concentrations in the effluent which indicates the potential for N2O emission in the full-scale application.  

In the last scenario analysis (III), reactive settler operation was investigated in the plant-wide model to determine 

its potential to contribute to the overall nitrogen removal in the plant through settler denitrification and energy 

reduction through a reduced internal sludge recycle flowrate. This could only be achieved when the feed layer 

of the SST was lowered and the SST was fed closer to its bottom. In this case, the mixed liquor passes through 

the sludge blanket with a higher retention time and the effluent nitrate concentrations significantly reduce. This 

high nitrate removal in the SST was a significant contribution to the overall denitrification capacity of the WRRF. 

The nitrogen mass balance of the SST and the overall pilEAUte WRRF showed that up to 18% of the TIN can 

be removed in the SST under these operational conditions. Thus, this type of operational condition could both 

improve the nitrogen removal and effluent TIN concentration, but it can also reduce the operational costs thanks 

to reduced internal sludge recycle flowrates. On the other hand, reactive settler operation requires increasing 

the sludge blanket in the clarifier and also feeding the SST from the bottom of the tank. The simulation results 
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indicated that effluent TSS may significantly increase due to the upward bulk flux passing continuously through 

the sludge blanket. Also, with the reactive settler conditions applied, even more than 8 mg/L nitrate could be 

removed through settler denitrification and this has been shown to potentially cause N2 gas bubble induced rising 

sludge in the SST in full-scale application. Operation of the SST under these conditions, in reality, might be 

challenging. Reactive settler operation in full-scale application requires monitoring the overall system and the 

effluent quality very carefully and adjusting the operational parameters (such as underflow rate, sludge blanket 

height, feed layer) if needed. The sludge blanket height level should be selected carefully to allow a substantial 

sludge concentration profile in the settler without leading to any sludge overflow or increased effluent turbidity. 

Thus, frequent or continuous monitoring of the concentration and flux of sludge removed from the SST and the 

SBH level are needed. Also the solids loading rate and the surface loading rate of the clarifier must be monitored.  



 

151 

CONCLUSIONS & PERSPECTIVES 

Conclusions 

The aim of this thesis was to investigate energy and resource-efficient processes and operational conditions for 

nitrogen removal systems through pilot-scale experimentation, modelling and model-based optimization. This 

was accomplished though different studies including dedicated experimentation and model development for 

reactive settling processes; experimentation and modelling for conventional N removal; and implementation of 

AvN control strategies for short-cut N removal processes. The research conducted was closely linked to the 

pilEAUte WRRF which is a pilot-scale plant located at Université Laval with 12 m3/d treatment capacity. Even 

though the research was driven by the case studies applied in this pilot-scale WRRF, the developed 

methodologies to demonstrate and model the energy and resource-efficient processes and operational 

conditions are applicable and transferable to other full-scale systems. 

First, to better understand the reactive settling process and its potential for denitrification, a 1-D reactive settler 

model was developed which is the first modelling work that combines the full set of ASM1 biokinetics with the 1-

D Bürger-Diehl settler model with compression. The unique measurement campaign carried out allowed to 

confirm that significant denitrification in the SST can occur depending on the biomass concentration profile and 

the hydraulic retention time in the sludge blanket. Thus, the simultaneous occurrence of biokinetic processes 

and physical settling phenomena in the secondary settling tanks must be considered and modelled to correctly 

determine the effluent and underflow characteristics, and also analyse the contribution of SST denitrification to 

the overall N removal in a WRRF. During model development, two types of hindered settling velocity functions 

were tested to properly model the hindered settling behaviour: the double exponential function by Takács et al. 

(1991) and the power-law function by Diehl (2015). The extensive calibration and model selection effort 

demonstrated that the power-law function is more suited to describe hindered settling behaviour at high sludge 

concentrations and high sludge blanket heights. The modelling also demonstrated the importance of including 

actual clarifier geometry, especially for properly quantifying the biological conversions at the bottom of a SST. 

Initial estimates of the hindered settling parameters could be obtained from standard batch settling experiments. 

Fine-tuning was required for one of the hindered settling parameters in the overall SST model which was found 

to be especially influential at high TSS concentrations. The calibrated model was subsequently able to accurately 

predict the TSS, NO3-N and DO concentration profiles and no further calibration of the biokinetic model was 

needed and the default values of the ASM1 biokinetic model could be used to predict the DO and NO3-N 

concentrations adequately. There are the typical values for municipal wastewater treatment and this agrees with 

the pilEAUte’s behaviour. The developed 1-D reactive settler model allowed illustrating the denitrification 

potential of a secondary settler and can be applied to other case studies to properly calculate the nitrogen mass 
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balance of WRRFs and improve the overall total inorganic nitrogen removal in the plant. On the other hand, it 

can also be used to warn whether a N2 gas bubble induced rising sludge problem may occur since this problem 

is closely linked to the amount of nitrate removed in the secondary clarifiers.  

Second, the pilEAUte WRRF, designed and operated as a conventional pre-denitrification N removal WRRF, 

was modelled. An extensive model calibration methodology was adopted by merging the Good Modelling 

Practice (GMP) Unified Protocol, the BIOMATH calibration protocol and the step-wise Monte Carlo-based 

calibration protocol by Mannina et al. (2011). The tracer test results and the hydraulic model calibration 

demonstrated the importance of hydraulic characterization of a WRRF prior to biokinetic model calibration. For 

the pilEAUte WRRF case, significant backflows in between the basins were observed and included in the final 

model layout by considering different potential operational conditions (e.g. feeding the influent to basin 3 rather 

than basin 1). For the aeration model, a simplified relation between the oxygen transfer coefficient (kLa) and the 

air flowrate could be adopted where the model predictions corresponded quite well to the measured air flowrates, 

both for calibration and validation periods. The adopted case-specific kLa and air flowrate correlation could reduce 

the model calibration effort significantly. Finally, the biokinetic model (both for biological reactors and the reactive 

settler) was calibrated using a modified version of the calibration protocol of Mannina et al. (2011). A pre-

selection of model parameters based on available data and engineering expertise, and a pre-screening of model 

parameters through local sensitivity analysis were performed prior to the parameter subset grouping according 

to the model output variables which was performed using a protocol modified from the original methodology of 

Mannina et al. (2011). Overall, the pilEAUte model was calibrated and validated to simulate the selected model 

variables (N and TSS variables) successfully and to be ready for further scenario analysis for energy and 

resource optimization. While developing the model of the pilEAUte case study, the adopted overall (merged) 

calibration methodology is applicable to other case studies to ensure a reliable model calibration and reduce 

calibration efforts. 

Third, the applicability of continuous and intermittent Ammonia vs. NOX-N (AvN) control strategies was 

investigated on the pilEAUte WRRF. Based on the application results, it was possible to achieve successful AvN 

control for both continuous and intermittent control strategies. However, keeping the AvN ratio at the effluent on 

the desired value (1) highly depends on operational conditions such as influent variations and SRT. For both 

strategies, automatic AvN control heavily depended on the sensor's reliability. The desired AvN ratio could be 

achieved for an aerobic SRT of 5-7 days for the continuous AvN and 6.5-8 days for the intermittent AvN. Higher 

sludge wasting to reduce the SRT further in the pilEAUte WRRF resulted in sharp losses in TSS, and unstable 

effluent nitrogen concentrations. Based on the results of a short-term detailed measurement campaign, the 

overall N removal efficiency and simultaneous nitrification and denitrification (SND) performance was found 

higher in the intermittent AvN system than in the continuous one. However, the average air consumption per 
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removed gram of N in both systems was not significantly different and so was the energy consumption due to 

aeration. 

Finally, the pilEAUte model for conventional pre-denitrification N removal was used in scenario analysis to 

optimize energy consumption for aeration and pumping of sludge. Scenario analysis related to optimizing the air 

consumption in the biological reactors and the internal recycle (IR) flowrate showed that the plant is operated at 

a higher DO set-point and IR than needed. This might be due to the fact that the plant was designed and operated 

with traditional design and operation guidelines. Reducing both operational parameters improved the overall 

nitrogen removal in the plant, probably thanks to SND occurring in the aerated basins. The overall TIN removal 

of the conventional N removal plant could be improved by adjusting the operational conditions to lower values 

(i.e. 0.5 mg/L DO set-point and 18 m3/d IR), thus significantly reducing aeration and pumping energy. 

Implementation of individual DO controllers in each aerated basin gave similar results to the previous scenario 

analysis, i.e. the plant can achieve full nitrification even if the DO concentration is lowered to 0.5 mg/L in each 

aerated basin. Effluent TIN and nitrate concentrations increased proportionally to the increment in the applied 

DO set-point. However, it was remarkable that the aeration energy was not lower than the reference operational 

case. Importantly, for both scenarios the reduced DO set-point in the aerated basins led to higher NO2-N 

concentrations in the effluent which creates the potential for N2O emission in full-scale application. In addition, 

reactive settler operation was investigated in the plant-wide model to determine whether it has potential to 

contribute to the overall nitrogen removal in the plant through settler denitrification. Significant effluent NO3-N 

reduction, however, could only be achieved when the feed layer of the SST was lowered in the sludge blanket 

and the SST was fed from closer to its bottom. In this case, the mixed liquor could pass through the sludge 

blanket at a higher retention time and the effluent nitrate concentration could be significantly reduced. The high 

nitrate removal in the SST led to a significant contribution to the overall denitrification capacity of the WRRF. 

The nitrogen mass balance of the SST and overall pilEAUte WRRF showed that up to 18% of the TIN can be 

removed in the SST under these operational conditions. On the other hand, in reality, operation of the SST with 

reactive settler conditions might be challenging. The results showed that effluent TSS can significantly increase 

and N2 gas bubble induced rising sludge might occur due to the high nitrate removal rates. Thus, reactive settler 

operation requires monitoring the effluent quality carefully and adjusting the operational parameters if needed. 

This type of operational conditions could both improve the overall nitrogen removal and the effluent TIN 

concentration, but also could reduce the operational costs thanks to the reduced internal sludge recycle rates 

needed for equivalent NO3-N removal. After all, with the way the system is set up, a post-denitrification stage is 

created in the available settler volume. 



 

154 

Perspectives 

The developed models for the pilEAUte WRRF allow investigating operational conditions to optimize energy and 

resource consumption in N-removal processes. Nevertheless, the models can be further upgraded and future 

studies can be performed to better understand the removal mechanisms taking place and implement the 

optimization scenarios in full-scale. 

Based on the results of the reactive settling measurement campaign, even though denitrification clearly occurred 

in the sludge blanket, no direct impact on the effluent NO3-N could be observed which is surprising since the 

sludge blanket reached above the feed point. A short-circuiting effect in the inlet zone of the pilEAUte’s clarifier 

was confirmed by the DO measured in the effluent of the reactive settler. This warrants a closer look at the 

design of the SST, and a detailed study of the inlet structure and upflow pattern may be needed. To include the 

short-circuiting effect in the reactive settler model was not possible with the 1-D model, but CFD modelling could 

be adopted to model the internal flow pattern and transport phenomena of solids and solubles. In addition, 

effective reactive settler operation requires increasing the sludge blanket height in the clarifier and also feeding 

the SST from the bottom of the tank to take advantage of SST denitrification. This might be challenging in full-

scale applications. The available height-variable inlet structure for SSTs available on the market could be applied 

in the pilEAUte plant’s SST to verify the model results and this would help to confirm potential application 

challenges in full-scale systems.  

The plant-wide pilEAUte model results showed that the biological reactors can be operated at lower DO 

concentrations down to 0.5 mg/L and reduced IR flowrates. Even though the continuous low DO operation was 

already applied in the pilEAUte for the AvN operation and supported this model outcome, it would be useful to 

test the low DO operation in the system to ensure that the plant is capable of full-nitrification on the long-term.  

The application of both continuous and intermittent AvN control strategies could be achieved successfully in the 

pilEAUte plant. With the available data provided from the AvN application monitoring, it should be possible to 

model both control strategies for the pilot-plant and use it for further scenario analysis. Through the AvN models, 

it would be useful to investigate the system operation with dynamic influent flowrate and reduced temperature 

and see if the AvN ratio of 1 is still achievable. Also, including feedforward control to anticipate the impact of 

influent ammonia load variations and applying a combination of feedforward and feedback AvN control should 

be tested through model simulations. Its expected performance improvement under influent ammonia load 

fluctuations could be evaluated. With the experience that successful application of automatic AvN control heavily 

depends on sensor reliability, the use of more robust wet chemistry analysers for AvN control, the application of 

fault detection on time series data and reconfiguration of controllers under sensor failure could be tested on the 

pilEAUte WRRF and eventually at full-scale.   
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Appendix I – Reactive Settler Model Details 

Reactive Settler Measurement Campaign Results 

 

 

 
Figure 1. Measurement Results for NH4-N* (left), alkalinity** (middle) and DO (right) for the 3 Tested Operational Scenario 

*Missing measurements in Scenario 1 at heights 0.73 m. and 0.29 m.  
**Missing measurements in Scenario 1 underflow and Scenario 2 at heights 0.59 m. and 0.29 m. 



 

171 

Clarifier Geometry Implementation 

To improve model predictions, the actual clarifier geometry was implemented in the proposed settler model in order to 

correct for the model structural error originating from the constant area assumption. New model parameters were added 

to define the layer where the conic shape of the SST starts (Nc), the radius at the top cone layer (r) as well as the radius 

of the SST at the bottom outflow (rb). The surface area and volume of the layers in the conic section of the bottom can 

now be calculated by considering their conical frustum geometry (Figure 2) as part of the model. The model first 

calculates the radius at the top of each layer (ri) based on the radius (r) at the top cone layer (Nc), bottom layer (Nb) and 

the location of the relevant layer itself in between those two, then calculates its surface area (Ai) and volume (Vi). Thus, 

r, rb, Nc, Nb are user-defined parameters that are used to calculate the surface area and volume of each layer in the 

conic part of the SST. For instance, for layer Ni, the radius of the relevant layer is ri and the radius of the layer below 

becomes ri+1. The volume of the layer is calculated as in Figure 2 (h is the height of each layer). The calculated surface 

area and volume for each layer can then be applied directly to the mass balance equations (Figure 3).  

  𝑟𝑖 = 𝑟𝑏 + (𝑟 − 𝑟𝑏)
𝑁𝑏−𝑁𝑐

𝑁𝑏−𝑁𝑖
   

  𝐴𝑖 = 𝜋𝑟𝑖
2   

  𝑉𝑖 =
ℎ

3
∗ (𝐴𝑖 + 𝐴𝑖+1 + √𝐴𝑖 + 𝐴𝑖+1)   

Figure 2. Volume Calculation for a Layer in the Conic Part of the SST 

 

Figure 3. Varying Surface Area and Volume of each Layer Calculated by the Model and Actual Shape of the 

SST of the Study  
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Mass Balance in Each Layer of the Reactive SST Model 

N, j: Number of layer 

i: Model component 

A: Surface area of the layer 

V: Volume of the layer 

JG: Godunov flux  

C: Concentration of the relevant model component 

X: Sum of concentration of particulate model components 

fTSS/COD: Fraction TSS/COD 

Qoutflow: Effluent flowrate 

Qunderflow: Under flowrate 

r: Biokinetic reactions 

 Mass Balance Above Feed Layer: 

 

Figure 4. Schematic Representation of the Solids Mass Balance for Layers above the Feed Layer 

 

Equation 1. Solids Mass Balance for Layers above the Feed Layer 
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 Mass Balance Of Feed Layer: 

 

Figure 5. Schematic Representation of the Solids Mass Balance for the Feed Layer 

 

Equation 2. Solids Mass Balance for the Feed Layer 

 

 

 Mass Balance Below Feed Layer: 

 

Figure 6. Schematic Representation of the Solids Mass Balance for Layers below the Feed Layer 

 

Equation 3. Solids Mass Balance for Layers below the Feed Layer 
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Appendix II – Biokinetic Model Calibration Details 

Pre-selection of the Model Parameters (5.6.1) 

Table 1. Biokinetic Model Parameters (Pre-selected model parameters for calibration is shown in grey) 

Name Default Value Description Unit 

Group: Composition 

i_N_BM 0.0583 Mass of Nitrogen Per Mass of COD in Biomass gN/gCOD 

i_N_XI 0.02 Mass of Nitrogen Per Mass of COD in Particulate Inert Products Formed - 

Group: Conversion factors  

F_BOD_COD 0.65 Fraction BOD/COD - 

F_TSS_COD 0.75 Fraction TSS/COD - 

Group: Kinetics 

K_HNO2_NO 0.000872 Nitrous Acid Half-Saturation Coefficient for NO Oxidizing Autotrophic Biomass gCOD/m3 

K_NH3_NH 0.75 Ammonia Half-Saturation Coefficient for NH4 Oxidizing Autotrophic Biomass gNH3-N/m3 

K_NH_AN 0.07 Ammonia Half-Saturation Coefficient for Anammox Biomass gNH3-N/m3 

K_NO2_AN 0.05 Nitrite Half-Saturation Coefficient for Anammox Biomass gCOD/m3 

K_NO2_AN_I 20 Nitrite Inhibition Coefficient for Anammox Biomass g/m3 

K_NO2_H 1 Nitrite Half-Saturation Coefficient for Denitrifying Heterotrophic Biomass gCOD/m3 

K_NO3_H 1 Nitrate Half-Saturation Coefficient for Denitrifying Heterotrophic Biomass gNO3-N/m3 

K_OH 0.2 Oxygen Half-Saturation Coefficient for Heterotrophic Biomass gO2/m3 

K_O_AN 0.01 Oxygen Inhibition Coefficient for Anammox Autotrophic Biomass g/m3 

K_O_NH 0.6 Oxygen Half-Saturation Coefficient for NH4 Oxidizing Autotrophic Biomass gO2/m3 

K_O_NO 1.5 Oxygen Half-Saturation Coefficient for NO Oxidizing Autotrophic Biomass gO2/m3 

K_SH 20 Substrate Half-Saturation Coefficient for Heterotrophic Biomass gCOD/m3 

K_X 0.03 Half Saturation Coefficient for Hydrolysis of Slowly Biodegradable Substrate gCOD/gCOD 

b_AN 0.0025 Decay Coefficient for Anammox Autotrophic Biomass 1/d 

b_H 0.62 Decay Coefficient for Heterotrophic Biomass 1/d 

b_NH 0.05 Decay Coefficient for NH4 Oxidizing Autotrophic Biomass 1/d 

b_NO 0.033 Decay Coefficient for NO Oxidizing Autotrophic Biomass 1/d 

k_h 3 Maximum Specific Hydrolysis Rate gCOD/(gCOD*d) 

mu_AN 0.019 Maximum Specific Growth Rate for Anammox Autotrophic Biomass 1/d 

mu_H 6 Maximum Specific Growth Rate for Heterotrophic Biomass 1/d 

mu_NH 0.8 Maximum Specific Growth Rate for NH4 Oxidizing Autotrophic Biomass 1/d 

mu_NO 0.79 Maximum Specific Growth Rate for NO Oxidizing Autotrophic Biomass 1/d 

n_NO2 0.6 Correction Factor for Anoxic Growth of Heterotrophs on Nitrite - 

n_NO3 0.6 Correction Factor for Anoxic Growth of Heterotrophs on Nitrate - 

Group: Operational 

pH_tank 7.9 pH   

Group: Stoichiometry 

Y_AN 0.159 Yield for Anammox (Anaerobic Ammonia Oxidisers) Biomass - 

Y_HNO2 0.44 Anoxic Yield for Heterotrophic Biomass on NO2 (nitrite) - 

Y_HNO3 0.44 Anoxic Yield for Heterotrophic Biomass on NO3 (nitrate) - 
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Name Default Value Description Unit 

Y_HO 0.52 Yield for Heterotrophic Biomass on O2 - 

Y_NH 0.15 Yield for Ammonium Oxidizing Autotrophic Biomass - 

Y_NO 0.041 Yield for Nitrite Oxidizing Autotrophic Biomass - 

f_XI 0.1 Fraction of Biomass Converted To Particulate Inert Matter - 

Group: Temperature correction 

Temp_Ref 20 Temperature degC 

theta_b_AN 0.096 Arrhenius constant for b_AN   

theta_b_H 0.113 Arrhenius constant for b_H   

theta_b_NH 0.094 Arrhenius constant for b_NH   

theta_b_NO 0.061 Arrhenius constant for b_NO   

theta_k_h 0.11 Arrhenius constant for k_h   

theta_kla 1.02 Temperature factor for the Kla   

theta_mu_AN 0.096 Arrhenius constant for mu_AN   

theta_mu_H 0.069 Arrhenius constant for mu_H   

theta_mu_NH 0.094 Arrhenius constant for mu_NH   

theta_mu_NO 0.061 Arrhenius constant for mu_NO   

 

Pre-screening of Model Parameters (5.6.2) 

Calculation of Central Relative Sensitivity (CRS) 

𝐶𝑅𝑆𝑖, 𝑗(𝑡) =
𝑦𝑖(𝑡, 𝜃𝑗 + ∆𝜃𝑗) − 𝑦𝑖(𝑡, 𝜃𝑗 − ∆𝜃𝑗)

2∆𝜃𝑗
∗

𝜃𝑗

𝑦𝑖(𝑡, 𝜃𝑗)
 

𝑦: quantities; 𝜃: variables; ∆: perturbation factor (chosen as 0.001); 𝑡: time; 𝑖: index of quantity; 𝑗 : index of variable 

LSA evaluation criteria: |𝐶𝑅𝑆𝑖, 𝑗(𝑡)| ≥ 0.05 on any model output 

Model outputs/variables: TSS concentration in biological reactors  

TSS concentration in underflow 

Air flowrate (Qair) consumption in Basin 4  

Effluent NH4-N concentration 

Effluent NO3-N concentration 

Effluent NO2-N concentration 

Model parameters: 27 model parameters (shown in grey in Table 1 above) 
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Figure 1. Calculated Central Relative Sensitivities of Model Parameters for TSS in Biological Reactors 

 

 

Figure 2. Calculated Central Relative Sensitivities of Model Parameters for TSS in Underflow 
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Figure 3. Calculated Central Relative Sensitivities of Model Parameters for Air Flowrate Consumption in Basin 

4 

 

 

Figure 4. Calculated Central Relative Sensitivities of Model Parameters for Effluent NH4-N 
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Figure 5. Calculated Central Relative Sensitivities of Model Parameters for Effluent NO3-N 

 

 

Figure 6. Calculated Central Relative Sensitivities of Model Parameters for Effluent NO2-N 
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Parameter Subsets Selection (5.6.3) 

Table 2. Biokinetic Model Parameters Pre-screened for Calibration & Applied Parameter Value Ranges for 

Global Sensitivity Analysis 

Parameters 
Default 
(20⁰C) 

Literature 
Examples 

Reference for  
Literature Examples 

Uncertainty 
Range 

Reference for 
Uncertainty 
Range 

Applied 
Range 
for GSA 

b_H  0.62 
0.05–1.6 
0.4-0.53 
0.1-1.5 

Jeppsson 1996 
Hauduc et al. 2010 
Weijers & Vanrolleghem 
1997 

2% 
Hauduc et al. 
2010 

0.2-1.0 

b_NH  0.05 

0.15 
0.05-0.2 
0.071 
0.08 
0.07-0.17 
0.04-0.2 

Sin et al. 2008b 
Jeppsson 1996 
Kampschreur et al. 2007 
Jones et al. 2005 
Hauduc et al. 2010 
Weijers & Vanrolleghem 
1997 

25% 
70% 

Sin et al. 2009 
Hauduc et al. 
2010 

0.02-0.1 

b_NO  0.033 

0.15 
0.05-0.2 
0.054 
0.07-0.17 
0.08 
0.04-0.2 

Sin et al. 2008b 
Jeppsson 1996 
Moussa et al. 2004 
Hauduc et al. 2010 
Kampschreur et al. 2007 
Weijers & Vanrolleghem 
1997 

25% Sin et al. 2009 0.02-0.1 

f_XI  0.1 0.08 Jeppsson 1996 - 0.05-0.15 

k_h  3 
2-5.2 
3.0 
2-4 

Hauduc et al. 2010 
Jeppsson 1996 
Weijers & Vanrolleghem 
1997 

26 
25% 

Hauduc et al. 
2010 
Sin et al. 2009 

1.0-5.0 

K_HNO2_NO  0.000872 
0.0014  
0.27  
0.05 

Hellinga et al. 1999 
Volcke et al. 2007 
Jones et al. 2005 

- 
0.00002-
0.0002 

K_NH3_NH  0.75  

0.1-0.5 
1.0 
0.468 
0.75  
0.8-10 

Hauduc et al. 2010 
Jeppsson 1996 
Anthonisen et al. 1976 
Van Hulle et al. 2007 
Weijers & Vanrolleghem 
1997 

50% 
25% 

Sin et al. 2009 
Hauduc et al. 
2010 

0.001-
0.02 

K_NO2_H  1 
0.1-0.2 
0.1-0.5 
0.1-0.5 

Hauduc et al. 2010 
Jeppsson 1996 
Weijers & Vanrolleghem 
1997 

80% 
Hauduc et al. 
2010 

0.1-1.0 
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Parameters 
Default 
(20⁰C) 

Literature 
Examples 

Reference for  
Literature Examples 

Uncertainty 
Range 

Reference for 
Uncertainty 
Range 

Applied 
Range 
for GSA 

K_O_NH  0.6 

0.2-0.75 
0.4-2.0 
0.5 
0.25 
0.1 
0.1-1 

Hauduc et al. 2010 
Jeppsson 1996 
Kampschreur et al. 2007 
Jones et al. 2005 
Sin et al. 2008b  
Weijers & Vanrolleghem 
1997 

0% 
25% 

Hauduc et al. 
2010 
Sin et al. 2009 

0.1-0.75 

K_O_NO  1.5 

0.2-0.75 
0.4-2.0 
0.3 
1.0 
0.1-1 

Hauduc et al. 2010 
Jeppsson 1996 
Sin et al. 2008b 
Kampschreur et al. 2007 
Weijers & Vanrolleghem 
1997 

0% 
25% 

Hauduc et al. 
2010 
Sin et al. 2009 

0.1-0.75 

K_OH  0.2 
0.05-0.1 
0.01-0.2 
0.1-1.0 

Hauduc et al. 2010 
Jeppsson 1996 
Weijers & Vanrolleghem 
1997 

0% 
50% 

Hauduc et al. 
2010 
Sin et al. 2009 

0.05-0.2 

K_SH  20 
5- 10 
5-225 
2.5-20 

Hauduc et al. 2010 
Jeppsson 1996 
Weijers & Vanrolleghem 
1997 

50% 
Hauduc et al. 
2010 

1.0-20.0 

mu_H  6 
4-5.7 
0.6-13.2 
2-10 

Hauduc at al. 2010 
Jeppsson 1996 
Weijers & Vanrolleghem 
1997 

6% 
25% 

Hauduc et al. 
2010 
Sin et al. 2009 

3.0-9.0 

mu_NH  0.8 

0.2-1.0  
0.5 
1.1 
0.77-0.90 
0.2-1.2 

Jeppsson 1996  
Kampschreur et al. 2007 
Sin et al. 2008b 
Hauduc et al. 2010 
Weijers & Vanrolleghem 
1997 

30% 
5% 

Hauduc et al. 
2010 
Sin et al. 2009 

0.4-1.2 

mu_NO  0.79 

0.2-1.0 
0.77-0.90 
0.56 
1.8  
0.2-1.2 

Jeppsson 1996 
Hauduc et al. 2010 
Kampschreur et al. 2007 
Sin et al. 2008b 
Weijers & Vanrolleghem 
1997 

30% 
5% 

Hauduc et al. 
2010 
Sin et al. 2009 

0.4-1.2 

n_NO2  0.6 
0.6-1.0 
0.8 

Jeppsson 1996 
Hauduc et al. 2010 

0% 
Hauduc et al. 
2010 

0.2-1.0 
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Parameters 
Default 
(20⁰C) 

Literature 
Examples 

Reference for  
Literature Examples 

Uncertainty 
Range 

Reference for 
Uncertainty 
Range 

Applied 
Range 
for GSA 

n_NO3  0.6 
0.6-1.0 
0.8 

Jeppsson 1996 
Hauduc et al. 2010 

0% 
Hauduc et al. 
2010 

0.2-1.0 

Standardized Regression Coefficient (SRC) Calculation 

SRC method allows calculation of the SRC or slope of the multivariate linear regression model (Mannina et al. 2019; 

Saltelli et al. 2008).  

𝑦 = 𝑏0 + ∑ 𝑏𝑖 ∗ 𝑥𝑖 + 휀

𝑛

𝑖=1

 

𝑦: model output; 𝑥𝑖: model parameter; 𝑏𝑖: regression slope; 휀: random error 

𝑆𝑅𝐶 (𝑥𝑖) = 𝛽𝑖 = 𝑏𝑖 ∗  
𝜎𝑖

𝜎𝑦
 

𝛽𝑖: SRC of the relevant model parameter; 𝜎𝑖: standard deviation of model parameter values; 𝜎𝑦: standard deviation of 

model variable values 

GSA evaluation criteria: |𝑆𝑅𝐶 (𝑥𝑖)| ≥ 0.1 on any model output 

Model outputs/variables: TSS concentration in biological reactors  

TSS concentration in underflow 

Air flowrate (Qair) consumption in Basin 4  

Effluent NH4-N concentration 

Effluent NO3-N concentration 

Model parameters: 17 model parameters (Table 2 above) 
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Figure 7. Calculated Standardized Regression Coefficients of Model Parameters for TSS in Biological 

Reactors 

 

Figure 8. Calculated Standardized Regression Coefficients of Model Parameters for TSS in Underflow 

 

 

Figure 9. Calculated Standardized Regression Coefficients of Model Parameters for Air Flowrate 

Consumption in Basin 4 
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Figure 10. Calculated Standardized Regression Coefficients of Model Parameters for Effluent NH4-N 

 

 

Figure 11. Calculated Standardized Regression Coefficients of Model Parameters for Effluent NO3-N 
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Calibration of Parameter Subsets (5.6.4) 

For the calibration of biokinetic model, the mean difference between the model predictions and measurement results of 

the relevant model variables (reference series) is calculated according to the equation below (Claeys 2008). Differences 

are calculated at each time point and then aggregated for the all model variables grouped for the relevant parameter 

subsets. For the difference calculation at each time points (objective function), sum of squared error (SSE) criterion is 

used. The weights for each model variable is chosen based on the average of measurement results to be able to 

normalize the calculated difference and make each variable equally weighted in the objective calculation. The parameter 

set that gives the minimum overall objective value is chosen as the optimal parameter set. 

𝐽𝑠𝑖,𝑙

𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓
= 𝑆𝑆𝐸 =  √

∑ 𝑤𝑡𝑙,𝑚
∗ (𝑦𝑖(𝑡𝑙,𝑚) − �̂�𝑖(𝑡𝑙,𝑚))

2𝑛𝑡𝑙
𝑚=1

∑ 𝑤𝑡𝑙,𝑚

𝑛𝑡𝑙
𝑚=1

 

𝐽𝑠
𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓

: Objective value for the parameter subset s 

𝑤𝑡𝑙,𝑚
: Weight of time point m of reference time series l 

�̂�𝑖 : Measurement of variable i 

𝑦𝑖 : Model prediction of variable i 

t: Time 

nt: Number of time points 

 

Parameter Subset 1: 

Evaluation criteria: 𝑆𝑆𝐸  

Model outputs/variables: TSS concentration in biological reactors  
TSS concentration in underflow 

Weights of variables 𝑤TSS concentration in biological reactors = 2 

𝑤TSS concentration in underflow = 1 

Model parameters: b_H Decay Coefficient for Heterotrophic Biomass 

f_XI Fraction of Biomass Converted to Particulate Inert Matter 

k_h Maximum Specific Hydrolysis Rate 
 

Number of Monte Carlo Runs 80 
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Figure 12. Calculated Sum of Squared Errors for each Monte Carlo run to calibrate Parameter Subset 1 

Parameter Subset 2: 

Evaluation criteria: 𝑆𝑆𝐸  

Model outputs/variables: Air flowrate (Qair) consumption in Basin 4  
Effluent NH4-N concentration 
Effluent NO3-N concentration 

Weights of variables 𝑤Air flowrate (Qair) consumption in Basin 4= 0.03 
𝑤Effluent NH4-N concentration= 40 

𝑤 Effluent NO3-N concentration = 1 

Model parameters: 
b_NH 

Decay Coefficient for NH4 Oxidizing Autotrophic 
Biomass 

b_NO 
Decay Coefficient for NO Oxidizing Autotrophic 
Biomass 

K_HNO2_NO 
Nitrous oxide Half-Saturation Coefficient for NO 
Oxidizing Autotrophic Biomass 

K_NH3_NH 
Ammonia Half-Saturation Coefficient for NH4 
Oxidizing Autotrophic Biomass 

K_SH 
Substrate Half-Saturation Coefficient for 
Heterotrophic Biomass 

mu_H 
Maximum Specific Growth Rate for Heterotrophic 
Biomass 

mu_NH 
Maximum Specific Growth Rate for NH4 Oxidizing 
Autotrophic Biomass 

mu_NO 
Maximum Specific Growth Rate for NO Oxidizing 
Autotrophic Biomass 

 

Number of Monte Carlo Runs 120 
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Figure 13. Calculated Sum of Squared Errors for each Monte Carlo run to calibrate Parameter Subset 2 

Parameter Subset 3: 

Evaluation criteria: 𝑆𝑆𝐸  

Model outputs/variables: TSS concentration in biological reactors  
TSS concentration in underflow 
Air flowrate (Qair) consumption in Basin 4  
Effluent NH4-N concentration 
Effluent NO3-N concentration 

Weights of variables 𝑤Air flowrate (Qair) consumption in Basin 4= 0.03 
𝑤Effluent NH4-N concentration= 40 

𝑤 Effluent NO3-N concentration = 1 

Model parameters: K_NO2_H Nitrite Half-Saturation Coefficient for Denitrifying 
Heterotrophic Biomass 

K_O_NH Oxygen Half-Saturation Coefficient for NH4 Oxidizing 
Autotrophic Biomass 

K_O_NO Oxygen Half-Saturation Coefficient for NO Oxidizing 
Autotrophic Biomass 

K_OH Oxygen Half-Saturation Coefficient for Heterotrophic 
Biomass 

n_NO2 Correction Factor For Anoxic Growth of Heterotrophs 
on Nitrite 

n_NO3 Correction Factor For Anoxic Growth of Heterotrophs 
on Nitrate 

 

Number of Monte Carlo Runs 200 
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Figure 14. Calculated Sum of Squared Errors for each Monte Carlo run to calibrate Parameter Subset 3 
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Appendix III – Automatic AvN Control Results for the Time Periods that 

Successful Control Achieved 

Continuous AvN 

 
Figure 1. Continuous AvN Performance for the period 13th August – 17th August 2019  
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Figure 2. Continuous AvN Performance for the period 30th October – 1st November 2019  
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Figure 3. Continuous AvN Performance for the period 1st February – 24th February 2020  
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Intermittent AvN 

 
Figure 4. Intermittent AvN Performance for the period 30th November – 2nd December 2019  
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Figure 5. Intermittent AvN Performance for the period 2nd December – 14th December 2019  
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Figure 6. Intermittent AvN Performance for the period 1st January – 15th January 2020  
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Figure 7. Intermittent AvN Performance for the period 1st February – 24th February 2020 
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