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'Nu heb ik, ah, de �loso�e, voor 't laatst ahter mijn lessenaar,geneeskunde en rehten en, o spijt, waar ik je vaak om middernahtdaarnaast nog de theologie met pijn in 't hart heb opgewaht,lang bestudeerd, met noeste vlijt. dan, boven boeken en papier,Hier sta ik nu, ik arme dwaas, mijn bleke vriend, versheen je hier!niets wijzer dan 'k al was, helaas. Kon ik maar door 't gebergte dwalen'k ben dotor, ben professor bovendien, in 't zahte shijnsel van je stralen,en houd nu al zo'n jaar of tien geesten opzoeken in hun holenbij hoog en laag, van vroeg tot laat langs shemerende weitjes dolenal mijn studenten aan de praat, en niet geplaagd door muizenissenbese�end niets te kunnen weten; me heilzaam in je dauw verfrissendat heeft zih in mijn hart gevreten.Wel ben ik wijzer dan al die apen God weet hoelang ik mij al kwelvan hooggeleerden, shrijvers en papen, in mijn vervloekte, mu�e el'k word niet gekweld door vrome twijfel, waar 't hemelliht niet langer straaltben ook niet bang voor duivel of hel- maar in het glas-in-loot vershaalt!maar toh, mijn vreugde is gevlogen: met boekenzerk als struikelblok,geen kennis waar ik op kan bogen, leesstof voor made, luis en spint;geen mens die ik iets heb te leren een steil gewelf, tot in de nokof tot iets hoger kan bekeren. met kladpapiertjes volgepind;Ook heb ik nergens geld of goed, een lorrenboedel, eeuwenoud,niemand die mij met eerbied groet. met kolven, vaten, waar ik kijk,Geen hond die zo zou willen leven! en instrumenten volgestouwd:Dat heeft mij tot de magie gedreven: dat is je wereld, dat is je rijk!wie weet, als ik naar geesten luisterkomt eindelijk meer liht in 't duister. En vraag jij nog wat het kan zijnDan moet ik niet meer, klam van 't zweet, dat jou vanbinnen zo beklemt,verkondigen wat ik niet weet, door welke mysterieuze pijnmaar krijg te zien welk krahtenspel je levenslust zo gestremd?ten grondslag ligt aan dit bestel, Terwijl het rondom klopt en bruist'k doorgrond de zaden en het rijpen in Gods natuur, grijnzen je hier,en hoef niet steeds naar 't woord te grijpen. in walm en keldergeur behuisd,de shedels toe van mens en dier.O volle maan, zag jij me maar Vluht! Zoek de oneindige natuur!' [65℄v
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Chapter 1
General introdution
1.1 IntrodutionThe growing environmental onerns and the awareness that the world's oil supplies arelimited, are fators prompting the hemial and biotehnologial industries to explorenature's rihness in searh of methods to replae petroleum-based synthetis for the de-velopment of a biobased eonomy [58℄.An entire branh of biotehnology, known as industrial biotehnology, is devoted to this.It uses living ells and enzymes to synthesise a wide range of produts (Table 1.1) thatare easily degradable, require less energy and reate less waste during their prodution[58℄. However, obliging suh living ells to produe the ompound of interest generallyrequires some modi�ation of their metabolism. To more e�etively adjust metabolismboth experimental and mathematial tools have been developed to gather data and toextrat information from these data with a view to modifying the ell's genetis. Suh anoptimisation is an iterative proess of strain evaluation and modi�ation that typiallytakes plae under highly reproduible laboratory onditions, i.e., in ideally pH, temper-ature, and dissolved oxygen ontrolled and ideally mixed fermentors with a hydraulivolume of a few litres.However to produe the ompound of interest in su�ient quantities to meet the om-merial demand, the developed proess has to be saled-up. Then additional problemsarise, i.e., 1



Table 1.1: Mirobially produed produts and the produing organism [32℄Produing organism ProdutKlebsiella pneumoniae 1,3-propanediolAspergillus niger itri aidAspergillus terreus itaoni aidGluonobater oxydans gluoni aidAtinobaillus suinogenes suini aidSaharomyes erevisiae lati aidAetobater suboxydans aorbi aidXanthomonas ampestris xanthanSaharomyes erevisiae ethanolCorynebaterium glutamium glutami aidCandida �areri ribo�avin (vitamin B2)Pseudomonas denitri�ans yanoobalamin (vitamin B12)Peniillium hrysogenum peniillin GStreptomyes orientalis vanomyinStreptomyes aureofaiens tetraylineBaillus liheniformes α-amylase
• biologial fators, e.g., the number of generations assoiated with the inoulumdevelopment and prodution phases, mutation probability, ontamination vulnera-bility, pellet formation, ell-density, and seletion pressure,
• hemial fators, e.g., pH ontrol agents, medium quality and water quality, andsubstrate onentrations, and
• physial fators, e.g., mixing, aeration, agitation, and hydrostati pressure,are a�eted when saling-up, all signi�antly in�uening the overall proess yield andprodutivity, most often in a negative way [70, 79, 183℄.1.2 AimsTo gain insight in the fators leading to the suboptimally performing large-sale ul-tures in omparison with laboratory-sale ultures, a study of biologial, hemial, andphysial proesses is mandatory. Unoupling the underlying proesses of di�erent natureis di�ult as some of the time onstants are of the same order of magnitude. Indeed,transport phenomena in�uene the loal onditions, whih in turn in�uene mirobial2



metabolism, whih in turn in�uene loal proess onditions.Thus far, the attempts to really takle this problem, though of major interest for theoptimisation of a mirobial prodution proess sensu largo, have been little. Amongstothers the tools to takle this problem are not readily available. Hene, the aim of thisdissertation was to develop and apply some of the tools that will be useful to investigatethe widely observed redution in proess performane of large-sale ultures.Therefore, this dissertation fousses on tools to desribe/model the mirobial metabolismin detail. The ellular response to the rapidly hanging environmental onditions en-ountered in suh large-sale bioreators is indeed thought to be the main ause of theobserved redution in proess performane. The models to be developed should onsiderthe internal omposition and struture of the miro-organisms, enzymati kinetis, andthe regulatory network.For suh models the gathering of experimental data to identify the model struture andits parameters and, equally important, to validate the model is a prerequisite. Hene,experimental set-ups need to be developed that mimi the large-sale onditions. Theseset-ups an then be used to ollet the neessary intraellular metaboli data.Finally, tools need to be developed that render the desription of both biologial, hemi-al, and physial proesses that take plae in large-sale bioreators, using omputational�uid dynamis models, feasible.1.3 OutlineThis dissertation onsists of three parts:In the �rst part tools to desribe metabolism are disussed. To gain insight in the mi-robial metabolism, modelling an be a useful tool. Metaboli models sensu largo arealready widely used for metaboli engineering purposes. Therefore in Chapter 2, a on-ise overview is given of the state of the art. Though perhaps not diretly useful for thestudy of large-sale bioreators, some of the reviewed methods have been applied as well:partial least squares regression has been used to identify geneti targets for the metaboli3



engineering of suinate biosynthesis in E. oli (Chapter 3) and a method is presented toassess the unertainty on the alulated �ux ontrol oe�ients of a biohemial pathway,desribed by approximative metaboli models (Chapter 5).In large-sale bioreators zones exist with ample substrate, in general in the surroundingsof the inlet of the onentrated in�uent, with substrate depletion and with oxygen de-pletion or exess in other zones. When an individual miro-organism irulates througha large-sale reator it is sequentially exposed to these di�erent loal onditions [139, 221℄.To study suh phenomena, a detailed desription of the biophase is mandatory. As theellular response to the enountered rapidly hanging environmental onditions in large-sale bioreators is thought to be the main ause of the observed yield redution. Asa onsequene of these variations in proess onditions, a miro-organism will developa harateristi metabolomi and proteomi make-up [44, 53, 76, 131℄, whih will allowmaximisation of its growth under those onditions, e.g., mixed aid fermentation andover�ow metabolism. In view of the latter, attention is devoted to the yberneti frame-work in Chapter 4, espeially with a view to a more detailed desription of the biophase.Several rival ontrol laws for enzyme ativity have been proposed and evaluated. Therationale of the yberneti shool of thought is that a miro-organism tries to optimiseits behaviour, e.g., with respet to growth or substrate uptake. This is ahieved by al-loating the limited resoures a miro-organism disposes of to these ompeting enzymesyielding the optimal performane, by means of a ontroller [138, 205, 206℄.A model-based approah has thus been hosen sine models an be useful tools as theyare a speial kind of ontology. To build models three soures of information are used:experimental data, prior knowledge gathered from the literature and databases, and itsintended purpose. Modelling is however approximating and onsequently the hoie ofthe proper model struture is in general subjet to individual judgement and preferene.Finding the proper balane between the intended aim, prior knowledge, and the availabledata is however an assiduous task.In view of a model's intended purpose, over-abstrating or oversimplifying reality anresult in a model that is hard to interpret or a model that does not take into aountproesses of prime importane with a view to the model's intended purpose. For instane,this is probably the ase for the model-based optimisation presented by Sin et al. (2004)4



[165℄ whih led to erroneous model preditions [166℄. In ontrast, ompliating the modelan result in a model that is poorly identi�able, i.e., many di�erent parameter sets willgive almost idential �ts to the alibration data (the equi�nality problem) as 'they oftenan dane to the tune of the alibration data' [19℄, and one may run into the same dan-ger. This may again be perniious for its preditive validity [19℄ as these parameter setsan yield dramatially di�erent preditions of how the system will behave as onditionshange.The need for reliable and informative data is then obvious. Therefore, tools are devel-oped in the seond part of this dissertation whih may help to gather the neessary datato experimentally study mirobial metabolism and to gather the neessary data with aview to parameter identi�ation and model struture identi�ation. To this end, a modusoperandi of the Biosope is proposed in Chapter 6 to study mirobial osillating systems.A strategy to design a saled-down reator is outlined in Chapter 8. Saled-down re-ators allow to mimi on a laboratory-sale, the large-sale onditions in an attempt toantiipate the outome on a large-sale. However, whereas the state of the art saled-down reators typially fous on marosopi variables, suh as irulation time andmixing time, the presented approah attempts, using omputational �uid dynamis sim-ulations, to more aurately mimi the substrate onentration dynamis observed bymiro-organisms in large-sale bioreators, as those marosopi variables are far fromideal to be orrelated with degrees of onversion.In the last and third part of this dissertation attention is devoted to omputational �uiddynamis. Computational �uid dynamis models �nd aeptane both in industry andaademia to study the impat of spatiotemporal heterogeneity, i.e., imperfet mixing,on overall proess performane. The desription of the biophase in a Lagrangian way,i.e., following the ell's path through the reator, is obvious sine the behaviour of amiro-organism is determined by both the reigning environmental onditions and its in-traellular make-up. All this is determined by what it has observed over time. Due tothe stohasti nature of partile transport and the spatial heterogeneity in large-salebioreators, this intraellular make-up will not be idential for all miro-organisms whihmakes that a large number of ells must be followed to generate a view on the overallbioreator behaviour. A method to render suh alulations more feasible is thereforeproposed in Chapter 7. 5



This dissertation ends with an overview of the main onlusions and perspetives forfurther researh.
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Chapter 2
Modelling with a view to targetidenti�ation in metaboliengineering
2.1 IntrodutionThe well-established hemial synthesis routes fae, although the era of the oil-basedsoiety has not ome to an end yet, more and more ompetition from industrial bioteh-nologial alternatives for the prodution of an inreasing number of ompounds, dueto, e.g., environmental onerns and the inreasing sarity of oil. Whereas in the pastmiro-organisms were typially used for the prodution of stereohemial [191℄ and om-plex moleules, e.g., antibiotis [25, 177℄, nowadays they even beome an interestingalternative for many bulk hemials. In order to develop an industrial biotehnologialproess that an ompete with the more mature hemial synthesis routes, there are 4ritial development phases:1. The hoie of the favourite miro-organism2. Metaboli engineering3. Saling-up4. Downstream proessing 7



The seond phase in the development of an eonomially viable industrial biotehnolog-ial proess is the optimisation of the miro-organism itself using a wide range of bothexperimental and mathematial tehniques.To this end, due to the omplexity of mirobial metabolism, more and more metabolomi,proteomi, transriptomi, and genomi data are olleted [38, 78, 87, 132℄, whih appearto be valuable to steer the proess of geneti engineering with a view to the overprodu-tion of a target ompound. Indeed, these data help to eluidate the �ux distribution,determine the �ux ontrolling reations, and yield insight in the regulation of metabolism.In addition to these experimental tehniques, mathematial methods are developed andommonly applied to interpret and to extrat information from this pile of data and toidentify geneti targets for the overprodution of a target ompound (Table 2.1). In thisontext steady-state [198℄ and dynami metaboli modelling [149℄, multivariate statistis[39, 84, 197℄, graph theory [136℄, and neural networks are used to unravel the mirobialbehaviour.Finally, the development of geneti toolboxes onsisting of promoter libraries [39, 69, 84℄and strategies for gene knok-outs, knok-ins, knok-downs, and knok-ups [36℄, and theadvent of funtional genomis [61, 77℄ have allowed the direted improvement of ellu-lar properties based on these �ndings in view of optimising the prodution host. Thishothpoth of tehniques results after some iterative rounds of geneti modi�ation andhost evaluation into the development of a host with improved performane.Suh a systemati approah is obvious as the vast variety of biohemial pathways miro-organisms dispose of, in order to ful�l their growth and reprodution requirements undera wide range of environmental onditions, renders them hard to fathom. A thoroughunderstanding of the regulation of mirobial proesses is however a onditio sine quanon for the rational design of bioproesses, as a disturbane in one part of metabolisman trigger a series of reations on all levels of regulatory ontrol and in all parts ofmetabolism. Indeed, in omplex metaboli networks it is often a futile avoation to adho predit the impat, both qualitatively and quantitatively, of a geneti intervention[12℄. Hene, the popularity of models for metaboli engineering purposes. A oniseoverview of the use of models in this development phase will be given below (Figure 2.1).8



Figure 2.1: Modelling with a view to target identi�ation in metaboli engineering. Bluebloks represent the methods, yellow bloks represent inputs.9



Table 2.1: Target identi�ation relying on metaboli modellingmodel-based optimisation method Prodution host Target ompoundelementary �ux modes E. oli L-methionine [93℄C. glutamium L-methonine [93℄E. oli suini aid [this study℄optimal �ux distribution E. oli suini aid [99℄�ux balane analysis M. tuberulosis myoli aid [144℄S. erevisiae suini aid [137℄S. erevisiae glyerol [137℄S. erevisiae vanillin [137℄E. oli lyopene [5℄E. oli L-threonine [98℄E. oli L-valine [135℄E. oli suini aid [34℄partial least squares E. oli phenylalanine [200℄Trihoderma sp. ellulase [196℄dynami metaboli modelling E. oli arnitine [27, 163℄2.2 Stoihiometri network analysisAb initio, stoihiometri network models have been used to failitate the hoie of whereto intervene genetially. The metaboli network omprises the metabolites and the re-ations they are involved in, inluding formation, degradation, transport, and ellularutilisation gathered from databases [88, 128, 158℄ and the literature [148℄. For everymetabolite a mass balane an be derived:
dxi

dt
=
∑

j

sijrj − bi (2.1)where sij is the stoihiometri oe�ient assoiated with �ux rj and bi the net transport�ux of metabolite xi. Under pseudo steady-state onditions Eq. 2.1 will redue to:
0 ∼=

∑

j

sijrj − bi (2.2)Eq. 2.2 an be rewritten in matrix notation:
[

0

b

]

∼= S ×R (2.3)10



where S is the stoihiometri matrix, R is the vetor of metaboli �uxes, and b is thevetor representing m transport �uxes.Despite suess stories of metaboli model use to identify targets for modi�ation, therehave also been many false positive targets identi�ed by these models. It is still unlearwhether the well-established tehnique of stoihiometri modelling is fully apt to steerthe proess of metaboli engineering, sine the kinetis and the regulation of the enzy-mati reations are not aounted for [5, 171℄.Espeially for the optimisation of the prodution of metabolites in primary metabolismthat are subjet to severe (redox) onstraints, stoihiometri modelling is useful. It isless so for the optimisation of minor routes [195℄.One the metaboli network model is built one an resort to stoihiometri network anal-ysis, in the absene of data. Network analysis provides for the identi�ation of elementary�ux modes, extreme pathways, and the optimal �ux distribution as will be disussed be-low.2.2.1 Elementary �ux modes and extreme pathwaysNetwork-based pathway analysis, e.g., identi�ation of elementary �ux modes (EFMs)and extreme pathways (EPs) failitates the assessment of network properties. Both ofthese methods use onvex analysis, a branh of mathematis that enables the analysis ofinequalities and systems of linear equations to generate a onvex set of vetors that anbe used to haraterise all of the steady-state �ux distributions of a biohemial network[134℄. Both have the following properties [134℄:1. There is a unique set of elementary modes/extreme pathways for a given network.2. Eah elementary mode/extreme pathway onsists of the minimum number of rea-tions that is required to exist as a funtional unit. If any reation in an elementarymode/extreme pathway would be removed, the whole elementary mode/extremepathway ould not operate anymore as a funtional unit. This property has beenalled geneti independene and non-deomposability.11



However, whereas elementary modes are the set of all routes through a metaboli networkonsistent with the latter property, extreme pathways are the systemially independentsubset of elementary modes (Figure 2.2); that is, no extreme pathway an be representedas a non-negative linear ombination of any other extreme pathways [134℄.Both have been used to alulate produt yields, to evaluate pathway redundany, to de-termine orrelated reation sets, and to assess the e�et of gene deletions [134℄. Carlsonet al. (2002) [28℄ and Kromer et al. (2006) [93℄ used elementary �ux modes for rationaldesign purposes and Carlson and Srien (2003) [29℄, Nookaew et al. (2007) [126℄, andShwarts et al. (2007) [160℄ used the onept of elementary �ux modes in ombinationwith experimental data for network analysis.The physiologial interpretation of the results, see also Figure 2.3, and their omputationfor genome sale models remain however hallenging [216℄.2.2.2 Optimal �ux distributionThe alulation of the optimal �ux distribution, e.g., [99℄, is another popular informationsoure to steer the proess of metaboli engineering. The linear programming probleman be written as:
max J = bi (2.4)subjet to:

0 ∼= S ×R− b (2.5)
bi = αi (2.6)where J is the objetive funtion, typially the net transport �ux of the ompound ofinterest, and αi the onstraint on the net transport �ux values of ertain substrates i.By solving Eqs. 2.4-2.6, the maximal theoretial yield an be alulated.Pros and ons 12



Figure 2.2: The 3 extreme pathways (white bakground) and 4 elementary �ux modes(grey bakground) of the stoihiometri network. Note that the EFM (top, right) is anon-negative linear ombination of 2 extreme pathways (down, right) and (down, left)
13



Figure 2.3: The 17528 elementary �ux modes of the stoihiometri E. oli model ofLequeux et al. (2006) [100℄ represented as ▽s, alulated by using Metatool 5.0 [214℄,and presented in the YX,S, Ysuccinate,S spae, with YX,S and Ysuccinate,S the biomass
[

c−mole
mole

] and suinate [mole
mole

] yield on gluose, respetively. The EFMs haraterised bythe optimal �ux distribution, here with respet to maximal Ysuccinate,S an readily beidenti�ed (←).
14



Obviously, the optimal �ux distribution an be alulated, but how to ahieve this optimal�ux distribution in vivo remains unresolved sine it depends onsiderably on the kinetisand the regulation of the enzymati reations, whih are not aounted for [5, 171℄. Inaddition, it fousses ompletely on yields whereas in reality produtivity, i.e., the rate atwhih the produt is produed, is equally important.
2.3 Steady-state modellingIn the presene of data, one an resort to steady-state modelling, e.g., metaboli �uxanalysis and �ux balane analysis. Eq. 2.3 an then be rewritten as:

0 ∼=






Sin 0 0
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 (2.7)where rin represents the intraellular �uxes, bcex and bmex the net transport �uxes to bealulated and measured, respetively. Sin, Sc

ex, and Sm
ex are the orresponding stoihio-metri matries and I represents a unity matrix. This equation an be rewritten as:
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the solution of whih is:

ac
∼= −W#

c Wmam + null space (Wc) f (2.9)with W#
c the pseudo inverse of matrix Wc, with the null spae de�ned as the set of linearindependent basis vetors Rn that ful�l the equation:

WcRn = 0 (2.10)and f a vetor with as many elements as there are olumns in the null spae of Wc. The15



number of independent null spae vetors is equal to:
n− rank (Wc) (2.11)with n the number of �uxes to be alulated.2.3.1 Metaboli �ux analysisIf Eq. 2.11 = 0 the system is determined and has one unique solution:

ac
∼= −W#

c Wmam (2.12)Substituting Eq. 2.9 in Eq. 2.8 now yields:
Wmam +Wc

(

−W#
c Wmam

)

= 0 (2.13)Or rewritten, sine Eq. 2.10:
(

Wm −W
#
c WcWm

)

am = 0 (2.14)When the system is (partially) overdetermined, the extra measurements, whih are spe-i�ed by the so-alled redundany matrix: Wm −W
#
c WcWm in Eq. 2.14, an be usedfor statistial testing and error analysis. van der Heijden et al. (1994) [194℄ introdueda method for error detetion and analysis. If the error is statistially zero, the modelis onsistent. If this is not the ase, this error analysis method an be used to identifyerroneous measurements. Removing these erroneous measurements from the data set im-proves the hane of a onsistent result. An overview is given by Lequeux et al. (2006)[100℄.Pros and onsThough metaboli �ux analysis (MFA) merely yields a snapshot of the metaboli state ina partiular ondition, it might be of some signi�ane to steer the proess of metaboliengineering as prinipal nodes an be identi�ed. These prinipal nodes, whih are har-aterised by signi�ant hanges in �ux partitioning under di�erent onditions, should be16



regarded as potential bottleneks [198℄.It should be lear that due to the large variety of metaboli pathways, e.g., parallelpathways, reversible reations, and yles the system is in general underdetermined. Forexample, genome sale models have been onstruted, typially useful for the design ofminimal media, e.g., for Esherihia oli (931 reations) [148℄, Saharomyes erevisiae(1175 reations) [57℄, Heliobater pylori (388 reations) [157℄, and Neisseria meningitidis(496 reations) [10℄. Suh genome sale models ontain all known reations, formation,degradation, transport, and ellular utilisation gathered from databases and the litera-ture.However, then the modeller an opt/has to redue the metaboli network in order to geta system of feasible size, using for example an objetive funtion or by inorporating asmuh knowledge, e.g., prior knowledge about the �ux size, and data as possible. Forinstane, unlabelled metabolomi data, as these data yield thermodynami information
∆rG

′o and onsequently information about the reversibility and irreversibility of ertainreations [75, 95℄, labelled metabolomi data as these data yield information on splitratios [37, 201, 217℄, and transriptomi data [4, 24, 100, 164℄, through the inorporationof additional onstraints for the metaboli network, e.g., presene of an enzymati on-version, to redue the unertainty about the obtained �ux distribution.2.3.2 Flux balane analysisIf Eq. 2.11 > 0 the system is underdetermined. Then no unique solution exists. Thequestion then is whih of the feasible metaboli states is manifested under that ondi-tion. Flux balane analysis (FBA) [51, 142℄ postulates that a metaboli system exhibitsa metaboli state that is optimal under some riteria. This objetive is expressed as alinear ombination of the �uxes ontained in R. The model an then be formulated as alinear programming problem as follows:
maxJ =

∑

j

cjrj (2.15)subjet to:
0 ∼= S ×R− b (2.16)17



αi ≤ ri ≤ βi (2.17)where J is the objetive funtion, c is a vetor of weights, osts or bene�ts, linked to the�uxes, and the boundaries αi and βi represent known onstraints on the minimum andmaximum �ux values.Pros and onsThough many objetive funtions have been used, the optimisation of ATP produtionand the optimisation of growth omply best with experimental observations [159℄ in manymiro-organisms. The appliations of FBA have been many and the in silio metabolionstraints preditions an be used to optimise the behaviour of interesting mutants.However, it is not beause a miro-organism has the geneti potential that it will ad hoperform optimally, i.e., mutants reated arti�ially are generally not subjet to the sameevolutionary pressure that shaped the wild type [5, 56, 162℄. The method of minimi-sation of metaboli adjustment (MOMA) attempts to deal with this issue. Instead ofmaximising biomass prodution the mutant, KO, is believed to remain initially as loseas possible to the wild type optimum, WT , in terms of �ux values [162℄. The objetivefuntion then beomes:
minD (RWT , RKO) (2.18)with

D (RWT , RKO) =

√
√
√
√
√

n∑

i

(rWT − rKO)2 (2.19)This method heavily relies on prior knowledge (through the onstraints introdued inEq. 2.17), but at present the knowledge on the regulatory mehanisms is still lakingand fragmentary [66, 89℄. In addition, in some ases no unique optimum exists and on-sequently many metaboli states may result in the same optimal behaviour [56℄.18



2.4 Dynami metaboli modelling2.4.1 Mehanisti - approximative modelsDue to the above-mentioned limitations of stoihiometri modelling, kineti equationshave been introdued in metaboli models. The general form of the mass balanes ofextraellular and intraellular metabolites is now given by Eq. 2.20 and Eq. 2.21, re-spetively:
dxSi
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= D
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− xSi

)
−
xX

ρX

∑
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sSijrj
(2.20)

dxMi

dt
=

∑

j

sMijrj − µxMi
(2.21)with xMi

and xSi
the onentration of an intraellular metabolite Mi and an extraellu-lar metabolite Si, respetively, sMij is the stoihiometri oe�ient of metabolite Mi inreation j, rj the rate of reation j, ρX the spei� weight of biomass, xX the biomassonentration, D the dilution rate, x0S the onentration of an extraellular metabolite Sin the feed, and µ the spei� growth rate. Note that xS is expressed per reator volumewhereas xM is expressed per ell volume. The term µxM in the mass balanes of theintraellular metabolites represents the dilution e�et due to growth.In mehanisti dynami metaboli modelling, one an resort to omplex in vitro de-termined mehanisti equations to desribe the rate equations rj in Eqs. 2.20-2.21[30, 42, 149, 207℄.In approximative modelling, one an resort to linear non-mehanisti kinetis to desribethe rate equations rj in Eqs. 2.20-2.21, e.g., the loglinear approximation [72, 73℄, theGMA type power law approximation Eq. 2.22 [154℄, the thermokineti approximationEq. 2.23 [215℄, and the linlog approximation Eq. 2.24 [74, 209℄.
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)) (2.24)where the supersript 0 stands for the steady-state ondition and with xE the enzymeonentration, ε0Mi
an elastiity oe�ient, and J0 the steady-state �ux. The appliedequations are not as omplex as mehanisti rate equations and ontain less parametersto approximate the true kinetis. The rationale behind this is that metaboli redesigndoes not require detailed mehanisti models beause of the onept of homeostasis, whihimplies that the miro-organism keeps its intraellular metabolite levels approximatelyonstant [54, 170, 184℄. In other words, the extrapolation range of the kineti metabolimodel does not need to be very large, as far as metabolite levels are onerned. Thisreasoning suggests that one an safely apply approximative kineti equations instead ofthe detailed mehanisti ones that are valid over a wide range of onentration levels.Pros and onsThe enormous variety of well regulated metaboli pathways impedes a thorough under-standing of the regulation of mirobial proesses on the metabolomi, proteomi, tran-sriptomi, and genomi level in a qualitative and quantitative way. Suh understandingwould be bene�ial for the rational design of bioproesses, as a geneti or environmentaldisturbane in one part of metabolism an trigger a series of reations on all levels ofregulatory ontrol and in all parts of metabolism [12℄. Hene, in many appliations, e.g.,metaboli engineering, 'whole ell modelling' is probably the way to go [186, 187℄.However, sine the knowledge about the transriptional and translational regulation isstill fragmentary, the state of the art dynami metaboli models typially fous on themetabolome, assuming onstant proteomi levels. In view of the extrapolation apaity ofthese models this is a drawbak. Hene, in order not to violate this assumption of steady-state proteome, data for parameter identi�ation have to be olleted during a relativelyshort period after perturbation, this is typially within 0.2-180 s [181, 182, 207, 211℄.In addition, dynami metaboli models typially zoom in on a limited part of the miro-20



bial metabolism. The resulting model typially ontains a number of �uxes towards partsof the metabolism whih one is not primarily interested in. When the model ontainstwo or more of those �uxes this will reate some unertainty about the dynami �uxdistribution (a steady-state model yields the steady-state �ux distribution, but there isonly indiret, seondary information about the dynami evolution of the �ux distributionafter a perturbation of the metabolism). Only having the information of the evolution ofmetabolite onentrations is insu�ient for these aims. Thus, in ontrast to steady-statemodelling, where mass balanes are essential to verify the auray of the alulated�uxes, this hek is not performed in most dynami metaboli models [30, 60, 149, 207℄,as the size of the out �ux of the model is not known. It should however be lear thatmodelling the whole metabolism would be a daunting task as well: when a perturbationpasses through the metaboli network it broadens and dampens out and the informationontent of suh data olleted further on in the network is limited.In order to redue this unertainty the ofators might be used as 'losure terms', e.g.,the generation of NADPH, might be a good indiator for the �ux through the pentosephosphate yle. However, it should be lear that these losure terms are weak as ofa-tors intervene in many reations, whih are also perturbed during a pulse experiment. Inaddition, modelling these ofators dynamially is not easy at all beause this approahis hampered, for instane, by the inability to explain the short-term redution in the poolsize of the adenine nuleotides (AXP) after a gluose pulse [30, 207℄. At present, it is stillunlear what is/are the ause(s) of this redution (adaptation would only be responsiblefor 15% of this gap [91℄, formation of adenylated ompounds, e.g., ADP-gluose, exre-tion of AMP, ...).Therefore, some researhers opt to desribe the evolution of the ofators as time depen-dent funtions [30℄, whih results in a model that is no longer useful for extrapolation.Not taking these ofators into aount 'mehanistially' thus results in a limited useful-ness of the resulting model. Then, also assumptions have to be made about the evolutionof the �ux distributions during the transient but it is questionable whether these hold.In order to redue the unertainty, one ould gather a lot of data both under steady-stateand dynami onditions, e.g., by perturbing the mirobial ells with di�erent substrates.However, suh e�orts have thus far been limited [114, 211℄.21



The use of dynami labelling data [213℄ allows as well to redue the degrees of freedomrelated to the metaboli �uxes, also under dynami onditions. However the huge vari-ety of biohemial pathways will render suh an exerise triky, as the hosen metabolinetwork will in�uene the alulated �ux distribution [111℄.In addition, one should be aware that a lot of hallenges still remain in the �eld of analyti-al methods, sine the aurate determination of the intraellular metabolites is a onsid-erable task as well, due to, e.g., leakage and their low onentrations [49, 113, 130, 208℄.For example, whereas the expeted (equilibrium) ratio of the onentrations of gluose-6-phosphate [G6P ] and frutose-6-phosphate [F6P ], i.e., [F6P ]
[G6P ]

∼= 0.25 [18, 30, 114, 180℄,Buholz et al. (2001) [21℄ �nd for this ratio [F6P ]
[G6P ]

∼= 0.88.Another issue is that the state of the art dynami metaboli models either rely on in vitrodetermined kineti equations or are based on approximative kinetis [30, 180, 209℄ andthe onsequenes of a potentially erroneous model struture are not well known. Withrespet to the in vitro determined kineti equations it is doubtful whether the kinetisare valid under in vivo onditions, as these kinetis are obtained using puri�ed enzymesstudied out of ontext [156, 180℄.The variety of well regulated metaboli pathways also impedes a thorough understand-ing of the regulation of mirobial proesses, e.g., the relative importane of the �uxthrough pyruvate oxidase ompared to the �ux through pyruvate dehydrogenase is notthat lear [2, 103℄. Another example is the jumble of reations around the PEP-pyruvate-oxaloaetate node. Their regulation and importane under one or the other onditionis still not that well studied [26, 101, 153℄. The inability to properly desribe the dy-namis of phosphoenolpyruvate (PEP) during the observation window of a perturbationexperiment [30, 149℄, though a key metabolite in the primary metabolism, is the perfetillustration that setting up a metaboli model in a proper way will be demanding bothfor modellers and for experimentalists.Models, whether they are approximative or mehanisti, an be useful to identify bot-tleneks [54, 72, 85, 115℄ in metabolism and onsequently ould steer the proess ofmetaboli engineering. However, sine enzyme levels are not taken into aount nor thein�uene of a geneti intervention on the metabolism, it should be lear that the extrap-olation power of suh models remains limited.22



2.4.2 Cyberneti modelsAt present, one an not see the wood for the trees as the knowledge on the regulatorymehanisms is laking and fragmentary [66, 89℄. To partially irumvent this knowledgegap, the yberneti framework an be used, sine mirobial speies, that is, those thathave undergone the proess of evolution, strive to regulate their metabolism in an optimalmanner [56, 112℄. This reasoning is the rationale of the yberneti shool of thought: amiro-organism tries to optimise its behaviour, e.g., with respet to growth or substrateuptake. This is ahieved by alloating the limited resoures a miro-organism disposesof to these ompeting enzymes yielding the optimal performane [138, 205, 206℄. To thisend, the yberneti variables u and v are introdued into a kineti model Eqs. 2.20-2.21with the aim of substituting the unknown mehanisti details of the ell's regulatory ar-hiteture by an objetive funtion by supposing that the metabolism of a miro-organismoperates with a spei� overall goal, suh as the optimisation of growth.Initially, the value of the yberneti approah was demonstrated using relatively simpleexamples, typially situated in the domain of bioproess ontrol. In these ases, somelumped pathways ompeted with eah other for the available resoures, e.g., simultane-ous and sequential substrate utilisation [90℄ and single-substrate growth [13, 14, 190℄.Then the ybernetis units ould readily be identi�ed. Enzymes belonging to the sameluster ompete with eah other for the same pool of resoures.Over time more hallenging 'proofs of priniple' were hosen, e.g., in view of metaboliengineering of a prodution host [204, 206, 223℄, and the model's omplexity inreased.More omplex networks, without lumping were onsidered [143, 172℄, but then a jumbleof yberneti units ould be identi�ed and the orresponding yberneti variables had tobe derived from the ontrol laws. As a result, the hoie of the yberneti units beameless straightforward, even quite arbitrary, and the library of yberneti units had to beextended (onvergent, divergent, linear, and yles) [205, 206℄.To overome this, a more general framework was developed, based on the priniples ofoptimal ontrol theory [223℄. Optimal ontrol theory is a mathematial optimisationmethod for deriving ontrol poliies. It aims to �nd a ontrol law for a given systemsuh that a ertain optimality riterion is ahieved. In general, suh a ontrol problem23



inludes a gain funtion and a ost funtion relating state and ontrol variables. Anoptimal ontroller is a set of di�erential equations desribing the paths of the ontrolvariables that maximise the performane funtion. Rephrasing this in the ontext of amiro-organism, the ost beomes, e.g., the pool of amino aids a miro-organism needsto invest for the prodution of a partiular enzyme, and the ell's gain ould be merelygrowth. Young (2005) [223℄ opted for EFMs as yberneti units. As elementary modesappear to be useful to understand ellular objetives for the overall metaboli network[169℄, the hoie for the EFMs as loal ontrol level seems quite obvious. However, thehoie of the assoiated objetive funtion is less so. Young (2005) [223℄ opted for theoptimisation of a harmoni mean �ux J :
J =

∑n
i=1 ξi

∑n
i=1

ξi

rivi

(2.25)with n the number of reations involved in the elementary �ux mode, ri the rate of re-ation i, vi the yberneti variable ontrolling enzyme ativity, and ξi the �ux throughreation i in the elementary �ux mode. This objetive funtion aims at a steady through-put through the EFM, and onsequently aumulation or depletion of ertain metabolitesis avoided. However, its biologial foundation seems di�ult to grasp.Pros and onsCyberneti models onsider both metabolome and proteome. They apply priniples ofontrol theory with the aim of substituting the unknown mehanisti details of the ell'sregulatory arhiteture by an objetive funtion by supposing that the metabolism of amiro-organism operates with a spei� overall goal. Suh models are therefore thought tohave more extrapolation power. Although the approah thus seems appealing, given thepresent lak of knowledge and detailed experimental omis data and the aforementionedproblems linked to mehanisti modelling, there still remain some issues unresolved: i) itis still unlear to what extent unknown regulatory mehanisms an be aptured by theframework, ii) the robustness of the approah is unlear, e.g., although yberneti modelsare said to be able to properly desribe steady-state multipliity [122, 123℄, real experi-mental evidene to support suh a laim is laking, iii) though the yberneti approahis a minimalisti approah, ontrary to mehanisti models ontaining omplex kinetiswith a large number of (unidenti�able) parameters [42℄, the inorporation of enzymesand the parameters for enzyme synthesis and degradation results in many parameters24



that are di�ult to estimate, and iv) for even relatively small networks the numberof EFMs is huge, e.g., for the metaboli network of [100℄ 17528 EFMs are found, whihuse gluose as arbon soure. Whih EFMs to hoose, remains a question hard to answer.2.5 Multivariate statistisFinally, multivariate statistis, prinipal omponent analysis (PCA) and partial leastsquares (PLS) [219, 220℄, are more and more used in the �eld of metabolism studies[39, 84, 105, 197℄ to interpret and to extrat information from the pile of metabolomi,transriptomi, and genomi data. By applying these methods, targets an be identi�edin view of further improving prodution hosts. Espeially the use of partial least squaresseems promising. The objetive in PLS modelling is to �nd a few 'new' variables, X-sores, in suh a way that the information in the dependent variables Y an be preditedas well as possible.In fat, this projetion method deomposes variables of high ollinearity into one-dimen-sional variables, i.e., an input sore vetor t and an output sore vetor u, whih allowsPLS to handle many and orrelated preditor variables [220℄. The vetors t1 and u1 arede�ned as [104℄:
t1 = E0w1 (2.26)
u1 = F0c1 (2.27)where E0 is the standardised data matrix from X and F0 is the standardised data matrixfrom Y [193℄. The aim of this data pretreatment is to fous on the (relevant) biologialinformation by emphasising di�erent aspets in the data, for instane, the value of avariable relative to its average value and to redue the in�uene of disturbing fators,e.g., measurement noise [193℄. Hene, the regression formulae for omponents t1 and u1are given by:

E0 = t1p
T
1 + E1 (2.28)

F0 = u1q
T
1 + F1 (2.29)25



where p1 and q1 are the loading vetors, and E1 and F1 are residual matries. The linearrelationship between t1 and u1 is alulated by:
u1 = b1t1 + r1 (2.30)where b1 is the regression oe�ient and r1 is the residual vetor. If t1 and u1 annotexplain the model within a spei�ed preision or do not ontain enough information, E0and F0 will be replaed by the residual matries E1 and F1. Consequently, the nextlatent variable vetors t2 and u2 are alulated by:
t2 = E1w2 (2.31)
u2 = F1c2 (2.32)The regressions for omponents t2 and u2 are therefore alulated by:

E1 = t2p
T
2 + E2 (2.33)

F1 = u2q
T
2 + F2 (2.34)This iterative proedure is repeated by using the regression residual terms obtained atthe previous iteration on both the inputs and outputs at eah step. The deompositionof E0 and F0 by sore vetors is de�ned by:

E0 =

m∑

h=1

thp
T
h + E (2.35)

F0 =

m∑

h=1

uhq
T
h + F (2.36)Where p and q are loading vetors, E and F are residuals. For the m hoie, a ross-validation method an be applied or the threshold variane of E an be used as stoppingriterion [219℄.In PLS one an alulate a similar kind of regression oe�ients as one does in multiplelinear regression. These regression oe�ients relate matrix X diretly to Y :26



Y = XB + ε (2.37)Both regression oe�ients and loading weights an be used to study the system. Notethat these regression oe�ients are not independent unless the number of partial leastsquares regression omponents equals the number of X-variables. By studying the load-ing weights, one an see how important the variable is in eah latent variable. A largepositive or negative weight value indiates that the orresponding X variable is highlyorrelated with the values in the sore matrix U and hene with matrix Y . Correlationbetween variables an be veri�ed by looking at the loading weights [179, 219℄.van der Werf et al. (2005) [197℄ applied PLS regression to link metabolite levels to themirobial phenotype, i.e., by ordering the importane of the metabolites by virtue of theweight fators, metabolites that ontributed most to the phenotype of interest ould beidenti�ed.Pros and onsvan der Werf et al. (2005) [195, 197℄ suessfully applied this method to selet targets inview of optimisation. Suh models are however ompletely data driven and onsequentlydo not use the state of the art knowledge. In addition, relationships an be found be-tween, for instane, metabolite pool sizes and a proess parameter, but how to modifythe ell with a view to improving the proess performane remains unlear.2.6 ConlusionsIt should be lear that despite the vast lak of knowledge about the ell's regulatory ar-hiteture, the appliation of both experimental tehniques and mathematial methodssteadily yields valuable information about mirobial metabolism [30, 39, 84, 136, 197,198℄. In the future, this may unambiguously guide the proess of metaboli engineering.The ontemporary lak of knowledge about the funtioning of the ell is however limitingthe use and usefulness of many of those tehniques to steer the proess of metaboli en-gineering, e.g., at present a lot of mathematially relevant questions remain unanswered,e.g., whih network and objetive funtion to hoose? Consequently, the era of typi-27



al data mining tehniques whih are useful to help unravel the omplex regulation ofmirobial metabolism has not ome to an end yet.
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Chapter 3
Model-based optimisation ofsuinate prodution by E. oli
3.1 IntrodutionMiro-organisms are already widely used for produing antibiotis, therapeuti proteins,food and feed ingredients, fuels, and vitamins. Nowadays, due to the environmental on-erns and the inreasing sarity of oil, industrial biotehnologial proesses beome analternative for the prodution of an inreasing number of ompounds, that are typiallyprodued using well-established hemial synthesis routes [58℄. Speeding up and redu-ing the ost of the development of suh proesses is ruial to be ompetitive againstthe petroleum-based alternatives. A systemati approah, using metaboli modelling, isthought to ontribute to speed up and redue the ost of the development of ommer-ially viable industrial biotehnologial proesses.Nevertheless, expert knowledge, eduated guesses, and gut feeling are still often diretingthe proess of metaboli engineering in view of enhaning the mirobial prodution ofthe target ompound [152, 197℄, despite numerous examples where the onstrution ofa produer strain did not turn out to be as straightforward as was initially presumed.Indeed, in omplex metaboli networks, it is often a di�ult task to predit the impat,both qualitatively and quantitatively, of a geneti intervention [12℄. This omplexity isalso re�eted in the metaboli models (Table 3.1). The state of the art models, genomesale models, typially onsider all known reations, formation, degradation, transport,and ellular utilisation gathered from databases and the literature.29



Table 3.1: Genome-sale modelsMiro-organism number of reations onsideredEsherihia oli 931 [148℄Saharomyes erevisiae 1175 [57℄Heliobater pylori 388 [157℄Neisseria meningitidis 496 [10℄
Metaboli models an help to identify geneti targets for metaboli engineering. Forinstane, elementary �ux modes have been used for the optimisation of L-methioninebiosynthesis by E. oli and C. glutamium [93℄. Flux balane analysis has been appliedfor the optimisation of lyopene [5℄, L-threonine [98℄, L-valine [135℄, and suini aid[34℄ biosynthesis by E. oli and of glyerol and vanillin biosynthesis by S. erevisiae[137℄. Partial least squares has suessfully been used for the optimisation of phenylala-nine biosynthesis by E. oli [200℄ and of ellulase biosynthesis by Trihoderma sp. [196℄.Finally, dynami metaboli modelling has been used for the optimisation of arnitinebiosynthesis by E. oli [27℄.In addition, to gain insight into the mirobial metabolism, metabolomi, transriptomi,and genomi data are typially gathered. To interpret and to extrat information from thevast amount of metabolomi, transriptomi, and genomi data, multivariate statistis,prinipal omponent analysis (PCA) and partial least squares regression (PLS) [219, 220℄,are more and more used in the �eld of metabolism related studies [39, 84, 105, 197℄, sinethese methods an handle numerous and highly orrelated data. Also the elementary�ux mode (see Chapter 2) data, gathered during stoihiometri network analysis an beanalysed with these tehniques.Hene, the aim of this study was to develop a model-based approah for diretingmetaboli engineering, of whih the appliation should result in speeding up and re-duing the ost of the development of a viable industrial biotehnologial proess. Thisapproah uses partial least squares regression to analyse elementary �ux mode data,whih are hard to interpret physiologially, and it allows to rapidly identify potentialtargets for metaboli engineering. This approah was illustrated by applying it to opti-mise suinate biosynthesis by E. oli. 30



3.2 Materials and methods3.2.1 Metaboli modelThe metaboli network model of Lequeux et al. (2006) [100℄ was used in this study. Thismetaboli model onsiders the glyolysis, with gluose transport by the PTS system, thepentose phosphate pathway, the Krebs yle, and over�ow metabolism. For eah aminoaid and nuleotide the anaboli reations were inluded. Biosynthesis of LPS, lipid A,peptidoglyane, and the lipid bilayer are inorporated as well. The P/O ratio was set to1.33 [108, 203℄. The reations and metabolites onsidered in the model are depited inFigures 3.1 and 3.2, respetively.3.2.2 Partial least squaresPartial least squares (PLS) regression has been performed in the software pakage R [140℄.For a onise desription of PLS the reader is referred to Chapter 2. This generalisationof multiple linear regression is able to analyse data with strongly ollinear and numerousindependent variables as is the ase for the elementary �ux modes under study. Partialleast squares regression is a statistial method that links a matrix of independent variables
X with a matrix of dependent variables Y . Therefore, the multivariate spaes of X and
Y are transformed to new matries of lower dimensionality that are orrelated to eahother. This redution of dimensionality is aomplished by prinipal omponent analysislike deompositions that are slightly tilted to ahieve maximum orrelation between thelatent variables of X and Y [219℄.3.2.3 Elementary �ux modesThe elementary �ux modes of the stoihiometri E. oli model of Lequeux et al. (2006)[100℄ were alulated by using Metatool 5.0 [214℄. For a onise desription of elementary�ux modes the reader is referred to Chapter 2.3.3 Results and disussionIn this work, PLS regression was used to i) analyse the results of the elementary modeanalysis and ii) to establish a relationship between the ratio of the �ux through a rea-31



tion to the gluose in�ux of an EFM and its suinate yield. To this end, for eah ofthe 17528 EFMs of the E. oli model of Lequeux et al. (2006) [100℄ (Figure 3.3) this�ux ratio was enoded in the matrix X (Table 3.2). The orresponding Y -variable is thesuinate yield of that EFM.Table 3.2: Constrution of the matrix X, with ξi,j the ratio of the �ux through reation
i in EFM j to the gluose in�ux in EFM jReation PTS PGM ENO ...EFM1 ξ1,PTS ξ1,PGM ξ1,ENOEFM2 ξ2,PTS ξ2,PGM ξ1,ENOEFM3 ξ3,PTS ξ3,PGM ξ1,ENOEFM4 ξ4,PTS ξ4,PGM ξ1,ENOPrior to data analysis, the data were appropriately pretreated. Several pretreatmentmethods, i.e., mean entering (x− µx) and auto-saling (x−µx)

σx
, have been used [193℄.Auto-saling was �nally retained as pretreatment method (Figure 3.4), sine it relatesbest the di�erenes in �ux ratio's with suinate yield.A PLS model was then built. First, to avoid over�tting, as this would result in a modelnot able to generalise to new data, ross-validation was applied to determine the appro-priate number of latent variables. In ross-validation the data are split into k bloksand a one latent variable model is built from (k-1 ) bloks of data. Based on this model,the exluded blok is used for testing and an individual preditive residual error sum ofsquares, PRESS, is alulated. This proedure is repeated exluding eah blok one, andthe total PRESS is alulated for the model. This proedure is then repeated for 2, 3, ...,min(m,n) latent variables, with n the sample size and m the number of variables. A seriesof PRESS values is obtained [102℄. Wold's R riterion, given as R = PRESS(i+1)

PRESS(i) ≤ 1.1,is then applied to determine the number of latent variables to be used in the �nal model.An additional latent variable is retained only when R is smaller than 1.1 [218℄. Usingthis proedure 9 latent variables were retained in the PLS model.The results, loadings and sores, are depited in Figures 3.4-3.5. Both regression o-e�ients and loading weights have been used to study the system. By studying theloading weights (Figure 3.5), one an see how important the variable is in eah latentvariable. A large positive or negative weight value indiates that the orresponding X32



variable is highly orrelated with the values in the sore matrix U and hene with ma-trix Y [179, 219℄. As ellular metabolism is strongly interlinked [128, 193℄ it is obviousthat many reations are simultaneously a�eted by the di�erent elementary �ux modes.Therefore, the loadings are expeted to show ontributions of many di�erent reations(Figure 3.5).Some of the most important reations for suinate prodution are listed in Table 3.3.The targets identi�ed by the PLS model for the geneti modi�ation of Esherihiaoli for suinate overprodution are in agreement with data reported in the literature[34, 81, 106, 116, 151℄. This illustrates the value of this model-based approah for theidenti�ation of geneti targets. Modi�ation of the expression of the identi�ed genetitargets, by overexpressing or knoking out the identi�ed genes, resulted in an enhanedprodution of suinate.The proposed method yields many targets for modi�ation. The �ux through thesereations is linked in a positive or a negative way with suinate prodution, throughmass and energy onservation laws. Further evaluation of the identi�ed targets using,for instane, �ux balane analysis and/or prior knowledge of mirobial metabolism, willbe useful to determine their importane under a spei� ondition, e.g., aerobi versusanaerobi environments.The proposed method helps to signi�antly redue the omputational e�ort to optimisemirobial metabolism. For instane, sine the number of possible ombinations of 5reation-deletions in a model of 250 reations is more than 7.8 109, and existing genomesale stoihiometri models ontain a signi�antly higher number of reations, genetialgorithms were applied to searh for bene�ial knok-out ombinations [137℄. A �rstsreening of the reations in a metaboli network, by the proposed method, is useful torender suh optimisation problems more feasible.Contrary to many other methods that are typially foussing on the identi�ation ofgene knok-out targets [5, 137℄, the proposed method yields the orrelation (negativeand positive) of the �ux through eah reation with the yield of the target ompound.The question of how to ahieve this inreased �ux remains however unanswered, sine the�ux distribution depends onsiderably on the kinetis and the regulation of the enzymatireations, whih are not aounted for [5, 171℄. Still, sine suinate is a primary metabo-33



Table 3.3: Some of the most important reations, identi�ed by PLSReation Reation Coe�ient sign155 FAD + Suc←→ FADH2 + Fum -55 iCit −→ Suc+Glyox +105 N.N. +71 PEP +CO2 +H2O −→ OAA+ PiOH +87 Mal +NAD −→ Pyr + CO2 +NADH +H -128 Fum+H2O −→Mal -136 Pyr +NADH +H −→ Lac+NAD -127 FADH2 +NAD −→ FAD +NADH +H -86 PEP +ADP −→ Pyr +ATP -126 AcCoA+ 2NADH +H −→ EtOH + 2NAD + CoA -lite, whose prodution is subjet to severe (redox) onstraints, stoihiometri modellingis useful.3.4 ConlusionsA model-based geneti target identi�ation strategy for designing a mirobial strain forthe prodution of a target ompound, has been outlined. By applying partial least squaresregression to the elementary �ux mode data, potential targets for metaboli engineeringof suinate biosynthesis in E. oli were identi�ed. The targets identi�ed by the PLSmodel for geneti modi�ation of E. oli for suinate overprodution are in agreementwith data reported in the literature.
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Figure 3.1: Metaboli network of Lequeux et al. (2006) [100℄: Reations35



Figure 3.2: Metaboli network of Lequeux et al. (2006) [100℄: Metabolites36



Figure 3.3: The 17528 elementary �ux modes of the stoihiometri E. oli model ofLequeux et al. (2006) [100℄, represented as ▽s, alulated by using Metatool 5.0 [214℄,presented in the YX,S , Ysuccinate,S spae, with YX,S and Ysuccinate,S the biomass [ c−mole
mole

]and suinate [mole
mole

] yield on gluose, respetively. The EFMs haraterised by the opti-mal �ux distribution, here with respet to maximal Ysuccinate,S, an readily be identi�ed
(←).
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Figure 3.4: The auto-saled data represented in a sore plot. ▽ represent EFMs hara-terised by Ysuccinate,S ≥ 1, ▽ represent EFMs haraterised by 0.6 ≥ Y succinate,S ≥ 0.5,and ▽ represent EFMs haraterised by Ysuccinate,S ≤ 0.1.
38



Figure 3.5: The loadings of sores 1 and 2 and the umulative loadings of sores 1, 2,and 3. This umulative ontribution is a measure for the importane of the reation.Positive values re�et a positive orrelation between the �ux and the suinate yield,negative values represent for irreversible reations a negative orrelation, for reversiblereations (R) that the diretion of the �ux should be the opposite as the one indiatedin the model. 39





Chapter 4
Cybernetis: some issues on themethod
4.1 IntrodutionThe lak of knowledge about the mehanisms miro-organisms dispose of to regulate theirmetabolism severely hampers the use and limits the usefulness of mehanisti modelling,espeially when a detailed desription of the mirobial behaviour is neessary [66, 89℄. Inan attempt to partially irumvent this problem, yberneti modelling introdues yber-neti variables [90℄ in order to aommodate for the mirobial ontrol of enzyme synthesisand ativity. These variables, whose value is determined by a ontroller, embody the al-loation of the limited resoures a ell disposes of to these ompeting enzymes, yieldingthe optimal performane [138, 205, 206℄. This reasoning seems aeptable as in general,it is believed that a miro-organism tries to optimise its behaviour, e.g., with respet togrowth or substrate uptake.Reently, Young (2005) [223℄ rethought the framework and more tangibly introdued thepriniples of optimal ontrol theory. Optimal ontrol theory is a mathematial optimisa-tion method for deriving ontrol poliies. It aims to �nd a ontrol law for a given systemsuh that a ertain optimality riterion is ahieved. In general, suh a ontrol probleminludes a gain funtion and a ost funtion, relating state and ontrol variables. Anoptimal ontroller is a set of di�erential equations desribing the paths of the ontrolvariables that maximise the performane funtion. Rephrasing this in the ontext of a41



miro-organism, the ost beomes, e.g., the pool of amino aids a miro-organism needsto invest for the prodution of a partiular enzyme, and the ell's gain ould be merelygrowth. This framework will be disussed in Setion 4.2.A key onept in yberneti modelling is the yberneti unit. This is a luster of enzymesthat ompete with eah other for the same pool of limited resoures. For simple yber-neti models these yberneti units ould readily be distinguished, as they oinide withthe yberneti basi omponents (Figure 4.1) [13, 14, 90, 190℄. The inreasing modelomplexity, i.e., over time more omplex networks with less lumping were onsidered[143, 172℄, rendered the identi�ation of these yberneti units less straightforward andeven quite arbitrary [204, 206, 223℄ (Figure 4.1).To rationalise the framework, Young (2005) [223℄ opted for elementary �ux modes (EFMs)as yberneti units. However, whereas the hoie for the EFMs as loal ontrol unit seemsquite obvious, the hoie of the assoiated objetive funtion is not. Young (2005) [223℄opted for the optimisation of a harmoni mean �ux, J :
J =

∑n
i=1 ξi

∑n
i=1

ξi

rivi

(4.1)with n the number of reations, ri the rate of reation i, vi the yberneti variable on-trolling enzyme ativity, and ξi the �ux through reation i in the elementary �ux mode.This objetive funtion aims amongst others at a steady throughput through the EFMin an attempt to avoid aumulation or depletion of ertain metabolites [223℄. However,its biologial foundation is unlear.The appliation of the approah in the domain of metaboli engineering requires a robustand generi framework. The yberneti ontrol law for enzyme ativity an also auseontroversy. As enzyme synthesis, enzyme ativity is metiulously ontrolled through, forinstane, allosteri ontrol, regulation by phosphorylation/dephosphorylation and othertypes of ovalent modi�ations [55, 161℄. The knowledge on these regulatory mehanismsto fully model these proesses mehanistially is still insu�ient. Therefore, in yber-neti modelling, yberneti variables are introdued into a kineti model with the aim ofsubstituting the unknown mehanisti details of the ell's regulatory arhiteture. How-ever, whereas the pool of limited resoures neessary for enzyme synthesis is a onept42



Figure 4.1: Cyberneti models and their inreasing omplexity, from A) the model ofKompala et al. (1984) [90℄ to B) the model of Guardia et al. (2000) [82℄ and the basiomponents of the yberneti units (onvergent and divergent branh points, linear andyli proesses)
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easy to grasp (as this pool ould be the amino aids/ATP, neessary for the synthesis ofenzymes), the onept of suh a pool of limited resoures for enzyme ativity is far moreabstrat.Thus, deriving a ontrol law for enzyme ativity seems less obvious than the derivation ofthe ontrol law ruling enzyme synthesis. Kompala et al. (1984) [90℄ derived the mathinglaw to ontrol enzyme ativity. With a view to the appliation of yberneti modellingfor metaboli engineering purposes, as suggested by, e.g., Varner and Ramkrishna (1999)[205, 206℄ and Young (2005) [223℄ the need for a generi ontrol law for enzyme synthesisbeomes apparent. However, omprehensive arguments why the mathing law would begenerally valid, were not found. A typial example seemingly not oiniding with thelatter, would be the regulation of glutamine synthase [8℄, sine both the ativation andinativation of this enzyme seem to have a ost. Switzer (1977) [175℄ reports mehanismsfor in vivo enzyme inativation whih also seem to have a ost.Consequently, one may wonder what is that ost? What is the no-ost ativity, i.e.,
vno−cost = χ? Is there a ost for up- or down-regulation of enzyme ativity? Therefore,some alternatives for this ontrol law were derived and evaluated.4.2 Materials and methods4.2.1 Cyberneti frameworkThe derivation of the yberneti framework is taken from Young (2005) [223℄. A miro-bial system an be represented by a set of di�erential equations:

ẋ = f (x) (4.2)This system is subjet to regulatory ontrol both at the level of enzyme synthesis andenzyme ativity. These inputs are aounted for by introduing the ontrol vetors u forenzyme synthesis and v for enzyme ativity, whih speify how the resoures are alloatedamong the various alternatives:
ẋ = f (x, u, v) (4.3)44



For larity, the yberneti variable ontrolling enzyme ativity, v, will be disarded fornow. It is assumed that the ell alloates its resoures in suh a way that the performanefuntion J is maximised. This an be desribed by optimal ontrol theory:
max J

subject to : ẋ = f (x, u)
(4.4)Computing the optimal ontrol is numerially quite demanding. Assuming however thatregulatory deisions are made at eah instant based on the projeted system responseover a short time interval ∆t, the system an be approximated by linearisation:

∆ẋ = A∆x+Bu∆u+ f
(
x (t) , u0

) (4.5)
A =

∂f (x, u)

∂x

∣
∣
∣
∣
x,u0

(4.6)
Bu =

∂f (x, u)

∂u

∣
∣
∣
∣
x,u0

(4.7)The hange in model performane ∆J over the system's planning window ∆t then be-omes:
∆J = q∆x(t+ ∆t)−

1

2

∫ t+∆t

t

(
uTσuu

)
dτ (4.8)

q =
∂φ (x (t))

∂x
∆J = J (t+ ∆t)− J (t) (4.9)in whih the funtion φ (x (t)) represents the metaboli objetive funtion of the systemand σu a parameter that sales the ost assoiated with resoure investment. The solu-tion of this optimal ontrol problem an be derived. The Hamiltonian now beomes [224℄:

H1 (x, u, λ) = −
σu

2
u2 + λT

[
A∆x+Bu∆u+ f

(
x (t) , u0

)] (4.10)with λ the ostate vetor. 45



The state equation is given by:
ẋ =

∂H1

∂λ
= A∆x+Bu∆u+ f

(
x (t) , u0

) (4.11)The stationary ondition is given by:
0 =

∂H1

∂u
= −σuu+BT

u λ (4.12)So, one �nds for u:
u =

BT
u λ

σu
(4.13)in whih the ostate is given by:

−λ̇ =
∂H1

∂x
= ATλ (4.14)The boundary ondition for this equation is:

λ (t+ ∆t) = q (4.15)Applying the boundary onditions and solving this equation gives:
−

∫ t+△t

t

1

λ
dλ =

∫ t+△t

t

ATdt (4.16)
λ (t)

λ (t+ ∆t)
= e(AT (∆t)) (4.17)So, one �nds for λ:

λ (t) = e(A
T (∆t))q (4.18)46



Substituting Eq. 4.18 in Eq. 4.13, yields:
u (t) =

1

σu
BT

u e
(AT (∆t))q (4.19)

pi (t) = qT e(A(∆t))bui (4.20)Sine the resoures are limited however, this is a onstrained optimisation problem. Theappropriate onstraints have to be added to the Hamiltonian (Eq. 4.10), yielding Eq.4.21. The Karash-Kuhn-Tuker onditions an be derived both for the yberneti vari-able ontrolling enzyme ativity and synthesis.
H2 (x, u, λ, η, νi) = H1 (x, u, λ) + η

(

1−

n∑

i=1

ui − ω
2

)

+

n∑

i=1

νi

(
ui − κ

2
i

) (4.21)where νi, η are Lagrangian multipliers assoiated with the ith non-negativity onstraint
ui ≥ 0 and with the total resoure onstraint ∑n

i=1 ui ≤ 1, respetively, and n is thenumber of ompeting reations. The stationary ondition now beomes:
∂H2

∂ui
= 0⇒ −σui + buiλ = η − νi (4.22)and the Karash-Kuhn-Tuker onditions are given by:
∂H2

∂κi
= 0⇒ 2νiκi = 0 (4.23)

∂H2

∂νi
= 0⇒ ui − κ

2
i = 0 (4.24)

∂H2

∂ω
= 0⇒ 2ηω = 0 (4.25)

∂H2

∂η
= 0⇒

(

1−

n∑

i=1

ui − ω
2

)

= 0 (4.26)
ui =

buiλ+ η − νi

σu
(4.27)47



The solution that simultaneously satis�es these onstraints is:
ui = max

(
pi + η

σu
, 0

) (4.28)Sine now ui ≥ 0. Choosing σu =
∑n

i=1 max (pi, 0) and taking into aount Eq. 4.25:
η = 0 ∨ ω = 0 (4.29)one �nally �nds:

ui =
max (pi, 0)

∑n
i=1 max (pi, 0)

(4.30)Akin to the derivation of the ontrol law ruling enzyme synthesis, u, the ontrol lawruling enzyme ativity an be derived, with σv = max
n

(pn), yielding:
vi =

max (pi, 0)

max
n

(pn)
(4.31)

4.2.2 Cyberneti modelAll simulations have been performed with the model of Kompala et al. (1984) [90℄, whihdesribes the baterial growth on mixtures of substitutable substrates, espeially underonditions that give rise to diauxi growth. Two substitutable substrates are onsidered
S1 and S2, whih are onverted by the enzymes E1 and E2, respetively, to form biomass(see also Figure 4.1). The stoihiometri and kineti parameters used, are given in Table4.1. The objetive funtion is given by:

J =
r1v1
Y1

+
r2v2
Y2

(4.32)48



with ri =
xEi

x
E0

i

ki
xSi

xSi
+KxSi

, i = {1, 2}. Only the ontrol law for enzyme ativity wasmodi�ed during this simulation study.Table 4.1: Stoihiometri and kineti parameters used to simulate diauxi growth [90℄Sugar i ki

(
h−1

)
Ki (g/L) Yi (gB/gSi) αi

(
h−1

)
βi

(
h−1

)Gluose 1 1.08 0.01 0.52 1.13 0.05xylose 2 0.82 0.2 0.5 0.87 0.054.3 Results and disussion4.3.1 Derivation of the ontrol law for enzyme ativityWith respet to the derivation of the ontrol law for enzyme synthesis no alternativeexists. This is not the ase for the ontrol law ruling enzyme ativity. Indeed, one maywonder what the no-ost ativity is. Is there a ost for up- or down-regulation of enzymeativity? Therefore, some alternatives for this ontrol law were derived and evaluated.We replaed the ost term for enzyme ativity, σv

2 (v)2, in the model performane fun-tion as presented by Young (2005) [223℄, with σv

2 (v − χ)2. Analogously to Setion 4.2,the solution for the optimal ontrol problem has been derived:
vi = χ+

pi + ηi − νi

σv
(4.33)The solution that simultaneously satis�es the Karash-Kuhn-Tuker onstraints, for χ = 0is:

vi =
max (pi, 0)

max
n

(|pi|)
(4.34)The ontrol law will here be derived for the ase χ 6= 0. One �nds for χ = 0.5, andhoosing σv =

max
n

(|p|)
χ

, 49



vi = max

(

1

2

(

1 +
pi

max
n

(|pi|)

)

, 0

) (4.35)and for χ = 1, and hoosing σv = max
n

(|p|),
vi = min

(

1 +
pi

max
n

(|pi|)
, 1

) (4.36)The enzymati onversion apaity will be fully used, unless the return is negative. Inthis ase down-regulation has a ost.
4.3.2 Case studyTo stress the importane of the hoie of the ontrol law ruling enzyme ativity, the per-formane of the derived ontrol laws was evaluated for the ase of sequential substrateutilisation.The evolution of the substrates S1 and S2 and of the biomass X is depited in Figure4.2 and the yberneti variables are depited in Figure 4.3. Obviously, as is depited inFigure 4.3, both enzymes will be more ative using Eqs. 4.35 and 4.36, in omparisonwith the mathing law, sine the return pi for both lumped pathways is always posi-tive in this ase. Hene, the yberneti variables v1 and v2 given by Eq. 4.36 will be1 throughout the simulation (Figure 4.3). Consequently, the enzymes are fully ative,sine down-regulation of enzyme ativity would ost. Akin reasonings an be elaboratedfor χ = 0.5.The aim of the researh presented here was not to ome up with the 'true' ontrol law,beause this is impossible at this stage due to, e.g., the limited knowledge, the lak ofappropriate data, and the potential dependeny on the model struture. Rather, the aimwas to emphasise its importane for the model itself, as the hosen yberneti ontrollaw will have an impat on the optimal values of the parameters to be estimated and50



Figure 4.2: E�et of the ontrol law derived for enzyme ativity (Eqs. 4.34-4.36) onthe evolution of the onentration [g/L] of gluose (S1), xylose (S2), and biomass (X)simulated with the model of Kompala et al. (1984) [90℄
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Figure 4.3: E�et of the ontrol law derived for enzyme ativity (Eqs. 4.34-4.36) onthe evolution of the yberneti variables v1, v2, u1, and u2 simulated with the model ofKompala et al. (1984) [90℄
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may have an in�uene on the model preditions.Based on the experimental data of Monod (1947) [117℄, Kompala et al. (1984) [90℄derived the mathing law (Eq. 4.34), predominantly based on the fat that no lag phaseould be observed for a pregrown ulture. Indeed, in this situation none of the proposedalternatives (Eqs. 4.35 and 4.36) would perform as well as the mathing law. However,what was the ause for the observed behaviour? Was it indeed resoure investment linkedto enzyme ativity? Or did the metaboli regulation of enzymes of the lumped pathwaysplay a determining role? Indeed, substrate (use) might have a ost, whih would be moreor less in agreement with the mathing law, but what would be the ost of an abundantlypresent (extraellular) substrate of an enzymati onversion and do all enzymes ompetethen for the same substrate (sine only one pool of limited resoures to ontrol enzymeativity is onsidered in the framework presented by Young (2005) [223℄)?
4.4 ConlusionsAb initio, yberneti models have typially been used in the domain of bioproess on-trol. Reently, the original framework was reworked by Young (2005) [223℄ with a viewto applying this method in the domain of metaboli engineering, in order to ope withproblems related to the inreased model omplexity. Sine the appliation of the yber-neti approah in this domain requires a generi framework.In view of the latter, di�erent alternatives for the mathing law have been derived andevaluated. Obviously, the hoie of the ontrol law for enzyme ativity is important.However, due to the limited knowledge, issues linked to the model struture, and thelak of appropriate data it was not possible to distinguish between the rival ontrol laws.Although the approah seems appealing, given the present lak of knowledge, detailedexperimental omis data, and some of the problems linked to 'onventional' dynamimetaboli modelling, there still remain some issues unresolved.
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Chapter 5
Identi�ation and evaluation ofapproximative kineti modelstrutures 1
5.1 IntrodutionIn the past, the geneti potential sensu largo of a mirobial strain was improved by theiterative proess of random mutagenesis and sreening. The advent of reombinant DNAtehniques and funtional genomis made it possible to apply a goal-oriented approahfor geneti modi�ation (metaboli engineering).However, in most ases the onstrution of a produer strain did not turn out to be asstraightforward as was initially presumed [12, 89, 195℄. Indeed, in omplex metabolinetworks it is often a futile pursuit to ad ho predit the impat, both qualitatively andquantitatively, of a geneti intervention [12℄. Moreover, as the fous in metaboli en-gineering is shifting from the massive overexpression and inativation of genes towards�ne tuning of gene expression [39, 69, 84℄, the need for a reliable, quantitative preditor,i.e., a model, that inorporates enzyme kinetis, regulatory mehanisms (whih are ingeneral designed to prevent overprodution), ompartmentalisation, and the interations1Parts of this hapter have been submitted as: J. Maertens and P. A. Vanrolleghem. Identi�ation andevaluation of approximative kineti model strutures. BMC Bioinformatis, submitted for publiation,2008. 55



between distint parts of the ellular metaboli network is growing rapidly.Initially, stoihiometri models were applied to failitate the hoie of where to inter-vene genetially. However, it is still unlear whether the well established tehniques ofmetaboli �ux analysis [3, 100, 198℄ and �ux balane analysis [5, 34, 142℄ are fully aptfor suh aims sine the predition of the optimal �ux distribution depends onsiderablyon the kinetis and the regulation of the enzymati reations whih are not aountedfor [171℄.The quest for a quantitative approah also led to the development of metaboli ontrolanalysis, MCA [85℄. MCA aims at eliiting the sensitivity of the metaboli �ux distri-bution to hanges of enzyme levels and thus identi�es the rate ontrolling enzyme(s)in the pathway. The appliability of MCA is however limited due to, e.g., its limitedextrapolation range around the referene point, whih is in general muh smaller thanthe �ux shift one aims at in metaboli engineering. It is further based on a steady-stateassumption [64℄ and depends on (unknown) enzyme levels [54℄.Although a mehanisti dynami metaboli model is not su�ering from the aforemen-tioned shortomings, it is no deus ex mahina either beause suh a model is omplex,overparameterised [42℄, and the parameter identi�ation is not evident either, beause ofthe highly nonlinear rate equations and the large number of parameters to be estimated.To deal with the latter problem di�erent approximative, linear non-mehanisti kinetiswere suggested. The most popular approximative kinetis are i) the 'log-linear in metabo-lite and enzyme levels kinetis' [72, 73℄, ii) the so-alled 'linlog kinetis' Eq. 5.1 [74, 209℄,iii) 'the linear in metabolite and enzyme levels kinetis', iv) the 'linear in metabolitelevels kinetis' Eq. 5.2, and v) the 'GMA type power law kinetis' Eq. 5.3 [154℄.
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,k (5.3)with rk the reation rate of reation k, J0 the steady-state �ux, xMl

and x0
Ml

the onen-tration of metabolite l under dynami onditions and at steady-state, respetively, and
ε0 an elastiity oe�ient.The �nal aim of suh a model-based approah is thus target identi�ation for optimisinga prodution host. These targets are those reations that ontrol the �ux through areation network, whih an be assessed by alulating the �ux ontrol oe�ients.Due to the omplexity of metaboli networks and the limited available data for identifyingthe parameters of a metaboli network model, suh models are in general overparame-terised [42℄. The resulting poorly identi�able parameters an lead to unertain modelpreditions. Several approahes have thus far been presented in the �eld of metaboliengineering in order to deal with or assess the latter:Nikerel et al. (2006) [125℄ simply removed the terms that ontained unidenti�able modelparameters. However, amongst others Degenring et al. (2004) [42℄ have observed thepotential detrimental impat on the model's performane of suh ation. These authorsredued their overparameterised model by eliminating parameters based on a (loal) sen-sitivity analysis. However, the importane of a parameter annot merely be assessedusing a loal sensitivity analysis. Indeed, the model output an be insensitive to a pa-rameter, but due to strong interation e�ets with other parameters it an beome overallimportant [150℄. This e�et an be determined by the extended FAST method [150℄ orthe method proposed by Sobol (1993) [167℄.Kresnowati et al. (2005) [92℄ made use of multiple in silio generated data sets to as-sess this unertainty; onsidering the typial lak of experimental data suh an approahseems far from realisti.Hene, the aim of this study was to properly assess the unertainty on the alulated �uxontrol oe�ients with a view to target identi�ation in metaboli engineering. This57



unertainty may be the result of both an unertain model struture and of unertain pa-rameter estimates. To this end, several rival approximative kinetis were used to desribean illustrative pathway. Sine, the enzyme levels will be assumed onstant in this study,the log-linear in metabolite and enzyme levels kinetis (i) and the linlog kinetis (ii),and the linear in metabolite and enzyme levels kinetis (iii) and the linear in metabolitelevels kinetis (iv), two by two oinide, as they only di�er with hanging enzyme levels.For this reason, only three approximative kineti strutures (the linlog kinetis, the GMAtype power law kinetis, and the linear in metabolite levels kinetis) were retained forfurther analysis. In order to properly assess the unertainty on the alulated �ux ontroloe�ients the linear kineti parameters for eah of these rival approximative kinetiswere identi�ed using a two step parameter identi�ation proedure and the adequay ofthe approximative kinetis to desribe the system was evaluated.5.2 Materials and Methods5.2.1 Linear pathwayThe pathway onsidered in this study was taken from Delgado and Liao (1992) [43℄,slightly modi�ed by Kresnowati et al. (2005) [92℄, and is presented below. The pathwayonsists of four metabolites c1, x1, x2, and c2 and three reations v1, v2, and v3.
c1

v1→ x1
v2→ x2

v3→ c2The omplete nonlinear kineti equations are given in Eqs. 5.4-5.6:
v1 =

0.2

1 + x1
(5.4)

v2 =
1.5x1

0.5 + x1
(1 + L)−1 , L =

(
1 + x2

0.1

)4

(
1 + x2

0.5

)4 (5.5)
v3 =

x2

1 + x2

2 + x1

40

(5.6)58



The steady-state �ux and steady-state onentrations in Table 5.1 were obtained by solv-ing the mass balane equations for the steady-state ondition.Table 5.1: The Steady-state �ux and the steady-state metabolite onentrations and theinitial onditions of the perturbation (in arbitrary units)
c1 x1 x2 c2 J0Steady-state onditions 2.0 0.411 0.154 0.0 0.142Initial onditions of the perturbation 2.0 1.0 1.0 0.0Transient data were obtained by perturbing the steady-state (Figure 5.1). To re�ettypial measurement data, normally independently distributed noise ǫ(0,σ2) was super-imposed on these simulated metabolite onentrations. 11 sample points were uniformlydistributed over the time interval [0, 5]. This is realisti as sampling frequenies up to4-5 s-1 are reported in the literature [129℄.5.2.2 Derivation of the ontrol oe�ientsThe derivation of the �ux ontrol oe�ients is taken from Mauh et al. (1997) [115℄. Amirobial system an be represented by a set of di�erential equations:

ẋ = f (x, p) (5.7)with x a vetor that ontains the state variables and p a vetor that ontains the param-eters. CM
ij is de�ned as the onentration ontrol oe�ient:

CM
ij =

∂xi

∂pj

pj

xi
=
∂ lnxi

∂ ln pj
(5.8)and CF

ij is de�ned as the �ux ontrol oe�ient:
CF

ij =
∂vi

∂pj

pj

vi
=
∂ ln vi

∂ ln pj
(5.9)59



Figure 5.1: Evolution of metabolite onentrations (in arbitrary units) of c1, x1, x2, and
c2 after the perturbation
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with vi the rate of reation i. The time-derivative of the �rst-order sensitivity of onen-tration xi with respet to parameter pj is given aording to [188℄ by:
d

dt

(
dxi

dpj

)

=
m∑

k=1

∂fi

∂xk

∂xk

∂pj
+
∂fi

∂pj
(5.10)Eq. 5.10 an be written as:

dCM⋆

i,j

dt
=

m∑

k=1

JikC
M⋆

kj + ψij (5.11)where CM⋆

i,j denotes the non-normalised sensitivity of onentration xi with respet toparameter pj. Ji,k desribes the derivative of the i th element of vetor f with respetto the k th element of state vetor x. ψij is the derivative of f with regard to the j thparameter of ps. In matrix notation Eq. 5.11 beomes:
dCM⋆

dt
= JCM⋆

+ ψ (5.12)where CM⋆

[m, s] is the non-normalised onentration ontrol matrix. J [m,n] is the well-known Jaobian matrix, whilst ψ [m, s] denotes the matrix ontaining the sensitivitiesof the right-hand side of Eq. 5.7 with respet to parameter vetor Ps. For steady-stateonditions one �nds:
dCM⋆

0

dt
= 0 (5.13)If J is invertible, one an write:

CM⋆

0 = −J−1
0 ψ0 (5.14)Eq. 5.14 an be transformed into the normalised onentration ontrol matrix at steady-state, CM

0 , with the diagonal matries X0 [m,m] and PS [s, s], whih ontain the steady-61



state onentrations and parameter values, respetively:
CM

0 = −X−1
0 J−1

0 ψ0Ps (5.15)Time dependent onentration ontrol oe�ients an be obtained through integrationof Eq. 5.12 using Eq. 5.14 with subsequent normalisation:
CM (t) = X−1

(∫ t

0

(

JCM⋆

+ ψ
)

dt+ CM⋆

0

)

Ps (5.16)In Eq. 5.16, X [m,m] represents a matrix whose omponents are the time-dependentonentrations on the diagonal, and zero otherwise. Note that the time traes of statevetor x an be obtained by solving Eq. 5.7.Analogously time-dependent �ux ontrol oe�ients an be derived. The di�erentiationof rate ri with respet to pj leads to:
dvi

dpj
=

m∑

k=1

∂vi

∂xk

∂xk

∂pj
+
∂vi

∂pj
(5.17)and rewritten in a dimensionless form:

CF
ij =

m∑

k=1

εikC
M
kj + πij (5.18)in whih the elastiity oe�ient, εik, is de�ned as:

εik =
∂vi

∂xk

xk

vi
(5.19)This elastiity oe�ient desribes the frational hange of the loal reation rate ri toan in�nitesimal small perturbation of onentration xk. In other words, εi,k is a measure62



of the order of the loal reation rate with respet to onentration xk. The π-elastiityoe�ient, πi,j, introdued in Eq. 5.18, is de�ned as:
πij =

∂vi

∂pj

pj

vi
(5.20)and is used to represent the relative hange of the loal reation rate ri to a relative,in�nitesimal small hange of parameter pj . In matrix notation, Eq. 5.18 beomes:

CF = εCM + π (5.21)
CM is provided by Eq. 5.16. For steady-state onditions Eq. 5.21 beomes:

CF
0 = ε0C

M
0 + π0 (5.22)

CF
0 = −ε0X

−1
0 J−1

0 ψ0Ps + π0 (5.23)Knowing the time traes of the onentration ontrol oe�ients, the ourse of the �uxontrol oe�ients an be desribed as:
CF (t) = εX−1

(∫ t

0

(

JCM⋆

+ ψ
)

dt+ CM⋆

0

)

Ps + π (5.24)A �ux ontrol oe�ient is a measure of how a hange in the onentration of an enzymea�ets the steady-state �ux through that partiular pathway. Hene, it is a measure ofthe degree of ontrol exerted by this enzyme on the steady-state �ux [222℄.5.2.3 Identi�ation proedureA two step identi�ation proedure has been applied. In a �rst step the parameters areestimated using an element-wise weighted total least squares estimator (EW-TLS). In a63



seond step a Bayesian approah is followed to determine the posterior distribution ofthe parameter estimates, using the prior distribution obtained in the �rst step.Calulation of the derivativesTo obtain the parameters of the set of ordinary di�erential equations in a linear form thetime derivatives of the metabolite onentrations have to be determined:
dc
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(5.25)with m the number of reations involved in the formation and utilisation of metabolite. With b1 the dependent variables, ∆b1 the errors in the dependent variables, A1 theindependent variables, ∆A1 the errors in the independent variables, and x the linearparameters. To alulate the derivative of the onentration data with respet to time,a smoother is needed sine the derivation of noisy data is an ill-posed problem. A widevariety of smoothers exist [35, 52, 155℄, in this work a penalised least squares smoother[52℄ has been used.Element-wise weighted total least squaresA wide variety of linear estimators exists to solve Eq. 5.26:
(A1 + ∆A1) x = b1 + ∆b1 + ǫ (5.26)Only when the errors in the independent variables, ∆b1, are negligible ompared to thosein the dependent variables, ∆A1, [46℄, i.e., ∆A1

∼= 0, the ordinary least squares estimatorEq. 5.27 yields an unbiased estimate. 64



x̂OLS = min
x∈Rm

‖A1x− (b1 + ∆b1)‖2 (5.27)Unfortunately this ondition does not hold here as the metabolite onentration data areinaurately known. An estimator whih does yield unbiased estimates asymptotiallyis known as element-wise weighted total least squares [94, 199℄, as it takes the errors onboth dependent and independent variables into aount. Firstly, the parameters wereestimated with an element-wise weighted total least squares estimator, using as initialonditions the parameters obtained using an ordinary least squares estimator. Subse-quently, a loal nonlinear parameter estimation (simplex algorithm) was performed toobtain more aurate estimates of the parameters, whih typially onsists of minimisingthe weighted sum of squared error funtional J (assuming independently and normallydistributed noise), by optimally seleting the parameter values:
J =

n∑

i=1

m∑

j=1

(
bj,E(i)− bj,IS(i)

σj

)2 (5.28)with bj,E (i) and bj,IS (i) the experimentally determined and in silio alulated value ofstate variable j at time i, respetively.
Calulation of the variane-ovariane matrixThe obtained parameter values are then used to alulate the Fisher information matrix,
FIM , Eq. 5.29:

FIM =

n∑

i=1

[(
∂bi (t, x)

∂x

)T

Q−1
k

(
∂bi(t, x)

∂x

)] (5.29)with n the number of sampled time points and Qk the measurement error variane o-variane matrix given by, assuming independently and normally distributed noise:65
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(5.30)
with m the number of measured variables and σj the orresponding measurement errorstandard deviation.For eah (state variable, parameter) ombination the optimal perturbation fator θ hasbeen determined to numerially alulate the sensitivity funtions in Eq. 5.29, ∂b

∂x
, usinga �nite di�erene method, b(t,x+θx)−b(t,x)

x+θx−x
. To this end, the perturbation fator out of

{
10−12, 10−11, ..., 10−6, ..., 10−2

} yielding the minimum sum of absolute relative errors(SRE) was retained, Eq. 5.31 [40, 41℄:
SRE =

∣
∣
∣
∣
∣
1−

∂b
∂x−
∂b
∂x+

∣
∣
∣
∣
∣

(5.31)where the subsripts, − and +, in Eq. 5.31 stand for the sign of the perturbation fator.Aording to the Cramer-Rao inequality [107℄ the Fisher information matrix is relatedto the lower bound of the parameter estimation error ovariane matrix C, under someonditions, i.e., the noise should be unorrelated and normally distributed (0,σ2
j ) [107℄:

C ≥ FIM−1 (5.32)
Sampling the prior distribution of the parametersThe parameter spae will then be sampled n times aording to the parameter estima-tion variane ovariane matrix, C. Then, the prior probability P (xi) for eah of thesesampled disrete parameter sets xi is 1

n
. For every set of sampled parameter values the66



model is solved. The likelihood of this set, i.e., the probability of observing the data bgiven the parameter set xi an then easily be alulated, assuming independently andnormally distributed measurement noise [118℄:
P (b | xi) =

n∏

i=1

1
√

2π
m
Q

j=1

σj

exp

(
m∑

j=1
−

(bj,E(i)−bj,IS(i))
2

2σ2

j

) (5.33)with bj,E (i) and bj,IS (i) the experimentally determined and in silio alulated value ofstate variable j at time i, respetively.Calulation of the posterior distribution of the parametersThe seond step of this 2 step Bayesian parameter identi�ation proedure onsists ofalulating the posterior distribution on the basis of the prior distribution P (xi) [17℄.The posterior distribution is given by [118℄:
P (xi | b) =

P (b | xi)P (xi)

P (b) =
∫
P (b | xi)P (xi) dx ∼=

n∑

i=1
P (b | xi)P (xi)

(5.34)with P (b) the probability of observing the data and P (b | xi) the probability of observingthe data b given the parameter set xi, Eq. 5.33.5.3 Results and disussionFor the linear in metabolite levels, the GMA type power law, and the linlog approxi-mative kineti formats the parameters were estimated using sequentially the EW-TLSand a nonlinear parameter estimator. The results are depited in Figure 5.2. A modeladequay test, χ2-test as desribed by [31℄, has been used to evaluate the adequay of thedi�erent approximative kinetis to desribe the olleted data. All studied approximativekineti formats performed adequate for the ase presented here.67



This is somewhat ontraditory to Heijnen (2005) [74℄ who pinpoints out the advantagesof the linlog kineti format. Aording to Heijnen (2005) [74℄, allows the urvature ofthe linlog kineti format to apture the true kinetis over a muh larger metabolite rangein omparison with the linear in metabolite levels format. Note that the original kinetiequations used in this study are highly nonlinear and one an not pretend the metaboliterange observed during the transient is small.To properly assess the unertainty on the alulated elastiity oe�ients and the �uxontrol oe�ients a Bayesian method has been applied. A �rst step in this Bayesianapproah is the determination of the prior distribution. To this end, the by the inverseof the Fisher information matrix linearly approximated parameter estimation error o-variane matrix was used. This requires the sensitivity funtions of the state variablesto the elastiity oe�ients, whih are depited in Figure 5.3. Based on these results theparameter estimation error ovariane matrix has been alulated.The in�uene of the hosen prior distribution on the posterior distribution has been ex-amined for the linlog kineti format. Both a non-informative and an informative priorwere evaluated. As non-informative prior a uniform distribution has been hosen. Itis non-informative as all possible values (here) in the 95 % on�dene interval (from afrequentist point of view) of the parameter estimates are a priori equally likely. As infor-mative prior the distribution obtained through the parameter estimation error ovarianematrix has been used.From the resulting informative and non-informative prior distributions 105 parameter setshave been sampled (Figure 5.4). For eah set the �ux ontrol oe�ients and its likeli-hood have been alulated. Finally, the posterior probability distribution was alulated.Inreasing the number of samples even more, did not alter the posterior distribution (re-sults not shown). The resulting distribution on the �ux ontrol oe�ients is given inFigure 5.5. The posterior distribution did not seem to be in�uened by the used prior(data not shown).The approah presented in this study thus attempts to take the unertainty on the �uxontrol oe�ients into aount for the purpose of identifying potential bottleneks in themetaboli network. Even for large models [109, 147℄ suh an approah beomes feasible,e.g., by means of distributing omputing [9℄ .68



Figure 5.2: Evolution of metabolite onentrations of c1, x1, x2 , and c2 after the per-turbation, measured (▽) and simulated by the linlog model (-o), the GMA type powerlaw model (-), and the linear in metabolite levels model (-x).
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Figure 5.3: Sensitivity funtions of the state variables, c1, x1, x2, and c2, to the elastiityoe�ients ε0x1,1, ε0x1,2, ε0x2,2, ε0x1,3, and ε0x2,3 of the linlog model after the perturbation70



Figure 5.4: Sampling from the informative prior distribution for the linlog model, repre-sented in the parameter spae 71



Figure 5.5: The informative prior (-x) and the posterior probability density funtions (-)of the �ux ontrol oe�ients of the linlog model
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Figure 5.6: The informative prior (-x) and the posterior probability density funtions (-)of the �ux ontrol oe�ients of the GMA type power law model
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Figure 5.7: The informative prior (-x) and the posterior probability density funtions (-)of the �ux ontrol oe�ients of the linear in metabolite levels model
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Though the order of magnitude of the alulated �ux ontrol oe�ients seems in reason-able agreement with the true values (Figures 5.5-5.7), the true �ux ontrol oe�ients
(
CF

1 = 0.69 , CF
2 = 0.1, and CF

3 = 0.21
) do not always seem to lay in the 95 % red-ible intervals, whih ould potentially be due to hane or to the model struture ofthe approximative kinetis. However, the applied method an be onsidered a more reli-able way to assess the unertainty on the alulated values of the �ux ontrol oe�ients.All approximative kinetis were judged (equally) adequate. Hene, none of the threemodel strutures ould be disarded from this analysis and all approximative kinetiswere onsidered simultaneously in an attempt to take the unertainty of the model stru-ture on the alulated �ux ontrol oe�ients into aount. As desribed above, the priorand posterior distributions have been alulated, whih are depited in Figure 5.8. Note,that the obtained prior is nothing more than the resaled superposition of the prior prob-ability density funtions of the individual approximative kinetis, as all model strutureswere onsidered equally likely. The resulting posterior distribution is however weighted,with the likelihood of eah observation. As an be seen in Figures 5.5-5.8 espeially theGMA type power law model is determining the resulting posterior distribution for allapproximative kineti formats.Only a small network has been investigated and issues linked to the inreased modelomplexity of larger models have thus not been enountered, e.g., error aumulation.Whereas in the ase presented here approximative kinetis appear to give fair estimates ofthe �ux ontrol oe�ients, this approah seems to perform less well for larger networks.For example, Visser et al. (2004) [210℄ suessfully re-designed primary metabolism inE. oli using the theoretially derived linlog elastiity oe�ients and the linlog kinetiformat on the basis of the model of Chassagnole et al. (2002) [30℄. However, when oneattempts to simulate the gluose perturbation experiment, that originally was used toidentify the mehanisti parameters of the model, using the theoretially derived linlogelastiity oe�ients and the linlog kineti format, the predited evolution of the metabo-lite onentrations did not make sense at all (data not shown).It seems that the usefulness of suh approximative kineti formats dereases with inreas-ing model size and omplexity [92, 125, 210℄. In order to ollet informative data fromone or more perturbation experiments for parameter identi�ation purposes, it might be75



Figure 5.8: The informative prior (-x) and the posterior probability density funtions (-)of the �ux ontrol oe�ients of the the linlog model, the GMA type power law model,and the linear in metabolite levels model
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neessary to radially perturb the ell. Probably, way beyond the envisaged metabolites'pool sizes shifts as a result of metaboli redesign and likely way beyond the metaboliterange for whih approximative kineti formats yield an adequate desription of the truekinetis, beause a perturbation broadens and dampens out when it passes through anetwork [6, 7℄.5.4 ConlusionsDue to the omplexity of metaboli networks and the limited available data for the iden-ti�ation of the parameters of a metaboli network model, suh models are in generaloverparameterised [42℄. This leads to poorly identi�able parameters resulting in uner-tain model preditions.A Bayesian method is proposed to properly assess the unertainty on the alulated �uxontrol oe�ients in view of inreasing the trustworthiness of the identi�ed metaboliengineering targets. Though the order of magnitude of the alulated �ux ontrol oe�-ients seems in reasonable agreement with the true values, the true �ux ontrol oe�ientsdid not always seem to lay in the 95 % redible intervals.All of the state of the art approximative kineti formats: the linlog kinetis, the GMAtype power law kinetis, and the linear in metabolite levels kinetis adequately desribedthe data, even though the original kineti equations used here are highly nonlinear andthe metabolite range observed during the transient is not small.It is shown that to a large extent the unertainty on the alulated �ux ontrol oe�-ients is due to an unertain model struture and onsequently it is worth the e�ort toinrease the trustworthiness of the identi�ed metaboli engineering targets by means ofexperimental design for model disrimination.
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Chapter 6
A modus operandi of the Biosopeto study osillating mirobialsystems
6.1 IntrodutionWhether mirobial fermentation proesses an be an attrative alternative for the pro-dution of many hemials for the well-established hemial synthesis routes dependspredominantly on the overall proess performane. Consequently, the optimisation ofmirobial proesses is a must, ertainly ompared to those more mature hemial syn-thesis routes. This is espeially true, as in general the ell's objetive funtion [159℄, e.g.,optimisation of growth, onsiderably di�ers from that by whih the fermentation proessis judged.A systemati approah for this optimisation, by means of a geneti intervention (metaboliengineering) or by optimising the external onditions, �nds more and more aeptaneas it is quite di�ult to predit ad ho the global impat of a geneti intervention andof varying environmental onditions, respetively [12℄.A systemati approah may use metaboli modelling as tool to fully understand themehanisms, e.g., allosteri ontrol (feed-bak, feed-forward ontrol), ontrol of proteinindution, ..., whih yield these altered proess performanes. Suh metaboli models,79



both steady-state [124, 198℄ and dynami [30, 149℄ ones, are inreasingly applied for thepurpose of identifying the bottleneks in the metaboli network and the eluidation ofregulatory mehanisms.However, also metaboli network models are subjet to the anient saying 'garbage in isgarbage out' and onsequently a properly validated model is a onditio sine qua non torely on the model's outome for proess optimisation [166℄. In this respet the design ofexperiments dediated to model building an beome an additional bottlenek. Indeed,whilst striving for a proper identi�ation of the parameters of the metaboli networkmodel many researhers have thus far been onfronted by the limits of the available ex-perimental data they have gathered [42℄.This is due to the limited information rihness of a single perturbation experiment aimedat identifying the metaboli network model's parameters and struture and deipheringregulatory mehanisms in mirobial organisms. Thus, multiple experiments have to beperformed starting with a ulture haraterised by a well de�ned metabolomi and pro-teomi state [114, 211℄. Obtaining suh a well de�ned state typially takes a lot of timeand, onsequently, being able to eliminate the perturbation of this state would be verywelome.Reently, experimental set-ups have been designed in order not to perturb this wellde�ned state and still being able to perform multiple perturbation experiments, e.g., aBiosope onneted in series with a hemostat [212℄ (Figure 6.1, senario I). The mostimportant feature of a hemostat is that all ulture onditions, e.g., dissolved oxygenonentration, pH, ell density, ... remain onstant. The e�uent of the hemostat isthe in�uent of the Biosope. Hene, the properties of the inoming �ow in the Biosopeare onstant. A Biosope is a plug �ow reator whih is ontinuously fed by brothfrom the bioreator [212℄. Instead of perturbing the bioreator itself and onsequentlyall its biomass, the ontinuous �ow from the bioreator into the Biosope is perturbedjust after entering the Biosope. Importantly, the hemostat itself is not a�eted bythese perturbations [212℄. Perturbing the reator itself to ollet a data set desribingthe response of the ells to the perturbation would lead to a long waiting time beforeanother perturbation experiment an be performed beause the ulture must be allowedto regain its steady-state [212℄. Distributed over its length the Biosope has a numberof sample ports. Beause of the plug �ow harateristis of the Biosope every sample80



port is linked to a sample time after perturbation. Obviously, these sample times afterperturbation are determined both by the distane from the inlet of the Biosope andthe �ow of broth and perturbing agent through the Biosope. In the traditional steady-state operation of the bioreator the sample ports of the Biosope are opened one by onefor a given amount of time in order to ollet su�ient sample for the analyses to beperformed.Although the emphasis of proess optimisation is nowadays shifting towards the genetimodi�ation of mirobial strains, dynamially operated ultures an be industrially in-teresting as well, as, for instane, the interplay of the �utuating metabolome, e.g., theATP-paradox [168, 182℄, and eventually even the proteome an result in an altered pro-ess performane. In many fermentation proesses, suh dynamially operated ulturesresult in an altered yield, as the interplay of the �utuating extraellular onditions andthe altered metabolite levels (and enzymati armamentum) results in an adapted ellwith a superior [185, 189℄ or a deteriorated performane [16, 23, 202℄.Metaboli models an also be useful tools for the optimisation of suh dynamially op-erated ultures. Hene, the objetive of this ontribution is to propose a new modusoperandi of the Biosope so that this equipment an also be used to perform multipleperturbation experiments with mirobial systems that are subjet to a periodi operation(Figure 6.1, senario II). This will allow to rapidly ollet the neessary data in view ofidentifying the model's parameters and struture.
6.2 ModelThe dynami model of Chassagnole et al. (2002)[30℄ was used as data generating model.This metaboli network model desribes the dynami behaviour of the entral arbonmetabolism of Esherihia oli, i.e., of 25 metabolites that are involved in 30 reations ofthe glyolysis and the pentose phosphate pathway, after perturbation of a arbon limitedontinuous ulture by a gluose pulse. The general form of the mass balanes of theextraellular and intraellular metabolites is given by Eq. 6.1 and Eq. 6.2, respetively:81



Figure 6.1: Shemati representation of the reator on�guration. Senario I: the Bio-sope is onneted in series with a hemostat. Senario II : the Biosope is onnetedin series with a periodially operated reator (period T). In order to ollet ells withthe same initial intraellular make-up prior to the perturbation a sample port should beopened at [t+ nT + t2] s (with n = 0,1,...). Then, ells are olleted that entered theBiosope at [t+ nT ] s, with t the time instant in the period, and that have spent t2 s inthe Biosope.
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sjkrk (6.2)with xM and xS the onentration of an intraellular metabolite M and an extraellularmetabolite S, respetively, sjk the stoihiometri oe�ient of metabolite j in reationk, rk the rate of reation k, ρX the spei� weight of biomass and xX the biomassonentration, D the dilution rate, x0S the onentration of an extraellular metabolite Sin the feed, fpulse a pulse of an extraellular metabolite S in the reator, and µ the spei�growth rate. Note that xS is expressed in reator volume whereas xM is expressed in ellvolume. The term µxM in the mass balanes of the intraellular metabolites representsthe dilution e�et due to growth. 82



6.3 Results6.3.1 Experimental set-upThe proposed reator on�guration onsists of a Biosope onneted in series with aperiodially operated ompletely mixed bioreator, with period T (Figure 6.1, senarioII). Suh a periodi operation mode leads to a mirobial system that shows limit y-le behaviour, whih means that the ell's internal state periodially returns to be thesame state. The new modus operandi of the Biosope allows to seletively evaluatethe perturbation behaviour of ells, that possess a partiular internal state prior to theperturbation, whih permits the sequential perturbation of ells with the same initialondition taken from a dynamially operated ulture. Again the Biosope priniple isapplied, i.e., the ulture from whih the ells are taken is not perturbed.In the proposed periodi operation of the bioreator the varying onditions in the biorea-tor generate a non-onstant broth omposition with respet to the onentrations of bothextraellular and intraellular metabolites. If the sample ports would now sequentially,ontinuously be opened one by one, ells would be olleted with a di�erent intraellularmake-up prior to the perturbation. Hene, the proposed modus operandi of the Biosopemust aim at olleting only those ells that are haraterised by the same intraellularmake-up prior to the perturbation. For this a ontrol sheme to open and lose the sampleports has to be applied. This has been developed below on the basis of a simulation study.6.3.2 Simulation studyTo illustrate the priniple and possibilities of the proposed reator on�guration a sim-ulation study has been performed. As mentioned above, during the periodi operationof the bioreator, i.e., when the transient behaviour has faded out, the metabolite tra-jetories enter a limit yle, as illustrated in Figure 6.2 for the metabolites G6P, PEPand GLe in a 3D spae. After every period the trajetory ends up in the same point,haraterised by its intraellular metabolomi and enzymati make-up.The proposed method is thus able to yield, every period, the same well de�ned metabo-lomi and proteomi state. However, given the dynami operation of the bioreator, thisstate is di�erent from the steady-state mode operation. This periodi 'initial ondition'83



Figure 6.2: the limit yle during the periodi operation in the reator represented in thephase spae of phosphoenolpyruvate (PEP), gluose-6-phosphate (G6P), and extraellu-lar gluose (Gle).at the inlet of the Biosope, together with the onstant perturbation applied to it, leadsto a periodi variation of the extraellular and intraellular metabolite onentrationsas the broth moves along the Biosope's plug �ow (Figure 6.3). Figure 6.3 depits ashemati overview of the behaviour of the intraellular and extraellular metabolitesboth in the periodially operated bioreator and in the Biosope. In the perfetly mixedreator, a substrate pulse is given every 60 s resulting in a periodi system.The sample ports of the Biosope should be ontrolled in suh a way that only ellsthat had the same intraellular make-up prior to the perturbation, are olleted, i.e., thesample port should instantaneously open and lose at [t + nT + t2℄ s with n=0,1,... untilenough sample is olleted for the analyses to be performed. Then, ells are olletedthat entered the Biosope at [t+ nT ] s, with t the time instant in the period, and thathave spent t2 s in the Biosope. 84



Figure 6.4 qualitatively depits the trajetories in the phase spae when the initial ultureis perturbed at di�erent instants during the period of the limit yle in the bioreator.Thus, by performing perturbation experiments at several time instants of the limit yle,di�erent responses an be gathered. The sample time in the Biosope and the perturbingagent are additional degrees of freedom for this experimental set-up.
6.4 DisussionThe proposed on�guration allows the exeution of multiple perturbation experiments,even when the initial ulture is subjet to periodi onditions, via the ontrolled olle-tion of samples. This operation implies that the initial reason to be of the Biosope ispreserved. Suh an equipment is thus pratial to study, through perturbation exper-iments, the omplex metabolomi and proteomi interations in periodially operatedultures for eluidating the mehanisms underlying the altered yields. In addition, onlysmall quantities of the perturbing agent have to be used, whih is a major advantageespeially when the use of labelled substrates is imperative [212℄.Both the sampling time in the Biosope and the initial state of the ells to be olletedprior to the perturbation are additional experimental degrees of freedom for the proposedon�guration. Colleting samples in the Biosope, with the same initial state prior tothe perturbation, at distint points in time thus allows the preservation of the ultureand, onsequently, should allow performing multiple experiments in a relatively shorttime, e.g., perturbing a ulture haraterised by the same initial intraellular make-up,with di�erent perturbing agents or perturbing a ulture with the same perturbing agentstarting with the same initial state.6.5 ConlusionsAn experimental set-up has been proposed with a view to gathering data to build andvalidate a dynami metaboli model of periodially operated ultures. Suh models anbe useful for the optimisation of periodially operated ultures as they help to gain furtherinsight in the omplex metaboli interation and they an predit the e�et of alteredonditions. This set-up allows performing multiple perturbation experiments without85



perturbing the periodially operated ulture itself. The perturbing agent, the sampletime and the initial state, prior to the perturbation, are powerful degrees of freedom.
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Figure 6.3: Evolution of the intraellular and extraellular metabolite onentrations ofa parel of broth in the periodially operated reator and in the Biosope for a parel ofbroth that enters the Biosope after 120 s (upper �gure), 180 s, 240 s, and 300 s (lower�gure) in funtion of time. 87



Figure 6.4: Response of the ells monitored in the Biosope after perturbing ells origi-nating from 2 (red and blak) di�erent instants in the limit yle of the reator
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Chapter 7
Eulerian-Lagrangian desription of alarge-sale bioreator: an averagingout approah
7.1 IntrodutionThe well-established hemial synthesis routes fae for the prodution of many bulk and�ne hemial more and more ompetition from industrial biotehnologial alternatives.The development of suh an industrially viable mirobial proess typially onsists of 3phases.In a �rst phase a miro-organism is optimised itself, under laboratory onditions. Suh anoptimisation typially makes use of reombinant DNA tehniques, funtional genomis,as well as analytial [38, 181, 212℄ and mathematial tehniques [30, 197, 198℄. Thismishmash of tehniques has allowed a goal-oriented approah for geneti modi�ation[11℄. However, one the optimal produer has been onstruted it has to be put to thetest under large-sale onditions. This is due to the importane of mixing on both hem-ial and biologial onversions [67, 173℄. As a rule, saling-up of fermentation proessesfrom laboratory-sale to large-sale results in a signi�ant redution of biomass and prod-ut yields [16, 23, 202℄. Finally, the produt has to be puri�ed and reovered from thefermentation broth (Downstream proessing), using a wide range of physio-hemialtehniques, e.g., �ltration, entrifugation, preipitation, ... [68℄89



The redution of produt yields in suh a large-sale bioreator has been attributed toimperfet mixing [139, 221℄: zones exist in suh large-sale bioreators with ample sub-strate, in general in the surround of the inlet of the onentrated in�uent, with substratedepletion and with oxygen depletion or exess (laboratory-sale reators of several litreson the ontrary are typially onsidered as perfetly mixed). When an individual miro-organism irulates through a large-sale reator of various m3 it is sequentially exposedto these di�erent loal onditions. The ellular response to these fast hanging environ-mental onditions is thought to be an important ause of the observed yield redution.In the past, many researhers have attempted to ome up with a plausible explanationfor the mirobial response to these fast hanging external onditions:1. Hewitt et al. (2000) [76℄ postulate that the alternating prodution and reassimila-tion of organi aids like aetate, latate, and formate due to over�ow metabolismand mixed aid fermentation results in an ATP �ux from biomass prodution to-wards the repetitive synthesis and degradation of ertain organi aids,2. Enfors et al. (2001) [53℄ put forward the intermittent transriptional indution ofgenes, as a onsequene of the rapidly hanging environment in large-sale biorea-tors. However as the synthesis of proteins, inluding folding, takes up to one hour,the rapidly hanging indution and relaxation does not result in a net synthesis ofproteins, and3. Onyeaka et al. (2003) [131℄ point out pH �utuations as a possible ause, as thiswill in�uene the proton motive fore and onsequently the generation of ATP.Hene, a thorough understanding of the mirobial response to the large-sale onditionswould be useful for the optimisation of suh proesses [174℄. Consequently, methods tomore detailedly desribe both the biophase and the physio-hemial proesses in suhlarge-sale bioreators have been developed, e.g., omputational �uid dynamis models�nd aeptane both in industry and aademia [15, 20, 62, 127℄ to study in many ap-pliation domains the impat of spatiotemporal heterogeneity, i.e., imperfet mixing, onthe overall proess performane. 90



In omparison with hemial appliations, the system under study gets even more om-plex for biologial appliations sine the behaviour of an individual miro-organism is alsodetermined by its intraellular make-up, whih is determined by what the miro-organismhas observed over time [67, 96, 97℄. Hene, a Lagrangian desription, i.e., following theell's path through the reator, is essential to take this history e�et, a key element inunravelling the auses of the observed yield redution, into aount.
However, desribing the biophase in a Lagrangian way is omputationally demandingsine a set of di�erential equations is linked to every miro-organism [96℄. Solving thishighly nonlinear system, a result of the set of intraellular balane equations and theexhange terms aounting for the transport of metabolites in and out of the mirobialell, is not trivial. To deal with the latter, Lapin et al. (2006) [97℄ opted to desribe thesystem using an Euler-Lagrange formulation ombined with a frational-step method toallow for a stable, aurate, and numerially e�ient solution of the underlying equa-tions. This method requires however that for their three-dimensional simulation of astirred-tank bioreator 105 ells had to be traked. Sine, eah of the �nite volumeshad to be populated with a su�ient number of mirobial ells to minimise the e�et ofstatistial error on the auray of the solution.
Considering however that the overall piture is merely the result of all individual miro-organisms, it may thus be oneivable that only a limited number of partiles has to betraked in order to obtain a good idea of the onsumption and prodution of substratesand produts throughout the large-sale bioreator. Then the dynamis of the overallsystem an be aptured by loally averaging out the behaviour of this limited number ofpartiles over the whole population. The present ontribution therefore fousses on themethods to implement suh an approah taking into aount the spatiotemporal hetero-geneity whih is harateristi for suh large-sale bioreators. Speial attention will bedevoted to the pitfalls using suh a tehnique and how these were dealt with.
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7.2 Materials and methods7.2.1 Computational �uid dynamisReator spei�ations and numerial tehniquesSimulations of the �ow of �uids and of the mirobial onversions in a 30 m3 fermentor,stirred by four impellers, have been performed. The on�guration of the fermentor isgiven in Table 7.1 and it is shematially depited in Figure 7.1.Governing �ow equationsThe derivation of the governing �ow equations is taken from Fluent (2003) [1℄ and Tan-nehil and Anderson (1997) [178℄ . The �ow of �uids an be desribed by the Navier-Stokes equations. Applying the onservation law for mass to a �uid passing through anin�nitesimal ontrol volume, yields following partial di�erential equation:
∂

∂t
(ρ) +

∂

∂xi
(ρvi) = 0 (7.1)with ρ the physial density of the �uid and xi and vi the position and veloity vetor,respetively. The �rst term on the LHS of this equation represents the rate of inreasein density in the ontrol volume and the seond term represents the rate of mass �uxpassing through the ontrol surfae per unit volume.Applying the onservation law for momentum to an arbitrary ontrol volume, yieldsfollowing partial di�erential equation:
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(σij) (7.2)The two terms on the LHS of Eq. 7.2 represent the rate of inrease of momentum perunit volume in the ontrol volume and the net momentum �ux in the ontrol volume,respetively. The two terms on the RHS of Eq. 7.2 represent the gravitational fore perunit of volume and the surfae fore per unit of volume, respetively. The omponents ofthe total stress tensor σij are external stresses and shear stresses, whih are representedby: 92



Figure 7.1: Top view and side view of the studied fermentor
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Table 7.1: Fermentor on�gurationRelative size [D℄ Size [m℄Fermentor diameter 1 2.09Fermentor height 4.59 9.60Liquid height 2.99 6.25Ba�e width 0.08 0.17Spaing ba�e-wall 0.02 0.03Ba�e height 3.54 7.40Sparger diameter 0.43 0.90Shaft diameter 0.06 0.125Impeller diameter 0.33 0.70Impeller blade height 0.08 0.17Impeller spaing 0.70 1.46Lower impeller spaing 0.53 1.12Distane sparger - impeller 0.82 0.58
σij = −pδij + τij (7.3)where the pressure fore, the �rst term on the RHS of Eq. 7.3, ats only normal to thesurfae of the ontrol volume. The Kroneker-delta is de�ned as:
δij =
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(7.4)whih gives the pressure power a normal omponent. The visous stress tensor is givenby:
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(7.5)with µ the moleular visosity. The �rst two terms on the RHS of Eq. 7.5 representthe strain rate and the third represents dilatation. For inompressible �uids this term isequal to zero. This equation only holds for Newtonian �uids, haraterised by a onstantvisosity. 94



To resolve a turbulent �ow by diret numerial simulation it is required that all relevantlength sales are resolved from the smallest eddies to sales of the order of physialdimension of the problem domain, that three-dimensional omputations are performed,and that the time steps must be small enough so that the small-sale motion an beresolved in a time-aurate manner. Suh omputations are infeasible nowadays for mostappliations. Time-averaged Navier-Stokes equations are used instead.The Reynolds-averaged Navier-Stokes (RANS) equations are obtained by deomposingthe dependent variables f in the onservation equations into a time-mean f̄ and a time-�utuating omponent f ′:
f̄ =

1

∆t

∫ t0+∆t

t0

fdt (7.6)The time interval ∆t should be hosen in suh a way that its large with respet to the timeonstant of random �utuations, assoiated with turbulene, and small in omparisonwith slow variations in the �ow �eld assoiated with ordinary unsteady �ows. The statevariables in the Navier-Stokes equations are now deomposed in:
vi = v̄i + v′i
ui = ūi + u′i

(7.7)Substitution in the Navier-Stokes equations and time-averaging the entire equationsyields the RANS equations (note that f ′i = 0). For a onise overview of the deriva-tion, we refer to [178℄. The RANS equations for mass, momentum, and hemial speiesfor multiphase �ows are given by [178℄:
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vi,q the veloity and v′i,q the �utuations about the average veloity of phase q. Thesubsript q refers to the phase, i.e., gas (g) or liquid (l), and the supersript m refers tothe hemial speies under onsideration, e.g., gluose. τq is the stress tensor of phaseq, p is the total pressure, and g is the gravitational aeleration. Γm
q and Sm

q are thedi�usion oe�ient and the soure term of hemial speies m in phase q, respetively:
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) (7.12)with µt the turbulent visosity and σϕ the Shmidt number for hemial speies in waterassumed to be onstant and equal to 0.7 [1, 59℄. The formulae to alulate Sm
q will bedisussed in Setion 7.3. The global mass onservation is given by:
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− ρqv′i,qv′j,q (7.14)The additional term is alled the Reynolds tension and represents the apparent surfaegradients that are a onsequene of turbulent motion. Boussinesq proposed to relate theaverage veloity gradient with the Reynolds tension using the average turbulent visosityor eddy visosity µt:
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δijρqk (7.15)with k the turbulent kineti energy. 96



Turbulene modelTo determine µt, the standard k− ǫ turbulene model was used for simulating turbulent�ows in the present study. The governing equations for the turbulent kineti energy kand the turbulent kineti energy dissipation rate ǫ were solved for both phases. Standardvalues for the parameters of the k − ǫ model were used in the present study (Table 7.2).
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(7.17)in these equations Gk represents the generation of turbulene kineti energy due to themean veloity gradients and Gb is the generation of turbulene kineti energy due tobuoyany, with φ the solid mass fration. The turbulent visosity µt is omputed byombining kq and ǫq as follows [178℄:
µt = ρCµ

k2
q
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(7.18)where σε and σk express the turbulent di�usive transport of the salars k and ε.GridThe resulting set of nonlinear partial di�erential equations that desribes the system an,in general, not be solved analytially. Numerial solution, using the �nite volume method,Table 7.2: Parameter values of the k − ǫ turbulene model [1℄

cµ c1ε c2ε c3ε σε σk0.09 1.14 1.93 0.80 1.30 1.0097



requires the disretisation of this set of nonlinear partial di�erential equations in spaeand time. For this reason, the solution domain is subdivided into a �nite number of smallontrol volumes (ells) by a grid. This disretisation results in a set of oupled algebraiequations. The governing equations to be solved are strongly oupled and nonlinear andtherefore they must be solved by an iterative method. The used omputational gridonsisted of 138144 ontrol volumes. The solution independene on the grid size hasbeen veri�ed. To this end, the grid was re�ned with a gradient adaptation approah,whih re�ned the grid in regions with high gradients, to 236982 ontrol volumes.TrajetoryMiro-organisms were modelled using a Lagrangian approah. The trajetories of thepartiles are determined based on a fore balane [1℄:
ρp
dup

dt
= FD (ui − up) + g (ρ− ρp) (7.19)with ui and up the �uid and partile veloity, respetively, ρ and ρp the �uid and par-tile density, respetively. FD = 18µCDRe
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is the drag fore, dp is the partile diameter,
Re = ρdp
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is the partile's Reynolds number. CD = a1 + a2

Re
+ a3

Re2 is the dragoe�ient is alulated aording to [119℄, with a1, a2, and a3 numerial onstants forsmooth spherial partiles.In the applied stohasti traking approah, the turbulent dispersion is taken into aountby integrating the trajetories using the instantaneous �uid veloity: u = u + u′, with
u′ = ζ

√

2k/3 and ζ a normally distributed random number [1℄. The disrete random walkmodel assumes that a partile interats with a suession of disrete �uid phase turbulenteddies, whih are haraterised by veloity �utuations [1℄. The approah presented byLapin et al. (2004) [96℄ is however preferable, sine the disrete random walk modelshows a tendeny for partiles to onentrate in low-turbulene regions [1, 96℄.ImpellerThe earliest attempts to numerially simulate the �ow �eld in mehanially agitatedreators applied impeller boundary onditions to model the impeller [71, 145, 146℄. Inthis approah, the impeller is not physially modelled but represented either in terms of98



boundary onditions at the surfae of the volume swept by it or in terms of soure termsdistributed throughout its volume.Over time several general approahes have been reported in the literature on expliitsimulation of the �ow �eld in agitated reators. The main generalised approahes arethe multiple referene frame (MRF) approah [22℄ and the sliding mesh (SM) approah[120, 176℄. The �rst approah involves steady-state omputations and produes a time-averaged �ow �eld. The seond approah involves transient omputations to produea time-aurate �ow �eld. Both these approahes subdivide the omputational domaininto two non-overlapping regions, one region surrounding the impeller and the other rep-resenting the rest of the vessel (Figure 7.2).The MRF approah �rst simulates the �ow �eld for the inner domain surrounding theimpeller in a referene frame rotating with the impeller. The resulting �ow �eld on theinterfae separating the inner and outer regions then serves as boundary ondition tosimulate the �ow �eld in the outer domain in an inertial frame of referene (laboratoryframe of referene). This results in improved boundary onditions, whih are sequentiallyto be applied for the simulation of the �ow �eld in the inner domain. The proedureis repeated until a suitable numerial onvergene riterion is ahieved. The proedureinvolves steady-state approximation of essential periodi �ow, orretion for the relativemotion and azimuthal averaging are required before using the �ow �eld at the interfaeas boundary ondition for solution of the �ow �eld in the outer domain [22℄.The SM approah involves transient omputations to produe a time-aurate �ow �eld.The �ow equations in the inner domain are now written in a laboratory referene framewhilst it is the grid in this domain that is allowed to rotate. The rotation of the gridresults however in aeleration terms whih are ompletely equivalent to the body foresarising in non-inertial frames. The grid in the outer domain is stationary. The two regionsare impliitly oupled at the interfae via a SM algorithm whih takes the relative mo-tion between the two domains and performs the required interpolation into aount [120℄.However, whereas the MRF approah has as undesirable feature that speies in the innerdomain are transported relative to the impeller motion, the sliding mesh approah is,due its transient omputation, omputationally demanding. Therefore, it was opted toapply boundary onditions to model the impeller. The momentum soure distributed99



Figure 7.2: Side view and top view of an inner (left �gure) and outer region (right �gure)100



throughout the impeller is given by:
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VR (7.20)with R the impeller radius, X the x-distane from the enter of the rotation ax , Y − Y0the y-distane from the enter of the impeller, VR the impeller tip speed, D the impellerblade thikness, and ρ the physial density. The impeller rotational speed was 115 RPM.7.3 Results and disussion7.3.1 FrameworkThe developed approah to struturedly and segregatedly desribe the biophase is de-pited in Figure 7.3. Herein represent the blue bloks operations that are performedby FluentR© (ANSYSR©, USA) typially linked to proesses related to the hydrodynam-is and the transport of partiles and hemial speies in the large-sale bioreator andthe yellow bloks represent operations that are performed by MatlabR© (The Mathworks,USA) related to the alulation of the mirobial systems and the alulation of the sub-strate and or spae dependent funtions for the hemial speies' soure term, Sm
q .The rationale of the method presented here is that information on the transport ofmetabolites in and out the mirobial ells of mirobial ells in the neighbourhood of eahother, both in terms substrate onentration data and position data may be used toalulate the average/overall transport of metabolites in and out of the mirobial ellsat a position, in this way only a limited number of partiles has to be traked in orderto obtain a good idea of the transport of metabolites in and out of the mirobial ellsthroughout the large-sale bioreator, sine the dynamis of the overall system an beaptured by loally averaging out the behaviour of this limited number of partiles overthe population.In this way it is possible to separate the solving of proesses of ompletely di�erent na-ture, i.e., proesses related to the biologial system and those related to transport of�uids, partiles, and substrates, whih typially require a di�erent solver. Operationsrelated to the hydrodynamis and the transport of partiles and hemial speies in the101



Figure 7.3: Shemati overview of the applied approah in order to struturedly andsegregatedly desribe the biophase. The blue bloks represent operations that are per-formed by FluentR© (ANSYSR©, USA) and the yellow bloks represent operations thatare performed by MatlabR© (The Mathworks, USA).
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large-sale bioreator were alulated by FluentR© (ANSYSR©, USA) and operations re-lated to the alulation of the mirobial systems and the alulation of the substrateand/or spae dependent funtions for the hemial speies' soure term Sm
q , were per-formed by MatlabR© (The Mathworks).Another advantage of the proposed method is that the number of partiles that has tobe traked an be signi�antly redued, sine every �nite volume in the alulation griddoes not have to be populated with a number of partiles in order to avoid statistialerror on the solution. Even for a three-dimensional simulation of a stirred bioreator,instead of the two-dimensional simulation presented here, the to be traked number ofpartiles is expeted to be muh smaller than the 105 partiles traked by Lapin et al.(2006) [97℄.Every time step of the unsteady simulation, the position of all partiles, alulated by Eq.7.19, and the there reigning environmental onditions, alulated by the salar transportequation Eq. 7.10, were reorded. Every n time steps these data were used to alulatethe mirobial onversions in the bioreator and to establish a orrelation between theseonversion rates and the substrate onentrations. A onise overview of the individualsteps will be given below.Mirobial modelFor every miro-organism i in the large-sale bioreator the prodution and onsumptionrates of metabolite m, qm

i , have been alulated by the yberneti model of Saha-romyes erevisiae of Jones and Kompala (1999) [83℄ (Eq. 7.21, Figure 7.4), using theextraellular onentration data ϕmq,i (t) olleted along this partile's trajetory in thelarge-sale bioreator, see also Figure 7.3:
ẋi = f

(
xi, p, ϕ

m
q,i (t) , ui, vi

)
→ qm

i (7.21)With u and v the yberneti variables that ontrol enzyme synthesis and ativity, respe-tively, p the model's parameters, and xi the intraellular state variables linked to thispartile, e.g., the intraellular metabolites and enzymes. In order not to unneessarilyompliate things, only the proesses gluose fermentation and gluose oxidation were103



.Figure 7.4: Shemati overview of the yberneti modelonsidered, the rates of these proess are given by r1v1 and r2v2.Additional heks have been implemented to verify whether the partiles are still presentin the alulation grid and to verify whether the integration of the mirobial system hasbeen suessful, if this is not the ase the data from this partile were disarded.7.3.2 Approximate modelSubsequently, a orrelation was established between the spei� prodution and on-sumption rates q of miro-organisms and the substrate onentrations observed by miro-organisms:
q = f1

(
ϕmq )+ ε (7.22)First, due to the typial nature of prodution and onsumption rates in funtion ofsubstrate onentration onentration data, e.g., saturation for substrate onentrationvalues ϕmq ≫ Kϕmq , with Kϕmq the a�nity onstant, and the rapid hanges in produtionand onsumption rates in funtion of substrate onentration data for substrate onen-tration values ϕmq ≪ Kϕmq the substrate onentration data were transformed using Eq.7.23: 104



xi = log10

(
ϕmq,i + 1e− 4

)
+ 4 (7.23)The substrate onentration range was then subdivided into a number of regions. Foreah of these regions the parameters b1, b2, x0, and a of the nonlinear funtion in Eq. 7.24were identi�ed, using a loal nonlinear optimisation algorithm. As initial estimates forthis nonlinear optimisation the parameter values that were alulated during the previousiteration were used or when no parameter values were available, these initial values wereimmediately identi�ed from the data.

q = b1 −
b2

1 + exp
(
−x−x0

a

) (7.24)7.3.3 Quality hekThe ability of these nonlinear funtions to desribe the onversion data as a funtionof substrate onentration has been veri�ed. Speial attention has been devoted to thepitfalls using the proposed tehnique. Therefore, it was veri�ed whether loal lak-of-�tourred or distint spatial behaviour was averaged out.Loal lak-of-�tIn an attempt to avoid loal lak-of-�t, i.e., substrate region for whih the nonlinearapproximation does not yield an adequate desription of the data, the substrate spaewas subdivided into a number of subspaes. For eah of these subspaes i, it was veri�edwhether the mean and the variane of the residuals ε, with ε the di�erene between thealulated onversion rate, Eq. 7.21, and the onversion rate alulated by the approx-imate model, Eq. 7.24, were signi�antly di�erent than the residuals of the rest of thepopulation of partiles j, Eqs. 7.25 and 7.26, respetively.
t =

εi + εj
√

σ2

i

ni
+

σ2

j

nj

≤ tα
2

,dfi,dfj
(7.25)

fα
2

,dfi,dfj
≤ f =

σ2
εi

σ2
εj

≤ f1−α
2

,dfi,dfj
(7.26)105



If so, this data set was treated separately, i.e., separate funtions were established to linkthe onsumption and prodution rates to the environmental onditions.
q = f2

(
ϕmq )+ ε if ϕmq ∈ SSi

ϕ (7.27)
Undesired averaging out distint spatial behaviourIn an attempt to avoid averaging out distint behaviour in funtion of spae oordinates,for eah of the substrate subspaes the data were lustered aording to spae oordi-nates, using a k-means lustering method [86℄. It was veri�ed whether the mean and thevariane of the residuals of these lusters were signi�antly di�erent than the residualsof the rest of the population of partiles. If so, this data set was treated separately.The appropriate approximate model is then used as soure term, Sm

q , in the salar trans-port equation Eq. 7.10, to alulate the substrate �eld in the large-sale bioreator.7.3.4 Case studyTo illustrate the approah presented above a large-sale bioreator was simulated two-dimensionally, where the biophase was desribed by the yberneti model of Jones andKompala (1999) [83℄. Only gluose was onsidered as arbon-soure and oxygen wasassumed to be abundantly present. Gluose was ontinuously and onstantly added nearthe air-liquid interfae of the large-sale bioreator. The initial biomass onentrationwas about 15 g/L. The resulting substrate �eld of gluose in the large-sale bioreatorsis depited in Figure 7.5, when the �nal biomass onentration was about 22 g/L.About 700 partile were introdued in the bioreator. Inreasing this number further didnot ontribute to a more adequate desription of the system. For eah of these partilesthe transport of metabolites in and out of the mirobial ell was alulated, and multiplenonlinear funtions were used to relate the substrate onentration data to the mirobialonversion data. Typial results of this proedure are depited in Figure 7.6. Due tothe muh slower dynamis of enzyme synthesis and degradation in omparison with the106



observed environmental variations, the ellular enzyme levels are approximately onstantin the population of traked miro-organisms, whih explains the very similar behaviourof the individual mirobial ells when exposed to the same substrate onentration.Additional attention has to be devoted to onentration data that were not representedduring the averaging out proedure when alulating the average/overall transport ofmetabolites in and out of the mirobial ells. Suh problems are however typially ex-peted to our near the onentrated in�uent inlet loation, where due to the largesubstrate gradients an underrepresentation of miro-organisms is found. However, on-sidering the typial nature of prodution and onsumption rates in funtion of substrateonentration data, e.g., saturation for substrate onentrations ϕmq,i ≫ Kϕmq this prob-lem an partially be avoided by using approximate funtions whih typially re�et suhsaturation phenomena.The mirobial model used in this study is not that omplex, ertainly not ompared tothe mirobial model Lapin et al. (2006) [97℄ used in their study. However, based on anextensive literature searh for dynami metaboli models, none of them appeared to bereally suitable to properly desribe the biophase in large-sale bioreators. Next to theuse of a mirobial model that adequately desribes the biophase in large-sale bioreators,the inorporation of the third dimension would be bene�ial to obtain a more realistidesription of the studied large-sale bioreator.It should be lear that even the proposed method to desribe the biophase in a La-grangian way is omputationally demanding. Therefore, to speed up alulations twostrategies have been followed. Firstly, the simulation jobs were distributed over a om-puter luster, onsisting of Intel Pentium 4s (CPU 3GHz, 1GB ram), i.e., the trakedpopulation was subdivided into 6 groups ontaining nearly an equal number of partiles.These 6 sub-experiments, solving the mirobial model for every partile of that group,were alloated to nodes in the alulation grid. Seondly, to minimise the time for thenonlinear optimisations the parameter values, alulated during the previous iteration,were used as initial estimates or if no suh values were available these initial values wereestimated immediately from the data. Both measures redued the alulation time. Itis expeted that further subdividing of the tasks to be performed an further redue thetime needed for the alulations. 107



Figure 7.5: Substrate �eld in the large-sale bioreator (g gluose/L)
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Figure 7.6: The alulated rate for r1v1 by the yberneti model for all traked partiles(x) in funtion of transformed S1 onentration (g gluose/L) and the approximate model
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7.4 ConlusionsAn averaging out approah has been developed to desribe a large-sale bioreator in anEulerian-Lagrangian way. A neessity, as the stohasti nature of partile transport inombination with the fast metaboli response to the observed fast hanging environmen-tal onditions will result in a heterogeneous population of ells.However, solving the resulting highly nonlinear system, a result of the set of intraellularbalane equations and the exhange terms aounting for the transport of metabolitesin and out of the ell, is not trivial. To deal with the latter problem an averaging outapproah has been developed. By averaging out the behaviour of a limited number ofells over the whole population it is already possible to get a good idea of onversionsthroughout the large-sale bioreator.
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Chapter 8
Design of a saled-down reatorusing omputational �uid dynamis
8.1 IntrodutionIn view of optimising the performane of a large-sale ulture, i.e., saling-up, a thor-ough understanding of the mehanisms responsible for the deteriorated performane oflarge-sale ultures in omparison with laboratory-sale ultures and of their relativeimportane is useful. Therefore saling-down is a useful approah [174℄: by mimikingon a laboratory-sale the large-sale onditions, this approah attempts to antiipatethe outome on a large-sale. For instane, in suh laboratory-sale simulation the spa-tiotemporal heterogeneity, whih is harateristi for large-sale reators [139, 221℄, ismimiked. This an be done in a single reator [33, 121℄ or by onstruting a loop oftwo ompletely mixed reators or of a ompletely mixed reator and a plug �ow reator[63, 76, 131℄ or by means of a tubular loop reator [133℄. Mann et al. (1995) [110℄ intro-dued the network of zones reator, whih omprises a large number of interonnetedompartments. Whether suh a set-up will be popular in pratise is doubtful, due toits relative omplexity. Finally, Delvigne et al. (2005, 2006) [44, 45℄ ame up with astill di�erent approah, using mixing models and irulation models, but though theirset-up is able to mimi marosopi variables as mixing time and irulation time, theenvironmental onditions enountered by miro-organisms in their saled-down reatorsigni�antly di�erred from those found in the studied large-sale bioreator.It is thus still unlear how representative the urrently available saled-down reators are111



for the large-sale reators. Therefore, this study aims at designing a more representativesaled-down reator, whih better mimis the harateristi onditions in a large-salebioreator, by making use of substrate onentration data observed by miro-organismsduring their journey through a large-sale bioreator. These data were obtained duringa omputational �uid dynamis simulation of a large-sale bioreator.In addition, the proposed saled-down reator attempts to ompromise between min-imising the saled-down reator's omplexity and obtaining a realisti imitation of thelarge-sale onditions. Therefore, it was opted to study a ontrolled system onsisting oftwo ontinuous stirred-tank reators in a loop, as suh a set-up still allows to exploit thenaturally ourring phenomenon of blending distint streams in large-sale bioreators.The approah is shematially depited in Figure 8.1 and onsists of 3 steps:1. An in silio large-sale fermentation is performed using a omputational �uid dy-namis model. For eah partile, whilst it irulates throughout the large-salereator, its position [r, z, θ] and the substrate onentration reigning at that posi-tion ϕm
q are reorded.2. These time series data [ϕm

q , r, z, θ
] of stohasti nature, are subsequently used forthe identi�ation of a hidden Markov model (HMM) that aptures the typialsubstrate onentration dynamis. This model will be used to steer the saled-down reator, omposed of a dynamially operated reator system onsisting oftwo ontinuous stirred-tank reators.3. A proper ontroller is designed to impose the substrate onentration time seriesalulated by the HMM on the two-reator system. Finally, the onentration timeseries data observed by a partile in the saled-down reator are ompared withthese olleted in the large-sale reator.

A onise overview of these 3 steps will be given below.112



Figure 8.1: Shemati overview of the proposed approah to design a saled-down reator8.2 Materials and methods8.2.1 Computational �uid dynamisThe reader is referred to Subsetion 7.2.1 for a desription of the studied large-salebioreator and for details on the omputational �uid dynamis model.8.2.2 Hidden Markov modelThe seond step is the identi�ation of a hidden Markov model (HMM) (Figure 8.1) thataptures the typial onentration dynamis observed by miro-organisms in the large-sale bioreator. HMMs are espeially known for their appliation in temporal patternreognition. Suh as speeh, musial sore following, and bioinformatis [50, 141℄ beauseof their ability to apture information from series of data. For this reason a HMM willalso be used in this study.A hidden Markov model is shematially depited in Figure 8.2. Suh a model typiallyonsists of a �nite set of states {A,B}. Transitions between these states are governed bya set of probabilities alled transition probabilities (Eq. 8.1). With tij the probability ofgoing to state j from state i, here with i, j ∈ {A,B}. In a partiular state an outome or113



observation is generated aording to the assoiated probability distribution (Eq. 8.2).With eij the probability of emitting observation j from state i with i ∈ {A,B} and
j ∈ {1, 2, 3, 4}. If only the outomes are visible to an observer, the states are 'hidden' tothe outside. Hene, the name hidden Markov model.

T =

(

tAA tAB

tBA tBB

) (8.1)
E =

(

eA1 eA2 eA3 eA4

eB1 eB2 eB3 eB4

) (8.2)When state i is visited, an observation token is emitted from the state's emission prob-ability density distribution. Then aording to the state's transition probability densitydistribution one goes to the next state. The model thus generates two series of infor-mation. For example, the following series have been generated by the HMM depited inFigure 8.2:
B → A → B → B → A → A → A → A → A → A

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

2 3 4 2 1 2 2 1 1 3One series, BABBAAAAAA, is the underlying state path, as transiting from one stateto another. The other, 2342122113, is the observed sequene, eah observation beingemitted from one state in the state path [192℄.8.2.3 Controller shemeThis HMM will then be used to steer the onditions in the saled-down reator to mimithose of a large-sale reator (Figure 8.1). To impose the dynami behaviour of the re-sponse variables, as determined by the hidden Markov model, to the saled-down reatorsystem (shematially depited in Figure 8.3) a ontrol sheme has been applied to thesystem. To this end, a PID ontroller in ombination with an adaptive state feedbakontroller was used. 114



Figure 8.2: A shemati view of a HMM with states A and B and observations 1, 2, 3,and 4. The transition probabilities are represented by arrows between the states, e.g.,
tAB , and the emission probabilities are represented by arrows between the states and theobservations, e.g., eB4.
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The values of the response variables αij (the fration of broth to be transferred fromreator i to reator j), Si (the onentration of the substrate S in reator i), and VTOT(the umulative volume of reator 1 and 2) will be ontrolled by adjusting the values ofthe manipulated variables Qij (the �ow from reator i to reator j), QW (the total waste�ow, whih is the sum of QW1
= QW

V1

V1+V2
and QW2

= QW
V1

V1+V2
), QDi

(a �ow withoutany substrate to dilute reator i), and pulsei (a substrate pulse in reator i).PID ontrollers attempt to orret the error ε between the value of a (measured) responsevariable x and its desired set point xSP :
ε =
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(8.3)
by taking the appropriate ontrol ations, v:
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(8.4)
with,

vi (t) = Kp
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(8.5)with αSP
ij in Eq. 8.3 given by: 116



αij =
tkl

tkl + tkm

(8.6)with k the state at the previous time step in reator i, and l and m the states at thepresent time step in reator j and i, respetively.A Proportional-Integral-Derivative (PID) ontroller is a generi lassial feedbak on-troller widely used in industrial ontrol systems. The PID ontroller alulation (algo-rithm) involves three tuning parameters: the proportional, the integral, and derivativevalues (Eq. 8.5) [47, 48℄. However, due to the general nature of PID ontrol, it does notguarantee optimal ontrol of the system.A full state feedbak ontroller is on the ontrary a modern ontroller. This ontrolleris, e.g., employed in feedbak ontrol system theory to plae the losed-loop poles of asystem in predetermined loations in the s-plane [48℄. Plaing poles is desirable beausethe loation of the poles orresponds diretly to the eigenvalues of the system, whihontrol the harateristis of the response of the system. Under ertain onditions (if thelosed-loop input-output transfer funtion an be represented by a state spae equation)it is possible to assign a value to the system's eigenvalues, whih allows to design thedynamis of the system. To this end the nonlinear system was linearised around thework point. A full state feedbak ontroller is a typial optimal ontroller in whih boththe deviation from the set point x− xSP and the ontrol ation u, neessary to ahievethis set point, an be penalised in the objetive funtion J through the matries W1 and
W2, respetively:

J =

∫ ((
x− xSP

)T
W1

(
x− xSP

)
+ uTW2u

)

dt (8.7)The ontrol ation is then given by Eq. 8.8. The ontroller sheme is depited in Figure8.4.
u = v +K

(
x− xSP

) (8.8)117



Figure 8.3: Overview of the saled-down reator set-up

Figure 8.4: Overview of the overall ontrol sheme, onsisting of a PID ontroller and astate feedbak ontrol system 118



8.3 Results and disussion8.3.1 Partile's trajetoryIn order to get an idea about the environmental onditions miro-organisms are exposedto when travelling through a large-sale bioreator, the substrate onentration data wereolleted for multiple miro-organisms along their path through the large-sale bioreatordesribed in Chapter 7. A miro-organism's path during its journey in the reator isdepited in Figure 8.5. The substrate onentration data the partile enounters as afuntion of time are depited as well.8.3.2 Identi�ation of a HMMA typial onentration sequene enountered by a miro-organism in a non-ideally mixedbioreator is depited in Figure 8.5. Due to the stohasti nature of this sequene of on-entration data, HMMs are typially suitable to desribe suh data [141℄. Applying theterminology of HMMs to the ase presented here, the observations are the substrate on-entration data and the 'hidden' states are linked to zones in the large-sale bioreator(Subsetion 8.2.2).As mentioned before, the saling-down set-up presented here is a ontrolled system on-sisting of two ontinuous stirred-tank reators in a loop. Suh a set-up allows to exploitthe naturally ourring phenomenon of blending distint streams in large-sale biorea-tors.In the ontext of the saled-down reator presented here, these 'streams' are the brothremaining in reator i and the broth to be transferred from reator j to reator i, whenproeeding to the next time step. △t is the time between two transitions. A diret on-sequene of the use of two ompletely mixed reators is that no distintion an be madeanymore between the miro-organisms ontained in those 'streams' from the moment onthose 'streams' have been blended, thus between miro-organisms oming from reator jand miro-organisms that were already present in reator i. Consequently the memory ofthe miro-organisms stays restrited to the preeding state. The hoie for a �rst orderhidden Markov model is then obvious, as for suh a model the probability of a ertain119



Figure 8.5: A miro-organism's trajetory in the large-sale bioreator. Upper �gure:trajetory of a miro-organism through the reator. Lower �gure: substrate onentrationdata the miro-organism enountered as a funtion of time.
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state at time step n + 1 should only depend on the state of the previous time step n.However, then one has to be areful that all assumptions are satis�ed,
P (zone i | zone j | zone k) = P (zone i | zone j | zone l) (8.9)i.e., the probability of transiting from zone k to zone j, and subsequently from zone jto zone i should be equal to the probability of transiting from zone l to zone j, andsubsequently from zone j to zone i.The determination of the states and observations of this �rst order hidden Markov modelwill be disussed below. The reator spae has to be subdivided into a number of zones,e.g., Figure 8.7. These zones have been obtained by k-means lustering [86℄ aordingto both spae oordinates and substrate onentrations, i.e., loations in the neighbour-hood of eah other with similar substrate onentrations belong to a partiular zone ofthe large-sale reator.Subsequently, for every miro-organism, the two data series (one series with positionaland one with substrate onentration data), olleted during the omputational �uiddynamis simulation of the large-sale bioreator (Figure 8.5) were transformed to theorresponding sequenes in terms of states and observations. For instane, if a miro-organism is loated in zone j at time n△t, then position n in the state sequene beomes

j; if this miro-organism is loated in zone k at time (n+ 1)△t, then position n+1 in thestate sequene beomes k. Akin, the observation sequene was built. For eah zone 10disrete substrate onentrations have been hosen, uniformly distributed over the zone'ssubstrate range. Subsequently, eah of the observed onentrations in the observationsequene was replaed by the number representing the most representative of these 10substrate onentrations.Based on the data olleted along the miro-organism's trajetory through the large-salebioreator, i.e., states/zones and observations/disrete onentrations, the transition andemission probability density distributions were determined.The hoie of the number of zones and the time between two transitions is nontrivial.Therefore, for every {Ci,△tj} ombination, with Ci the number of zones ∈ {10, 20, ..., 100}and△t the time step in s between two transitions ∈ {1, 5, 10, 20}, a hidden Markov model121



has been identi�ed and the trajetories generated by these HMMs have been omparedwith the trajetories olleted in the large-sale bioreator.The HMM that has been used to steer the saled-down reator was seleted using follow-ing riteria: the average time of exposure to identi�ed onentration ranges expressed interms of perentage of total time (these onentration ranges were quite arbitrarily ho-sen to be [0 g
L
, 1 g

L

[, [1 g
L
, 2 g

L

[, ... ), the average number of time steps a miro-organismis sequentially exposed to that onentration range, and for some of the andidate HMMsthe trajetories themselves. The higher the similarity in terms of these riteria the moreadequate the HMM is judged to mimi the substrate onentration data observed bymiro-organisms in the large-sale bioreator.Finally, 70 zones were seleted, whih are depited in Figure 8.7, and a time step of10 s was retained. The results for the seleted HMM are depited in Figure 8.6. This�gure shows that there is a reasonable agreement between the trajetory generated bythis HMM and the trajetories truly observed in the large-sale bioreator in terms ofthe aforementioned riteria. The seleted HMM is thus onsidered to be able to desribethe substrate onentration dynamis observed by miro-organisms in the large-salebioreator and an onsequently be used to steer the saled-down reator.8.3.3 A HMM driven saled-down reatorThe seleted HMM was used to steer the saled-down reator. Every △t s the HMMgenerates for eah bioreator a new state and a new observation. The new elements of thestate sequene and observation sequene, have to be transformed in terms of the responsevariables. For example, the fration of broth to be transferred between the reators isgiven by Eq. 8.6 and the substrate onentration set point in reator i is given by:
SSP

i = (e− 1)

(

Smax,state l − Smin,state l

)

9
+ Smin,state l (8.10)with e the observation e ∈ {1, 2, ..., 10} generated by the HMM and Smax,state l and

Smin,state l the maximal and minimal substrate onentration in zone/state l.This hidden Markov model sets the desired set points for the response variables αij , Si,and VTOT . The evolution of the response variables S1, S2, α12, and α21 and their set122



Figure 8.6: Comparison of the series of disrete substrate onentration data 'observed'by miro-organisms in the large-sale bioreator and generated by the seleted HMM:A1 to A5: Series of disrete substrate onentration data (×) observed by 5 miro-organisms in the large-sale bioreator; A6: Series of disrete substrate onentration data (×) generated by the seleted HMM;B1 and B6: the time of exposure (in terms of perentage total time) of an organism to the identi�edsubstrate onentration ranges for the trajetory in sub�gure A1 and for the trajetory in sub�gureA6, respetively; B3 and B4: the average time of exposure (in terms of perentage total time) of anorganism to the identi�ed onentration ranges for series of disrete substrate onentration data in thelarge-sale bioreator and generated by the seleted HMM, respetively; B2 and B5: the average numberof time steps -1 a miro-organism is sequentially exposed to the identi�ed onentration ranges for seriesof disrete substrate onentration data in the large-sale bioreator and generated by the HMM123



Figure 8.7: The identi�ed zones in the large-sale bioreatorpoints is given in Figure 8.8. To re�et more or less realisti onditions, onstraints on themanipulated variables have been inorporated as well (maximal �ow rate QD 200 mL
s
).As shown, the response variables and their set points agree reasonably well. However,to properly assess the representativeness of the developed saled-down reator, it seemsmore orret to ompare the trajetory from a miro-organism in the large-sale biore-ator (Figure 8.6) with one from a miro-organism in the saled-down reator (Figure8.9). From these �gures, one an onlude that the substrate onentrations observed bya miro-organism in the saled-down reator resemble those of a miro-organism in thein silio large-sale bioreator. This is ertainly the ase when one ompares the perfor-mane to other saled-down reators, e.g., [45℄. A more quantitative evaluation of thisresemblane would be desirable. However, sine a miro-organism is a highly nonlinearsystem it will be neessary to evaluate the response of this highly nonlinear system tothe substrate onentration trajetories observed by miro-organisms in the large-salebioreator with those observed by miro-organisms in the saled-down reator. Othermeasures seem not �t for this aim.The main advantage of the developed saled-down reator is thus that it tries to ompro-124



Figure 8.8: The saled-down reator: evolution of response variables (-) and their setpoints (- -).

Figure 8.9: A sequene of onentration data observed by a miro-organism in the saled-down reator and its loation in the saled-down reator, onsisting of two ontinuousstirred-tank reators 125



mise between the saled-down reator's omplexity and obtaining a realisti imitation ofthe onditions met in large-sale bioreators and does not fous on marosopi variablesas mixing time whih in general yield an inorret assessment of onversion e�ienies.To impose the dynami behaviour of the response variables, the manipulated variableswere stringently ontrolled. The use of a maximal value for the substrate onentrationset points is reommendable, sine the spei� onversion rates typially reah a plateauat substrate onentrations that are muh larger than the a�nity onstant. This hasnot been done. Obviously, suh a modi�ation would signi�antly redue the ontrole�orts, both in terms of the waste �ow QW , of the �ows to dilute the broth in boththe reators QD1
and QD2

, and of the substrate pulses pulse1 and pulse2. Sine thenno surplus substrate would have to be added or removed. Partly due to these surplusontrol ations, the biomass �ushes out from the present set-up and biomass retentionwould be needed, e.g., by means of a membrane.8.4 ConlusionsA method has been proposed to design a saled-down reator system on the basis ofonentration data olleted along a miro-organism's path in a large-sale bioreator,rather than on the basis of marosopi variables as mixing time and irulation time,whih are far from ideal to desribe improper mixing and onversion e�ienies. Thesedata were obtained during a omputational �uid dynamis simulation of a large-salebioreator.The proposed set-up allows to imitate similar onditions in terms of substrate onen-trations as those ourring in the large-sale bioreator. However, due to the stringentontrol ations, it will be neessary to ensure biomass retention in the saled-down rea-tor in order to avoid the �ushing out of biomass.The pursuit to rigorously mimi the large-sale onditions is a Moloh. Sine for examplea ut-o� value for the substrate onentration set points ould be used, sine the spei�onversion rates typially reah a plateau at substrate onentrations that are muhlarger than the a�nity onstant. Suh a modi�ation would signi�antly redue theontrol e�orts. 126



Chapter 9
Conlusions and perspetives
Metiulously optimised miro-organisms for the prodution of a variety of target om-pounds, optimised under highly reproduible and perfetly ontrolled laboratory-saleonditions, perform suboptimally when the proess is saled-up. This is due to biologi-al, hemial, and physial proesses whih all are a�eted when saling-up. The loseinteration of these proesses of various nature renders the study of large-sale bioreatorsomplex, as it is impossible to really unouple these proesses, sine the time onstantsof those diverse proesses are of the same order of magnitude: transport phenomenain�uene the loal onditions whih in turn in�uene mirobial metabolism, whih inturn in�uene loal proess onditions. In view of the latter, methods have been devel-oped and applied in this study to investigate the biologially, hemially, and physiallyrelevant proesses that take plae in large-sale bioreators with a view to inreasinginsight in those proesses and evaluating their importane for the widely observed yieldredution.A detailed desription of the biophase in suh large-sale bioreators seems essential.To this end the state of the art tools for modelling metabolism, typially used in thedomain of metaboli engineering, were reviewed in Chapter 2, i.e., stoihiometri net-work analysis (elementary �ux modes, extreme pathways, and optimal �ux distribution),steady-state metaboli modelling (metaboli �ux analysis and �ux balane analysis),dynami metaboli modelling, and multivariate statistis. In the ontext of metaboliengineering, one should be aware that the usefulness of those tools to optimise miro-bial metabolism for overproduing a target ompound depends predominantly on theharateristi properties of that ompound. Due to their shortomings not all meth-127



ods are suitable for every kind of optimisation; issues like the dependene of the targetompound's synthesis on severe (redox) onstraints, the harateristis of its formationpathway, and the ahievable/desired �ux towards the target ompound should play a rolewhen hoosing the optimisation strategy.The vast variety of biohemial pathways miro-organisms dispose of, in order to ful�ltheir growth and reprodution requirements under a wide range of environmental ondi-tions, renders them hard to fathom. Next to this tremendous amount of pathways, thelak of extensive (aurate) metabolomi, proteomi, and transriptomi data sets alsohampers the use and limits the usefulness of those mathematial methods.For example, dynami metaboli models might be useful tools to optimise mirobialmetabolism, as these models do inorporate kinetis and the regulation of enzymatireations. However, the drawbaks of this approah are still numerous. Models relyingon in vitro derived mehanisti equations are overparameterised for the available data,nowadays typially olleted during only one perturbation experiment. The alternative,approximative modelling is no deus ex mahina either as in order to ollet informativedata for parameter identi�ation it might be neessary to radially perturb the ell, prob-ably way beyond the metabolite range for whih approximative kineti formats yield anadequate desription of the true kinetis. In addition, these dynami metaboli models,both mehanisti and approximative ones, zoom in on a limited part of the metabolism,whih impedes mass balane heks during transient onditions. Moreover, the behaviourof ofators is not yet modelled in a mehanisti manner, sine, for instane, the poolsize of the adenine nuleotides inexpliably hanges during the transition from a gluose-limited to a gluose-abundant ulture. Despite the rise of exhange tools like the systemsbiology markup language (SBML) [80℄, one thus should be aware that the 'plug and play'harater of suh model(s) (strutures) remains limited.The �nal aim of a dynami model-based approah is thus target identi�ation for opti-mising a prodution host. These targets are those reations that ontrol the �ux througha reation network, whih an be assessed by alulating the �ux ontrol oe�ients.Hene, assessing the unertainty of the alulated �ux ontrol oe�ients for the pur-pose of deision making/target identi�ation in metaboli engineering is useful. Thisunertainty may be the result of both an unertain model struture and of unertainparameter estimates. A Bayesian approah has been applied to properly assess this un-128



ertainty (Chapter 5).Multiple approximative kineti formats have been used to identify the �ux ontrol oef-�ients of the studied small network model. The tested approximative kineti formats,the linlog kinetis, the linear in metabolite and enzyme levels kinetis, and the GMAtype power law kinetis adequately desribed the data, whih is somewhat ontraditoryto Heijnen (2005) [74℄ who points out the lear advantages of the linlog kinetis over theother ones. As shown, the model struture has a non negligible e�et on the probabilitydensity funtion of the �ux ontrol oe�ients and onsequently it is worth the e�ort tosearh for the true model struture, e.g., by means of geneti programming and optimalexperimental design for model disrimination.The usefulness of partial least squares regression as a tool to optimise mirobial metabolismhas been demonstrated using elementary �ux mode data in Chapter 3. This approah al-lowed to rapidly pinpoint, without the need for experimental data, potential gene targetsfor suinate biosynthesis in Esherihia oli. The identi�ed targets are in agreementwith literature data, where modi�ation of the expression of these genes proved to bebene�ial to inrease suinate yield. This approah has therefore passed a �rst valida-tion round. Further evaluation of the method is however needed.Cyberneti models were �nally retained in this study, sine it seemed the best method todesribe the biophase in large-sale bioreators. Indeed, a miro-organism in a large-salebioreator will develop a harateristi metabolomi and proteomi make-up, whih willallow maximisation of its growth under those onditions, e.g., mixed aid fermentationand over�ow metabolism. This agrees well with the whole idea of yberneti modelsthat assume that a miro-organism tries to optimise its behaviour, e.g., with respet togrowth or substrate uptake. By alloating the resoures a miro-organism disposes of tothese enzymes yielding the optimal performane. Speial attention has been devoted tothe yberneti ontrol law ruling enzyme ativity (Chapter 4). Several alternatives havebeen derived and evaluated for the onventionally used mathing law. However, due tothe limited knowledge, issues linked to the model struture, and the lak of appropriatedata it was not possible to distinguish between the rival ontrol laws.Although the approah seems appealing, given the present lak of knowledge, detailedexperimental omis data, and some of the aforementioned problems linked to 'onven-129



tional' dynami metaboli modelling, there still remain some issues unresolved, whihwill require further researh.Tools have been developed in this Ph.D. study whih failitate the gathering of data. Amodus operandi of the Biosope has been proposed in Chapter 6 for gathering data tobuild and validate a dynami metaboli model of periodially operated ultures. Suhmodels an be useful for the optimisation of periodially operated ultures as they help togain further insight in the omplex metaboli interations and they an predit the e�etof altered onditions. This set-up allows performing multiple perturbation experimentswithout perturbing the periodially operated ulture itself, by ontrolling the openingand losing of the sample ports of the Biosope. The perturbing agent, the sample timeand the initial state prior to the perturbation are powerful degrees of freedom to max-imise the information ontent of the olleted data.A method has been proposed in Chapter 8 to design a saled-down reator on the basis ofsimulated onentration data olleted along a partile's path in a large-sale bioreator,rather than using marosopi variables as mixing time and irulation time, whih arefar from ideal to be linked with degrees of onversion. The proposed ontrolled set-uponsisting of two ontinuous stirred-tank reators allows to imitate similar onditionsas those that our in large-sale bioreators. It will however be neessary to ensurebiomass retention, e.g., by a membrane, in the saled-down reator in order to avoid the�ushing out of the biomass. The pursuit to rigorously mimi the large-sale onditions isa Moloh, sine for example a maximal value for the substrate onentration set pointsould be used, as the ellular response to substrate onentrations muh larger than thea�nity onstant reahes a plateau. The appliation of suh a maximal value for thesubstrate onentration set points would also signi�antly redue the ontrol e�orts.Finally, a method has been proposed in Chapter 7 to desribe the biophase in large-salebioreators by means of omputational �uid dynamis using segregated models, in whihmiro-organisms are not onsidered idential and in whih the ell is onsidered stru-tured, i.e., the internal omposition and struture of the miro-organisms is onsidered.Due to the stohasti nature of partile transport and the fast metaboli response to theobserved fast hanging environmental onditions, this intraellular make-up is expetednot to be idential for all miro-organisms. Desribing the biophase in a Lagrangian way,i.e., following the ell's path through the reator, is omputationally quite demanding130



beause a set of di�erential equations is linked to every miro-organism. However, byonsidering that the overall piture is merely the result of all individual miro-organismsit is only needed to trak a limited number of partiles in order to obtain a good ideaof the �uxes in and out of the ells throughout the large-sale bioreator. Indeed, thedynamis of the overall system an be aptured by loally averaging out the behaviour ofthis limited number of partiles over the whole population. Two-dimensional simulationshave been performed of the large-sale bioreator under study by means of omputational�uid dynamis. Obviously, the inorporation of the third dimension would be bene�ialto obtain a more realisti desription of the large-sale bioreator. However, this simpli-�ation does not derogate from the proposed method.With respet to the eluidation of the mehanisms underlying the observed yield redu-tion in large-sale bioreators the gathering of intraellular data seems essential. Thegathering of (13C, 32P , and/or 2H) dynami labelling data under large-sale fermenta-tion onditions, possibly mimiked by a saled-down reator will be useful to study theellular response to the observed fast hanging environmental onditions. these data willalso help to further investigate the hypotheses that attempt to explain the mehanismsresponsible for the widely observed yield redution in large-sale bioreators. Some ofthe methods presented in this work will be useful in suh investigations.
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Summary
Saling-up fermentation proesses from laboratory-sale onditions to large-sale ondi-tions generally results in a redution of the overall proess yield and produtivity. Thisdue to the interplay of biologial, hemial, and physial fators. In this work, di�er-ent tools have been developed and applied whih may help to eluidate the mehanismsausing this generally observed yield redution.Then, tools to desribe miro-organisms in detail are neessary. Hene, the state of theart approahes for metaboli modelling, typially used in the domain of metaboli en-gineering, were reviewed. The strategy to be followed for optimising a prodution hostfor overproduing a target ompound should predominantly depend on its harateristiproperties. In this respet, issues like the dependene of the target ompound's synthe-sis on severe (redox) onstraints, the harateristis of its formation pathway, and theahievable/desired �ux towards the target ompound should play a role when hoosingthe optimisation strategy. Still, due to the vast variety of biohemial pathways andthe lak of extensive data sets the usefulness of these mathematial tehniques remainslimited. In this Ph.D. study some of the reviewed methods have been applied, suh aspartial least squares, approximative metaboli modelling, and yberneti modelling.The usefulness of partial least squares regression has been demonstrated using elementary�ux mode data. It was possible to rapidly pinpoint potential targets for modi�ation ofthe mirobial prodution of suinate by Esherihia oli, without the need for experimen-tal data. The identi�ed targets are in agreement with the literature data (modi�ationof the expression of these genes proved to be bene�ial to inrease suinate yield). Thisapproah has therefore passed a �rst validation round. Further evaluation is howeverneeded. 155



Conversely, a dynami model-based approah fousses on the identi�ation of the �uxontrolling reations, whih are targets for geneti modi�ations. In view of deision-making in metaboli engineering, it is important to assess the unertainty on the alu-lated �ux ontrol oe�ients. Both an unertain model struture and unertain param-eter estimates an be the ause for the overall predition unertainty. For an illustrativepathway this unertainty has been properly assessed. Multiple approximative kineti for-mats have been used to identify the �ux ontrol oe�ients of the small network modelstudied. It has been shown that the applied model struture signi�antly in�uenes thedistribution of the �ux ontrol oe�ients.Miro-organisms in large-sale bioreators are haraterised by a partiular metabolomiand proteomi make-up, whih allows maximisation of their growth under those ondi-tions, e.g., mixed aid fermentation and over�ow metabolism. Sine this omplies wellwith the idea behind yberneti modelling, yberneti models were �nally retained todesribe the biophase in large-sale bioreators. The rationale of the yberneti shoolof thought is that miro-organisms are believed to optimise their behaviour, e.g., withrespet to growth or substrate uptake. This is ahieved by alloating, by means of aontroller, the limited resoures a miro-organism disposes of to these enzymes yieldingthe optimal performane. In spite of reent e�orts to inrease the robustness of the ap-proah, e.g., by introduing elementary �ux modes as intermediate level of ontrol, therestill remain some issues unresolved. For instane, several rival ontrol laws for enzymeativity have been derived. These rival ontrol laws had a di�erent no-ost ativity andare based on the fat that mehanisms have been reported in the literature for boththe ativation and inativation of enzymes, whih may have a ost. However, due thelak of appropriate data it was not possible to distinguish between those rival ontrol laws.Subsequently, set-ups are disussed whih may help to gather the neessary data to ex-perimentally study mirobial metabolism and to gather the neessary data with a viewto parameter identi�ation and model struture identi�ation. To this end, a modusoperandi of the Biosope is proposed to study mirobial osillating systems. A strat-egy has been proposed to ontrol the opening and losing of the sample ports, so thatthis equipment an also be used to ollet the samples from multiple perturbation experi-ments, without perturbing the mirobial osillating ulture from whih the ells are taken.A strategy to design a saled-down reator is outlined as well. The innovative aspet156



of the presented approah is that it attempts to mimi the environmental onditionsobserved by the miro-organisms, by making use of omputational �uid dynamis sim-ulation results, rather than to fous on marosopi variables, suh as irulation timeand mixing time, as those marosopi variables are far from ideal to be orrelated withdegrees of onversion. Suh saled-down reators allow to mimi on a laboratory-sale,the large-sale onditions in an attempt to antiipate the outome on a large-sale. Theproposed ontrolled set-up, a ontrolled system onsisting of two ontinuous stirred-tankreators in a loop, allows to imitate similar onditions as those that our in large-sale bioreators. To redue the ontrol e�orts one ould use a maximal value for thesubstrate onentration set points, sine the ellular response to environmental onen-trations muh larger than the a�nity onstant beomes saturated.Finally, a method has been proposed to use segregated models, in whih miro-organismsare not onsidered idential, and in whih the ells are strutured, i.e., the internal om-position and struture of the miro-organisms is onsidered, to desribe the biophasein large-sale bioreators using omputational �uid dynamis. The desription of thebiophase in a Lagrangian way, i.e., following the ell's path through the reator, is anobvious hoie sine the behaviour of a miro-organism is determined both by the reign-ing environmental onditions and its intraellular make-up. This intraellular make-upis expeted not to be idential for all miro-organisms, due to the stohasti nature ofpartile transport and the fast metaboli response to the observed fast hanging envi-ronmental onditions. Suh an approah is omputationally quite demanding beauseevery miro-organism is linked to a set of di�erential equations. However, by onsideringthat the overall piture is merely the result of all individual miro-organisms it is onlyneeded to trak a limited number of partiles in order to obtain a good idea of the on-sumption and prodution of metabolites throughout the large-sale bioreator. Indeed,the dynamis of the overall system an be aptured by averaging out the behaviour ofthis limited number of partiles over the whole population, hereby making use of priorknowledge about the mirobial behaviour.
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Samenvatting
Het opshalen van mirobiële ulturen van laboratoriumshaal naar produtieshaal leidtin de regel tot een redutie van de proesopbrengst. Dit is te wijten aan een samenspelvan biologishe, hemishe en fysishe fatoren. In dit werk werden vershillende me-thodes ontwikkeld die kunnen helpen bij het ontrafelen van de mehanismen die aan deoorsprong liggen van deze redutie.Voor zo'n studie zijn methodes die toelaten het mirobieel metabolisme in detail te be-shrijven, belangrijk. Daarom werd een stand van zaken opgemaakt van het metabolishmodelleren. Metabolishe modellen worden typish toegepast in het domein van me-tabolishe engineering voor de optimalisatie van produtiestammen met het oog op deoverprodutie van een doelmoleule. De afhankelijkheid van zijn synthese van redoxbe-perkingen, de karakteristieke eigenshappen van zijn syntheseroute en de bereikbare �uxrihting de doelmoleule zouden een rol moeten spelen bij de keuze van de optimalisatie-strategie.Het nut van partiële kleinste-kwadraten regressie werd geïllustreerd met behulp van ele-mentaire �ux mode data. Zo konden mogelijke doelwitten voor genetishe modi�atiegeïdenti�eerd worden met het oog op de mirobiële produtie van suinaat door E. o-li. De geïdenti�eerde doelwitten zijn in overeenstemming met de literatuur; in dewelkeaangetoond werd dat modi�atie van de expressie van deze genen leidt tot een verhoog-de suinaatopbrengst. Deze aanpak heeft daarom een eerste validatieronde doorstaan.Verdere evaluatie is evenwel nodig.Een dynamish metabolish model foust op het identi�eren van de snelheidsbepalendestappen in een reatienetwerk, wat typish doelwitten zijn voor genetishe modi�atie.Met het oog op het nemen van beslissingen in metabolishe engineering is het belangrijk159



om de onzekerheid omtrent de berekende snelheidsbepalende stappen adequaat te kunneninshatten. Deze onzekerheid kan zowel het gevolg zijn van een onzekere modelstrutuurals van onnauwkeurig gekende parameterwaarden. Voor een illustratief reatienetwerkwerd deze onzekerheid nagegaan. Meerdere approximatieve kinetieken werden gebruiktom de snelheidsbepalende stappen van het bestudeerde reatienetwerk te identi�eren.Hieruit bleek dat de modelstrutuur een signi�ante invloed heeft op de distributies vande snelheidsbepalende stappen.Miro-organismen in een produtieshaalreator worden gekenmerkt door spei�eke me-tabolishe en proteomishe niveaus die onder die ondities toelaten groei te maximalise-ren, bijvoorbeeld door over�ow metabolisme. Aangezien dit gedrag overeenstemt met hetonept dat aan de basis ligt van het ybernetish modelleren, werd dit type modellengebruikt om de biofase in dergelijke reatoren te beshrijven. De rationale ahter het y-bernetish modelleren is dat miro-organismen hun gedrag optimaliseren met betrekkingtot groei door de beperkte middelen waar de el over beshikt te investeren in die enzy-men die een optimaal gedrag verzekeren. Ondanks reente pogingen om de robuustheidvan de methode te vergroten, bijvoorbeeld door het introdueren van elementaire �uxmodes als intermediair regelniveau, blijven toh nog een aantal zaken onopgelost. Eenaantal ontrolewetten voor enzymativeit werden afgeleid en geëvalueerd. Deze rivalise-rende wetten worden gekenmerkt door een vershillende 'geen kost' ativiteit en steunenop het feit dat in de literatuur vershillende mehanismen voor ativatie en inativatievan enzymen werden beshreven, die een kost hebben. Door het gebrek aan geshiktedata was het evenwel niet mogelijk om tussen deze wetten een ondersheid te maken.Vervolgens werden experimentele opstellingen ontworpen die kunnen helpen bij het ver-garen van de nodige data om het mirobieel metabolisme te bestuderen en om de beno-digde data te verzamelen met het oog op het shatten van parameters en het identi�erenvan een geshikte modelstrutuur. Hiertoe werd een modus operandi voor de Biosopevoorgesteld, zodat dit apparaat ook kan worden aangewend om osillerende mirobiëlesystemen te bestuderen. Door het openen en sluiten van de staalnamepoorten zo teregelen dat enkel ellen worden geolleteerd met een zelfde geshiedenis, kunnen in deBiosope meerdere perturbatie experimenten worden uitgevoerd, zonder de osillerendemirobiële ultuur waarvan de biomassa afkomstig is, te verstoren. Dit versnelt uiteraardhet vergaren van data voor metabolishe modellering.160



Een strategie werd voorgesteld om een saled-down reator te ontwerpen. Het innova-tieve aspet van de voorgestelde aanpak is dat deze poogt de door miro-organismenwaargenomen omgevingsomstandigheden in produtieshaalreatoren na te bootsen, eer-der dan te foussen op marosopishe variabelen als mengtijd en irulatietijd. Dezemarosopishe variabelen zijn immers verre van ideaal om georreleerd te worden aanomzettingsgraden, waar het uiteindelijk om gaat. Een dergelijke saled-down reatorlaat toe om op laboratoriumshaal de omstandigheden na te bootsen in een produtie-shaal reator, zodat reeds geantiipeerd kan worden op het resultaat op produtieshaal.De voorgestelde experimentele opstelling, die uit twee geregelde reatoren in een kringbestaat, laat toe om gelijkaardige omstandigheden na te bootsen als die in produtie-shaalreatoren. Om de regelaties te redueren zou men een maximale waarde voor desubstraatonentratie wenswaarde kunnen gebruiken, aangezien de ellulaire respons opsubstraatonentraties veel groter dan de a�niteitsonstante een plateu bereikt.Tot slot werd een methode voorgesteld die toelaat om zowel de interne strutuur ensamenstelling van miro-organismen als de heterogeniteit van de mirobiële populatiein een produtieshaalreator via stromingsdynamia modellen te beshrijven. Bij deLagrangiaanse aanpak wordt het pad van een miro-organisme doorheen de reator ge-volgd. Daar het gedrag van een miro-organisme zowel wordt bepaald door de heersendeomgevingsomstandigheden als door zijn intraellulaire toestand, ligt het voor de handom deze aanpak te gebruiken voor het beshrijven van de biofase in zo'n reator. Doorde stohastishe aard van partikeltransport en de snelle metabolishe respons op de snelvariërende omgevingsomstandigheden, wordt deze toestand niet geaht identiek te zijnvoor alle miro-organismen. Een dergelijke aanpak is evenwel omputationeel veeleisend,aangezien elk miro-organisme gelinkt is met een stelsel di�erentiaalvergelijkingen. Doorte beshouwen dat het gedrag van de totale populatie niet meer is dan de resultantevan de individuele miro-organismen is het enkel nodig om een beperkt aantal ellen tevolgen om een goed idee te krijgen van de onsumptie- en produtiesnelheden doorheende reator. De dynamiek van het systeem kan immers gevat worden door het gedrag vandit beperkt aantal ellen lokaal uit te middelen over de gehele populatie. Hierbij werdgebruik gemaakt van voorkennis omtrent het mirobiële gedrag, bijvoorbeeld het feit datsaturatie van de substraatopnamesnelheid optreedt bij substraatonentraties die velemalen groter zijn dan de a�niteitsonstante.
161





Curriulum vitae
Jo MaertensStudies2007 - Present: Sienti� ollaborator at the Department of Applied Mathematis, Bio-metris and Proess Control (Ghent University)2003 - 2007: Researh assistant of the Fund for Sienti� Researh Flanders at theDepartment of Applied Mathematis, Biometris and Proess Control (Ghent University)1998 - 2003: Bio-Engineer in Chemistry (Magna um laude)Faulty of Agriultural and Applied Biologial Sienes, Ghent University
• Additional ourses2001-2002: Frenh (Ghent University, Talenentrum)2003-2004: Deterministi Models in Operational Researh (Ghent University, Prof.Vanmaele)2003-2004: Metaboli Engineering and Funtional Genomis (TU Denmark, Prof.Nielsen)2004-2007: Spanish (PCVO)Publiations
• S. W. H. Van Hulle, S. Van Den Broek, J. Maertens, K. Villez, B. M. R. Donkels,G. Shelstraete, E. I. P. Volke, and P. A. Vanrolleghem. Constrution, start-upand operation of a ontinuously aerated laboratory-sale SHARON reator in viewof oupling with an Anammox reator. Water SA, 31: 327 � 334, 2005. (IF =0.445, TC = 7) 163



• M. De Mey, G. Lequeux, J. Maertens, S. De Maeseneire, W. Soetaert, and E.Vandamme. Comparison of DNA and RNA quanti�ation methods suitable forparameter estimation in metaboli modeling of miroorganisms. Analytial Bio-hemistry, 353, 198 � 203, 2006. (IF = 2.67, TC = 4)
• G. Lequeux, L. Johansson, J. Maertens, P. A. Vanrolleghem, and G. Lidén. MFAfor overdetermined systems reviewed and ompared with RNA expression data toeluidate the di�erene in shikimate yield between arbon- and phosphate-limitedontinuous ultures of E. oli W3110.shik1. Biotehnology Progress, 22, 1056 �1070, 2006. (IF = 1.985, TC = 2)
• M. De Mey, J. Maertens, G. J. Lequeux, W. K. Soetaert, and E. J. Vandamme.Constrution and model-based analysis of a promoter library for E. oli : an indis-pensable tool for metaboli engineering. BMC Biotehnology, 7, 34, 2007. (IF =2.74, TC = 3)
• M. De Mey, G. J. Lequeux, J. J. Beauprez, J. Maertens, E. Van Horen, W. K.Soetaert, P. A. Vanrolleghem, and E. J. Vandamme. Comparison of di�erent strate-gies to redue aetate formation in Esherihia oli. Biotehnology Progress, 23,1053 � 1063, 2007. (IF = 2.102, TC = 1)
• M. De Mey, G. J. Lequeux, J. Maertens, C. I. De Muynk, W. K. Soetaert, andE. J. Vandamme. Comparison of protein quanti�ation and extration methodssuitable for E. oli ultures. Biologials, 36, 198�202, 2008. (IF = 0.921, TC = 0)
• F. Mestdagh, J. Maertens, T. Cuu, K. Delporte, C. Van Peteghem, and B. DeMeulenaer. Impat of additives to lower the formation of arylamide in a potatomodel system through pH redution and other mehanisms. Food Chemistry, 107,26 � 31, 2008. (IF = 2.433, TC = 2)
• B. M. R. Donkels, D. J. W. De Pauw, B. De Baets, J. Maertens, and P. A.Vanrolleghem. An antiipatory approah to optimal experimental design for modeldisrimination. Chemometris and Intelligent Laboratory Systems, submitted forpubliation, 2008.
• J. Maertens and P. A. Vanrolleghem. Identi�ation and evaluation of approximativekineti model strutures. BMC Bioinformatis, submitted for publiation, 2008.164



Conferenes and researh stays
• 2006, Otober 30 - November 3: Conferene '3rd International E. oli AllianeConferene on Systems Biology' (Jeju Island, Republi of Korea)
• 2006, May 1 - 31: Researh stay (West La�ayete, Indiana, USA)Purdue UniversityShool of Chemial Engineering (Prof. D. Ramkrishna)
• 2005, June 19 - 24: Conferene: 'Computational Fluid Dynamis in ChemialReation Engineering' (Barga, Italy)
• 2004, September 19 - 23: Conferene: 'Metaboli Engineering V: Genome to Prod-ut' (Lake Tahoe, California, USA)
• 2004, June 1 - 4: Researh stay (Lund, Sweden)Lund UniversityDepartment of Chemial Engineering (Prof. G. Lidén)
• 2004, May 22 - 28: Ph.D. ourse: 'Metaboli Engineering and Funtional Genomis'(Lyngby, Denmark)Tehnial University of DenmarkCenter for Mirobial Biotehnology (Prof. J. Nielsen)
• 2003, February 9 - 22: Intensive ourse: 'Agriulture: Soure of Raw Material forIndustry' (Vienna, Austria)Universität für Bodenkultur (Prof. R. Verhe)
• 2002, September 22 - 27: Researh stay (Nijmegen, The Netherlands)Katholieke Universiteit NijmegenDepartment of Mirobiology (Prof. M.S.M. Jetten, Dr. M. Strous)
• 2002, February - June: Erasmus (Montpellier, Frane)l' Institut des Sienes de l' Ingénieur de Montpellier (Prof. P. Charlier)l' Eole Nationale Supérieure de Chimie de Montpellier

165


