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Abstract—This paper deals with the identifiability of parameters of kinetic models describing the activated
sludge process. The main concern of the paper is to present important aspects of the structural
identifiability properties. The identifiability analysis is based on the availability of only on-line oxygen
uptake rate data (given by a novel respirographic biosensor). Four model candidates (exponential, Monod,
double Monod and modified IAWQ No. 1) are considered. Two different methods (Taylor series
expansion, and transformation of the nonlinear model into a model linear-in-the-parameters) are
considered, their advantages and drawbacks are illustrated with the four kinetic models. For each model
it is found that only a smaller set of the original parameters are structurally identifiable on the basis of

oxygen uptake rate data only.
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NOMENCLATURE

a, b, ¢ = parameters
k., k, = kinetic constants {min-')
K, = saturation or affinity constant (mg/l)
OUR = oxygen uptake rate (mg O,-1"'-min"")
S = substrate concentration (mg/1)
{ = time (min)
X = biomass concentration (mg/l)
X,, X, = hydrolyzable substrates (mg/l)
Y = yield coefficient
¥, Xy, X, = mode] variables
2y, z,, 7y = auxiliary variables

Greek letters

o = parameter combination
u = specific growth rate (min~")

Hmen = Maximum specific growth rate (min~')
6 = parameter combination

Index

€X = exogenous

i(=1,2) = index of pollutant substrate and related dynam-

ics terms

I. INTRODUCTION

et al., 1986) contains 13 state variables and
19 parameters.

2. There is, generally speaking, a lack of cheap
and reliable sensors for on-line measure-
ment of the key state variables, in particular
those involved in the model. Despite con-
siderable efforts, on-line sensor technology
is still considered to be the weakest part in
the real-time process control chain (Harre-
moés et al., 1993; Vanrolleghem and
Verstraete, 1993).

Both problems are common to all biotechnological
processes, although particularly crucial in activated
studge processes, because of the inherent particularly
complex nature of these processes, involving for
instance many different microbial populations, and
which, furthermore, are often difficult to reliably
measure with the available instrumentation.

Because of the model complexity and the scarcity
of on-line sensors, the identifiability study of the
dynamical models, prior to any identification, is
certainly a key question. The central question of the

The identification of the dynamical models describing ~ ‘dentifiability analysis is the following:

activated sludge processes is characterized by two

important features:

1. The models are most often highly complex,

they are usually high-order non linear sys-
tems incorporating a large number of state
variables and parameters. For instance, the
IAWQ activated sludge model No. 1 (Henze

Assume that a certain number of the state
variables are available for measurement; on the
basts of the model structure (structural iden-
tifiability) or on the type and quality of avail-
able data (practical identifiability), can we
expect to give via parameter estimation a
unique value to the model parameters?
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Simply speaking, one would wonder what is the use
of trying to calibrate the parameters of a model which
is, structurally or practically, unidentifiable. This
above formulation is quite crude, but the answer to
the identifiability analysis is often more subtle: it is
not just a “‘yes or no”’ answer, but when it results in
some conclusions (what is not a priori obvious with
nonlinear models), these may tell that some subset or
combinations of the model parameters are a priori
identifiable.

The goal of our work is to study both the structural
and practical identifiability of a class of models
employing Monod type limitation kinetics used to
describe activated sludge processes. In contrast to the
studies found in the literature, the analysis will not
start from the assumption that measurements of
biomass and substrates are available but from the
assumption that only oxygen uptake rate data are
available. This choice is motivated by the context of
the study: its main objective is the implementation
of an on-line respirographic sensor that is capable of
getting the best information possible on the basis of
the available data and well-known biokinetic model
structures for process monitoring and control via
“in-sensor experiments’’ (Vanrolleghem, 1994). How-
ever our objective is to deal with the identifiability in
a sufficiently general way so as to allow the extension
of the proposed study to other practical situations.

The paper is organized as follows. The theoretical
framework of the identification study will be ad-
dressed in Section 2. i.e. some important definitions
are reviewed and basic concepts for the structural
identifiability tests are introduced. In Section 3, the
class of models studied in the paper and the con-
sidered assumptions are given. The structural iden-
tifiability of the models is studied in Section 4. Two
different techniques (Taylor series expansion, and
transformation of the nonlinear models) have been
considered for the analysis of each candidate model,
yet for limited space reasons, only the results of one
method per model is presented. One objective is here
to illustrate the possibilities and limitations of both
identifiability tests.

In this paper, we shall mainly concentrate on the
structural identifiability. A second paper (Vanrol-
leghem et al., 1995) is intended to deal with optimal
experimental design for parameter identification, to
which the practical identifiability is more closely
related: that’s why our intention is to postpone the
discussion about the practical identifiability in that
paper. However, in order to clarify both concepts of
structural and practical identifiability as best as poss-
ible, the latter will be illustrated in Section 2 with the
Monod model.

2. THEORETICAL FRAMEWORK

The notion of structural identifiability is related to
the possibility to give a unique value to each par-
ameter of a mathematical model. In simple words, the
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structural identifiability of a model can be formulated
as follows (a rigorous definition can be found e.g. in
Godfrey and DiStefano III (1987)): given a model
structure and perfect (i.e. that fit perfectly to the
model) data of model variables, are all the parameters
of the model identifiable? From the structural iden-
tifiability analysis one may conclude that only combi-
nations of the model parameters are identifiable. If
the number of resulting combinations is lower than
the original model parameters, or if there is not a
one-to-one relationship between both parameter
sets, then a priori knowledge about some parameters
may be required to achieve identifiability. A simple
example may illustrate this: in the model
v = ax, + bx, + ¢(x; + x,), only the parameters a + ¢
and b + ¢ are structurally identifiable (and not the
three parameters a, b, ¢; two parameters (¢.g. @ and b)
will be identifiable if the value of a third one (here,
¢) 1s known a priori.

For linear systems, the structural identifiability is
rather well understood, and besides classical identifi-
able models (like dynamical models in canonical
form), there exists a number of tests for the iden-
tifiability (e.g. Laplace transform method, Taylor
series expansion of the observations, Markov par-
ameter matrix approach, modal matrix ap-
proach, ..., see e.g. Godfrey and DiStefano III
(1987)). However, for models that are nonlinear in
the parameters (like the models used in this work), the
problem is much more complex. There exist also
several structural identifiability tests, but they are
usually very complex [they typically require the (very
helpful) use of symbolic software packages (Raksanyi
et al., 1985), as will be illustrated below]. In the
following several similar approaches are used wherein
the models are transformed into linear ones, after
which the analysis is based on the linear model.

Practical identifiability on the other hand is related
to the quality of the data and their “informative”
content: are the available data informative enough
for identifying the model parameters and for giving
accurate values? In the model y = ax, + bx, the par-
ameters are structurally identifiable but they will not
be practically identifiable if the experimental con-
ditions are such that x, and x, are proportional
(x, = ax,) (then only the combination ao + b is ident-
ifiable). A typical example is the Monod model in
simple microbial growth processes, which has been
shown to be structurally identifiable from (perfect)
data of substrate and biomass (Aborhey and
Williamson, 1978), but which was found to be often
not practically identifiable because of the usually
poor quality of the data and the limited number of
datapoints (e.g. Holmberg, 1982).

While the structural identifiability is studied under
the assumption of perfect, i.e. noiseless, data, the
problem with highly correlated parameters arises
when a limited set of experimental, noise-corrupted
data is used for parameter estimation. Under such
conditions the uniqueness of parameter estimates
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predicted by the theoretical analysis, may no longer
be guaranteed, because a change in one parameter
can be compensated almost completely by a pro-
portional shift in another, still producing a satisfying
fit between experimental data and model predictions.
In addition, the numerical algorithms that perform
the nonlinear parameter estimation show poor con-
vergence when faced with this type of ill-conditioned
optimization problems, the estimates being very sen-
sitive to the initial parameter values given to the
algorithm (Holmberg, 1982; Marsili-Libelli, 1992).
Consequently, the estimated parameters may vary
over a broad range and little physical interpretation
can be given to the parameter values obtained.
The Monod-model [y, is the maximum specific
growth rate (min~'), K,, is the saturation constant

(mg/D],

Foax S
K,+S

is probably the best-known example in biological
systems of a model in which parameter estimates may
be highly correlated (Boyle and Berthouex, 1974,
Holmberg, 1982; Munack, 1989). In many cases the
experiments provide only sufficient information to
estimate the ratio between both parameters in this
model, u,,../K,, . A simple example may illustrate this
(Fig. 1): if only growth rates are measured for
substrate concentrations ranging between 0 and
0.1 mg/l, no distinction can be made between differ-
ent parameter sets, i.e. the Monod model is uniden-
tifiable. In order to overcome this problem, it has
been proposed to use additional a priori information
(e.g. a known maximum growth rate) to impose
parameter bounds (Holmberg, 1982), to sample more
frequently in defined periods of the experiment in
order to increase the informative content of the
collected data (Vialas er al., 1986), or to design
experiments by which more informative data can be
collected (Munack, 1989). Optimal experimental de-

u(s) = M

J = 1.64E-3
0.75 ”
L Mmax =4.0/d L s J= {.85E-3
- 4 ”
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- L /’ _-|J=1.82E-3
—_ ol , /I /"4’
2 o050} S0 e
a o I:’ L
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Fig. 1. Practical identifiability of the Monod model par-
ameters.
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sign for parameter estimation of the Monod model
based on oxygen uptake rate data will also be the
object of our following paper (Vanrolleghem et al.,
1995).

3. MATHEMATICAL MODELS

The models considered in this study express the depen-
dence of the exogenous oxygen uptake rate OUR,, on
the biodegradation of k substrates S; present in the mixed
liquor

k ds
OUR, = -} (l—Y,)a{—'- (2)
i=1

In the above expression, Y, (the yield coefficient) is the
fraction of pollutant S, which is not oxidized but converted
into new biocatalyst X. As usual, all concentrations are
expressed in chemical oxygen demand (COD) units. The
different model complexities taken into account in this work
express the different number & of pollutants to be considered
and the degradation mechanism. The four types of waste-
water/sludge interaction included are:

Type | (Exponential): one pollutant, first order kinetics
(k=1

ds, Hmaxt X

= S,. 3
o oS 3)

Type 2 (Single Monod): one pollutant, Monod kinetics
k=1

d:S'J - _“maxlX Sl
ds Y, K.+8,
Type 3 (Double Monod): Two pollutants simultaneously

degraded without mutual interaction, double Monod kin-
etics (k =2)

@

95 - _Pmaxl X Sl ) (5)
ds Y, K, +S5,

ds, X S

@2 Hmand . 6)
dr Y, Ka+Ss

Type 4 (Modified IAWQ model No. I) (Sollfrank and Gujer,
1991): 3 pollutants, 2 hydrolysed into the first substrate
which is used for growth according to the Monod kinetics
k=1

das, Hmaad XS

it + kX +kX 7
dt Y, K, +S At M
X x ®)
dl - rdr
X x 9)
a0

Nitrification and its associated oxygen consumption have
not been included in the model. Because of the hydrolysis
terms in (8.9), OUR,, (2) should be rewritten as follows

ds
OUR,, = —(I —- y')((dT' —k,X,—ksx\) (10)

The py,, (i =1,2) and &, (j = r, s) are rate constants, and
the K, (i = L, 2) are the so-called affinity constants express-
ing the dependency of the degradation rate on the
concentration of pollutant S, (i = 1, 2). Note that the models
as given above can be used to describe batch experiments
only.

As far as known by the authors, no studies of the struc-
tural identifiability of the parameters in Monod-type models
have been reported based on the assumption that only
oxygen uptake rate data are available to the experimenter.
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The experiments on which the modcl identification is to be
based. are performed in such a way that:

e the change in biomass concentration can be as-
sumed negligible [which is a fair assumption pro-
vided S(r =0) < X(r = 0)J:

o the oxygen uptake rate data are only due to
exogenous (=substrate induced) respiration
(OUR,,). ie. endogenous respiration is either
assumed negligible or is eliminated from the data;

e the oxygen concentration is always maintained
above 3 mg/l so that oxygen is not limiting.

4. STRUCTURAL IDENTIFIABILITY

In this section attention will focus on the structural
identifiability of the 4 models introduced above.

The structural identifiability of the first model is
rather straightforward. First note that the relation
between OUR,, and S, [OUR,, = —(1 — Y, )(dS,/d1)]
can be also written after multiplication of both sides
by dr and integration between time 7 =0 and time
T =1

J OUR, (t)dt = —(1 = Y)[Si(1) = §(0)] (1)

0

which can be used to give an expression of S,(7)

] I
= - 2
S ()= 5/(0) (i Y‘)J( OUR,,(7)dr. (12)

3

Now let us define the variable r(7)

,\'(t):f OUR,,(7)dr (13)
0

which also means that OUR, =dy/dr. Then by
combining the model equation (3) with the above
expressions (12) and (13), one readily obtains the
following dynamical linear equation for y(r)

dy
== 0,v(1) + 0,

(14)
with

X
0, =512y s ).

1 1

(15)

Because dy(r);dsr is measured and y(7) 1s readily
calculated from these data, the parameters 0, and 0,
of the linear dynamical model (14) are (structurally)
identifiable, 1.e. it is theoretically possible to generate
signals for v(r) and dy(r)/dr (e.g. via an impulse
response) such that the parameters 6, and 0, can be
uniquely identified. With respect to the original
model parameters, and by considering the above
definitions (15), this means that the model parameter
combinations pu,,,, XY, and (1 — ¥,)S,(0) arc struc-
turally identifiable.

Let us illustrate the structural identifiability con-
cept via (real-life) data [Fig. 2(a)] with an initial
substrate concentration S,(0). Figure 2(b) shows the
data pairs [OUR,,, [ OUR(z) dt] corresponding to
the [OUR,,(#), ¢] data presented in Fig. 2(a): 0, is
given by the initial value of OUR,,, and 0, is the
slope.
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Fig. 2. Transformation of OUR data corresponding to the
exponential model (a) into a linear regression form (b).

For the other three models, two approaches are
presented:

1. The Taylor series expansion (Pohjanpalo,
1978),

2. The transformation of the models into
models linear in the parameters (which is
indeed the method used in the above expo-
nential model).

4.1. Taylor series expansion

This method has been applied successfully for the
first two models by a symbolic algebra software
package (Mathematica, Wolfram Research Ltd). The
complexity of the computer calculations for the iden-
tifiability analysis of the third model was such that
the computer was not able to end the computation
procedure and to give any conclusive results.

The method is based on Taylor series expansion of
the observations [here, OUR,,(¢)] around time ¢ =0

dOUR
€X 0
— O

_©* COUR,,
2/ dr?

OUR,, (1) = OUR, (0) + ¢

0+ (16
and consists of looking at the successive derivatives
to check if they contain information about the par-
ameters to be identified. The approach is illustrated
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with the second (Single Monod) model. Let us com-
pute the successive derivatives: this will formally lead
to an infinite set of terms. Let us consider the first
terms

g X1 = Y))  5,(0)
OUR, (0) = 17
eX( ) Yl Km] + S] (0) ( )
dOURex (0) _ _lul?nax]X:(] - Yl) Kml SI (0)
a7 ri (K. + SO
(18)
dZOURex (0) _ ul‘}naxl A/‘(1 - Yl)
dr? B Y?
Ko S1(0)[K,., —25,(0)]
x 19
Ku+sor 7
dsOUch (O) _ _lu;‘naxl X4(1 - Yl) Kml SI(O)
dr’ B Y (K + S,(0))
x[K}y — 8K, $,(0) + 65,(0)'] (20)
dAOURex (0) _ .ufnaxlXS(l - Yl) Kml Sl (0)
a7 Y; [Kni + S, O)F

x [K5, — 22K3, S, (0)

+ 58K, S,(07 — 245,(0y].  (21)

There are five parameters to be identified: ¥, y,,.,,
X, K,, and S,(0). The key question is then the
following: are they all structurally identifiable, or
only combinations of them?

Let us first notice that the following parameter
combinations

=‘umax1X(l - YI)
Y, '
0y=(1 - Y))K,, (22)

6, 02 =(1-Y,)8,(0),

are combined in the first three derivatives. Indeed by
noting
_ d'OUR,,
oTdre
equations (17), (18) and (19) can then be rewritten
under the following (equivalent) form

6,6,

0)., i=0,1,2,... (23)

A (24)

. 6360, ’s

o (0, + 6,y (23)
016,0,(0, — 26,)

MO o

Therefore the “parameters” 6,, 6, and 6, can be
formally calculated from the values of z, (which can
be theoretically calculated from the [OUR(z), 7] data-
set) by inverting the above expressions, i.e.

27)
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2z2z
0= ———— (28)
292, — 327
42273
0, = 021 (29)

C(z0m— 320 (5 — o))

The question is then the following: can we expect to
increase the number of identifiable parameters by
considering higher order derivatives?

If we look at the additional derivatives for i > 3,
the above parameter combinations are still combined
basically in the same way as for the lower derivative
terms, without any possibility to put in evidence other
parameter combinations which could lead to a larger
set of identifiable parameters. The conclusion is the
same if we consider even higher order derivatives:
only the above parameter combinations 6,, 6, and 6,
are structurally identifiable.

Besides the above parameter combination is
basically the only one that fits in the above iden-
tifiability analysis (other combinations can also be
considered (e.g. 6, and #, as in (22), and
0, = (1 — Y))I[K,, + S,(0)], but they are combinations
of the above parameter combinations (22), and there-
fore basically the same as the one proposed). Note
also that the next method (transformation of the
nonlinear model) has also been applied to the Single
Monod model and leads to the same conclusions.

Finally it is worth noting that the symbolic soft-
ware has been used to compute the successive deriva-
tives and, once a parameter combination has been
chosen, to perform the subsequent computations [e.g.
(24), (25), (26) and (27), (28), (29) here above].

4.2. Transformation of the nonlinear models

Another way to analyze the structural identifiabil-
ity is to transform the nonlinear model into a model
linear in the parameters, and then look at the iden-
tifiability of the linear model.

The line of reasoning is similar to the one con-
sidered for the exponential model hereabove [devel-
opment (11)—(15)]. Let us see how it applies to the
Double Monod model (5, 6). Recall that here the
oxygen uptake rate QOUR,, is the sum of the contri-
bution of two substrates S, and S,

ds, ds,
OUR, = —(I=¥)—! ~(1- V) e

A typical OUR,, profile is shown in Fig. 3. In the
following, we assume (as it is suggested in Fig. 3) that
one substrate (S,) is completely eliminated from the
mixed liquor after the first part of the experiment
(note that there is only one pathological case when
this assumption does not hold: when §, and S, are
eliminated at exactly the same time). With this as-
sumption the oxygen uptake rate can be subdivided
in two parts corresponding with the degradation of
each substrate. Hence, the identifiability analysis
reduces to the analysis of the Single Monod model
performed in two steps: for 0 <t <1, for the first
Monod model, and for 1, <t < t, for the second one.

(30)
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Table |. Identifiable parameter combinations of the 4 models

Exponential Single Monod Double Monod Modified IAWQ
(1—Y5,00 (1-¥,)5,(0) (1—-7)5,(0) (1=Y)5,(0)
M,ﬂl - #m\u\ji}r- Y[) Hmaxi Xa-1) Hmg X1 —¥))

Y, Y, Y, Y,
(1= YK, (1= YK, (1 =YK,
(1= 1,)5,(0) (1= Y)X.(0)

/’f.ﬂ?_a_‘_%.X;}]_ ~ 1) K,
(1=1)K,, (1= Y)X,0)

ks

Let us first proceed for the first step and denote
the first term of the right hand side of (30) by
OUR,

ds,

OUR = —(1 - ¥ —". 31

The integration of the above equation gives
l 1
Si(1)=S§,(0) — u\[ OUR,(1)dr.  (32)
I S

By introducing equation (5). the oxygen uptake rate
equation (31) can be rewritten as follows
- yl AumuxlSI

OUR, = "1 Hmui 21
Y K, +S,

(33)

By multiplying both sides of the above equation by
(K,,; + S)), and by considering (in order to have more
compact notattons) the variable y,(7) defined as
follows

_l'l(t)=J OUR, (7)dt (34)
0

equation (33) after much manipulation becomes

dy, dy,

M ar =a =%+ 13$

where the parameters , (i = 1, 2, 3) are indeed combi-

nations of the parameters 6, (i = 1, 2, 3) defined in
(22)

(35)

oy =00, x=0, x=0.+0, (36)

OUR,, (mg O,/1.min)

Time (min)

Fig. 3. Typical OUR profile with double Monod kinetics.

There is clearly a one-to-one relation between these
two sets of parameters

%

0, = 0. =0, Oy=0ay—a,. 37N

%

Then we can conclude that with independent data of
v, (dy,/dr), y, and dy,/d¢ (generated via an appropri-
ate experiment design), the parameters «,, a,, o5, and
therefore the parameters 8,, 6,, 8;, are identifiable.
This result corresponds to the one obtained in the
preceding section for the Single Monod model (for
which we had used the Taylor series expansion
approach).

We can proceed similarly for the second step
1y <t <t,, and using similar definitions for OUR,
and y,(¢), it is straightforward that the parameters

_ Mo X(1 = 1))

04—f‘s 0s=(1 — 1,)$,(0),

O =(1—Y))K,, (38)

are identifiable. This means that only six combi-
nations of the nine original parameters [Y,, S,(0),
Hmaxt « Kml" y2w S2(O)ﬂ Hmax2» KmZ? and X] are struc-
turally identifiable.

A similar approach has been used for the IAWQ
No. 1 model (which is summarized in the Appendix).
The identifiability results for the four models are
summarized in Table 1.

4.3. Discussion

The examples presented in the above Sections 4.1
and 4.2 are illustrative of the advantages and draw-
backs of the considered methods. The implemen-
tation of the Taylor series expansion method has the
advantage of being systematic in the sense that it
follows a clearly identified route. The above example
is illustrative of the potential difficulties with the
Taylor series expansion:

¢ How many derivatives of OUR,, are needed
to obtain conclusive results? For certain
models the question may arise whether one
can achieve better identifiability properties
by considering more terms in the expansion.
Here we found that the additional evaluated
terms did not yield additional information.
Generally speaking the approach may imply
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more and more symbolic computations, and
yet not lead to conclusive results (as experi-
enced for the Double Monod model).

e How can we derive the right combinations
of identifiable parameters? There is indeed
no general systematic rule for selecting
these combinations, and therefore the pro-
cedure may look a little tricky. However the
structure of the different terms of the expan-
sion is often a source for good initial
guesses. For instance, the choice of
0, = —[ptmaa X(1 — Y)I/ Y, looks quite obvi-
ous from equations (17), (18) and (19).

On the other hand, the nonlinear transformation
may suffer from the difficulty to easily find out
the transformation that will a priori suit to the
problem (although in the proposed example, the
choice of the transformation (multiplication by the
denominator of the Monod model) is rather straight-
forward).

Let us also make some comments about the ob-
tained identifiability results.

First note that the yield coefficient(s) Y, (Y,) is
present in all the parameter combinations (except in
k. and k, in the IAWQ model). This is not surprising
since, just on the basis of OUR,, data, one can have
no idea which quantity of substrate has been trans-
formed into biomass. This explains why the term
(1 —Y)S(0)[(1 — Y;)S,(0)] ie. the fraction of sub-
strate which is oxidized, appears as a parameter
combination. The same remark applies to
(1 =YK, [(1 = Y,)K,,] which can be viewed as a
rescaling of the substrate affinity constant.

Secondly the parameter combination

“maxlX(l - Y]) Aumax:X(] - y2)
Y, Y,

is an expression of the total activity of the sludge, and
with that respect can be considered as giving an
information different from that of the individual
parameters.

Finally let us point out that a priori information
about some individual parameters (e.g. the yield
coefficient(s) Y, (Y,) values obtained via separate
experiments) can be incorporated in the parameter
evaluation procedure. Then individual parameters
[e.g. $,(0) or K, ] can be estimated.

5. CONCLUSIONS

This paper has dealt with the identifiability of
parameters of kinetic models describing the activated
sludge process. The main concern of the paper was to
present important aspects of the structural iden-
tifiability properties. The identifiability analysis is
based on the availability of on-line oxygen uptake
rate data only (given by a novel respirographic
biosensor). Four model candidates (exponential,
Monod, double Monod and JAWQ No. I) are con-
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sidered. For each model we found that only a smaller
set of the combinations of the original parameters are
structurally identifiable on the basis of oxygen uptake
rate data only. The yield coefficient is present in
almost all parameter combinations. Separate exper-
iments can provide the necessary information to
obtain the individual parameters.
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APPENDIX

The analysis carried out for the modified IAWQ model is
based on the model equations (7), (8), (9) and (10). As in
Section 4.2, the first step in the analysis consists of consid-
ering that during a part of the experiment, the concentration
of the rapidly hydrolysable substrate X, should be approxi-
mately zero.

The effects of the two substrates cannot be decoupled,
unlike in the Double Monod model where this was possible
due to the saturation in the kinetics of S,. Therefore we
start the analysis for time 1, < ¢ < ¢, when X, = 0: this means
that in the first step only equations (7), (9) and (10) with
X,=0 are considered. Note first that by introducing
equation (7). the OUR,, equation (10) can be rewritten as
follows

OUR,, = oy X(L=¥1) 5, .
) Y, K, +S

Then the analysis is performed as follows:

(39)

|. Integration of equations (10) and (9). This gives the
following relation for S,(r)

I 14
§,(6)=5,(0) — - j OUR,, (r)dt
l - Y\ O
+ J k_X.(x)dr (40)
0
N
=S,(0)— - OUR, d
I( ) l* Y1J1] ex(r) T
+k X (0)(1 — ek, 41)

2. Linearization of the exponential term e %' around
t =0 (in order to carry out the analysis with a model
linear in the parameters)

PR

e Mxl—kit +27 (42)

D. Dochain et al.

(we stop the series expansion at the second order term
since the additional terms do not add extra useful
information for the analysis).

3. Introduction of these results in equation (39) and
rewriting by multiplying both sides by

(1= YKy + (1 = ¥,)5,(0) — fOUch(r)dz
0

k2e?
2

+(l - YI )ksxs(o)(kct -
and considering y(¢) defined in (13)

Y by + 8D+ b
2 2

55D g @)
Bi=—6,0,, B,=0, Bi=0,+8 (44)

Bs= 9705» Bs= 67933,
ﬁa=9|ﬁ4a ﬂ7=91ﬁ5 45)
with 8,, 6,, 8; as defined in (22), and 6; and 6 defined

as follows

0,=(1—-Y)X,(0), O=k,. (46)

Among the seven parameters §;, only five are indepen-
dent (8, and $, are related to f,, fi5, and f,). Therefore
five parameter combinations are identifiable, i.e.
B.. B, Bs. By and B, or equivalently 6,,6,,6,, 8, and

3

The second step for 0 < ¢ < ¢, considers the dynamics are
given by equations (7), (8), (9) and (10) with X| # 0, and that
the values of the parameters §, (i = 1-7) are given from the
first step, t.e. data for times between 1, and t,. Then by
following the same line of reasoning as in step 1, one obtains
two more identifiable  parameter combinations:
(1 - Y,)X,(0) and k,.



