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Single-objective vs. multi-objective autocalibration

in modelling total suspended solids and phosphorus

in a small agricultural watershed with SWAT

Santatriniaina Denise Rasolomanana, Paul Lessard and

Peter A. Vanrolleghem
ABSTRACT
To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step

is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides

more realistic simulation results. However, with a daily evaluation performance, good fits are rarely

obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water

Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective

optimization. The goal of the present study is to evaluate which approach can improve the daily

performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus

(TP). The influence of weights assigned to the different variables included in the objective function

has also been tested. The results showed that: (i) the model performance depends not only on the

choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective

calibration estimating at once all parameters related to all measured variables is the best approach to

model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a

single-objective optimization, an excellent water quality modelling performance may hide a loss of

performance of predicting flows and unbalanced internal model components.
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INTRODUCTION
Small agricultural watersheds need to be modelled for better
management of water resources, although usually only few
data are available. Here, the model used for simulating the

fate of pollutants and identifying the best management prac-
tices is the Soil and Water Assessment Tool (SWAT) (Arnold
et al. ). To achieve better precision in modelling small

watersheds, a shorter simulation time step is useful. A daily
time step better represents the dynamics of pollutants in
the river and provides more realistic simulation results.
However, case studies on small agricultural watersheds

using daily time steps are rare, given that SWAT was orig-
inally developed for large watersheds with large amounts of
data. In addition, river water quality modelling performance

is generally carried out on a monthly or yearly time step and
rarely on a daily time step. Among the literature reviewed
(Gassman et al. ; Moriasi et al. ), only a few case

studies show a good daily performance on water quality.
Given this context, the goal of the present study is to find
how to improve water quality modelling performance with
SWAT on a daily time step. There are two calibration

approaches for modelling flow (Q), total suspended solids
(TSS) and total phosphorus (TP): single-objective and
multi-objective optimization. The present study compares

these two approaches in terms of their performance in mod-
elling TSS and TP at a daily time step in small rural
watersheds. Given that there are too many parameters due
to the complexity of the model in comparison with the

amount of data, a sensitivity analysis is necessary to identify
the most important parameters. Each variable is sensitive to
different parameters and in case of many variables some

parameters appear in multiple subsets. So, two types of par-
ameters will be considered: (i) those only related to the
variable of interest; and (ii) all those influencing all variables.

In addition, the influence of weights assigned to the different
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objective functions in the case of multi-objective optimiz-

ation has been tested. Indeed, the calibration algorithm
prioritizes fitting the most numerous data and the higher
valued data that can induce large global errors. In that

sense, the phosphorus data are the most disadvantaged, as
they are small in number and magnitude, explaining the dif-
ficulty of the model to fit phosphorus data. In this study, the
weights will be chosen according to the typical measure-

ment errors and the model fitting errors.
MATERIALS AND METHODS

Study area description

The study was conducted on the Ruisseau du Portage water-

shed, a 21.41 km2 small agricultural watershed located in
the Boyer river basin in Québec, Canada. Based on the bac-
teriological and physico-chemical index, the water quality in

the watershed is described as ‘bad’ to ‘very poor’ due to high
turbidity and excessive enrichment of its water by nutrients
(nitrogen and phosphorus) (Ministère du Développement

Durable, Environnement et Parcs, Québec or MDDEP).
The major sources that can affect its water quality originate
from agricultural activities taking place in the lower reaches
of the basin. The territory is composed of 48% forest, 44%

agriculture (6.88% cereals, 0.13% corn, 36.97% grassland
and pasture) and 8% wetlands.

This study focuses on data collected between October

1999 and December 2002 for Q, TSS and TP. Precipitation
and temperature of the site average, over a year, respectively
1,300 mm and 5.25 WC. The climate is temperate continental.

The topography is relatively flat, the altitude ranging from 46
to 117 m, with an average of 86 m. The slopes range from 1.6
to 3.1%, those closest to the outlet being most pronounced.
The soil characteristics vary according to the area occupied,

the major ones being stony sandy loam, gravelly sandy loam
and gravelly loam (Baril & Rochefort ; Marcoux ;
Pageau ; Ouellet et al. ).
Input data

Input data used for modelling are the following:

1. Digital Elevation Model (DEM): produced by Geobase
(www.GeoBase.ca), 1:50,000, grid 23.17 m.

2. Soil map: from IRDA (Institut de Recherche et de Dével-

oppement en Agroenvironnement, Québec, Canada),
1:20,000.
3. River map: produced by BDTQ (Base de Données Topo-

graphiques du Québec), 1:20,000.
4. Land use: provided by Canards Illimités, grid 25 m.
5. Hydrometeorological data: from the MDDEP and Ser-

vice Météorologique Canada (SMC).

Observed data

Streamflow data (Figure 2(a)) were collected by the Centre
d’Expertise Hydrique du Québec (CEHQ) while water qual-
ity data (Figure 2(b) and (c)) were obtained from the Centre
d’Expertise en Analyse Environnementale du Québec

(CEAEQ).
Hydrological records

Measured daily streamflow data show an interannual aver-
age of 0.35 m3/s. The flow variations closely follow the
variations of precipitation, showing that the basin responds
quickly to rainfall due to its small size. The peak flows occur

during snowmelt (April–May), causing 46% of the runoff of
the entire study period (October 1999 to December 2002),
while the flows are lowest in winter (January to March)

and summer (July to September).
Water quality records

Water quality data were discontinuous grab samples that are

therefore not representative of the whole day, especially
when agricultural activities, such as manure spreading, or
rainfall occur. The median TSS value of 7 mg/L is slightly

less than the magnitude of the median measured in 16
small agricultural catchments (9.25 mg/L), but 3–4 times
higher than those measured in 30 forested catchments in

Québec (2 mg/L) (Gangbazo & Babin ). A concen-
tration of 4 to 5 mg/L of TSS persists throughout the year,
which is harmful to aquatic life because a standard of

5 mg/L has been set for chronic toxicity (Gangbazo & Le
Page ). The median TP, 0.05 mg/L, is slightly above
the criterion for the prevention of eutrophication set at
0.03 mg/L in Quebec (Menviq , rév ). The daily

concentrations of TP fluctuate much during the year, with
peaks occurring in April–May and August–September.
Around 55% of the TP is soluble. During rain events,

given the various land use types, the level of phosphorus
in the river is not necessarily high.

http://www.GeoBase.ca
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The watershed model

The watershed model used in this study is the 2005 version
of the Soil and Water Assessment Tool (SWAT) (Arnold

et al. ), which is one of the most widely used watershed
models in the world.

For the simulations, the study site is divided into 5 subba-
sins and 33 Hydrologic Response Units (HRU) (64 ha on

average). A sensitivity analysis of all parameters related to
the 3 variables (flow, TSS, TP) was done. Each variable is
sensitive to different parameters and in case multiple vari-

ables are considered, some parameters appear in multiple
subsets: flow and TSS, flow and TP, flow and TSS and TP.
The parameters used for calibration are presented in the

appendix (Tables A.1 to A.4). Calibrations were performed
by using these different sets of parameters (see Results
section).

After implementation of the model, simulations were

carried out from January 1, 1998 to December 9, 2002,
including:

• January 1, 1998 to October 3, 1999: warm-up,

• October 4, 1999 to July 31, 2001: calibration period, and

• August 1, 2001 to December 9, 2002: validation period.

The simulations were conducted throughout the year
but the calibration focused on summer (June–October

2000) because of the higher water quality standard require-
ments applying at this time of the year to meet the
increased use of water for recreational and domestic activi-

ties during the summer months. The parameter intervals
were defined based on the recommendations in Neitsch
et al. (), except for the parameters related to the sedi-

ment re-entrained during channel sediment routing
(SPCON, SPEXP), the sediment concentration in lateral
and groundwater flow (LAT_SED) and the depth to the sub-
surface drain (DDRAIN), which all needed adjustments.

The predefined SPCON and SPEXP parameter range were
not adequate for small watersheds and low flows, the
LAT_SED parameter interval was too large causing excess

export of sediment and the DDRAIN parameter range was
narrowed based on drainage data.
Optimization in SWAT 2005: shuffled complex evolution
algorithm-uncertainty analysis (SCE-UA)

SWAT2005 includes an automatic multi-objective cali-
bration and uncertainty analysis in a single run, called

Parasol (Parameter Solutions method), developed by van
Griensven & Bauwens (). The calibration procedure,
based on the ‘Shuffled Complex Evolution’ algorithm or

SCE, is a global search algorithm for the minimization of
a single function (Duan et al. ).

The optimization can be single-objective ormulti-objective.

For single-objective optimization, there is only one
objective function (OF) that needs to be optimized. For
multi-objective optimization problems, a series of OFs need
to be taken into account simultaneously. Themost commonly

used OF is the Sum of the Squares of the Residuals (SSQ):

SSQ ¼
Xn

i¼1

(Oi � Si)
2

where n is the number of pairs of observed (Oi) and simulated
(Si) variables.

For multi-objective calibration, a single global optimi-
zation criterion (GOC), defined as an aggregation of
several objective functions, is computed as follows:

GOC ¼
X

j

SSQj �nobs,j

SSQmin,j

with j the number of objective functions. Thus, OFs get
weights that are equal to the number of observations (nobs,j)
divided by the minimum of the objective function (SSQmin,j)
(van Griensven ).

The methodology used for the two calibration

approaches is described below.
Calibration approaches

The most common single-objective approach is to succes-
sively calibrate flow, TSS and TP, while the second, the

multi-objective approach is to calibrate several components
in a single optimization run. A general calibration procedure
chart for both single and multi-objective optimization for

flow, sediment and total phosphorus is presented in Figure 1.
The single-objective calibration techniques are summarized
on the SWAT website (http://www.brc.tamus.edu/swat/

publications/swat-calibration-techniques_slides.pdf). The
multi-objective optimization procedure differs after flow
calibration. The flow is re-calibrated with the TSS and TP
and the performance criteria are readjusted.

The daily model evaluation limits, which are less strict
than the monthly ones because of the lack of averaging
over multiple data (Engel et al. ), have been adjusted

from the monthly evaluation guidelines proposed by Moriasi
et al. (). Each step is evaluated using two criteria, the

http://www.brc.tamus.edu/swat/publications/swat-calibration-techniques_slides.pdf
http://www.brc.tamus.edu/swat/publications/swat-calibration-techniques_slides.pdf
http://www.brc.tamus.edu/swat/publications/swat-calibration-techniques_slides.pdf


Figure 1 | General single and multi-objective calibration procedure for flow, sediment and total phosphorus in the watershed model.
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Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe ) and
the Per cent of Bias (PBIAS) (Moriasi et al. ).

NSE ¼ 1�
Pn

i¼1 (Oi � Si)
2

Pn
i¼1 (Oi � �O)2

PBIAS ¼
Pn

i¼1 (Oi � Si) � 100Pn
i¼1 Oi
where n is the number of pairs of observed (Oi) and simu-
lated (Si) variables.

The NSE values range from – ∞ to 1, with 1 being the

optimal value. Negative values indicate that the average of
the observed values is a better model than the model fitted
to the data, leading to rejection of the model. As for
PBIAS, it measures the average trend of the simulated data

to be above or below the observed data. The optimum
value of PBIAS is zero, indicating a perfect model
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simulation. A positive PBIAS indicates an underestimation

of the model while a negative PBIAS represents an overesti-
mation of the model. This test is recommended because of
its ability to clearly demonstrate the poor performance of

the model (Gupta et al. ).
RESULTS AND DISCUSSION

Table 1 and Figure 2 compare some of the results obtained
after the single-objective and the multi-objective calibra-

tions, before and after adjusting the internal mass balance.

Mass balance

Among the components of an internal mass balance, sur-
face runoff, baseflow, sediment and phosphorus export
were considered as very important in flow, TSS and TP

calibration. Internal hydrological components are unba-
lanced when their per cent bias exceeds the evaluation
criteria defined in Figure 1, based on reference data. As

reference, surface runoff and baseflow data were obtained
with the baseflow filter program and sediment and phos-
phorus loads were estimated with the Flux 5.0 software

(Walker ).
In both automatic calibrations, a poor mass balance for

Q, TSS and TP was noted: the bias of the baseflow and sedi-

ment export is in general too high and phosphorus export
too low (Figure 3(a)). To get a more realistic model,
manual adjustments of certain parameters were undertaken,
and only realistic changes of the parameters were allowed

during calibration (e.g. little change by percentage for the
parameters related to the geomorphology of the basin).
The new results are shown in Table 1(b) and Figure 2(d).

The number of influencing parameters is not the same,
given that some parameters were fixed.

After adjusting the mass balance, the model perform-

ance is worse but the results are more realistic. Figure 3(b)
shows that almost the same mass balance is obtained for
all cases.

Parameters

Four types of parameters were considered:

• parameters only influencing TSS

• parameters only influencing TP

• parameters influencing Q-TSS and

• parameters influencing Q-TSS-TP.
Please note that the parameters influencing the flow

have been set to the values obtained by fitting to the flow
data, unless specified otherwise.
Model performance

Single-objective calibration

With only parameters relating to TSS being estimated, the
performances obtained are capped at a certain threshold
(NSE 0.18 before mass balance adjustment and 0.17 after).

Subsequently, by reconsidering the parameters influencing
flow in the calibration of TSS (column 3 in Table 1), the
performance could be improved significantly for TSS

(Figure 2(b)) (NSE 0.49 and 0.32 before and after adjust-
ment, PBIAS less than 5%) at the expense of the flow’s
performance: NSE dropping from 0.65 to 0.15, PBIAS
53% (Figure 2(a)). After adjustment of parameters to make

the mass balance fit, the NSE dropped to �0.28 and
PBIAS to �13%.
Multi-objective calibration

On the other hand, these calibrations were also conducted in

the multi-objective way using the same sets of influential par-
ameters. With only TSS-influencing parameters, the
performance of Q is a little bit improved but the fit to TSS
is worse than in the single-objective optimization. With

Q-TSS-influencing parameters, the Q performance was kept
at the expense of the TSS performance. For TP, the multi-
objective approach leads to better results with TP-influencing

parameters, especially the TP performance was enhanced
very much (Figure 2(c)) (from NSE �0.29 in single-objective
to þ0.29 in multi-objective optimization) with all influencing

parameters. Unfortunately, such good results couldn’t be
obtained when the mass balance was adjusted for.

In both calibrations, and after adjusting the mass bal-

ance, the following results were obtained:

1. when considering only TSS or TP influencing par-

ameters, both calibration approaches gave the same
performance given that flow parameters are no longer
touched;

2. by considering all influencing parameters, the TP per-

formance deteriorated significantly. Indeed, for a better
mass balance, too many parameters had to be fixed and
SWAT was no longer able to optimize for TSS and TP.

Considering only TP influencing parameters, gave better
results after adjusting for the mass balance.



Table 1 | Comparison of results obtained after single-objective and multi-objective calibration, with different combinations of parameters and objective functions

Reference Single-objective optimization Multi-objective optimization

OF TSS TSS TP TP Q-TSS Q-TSS Q-TSS-TP Q-TSS-TP

Parameters influencing TSS Q-TSS TP Q-TSS-TP TSS Q-TSS TP Q-TSS-TP

(a) Before adjusting mass balance

Number of parameters 10 21 13 19 10 21 13 19

NSEa(Q) �0.50 0.65 0.15 0.53 0.56 0.69 0.67 0.53 0.59

NSEa (TSS) �0.40 0.18 0.49 0.38 0.31 0.20 0.11 0.39 0.34

NSEa (TP) �0.30 �0.36 �0.29 �0.38 0.29

PBIASa (Q)(%) �± 10% 6.72 53.19 3.8 15.53 �10.57 11.94 15.16 11.71

PBIASa (TSS)(%) �± 15% 6.36 0.74 7.81 10.48 16.25 7.27 7.95 11.12

PBIASa (TP)(%) �± 40% 13.77 10.05 3.58 3.29

(b) After adjusting mass balance

Number of parameters 10 25 11 21 10 25 11 21

NSEa (Q) �0.50 0.54 �0.28 0.70 0.62 0.54 0.65 0.70 0.64

NSEa (TSS) �0.40 0.17 0.32 0.21 �9E07 0.17 0.19 0.21 0.1

NSEa (TP) �0.30 �0.56 �1.17 �0.56 �1.19

PBIASa (Q)(%) �± 10% �15.77 �13.31 0.68 �1.31 �15.77 �11.74 0.68 �3.68

PBIASa (TSS)(%) �± 15% 10.47 4.85 17.74 �5E05 10.47 11.03 17.74 12.97

PBIASa (TP)(%) �± 40% 43.30 30.04 43.30 31.80

aNSE: Nash Sutcliffe Efficiency; PBIAS: Per cent of Bias.

648 S. D. Rasolomanana et al. | Single objective vs. multi-objective autocalibration in modelling Water Science & Technology | 65.4 | 2012
Validation

We tried to validate the model using the parameters
obtained using the multi-objective approach with all influen-
tial parameters. The validation run is shown in Figure 2 and

the performances obtained are not very good (NSE (Q) 0.25,
NSE (TSS) �0.11, NSE (TP) �1.07, PBIAS (Q) 2.07%,
PBIAS (TSS) 24.71%, PBIAS (TP) �30.22%). However,

this result is not unexpected given the fact that the perform-
ance in calibration was only good for the flow predictions
and poor performance was obtained for TP and TSS.

Further work will be needed to simultaneously get good fit-
ting performance and a mass balance that holds. For
instance, data on surface runoff and baseflow could be

used in an extended multi-objective setting, i.e. fitting to
three flow data series, TSS and TP.

Influence of weights in multi-objective optimization

In addition, to improve the multi-objective calibration per-
formance, the influence of the weights assigned to the
individual objective functions has been tested. Indeed,

the algorithm prioritizes the most numerous data and the
higher valued data that can induce large global errors. The
phosphorus data are the most disadvantaged, as they are

small in number and magnitude, explaining the difficulty
of the model to fit phosphorus data. Given that the user-
defined choice of weights with SCE in SWAT2005 is not
operational, we have manually tried to add weights calcu-

lated according to the measurement errors. Smaller
weights were given to variables that were accepted to be
less important in the strategy of optimum search (van

Griensven & Bauwens ). The measurement errors
taken into account were 5% for Q, 15% for TSS and 10%
for TP. The estimation methodology adopted is as follows:

m influential parameters were selected after sensitivity
analysis among all parameters related to Q, TSS and TP; n
initial parameter estimates were produced with these m
influential parameters by using latin hypercube sampling
(van Griensven ). Thereafter, multi-objective calibra-
tions were carried out, each with a maximum of 20,000
tries. The GOC was computed by trying various weights

and evaluating the objective functions for each of the large
number of simulations (in total, 400,000 simulations were
carried out, n¼ 20, 20,000 tries each), with their corre-

sponding parameter values. After ranking, the minimal
GOC was identified and the corresponding parameters
were the optimal ones for a particular set of weights.



Figure 2 | Some results of single-objective versus multi-objective calibration before mass balance adjustment: (a) and (b) flow; (c) and (d) TSS; (e) and (f) TP.
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Through this weighted multi-objective optimization:

• the flow was very well simulated, with NSE between 0.62
and 0.75;

• TSS-performance was good (NSE 0.11 to 0.35);

• the best TP-performance was a NSE of 0.06;
• the internal hydrologic components were very unrealis-
tic: the surface runoff was too high or non-existant,
sediment loads were uncontrolled and TP loads very low.

Therefore, we can conclude that the two multi-objective
optimization approaches tested, one with weights based on



Figure 3 | Mass balance: (a) before adjustment; (b) after adjustment.
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measurement errors and the other one with the number of
observations divided by the minimum objective function
(weights imposed by SWAT2005), lead to a calibrated
model with the same performance for Q and TSS. However,

for TP, with which it was so difficult to get good perform-
ance with a simultaneous good model fit of Q and TSS,
the multi-objective optimization gives worse performance

when using the search strategy with weights based on
measurement errors.

Other optimization algorithms such as SUFI2, NSGA-II,

coupled with SWAT, may lead to better performance
(Abbaspour et al. ; Zhang et al. ). Moreover, subjec-
tivity in the choice of weights is one of the main challenges
in multi-objective optimization.

In addition, a good fit of the hydrograph and good
values of the performance criteria of the model do not guar-
antee a correct distribution of the internal components of

the model, namely surface runoff, groundwater flow, tile
drainage, export of sediment and nutrients. The optimizer
does not care about the realism of the parameters and

internal components of the model. More data may be
needed on these internal components. That is the reason
why manual adjustments of parameters or routines in the

source code play a crucial role before, during and after
calibration.
CONCLUSION

A multi-objective optimization using a modified SCE-UA
algorithm, is incorporated in SWAT2005. Two calibration
approaches are possible: single-objective and multi-objective
optimization. The obtained model performance depends on
the choice of calibration approach, but essentially on the
selected influencing parameters. Indeed, each variable is

sensitive to different parameters and in case of many vari-
ables, some parameters appear in multiple subsets: flow
and TSS, flow and TP, flow and TSS and TP. Considering

them all for calibration improved the obtained water quality
fitting performance very much. Based on the results
obtained in this study, even if the user-defined choice of

weights with SCE in SWAT2005 is not operational, the
multi-objective calibration remains the best approach to
model TSS and TP, with a daily evaluation performance in
the small agricultural Ruisseau du Portage watershed. The

following conclusions can be drawn:

1. The multi-objective optimization considering all par-

ameters related to the variables is the best approach to
enhance the daily water quality simulation with
SWAT2005. The performance of describing flow data is

maintained and the water quality prediction perform-
ance, especially that of TP, is very much improved.

2. Excellent results on the whole watershed may hide unrea-

listic mass balances for Q, TSS and TP for each HRU.
Forcing a correct mass balance for each HRU leads to a
worse daily performance, and fixing certain parameters
to impose the mass balance hinders the search for a par-

ameter set that gives adequate model performance.
3. Despite the normalization of the objective functions, the

SCE algorithm incorporated in SWAT2005 prioritizes the

most numerous data among the variables considered. To
overcome this problem, the choice of other weights
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assigned to objective functions can be a solution but this

choice is not operational in SWAT2005. The attempt to
change the weights manually did not improve the per-
formance to describe TP data.

4. With single-objective optimization, the excellent water
quality performance that can be achieved may hide a
loss of flow fitting performance and unbalanced internal
hydrological components.

5. For both calibration approaches, manual adjustments
based on good insight into the SWAT model remain
crucial.
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