

# Modelling and control of a full-scale chemically enhanced primary treatment model

## Sovanna Tik, Giulia Bachis and Peter A. Vanrolleghem

model*EAU*, Département de génie civil et de génie des eaux, Université Laval, Pavillon Adrien-Pouliot, 1605 Avenue de la Médecine, Québec (QC) G1V 0A6, Canada

### Context

To deal with high influent loads during rain events, Québec City's wastewater treatment plant chose to chemically enhance its primary treatment

#### **Objectives:**

- 1. Simulate the behaviour of the primary clarifier without and with alum addition
- 2. Propose a control strategy to achieve effluent quality requirements at minimal chemical cost

#### Materials and methods



This study focuses on total suspended solids removal.

Two sources of data are used:

- ✓ Full-scale test
  - on-line measurements
  - high frequency composite samples
- ✓ Lab-scale experiments
  - jar-tests on a large range of alum concentrations

#### Hydraulic model

Full-scale tracer tests by pulse injection of rhodamine WT show that (figure below):

- all seven primary clarifier (PC) units have the same hydraulic behaviour and distribution is almost perfect
- ✓ the hydraulic behaviour between inlet and outlet of each PC can be modelled by a series of six homogeneous layers
- $\checkmark\,$  between inlet and underflow five layers are required



#### Sedimentation model



Lab experiments (range studied: 30-70 mg/L of alum) show that :

- $\checkmark\,$  a minimal alum concentration is needed for better clarification
- ✓ at too high alum concentrations a saturation effect is observed



#### **Control strategy**



Control strategies of alum addition are evaluated using different selections of the sensors presented in the above figure

## TAKE HOME MESSAGE

- Sedimentation enhancement can be modelled by varying, depending on chemical concentration:
  - sedimentation velocity
  - non-settleable fraction of influent load
- ✓ Optimum chemical dosage depends on several conditions → a real time control strategy will provide an adequate addition automatically



