
lable at ScienceDirect

Environmental Modelling & Software 49 (2013) 40e52
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Global sensitivity analysis in wastewater applications:
A comprehensive comparison of different methods

Alida Cosenza a, Giorgio Mannina a,*, Peter A. Vanrolleghemb, Marc B. Neumann b,c,d

aDipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
bmodelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC G1V 0A6, Canada
cBasque Centre for Climate Change, Alameda Urquijo, 4-4� , 48008 Bilbao, Spain
d IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
a r t i c l e i n f o

Article history:
Received 22 December 2012
Received in revised form
29 May 2013
Accepted 19 July 2013
Available online

Keywords:
Calibration
Global sensitivity analysis
MBR modelling
Wastewater treatment
* Corresponding author.
E-mail addresses: alida.cosenza@unipa.it (A.

unipa.it, mannina@idra.unipa.it (G. Mannina), Pete
(P.A. Vanrolleghem), marc.neumann@bc3research.org

1364-8152/$ e see front matter � 2013 Elsevier Ltd.
http://dx.doi.org/10.1016/j.envsoft.2013.07.009
a b s t r a c t

Three global sensitivity analysis (GSA) methods are applied and compared to assess the most relevant
processes occurring in wastewater treatment systems. In particular, the Standardised Regression Co-
efficients, Morris Screening and Extended-FAST methods are applied to a complex integrated membrane
bioreactor (MBR) model considering 21 model outputs and 79 model factors. The three methods are
applied with numerical settings as suggested in literature. The main objective considered is to classify
important factors (factors prioritisation) as well as non-influential factors (factors fixing). The perfor-
mance is assessed by comparing the most reliable method (Extended-FAST), by means of proposed
criteria, with the two other methods. In particular, similarity to results obtained from Extended-FAST is
assessed for sensitivity indices, for the ranking of sensitivity indices, for the classification into important/
non-influential factors and for the method’s ability to detect interaction among factors and to provide
results in a reasonable time.

It was found that the computationally less expensive SRC method was applied outside its range of
applicability (R2) ¼ (0.3e0.6) < 0.7. Still, the SRC produced a ranking of important factors similar to
Extended-FAST. For some variables significant interactions among the factors were revealed by
computing the total effect indices STi using Extended-FAST. This means that to obtain reliable variance
decomposition and to detect and quantify interactions among the factors, the use of the Extended-FAST
is recommended. Regarding the comparison between Morris screening and Extended-FAST a poor
agreement was found. In particular, the Morris screening overestimated the number of both important
and non-influential factors compared to Extended-FAST for the analysed case study.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the field of mathematical modelling sensitivity analysis rep-
resents a very powerful tool as it provides information about how
the variation in the outputs of the model can be apportioned to the
variation of the model (input) factors (Saltelli, 2000). “Factors” is a
term widely used in the sensitivity analysis literature and includes
model parameters andmodel input variables. Saltelli (2000) singles
out three main classes of sensitivity analysis methods: screening
methods, local methods and global methods. Screening methods
are economical and qualitative methods. Local methods provide a
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measure of how the model output is affected by infinitesimal factor
changes at a specific location in factor space. Global sensitivity
analysis (GSA) provides information on how the model outputs are
influenced by factor variation over the whole space of possible
input factor values (Homma and Saltelli, 1996; Saltelli et al., 2004).

In the environmental modelling field the majority of sensitivity
analysis applications are local. Moreover, often a one-at-a-time
approach is used that does not allow identifying interacting fac-
tors. In recent years, several GSA techniques have been developed.
Among them the most widely used are: (i) global screening
methods such as the Morris screening method (Morris, 1991;
Campolongo et al., 2007); (ii) variance decomposition methods
such as Fourier Amplitude Sensitivity Testing (FAST), Extended-
FAST and the Sobol indices method (Cukier et al., 1973; Schaibly
and Shuler, 1973; Saltelli et al. 1999; Sobol, 2001); and (iii)
regression-based methods such as the standardised regression
coefficient (SRC) method (Saltelli et al., 2008). GSA may help the
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List of symbols and abbreviations

MBR Membrane BioReactor
FAST Fourier Amplitude Sensitivity Test
SRC Standardised Regression Coefficient
GSA Global Sensitivity Analysis
ASM Activated Sludge Models
UCT University of Cape Town
SMP Soluble Microbial Product
TSS Total Suspended Solids
VSS Volatile Suspended Solids
COD Chemical Oxygen Demand
NH4eN Ammonia nitrogen
NO2eN Nitrite nitrogen
NO3eN Nitrate nitrogen
NTOT Total nitrogen
PTOT Total phosphorus
CODTOT Total COD model variable
SNH4

Ammonia nitrogen model variable
SNO3

Nitrate nitrogen model variable
SPO4

Soluble inorganic phosphorus model variable
MLSS Mixed liquor suspended solid
CODSOL Soluble modelled COD
CTN Total nitrogen model variable
y Model output
xi ith model factor
bi Regression slopes
3 Random error of the regression model
sxi ith factor standard deviation
sy Model output standard deviation
bi ith factor sensitivity index
EE Elementary Effect
p Sampling level of Morris screening method
D Factor perturbation
m Mean of the EEs function
s Standard deviation of the EEs function
IF Interaction among factors
m* Mean of the absolute EEs function
r Sampling repetition for Morris screening method
n Model factors number
Var(Y) Total variance of the model output
Si First order effect index of the ith factor
STi Total effect index of the ith factor
NMC Number of Monte Carlo simulations
SNi Normalised interaction index
rs Spearman’s rank correlation index
rP Pearson correlation index
PF Position Factor
Rel Relevance
NS Number of simulations
PAOs Phosphorus Accumulating Organisms
RelIMPORTANT Relevance of important factors
RelNON-INFLUENTIAL Relevance of non-influential factors
kH Maximum specific hydrolysis rate
hNO3 ;HYD Correction factor for hydrolysis under anoxic

conditions
hFE Correction factor for hydrolysis under anaerobic

conditions
KO Half saturation parameter for SO2 for XH

SO2
Dissolved oxygen

XH Ordinary heterotrophic organisms
XS Particulate biodegradable organics
XH Ordinary heterotrophic organisms

KNO3
Half saturation parameter for SNO3

for XH

Kx Half saturation parameter for XS/XH

SF Fermentable organic matter
SA Fermentation product (considered to be acetate)
XPAO Phosphorus accumulating organisms model variable
XPP Stored polyphosphates in PAOs
XPHA Storage compound in PAOs
SALK Alkalinity ðHCO3

�Þ
XAUT Autotrophic nitrifying organisms
SBAP Soluble biomass associated products
SUAP Soluble utilisation associated products
SI Soluble undegradable organics
XI Particulate undegradable organics
KO,HYD Half saturation/inhibition parameter for SO2

KNO3;HYD Half saturation/inhibition parameter for SNO3

mH Maximum growth rate of XH

qFE Rate constant for fermentation/Maximum specific
fermentation growth rate

hNO3;H Reduction factor for anoxic growth of XH

bH Decay rate for XH

KF Half saturation parameter for SF
KFE Half saturation parameter for fermentation of SF
KA Half saturation parameter for SA
KNH,H Half saturation parameter for SNH4

for XH

KP Half saturation parameter for SPO4
for XH

KALK,H Half saturation parameter for SALK for XH

qPHA Rate constant for SA uptake rate
qPP Rate constant for storage of polyphosphates
mPAO Maximum growth rate of XPAO

hNO3;PAO Reduction factor for anoxic growth of XPAO

bPAO Endogenous respiration rate of XPAO

bPP Rate constant for Lysis of polyphospates
bPHA Rate constant for respiration of XPHA

KPS Half saturation parameter for SPO4
uptake

KPP Maximum ratio of XPP/XPAO

KMAX Half saturation parameter for XPP/XPAO

KIPP Half inhibition parameter for XPP/XPAO

KPHA Saturation constant for XPHA/XPAO

KO,PAO Half saturation parameter for SO2
for XPAO

KNO3;PAO Half saturation parameter for SNO3
for XPAO

KA,PAO Half saturation parameter for SA for XPAO

KNH,PAO Half saturation parameter for SNH4
for XPAO

KP,PAO Half saturation parameter for SPO4
as nutrient (XPAO

growth)
KALK,PAO Half saturation parameter for SALK for XPAO

mAUT Maximum growth rate of XAUT

bAUT Decay rate for XAUT

KO,A Half saturation parameter for SO2
for XAUT

KNH,A Half saturation parameter for SNH4
for XAUT

KALK,A Half saturation parameter for SALK for XAUT

KP,A Half saturation parameter for SPO4
for XPAO

kH,BAP Hydrolysis rate coefficient for SBAP
kH,UAP Hydrolysis rate coefficient for SUAP
kLaT,3 Overall oxygen transfer coefficient aerobic tank
kLaT,4 Overall oxygen transfer coefficient MBR tank
YH Yield for XH growth
fXI

Fraction of XI generated in biomass decay
YPAO Yield for XPAO growth
YPO4

Yield for XPP requirement per XPHA stored
YPHA Yield for XPP storage per XPHA utilised
YA Yield of XAUT growth per SNO3

fBAP Fraction of SBAP generated in biomass decay
fUAP Fraction of SUAP generated in biomass decay
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FSF Fraction of influent SF
FSA Fraction of influent SA
FSI Fraction of influent SI
FXI

Fraction of influent XI

FXH
Fraction of influent XH

b Erosion rate coefficient of the dynamic sludge
a Stickiness of the biomass particles
g Compressibility of cake
f Substrate fraction below the critical molecular weight
l Screening parameter
CE Efficiency of backwashing
iN;SI Nitrogen content of SI
iN;SF Nitrogen content of SF

iN;XI
Nitrogen content of XI

iN;XS
Nitrogen content of XS

iN,BM Nitrogen content of biomass
iP;SF Phosphorus content of SF
iP;XI

Phosphorus content of XI

iP;XS
Phosphorus content of XS

iP,BM Phosphorus content of biomass
iTSS;XI

Conversion factor XI in TSS
iTSS;XS

Conversion factor XS in TSS
iTSS,BM Conversion factor biomass in TSS
iTSS;XPHA

Conversion factor XPHA in TSS
iTSS;XPP

Conversion factor XPP in TSS
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modeller to identify important input factors (factors prioritisation)
as well as non-influential input factors (factors fixing). The main
goal of factors prioritisation is to identify factors which determine
model variance whereas factors fixing identifies factors that may be
fixed anywhere within their range of uncertainty without affecting
model output variance. Moreover, some GSA methods are also able
to quantify the model variance contribution due to the synergistic
or co-operative effect among factors called interaction or interaction
among factors (IF) (Saltelli et al., 2004).

In the field of environmental modelling previous studies using
GSA have been conducted with different goals (factors prioritisa-
tion, factors fixing etc.). Only a limited number of studies focus on
wastewater treatment (among others, Brockmann andMorgenroth,
2007; Benedetti et al., 2008; Gernaey et al., 2011; Ruano et al., 2011;
Sin et al., 2011; Benedetti et al., 2012; Chen et al., 2012; Flores-
Alsina et al., 2012; Ruano et al., 2012).

In the following, five GSA comparison studies, coming from
several environmental modelling fields are briefly discussed.

Confalonieri et al. (2010), employing a crop model with 11 pa-
rameters, compared the Morris screening method, the regression-
based SRC method and two methods based on variance decom-
position (Extended-FAST and Sobol). They found almost always
similar rankings of important model parameters.

Yang (2011) presented a study in which two methods were
proposed to analyse the convergence of sensitivity indices by
applying the Central Limit Theorem and the bootstrap technique.
The latter was applied for comparing results of five sensitivity
analysis methods. Yang found, for a simple model characterised by
5 parameters, a high capability of the Morris screening method in
identifying non-influential factors.

Neumann (2012) also presents a comparison among five sensi-
tivity analysis techniques (derivative-based local sensitivity anal-
ysis, Morris Screening, Standardised Regression Coefficients,
Extended-FAST and an entropy-based method) which were
applied to a drinking water model for several objectives including
factors prioritisation, and factors fixing. In general the author found
the same parameter ranking results for the different methods.
However, for chemicals leading to high non-linearity, the approx-
imation of 1st order effect indices using the local methods or
regression-based methods was poor and classification differed
among methods.

Finally Sun et al. (2012) compared three sensitivity analysis
methods of a water quality hydrology model: the local method,
Morris screening method and global sensitivity analysis. They
concluded that the three methods were complementary and
whenever the number of input factors is too high a more efficient
two-step procedure based on a first stage screening process (with a
local method) followed by a global sensitivity analysis of the factors
identified in the first stage was a feasible approach.
In the wastewater field, Brockmann and Morgenroth (2007)
compared Morris screening and FAST methods for a 22 parameter
biofilm model for two step nitrification. The authors showed that
both methods provide the same set of important parameters
despite the fact that information about the variance contribution of
each parameter was only provided by the FAST method. They
suggest that Morris screening is an excellent method for prior
factor fixing while the FAST method is suitable for exploring the
variance contribution for the subset of important parameters.

In the wastewater field the Activated Sludge Models (ASM),
widely used in modelling of biological treatment processes, are
generally characterised by high interaction among factors and
important non-linearity. Therefore, the transferability of the
knowledge acquired in other modelling fields in terms of GSA
application may be limited.

The above review points out that, in the wastewater field, the
features of GSA methods have not been investigated much. Indeed
wastewater models are mostly complex models (i.e. models char-
acterisedbyabout100model factorsandeasilyhundredsof variables
and tens of model outputs). For such complex dynamic and stiff
models that take a lot of computation time to solve, a modeller is
muchmore interested in limiting the number of simulations than for
simplemodels. The needof limiting thenumber of simulations in the
case of complex models is in contrast with the application of GSA
methods that require a higher number of simulations than local
methods.Moreover, as far as the authors are aware a comprehensive
comparison among the GSAmethods for complex biological models,
such in the case of ASM used in thewastewater field, has never been
performed. In addition, as highlighted by the few studies dealing
with convergenceof sensitivity indexofGSA (e.g. Nossentet al., 2011;
Yang, 2011; Nossent and Bauwens, 2012), the high required number
of simulations in the case of complex biological models makes it
difficult to run a convergence analysis (Benedetti et al., 2011).

The objective of this paper is to provide a comprehensive
comparison of the most common methods used for assessing
model output sensitivity (both in terms of factors prioritisation and
factors fixing) for ASM-typemodels. This comparison highlights the
advantages and disadvantages of each method when used in the
wastewater field. The methods have been used by employing nu-
merical settings as suggested in literature.

Three sensitivity analysis techniques are compared:

1. the SRC method as proposed by Saltelli et al. (2008);
2. the Morris screening method as modified by Campolongo et al.

(2007);
3. the Extended-FAST method proposed by Saltelli et al. (1999).

Common criteria for the comparison have been established
below. With regards to the sensitivity threshold for the
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identification of the important model parameters a comparable
threshold among methods has been identified according to the
definition of each sensitivity measure.

An integrated ASM2d-SMP-P model was employed for the
method comparison using the water quality data of a University of
Cape Town membrane bioreactor (UCT-MBR) pilot plant (Cosenza
et al., 2013b).

A detailed analysis of the physical interpretation of sensitivity
analysis for the pilot plant under study is provided in Cosenza et al.
(2013c).

2. Materials and methods

2.1. The MBR model and case study

The GSA methods are compared for an integrated ASM2d-SMP-P model
(Cosenza et al., 2013b). The model couples the biological ASM2d-SMP model
(formerly introduced by Jiang et al., 2008) with a physical model derived from Di
Bella et al. (2008) and Mannina et al. (2010, 2011b). The model allows simulating
the biological nutrient removal processes, the soluble microbial products (SMPs)
formation/degradation and the cake layer formation. The biological sub-model
simulates the main biological processes that take place and it involves 19 model
state variables and 73 factors (kinetic, stoichiometric and fractionation related). The
physical sub-model, which is characterised by 2 state variables and 6 factors, sim-
ulates the formation of the cake layer on the membrane surface, thus taking into
account the membrane fouling. This sub-model also takes into account a further
reduction of effluent pollution due to the formation of the cake layer that acts as an
additional filter.

Table 1 summarises the identifier, symbol, unit, variation range and literature
references of each of the model parameters.

For a detailed description of the parameters the reader is referred to Henze et al.
(2000), Di Bella et al. (2008), Jiang et al. (2008), Mannina et al. (2011b) and Cosenza
et al. (2013b).

The analysis is conducted for a pilot plant with a UCT-MBR scheme, which was
operated at a feed inflow of 40 L/h of municipal wastewater during 165 days. Until
day 76 it was operated with complete sludge retentionwhile after day 76, the sludge
was regularly withdrawn, maintaining the sludge age near to 37 days. During the
entire experimental period the following samples were obtained: composite
influent wastewater samples (section 0), grabmixed liquor samples in each tank (i.e.
anaerobic, anoxic, aerobic and MBR tank, respectively, sections 1e4), mixed liquor
samples in the oxygen depletion reactor (section 6) and in the permeate (section 5).
This was done three times per week and the samples were analysed for total and
volatile suspended solids (TSS and VSS), total and soluble COD, NH4eN, NO2eN,
NO3eN, NTOT, PTOT (APHA, 1998). Further details about the model, pilot plant and
sampling campaign can be found in Cosenza et al. (2013a,b) and Di Trapani et al.
(2011).

Simulations were run using continuous input time series which were obtained
by employing a truncated Fourier series calibrated on discrete measured input data
(Mannina and Viviani, 2009a,b; Mannina et al., 2011a). Four different sections of the
UCT-MBR plant were considered, in particular, the anaerobic tank (section 1), anoxic
tank (section 2), aerobic tank (section 3) and permeate tank (section 5). Model
outputs are defined as the average values of the 165 days of simulated time series.
Twenty-one model outputs were taken into account for the GSA: CODTOT, SNH4 , SNO3 ,

SPO for all 5 sections, MLSS for sections 1e3, CODSOL (COD soluble) for section 3, and
CTN (total nitrogen) for section 5. Seventy-nine model factors were considered for
the GSA (see Table 1).

2.2. Standardised regression coefficients e SRC

The SRC method consists of running a Monte Carlo simulation (with random
sampling of inputs) and performing a multivariate linear regression between the
model output and the factors considered (Eq. (1)):

y ¼ bo þ
Xn

i¼1

bi$xi þ 3 (1)

where y represents the model output, xi the ith factor, n the number of factors, bi the
regression slopes, and 3the random error of the regression model. The SRC’s are the
standardised regression slopes:

SRCðxiÞ ¼ bi ¼ bi$sxi =sy (2)

where sxi and sy represent respectively the factor and the model output standard
deviation. A high absolute value of bi indicates a relevant effect of the related ith
factor on the model output. The sign of bi indicates its positive (sign þ) or negative
(sign �) effect (Saltelli et al., 2004). For linear models

P
b2i ¼ 1, otherwise this sum

which represents the model coefficient of determination R2 is lower than 1 (Saltelli
et al., 2008).
SRCs are valid measures of sensitivity when, as suggested by Saltelli et al. (2004),
the coefficient of determination R2, which indicates the portion of total variance
explained by the regressionmodel, is greater than 0.7. The SRCmethod explores only
the 1st order effects and does not provide any information about the interaction
among factors. Therefore, by means of the SRC method the important (factors pri-
oritisation) and non-influential (factors fixing) factors may be correctly distin-
guished only in case of linear models. Otherwise the SRCmethod can be applied only
in terms of factors prioritisation.

The required number of simulations found in literature is generally between 500
and 1000 (Neumann, 2012).

2.3. Morris screening method

The Morris screening method provides a measure of sensitivity by computing
multiple Elementary Effects (EEs). An EE of the ith factor (EEi) represents the relative
difference between the model output obtained after perturbation of the ith factor by
D, y(x1,.,xi�1,xi þ D,xiþ1,.,xn), and the model output obtained without factor
perturbation, y(x1,.,xn).

EEiðx1; :::; xn;DÞ ¼ yðx1; :::; xi�1; xi þ D; xiþ1; :::; xnÞ � yðx1; :::; xnÞ
D

(3)

where D is a value in {1/(p-1),.,1-1/(p-1)} and p is the number of levels. Each of the
n factors is portioned into p levels, and the (x1,.,xn) vector is sampled from a hy-
perspace which is a n-dimensional p-level grid. EE is computed, for each factor r
times (replicates) at different locations in factor space. In order to facilitate the
comparison between Morris Screening and the other methods both model outputs
(y) and model factors (x) are centred (to the mean) and scaled (divided by standard
deviation) to obtain the sensitivity indices. For each factor, the measure of sensitivity
is summarised by the mean (m) and the standard deviation (s) of the r EEs. m is a
measure of the importance of the factor in determining model output uncertainty
whereas s indicates if the factor is responsible for introducing non-linearity or in-
teractions. A high value of s means that the model output variation is influenced by
non-linearity or interactions. Thus, theMorris screeningmethod is able to detect the
interaction among factors (IF) by means of s. As proposed by Campolongo et al.
(2007), in order to avoid the problem of the effects of opposite signs of the EEs, it
is better to refer to the mean (m*) of the absolute elementary effects. Factors having
m* greater than an established threshold value are considered to be important. All
factors with m* lower than an established threshold value are non-influential. The
line m*i ¼ þ2si=

ffiffiffi
r

p
, where si=

ffiffiffi
r

p
represents the standard error of the mean, pro-

vides information about the factor effect on model output. Factors which lie below
the line m*i ¼ þ2si=

ffiffiffi
r

p
have a linear effect on the model outputs whereas factors

above this line have a non-linear effect or are involved in interactions (Morris, 1991).
According to the Morris design (Morris, 1991) the required number of simula-

tions is equal to r*(nþ 1) as suggested by Campolongo et al. (2007). Typical numbers
are r ¼ 10e20 and p ¼ 4e8 (Campolongo et al., 2007).

2.4. Extended-FAST

The Extended-FAST method belongs to the variance decomposition methods. It
is founded on the variance decomposition theorem which states that the total
variance of themodel output (Var(Y)) can be decomposed into conditional variances.
This method does not require any assumptions on model structure (linearity,
monotonicity etc.). In particular, for each factor i two sensitivity indices are defined:
the first order effect index (Si) and the total effect index (STi). Si measures how the i-
th factor contributes to Var(Y) without taking into account the interactions with
other factors. It is expressed as:

Si ¼ VarxiðEx�i ðYjxiÞÞ
VarðYÞ (4)

where E indicates the expectancy operator and Var the variance operator. According
to the notation used by Saltelli et al. (2004) the subscripts indicate that the operation
is either applied “over the ith factor” Xi, or “over all factors except the ith factor” Xi.

On the other hand, STi allows evaluating the interactions among factors. It is
expressed as:

STi ¼ 1� Varx�i ðExi ðY jx�iÞÞ
VarðYÞ (5)

The higher the Si is, the higher is the influence of the input factor in terms of
factor prioritisation. The difference between STi and Si represents the interaction
among factors (IF). It is important to underline that in the context of factors fixing
(determining the non-influential factors) the analysis of STi has to be performed. If
the Si value is small it doesn’t mean that the factor may be fixed anywhere within its
range because a high STi value would indicate that the factor is involved in in-
teractions. Thus only factors with low Si and low interaction (STi e Si) may be clas-
sified as non-influential.

The Extended-FAST method requires n$NMC simulations, where n is the number
of factors and NMC the number of MC simulations per factor (NMC ¼ 500e1000 ac-
cording to Saltelli et al., 2005).



Table 1
Number of factor order, symbol, unit of measure, variation range and literature references for each model factor.

Factor order Symbol Description Unit MIN MAX Reference

1 kH Maximum specific hydrolysis rate g XS g XH
�1 d�1 1.5 4.5 Brun et al., 2002

2 hNO3 ,HYD Correction factor for hydrolysis under
anoxic conditions

e 0.402 0.798 Hauduc et al., 2011

3 hFE Correction factor for hydrolysis under
anaerobic conditions

e 0.2 0.6 Hauduc et al., 2011

4 KO Half saturation parameter for SO2
for XH g SO2

m�3 0.1 1 Weijers and
Vanrolleghem, 1997

5 KNO3
Half saturation parameter for SNO3

for XH g SNO3
m�3 0.1 0.625 Weijers and

Vanrolleghem, 1997;
Brun et al., 2002

6 Kx Half saturation parameter for XS/XH g XS g XH
�1 0.05 0.15 Brun et al., 2002

7 KO,HYD Half saturation/inhibition parameter for SO2 g SO2
m�3 0.1 0.3 Brun et al., 2002

8 KNO3 ;HYD Half saturation/inhibition parameter for SNO3
g N m�3 0.375 0.625 Brun et al., 2002

9 mH Maximum growth rate of XH d�1 0.6 13.2 Jeppsson, 1996
10 qFE Rate constant for fermentation/Maximum specific

fermentation growth rate
g SF g XH

�1 d�1 1.5 4.5 Brun et al., 2002

11 hNO3 ;H Reduction factor for anoxic growth of XH e 0.6 1 Brun et al., 2002
12 bH Decay rate for XH d�1 0.05 1.6 Jeppsson, 1996
13 KF Half saturation parameter for SF g SF m�3 2 6 Brun et al., 2002
14 KFE Half saturation parameter for fermentation of SF g SF m�3 2 6 Brun et al., 2002
15 KA Half saturation parameter for SA g SA m�3 2 6 Brun et al., 2002
16 KNH,H Half saturation parameter for SNH4

for XH g SNH4
m�3 0.02 2 Weijers and

Vanrolleghem, 1997
17 KP Half saturation parameter for SPO4

for XH g SPO4
m�3 0.005 0.015 Brun et al., 2002

18 KALK,H Half saturation parameter for SALK for XH mol HCO3
� m�3 0.05 0.15 Brun et al., 2002

19 qPHA Rate constant for SA uptake rate g XPHA g XPAO
�1 d�1 0.3 5.7 Hauduc et al., 2011

20 qPP Rate constant for storage of polyphosphates g XPP g XPAO
�1 d�1 0 3.3 Hauduc et al., 2011

21 mPAO Maximum growth rate of XPAO d�1 0.5 1.5 Brun et al., 2002
22 hNO3 ;PAO Reduction factor for anoxic growth of XPAO e 0.45 0.75 Brun et al., 2002
23 bPAO Endogenous respiration rate of XPAO d�1 0.1 0.25 Henze et al., 2000;

Hauduc et al., 2011
24 bPP Rate constant for lysis of polyphospates d�1 0.1 0.25 Henze et al., 2000;

Hauduc et al., 2011
25 bPHA Rate constant for respiration of XPHA d�1 0.1 0.25 Henze et al., 2000;

Hauduc et al., 2011
26 KPS Half saturation parameter for SPO4

uptake g SPO4
m�3 0.1 0.3 Brun et al., 2002

27 KPP Maximum ratio of XPP/XPAO g XPP g XPAO
�1 0.005 0.015 Brun et al., 2002

28 KMAx Half saturation parameter for XPP/XPAO g XPP g XPAO
�1 0.2 0.51 Rieger et al., 2001

29 KIPP Half inhibition parameter for XPP/XPAO g XPP g XPAO
�1 0.01 0.03 Brun et al., 2002

30 KPHA Saturation constant for XPHA/XPAO g XPHA g XPAO
�1 0.005 0.015 Brun et al., 2002

31 KO,PAO Half saturation parameter for SO2
for XPAO g SO2

m�3 0.1 0.3 Brun et al., 2002
32 kNO3 ;PAO Half saturation parameter for SNO3

for XPAO g SNO3
m�3 0.375 0.625 Brun et al., 2002

33 KA,PAO Half saturation parameter for SA for XPAO g SA m�3 2 6 Brun et al., 2002
34 KNH,PAO Half saturation parameter for SNH4

for XPAO g SNH4
m�3 0.025 0.075 Brun et al., 2002

35 KP,PAO Half saturation parameter for SPO4
as nutrient

(XPAO growth)
g SPO4

m�3 0.005 0.015 Brun et al., 2002

36 KALK,PAO Half saturation parameter for SALK for XPAO mol HCO3
� m�3 0.05 0.15 Brun et al., 2002

37 mAUT Maximum growth rate of XAUT d�1 0.2 1.2 Weijers and
Vanrolleghem, 1997

38 bAUT Decay rate for XAUT d�1 0.04 0.1605 Hauduc et al., 2011
39 KO,A Half saturation parameter for SO2 for XAUT g SO2

m�3 0.1 2 Weijers and
Vanrolleghem, 1997;
Jeppsson, 1996

40 KNH,A Half saturation parameter for SNH4
for XAUT g SNH4

m�3 0.5 1.5 Hauduc et al., 2011
41 KALK,A Half saturation parameter for SALK for XAUT mol HCO3

� m�3 0.25 0.75 Brun et al., 2002
42 KP,A Half saturation parameter for SPO4

for XPAO g SPO4
m�3 0.005 0.015 Brun et al., 2002

43 kH,BAP Hydrolysis rate coefficient for SBAP d�1 3.705E-07 1.1115E-06 Jiang et al., 2008
44 kH,UAP Hydrolysis rate coefficient for SUAP d�1 0.0051 0.0153 Jiang et al., 2008
45 kLaT,3 Overall oxygen transfer coefficient aerobic tank h�1 9.5 10.5 Innocenti, 2005
46 kLaT,4 Overall oxygen transfer coefficient MBR tank h�1 3.23 3.57 Innocenti, 2005
47 YH Yield for XH growth g XH g XS

�1 0.38 0.75 Jeppsson, 1996
48 fXI

Fraction of XI generated in biomass decay g XI g XH
�1 0.05 0.4 Weijers and

Vanrolleghem, 1997
49 YPAO Yield for XPAO growth g XPAO g XPHA

�1 0.42 0.78125 Brun et al., 2002
50 YPO4

Yield for XPP requirement per XPHA stored 0.38 0.42 Brun et al., 2002
51 YPHA Yield for XPP storage per XPHA utilised g XPP g XPHA

�1 0.19 0.21 Brun et al., 2002
52 YA Yield of XAUT growth per SNO3

g XAUT g SNO3
�1 0.228 0.252 Brun et al., 2002

53 fBAP Fraction of SBAP generated in biomass decay e 0.0069 0.022575 Brun et al., 2002
54 fUAP Fraction of SUAP generated in biomass decay e 0.091485 0.101115 Brun et al., 2002
55 FSF Fraction of influent SF e 0.06 0.18 Brun et al., 2002
56 FSA Fraction of influent SA e 0.04 0.12 Brun et al., 2002
57 FSI Fraction of influent SI e 0.114 0.126 Brun et al., 2002
58 FXI

Fraction of influent XI e 0.05 0.15 Brun et al., 2002
59 FXH

Fraction of influent XH e 0.06 0.18 Brun et al., 2002
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Table 1 (continued )

Factor order Symbol Description Unit MIN MAX Reference

60 b Erosion rate coefficient of the dynamic sludge e 1.00E-04 2.10E-02 Mannina et al., 2011b
61 a Stickiness of the biomass particles e 0 1 Mannina et al., 2011b
62 g Compressibility of cake kg m�3 s 5.56E-04 2.78E-03 Mannina et al., 2011b
63 f Substrate fraction below the critical molecular

weight
e 0.001 0.99 Mannina et al., 2011b

64 l Screening parameter m�1 1000 2.00Eþ03 Mannina et al., 2011b
65 CE Efficiency of backwashing e 0.996 0.999 Mannina et al., 2011b
66 iN;SI N content of SI g N g SI

�1 0.0075 0.0125 Brun et al., 2002
67 iN;SF N content of SF g N g SF

�1 0.0225 0.0375 Brun et al., 2002
68 iN;XI

N content of XI g N g XI
�1 0.015 0.025 Brun et al., 2002

69 iN;XS
N content of XS g N g XS

�1 0.03 0.05 Brun et al., 2002
70 iN,BM N content of biomass g N g XBM

�1 0.0665 0.0735 Brun et al., 2002
71 iP;SF P content of SF g P g SF

�1 0.005 0.015 Brun et al., 2002
72 iP;XI

P content of XI g P g XI
�1 0.005 0.015 Brun et al., 2002

73 iP;XS
P content of XS g P g XS

�1 0.005 0.015 Brun et al., 2002
74 iP,BM P content of biomass g P g XBM

�1 0.015 0.025 Brun et al., 2002
75 iTSS;XI

Conversion factor XI in TSS g TSS g XI
�1 0.7125 0.7875 Brun et al., 2002

76 iTSS;XS
Conversion factor XS in TSS g TSS g XS

�1 0.7125 0.7875 Brun et al., 2002
77 iTSS,BM Conversion factor biomass in TSS g TSS g XBM

�1 0.855 0.945 Brun et al., 2002
78 iTSS;XPHA

Conversion factor XPHA in TSS g TSS g XPHA
�1 0.57 0.63 Brun et al., 2002

79 iTSS;XPP
Conversion factor XPP in TSS g TSS g XPP

�1 3.0685 3.3915 Brun et al., 2002
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2.5. Factors classification, simulation conditions and numerical settings for GSA
methods

The thresholds for the assessment of the important factors were chosen ac-
cording to previous studies (Sin et al., 2011). In particular, the threshold value of 0.1
was employed for the absolute value of bi and for m* whereas 0.01 was used for Si.
The choice of the threshold value of 0.01 for Si is related to the fact that for a linear
model Si ¼ b2i . All factors having m* lower than 0.1 have been considered non-
influential for the Morris screening application. For each model output, the non-
influential factors for Extended-FAST have been classified on the basis of a nor-
malised index (SNi), introduced in this paper and defined as:

SNi ¼ STi � Si
maxðSTi � SiÞ

(6)

where STi � Si represents the interaction of the i-th model parameter related to
one model output, while max(STi � Si) represents the maximum value among
the interactions for that model output. The main reason for using the normal-
ised index is related to the fact that the several model outputs (21) have
different behaviour in terms of total order effect because the interaction is quite
different. Thus, for comparing results we need to deal with a normalised index
of the interaction with respect to the maximum value of the interaction for each
model output. By applying this procedure it is possible to fix the same threshold
for all model outputs and at least one factor will be classified as factor with
high interaction for each model output (Weijers and Vanrolleghem, 1997). All
model factors for which SNi is lower than 0.6 are classified as non-influential
factors.

For the discussion of the results in terms of degree of model linearity the
following coefficients were analysed: the linear model determination coefficients
(R2) and the sum of the squares of the standardised regression coefficients SNi¼ STie
Si/max(STi e Si) for the SRC method; the average of the standard deviations on the
total number of model factors (

P
si/n) (which provides an average order of

magnitude of the interaction/non-linearity among factors for eachmodel output) for
the Morris screening method; the sum of the first order indices ðPb2i Þ and the
averaged interaction

P
(STi e Si)/n for the Extended-FAST method.

Each of the three GSA methods was applied considering a uniform distribution
for all factors. The ranges of the values are listed in Table 1.

For each method the number of simulation runs was established on the basis of
literature recommendations (Morris, 1991; Saltelli, 2000; Saltelli et al., 2004;
Campolongo et al., 2007).

In order to apply the Extended-FASTmethod 39,500model runs were conducted
corresponding to 500 simulations for each factor. For the SRC method application
800 model runs were carried out using Latin Hypercube Sampling. The Morris
screening applicationwas performed using levels p ¼ 5, perturbation factor D ¼ 2/3,
replicates r ¼ 10 and running 800 model simulations.
2.6. Comparison of the sensitivity analysis methods

The sensitivity techniques are based on different philosophies and hypotheses as
also pointed out in the literature (Yang, 2011). We make the comparison by
considering the most reliable method (Extended-FAST) as the reference method.

The main features of GSA methods we are interested in are:
a. similarity of sensitivity indices compared to the reference method (factors
prioritisation);

b. similarity of ranking of sensitivity indices compared to the reference method
(factors prioritisation);

c. similarity of classification into important/non-influential factors compared to
the reference method (factors prioritisation and factors fixing);

d. methods’ capability to detect interaction among factors;
e. methods’ ability to provide results in a reasonable time.

In order to perform the comparison the following criteria have been considered:

i) Pearson correlation rP between sensitivity indices (feature a) varying
between �1 (high negative correlation) and 1 (high positive correlation), in
case rP¼ 0 no correlation exists;

ii) Spearman’s rs rank correlation index computed on the sensitivity indices
(feature b), providing a measure of statistical dependence between two
variables and varying between �1 and þ1. For rs equal to 1 or �1 the vari-
ables are perfectly monotonically related (the sign of rs represents the pos-
itive or negative relation of dependence);

iii) Modified position factor (PF) (Ruano et al., 2012) (feature b). The PF related to
the comparison of the position ranking order obtained for the n factors by
applying two different methods (i and j) is defined as (Ruano et al., 2012):

PF ¼
Xn

k¼ 1

���Pk;i � Pk;j
���

mPk;i ;Pk;j
(7)
where Pk,i and Pk,j respectively represent the position of the k-th factor in the ranking
obtained by applying method i and j respectively and mPk;i ;Pk;j is the average of Pk,i and
Pk,j. PF quantifies the differences among the factors ranking. PF is null in case the
ranking of all factors is the same. PF is maximum in case the ranking of all factors is
completely different for the two different methods. For example, for n ¼ 3 and
P1,i¼ 1, P2,i¼ 2, P3,i¼ 3 themaximumvalue of PF occurs when P1,j¼ 3, P2,j¼ 1, P3,j¼ 2.
For 79 factors the maximum value of PF is 81.84. The minimum, maximum and
average values of PF, computed over all model outputs, have been analysed for the
comparison.

iv) relevance (Rel) (feature c) varies between 0 (no model factor is important or
non-influential) and 1 (all model factors are important or non-influential)
(Beck et al., 1997; Saltelli et al., 2008). Rel represents an integral criterion
taking into account all model outputs at the same time. One factor is
considered important (or non-influential) if it is important (or non-
influential) for at least for one variable.

Rel ¼ number of important=non� influential factors
total number of factors

(8)
v) number of simulations (NS) (feature e);
vi) visual comparisons of scatter plots of sensitivity indices (feature a);
vii) Venn Diagrams to visualise classification into important or non-influential

(feature c).
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In the sequel, details on how these criteria are used to assess the five features are
provided.

2.6.1. Similarity of sensitivity indices compared to the reference method (feature a,
factors prioritisation)

For the present case study the comparison in terms of similarity of sensitivity
indices has been performed by Pearson correlation (i) and visually by means of
scatter plots (criterion vi). Specifically, in order to perform the comparison in
terms of similarity of sensitivity indices, as suggested in the literature
(Campolongo et al., 2007; Saltelli et al., 2008), the comparison between SRC and
Extended-FAST results has been carried out by comparing b2i and Si values as
b2i represents a linear approximation of Si. The comparison between Morris
screening and Extended-FAST has been done by comparing m* and STi values.
Moreover Campolongo et al. (2007) have shown that m* is a good indicator of STi
(Saltelli et al., 2008). The Pearson correlation coefficient rP (i) is therefore evalu-
ated for the comparisons b2i vs Si and m* vs STi and the scatter plots (vi) are assessed
for b2i vs Si and m* vs STi.

2.6.2. Similarity of ranking of sensitivity indices compared to the reference method
(feature b, factors prioritisation)

The analysis of the similarity of ranking of sensitivity indices has been per-
formed by means of Spearman’s rs rank correlation (ii) and modified position factor
(PF) (iii).

Specifically, in order to perform the comparison in terms of ranking between
SRC and Extended-FAST, both rs and PF have been computed considering, for each
factor, the ranking position associated to the absolute value of bi and to the Si value.
Conversely, the comparison betweenMorris Screening and Extended-FAST has been
performed by calculating rs and PF on the basis of the ranking position due to m* and
Si values.

2.6.3. Similarity of classification into important/non-influential factors
The comparison in terms of similarity of classification into important and non-

influential factors has been performed numerically by quantifying the Rel criterion
value for each method (criterion iv) and also by analysing Venn diagrams (criterion
vii). Rel of important factors for the comparison between SRC and Extended-FAST
has been calculated considering the factors that resulted to be important at least
for one of the variables taken into account according to the values of jbij and Si. The
comparison of Morris screening and Extended-FAST in terms of factors fixing has
been performed by computing the Rel of non-influential factors (RelNON-INFLUENTIAL)
considering all factors that were non-influential for at least one variable according to
the values of m* and SNi.

2.6.4. Methods’ capability to detect interaction among factors
The methods’ capability to detect interaction among factors is a feature of the

methods. As known by literature SRC and Morris screening do not provide the
possibility of quantifying interaction among factors. However, Morris screening
method provides qualitative information about factors involved in interactions or
inducing non-linearity. Conversely, with the Extended-FAST method it is possible to
quantify the interaction among factors bymeans of the difference between STi and Si.

2.6.5. Methods’ ability to provide results in a reasonable time
The comparison in terms of simulation time required has been performed on the

basis of the required number of simulations (NS).
3. Results and discussion

3.1. Extended-FAST (reference method)

Fig. 1 summarises the important factors for each subgroup of
output variables (on the basis of Si >0.01 for at least one of the
variables in each subgroup) in terms of factor prioritisation, with
regard to Extended-FAST (see Table 1 for the detailed results).

In Cosenza et al. (2013c) an in-depth analysis of these results is
presented and the knowledge gains as well as the implications for
modelling the current system are discussed. In the following sec-
tion we highlight the main results for CODTOT,1, SPO4;1

, SNO3;2
, SPO4;3

and CODTOT,5 (the numbers in the subscript indicate the plant
sections where the output is measured). These variables have been
selected as representative of the main processes occurring in each
reactor. For instance, in the anaerobic tank the most important
process is the release of phosphorus by the PAO organisms.
Therefore, for the anaerobic tank, the COD and SPO are the model
state variables that are expected to vary the most. Similar consid-
erations have been used for the other tanks.
The following factors are important for CODTOT,1: {mH, f, bH, KH, CE}
(see Fig.1a andAppendix1). The influenceof the factors related to the
physical separationprocess {f,CE} ismainly due to the recycled sludge
fluxes from tank to tank. Inparticular, the influence of the parameter f
on CODTOT,1 can be attributed to the fact that with increasing f a
decrease in CODTOT,5 concentration takes place which is propagated
throughout the system. The sum of the first order effect indices Si
explains 57% of the total variance indicating that the model is non-
linear and/or non-additive. A high degree of interaction occurs for
important factors indicated by the sum of STi for this variable (11.42).
For CODTOT,1 the model factors with SNi, greater than 0.6 are also
important in terms of Si value. Such result confirms that for CODTOT,1
the degree of interaction among the important factors in terms of Si is
high. It ismainlydue to the fact that thebiologicalprocessesoccurring
in the section 1 have a slight influence on the CODTOT,1 concentration.

The following factors are important for CODTOT,5: {f, mH, bH,
KNH,H, mAUT, kH, CE} (see Fig. 1a and Appendix 1). The importance of
these factors is consistent with the modeller’s experience. Indeed,
this factor set shows the impact of the heterotrophic biomass ac-
tivity and of the membrane separation on the CODTOT,5 concen-
tration. Indeed, the fact that factor f was the most important factor
for CODTOT,5 was attributed to the higher influence of physical
separation for permeate than for the other sections. Even though
factors a and g, both related to the physical sub-model, are not
classified as being important due to the low value of Si (0.0079 and
0.0014, respectively), they cannot be fixed anywhere in their vari-
ation range due to their high STi value (0.25 and 0.24, respectively).
Indeed, the SNi value of factors a and g is equal to 0.610 and 0.601
respectively. Thus, in terms of factor fixing factors a and g cannot be
considered non-influential.

The following factors were found to have a significant impact on
SNO3;2

in terms of Si value: {mH, YH, bH, kH, fxI , hNO3 ;HYD, FSF} (see Fig.1c
and Appendix 1). Among the important factors, for SNO3;2

factors mH
and YH are directly connected to the anoxic growth of heterotrophic
organisms on acetate and fermentable substrate. Thus mH and YH
influence the SNO3

concentration inside the anoxic tank. In this case
the sum of Si is equal to 0.83 (83% of model variance) and the sum of
STi is equal to 3.14 showing some interaction among factors.

For SPO4;1
the following factors appear to have a significant impact

on the basis of Si: {bH, qPHA, qPP, YH, kH, fxI , hFE, mH, mAUT, FSF,KO, mPAO, FxI,
FSA, iN,xS, KNH,H} (see Fig. 1d and Appendix 1). Among these factors,
qPHA is certainly themost important fromaprocesspointofviewsince
it influences the storageofXPHA (poly-hydroxyalkanoates andorganic
storage polymer) which occurs in the anaerobic tank. The impact of
the factors bH, fxI and hFE is related to the fact that these three factors
influence the lysis of PAO and of slowly biodegradable substrate.
Moreover, due to the fact that SNi is greater than 0.6 and their high
interaction contribution (always higher than IF¼ 0.14), the following
factors cannot be fixed everywhere in their range: {KO,A, KNH,A, KP,A,
KH,BAP, KH,UAP, YPAO } even though they are not important in terms of
factors prioritisation (see Appendix 1). The sum of the first order
indices for SPO4;1

explains 99% of the total variance (see Appendix 1)
indicating that the model is almost linear and/or additive.

The following factors were found to have a significant impact on
SPO4;3

: {iP,xS, mH, qPP, bPAO, iP,SF, iP;xI
, qPHA, fxI , bH, FSA, kH} (see Fig.1d and

Appendix 1). Among them {iP;xS
, mH, bPAO} have high affinitywith the

biological process of phosphorus uptakewhich occurs in the aerobic
tank. The factor iP,xS influences the aerobic hydrolysis as well as the
XPAO lysis, which reduce the SPO4

content in the aerobic tank. The
factor bPAO indirectly influences the phosphorus luxury uptake
process by means of XPAO lysis. SNi greater than 0.6 and a high
interaction contribution (higher than 0.1) was also found for
hNO3 ;HYD, KO, KNO3

, KPHA, KO,PAO, KNO3 ;PAO, KNH,PAO, mAUT and iTSS,xS. For
SPO4 ,3 the sum of Si is equal to 0.63 (63% of model variance) and the
sumof STi is equal to 3.5, showing a poor linearity and/or interaction.
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Fig. 1. Important model factors classified on the basis of Si value according to the Extended-FAST method at least for one of the variables: CODTOT,1, CODTOT,2, CODTOT,3, CODSOL,3 and
CODTOT,5 (a); SNH4;1

, SNH4;2
, SNH4;3

and SNH4;5
(b); SNO3;1

, SNO3;2
, SNO3;3

, SNO3;5
and CTN,5 (c); SPO4;1

, SPO4;2
, SPO4;3

and SPO4;5
(d); MLSS,1, MLSS,2 and MLSS,3 (e).

A. Cosenza et al. / Environmental Modelling & Software 49 (2013) 40e52 47
In the next section we discuss how the two other methods, SRC
and Morris Screening, are able to approximate these results ob-
tained with Extended-FAST.
3.2. Comparison among methods

3.2.1. General results
Important model characteristics appear when analysing the

summary Table 2 (and Appendix 1, 2 and 3):

i) regarding the Extended-FAST results, model factors are
almost always involved in interactions as shown aboveP

(STieSi) ranges between 2.37 and 21.33. Compared to theP
Si such values show that, despite

P
Si in some cases to be

close to 1, the STi is much greater than Si (Table 2).
ii) regarding the SRC results the R2 values (0.23e0.49) for all

model variables were found to be <0.7, which means that the
SRC technique is applied outside its application range. The
lower values of the R2 compared to other applications of ASM
models (see for example Sin et al., 2011) could be due to the
fact that in this work the investigated factor region is wider
and/or a more complex model was studied (e.g. membrane
processes, SMP, etc.).

iii) for the Morris screening the important factors have a high
positive value of s (see Appendix 3) which is always greater
thanthevaluecorrespondingto the linem*i ¼ þ2si=

ffiffiffi
r

p
(where

r represents the repetitionnumber). This indicates thepresence
of non-linearity or interactions for these factors. The total
interaction among the factors calculated as the ratio between
the sum of standard deviations and the total number of factors
(n) ranges between 0.08 and 0.16. These values correspond to a
sumof standard deviations respectively equal to 6.32 and 12.64
with highest contributions found for SPO variables (Table 2).
3.2.2. Similarity of sensitivity indices compared to reference method
(factors prioritisation)

Although the SRC method is found to be outside its range of
applicability (R2 is always<0.7) the high correlation between b2i and
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Table 3
Statistical indices of the comparison between SRC-Extended-FAST and Morris-
Extended-FAST of the 21 selected model outputs.

Sections Variables rP (b2i vs Si) rs (rank jbij
vs rank Si)

rP (m* vs STi) rs (rank m*
vs rank STi)

1 CODTOT 0.90 0.33 0.002 �0.04
SNH4

0.96 0.30 0.019 0.10
SNO3

0.91 0.41 0.000 0.21
SPO4

0.84 0.50 0.140 0.16
MLSS 0.52 0.17 0.015 0.06

2 CODTOT 0.90 0.33 0.002 �0.04
SNH4

0.99 0.36 0.011 0.05
SNO3

0.87 0.40 0.000 0.21
SPO4

0.81 0.52 0.163 0.17
MLSS 0.51 0.17 0.015 0.06

3 CODTOT 0.90 0.31 0.002 �0.06
CODSOL 0.90 0.32 0.002 �0.05
SNH4

0.99 0.60 0.003 �0.25
SNO3

0.82 0.47 0.068 0.07
SPO4

0.62 0.33 0.009 �0.04
MLSS 0.72 0.17 0.016 0.07

5 CODTOT 0.65 0.42 0.002 0.03
SNH4

0.99 0.36 0.003 �0.25
SNO3

0.81 0.50 0.065 0.07
CTN 0.88 0.37 0.011 0.19
SPO4

0.66 0.34 0.007 �0.02
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Si (Table 3) indicates that SRC and Extended-FAST perform similarly.
Indeed as reported inTable 3 the r between b2i and Si is always>0.80
except for MLSS, SPO4;5

, SPO4;3
and CODTOT,5. The MLSS variables

showed different correlation coefficient values (Table 3). In partic-
ular, the lowest values were 0.52, 0.51 and 0.72 in sections 1, 2 and 3
respectively. This result is probably due to the interaction among
factors and variables involved in the processes related to MLSS as
confirmed by the low value of

P
Si (Table 2). Regarding the com-

parison between the Morris screening and Extended-FAST results,
very low rP values have been found comparing m* and STi (Table 3).
Indeed, rP (m* vs STi) ranges between 0.0001 and 0.163 (see Table 3)
demonstrating a low ability of the Morris method to reproduce the
results of Extended-FAST. This result is obtained for all 21 variables.
The disagreement between Morris screening and Extended-FAST
results is probably due to a convergence problem and to the inap-
propriate number of repetitions suggested in the literature. Indeed,
for this application it was found that Morris screening method
provided different results with different numerical settings. This is
consistent with previous studies in the same research field (among
others, Ruano et al., 2011, 2012) and other research fields (Nossent
et al., 2011; Nossent and Bauwens, 2012). Specifically, for instance
when applying the Morris screening method for an ASM model
Ruano et al. (2011, 2012) found that the optimal number of repeti-
tionswas60e70which is considerablyhigher than recommended. It
is therefore hypothesised that the applicability of the Morris
screening method is jeopardised by a lack of convergence.

Fig. 2 shows a scatter-plot reporting Si and b2i and STi and m* for
the case of the SPO4;1

(Fig. 2a and b). As the values are distributed
logarithmically the high values of the sensitivity indices mostly
determine the correlation coefficient. On the one hand this is
positive as (in view of factors prioritisation) we are interested in the
correlation of the most important factors. On the other hand it is
generally problematic when doing a correlation analysis in the
presence of “outliers”.

3.2.3. Similarity of ranking of sensitivity indices compared to
reference method (factors prioritisation)

The rank correlation rs between SRC and Extended-FAST is al-
ways positive (Table 3). For some variables (MLSS, SPO4

) a lower rs
was found than for others. For the comparison between Morris
screening results and Extended-FAST the correlation among the
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Fig. 2. Scatter plots, interpolating curves and equations of regressions obtained comparing Si and b2i and STi and m* for SPO4;1
(a and b) (the axes are logarithmic).
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ranking order is negative for a considerable number of variables
(Table 3). Again, we thus find a poor ability of the Morris screening
method to reproduce the results of Extended-FAST.

The comparison of the ranking of sensitivity indices with the
reference method has also been done in terms of position factor PF
(Table 4). Theminimum,maximum andmean values of the position
factor PF confirm the better correspondence between Extended-
FAST and SRC than between Extended-FAST and Morris Screening.
For comparing the similarity between Extended-FAST and SRC or
Morris screening it seems better to use the Pearson correlation
instead of the rank correlation as the modeller is generally not
really interested in a good correspondence of the ranking of non-
influential factors. Indeed, non-influential factors have too much
influence in determining rank correlation. Moreover, the minimum
maximum and average values of PF obtained by applying two
different methods provide general information about the corre-
spondence among ranking positions.

3.2.4. Similarity of classification into important/non-influential
factors

Analysing the relevance values Rel for the case of important
factors (RelIMPORTANT) reported in Table 4 onemay observe that both
SRC and Extended-FAST provide a similar number of globally
important factors. Moreover, it is also evident that the Morris
screening approach overestimates the number of important factors
as demonstrated by the higher value of RelIMPORTANT ¼ 0.45. RelNON-
INFLUENTIAL values related to the Morris screening (0.55) and
Extended-FAST (0.24) methods show that the Morris screening
method also overestimates the number of non-influential factors.

Fig. 3 shows the Venn diagrams for the comparison of the
factor classification of the SRC (Fig. 3a) and Morris screening
methods (Fig. 3b and c) with the results of Extended-FAST, for
Table 4
Criteria indices of the comparison among the sensitivity methods.

Method

SRC Morris screening Extended-FAST

Methods’ property
CE Medium Medium Low
IF No No Yes
Criteria
NS 800 800 39,500
RelIMPORTANT* 0.3 0.45 0.32
RelNON-INFLUENTIAL e 0.55 0.24
PF** (44.02e58.73) 51.15 (49.64e63.60) 57.30 e

NS: number of simulation; CE: computational efficiency; R: relevance; IF: ability of
the sensitivity analysis method to take into account the interaction among factors;
PF: position factor among the factors respect to Extended-FAST results. (*)Computed
on the basis of jbij, Si or m* value; (**)(aeb) c for each factor means: (aeb) is the
minimum and the maximum and c is the average value.
SPO4;1
(in terms of important and non-influential factors). Very

similar patterns are found for the other variables. In Fig. 3a one
may observe that except for the factor no. 49 all model factors
found to be important for SRC are also important for Extended-
FAST. However, Extended-FAST detects a larger number of factors
as being important which are not detected by SRC. This is probably
due to the fact that the b2i underestimate Si and thereby, by using
the same cut-off level, SRC will underestimate the number of
important factors (Neumann, 2012). When comparing the results
of Extended-FAST and Morris screening for SPO4;1

a poor consis-
tency among the results was obtained in terms of factor prioriti-
sation (Fig. 3b).

In terms of factors fixing Fig. 3c shows that for SPO4;1
a large

fraction of non-influential factors are obtained by Extended-FAST
and Morris screening methods. However, also in this case, the
Morris screening method overestimates the number of non-
influential factors. Such a result may have important conse-
quences in case the Morris screening method is used for selecting
factors to be calibrated in an ASM model as the case study pre-
sented here. Indeed, for SPO4;1

a subset of factors (17) that are non-
influential according to Morris screening is important according to
Extended-FAST. The disagreement between Morris screening and
Extended-FAST results, as discussed above, is probably due to
convergence issues. It is important to state that the presented re-
sults in terms of similarity of classification into important/non-
influential factors depend on the threshold of the sensitivity mea-
sures selected for identifying the important/non-influential factors.

3.2.5. Capability of detecting interaction
By applying the three methods the knowledge acquired in

literature concerning the ability of each method to detect interac-
tion among factors has been confirmed. Despite, as known, the fact
that the SRC method is unable to quantify interaction among fac-
tors, the non-linearity of the used ASMmodel is revealed by the low
R2 values (always lower than 0.7). For the Morris screening method
the degree of interaction and/or linearity among factors has been
provided by s values that have always been greater than the value
corresponding to the line m*i ¼ þ2si=

ffiffiffi
r

p
. The quantification of the

interaction among factors has been performed by applying the
Extended-FAST method which shows that the highest interaction
among factors occurs for SNH4;1 as reported in Table 2 (last row).

3.2.6. Methods’ ability to provide results in a reasonable time
When applying literature recommendations the highest num-

ber of simulations is required for the Extended-FAST method
(39500) and thus SRC (800) is computationally more efficient than
Extended-FAST (in the current case study by 1e2 orders of
magnitude) ensuring a good agreement of the results in terms of
factor prioritisation. The Morris screening method (with 800



Fig. 3. Venn diagram related to the comparison of important and non-influential factors obtained by applying SRC and Morris screening with that of Extended-FAST for the model
output SPO4;1

; numbers refer to the factor order (according to Table 1). The important model factors reported in the Venn diagram have been classified on the basis of jbij (for SRC), Si
(for Extended-FAST) and m* (for Morris screening).

Fig. 4. Variability of m* (a) and s (b) with the increase of the replication, r, in the Morris GSA method as applied to the factors qPHA and qPP for the variable SPO4;1
.
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simulations) seems to be efficient in terms of computational de-
mand but doesn’t provide reasonable results if applied using liter-
ature recommendations for the required number of replicates.

3.2.7. Convergence of Morris screening
As previously discussed the application of the Morris screening

method, employing a number of replicates as suggested in the
literature, leads to different results compared to SRC and Extended-
FAST. This finding has been hypothesised to be due to the fact that
convergence for the Morris method has not been achieved with the
literature suggestion for the number of replicates. Even though a
full analysis of this convergence issue is beyond the scope of this
work, a further analysis has been performed in order to evaluate the
effect of the number of replicates. In particular, three scenarios
were analysed by changing the number of replicates r, equal to 10,
30 and 60. For all scenarios the number of levels was p ¼ 5 and
D ¼ 2/3. The results of each test in terms of sensitivity analysis
index, m* (and s), were compared in order to verify the stability of
the sensitivity of each factor with increasing number of replicates.
For sake of conciseness in Fig. 4 only the results (m* and s) obtained
for the sensitivity of SPO4;1

towards qPHA and qPP are shown. Fig. 4
shows a high variability of the sensitivity indices even for a
number of r much higher than the recommended one in literature.
Thus, the modeller cannot be confident with these results obtained
with the Morris screening method as convergence is not reached
for this model when using numerical settings found in the sensi-
tivity analysis literature. For a deeper investigation into the
convergence issue, the readers are referred toMannina et al. (2013).
4. Conclusions

- It was found that, even though the SRC method was applied
outside its range of applicability (R2 < 0.7), the ranking of
important model factors (factors prioritisation) was very similar
to the results obtained with Extended-FAST, except for the
MLSS variables.

- The Pearson correlation rP values calculated to compare Morris
screening and Extended-FAST in terms of m* and STi are lower
than those calculated to compare SRC and Extended-FAST in
terms of b2i and Si.

- The low similarity between Morris screening and Extended-
FAST results is expressed both in the number and type of
influential/non-influential factors.
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- It is hypothesised that the discrepancy between the results of
Morris screening (with default settings for the number of
simulation) and Extended-FAST is attributed, for this case
study, to convergence problems.

- To obtain reliable quantitative estimates of the variance con-
tributions it was necessary to compute first order effect indices
Si with the computationally much more expensive method
Extended-FAST, as the SRC method was outside its range of
applicability. This is due to the fact that when non-linearity
increases b2i underestimate Si.

- The MBR model for the presented application showed a non-
linear behaviour and interacting factors.

- In case the modeller is only interested in factor prioritisation
then the use of the less computationally demanding SRC is
suggested because it identifies the same factors as the
Extended-FAST method.

- The use of multiple sensitivity analysis methods in a GSA study
allows increasing the robustness of the conclusions made.
Here, using the three methods simultaneously allowed iden-
tifying problems with Morris Screening as the two other
methods provided consistent results.
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