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factors were found.
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Global sensitivity analysis (GSA) is a valuable tool to support the use ofmathematicalmodels that characterise tech-
nical or natural systems. In the field of wastewater modelling, most of the recent applications of GSA use either
regression-based methods, which require close to linear relationships between the model outputs and model fac-
tors, or screening methods, which only yield qualitative results. However, due to the characteristics of membrane
bioreactors (MBR) (non-linear kinetics, complexity, etc.) there is an interest to adequately quantify the effects of
non-linearity and interactions. This can be achieved with variance-based sensitivity analysis methods. In this
paper, the Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) method is applied to an integrated ac-
tivated sludge model (ASM2d) for an MBR system including microbial product formation and physical separation
processes. Twenty-onemodel outputs located throughout the different sections of the bioreactor and 79model fac-
tors are considered. Significant interactions among themodel factors are found. Contrary to previousGSA studies for
ASMmodels,wefind the relationship between variables and factors to benon-linear andnon-additive. By analysing
the pattern of the variance decomposition along the plant, the model factors having the highest variance contribu-
tions were identified. This study demonstrates the usefulness of variance-based methods in membrane bioreactor
modelling where, due to the presence of membranes and different operating conditions than those typically found
in conventional activated sludge systems, several highly non-linear effects are present. Further, the obtained results
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highlight the relevant role played by themodelling approach forMBR taking into account simultaneously biological
and physical processes.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Activated sludge models (ASMs) (Henze et al., 2000) are widely
applied (for design, control or optimization) in their original form or
modified in order to simulate adapted systems such as membrane biore-
actors (MBR) (Fenu et al., 2010; Mannina and Cosenza, 2013). However,
thesemodels are complex and generally over-parameterized. On account
of this, wastewater treatment plant (WWTP) modelling requires a con-
siderable number of assumptions on model structure, model parameter
values andmodel input variables. In the followingweuse the term factors
for bothmodel parameters andmodel inputs adopting the terminology often
applied in thesensitivityanalysis (SA) literature. SAprovidesuseful support in
determining which input factors are important (factor prioritization) and
which factors are non-influential (factor fixing). Especially global sensitivity
analysis (GSA) techniques can provide valuable support for the application
of mathematical models. According to Saltelli et al. (2008), the GSA
techniques can be divided into: (i) screening methods, e.g. Morris screening
method (Morris, 1991; Campolongo et al., 2007); (ii) regression/
correlation-based methods such as the Standardised Regression Coefficients
(SRCs)method; (iii) variance decompositionmethods such as Extended Fou-
rier Amplitude Sensitivity Testing (Extended-FAST) (Cukier et al., 1973;
Schaibly and Shuler, 1973; Sobol, 1993; Saltelli et al., 1999).

Recently, GSA applications have started to emerge in thewastewater
modelling field (among others, Ruano et al., 2011; Sin et al., 2011;
Benedetti et al., 2012; Chen et al., 2012; Flores-Alsina et al., 2012). In
most cases, regression-based methods have been applied (Benedetti
et al., 2012; Flores-Alsina et al., 2012; Sin et al., 2011). For instance,
Flores-Alsina et al. (2012) have applied the SRC method in order to as-
sess how the range of values in design assumptions influences the
final design of a plant. Sin et al. (2011) applied the SRC method to an
ASM model, in which 26 parameters were taken into account. They
found a high ability of the SRC method in identifying the sources of
uncertainty and quantifying their impact on performance criteria.
Benedetti et al. (2012) applied the SRC method to a complex wastewa-
ter model (65 model factors) for selecting the most important factors
and assessing the relative importance of factors in view of output uncer-
tainty. Other applications of GSA in thewastewaterfield refer to screening
methods. In particular, Ruano et al. (2011) applied the Morris screening
method to a fuzzy logic-based control system for an ASM model, in
which 17 model parameters were involved.

Variance-based sensitivity analysis methods have recently been ap-
plied in the drinking water modelling field by Neumann et al. (2007)
and Neumann et al. (2009) to improve the understanding of oxidation
and disinfection processes. In the wastewater modelling field two
applications of variance-based sensitivity analysis have been con-
ducted. Brockmann and Morgenroth (2007) applied the quantitative
variance-based FAST method to a biofilm model for two step nitrifica-
tion in order to comparewith the results obtained by applying the qual-
itative screening method of Morris. Recently, Chen et al. (2012) found
that complex ASM-MBR models can be highly nonlinear and that
variance-based sensitivity analysis methods can be of use in helping
the modeller to find which factors are involved in interactions.

In order to extend the knowledge on the application of variance-
based sensitivity analysis in the wastewater modelling field, the paper
presents the application of the Extended-FAST method to an integrated
ASM no.2d – soluble microbial product – (ASM2d–SMP) model applied
to a University Cape Town (UCT) MBR pilot plant. The study presented
here contains several differences compared to Chen et al. (2012):

• In this study themathematicalmodel is an integratedMBRmodel that
takes into account both physical (fouling prediction) and biological
processes (including nutrient removal), coupled with the SMP
formation/degradation processes;

• The integrated MBRmodel used here is able to simulate the phos-
phorus removal process, often neglected in the modelling litera-
ture (Zuthi et al., 2013)

• Real wastewater has been considered for the pilot plant feeding;
• The Extended-FAST method is applied by using an approach
based on plant sections: different model outputs for different
plant sections are considered.

Specifically, the principal objectives of this study are: (i) to identify
important factors (factor prioritization); (ii) to identify non-influential
factors (factor fixing); (iii) to identify interacting factors and (iv) to
quantify the variance contribution of the factors to various model vari-
ables across the plant.

2. Materials and methods

2.1. Extended-FAST

Let us consider the simplified model:

Y ¼ g xð Þ ð1Þ

where x is a vector of n factors and Y themodel output; whenever g can
be decomposed as a sum of n functions gi, each of which is a function
only of the relative factor xi, model (1) is defined additive (Saltelli
et al., 2004).

According to the variance decomposition theorem, the total variance
of the model output (Var(Y)) may be decomposed into conditional
variances.

The total variance Var(Y) is decomposed as follows:

Var Yð Þ ¼
Xn

i¼1

Di þ
Xn

i≤ j≤n

Dij þ…þ
Xn

i≤…n

D1…n ð2Þ

whereDi represents thefirst order effect for each factor xi andDij…D1…n

the interaction effects. Specifically, the first order effects represent the

variance of the conditional expectation Varxi Ex−i
Yð jxi

� �
Þ. According to

the notation used by Saltelli et al. (2004), the subscripts indicate that
the operation is either applied “over the ith factor”Xi, or “over all factors
except the i-th factor” X−i.

The Extended-FAST method allows calculating two different sensi-
tivity indices in order to evaluate the contribution of each factor to the
total variance: the first-order effect index (Si) and the total effect
index (STi). Si is evaluated according to Eq. (3):

Si ¼
Varxi Ex−i

�
Y

� ���xi
��

Var Yð Þ : ð3Þ

Si measures how the i-th factor contributes to Var(Y) without taking
into account the interactions among factors.

Assuming non-correlated input factors and an additive model (no
interactions present) Eq. (4) is valid:

Xn

i¼1

Si ¼ 1 ð4Þ

where n is the total number of input factors.
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The computation of all higher order terms leads to the estimation of
the total effect index (STi) defined as follows:

STi ¼ 1−
Varx−i

Exi

�
Y

� ���x−i

��

Var Yð Þ : ð5Þ

STi allows evaluating the interactions (SSi) among factors as in the
following:

SSi ¼ STi−Si: ð6Þ

Moreover, a comparison between Si and STi may help modellers to
evaluate whether the model under study is additive or not. Indeed, for
additive models Si = STi, while for non-additive models STi N Si.

It is important to underline that in the context of factor fixing the
analysis of STi has to be performed. If the Si value is small, it does not
necessarily mean that the factor may be fixed anywhere within its
range because a high STi valuewould indicate that the factor is involved
in interactions.

The Extended-FAST method requires n·NMC simulations, where n is
the number of factors and NMC the number of Monte Carlo simulations
per factor (NMC = 500–1000 according to Saltelli et al., 2005).

We compute Extended-FAST indices using the package for sensitivi-
ty analysis developed by Pujol (2007) within the R programming envi-
ronment (R Development Core Team, 2007).

2.2. The case study

The case study is developed around a pilot plant according to the
UCT-MBR scheme (Fig. 1). More specifically, the plant consists of five
reactor sections: anaerobic (mean volume 72 L) (Section 1), anoxic
(mean volume 165 L) (Section 2) and aerobic (mean volume 327 L)
(Section 3), respectively, followed by an aerobic tank (mean volume
52 L) (Section 4), in which two submerged hollow fibre membrane
modules (Zenon Zeeweed, ZW 10) are installed, and a tank, in which
permeate is collected (Section 5). The pilot plant was feed with 40 L/h
(QFEED) of municipal wastewater. Biomass is recycled from the mem-
brane tank to the aerobic tank (QRR = 5–6 QFEED), from the aerobic to
the anoxic tank (QR2 = 6 QFEED), from the anoxic to the anaerobic
tank (QR1 = 3 QFEED) in order to maintain the biomass concentration
required for biological activity. Within the recycle from the aerobic to
the anoxic tank, an oxygen depletion reactor (ODR) is interposed in
order to ensure anoxic conditions. The permeate extraction is operated
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Fig. 1. Schematic overview of
by means of an ad hoc permeate extraction pump which is able to
impose a maximum depression of −50 kPa providing an average flux
of 21 L m−2 h−1. The pilot plant was operated for 165 days under
non-controlled climatic conditions with constant permeate flux. The
membranes were periodically subjected to physical (manual cleaning)
and chemical cleaning (using a solution of 2 g L−1 of citric acid). The
pilot plant was operated until the 76th day under complete sludge re-
tention. Subsequently the sludge retention time was set to approxi-
mately 36 days. During the pilot plant operation, composite samples
of influent wastewater (Section 0) and grab samples of mixed liquor
in Sections 1–4, the mixed liquor in ODR (Section 6) and the permeate
(Section 5) were taken three times per week and analysed for total and
volatile suspended solids (TSS and VSS), total and soluble COD, NH4–N,
NO2–N, NO3–N, NTOT, PTOT (APHA, 1998). Daily measurements in each
sectionwere also conducted for dissolved oxygen (DO), pH and temper-
ature (T) using a handheld Multi-metre 340i (WTW). Further details
about the sampling campaign, the influent characteristics and themem-
brane cleanings can be found in Cosenza et al. (2013b,d) and Di Trapani
et al. (2011).

2.3. The ASM-MBR model

The pilot plant described above was modelled by means of an inte-
grated ASM2d–SMP model developed in a previous study (Cosenza
et al., 2013a). The model is divided into two sub-models (biological
and physical), globally involving 19 biological state variables, 2 physical
state variables and 79 factors (kinetics, stoichiometry, physical factors
and fractionation coefficients).

The biological sub-model is able to simulate the biological nutrient
removal processes occurring in a UCT–MBR system (where the biomass
separation process occurs bymeans of amembrane) and the solublemi-
crobial products' (SMPs) formation/degradation. The need to introduce
the SMPmodelling arises from the fact that SMPs have a relevant influ-
ence on the effluent concentration in terms of COD and on membrane
permeability (Meng et al., 2009). The biological sub-model is amodified
version of ASM2d and takes into account two new state variables, SUAP
(soluble utilization associated product) and SBAP (soluble biomass asso-
ciated product), and six new processes (anaerobic, aerobic and anoxic
hydrolysis of both UAP and BAP) (Jiang et al., 2008). The sum of SUAP
and SBAP is equal to the modelled SMP. Moreover, four new parameters
are introduced: fBAP (fraction of BAP generated per biomass decayed),
fUAP (fraction of UAP generated in biomass decay), kH,BAP and kH,UAP

(hydrolysis rate coefficient respectively for SBAP and SUAP).
obic
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Table 1
Symbol, description, unit of measure, variation range and literature references for eachmodel factor; symbols reported in Table 1 are in agreement with the nomenclature used by Henze
et al. (2000), Jiang et al. (2008), Mannina et al. (2011b) and Cosenza et al. (2013a). The reference temperature is 20 °C.

Symbol Description Unit Min Max Reference

kH Maximum specific hydrolysis rate g Xsg XH
−1d−1 1.5 4.5 Brun et al. (2002)

ηNO3,HYD Correction factor for hydrolysis under anoxic conditions – 0.402 0.798 Hauduc et al. (2011)
ηFE Correction factor for hydrolysis under anaerobic conditions – 0.2 0.6 Hauduc et al. (2011)
KO Half saturation parameter for SO2 for XH g SO2.m−3 0.1 1 Weijers and Vanrolleghem (1997)
KNO3 Half saturation parameter for SNO3 for XH g SNO3.m−3 0.1 0.625 Weijers and Vanrolleghem (1997),

Brun et al. (2002)
KX Half saturation parameter for XS/XH g XS.g XH

−1 0.05 0.15 Brun et al. (2002)
KO,HYD Half saturation/inhibition parameter for SO2 g SO2.m−3 0.1 0.3 Brun et al. (2002)
KNO3,HYD Half saturation/inhibition parameter for SNO3 g N.m−3 0.375 0.625 Brun et al. (2002)
μH Maximum growth rate of XH d−1 0.6 13.2 Jeppsson (1996)
qFE Rate constant for fermentation/maximum specific fermentation growth rate g SF.g XH

−1.d−1 1.5 4.5 Brun et al. (2002)
ηNO3,H Reduction factor for anoxic growth of XH – 0.6 1 Brun et al. (2002)
bH Decay rate for XH d−1 0.05 1.6 Jeppsson (1996)
KF Half saturation parameter for SF g SF.m−3 2 6 Brun et al. (2002)
KFE Half saturation parameter for fermentation of SF g SF.m−3 2 6 Brun et al. (2002)
KA Half saturation parameter for SA g SA.m−3 2 6 Brun et al. (2002)
KNH,H Half saturation parameter for SNH4 for XH g SNH4.m−3 0.02 2 Weijers and Vanrolleghem (1997)
KP Half saturation parameter for SPO4 for XH g SPO4.m−3 0.005 0.015 Brun et al. (2002)
KALK,H Half saturation parameter for SALK for XH mol HCO3

−.m−3 0.05 0.15 Brun et al. (2002)
qPHA Rate constant for SA uptake rate g XPHA.g XPAO

−1 .d−1 0.3 5.7 Hauduc et al. (2011)
qPP Rate constant for storage of polyphosphates g XPP.g XPAO

−1 .d−1 0 3.3 Hauduc et al. (2011)
μPAO Maximum growth rate of XPAO d−1 0.5 1.5 Brun et al. (2002)
ηNO3,PAO Reduction factor for anoxic growth of XPAO – 0.45 0.75 Brun et al. (2002)
bPAO Endogenous respiration rate of XPAO d−1 0.1 0.25 Henze et al. (2000), Hauduc et al. (2011)
bPP Rate constant for lysis of polyphosphates d−1 0.1 0.25 Henze et al. (2000), Hauduc et al. (2011)
bPHA Rate constant for respiration of XPHA d−1 0.1 0.25 Henze et al. (2000), Hauduc et al. (2011)
KPS Half saturation parameter for SPO4 uptake g SPO4.m−3 0.1 0.3 Brun et al. (2002)
KPP Maximum ratio of XPP/XPAO g XPP.g XPAO

−1 0.005 0.015 Brun et al. (2002)
KMAX Half saturation parameter for XPP/XPAO g XPP.g XPAO

−1 0.2 0.51 Rieger et al. (2001)
KIPP Half inhibition parameter for XPP/XPAO g XPP g XPAO

−1 0.01 0.03 Brun et al. (2002)
KPHA Saturation constant for XPHA/XPAO g XPHA.g XPAO

−1 0.005 0.015 Brun et al. (2002)
KO,PAO Half saturation parameter for SO2 for XPAO g SO2.m−3 0.1 0.3 Brun et al. (2002)
KNO3,PAO Half saturation parameter for SNO3 for XPAO g SNO3.m−3 0.375 0.625 Brun et al. (2002)
KA,PAO Half saturation parameter for SA for XPAO g SA.m−3 2 6 Brun et al. (2002)
KNH,PAO Half saturation parameter for SNH4 for XPAO g SNH4.m−3 0.025 0.075 Brun et al. (2002)
KP,PAO Half saturation parameter for SPO4 as nutrient (XPAO growth) g SPO4.m−3 0.005 0.015 Brun et al. (2002)
KALK,PAO Half saturation parameter for SALK for XPAO mol HCO3

−.m−3 0.05 0.15 Brun et al. (2002)
μAUT Maximum growth rate of XAUT d−1 0.2 1.2 Weijers and Vanrolleghem (1997)
bAUT Decay rate for XAUT d−1 0.04 0.1605 Hauduc et al. (2011)
KO,A Half saturation parameter for SO2 for XAUT g SO2.m−3 0.1 2 Weijers and Vanrolleghem (1997),

Jeppsson (1996)
KNH,A Half saturation parameter for SNH4 for XAUT g SNH4.m−3 0.5 1.5 Hauduc et al. (2011)
KALK,A Half saturation parameter for SALK for XAUT mol HCO3

−.m−3 0.25 0.75 Brun et al. (2002)
KP,A Half saturation parameter for SPO4 for XPAO g SPO4.m−3 0.005 0.015 Brun et al. (2002)
kH,BAP Hydrolysis rate coefficient for SBAP d−1 3.705E−07 1.1115E−06 Jiang et al. (2008)
kH,UAP Hydrolysis rate coefficient for SUAP d−1 0.0051 0.0153 Jiang et al. (2008)
kLaT,3 Overall oxygen transfer coefficient aerobic tank h−1 9.5 10.5 Innocenti (2005)
kLaT,4 Overall oxygen transfer coefficient MBR tank h−1 3.23 3.57 Innocenti (2005)
YH Yield for XH growth g XH.g XS

−1 0.38 0.75 Jeppsson (1996)
fXI Fraction of XI generated in biomass decay g XI.g XH

−1 0.05 0.4 Weijers and Vanrolleghem (1997)
YPAO Yield for XPAO growth g XPAO.g XPHA

−1 0.42 0.78125 Brun et al. (2002)
YPO4 Yield for XPP requirement per XPHA stored 0.38 0.42 Brun et al. (2002)
YPHA Yield for XPP storage per XPHA utilized g XPP.g XPHA

−1 0.19 0.21 Brun et al. (2002)
YA Yield of XAUT growth per SNO3 g XAUT.g SNO3−1 0.228 0.252 Brun et al. (2002)
fBAP Fraction of SBAP generated in biomass decay – 0.0069 0.022575 Brun et al. (2002)
fUAP Fraction of SUAP generated in biomass decay – 0.091485 0.101115 Brun et al. (2002)
FSF Fraction of influent SF – 0.06 0.18 Mannina et al. (2011a)
FSA Fraction of influent SA – 0.04 0.12 Mannina et al. (2011a)
FSI Fraction of influent SI – 0.114 0.126 Mannina et al. (2011a)
FXI Fraction of influent XI – 0.05 0.15 Mannina et al. (2011a)
FXH Fraction of influent XH – 0.06 0.18 Mannina et al. (2011a)
β Erosion rate coefficient of the dynamic sludge – 1.00E−04 2.10E−02 Mannina et al. (2011b)
α Stickiness of the biomass particles – 0 1 Mannina et al. (2011b)
γ Compressibility of cake Kg m−3 s 5.56E−04 2.78E−03 Mannina et al. (2011b)
f Substrate fraction below the critical molecular weight – 0.001 0.99 Mannina et al. (2011b)
λ Screening parameter m−1 1000 2.00E + 03 Mannina et al. (2011b)
CE Efficiency of backwashing – 0.996 0.999 Mannina et al. (2011b)
iN,SI N content of SI g N.g SI−1 0.0075 0.0125 Brun et al. (2002)
iN,SF N content of SF g N.g SF−1 0.0225 0.0375 Brun et al. (2002)
iN,XI N content of XI g N.g XI

−1 0.015 0.025 Brun et al. (2002)
iN,XS N content of XS g N.g XS

−1 0.03 0.05 Brun et al. (2002)
iN,BM N content of biomass g N.g XBM

−1 0.0665 0.0735 Brun et al. (2002)
iP,SF P content of SF g P.g SF−1 0.005 0.015 Brun et al. (2002)
iP,XI P content of XI g P.g XI

−1 0.005 0.015 Brun et al. (2002)

(continued on next page)
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Table 1 (continued)

Symbol Description Unit Min Max Reference

iP,XS P content of XS g P.g XS
−1 0.005 0.015 Brun et al. (2002)

iP,BM N content of biomass g P.g XBM
−1 0.015 0.025 Brun et al. (2002)

iTSS,XI Conversion factor XI in TSS g TSS.g XI
−1 0.7125 0.7875 Brun et al. (2002)

iTSS,XS Conversion factor XS in TSS g TSS.g XS
−1 0.7125 0.7875 Brun et al. (2002)

iTSS,BM Conversion factor biomass in TSS g TSS.g XBM
−1 0.855 0.945 Brun et al. (2002)

iTSS,XPHA Conversion factor XPHA in TSS g TSS.g XPHA
−1 0.57 0.63 Brun et al. (2002)

iTSS,XPP Conversion factor XPP in TSS g TSS.g XPP
−1 3.0685 3.3915 Brun et al. (2002)
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The physical sub-model takes into account the cake layer formation
(on themembrane surface) during the suction and backwashing phases
and the partial COD removal throughout the cake layer. More specifical-
ly, by modelling the rate of sludge attachment to and detachment from
the membrane surface throughout the suction and backwashing phase,
the solid mass deposited on the membrane surface and the cake layer
thickness are evaluated. Moreover, according to the deep-bed theory,
the COD profile across the cake layer is described (Mannina et al.,
2011b). Particles are retained inside the cake layer which, coupled
with the fraction of particles retained by the physical membrane, con-
tribute to the reduction of the total COD concentration in the effluent
(Di Bella et al., 2008; Mannina et al., 2011b).

As recently demonstrated by Corominas et al. (2012), due to non-
linearity, it is possible to obtain a large difference between values ob-
tained with steady-state solutions and averaged values from dynamic
solutions for these type of models. Therefore, time-averaged dynamic
simulation outputs (over 165 days) for Sections 1–3 and 5 have been
used in the analysis. Twenty-one model outputs have been subjected
to the SA: namely, CODTOT, SNH4, SNO3, SPO, MLSS, for each section, solu-
ble COD (CODSOL) for Sections 1, 2 and 3, and total nitrogen (CTN) for
Section 5.

Table 1 summarizes information on the model factors with symbols
according to nomenclature used in previous studies (Henze et al., 2000;
Jiang et al., 2008; Mannina et al., 2011b; Cosenza et al., 2013a). For the
variance decomposition to be useful, meaningful variation ranges for
the factors are required. In Table 1, the variation ranges of factors obtained
froman extensive literature search are reported. Due to the lack of knowl-
edge on the model factors' distribution, a uniform prior distribution was
considered for each of them. Indeed, Freni and Mannina (2010) have re-
cently demonstrated that in case of a lack of relevant information on
model factors, a uniform prior distribution should be preferred.

2.4. Dynamic simulation

The entire plant model was coded in Fortran. Further details about
the integrated ASM2d–SMP model (factors and processes involved)
can be found in Cosenza et al. (2013a). For dynamic simulation, contin-
uous input time series were used, which were obtained by employing a
truncated Fourier series calibrated on discrete measured input data col-
lected during pilot plant monitoring (Mannina and Viviani, 2009a,b).

2.5. Extended-FAST application

In order to apply Extended-FAST, 39,500 model runs were conduct-
ed corresponding to 500Monte Carlo simulations for eachmodel factor.
The required number of model runs was confirmed by testing the
convergence of the results by increasing the number of Monte Carlo
simulations in a stepwise approach and verifying that the difference be-
tween two subsequent steps was negligible (Benedetti et al., 2011).

According to the Extended-FAST method, the identification of impor-
tant and non-influential model factors has been carried out by employing
two criteria: Si (factor prioritization) and STi (factor fixing).More specifical-
ly, for each model output, the most important factors have been selected
by imposing a threshold for Si. In particular, factors having a Si value
higher than 0.01 for a model output have been considered important
(factor prioritization). This threshold value has been selected in line
with previous GSA applications on ASM models (Neumann, 2012; Sin
et al., 2011). The value of STi has been considered in order to define
the set of non-influential model factors. Specifically, factors with
Si b 0.01 and STi b 0.1 are defined as being non-influential.
3. Results

Table 2 shows the mean (μ), the standard deviation (σ) and the
coefficient of variation (c.v. = σ / μ) of the 21 model outputs. The c.v.
values range between 0.2 and 2.21, these values ensure that conducting
variance decomposition for the model outputs is a meaningful endeav-
our: in the case of very small c.v. such as 0.01 understanding how differ-
ent model factors contribute to model output variance would be little
value. Five sub-groups have been formed by clustering all model vari-
ables. Clusters are defined for MLSS, COD, NO3

− (which also includes
total nitrogen model output), NH4

+ and P. Tables 1A–5A (Supplementa-
rymaterial) report the full results for all of the 79model factors. Fig. 2a–l
summarizes the results for the five sub-groups: They report the ten
most important factors, in order to be sure that for every variable, the
most critical factors are considered. For this, the factors are ranked on
the basis of the Si value of the model output. The sequence of factors
in Fig. 2a–l is determined by the model variable exhibiting the highest
value of Si for the top ranked factor. In particular, in Fig. 2a–l, for each
model output and for the considered model factors, the values of Si
and STi and ranking are reported. Fig. 2a–l shows how the variance con-
tribution changes along the plant sections. The results for each of the
subgroups are discussed in the following sections.
3.1. MLSS sub-group

With the exception of fXi and to some extent kH the most important
model factors are mainly related to the XH activity with, in all sections,
34% of the variance being explained by bH and μH (see Table 1A,
Fig. 2a). The results related to the influence of fXi are of particular inter-
est within the MBR context: a progressive accumulation of Xi occurs
when an MBR operates with complete sludge retention. For this study,
this is the case for the first 76 days, where the plant was operated
with complete sludge retention. A significant influence of fXi on the
MLSS concentration is expected and has been demonstrated previously
by Chen et al. (2012) and Sin et al. (2011). Chen et al. (2012) have dem-
onstrated that the influence of fXi on the MLSS concentration inside the
MBR system increases with increasing sludge retention time (SRT) as
shown by an increasing Si. Non-linearity is important as the first-order
effects (sum(Si)) only explain 60% of variance in the MLSS model
outputs.

A substantial reduction of the number of factors can be obtained in
the factor fixing setting with 56 factors are classified as non-influential
(see Table 1A).

No relevant variation on the Si and STi has been detected along the
plant sections (Fig. 2a and b, Table 1A) which corresponds to the fact
that the MLSS concentrations are homogeneous throughout the differ-
ent sections. The MLSS variation is a slow process driven by SRT and
not by the local biological processes.



Table 2
Mean (μ), standard deviation (σ) and coefficient of variation (c.v.) for each of the 21 time
averaged model outputs used for the Extended-FAST application.

Model output μ σ c.v.
[mg/L] [mg/L] [–]

MLSS,1 671.12 574.73 0.86
MLSS,2 820.61 748.4 0.91
MLSS,3 1494.46 1423.2 0.95
CODTOT,1 259.23 289.79 1.12
CODTOT,2 292.86 377.68 1.29
CODTOT,3 532.69 713.52 1.34
CODSOL,3 473.42 718.04 1.52
CODTOT,5 64.54 30.59 0.47
SNH4,1 11.64 1.72 0.15
SNH4,2 9.82 1.96 0.2
SNH4,3 1.57 2.9 1.85
SNH4,5 1.35 2.97 2.21
SNO3,1 0.59 1.06 1.81
SNO3,2 1.02 1.45 1.42
SNO3,3 11.59 2.42 0.21
SNO3,5 12.31 2.55 0.21
CTN,5 14.38 3.02 0.21
SPO,1 7.04 3.32 0.47
SPO,2 7.22 3.53 0.49
SPO,3 5.09 1.52 0.3
SPO,5 5.24 1.54 0.29
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3.2. COD sub-group

Concerning factor prioritization, for each variable of the COD sub-
group, except for CODTOT,5, about 20% of the variance has been attribut-
ed to μH, which was the most important factor for most COD-related
variables (see Fig. 2c and Table 2A). Factor f (substrate fraction able to
be retained by the membrane) was the second most important factor
for all variables, contributing to 13% of the variance, except for CODTOT,5,
where f was the most important one (see Fig. 2c and Table 2A). The in-
fluence of the factor f for Sections 1, 2 and 3 can be attributed to the
recycled fluxes from tank to tank. The fact that factor f was themost im-
portant factor only for CODTOT,5 can be attributed to the higher influence
of physical separation for the permeate in this section compared to the
other sections. For CODTOT,5 the factors bH, kH and CE (efficiency of
backwashing) were also important although a different ranking was
found. However, for CODTOT,5 also factors KNH,H (half saturation coeffi-
cient for ammonia) and μAUT (maximumgrowth rate of autotrophic bio-
mass) were important. For the COD sub-group, the contribution of the
total variance of COD due to the first order effect was about 60% for Sec-
tions 1, 2 and 3 and 90% in Section 5 (see last row on Table 2A) indicat-
ing differences in linearity.

In terms of factor fixing, as reported in Table 2A, one may observe
that only 2 factors (among 79) were found to be non-influential (for
all variables of the sub-group), thus demonstrating a high interaction
among factors for the COD sub-group. Moreover, the factors α (sticki-
ness of the biomass particles) and γ (compressibility of cake layer),
both related to the physical sub-model, were found to be of interest in
terms of factor fixing. Indeed α and γ had a high interaction value
(0.24) for the simulated average concentration of CODTOT,5 and cannot
be considered non-influential for the COD sub-group (see Table 2A).
For CODTOT,5 the factors related to heterotrophic metabolism (μH, bH),
wastewater fractionation (FSI, FXH and FSA), physical separation (α, γ
and λ) and growth of autotrophic biomass (μAUT) had the highest inter-
action contribution. For the COD sub-group (see Fig. 2c and d) the vari-
ance contribution ismore or less stable in every plant section, except for
Section 5. This result is not surprising as the physical separation process
by means of the membrane (which also involves the cake layer forma-
tion) has a greater contribution on CODTOT,5 than in the other sections.
Indeed in Section 5, the value of Si related to the factor f (rank order
1) for CODTOT is almost three times higher than in the other sections
(see Fig. 2c and d). In terms of STi (see Fig. 2d), kH, μAUT and γ show
also some peculiarities for Section 5. In particular, the contribution of
kH to the total variance of CODTOT,5 (STi equal to 0.17) is lower than in
the other sections.
3.3. NH4
+ sub-group

Regarding factor prioritization, for the ammonia sub-group and for
each plant section, the most important factor was μAUT. The highest in-
fluence of μAUT was on SNH4,3 with the first order effect equal to 0.61
(see Fig. 2e and Table 3A). This is consistentwith process understanding
as the nitrification process occurs in Section 3. Factors YH and fXI were
also important in Sections 1 and 2 (see Table 3A). The influence of the
latter two factors, related to sludge production, confirms the relation-
ship between sludge production and nitrifying organism activity for
MBR systems, as discussed by Sin et al. (2011).More specifically,when in-
creasing the sludge production (obtained by withdrawing sludge) a neg-
ative effect on the nitrification process occurs due to a reduction of
autotrophic bacteria. The influence of the factors bH and kH for the SNH4
in Sections 1 and 2 is attributable to the metabolic use of ammonia by
the heterotrophic biomass.

In terms of factor fixing, as reported in Table 3A, no factor was found
to be non-influential for all variables. Thus, no factor could be fixed for
this sub-group (in case all variables are considered). This result is due
to the high interaction among factors. Indeed, for the sumof first order ef-
fects, which range between 0.64 and 0.99 (see last row in Table 3A) one
might expect an unimportant effect related to interactions, especially in
Sections 1 and 2,where the sumof Si is equal to 0.99 and 0.86, respective-
ly. However, when assessing STi, strong interactions were found. More
specifically, in Sections 1 and 2, interactions are present and only very
few factors can befixed (Table 3A). However, in Sections 2 and 4, the con-
tribution of the interaction is low and 68 factors are non-influential for
SNH4,3 and SNH4,5 (Table 3A). For SNH4,1, five factors had the highest inter-
action contribution: the oxygen switch coefficients for heterotrophic and
PAO biomass (KO and KO,PAO), the correction factor for hydrolysis under
anoxic conditions (ηNO3,HYD), the half saturation coefficient for acetate
(KA) and the maximum growth rate of autotrophic biomass (μAUT). Such
a result is consistent with the process knowledge. Indeed, by increasing
KO and ηNO3,HYD, the denitrification rate increases. Moreover, μAUT influ-
ences the nitrification process and consequently the recycled ammonia
load from the aerobic to the anoxic tank is influenced. One also observes
strong interaction of nitrification/denitrification factors coupled with the
PAOmetabolism (e.g. KNH,PAO and KNO3,PAO). The interaction of PAO activ-
ity is probably due to the influence of the denitrifying phosphorous accu-
mulating organisms on the nitrification/denitrification processes. Almost
the same set of factors is identified in Section 2, although with a weaker
interaction. Such results are likely due to the fact that SNH4,1 and SNH4,2
are influenced by the nitrification processes occurring in the aerobic
tank (Section 3), which cause the variation of the recycled ammonia load.

For the ammonia sub-group, a high variability for Si and STi is
shown along the plant sections (see Fig. 2e and f). More specifically,
in terms of Si, the variability is more evident for the factor μAUT (see
Fig. 2e). On the contrary, in terms of STi value, except for μAUT, all fac-
tors show a high variability along the system (Fig. 2f). For SNH4,3 and
SNH4,5 (except for μAUT, KA, and FXi), factors reported in Fig. 2f always
have STi close to 0.1 or lower than 0.1, showing a low total variance
contribution.

The higher values of Si in Sections 3 and 5 than in Sections 1 and 2 are
most likely due to the fact that themain process (nitrification) that influ-
ences the ammonia in the system occurs in the aerobic tank (Section 3).
Moreover, the SNH4,5 is also influenced only by the nitrification process.
On the other hand, the higher values of STi in Sections 1 and 2 than in Sec-
tions 3 and 5 may be attributed to the influence of recycled fluxes and to
the high interaction of factors.
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3.4. NO3
− sub-group

In terms of factor prioritization, for the nitrate sub-group, the most
important factor was μH, contributing on average to 29% of the variance
(see Fig. 2g and Table 4A). This indicates the strong influence of the de-
nitrification process for the entire nitrate sub-group.

The influence of factor μH (see Table 4A) is in agreement with the
results obtained by Chen et al. (2012). Such a result reflects, for the
employed integrated ASM2d–SMPmodel, themagnitude of the denitri-
fication process under anoxic conditions (Chen et al., 2012). The hetero-
trophic decay factor (bH) was the third most important model factor,
indicating the importance of the decay of heterotrophic biomass (see
Fig. 2g). Indeed, factors μH, bH and YH are important for SNO3 in Sections
1 and 2 and are connected to the anoxic growth of heterotrophic organ-
isms (denitrification) on SA (acetate) and SF (fermentable substrate).
However, bH has an indirect influence, as confirmed by the high value
STi for this factor (see Fig. 2h and Table 4A).

In terms of factor fixing, onemay observe that 72 factors (among the
79) could be fixed for Sections 1 and 2 (Table 4A). However, for Sections
3 and 5, different results have been obtained due to the high interaction
among factors.

Regarding SNO3,1 and SNO3,2 it is important to note that the highest
degree of interaction contribution is provided by those factors that are
also important in terms of Si. Such factors are related to the activity of
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the heterotrophic biomass (among them μH, bH, YH, kH) involved in dif-
ferent processes. For SNO3,3 and SNO3,5, the same set of non-influential
(14) factors (except for KP) was found (Table 4A). For CTN,5 33 factors
were found to be non-influential (Table 4A). For the nitrate sub-group,
factors μH (Fig. 2g) and μAUT (Table 4A) have a relevant variation in
terms of Si along the plant sections. As expected, μAUT has the highest
value of Si (0.45) for SNO3,2. Concerning STi, the factors have a non-
uniform behaviour along the system (see Fig. 2h and Table 4A).

3.5. Phosphorus sub-group

Regarding factor prioritization, factors bH, qPP and qPHA were impor-
tant and contributed on average to 17% and 14% of the variance for
Sections 1 and 2, respectively (see Fig. 2i and Table 5A). Among these
factors, qPHA is certainly the most important from a process point of
view, since it influences the storage of XPHA (poly-hydroxy alkanoates
and organic storage polymer), which occurs in the anaerobic tank and
is fundamental for the aerobic phosphate uptake. Indeed, themagnitude
of the first order effect for qPHAwas higher in the first two plant sections
(0.16 and 0.12, respectively) than in the others (see Table 5A). On the
contrary, factor qPP mainly influences the aerobic and anoxic phosphorus
uptake kinetics of phosphorus accumulating organisms (PAOs), which
may indirectly influence the SPO concentration in the other plant sections
(by means of the recycled sludge). However, the results demonstrated a
highmagnitude of thefirst order effect for qPP (rate constant for PHA stor-
age by PAO) in the first two plant sections too (0.16 and 0.13), showing
that for the case study, the recycled fluxes had a strong influence. The fac-
tors bH and fXI were the first and sixth most influential factors for SPO re-
spectively in Sections 1 and 2. This result was related (similarly to ηFE) to
the fact that these two factors influence the lysis of PAO and the hydroly-
sis of the slowly biodegradable substrate. Factor μH was important for SPO
in every plant section, with a greater influence for Sections 3 and 5 (Si
equal to 0.11) (Fig. 2i, Table 5A). Indeed μH influences SPO in Sections 3
and 5 through competitive heterotrophic aerobic growth on fermentable
organic matter and acetate. The influence of μH for SPO,1 and SPO,2 was
mainly an indirect influence, as represented by the high magnitude of
the STi value compared to Si.

In terms of factor fixing, very similar results were obtained for Sec-
tions 1 and 2, and Sections 3 and 5. It is mainly related to the similarity
of biological processes occurring in these sections affecting SPO. The in-
fluence of μAUT for SPO,1 and SPO,2 (see Table 5A)wasmainly indirect, be-
cause it regulates the presence of nitrate in the recycled sludgeflux from
the aerobic to the anoxic tank and consequently, from the anoxic to the
anaerobic tank.

The variance contribution of factors bH, qPHA and YH varies along the
system both in terms of Si and STi (see Fig. 2i and l).

4. Discussion

4.1. Significance of interactions

The analysis of the sums of Si and STi (Tables 1A–5A (last row))
shows that the model is not additive and strong interactions among
model factors occur. Indeed, despite the fact that in some cases the
sum of Si was close to 1 (see for example variables SNH4,1 or CTN,5), STi
values were always greater than the corresponding Si values (see last
row in Tables 1A–5A). This result is more pronounced for the variables
CODTOT,5, SNH4,1, SNH4,2, SNO3,2, SNO3,3, SNO3,5 and CTN,5, where the sum
of Si and the sum of all STi varied in the range 0.86–0.99 and 10.51–
22.23, respectively (see last row of Tables 1A–5A). This may be attribut-
ed to the influence of recycled fluxes and to the high interaction of fac-
tors for nitrogen removal processes. The high interaction among factors
is also attributed to the wider factor variation range explored in this
study compared to other studies (Sin et al., 2009, 2011; Chen et al.,
2012). By broadening the variation range of each model factor, the in-
teraction among factors and the non-linear behaviour of the model
become more apparent. Fig. 3 summarizes the first ten factors having
the highest interaction value for CODTOT,5, SNH4,1, SNH4,2, SNO3,2, SNO3,3,
SNO3,5 and CTN,5. The factors involved in interactions (Fig. 3) are almost
all related to the biological transformation processes of nitrogen inside
the system. This shows how the nitrogen removal process is strongly in-
fluenced by all other processes (and their corresponding factors). Con-
sequently, for the case study, both Si and STi need to be assessed in
order to quantify the degree of interaction among processes and factors.
Thus, it is highlighted here that it is not sufficient to perform a simpler
GSA method, such as SRC.

4.2. Comparison among sub-groups

4.2.1. Factor fixing
In terms of factor fixing, very different results were obtained among

the sub-groups. For the NH4
+ sub-group, no factor was found to be non-

influential for all variables (Table 3A). This result is also due to the
thresholds chosen for determining non-influential factors. Thus, it is
suggested to modellers of observing the influence of the choice of
threshold when the GSA is aimed at reducing the number of factors to
be calibrated. For the MLSS and P sub-groups, a high percentage of fac-
tors (71% and 49% respectively) could be fixed (considering all variables
of each sub-group), thus significantly reducing the number of model
factors to be taken into account in case, for example, of model calibra-
tion. Conversely, for the COD and NO3

− sub-groups, due to the high in-
teraction among factors, only 4% and 14% of the factors, respectively,
could be considered non-influential.

4.2.2. Factor prioritization
In terms of factor prioritization, noparticular differences among sub-

groups were extracted from the results. In general, for each sub-group
the important factors, selected on the basis of Si, were strongly related
to themain biological or physical processes occurring inside the system.

4.2.3. Spatial variability of variance contributions
As shown in Fig. 2, for some of the model outputs analysed, signifi-

cant variability of the variance contribution along the plant sections oc-
curs. This variability is mainly present for variables related to the
nitrogen removal processes and physical processes. Thus, NH4

+, NO3
−

and COD sub-groups show quite a high variability of Si and STi for
some of the factors. For example, μAUT has the highest Si value for SNH
in Section 3, where the nitrification process takes place, whereas factor
f has the highest value of Si for CODTOT,5, because the physical separation
mostly influences the CODTOT concentration in Section 5. In terms of STi,
a high variability for the P sub-group is obtained (see Fig. 2l). The results
in terms of spatial variability of the variance contribution obtained in
this study can support experimental design.

4.3. Comparison with previous studies

The Extended-FAST analysis has several distinct characteristics com-
pared to a previous analysis by Chen et al. (2012). The model structure
of our study is much more complex due to the configuration and the
processes taken into account (nutrient removal processes and physical
separation processes are considered in the ASM2d–SMP). Moreover, a
wider factors space than Chen's has been explored. As reported in
Table 1, the adopted factor range was based on the range of values
found in the literature, in view of studying the effect on model behav-
iour (variance, linearity etc.). Indeed, in Cosenza et al. (2013c), it has
been demonstrated that using a broader factors variation range com-
pared to Sin et al. (2011) the model non-linearity is exposed. Here, by
using a wider variation range than Chen et al. (2012) the contribution
on themodel variance due to the interaction among factors is increased.
Indeed, contrary to Chen et al. (2012), where the contribution of factors
due to higher-order interactions was unimportant for ammonia and ni-
trate, in this study, a high interaction contribution to themodel variance
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has been obtained. The present case study identifies the presence of
non-linearity and interactions for ammonia and nitrate sub-groups.

4.4. Implications for modellers

In case a modeller wants to optimise processes, the results
discussed in this paper show how important it is to analyse, accord-
ing to the specificity of the case under study, whether factors are im-
portant or non-influential for each of the plant's sections. Only by
analysing the values of Si and STi section by section for all of the
relevant variables, the modeller will be able to acquire sufficient in-
formation related to the biological processes, which occur in the sys-
tem under study, going beyond her/his a priori knowledge about the
processes. Moreover, an improvement of the experimental design
could be obtained by reducing the number of unnecessary measure-
ments. All results have underlined the characteristics of the behav-
iour of the system under study due to both the presence of the
physical sub-model and the plant scheme (the latter entails the
presence of several recycled sludge fluxes). Due to these character-
istics and the complexity of the involved biological processes,
some of the obtained results are specific for the analysed case
study and differ from previous studies (Sin et al., 2011; Chen et al.,
2012). Specifically, the system exhibits significant interactions,
which necessitate the use of more advanced GSA techniques than
typically used. Although it is important to underline that the results ob-
tained are case-study dependent the authors believe that both the ap-
proach and results presented here are of general value to the systems
analysis of MBR models.

5. Conclusions

• GSA was applied to different subgroups of variables to identify differ-
ences in importance of factors between compounds:
– Variation in MLSS was mainly explained by factors related to het-
erotrophs and was stable across the plant sections. For the MLSS
sub-group, a substantial reduction of the number of uncertain fac-
tors to be considered was obtained (56 out of 79 factors are non-
influential).

– For the COD sub-group, only 2 out of 79 model factors were classi-
fied as being non-influential. Factorsα and γ related to the physical
model were found to be involved in interactions.

– For the ammonia, nitrate and P sub-groups, the application of the
variance based sensitivity analysis method provided significantly
different results in terms of factor sensitivity compared tomethods,
which do not take into account interaction among factors (e.g.
regression-based methods).

• The GSA results depended highly on the choice of compound and
the sampling location within the treatment plant. This could be
taken advantage of to design experiments in a more efficient way.

• The employed ASM model behaved in a strongly non-linear and
non-additive way, contrary to previous GSA applications on simpli-
fied ASMs.

• The results underlined the importance of interactions due to both
the presence of the physical sub-model and the plant scheme
with the presence of several recycled sludge fluxes. The fact
that these interactions surfaced in this study may be explained
by the complexity of the model on the one hand and the large
variation range adopted for each factor. Most importantly,
however, the fact that such significant interactions were present,
points to the necessity to use the more advanced GSA techniques
than typically used. Furthermore, from the modelling point
of view, the use of integrated models, which take into account
both biological and physical processes simultaneously, is
recommended.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2013.10.069.
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