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Problem definition

 Better description of water systems with fast dynamics
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Problem definition
 In situ automated continuous monitoring 

stations:stations:
 Information-rich data sets
 Capturing pollutions dynamics
 Reduce costs 
 Huge/complex data sets
 Errors and uncertainties
 Insufficient sensor reliability
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Insufficient sensor reliability

Data evaluation/validation is crucial
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In situ monitoring stations
 Municipal treatment plant 

(Copenhagen, Denmark)(Copenhagen, Denmark)
 Water quality variables:

 pH, TSS, NH4, Turbidity,...
 Sample time: 5-60 sec
 Practical issues:

 Maintenance, fouling, clogging...
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Representative data?!

Data quality assessment methods
 Manual procedures
 Tedious and time consuming Tedious and time consuming

 Automatic data quality evaluation procedures

 Corrupted, doubtful, unreliable data

Using time series information!

6

 Noise
 Sensor faults
 Outliers



4

Automated data quality assessment tools

 Univariate method developed at modelEAU, 
Département de génie civil et de génie des eaux, Université Laval

Raw 
Data

Accepted
Data

Smoothed  
Data
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Current Model-based outlier detection method

Exponential smoothing model

 At T forecasting T+1:
• Variable         

• 3rd order exponential smoothing  model

• STD of forecast error
• 1st order exponential smoothing model
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lim ˆ ˆ ex x K  
 Dynamic Prediction interval:
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Model-based outlier detection
 Alternative method: Desired properties
 Real-time, on-line applicable
 Systematic
 Appropriate for the system under study    
 Automatically applicable                
 Not complicated                 
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Autoregressive moving average with
integrator (ARIMA) applied to a 

moving window data

ARIMA model
 Proposed ARIMA model :
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 Calculation of j-step ahead forecast value according to 
data available at time k:
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With      calculated according 
to Diophantine equation:
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Moving Window approach
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T - 5 T - 4 T - 3 T - 2 T - 1 T T+1

ARIMA model with Moving Window

 Algorithm for window size N:

1. Consider  N data values in window

2. Identify ARIMA model parameters 

3. Forecast of j-step ahead values

4. Move data window one step further4. Move data window one step further

5. Repeat steps 2 to 4
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Challenge!
 Specification of Window Size (WS) ?

 If WS too small             More sensitive to noise

 If WS too large              Averaging the dynamic variations

 Solution ?
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Raw data 
Turbidity time series at the inlet of the WWTP
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Raw data 
Turbidity time series at the inlet of the WWTP
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Time

Application to the system
 Window size of 30 data points for 1 min sampling time

 Estimation of ARIMA model parameters with one pole 
and one zero 

 Calculation of one step ahead forecast value (j=1)
 Calculation of dynamic forecast error and prediction 

interval
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 Detection and replacement of outlier
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lim ˆ ˆ ex x K  
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Results

1 step-ahead forecast for a dry period 
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Results

Outlier detection
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Results

1 step-ahead forecast for a wet period 
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Results

Outlier detection
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Results

Outlier detection
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Results
Outlier detection in a dry period with outliers for K = 3
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Conclusion
 ARIMA model with moving window is fitted 

to water quality time series to produce oneto water quality time series to produce one 
step-ahead forecast

 The outliers are detected by considering 
prediction intervals calculated according 1st

order exponential smoothing modelorder exponential smoothing model
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Future works
 Application of the Multi Model Filtering Algorithm 

(MMFA) to the system under study(MMFA) to the system under study

 Identification of set of models according to different modes 
of system’s behavior

 Designing Kalman filters for each of the different modes of 
behavior

 Calculating conditional probability of each of the models to 
represent the observed system behavior
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