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Problem definition

Hydrological systems
Effective management of water bodies
Reliable water quality information
Trustable further application

Modeling, Decision making, Control
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Problem definition

= Better description of water systems with fast dynamics

Application of In-situ Automated
Continuous Monitoring Stations!
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Problem definition

= |n situ automated continuous monitoring
stations:

Information-rich data sets
Capturing pollutions dynamics
Reduce costs
Huge/complex data sets
Errors and uncertainties
Insufficient sensor reliability
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|‘ Data evaluation/validation is crucial
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In situ monitoring stations

= Municipal treatment plant __
(Copenhagen, Denmark)

= Water quality variables:
pH, TSS, NH,, Turbidity,... AR
= Sample time: 5-60 sec -\ T
= Practical issues:
Maintenance, fouling, clogging...

Representative data?!
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Data quality assessment methods

= Manual procedures
Tedious and time consuming

= Automatic data quality evaluation procedures

Using time series information!

Corrupted, doubtful, unreliable data
Noise

Sensor faults

Outliers
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Automated data quality assessment tools

= Univariate method developed at model EAU,
Département de génie civil et de génie des eaux, Université Laval

Raw Accepted Smoothed
Dat; a Data
On-line q Iodel-based » Data Fault detection
time series outlier detection smaoother (Data featur es)

Validated
data
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Current Model-based outlier detection method

= At T forecasting T+1:

« Variable X
3rd order exponential smoothing mode

xI:a+bt+§ct2

A

« STD of forecast error .
1st order exponential smoothing model

— Lower limit

Exponential smoothing model .
X Raw data ©Forecast — Upper limit
Accepted data
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= Dynamic Predi%n interval:
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Model-based outlier detection

= Alternative method: Desired properties

Real-time, on-line applicable
Systematic

Appropriate for the system under study
Automatically applicable

Not complicated

Autoregressive moving average with
integrator (ARIMA) applied to a
moving window data
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ARIMA model
=P d ARIMA model : y(k)z.l?il:%—
ropose model : AN
with: A(zY)=1+az"+..+a,z"™

nc

C(zY)y=1l+cz'+...+C 2"

= Calculation of j-step ahead forecast value according to
data available at time k: o
Y(k+ j k) =St y (k)
czh)

C(z’l): AR
AzY - A7)

With F ; calculated according

to Diophantine equation:
From degree j-1
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Moving Window approach
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Consider N data values in window
Identify ARIMA model parameters
Forecast of j-step ahead values

Move data w
Repeat steps 2 to 4

S
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Algorithm for window size N
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ARIMA model with Moving Window




Challenge!

= Specification of Window Size (WS) ?

If WS too small ——)> More sensitive to noise

If WS too large II:> Averaging the dynamic variations

= Solution ?

Selection of WS that considers
the dynamics of the variable
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Raw data
Turbidity time series at the inlet of the WWTP
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Raw data

Turbidity time series at the inlet of the WWTP

Turbidity
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Application to the system

= Window size of 30 data points for 1 min sampling time

= Estimation of ARIMA model parameters with one pole

and one zero 4
_ (1# )
y(k) = @ ,1_2,1)e(k)

= Calculation of one step ahead forecast value (j=1)

= Calculation of dynamic forecast error and prediction
interval Xim = X £K -G,

= Detection and replacement of outlier
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Results

1 step-ahead forecast for a dry period

ARIMA model with MW forecasted and actual data
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Results

Outlier detection

Outlier Detection- K =13
&0 T T T T T
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® Accepted data
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Results

1 step-ahead forecast for a wet period

ARIMA model with MW forecasted and actual data
T
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Results

Outlier detection

Cutier Detection - K =4
T T

-Smoothed data
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Results

Ouitlier detection

Outlier detection- K =4
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Results

Outlier detection in a dry period with outliers for K =3

Outher detection - K
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Conclusion

= ARIMA model with moving window is fitted
to water quality time series to produce one
step-ahead forecast

= The outliers are detected by considering
prediction intervals calculated according 1st
order exponential smoothing model
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Future works

= Application of the Multi Model Filtering Algorithm
(MMFA) to the system under study

Identification of set of models according to different modes
of system’s behavior

Designing Kalman filters for each of the different modes of
behavior

Calculating conditional probability of each of the models to
represent the observed system behavior
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