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Abstract 

Population Balance Models (PBMs) represent a powerful modelling framework for the 

description of the dynamics of properties that are characterised by statistical distributions. 

This has been demonstrated in many chemical engineering applications. Modelling efforts 

of several current and future unit processes in WWTPs could potentially benefit from this 

framework, especially when distributed dynamics have a significant impact on the overall 

unit process performance. In these cases, current models that rely on average properties 

cannot sufficiently captured the true behaviour. Examples are bubble size, floc size, crystal 

size or granule size,... PBMs can be used to provide new insights that can be embedded in 

our current models to improve their predictive capability. This paper provides an overview 

of current applications and the future potential of PBMs in the field of WWT modelling, 

introducing new insights and knowledge from other scientific disciplines. 
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INTRODUCTION TO POPULATION BALANCE MODELS (PBM) 

Many natural systems consist of populations of individual entities (e.g. flocs, bubbles, 

granules, crystals, bacterial cells) with specific properties (e.g. size, composition, density, 

activity). The individual entities interact with their environment (e.g. dissolved chemical 

precipitation, oxygen transfer from air bubble to liquid phase, shear-induced breakup) or with 

one another (e.g. aggregation, coalescence). Typically, these interactions are a function of one 

or more properties, which may vary within a population of entities. In this context, we can 

refer to this variation as “distributed properties” as they can be represented by a distribution 

instead of a scalar (i.e. one single value). A simple example of the use of a distribution would 

be to characterize the variation in floc size in an activated sludge system. This distributed 

feature implies that the behaviour of distinct entities can be significantly different, and can 

deviate substantially from ‘average’ non-distributed behaviour.  

Current modelling frameworks usually assume non-distributed scalar properties (e.g. using a 

single particle size or bubble size), implying that all individuals behave in exactly the same 

way. In some cases, this is sufficient, but in others this assumption is too strict and will lead to 

predictions that deviate significantly from the real system. The required level of detail is 

clearly governed by the modelling objective. Yet, few researchers and design engineers in 

WWT are aware of alternative modelling approaches that can account for the impact of these 

distributed properties on unit process performance. 

A framework to achieve distributed behaviour by considering distributed population 

properties already exists and is called Population Balance Models (PBMs). PBMs have been 
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extensively used in chemical engineering for a myriad of applications (Ramkrishna, 2000; 

Marchisio, 2012). The governing equation in its most general form is given as 
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where x is the internal coordinate (i.e. the distributed property), f1(x,t) is the number density 

function (i.e. the distribution of the distributed property), ),( txX  is the continuous growth 

term of x and h(x,t) is the PBM reaction term (through discrete events). Table 1 provides some 

examples in regard to wastewater treatment applications. 

 

Table 1 – Some examples of wastewater treatment processes and related internal coordinates 

(x), number density functions (f1(x,t)) and continuous ( ),( txX ) and discrete (h(x,t)) governing 

mechanisms 

Process X f1(x,t) ),( txX  h(x,t) 

(De)flocculation* 

Floc size Floc size distribution Microbial growth Aggregation, breakage 

Size/Density** Size/Density 

distribution 

- Aggregation 

Coalescence Bubble size Bubble size distribution - Coalescence 

Granulation Granule size Granule size 

distribution 

Microbial growth Granulation 

Crystallization Crystal size Crystal size distribution Crystal growth Aggregation, breakup 

Bio P-removal Poly-P Poly-P distribution Poly-P storage, 

release 

Cell division, cell birth 

PHB production PHB PHB distribution PHB storage, 

release 

Cell division, cell birth 

Growth max max distribution Growth rate 

gradient 

Cell division, cell birth 

Affinity Kx Kx distribution Affinity gradient Cell division, cell birth 

*Note that this mechanism is driving the settling processes in primary and secondary sedimentation 

**In this case a 2D PBM is obtained 

 

The first term on the left hand side of Eq. 1 represents the accumulation term. Distribution 

dynamics that can be described are either governed by continuous processes (e.g. biomass 

growth, crystal growth, particle drying – represented by the second term on the left hand side 

of Eq. 1) or discrete processes (e.g. aggregation, breakage, coalescence, granulation – 

represented by the term on the right hand side). The latter term usually consists of a birth and 

a death term, where the birth rate describes the rate at which particles of property x are being 

formed and the death rate describes the rate at which they are being removed. In 

crystallisation, a nucleation term needs to be added in the smallest size class mimicking the 

nucleus that is formed in an oversaturated solution. 

The internal coordinate x can be either a scalar (i.e. a single independent variable) or a vector 

resulting in a 1 dimensional or multi-dimensional PBM, respectively. The use of multi-

dimensional PBMs means that the distribution of one or more material properties can be 

described. It should be noted that formulating and solving multidimensional PBMs is a 

challenging task. 

The nature of the resulting equation depends on the presence of the ),( txX  and h(x,t) terms. 

If only the former is present, a partial differential equation (PDE) is obtained for which 

solution methods are available. The latter term usually contains integral terms expressing the 

interactions between members of the distribution, turning the equation into an integro-partial 

differential equation. Several numerical methods have been reported in the literature to solve 

this type of equations (Ramkrishna, 2000).  
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Applications of PBMs to wastewater treatment processes are rather scarce. The first 

application was introduced by Fukushi et al. (1995), where a PBM model was used for 

modelling the dissolved air flotation process in water and wastewater treatment. The authors 

described the attachment process of bubbles to flocs during the flocculation process in a 

turbulent flow. Gujer (2002) investigated the impact of lumped average cell composition 

versus distributed composition in the context of ASM2 and ASM3 and concluded that this 

indeed had a significant impact. Schuler (2005) demonstrated that lumped state (= averaged) 

assumptions in EBPR system performance models produced large errors due to the difference 

in individual residence times of organisms in different zones. This was found to be related to 

process hydraulics (Schuler, 2006) and to impact the endogenous respiration as the latter was 

found to be more important when distributed models were applied (Schuler and Jassby, 2007). 

Finally, several PBM references can be found in the field of activated sludge flocculation 

ranging from very simple formulations (Parker et al., 1972) to more elaborate ones (Biggs et 

al., 2003; Nopens et al., 2002) and papers focussing on experimental validation (Nopens et al., 

2005) and model structure analysis (Nopens et al., 2007; Torfs et al., 2012). 

 

PBMs can serve the purpose of building process understanding. The result of such a detailed 

modelling exercise can be included in next generation simplified WWTP models that go 

beyond the currently used paradigms (i.e. ASM using averaged biomass behaviour combined 

with residence time distribution models and oversimplified aeration and settling models). 

Hence, PBM models should not be considered as replacement of current WWTP models, but 

as enhancement tools to improve the future quality of their unit process predictions. This 

paper intends to outline the potential of PBMs in the field of wastewater treatment through 

several examples of different WWTP unit processes. 
 

 

APPLICATIONS OF PBMS IN THE FIELD OF WWT 
 

Improved flocculation to better exploit primary and secondary settling 

The current settling models are either based on removal efficiencies or settling velocities 

correlated with particle concentration. Settler models are still receiving attention as there is 

still room for improvement in their use (e.g. storage function during wet weather) and 

operation. This is especially true for primary settlers as they can be an important asset for 

energy recovery through the maximisation of the primary sludge that is sent to the anaerobic 

digester. Their behaviour has not been widely studied thus far (Bachis et al., 2014). Moreover, 

the primary treatment process is often chemically enhanced (CEPT) which creates an optimal 

dosage problem. As particle concentrations are low in primary settlers, the settling regime is 

not hindered but rather discrete, i.e. Stokian, and a function of particle size, shape and density, 

leading to a wide distribution of settling velocities as evidenced by Bachis et al. (2014). The 

discrete settling assumption is also true for the zone just above the sludge blanket of a 

secondary settler. In discrete settling, settling velocities are directly related to size, shape and 

density and, hence, the particle size distribution (PSD). The PSD depends on the original 

flocculation state as well as on actions undertaken to improve the flocculation state (e.g. 

turbulent shear, coagulant). Note that the flocculation state also depends on the particle’s 

history (e.g; a sludge can have the same PSD, but it can react very different if the floc strength 

is different caused by a different flocculation history). 

Flocculation of particles is probably the most straightforward application of PBMs. Since 

biological growth occurs on a much longer time scale compared to aggregation and breakage 
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it can be ignored when studying short-term flocculation behaviour of activated sludge. The 

PBM reaction term is then defined as 

 

breakbreakaggagg xDxBxDxBtxh )()()()(),(        Eq. 2 

in which the birth (B) and death (D) terms occur for both aggregation and breakage as shown 

in Figure 1. Through these different mechanisms flocs of any size can be formed or removed. 

Furthermore, it becomes clear that aggregation is a particle-particle interaction process, 

whereas shear-induced breakage is not. The rates of all these processes are, hence, governed 

by the number of flocs present (N) as well as an aggregation rate (β), an aggregation 

efficiency (α) and a breakage rate (S) and distribution of resulting particles (the so-called 

daughter size distribution). Aggregation and breakage rates are in their turn a function of the 

mechanisms that drive the aggregation or breakup. Traditionally, shear and polymer addition 

are accounted for which is likely sufficient for the application in the context of primary and 

secondary settling. More details on these rates and their dependencies on shear and flocculant 

addition can be found elsewhere (Nopens et al., 2002; Nopens et al., 2005). An example of a 

model prediction along with measured size distribution during a batch sludge flocculation 

process is shown in Fig. 2. 

 

 
Fig. 1 – Illustration of mechanisms involved in flocculation (after Nopens et al., 2002)  

 

 
Fig. 2 – Example of a PBM model prediction of a batch sludge flocculation process (time unit 

= seconds; unit on size axis = m
3
) after Torfs et al., 2012) 
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Flocculation usually takes place in the process units prior to the actual settling tank as well as 

in the settling tanks (if conditions are good). Flocculation models as described above can be 

used for both. Currently, the flocculation process in primary and secondary clarifiers is not 

studied in detail and its effects are incorporated using rules of thumb. However, understanding 

the contribution of flocculation would improve their design and operation which can 

significantly improve the settling performance and control. Indeed, being able to predict and 

control the size distribution of a population of particles arriving to either the primary or 

secondary settler would be a useful input to settler models that can handle a distribution of 

settling velocities, calculated from the size distribution derived with the PBM (Bachis et al., 

2014).  

In a secondary settler, exposure of flocs to elevated shear during transport from the bioreactor 

to the centre well of the settler will induce reflocculation and impact the floc size distribution 

and the floc strength. An appropriate application of PBM for settler induced flocculation 

would specify size as the internal coordinate.  

In primary settler applications, the availability of particle settling velocity distributions as the 

internal coordinate of the suspended solids has generated a more accurate prediction of the 

load to the secondary treatment model, reduced the need for calibration (Bachis et al., 2012, 

2014), and produced more accurate and optimal control of chemical dosage that lead to cost 

savings. In addition to particle size, particle density can be included as a second internal 

coordinate when density varies significantly with floc size. This additional internal coordinate 

can be accomplished using a 2D PBM approach but comes with an increased computational 

and parameter estimation cost since the rate expressions need to be extended to include 

density, which will require a detailed investigation of the process. Another interesting route 

for further research is the coupling of PBMs to computational fluid dynamics models as the 

latter can predict local shear which then serves as input for the PBM model. Research that 

couples PBM with CFD in WWT has been reported already (Griborio et al., 2006; Gong et 

al., 2011), but needs further attention. Here, again, it should be clear that coupling a 1D PBM 

to a CFD model is a challenging task, typically resulting in models which need very long 

simulation times. One strategy to reduce the computational burden is to reduce the PBM 

model before coupling it to a CFD model (Mortier et al., 2013). 
 

More accurate aeration modelling for better design and energy optimisation 

For a long time, kLa-based models have been used to capture mass transfer between the gas 

and adjacent phases during aeration. More recently, models taking air flow rate as input were 

proposed. Despite the inclusion of somewhat more complexity and the resulting improved 

model performance, the variability of the ”fudging factor” in space could still not be 

entirely related to process variables such as sludge concentration and sludge age, i.e. a lot of 

unexplained variance remains. Moreover,  was shown to vary spatially in a reactor (Rosso et 

al., 2011). This spatial variation introduces a significant amount of uncertainty in the model 

prediction when a single  value is used, resulting in locally different dissolved oxygen 

concentrations and, hence, aerobic process rates.  

To date, a key assumption in all aeration models is assigning a single average bubble size. 

This assumption is not very apparent, but resides in the gas-liquid interface surface area (a) of 

KLa and is hidden in the  value in oxygen transfer efficiency (OTE) based models. This 

constant bubble size assumption is unrealistic and can be very restrictive for the model since 

the bubble’s interfacial area drives the oxygen transfer process. In reality, bubble size is 

spatially distributed (Fig. 3, left) from the point of injection to the top of a reactor due to the 

process of coalescence leading to a significantly different bubble size distribution near the 

reactor top. Another factor that plays a role here is the fact that there are pressure differences 
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when moving from the bottom to the top of the reactor, and these will also influence bubble 

size. Increased viscosity (due to the presence of sludge) further promotes coalescence 

compared to clean water (Fig. 4) (Fabiyi and Novak, 2008; Ratkovich et al., 2013). A PBM 

using bubble size as the internal coordinate and including coalescence as a PBM reaction 

process can significantly improve the local prediction of oxygen mass transfer (and hence ) 

as well as improve the design of aeration systems to maximize the oxygen transfer (in 

combination with Computational Fluid Dynamics - CFD). It should be noted that the current 

work in CFD linked to aeration also uses a fixed bubble size (Fayolle et al., 2007). The use of 

PBMs in aeration systems with suspended solids has not been widely studied in WWT. PBMs 

applied to bubble columns are widespread in fermentation systems and the chemical 

engineering literature (Wang, 2011; Dhanasekharan et al., 2005; Sanyal et al., 2005) and can 

serve as a solid examples of improved benefits to these process models.  

 
original image

Image f rom iSpeed camera

BIOMATH

 
Fig. 3 – Illustration of variability in bubble size as measured with a high speed camera  

 

 
Fig.4 - Impact of viscosity on bubble coalescence 
 

Typical mechanisms taking place in bubble breakup and coalescence are shown in Fig. 5. The 

kernels used in a PBM describing bubble breakup and coalescence are very similar as those 

used in a flocculation PBM.  
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Fig. 5 - Bubble breakup and coalescence due to different mechanisms (after Wang, 2011). 
 

Floc and granule size: distributed kinetics 

Despite the fact that the size of agglomerates, be it flocs or granules, can play an important 

role in biological activity (e.g. different microbial consortia at different locations in the 

agglomerate), the simulation of such a microenvironment within a macro-scale fluid transport 

environment has hardly been performed. Recently, Volcke et al. (2012) demonstrated the 

significant impact of granule size distribution on the performance of an Anammox-based 

granular sludge reactor. The authors used a fixed size distribution for this analysis. It is clear 

that size distribution can be impacted by shear and, hence, will further influence the system 

behaviour. The absence of size and size dynamics in the currently used models indicates that 

the activity loss caused by particle size (causing transport limitation due to stratification, e.g. 

Vangsgaard et al., 2012) cannot be predicted by current models. Again, when experimental 

data are confronted with these models, other degrees of freedom (i.e. parameters or input 

variables) will be calibrated for inappropriate reasons.  

Sobremisana et al. (2011) demonstrated that including floc size can result in significantly 

deviating reactor performance since kinetics can be quite different depending on reactor 

location and the size of the biological floc. The authors used an integrated PBM-CFD 

approach to simulate the carbon and nitrogen removal process at both the reactor scale and 

internal floc scale. The effect of size was introduced by means of an effectiveness factor (i.e. 

ratio of rate with and without diffusional resistance) based on floc size for all different 

processes. For a simple baffled reactor the treatment performance deviated by 13% for COD, 

10% for NH4 and 56% for NO3 compared to the same simulation not accounting for influence 

of size. However, further validation is required. 

 

Knowledge arising from this can be useful to (partially) decouple affinity constants in kinetic 

rate expressions and reduce their requirement for calibration. Understanding the interaction 

between size and reaction kinetics can inform researchers and engineers on how to better 

design and operate these processes (e.g. avoid or promote certain shear zones and account for 

imposed shear of mixing and aeration intensities). Moreover, it will reduce the need to adjust 

parameters unnecessarily to improve the model fit.  

 

Apart from size heterogeneity, incomplete mixing can lead to spatial heterogeneous 

concentrations in biomass and substrates that ultimately result in locally different kinetics. 

Integrating the effects of spatial variations in macroscale mixing as well as the biomass and 

substrate concentration is another avenue for further model development. Lencastre Fernandes 

et al. (2013) demonstrated the effect of this heterogeneity for a budding yeast population 

using a multi-scale modelling approach that included PBM. A similar approach could be used 

for WWT modelling, and could be helpful in developing an improved understanding of 
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biomass population dynamics. A complicating factor for the WWT compared to a yeast 

fermentation is that multiple species have to be considered to model the WWT appropriately. 

 

Models including floc size and local heterogeneities could also be helpful in developing 

technologies to select between wanted and unwanted microbial communities, which is a 

recently developing topic in view of mainstream Anammox application. Microbial selection 

can be done on a physical basis (size) or through selection by creating favourable growth 

conditions for the targeted microbial consortium (Al-Omari et al., 2014). 
 

 

Precipitation/crystallisation for better quality marketable products 

WWTPs are transforming into WRRFs (Water Resource Recovery Facilities) leading to new 

modelling challenges (Vanrolleghem, 2013). One important aspect in product recovery, 

driving their market value, will be the specifications of the recovered material. These 

comprise both composition and size. Crystallisation has been extensively modelled in the 

field of chemical engineering and pharmaceutical engineering to produce crystals with tailor-

made specs (e.g. Aamir et al., 2009, Nagy and Braatz, 2012). A PBM with crystal size as an 

internal coordinate and inclusion of nucleation (function of supersaturation) and crystal 

growth can be used as a first approximation. If needed, more internal coordinates can be 

added to deal with composition or crystal shape (e.g. 2-D compared to 1-D, Samad et al., 

2011). Additional phenomena such as agglomeration and breakage can be added. 

Interestingly, describing crystallisation with a PBM also allows describing phenomena such 

as size-dependent crystal growth (Samad et al., 2011).  

The use of a PBM modelling framework is widely accepted when studying crystallization 

processes. However, in a WRRF context the PBM framework has not really been used thus 

far, with the exception of a recent manuscript by Galbraith and Schneider (2014) where a 

discretized PBM was used to describe the chemical precipitation of phosphorus. The most 

important discussion points, when implementing a PBM, are usually related to the model 

assumptions (which phenomena should be included?), and to the selection of the kinetic 

expressions for each phenomenon that is included in the PBM. The main phenomena are 

nucleation, crystal growth and dissolution (= negative growth), agglomeration and breakage. 

However, it happens frequently that the PBM only considers growth and nucleation (Fujiwara 

et al., 2005). Another important variable that needs to be included in these models is the 

super-saturation, which will vary as a function of temperature and is usually represented as a 

polynomial describing the super-saturation curve as a function of temperature.  
 

 

CONCLUSIONS 

Many processes in WWTPs are governed by population dynamics of materials characterised 

by variation in property dynamics. These potential complexities in system behaviour are lost 

or significantly suppressed when only average behaviour is characterized or simulated. 

Population Balance Models can deal with these process complexities and have already 

demonstrated their benefits in the field of (bio)chemical engineering. The majority of the 

models in WWT modelling that need more rigour are physical-chemical processes. Hence, 

more than ever we need to look over the fence and integrate available (bio)chemical 

engineering knowledge into WWTP models. Some examples are described in this paper, but 

potentially many more applications of PBM in WWT exist and can be exploited. The 

intention of this paper is to make WWT modellers aware of this framework and its potential 

applications, challenges, and pitfalls. 
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