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 Abstract 
Optimal placement of sensors is critical for the collection of valuable data in realistic environments. 
By means of a well-chosen sensor layout in wastewater treatment plants, one can simultaneously (i) 
suppress sensor installation and maintenance costs and (ii) increase the amount of obtained 
information. In addition, this also allows (iii) securing the possibility to automatically detect faulty 
data on the basis of mass balancing methods. This work evaluates how one can optimize the location 
of sensors in a wastewater treatment process. This is done so that the highest degree of structural 
observability (of variables) and redundancy  (of measurements) is attained. Currently available 
results demonstrate that the optimization strategy is effective and efficient for simple wastewater 
treatment plant configurations. Case studies with larger-scale process network are currently 
executed to evaluate the method’s potential for more realistic plant configurations. 
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INTRODUCTION 
Obtaining high quality on-line data from aquatic environments is a long-standing challenge in 
environmental engineering. Classic research in data quality evaluation, including fault detection and 
identification schemes consider produced data as a given. Indeed, data reconciliation and fault 
detection and identification (FDI) is usually executed after data is collected. In contrast, sensor 
placement prior to data collection can substantially improve the quality of collected data by placing 
sensors such that data reconciliation and FDI can be executed with increased statistical power and 
for more sensor fault types and locations. Therefore, this work evaluates how one can optimize the 
location of sensors in a wastewater treatment process so that the highest degree of observability and 
redundancy is attained.  
The considered objectives for an optimal sensor layout or placement are (i) a minimal number of 
sensors, (ii) a maximal number of observable variables, and (iii) a maximal fraction of redundant 
sensors. The sensor layout optimization problem is a multi-objective problem since these objectives 
cannot be attained simultaneously. The actual trade-off between these objectives is considered 
unknown a priori and for this reason it is of interest to compute the Pareto front which describes all 
possible sensor layouts optimal in a certain sense. 
To find the Pareto front, a novel optimization strategy is proposed. To this end, the pre-existing 
implementation of observability and redundancy labelling algorithms (Villez et al., 2013b) is 
combined with a global deterministic optimization algorithm. Importantly, this optimization can be 
executed prior to the installation of any sensor, thus being an effective planning tool of sensor 
layouts and/or measurement campaigns. 

METHODS 
The presented analysis assumes that one knows (i) the spatial configuration of a plant, hereafter 
called the plant configuration, (ii) all potential streams in which one can place sensors, and (iii) the 
variables for which a sensor can be placed in each available stream. Any particular selection of 



sensors for all considered locations is further referred to as a sensor layout. In this study, optimality 
of a sensor layout is defined by means of three competing objectives which are (i) the cost 
associated with sensor installation and maintenance, (ii) the number of observable variables, and 
(iii) the fraction of the installed measurements or sensors which are redundant. Observability and 
redundancy are only evaluated in a structural sense, meaning that measurement uncertainty or the 
probabilities of faults are not accounted for. Optimizing these three competing objectives means 
that the Pareto front is searched for by means of placing sensors in the available sensor locations. 
The following paragraphs describe the studied academic example studied so far as well as the 
applied methodology.  

Case study: A textbook wastewater treatment plant 
A simple wastewater treatment plant configuration has been selected for software development and 
demonstration purposes. This plant configuration consists of seven (7) streams connecting four (4) 
junctions as depicted in Fig. 1. It contains a single bioreactor, a settler, and one recycle stream. The 
considered variables are flow rates and Total Suspended Solids (TSS) measurements. In this 
preliminary study, the plant is considered to be in steady state. In particular, the net effect of TSS 
production, TSS degradation, and TSS storage is zero in all plant locations. Practically, this means 
that effects of reactions and storage on the TSS concentrations are ignored for sensor layout 
evaluation and optimization. Each stream is considered to consist of two fractions, the TSS fraction 
and the remainder fraction, which is mainly water. The remainder fraction also includes all other 
components of the streams, which are not measured or considered of particular interest for 
estimation within this study. 

   
Figure 1. Scheme (left) and graph-theoretic representation (right) of a text-book wastewater treatment plant. 

Definitions 

Structural observability is defined as follows (e.g., Kretsovalis and Mah, 1987): A variable is 
considered structurally observable when (i) a direct measurement is available as a value for the 
considered variable or (ii) other measurements are available which, in combination with a 
mathematical representation of the measured process or system, permit computation of a unique 
value (estimate) for the considered variable.  
Importantly, structural observability merely corresponds to a feasibility of computation. Indeed, 
quality aspects such as precision of the measurement or estimate are not considered. This is 
equivalent to structural identifiability for model parameter identification (e.g., Dochain et al., 1995). 
We are thus merely concerned to evaluate whether a given sensor layout provides information on 
the variables of interest. Note that the evaluation of structural observability does not require that 
actual measurements are available. For this reason, structural observability is a useful objective for 
design of sensor layouts prior to actual installation of sensors. 

Structural redundancy is defined as follows (e.g., Kretsovalis and Mah, 1987): A measurement is 
considered structurally redundant if the measured variable remains observable when the 
considered measurement is removed from the set of available measurements. 
A classic interpretation of redundancy follows when one considers that one can evaluate the 
difference of any structurally redundant measurement with the corresponding estimate in the 
absence of this measurement. If the considered measurement is biased than the expected value for 



this difference reflects the apparent bias. As with structural observability, structural redundancy 
excludes quantitative measures for quality of data or estimates. Note that reliability (of estimates) as 
considered in Ali and Narasimhan (1993) is excluded as a criterion as this study focuses on 
structural, parameter-free objectives for sensor layouts.  

Topological graph representation 
In principle, any mathematical relationship, including dynamic equations, can be used for 
estimation and thus also for labelling of variables as observable or unobservable. In the presented 
methodology, only four types of equations are considered. These are (i) total mass flow balances, 
(ii) component mass flow balances, (iii) component concentration equality equations, and (iv) 
equations equating component mass flows to the product of the corresponding volumetric flow and 
component concentration. The mass balances and concentration equality equations (i-iii) are linear 
whereas the products in (iv) result in a bilinear equation. To evaluate criteria of observability and 
redundancy, one can represent the considered plant as a graph, G, leading to a so called graph 
theoretic representation of the considered plant (Deo, 2004). Fig. 1 shows the graph for the studied 
plant. Each physical location in the plant where two or more wastewater streams connect is 
represented by a vertex (indexed with i). Such vertices are visualized as a dot or circle. Each stream 
is represented as an arc (indexed with j) which is displayed as an arrow (directed arc). For a graph 
to be complete, every stream needs to connect two vertices. For this reason, every stream which 
connects the environment outside of the considered system boundaries is connected to a so-called 
environmental node, which is indicated in this work by means of an inscribed E. The total number 
of arcs is given as m. The number of vertices is noted as n. The resulting graph is a topological 
graph (as it describes relationships in a physical space). Splitters are locations in a plant where a 
given incoming stream is split into two or more streams without changing the concentrations (i.e., 
there is no reaction or separation process occurring in this location). In this paper, such splitters are 
visualized as circles (nodes) with an inscribed S (see Fig. 1).  

Evaluation of observability and redundancy (Labelling) 

Mathematical definitions 
Available sensor locations are given as a set, S, consisting of pairs, (j, k), with j indicating the 
stream and k the considered flow rate or stream component. In this study, only flow rates (k=1) and 
TSS concentrations (k=2) are considered. The total number of measured variable types (flow rates 
and concentration of each considered stream component) is given as l. The total number of available 
sensor locations is given by mS (mS ≤ m∙l). A vector of Boolean indicators, δC (dimensions mSl), is 
used to indicate whether a particular candidate location in S is equipped with a sensor (1) or not (0). 
An equally dimensioned matrix of Boolean indicators, δR (dimensions mSl), indicates whether the 
candidate location has a redundant sensor (1) or not (0, i.e., non-redundant sensor or no sensor at 
all). Boolean indicators for observability are grouped in a matrix, ΔO (dimensions ml), with 
ΔO(j,k)=1 (ΔO(j,k)=0) if the variable k for stream j is observable (non-observable). As explained 
further in the text, the indicators in ΔO and δR are computed algorithmically as a function of the 
systems' graph representation, G, and the sensor layout specified by δC. For the present discussion, 
we represent these algorithmic procedures as two functions (fO and fR): 
 ΔO = fO(G, δC) (1) 
 δR   = fR(G, δC)  (2) 
The three objectives described above are formulated as follows. All objectives are constructed so 
that optimality is defined as the minimal values for these objectives. The sensor cost, zC, is a 
weighted sum of the binary indicators for sensor presence with wC the vector of weights for each 
sensor candidate location:  
 zC   = ΣsS wC(s) ∙ δC(s) (3) 
Similarly, the observability objective is the following weighted sum of binary indicators for 
observability of each of the considered variables with WO the weight matrix: 



 zO   = Σj=1..m  Σk=1..l WO(j,k) ∙ ( 1 − ΔO(j,k) ) (4) 
By minimization of this objective one obtains a maximal degree of observability. Finally, the 
objective for redundancy is defined as 1 minus the ratio between the weighted sum of redundant 
sensors to the weighted sum of all installed sensors, with the weights, wR, the same in the nominator 
and denominator: 
 zC   = 1 – ( ΣsS wR (s) ∙ δR(s) ) / ( ΣsS wR (s) ∙ δC(s) ) (5) 
Once more, this formulation ensures that minimization leads to optimal (i.e., more redundant) 
sensor layouts. The weights wC, WO, and wR respectively represent (i) the weights for the cost 
associated with each individual candidate sensor, (ii) the weights for each observability indicator, 
and (iii) the weights for each redundancy indicator. All weights are necessarily non-negative. The 
next section describes how the indicators in ΔO and δR can be computed. 

Algorithmic labelling of variables and sensors 
The graph theoretic representation of a plant is especially suitable for further analysis in terms of 
observability and redundancy. Given the topological graph and a sensor layout, one can compute 
which variables are observable by means of the observability algorithm of Kretsovalis and Mah 
(1987). This algorithm is further referred to as NETOBS. Kretsovalis and Mah (1987) also provide 
an algorithm to label measurements or sensors as redundant. This algorithm is further referred to as 
the NETRED algorithm. Application of the NETOBS and NETRED algorithms implies that no 
reactions are taking place anywhere in the plant. Similarly, concentration equalities as implied by 
splitters are not taken into account either. As such, application of the NETOBS and NETRED 
algorithms is limited to the analysis of sensor layouts for mixing and separation process sequences 
only. Because of this limitation, the GENOBS and GENRED algorithms of Kretsovalis and Mah 
(1988a, 1988b) were developed specifically to permit labelling of variables and sensors in plants 
with reactions occurring and splitters present. By using the links between solvability of equations 
systems and graph-theoretical concepts such as biconnected components, components, cutsets, 
cycles, and paths, the NETOBS, NETRED, GENOBS, and GENRED algorithms provide an 
efficient manner to label variables as observable or non-observable and sensors as redundant or 
non-redundant. These algorithms are based on topological graphs as described above. All results 
presented in this work were obtained by application of the GENOBS and GENRED algorithms as 
explained in detail in Kretsovalis and Mah (1988b). Concretely, this means that Eq. 1-2 can be 
rewritten as follows:  
 ΔO = fO(G, δC) = GENOBS(G, δC) (6) 
 δR   = fR(G, δC) = GENRED(G, δC)  (7) 

Deterministic Pareto front optimization 
Within the field of environmental engineering, stochastic algorithms such as simulated annealing 
and genetic algorithms are popular in the context of global optimization. These algorithms are 
efficient ways to obtain one or more good solutions by avoiding many local minima in an efficient 
manner. The disadvantage of stochastic optimization is however that no guarantee to the global 
optimality of a solution is given, except as a bound for the number of iterations going to infinity. 
Interestingly though, a class of deterministic algorithms exists which have become popular in civil 
engineering (e.g., logistics and transport engineering) and chemical engineering (e.g., for system 
design and optimization). In this case, the search algorithm leads to a guaranteed global optimum in 
a finite number of steps. Deterministic optimization has remained rather unpopular in 
environmental engineering so far. The branch-and-bound algorithm is an example. This algorithm is 
selected here for integer optimization (Nemhauser and Wolsey, 1988). The particular version of the 
branch-and-bound algorithm applied in this work is set up for multi-objective optimization (Ehrgott 
and Gandibleux, 2002). This is the only difference from its conventional formulation for integer 
programming (e.g., Nemhauser and Wolsey, 1988). Critical to the application of branch-and-
bounding optimization schemes is that one can obtain provable bounds to the objective functions. In 



the interest of space, these bounds are not discussed in detail here. For the optimization specialist, 
we add here that a breadth-first approach is taken for branching and the branching variable is 
always the presence of the first sensor for which a placement is undecided. For an extensive 
introduction to deterministic global optimization for nonlinear problems we refer to Floudas (1999).  

Implementation details  
All computations were executed with Matlab (8.0.0.783, R2012b) on a dedicated desktop machine 
(CPU: Intel(R) Core(TM) i7-3770K (3.50 GHz), RAM: 8.00 GB). To this end, a structural 
observability and redundancy toolbox (SOAR) was created. It includes (i) the NETOBS and 
NETRED algorithms for observability and redundancy classification as reported in Kretsovalis and 
Mah (1987), (ii) the GENOBS and GENRED algorithms for observability and redundancy 
classification as reported in Kretsovalis and Mah (1988b) and implemented in Matlab (Villez et al., 
2013b), (iii) a pre-existing open-source graph theory toolbox by Iglin (2011), (iv) additional 
supporting code for graph analysis (e.g., identifying biconnected components) and visualization, (v) 
tools to compute the bounds for optimization, and (vi) specific code for this case study. The multi-
objective extension of the branch-and-bound algorithm (originally implemented by Villez et al. 
(2013a) is available in the Spike_O toolbox (v1.2). 
 
RESULTS 
In what follows, the main features of the applied methodology are demonstrated. Without loss of 
generality, all produced results in this study are obtained as follows: 

1. A single candidate sensor is available for all streams and both considered variables (flow 
rate and TSS concentration). Each stream can have at most one flow rate and/or one TSS 
concentration measurement. This leads to m∙l potential sensor locations listed in S:  
 S = { (1,1), (1,2), (2,1),… (i,j),… (m,l) }  (8) 

2. Observability of each flow rate and TSS concentration is of interest. 
3. Redundancy of each installed sensor is of interest. 
4. All weights for the sensor layout cost objective, observability objective, and redundancy 

objective are set to one. This means each sensor is considered to cost the same, the estimates 
of the considered variables are all equally valuable, and redundancy of all sensors is equally 
valuable. Mathematically, one writes: 

  sS: wC(s) = 1 (9) 
  i1…m,  k1…l: WO(i,j) = 1  (10) 
  sS: wR(s) = 1 (11) 

Naturally, any particular information regarding the cost of a sensor, preference for observability of 
particular variables, and preference for redundancy of a particular sensor can be incorporated by 
adjusting these weights. We proceed considering absence of any such information by means of 
uniform weighting. The following paragraphs showcase the results obtained so far regarding (i) 
sensor layout evaluation and (ii) sensor layout optimization.  



 

 
Figure 2. Variable and sensor labelling by means of the GENOBS and GENRED algorithms for four layouts.  
Top-left: Layout A, Top-right: Layout B, Bottom-left: Layout C, Bottom-right: Layout D. Installed sensors are 
indicated by + and blue shading. Observable variables and redundant sensors are indicated by + and green 
shading. Non-observable variables and non-redundant sensors are indicated by o and orange shading. 

Evaluation of observability and redundancy criteria 
To demonstrate the use of the GENOBS and GENRED labelling algorithms, four (4) distinct sensor 
layouts are selected, referred to as layout A, B, C, and D. Layout A has four sensors (zC=4): both a 
flow rate sensor and a TSS concentration sensor in streams 1 and 2 (influent and sludge recycle). 
Layout B has five sensors (zC=5) and is the same as layout A plus one TSS concentration sensor for 
stream 4 (reactor entry). Layout C also has five sensors (zC=5), and is equivalent to layout A plus 
one flow rate sensor in stream 6 (effluent). Layout D has six sensors (zC=6) and is the same as 
layout C with an additional TSS concentration sensor in stream 7 (settler bottom).  
Fig. 2 visualizes the results obtained with the GENOBS and GENRED algorithms for the 
considered layouts. It can be seen that layout A leads to observability of 10 variables. Four variables 
are left unobservable and none of the sensors is redundant (zO=4, zR=100%). Layout B, with one 
extra sensor compared to layout A, leads to the same observability labelling (zO=4). Interestingly, 
all installed sensors are now redundant, however (zR=0%). In contrast, layout C makes all 



considered variables to be observable without any redundancy (zO=0, zR=100%). With layout D, all 
variables are observable and all installed sensors are redundant (zO=0, zR=0%).  
It can be verified that the selected layouts are mutually non-dominant, i.e., none of these layouts has 
objective values which are simultaneously lower than those for any of the other layouts. Moreover, 
the selected sensor layouts are part of the Pareto front discussed below. This means that no sensor 
layout exists which exhibits objective values which are simultaneously better than those for any of 
these four exemplary sensor layouts. 

Multi-objective optimization of sensor layouts 
The possibility to individually decide to install any of the 14 candidate sensors leads to a total of 
16384 (214) sensor layouts. It is needless to say that even for a small example like this, enumeration 
and evaluation of all sensor layouts should be avoided as much as possible. By means of the branch-
and-bound algorithm, the GENOBS and GENRED algorithms were executed for 8352 distinct 
sensor layouts. This means 8032 sensor layouts were not evaluated, signifying a 49% reduction in 
explored sensor layouts compared to brute-force enumeration. The evaluation of the Pareto front 
was completed in just under 3 hours and 1257 distinct sensor layouts were retained in the Pareto set. 
This means that only 7.6% of all possible sensor layouts are part of the Pareto-optimal solution set. 
The Pareto front is visualized in Fig. 3. Quite clearly, many sensor layouts on the Pareto front lead 
to the same combination of objective values since only 12 unique objective value combinations can 
be found on the Pareto front. Three extreme combinations for the objective values can be found. 
This includes (i) the (trivial) solution without sensors and consequently no observable variables or 
redundant sensors (red circle, zC=0, zO=0, zR=100%), (ii) 707 solutions with five (5) sensors, all 
variables observable, and without redundant sensors (green circle, cfr. layout C, zC=5, zO=0, 
zR=100%), and (iii) 148 solutions with six (6) sensors, all variables observable, and all sensors 
redundant (blue circle, cfr. layout D, zC=6, zO=0, zR=0%). Of the remaining solutions, (iv) 311 
sensor layouts do not exhibit any redundant sensor (white circles, cfr. layout A, zR=100%) and (v) 
72 sensor layouts exhibit at least one redundant sensor while some variables remain unobservable 
(grey circles, cfr. layout B, 0<zO<m∙l; zR<100%). 

 
Figure 3. Visualization of the Pareto front by means of the considered objective values. Circles indicate the 
Pareto front sensor layouts whereas the dots indicate all evaluated sensor layouts. The red circle indicates the no-
sensor layout. The green circles indicate layouts with all variables observable and no redundancy. The blue circle 
indicates the sensor layouts with all variables observable and all-redundant sensors. White circles indicate sensor 
layouts without redundancy. Grey circles indicate sensor layouts with at least one redundant sensor. 



Most of the sensor layouts on the Pareto front can be found by existing greedy algorithms (e.g., Ali 
and Narasimhan, 1995). Indeed, by iteratively adding sensors one can track a path in the Pareto 
front from the red circle (no sensors) via the white circles to the green circle (all variables 
observable, no redundancy). A continued greedy search for redundancy will lead to the blue circle 
(all variables observable, all sensors redundant). The 72 sensor layouts with some redundant sensors 
and some variables unobservable (grey circles) cannot be obtained in this way, however. These 
layouts are however valuable when increasing the number of observable variables does not 
outweigh the value of redundancy for automated detection and identification of faulty sensor data. 
 
CONCLUSIONS AND PERSPECTIVES 
With this contribution, a deterministic global optimization strategy for sensor layout optimization 
has been presented. Currently available results demonstrate that multi-objective optimization of 
sensor placements is possible thanks to a combination of graph-theoretic labelling algorithms and 
branch-and-bound optimization. For the time being, the available results are limited to an academic 
example. Ongoing work is particularly focused on more complex and realistic wastewater treatment 
plant configurations, such as the Benchmark Simulation Model No. 1 (Jeppsson et al., 2004). 
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