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Summary of key findings 

• The generation of a symbolic Jacobian provides insight into the sparsity pattern of the matrix 
and favours the use of sparse matrix tools. 

• Benefits of symbolic manipulations increase with increasing complexity of test models.  
• Time invested in the generation of a symbolic Jacobian matrix can easily be compensated by 

reduced computational complexity of individual simulation runs. 

Background and relevance 

One of the major bottlenecks of water quality and wastewater treatment models simulation is still the 
computation time required for running a simulation. In the last decade, it has been observed that the 
complexity of water quality models was highly correlated to the computational power at hand [2], 
constraining the complexity of future simulation models to the availability of more powerful 
computers. In parallel, important advances were made in numerical mathematics to provide precise, 
stable and efficient algorithms to solve large classes of models written as ordinary differential 
equations (ODE). However, symbolic manipulation has been given limited attention as it required 
important computer resources. Nevertheless, as the symbolic solution to a problem provides an exact 
solution, and sometimes to a fraction of the cost of a numerical approximation, it can provide 
improved performance of numerical solvers by alleviating bottleneck computations. This work 
examines the potential of coupling a tool generating a symbolic Jacobian matrix to an implicit stiff 
solver. The symbolic Jacobian is then tested on three cases based on wastewater treatment models of 
increasing complexity.  
Numerical methods and model 

The Jacobian matrix consists in the derivatives of state functions  with respect to each state 
variable  (eq. 1). 

 

 

[1]  

The Jacobian matrix, evaluated at a point , represents the best linear approximation of the model near 
the operating point and is used extensively by stiff solvers and in algorithms such as the Newton-
Raphson algorithm. Nowadays, three methods can be used to compute or estimate the Jacobian matrix: 
symbolic derivation (SD), automatic differentiation (AD) and the approximation by finite differences 
(FD).  

SD consists of applying chain derivation to the state functions with respect to all state variables. 
Although conceptually simple, this solution has not been applied to large models for a long time 
because of the important memory requirements. In recent years, however, the memory requirement has 
been considerably lifted and symbolic derivation has gained more visibility [1].  

AD is an algorithmic technique based on two programming paradigms, namely operator overloading 
and source transformation, which makes heavy use of the chain derivation [4]. In contrast to symbolic 
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derivation, only the numerical values of the derivatives are computed. Therefore, the model generation 
is much faster, as no symbolic manipulation is needed, but the computation of the derivatives has been 
shown to be slower when compared to SD [1]. 

Finally, the numerical approximation of the Jacobian is routinely calculated by FD through eq. 2. The 
FD approximation requires n+1 model evaluations to estimate all terms of the Jacobian matrix. 
Despite its simplicity, the precision of the method depends on the choice of the perturbation  and 
the management of numerical accuracy (round-off error, truncation, etc.). 

 

 
[2]  

In the scope of this work, a tool for SD was developed and its performances were compared to those of 
the FD approximation. The AD was not considered because of the complexity of its implementation.  

Three plant-wide models based on the Activated Sludge Model (ASM) were devised to compare the 
performances of SD and FD. The first model consists in a single activated sludge unit (ASU) using the 
ASM2d model and an intermittent aeration coupled to a Takács settling tank [6]. The second is the 
Benchmark Simulation Model (BSM) [5], consisting of five ASU in series using the ASM1 model and 
a Takács settling tank. The third is a Full Plant model consisting of 18 ASU using the ASM2d model 
and a Takács settler. The mathematical complexity of the three models increases from 31 state 
variables for the first to 108 state variables for the second and to 554 state variables for the third.  

All calculations were performed in the scope of the simulation software WEST/Tornado [2], which 
adopts a compiled executable model approach. A Diagonally Implicit Runge-Kutta (DIRK) solver was 
used to assess the importance of symbolic derivation of the Jacobian. The results presented here will 
be detailed in an article in preparation [3]. 

Results and discussion 

Symbolic derivation of the Jacobian matrix offers great insights of the matrix structure since all the 
non-zero elements of the matrix can be identified prior to the simulation of the model starts. Figure 1 
shows the sparsity pattern of the Jacobian matrices for the three test models. Each dot corresponds to a 
non-zero element of the Jacobian. Additionally, it can be seen that the filling ratio diminishes with the 
increase of model complexity. Therefore, a first numerical conclusion is that matrix computations can 
and should systematically be performed with sparse matrix tools.  

The results in Table 1 suggest that generating the symbolic Jacobian matrix of the largest model can 
therefore take up to 8 minutes. However, this generation is invested before the evaluation of the first 
Jacobian. Once done, the calculation of the symbolic Jacobian proved to be between 11.7 and 27.5 
times faster than the finite difference alternative, while providing round-off free derivatives. The 
investment in the generation of the symbolic Jacobian therefore quickly becomes beneficial. 

Figure 1 Sparse structure of the three models. The dots represent non-zero (nz) elements and the filling 
ratio (fr) is the ratio of non-zero elements divided by the total number of elements. 

0 10 20 30

0

5

10

15

20

25

30

nz = 334

ASM2d ASU

0 20 40 60 80 100

0

20

40

60

80

100

nz = 1227

Benchmark

0 100 200 300 400 500

0

100

200

300

400

500

nz = 9638

Full Plant model

fr	  =	  0.37	  	   fr	  =	  0.11	   fr	  =	  0.03	   



9th	  IWA	  Symposium	  on	  Systems	  Analysis	  and	  Integrated	  Assessment	  

14-‐17	  June	  2015,	  Gold	  Coast,	  Australia	  

	  

Table 1 Comparison of complexity, compilation times and numerical performances of the FD Jacobian 
versus the SD Jacobian on the test models and computation time for the three test models under different 
Jacobian computation schemes with the DIRK stiff solver. 

Generation of the Jacobian 
Model ASM2d_ASU Benchmark Full plant 

No. of state variables 30 108 554 
No. of equations in the model (differential + intermediate algebraic eq.) 418 946 5 694 

Time to generate Jacobian (s) 6 18 475 
No. of equations in the Jacobian 1 719 5 178 50 193 

Compilation time with (without) optimization (s) 10 (<1) 80 (1) – 1 (30) 
Time to compute 1 000 000 optimized (non-optimized) Jacobian matrices (s) 62.7 (76.3) 112 (151) – 1 (1 550) 

Time to compute 1 000 000 Jacobian matrices, finite-differences (s) 732 2616 42 735 
Speedup  11.7 23.3 27.5 

Simulation results 
Time simulated 60 days, inputs every 15 minutes 

Number of Jacobian evaluations 348 690 240 114 53 580 
Simulation time, FD, dense matrix operations (s) 222 984 27 240 
Simulation time, FD, sparse matrix operations (s) 234 732 3 120 
Simulation time, SD, sparse matrix operations (s) 144 210 6801 

Speedup observed between FD with sparse matrix operations and SD 1.63 3.48 4.59 

Simulated number of days to reach cross-over 10.7 11.3 12.4 
1The compilation of the generated C-code was not possible under Visual Studio 2008 with speed optimization on because the 
compiler ran out of memory. Only the non-optimized result is provided.  

In the scope of dynamic simulations, matrix manipulations go beyond the computation of the Jacobian 
and often involve matrix decomposition (e.g. LU or QR decomposition) along with other 
computations to solve the ODE system of equations. Therefore, the overhead represented by the 
computation of the Jacobian must also be included in the analysis of the stiff solver's performance.  

Table 1 also provides the simulation times of the three test models under different numerical 
hypotheses and highlights the importance of sparse matrix tools when large matrices are involved. In 
our tests, the use of sparse matrix tools with the FD Jacobian could already reduce computation times 
by a factor as high as 9 in the Full plant model. However, the additional use of the symbolic Jacobian 
was able to further reduce the computation times by a factor of 1.63 to 4.59, with the greatest 
improvements on the largest and more complex model. Based on these results, we estimated that a 
simulation horizon of 10.7 to 12.4 days with these models was sufficient to recover the time invested 
in the generation and compilation of the Jacobian.  

Discussion 

The simulation of stiff models can be appreciably fastened by providing a symbolic Jacobian matrix. 
Our work shows impressive results on the DIRK solver, which heavily depends on an accurate 
Jacobian estimation. Other implicit solvers may require less evaluations of the Jacobian, but can 
nevertheless benefit from faster and more precise calculations of the Jacobian than the finite difference 
approximation.  
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