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Abstract

Because of the complexity of the combined system of sewers,

wastewater treatment plants, and receiving waters it is neces-

sary to include uncertainty analysis into the process of model-

ing this combined system. In this paper a start is made on the

research of the uncertainty analysis in waste water treatment

plants. Attention will focus on a crucial process in the acti-

vated sludge system. Assuming all parameters and uncertain-

ties are known, the propagation of the model uncertainty into

the model output is approximated. Results will be presented

of an uncertainty analysis for a Monod growth model. Three

methods approximating the propagation of model uncertainty

are evaluated, namely Monte Carlo simulation, Monte Carlo

simulation with stochastic parameters, and a method which

uses the theory of stochastic di�erential equations.

1 Introduction

The past years the combined modeling of sewers, waste
water treatment plants and receiving waters has become
more and more a topic of discussion. Since this combined
system is very complex, it will be impossible to model
reality perfectly.

When predictions of such a complex model are to be
matched with some observed behavior it is most likely
that the model (for any parameter combination) will not
give a perfect match. This will give rise to uncertainty in
the predictions obtained from the model, called predic-
tion uncertainty. Since prediction uncertainty is a mea-
sure indicating whether a model is capable of matching
observed behavior, the analysis of this uncertainty must
be incorporated in the process of modeling such a com-
plex system as the combined environmental system of

sewers, waste water treatment plants, and receiving wa-
ters.

In the past a lot of research has been done with regards
to the uncertainty analysis of the sewer systems and re-
ceiving waters (e.g., [Bec87]). However, there has been
done very little research involving the waste water treat-
ment plants. This might be considered a bit odd since
uncertainty is most important in modeling waste water
treatment plants. The input into the plants is always un-
certain (the amount of input but also its characteristics),
but also uncertainty occurs in parameters or even in the
model structure itself. Introducing uncertainty in control
strategies regarding waste water treatment plants might
also result in more robust control strategies for the waste
water treatment plants. In recent years, the focus of re-
search regarding waste water treatment plants has been
on the identi�cation of parameters in models describ-
ing the activated sludge system [Van94, VKC96, VK96].
Using batch experiments a lot of measurements of the
activated sludge process have been obtained. So in con-
trast with water quality modeling, there are a lot of mea-
surements of the activated sludge process which are very
useful in the research of uncertainties involved in the pro-
cess.

In this paper some methodologies are being examined
with respect to the Monod growth model used in mod-
eling the activated sludge process1. The �rst one is a
very often applied method, i.e., Monte Carlo simulation.
Two other not as well known methods are being exam-
ined. The two methods take into consideration that the
parameters may vary in time. The �rst of these two
is a modi�ed Monte Carlo simulation where stochastic
(time-varying) parameters are implemented and, second,
a method will be evaluated which uses the theory of
stochastic di�erential equations. In the next section a
general introduction into uncertainty analysis is given.

1Note that all parameter values as well as uncertainties used

in this paper are purely theoretical. Since here only the main

characteristics of the models and their output is important this

will not be a problem.
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The three methods reviewed are explained in section 3
and results are given in section 4. In the last section
conclusions are given.

2 Uncertainty Analysis

One of the goals of modeling is to predict. With this
prediction and the precise knowledge of the system as
translated in a mathematical model it is possible to con-
trol the modeled system. To predict it is necessary to
have a perfect view of the true environmental process or
system. However, the environmental system is very com-
plex and in�nitely large. Therefore, it is impossible to
know all environmental processes and, hence, there will
always be some uncertainty in the predictions we obtain
from mathematical models. Therefore it is just as im-
portant not to give solely the predictions but also their
uncertainty.
In theory, the uncertainty of a prediction obtained

from a model, the prediction uncertainty, only depends
on themodel uncertainty. By model uncertainty is meant
the uncertainty caused by everything which is not mod-
eled, or in other words, the uncertainty caused by all
processes which are not included in the model. It is pos-
sible that the model uncertainty changes with time. Let
us consider, for example, in a model of the water quality
of a river that only rainfall is not included. The model
will show a low model uncertainty during a dry period.
However if it suddenly starts to rain, a process occurs
which is not included in the model and this will cause an
increase in the model uncertainty.
So the real uncertainty of predictions obtained using a

model depends on the model uncertainty of that model.
Therefore it is important to quantify this model uncer-
tainty. However, there is still very little known about
this model uncertainty. In the following we will brie
y
discuss some uncertainties which will in
uence the model
uncertainty and the determination of the prediction un-
certainty. These uncertainties are:

1. Parameter uncertainty.

2. Measurement uncertainty.

3. Mathematical uncertainty.

An environmental process always depends on other pro-
cesses. To de�ne the dependency of the modeled pro-
cess on other processes constant values are used. The
constant values are called parameters2. In modeling an
environmental process we will always look for a 'best' pa-
rameter set for a given model. Once this parameter set

2Since the initial conditions are also part of the model and

are considered to be constant, they can also be considered as

parameters.

is found it will always corresponds with that particular
model3. The 'best' parameter set may, for example, be
given by the parameter set which physically makes the
most sense or the parameter set with the lowest parame-
ter uncertainty. Let us assume that the 'best' parameter
set is given by the set of parameters with the lowest pa-
rameter uncertainty.

Suppose we have the perfect model, which means that
the model uncertainty is zero. This also will imply that
the parameter uncertainty is zero. Or, to put it in other
words, it is possible to �nd the true parameter set since
there will not be any uncertainty caused by other pro-
cesses. So a model uncertainty of zero implies a parame-
ter uncertainty of zero. This will again imply that if the
parameter uncertainty is not zero the model uncertainty
will also not be zero. In fact, if the parameter uncertainty
increases, which means that it is more probable that the
parameters which will predict the process perfectly using
a particular model will not be found, the model uncer-
tainty will also increase. Therefore it is possible to use
the parameter uncertainty as an indicator for the model
uncertainty.

To obtain the constant values of the parameters often
parameter estimation methods are used. These meth-
ods make use of certain measurements of the modeled
process to estimate the parameters in the model. How-
ever, it is never sure that all measurements of a certain
process are perfect. In other words, there will always
be some measurement uncertainty. The measurement
uncertainty will in
uence the estimation of the parame-
ters and their uncertainty. Measurements are also used
to determine the prediction uncertainty, by comparing
these with the simulation results of the model. Using this
comparison the prediction uncertainty is determined and,
therefore, the measurements will also in
uence the deter-
mination of the prediction uncertainty. Another prob-
lem involving measurements is that there will never be
enough measurements to fully quantify the model un-
certainty. This means that there will always be some
uncertainty whether the measurements taken are enough
to describe the whole process.

Another problem in estimating the parameters of a
model are the mathematical limitations of the parame-
ter estimation methods used. A lot of environmental pro-
cesses are modeled using a nonlinear, continuous model.
At this moment it is still impossible to estimate the pa-
rameters of a nonlinear model perfectly well. For the es-
timation of parameters computers are used. These com-
puters work in discrete time. The measurements are also
taken at discrete moments. Since the modeled process
is continuous the model has to be discretized. This will
also cause some uncertainty. Another uncertainty which
may occur is caused by the �nite precision of a com-

3If all parameters are identi�able.
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puter. All the uncertainties involving our mathematical
knowledge and the practical use of these mathematical
knowledge are called mathematical uncertainty. Since a
model has to be simulated to obtain predictions, the pa-
rameter uncertainty and the determination of the predic-
tion uncertainty are also in
uenced by the mathematical
uncertainty.

To summarize, the determined uncertainty of the pre-
dictions obtained from a certain model depends on the
uncertainties caused by all processes which are not mod-
eled, the model uncertainty, the uncertainties caused by
the mathematical methods used to obtain these predic-
tions from a certain model, the mathematical uncertain-
ties, and the uncertainties involving the measurements
of the process, the measurement uncertainty. The model
uncertainty is very di�cult to quantify but the parame-
ter uncertainty of the parameter set with the lowest pa-
rameter uncertainty given a certain model can be used
as an indicator for the model uncertainty. However, the
parameter uncertainty found depends on the methods
and the measurements used for estimating these param-
eters and their uncertainties. Each method has its own
mathematical uncertainty and therefore the determined
parameter uncertainty depends on the mathematical un-
certainty. As mentioned before, the determination of the
prediction uncertainty is also in
uenced by the mathe-
matical uncertainty since a model has to be simulated for
determining the prediction uncertainty. What remains
is the measurement uncertainty. This uncertainty in
u-
ences the parameter uncertainty since the parameters are
estimated using measurements of a certain process. Since
the determination of the prediction uncertainties always
is done by using measurements of a given process, the
measurement uncertainty also in
uences the determina-
tion of the prediction uncertainty. All these interactions
are given in �gure 1.

In the foregoing discussion it is said that the parame-
ter uncertainty is an indicator for the model uncertainty
and therefore for the determined prediction uncertainty.
However, since it is said that model uncertainty is caused
by everything which is not modeled yet, the parameter
uncertainty is only one of the many sources which may
cause model uncertainty. Theoretically it is very di�cult
to classify the other sources of uncertainty. However,
practically it is possible to describe all these sources (ex-
cept for the parameter uncertainty) by adding one noise
term to the ordinary di�erential equation describing the
system. Two ways to include model uncertainty in a
model are:

� Account only for parameter uncertainty. This means
that in a certain model the parameter p will become
p(t) = �p + N(t) where �p is the parameter without

Uncertainty
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Figure 1: A view on modeling prediction uncertainty

noise and N(t) is the noise term.

� Lump all model uncertainty in one noise term.
The model dx

dt
= f(x; p; t) will then become dx

dt
=

f(x; p; t)+N(t) where p is a parameter (set)andN(t)
is a noise term.

These two methods may be combined if there are more
sources of model uncertainty than only the parameter
uncertainty. The second method is physically not very
plausible but must also be considered because of its tech-
nical simplicity.
Furthermore, one might have noticed that input un-

certainty is not mentioned. Mostly the input of a model
consists of measured data. Therefore the uncertainties
involved in these inputs are scaled under measurement
uncertainties.

In the following sections the propagation of the model
uncertainty into the determined prediction uncertainty
is examined. This is done by assuming that all parame-
ters and model uncertainty (including parameter uncer-
tainty) are known. Since nothing has to be estimated, no
measurement uncertainty has to be included. Mathemat-
ical uncertainty has to be mentioned since the propaga-
tion of model uncertainty into the determined prediction
uncertainty is only an approximation. However, it will
not be determined or taken into account.

3 Three Methodologies

In this section three methodologies for approximating the
prediction uncertainty, given some model uncertainty,
are being reviewed. All these methods approximate the
mean and variance of a model given the variance of a
parameter (set) or noise term. The mean is the expected
output of the model and the variance is a measure for the
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uncertainty. The �rst method examined is well known
and frequently used, the others are not as well known.
These two methods try to solve a big disadvantage of
the �rst method. All three methods are also mentioned
in [Kre83]. Note that these methods are, of course, not
the only ones which may be used to approximate the pre-
diction uncertainty. Some other methods are mentioned
in [Kre83].

3.1 Monte Carlo Simulation

Monte Carlo Simulation is a well known and frequently
used method to approximate some stochastic properties
of a modeled system. A deterministic model is run re-
peatedly with every run a di�erent set of parameter val-
ues. These parameter values are determined at the begin-
ning of every run from speci�c probability distributions.
Note that the parameter values do not change during one
run. Monte Carlo simulation is frequently used since it is
conceptually very simple and easy to use given some pre-
viously developed random number generators. It is, for
example, often used in sensitivity analysis, i.e., whether
a model is sensitive to a change in the parameter values.

Another application is the approximation of the pre-
diction uncertainty of the model given know probability
distributions for the parameters. The mean and variance
(uncertainty) of the model are approximated using

EX(t) =
1

n

nX

i=1

Xi(t) (1)

var(X(t)) =
1

n� 1

nX

i=1

(Xi(t)�EX(t))2 (2)

where n is the number of total simulations (this number
has to be su�ciently large) and i is the i-th simulation
run.

To summarize, some advantages of Monte Carlo simu-
lation are

� The simplicity of Monte Carlo simulation, both con-
ceptually and technically.

� The freedom of choosing any probability distribution
for the parameters.

One disadvantage of Monte Carlo simulation, apart from
the relatively long simulation time needed, is that one
has to assume that the parameter values have to remain
constant during one run. This assumption, especially
during long-term experiments, may not always be valid.
The methods described in the next subsections try to
solve this problem.

3.2 Monte Carlo Simulation with

Stochastic Parameters

Despite the many advantages of Monte Carlo simulation
with stochastic parameters this method has rarely been
used. It is in concept the same as the previously men-
tioned Monte Carlo simulation. However, in this method
the parameter values will, in contrast with Monte Carlo
simulation, vary in time. The parameters will be deter-
mined at each time instant from given probability distri-
butions. This method has the same advantages as the
Monte Carlo simulation. Moreover, the disadvantage of
Monte Carlo simulation, namely the assumption of the
parameters being constant during one run, has been can-
celed. A disadvantage of this method is that it is relative
slow.

Until now, only parameter uncertainty is mentioned.
However, this method is not only capable of simulating a
model with stochastic parameters but also of simulating
a deterministic model with a noise term added to it.

3.3 Stochastic Di�erential Equations

The basis of the third method is the theory of
the so called (Itô) Stochastic Di�erential Equations
(SDE)(e.g. [Bag93]). Starting from some ordinary dif-
ferential equation (ODE) a random di�erential equa-
tion may be obtained by assuming the parameters are
stochastic processes or by adding a noise term to the
ODE. If the stochastic parameters or the noise term has
a Gaussian distribution it is possible to obtain an (Itô)
SDE. For linear equations it is possible to determine the
mean and variance of the model exactly using the Fokker-
Planck equation. However, for non-linear equations the
mean and variance have to be approximated. This may ,
relatively easy, also be done by using the Fokker-Planck
equation to determine ODE's which approximate the
mean and variance. These approximations will only hold
if the model is not too complex. Since ODE's are used to
approximate the mean and variance, this method is rel-
atively fast. Other ways to approximate the mean and
variance of SDE's are the stochastic numerical integra-
tion methods given in [KP92]. These methods will stay
valid for complex systems but will take, relatively, much
more simulation time.

A disadvantage of using SDE's for approximating pre-
diction uncertainty is the assumption of Gaussian dis-
tribution for the parameters or noise terms. This as-
sumption (especially in environmental systems) may not
always be valid.
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Figure 2: Approximated means(high) and variances(low)
(MC, MC with stoch. param., SDE approach; noise on
whole ODE)

4 Results

The Monod growth model is given by

dxt

dt
=

�mst

ks + st
xt (3)

dst

dt
= �

1

Y

dxt

dt
(4)

in which x and s are respectively the biomass and sub-
strate concentration, �m is the maximum growth rate, ks
is the half-saturation constant, and Y is the yield. Using
st =

1

Y
(xm � xt) where xm = xt0 + Y st0 , ~t = �mt, and

~xt =
100xt

xm
results in

d~xt

d~t
=

100� ~xt
K + 100� ~xt

~xt (5)

This last equation is used to evaluate Monte Carlo simu-
lation, Monte Carlo simulation with stochastic parame-
ters, and a method using SDE's (SDE approach) for the
approximation of prediction uncertainty in the Monod
model. In this paper both Monte Carlo simulation meth-
ods are being evaluated using Gaussian distributions for
the parameters and other noise terms. In [Ste83] was
shown that if only parameter uncertainty was accounted
for in the SDE approach (p becomes p(t) = �p + N(t)),
it showed worse results than if a noise term was added
to the whole equation 5. Since the second possibility is
also much more simple we only use this one to evaluate
the SDE approach. The number of runs for both Monte
Carlo simulations was 100 (there was no signi�cant dif-
ference if more runs were used).

In �gure 2 the approximated means and variances of all
methods are shown. The parameter values and initial
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Figure 3: Approximated mean(high) and variance(low)
(MC with stoch. param.; noise on whole ODE)
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Figure 4: Approximated mean(high) and variance(low)
(MC with stoch. param.; noise on �)

conditions are: K = 1, x(0) = 1, var(N(t)) = 0:1, and
var(x(0)) = 0:01. All approximated means are (approx-
imately) the same. However, the variances are di�erent.
The SDE approach gives a higher variance than both
the Monte Carlo simulations. It can be shown that the
approximation of the mean and variance of the SDE ob-
tained using equation 5 was mathematically quite cor-
rect. Therefore the comparison between the SDE ap-
proach and the Monte Carlo simulation with stochastic
parameters (these are comparable since both use time
varying parameters) becomes more a question of which
result is more realistic: a variance which reaches a max-
imum of almost 40 percent or approximately 1 percent.

Figure 3 gives the approximated mean and variance
for the Monte Carlo Method with stochastic parameters,
but this time with x(0) = 0:1 and var(x(0)) = 0:001
(So in both cases the variance of x(0) is one percent of
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its actual value). In this case the determined ODE's to
approximate the mean and variance proved to be un-
stable. It can be proven that the initial values and pa-
rameters have to be in a certain region for the ODE's
to be stable. Therefore the SDE approach might not
be very good whenever the true initial conditions and
parameters are lying outside this interval. The normal
Monte Carlo simulation also proved to be unstable but
this might be caused by the integration algorithm itself
(step size too large). A graph of Monte Carlo simulation
with a stochastic � (var(�) = 0:1) is given in �gure 4. In
this case the normal Monte Carlo simulation also proved
to be unstable.
One may also conclude from these three �gures that all

methods show a maximum of the prediction uncertainty
when the expected output almost reaches its maximum
(at the 'second turn' in the S-curve). This was intu-
itively known by biologists but now it is 'mathematically'
shown.

5 Conclusions

In this paper some methods for approximation the pre-
diction uncertainty given a known model uncertainty,
with respect to the Monod model, were being examined.
All three methods showed a maximum of the prediction
uncertainty when the expected output almost reached its
maximum (at the 'second turn' in the S-curve). This was
intuitively known by biologists but by using one of the
methods examined in this paper it can be shown 'math-
ematically'. The example of Monod model is not a very
di�cult example which made it possible to test the re-
sults with the intuition of the biologists. However, if
a model becomes more and more complex, it might be-
come necessary to use one of these methods to determine
the period(s) of high uncertainty in a model. The �rst
method examined was Monte Carlo simulation. A disad-
vantage of this method is the assumption that parameters
have to stay constant during one run. This problem was
solved using the other two methods. The �rst one was
Monte Carlo simulation with stochastic parameters and
the second one a method which used stochastic di�eren-
tial equations (SDE approach). Both methods were able
to incorporate time varying parameters. When examin-
ing the SDE approach it showed that all initial values and
uncertainty values has to lie within a certain region for
the approximations to be stable. This might become a
problem if realistic values lie outside of this region4. An-
other disadvantage was the assumption of a Gaussian dis-
tribution for stochastic parameters or noise terms. The
Monte Carlo simulation with stochastic parameters does

4This might be solved by using stochastic numerical integra-

tion methods instead of an approximation using the Fokker-Planck

equation

not assume Gaussian distribution and might therefore be
used where other probability distributions are involved.
Another advantage is that this method will always be
stable whenever the deterministic model is stable. When
comparing the results of both method with the same ini-
tial values and parameters, the SDE approach showed a
much higher maximum of the variance than the Monte
Carlo simulation with stochastic parameters did. As
mentioned previous, in this case the comparison between
the SDE approach and the Monte Carlo simulation with
stochastic parameters becomes more a question of which
result is more realistic: a variance which reaches a max-
imum of almost 40 percent or approximately 1 percent.
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