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Context —
Modelling Water Resource Recovery Facilities

* WRRF are traditionally modelled as a set of Ordinary
Differential Equations (ODE) expressing mass-balance and

reactions processes.
State variable

M Reaction term
§= Mip — Moye @

Input - outputs

Mass variation

 Inputs and outputs allow to describe the hydraulics through
tank-in-series models.

» Reactions refer to physical (i.e. sedimentation), chemical (i.e.
precipitation) or biological (i.e. biomass growth) processes.
* In WRRF models: Activated Sludge Model (ASM).
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Context —
Modelling Water Resource Recovery Facilities

* A simple WRRF model:
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Context — Solving WRRF models

 Ordinary Differential Equations (ODE) describing WRRF model:
« Large diversity of the dynamics of the state variables
« Oxygen is consumed in minutes
» Biomass takes weeks to grow
» The model is stiff and highly non-linear
« Control strategies can involve discrete events (discontinuities).
» ODE solvers range from very simple to very complex:
« Explicit Euler method
* Runge-Kutta 4
» Implicit Euler
» Matlab ODE suite (ode45, ode23, odel5s, etc...)
+ Adams-Moulton / Adams-Bashford (CVODE)
» Diagonally Implicit Runge-Kutta method (DIRK)
 Etc...
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Context — Euler solver

» The simplest ODE solver is the Euler method:
For i—t’ = f(M) and M(ty,) = M, :
M1=M()+f(M0)XAt
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« If f(M) is stiff and At is large, instability ruins the solution,
unless we solve:
M, = My + f(M;) x At
0=M,—M; +f(M;) x At
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Context — Euler solver

» The simplest ODE solver is the Euler method:
For ‘Z—IZI = f(M) and M(ty,) = M, :
M1=M0+f(M0)XAt
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« If f(M) is stiff and At is large, instability ruins the solution,
unless we solve:
M, = My + f(M;) x At
0=M0_M1+f(M1)XAt
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Context — Solving WRRF models
« Since it is not possible to solve directly

0=M,— M, + f(M,) X At

The Jacobian matrix

Oh . Oh
amy amy,
JM) =| : :
Ofn . O
amy aom,

provides a linear approximation of the function

fMy) = f(Mo) +] (M) X (My — Mo)
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The Jacobian

* How to estimate the Jacobian?

« Finite differences: f'(M) = W

Requires n + 1 model evaluations. Subject to round-off error.

« Automatic Differentiation (AD): Numerical evaluation of the
Jacobian through specialized libraries.
Requires in-depth dependency of the model to additional code.

» Matrix-free techniques (i.e. Krylov subspace): Efficient on very
large models, but less stable and biased solution.

« Symbolic derivation: Exact derivative expression computed before
the execution of the model.
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Symbolic derivation of large set of equations

« WEST, the WRRF model simulator, generates various
representations of a model:
» Object-oriented Modelica

« Flat Modelica
» Abstract Syntax Tree (AST)

Py

x Multiplication

I 3] Addition

* Plain and compiled C-code
x=3xy+(sinm —2)

» The AST structure of an equation is
easily derived with a simple recursive
derivation function applied on all nodes.

 Chain derivation then allows generating
an arbitrarily complex Jacobian
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Symbolic derivation of large set of equations

* Non-analytical constructs must be derived as well.

» I[F-Test, Min, Max, Abs, etc.
Example of IF-Test:

4 COND) then A else B) = if (COND) th da l 4B
a(tf( ) then A else B) = if ( ) ena esea
« Algorithmic constructs or external computations are managed

through Finite Differences (**work in progress**).

* Ex: PHREEQC = m chemical species and n chemical compounds.
Solution computed through complex mathematical algorithms.
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Test case no. 1 for symbolic derivation

+ ASM2d_ASU: simplest layout of one activated sludge unit and
one settler

» 30 state variables
« Jacobian = 30 x 30 matrix = 900 partial derivatives
* 418 equations
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Test case no. 2 for symbolic derivation

* Benchmark Simulation Model No. 1 (BSM1)

» Simple WRRF plant layout of 5 ASU and one settler used in
many articles to test control strategies

» 108 state variables

» Jacobian = 11664 partial derivatives
* 946 intermediate equations
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+ 4

Comb2 *Nillale_luou

Sludge_waste

—'S ludge_loop

I © Garneau and Vanrolleghem, 2016 13

Test case No. 3 for symbolic derivation

* Full scale WRRF model
+17 ASU and 2 settlers
+ 554 state variables
» Jacobian = 306 916 partial derivatives
* 5694 intermediate equations
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Results
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0 0 0
o
5 § b e "
§ i HIINNITINDT
3333
10;@ © eee o0
40 200
$odesd E B i
15
j ot ui I 0
. mri [y i
20
0000000
; 20e ... 80 400
988088 So¢
25 33383338
30 : 100 o NN
0 10 20 30 0 20 40 60 80 100 0 100 200 300 400 500
nz = 334 nz = 1227 nz = 9638
FR=0.37 FR=0.11 FR=0.03

» Jacobians are sparse matrices -> Use sparse matrix tools!

» The Filling Ratio (FR, ratio of non-zero elements versus total
number of elements) decreases as model complexity increases.

» The structure of the WRRF model is apparent (ASU, settlers, etc.)
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Results

* Investment versus Reward: Comparison of Jacobian
calculation: Symbolic derivation (SD) vs Finite difference (FD)

ASM2d_ASU Benchmark Full plant
30 state var 108 state var 554 state var

Time to generate and 16 s 98 s 505 s*
compile the Symbolic
Jacobian

Speedup of Jacobian 12 23 28
calculation

Speedup of simulation 1.5 4.7 40**
time

(Diagonally Implicit Runge-

Kutta method)

* Compilation was done without optimisation (insufficient memory)

** 80% of the speedup was attributable to sparse matrix operations.
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Discussion

» Developing a symbolic Jacobian provided a deep insight in the
matrix structure
» Sparse matrix tools were overlooked and provide an easy way to
speedup simulations without affecting accuracy.
* The structure of the WRRF model can be recovered from the
Jacobian structure -> Automatic model analysis possible
« Improved numerical performance was demonstrated

* Investing in a symbolic Jacobian pays back in 1 to 10 simulations

* New virtual experiments may need 100s to 1000s of simulations (e.g.
sensitivity analysis, Monte Carlo experiment, etc.)!

» Round-off free Jacobian: New solution options for challenging ODE
(i.e. chemical speciation models)
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Conclusion

« Symbolic manipulations allow faster, more stable and more
precise computations than traditional finite differences.

» Large symbolic Jacobian computation is not trivial, but
possible thanks to the available computer power.

» Non-differentiable functions and algorithms can still be
evaluated numerically (finite differences), but their integration
to a generic framework is challenging.

* Symbolic Jacobian offered optimal use of sparse matrix tools.

« A reliable and inexpensive Jacobian provides a useful
approximation of a complex model.
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