
1

Symbolic Jacobian of ODE:
An overlooked tool to improve
simulation speed and accuracy

Cyril Garneau and Peter A. Vanrolleghem

Stats and Control Meeting
Québec 2017

© Garneau and Vanrolleghem, 2016

Outline

• Context

• The Jacobian

• The Symbolic Jacobian

• Test cases

• Results

• Discussion

• Conclusion

2

2

© Garneau and Vanrolleghem, 2016

Context –
Modelling Water Resource Recovery Facilities

• WRRF are traditionally modelled as a set of Ordinary
Differential Equations (ODE) expressing mass-balance and
reactions processes.

ܯ݀
ݐ݀

ൌ ௜௡ܯ െ ௢௨௧ܯ ൅ ܴ

• Inputs and outputs allow to describe the hydraulics through
tank-in-series models.

• Reactions refer to physical (i.e. sedimentation), chemical (i.e.
precipitation) or biological (i.e. biomass growth) processes.
• In WRRF models: Activated Sludge Model (ASM).

3

Mass variation Input - outputs

Reaction term

State variable

© Garneau and Vanrolleghem, 2016

Context –
Modelling Water Resource Recovery Facilities

• A simple WRRF model:

4

State variables
(ASM0):
- Water
- Biomass
- Substrate
- Oxygen

State variables
(settler):
- Total suspended solids

in each vertical layer

3

© Garneau and Vanrolleghem, 2016

Context – Solving WRRF models

• Ordinary Differential Equations (ODE) describing WRRF model:
• Large diversity of the dynamics of the state variables

• Oxygen is consumed in minutes
• Biomass takes weeks to grow

• The model is stiff and highly non-linear
• Control strategies can involve discrete events (discontinuities).

• ODE solvers range from very simple to very complex:
• Explicit Euler method
• Runge-Kutta 4
• Implicit Euler
• Matlab ODE suite (ode45, ode23, ode15s, etc…)
• Adams-Moulton / Adams-Bashford (CVODE)
• Diagonally Implicit Runge-Kutta method (DIRK)
• Etc…

5

© Garneau and Vanrolleghem, 2016

Context – Euler solver

• The simplest ODE solver is the Euler method:
For ௗெ

ௗ௧
ൌ ݂ ܯ and ܯ ଴ݐ ൌ :	଴ܯ

ଵܯ ൌ ଴ܯ ൅ ݂ ଴ܯ ൈ Δݐ

• If ݂ ܯ is stiff and Δݐ is large, instability ruins the solution,
unless we solve:

ଵܯ ൌ ଴ܯ ൅ ݂ ଵܯ ൈ Δݐ
0 ൌ ଴ܯ െܯଵ ൅ ݂ ଵܯ ൈ Δݐ

6

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t

Y(
t)

0 1 2 3 4
-2

-1

0

1

2

t

Y
(t

)

ܯ
ሺݐ
ሻ

ܯ
ሺݐ
ሻ

Small Δݐ	
Large Δݐ	

4

© Garneau and Vanrolleghem, 2016

Context – Euler solver

• The simplest ODE solver is the Euler method:
For ௗெ

ௗ௧
ൌ ݂ ܯ and ܯ ଴ݐ ൌ :	଴ܯ

ଵܯ ൌ ଴ܯ ൅ ݂ ଴ܯ ൈ Δݐ

• If ݂ ܯ is stiff and Δݐ is large, instability ruins the solution,
unless we solve:

ଵܯ ൌ ଴ܯ ൅ ݂ ଵܯ ൈ Δݐ
0 ൌ ଴ܯ െܯଵ ൅ ݂ ଵܯ ൈ Δݐ

7

0 1 2 3 4
0

0.5

1

t

Y(
t)

Solution exacte

Solution numérique

ܯ
ሺݐ
ሻ

Exact solution
Numerical solution

© Garneau and Vanrolleghem, 2016

Context – Solving WRRF models

• Since it is not possible to solve directly

0 ൌ ଴ܯ െܯଵ ൅ ݂ ଵܯ ൈ Δݐ

The Jacobian matrix

ܬ ܯ ൌ

߲ ଵ݂

߲݉ଵ
⋯

߲ ଵ݂

߲݉௡
⋮ ⋱ ⋮
߲ ௡݂

߲݉ଵ
⋯

߲ ௡݂

߲݉௡

provides a linear approximation of the function

݂ ଵܯ ≅ ݂ ଴ܯ ൅ ܬ ଴ܯ ൈ ሺܯଵ െܯ଴ሻ
8

5

© Garneau and Vanrolleghem, 2016

The Jacobian

• How to estimate the Jacobian?

• Finite differences: ݂ᇱ ܯ ≅
௙ ெା୼ெ ି௙ ெ

୼ெ
Requires ݊ ൅ 1 model evaluations. Subject to round-off error.

• Automatic Differentiation (AD): Numerical evaluation of the
Jacobian through specialized libraries.
Requires in-depth dependency of the model to additional code.

• Matrix-free techniques (i.e. Krylov subspace): Efficient on very
large models, but less stable and biased solution.

• Symbolic derivation: Exact derivative expression computed before
the execution of the model.

9

© Garneau and Vanrolleghem, 2016

Symbolic derivation of large set of equations

• WEST, the WRRF model simulator, generates various
representations of a model:
• Object-oriented Modelica
• Flat Modelica
• Abstract Syntax Tree (AST)
• Plain and compiled C-code

• The AST structure of an equation is
easily derived with a simple recursive
derivation function applied on all nodes.

• Chain derivation then allows generating
an arbitrarily complex Jacobian

10

ݔ ൌ 3 ∗ ݕ ൅ 	ߨ	݊݅ݏ െ 2

6

© Garneau and Vanrolleghem, 2016

Symbolic derivation of large set of equations

• Non-analytical constructs must be derived as well.

• IF-Test, Min, Max, Abs, etc.
Example of IF-Test:

݀
ݑ݀

݂݅ ܦܱܰܥ ܤ	݁ݏ݈݁	ܣ	݄݊݁ݐ	 ൌ ݂݅ ܦܱܰܥ ݄݊݁ݐ	
ܣ݀
ݑ݀

݁ݏ݈݁		
ܤ݀
ݑ݀

• Algorithmic constructs or external computations are managed
through Finite Differences (**work in progress**).
• Ex: PHREEQC = ݉	chemical species and ݊ chemical compounds.
Solution computed through complex mathematical algorithms.

11

© Garneau and Vanrolleghem, 2016

Test case no. 1 for symbolic derivation

• ASM2d_ASU: simplest layout of one activated sludge unit and
one settler

• 30 state variables
• Jacobian = 30 x 30 matrix = 900 partial derivatives

• 418 equations

12

7

© Garneau and Vanrolleghem, 2016

Test case no. 2 for symbolic derivation

• Benchmark Simulation Model No. 1 (BSM1)
• Simple WRRF plant layout of 5 ASU and one settler used in
many articles to test control strategies

• 108 state variables
• Jacobian = 11664 partial derivatives

• 946 intermediate equations

13

© Garneau and Vanrolleghem, 2016

Test case No. 3 for symbolic derivation

• Full scale WRRF model
• 17 ASU and 2 settlers
• 554 state variables

• Jacobian = 306 916 partial derivatives
• 5694 intermediate equations

14

8

© Garneau and Vanrolleghem, 2016

Results

• Jacobians are sparse matrices -> Use sparse matrix tools!
• The Filling Ratio (FR, ratio of non-zero elements versus total
number of elements) decreases as model complexity increases.

• The structure of the WRRF model is apparent (ASU, settlers, etc.)

15

0 10 20 30

0

5

10

15

20

25

30

nz = 334

ASM2d ASU

0 20 40 60 80 100

0

20

40

60

80

100

nz = 1227

Benchmark

0 100 200 300 400 500

0

100

200

300

400

500

nz = 9638

Full Plant model

FR = 0.37 FR = 0.11 FR = 0.03

© Garneau and Vanrolleghem, 2016

Results

• Investment versus Reward: Comparison of Jacobian
calculation: Symbolic derivation (SD) vs Finite difference (FD)

* Compilation was done without optimisation (insufficient memory)
** 80% of the speedup was attributable to sparse matrix operations.

16

ASM2d_ASU
30 state var

Benchmark
108 state var

Full plant
554 state var

Time to generate and
compile the Symbolic
Jacobian

16 s 98 s 505 s*

Speedup of Jacobian
calculation

12 23 28

Speedup of simulation
time
(Diagonally Implicit Runge-
Kutta method)

1.5 4.7 40**

9

© Garneau and Vanrolleghem, 2016

Discussion

• Developing a symbolic Jacobian provided a deep insight in the
matrix structure
• Sparse matrix tools were overlooked and provide an easy way to
speedup simulations without affecting accuracy.

• The structure of the WRRF model can be recovered from the
Jacobian structure -> Automatic model analysis possible

• Improved numerical performance was demonstrated
• Investing in a symbolic Jacobian pays back in 1 to 10 simulations

• New virtual experiments may need 100s to 1000s of simulations (e.g.
sensitivity analysis, Monte Carlo experiment, etc.)!

• Round-off free Jacobian: New solution options for challenging ODE
(i.e. chemical speciation models)

17

© Garneau and Vanrolleghem, 2016

Conclusion

• Symbolic manipulations allow faster, more stable and more
precise computations than traditional finite differences.

• Large symbolic Jacobian computation is not trivial, but
possible thanks to the available computer power.

• Non-differentiable functions and algorithms can still be
evaluated numerically (finite differences), but their integration
to a generic framework is challenging.

• Symbolic Jacobian offered optimal use of sparse matrix tools.

• A reliable and inexpensive Jacobian provides a useful
approximation of a complex model.

18

