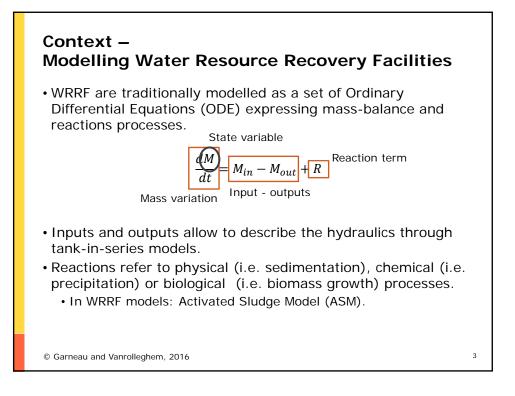
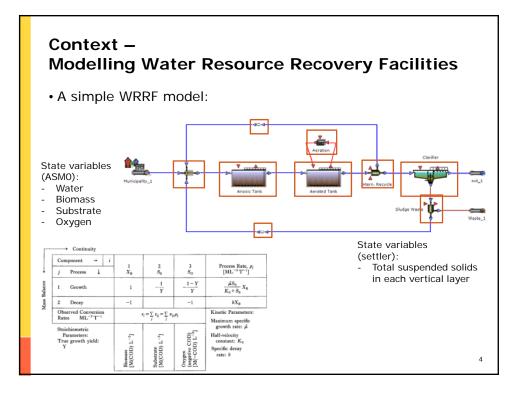
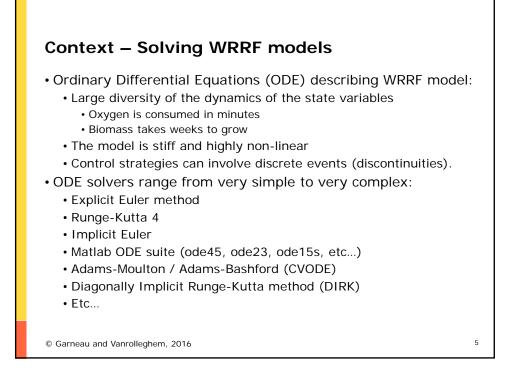
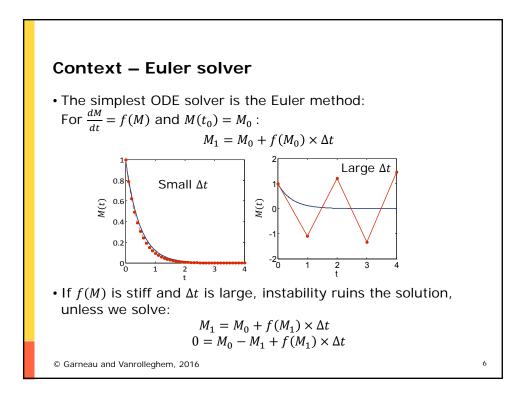


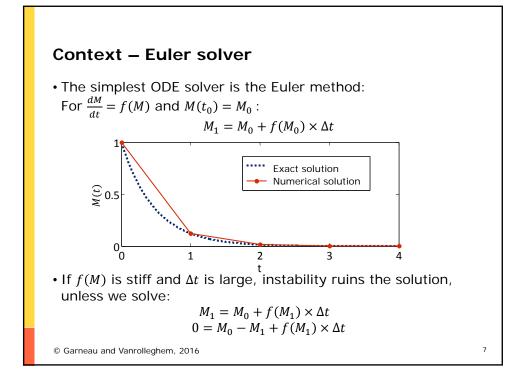
Outline	
• Context	
• The Jacobian	
The Symbolic Jacobian	
• Test cases	
• Results	
• Discussion	
• Conclusion	
© Garneau and Vanrolleghem, 2016	2











Context – Solving WRRF models

· Since it is not possible to solve directly

$$0 = M_0 - M_1 + f(M_1) \times \Delta t$$

The Jacobian matrix

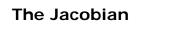
$$J(M) = \begin{bmatrix} \frac{\partial f_1}{\partial m_1} & \dots & \frac{\partial f_1}{\partial m_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial m_1} & \dots & \frac{\partial f_n}{\partial m_n} \end{bmatrix}$$

provides a linear approximation of the function

$$f(M_1) \cong f(M_0) + J(M_0) \times (M_1 - M_0)$$

© Garneau and Vanrolleghem, 2016

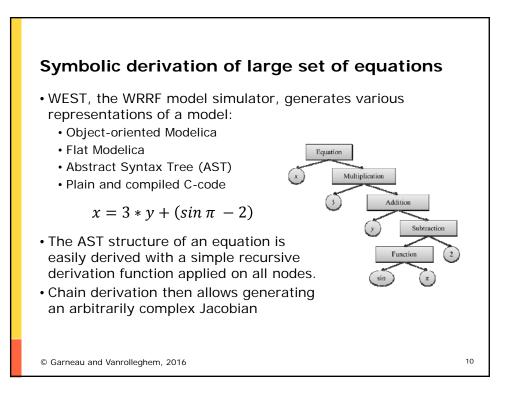
8

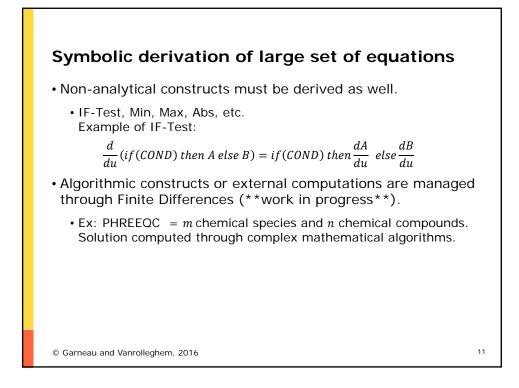


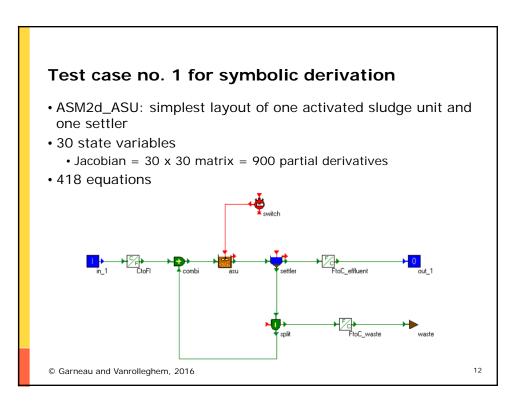
- How to estimate the Jacobian?
 - Finite differences: $f'(M) \cong \frac{f(M+\Delta M)-f(M)}{\Delta M}$ Requires n + 1 model evaluations. Subject to round-off error.
 - Automatic Differentiation (AD): Numerical evaluation of the Jacobian through specialized libraries. Requires in-depth dependency of the model to additional code.
 - Matrix-free techniques (i.e. Krylov subspace): Efficient on very large models, but less stable and biased solution.
 - Symbolic derivation: Exact derivative expression computed before the execution of the model.

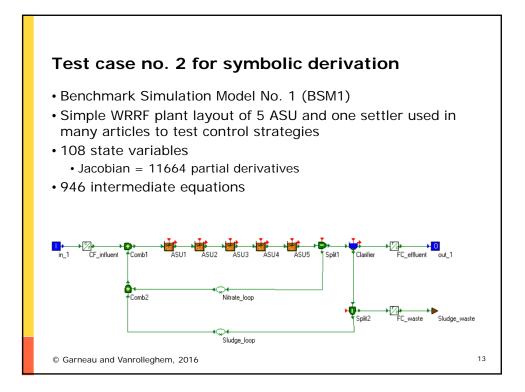
9

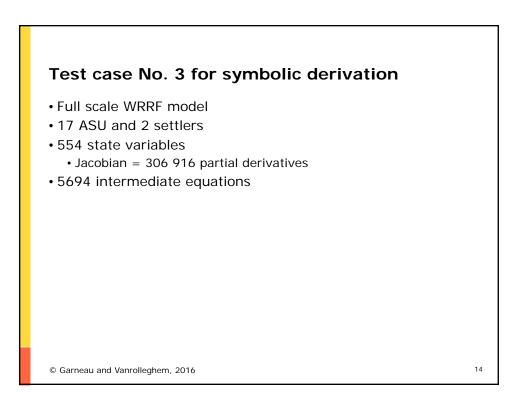
© Garneau and Vanrolleghem, 2016

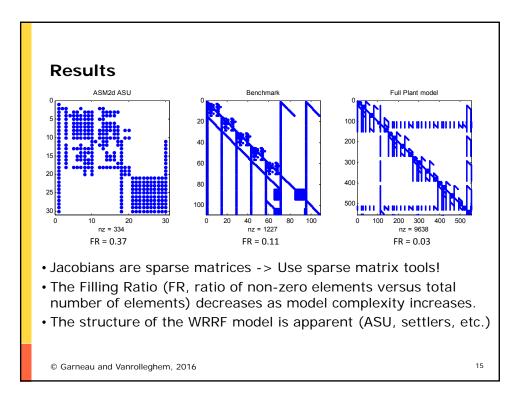












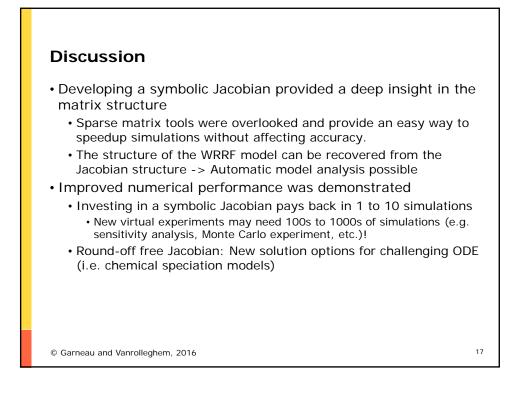
Result

• Investment versus Reward: Comparison of Jacobian calculation: Symbolic derivation (SD) vs Finite difference (FD)

	ASM2d_ASU 30 state var	Benchmark 108 state var	Full plant 554 state var	
Time to generate and compile the Symbolic Jacobian	16 s	98 s	505 s*	
Speedup of Jacobian calculation	12	23	28	
Speedup of simulation time (Diagonally Implicit Runge- Kutta method)	1.5	4.7	40**	
 * Compilation was done without optimisation (insufficient memory) ** 80% of the speedup was attributable to sparse matrix operations. 				

© Garneau and Vanrolleghem, 2016

16



- Symbolic manipulations allow faster, more stable and more precise computations than traditional finite differences.
- Large symbolic Jacobian computation is not trivial, but possible thanks to the available computer power.
- Non-differentiable functions and algorithms can still be evaluated numerically (finite differences), but their integration to a generic framework is challenging.
- Symbolic Jacobian offered optimal use of sparse matrix tools.
- A reliable and inexpensive Jacobian provides a useful approximation of a complex model.

© Garneau and Vanrolleghem, 2016

18