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Context –
Modelling Water Resource Recovery Facilities

• WRRF are traditionally modelled as a set of Ordinary 
Differential Equations (ODE) expressing mass-balance and 
reactions processes. 
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• Inputs and outputs allow to describe the hydraulics through 
tank-in-series models.

• Reactions refer to physical (i.e. sedimentation), chemical (i.e. 
precipitation) or biological  (i.e. biomass growth) processes. 
• In WRRF models: Activated Sludge Model (ASM).
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Context –
Modelling Water Resource Recovery Facilities

• A simple WRRF model:

4

State variables 
(ASM0):
- Water
- Biomass
- Substrate
- Oxygen

State variables 
(settler):
- Total suspended solids

in each vertical layer
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Context – Solving WRRF models

• Ordinary Differential Equations (ODE) describing WRRF model:
• Large diversity of the dynamics of the state variables

• Oxygen is consumed in minutes
• Biomass takes weeks to grow

• The model is stiff and highly non-linear
• Control strategies can involve discrete events (discontinuities).

• ODE solvers range from very simple to very complex:
• Explicit Euler method
• Runge-Kutta 4
• Implicit Euler
• Matlab ODE suite (ode45, ode23, ode15s, etc…)
• Adams-Moulton / Adams-Bashford (CVODE)
• Diagonally Implicit Runge-Kutta method (DIRK)
• Etc…
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Context – Euler solver

• The simplest ODE solver is the Euler method:
For ௗெ

ௗ௧
ൌ ݂ ܯ and ܯ ݐ ൌ :	ܯ

ଵܯ ൌ ܯ  ݂ ܯ ൈ Δݐ

• If ݂ ܯ is stiff and Δݐ is large, instability ruins the solution, 
unless we solve:

ଵܯ ൌ ܯ  ݂ ଵܯ ൈ Δݐ
0 ൌ ܯ െܯଵ  ݂ ଵܯ ൈ Δݐ
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Context – Euler solver
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For ௗெ

ௗ௧
ൌ ݂ ܯ and ܯ ݐ ൌ :	ܯ
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Context – Solving WRRF models 

• Since it is not possible to solve directly

0 ൌ ܯ െܯଵ  ݂ ଵܯ ൈ Δݐ

The Jacobian matrix

ܬ ܯ ൌ

߲ ଵ݂

߲݉ଵ
⋯

߲ ଵ݂

߲݉
⋮ ⋱ ⋮
߲ ݂

߲݉ଵ
⋯

߲ ݂

߲݉

provides a linear approximation of the function

݂ ଵܯ ≅ ݂ ܯ  ܬ ܯ ൈ ሺܯଵ െܯሻ
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The Jacobian

• How to estimate the Jacobian?

• Finite differences: ݂ᇱ ܯ ≅
 ெାெ ି ெ

ெ
Requires ݊  1 model evaluations. Subject to round-off error.

• Automatic Differentiation (AD): Numerical evaluation of the 
Jacobian through specialized libraries.
Requires in-depth dependency of the model to additional code.

• Matrix-free techniques (i.e. Krylov subspace): Efficient on very 
large models, but less stable and biased solution.

• Symbolic derivation: Exact derivative expression computed before 
the execution of the model.
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Symbolic derivation of large set of equations

• WEST, the WRRF model simulator, generates various 
representations of a model:
• Object-oriented Modelica
• Flat Modelica
• Abstract Syntax Tree (AST)
• Plain and compiled C-code

• The AST structure of an equation is 
easily derived with a simple recursive 
derivation function applied on all nodes.

• Chain derivation then allows generating 
an arbitrarily complex Jacobian
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Symbolic derivation of large set of equations

• Non-analytical constructs must be derived as well.

• IF-Test, Min, Max, Abs, etc.
Example of IF-Test:

݀
ݑ݀

݂݅ ܦܱܰܥ ܤ	݁ݏ݈݁	ܣ	݄݊݁ݐ	 ൌ ݂݅ ܦܱܰܥ ݄݊݁ݐ	
ܣ݀
ݑ݀

݁ݏ݈݁		
ܤ݀
ݑ݀

• Algorithmic constructs or external computations are managed 
through Finite Differences (**work in progress**).
• Ex: PHREEQC  = ݉	chemical species and ݊ chemical compounds. 
Solution computed through complex mathematical algorithms.
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Test case no. 1 for symbolic derivation

• ASM2d_ASU: simplest layout of one activated sludge unit and 
one settler

• 30 state variables
• Jacobian = 30 x 30 matrix = 900 partial derivatives

• 418 equations
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Test case no. 2 for symbolic derivation

• Benchmark Simulation Model No. 1 (BSM1)
• Simple WRRF plant layout of 5 ASU and one settler used in 
many articles to test control strategies

• 108 state variables
• Jacobian = 11664 partial derivatives

• 946 intermediate equations
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Test case No. 3 for symbolic derivation

• Full scale WRRF model
• 17 ASU and 2 settlers
• 554 state variables

• Jacobian = 306 916 partial derivatives
• 5694 intermediate equations
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Results

• Jacobians are sparse matrices -> Use sparse matrix tools!
• The Filling Ratio (FR, ratio of non-zero elements versus total 
number of elements) decreases as model complexity increases.

• The structure of the WRRF model is apparent (ASU, settlers, etc.)
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Results

• Investment versus Reward: Comparison of Jacobian 
calculation: Symbolic derivation (SD) vs Finite difference (FD)

* Compilation was done without optimisation (insufficient memory)
** 80% of the speedup was attributable to sparse matrix operations.
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ASM2d_ASU
30 state var

Benchmark
108 state var

Full plant
554 state var

Time to generate and 
compile the Symbolic 
Jacobian

16 s 98 s 505 s*

Speedup of Jacobian 
calculation

12 23 28

Speedup of simulation 
time
(Diagonally Implicit Runge-
Kutta method)

1.5 4.7 40**
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Discussion

• Developing a symbolic Jacobian provided a deep insight in the 
matrix structure
• Sparse matrix tools were overlooked and provide an easy way to 
speedup simulations without affecting accuracy.

• The structure of the WRRF model can be recovered from the 
Jacobian structure -> Automatic model analysis possible

• Improved numerical performance was demonstrated
• Investing in a symbolic Jacobian pays back in 1 to 10 simulations

• New virtual experiments may need 100s to 1000s of simulations (e.g. 
sensitivity analysis, Monte Carlo experiment, etc.)!

• Round-off free Jacobian: New solution options for challenging ODE 
(i.e. chemical speciation models)
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Conclusion

• Symbolic manipulations allow faster, more stable and more 
precise computations than traditional finite differences.

• Large symbolic Jacobian computation is not trivial, but 
possible thanks to the available computer power.

• Non-differentiable functions and algorithms can still be 
evaluated numerically (finite differences), but their integration 
to a generic framework is challenging.

• Symbolic Jacobian offered optimal use of sparse matrix tools.

• A reliable and inexpensive Jacobian provides a useful 
approximation of a complex model.
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