

Re: • At	sults the retention ta	anks		
	Rain intensity	Max volume	Usage time	
Quantity- based	Average	42%	32h	
	High	100%	36h	
Quality-	Average	58%	35h	
based	High	100%	43h	
	isité AL		24	Jodel EAL

Re • In	sults crease of alum	n consumption		
64	Rain intensity	Injection time	Amount of alum used	
	Average	+43%	+35%	
	High	+41%	+36%	
	IRSITÉ AL		27	model

what can we do?	Con	Control!			
 Comparison of <i>no control</i> and yes control (DO control in aerobic reactors, DO = 2mg·L⁻ 					
Breakdown of GHG emissions (kg CO₂e·m·	3) No control	Yes control			
Bio-treatment GHG emissions	0.451	0.376			
Biomass respiration	0.179	0.178			
BOD oxidation	0.212	0.212			
Credit nitrification	-0.168	-0.167			
N ₂ O emissions	0.228	0.152			
Sludge processing GHG emissions	0.231	0.231			
Net power GHG emissions	0.000	-0.038			
Power	0.311	0.272			
Cradit nowar GHG amissions	-0.311	-0.310			
Credit power Grid emissions		0 000			
Embedded GHG emissions from chemical use	e 0.099	0.033			

