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The presence of micropollutants in the environment and their toxic impacts on the aquatic environment have
raised concern about their inefficient removal in wastewater treatment plants. In this study, the fate of
micropollutants of four different classeswas simulated in a conventional activated sludge plant using a bioreactor
micropollutant fate model coupled to a settler model. The latter was based on the Bürger-Diehl model extended
for the first time to include micropollutant fate processes. Calibration of model parameters was completed by
matching modelling results with full-scale measurements (i.e. including aqueous and particulate phase concen-
trations of micropollutants) obtained from a 4-day sampling campaign. Modelling results showed that further
biodegradation takes place in the sludge blanket of the settler for the highly biodegradable caffeine, underlining
the need for a reactive settlermodel. The adoptedMonte Carlo based calibration approach also provided an over-
view of the model's global sensitivity to the parameters. This analysis showed that for each micropollutant and
according to the dominant fate process, a different set of one or more parameters had a significant impact on
themodel fit, justifying the selection of parameter subsets formodel calibration. A dynamic local sensitivity anal-
ysis was also performedwith the calibrated parameters. This analysis supported the conclusions from the global
sensitivity and provided guidance for future sampling campaigns. This study expands the understanding of
micropollutant fate models when applied to different micropollutants, in terms of global and local sensitivity
to model parameters, as well as the identifiability of the parameters.
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1. Introduction

The presence of pharmaceuticals and personal care products
(PPCPs), as well as hormones, in the environment was proven to have
adverse effects on aquatic life, raising concern about their insufficient
removal from wastewater (Gay et al., 2016; Kidd et al., 2007; Purdom
et al., 1994). The two major processes influencing the fate of
micropollutants (MPs) during activated sludge treatment are biodegra-
dation and sorption that act at different degrees on MPs with different
characteristics (Joss et al., 2006; Radjenović et al., 2009; Ternes et al.,
2004). Hence, althoughmost of the emphasis in activated sludgemath-
ematical modelling has been placed on conventional pollutants, some
mathematical models were also developed to describe the fate and dis-
charge of MPs in activated sludge systems and proposed as a cost-effec-
tive tool for risk assessment (Cowan et al., 1993; Plósz et al., 2012; Urase
and Kikuta, 2005; Vezzaro et al., 2014).

Since the fate of MPs is influenced by the fate of conventional pollut-
ants (e.g. solids that affect the sorption and biodegradation of
micropollutants), simultaneous modelling of conventional and
micropollutants was made possible by extending the well-known Acti-
vated Sludge Models (ASMs) developed many years ago (Henze et al.,
1987; Henze et al., 1999). Themost notable examples ofmodels tackling
both conventional pollutants andMPs are the ASM-Xmodel (Plósz et al.,
2012; Plósz et al., 2010) and another more recent model based on the
ASM2d model (Vezzaro et al., 2014). The majority of MP fate studies
in activated sludge focused their efforts on themodelling of the removal
in bioreactors and considered the MP fate processes taking place in the
secondary clarifier as insignificant (Cloutier et al., 2008; Plósz et al.,
2010). However, it iswell-known that biological degradation of conven-
tional pollutants can occur in the settler, especially under conditions of
long residence times and incomplete denitrification (Siegrist et al.,
1995; Koch et al., 1999). Although no specific experimental evidence
for the removal of micropollutants in secondary settling tanks has
been presented in the literature, MPs are known to co-metabolise
with other biodegradable compounds (Clouzot et al., 2013). Hence,
the removal of micropollutants in secondary settling tanks should, like-
ly, not be disregarded. So far, only one study by Vezzaro et al. (2014)
considered MP fate processes in the clarifier through an extension of
the Takács settling model (Takács et al., 1991).

Several constitutive relations tomodel the differentMP fate process-
es have been proposed in the literature (Plósz et al., 2013; Clouzot et al.,
2013). For environmental applications, mostly non-compound specific
relations have been used to describe the kinetics of biodegradation, as
well as the kinetics and equilibriumof sorption ofmicropollutants in ac-
tivated sludge units (Joss et al., 2006; Pomiès et al., 2013). Previous ef-
forts were made to calibrate the model parameters to describe the fate
of specific types of MPs (Cloutier et al., 2008; Cowan et al., 1993;
Pomiès et al., 2013), with only few studies focusing on PPCPs and hor-
mones (Plósz et al., 2012; Plósz et al., 2010; Urase and Kikuta, 2005).
However, a large uncertainty on the calibrated parameters was identi-
fied as a major gap in the field of micropollutant modelling in WWTPs,
a factor that is aggravated by the lack of knowledge on the sensitivity
of the MP fate models to their parameters (Pomiès et al., 2013). This
leaves themodel users unsure about the degree of confidence in the pa-
rameters values reported in the literature.

Measurements of theMP loads sorbed onto sludge formodel param-
eter calibration are limited in the literature to lab scale measurements
(Joss et al., 2004; Plósz et al., 2012; Xue et al., 2010), which often cannot
be simply extrapolated to the fate ofMPs in the complex environment of
full-scale WWTP systems. On the other hand, full-scale sampling cam-
paigns are often limited in resources and time preventing very dedicat-
ed experiments (Clouzot et al., 2013).

In the present study, a MP fate model based on ASM2d (bioreactor)
was further modified and coupled to a reactive settler model extended
for thefirst time from the Bürger-Diehl settlermodel, which itself incor-
porates the latest important advancements in the field of secondary
settler modelling (Bürger et al., 2012). The scope of the current paper
was to obtain reasonable predictions of the removal efficiencies of dif-
ferent types of micropollutants during activated sludge treatment
through the calibration of the most influential model parameters for
each compound. This was performed using full-scale MP concentration
measurements collected from a sampling campaign that was meant to
be feasible in terms of efforts and resources supplied by the utility run-
ning the plant.

Given the chronic nature of the impacts of the studied CECs, sub-
daily variations were not deemed of importance for this study, and
only the 24-h average load was considered for sampling. Samples
were collected under dry weather conditions, since that is when surface
water bodies are expected to be the most sensitive to wastewater dis-
charges as a result of the limited dilution. A model that was previously
calibrated with respect to conventional pollutants using one-year data
was used as a starting point for the current MP calibration. The MPs in-
vestigated in the present study included a hormone (i.e. androstenedi-
one), a pharmaceutical (i.e. ibuprofen), an antibacterial agent (i.e.
triclosan) and a nervous stimulant (i.e. caffeine). Ibuprofen, triclosan
and caffeine were selected based on their high detection frequency in
wastewater effluents (Dickenson et al., 2011), while little data is avail-
able regarding the levels and fate of androstenedione (Baalbaki et al.,
2016; Esperanza et al., 2007). The target MPs were also previously ob-
served to be influenced by sorption and biodegradation fate processes
to variable extents inWWTPs (Baalbaki et al., 2016), while volatilization
is not considered as significant (Struijs et al., 1991; Virkutyte et al.,
2010). For sorption, both the kinetics and the equilibrium equations
were considered in the bioreactor and settler models. Sensitivity analy-
sis was performed to explore the impact of the MP fate model parame-
ters on each of the fitted variables, in relation to the input dynamics.
Prior to calibrating the model for micropollutant fate, the hydraulic
model of the WWTP was identified and the activated sludge unit was
calibrated with respect to conventional pollutants, as described in our
previous studies (Baalbaki et al., 2016; Baalbaki et al., 2017).

2. Materials and methods

2.1. Full-scale activated sludge

Concentrations of the target MPs were measured in samples collect-
ed over four dry days at the full-scale activated sludge unit of the Guelph
WWTP (Guelph, Ontario, Canada). The WWTP contains four activated
sludge lines, followed by tertiary treatment by rotating biological
contactors (RBCs) and sand filtration, aswell as disinfection by chlorine.
It serves a population of 135,000 inhabitants and receives an average
flow of 50,750 m3/day. The final de-chlorinated effluent is discharged
into a nearby river. The first of the four lines of activated sludge (line
1) was selected for this study. This line contains two aeration tanks in
parallel, and the output of both tanks is combined and sent to a single
secondary clarifier. Ferric chloride is added for phosphorus removal to
the input to the primary clarifier (i.e. 1 L/min) and at a lower dosage
to the return sludge of line 1 (i.e. 0.55 L/min). The main characteristics
of line 1, including average hydraulic and solids retention time (HRT
and SRT, respectively), as well as the average mixed liquor suspended
solids concentration (MLSS), average mixed liquor volatile suspended
solids concentration (MLVSS) and average temperature measurements
over the sampling period are summarized in Table 1.

2.2. Sampling

Sampling was performed over four days in the period of July 21–25,
2014 in dry conditions. The number of sampling days was selected
based on a hydraulic model for this WWTP (Baalbaki et al., 2016). As
shown in Fig. 1, sampleswere collected from the effluent of the primary
clarifier or primary effluent (PE), the effluent of the aeration tanks (AE),
the effluent of the secondary clarifier (SE), aswell as from the secondary
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waste sludge at the underflow of the secondary clarifier (WAS) and
from the sludge of the primary clarifier (not shown in Fig. 1). Samples
from the PE and SE were collected as 24-h composite flow-proportional
samples using onsite Hach Sigma samplers, where the samples were re-
frigerated at 4 °C until retrieved (daily). Due to the absence of an onsite
sampler in the AE location, 24-h composite time-proportional samples
from this stream were obtained using ISCO 6712 samplers (Avensys,
St-Laurent, QC, Canada) equipped with 24 bottles and packed with ice
(replaced daily). Waste activated Sludge samples were collected as
grab samples on each of the four days. All collected samples were trans-
ferred into 1-L Nalgene certified pre-cleaned amber bottles (Fisher Sci-
entific) at the end of each day of sampling, stored at −20 °C and kept
frozen until extracted.

2.3. Sample preparation

The four target micropollutants extracted from the wastewater and
biosolids samples, as well as information on their respective internal
standards and suppliers, are listed in Table 2. The aqueous samples
from the PE, AE and SE locationswere filtered using 1-μmglass-fiber fil-
ters (Fisher Scientific). The filtered samples (100 mL for PE and 200 mL
for AE and SE) were spiked with internal standards to account for the
extraction recovery and matrix effects and then subjected to solid-
phase extraction (SPE). The cartridges used for extraction were the
Oasis MAX anion exchange cartridges (Waters, MA, USA), following
the method described by Metcalfe et al. (2014) and summarized in
the supplementary material (Table S1). The SPE extraction recoveries
of targetMPs in procedural blanks ranged from90% to 130%, as reported
earlier (Li et al., 2010). Extraction of sludge samples was conducted
using a Dionex ASE 350 accelerated solvent extraction (ASE) system
(Thermo Fisher Scientific, Waltham, MA, USA) followed by solid-phase
extraction. Approximately 1 g of freeze-dried sludge was placed in
ASE stainless steel cells and spiked with internal surrogates (Table 2,
100 ng/g). The ASE and SPE methods used for the analysis of the bio-
solids were previously described in the literature (Edwards et al.,
2009) and are summarized in Table S1 of the supplementary material.
The extraction recoveries of target analytes from biosolids was N70%.
All aqueous and sludge samples were extracted in triplicates.

2.4. Chemical analysis

Chemical analysis was performed by liquid chromatography with
tandem mass spectrometry (LC-MS/MS) using an Agilent 1100 HPLC
(Mississauga, ON, Canada) coupled to a Q-Trap 5500 instrument (AB
Sciex, Concord, ON, Canada) operated with a turbospray ionization
source. Themethod used for chromatographic separationwas described
by Metcalfe et al. (2014). Ibuprofen and triclosan were measured in
negative ionization mode, while caffeine and androstenedione were
measured in positive ionization model. Acquisition was performed in
multiple-reaction-monitoring (MRM) mode. The parameters used for
MRM are listed elsewhere (Metcalfe et al., 2014; Thompson et al.,
Table 1
Main characteristics of the Guelph WWTP, including average hydraulic and solids reten-
tion times (HRT and SRT), average temperature, mixed liquor suspended solids and vola-
tile suspended solids concentrations (MLSS and MLVSS) during the sampling campaign
(i.e. July 2014).

Characteristic Value

HRT (h) Primary clarifier (line 1) 3.72
Aeration tanks (line 1) 6.30
Secondary clarifier (line 1) 2.90

SRT of line 1 (day) 7.76
Average water T (°C) 20
Average MLSS (mg/L) 3560
Average MLVSS (mg/L) 2790
2011). Results of the recovery of the spiked internal standards were
used to determine the concentration of the target MPs.

2.5. Modelling and simulations

The residence time and consequent removal of micropollutants in
the WWTP is impacted by the hydrodynamics of treatment units
(Majewsky et al., 2011; Ort et al., 2010). Hence, prior to modelling the
fate of MPs, a hydraulic model of the activated sludge process under
study was created using measurements of the wastewater's electrical
conductivity as a tracer to investigate the residence time distribution.
A tanks-in-series model was fitted to the tracer data, and the optimum
hydraulic model was found to consist of three aeration tanks in series
and one secondary clarifier. More details on the methodology and the
results of the hydraulic calibration can be found elsewhere (Baalbaki
et al., 2016).

After setting up the hydraulic model, a detailed calibration of the
biokinetic and settler model parameters, as well as characterization of
input chemical oxygen demand and suspended solids were performed
using one-year measurements of dissolved oxygen, solids and nutrient
concentrations at different locations of the studied activated sludge
unit (Baalbaki et al., 2017). Briefly, with the goal of modelling the fate
of micropollutants in mind, specific attention was paid to predicting
the concentration of biomass in the bioreactor, as well as the solids re-
tention time (i.e. by predicting the solids concentrations in the waste
stream), since the latter is known to affect the diversity of the biomass
(Saikaly and Oerther, 2004). The concentration and the diversity of bio-
mass are both expected to have an important influence on the rate of
biodegradation of MPs (Kreuzinger et al., 2004; Suarez et al., 2010).
The MP concentration in the waste stream also influences the extent
of MP removal through adsorption. Compared to the Takács model,
the Bürger-Diehl settling model was found to provide a better descrip-
tion of the suspended solids balance of the system andwas, thus, select-
ed for the further modelling steps (Baalbaki et al., 2017; Bürger et al.,
2012; Takács et al., 1991). High concentrations of dissolved oxygen
were observed in the aeration tanks at all times, indicating a relatively
high oxygen transfer rate parameter, kLa. The high oxygen concentra-
tion prevents the occurrence of denitrification in the WWTP, a feature
that was further confirmed by high nitrate concentrations in the efflu-
ent. Following proper calibrationwith respect to solids and oxygen con-
centrations, simulations with the standard ASM kinetic parameters
provided satisfactory predictions of the effluent pollutant concentra-
tions (i.e. Chemical oxygen demand or COD, nitrate and ammonium),
resulting in a fully calibratedmodel for conventional pollutants. Further
details on the calibration procedurewith respect to solids, nutrients and
dissolved oxygen are described elsewhere (Baalbaki et al., 2017), since
the current study focuses on the application and extension of this
model to predict the fate of micropollutants.

All model simulations were performed in the software WEST (MIKE
by DHI, Denmark). The variable-coefficient ODE (i.e. VODE) integrator
available in WEST was used with a tolerance of 10−8 for its efficient
run time. Processes describing the fate of MPs were included in the bio-
reactor model based on the extended bioreactor model library that was
first developed by Vezzaro et al. (2014). The Bürger-Diehl settling
model (Bürger et al., 2012) was extended to include the processes de-
termining the fate ofmicropollutants (i.e. biodegradation and sorption).
The specific modifications are further elaborated upon in Section 3.2 of
the discussion. The modified bioreactor and extended settler models
were coupled.

All dynamic simulations were preceded by steady-state simulations
over 23 days (i.e. 3 × SRT) in order to obtain a good estimate of the ini-
tial conditions of solids concentration in different locations of the acti-
vated sludge unit. Also, to obtain realistic initial conditions of
micropollutant concentrations, dynamic simulations were performed
over a period of time starting a few days before the first day of sampling
and assuming that the micropollutant concentrations were similar to



Fig. 1. Schematic of the investigated full-scale activated sludge unit. Sampling locations are indicated with a cross sign (PE: primary effluent, AE: aeration effluent, SE: secondary effluent,
WAS: waste activated sludge) and the corresponding measurements taken (SMP and XMP indicate measurement of the micropollutant concentration in aqueous and particulate phases,
respectively).
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the measured ones. The input to the model (i.e. primary effluent)
consisted of the following measured time series: flow rates, measure-
ments of conventional pollutants, such as TSS, ammonia and COD, as
well as the incoming concentration of the micropollutants in dissolved
and particulate phases. The latter was obtained from analysis of the col-
lected primary sludge.

2.6. Model results analysis

The model output variables considered are the soluble
micropolutant concentration in the effluent from the aeration tank
and secondary clarifier (i.e. SMP-AE and SMP-SE, respectively), as well
as the particulate micropollutant concentration in the waste sludge
(i.e. XMP-WAS), as shown in Fig. 1. Calibration of model parameters
was carried out using a Monte Carlo based approach with the scenario
analysis tool available in WEST, similar to the approach suggested by
Sin et al. (2008). For each parameter, a number of discrete values
were defined over a broad range of parameter values that were based
on literature findings, and simulations were performed for all possible
parameter combinations. Subsequently, the goodness offit for each sim-
ulationwas determined by the chi-square (χ2) criterion, as proposed by
Dochain and Vanrolleghem (2001) and expressed in Eq. 1, where byi and
yi represent the predicted and themeasured variable value, respectively
at time point i and σi is the standard deviation of the measurements at
time point i.

χ2 ¼ ∑
i¼N

i¼1

yi−byi� �2
σ i

2 ð1Þ

All measurement values (i.e. soluble and particulate micropollutant
concentrations) with their corresponding simulated values were con-
sidered for the calculation of χ2 in Eq. 1. The chi-square error was
used to quantify the degree of mismatch between the results from sim-
ulations and measurements, since it accounts for measurement
Table 2
Target MPs along with their types, subtypes, internal standards, limits of detection (LODs) and

Type Subtype Compound Internal standard
(Labelled surrogate)

Pharmaceuticals Analgesics Ibuprofen Ibuprofen-13C3
Personal Care Product Antibacterial Triclosan Triclosan-13C12
Steroid hormone Androstenedione Androstene-3,17-dione-2,3,
Nervous stimulant Caffeine Caffeine-13C3

a LODs and LOQs were obtained based on standard deviation of y-intercept of line obtained
b Supplier (compound, surrogate): S: Sigma-Aldrich Canada (Oakville, ON, Canada), I: C/D/N

Cambridge isotope Laboratories (Tewksbury, MA, USA), K: KICTeam (Langley, BC, Canada).
uncertainty through the standard deviations obtained from lab repli-
cates for each of the four days. In order to compare the simulated pro-
files with the measured ones for error calculations, the simulated
profiles were converted into a similar time scale by calculating the aver-
age daily values (flow-average or time-average), since measurements
were based on time-proportional and flow-proportional samples at
theAE and SE locations, respectively. The optimal parameter setwas de-
termined from the simulation with the lowest χ2 value. Moreover, by
studying the evolution of χ2 values over the tested parameter intervals,
conclusions could be drawn on the model fit's global sensitivity to the
parameters, as well as the identifiability of each parameter (i.e. the ex-
istence of a unique small range of parameter values that minimize the
χ2). In addition to the χ2 criterion, the two-sample t-test with a confi-
dence level of 95% was performed to verify the capability of the best-
fit model to well predict the average micropollutant concentration in
the particulate phase in the waste sludge.

Local sensitivity analysis around the optimal parameter values was
carried out in theWEST software in order to understand the dynamic ef-
fect of small variations in themodel parameters on the threemodel out-
put variables. In theory, the relative sensitivity is determined by Eq. 2 in
discrete form,where t represents the time, y the variable and θ the input
parameter, which is varied systematically by Δθ (perturbation). There-
fore, the output of the sensitivity analysis conveys a message about
the percentage change in the output variable resulting from a theoreti-
cal 100% change in the parameter, even though the actual perturbation
is significantly lower than 100%.

Relative sensitivity ¼ y t; θþ Δθð Þ−y t; θð Þ
Δθ

θ
y

ð2Þ
3. Results and discussion

3.1. Observed concentrations and removals

Measurements collected from the sampling campaign and used in
the present study for the calibration of the micropollutant fate model
limits of quantification (LOQs) in aqueous and biosolids samples, as well as suppliers.

Aqueous samples LOD, LOQ
(ng/L)a

Biosolids LOD, LOQ
(ng/L)a

Supplierb

Compound, surrogate

6, 21 10, 32 S, I
6, 19 6, 19 K, M

4-13C3 2, 5 7, 25 S, C
4, 14 5, 16 S, I

from measured concentrations of serial dilutions.
Isotopes (Pointe-Claire, QC, Canada), C: Cerilliant Corporation (Round Rock, Tex, USA),M:
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were previously reported in a study focusing on amass balance analysis
identifying the extent of biodegradation and sorption in wastewater
treatment steps (Baalbaki et al., 2016). This previous study provided ev-
idence that both biodegradation and sorption of the four target MPs
occur in the activated sludge unit under study at the prevalent condi-
tions (Baalbaki et al., 2016). In the influent to the activated sludge pro-
cess, triclosan and androstenedione were observed at average
concentrations of 132 and 65 ng/L, respectively. Thewidespread analge-
sic ibuprofen and the stimulant caffeine present in many beverages en-
tered at higher average concentrations of 1.68 μg/L and 25.3 μg/L,
respectively. As reported in the previous work (Baalbaki et al., 2016),
the removal of ibuprofen and caffeine by the activated sludge unit
under studywas 99% and 94%, respectively. This high removal efficiency
is in good agreement with previous literature (Behera et al., 2011; Clara
et al., 2005; Radjenović et al., 2009). Triclosan had a removal of 72%, also
consistent with previous observations (Behera et al., 2011), while an-
drostenedione was removed at a lower efficiency of 33%. Ibuprofen
and androstenedione had an average particulate concentration in the
secondary waste sludge of 39 ng/g and 38 ng/g, respectively. On the
other hand, due to its higher input concentration, caffeinewas observed
at a high concentration (i.e. 776ng/g) in secondarywaste sludge. For tri-
closan, the measured particulate concentration in waste sludge was
1334 ng/g, which can be attributed to its known hydrophobicity
(Petrie et al., 2014). These four MPs were thus selected for the model-
ling study based on the diversity observed in their biodegradation and
sorption tendency, as reported in the literature and indicated by the ex-
perimental results of the current study (Baalbaki et al., 2016). This var-
iability in MP fate allows for a more comprehensive exploration of MP
fatemodel calibration and sensitivity analysis for variable combinations
of parameter values. Although samples from the aeration effluent were
collected as time-proportional ones, simulations indicated that the dif-
ference in concentration between time-proportional and flow-propor-
tional micropollutant concentrations in the aeration tank effluent
remains below5%, indicating a small bias caused by collecting time-pro-
portional samples, not limiting the value of the calibration performed.

3.2. Model structure

The processes accounted for in the model are biological degradation
and sorption, since these were suggested to be themost significant pro-
cesses for the target MPs (Andersen et al., 2005; Joss et al., 2006; Ternes
et al., 2004). For a completely mixed unit with constant volume, the
micropollutant soluble concentration dynamics are expressed by Eq. 3
taking into account the incoming and outgoingMP load, aswell as sorp-
tion and biodegradation processes. Due to the effect of the variation in
the active biomass concentration on the aerobic biodegradation rate
(Pomiès et al., 2013), the biodegradation pseudo first-order kinetic
equation in themodel by Vezzaro et al. (2014)where the biomass is as-
sumed to be constant was modified to include the effect of temporal
variations in the active biomass concentration, as shown in Eq. 4. In a lit-
erature review, Pomiès et al. (2013) showed that this relation is suitable
to represent the aerobic biodegradation of pharmaceuticals and hor-
mones. Its parameters were calibrated using experimental data in sev-
eral studies from literature.

Since the MP model was based on the model developed by Vezzaro
et al. (2014) that used ASM2d as a basis, the denitrifcation process
under anoxic conditions is accounted for in the model. Thus, in this
study, equations representing both aerobic biodegradation and anoxic
biodegradation are included in themodel separately (Eq. 4 and Eq. 5, re-
spectively). However, given the presence of ample oxygen (i.e. con-
stantly N2.5 mg/L) in the activated sludge system under study (i.e.
above the limit that ensures the absence of anoxia), only aerobic biodeg-
radation is expected to occur. For the same reason, the monod-kinetics
term in Eq. 4 approaches a value of one. The active biomass concentra-
tion in Eq. 4 is calculated by themodel as the sum of the concentrations
of the following particulate ASM2d model components: heterotrophic
(XOHO), autotrophic (XAOO) and phosphate accumulating organisms
(XPAO). The concentrations of these components composing the bio-
mass are predicted by the previously calibrated conventional pollutant
model (Baalbaki et al., 2017) that is used in the present study. A
Monod-type substrate saturation kinetics was not deemed necessary
due to the generally low concentrations of micropollutants, as well as
the fact that thefirst-order kinetic equationwasproven to yield satisfac-
tory predictions for micropollutants (Namkung and Rittmann, 1987;
Vezzaro et al., 2014). Instantaneous sorption leading to equilibrium
was assumed in the majority of studies on the fate of MPs (Parker et
al., 1994; Plósz et al., 2012; Pomiès et al., 2013). However, in the present
study, a more realistic approach was considered by accounting for the
kinetics of both sorption and desorption in addition to the equilibrium,
as shown in Eq. 6 and Eq. 7, respectively (Urase and Kikuta, 2005). It is
important to note that the equations representing MP biodegradation
and sorption are not limited to specific MPs, but are general for all
MPs (Pomiès et al., 2013). The model becomes specific to a given MP
only when values of the compound-specific parameters are substituted
into the equations.

dSMP

dt
¼ FMP;in

V
−

FMP;out

V
þ raer;bio þ ranox;bio þ rsor ð3Þ

raer;bio ¼ −kbio
� SO
KO þ SO

�SMP
�Xactive ð4Þ

ranox;bio ¼ −kanox;bio
�SMP

�Xactive
� KO

KO þ SO
� SNO
KNO þ SNO

ð5Þ

rsor ¼ −ksor
�SMP

�XTSS þ kdes
�XMP ð6Þ

Kd
; ¼ 1

Kd
¼ kdes

ksor
�1000

g
kg

� � ¼ SMP
�XSS

XMP
�1000

g
kg

� � ð7Þ

Where:

- SMP & XMP: Concentration of micropollutant in dissolved and partic-
ulate phases (ng/L)

- FMP;in & FMP;out: Input and output micropollutant load, respectively
(ng/day)

- V: Volume of the treatment unit (bioreactor or secondary clarifier)
(L, input)

- raer;bio, ranox;bio & rsor: Rate of micropollutant aerobic biodegradation,
anoxic biodegradation and sorption/desorption, respectively (ng/(L .
day), calculated)

- Xactive & XTSS: Concentration of active biomass and suspended solids,
respectively (gSS/L, predicted by the conventional pollutant model)

- kbio&kanox;bio: Aerobic and anoxic biodegradation 1st order rate con-
stant (L/(gSS . day), input)

- ksor: Sorption first order rate constant (L/(gSS . day), input)
- SO andSNO: Concentration of oxygen and nitrate, respectively (mg/L)
- KO & KNO: Oxygen half saturation/inhibition coefficient and nitrate
half saturation coefficient, respectively (mg/L, input). These have
values of 0.2 mg O2/L and 0.5 mgNO3/L, respectively in the standard
ASM2d model.

- kdes: Desorption first order rate constant (1/day, calculated)
- Kd

;: Inverse of the partition coefficient at equilibrium (kgSS/L, input)

To model the behaviour of MPs in the secondary settling tank, two
adjustments were made to the Bürger-Diehl secondary settler model:
First, instead of tracking only the transport of a single lumped solids
component throughout the clarifier as formulated in the standard Bür-
ger-Diehl model, in this study, the transport of each model component
(i.e. soluble and particulate components), including micropollutants,
was tracked separately. This allowed accounting for the propagation of
micropollutants in the clarifier under the effects of gravity settling (for
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particulate components), as well as flow rate (for particulate and solu-
ble components). This is important since inaccurate representation of
the propagation of the soluble and particulate organics within the clar-
ifier was proven to cause a bias in their concentration in the output
sludge that is partially recycled back (Jeppsson and Diehl, 1996).

The second adjustment was the inclusion of the fate processes (i.e.
biodegradation and sorption) acting on micropollutants in the second-
ary clarifier. Almost all of the previous studies on MP fate modelling in
activated sludge assumed that removal of micropollutants in the sec-
ondary clarifier is negligible. Fig. 2 demonstrates that removal processes
in the secondary clarifier can potentially be of importance. Although ig-
noring biodegradation in the settler does not impact the MP concentra-
tion in the clarifier's supernatant, it increases the average soluble
concentration of micropollutants in the waste sludge by N100% (Fig.
2(a)). The target micropollutant caffeine, represented in Fig. 2, is
known to biodegrade extensively, as discussed earlier, indicating that
the high biomass concentration at the bottom of the settler allows for
significant biodegradation to takeplace (Eq. 4). This result is particularly
relevant since, for the system under study, the model predicted only 4%
of the total solidsmass to bepresent in the secondary clarifierwhich can
be explained by the good settling characteristics of the sludge (i.e. low
sludge volume index with an average of 58 mL/g). Consequently, for
other activated sludge systems operating at high sludge blanket and
thus containing a higher percentage of solids in the secondary clarifier,
the micropollutant biodegradation process in the secondary clarifier
could be even more significant. Accurate prediction of the
micropollutant load in the underflow of the settler by accounting for
the MP biodegradation is particularly important when modelling the
overall fate ofMPs in the entireWWTP as the underflow is often partial-
ly recycled back to the head works after treatment, increasing the load
of the MP to the WWTP. In contrast, in the upper region of the settler,
the biomass is present at low concentration, which explains the obser-
vation that the simulated concentration of caffeine in the supernatant
was unaffected by the inclusion or exclusion of the biodegradation reac-
tions (Fig. 2(b)). This difference in the extent of biodegradation
throughout the settler results in spatial variation in the soluble and
Fig. 2. Predicted profiles of soluble caffeine concentration in the two outputs of the
secondary clarifier: a) secondary waste sludge and b) secondary effluent, accounting for
both sorption and biodegradation (Ads + bio), only sorption (Ads) or none of the fate
processes (None) in the secondary clarifier.
particulate micropollutant concentrations across the settler that is
overlooked in non-reactive settler models.

3.3. Impact of individual model parameters

The behaviour of the model and the interaction between the differ-
ent processes (i.e. aerobic biodegradation Eq. 4 and adsorption Eq. 6)
are illustrated in Fig. 3 by changing process parameters for caffeine,
used here as an example. It is important to note that a logarithmic
scale was selected for the particulate micropollutant concentration
(ng/g) given the high variability in the model output resulting from a
change in kbio. The influence of the parameter kbio (present in the aero-
bic biodegradation rate equation (Eq. 3)) is evident, as with faster bio-
degradation, both the soluble and particulate micropollutant
concentrations decline notably (i.e. increasing kbio from 5 to 10 L/
(gSS.d) decreases the SMP and XMP by 75% and 85% on average, respec-
tively). Although the adsorbed portion of the micropollutant is not con-
sidered to be biodegraded in this model, the decrease in SMP at higher
kbio disturbs the equilibrium and causes subsequent desorption leading
to a decrease in XMP.

The influence ofKd
; that pertains to the equilibriumof adsorption on

the micropollutant concentration is less straightforward. As shown in
Eq. 6, a higher Kd

; increases the desorption kinetics thus moving the
micropollutant sorption equilibrium to the soluble phase. This effect of
increasing Kd

; can be clearly seen in Fig. 3 through an increase in the
SMP, accompanied by a decrease in XMP for slow biodegradation kinetics
(defined by low kbio values). When the biodegradation kinetics are fast
(i.e. kbio N 10 L/(gSS. day)), increasingKd

; still decreases XMP significant-
ly but the influence on SMP is less pronounced (Fig. 3(b)). Indeed, when
the biodegradation kinetics are much faster than those for desorption,
any desorbed MP load will undergo almost instantaneous biodegrada-
tion, and hence a change in the desorption rate constant is less effective
on the soluble MP concentration. In fact, it was observed that at kbio
value that is as high as 50 L/(gSS.d), increasing theKd

; (and desorption)
induces a slight decrease only in the soluble MP concentration in the
Fig. 3. Impact of changing Kd
; on the concentration of caffeine in a) secondary effluent

(soluble) and b) WAS (particulate) at different kbio values (L/(gSS . day)) and at fixed
ksor = 5 L/(gSS . day). XMP-WAS was plotted on a logarithmic axis due to the sharp
variations induced by changing kbio and Kd

; .
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secondary effluent. This can be directly associatedwith the reduced par-
ticulateMP concentration due to the high desorption rate, as well as the
subsequent immediate biodegradation, resulting in a lower MP load
available for desorption and thus lower soluble MP concentrations.
Hence, the effects of parameters on the model output are not indepen-
dent, that is, the effect of one parameter depends on the value of the
other parameters. It is thus necessary to evaluate the different combina-
tions of parameters at different ranges for calibration, as explained in
the following section. The effect of varying ksor that is linked to Kd

; by
Eq. 6 is not shown here, but it is discussed in the following section.

3.4. Calibration

A scenario analysis was performed by simulating the model for all
possible combinations of parameters over pre-defined intervals based
on literature values. For each simulation, the χ2 was calculated based
on both the model outputs and the observations. In each dot plot in
Fig. 4, the evolution of the normalized χ2 (i.e. expressed as χ2 of each
simulation divided by theminimumχ2) is shown as a function of chang-
es in a specific parameter but taking into consideration all combinations
of numeric values of the other parameters. These plots allow to assess
the global sensitivity of themicropollutantmodel to changes in each pa-
rameter, aswell as to analyze the identifiability of the parameter. A clear
minimum in the χ2 value at a specific parameter value indicates that the
parameter is identifiable. Large changes in χ2 over a parameter interval
correspond to a high sensitivity of themodel output to this parameter. It
is important to note that the χ2 takes into consideration the errors (i.e.
standard deviations) inmeasurements during χ2 calculation. A logarith-
mic axis was used for the normalized χ2, since it was observed to vary
greatly at different combinations of the parameters.

3.4.1. Caffeine
For caffeine, it was observed that changing kbio value (i.e. from

around 20 to 30 L/gSS.day) decreases the minimum χ2 by more than
one third, demonstrating the high impact of this parameter on the
model fit. Low χ2 values are clearly found at high biodegradation
rates. The optimum fit was observed at kbio = 33 L/gSS.day, which is
within thewide range of parameter values encountered in the literature
1–240 L/gSS.day (Bertolini, 2011; Xue et al., 2010). The large variability
in the observed kbio values in the literature could be attributed to the
variable properties of the biomass and the suspended solids in the sys-
tems used for calibration (Ternes and Joss, 2006).

The optimal model fit was observed at Kd
; N 0.001 kgSS/L which is

consistent with previous literature (Stevens-Garmon et al., 2011; Xue
et al., 2010). Contrary to kbio, varying the value of ksor did not have a pro-
nounced influence on the minimum χ2, as low χ2 values can be found
over the entire parameter range. This indicates the lack of identifiabiltiy
of ksor and Kd

; and can be explained by the extensive biodegradation of
caffeine at the investigated range of kbio, which reduces themodel's sen-
sitivity to the other fate processes. It is also observed that increasing kbio
beyond 40 L/gSS.day, decreases the degree of variability of the χ2 value
(i.e. the length of the dotted lines in Fig. 4), indicating a lower sensitivity
of the model to the other parameters when biodegradation is more sig-
nificant. This is reasonably interpreted by the fact that when biodegra-
dation is faster, resulting in a rapid decline in the MP concentration,
the effect of changing sorption parameters is less influential.

The best-fitmodel yielded a predicted profile of caffeine's concentra-
tion in the secondary effluent that was in agreementwith themeasured
profile, as shown in Fig. 5(a) by comparing the simulated andmeasured
MP concentration profiles. In addition, the predicted output concentra-
tion time serieswith a 15-min time stepwas used to obtain a daily flow-
average of the simulatedmicropollutant's concentration represented by
triangles in Fig. 5. This allows comparisonwith themeasured concentra-
tions obtained from 24-h composite samples (i.e. represented by
squares). Similar to the secondary effluent, the best-fit model yielded
a good fit between the simulated and the measured caffeine
concentrations in the aeration tank outlet (results not shown). In addi-
tion, the average (i.e. over the 4 measurement days) simulated concen-
trations of MPs in the solids of the waste sludge from the best-fit model
are visually compared to the measurements in Fig. 6. The p-value
representing a measure of the match between the average measure-
ments and simulations are shown to be N0.05, indicating that the
model well predicts the underflow particulate concentration of caffeine,
as the difference between these is statistically insignificant. Average
particulate MP concentrations were used for assessing the model fit in
Eq. 1, unlike soluble MP concentrations, since the particulate MP con-
centrations are less temporally variable throughout the four days of
sampling, due to the SRT of almost eight days.

3.4.2. Ibuprofen
The plots for ibuprofen are similar to those for caffeine, which could

be explained by the fact that both are highly biodegradable, with no sig-
nificant adsorption taking place. The bestfit was observed at kbio=77 L/
gSS.day. This value is higher than the previously observed values in the
literature 1.3–38 L/gSS.day (Abegglen et al., 2009; Fernandez-Fontaina
et al., 2012; Suarez et al., 2010). The high kbio values obtained in the
present study relative to the literature for ibuprofen could be associated
with the higher dissolved oxygen concentration in the aeration tanks of
the system under study (i.e. 4–6 mg/L during the majority of the sam-
pling period compared to b4 mg/L in the literature). Xue et al. (2010)
demonstrated that at higher dissolved oxygen concentration, the bio-
degradation of micropollutants is enhanced, which is represented by a
higher kbio. Fig. 4 shows that both Kd

; and ksor are non-identifiable.
The best-fit model provided good predictions of the soluble
micropollutant concentration in secondary effluent and particulate
phase in the settler's underflow, as shown in Fig. 5(b) and Fig. 6,
respectively.

3.4.3. Androstenedione
As shown in Fig. 4, androstenedione exhibits an evidentminimum in

χ2 at an optimum value of kbio 2.2 L/gSS.day. Higher kbio values lead to
higher errors (i.e. increasing kbio from 2 to 4 L/(gSS.day) was shown to
triple theminimum χ2). The clearminimum in the χ2 values for the par-
tially biodegradable androstenedione also indicates that varying kbio has
a profound influence on the model fit. Hence, the biodegradation rate
constant for androstenedione can be estimated with high confidence
since themodel is highly sensitive to this parameter. From the available
literature, no data were found to model the fate of androstenedione in
the activated sludge process, and only one previous explored its remov-
al in activated sludge treatment (Esperanza et al., 2007). Similar to caf-
feine and ibuprofen, Kd

; and ksor did not have a notable influence on the
model fit.

3.4.4. Triclosan
For triclosan, a clear optimum in χ2 values can be found for both ksor

andKd
;. Theminimum χ2 was observed at ksor=4.4L/gSS.day andKd

; ¼
7x10−6 kgSS=L or lower. TheKd

; value that leads to the best-fit model is
within the ranges observed in the literature (Nakada et al., 2010), al-
though other literature reported higher values (Hyland et al., 2012).
One explanation for the observedKd

; being at the lower end of the liter-
ature values is the addition of ferric chloride in the unit under study,
which alters the properties of the sludge, potentially increasing the
sorption potential of MPs onto it. In fact, it was previously observed
that chemical additions to activated sludge decreases the value of Kd

;

for triclosan (Zhu, 2014). Using the optimumKd
; andksor resulted in pre-

dicted particulate underflow concentrations that correspond to the
measurements with p-value N 0.05, and the concentration in the sec-
ondary effluent also showed a fairly good match with measurements
(Fig. 6 and Fig. 5, respectively). Unlike sorption parameters, wide varia-
tions in the kbio value did not lead to changes in themodel fit, indicating
low sensitivity of the model to this parameter.



Fig. 4. Normalized χ2 represented as a ratio of the minimum χ2 for a) caffeine, b) ibuprofen, c) androstenedione, d) triclosan as a result of varying each model parameter: kbio (first row), ksor (second row) and Kd
; (third row).
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Fig. 5. Measured (meas.) influent concentrations as well as measured and simulated (sim.) soluble secondary effluent concentrations for a) caffeine, b) ibuprofen, c) triclosan, d)
androstenedione. The flow-average of simulated values are shown as (avg sim.). For ibuprofen only, the soluble effluent concentrations are displayed on a separate secondary axis
since values are much lower than in the input.
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3.4.5. General
In summary, it is observed that the sensitivity of themodel fit to bio-

degradation and sorption parameters, aswell as the identifiability of the
parameters is variable, depending on the micropollutant considered.
Differences in the chemical properties of micropollutants cause them
to bemore or less susceptible to certain fate pathways, which influences
the model's sensitivity to the parameter, as well as the identifiability of
the parameter. In general, model parameters of dominant processes (i.e.
biodegradation for caffeine, ibuprofen and androstenedione and sorp-
tion/desorption for Triclosan) were the most influential and had good
Fig. 6.Measured and simulated concentrations of eachmicropollutant in secondarywaste
sludge (ng/g). The error bars represent the standard deviations obtained from
measurements on the four days of sampling for both simulations and measurements. P-
values from the two-sample t-test represent the match between the measured and
simulated concentration of the micropollutant.
identifiability, whereas parameters of less dominant processes showed
poor identifiability.

Identifiability of parameters is not only dependent upon the mea-
surements but also upon the process conditions and the model struc-
ture. In order to improve the identifiability of less influential
parameters, dedicated experiments could be conducted to obtain
more detailed information under specific process conditions. However,
one should always consider whether it is worth it to invest time and re-
sources for the determination of the kinetics of processes whose contri-
bution to the overall removal under prevailing conditions is limited. For
the current study, this was not deemed necessary since the model pro-
vided satisfactory predictions of the overall removal efficiencies of the
compound under study (Fig. 5).
3.5. Dynamic local sensitivity analysis

After obtaining the optimal values of themost effective parameters for
each of the four micropollutants, a local sensitivity analysis was per-
formed to investigate the dynamic sensitivity of the different model vari-
ables throughout the four-day simulations, as shown in Fig. 7. This
analysis provides information to link themodel's sensitivity to parameters
with the dynamics of input MP concentration and process conditions.
Such analysis can provide valuable information for the design of future
measurement campaigns based on expected influent dynamic conditions.
For illustration, this analysis was performed for caffeine and triclosan
only, since their behaviour in activated sludge treatment was shown to
be influenced by different fate processes and their concentration in the in-
fluent is highly dynamic. UsingWEST's default perturbation factor (i.e. the
factor change in the parameter) of 10−6, inconclusive sensitivity profiles
were obtained, due to interference of numerical errors with the small ef-
fects on output variable caused by the applied perturbations, due to the
very low MP concentrations (De Pauw and Vanrolleghem, 2006).
Hence, the perturbation factor was set to a higher value of 10−2, and
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the assumption of linearity of the sensitivity was verified to be still valid
by the equality of the backward and forward relative sensitivities (i.e. by
both increasing and decreasing the parameter with the same
perturbation) (De Pauw and Vanrolleghem, 2006).

As shown in Fig. 7, for caffeine at the best-fit parameters, the most
influential parameter on the soluble micropollutant concentrations is
kbio, which is in agreement with the observations made in the previous
section. This is supported by numerical sensitivity values indicating that
a 100% theoretical change in the parameter results in N100% change in
soluble micropollutant concentrations at all monitored locations. On
the contrary, the sensitivity to ksor was low (b50% change in XMP and
SMP due to 100% change in parameter), while the sensitivity to Kd

;

that describes sorption equilibrium was high for the micropollutant
concentration in the waste sludge only. A notable reduction in the sen-
sitivity of SMP to kbio is observed to take place on the third day. The spe-
cific timewhere the sensitivity to kbio is lowest corresponds to a drastic
increase in the concentration of caffeine at the input to the activated
sludge unit (i.e. from, 5,920 ng/L to 40,700 ng/L) and also at the head-
works (i.e. from 4,813 ng/L to 50,800 ng/L). The effect of the increase
in input concentration on the sensitivity of SMP to kbio is mathematically
reasonable, since the expression of the time-dependent SMP obtained
from the numerical solution of Eq. 3 contains all the following: the pa-
rameter kbio, the incomingMP concentration and the initial MP concen-
tration (affected by previous incoming concentrations). A lower
sensitivity to kbio, as observed on the third day, indicates that parameter
kbio value is not significantly affecting the simulation due to other influ-
ences on the system. This is expected to increase the uncertainty of the
calibrated kbio value if data were only available in such circumstances.
Hence, avoiding sampling during expected sharp dynamics in input caf-
feine (i.e. such as over weekdays and weekends or around peak periods
during the day for high-frequency samples) improves the calibration of
kbio by eliminating data in low sensitivity conditions.

For triclosan, hypothetically increasingKd
; by100% increased the sol-

uble MP concentration by 10–40% and decreased the particulate con-
centration (in ng/L) by b5%, which is reasonably explained by the
higher calculated kdes associated with the larger value of input Kd

; . In-
creasing ksor by 100% was continuously shown to decrease the soluble
Fig. 7.Dynamic local sensitivity of theMP soluble concentrations (upper graphs) and particulate
(a & b) and triclosan (c & d) in different locations (AE: effluent of aeration tank, SE: effluent of
MP concentration by 40–100% at all locations of the activated sludge.
Considering that in the input, the soluble to particulate MP fraction
(i.e. average of 3 × 10−4 kgSS/L) is higher than that for secondary sludge
at equilibrium determined by Kd

; (1 × 10−5 kgSS/L), faster kinetics to-
wards equilibrium will continuously reduce the soluble MP concentra-
tion to achieve Kd

; . The amount of reduction in the soluble MP
concentration due to perturbations in ksor exhibited a time-dependent
profile with higher reductions in SMP (i.e. higher sensitivity to ksor) ob-
served on the first and the third days where the soluble load is the
highest. This further emphasizes the impact of the input MP concentra-
tion profile on the model's sensitivity. The sensitivity of the particulate
MP concentration to all model parameters was lower than that of the
soluble MP concentration (i.e. b20% change in XMP for 100% theoretical
change in parameter). This indicates that in the case of triclosan, mea-
suring the micropollutant concentration in the aqueous phase might
be sufficient for calibration, due to the higher sensitivity of the aqueous
phase to the model parameters compared to the particulate phase.

4. Conclusion

In this study, a model calibrated for conventional pollutants was ex-
tended to include MP fate processes and was subsequently calibrated
for a number of specific MPs of different classes using full-scale mea-
surements. The micropollutants' fate processes were included in the
bioreactor model through an available extension of the ASM2d model
and in the secondary clarifier model by extending the Bürger-Diehl set-
tler model for the first time to include the propagation and the fate pro-
cesses of MPs. Comparing results from the reactive and non-reactive
settler models indicated that a mismatch of 100% in the simulated
micropollutant soluble concentration at the underflow of the settler
would occur as a result of ignoring biodegradation taking place in the
settler for the case of the highly biodegradable caffeine. A Monte Carlo
based scenario analysis was used to find optimal parameter values, as
well as to provide information on parameter's identifiability and the
model's global sensitivity. Depending on the process that plays the
major role in the fate of a specific micropollutant, different model pa-
rameters could affect the fit of the model to different extents, which
concentrations (lower graphs) to small perturbations in the three parameters for caffeine
secondary clarifier, WAS: waste activated sludge).
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eventually determines the identifiability of the calibrated parameters.
While for the highly biodegradable caffeine and ibuprofen, kbio was
found to be the most significant parameter influencing the fit of the
model, for triclosan, both sorption parameters ksor and Kd

; were more
significant. For androstenedione, which is mildly degradable, the kbio
showed a clearer optimum compared to caffeine and ibuprofen. Dy-
namic local sensitivity analysis was performed and proposed to serve
as a tool in the design of sampling campaigns for improved calibration
of model parameters, since it provides insights on preferable input dy-
namics during sampling, aswell as on necessary types ofmeasurements
(i.e. particulate or soluble MP concentrations). These analyses provided
novel insights on the sensitivity of a micropollutant activated sludge
model to the different model parameters, as well as on the temporal
variability in the sensitivity in relation to input dynamics. The sampling
campaign used, limited in resource and time requirements, indicated a
potential for future applications of this fate model by WWTP operators
for the purpose of developing risk assessment tools to evaluate the dis-
charge of micropollutants into the environment.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.05.072.
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