

Adaptation of *SimpleTreat* to Model Chemical Fate in WWTPs with Biological Nutrient Removal

G. Boeije¹, D. Schowanek² & P.A. Vanrolleghem¹

¹ BIOMATH Department, Universiteit Gent, Coupure 653, B-9000 Gent, Belgium ² Procter & Gamble, Eurocor, Strombeek-Bever, Belgium

Introduction

- Environmental Risk Assessment: prediction needed of chemical elimination in WWTPs
- existing steady-state WWTP fate models = 'standard' carbon removal plants
- evolution in technology and legislation: increasing importance of biological nutrient removal
- this work: modifications to SimpleTreat: sludge recycling
 different redox zones in bioreactor

- corroboration for surfactant LAS

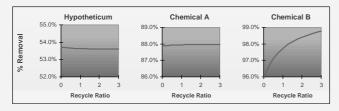
Modeling Approach

- state of the art in WWTP fate models: TOXCHEM, AS-TREAT, SimpleTreat
- SimpleTreat model: used in European Union Risk Assessment
 → selected for Nutrient Removal modification
- SimpleTreat concept:
- standard WWTP = 6 boxes
- (air, mixed liquor water + solids, settler water + solids, settled sludge)
 steady-state mass-balancing: SIMPLEBOX method:
 indust from out of the autom to be present
- influx from out of the system + influx from other boxes = outflux to other boxes + outflux out of the system + degradation
- concentrations: solve system of mass balances

Nutrient Removal Plant Configuration

- typical example = University of Capetown (UCT) reactor design
- three activated sludge tanks / zones: anaerobic, anoxic and aerobic - internal sludge recycle: aerobic → anoxic tank and anoxic → anaerobic
- settled sludge recycle to anoxic tank
- other designs: can be simplified to fit this scheme

Sludge Recycling


SimpleTreat: - only solids phase of recycled sludge is considered
 - actual recycle ratios not taken into account

- Modifications:
 - water phase (+ solutes) of sludge recycle:
 - \rightarrow additional advective transport from settler water to activated sludge tank actual recycle ratio: flow terms updated

 Effects of recycle ratio on predicted chemical removal:(for 3 hypothetic) 	cal chemicals)

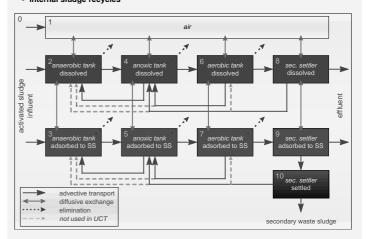
	Hypotheticum	Chemical A	Chemical B
degradation (dissolved)	+	+++	0
sorption	+	+++	+++
volatilization	+	0	+++

- simulation results:
 non-volatile chemicals: negligible effect
- volatile chemical: significant increase in predicted remova

- Explanation: volatile chemicals are also eliminated via settler surface volatilization \rightarrow lower dissolved concentration in settler than in AS tank
 - \rightarrow settler \underline{water} recycling \rightarrow dilution in AS-tank dissolved phase

ightarrow desorption from solids due to non-equilibrium

hence: larger chemical fraction available for volatilization in AS tank

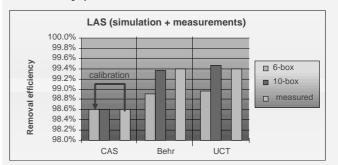

Model Adaptations

6-box model

- very similar to original SimpleTreat 6-box model
- main modifications:
- sludge recycling
- correction of stripping & degradation (taking into account redox zones)
 corrected oxygen requirement: nitrification / denitrification O₂ balance

10-box model

- direct representation of UCT process
- 3 functionally different AS tanks
 - biodegradation: corrected for redox conditons
 - stripping: only in the aerated tank
 surface volatilization in all tanks
- internal sludge recycles


Model Application & Corroboration

Description of Treatment Plants and Chemicals

- fate simulation + laboratory measurements of Linear Alkylbenzene Sulphonate (LAS)
 3 lab-scale activated sludge plants:
- 3 lab-scale activated sludge plants: OECD CAS test (aerobic), Behr KLD-4 (aerobic+anoxic), UCT-based CAS unit

Results and Discussion

- calibration of LAS degradation rate (parent degradation only): fitting 6-box model to standard OECD CAS test results $\rightarrow k = 4 h^{-1}$
- (cf. 'default' for readily biodegradable chemicals = $3 h^{-1}$)
- 6-box versus 10-box model results:
 perfect fit for CAS (model reduced to 6-box = calibration case !)
 - multiple reactor Behr + UCT units: 10-box model had higher predictive power than 6-box
- 10-box model removal prediction within 0.1% (absolute) of measured removal → 10-box model allowed to accurately predict LAS removal in 2 BNR plants,
- using a calibration **based on the results of a standard OECD CAS test** • 6-box model slightly underestimated removal efficiencies

Conclusions

- by a number of simple modifications, the SimpleTreat concept could be adapted
 to single-sludge nutrient removal WWTPs
- to single-sludge nutrient removal WWTPs • more realistic description of sludge recycling is proposed
- \rightarrow may improve fate prediction of highly volatile chemicals

- 2 approaches (based on UCT design): 6-box and 10-box model were presented
 10-box model allowed to accurately predict LAS removal in 2 BNR plants,
- using a calibration based only on the results of a standard OECD CAS test
- recommendation: focus further research on corroboration for different chemicals