

Theoretical Uncertainty Analysis Supporting the Development of a Geo-referenced Regional Exposure Assessment Tool for European Rivers

T. Galoch¹, G. Boeije² & P.A. Vanrolleghem²

(1) Institute of Environmental Engineering Systems, Warsaw University of Technology, Poland (2) BIOMATH Department, Universiteit Gent, Belgium

Introduction

The **GREAT-ER** system is used to **calculate the PEC** (Predicted Environmental Concentration) of chemicals, **together with its uncertainty and variability**, which arise due to the uncertainty (lack of exact knowledge) and variability (natural changes over space and time) of inputs and parameters.

The objectives of this study were:

- · to check the applicability of different uncertainty calculation methods
- to calculate the overall output uncertainty
- to calculate the **amount of uncertainty coming forth from each independent variable** (i.e., calculation of model sensitivity to each variable)

To approach these objectives three methods were applied: Monte Carlo simulation, First Order Analysis and Least Square Linearization.

Case Study and Parameter Uncertainties

Study Geography

hypothetical case area (each box = a river stretch, "D" = waste water discharge)

Parameter Uncertainties

 fixed uncertainties for P (population), M (chemical consumption), W (water consumption), R (removal efficiency in WWTP), V (river velocity) predictions (regression parameters a,b,c)
 → NORMAL distribution

Compared to Monte Carlo method, sum of uncertainties may be different due to linearization error:

Uncertainty split

into its sources

(probably because parameter uncertainties were too big to be properly handled by this method)

- variability of **Q (river flow)** → LOGNORMAL distribution
- uncertainty of in-stream-removal rate K:
- series of simulation experiments: different K values, different uncertainties mean values for K: varied from 0.01 to 0.8 h^1
- range for uncertainty: set from 0 to 0.8 (in terms of standard deviation)
- distribution types: UNIFORM, NORMAL, LOGNORMAL.

to obtain the contribution of each variable to the overall uncertainty

→ two techniques were used, based on linearization

Lumped

uncertainty

First-Order Analysis

100

90 80 70

60 50

40

30 20

10

failed

- Lumped Uncertainty: Monte Carlo
- Monte Carlo simulation: lumped predictive uncertainty of the model
 → probability distribution
- example of PEC uncertainty + variability profiles along the river:

- coefficient of variation (σ/μ) along river varies strongly (can go up to 200%)
 simulations with no uncertainty for K → coefficients of variation up to 80% 90% (distribution width = PEC₉₅ divided by PEC_{mean}: 240% 250%)
- coefficients of variation increase downstream, due to downstream propagation of the predictive uncertainty.

Uncertainty Split into its Sources

Least Square Linearization

= multilinear regression, conducted on results from Monte Carlo analysis

Sensitivity coefficients (for uniform distribution of K with 0.8 mean and +/- 0.8 deviation):

Segment	Q	а	b	М	Р	W	f _{bypass}	R_{WWTP}	k	PHLp
100	3.1%	insign.	insign.	-	-				0.2%	96.6%
200	6.2%	insign.	insign.	-	-	-	-	-	2.2%	91.6%
300 D	13.3%	0.2%	0.4%	7.8%	1.0%	insign.	1.0%	0.5%	24.5%	51.3%
400	2.0%	insign.	insign.	-	-	-	-	-	0.3%	97.6%
500	4.5%	insign.	insign.	-	-	-	-	-	0.3%	95.1%
600	8.1%	insign.	insign.	-	-	-	-	-	16.7%	75.2%
700 D	9.0%	0.3%	0.8%	12.0%	1.3%	insign.	11.8%	6.7%	58.1%	-
510	2.7%	0.1%	0.1%	-	-	-	-	-	7.2%	89.9%
520 D	1.8%	insian.	insian.	2.1%	insian.	0.2%	-	-	96.0%	-

most stretches:

main uncertainty due to downstream propagation (PHI_{up} = upstream chemical flux)
 most sensitive parameters:

river flow (accounting for natural variability of the system)
 degradation parameter K

- degradation parame

'special' stretches:

closest to discharge points: main source of uncertainty is K, and less Q

 with discharges: uncertainty also caused by emission parameters (product consumption, WWTP data)

(product concumption, rrm

Conclusions

Difference due to

linearization error

parameter 5

parameter 4

n parameter 3

n parameter 2

parameter 1
 overal uncertainty

- This study was mainly conducted on a hypothetical case, and it should be regarded more as a gross estimation of what the uncertainty of the GREAT-ER model could be. Next, it was also a test polygon for the analysis methods.
- Monte Carlo proved to be straightforward for calculating the lumped uncertainty.
 In the hypothetical case the resulting distribution width was rather narrow:
- the 95%-ile value did not exceed the mean value more than 3.5 times.
- The uncertainty strongly propagates downstream, its main sources are the instream removal parameter and the natural system variability.
- To calculate uncertainty split into its sources, Least Square Linearization was found to be a very powerful method.

Geography-referenced Regiona Exposure Assessment Tool for European Rivers