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Abstract: In recent years, there has been a growing awareness of the ill-de�nedness
of biotechnological processes, in particular the uncertainties attached to their mod-
els. Since both white-box and black-box models have their disadvantages, a mix
between both formalisms is desirable. This formalism consists of grey-box models.
In continuous time grey-box models often are described by stochastic di�erential
equations (SDE's). In contrast with the increasing popularity of using SDE's, focus
has rarely been upon the modelling of the noise characteristics. In this paper, a general
framework in which the modelling of noise characteristics may proceed is presented.
The framework will be illustrated by means of a practical biotechnological example.

Keywords: Biotechnology, Stochastic modelling, Di�erential equations

1. INTRODUCTION

In recent years, mathematical models have gained
importance in describing, analyzing, optimising
and controlling all kinds of systems. Along with
the importance of models there is a growing
awareness of the ill-de�nedness of certain sys-
tems (e.g. stock exchange or biotechnological pro-
cesses).

In modelling ill-de�ned systems, two modelling
approaches have been developed in the past (Spriet
and Vansteenkiste, 1982). Deductive modelling
(\white-box" models) uses the already available
a priori knowledge, whereas inductive modelling
(\black-box" models) is based on data.

Due to, for example a lack of knowledge, a lack
of data, and the intrinsic unpredictability of ill-
de�ned systems, there is a growing awareness
of the importance of the concept of uncertainty.
However, white-box (deterministic) models are
not capable of including the uncertainties into the
model. black-box models do take the uncertainties
into account, but these models often lack a certain

amount of predictive value and do not take advan-
tage of substantial a priori knowledge that may
be available. Therefore a mix between both the
inductive and the deductive models is desirable.
This can be achieved by including (stochastic)
noise terms into the (deterministic) white-box
models, resulting in stochastic grey-box models.

In continuous time grey-box models often are
being described by stochastic di�erential equa-
tions (SDE's). The use of SDE's is becoming in-
creasingly popular in, for example, water quality
modelling (Finney et al., 1982; Zielinski, 1988),
in the modelling and control of the wastewa-
ter treatment processes (Carstensen, 1994; Tenno
and Uronen, 1995) and biotechnological pro-
cesses (Kinder and Wiechert, 1995). Some theo-
retical background on the subject of SDE's can,
for example, be found in Bagchi (1993), Jazwin-
ski (1970) or Kloeden and Platen (1992).

This paper will focus upon the modelling of the
noise characteristics in grey-box SDE's. In con-
trast with the growing popularity of using SDE's,



focus has rarely been on �nding the adequate com-
plexity or characteristics of the noise term. Often,
di�erent noise characteristics will yield di�erent
results in, for example, control (�ltering) or un-
certainty analysis. Moreover, inclusion of a noise
term with particular characteristics might yield
undesired results. For instance, a concentration of
a substance in a bioreactor smaller than zero, may
be obtained if the mean of the concentration is
close to zero and the variance is large. Another
motivating example is the desire to develop large
systems of SDE's which can be used for a more
robust control or risk analysis. Including noise
terms without much consideration might result in
unrealistic or very complex systems of stochastic
di�erential equations.

In the next section SDE's will briey be discussed.
Section 3 will describe a general framework for
modelling noise characteristics. This framework
will be illustrated in section 4 with an example.
Finally some conclusions will be given in section 5.

2. STOCHASTIC DIFFERENTIAL
EQUATIONS

A stochastic di�erential equation, which is appro-
priate for biological growth processes (Kloeden
and Platen, 1992), is de�ned by

dXt = f(t;Xt)dt+G(t;Xt)dWt; t � t0 (1)

Xt0 is a given random vector

where Xt is a d-dimensional vector, f is a d-
dimensional vector-valued function,G is a matrix-
valued function of order d � m and Wt is a m-
dimensional Wiener process or Brownian motion.
A Wiener process is heuristically de�ned by

Wt =

Z t

0

Nsds; t � 0 (2)

where Ns is a Gaussian white noise process. The
functions f(t;Xt) andG(t;Xt) are called drift and
di�usion, respectively.

2.1 Solutions of Stochastic Di�erential Equations:
The Fokker-Planck Equation

The solution of a SDE is a Markov process. It
is a stochastic process with the property that,
given the value of Xt, the values of Xs; s > t

do not depend on the values of X� ; � < t.
Therefore the probability density function (pdf)
p = p(t;x; t0;x0), de�ned as the density of the
transition probability P (Xt = xjXt0 = x0),
satis�es the Fokker Planck equation
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(3)

with the initial condition

lim
t#t0

p(t;x; t0;x0) = �(x0 � x) (4)

where � is the Dirac delta function on Rd. The
matrix-element di;j is given as the i; jth-element
of the matrixD = GGT . For simple problems this
equation can be used to provide the pdf. However,
for more complex problems it is not possible
to solve the Fokker Planck equation. Since one
is often only interested in the central moments
(mean, variance, skewness) of the solution of a
SDE, the moment equations might provide a good
alternative.

2.2 The Moment Equations

The moment equations are given by
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where �(xt) is equal to fxitg for calculation of the

�rst moment of the ith-element and fQn
j=1 �x

ij
t ,

1 � ij � dg or fQn
j=1 x

ij
t , 1 � ij � dg for calcula-

tion of the nth-order central moments or nth-order
(non-central) moments, respectively. Here, �xit =
xit � E[xit]. If both the drift and di�usion of the
SDE are linear these equations will provide ordi-
nary di�erential equations exactly describing the
moments. However, for highly complex and non-
linear systems, approximation of the moments
equations is possible but might result a system of
non-stable ODE's. In this case numerical methods
for solving SDE's will turn out to be valuable
tools.

2.3 Numerical Solutions of Stochastic Di�erential
Equations

Numerical methods for SDE's can be used in
direct simulations, i.e., simulating one trajectory
(realisation), such as �ltering or testing estima-
tors. Another application of numerical methods
for SDE's is the approximation of E[�(Xt)], where
� is equal to, for example, Xt or XtX

T
t (Kloeden

and Platen, 1992).
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The most simple discrete approximation of a SDE
is the Euler approximation which is given by

X i
n+1 = X i

n + f i(tn;Xn)�

+

mX
j=1

Gi;j(tn;Xn)�W
j (6)

where � = tn+1�tn and �W =W (tn+1)�W (tn)
is theN(0;�) increment of the Wiener processW .

In order to approximate, for example, the �rst
and second central moments one needs to apply
Monte Carlo methods for generating a batch of
random trajectories of the SDE. Subsequently, the
�rst and second moments (at each time instant)
can be estimated by using the standard statistical
formulas.

3. A FRAMEWORK FOR MODELLING
NOISE CHARACTERISTICS

The modelling of noise characteristics is de�ned
as characterising the structure of the di�usion
function G in equation (1). As in modelling
ill-de�ned systems (Kops et al., 1997; Spriet
and Vansteenkiste, 1982), the modelling of noise
characteristics consists of constant interactions
between information sources and activities. A
schematic representation of the process of noise
characterisation is given in �gure 1.

3.1 Information Sources

Three major information sources can be identi�ed:
(a) goals and purposes, (b) a priori knowledge and
(c) experimental data.

The goals and purposes of the modeller will orient
the noise characterisation process. It will, for
example, determine the complexity of the noise
structure. The a priori knowledge reects the
knowledge already gathered (e.g. physical \laws").
The experimental data are the observations of
the systems behaviour. For noise characterisation
special focus is upon the noisy uctuations of the
observed behaviour.

3.2 Activities

From Figure 1 it may be concluded that all ac-
tivities have to be performed top down. However,
during the generation of both rules and structures
there exist constant interactions between the ac-
tivities and information sources.

The rules are a reection of all three information
sources. Since there will often exist a one-to-one
mapping between the a priori knowledge (laws)
and the rules, generating rules from the a priori
knowledge is rather straightforward. Most rules
resulting from the goals of the user reect the
complexity of the desired noise structure. For
example, on-line control requires less complex
noise structures than analysis of the system.

Generation of rules using the available data is
more complex. If enough data (of repeated ex-
periments) is available, the distribution (of all
these data sets) can be approximated and used
as a guideline. However, often only few data is
available. In this case, a guideline for the variance
characteristics can be provided by �tting the cor-
responding deterministic model to the data and
examining the remaining residuals.

After rule generation, di�erent candidate noise
structures must be generated. Noise structures
can be generated randomly or with use of the
available information sources. Two examples of
noise structures are additive noise terms, i.e.,
adding a constant noise term to the determin-
istic model, and \parameter noise". Parameter
noise is generated by assuming the (deterministic)
model parameters to be stochastic variables and
rewriting (with or without approximations) the
model into an SDE form. Since parameter noise
often leads to rather complex structures, it is also
advised to generate more simple structures such as
linear or square root dependency (implying linear
dependency of the noise matrix D = GGT ) on
the state variables.

Having generated a candidate set of rules and can-
didate noise structures, an appropriate structure
must be selected. This will be done by deductive
and inductive reduction. Deductive reduction will
eliminate all models of which can be theoretically
shown to violate one or more rules. No data will
be used in the evaluation. Inductive reduction will
use data to �nd the structure which obeys the
rules as close as possible.

4. AN EXAMPLE: THE SINGLE MONOD
MODEL

The simple process to which this modelling frame-
work is applied for illustrative purposes consists
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of a simple biological growth system in which
one organism is aerobically growing on a single
substrate. The system described below in fact
is a subsystem of a larger system characterised
by a population of micro-organisms aerobically
growing on a mixture of substrates. In the project
the possible usefulness of SDE models is evaluated
in the framework of uncertainty analysis, robust
control and basic understanding of such biopro-
cesses.

The simple growth system studied is subjected
to pulse substrate additions, allowing biokinetic
characterisation of the growth process.

The culture with a certain initial biomass concen-
tration X0 is confronted with a sudden increase
of the limiting substrate concentration from zero
to S0. Growth with a yield Ysx is assumed to
occur according to Monod kinetics and endoge-
nous metabolism is assumed to occur at a rate
(�bXt), while maintenance is assumed absent.
Oxygen consumption is proportional to substrate
oxidation and endogenous metabolism and oxygen
supply occurs through continuous aeration of the
bioreactor (KLa(O

s � O)) leading to the oxygen
mass balance. The only measurement made on the
bioreactor consists of a dissolved oxygen electrode.
Typical data sets collected during such pulse ex-
periments are depicted in Figure 2. Experiment
duration is approximately 20 minutes and measur-
ing frequency is about 10 seconds. Initial substrate
and biomass concentrations are known from o�-
line analysis.

The model is given by equation (1) where the
\deterministic" part, the drift, is given by

f(Xt)
T =

h
�maxSt
Ks+St

Xt � bXt;� 1
Ysx

�maxSt
Ks+St

Xt;

KLa(O
s �Ot)� 1�Ysx

Ysx

�maxSt
Ks+St

Xt � (1� fI)bXt

i
(7)

where Xt = [Xt St Ot]
T with Xt the biomass con-

centration, St the substrate concentration, and Ot

the oxygen concentration. The noise structure G
will be characterised in the following subsections.

4.1 Generation of Rules

Below some (�rst) rules are de�ned

1. All concentrations cannot be smaller than
zero. This rule is relevant since in this exper-
iment the substrate concentration approach
zero. Whenever it is highly improbable, dur-
ing a di�erent type of experiment, that the
concentrations will be close to zero, this rule
may be omitted in order to reduce the noise
structure complexity.

2. The noise structure should be as simple as
possible. The simplicity (or complexity) de-
sired depends highly on the modellers goal.
However, as a general rule it is recommended
to model the noise structure as being con-
stant, linear or as a square root (implying
GGT to be linear) if this does not imply
violation of other rules.

These rules were de�ned using mostly a priori
knowledge and the modeller goals. The next rule
is based on the available data (�gure 2).

3. The noise structure should reect the noisy
uctuations of the oxygen concentration just
before (and during) it reaches a minimum
and after it has (almost) stabilised. It is ex-
pected that the variance will increase when
the mean oxygen concentration approaches
its minimum. Thereafter it will decrease un-
til an almost constant value. This rule can
be deduced from �gure 2 and from Vanrol-
leghem et. al. (1994) where a residual analy-
sis is done after �tting a deterministic model
to oxygen uptake rate (OUR) data.

4.2 Generation of Noise Structures

Three noise structures are proposed. The �rst two
are given by

G1(Xt) =

2
66664

�x 0 0

0 �s 0

0 0 �o

3
77775 (8)

G2(Xt) =

2
66664

0 0

0 0

�osKLa �kla(O
s �Ot)

3
77775 (9)

and the third is shown in Figure 3, whereW1;t =
[W x

t W s
t W

o
t ]
T ,W2;t = [W os

t W kla
t ]T , andW3;t =

[W�
t W b

t W ks
t W

y
t ]

T . The �rst noise structure
G1 can be interpreted as additive noise. Noise
structure G2 can be interpreted as noise on the
parameters KLa and O

s. The most complex noise



G3(Xt) =

2
6666666664

��
StXt

Ks + St
��bXt ��ks �maxStXt

(Ks + St)2
0

��� 1

Ysx

StXt
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0 �ks

1
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��Y �maxStXt
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��� 1� Ysx

Ysx

StXt

Ks + St
��b(1� fI)Xt �ks

1� Ysx

Ysx

�maxStXt

(Ks + St)2
��y �maxStXt

Ks + St

3
7777777775

(10)

Fig. 3. Noise structure G3.

structure G3 can be interpreted, after some ap-
proximations (Kops, 1997), as noise on the kinetic
parameters �max, b, Ks and the stoichiometric
parameter Ysx.

4.3 Deductive Reduction

Using the moment equations, it can analytically
be proven that if one of the variables in Xt

approaches zero, its variance will diverge if the
noise structureG contains a constant term (Kops,
1997). Therefore, structures G1 (�x, �s and �o
are constant) and G2 (�kla is constant) violate
rule (1), and G3 will be chosen in favour of G1

and G2. Note that most applications described
in literature (e.g. Carstensen (1994) and Tenno
and Uronen (1995)) do use an additive noise
term, making them un�t for the description of
system behaviour where one of the state variables
approaches zero.

An important tool in deductive reduction is sensi-
tivity analysis. If the model output, in particular
its �rst two moments, is not sensitive to changes
in the noise parameter ��, the noise term related
to �� can be dropped. In �gures 4 and 5 the
sensitivity of the variance of Ot (at two di�erent
time instants) towards the parameters ��, �b, �ks,
and �y is shown 1 . Indeed, focus is upon this
characteristic of the noise model because the third
rule of the exercise asks for evaluation of V ar(Ot).
In these �gures \100%" is, for each parameter, a
reference value. Since Ot is the most commonly
measured variable and EOt does not show any
sensitivity towards the noise parameters, the vari-
ance of Ot is chosen as a criterion. The �rst time
instant for sensitivity evaluation has been chosen
in such a way that V ar(Ot) is at its maximum and
the second time instant lies in the tail of both
the mean and variance of Ot (�gure 6). As can
been seen in �gures 4 and 5, the variance of Ot

is not very sensitive towards the parameter �ks.
This implies that the noise term related to this

1 All means and variances in this subsection have been
approximated using numerical methods for SDE's together
with Monte Carlo simulation (as described in subsec-
tion 2.3).
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parameter (�maxStXt

(Ks+St)2
times a constant) only has

a very small inuence on the model output noise
characteristics. Since this noise term is included in
all three di�erential equations (only di�ering with
some constant) this term can be dropped from
noise structure G3.

4.4 Inductive Reduction

In �gure 6 the variance of noise structure G3

is shown. Notice that the characteristics of the
variance shown in this �gure matches rule (3).
Since structure G3 is rather complex, another
more simple noise structure is proposed

G4(Xt) =2
66666664

��
p
St ��b 0

��� 1

Ysx

p
St 0 ��y

p
St

��� 1� Ysx

Ysx

p
St ��b(1� fI) ��y

p
St

3
77777775
(11)
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where W4;t = [W�
t W b

t W
y
t ]

T . In this structure
the Monod kinetics are replaced by

p
St. This

implies that the variance of the noise terms is
(linearly) related to St. The variableXt is dropped
from the noise model since, in this experiment,
it is far from zero and almost constant. Figure 6
shows the variance of the SDE's with both noise
structures G3 and G4. These �gures show that,
roughly, the characteristics of the variance are the
same, i.e., G4 still obeys rule 3. If a simple noise
structure is highly desirable (rule 2), structureG4

can be chosen in favour of G3.

5. CONCLUSIONS

In this paper a general framework for mod-
elling noise characteristics in stochastic di�er-
ential equations is given. Using this framework,
an appropriate noise structure for the modelled
system can be found. Including it into a (deter-
ministic) white-box model, will result a grey-box
model. This model is capable of both describing
the uncertainties in the system and the available
a priori knowledge.

A major consideration for modelling the noise
structure is the generation of large systems of
grey-box SDE's which can be used for more ro-
bust control, better analysis of the system or risk
analysis. Here, too little consideration about the
noise structure might lead to unrealistic or very
complex SDE's. The framework provided in this
paper, illustrated using a simple model, can be
used as a guideline for obtaining grey-box SDE's
from more complex and larger (more variables)
deterministic models (such as the cell age model
for Penicillium chrysogenum fed-batch fermenta-
tion proposed by Yuan (Yuan et al., 1997)).
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