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Abstract:  In antibiotics industry, the titre in bioreactors is the most important process
variable both for process supervision and scheduling. It is therefore of great significance to
develop a software sensor to predict the product formation. In this contribution, a pseudo
dynamic product predictor based on artificial neural network is designed. The input process
variables of the predictor include substrates, precursor, nutrients and oxygen consumption,
carbon dioxide evolution and also the product formation. These process variables are
usually available in practice. Only the accumulated values of these variables rather than the
instant ones are used. A feedforward neural network is chosen for one-step-ahead prediction
of total product titre at the next step. The input vector of the neural network is the time
series of process variables over a predetermined time period. The database for network
training is composed of a series of such vectors taken from historical charges which are
processed as well as updated by a moving-data-window’s technique. The software sensor is
tested by data of three industrial charges and ten model "generated" batches. MATLAB is
used for training and testing of the neural network. The predictor is expected to be applied
in optimal fermentation time scheduling for antibiotics production. Improvements and
further development of the software sensor for real time applications are discussed.

Keywords:  Software sensor, product prediction, neural networks, biotechnology, process
optimization.

1.  INTRODUCTION

Application of neural networks to modeling and
control of bioprocesses has been investigated for a
long time. Many encouraging results have been
obtained by applying ANNs to bioprocess state
estimation, modeling, pattern recognition and control
(Karim and Rivera, 1992; Psichogios and Ungar,
1992; Raju and Cooney, 1992; Schubert et al., 1994;
Thibault et al., 1990). Some industrial application
oriented investigations have shown a promising
prospect of neural networks. Montague and Morris
(1994) applied neural network models in biomass
prediction and fault diagnosis for the penicillin
production operated by SmithKline Beecham (Irvine,
UK). Linko et al. (1995) successfully applied a
dynamic neural network to predict product formation

and substrate consumption for commercial lysine
production. In this contribution, a neural network
configuration similar to those reported in the
literature is used. Our purpose, however, is to
develop a product predictor that could meet the
requirement of real time applications by using only
routinely available data. It is expected to be applied
to predict the profit function, a central part in on-line
profit optimization.

It is a common experience that in antibiotics
factories, the titre in a bioreactor is the most
interesting process variable. This leads to the
necessity of designing a software sensor for product
formation. Since the product concentration is
frequently sampled and analyzed (though with time
delay), the software sensor can be "calibrated" by



routine analysis data supplied during industrial
production. This makes it to be easily adopted by
end-users. Besides the product concentration, other
variables routinely available such as OUR, CER,
substrate consumption, precursor consumption etc.
should also be treated as input variables. Biomass
concentration is a very important variable in any
fermentation process, but it is usually not routinely
analyzed in antibiotics production so that it can not
be included from an industrial application point of
view. In many investigations in the literature, instant
values of the concerned variables are used for the
purpose of state estimation. The instant values may
be corrupted by measurement noise, especially the
measurements like OUR, CER and product
concentration. Therefore, in our product predictor,
integrated or accumulated values of these variables
are chosen as input. This does not mean, however,
any loss of dynamic information. Since the input
vectors of the neural network are taken from the
transients of the accumulated variables, they contain
therefore both stationary and dynamic process
information over the specified operation period. The
neural network is said dynamic since it accepts this
dynamic information as input.

2. DATA PRETREATMENT AND THE NEURAL
NETWORK TOPOLOGY

Once a charge is started, the following variables are
closely correlated with its dynamic behaviour.

(1) Initial medium composition, off-line measurable
(2) Volume of medium, on-line measurable
(3) Feeding rate of all substrates and nutrients, on-

line measurable
(4) Intermediate withdrawal of the medium, on-line

or off-line measurable
(5) OUR and CER, on-line measurable
(6) Temperature, dissolved oxygen and pH, on-line

measurable
(7) Antifoam agent and alkali consumption, on-line or

off-line measurable
(8) Other off-line analysed variables

In a well equipped fermentation system, the
measurements of these variables are usually available.
For neural network training, these data are pretreated
in such a way that at any time, as soon as the latest
sampling data of product concentration is available,
one knows how much product and carbon dioxide
have been produced and how much oxygen, glucose,
precursor and other nutrients has been consumed.  Fig.
1 shows a typical time course of some of the
pretreated input variables. The data originate from an
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Fig. 1 Part of input variables of an industrial charge
(Charge 1) used in the software sensor testing for
penicillin titre prediction

industrial scale charge. For reasons of confidentiality,
the real scales of the figure (as well as the other
figures in this text) have been removed. The
measurement noises of the original records were
relatively high. However, after integration, they
change much more smoothly. Other variables which
correlate with product formation but measured at a
higher frequency, such as temperature, pH and PO2,
are processed using a moving-averaging technique to
get step-wise changing profiles.

Assuming the sampling time interval fixed, all
profiles of accumulated and averaged variables of a
historical charge will be cut into a series of dynamic
pieces via moving data windows’ technique so as to
obtain the input and output data vector for the neural
network. Fig. 1 shows the first data window (solid
frame) and output window (or prediction widow,
dotted frame). The width of these two windows is
denoted by TD and TP, respectively. There are some
principles to determine the width of the windows. A
larger TD involves more dynamic process
information, but it may increase the dimension of the
input data vectors since, in order to keep the
discretisation accurate, the discretising time interval
can not be increased accordingly. If TD is too small,
then the network may be too sensitive to
measurement noises. As for TP, generally speaking, it
should not exceed TD.

The input vector X(Tk) is represented by Eq. (1):

X(Tk)=[ Tk x(Tk) x(Tk−1τ) x(Tk−2τ) ⋅⋅⋅⋅
   x(Tk−mτ) ]T (1)

where,

x(Tk)=[ O2(Tk) CO2(Tk) P(Tk) PAA(Tk) S(Tk)
Nit(Tk) Temp(Tk) pO2(Tk) pH(Tk) ALK(Tk)
OIL(Tk) ⋅⋅⋅⋅ ]T (2)

In Eq. (1) and (2), k represents the kth data window;



Tk the fermentation time at the right border of the kth
data window; and X(Tk) the kth input vector. m is the
number of dating back step and τ the time interval for
discretisation of the input variables. Hence, m×τ
determines the time span which both the data window
and X(Tk) covers. The other symbols in x(Tk) are
accumulated or averaged values of the related process
variables at time Tk. Their meanings and units are
given in the Nomenclature.

For one-step-ahead prediction, the output data pair,
Y(Tk), is given by Eq. (3):

   Y(Tk)=P(Tk+TP) (3)

For demonstration, TP takes the value of 1τ. For a
historical charge with a cultivation period of Tf, the
number of input-output data-pairs, N, is readily
calculated by:

N int  (
Tf T T

T
)

D P

M
=

− −
(4)

where, TM is the moving step length of the data
windows.

Clearly, the number of input nodes of the neural
network in the software sensor is determined by the
dimension of X(Tk). Determination of τ, m and
selection of variables in x(Tk) is critical for a
successful design of the software sensor. In
antibiotics industry, the sampling interval is typically
4 hours. If τ takes the same value as the sampling
interval, m is chosen as 8 and the input variables are
chosen as the first ten elements in x(Tk), then the
input vector will cover a time span of 8×4=32 hours
and the number of input nodes should be 1+(8+1)
×10=91. Furthermore, if a two layer feedforward
neural network is used and five neurons in the hidden
layer are chosen, then there are 91×5=455
weights to be determined, a rather large number.
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Fig. 2 Time course of product formation during 3
industrial scale charges (symbols) and the
product change region of 10 model-generated
batches (area  between shadow lines).

There are several ways to simplify the problem. First,
a larger τ, e.g. 8 hours, may be used. In this case,
significant loss of dynamic information may be
avoided by keeping shorter moving step (4h for
antibiotics fermentation) of the data window so that
the database still contains almost the same dynamic
feature of the process. The advantage of doing this is
the drastic reduction of the number of the input nodes
and synchronizing with shift time (usually 8h) in
industrial practice. Second, only the most important
variables should be involved in the input data vector.
Some relatively constant variables such as pH and T
could possibly be excluded. And at last, trial and
error can be used to reduce the number of neurons in
the hidden layer(s). In our case, for example, even 3
neurons in the hidden layer may give a relatively
satisfactory result.

3. TESTING RESULTS

The data for the software sensor testing consist of two
parts. On the one hand, there are three industrial scale
charges and, second, ten model-generated batches.
The symbols in Fig. 2 show the time course of the
product formation during Charge 1-3, while the area
between the two shadow lines indicates the region of
product changes of the model-generated batches. The
model is a combined cell age and kinetic model
which has been verified by industrial scale
experiments (Yuan et al., 1997b). The model
parameters were identified with the data of an
industrial batch (Charge 1). The model-generated
batches were obtained by changing initial biomass
concentration, feeding rate, and some critical model
parameters such as the maximum product formation
rate, yield coefficient and maintenance coefficient. To
a more or less extent, these simulated data reflect the
process fluctuations observed in real production. At
the moment, usage of the simulated batches for neural
network training is necessary due to the limited
number of real data sets the authors had access to. In
future applications, about 10 to 40 real charges are
available for neural network training.

By choosing m and τ as 3 and 8h, respectively, the
input vector contains discrete input variables over a
period of 24 hours and the output is the amount of
product 8h ahead. The input variables include O2,
CO2, P and S. Precursor and nitrogen consumption as
well as other variables could not be included at
present because the major part of the input data are
generated by the model system that does not  involve
these state variables. Therefore, the input data vector
X(Tk) contains only 17 elements:

X(k)=[ Tk O2(Tk) CO2(Tk) P(Tk) S(Tk) ⋅⋅⋅⋅⋅ O2(Tk-24)
CO2(Tk-24) P(Tk-24) S(Tk-24) ]T (5)
   

Denoting θ1, θ2, θ3 and θsim as the input-output data
set for Charge 1, 2, 3 and simulated batches,



respectively, one obtains three combinations for
training and testing of the neural network:

Case 1: (θ2, θ3, θsim) for training, θ1 for testing
Case 2: (θ1, θ3, θsim) for training, θ2 for testing
Case 3: (θ1, θ2, θsim) for training, θ3 for testing

The neural network used here is a two layer
tansig/purelin network, i.e., a tan-sigmoid transfer
function for the hidden layer and a linear transfer
function for the output layer, one of the standard
structures in the MATLAB Neural Network Toolbox
(Demuth and Beale, 1994). The output layer contains
one neuron since only the product formation at the
next step will be predicted.

Fig. 3 shows the one-step-ahead prediction results of
a 17-3-1 network. The product predictions for Charge
1 and 2 are quite close to their measurements.
However, for Charge 3 the prediction error is high
after 140h. The reason for that may lie on the
incomplete training database (θ1, θ2, θsim). Indeed,
most of the data used for training are model
simulations and the dynamic information of charges
like Charge 3, which reached the saturation phase
earlier than usual, were not included. On the other
hand, considering that only four input variables are
used, the results in Fig. 3 are rather promising. In real
applications, two more input variables (precursor and
nitrogen) and much more training batches will be
available which may enhance the robustness and
accuracy of the predictor.
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Fig. 3 Comparison between measurements (symbols)
of product and the predictions (lines) by an one-
step-ahead predictor based on a 17-3-1 neural
network. PE, MV and PV means the prediction
error, measured value and predic-tion value. 1~3
corresponding to Charge 1~3.

Fig. 4 shows the influence of the number of neurons
in the hidden layer on the training and prediction
accuracy. Here only Case 2 and 3 are focused upon
(Case 1 is not very interesting because most of the
training data, the model generated batches, are based
on the parameters of Charge 1). Since the initial
weights and biases are generated randomly which
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Fig. 4 Training error (solid symbols) and prediction
error (empty symbols) as function of the number
of hidden neurons for Case 2 and 3. TE: Training
error; PE: Prediction error.

results in a difference between the final training
results, the values plotted in Fig. 4 take the average of
ten training-prediction exercises. One may find the
general tendency of decreasing training error (solid
symbols) as the number of hidden neurons increases.
However, this does not apply for the prediction error
(empty symbols). On the contrary, the prediction
error corresponding to 15 hidden neurons is the
highest in both cases which indicates the tendency of
overfitting. Hence, 3 hidden neurons seem to be
acceptable by balancing computation efforts and
errors (of training and prediction).

The Levenberg-Marquart optimization approach is
chosen for backpropagation training. By using a
486DX computer with 32M extended memory and
under the predefined sum-squared error goal of 10-3,
training usually finished within several minutes if the
number of hidden neurons ≤ 6. In the case of 15
hidden neurons, training time is as much as 50
minutes. Therefore, if the number of neurons in the
hidden layer can be limited to around 5-6 in industrial
case, the training speed would be fast enough to meet
the requirements of on-line application.

4. DISCUSSION AND CONCLUSION

The one-step-ahead product predictor described here
focused on the prediction of total product. The
predictor is a basic element of the profit optimization
system described by Yuan et al. (1997a) because it
enables the on-line prediction of the revenue.
Revenue estimation is the centrepart in process
behavior classification (from the economic point of
view) and subsequent on-line optimal scheduling for
a multi-fermenter plant. Besides, the software sensor
may give an earlier alarm signal for possible
abnormal batches such as contamination or other
stoppages if the predicted product formation is
significantly lower than average values.



The predictor itself will be “calibrated” with routine
off-line analysis data of the product concentration.
Calibration means that the training data set is
regularly updated and the training process repeated as
soon as the complete data set of the latest charge is
available. The use of accumulated variables is a
distinguished feature of the software sensor. It is
advantageous for eliminating the influence of
measurement noises but by no means at the cost of
dynamic information contained in instant data. The
accumulated input variables are broken down into a
series of dynamic pieces via the moving-data-window
technique to form the input-output data-pairs for the
neural network. The shortest moving step of data
windows is equal to the sampling interval.

The precondition for the software sensor to work is a
reliable mass balance both in liquid and gas phases.
Selection of the input process variables, τ, m and the
neural network’s topology plays also an important
role to the performance of the software sensor. For
penicillin production, it seems that six input variables
are necessary: O2, CO2, P, S, PAA and N, although in
this paper only the first four variables were used for
lack of enough data. For other bioprocesses, the
number of input variables may probably be limited at
the same level after careful investigation on the
process kinetics and working conditions. Note that
variables like biomass in mycelia cultivations which
are usually not routinely available will be excluded
from the input process variables. τ and m are two
process dynamics dependent factors. For most
industrial bioprocesses, τ may change between 1 and
8h and m between 2 and 5.

The number of neurons in the hidden layer should be
as few as possible because, in the case of industrial
applications, 30 to 40 input nodes may exist and the
training database may include one thousand input-
output data-pairs. A simpler structure will surely
result in a shorter training time. Too many neurons in
the hidden layer may not be always necessary or even
cause overfitting (Fig. 4). Since the backpropagation
training algorithms are sensitive to the number of
hidden neurons (Demuth and Beale, 1994), trial and
error should be used to determine how many hidden
neurons are required. Empirically, the number of
unknown weighting factors and biases in the network
should be much less than that of input-output data-
pairs in the training database. It is important to note
that the sampling interval of the original data should
be kept constant. Otherwise more additional input
nodes are needed since the sampling time at each
discrete point must be fed into the neural network as
well, rather than only one input node for sampling
time Tk as shown in Eq. (5).

In order to obtain a satisfactory prediction accuracy,
the training database must be a representative one.
That means, on the one hand, it should include as
much as possible situations occurring in industrial

cultivations except contaminations and other
extraordinary charges (the software sensor works
most effectively under normal fluctuations of
production). On the other hand, the training database
should consist of recent historical charges and it
should be updated as soon as the latest charge is
finished. The time span covered by the database
should be reasonably short. This may eliminate the
influence of some gradually changing factors, such as
climate and deterioration of equipment. Further-more,
it could happen that some fermenter, for its structural
reasons, has evidently different behavior as the
average level of other fermenters. In this case an
extra database which consists of charges carried out
only by this fermenter should be built up and a
special predictor becomes necessary. Some principles
to deal with such kind of special case have been
described elsewhere (Yuan et al, 1997a).

In this paper, only one-step-ahead prediction is tested.
For antibiotics production, the prediction time span
corresponds to ca. 8 hours. Actually, such a
prediction, if it is reliable, can be already a most
valuable support for process supervision and profit
optimization. Theoretically, a multi-step predictor
may be designed in the same way. However, care
should be taken because the neural network basically
only performs a nonlinear regression and
extrapolation. The software sensor makes prediction
based on the context among the major process
variables so that it contains some most important
information on the process kinetics. Therefore, after
successful network training, a certain robustness can
be expected.

During previous discussion, database come from
historical charges is assumed. Actually, the data
collected so far in the charge of present interest can
be also incorporated into the training database. This
may make the predictor even more accurate and more
robust, since these data contain individual
characteristics of the present charge which may not
have occurred in the historical charges. Such
individual characteristics are usually caused by
inherent quality fluctuations of precultures,
composition changes of substrates and other ill-
known disturbances during the earlier phase of
cultivation. In this context, the basic structure of the
product predictor described above has been recently
improved and a rolling learning-prediction procedure
is proposed. In this procedure, the training database is
extended as the process progresses and the learning-
prediction is iteratively repeated every time the
database is updated with the analysis results of the
latest sample. By using the rolling learning-prediction
procedure, testing results revealed that a multi-step
prediction up to 24h ahead can be realized for
penicillin production. Furthermore, a prediction
accuracy of higher than 5% has been obtained for ten
industrial charges (submitted paper by Yuan and
Vanrolleghem, 1997).
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NOMENCLATURE

CER carbon dioxide evolution rate, kmole h-1 m-

3

OUR  oxygen uptake rate, kmole h-1 m-3

CO2 total carbon dioxide production, kmole
m dating back steps for discretising input

variables
N number of input-output data-pairs for a

historical charge
Nit   total nitrogen source consumption, kg
O2   total oxygen consumption, kmole
OIL   total vegetable oil consumption, kg
P total product formation, kg
PAA total precursor consumption, kg
pH average pH value
pO2 average dissolved oxygen in the medium,

% of saturation level
S total titratable sugar consumption, kg
Temp average temperature of the medium, oC
T fermentation time, h
TD width of input data windows, h
Tf fermentation period of a charge, h
TM moving step length of data windows, h
TP width of output or prediction data

windows, h
X(Tk) neural network’s input data vector obtained

by discretising the input variables within
kth input data window

Y(Tk) output of the neural network. In the case of
one-step-ahead prediction, it is equal to the
amount of product formation at time
Tk+TP, kg

θ input-output data set
τ step length for discretising input variables,

h


