
Journal of Biotechnology 69 (1999) 47–62

Rolling learning-prediction of product formation in bioprocesses
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Abstract

A rolling learning-prediction approach based on neural networks is proposed with the aim of on-line prediction of
the product formation. Commercial-scale penicillin cultivations were taken as an example to test the product
predictor. Raw data are pretreated in such a way that each input vector of the neural network consists of a series of
time-discretised values on a specified transient of process variables. The output vector is composed of the amount of
product at the next one and two prediction steps. The process variables involved in the predictor include carbon
dioxide and product formation as well as oxygen, precursor and substrate consumption. Accumulated rather than
instant values of these variables were used. A simple three-layer feedforward backpropagation neural network with
a tangent sigmoidal transfer function in the hidden nodes and a linear one in the output nodes was used as the main
frame of the product predictor. The proposed prediction procedure is called rolling learning-prediction because the
training database is updated after each sampling interval and the learning-prediction is repeated thereafter. The
robustness of the predictor was illustrated by its adaptive ability to widely scattered data sets and extra added noises.
The testing results indicated that a prediction accuracy of 2–5% could be generally expected in the later phase of
cultivation and reliable prediction time spans may take more than 10% of the cultivation period for penicillin
production. An intrinsic problem of using neural networks—occasional trap of the network in bad local minima—is
automatically detected and remedied. In addition, it was illustrated by example that the prediction error signal may
be potentially used to detect extraordinary charges caused, for example, by contamination. Problems associated with
the industrial application of the predictor are discussed. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Artificial neural networks (ANNs) have been
widely studied in the past decade because of their
powerful input–output data mapping ability for
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nonlinear systems (Rumelhart et al., 1986; Cy-
benko, 1989; Bhat and McAvoy, 1990; Leonard
and Kramer, 1990). Many encouraging results
have been obtained by applying ANNs to biopro-
cess state estimation (Thibault et al., 1990; Karim
and Rivera 1992), modeling (Psichogios and Un-
gar, 1992; van Can et al., 1997), pattern recogni-
tion and control (Raju and Cooney, 1992;
Aynsley et al., 1993; Schubert et al., 1994). A
promising prospect of neural networks has been
shown by some industrial application oriented
investigations. For instance, Montague and Mor-
ris (1994) applied neural network models in
biomass prediction and fault diagnosis for the
penicillin production operated by SmithKline
Beecham (Irvine, UK). Linko et al. (1995) suc-
cessfully applied a dynamic neural network to
predict product formation and substrate con-
sumption for commercial lysine production.

The purpose of the work presented here is to
develop an on-line application oriented ANN-
product predictor, which may satisfy the require-
ment of high prediction accuracy, strong
robustness and relatively large prediction time
span. The predictor will be potentially used in
optimal scheduling for a multi-reactor plant
(Yuan et al., 1997). A high prediction accuracy
during the later phase of cultivation is especially
focused upon because production scheduling is
usually activated in this phase. In fact, during the
earlier phases of cultivation, bioprocesses may
exhibit highly individual behaviors caused by var-
ious factors, e.g. fluctuations of the seed quality.
The process monitoring and control during this
phase is mainly to keep the routine feeding profi-
les and try to recognize possible extraordinary
charges. The optimal control strategy, no matter
whether it is model-based or just on the basis of
statistical analysis, can be usually carried out only
after the process has passed approximately one-
third of its cycle time, when the minimum amount
of necessary data for process evaluation becomes
available. For the purpose of optimal scheduling,
the prediction accuracy during the later phase of
cultivation should be better than 5% since the
minimal process fluctuation is usually around
10%.

Two types of neural networks which have been
intensively investigated, i.e. feedforward back-
propagation neural networks (FBNNs) and recur-
rent neural networks (RNNs), may be chosen to
solve the prediction problem described. Fig. 1
schematically shows these two types of neural
networks. For the sake of simplicity, only three-
layer networks with three input nodes, two hidden
nodes and two output nodes are presented (in
practical applications, the number of the input
and output nodes are usually determined by the
process under consideration, while the number of
hidden neurons is dependent on the complexity of
the problem to be solved). Generally, a RNN is
different from a FBNN in that connections are
allowed both ways between a pair of neurons and
even from a neuron to itself. Fig. 1(b) presents
only a simple architecture of RNNs in which the
prior output of the hidden units (one-step de-
layed) is fed back to the hidden nodes on each
successive calculation cycle. This specific architec-
ture is often referred to as Elman network after its
originator (Elman, 1990). Su and McAvoy (1992)
have illustrated, with a waste water treatment
plant as an example, that the feedforward back-
propagation neural network is well suited for
short-term prediction but the recurrent neural net-
work is more powerful for long-term prediction.
The long-term prediction ability of a RNN lies on

Fig. 1. Most commonly applied neural networks. (a) Standard
feedforward network; (b) a simple recurrent network.
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Fig. 2. Time course of some process variables found in a commercial penicillin cultivation and the first input and output data
window.

the fact that the feedback paths in a RNN allow
the network to learn to recognize and generate
both spatial and temporal patterns so that the
process dynamics can be accounted for (Karim et
al., 1997). Despite the large and growing body of
work in the training and use of RNNs (Williams
and Ziper, 1989; Williams and Peng, 1990; Su and
McAvoy, 1992; Karjala and Himmelblau, 1994),
the feedforward backpropagation neural network
was chosen for the present study because a short-
term product prediction is essentially focused
upon in this paper.

For neural network training, data can come
from both historical charges and the data col-
lected so far during the charge of present interest.
Variables which are not routinely available, such
as biomass concentration in mycelia cultivations,
must be excluded. The incorporation of data of
the present charge into the training database is
most important in order to obtain a highly accu-
rate and robust predictor, since these data contain
individual characteristics of the present charge
which may not have occurred in the historical
charges. Such individual characteristics are usu-
ally caused by inherent quality fluctuations of
precultures, composition changes of substrates

and other unmeasured disturbances during the
earlier phase of cultivation. The proposed predic-
tion procedure is called rolling learning-prediction
because the training database is extended as the
process progresses and the learning-prediction is
iteratively repeated every time the database is
updated with the analysis results of the latest
sample.

Taking penicillin fermentation as an example,
the establishment of the training database, the
rolling learning-prediction for product formation
and its error analysis, testing the robustness of the
predictor, the potential use of the prediction error
signal in fault diagnosis as well as automatic
detection and remediation of eventual malfunc-
tion will be demonstrated in the following sec-
tions. Determination of the database size as well
as problems associated with industrial implemen-
tation of the approach will be discussed.

2. Establishment of training database

Fig. 2 shows the time course of the main pro-
cess variables (accumulated values) for penicillin
production. These data come from a commercial
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production charge in a Chinese pharmaceutical
factory. For confidentiality reasons, the data (as
well as the data used in the following text) have
been normalized. In the following discussions, a
constant sampling time interval TS is adopted
(TS=4 h in Fig. 2). Two data windows may be
found in Fig. 2, i.e. an input data window with
solid frame and an output data window (or pre-
diction window) with dotted frame. The width of
the input data window is TD (TD=48 h in Fig. 2)
while that of the output window is TP. For a
two-step prediction, TP is equal to TP1 for the first
step and TP2 for the second step (in Fig. 2, TP1=8
h and TP2=16 h).

The database is defined as the set of input–out-
put data pairs. Each individual data pair is ob-
tained using a moving data windows technique.
Both input and output data windows move along
the time scale with a fixed moving step TM. By
discretising the transients of process variables cov-
ered by each data window, one obtains a series of
input–output data pairs—elements of the data-
base. The input–output data pair corresponding
to the kth data window {X(Tk), Y(Tk)} is given
by Eqs. (1)–(3).
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x(Tk)= [O2(Tk) CO2(Tk) P(Tk) PAA(Tk) S(Tk)

Nit(Tk) Temp(Tk) pO2(Tk) pH(Tk)

… …]T (2)

Y(Tk)= [P(Tk+TP1) P(Tk+TP2)]T (3)

where Tk is the cultivation time at the right border
of the input data window so that we have T1=
TD, t is the discretisation time interval for process
variables covered by the input data window, and
m is the discretisation step length which equals
TD/t. The output data vector is composed of the
amount of product at the next one and two steps,
respectively. The meaning and units of other sym-
bols are presented in Appendix A.

For a historical charge with a cultivation period
Tf, the number of input–output data pairs N is
readily calculated by:

N= int
�Tf−TD−TP2

TM

�
(4)

The training database for rolling learning-pre-
diction, u, is expressed by Eq. (5). It contains two
parts: the set of all input–output data pairs of n
historical charges, u1�n, and all input–output
data pairs available at the moment of prediction
for the (n+1)th charge (i.e. the charge of present
interest), un+1, see Eqs. (6) and (7). The subscript
i in Eq. (6) represents the charge number and Ni

the number of input–output data pairs of the ith
historical charge. Suppose the most recent mea-
surement for the (n+1)th charge is at Tk, then in
the case of TP1=8 h, TP2=16 h and TM=4 h,
un+1 may be expressed by Eq. (7), where only the
input–output data pairs up to Tk−4 are available.
The output data pairs for Xn+1(Tk−3)�Xn+1(Tk)
do not exist since the future measurements are not
yet available. Rather, they will be predicted.

u={u1�nun+1} (5)

u1−n={Xi(Tk), Yi(Tk)}

k=1, 2, …, Ni, i=1, 2, …, n (6)

un+1={Xn+1(T1), Yn+1(T1); Xn+1(T2), Yn+1(T2)

; …; Xn+1(Tk−4), Yn+1(Tk−4)} (7)

The first product prediction for the (n+1)th
charge can be made only when its cultivation time
Tf n+1 has surpassed TD so that the first input
vector is complete. On the other hand, on-line
updating of the training database u by adding the
input–output data pairs of the (n+1)th charge
only begins when Tf n+1 has become larger than
(TD+TP2).

3. Rolling learning-prediction of product
formation

Fig. 3 schematically shows how the ANN-based
product predictor works. The initial state is re-
ferred to as the initial values of medium volume
and concentrations of sugar, precursor and peni-
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Fig. 3. Schematic description of the rolling learning-prediction mechanism.

cillin. The input variables of the bioreactor in-
clude aeration rate, which will be used for cal-
culation of oxygen consumption and carbon
dioxide evolution, feeding rates of carbon
source, precursor, ammonia and ammonium sul-
fate solutions and relevant concentrations. In
practical operation, a complex substrate is used
which is a ropy solution of glucose, hydrolyzed
corn mash, soybean cake powder and so on.
However, in this paper, substrate only refers to
the total reducible sugar. The other input infor-
mation to the data pretreatment block, measure-
ments and assay data, refers to medium volume
of the bioreactor, flow rate of withdrawal, oxy-
gen and carbon dioxide content in waste gas as
well as the sampling analysis results of sub-
strate(s), precursor, product (it may also include
some byproducts for other bioprocesses) concen-
tration in the medium. All these data are essen-
tial for making mass balances so that at any
sampling time, one knows the outcome of the
accumulated values of the most important pro-
cess variables, e.g. how much product and car-
bon dioxide has been produced and how much
sugar, precursor and oxygen has been consumed
(as indicated in Fig. 2). The accumulated pro-
cess variables resulting from the different mass
balances have different units and order of mag-
nitude. For example, the penicillin produced by
a charge is typically several thousand kilograms,
but the corresponding sugar consumption may
be as high as 20 000 kg. As usual, when apply-

ing ANNs, all process variables as well as fer-
mentation time are scaled to vary between 0 and
0.9. This is done by dividing the value of a
process variable by 1.3 times its relevant maxi-
mal value.

The input and output data vectors of the
ANN are then generated by the data pretreat-
ment block with the principles described in the
previous section. Based on the step-by-step up-
dated training database {u1�n un+1}, the ANN
training block identifies the weighting factors
and biases {w, b} by repeated learning. The lat-
est input data vector Xn+1(Tk) (as already
stated, it does not have a corresponding mea-
sured output data pair) is fed as input to the
ANN prediction block so that the prediction of
the total product at time (Tk+TP1) and (Tk+
TP2) is obtained. The whole learning-prediction
procedure is therefore characterized by the use
of data of both historical charges (u1�n) and
data of the present charge acquired up to time
Tk (un+1). The prediction is knowledge-based
because of the learning ability of ANN and the
rich information content contained in the train-
ing database.

For the neural network training, the Leven-
berg–Marquart optimization (a modified
Gauss–Newton method) was applied (Demuth
and Beale, 1994). For one- and two-step predic-
tions, the error goal of the network training is
to minimize the sum of square errors ss6, repre-
sented by:
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Fig. 4. CO2 production over penicillin formation of 10 commercial charges. Accumulation values of the two variables are used.

ss6= %
N(u)

k=1

{(PM(Tk+TP1)−PANN(Tk+TP1))2

+ (PM(Tk+TP2)−PANN(Tk+TP2))2}

where N(u) is the number of the input–output
data pairs in the training database. It is noticed
that the error signals are equally weighted in ss6.

4. Results

Ten commercial fed-batch cultivations were
used for training and testing. They were carried
out in continuous stirred fermenters with a vol-
ume exceeding 100 m3. Penicillin G was the
product of interest. Complex substrate was quasi-
continuously fed into the fermenter by using a
gauging-cup technique. The feeding rate was ad-
justed by changing the frequency of cup emptying.
Ammonia and ammonium sulfate solutions were
fed into the fermenter proportionally to the sub-
strate feeding. The feeding rate of the precursor
solution was manually controlled with the aim of
keeping the phenyl acetic acid concentration at a
predetermined low level because of the known
inhibitory effect of the precursor to micro-organ-
isms. These 10 charges behaved very differently,
as illustrated in Fig. 4, showing a large variation
in the ratio of carbon dioxide to product forma-

tion (accumulated values of both variables are
used). Similarly large fluctuations in product for-
mation, product yield and respiration quotient
(RQ) were also observed (results not shown). It
seems very difficult to fit all these largely scattered
charges with a conventional mechanistic model
and fixed model parameters, if possible at all.

A three-layer tansig/purelin neural network (i.e.
a tangent sigmoidal transfer function for the hid-
den layer and a linear transfer function for the
output layer) was used as the kernel of the predic-
tor. By setting TD=24 h, TP1=8 h, TP2=16 h
and TM=4 h, the number of input–output data
pairs available for these 10 charges is 345. Choos-
ing the first five elements in Eq. (2) as input
variables (because their measurements are avail-
able for the 10 cultivations studied) and setting
m=3, t=8 h, the number of input nodes (Fig.
1a) becomes 21. The output layer contains two
neurons since a one and two steps ahead predic-
tion for product formation is desired. Theoreti-
cally, the number of neurons in the hidden layer
can be arbitrarily chosen. However, too many
hidden neurons may result in large computational
efforts for training and possible over-fitting. In
our earlier work, it was shown that for penicillin
production three hidden neurons could already
give satisfactory fitting and prediction results
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(Yuan and Vanrolleghem, 1998). Therefore, a
21–3–2 tansig/purelin network was adopted.
Accordingly, there are (21×3+3×2)=69
weights and (3+2)=5 biases to be determined.

Before testing the product predictor, the pre-
diction error should be defined. Denote
PM(Tk+TP) as the measured product corre-
sponding to the kth data window of an arbi-
trary charge, and PANN(Tk+TP) as its ANN
prediction, then the relative prediction error
e(Tk+TP) is defined as:

e(Tk+TP)=
PANN(Tk+TP)−PM(Tk+TP)

PM(Tk+TP)
(8)

The average of relative prediction errors corre-
sponding to q prediction points is defined as e :

e=
D %

q

k=1

e(Tk+TP)2

q

(9)

Especially for the sake of optimal scheduling,
we divide a commercial penicillin cultivation
into two parts, i.e. an earlier phase with Tf596
h and a later phase with Tf\96 h. The average
of relative prediction errors during the earlier
phase is defined as e1 and that during the later
phase as e2.

4.1. Learning accuracy of the neural model

How good could the 21–3–2 backpropagation
network fit the 10 commercial charges? To an-
swer this question, we made a self-testing study.
At first, the network was trained with all 345
input–output data pairs as the training data-
base. Then the same 345 input data vectors
were fed as input to the trained neural network
and the self-testing output was produced. The
average of the prediction errors (to be more ex-
act, the fitting errors in the case of self-testing)
was thereafter calculated and found to be 0.04.
In other words, a data fitting accuracy of 4%
was reached. Considering the fact that the pro-
cess has a great intrinsic uncertainty (see Fig. 5)
the fitting ability of the simple neural model is
excellent.

4.2. Charge-wise prediction

In contrast to rolling learning-prediction,
charge-wise prediction means that the
input–output data pairs of the testing charge are
not incorporated into the training database. In
other words, the network is trained by using only
u1�n as database, then simulation is performed to
get predicted output vectors for the testing charge
corresponding to Xn+1(Tk), k=1, 2, …, Nn+1.
Hence, both training and prediction is carried out
once. For the given example, an arbitrary charge
out of the 10 available can be chosen as the
testing charge, while the other nine charges
automatically become the database for neural
network training. Table 1 shows the average of
the relative prediction errors after charge-wise
prediction for Charges 1–10, respectively, where
+8 and +16 h mean 8 and 16 h ahead
prediction, respectively.

It can be found that ē1 is either about the same
or greater than e2 (Charges 2 and 4 were
terminated at about 100 h so that practically they
did not have a later phase). The poor prediction
accuracy during the earlier phase of cultivation
(ē1) is mainly intrinsic process uncertainty related.
Meanwhile, no significant difference of ē2 could
be found between one- and two-step prediction, a
good sign for the applicability of a two-step pre-
diction. However, the ē2 values of +8 h predic-
tion for Charges 1 and 5 are as high as 11.1 and

Fig. 5. Comparison between rolling learning-prediction and
measurements of product formation for Charges 1, 7 and 9.
Symbols are measured data, lines are predictions.
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Table 1
Average of relative prediction errors for charge-wise prediction (%)

MeanCharge number

81 102 93 4 5 6 7

5.3 6.5 4.9+8 h prediction 7.66e1 10.7 8.3 11.2 7.8 7.4 9.2 6.3
1.8 1.4e2 11.1 – 4.4 – 7.8 2.5 3.1 2.3 4.17

8.566.1+16 h prediction e1 14.6 9.63.7 4.211.4 9.7 6.1 15.0 5.2
2.6 2.2 1.4e2 12.0 4.63– 3.1 − 6.4 6.1 3.2

7.8%, respectively. Since these two charges look to
have normal process characteristics, the charge-
wise prediction can therefore not be accepted as a
routine prediction procedure.

4.3. Rolling learning-prediction

Table 2 shows the average prediction errors
when the rolling learning-prediction procedure de-
scribed in Fig. 3 is applied. Compared with Table
1, ē1 and ē2 were generally improved (see the
mean values). Especially, all ē2 values became less
than 5%, both for one-step and two-step predic-
tions. Fig. 5 shows a comparison of the one and
two steps ahead predicted product and the mea-
surements for Charges 1, 7 and 9. It can be
concluded that the rolling learning-prediction ap-
pears to work well.

4.4. Extension of prediction horizon

Because of its high accuracy (Table 2) for +8
and +16 h prediction, one would like to apply
the rolling learning-prediction procedure for a
multi-step prediction. Simulation was done to test
two and three steps ahead prediction (i.e. +16
and +24 h, respectively) using the same rolling
learning-prediction procedure but, evidently, a re-
vised database (see Fig. 2). Again, it was found
(Table 3), that the ē2 values were less than 5% in
most cases except for Charge 6. Charge 6, how-
ever, is actually an abnormal charge which will be
dealt with in the next section. Therefore, perfor-
mance for three steps (up to 24 h or 1 day) ahead
prediction is acceptable. Nevertheless, one should
be careful if a prediction over three steps is made,
because the mean of average prediction errors in

Tables 2 and 3 indicates an increasing tendency,
which is summarized in Fig. 6. Moreover, the
uncertainty of the future working conditions
(feeding rates, etc.) increases with the width of the
prediction window TP.

4.5. Qualitati6e diagnosis of extraordinary
charges by using prediction error signals

Charge 6 is an abnormal charge because of its
dual growth phases which may be recognized by
the second lag phase of product formation
occurring at about 68 h as shown in Fig. 7. The
neural network is apparently able to adapt to
such an abnormal situation as indicated by the
good fitting (i.e. self-testing) result. Also, the +8
h rolling learning-prediction tracks the abnormal
time course very well after a short-term
adaptation. However, the two- and three-step
predictions take much longer time to follow this
abnormal charge and have much higher
prediction errors.

The sustained extraordinarily high prediction
errors shown in Fig. 6 can be used for fault
diagnosis. By applying the rolling
learning-prediction, the relative prediction error
for normal charges converges generally along the
cultivation time, like the case of Charge 1 in Fig.
8(a). In the case of Charge 6 (see Fig. 8b),
however, although the relative prediction errors
converge at the beginning of cultivation, as of 64
h, the prediction errors exhibit a divergent
tendency. Fault detection can be done according
to the characterized description of the prediction
errors’ divergence.

Basically, there are three symptoms for
extraordinary charges:
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Table 2
Average of relative prediction errors for one and two steps rolling learning-prediction (%)

Charge number Mean

8 1091 2 3 4 5 6 7

4.0 5.0 5.6 5.94+8 h prediction e1 7.3 2.9 7.5 7.2 5.1 10.4 4.4
2.0 1.6e2 2.3 − 4.2 − 1.8 2.1 1.6 2.8 2.30

7.635.8+16 h prediction e1 11.8 10.92.9 4.26.6 8.1 5.9 15.2 4.9
2.6 2.2 2.6e2 2.8 − 4.9 3.03− 2.1 4.6 2.4

1. The absolute value of the prediction error is
increasing constantly.

2. After constant increase, the absolute value of
prediction error exceeds a predetermined
threshold, e.g. 0.1.

3. The 1�3-step predictions’ error diverges
consistently.

If symptoms (1)–(3) are satisfied simulta-
neously for a charge (e.g. Charge 6), then an
alarm for an eventually abnormal charge will be
given. A quantitative description of the fault de-
tection procedure is out of scope of this paper,
because it can only be done after more extraordi-
nary charges are examined so as to determine
values of some empirical factors for confirming
symptoms (1) and (2).

4.6. Influence of measurement noise on the
prediction accuracy

The continuously measured variables and labo-
ratory assay data are polluted by measurement
noise. Actually, the raw industrial data used in
this paper are already noise corrupted. In spite of
this, extra Gaussian noise was added to test the
robustness of the predictor under a more noisy
environment. Noise was added to the sampling
time and all process variables in the database as
well as in input data vectors. However, it must be
understood that when calculating the relative pre-
diction error the measured product PM(Tk+TP)
(see Eq. (8)) was given the original value not
polluted by the extra noises. Adding noise to the
sampling time has a practical background since
the sampling time interval in commercial produc-
tion is not strictly equidistant. The average predic-
tion errors were examined with the rolling

learning-prediction procedure under natural
noise, 5 and 10% additional noise, respectively.
Fig. 9 shows the results (only e2 was plotted).
Keeping Charge 6 in mind as an abnormal charge,
it may be concluded from Fig. 9 that the rolling
learning-prediction procedure is very tolerant to
noise. This is a distinguished characteristic of the
ANN predictor over other conventional methods
like polynomial extrapolation (the comparison
will be given later). In fact, 10% additional noise
may correspond to an extremely noisy situation.
We recall that Fig. 2 shows the process variables
of an industrial charge with natural noise. If 10%
extra noise is added, a very different view will
emerge (see Fig. 10).

As a comparison, short term prediction of
product formation was also made by a linear
extrapolation technique in which only the previ-
ous measurements of P are needed. The data
window for linear extrapolation was chosen as
TD=24, m=6 and t=4. The moving step length
of the data window was set to TM=4, the same
as the case of rolling learning-prediction. Table 4
shows nine normal charges’ mean of e1 and e2

corresponding to linear extrapolation (linex for
abbreviation) and rolling learning-prediction
(rolep for abbreviation), respectively. Here, the
abnormal Charge 6 is reasonably excluded. It can
be found that, if no extra noise is added, {e2-
linex} is comparable with {e2-rolep} but {e1-linex}
is much higher than {e1-rolep} which indicates the
poor prediction accuracy of linear regression dur-
ing the earlier phase of cultivation. Then, if extra
noise is applied, {e2-linex} increases rapidly with
the intensity of noise. Corresponding to 10% extra
noise, {e2-linex} is as high as 11.2 and 12.4% for
+16 and +24 h extrapolation, respectively. Evi-
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Table 3
Average of relative prediction errors for two- and three-step rolling learning-prediction (%)

Charge number Mean

9 101 2 3 4 5 6 7 8

5.9 12.1+16 h prediction ē1 12.0 3.4 7.7 10.2 8.4 13.7 6.5 8.505.1
2.22.5ē2 3.0 2.98− 2.03.2 − 3.0 5.7 2.2
9.8 8.91+24 h prediction ē1 13.9 4.1 8.5 10.1 9.9 16.6 6.7 4.6 4.9

3.912.1ē2 4.3 − 4.5 − 3.1 10.8 2.4 1.8 2.3

dently, linear extrapolation is noise intolerant. In
contrast, {e2-rolep} is always below 5% in all
cases. Further simulation revealed that higher or-
der polynomial extrapolation cannot improve the
average prediction accuracy either. Generally
speaking, linear extrapolation can be applied only
during the middle phase of cultivation where all
process variables behave quasi linearly (see Fig.
2).

4.7. Predictor malfunction detection and
remediation

The nonlinear transfer functions in the neural
network may introduce many local minima in the
error surface (Demuth and Beale, 1994). Although
the local minima in our application were found to
be very close to the global minimum in most
cases, it happened from time to time that the
solution was trapped in bad local minima. Evi-

dence for such a local minimum is that the pre-
dicted product is far away from its should-be
value. We define it as ‘malfunction’ of the predic-
tor. For off-line training prediction, one can sim-
ply restart the training process when malfunction
occurs. However, in on-line applications, one can-
not compare the prediction with its should-be
value since the future measurement is still not
available. Here, a malfunction detector was
designed.

When using a two-step prediction procedure,
the product formation at each future sampling
time point is actually predicted twice. Suppose the
simulation conditions are the same as above (i.e.
TD=24 h, TP1=8 h, TP2=16 h and TM=4 h)
and the present time is Tk, then there are two
predictions for the product at time (Tk+TP1), i.e.
the +16 h prediction made at time Tk−2,
PANN(Tk−2+TP2) corresponding to the second
open circle in Fig. 11(a), and the +8 h prediction
made at Tk, PANN(Tk+TP1) corresponding to the
first open triangle in Fig. 11(a), respectively. If the
predictor works properly, these two values should
be very close to each other so that the ratio
PANN(Tk+TP1)/PANN(Tk−2+TP2) should be
nearby 1.0. Define Di as the distance between
PANN(Tk+TP1)/PANN(Tk−2+TP2) and 1.0 (see
Eq. (10)), then once malfunction happens, Di will
depart from zero significantly.

Di=
)
1−

PANN(Tk+TP1)
PANN(Tk−2+TP2)

)
(10)

For automatic malfunction detection, a critical
distance, Dic, is empirically determined. If Di\
Dic, the present prediction will be regarded as a
malfunction. Malfunction remediation is carried
out by repeating the last training-prediction. Dic

Fig. 6. Increasing tendency of the mean of e1 and e2 along
prediction time span.
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Fig. 7. Fitting and 1�3-step prediction results by applying the rolling learning-prediction procedure for Charge 6. Symbols are
measurements, lines are simulations.

was set to be 0.1 for our example, see the dotted
boundary in Fig. 11(b). For Charge 9, Di was
once found to be 0.143 (\Dic=0.1!) at 156 h and
the +8 h prediction was a malfunction indeed. It
was detected in time and remedied by retraining.
Since the probability of malfunction’s occurrence
was observed to be approximately 0.1%, the prob-
ability that the restarted training prediction be-
comes another malfunction is extremely low (one
in a million). Therefore, one time retraining is
enough for remedying. It should also be pointed
out that during the earlier phase of cultivation, Di

values can be high and sometime may exceed Dic.
This is usually not the result of malfunction,
rather of the intrinsic uncertainty of the process.
In that case, the prediction accuracy can no
longer be increased by retraining. Nevertheless,
no special measures are necessary to be taken to
stop the retraining since occasional retraining of
the network is not very harmful—one round of
learning-prediction only needs a few minutes with
a low-end (486DX) personal computer.

5. Discussion and conclusion

Since the rolling learning-prediction procedure

is on-line application oriented, it must meet some
important criteria, such as computing time, accu-
racy and robustness. The performance of the
product predictor is largely dependent on the
topology of the neural network and the database.
A 21–3–2 topology of the neural network was
chosen in this study. More complicated topologies
have been tested, e.g. with more hidden neurons
or with more hidden layers, but no significant
improvement of prediction accuracy was found.
The ratio of the number of input–output data
pairs to the number of unknowns in the present
ANN is 345:75:4.5:1. Intuitively, this is more
realistic than to determine hundreds of unknown
factors (in the case of a more complicated topol-
ogy) on the basis of the same amount of input–
output data pairs. Keeping the topology of a
neural network as simple as possible is the princi-
ple of a network design. This may avoid eventual
over fitting and reduce computation time. For the
given problem in this paper, a round of rolling
learning-prediction took 4 min on average when
using the Levenberg–Marquart optimization
(Demuth and Beale, 1994) and a 486DX com-
puter. In future applications, a larger training
database (the size may be three to four times
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Fig. 8. Comparison of relative prediction errors for a normal charge (a) and an abnormal charge (b).

as big as used now) and eventually a more com-
plicated topology may be compensated by faster
computers with more memory.

The use of accumulated process variables is a
distinguished feature of the product predictor. It
is advantageous to reduce the influence of mea-
surement noise but by no means at the cost of
dynamic information. The accumulated process
variables are broken down into a series of dy-
namic pieces via a moving data windows tech-

nique so as to get input–output data pairs. There
are some principles to determine the width of the
data and prediction windows as well as the mov-
ing speed. A larger TD involves more dynamic
process information, but it may increase the di-
mension of the input data vectors since, in order
to keep the discretisation accurate, the discretising
time interval can not be chosen too small so that
m must increase. If TD is too small, then the
network may be too sensitive to measurement
errors. As for TP, generally speaking, it should
not exceed TD. It has been shown that the predic-
tion window can be as large as 10% of the process
cycle time with high prediction accuracy (higher
than 5%). Longer term prediction is significant to
indicate the future trends of a process, but other
network architectures (such as recurrent neural
networks) should eventually be considered. The
moving step length TM of the data window may
be chosen the same as the assay sampling inter-
val—the case of full use of the measurements. If
the measurement noise is reasonably low, a larger
moving step may be chosen. This may lead to a
reduction of the sampling frequency and therefore
the assay labor intensity. For penicillin cultiva-
tion, we have done another set of simulations with
TM=8 h instead of 4 h. The results revealed that
the +8 and +16 h prediction accuracy during

Fig. 9. Rolling learning-prediction accuracy under different
noise levels.
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Fig. 10. Extra noise corrupted process variables of an industrial charge when 10% Gaussian noise is added. For original raw data
see Fig. 2.

the later phase of cultivation is about the same as
for the case of TM=4 h.

Besides the topology of the neural network,
another important factor which may influence the
robustness of the predictor is the training data-
base. In our training database {u1�n un+1}, u1�n

is charge-wise updated while un+1 is obligatorily
on-line updated. Careful choice of the n historical
charges is very important for success of the pre-
dictor. When using neural networks, the training
database must be a representative one. That
means it should include as many situations occur-
ring in industrial cultivations as possible (except
contaminations and some other extraordinary
charges). Before being incorporated into the data-
base, a historical charge should be evaluated ac-
cording to yield coefficients, characteristics of
transients of key process variables and so on. The
aim of the evaluation is to find the charges which
have similar performance. The database will be
kept representative by limiting the number of
similar charges to one or two. On the other hand,
the database should consist of recent historical
charges so that some gradually changing factors,
such as climate and degeneration of equipment
could be excluded as much as possible. Therefore

the time span covered by the database should be
reasonably short and it should be updated as soon
as a new charge is finished. It could also happen
that a certain bioreactor, for structural reasons,
has evidently different behavior as the average
level. In this case, a special database, which con-
sists of charges carried out only in this bioreactor,
should be established. More details concerning
the database may be found elsewhere (Yuan et al.,
1997).

For penicillin production, we have chosen O2,
CO2, P, PAA and S as process variables. The
biomass concentration was not taken into account
since it is usually not regularly measured. The
product predictor presented here may be regarded
as a software sensor which is ‘calibrated’ by rou-
tine product analysis data supplied during indus-
trial production. Incorporating some other
process variables such as consumption of nitrogen
source and sulfate would be favorable both for
enhancing the robustness and safety of the predic-
tor. The gas balance data (O2, CO2) should be
treated carefully in applications because of the
disturbances during repeated calibration of the
gas analyzers. For other bioprocesses, the number
of process variables may probably be limited to
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Table 4
Comparison of linear extrapolation (linex) and rolling learning-prediction (rolep)a

Natural noise TP (h) 5% extra noise TP (h) 10% extra noise TP (h)

+24 +8 +16+8 +16 +24 +24+8 +16

14.6 20.9E{e1-linex} 12.5 19.1 24.6 13.4 20.0 26.225.4
8.49.0E{e1-rolep} 7.75.4 8.76.9 8.1 7.5 7.8

6.6 7.6 11.2E{e2-linex} 12.42.0 2.8 3.7 4.3 5.5
3.5 3.7E{e2-rolep} 2.3 2.8 2.9 2.6 3.1 4.03.6

a The abnormal Charge 6 is excluded. E{x}, mean of x (%).

the same level (five or six) as in our example after
careful investigation on the process kinetics and
working conditions. t and m are two process
dynamics dependent factors. For most industrial
bioprocesses, t may vary between 1 and 8 h and m
between 2 and 5.

In summary, the rolling learning-prediction
procedure proposed in this paper can give a
highly accurate and noise-tolerant prediction for
product formation during the second half of a
cultivation. The prediction accuracy is largely im-
proved by involving the previous data of the
present charge into the database—on-line updat-
ing of the database and repeated training. The

reliable prediction time span can be as large as
10% of the whole process cycle time, long enough
for application in optimal production scheduling.
The prediction accuracy during the first half of
the cultivation is not always high because it is
largely influenced by the intrinsic uncertainties of
individual charges such as inherent quality fluctu-
ations of the precultures. However, as explained
earlier, because an efficient dynamic profit opti-
mization can only be carried out during the later
phase of cultivation, the rolling learning-predic-
tion procedure could already provide an excellent
support. The ANN model described in this paper
is also capable of predicting substrate consump-

Fig. 11. Automatic detection of predictor malfunction. (a) Duplicated prediction at each sampling time point (here at time Tk+TP1);
(b) Detection of malfunction by on-line comparison of Di with Dic.
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tion so that, to some extent, it may be used to
determine optimal feeding rates within the predic-
tion window. However, long-term prediction of
these two variables are generally discouraged
since the uncertainty of feeding profiles increases
along with TP. In fact, the prediction made in this
paper is under the assumption that the feeding
profiles in the prediction window are in their
ordinary level. Besides total product of a charge,
people in industry may also be interested in the
titre prediction at TP (h). This is easily obtained
from the neural net predictions.
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Appendix A. Nomenclature

biases of the neural networkb
total carbon dioxide productionCO2(t)
at time t (kmole)

Dic critical distance for judgement
of malfunction

e(t) relative prediction error at time
t (%)
average of relative prediction er-e
rors (%)

e1 average of relative prediction er-
rors during earlier phase of cul-
tivation (%)

e2 average of relative prediction er-
rors during later phase of culti-
vation (%)
mean of xE{x}
charge numberi, n+1

m dating back steps when dis-
cretising the transients covered
by data window

N number of the input–output
data pairs of a charge

Nit(t) total nitrogen source consump-
tion at time t (kg)
number of input–output dataN(u)
pairs in database u

total oxygen consumption atO2(t)
time t (kmole)

P(t) total product formation at time
t (kg)

PAA(t) total phenyl acetic acid con-
sumption at time t (kg)
predicted total product by ANNPANN(t)
at time t (kg)

pH(t) average pH value at time t
Pm(t) measured total product at time t

(kg)
average dissolved oxygen atpO2(t)
time t (%)

S(t) total reducible sugar consump-
tion at time t (kg)

Temp(t) oC average temperature of the
medium at time t
width of data window (h)TD

cultivation time (h)Tf

cultivation time at the right bor-Tk

der of kth data window (h)
moving step length of data win-TM

dow (h)
TP width of prediction window (h)
TP1 width of one step prediction

window (h)
TP2 width of two steps prediction

window (h)
sampling interval (h)TS

weighting factors of the neuralw
network
vector of discretised processx(t)
variables at time t
kth neural network’s input vec-X(k)
tor of a charge

Y(k) kth neural network’s output
vector of a charge

Greeks
database network trainingu

u1�n collection of input–output data
pairs of 1�n historical charges

un+1 collection of input–output data
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pairs of the present charge
t discretising time interval of data

window (h)
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