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Abstract

A new model able to describe the kinetics of isothermal crystallization is presented: it is a model written in the form of a differ-
ential equation allowing use under dynamic temperature variations. It describes the crystallization process as if it is a reversible

reaction with a first order forward reaction and a reverse reaction of order n. The model has the advantage of having an analytical
solution under isothermal conditions that facilitates parameter estimation. The quality of this model was compared with the more
traditional Avrami (with and without induction time) and Gompertz models using different model selection criteria. To show the
universality of the model, different fat samples, different crystallization temperatures and different measuring techniques were used

for model evaluation. The new model was selected as the best for the majority of the samples and this independent of the model
selection criterion used.
# 2002 Elsevier Science Ltd. All rights reserved.
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Fats are being crystallized for various reasons, such
as fractionation into certain groups of triglycerides with
varying melting and physical properties or to give food
products a certain texture. Products in which fat crys-
tallization is important include chocolates and confec-
tionary coatings, dairy products such as butter and
cream and vegetable spreads (margarine) (Hartel, 1992).
The crystallization process consists of two steps:

nucleation and crystal growth. However, before any
crystallization can take place, supersaturation or super-
cooling of the mother phase must be achieved (Boistelle,
1988). Nucleation can be described as a process in which
molecules come into contact, orient and interact to form
highly ordered structures, called nuclei. Crystal growth
is the enlargement of these nuclei (Nawar, 1996).
According to their environment, the crystals grow more
or less regularly and exhibit different growth morphol-
ogies. Nucleation and crystal growth are not mutually
exclusive: nucleation may take place while crystals grow

on existing nuclei. This makes it difficult to determine
kinetics for each process separately (Boistelle, 1988).
The kinetics of fat crystallization, being dependent on

the composition and on the processing conditions, is
important for controlling operations in the food indus-
try to produce the desired product characteristics
(Metin & Hartel, 1998).
Thermal analysis methods such as differential scan-

ning calorimetry (DSC) can be used to investigate the
reaction kinetics of a broad range of materials, includ-
ing metals, polymers and glass-forming solids. The two
basic approaches to determine reaction kinetics are iso-
thermal and non-isothermal methods. In isothermal
experiments, such as used in this study, the sample is
quickly brought to a predetermined temperature where
the thermal analysis instrument monitors the behavior
of the system as a function of time (Hatakeyama &
Quinn, 1997). DSC has been used in the past to study
the isothermal crystallization kinetics of natural fats
(Kawamura, 1979; Metin & Hartel, 1998; Toro-Vaz-
quez, Briceno-Montelongo, Dibildox-Alvarado, Charo-
Alonso, & Reyes-Hernandez, 2000; and Ziegleder,
1990). Other techniques commonly used to monitor fat
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crystallization are pulsed nuclear magnetic resonance
(pNMR) and light-scattering techniques (Wright, Nar-
ine, & Marangoni, 2000). Authors that have used these
techniques include Herrera, de Leon Gatti, and Hartel
(1999), Kloek, Walstra, and van Vliet (2000) and
Wright, Hartel, Narine, and Marangoni (2000).
The most generally used approach for the description

of the isothermal phase transformation kinetics is the
Avrami model developed in the 1940s. This equation is
given as (Avrami, 1940):

f tð Þ ¼ a� 1� e�k
�tn

� �
ð1Þ

where f is the amount of solid fat at time t [%], a is the
value for f as t approaches infinity [%], k is a crystal-
lization rate constant which depends primarily on crys-
tallization temperature [h�n] and n is the Avrami
exponent [ ], which is a combined function of the time
dependence of nucleation and the number of dimensions
in which growth takes place (Sharples, 1966). When
using DSC to follow the crystallization kinetics, f is the
released crystallization heat [J/g] and a is the latent heat
[J/g]. Several researchers have used the Avrami model in
the study of fat crystallization (Kawamura, 1979; Metin
& Hartel, 1998; Toro-Vazquez et al., 2000; Wright,
Hartel et al., 2000; Ziegleder, 1990).
Sometimes a fourth parameter is added to the Avrami

model to account for an induction time ti. The equation
then becomes:

f tð Þ ¼ a� 1� e�k
� t�tið Þ

n
� �

ð2Þ

Recently Kloek et al. (2000) used a modified Gom-
pertz equation to describe the crystallization kinetics of
fully hydrogenated palm oil in sunflower oil solutions.
The Gompertz equation is often used to describe bac-
terial growth. There are indeed several analogies
between fat crystallization and bacterial growth: the
production of bacteria can be compared with the
nucleation and growth of crystals, while the bacterial
consumption of nutrients can be compared with the
decrease of supersaturation. The reparameterized Gom-
pertz equation is given by Zwietering, Jongenburger,
Rombauts, and Van‘t Riet (1990):

f tð Þ ¼ a�exp �exp
��e

a

�

l� tð Þ þ 1

� �� �
ð3Þ

where f is the amount of solid fat at time t [%], a is the
value for f as t approaches infinity [%], � is the max-
imum increase rate in crystallization [%/h] (or the tan-
gent to the inflection point of the crystallization curve)
and l is a measure for the induction time [h] defined as
the intercept of the tangent at the inflection point with the
time-axis.
It is the aim of this paper to present a new model able

to better describe the isothermal crystallization kinetics

of fats. It is a dynamic model, having the advantage that
it is easier to adapt for non-isothermal conditions. The
model is fitted to isothermal crystallization data of some
completely different fats, measured at different iso-
thermal crystallization temperatures and using different
measuring techniques (DSC and pNMR). The quality
of the proposed model will be compared to the quality
of the Avrami (with and without induction time) and
Gompertz models.

1. Materials and methods

1.1. Materials

Fourteen different samples of cocoa butter (CB A–N)
originating from Africa, South America as well as Asia,
were crystallized isothermally (procedure, see Section
1.2) at 20 �C (CB ../20). Each sample was analyzed in
threefold. To check the influence of crystallization tem-
perature on the quality of the three models, one cocoa
butter (CB N) was crystallized isothermally at 19, 21, 22
and 23 �C (CB N/..). To check the influence of the type
of fat on the quality of the four models, milk fat was
crystallized isothermally at two different temperatures.
Also, two samples of milk fat containing extra minor
components were analyzed. To check the influence of
measuring technique on the quality of the models,
pNMR was, besides DSC, also used to record the iso-
thermal crystallization kinetics of three milk fat fraction
samples (procedure, see Section 1.4). Table 1 provides
an overview of the samples and crystallization
temperatures used.

1.2. DSC

The isothermal crystallization experiments were per-
formed on a 2010 CE DSC (Texas Instruments, New
Castle, DE, USA) with a Refrigerated Cooling System
(Texas Instruments, New Castle, DE, USA). The DSC
was calibrated with indium (TA Instruments, New Cas-
tle, DE, USA), azobenzene (Sigma-Aldrich, Bornem,
Belgium) and undecane (Acros Organics, Geel, Bel-
gium) prior to analyses. Nitrogen was used to purge the
thermal analysis system. Fat (7.3–15.6 mg) was sealed
into hermetic aluminum pans and an empty pan was
used as a reference. The following temperature protocol
was used for the isothermal crystallization experiments
of cocoa butter (Foubert, Vanrolleghem, & Dewettinck,
accepted for publication): hold at 65 �C for 15 min to
ensure a completely liquid state, cool at 8 �C/min to the
isothermal crystallization temperature and hold at that
temperature until crystallization has finished. For the
isothermal crystallization experiments of milk fat the
initial melting step was changed to 70 �C for 5 min, the
rest of the temperature protocol being the same as for
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cocoa butter. The changes in the heat flow during iso-
thermal DSC operation at crystallization temperature
were recorded.

1.3. DSC crystallization curves

The amount of heat released as a function of time was
calculated by integration of the isothermal crystal-
lization curves using a horizontal sigmoid baseline. The
start and end points of the crystallization curve were
determined using an objective calculation algorithm
(Foubert et al., 2002). Summarized, this algorithm
works as follows: the slope of the heat flow is calculated,
the time at which the slope changes from a negative to a
positive slope before the peak maximum is taken as the
start point and the time at which the slope changes sign
for the third time after the peak maximum is taken as
the end point. In between start and end points the area
(and thus the amount of heat released up to that
moment) was calculated. The integration was performed
using the Universal Analysis software version 2.5 H
(Texas Instruments, New Castle, DE, USA).

1.4. pNMR

pNMR measurements were performed with a Minis-
pec pc 20 (Bruker, Karlsruhe, Germany). Samples were
heated at 60 �C for 1 h before analysis to eliminate any
thermal history. The samples were then placed in a
thermostated water bath and readings were taken at
appropriate time intervals.

1.5. Parameter estimation

The data series were fitted to the different algebraic
models by non-linear regression using the Sigmaplot
2000 software (SPSS Inc., Chicago, IL, USA). This
software uses the Marquardt–Levenberg algorithm to
find the parameters that give the ‘best fit’ between the
model and the data. This algorithm seeks the values of
the parameters that minimize the sum of squared dif-
ferences between the observed and predicted values of
the dependent variable. The process is iterative: the
curve fitter begins with a guess at the parameters, checks
to see how well the model fits and then continues to
make better guesses until the differences between the resi-
dual sum of squares no longer decreases significantly. This
condition is known as convergence. By varying the initial
values, step size and tolerance, it is avoided that the
iterative process stops in a local minimum.
The parameter estimations of the model in its differ-

ential equation form were performed in WEST (Hem-
mis NV, Kortrijk, Belgium, http://www.hemmis.be)
using the Simplex algorithm (Nelder & Mead, 1965).

1.6. Model selection

Several methods exist to evaluate the quality of dif-
ferent models after fitting each model to the data. These
methods can be subdivided in information criteria,
methods that go back to statistics and techniques in
which an analysis is made of the residuals between
model predictions and measured data. Vanrolleghem

Table 1

Overview of used samples

Sample name Sample description Crystallization temperature (�C)

CB A Cocoa butter from West-Africa (ADM Cocoa, Koog aan de Zaan, Netherlands) 20�0.05

CB B Cocoa butter from Ivory Coast (1st sample) (Barry Callebaut, Wieze, Belgium) 20�0.05

CB C Cocoa butter from Nigeria (Barry Callebaut, Wieze, Belgium) 20�0.05

CB D Cocoa butter from Ivory Coast (2nd sample) (Barry Callebaut, Wieze, Belgium) 20�0.05

CB E Cocoa butter from Indonesia (Barry Callebaut, Wieze, Belgium) 20�0.05

CB F Cocoa butter from Malaysia (ADM Cocoa, Koog aan de Zaan, Netherlands) 20�0.05

CB G Cocoa butter from San Domingo (Barry Callebaut, Wieze, Belgium) 20�0.05

CB H Cocoa butter from Ecuador (Barry Callebaut, Wieze, Belgium) 20�0.05

CB I Cocoa butter from Brazil (Barry Callebaut, Wieze, Belgium) 20�0.05

CB J Unsteamed cocoa butter (unknown origin) (Bensdorp, Barry Callebaut, Bussum, Netherlands) 20�0.05

CB K Steamed cocoa butter (unknown origin) (Bensdorp, Barry Callebaut, Bussum, Netherlands) 20�0.05

CB L Cocoa butter (unknown origin) (Barry Callebaut, Wieze, Belgium) 20�0.05

CB M Hard cocoa butter (unknown origin) (Barry Callebaut, Wieze, Belgium) 20�0.05

CB N Standard factory product cocoa butter (Barry Callebaut, Wieze, Belgium) 19,20,21,22,23�0.05

MF A Milk fat (Aveve Dairy Products, Klerken, Belgium) 20.7�0.05 23.7�0.05

MF B Purified milk fat (Aveve Dairy Products, Klerken, Belgium)+0.5% water 23.7�0.05

MF C Purified milk fat (Aveve Dairy Products, Klerken, Belgium)+0.75% water +0.075%

phospholipids

23.7�0.05

MF D Milk fat fraction 1 (Aveve Dairy Products, Klerken, Belgium) 17.5 �C

MF E Milk fat fraction 2 (Aveve Dairy Products, Klerken, Belgium) 21.5 �C

MF F Milk fat fraction 3 (Aveve Dairy Products, Klerken, Belgium) 26 �C
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and Dochain (1998) give an overview of the model
selection methods. The methods used in this study are
summarized below.
The two best-known information criteria are the Final

Prediction Error (FPE) and Akaike’s Information
Criterion (AIC):

FPE ¼
SSR

N
� 1þ

2�p

N� p

� �
ð4Þ

AIC ¼ N�log
SSR

N

� �
þ 2�p ð5Þ

where SSR is the sum of squared residuals, p is the
number of parameters in the model and N is the number
of data points. The model with the smallest criterion
value is in each case selected. These criteria have the
disadvantage that they are not consistent (i.e. do not
guarantee that the probability of selecting the wrong
model tends to zero as the number of data points tends
to infinity). Examples of consistent criteria are the
Bayesian Information Criterion (BIC) and LILC:

BIC ¼ N�log
SSR

N

� �
þ p�log Nð Þ ð6Þ

LILC ¼ N�log
SSR

N

� �
þ p�log log Nð Þð Þ ð7Þ

The model with the lowest criterion value is selected
The statistical F-test is probably the most frequently

applied method to decide whether the more complex
model j is significantly (with a confidence level �) better
than model i. The calculated value

Fw ¼
SSRi � SSRj

� �
= pj � pi
� �

SSRj= N� pj
� � ð8Þ

has to be compared with tabulated values for F�(pj�pi,
N�pj).
The quality of a model can also be assessed by analy-

sis of the properties of the calculated residuals " (mea-
sured value �predicted value). Two approaches can be
used to check whether the residuals are independent of
each other. The so-called run test evaluates the number
of sign changes in the residual sequence and compares
that to the expected number N/2. The autocorrelation
test consists of comparing the value of the autocorrela-
tion r for each lag � with the limit value N 0; 1ð Þ=

ffiffiffiffi
N
p

with N(0,1) the standard normal distribution. For a
significance level �=0.05 this means that only 5% of the
autocorrelations may be larger than 1:96=

ffiffiffiffi
N
p

. The
autocorrelation with time lag � quantifies the depen-
dency of a variable at any time tk and the variable at
time (tk��):

r �ð Þ ¼
1

r � ¼ 0ð Þ
�
XN��
k¼1

" tk � �ð Þ
�" tkð Þ ð9Þ

The value for the autocorrelation test is the amount of
autocorrelations being higher than the threshold value.
The Sigmaplot software provided an additional cri-

terion that was used in this study. It is the predicted
residual error sum of squares (PRESS) that gauges how
well a regression model predicts new data. The smaller
the PRESS statistic, the better the predictive ability of
the model. The PRESS statistic is computed by sum-
ming the squares of the prediction errors (differences
between predicted and observed values) for each obser-
vation, with that point deleted from the computation of
the regression equation.

2. Results and discussion

2.1. The model

A new model, able to describe the isothermal crystal-
lization kinetics of fats, was developed. The model was,
in contrast to the Avrami and Gompertz models, writ-
ten in the form of a differential equation. This type of
equation has the advantage that (i) it is often easier to
interpret the equation mechanistically, (ii) it is easier to
make minor changes to the equation on the basis of
acquired knowledge and (iii) by incorporation of sec-
ondary models describing the temperature dependency
of the parameters, the model can be used to describe
non-isothermal crystallization kinetics. In contrast, an
algebraic solution is obtained assuming isothermal con-
ditions, making its use for non-isothermal conditions
impossible. An algebraic solution however, offers the
advantage that parameter estimation is easier because of
more readily available software packages capable of
non-linear regression of algebraic equations. Therefore,
both the differential equation and the algebraic solution
of the simplified version are presented in this paper.
When using the Avrami and Gompertz models the
amount of solid fat f is expressed as a function of time.
For ease of presentation however, the differential equa-
tion of this model is expressed in terms of a related
variable h, which is the remaining crystallizable fat:

h ¼
a� f

a
ð10Þ

where a is the value of the variable f for t approaching
infinity. In contrast to f, which increases with time in a
sigmoidal way, this new variable h is related to the
remaining supersaturation (i.e. the driving force of
crystallization) and thus decreases in a sigmoidal way
with time.
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To build the model, the approach of Wünderlich
(1990) was followed. He states that phase transitions
(such as crystallization) can be written in the form of a
chemical reaction:

A in this case meltð Þ �! � B in this case crystalsð Þ

and that for the thermodynamic and kinetic description
of phase transitions the same equations as for chemical
reactions can be used. Furthermore, he states that all
transitions between the molten and the crystalline phase
are usually assumed to be first-order transitions. Com-
mon causes, however, for a deviation of a first order
transition are impurities and a distribution of phases
with different perfections.
In this work, the crystallization process is represented

as if it was a combination of a first-order forward reac-
tion and a reverse reaction of order n with rate con-
stants Ki for each of the chemical reactions. The
dynamics of h can then mathematically be written as:

dh

dt
¼ K�n h

n � K�1 h ð11Þ

K1 and Kn are the rate constants of the first order for-
ward reaction and the nth order reverse reaction,
respectively.
The detailed nature of the reverse reaction is yet

unknown, but it might be related to re-melting of some
crystals due to dissipation of latent heat of crystal-
lization.
To calculate the values of h as a function of time

according to Eq. (11), the initial value for h, h(0), needs
to be specified:

h 0ð Þ ¼
a� f 0ð Þ

a
ð12Þ

f(0) is then the initially present amount of crystals
(nuclei?). The background of this variable is difficult to
explain mechanistically but it will be shown further that
f(0) can be related to the induction time of the crystal-
lization process. The parameters of this model therefore
are f(0), n, Kn, K1 and a.
Extensive parameter estimation studies revealed a

difference between K1 and Kn of only around 1.10
�5

(results not shown). Furthermore, the quality of the
five-parameter model was found not to be significantly
better than that of a four-parameter model for which
K1=Kn. It was thus decided to simplify the model to:

dh

dt
¼ K� hn � hð Þ h 0ð Þ ¼

a� f 0ð Þ

a
ð13Þ

in which a is the value of f when t approaches infinity
[expressed in percent (solid fat potential) when measuring

by means of pNMR, expressed in J/g (latent heat) when
measuring by means of DSC], K is the rate constant
(expressed in h�1), n is the order of the reverse reaction
(dimensionless) and f(0) is the initially present amount
of crystals (expressed in J/g when measuring by means
of DSC).
The behavior of the generalized form of Eq. (11), with

n2 as the order of the forward reaction instead of a fixed
value of one, was also explored. Parameter estimation
studies revealed that the fit of this generalized equation
was not significantly better than that of Eq. (11). Typical
values obtained for n2 were 0.88, 0.89 and 0.92.
Fig. 1 shows the influence of the four parameters on

the crystallization curve. Fig. 1A shows the influence of
varying a between 40 and 70 J/g [f(0)=1.10�5 J/g, K=6
h�1, n=5]. The parameter a is indeed the height of the
plateau of the curve and thus directly related to the a
values of the Avrami and Gompertz models.
Fig. 1B shows the influence of varying f(0) between

1.10�7 and 1.10�4 J/g (a=60 J/g, K=6 h�1, n=5). The
parameter f(0) is clearly related to the induction time of
the crystallization process. To make this relationship
clearer f(0) was mathematically related to the induction
time t_indx which is defined here as the time needed to
reach x% of crystallization, where x could for example
be 1%:

t indx ¼

�ln
1� xð Þ

1�n
�1

1�
f 0

a

� �1�n
�1

0
BBB@

1
CCCA

1� nð Þ
�K

ð14Þ

Fig. 1C shows the influence of varying K between 3
and 12 h�1 [a=60 J/g, f(0)=1.10�5 J/g, n=5]. The rate
of crystallization obviously increases when the K para-
meter increases. Thus, the higher the value of K, the
shorter the time needed to reach a measurable amount
of solid fat and the faster the rest of the crystallization
process takes place. In the case of K=3 the crystal-
lization rate is so slow that the plateau (60 J/g) is not yet
reached after 2.5 h.
Fig. 1D shows the influence of varying n between 1.5

and 7 [a=60 J/g, K=10 h�1, f(0)=1.10�5 J/g]. The
parameter n also has an influence on the time needed to
reach a measurable amount of solid fat. This can be
explained as follows: the higher the n value (i.e. the
order of the reverse reaction), the faster the term K * hn

will become negligible and the faster a relevant amount
of solid fat will be formed. However, the value of n is
also linked with the degree of curve asymmetry. When
the value of n is 2, the sigmoidal curve is perfectly sym-
metric. When the value is larger than 2, the beginning of
the crystallization process is faster than the end. The
more n exceeds 2, the larger the difference between the
rates of the beginning and end stages becomes. When
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the value is smaller than 2, the beginning of the process
is slower than the end. This influence of n on the degree
of curve asymmetry is illustrated in Fig. 2. In this figure
the time-axis was normalized by rescaling time such that
all curves intersect at 50% of their ultimate value.
Table 2 shows some typical parameter ranges

obtained for the analyzed samples. The parameters
obviously show a temperature and sample dependency.

2.2. Algebraic solution

To simplify parameter estimation the differential
equation (four parameter model) was converted to its

algebraic solution. To solve the differential Eq. (13) it is
rewritten as:

h�n
dh

dt
þ K�h1�n � K ¼ 0 ð15Þ

When h1�n is substituted by z, this leads to the first
order differential equation:

1

1� n

dz

dt
þ K�z ¼ K ð16Þ

The solution of which is

z ¼ 1þ z 0ð Þ � 1ð Þ
�e� 1�nð Þ

�K �t ð17Þ

After re-substitution into the original variable h, this
leads to

h ¼ 1þ h 0ð Þ1�n�1
� ��

e� 1�nð Þ
�K �t

h i 1
1�n

ð18Þ

Fig. 1. (a) Influence of the parameter a on the crystallization curve [f(0)=1.10�5 J/g, K=6 h�1]. (b) Influence of the parameter f(0) on the crystal-

lization curve (a=60 J/g, K=6 h�1]. (c) Influence of the parameter K on the crystallization curve [a=60 J/g, f(0)=1.10�5 J/g]. (d) Influence of the

parameter n on the crystallization curve [a=60 J/g, f(0)=1.10�5 J/g, K=10 h�1, n=5].

Fig. 2. Influence of the parameter n on the curve asymmetry [normal-

ized time-axis, a=60 J/g, f(0)=1.10�5 J/g, K=10 h�1, n=5].

Table 2

Typical parameter ranges of the proposed model

Sample a (J/g) K (h�1) n f(0) (J/g)

Cocoa butter at 20 �C 60–70 4–7 3–6 1.10�5–1.10�3

Cocoa butter at 22 �C 55–65 2.5–3.5 3.5–4 1.10�3–2.10�2

Milk fat samples 10–20 3–12 3–6 1.10�6–1.10�3
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As mentioned before h(0) is, via f(0), related to the
induction time of crystallization. Since the physical
interpretation of the parameter induction time is more
straightforward than that of the parameter h(0) [or the
equivalent f(0)] and since the induction time can be
more easily found back on a crystallization curve it was
decided to represent the equation as a function of t_indx
instead of h(0). Using Eq. (14), h(0) can be expressed as
a function of t_indx and this relationship can then be
inserted into Eq. (18). After simplification this then
leads to:

h ¼ 1þ 1� xð Þ
1�n
�1

� ��
e� 1�nð Þ

�K � t�t indxð Þ
h i 1

1�n

ð19Þ

where x is the percentage of fat in the definition of the
induction time t_indx [Eq. (14)].
Eq. (19) can be used in many software packages cap-

able of parameter estimation of non-linear algebraic
equations.
In this work, preference was given to this algebraic

solution for parameter estimation.

2.3. Model selection

For each sample, Table 3 shows the results of the
model selection using the different model selection cri-
teria. The four information criteria (FPE, AIC, BIC and
LILC) and the PRESS criterion give the same result for
most of the samples, i.e. the proposed model performs
the best for most of the samples. For some samples the
quality of fit of the Gompertz and the proposed model
is so similar that on the basis of some criteria the
Gompertz model is selected, while on the basis of other
criteria the proposed model is selected. All information
criteria are based on the sum of squared residuals and
thus give an indication of how much the predicted curve
differs from the actually measured curve, compensating
in different ways for model complexity.
The statistical F-test shows that for all samples the

proposed model performs significantly (�=0.01 except
for one sample, �=0.05) better than the Avrami model
without induction time and for most of the samples also
significantly better than the Gompertz model. Compar-
ison of the proposed model with the Avrami model with
induction time is not possible using an F-test since both
models contain the same number of parameters [see Eq.
(8)]. On the basis of the information criteria discussed
above, it could however be concluded that the proposed
model performs better than the Avrami model with
induction time for all samples studied.
To get a better insight in the magnitude of the differ-

ence between the Gompertz and the proposed model the
values for the mean sum of squared residuals (MSR)
(=SSR/(N�p)) for both models are presented in Table 4
for each sample. The MSR value consists of the

measurement error and the model error. Since the
measurement error can be assumed constant, the model
is better as the value of MSR is lower and the bigger the
difference between the values for MSR, the bigger the
difference between the quality of the models. From
Table 4 it can be seen that the MSR value is much more
constant for the proposed model than for the Gompertz
model. For some samples the values for the Gompertz
model are only slightly higher, or for some samples even
slightly lower than for the proposed model while for
other samples the MSR value for the Gompertz model
is much higher than that for the proposed model. For
the samples where the proposed model performs worse,
the difference between the two values is small. These
results indicate that the proposed model is more flexible
in describing the crystallization kinetics of fats. It gives
a good fit for all the samples used in this study, while
the Gompertz model gives some very good fits, but also
some significantly poorer fits.
When modeling, the residuals are assumed to be ran-

dom and independent. As explained above, the run and
autocorrelation tests give an idea of how good this
assumption is satisfied. The value for the run test
should, for the DSC measurements, be around 10
(knowing that the number of data points fluctuates
around 20). The values obtained for each of the four
models are between 3 and 6 for most samples. The
model with the highest number of sign changes can be
regarded as the best. Table 3 shows that for nearly all
samples the proposed model is selected as (one of) the best.
The autocorrelation may only be larger than 0.44

(approximate value for 1.96/
ffiffiffiffi
N
p

) for 1 lag (i.e. 5% of
the 18 lags that were calculated). For the proposed
model a maximum of one autocorrelation is found
above the threshold value for all samples considered.
For the other models there are a limited number of
samples for which more than one autocorrelation is
above the threshold.
Next to mathematical tools, one can also assess the

quality of a model visually. Fig. 3A–D show the mea-
sured data points together with the predicted curves
calculated with the Avrami (with and without induction
time), the Gompertz and the proposed model and the
residuals for each of the models. Fig. 3A and C repre-
sent sample CB N/19, the sample for which the differ-
ence between the Gompertz and the proposed model is
the biggest (in the advantage of the proposed model),
while Fig. 3B and D represent sample CB D/20(3), the
sample for which the difference between the two models
is the biggest in the advantage of the Gompertz model.
For both samples it can be seen that the Gompertz and
the proposed model are much closer to the data than the
Avrami model. For sample CB N/19 (Fig. 3A/C) the
Avrami model with induction time seems to have a
comparable quality of fit than the Gompertz model, a fit
which is however considerably worse than that of the
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Table 3

Model selected on the basis of different model selection criteria (A=Avrami, Ai=Avrami with induction time, G=Gompertz, F=Foubert)

Sample FPE AIC BIC LILC PRESS Run test Auto-correlation test F-test (a=0.01)

CBA/20 (1) F F F F F F A/Ai/F/G F
CBA/20 (2) F F F F F F A/Ai/F/G F
CBA/20 (3) F F F F F F F F
CBB/20 (1) F F F F F G A/Ai/F/G F
CBB/20 (2) F F F F F F A/Ai/F/G F
CBB/20 (3) F F F F F F A/Ai/F F
CBC/20 (1) F F F F F F F F
CBC/20 (2) F F F F F F Ai/F/G F
CBC/20 (3) F F F F F F F/G F
CBD/20 (1) F F F F F F A/Ai/F F
CBD/20 (2) F F F F F F A/Ai/F/G F
CBD/20 (3) G G G G G G F/G G
CBE/20 (1) G G G G G F/G A/Ai/F/G Ga

CBE/20 (2) F F F F G F A/Ai/F/G F
CBE/20 (3) G G G G G F F G
CBF/20 (1) F F F F F F A/Ai/F/G F
CBF/20 (2) G G G F F F F/G G
CBF/20 (3) F F F F F F A/Ai/F/G F
CBG/20 (1) G G G G G F A/Ai/F/G F/G
CBG/20 (2) F F F F F Ai/F A/Ai/F/G F
CBG/20 (3) F F F F F F A/Ai/F/G F
CBH/20 (1) F G G F G F F/G F/G
CBH/20 (2) G G G G G G A/Ai/F/G G
CBH/20 (3) G G G G G Ai/F A/Ai/F/G Ga

CBI/20 (1) F F F F F F A/Ai/F/G F
CBI/20 (2) F F F F F F A/Ai/F/G F
CBI/20 (3) F F F F F F F/G F
CBJ/20 (1) G G G G G F A/Ai/F/G F/G
CBJ/20 (2) F F F F F F A/Ai/F/G F
CBJ/20 (3) F F F F F G A/Ai/F/G F1

CBK/20 (1) F F F F F F F F
CBK/20 (2) F F F F F F F F
CBK/20 (3) F F F F F F F F
CBL/20 (1) G G G G G F F F/G
CBL/20 (2) G G G G G F F G
CBL/20 (3) F F F F F Ai/F A/Ai/F/G F
CBM/20 (1) F F F F F Ai/F Ai/F/G F
CBM/20 (2) F F F F F Ai/F/G A/Ai/F/G F
CBM/20 (3) F F F F F F F F
CBN/20 (1) F F F F F F A/Ai/F/G F
CBN/20 (2) F F F F F F G F
CBN/20 (3) F F F F F F F/G F
CBN/19 F F F F F Ai/F Ai/F/G F
CBN/21 F F F F F F A/Ai/F/G F
CBN/22 F F F F F F F/G F
CBN/23 F F F F F F F F
MFA/20.7 F F F F F Ai/F Ai/F F
MFA/23.7 F F F F F F F/G F
MFB/23.7 F F F F F F A/Ai/F/G F
MFC/23.7 F F F F F F A/Ai/F/G F
MFDb G G F F F F A/Ai/F/G F/G
MFEb F F F F F Ai/F/G A/Ai/F/G Fa

MFFb F F F F F Ai/F A/Ai/G/F F

Model A selected 0/53 0/53 0/53 0/53 0/53 0/53 0/53 0/53

Model Ai selected 0/53 0/53 0/53 0/53 0/53 0/53 0/53 0/53

Model F selected 42/53 41/53 42/53 44/53 42/53 39/53 10/53 41/53

Model G selected 11/53 12/53 11/53 9/53 11/53 4/53 1/53 7/53

Models F/G selected 0/53 0/53 0/53 0/53 0/53 1/53 8/53 5/53

Model Ai/F selected 0/53 0/53 0/53 0/53 0/53 7/53 1/53 0/53

Models Ai/F/G selected 0/53 0/53 0/53 0/53 0/53 2/53 3/53 0/53

Models A/Ai/F selected 0/53 0/53 0/53 0/53 0/53 0/53 2/53 0/53

All models equal 0/53 0/53 0/53 0/53 0/53 0/53 28/53 0/53

a The model is significantly better with a confidence level of 0.05, but not with a confidence level of 0.01.
b Samples measured by pNMR.
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proposed model. For sample CB D/20(3) the fit of the
Avrami model with induction time is worse than that of
the Gompertz and the proposed model. When compar-
ing the Gompertz and proposed models one can see that
for sample CB N/19 (Fig. 3A/C) the Gompertz model
still deviates quite a lot from the measured data points,
while the proposed model hardly shows any deviation
from the data points. For sample CB D/20(3) (Fig. 3B/
D) both models fit the data points very well, the Gom-
pertz model being a little better in the beginning of the
crystallization process.

2.4. Evaluation of the models

The newly developed model is capable of describing
the isothermal crystallization kinetics of fats much bet-
ter than the generally used Avrami model. Several
authors (Metin & Hartel, 1998; Toro-Vazquez et al.,
2000; Wright, Hartel et al., 2000; Ziegleder, 1990) using
the Avrami model have described the fit as very good,
stating a correlation coefficient always greater than 0.96
(Wright, Hartel et al., 2000), an R-value between 0.993
and 0.998 (Metin & Hartel, 1998) and a regression
coefficient greater than 0.998 (Toro-Vazquez et al.,
2000). In this study, a mean value for R2 of 0.9998 was
obtained for the proposed model and, moreover, Fig. 3
shows that the fit for the Avrami model is far from
being perfect when compared to the fit for the proposed
model. It has to be remarked that Metin and Hartel
(1998) and Toro-Vazquez et al. (2000) linearize the
Avrami model to estimate its parameters (which is sta-
tistically questionable) while in our study non-linear
regression was used to fit the data.
The Avrami model with induction time fits the data

significantly better than the standard Avrami model for
most of the samples (details not shown). However, the
fit of the proposed model is still much better.
The Gompertz model used by Kloek et al. (2000)

already offers a large improvement when compared to
the Avrami model. This can be seen in Fig. 3 and also
when comparing the values for the information and
PRESS criteria (data not shown). When comparing the
Gompertz model with the Avrami model with induction
time, the Gompertz model nearly always performs bet-
ter even though it uses one parameter less. The pro-
posed model, however, performs even better than the
Gompertz model in the majority of the cases. Also, it
offers the advantage that it describes the crystallization
kinetics of all samples used (different fats, different
temperatures, different measuring methods) nearly as
good, while the Gompertz model performs excellent on
certain samples but significantly poorer on others.
Another advantage of the proposed model is the fact

that it has been written in the form of a differential
equation, which makes it easier to give a mechanistic
interpretation [compare Eq. (13) to Eqs. (1)–(3) and

Table 4

Values for the mean sum of squared residuals (MSR) for the Gom-

pertz and Foubert models

Sample MSR Gompertz MSR Foubert

CBA/20 (1) 0.345 0.117

CBA/20 (2) 0.250 0.115

CBA/20 (3) 0.244 0.076

CBB/20 (1) 0.092 0.038

CBB/20 (2) 0.073 0.035

CBB/20 (3) 0.213 0.003

CBC/20 (1) 1.630 0.003

CBC/20 (2) 0.895 0.085

CBC/20 (3) 0.621 0.041

CBD/20 (1) 0.345 0.097

CBD/20 (2) 0.138 0.021

CBD/20 (3) 0.046 0.318

CBE/20 (1) 0.044 0.079

CBE/20 (2) 0.063 0.037

CBE/20 (3) 0.017 0.093

CBF/20 (1) 0.562 0.055

CBF/20 (2) 0.010 0.057

CBF/20 (3) 0.478 0.059

CBG/20 (1) 0.128 0.180

CBG/20 (2) 0.328 0.116

CBG/20 (3) 0.431 0.215

CBH/20 (1) 0.138 0.127

CBH/20 (2) 0.017 0.120

CBH/20 (3) 0.045 0.095

CBI/20 (1) 0.409 0.061

CBI/20 (2) 0.638 0.012

CBI/20 (3) 0.282 0.039

CBJ/20 (1) 0.107 0.127

CBJ/20 (2) 0.213 0.096

CBJ/20 (3) 0.087 0.072

CBK/20 (1) 0.228 0.075

CBK/20 (2) 0.109 0.032

CBK/20 (3) 0.117 0.031

CBL/20 (1) 0.075 0.084

CBL/20 (2) 0.034 0.100

CBL/20 (3) 0.085 0.040

CBM/20 (1) 0.193 0.070

CBM/20 (2) 0.605 0.098

CBM/20 (3) 0.194 0.014

CBN/20 (1) 0.637 0.085

CBN/20 (2) 0.576 0.142

CBN/20 (3) 0.286 0.007

CBN/19 1.831 0.010

CBN/21 0.092 0.025

CBN/22 0.095 0.007

CBN/23 0.280 0.053

MFA/20.7 0.084 0.029

MFA/23.7 0.010 0.001

MFB/23.7 0.150 0.073

MFC/23.7 0.036 0.012

MFD 0.047 0.042

MFE 0.036 0.018

MFF 0.464 0.065

Mean 0.286 0.071

Minimum 0.010 0.001

Maximum 1.831 0.318
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(18)] and to use the model when, for example, non-iso-
thermal conditions are used. Moreover, an analytical
solution is available for the isothermal situation, facil-
itating non-linear parameter estimation in a multitude
of software packages.
A possible concern is that the Avrami model was ori-

ginally developed for volume fractions of crystallization
(Avrami, 1940). Replacing these volume fractions (as
obtained by dilatometry) by mass fractions (as obtained
in pNMR) or transition heats (as obtained in DSC) may
introduce some error when the crystallization process
involves more than one polymorphic form because the
densities and latent heats are not the same for the dif-
ferent polymorphic forms. This is the case for the cocoa
butter samples and one milk fat sample used in this
study. The error introduced when using mass fractions
will be smaller than when using transition heats since
the difference in density between different polymorphic
forms is smaller than the difference in latent heats. It
was decided to compare the proposed model with the
Avrami model for all the datasets, since in literature too
DSC thermograms related to the crystallization of dif-
ferent polymorphic forms are fitted to the Avrami
model (Kerti, 1998; Metin & Hartel, 1998; Ziegleder,
1990). It has to be stressed however, that also for data-
sets obtained by pNMR and for datasets obtained by
DSC where only one polymorphic form is involved the
proposed model performs significantly better than the
Avrami model.

To get more insight in the differences between the
models, their ability to fit an asymmetric curve was tes-
ted. The asymmetry of a curve was defined as:

asym ¼
t90% � t50%
t50% � t10%

ð20Þ

where tx% is the time needed to reach x% crystal-
lization. A symmetric curve has a value of 1 for this
asym parameter.
The appendix provides the formulas obtained for

asym for the different models. Here only the conclusions
will be discussed.
For the Avrami model (with and without induction

time) the asymmetry is only dependent on the Avrami
exponent n. The values of n of the standard Avrami
model obtained for the crystallization experiments
described in this study coincide with asym values
around 1 or smaller, meaning that the start of the crys-
tallization is slower than the end, which is not in con-
cordance with the experimental data, explaining why
the Avrami model does not provide very good fits. The
Avrami model with induction time takes care of the
slow start of the crystallization process (the induction
period). This leads to values of n coinciding with asym
values larger than 1, which is in concordance with the
experimental data, thus explaining why the Avrami
model with induction time fits the data significantly
better than the standard Avrami model. For the

Fig. 3. Visual representation of the quality of fit of the different models. (a) and (b) represent the measured data points and the predicted curves for

the three models. (c) and (d) represent the residuals as a function of time for the three models. (a) and (c) represent CBN/19, (b) and (d) CBD/20(3).
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Gompertz model it turns out that the asym value is a
fixed value of 1.57. This is an important feature of the
model because it means that the Gompertz model does
not offer any flexibility concerning the asymmetry of the
curve. This explains also why the Gompertz model fits
very well for certain datasets (those who show an asym
value around 1.57) and considerably worse for others.
Consequently, evaluating the asym value of a dataset

would allow deciding beforehand whether the Gom-
pertz model would fit well or not. Finally, the asym
value of the proposed model is dependent on the n
value, with n values equal to two giving rise to
symmetric curves, as described earlier.

3. Conclusion

A new model able to describe the kinetics of iso-
thermal crystallization was presented. The model was
written in the form of a differential equation, but the
analytical solution under isothermal conditions was also
provided. It was shown that the proposed model always
performs better than the often used Avrami model (with
and without induction time) and performs better than
the Gompertz model in the majority of the cases. The
very good fits obtained make the model a useful tool to
have a better quantitative description of the crystal-
lization processes. Whether a true physical mechanism
lays beneath this goodness of fit will have to be shown
in the future.
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Appendix

For the four models discussed in this paper the
asymmetry was calculated according to Eq. (17).
For the Avrami equation with and without induction

time the same asym value was obtained:

asym ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln0:1n
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln0:5n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln0:5n
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln0:9n
p

This leads to an asym value of one for values of the
Avrami exponent of 3.25. Tailing is obtained for n big-
ger than 3.25.
For the Gompertz equation the following was

obtained:

asym ¼
�ln �ln 0:9ð Þð Þ þ ln �ln 0:5ð Þð Þ

�ln �ln 0:5ð Þð Þ þ ln �ln 0:1ð Þð Þ
¼ 1:57

For the proposed model the dependence of the asym
value on the model parameters is given by the following
equation:

asym ¼
ln 0:51�n � 1
� �

� ln 0:11�n � 1
� �

ln 0:91�n � 1ð Þ � ln 0:51�n � 1ð Þ

An asym value of one is obtained for n equal to 2 and
tailing is observed for n values larger than 2.
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