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Abstract

In recent years, multiscale monitoring approaches, which combine principal component analysis (PCA) and multi-resolution
analysis (MRA), have received considerable attention. These approaches are potentially very efficient for detecting and analyzing
diverse ranges of faults and disturbances in chemical and biochemical processes. In this work, multiscale PCA is proposed for
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fault detection and diagnosis of batch processes. Using MRA, measurement data are decomposed into approximation
at different scales. Adaptive multiway PCA (MPCA) models are developed to update the covariance structure at eac
deal with changing process conditions. Process monitoring by a unifying adaptive multiscale MPCA involves combin
those scales where significant disturbances are detected. This multiscale approach facilitates diagnosis of the detect
hints to the time-scale under which the fault affects the process. The proposed adaptive multiscale method is successf
to a pilot-scale sequencing batch reactor for biological wastewater treatment.
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1. Introduction

Batch operations are the prevalent mode,
in chemical and biological processes, when h
value-added, low-volume products are produce
they have an inherent flexibility. In general, ba
processes exhibit some batch-to-batch variat
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due to composition disturbances, equipment defects
and deviations of the process variables from their
specified trajectories. Abnormalities during batch
operations can lead to undesirable products in at least
one batch or a whole sequence of batches. Therefore,
on-line monitoring of batch processes is very crucial
as it allows to detect potential problems and make
modifications when necessary.

With the advent of improved on-line sensor tech-
nology and automation, batch processes with well-
equipped computerized measurement devices produce
large amounts of data. It becomes therefore very im-
portant and essential to extract the useful information
from the measurement data and to infer the state of an
ongoing process. However, this task is a really chal-
lenging one due to the complexities of chemical and
biological processes originating from the large number
of measurement variables, strong interactions among
those measurements, missing data, considerable effects
of control loops, etc.

Multivariate statistical process control (MSPC)
has been successfully applied to monitoring, fault
detection and diagnosis of batch processes (Nomikos
and MacGregor, 1994; Lennox et al., 2001). Multiway
principal component analysis (MPCA) is a projection
method for analyzing a historical reference distribu-
tion of measurement trajectories from past successful
batches in a reduced latent-vector space and com-
paring the behaviors of new batches to this reference
distribution. Several extensions of MPCA have been
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proposed the multiscale PCA methodology, which de-
termines separate PCA models at each wavelet scale.
The scales where significant events occur are recom-
bined to obtain a PCA model for all scales together.
Multiscale PCA is useful for modeling data containing
contributions that change over time and frequency.

In the application investigated here, a variant of
MPCA technique, adaptive multiscale MPCA, is used
as a basis to develop a monitoring system for a sequenc-
ing batch reactor (SBR) process for biological wastew-
ater treatment. A SBR process has a unique cyclic batch
operation for wastewater treatment (Demuynck et al.,
1994; Lee and Park, 1999). Most of the advantages of
SBR processes may be attributed to their single-tank
designs and their flexibility that allows them to
meet many different treatment objectives (Wilderer
et al., 2001). The SBR process is highly nonlinear,
time-varying and subject to significant disturbances
like hydraulic changes, composition variations and
equipment defects. Disturbances and events in SBR
processes occur in different time-scales ranging from
minutes (sensor faults), hours (toxic shocks) to months
(seasonal effects). Thus, a multiscale MPCA seems to
be better suited for extracting information from SBR
processes.

Multiscale MPCA decomposes process data into
different time-scales using the wavelet transform. Sep-
arate MPCA models at each scale can be expected to
have a better ability to detect events whose magnitude
is most significant at that scale. The SBR process it-
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roposed to take into account various factors s
s dynamic MPCA (Chen and Liu, 2002), nonlinea
PCA (Dong and McAvoy, 1996), hierarchica
PCA (Ränner et al., 1998), multi-group MPCA

Lane et al., 2001) and multiblock MPCA (Lee and
anrolleghem, 2003). All these techniques are bas
n a single-scale presentation of the collected d
owever, data from almost all practical processes

nherently multiscale due to events occurring at dif
nt locations and with different localization in time a

requency.
In recent years, there has been significant in

st in combining the conventional PCA with wave
ransforms (Bakshi, 1998; Kosanovich and Piovos
997; Misra et al., 2002; Rosen and Lennox, 20).
hose PCA-based process monitoring methods em
avelet analysis to transform time-domain signals

he time-frequency domain. Especially,Bakshi (1998
elf evolves over time as the microorganisms ada
hanging operating conditions like surrounding te
erature and varying process loads. To overcom
roblem of changing process conditions, an ada
PCA model can be developed at each scale.
roposed adaptive multiscale MPCA model is use
etect abnormal batch behaviors and to identify
ajor sources of process disturbances. Real-tim

ection of abnormalities directly after completion o
atch cycle may even prevent detrimental effect

he following batch run. The proposed methodol
s applied to a pilot-scale SBR for biological nutrie
emoval. When the SBR is free from major upsets
rocess is likely to be more stable than when it is s

ect to significant disturbances. The adaptive multis
PCA supervision is used as a tool to monitor

tability of the process on the basis of simple on-
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2. Materials and methods

2.1. Multiway principal component analysis

In a typical batch run,j = 1, . . ., J variables are mea-
sured at each ofk= 1, 2,. . .,K time intervals throughout
the batch. Similar data will exist on a number of batches
i = 1, 2, . . ., I. All the data can be summarized in the
X(I× J×K) of a historical database (Fig. 1). It can
be decomposed using various three-way techniques,
including MPCA. MPCA is equivalent to unfolding
the three-dimensional data matrixX into a large two-
dimensional matrixX, and then performing a regular
PCA (Henrion, 1994; Nomikos and MacGregor, 1994).
In case of monitoring batch processes, it is important to
determine differences between batches and to project
new batches on the model. Therefore,X was unfolded
in such a way as to put each of its vertical slices (I)
side by side to the right, starting with the one corre-
sponding to the first time interval. The resulting two-
dimensional matrix has size (I× JK). This unfolding
allows for analyzing the variability among the batches
in X by summarizing the information in the data with
respect to both variables and their time variation.

Then MPCA decomposes the data into a series of
principal components consisting of score vectors (tr)

and loadings (pr), plus residuals (E):

X =
R∑
r=1

trpr + E (1)

The loading vectors (pr) define the reduced dimen-
sion space (R) and are the directions of maximum
variability. Each element of the score vectors (tr)
corresponds to a single batch and depicts the overall
variability of this batch with respect to the other
batches in the database throughout the whole batch
duration (Nomikos and MacGregor, 1995). Usually,
a few principal components can express most of the
variability in the data when there is a high degree
of correlation among the data (R� min(I,JK)). R is
chosen such that most of the systematic variability
of the process data is described by these principal
components and that the residual matrixE is as small
as possible in a least-squares sense. The NIPALS
(nonlinear iterative partial least-squares) algorithm can
be used for sequential computation of the dominant
principal components (Geladi and Kowalski, 1986).

Abnormal behavior of new batches is identified by
projecting the new batches onto the model. Control
charts that are used in monitoring batch processes are
generally based on theQ- andT2-statistics in which

three-
Fig. 1. Decomposition of a
 way data matrixX by MPCA.
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control limits are used to determine whether the pro-
cess is in control or not. The assumption behind these
approximate confidence limits is that the underlying
process exhibits a multivariate normal distribution with
a population mean zero. This is to be expected since any
linear combination of random variables, according to
the Central Limit Theorem, should tend toward a nor-
mal distribution.

TheQ-statistic is a measure of the lack of fit with the
established model. For batch numberi,Q is calculated
as follows:

Qi = eie
T
i =

JK∑
c=1

ei,c gx
2
(h) (2)

whereei is the elements ofE.Qi indicates the distance
between the actual values of the batch and the projected
values onto the reduced space. The distribution of the
calculatedQi values can be approximated by a chi-
squared distribution,gχ2

(h), whereg is a constant andh
is the effective degrees of freedom of the chi-squared
distribution.

Hotelling’s T2-statistic measures the degree to
which the calibration model fists the data:

T 2
i = tTi S−1ti ∼ I(I − R)

R(I2 − 1)
FR,I−R (3)

where S is the estimated covariance matrix of the
scores. The distribution of theT2-statistic for all
batches can be approximated by anF-distribution,
F
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ically (i.e. in integer powers of two) by a factor of
2m for translation and by a factor of 2ms for dila-
tion. The dilation parameter determines the location
in the frequency domain, while the translation pa-
rameter determines the location of the wavelet in the
time domain. The discrete wavelet transform (DWT)
projects a signal on orthonormal basis functions to an-
alyze the signal at different scales by decomposing the
signal at each scale into coarse approximation (low-
frequency components) and details (high-frequency
components). Multi-resolution analysis (MRA) uses
decomposition and reconstruction algorithms to ob-
tain a multilevel representation of the signal by an
efficient series of filtering and down-sampling oper-
ations (Mallat, 1989). High-pass filters are associated
with the wavelet functions, while low-pass filters cor-
respond to the scaling function. The wavelet transform
can be used to decompose multivariate signalsx into
an approximationA1 (low-frequency components) and
detailsD1 (high-frequency components). The decom-
position process can continue, with successive approx-
imations being decomposed in turn, so that signals are
broken down into a desired number of levelsL. In this
application, the simplest discrete wavelet Haar is used:

ψH (t) =




1 0 ≤ t ≤ 1/2

−1 1/2 ≤ t ≤ 1

0 otherwise

(6)
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R,I−R, and confidence limits for theT2-statistic are
alculated from thisF-distribution.

.2. Multiscale MFCA

.2.1. Wavelet transform
Wavelets are a family of basis functions genera

rom a mother waveletψ(t) by translation and dilation

a,b = a−1/2ψ

(
t − b

a

)
(4)

herea andb are the dilation and translation param
ers, respectively. Then a family of discrete wavele
epresented as

m,s = 2−m/2ψ(2−mt − s) (5)

herem ands are integers. For most practical ap
ations, the wavelet coefficients are discretized d
uency with an equal area above and below thet-axis, as
hown inFig. 2. As an example, pH originating fro
he measurement data of the SBR was reconstru
fter applying MRA (Fig. 3). The approximation coe
cient at scale 4 (A4) represents the underlying tre
f the signals while the details coefficients (D1–D4)
epresents the high-frequency details.

.2.2. Adaptive multiscale MPCA methodology
Multiscale PCA combines the strengths of P

ith the attractive properties of wavelet analy
CA has the ability to decorrelate the variables
xtracting a linear relationship between variables,
avelet analysis has the ability to extract feature

he measurements and approximately decorrelat
utocorrelation among the measurements. In this w

he basic structure of the multiscale PCA metho
ntroduced byBakshi (1998)is employed. There ar
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Fig. 2. Orthonormal scaling function and wavelet function of Haar
wavelet.

however, some differences in the application and in
the extension of the multiscale PCA approach. First,
the multiscale PCA is adapted to batch processes as
a multiscale MPCA method. Second, adaptive MPCA
models with recursive updating of the covariance
matrices are used at each scale to make the MPCA
models follow the evolution of the process. Finally,
a multiscale fault identification method is proposed
once a fault is detected through the multiscale MPCA.
The proposed methodology for adaptive multiscale
MPCA is illustrated inFig. 4 and can be summarized
in the following steps:

Modeling procedure

1. SelectN historical batches which represent normal
operation. Then the data matrixX(N× J×K) is nor-
malized using the mean and standard deviation of
each variable at each time in the batch cycle over
all batches. Subtracting the average batch trajectory
generally eliminates the major nonlinear and non-
stationary behavior of the process.

Fig. 3. Multi-resolution plot of pH (decomposition level: 4).
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Fig. 4. Adaptive multiscale PCA (AMPCA) methodology.

2. Compute the wavelet decomposition for each
variable for all the batches by applying a
wavelet transformW(K×K) with decomposition
level L, and generateL detail coefficient ma-
trices, XD1(N× J×K/2), XD2(N× J×K/22), . . .,
XDL(N× J×K/2L) and one approximate coefficient
matrixXAL(N× J×K/2L).

3. Apply adaptive MPCA to each of theL+ 1 matri-
ces and determine control limits of the monitored
indices,T2 andQ, at each scale.

4. Select wavelet coefficients larger than the appropri-
ate threshold and reconstruct the approximated data
matrixXT.
Apply adaptive MPCA to the reconstructed data ma-
trix XT and calculate overall control limits,T 2

T and
QT.

On-line process monitoring procedure
5. Scale the current batch data with the mean and stan-

dard deviation obtained at step 1.
6. Compute the new wavelet coefficients, project these

coefficients onto their respective scale model and
calculate the monitoring indices,T2 andQ, against
the limits at each scale.

7. Reconstruct the approximate measurements from
the scores at the scales where one of the current
monitoring indices violates the limits.

8. Project the reconstructed measurements onto the
unified adaptive MPCA model and calculate the
overall monitoring indices,T 2

r andQT.

2
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a
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a 80-l working volume was operated in a 6 h cycle
mode and each cycle consisted of 1 h fill/anaerobic,
2 h 30 min aerobic, 1 h anoxic, 30 min aerobic and
1 h settling/draw phases. The hydraulic retention time
(HRT) and solid retention time (SRT) were maintained
at 12 h and 10 days, respectively. Loading amounts of
COD as synthetic municipal-like sewage, NH4

+–N and
PO4

3−–P per cycle in standard conditions were 440, 60
and 9.5 mg/l, respectively.

The controls of the duration/sequence of phases and
the on/off status of the peristaltic pumps, mixer and air
supply were automatically achieved by a LabView data
acquisition and control (DAC) system. The DAC sys-
tem consisted of a computer, interface cards, meters,
transmitters and solid-state relays. Electrodes for pH,
ORP (oxidation–reduction potential), DO (dissolved
oxygen), temperature, weight and conductivity were
installed and connected to the individual meters. The
status of the reactor was displayed on the computer and
the time series of the electrode signals were stored in a
data file.

A set of on-line measurements was obtained every
1 min (360 time instants) containing pH, ORP, DO,
conductivity, temperature and weight of the SBR re-
actor. Thus, no advanced or expensive measurement
devices had to be installed in order to make the methods
work. All measurements are simple standard measure-
ments. These measurements were stored for 280 cycles
(=70 days) forming a database of historical information
about the process. Only the measurement data from the
fi sed
t gi-
c (cor-
r ere
a ence
.3. Sequencing batch reactor

The data used in this study were collected fr
pilot-scale SBR system shown inFig. 5. The fill-

nd-draw sequencing batch reactor (SBR) system
rst 300 sampling time instants of the cycles were u
o develop the monitoring models since the biolo
al reactions in the settling and drawing phases
esponding to those of the last 60 time instants) w
ssumed to be negligible. Moreover, due to the abs
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Fig. 5. Schematic diagram of a sequencing batch reactor system.

of mixing, the sensor signals were unreliable in these
two phases. Therefore, the multiscale MPCA algorithm
was applied to the three-way data arrayX with dimen-
sions 280× 6× 300. Typical batch trajectory profiles
of the measurement data are shown inFig. 6.

3. Results and discussion

3.1. Multiway principal component analysis
(MPCA)

A MPCA model for on-line monitoring was built
from a historical data set of batches, where five abnor-
mal batches (batch numbers: 8, 51, 60, 85, 86) were
excluded from the normal operating condition model.
Four principal components, which explained approx-
imately 82% of the total variability, were determined
by cross-validation (Krzanowski, 1987). The valida-
tion data set consisting of the 180 remaining batches
were projected onto the model space.Fig. 7shows the
Q andT2 monitoring charts of the MPCA model. It
can be seen that theT2 hardly exceeds its limit, while
theQ values is far above the 99% limit from batch
110 on. This indicates that the process variation in
the validation batches cannot be described by the de-
veloped model. It is obvious that the typical MPCA
model is not valid since the fixed reference database

is not representative of the SBR process that is time
varying. In the SBR operation the influent wastewater
is fed into the reactor and mixed with already exist-
ing microorganisms. Therefore, the performance of the
current batch highly depends on microorganism activ-
ity in the previous batches. In addition, the SBR pro-
cess is subject to significant disturbances like hydraulic
changes and composition variations. Small changes
in concentrations or flows can have a large effect on
the kinetics of biological reactions leading to batch-
to-batch variability in effluent quality and microorgan-
ism growth. When the typical MPCA model is used to
monitor the SBR process with time-varying behaviors,
false alarms often result, which significantly compro-
mises the reliability and acceptance of the monitoring
system.

3.2. Adaptive MPCA

To overcome the problem of changing process con-
ditions as the SBR process itself evolves over time, an
adaptive MPCA model with the recursive updating of
the covariance matrices can be developed. When a new
block of batch data becomes available, the covariance
matrix is updated by exponentially discounting the old
data (Dayal and MacGregor, 1997):

XTX(i) = αXTX(i− 1) + xTx(i) (7)
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Fig. 6. Typical batch trajectory profiles of the measurement data.

whereXTX(i) is the covariance matrix at batchi, x(i) is
the unfolded operation vector at batchi andα is a forget-
ting factor. The forgetting factorα is a tuning parameter
that varies depending on how fast the process change.
In this application it is set to 0.9897, which corres-

ponds to 96 batch operations. Since the number of sig-
nificant principal components can change over time,
it is necessary to determine the number of principal
components recursively. However, the cross-validation
approach that was used for the MPCA model above is
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Fig. 7. MPCA.Q andT2 monitoring charts with 99% confidence limits.

not suitable because old data are not representative for
the current process. Therefore, the number of signifi-
cant principal components was calculated recursively
using the cumulative percent variance (CPV) method
(Li et al., 2000). The CPV is a measure of the percent
variance captured by the firstRprincipal components:

CPV(R) =
∑R
l=1λl

trace(V )
× 100% (8)

where the λl are the eigenvalues ofX and
V = EET/(I − 1). The number of principal components
is chosen when CPV reaches a predetermined limit
(80%). A potential adaptation problem is that the model
could adapt not only to normal process evolution, but
also to disturbances and failures. To prevent this, the
model updating was skipped when theQandT2 values
of new batches were exceeding predetermined limits.
TheQ andT2 values inFig. 8 are mostly well inside
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Fig. 8. Adaptive MPCA.Q andT2 monitoring charts with 99% confidence limits.

the confidence limits; this implies that as the covari-
ance structure adapts to new process conditions, the
updating model effectively captures the variability of
the process.

3.3. Adaptive multiscale MPCA

For the adaptive multiscale MPCA formulation,
each variable in the previous examples is first decom-
posed into a number of scales using the Haar wavelet.
The number of scales is four, i.e. four detail scales

(D1,D2,D3 andD4) and one approximation scale (A4).
Then, adaptive MPCA models with the recursive up-
dating of the covariance matrices are developed at each
scale. Each adaptive MPCA uses the same forgetting
factor (α= 0.9897) and computes its optimal number of
principal components adaptivity based on the CPV. The
detection limits at each scale are adjusted to account for
the overcompleteness of the on-line wavelet decompo-
sition by the following equation (Bakshi, 1998):

CL = 100− 1

L+ 1
(100− C) (9)
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Fig. 9. Unifying adaptive multiscale MPCA.Q andT2 monitoring charts with 99% confidence limits.

whereC is the desired overall confidence limit andCL is
the adjusted confidence limit at each scale. Therefore,
if either theQ or T2 value at any scale is above the
corresponding 95% limit, the scale is considered to be
significant. The data on that scale is then used in the
reconstruction of a unifying estimate of the original
data. The reconstructed data are then monitored using
a unifying adaptive MPCA with the confidence limit
99%.

The resultingQ or T2 charts of the unifying adap-
tive MPCA are shown inFig. 9. Both theQ andT2

charts indicate that the multiscale model is valid dur-
ing the whole period. Most of the significant features
in the unifying adaptive MPCA results are qualita-
tively similar to those of the adaptive MPCA. However,
there are some differences. It can be seen fromFig. 9
that theQ values of batch numbers 162 and 163 vio-
late the 99% confidence limits. The adaptive MPCA
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Fig. 10.Qmonitoring charts at each scale.
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Fig. 11. T2 monitoring charts at each scale.
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Fig. 12. Contribution plot at the approximation scaleA4 (batch 274).

method only detects the fault only at batch number
163. Considering the fact that the batch data in the
model are updated at the end of a batch cycle, the adap-
tive MPCA detects the fault 6 h later. In addition, the
Q values inFig. 9 violate their limits more than five
times between batch numbers 220 and 230, compared
with those of the adaptive MPCA model (Fig. 8). Dur-
ing this period, the performance of the SBR process

was unstable and gave relatively poor effluent quality.
Therefore, the adaptive multiscale MPCA gave proper
false alarms in the period whereas the adaptive MPCA
failed to detect the significant events. Thus, the adap-
tive multiscale MPCA method is not only more suc-
cessful in early detection but also in detection itself of
less pronounced process faults than the adaptive MPCA
approach.

Fig. 13. Univariate profiles of DO concentrations for normal batches and batch 274.
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ScaleQ andT2 charts (Figs. 10 and 11) can help to
determine the nature of a disturbance. Fast disturbances
are mainly detected in the higher scales whereas slow
disturbances are found in the lower scales (Lennox and
Rosen, 2002). In addition, the way a disturbance ap-
pears across scales can reveal information on the dis-
turbance characteristics. For instance, the disturbance
at batch 163 is a rather spiky disturbance since it is
strong in the highest scale (D1) but becomes weaker in
the lower scales. On the other hand, the disturbance at
batch 197 is a step disturbance as it appears clearly for
all scales.

In order to identify the disturbance for batch 274,
a multiscale identification scheme was adopted. The
multiscale identification approach diagnoses a fault in
the most significant scaleQandT2 charts rather than the
QandT2 charts of the unifying adaptive MPCA. For in-
stance, it is quantitatively identifiable from the adaptive
multiscale MPCA that the ratio between theT2 value
and the 99% confidence limit at batch 274 is highest
at the approximation scale (A4). The contributions to
the T2 value in the approximation scale show that it
was mainly the DO concentrations that contributed to
the disturbance (Fig. 12). Fig. 13shows the univariate
plots of DO concentrations for normal batches and for
batch 274. It can be seen that the DO concentrations
of batch 274 are lower than those of normal batches
during the aerobic phase.

Compared with the adaptive monitoring results, the
m the
d ance
m on.
H igher
c ro-
c , the
s hen
d o be
m may
b

4

on-
c s. To
d CA
m ring

and fault detection. In the adaptive multiscale MPCA
formulation, the individual variables are decomposed
into wavelet coefficients at different scales. The wavelet
coefficient at each scale is used to recursively develop
adaptive MPCA to extract correlations at each scale.
Only significant scales are combined to construct a
uniscale batch data set in the time domain, which is
then used to develop a unifying adaptive MPCA model
for process monitoring and diagnosis. The application
of the proposed algorithm to a pilot-scale SBR pro-
cess demonstrated the feasibility and effectiveness of
this adaptive process monitoring approach. With re-
spect to detecting disturbances, the performance of the
adaptive multiscale MPCA algorithm is not only more
successful in early fault detection but also in detection
of less pronounced process faults than typical single
time scale MPCA methods. Moreover, the multiscale
approach provides information on the time scale under
which a fault affects process, which can be used for
diagnosis of the fault to find the physical cause.
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