Tornado: A versatile and efficient modelling & virtual
experimentation kernel for water quality systems

F. Claeys %, D.J.W. De Pauw?, L. Benedetti?, I. Nopens® and P.A. Vanrolleghem® P

*BIOMATH, Department of Applied Mathematics, Biometrics and Process Control
Ghent University, Coupure Links 653, 9000 Gent, Belgium
e-mail: filip.claeys @biomath.ugent.be

bmodel EAU, Département de Génie Civil
Pavillon Pouliot, Université Laval, Québec, G1K 7P4, QC, Canada

Abstract: Recently, a new kernel for modelling and virtual experimentation (i.e. any evaluation of a model)
in the domain of water quality management was developed. This kernel was named “Tornado” and will be
included in the new generation of the WEST product family, as well as in several other products (e.g. DHI’s
MOUSE-TRAP) and projects. Most important issues during development were versatility and efficiency.

This paper focuses mainly on the rationale for the new development, and the major features of the resulting
kernel. It is argued that classical approaches (such as the adoption of MATLAB/SIMULINK, custom FOR-
TRAN codes and/or domain-specific simulators) all have specific disadvantages, hence the need for a kernel
that offers a compromise between versatility and efficiency.

Tornado was developed in C++ using advanced language features, yielding a code base that offers fast execu-
tion, portability and increased readability. The software is composed of distinct environments for modelling
and virtual experimentation. The modelling environment allows for the specification of complex ODE and
DAE models in object-oriented, declarative languages such as MSL and Modelica. A model compiler trans-
lates these high-level models into efficient, flattened code. The experimentation environment allows for running
atomic virtual experiments (such as simulations and steady-state analyses) as well as compound experiments
(optimizations, scenario analyses, etc.) on the basis of flattened models.

Important Tornado features are the fact that new virtual experiment types and numerical solvers can easily
be added and loaded dynamically. Further, Tornado is available for several platforms and can be deployed in
multiple ways: it can be used as a numerical back-end for graphical, command-line and web-based applica-
tions, and can be integrated in cluster and grid computing infrastructures. Several types of API’s are currently
provided: C, C++, .NET and MEX. The persistency layer is XML-centric.

Keywords: Modelling; Virtual experimentation; Software kernels; Distributed execution

1 INTRODUCTION a set of related models, in only few cases are they

more generic in nature.

The water quality domain is typically subdivided
into river systems, sewer systems and waste-
water treatment plants (WWTP). For each of these

sub-domains, several mathematical models have l.e. one want§ .to be a'ble to build cpmprehenswe
evolved over time, some of which have received models describing entire water quality processes,
a formal or de facto standardization status. For across the historical sub-domain boundaries. Also,

WWTP for instance, the ASM (Activated Sludge knowledge of syst.ems. is coqstantly grpwing and
Model) series has been standardized by the Inter- models are becoming increasingly detailed. As a

Since a number of years, the desire for integrated
modelling in the water quality domain is growing,

national Water Association since 1987 (Henze et al.
[2000]). Also, for each sub-domain various soft-
ware tools have been developed. Often these tools
are targeted towards one single model or towards

result, a need for powerful software infrastructures
exists.

Water quality models typically consist of large

sets of non-linear Ordinary Differential Equa-
tions (ODE) and/or Differential-Algebraic Equa-
tions (DAE). These equations are mostly well-
behaved, although discontinuities occur regularly.
The complexity of water quality models is therefore
not in the nature of the equations, but in the sheer
number. In WWTP, smaller models such as the
well-known Benchmark Simulation Model (BSM)
(Copp [2002]) consist of approximately 150 derived
variables. Larger systems have up to 1,000 derived
variables and over 10,000 (partly coupled) parame-
ters.

2 RATIONALE FOR THE DEVELOPMENT OF
TORNADO

The work on software tools in the area of wa-
ter quality that is being conducted at BIOMATH
(in collaboration with HEMMIS NV, Kortrijk, Bel-
gium) is mainly driven by three goals: allow for
complex modelling and virtual experimentation,
allow for multiple ways of deployment (i.e. en-
able tools to be used from within stand-alone,
web-based, distributed and embedded applications,
through various types of graphical and textual inter-
faces), and ultimately allow for intelligent model-
based decision support.

Historically, a number of approaches have been fol-
lowed when developing software for water quality
modelling:

As in many other domains, custom (FORTRAN or
C) codes were popular in the past and still are with
certain groups. Main advantage in this case is of
course efficiency (i.e. simulation speed). Draw-
backs on the other hand are numerous, and include
low readability, maintainability, reusability and ex-
tensibility. Most often there is no clear separation
between model and execution environment.

Another well-known approach is to use MATLAB
M-files for modelling purposes. Readability, main-
tainability, reusability and extensibility are evi-
dently much better here than in the case of custom
models, but this is at the expense of efficiency. For
applications in the water quality domain (other than
prototyping) efficiency is insufficient, as is stated
in the COST Simulation Benchmark report (Copp
[2002]).

To a large extent, efficiency problems can be over-
come through the use of SIMULINK causal block
diagrams. However, in order to reach a level of
performance that is convenient enough for most ap-

plications, new SIMULINK S-functions must be
implemented using large chunks of procedural C
or FORTRAN code (Copp [2002]). This again is
detrimental to readability, maintainability, reusabil-
ity and extensibility.

Finally, several specialized applications for water
quality modelling and simulation have entered the
market in the past. These applications can present
good or acceptable scores in terms of performance,
readability and maintainability. However, they are
often closed environments and lack reusability and
extensibility potential. For WWTP, the most well-
known tools are BioWin, EFOR, GPS-X, SIMBA,
STOAT and WEST (Copp [2002]).

In view of the disadvantages of the above ap-
proaches, an attempt was made to design and de-
velop a software framework that offers a compro-
mise between flexibility, versatility and efficiency.

3 DESIGN OF THE SOFTWARE

In general, the Tornado software system that was
built can be described as a unified, flexible and
portable kernel for modelling and virtual experi-
mentation. The term “unified” refers to the fact that
ideas from a number of former kernels developed at
BIOMATH were re-used and merged into one new
kernel. The new kernel is “flexible” since it can be
easily extended in several ways, be applied to a wide
variety of problems and be put to work under vari-
ous circumstances. It is also “portable” since it is
available for win32 and linux, and potentially also
other platforms.

One of the major principles of the kernel is that
it consists of strictly separated environments for
modelling and virtual experimentation. Both model
building and virtual experimentation are regarded
as hierarchical in nature. Building models in a hi-
erarchical fashion (either top-down or bottom-up)
is evidently not a novel approach. However, look-
ing at virtual experiments in a hierarchical way is
less evident. In the case of modelling we consider
the top-level model to be a coupled model, where
each of the sub-models is either atomic, or a cou-
pled model in its own right. In the case of vir-
tual experimentation, we can distinguish between
atomic experiments (which cannot be further de-
composed) and compound experiments (which are
made up of a number of atomic and/or compound
sub-experiments).

Some other principles that have guided the design

and development of the kernel are the following:

e All development was to be done in one-and-
only-one advanced, object-oriented language,
to allow for a homogeneous code base and
easy detail debugging. To this end, C++
was chosen since it still offers a good com-
promise between efficiency and advanced
features such as high-level data constructs
(maps, vectors, ...), abstract interfaces, smart
pointers, exception handling, namespaces, . . .

e As few as possible commercial third-party
components were to be used. In fact, the only
such component that has been retained after
careful consideration is Elcel Technology’s
OpenTop (http://www.elcel.com), which is a
general purpose Java-like library and is used
in Tornado for threading and XML parsing.

e The design should be clean and based on
modern software design patterns (Gamma
et al. [2003]).

e All code is to be thread-safe at the level of
virtual experiments.

e Wide-character strings should be supported at
all levels to allow for internationalization.

e Platform-dependent code and general conve-
nience routines should be hidden beneath an
abstraction layer.

e Focus should be on clarity and performance.

e UML (Unified Modelling Language) dia-
grams should be made available for all rele-
vant entities.

e A one-to-one mapping should exist between
the structure laid out in the UML diagrams
and the persistent representation of entities.

The design of the Tornado framework was based on
the three-tier principle, i.e. a strict separation was
made between application layer, persistency layer,
and business logic layer (further subdivided into
business process and business objects sub-layers).
This approach is essential to allow for extensibility
and multiple ways of deployment.

In principle, XML (Extensible Markup Language)
is to be used for all information that is to be made
persistent in Tornado, except in case this is impos-
sible for human readability or efficiency. In partic-
ular, two types of information are not represented
as XML: high-level models (readability) and exe-
cutable model equations (efficiency).

4 FUNCTIONALITY

4.1 Modelling environment

The main elements of the Tornado modelling envi-
ronment are model compiler and model builder.
The model compiler converts models described in
a high-level modelling language to flattened, exe-
cutable model code. The model builder then com-
piles and links the executable model code into a
binary object that can be dynamically loaded into
the experimentation environment (Figure 1). At the

Application

Application

Control
Logic

~
r

i’ High-level ‘I | Executable ‘I.- -_J Executable ‘I 1
1 Model Model 1 Model |

Modelling Environment Experimentation Environment

Figure 1. Tornado conceptual diagram

moment Tornado has full support for the MSL lan-
guage (Vanhooren et al. [2003]) and partial sup-
port for Modelica (http://www.modelica.org). Both
languages are equation-based, declarative (i.e. non-
procedural), object-oriented, and allow for the con-
struction of new models through inheritance and
composition. Modelica also has the added advan-
tage that it allows for non-causal modelling, i.e. it
allows for equations to be automatically rewritten,
so that different variables can be computed from
them.

In general, the model compilation process con-
sists of the following phases: flattening of inheri-
tance and decomposition hierarchies, causality as-
signment, sorting of equations, detection of sets of
algebraic equations, and optimization of the gener-
ated code (Kops et al. [1999]). During the latter
phase, various types of optimizations can be per-
formed, some of which may have a major effect on
the size and speed of the generated code. Notewor-
thy optimizations are canonization of expressions,
removal of aliases and splitting of the equation set
into sets that have to be computed once at the be-
ginning/end of the simulation process, and sets that
should be computed at each (output) timepoint.

The executable model generated by the model com-
piler consists of two parts: the actual equations (C

code), and a description of the original (unflattened)
model structure (XML). The latter includes meta-
information on sub-models, parameters and vari-
ables.

The model builder internally relies on a plain C
compiler. Several compilers are currently sup-
ported: Microsoft Visual C++ 6.0 (win32), Mi-
crosoft Visual C++ 7.1 (win32), Borland C++ 5.5
(win32), LCC (win32), INTEL C++ 9.0 (win32 &
linux) and g++ (linux). Tests have shown that the
Microsoft Visual C++ 7.1 and INTEL C++ 9.0 com-
pilers usually yield the best run-time performance,
as is illustrated in Table 1 on the basis of the Galindo
CL WWTP model (Ayesa et al. [2006]).

Table 1. Performance of C compilers for Galindo CL

Compiler Run (s) Compile (s) Model size (KByte)
BC++5.5 752 1 352
LCC 689 2 291
MSVC++ 6.0 561 32 232
MSVC++7.1 503 42 228
INTEL C++9.0 501 58 226

4.2 Experimentation environment

The Tornado experimentation environment consists
of a main singleton object that acts as a factory for
virtual experiments. The following virtual experi-
ment types have so far been implemented:

o ExpSimul: Dynamic simulation of ODE or
DAE systems.

o ExpSS: Discovery of the steady-state of a
system using root finding algorithms.

o ExpOptim: Minimization of a weighted sum
of objectives, computed on the basis of simu-
lated trajectories.

e ExpCI: Generation of confidence informa-
tion for an optimum found by ExpOptim.

e ExpScen: Evaluation of a set of scenarios
through the generation of ExpSimul jobs with
different parameters and/or initial conditions.
The values for parameters and initial condi-
tions are either spaced explicitly or sampled
from a number of distributions.

e ExpMC: Evaluation of a reduced set of sce-
narios by applying Monte Carlo and Latin
Hypercube Sampling (LHS) techniques.

e ExpSens: Local sensitivity analysis based on
the computation of differences between a ref-
erence simulation and perturbed simulations.

Each of the above experiment types relies on one
or more numerical solvers. These solvers are bi-
nary objects that can be loaded dynamically. A
hierarchy of solver types has been created con-
sisting of root solvers, integration solvers, opti-
mization solvers, confidence information solvers,
scenario analysis solvers, and Monte Carlo anal-
ysis solvers. It must be admitted that in some
cases interpreting the engine that drives a certain
experiment type as a “solver” is somewhat artifi-
cial. However, it was beneficial for establishing
a clear design for the framework. Most solvers
that are available for Tornado have been taken
from well-known free numerical libraries such as
LAPACK, DASSL, MINPACK, ODEPACK and
RANLIB (http://www.netlib.org), and SUNDIALS
(http://www.1Inl.gov/CASC/sundials).

The fact that solvers are dynamically loadable bi-
nary objects makes it very easy for new solvers
to be added to the system. Another factor that is
beneficial in this respect is the fact that solvers, as
well as other entity types within the Tornado frame-
work, contain a set of so-called “properties”. These
are self-describing attribute-value pairs that can be
queried at run-time. In this way, no specific inter-
faces have to be developed for each entity that is
added or modified. Property structures contain the
following information: name, description, value,
type, default value and range of validity.

Each experiment type relies on certain input data
and will eventually generate output data. In Tor-
nado, a generic I/O framework has been set up that
is based on input providers and output acceptors.
Several types of input providers are supported, in-
cluding input files, internal data buffers, input gen-
erator algorithms (such as pulse, sine, ramp, ...)
and custom external providers. The output accep-
tors that are supported are output files, internal data
buffers, and custom external acceptors such as plots.
In many cases, several forms of interpolation can
be used (zero-hold, linear, Lagrange). Multiple
providers and acceptors can be used in one exper-
iment.

In the design and implementation of experiment
types, orthogonality has been favored to a large ex-
tent. For instance, ExpOptim, ExpScen and ExpMC
support the same types of objectives, which are all
computed from the simulated trajectory of a certain
variable. These objective types include: Min (min-

imum value), Max (maximum value), Avg (time-
weighted average value), StdDev (standard devia-
tion), Int (integral), EndValue (value at end of tra-
jectory), ValueOnTime (value at a specific point of
the trajectory), DiffSum (sum of differences at dif-
ferent timepoints between reference trajectory and
simulated trajectory), DiffMax (maximum differ-
ence between reference trajectory and simulated tra-
jectory).

Table 2 illustrates the performance gain that has
been obtained in Tornado with respect to some other
tools. The comparison is done on the basis of
the BSM1 OL model (Copp [2002]) that was im-
plemented in a FORTRAN stand-alone program as
well as in MATLAB/SIMULINK and WEST v3.
Since not every tool offers the same solvers, entirely
identical settings could not be chosen.

Table 2. Simulation times for BSM1 OL

Software Solver Time (s)
FORTRAN RKS, Step=5e-3 65
MATLAB/SIMULINK ~ ODE45, Step=le-4 72
WEST v3 RK4, Step=le-4 70
Tornado RK4, Step=1le-4 35

4.3 Interfaces

Since one of the major goals of Tornado is to sup-
port multiple ways of deployment, it is of the ut-
most importance to have a wide variety of inter-
faces available. The following interfaces are there-
fore foreseen at this point:

o C++: As Tornado was entirely developed in
this language, it comes with a C++ interface
by default.

e C: To access Tornado from Rapid Application
Development (RAD) languages such as Del-
phi or from within scripting languages such
as Tcl, Perl or Python, the availability of a C
interface is a necessary condition.

o NET: A .NET interface allows for integra-
tion of Tornado in a plethora of applications
and languages such as VisualBasic.NET or
C#. It also allows for building web-based ap-
plications through the ASP.NET framework.

o MEX: MATLAB is a major factor in scien-
tific computing. Interfaceability with MAT-
LAB is therefore essential. Tornado has been
wrapped by a MEX interface that allows for
MATLAB to call the Tornado engine and to
pass data back and forth.

e OpenMI: In the scope of the European
Harmon-IT project, a specification for a
mechanism that allows for the linkage of
model engines has recently been established.
The specification is based on .NET and de-
scribes a formal way of linking data contain-
ers of one model engine to another. Since
this open modelling interface (OpenMI, cf.
http://www.openmi.org) was specifically in-
tended for use within the world of hydroinfor-
matics, Tornado will also be made available
as an OpenMI compliant component.

4.4 Distributed execution

Since most problems that are being tackled with
Tornado are computationally complex, it is im-
portant to provide a means for distributed execu-
tion. From the onset, it was decided only to sup-
port coarse-grained gridification (i.e. gridification of
compound experiments). Fine-grained gridification
would entail splitting up atomic experiments (such
as simulations) into constituents, which is believed
to cause severe overhead.

The ultimate goal with regard to the use of dis-
tributed execution is transparency, i.e. it should
in the end become possible to use several execu-
tion environments through exactly the same set of
user manipulations. At the moment Tornado sup-
ports two such environments in a semi-automated
manner: Typhoon (formerly known as WDVE, cf.
Claeys et al. [2006]) and LCG-2 (http://public.eu-
egee.org). In order to allow for transparent dis-
tributed execution, a generic XML-based job de-
scription format has been introduced. In Typhoon,
this job description is directly interpreted by the job
dispatcher. In LCG-2, generic job descriptions are
automatically converted to the format required by
LCG-2. Noteworthy is the fact that Tornado and Ty-
phoon support the notion of a “set of jobs” whereas
LCG-2 does not. This means that one XML file that
describes a set of jobs will ultimately be translated
to several individual job description files for LCG-2.

As an illustration of the performance gained by
the introduction of distributed execution, one can
consider the scenario analysis experiment for the
Marselisborg WWTP (DK). This experiment con-
sists of 1,084 simulations for which each simulation
used to take 30 min with pre-Tornado kernels. In
Tornado, individual simulation times could be re-
duced to 6 min and through gridification onto a 40
node LCG-2 infrastructure, the total execution time
for the entire scenario analysis experiment could

be reduced to a mere 3.5 hours, as shown in Ta-
ble 3. Another example, resulting from a LHS-
based methodology based on Tornado, can be found
in Benedetti et al. [2006].

Table 3. Execution times for Marselisborg

Software 1run 1,084 runs
pre-Tornado 30min 23 days
Tornado 6 min 4.5 days

Tornado + LCG-2 6 min 3.5 hours

5 APPLICATIONS

It is our belief that because of its flexibility and ver-
satility, Tornado is suitable for inclusion in a wide
range of applications. At the moment, four applica-
tions already make use of the Tornado kernel:

e WEST is a specialized WWTP tool that is
commercialized by HEMMIS NV (Kortrijk,
Belgium) (Vanhooren et al. [2003]). It has an
attractive user-interface and will use Tornado
through its .NET interface as of the next ma-
jor product release.

e EAST is a research application for modelling
and virtual experimentation that is being de-
veloped by BIOMATH. It is available for sev-
eral platforms and uses Tornado through its
native C++ interface.

e DHI’s MOUSE-TRAP is a well-known com-
mercial tool for modelling water quality in
sewers (http://www.dhisoftware.com/mouse).
As of its next version it will use Tornado for
back-end computations through Tornado’s C
interface.

e Finally, the Tornado distribution itself con-
tains a suite of CUI tools, convenient for test-
ing the Tornado kernel as well as for batch-
oriented processing. The CUI suite uses Tor-
nado’s native C++ interface.

Figure 2 gives an overview of the various applica-
tions and interfaces that have been constructed on
top of Tornado.

6 CONCLUSION

A new kernel for modelling and virtual experimen-
tation in the water quality domain was developed.
It allows for high-level modelling and efficient exe-
cution of virtual experiments. Multiple ways of de-
ployment and extension of the kernel are available.

MOUSE- Tornado

WEST EAST TRAP cul MATLAB
] E3 wexaer| [e
Generic C++ API
TORNADO
Typhoon LCG-2

Figure 2. Tornado-based applications & interfaces

REFERENCES

Ayesa, E., A. De la Sota, P. Grau, J. Sagarna,
A. Salterain, and J. Suescun. Supervisory control
strategies for the new WWTP of Galindo-Bilbao:
The long run from the conceptual design to the
full-scale experimental validation. In The 2nd
IWA Conference on Instrumentation, Control and
Automation, Busan, Korea, 2006.

Benedetti, L., D. Bixio, F. Claeys, and P. Vanrol-
leghem. A model-based methodology for bene-
fit/cost/risk analysis of wastewater systems. In
Proceedings of the iEMSs 2006, Burlington, VT,
2006.

Claeys, F., M. Chtepen, L. Benedetti, B. Dhoedt,
and P. Vanrolleghem. Distributed virtual experi-
ments in water quality management. Water Sci-
ence and Technology, 53(1):297-305, 2006.

Copp, J. The COST simulation benchmark. Euro-
pean Commission, 2002.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 2003.

Henze, M., W. Gujer, T. Mino, and M. van Loos-
drecht. Activated Sludge Models ASM1, ASM2,
ASM2d, and ASM3. TWA Task Group on Math-
ematical Modelling for Design and Operation of
Biological Wastewater Treatment, 2000.

Kops, S., H. Vangheluwe, F. Claeys, and P. Van-
rolleghem. The process of model building and
simulation of ill-defined systems: Application to
wastewater treatment. Mathematical and Com-
puter Modelling of Dynamical Systems, 5(4):
298-312, 1999.

Vanhooren, H., J. Meirlaen, Y. Amerlinck,
F. Claeys, H. Vangheluwe, and P. Vanrolleghem.
WEST: modelling biological wastewater treat-
ment. Journal of Hydroinformatics, 5(1):27-50,
2003.

