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[1] Monitoring networks typically generate large amounts of data. Before the data can
be added to the database, they have to be validated. In this paper, a semi-automatic
procedure is presented to validate river water quality data. On the basis of historical data,
additive models are established to predict new observations and to construct prediction
intervals (PI’s). A new observation is accepted if it is located in the interval. The coverage
of the prediction intervals and its power to detect anomalous data are assessed in a
simulation study. The method is illustrated on two case studies in which the method
detected abnormal nitrate concentrations in the water body provoked by a dry summer
which was followed by an extreme winter period. The case studies also show that similar
to classical multivariate outlier detection tools, the semi-automatic procedure allows the
detection of suspicious observations lying at the edges as well as observations lying at the
center of the univariate distribution of the observations, but, without having to impose
linear relationships typically associated with these classical methods.
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1. Introduction

[2] The European Water Framework Directive (WFD,
22 December 2000) is one of the driving forces in environ-
mental policy in Europe. The WFD’s overall environmental
objective is the achievement of ‘‘good status’’ for all of
Europe’s surface- and groundwaters within a 15-year period.
The development of monitoring networks is a crucial step in
the implementation of the WFD. They are for instance
needed for a coherent and comprehensive overview of the
water status, to identify pressures on water systems, as a
warning system for detecting negative changes in the water
quality and to detect trends. Due to the complex nature of
water systems and the large amount of data that is collected,
there is a clear need for models and Internet and Commu-
nication Technology (ICT) tools to assist the implementa-
tion of the WFD.
[3] Monitoring networks typically generate large amounts

of data. These data have to be validated before they can be
added to the database. On the one hand, there can be a
problem with the quality of the data, due to errors during the
analysis in the laboratory, wrong calibration of the equip-
ment, or to error while entering the data. On the other hand,
it is possible that there is a change in the system that causes
changes in the water quality. The large amount of water
quality data and its complex nature make it difficult for
experts to validate all incoming data. Data validation is a
clear example where ICT tools could be of great help to

assist experts with the maintenance and analysis of moni-
toring databases compelled by the WFD.
[4] One way to deal with the validation problem is to use

models to predict futuremeasurements based on the historical
data. In time series literature, this is called forecasting. The
use of point forecasts to compare with incoming observa-
tions is meaningless if the extent of associated uncertainty is
unknown. Interval forecasts should be used instead as they
provide more information on future uncertainty and take the
sampling variability present in the estimates correctly into
account. These intervals, characterized by an upper and
lower limit, correspond to a specified coverage probability
[Kim, 1999; Chatfield, 1993]. In time series literature,
Autoregressive Moving Average (ARMA) and Autoregres-
sive Integrated Moving Average (ARIMA) models are
mainly used. In order to obtain stationarity, trends and
seasonal variation have to be eliminated first. Subsequently,
the ARMA model is fitted to the stationary residual time
series [Pourahmadi, 2001]. The models are then used to
compute a forecast and a forecast interval. To reduce the
assumptions on the distribution of the residuals, bootstrap-
based intervals were developed [Kim, 1999, 2004; Clements
and Taylor, 2001; Chatfield, 1993].
[5] Another approach is to use techniques from signal

processing and statistical outlier detection. In these fields,
the terms ‘‘fault detection’’ and ‘‘outlier detection’’ is used.
History-based methods that require a large amount of
historical data are commonly used. They consist of neural
networks or multivariate statistical techniques, mainly based
on Mahalanobis distances and principal component analysis
(PCA) [Venkatasubramanian et al., 2003; Penny, 1996].
The multivariate methods imply the presence of a constant
number of variables measured simultaneously. However, in
many databases, not all variables are measured at each time
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instant. So the use of multivariate methods would only be
applicable to a selection of variables.
[6] Moreover, classical techniques used in time series

analysis and multivariate statistics are highly parametric and
are imposing several assumptions on the data, such as
Gaussian residuals, homoscedasticity, and linear relation-
ships between the different variables. Unfortunately, like
other environmental data, water quality data typically possess
a nonlinear nature [e.g., Dominici et al., 2002; Wood and
Augustin, 2002; Cai and Tiwari, 2000; McMullan et al.,
2003]. Hence linear models are not well suited to model the
relationships between water quality variables. As an addi-
tional difficulty, it is likely that the water quality is suscep-
tible to change due to, for example, the environmental
regulation that is becoming more stringent. This implies
the use of techniques with an appropriate adaptivity and
flexibility to enable data validation under structural changes.
When techniques of time series analysis are used, the model
structure of the trend, seasonal variation, and ARMA
models has to be changed from data set to data set and
over time. This leads to an additional investment in time and
people since time series modeling requires experience and
expert knowledge.
[7] In this paper, a semi-automatic data validation proce-

dure is proposed. A new observation at time n + 1 is
compared with a prediction interval (PI). If the new obser-
vation is included in PI, the observation is accepted.
Otherwise, the observation can be passed on to an expert
for further evaluation. To deal with the nonlinear character
of the data and to enable an appropriate flexibility of the
method toward changes in the process, nonparametric
additive models (AMs) are proposed. Analytical and boot-
strap-based PIs are proposed in this study. In contrast to
techniques from time series analysis, the procedure is
entirely nonparametric when bootstrapping is used. This
reduces the number of assumptions that have to be made
considerably.
[8] First, the data will be introduced in section 2. In

section 3, the methodology will be presented. Section 4
consists of an illustration of the entire procedure on a real
data case, a simulation study to check the coverage of the
derived intervals, a power study, and two case studies where
two years of data are validated. Finally, the conclusions are
summarized in section 5.

2. Description of the Data

[9] In the region of Flanders (Belgium), the Flemish
Environmental Agency (VMM) established several moni-
toring networks. The physico-chemical monitoring network
covers 1425 sampling locations distributed over the differ-
ent catchments. Each sampling location is evaluated 12 to
26 times a year on a basic spectrum of physico-chemical
variables: water temperature, dissolved oxygen (DO), pH,
chemical oxygen demand (COD), nitrogen compounds,
phosphorus, chloride, and conductivity. All these data are
stored in a database, which is also managed by the VMM.
Data can be classified according to their catchment and the
Yzer basin is considered in this study. On a monthly basis,
grab samples are taken at every sampling location. The
nitrate measurements of the Yzer in 2003 and 2004 will be
validated in section 4.

[10] The Yzer Valley is a typical lowland river, located in
a polder area. A map of the Yzer catchment indicating the
sampling locations maintained by the VMM is given in
Figure 1. The total area of the catchment is 1101 km2. The
stream length is 76 km and 44 km of it is located in
Belgium. At the French border, the river is relatively small,
between 8 and 10 m. The river gets gradually wider to reach
a width of 20 to 25 m near its mouth at Newport, Belgium.
The river enters the North Sea by a complex of sluices. In
Belgium, the river can be subdivided in three major parts.
Part I is an area where the river is more or less in its original
state. In part II, the river is straightened and has marshes to
its right side. In part III, the river has artificial dammed
banks [De Rycke et al., 2001].
[11] The river is subjected to eutrophication due to the

high nitrate and phosphate concentrations. A major source
of nutrient pollution is the intensive agricultural activity at
the river banks. Besides the agricultural pollution, other
sources are from an industrial origin and from untreated
sewage discharged by households.

3. Methods

[12] In order to validate new observations, the historical
data are used to fit a nonparametric additive model pre-
sented in section 3.1. This model is subsequently used to
construct prediction intervals. These intervals give the
boundaries of the region where new measurements can be
expected with a pre-specified probability. Section 3.2 deals
with the derivation of the prediction intervals. Finally,
section 3.3 describes diagnostic plots to detect possible
causes of data rejection by our validation procedure. The
methodology is illustrated by examples on data originating
from sampling location 913000 along the Yzer River.
Measurements between January 1990 and December
2002 are considered as historical data. A scatterplot of
the evolution of nitrate over time is given in Figure 2.

3.1. Additive Models for Water Quality Data

[13] Suppose we have n observations of the response Y,
which are denoted by y = (y1, . . . , yn)

T and that measured
simultaneously with the p predictor vectors xj = (x1j, . . . ,
xnj)

T, j = 1, . . . , p, then a typical water quality data set D is
represented by D = (x1, . . . , xp, y). A general framework to
model the relationships between the mean of Y and its
predictors X can be written in the following form,

Y ¼ m X1; . . . ; Xp

� �
þ �; ð1Þ

where m is the unknown regression function and � is a zero
mean random term. The data analyst now has to choose a
certain structural form to approximate the conditional mean
m(X1, . . . , Xp). This can be done in a parametric, nonpara-
metric, or semiparametric way. A well-known example of a
fully parametric model is the standard multiple linear
regression model. Because the relationships between the
response and the predictors are assumed to be linear,
equation (1) can be written as

Y ¼ aþ b1X1 þ � � � þ bpXp þ � ¼ aþ
Xp
j¼1

bjXj þ �; ð2Þ
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with the parameters a and bT = (b1, . . . , bp). To fit the
model to the data, the parameters have to be tuned so that

the fitted values ŷ ¼ âþ
Pp
j¼1

b̂jxj are in some sense as close

as possible to the observed values y (i.e., by the use of least
squares). The popularity of linear models is largely due to
their simplicity and ease of interpretation. However, the
model depends on a strong assumption of linearity between
the predictors and the response. Unfortunately, water quality
data typically possess a nonlinear nature [e.g., Cai and
Tiwari, 2000; McMullan et al., 2003]. Therefore it would be
better to let the data drive the specification of the functional
relation between the predictor variables and the response.
This is exactly what scatterplot smoothers do for the two-
dimensional case (Y, X1). They model Y as Y = f1 (X1) + �,
where f1(X1) is a smooth function used to approximate the
underlying function m(X1) without imposing a rigid para-
metric relationship such as in the linear model. A principle
used by many smoothers is to estimate the regression
surface locally instead of globally. The fit at a certain
predictor value xi is only based on the data that lies in a
certain neighborhood of xi. This adds much more flexibility
to the estimation of the underlying function. An example is
the loess smoother [Cleveland and Devlin, 1988] (Figure 2),
which indicates an increase in the nitrate level between
January 1990 and December 1997, and a steady decrease in
the average nitrate concentration afterward. The linear
regression line remains more or less constant over the entire
temporal domain because it cannot handle slope changes.
[14] Scatterplot smoothing can be easily extended to the

p-dimensional case [e.g., Cleveland and Devlin, 1988;
Cleveland and Grosse, 1991; Loader, 1999] where
m(X1, . . . , Xp) is approximated by a p-dimensional smooth-
er f1, . . . , p (X1, . . . , Xp). Note that the number of dimensions
equals the number of regressors. There are unfortunately some
problems related to multidimensional smoothers. In particular,
[15] 1. Buja et al. [1989] showed that most multidimen-

sional extensions of univariate smoothers are not attractive
from a computational point of view.
[16] 2. Due to their multivariate nature, multivariate

smoothers also suffer from ‘‘the curse of dimensionality’’.
These problems are mainly triggered by the multidimen-

sional neighborhoods which have to be defined. Hastie et
al. [2001] illustrated that the neighborhoods are less local
when the number of predictors increases. Another issue is
related to the data sparseness in a high dimensional setting
where more data ends up in the boundary region. Since
smoother estimates are known to be more biased in the
boundary regions, the boundary problem is more dominant
in a multidimensional setting.
[17] 3. It is difficult to define a sensible metric for the

multidimensional neighborhoods, because the predictors are
often measured in different units.
[18] 4. The visualization of multivariate smoothers is less

obvious. Especially when the number of predictors is
greater than 2. In order to study the effects of the individual
predictors, projections from the hypersurface can be made
on a lower dimensional space, but this projection depends
on the fixed values of the remaining predictors and thus
they are rather noisy.

Figure 2. Scatterplot of nitrate concentration as a function
of time together with a least squares regression line (dashed
line) and a loess smoother (solid line).

Figure 1. The Yzer catchment: in the left panel, the main river is shown; in the right panel, the entire
catchment is shown along with the sampling locations of the VMM (indicated with black circles).
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[19] To overcome the abovementioned problems, Buja et
al. [1989] proposed an alternative approach. They suggested
one-dimensional smoothers as additive building blocks of
the model, resulting in a more restricted class of nonpara-
metric regression models, also referred to as additive
models. Additive models extend standard linear models
and approximate the unknown regression surface
m(X1, . . . , Xp) by,

Y ¼ aþ
Xp
j¼1

fj Xj

� �
þ �; ð3Þ

where fj can be any function; however, in most cases,
smoothers are used. Similar to linear models, the effect of a
predictor on the fitted response surface does not depend on
the values of the other predictors. But, additive models are
much more flexible because they are not necessary linearly
additive in the covariates X.
[20] Thus, the contribution of each predictor can still be

studied individually. This enables the user to decompose the
model in each of its smooth functions, which can be
graphically depicted. Figure 3 shows the difference between
a linear model Y = a + b1 X1 + b2 X2 + �, an additive model
Y = a + f1(X1) + f2(X2) + e and a multivariate regression
smoother Y = f12(X1, X2) + �, where Y is the nitrate
concentration, X1 represents the time, and X2 is the temper-
ature. Due to the additivity assumption, the bump at low
temperatures and at intermediate dates is less high for the
additive model than in the multivariate smoother model.
However, the bump is situated in a data-sparse region and
might be a boundary effect from the multivariate smoother.
Apart from this feature, the fits by the additive model and
the multivariate smoother look similar. The additive model
however enables the analyst to look at the contribution of
each predictor separately. This is illustrated in Figure 4. By
the end of 1992, the contribution of the long-term trend
shows a steep incline and reaches a maximum at the
beginning of 1998 and it decreases afterward. The inverse
relation between temperature and nitrate is also obvious.
Because local polynomial smoothers are used as the basic
building block of the additive models in this paper, a brief
review on local polynomial smoothing is needed before we
can move on to model fitting and selection.
3.1.1. Local Polynomial Smoothing
[21] Hastie and Tibshirani [1990] defined a smoother as a

tool for summarizing the trend of a response Y as a function

of one or more predictors X1, . . . , Xp. It produces an
estimator which is less variable than Y itself and can be
used for several purposes. In this paper, the focus is on its
use to estimate a regression surface, without resorting to a
parametric class of functions. Because only univariate
smoothers are used in additive models, the overview on
local polynomial regression is restricted to the univariate
case. Since they only contain one predictor, the model can
be written as

Y ¼ mðX Þ þ �: ð4Þ

The idea of local polynomial regression can easily be
motivated by approximating the regression function m in a
neighborhood of x0 by a Taylor expansion,

mðxÞ � f ðxÞ ¼ m x0ð Þ þ
Xq
k¼1

mðkÞ x0ð Þ
k!

x� x0ð Þk ; ð5Þ

where m(k)(x0) =
@km

@xk
x0ð Þ. Local weighted least squares can

be used to fit this polynomial minimizing

Xn
i¼1

yi �
Xq
k¼0

bk xi � x0ð Þk
" #2

K
xi � x0

h

� �
; ð6Þ

where K(�) is a kernel function which will be introduced
later on and h is the bandwidth which defines the size of the
neighborhood (x0 � h,x0 + h). The kernel function assigns

Figure 3. Nitrate concentration as a function of time (day number) and temperature (�C). In the left
panel, nitrate is modeled using a linear model; in the middle panel, an additive model is presented built up
by two univariate local linear regression smoothers; and in the right panel, a two-dimensional local linear
regression smoother is used.

Figure 4. Contribution of (left) long-term trend and (right)
temperature to the nitrate concentration predicted by the
additive model in Figure 3.
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weights to each observation. The solution to this local
weighted least squares problem is

^
�0 ¼ xTc W0xc

� ��1
xTc W0y; ð7Þ

where xc = (1, xvc, . . . , xvc
q ), 1 = (1, . . . , 1)T, xvc = (x1 � x0,

. . ., xn� x0)
T, and W0 is a diagonal matrix build up by

the kernel weights [Fan and Gijbels, 1996]. The response y0
corresponding to x0, is then estimated by

ŷ0 ¼ ½1 0 . . . 0	^�0

¼ ½1 0 . . . 0	 xTc W0xc
� ��1

xTc W0y

¼ S0y; ð8Þ

where the centered vector of x0 is

1 x0 � x0ð Þ � � � x0 � x0ð Þq½ 	 ¼ ½1 0 . . . 0	: ð9Þ

Hence the fit of local polynomial smoothers is a linear
combinations of the response. If this procedure is performed
for all observations (xi,yi) belonging to the data set (x,y), the
fit ŷ can be written as

ŷ ¼ Sy; ð10Þ

where S is the smoother matrix. Smoothers that can bewritten
as a linear combination of the response belong to the class of
linear smoothers. When similar assumptions are made as in
the parametric regression framework, linear smoothers
inherit a whole set of inference procedures known from the
classical parametric regression context such as the construc-
tion of confidence intervals [Cleveland and Devlin, 1988].
Two important examples of such assumptions are Gaussian
residuals and an unbiased estimation of m by the function
f̂ ðxÞ.
[22] Several important choices have to be made before

local polynomial regression can be used. The size of the
bandwidth has to be selected, but a practical procedure for
bandwidth selection is kept for the next paragraph. The
degree of the polynomial has to be set. Since the bias is
mainly controlled by the bandwidth, the choice of the
degree of the local polynomial is less important. However,
for a fixed bandwidth, increasing the degree will reduce the
bias, but this is at the expense of an increasing variance of
the fit and of a higher computational cost. Fan and Gijbels

[1996] proved that the variance of the fit does not increase
by going from an even order polynomial fit to an odd order
polynomial fit. The extra parameter can however reduce the
bias significantly. They also argue that even order fits suffer
from serious boundary effects, in contrast with odd order
fits which have nice adaptive boundary properties. From
this point of view, Fan and Gijbels recommended to use the
lowest possible odd order for the polynomial fit. Hence here
the degree is set to 1. Another question to be addressed is
the choice of the kernel function K. The choice of the kernel
is not that important from a practical point of view.
However, Fan and Gijbels have shown that the Epanechni-
kov kernel, K(u) = 3/4 (1 � u2) for �1 < u < 1 and 0 for u
outside that range, is asymptotically optimal for the interior
of the domain. This kernel is used in the remainder.
[23] The bandwidth and the kernel function K control the

size of the local neighborhood. Therefore the choice of the
bandwidth in local polynomial regression is a crucial one.
When taking the bandwidth close to zero, the data is
interpolated, resulting in an overparametrized model. A
bandwidth taken arbitrarily large, results in a polynomial
of degree p which is fitted globally. Hence the bandwidth is
a key element in controlling the complexity of the smoother.
The smaller the bandwidth, the more degrees of freedom
that can be used for controlling the bias. But this reduction
in bias does not come for free. Smaller bandwidths also lead
to an increase of the variance associated with the estimates.
Too small bandwidths typically result in more wiggly
curves and this can conceal the main features which are
present in the data. Too large bandwidths, on the other hand,
tend to oversmooth the data and can introduce a substantial
bias. This is illustrated in Figure 5 where nitrate data are
modeled using a local linear smoother and three different
bandwidths. When a bandwidth of two months is taken, the
curve is very wiggly and highlights features which may
be inherent to the sampling variability. A bandwidth of
4 months still highlights a cyclic pattern in the nitrate
concentrations but produces a smoother fit. A large band-
width is sensitive to oversmoothing, leading to an estimate
which can miss certain features of the curve. A bandwidth
of 2 years, for example, loses the ability to pick up the
cyclic behavior of the nitrate concentration. The size of the
bandwidth can be chosen to be constant over the domain of
X, or can be variable. An example of a variable bandwidth
with a very simple nature is the nearest-neighbor band-
width. The selector requires that a fixed percentage of the
data is included in the neighborhood. This percentage is

Figure 5. Fit of the nitrate data with local linear regression with bandwidth equal to (left) 2 months,
(middle) 4 months, and (right panel) 2 years.
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referred to as the span s. It automatically adapts the amount
of smoothing to the local situation, using small bandwidths
in a dense design region and large bandwidths in sparse
regions [Altman, 1992; Fan and Gijbels, 1996; Loader,
1999]. This method thus prevents that the regression in
sparse data regions is based on only a limited number of
points. The span s is used in this study to control the size
of the bandwidth h. To select a good value for the span s, a
criterion that quantifies the trade off between the amount of
bias and the associated variance of the estimator is needed.
An example of such a criterion is the generalized cross
validation (GCV)

GCVðsÞ ¼ 1=n
Xn
i¼1

yi � f̂s xið Þ
1� trðSÞ=n

( )2

; ð11Þ

where
Pn
i¼1

yi � f̂ s xið Þ
n o2

is a measure for the amount of bias

and tr(S) is a measure for the degrees of freedom used by
the model. Both an increased bias and an increase in model
complexity lead to a higher GCV. Thus the model with the
lowest GCV has to be selected in order to control the bias
without using to many degrees of freedom.
[24] Literature on the attractiveness and advantages of

local linear regression smoothers can be found in the works
of Cleveland [1979], Cleveland and Devlin [1988], Fan
[1992, 1993], Hasti and Loader [1993], Fan and Gijbels
[1996], and Loader [1999].
3.1.2. Fitting Additive Models
[25] In practice, the backfitting algorithm proposed by

Buja et al. [1989] is the most widely used method to
estimate the additive components. From equation (3), it is
obvious that each function can be written as:

fj Xj

� �
¼ Y � a�

X
k 6¼j

fk Xkð Þ þ �: ð12Þ

When fj is a linear smoother with smoother matrix Sj and in
the hypothetical case that the other predictor terms are
known, fj can be estimated as

^
fj ¼ Sj y� a�

X
k 6¼j

fk

( )
; ð13Þ

where fk is the vector (fk(x1k), . . . , fk(xnk))
T and a is a vector

(a,. . ., a)T. When only linear smoothers are used in the
model, a similar expression can be used for each smoother.
By combining all these expressions, the following set of
equations has to be solved,

In S1 S1 : : : S1 1

S2 In S2 : : : S2 1

: : : : : :
: : : : : :
: : : : : :
Sp Sp Sp : : : In 1

1=n 1=n 1=n : : : 1=n 1

2
666666664

3
777777775

f1
f2
:
:
:
fp
a

2
666666664

3
777777775
¼

S1
S2
:
:
:

Sp
1=n

2
666666664

3
777777775
y ð14Þ

where 1 is the vector (1, . . .,1)T. The backfitting algorithm
solves this set of equations iteratively. In the lth iteration,
fj
(l � 1) is updated by

f
ðlÞ
j ¼ Sj y� a�

X
k<j

f
ðlÞ
k �

X
k>j

f
ðl�1Þ
k

 !
: ð15Þ

In order to make each function identifiable, an additional

constrained has to be introduced,
Pn
i¼1

fj xij
� �

¼ 0. This is

simply done by replacing each Sj in equations (13) (14) (15)
by the centered smoother matrix Sj

* = (In � 11T/n)Sj. This
also forces a to be estimated by the sample mean y. In the
next section the model uncertainty will be assessed by
providing a formula for variance and confidence interval
estimation.
3.1.3. Variance and Pointwise Confidence Intervals
[26] In classical parametric statistics, a variance estimate

is the key element for statistical inference. Similar to
linear regression, the residual sum of squares (RSS) can
be used for variance estimation. Here RSS is equal to
RSS ¼ y� ŷ

� �
T y� ŷ
� �

. In linear regression with p pre-
dictors, the variance estimate then simply becomes
ŝ2 ¼ RSS=df , where its degrees of freedom (df) is equal
to n � p � 1. In the context of linear regression smoothers,
we have already used the trace of the smoother matrix, tr(S),
as a definition of the degrees of freedom. Hastie and
Tibshirani [1990], however, showed that it is better to use
another definition for the degrees of freedom of the RSS. In
the next paragraph, their definition is explained in some
more detail.
[27] When all components of the AM are linear or linear

smoothers, there is a projection matrix H so that ŷ ¼ Hy.
For nonparametric AMs using linear smoothers, the additive
component functions can be solved by a set of normal
equations presented in equation (14). Equation (14), which
can thus also be written as

P̂f ¼Q̂y;
ð16Þ

But, as Opsomer [2000] mentioned, it is possible, at least
conceptually, to write the estimators directly as

f̂ ¼P̂�1 ^Qy;
ð17Þ

and after obtaining
^
P�1, ŷ can be written as

ŷ ¼ In In In : : : In 1½ 	 ^f

¼ In In In : : : In 1½ 	^P�1 ^Qy

¼ Hy; ð18Þ

where In is the n � n identity matrix. From this derivation, it
is clear that an additive model using linear smoothers can be
considered as a linear smoother with a projection matrix H.
If such a projection matrix exists, it can be shown that the
RSS has the expectation E[RSS] = {n� tr(2H�HHT)}s2 +
bTb, where b is the bias [Hastie and Tibshirani, 1990].
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Thus, when the bias is negligible, the variance can be
estimated by

ŝ2 ¼ RSS

n� tr 2H�HHTð Þ ; ð19Þ

where, in analogy with linear regression, the degrees of
freedom of the errors can be defined as df err = n � tr(2H �
HHT).
[28] When the residuals are i.i.d, the estimate of variance-

covariance matrix of ŷ can be calculated as

Sŷ ¼ HHTŝ2: ð20Þ

Similar to ŷ, a projection matrix Hj can be defined for each

component
^
fj ¼ Hjy. The variance-covariance matrix of

each component is simply obtained by replacing H in
equation (20) by Hj.
[29] The calculation of

^
P�1 is computationally unattrac-

tive since it involves inverting a (np) � (np) matrix.

Moreover, the inverse of
^
P does not always exists. Recently,

Giannitrapani et al. [Additive models for correlated data
with applications to air pollution monitoring, submitted to
Biometrics, 2005] provided a simple method to keep track
of the important projection matrices while the backfitting
algorithm proceeds. When using linear smoothers, in the lth
iteration step the estimate of each component f

ðlÞ
j can be

written as fj
(l) = Hj

(l)y. Hence the backfitting scheme can be
expressed as

H
ðlÞ
j ¼ S*j ðIn �

X
k< j

H
ðlÞ
k �

X
k> j

H
ðl�1Þ
k Þ; ð21Þ

where In is the n � n identity matrix. At each stage, the
updated projection matrix Hj

(l) remains independent of y.
When the backfitting algorithm has converged, a set of
projection matrices {Hj, j = 1, . . ., p} is obtained. They can
be used to estimate the individual components fj = Hjy and
the fitted values ŷ ¼ Hy, where H ¼ 11T=nþ

Pn
j¼1 Hj.

[30] The variance estimates of the estimators ŷ can
now be used for construction of approximate (1 � a)
confidence intervals. Here the interval will be only given
explicitly for the estimator ŷi,

ŷi � z
1�a

2ð Þŝyi ; ŷi þ z
1�a

2ð Þŝyi

h i
; ð22Þ

where z
1�a

2ð Þ is the 1� a
2

� �
percentile of the standard

normal distribution and ŝyi is the square root of the ith

diagonal element of
^
Sy. The formulation of confidence

bands for the component functions fj(xij) is trivial. We still
have to keep in mind that the intervals are only correct when
the bias is negligible. When this is not the case, the additive
model fit ŷ is a fit for Hm rather than for the true underlying
surface m evaluated at the design points [Hastie and
Tibshirani, 1990]. The coverage of the confidence intervals
of equation (22) depends upon the normality assumptions.
To relax these assumptions, the bootstrap can be used as a
nonparametric method for obtaining the confidence inter-
vals. The bootstrap method will be introduced in
section 3.2.2.

3.1.4. Model Selection
[31] The model selection can be performed in two stages:

(1) span selection of the smoothing parameters (s1, . . ., sp)
and (2) selection of variables in the model. As mentioned in
section 3.2.1, nearest-neighborhood bandwidths are used for
the local polynomial smoothers in the model. The spans are
typically tuned by using classical criteria as the GCV. In
principle, these methods require a multidimensional search
to determine the optimal span for each of the smoothers
conditional on the spans of the other components in the
model. When the number of smoothers p rises, there is an
exponential increase in the number of AMs to be evaluated.
This procedure further has to be embedded in a procedure to
select the number of predictors used. To ensure that the
appropriate smoothing parameters are used, the smoothing
parameters of each of the candidate models should be
determined. When p gets large and a dense grid is used for
the selection of the smoothing parameters, this approach
quickly gets computationally demanding.
[32] Hastie and Tibshirani [1990] have introduced the

BRUTO algorithm as a pragmatic solution to keep the
computational burden limited. The algorithm is an adapta-
tion of the backfitting algorithm so that it combines model
fitting, smoothing parameter selection and model selection.
To avoid computational problems, Hastie and Tibshirani
adjusted the GCV criterion

GCV s1; . . . ; sp
� �

¼

Pn
i¼1

�̂2i

n 1� tr H s1; . . . ; sp
� �� �

=n
� �2 ; ð23Þ

to the modified GCV criterion

GCVb s1; . . . ; sp
� �

¼

Pn
i¼1

�̂2i

n 1� 1þ
Pp

j¼1 tr Sj sj
� �� �

� 1
� �h i

=n
� �2 :

ð24Þ

In this way, the computational difficulties associated with
tr(H(s1, . . ., sp)) are circumvented. But, as shown in the
previous section, Giannitrapani et al. [Additive models for
correlated data with applications to air pollution monitoring,
submitted to Biometrics, 2005] provided a very simple
method to keep track of the important projection matrices.
Hence a modification of the GCV is not required since H(l)

is known at each step. Therefore we incorporate the original
GCV criterion in the BRUTO algorithm.
[33] The BRUTO algorithm starts with the projection

matrices Hj = 0. In each iteration, one parameter sj is
selected. Hence the span selection is performed one
smoothing parameter at a time while the other smoothing
parameters remain unchanged. In particular, the sj is
adjusted which minimizes the global GCV. In the
cycle (l), this is applied by using the appropriate
smoothing parameter sj

(l) to update the projection matrix

H
ðlÞ
j s

ðlÞ
j

� �
¼ S*j s

ðlÞ
j

� �
In �

P
k 6¼j

H
ðl�1Þ
k s

ðl�1Þ
k

� � !
while the

other projection matrices are left unaltered. Hence each
iteration only provides for an update of one smoothing
parameter sj and its corresponding projection matrix Hj(sj).
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The BRUTO algorithm is continued until the GCV converges.
The convergence is guaranteed, because each iteration
produces a decrease in the criterion. The BRUTO algorithm
can easily be extended to incorporate model selection. When
the GCV is allowed to be optimized by the selection of the
null fit, Hj = 0, it enables the removal of the associated
explanatory variable from the model. Hence a particular
variable can be included at a certain stage and it can be
omitted from the model later on.
[34] For data validation purposes, the model should be

able to adapt to changes in the system. Therefore model
selection has to be performed on-the-fly. The optimal model
at each sampling location is obtained by using a separate
model for every sampling location and the model structure
is also allowed to change over time by executing the
BRUTO algorithm as soon as a new observation is added
to the database.

3.2. Prediction Intervals

[35] In section 3.1, the method to model the historical
data was presented. To validate new data, a prediction
interval (PI) is needed. A PI, however, differs from the
pointwise confidence intervals for the fitted values ŷ derived
in section 3.1.3. A confidence interval reflects how accurate
the mean is estimated. The data validation procedure,
however, requires an interval estimate associated with the
location of a single observation. Under the normality
assumption, the conditional distribution of an observation
given the covariates is N(m(x),s2). Hence the prediction
interval has to incorporate the model uncertainty due to the
estimation of m(x) and the additional variability associated
with individual observations fluctuating around the mean.
[36] Two different approaches are presented to derive

prediction intervals: an analytical procedure which only
works for AMs with linear smoothers and assumes the
errors to be Gaussian, and more general double bootstrap
procedures. The latter are fully nonparametric and they can
cope with any type of AM and non-Gaussian errors. Both
methods assume that the residuals are independent. The data
used in this study is based on monthly grab samples. When
the water quality data is sampled at intervals larger than
2 weeks, its dependency is known to be only related to
seasonality and trend [Van Belle and Hughes, 1984]. In case
these dependencies are modeled accurately, the data can be
assumed to be independent. Another assumption is that the
bias of the estimator is negligible. However, in the presence
of bias, the variance estimate is inflated and results in
conservative interval estimates [Giannitrapani et al., Ad-
ditive models for correlated data with applications to air
pollution monitoring, submitted to Biometrics, 2005].
3.2.1. Analytical Prediction Intervals
[37] Before the analytical PIs can be constructed, an

estimator of the variance of a new prediction is needed.
As shown in section 3.1.3, a projection matrix exists when
the AM is built up by linear smoothers. Thus the prediction
by the smoother at a certain predictor value is always a
linear combination of the observed values of the response.
For the kth local linear smoother (first order polynomial),
the prediction at time n + 1 is [1 0] (xk,c

T Wk,n + 1

xk,c)
�1xk,c

T Wk,n + 1y. Thus its corresponding (row)smooth-
ing vector can be written as Sk,n + 1 = [1 0](xTk,cWk,n + 1

xk,c)
�1xk,c

T Wk,n + 1. The centered smoothing (row)vector for
the kth predictor at time n + 1 can be written as Sk,n + 1

* =

Sk,n + 1 � 1TSk/n. Similar to equation (13), an estimate of
the contribution of the kth predictor function f̂ k;nþ1 of the
additive model is given by

f̂k;nþ1 ¼ S*k;nþ1 y� a�
X
k 6¼j

^
fj

 !

¼ S*k;nþ1 In �
X
k 6¼j

Hj

 !
y

¼ Hk;nþ1y: ð25Þ

The estimate of the mean response at time n + 1, ŷnþ1, then
becomes

ŷnþ1 ¼ aþ
Xp
j¼1

f̂j;nþ1

¼ 1T=nþ
Xp
j¼1

Hj;nþ1

 !
y

¼ Hnþ1y; ð26Þ

and its variance is

s2
ŷnþ1

¼ Hnþ1H
T
nþ1s

2: ð27Þ

This variance refers to the uncertainty associated with
prediction of the mean of new observations at time n + 1,
and not to the variance of a single observation which is
typically fluctuating around the model mean. Hence the
variance needed for the construction of a PI is decomposed
into a part related to the uncertainty of the modeled mean,
s2
ŷnþ1

and into the part due to residual variance, s2. Thus, the
variance needed for calculating a PI becomes

s2
ynþ1

¼ Hnþ1H
T
nþ1 þ 1

� �
s2; ð28Þ

and s2 is estimated as in equation (19). After plugging this
into equation (28), an approximate 1 � a PI is given by

ŷnþ1 � z
1�a

2ð Þŝynþ1
; ŷnþ1 þ z

1�a
2ð Þŝynþ1

h i
; ð29Þ

and z
1�a

2ð Þ is the critical value from the normal distribution.
In the remainder of this paper, this PI is referred to as aPI.
3.2.2. Bootstrap Intervals
[38] In general, additive models do not have an analytical

solution and the errors can deviate from normality.
The calculation of the analytical intervals as described in
section 3.2.1 only exists when linear smoothers are used as
building blocks and their coverages are only correct when
the errors are Gaussian. In this section, a procedure is
proposed for the construction of the prediction intervals
that can cope with additive models in general. The proce-
dure does not impose any parametric assumptions of the
underlying distribution of the errors. Therefore an analytical
derivation does not exist for the PI. This implies the use of
computational intensive methods for variance estimation
such as bootstrapping.
[39] The bootstrap is a statistical inference technique that

relies on only some weak distributional assumptions. Boot-
strapping consists of resampling from a sample D = (D1, . . . ,

8 of 17

W08429 CLEMENT ET AL.: STATISTICAL DATA VALIDATION W08429



Dn), with replacement, to generate bootstrap replicates
D*(b), b = 1, . . ., B, of the same size n. The bootstrap
replicates are then used to simulate B estimates of a given
statistic, resulting in an empirical probability distribution of
the statistic. Suppose one wishes to estimate the empirical
cumulative distribution function G* of a statistic q = t(D)
which is estimated from a given sample D = (x1, . . . , xp, y).
Each observation Di is sampled with replacement and with
an equal probability of 1/n. Sample D is resampled with
replacement B times, until B bootstrap replicates D*(b), b =
1, . . . , B, are generated. With each bootstrap replicate
D*(b), the statistic q can be evaluated, yielding B bootstrap
estimates q̂*ðbÞ. The acquired empirical distribution G* can
also be used to calculate for instance the variance or
confidence intervals on q̂.
[40] When applying the bootstrap in a regression context,

there are two common approaches for generating bootstrap
samples (1) by resampling the cases Di = (xi1, . . ., xip, yi) or
(2) by resampling the errors (êi). The use of resampling
cases is not really an option since it changes the sample
design. Water quality data are gathered over time and so the
time covariate is not sampled at random. The water quality
data are sampled at intervals larger than 2 weeks. Therefore
their dependencies are only related to seasonality and trend,
and the residuals can be assumed to be independent after
modeling these dependencies [Van Belle and Hughes,
1984]. These considerations provide a strong argument in
favor of resampling residuals. In this case, bootstrap
samples are generated by simply resampling from the
empirical distribution of the residuals F̂ and creating
bootstrapped responses by

y*ðbÞ ¼ ŷþ e*ðbÞ; ð30Þ

where e*(b) is a bootstrap replicate of the residuals. A
bootstrap data set is then constructed as follows D*(b) =
(x1, . . ., xp, y*(b)). The most straightforward method to
obtain e*(b) is to resample the crude errors �̂i. However,
when a projection matrix H exists for the models, Davison
and Hinkley [1997] suggest sampling the residuals from the
distribution of the centered adjusted residuals ri � �r, where
ri is defined as

ri ¼
�̂iffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hii
p ; ð31Þ

where hii is the ith diagonal element of the projection matrix
H and �r is the average of the ri. For linear smoothers, it can
be shown that the variance of the estimated residuals ei is
equal to s2(1 � hii). Hence resampling from the distribution
of the centered adjusted residuals is preferred because they
have the same variance as the true errors �i. Now that the
bootstrap is introduced in the regression context, it can be
applied to the data validation problem.
[41] The aim is to construct a prediction interval for new

observations. The point estimate of a new observation,
q̂ ¼ tðxÞ, is a prediction from the additive model. Two
sources of variability are involved in the derivation of the
PI: the uncertainty due to the model prediction and the
variability of the residuals. Therefore a double bootstrap
procedure is needed. The main loop takes the variability of

the model estimator into account. The second loop adds the
additional variability that is associated with a single obser-
vation. Two types of bootstrap intervals are derived: per-
centile-based PIs and prediction error-based PIs, where the
prediction error d is defined by d ¼ ŷnþ1 � ynþ1.
[42] The percentile method proceeds as
[43] 1. Fit the additive model to the historical data set D
[44] 2. Use the fitted model to calculate the prediction

q̂ ¼ tðxÞ
[45] 3. Extract the empirical distribution F̂ of the

residuals
[46] 4. First bootstrap loop: For b1 = 1, . . . , B1

[47] (i) Take a bootstrap sample of the residuals e*(b1)
and construct a bootstrapped response y*(b1) by adding
these residuals to the fitted values of the AM (ŷ),
y* b1ð Þ ¼ ŷþ e* b1ð Þ. The bootstrapped data set D*(b1)
now becomes D*(b1) = (x1, . . ., xp, y*(b1)).
[48] (ii) Fit a AM model to D*(b1), and compute the

prediction t(D*(b1)).
[49] (iii) Second bootstrap loop: For b2 = 1, . . ., B2

[50] a. Sample at random a residual e*(b2) from the
empirical distribution of the residuals (F̂).
[51] b. The bootstrap estimate q̂* b1; b2ð Þ for the new

observation is given by q̂* b1; b2ð Þ ¼ t D* b1ð Þ
� �

þ e* b2ð Þ.
[52] 5. 1 � a confidence intervals are calculated from the

bootstrap distribution G*. First, the q̂*’s are ordered so that
q̂*ð1Þ 
 � � � 
 q*

B1B2ð Þ. The interval is obtained by taking the
a/2 and 1 � a/2 percentiles of G* [Efron and Tibshirani,
1993] which is denoted as

q̂*
B1B2

a
2½ 	ð Þ; q̂*

B1B2 1�a
2ð Þ½ 	þ1ð Þ

� �
: ð32Þ

This PI is referred to as the bPI.
[53] Davison and Hinkley [1997] showed for linear

models that the PI can also be estimated by computing
the bootstrap distribution of the studentized predictions
errors, z ¼ d=ŝ, mimicking the standard normal theory,
where the predic t ion error d ¼ ŷnþ1 � ynþ1 and
ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS=df errð Þ

p
. This idea can easily be adopted to

additive models and require steps 4 and 5 of the main
bootstrap loop to be replaced by
[54] 4. First bootstrap loop: For b1 = 1, . . ., B1

[55] (i) Take a bootstrap sample of the residuals e*(b1)
and construct a bootstrapped response y*(b1) by adding this
residuals to the fitted values of the AM ( ŷ).
y* b1ð Þ ¼ ŷþ e* b1ð Þ. The bootstrapped data set D*(b1)
now becomes D*(b1) = (x1, . . . , xp, y*(b1)).
[56] (ii) Fit an AM model to D*(b1), and compute the

prediction t(D*(b1)) and the standard deviation of the
residuals, ŝ* b1ð Þ.
[57] (iii) Second bootstrap loop: For b2 = 1, . . ., B2

[58] a. Sample at random a residual e*(b2) from the
empirical distribution of the residuals (F̂).
[59] b. Compute the standardized prediction error z* b1b2ð Þ

¼ d* b1b2ð Þ=ŝ* b1ð Þ with d* b1b2ð Þ ¼ ŷ*nþ1 � ŷnþ1 þ e* b2ð Þ
� �

.
[60] 5. The bootstrap prediction interval, after ranking the

z*’s to z(1)* 
 . . . 
 z(B1B2)
* is given by

ŷnþ1 � ŝz*
B1B2þ1ð Þ 1�a

2ð Þ½ 	ð Þ; ynþ1 � ŝz*
B1B2þ1ð Þa

2½ 	ð Þ

� �
: ð33Þ

This interval is referred to as spbPI.

W08429 CLEMENT ET AL.: STATISTICAL DATAVALIDATION

9 of 17

W08429



[61] In case a projection matrix exists for the additive
model, the computational cost of the bootstrap procedures
can be reduced significantly. Since the bootstrap procedure
only alters the response, the structure of the predictors
remains the same. Moreover, the projection matrix only
has to be calculated once because its calculation only
involves the predictors. Therefore the calculation of the
prediction in step 4(ii) of the bootstrap procedure reduces to
t(D*(b1)) = Hny*(b1) instead of having to perform the full
backfitting procedure. This leads to considerable savings in
computational costs. Remember that it is also better in this
case to sample the residuals from the distribution of the
centered adjusted residuals.

3.3. Diagnostic Plots

[62] There are several possible causes for the rejection of
incoming data, such as changes in the system, illegal spills,
errors during the analysis in the laboratory, wrong calibra-
tion of the equipment, outliers in the predictor variables, and
so on. Since other physico-chemical variables are present in
the model as predictor variables, it is possible that an outlier
in one of these variables results in a false rejection of the
incoming data: A predictor has an additive effect on the
outcome of the model, and outliers can result in an extreme
value of the predictor function enhancing a shift in the PI.
At first sight, this looks like an anomaly of our methodol-
ogy. However, such shifts can be detected by simply leaving
the predictor out of the model: If the prediction was
performed at an outlying observation in a particular predic-
tor variable, the interval will shift back when this predictor
variable is omitted.
[63] The following strategy is proposed: all predictor

variables are left out of the model one by one. Then the
PI is calculated with each of these new models. If the new
observation now lies in the PI, the observed deviation is
possibly due to an outlier in the predictor which has been
left out of the model.

4. Results and Discussion

[64] Here the entire methodology is illustrated on a real
data case. The results of this case are then used to generated
synthetic data for a simulation study and a power study.
These studies are needed to check the coverage and the
performance of the derived prediction intervals. Finally, the

method is applied to two case studies to validate the nitrate
data of the Yzer River measured in 2003 and 2004. In a first
case, 2 years of data are validated at one sampling location.
In a second case, the data validation is applied to 2 years of
data on all sampling locations of the river basin that contain
enough data to fit the AM models.

4.1. Illustration of the Methodology on a Real Data
Case

[65] The methodology is illustrated on the data of
sampling location 913000 which belongs to the physico-
chemical monitoring network. The sampling location is
located along the Yzer River. The data set consists of eight
variables: (1) day number throughout the year, (2) date,
(3) temperature, (4) dissolved oxygen (DO), (5) nitrite
(NO2

�), (6) chemical oxygen demand (COD), (7) pH, and
(8) nitrate (NO3

�). First, the additive model is built and a
residual analysis is performed. Then the AM is used to
validate a new observation by using the different PIs.
4.1.1. Procedure to Build the Additive Model
[66] The nitrate concentration is modeled using an addi-

tive model. The building blocks of the model are local linear
smoothers resulting in a fully nonparametric model. The
first seven variables are allowed to be included in the final
model. Variable 1 codes for the seasonal effect and variable
2 models a potential long-term trend. The BRUTO algo-
rithm is used for model selection. The evolution of the
algorithm is presented in Figure 6. The numbers in the plot
indicate which of the predictors was adjusted in each cycle.
During the first four cycles, predictors 1, 6, 7 and 2 are
included in the model. From the 5th up to the 9th cycle,
the spans of the selected predictors are adjusted. During
cycles 10 and 11, predictors 5 and 4 are selected, respec-
tively. Finally, the last two cycles adjust the spans of
predictors 7 and 6, respectively. The final model includes
predictors 1, 2, 4, 5, 6, and 7. Notice that the 3rd predictor is
never included in the model. At first, the GCV decrease is
steep. This is due to the take up of extra predictors in the
model and is also reflected in the steep increase of the
associated degrees of freedom.
[67] The resulting model is presented in Figure 7. To

enable a graphical representation of the high dimensional
regression surface, we have chosen to represent the fit as a
function of the temporal dimension (Figure 7, top). The
effect of each of the predictors is given in Figure 7 in the
remaining panels. All fits are accompanied by 95% point-
wise confidence intervals. A fitted value is equal to the sum
of the general mean and each of the effects at the
corresponding predictor values. Once the model is fitted,
one can predict the mean response for a new observation by
simply adding the individual effects for each of the predic-
tor variables observed at time n + 1. In this way, a new
nitrate value can be calculated, given its day number, date,
DO, NO2

�, COD, and pH values measured for the particular
sample under validation. The figure shows a clear seasonal
pattern with low contributions in summer and high
contributions in winter, and an increasing contribution of
the temporal trend until 1998 and decreasing trend from
1999 onward. Low DO concentrations seem to have a
negative contribution on the nitrate concentration, while
high DO concentrations have a positive contribution. The
contribution of COD is inversely related to the nitrate
concentration and levels off at high COD concentrations.

Figure 6. Left: Convergence of the GCV criterion when
BRUTO is applied to the data of sampling location 913000
along the Yzer River. Right: The evolution of the total
degrees of freedom in the model as a function of the
iteration number. The numbers along the curve indicate
which of the seven predictors is updated.
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The contributions of DO and COD can be explained from
microbiology. Low dissolved oxygen concentrations inhibit
the nitrification process which converts ammonium to
nitrate. Such oxygen levels are typically occurring at high
COD levels. Additionally, in anoxic conditions (in the
absence of oxygen and the presence of nitrate), certain
microorganisms can use nitrate as their electron acceptor
and in the presence of organic matter they convert nitrate to
nitrogen gas which eventually escapes from the water phase.
The contribution of nitrite seems to be approximately

proportional to the actual nitrate concentration. In Figure 7,
it can be seen that the model is sufficiently flexible to model
a large part of the variation of the original data series.
[68] The model quality is checked in a residual analysis.

Residual plots for each predictor are given in Figure 8.
From the residual plots the data seems more or less
homoscedastic. The variance estimate of the residuals is
â2
913000 ¼ 18:7. The smoothers added to the residual plots

show that the mean of the residuals is centered around zero,
except in data-sparse regions at the endpoints, but this is
likely to be a boundary effect of the smoother. At the
boundaries, the data is sparse and a few residuals can have
a large influence on the fit of the smoother used in the
residual plot. In Figure 9, the histogram and the QQ plot of
the residuals indicate deviations from normality in the upper
tail and suggest that the residuals are distributed with a
slight tail to the right. The box plot also shows some
outliers. When the outliers are removed, the residuals
appear to be almost Gaussian (results not shown). However,
these nitrate levels cannot be removed because they might
be extreme events which are characteristic for the data-
generating process. The presence of serial correlation in the
residuals is checked using the runs test and by making a
variogram of the residuals. The runs test is a nonparametric
test that checks the randomness hypothesis of a data
sequence [see, e.g., McWilliams, 1990]. The run test on
the residuals gave a p-value of 0.78, which clearly accepts
the null hypothesis of randomness. A variogram is a tool to
represent autocorrelation in unequally spaced observations.
To construct the variogram, first the differences d(ij) = yi �
yj and the time differences Dt(ij) = ti � tj are calculated for
all observations i and j. According to their time difference
Dt(ij), all differences d(ij) were classified in time distance
classes with mean time distance Dt,k. The distance classes
were taken to be equal in size and the bin was taken at
30 days. For each distance class k, the semivariance is
estimated as rk ¼

Pnk
i¼1 d

2
i = 2nkð Þ. The semivariance rk is

then plotted against Dt,k. The left panel of Figure 10
represents the variogram for the original data series and the
right panel displays the variogram for the residuals of the
AM. The grey lines in the background are variograms
obtained when white noise was created with the same
variance as the derived variograms of interest. The original
nitrate measurements are clearly autocorrelated and the
seasonal pattern is very obvious. After the AM was fitted,
the autocorrelation is completely removed and the vario-
gram behaves similar to white noise. Both the runs test and
the variogram support the hypothesis of Van Belle and
Hughes [1984] that water quality data measured at intervals

Figure 9. Histogram, box plot, and QQ plot of the
residuals from the additive in Figure 7.

Figure 7. AM for nitrate at sampling location 913000 at
the Yzer River. Nitrate is modeled by a long-term trend
(date), a seasonal effect, temperature, DO, COD, and pH.
The top panel shows the data and the lower panels show the
effect of each predictor.

Figure 8. Residual plots from the additive model in
Figure 7. A residual smoother is added to each plot.
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which are larger than 2 weeks can be assumed to be
independent when seasonality and trend are removed.
[69] The additive model for the historical data is estab-

lished and the residuals are shown to be independent. The
model can now be used to construct a prediction interval for
new observations. In the next section, the validation is
performed using the three different PIs derived in section 3.2.
4.1.2. Validation of a new Observation by the use of
Prediction Intervals
[70] In the previous section an additive model was

established using the data before 01 January 2003. The first
new observation is acquired on 14 January 2003 and will
be validated. The AM is used to perform a prediction
of the fitted response ŷnþ1; 913000 ¼ 12:3. The variance
corresponding to this prediction is s2

ŷn;913000
¼ 2:6. The

prediction interval for nitrate on 14 January 2003 is given
in Figure 11. Instead of creating a two-sided interval, we
prefer to use one-sided interval by concentrating all the
uncertainty in the upper tail. Low nitrate concentrations are
not harmful for the environment, so it is more interesting to
focus on a faster detection of abnormal high nitrate con-

centrations. In the right panel the historical data is presented
together with the optimal fitted model. In the left panel, the
new observation is represented by a dot and the upper limit
of the bootstrap interval is given using the three different
methods. The new observation lies in all intervals and is
thus accepted. In the double bootstrap procedure, 1000
bootstraps are calculated for each bootstrap loop (B1 and
B2) resulting in 1 million bootstrap replicates (B1B2). The
bPI seems to be slightly higher than the aPI and the spbPI.
[71] In this study, B1 and B2 are chosen to be 1000,

resulting in 1 million bootstrap replicates (B1B2). In the
ideal case, however, the number of bootstrap replicates
should be taken to be 1. In practice, this is not feasible and
the number of bootstrap replicates is set at a large value.
This leads to a bootstrap resampling variability. Thus, when
the calculation of the bootstrap PI is repeated on the same
data, the obtained PI will be slightly different. To stabilize
the bootstrap resampling variability, the number of boot-
strap replicates should be taken large enough. In a double
bootstrap procedure, the bootstrap resampling variability is
introduced in both loops. To control the bootstrap
resampling variability due to the first loop, the size of B1

should be appropriate. The bootstrap resampling variability
caused by the second loop is controlled by B1B2. Hence
stable intervals are obtained by taking B1 and B1B2 large
enough. The latter can be obtained by taking the number B1

very large and by taking B2 = 1 or by using moderate values
for both B1 and B2. In a practical implementation, the
computational complexity associated with both bootstrap
loops also has to be taken into account. Here the
computational load of the second loop is negligible

Figure 11. Prediction interval for the nitrate concentration
on 14 January 2003 at sampling location 913000 along the
Yzer River. Left: Historical data with model fit. Right: The
new observation (dot) is accepted by all one-sided
prediction intervals (aPI (solid line), bPI (dotted line), and
dashed dotted line (spbPI)). The new observation is
accepted by all intervals.

Figure 12. Effect of the number of bootstraps in the first
and second loops on the bootstrap resampling variability of
one-sided 95% spbPI. Each histogram is based on 50 PIs;
B1 is the number of bootstraps in the main bootstrap loop
and B2 is the number of bootstraps in the second bootstrap
loop.

Figure 10. Variogram of the (left) original nitrate series
and of the (right) residuals after fitting the AM from Figure
7 are plotted (thick solid line). Ten variograms generated by
white noise with the same variance are added to the plot
(thin grey lines).
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compared to the first loop. Hence it is interesting to take B1

as small as possible in order to reduce the computational
power. The impact of the sizes of B1 and B2 is assessed in
Figure 12. One-sided intervals were calculated to validate
nitrate measurements. For the same data set, 50 bootstrap
intervals are calculated for (1) B1 = 1000, B2 = 1, (2) B1 =
10,000, B2 = 1, (3) B1 = 10,000, B2 = 100 and (4) B1 =
1000, B2 = 1000. For cases (1) and (4), the time needed to
calculate the intervals was almost equal because the
computational complexity associated with the calculation
of 1000 AMs in the first bootstrap loop is much larger than
the complexity needed for the second step. For cases (2) and
(3), however, 10 times more computational time was needed
because the first loop was executed 10 times more. The
figure clearly illustrates that, for case (4), the one-sided
interval is estimated much more accurately than in case (1)
where there is still a considerable amount variability. The
stability of the intervals in (4) was slightly better than in
case (2). This is because the second loop was only executed
10,000 times for case (2) compared to 1,000,000 times for
case (4). In case (3), a small gain in accuracy can be
observed compared to case (4). In both cases, the second
loop is assessed 1,000,000 times. Hence the bootstrap
resampling variability induced by the second loop is
controlled at the same level. In case (3), the first loop is
executed 10 times as much as in case (4) and therefore a
slight reduction of the bootstrap resampling variability is
established. But this is at the expense of an increase in the
computational time by a factor of 10. In order to reach an
acceptable accuracy while keeping the computational time
limited, we decided to use B1 = 1000 and B2 = 1000.

4.2. Evaluation of the Coverage of the PI’s in a
Simulation Study

[72] The coverages of the three prediction intervals de-
rived in section 3.2 are evaluated for five different cases:

normal residuals, two types of residuals originating from
right-tailed distributions, and two types of residuals origi-
nating from left-tailed distributions. The results of the
nitrate data set at location 913000 in section 4.1 are used
for constructing the data for the simulation study. The
model fitted in Figure 7 is used to construct simulated data
sets. For the right-tailed distributions, Weibull distributions
with shape factors of 1 and 2 are considered. The scale
parameter can be chosen arbitrarily because the simulated
residuals are standardized and multiplied with the standard
deviation ŝ913000 of the residuals obtained from the fitted
model in Figure 7. The residuals from the left-tailed
distributions are generated by changing the sign of the
residuals from the right-tailed distributions. Plots of the
distribution functions used in the simulation study for each
of the different distributions are given in Figure 13. For the
normal residuals, we will sample from a normal distribution
with mean 0 and variance ŝ2

913000.
[73] Now that new residuals with the same variance as the

original data can be generated, simulated data sets are
constructed. First, residuals are simulated as explained
above, denoted by �*. The simulated data sets D* then
consist of the original predictors (x1, . . ., xp) and the
simulated response y* ¼ ŷþ �*. For the simulated data
sets, the values of the true underlying function m(X)
evaluated at the predictor points x and the observation under
validation xn+1 are known. They are presented as the ŷ913000
and ŷnþ1;913000 in Figure 7, respectively.
[74] For each distribution, 5000 data sets were con-

structed. As the values at time n + 1 have the true
underlying mean m, 95% PIs should accept 95% of the
validated data. The coverage for the different intervals are
given in Table 1. The aPIs seem to be slightly too large for
the Gaussian case. The coverage of the aPIs decreases when
the data is right-tailed and increases when the data is left-
tailed. This effect is more apparent when the distribution
becomes more asymmetric. The bPI seems to have the
tendency to be too large, the results for the different
distributions are all above 95%. Only the spbPI seems to
reach the correct coverage and is robust toward deviations
from normality. The coverage of bPI is known to be
problematic [Efron and Tibshirani, 1993; Davison and

Table 1. Coverage (in %) of 95% PI’s for Data Originating From

Different Distributions

Distribution

Analytical Bootstrap

aPI %bPI spbPI

Gaussian 96.4 97.2 95
Right-Tailed, W1 94.1 96 94.5
Moderately Right-Tailed, W2 95.5 96.6 94.8
Moderately Left-Tailed, W3 98.8 98.5 95.2
Left-Tailed, W4 99.8 99.9 96.6

Figure 14. Power curve for the detection of deviations in
validated data: solid line: empirical power; dashed line:
theoretical power when the model uncertainty is neglected.
The size of the deviations ranges between 0 and 4 times
ŝ913000.

Figure 13. Density functions of the residuals used to
generate the data for the simulation study.
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Hinkley, 1997]. Corrections for percentile-based intervals
exist, for instance Efron and Tibshirani [1993] suggested
bias- and acceleration-corrected intervals. But the methods
they suggested cannot be constructed for the double
bootstrap procedure because the second loop consists of
adding a random residual. For the semi-automatic data
validation procedure, aPIs are preferred from a computa-
tional point of view. However, their coverage can behave
poorly, particularly for the combination of upper bounded
one-sided PIs and residuals that follow a left-tailed
distribution. The studentized prediction error-based boot-
strap PIs (spbPI), however, are rather robust toward the
distribution of the residuals and, therefore, we suggest to
use this PI for data validation purposes.

4.3. Evaluation of the Power

[75] The model fitted in Figure 7 is used to construct
simulated data sets. First, residuals �* are simulated from
the normal distribution N 0; ŝ2

913000

� �
. The simulated

data sets D* then consist of the original predictors (x1,
. . ., xp) and the simulated response y* ¼ ŷ913000 þ �*.
Thus for the simulated data sets, the values of the true
underlying function m(X) evaluated at the predictor points
x and xn+1 are ŷ913000 and ŷnþ1;913000. Now a systematic
deviation is introduced in the simulated data (xn+1, yn+1* )
which has to be validated. Instead of validating
ynþ1* ¼ ŷnþ1;913000 þ �*; ynþ1* ¼ ŷnþ1;913000 þ �* þ lŝ913000

is used and the corresponding power to detect this deviation
is calculated. To derive a complete power curve, different
values for l are taken which range between 0 and 4. For
each l, 5000 data sets are generated to calculate the
empirical power. The resulting power curve is displayed in
Figure 14 (thick black line). In the same figure, a theoretical
power curve is represented. The theoretical power was
derived under the assumption that the uncertainty due to the
estimation of the model could be neglected. When the
model uncertainty can be neglected, the model prediction
ŷnþ1* follows a normal distribution N ŷnþ1;913000; ŝ2

913000

� �
.

The validated observation yn+1* , however, follows a normal
distribution N ŷnþ1;913000 þ ls913000; ŝ2

913000

� �
. Hence the

power to detect the deviation in yn+1* is established by using the
distribution function N ŷnþ1 þ ls913000; ŝ2

913000

� �
to calculate

the probability P ynþ1* > ŷnþ1;913000 þ z1�aŝ913000

� �
. This

theoretical power cannot be exceeded because model
uncertainty is always present in practical applications. At the
beginning, when l= 0 both curves start at 5%. This is due to the
definition of 95% PIs. For moderate l, the empirical power
curve is lower than the theoretical one, but the empirical power
remains remarkable high. This suggests that ourmethod iswell
suited for data validation purposes.

4.4. Case Studies

4.4.1. Validation at one Sampling Location
[76] The data of sampling location 913000 along the Yzer

River over the years 2003 and 2004 are validated. The data
set at this location contains eight variables: day number,
date, temperature (t), dissolved oxygen concentration (DO),
nitrite concentration (NO2

�), chemical oxygen demand
(COD), pH, and nitrate concentration (NO3

�). The time
series starts at April 1990 and ends in December 2004. All
eight variables are measured on a monthly basis. The data
from 1990 until December 2002 are considered as historical
data. The nitrate data from 2003 and 2004 are validated in
chronological order. In particular, if a new observation lays
within the 95% PI, then the measurement is accepted and
considered as historical data for the validation of the next
observation.
[77] The results of the data validation are presented in

Figure 15. All data from 2003 are accepted. The observa-
tions in January and February of 2004 are rejected. Diag-
nostic plots for these observations are given in Figures 16
and 17, respectively. From the diagnostic plots, possible
explanations for the rejection of the data may become clear.
The measurement in January was only accepted when the
trend was omitted from the model, giving a strong indica-
tion that this measurement did not follow the expected long-
term time trend in the data. The measurement in February

Figure 15. Validation of nitrate at sampling location
913000 of the Yzer monitoring network. Nitrate concentra-
tions in January and February 2004 are considered as
anomalous by the automatic validation procedure.

Figure 16. Diagnostic plots for rejected nitrate concentra-
tion of January 2004 at sampling location 913000 of the
Yzer monitoring network.
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was accepted when the trend or pH were omitted from the
model. The effect of omitting the pH on the size of the
interval was only limited. The effect of omitting the trend
from the model was much more pronounced. This indicates
again that the main cause of the deviation was related to the
trend. The nitrate concentrations in the beginning of 2004
are known to be high [Vlaamse Milieumaatschappij, 2005].
The Yzer River is located in the countryside and 2003 was a
dry year, which resulted in an accumulation of nitrate in

agricultural soils in the summer. The dry summer of 2003
had a beneficial effect on the nitrate concentration, since
there was a limited amount of nitrate washed to the water
course by the rain. Hence the nitrate accumulated in the soil
and was washed out in the winter period. Moreover, January
2004 was recognized to be extremely wet by the Belgian
Royal Meteorological Institute (KMI). This means that this
phenomenon at most happens once in 100 years. The dry
summer combined with an extreme wet winter provoked
high nitrate concentrations in receiving river.
4.4.2. Validation of an Entire Basin
[78] The data from 2003 and 2004 for all sampling

locations of the entire Yzer River, containing enough data
to fit the models, is validated. The data set at each location
has information on eight variables: day number, date, t, DO,
NO2

�, COD, pH, and NO3
�. All eight variables are measured

on a monthly basis. The data from 1990 until December
2002 are considered as historical data. The nitrate data from
2003 and 2004 are validated in chronological order. If a new
observation lies within the PI, then the measurement is
accepted and considered as historical data for the validation
of the next observation. The data validation is carried out
using 95% spbPIs. The empirical coverage of the intervals
in a certain period is calculated by dividing the number of
accepted observations in this period by the total number of
validated observations in this period. The coverage of the
intervals for the whole validation period, was 91%.
However, the coverage for the 2003 data of the spbPIs
was 94.7% and was close to what is expected from theory
when no deviations are present. In 2004, the coverage was
only 80%, indicating the presence of a considerable amount
of anomalous data. In Figure 18, the results of the data

Figure 18. Validation of nitrate at all sampling locations of Yzer monitoring network. The top panel
shows the results of the validation in 2003; the middle panel shows the results of 2004; and the bottom
panel shows the evolution of the coverage of the PIs during the whole validation period. Accepted data
are indicated with an open circle and the rejected data are indicated with a dot. The coverage of the 95%
prediction intervals clearly drops in January, February, and March 2004.

Figure 17. Diagnostic plots for rejected nitrate concentra-
tion of February 2004 at sampling location 913000 of the
Yzer monitoring network.
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validation based on the spbPIs are presented. The top panel
shows the results of the validation in 2003, the middle panel
shows the results of 2004, and the bottom panel shows the
evolution of the coverage of the spbPIs during the whole
validation period. Accepted data are indicated with open
circles and the rejected data are presented by dots. From the
middle panel of Figure 18, it can be seen that a considerable
amount of data is rejected in the period of January to March
2004. This is even more obvious in the results presented in
the bottom panel. The bottom panel shows the evolution of
the empirical coverage in each month. In 2003, the coverage
is more or less stable at 95%. In the beginning of 2004, a
clear drop of the coverages of the PIs is observed (January
56%, February 66%, and March 67%) indicating that there
was a change in the system during the first months of 2004.
[79] Amore general feature can be derived from Figure 18:

similar to multivariate techniques, our method also detects
observations lying in the center of the univariate distribu-
tion of the nitrate concentration as outlying observations.
Hence our methodology combines the interesting features
of multivariate outlier detection without imposing restricted
assumptions on the relationship between the response and
the predictor variables.

5. Conclusions

[80] A method for the validation of river water quality
data is proposed. Based on the historical data, an additive
model is fitted, which is subsequently used to construct
prediction intervals for future observations.
[81] Our study indicates that the additive models are

clearly able to catch the cyclic pattern present in the data
and could model the nonlinear behavior and relationships
typically associated with river water quality data. As an
interesting feature, the observed associations between the
response and the predictors reflect well-known physical and
biological relationships. Since the model selection is carried
out at each time step, the models succeed to adapt to
changes in the processes of the underlying river.
[82] From the different prediction intervals which were

derived, the studentized prediction error-based bootstrap PIs
(spbPIs) are most interesting to be used in practice. The
coverages of the 95% spbPIs have been assessed in a
simulation study and, in comparison with analytical inter-
vals, which assume the residuals to be Gaussian, they
appear to be much more robust against deviations from
normality. The power of the method was also shown to be
adequate.
[83] The case studies have illustrated that our method

could detect anomalous events, such as an abnormal high
nitrate release due to a dry summer, which was followed with
an extreme wet winter period. The diagnostic plots were also
useful to assist the operator for an explanation of the
anomalous measurement: they indicated that the rejection
was related to the trend. In the case studies, the semi-
automatic procedure detected suspicious observations lying
at the edges as well as observations lying in the center of the
univariate distribution of the observations. Hence it com-
bines the interesting features of classical multivariate outlier
detection tools without having to impose linear relationships
typically associated with these methods.
[84] An ICT tool based on this methodology could be of

great value to analyze and maintain environmental data-

bases originating from monitoring networks such as the
ones which are implied by the WFD. It can be used to check
the quality of the data and it can also detect abnormal
changes in the water quality.
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