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A methodology based on Principal Component Analysis (PCA) and clustering is evaluated for

process monitoring and process analysis of a pilot-scale SBR removing nitrogen and phosphorus.

The first step of this method is to build a multi-way PCA (MPCA) model using the historical

process data. In the second step, the principal scores and the Q-statistics resulting from the

MPCA model are fed to the LAMDA clustering algorithm. This procedure is iterated twice.

The first iteration provides an efficient and effective discrimination between normal and abnormal

operational conditions. The second iteration of the procedure allowed a clear-cut discrimination

of applied operational changes in the SBR history. Important to add is that this procedure helped

identifying some changes in the process behaviour, which would not have been possible, had we

only relied on visually inspecting this online data set of the SBR (which is traditionally the case in

practice). Hence the PCA based clustering methodology is a promising tool to efficiently interpret

and analyse the SBR process behaviour using large historical online data sets.
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INTRODUCTION

In the past decades, the search for advanced control

strategies has gained attention in wastewater treatment

engineering (Olsson & Newell 1999). Despite promising

results in this area, new and advanced control strategies are

generally not applied in full-scale wastewater treatment

plants as the required reliability of sensors and actuators is

not met in many cases. In addition, changes of the microbial

population, as reported in Yuan & Blackall (2002) and Sin

et al. (2006), which might lead to lower performance of the

system, limit the application of common control strategies.

A systematic approach to process monitoring and diagnosis

that aims to address these issues is expected to improve the

control of wastewater treatment plants.

The application of process monitoring techniques for

wastewater treatment processes has recently gained momen-

tum. One of the first applications of principal component

analysis (PCA) tomonitor a full-scaleWWTPisgivenbyRosén

& Olsson (1998). In many other cases, the basic technique,

often PCA, is extended to address typical features of biological

processes. Among the most important are the multiscale

extensions to tackle the monitoring problem at different time-

scales (Rosén& Lennox 2001), adaptivemodelling to account

for changing system properties (Rosén & Lennox 2001),

multiblockmodelling to facilitate fault isolation in the context

of processes exhibiting several structurally different phases

(Lee&Vanrolleghem2003) and theKernel extension to tackle
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severe non-linearities (Lee et al. 2004). Classical PCA-based

approaches to the diagnosis of faulty situations involve the

visual inspection of contribution plots, in which the contri-

bution of all or certain variables to the scores and statistics

(Hotelling’s T2, Q-statistic) is evaluated. This becomes a

cumbersome and time-consuming task when confronted

with large data sets. Dunia & Qin (1998) discuss a method

for automated diagnosis based on PCA modelling. A set of a

priori identified faults needs to be identified however, which is

unrealistic inwastewater treatmentpractice.Singhal&Seborg

(2002) provide a pattern-matching tool to retrieve similar

behaviour in a historical database. However, operators are

supposed to select the final matching case which impedes

automatic diagnosis. Case-Based Reasoning (CBR) provides a

framework for fault diagnosis as well (Martinez et al. 2006).

Despite the available methods, a lack of automation in

wastewater treatment plants (WWTPs) is still present. At the

same time, the increased use of on-line sensors for monitoring

ofWWTPs results in large amounts of data, oftennot analyzed,

managedorused inanefficientmanner.Asystematic approach

for data screening and interpretation is however a crucial step

formodelling and for the design of control strategies.Hence, it

is our aim to make a further step towards facilitated screening

and interpretation of large historical data sets fromwastewater

treatment facilities. To this end, a combined methodology of

PCA-modelling and LAMDA (Learning Algorithm for Multi-

variable Data Analysis) clustering is proposed where obser-

vations are clustered using principal scores and Q-statistics as

described in detail below. The methodology is evaluated at a

pilot-scale SBR for nitrogen and phosphorus removal.

The paper is organised as follows. After materials, the

combined PCA and LAMDA clustering are explained. Then,

the results of the methodology are presented and evaluated

to assess the efficiency of the proposed approach for data

mining of historical data sets of SBR processes. Finally,

conclusions regarding the devised method are drawn.

MATERIALS AND METHODS

Data

The data set used in this paper consists of 1959 complete

batches collected from a pilot-scale SBR setup between

December 16th, 2003 and July 18th, 2005. The SBR under

study has a working volume of 64L and is fed with synthetic

sewage resembling domestic wastewater characteristics

(Insel et al. 2006). Detailed information on the setup can

be found in Lee et al. (2005). It is noted here that three

contiguous operational periods are discerned in the studied

period. They last from December 16th, 2003 to March 3rd,

2004 (OP1), from March 3rd, 2004 to December 16th, 2004

(OP2) and from December 16th, 2004 to July 18th, 2005

(OP3). The first change in operation concerns a higher

oxygen setpoint, while the second change is due to a

reconsidered feeding pattern, oxygen setpoint and SRT

(Sludge Retention Time).

The length of one cycle, i.e. one batch run, is 6 hours.

The cycle consists of a fill/anaerobic phase (60’), 4

sequences of an aerobic (32.50) and an anoxic phase (300),

a final aerobic phase (300) and a settling/draw phase (600).

During the fill/anaerobic phase of the cycle, 24L of the

influent is supplied, while 10L is equally step-fed to the

anoxic phases, i.e. 2.5L per each anoxic phase.

The on-line data of each batch consists of 6 trajectories

corresponding to pH, Oxidation-Reduction Potential, Dis-

solved Oxygen, temperature, weight and conductivity

sensors. Data collected during the settling and draw phases

are excluded from these trajectories since (1) these data do

not provide much information about the processes (Lee &

Vanrolleghem 2003), (2) measurements are not representa-

tive since the medium is not mixed and (3) sludge settling

exhibits dynamics that might lead to batch-to-batch data

variation which is not straightforward to explain.

Figure 1 | MPCA-based clustering procedure.
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Method: combining multiway principal component

analysis and clustering

The applied method consists of two steps, being (1) a data

dimension reduction by means of MPCA and (2) clustering

of the resulting data set with reduced dimensions, as shown

in Figure 1. In this work, MPCA was performed as proposed

byNomikos & MacGregor (1994). The modelling procedure

thus includes batch-wise unfolding, autoscaling and linear

PCA modelling.

The resulting principal component scores and the

Q-statistic are then used as input variables for clustering.

The Learning Algorithm for Multivariate Data Analysis

(LAMDA) is applied to do so. The structure of any resulting

model is similar to that of a single neuron in a neural

network with as many nodes as classes (see Figure 2). In this

structure, the Marginal Adequacy Degree (MAD) is a

Figure 2 | LAMDA model structure: MAD ¼ Marginal Adequacy Degree, GAD ¼ Global

Adequacy Degree, L ¼ hybrid connective operator.

Figure 3 | Biplot of the first two scores of the first PCA model. Markers indicate the cluster ID.
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measure for the possibility that an observation belongs to a

class given one of the input variables. In this work, the fuzzy

extension of the binomial probability function is used:

MADj;k ¼ r
xj
j;k·ð12 rj;kÞ

xj

where xj is the observed value for the input variable j and

rj,k the classifier model parameter for input variable j and

class k. The values for rj,k are optimized during the training

process. The Global Adequacy Degree combines the

information of all MAD’s for a given observation and a

given class by means of hybrid connectives. In this case,

these connectives are established as follows (for J input

variables):

GADb;k ¼ LðMAD1;k;… ;MADj;k;… ;MADJ;kÞ

¼ b·TðMAD1;k;… ;MADj;k;… ;MADJ;kÞ þ ð12 bÞ·

SðMAD1;k;… ;MADj;k;… ;MADJ;kÞ

where L(…) denotes the connective operator, T(…) is a

t-norm and S(…) is its dual t-conorm as commonly denoted

in the context of fuzzy logic and b a parameter to be set by

the user. In this case b was set to 1 so as to define an

intersection in the fuzzy logic analogy (b set to 0 defines the

union). An observation is assigned to the class k with

maximal GADb,k.

Important features of the LAMDA modelling algorithm

are that (1) (supervised) classification, (unsupervised)

clustering or mixed forms are possible, (2) input variables

can be of quantitative and/or qualitative nature and (3) the

sequential treatment of observations leads to fast training.

For more details we refer to the work of Aguilar & Lopez de

Mantáras (1982) and Moore (1995).

RESULTS

In this section, first the PCA-based clustering on the whole

data set (all three operational periods) is shown and

secondly the PCA-based clustering of the normal oper-

ational condition (NOC) data, identified in the first step, is

presented.

PCA-based clustering of the whole on-line data set

Following the PCA modelling step, the matrix consisting of

6 retained principal scores and the Q-statistic was fed to the

LAMDA clustering algorithm. The LAMDA algorithm

clustered the observations (batches) into 16 clusters.

A biplot of the first two scores for all data is shown in

Figure 3. It can be seen that the clustering algorithm

separates small groups of outliers from other clusters that

are larger in number of members.

Each of the clusters was subjected to diagnosis by close

investigation of the on-line data. The labels that were

obtained by doing so are given in Table 1 together with the

number of batches. Only one cluster (cluster 16) could not

be tagged uniquely, though this cluster exhibited only

abnormal batches. As can be observed, only 5 clusters

(1, 3, 5, 7 and 13) were identified as normal, corresponding

to 73% of the whole data set. By normal operation, it is

meant that the operation of sensors and actuators is

technically correct. The 10 remaining clusters could be

linked uniquely to a specific problem or set of problems.

Table 1 | Interpretation of the first clustering results. “Normal” defines correct

operation of hardware and software

No. Batches Label

1 219 Normal 1 (low DO operation)

2 31 Communication problem with balance

3 241 Normal 2

4 187 Cooler failure

5 607 Normal 3

6 23 High pH

7 126 Normal 4, recovery from cooler failure (cluster 4)

8 5 Extreme DO

9 1 Low ORP and extreme DO

10 72 Conductivity probe failure

11 144 Conductivity probe in repair

12 39 Conductivity probe in repair and communication
problem with balance

13 245 Normal 5 (optimised operation)

14 7 Low ORP measurement

15 1 Multiple sensor failure (ORP, temperature and weight)

16 11 Abnormal (no unique fault)
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PCA-based clustering of the NOC on-line data set

As outliers can have a large influence on PCA models, the

PCA-based clustering of the whole data set might have

impaired the discrimination between different types of

normal behaviour. Therefore, the PCA-based clustering

was repeated on the data of the batches assessed to be

normal only. This means that the data corresponding to

clusters 1, 3, 5, 7 and 13 in the former clustering procedure

were used for PCA model training and consequent cluster-

ing. All following graphs and results correspond to this

“NOC” data set only.

The 7 retained principal scores and the Q-statistic,

obtained by PCA modelling, were fed to the LAMDA-

algorithm as in the previous section. An unexpected large

number (17) of clusters were hereby obtained. Figure 4

shows the biplot of the first two scores for all batches under

study. These clusters were investigated again in detail in

order to label them. In Table 2, the obtained clusters are

given with their number of batches and label, ordered in

order of appearance. Now, 10 out of 17 clusters are

identified as normal and represent 97% of the NOC data

set (1399 batches out of 1438). As such, the newly found

abnormal batches, representing 3% of the NOC data set

and 2% of the whole data set. This indicates that a large part

of the identified abnormal batches can be identified by a

single application of the combined PCA and clustering

procedure. In a classic PCA application, 362 faulty batches

(65% of all identified faulty batches) would not be selected

for investigation on the basis of 95%-levels for either

Hotelling’s T2 or the Q-statistic. As such, the MPCA-based

clustering is shown to be beneficial for data screening.

In addition to the lower coverage of abnormal data in

the cleaned up data set, the “normal” data is now split up

into 10 clusters instead of 5, as in the first iteration of the

PCA-based clustering. In Figure 5 the class numbers for all

Figure 4 | Biplot of the first two scores of the second PCA model. Markers indicate the cluster ID.
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NOC batches are shown as a function of time. It can be

observed that the normal clusters (1, 2, 3, 4, 5, 7, 8, 11, 15

and 17) appear in different frames of the studied time

window. Some of the differentiation by clustering is due to

enforced operational changes according to the SBR

research agenda at that time. For instance, clusters 1 and 2

represent batches of the first operational period (OP1),

whereas all other clusters represent bathes in OP2 and OP3.

Next to this, clusters 1, 2, 3, 4, 7 and 8 represent data logged

before December 16th, 2004 (OP1 and OP2), when a major

change in the operation was implemented, after the model-

based optimisation results of Sin et al. (2004). The clusters

5, 15 and 17 appear almost exclusively in OP3. By exception,

cluster 11 shows exceptionally large numbers of batches in

both OP2 and OP3. The labels provided in Table 2 for the

normal clusters concern a qualitative assessment of the

performance of the system in terms of settling properties and

nutrient removal performance.While their assessmentwas of

a subjective nature, it can be seen that the clusters

differentiate between relevant process characteristics.

Figure 5 | Cluster number as function of time indicating how clustering memberships exhibit a pattern in time.

Table 2 | Interpretation of the second clustering results

No. Batches Tag Label

1 210 Normal 1 Low DO set point, transient operation

2 95 Normal 2 Low DO set point, steady operation

3 98 Normal 3 High SV30 (bad settling), low NO3ZN

4 49 Normal 4 Decreasing SV30 (improving settling), increasing NO3ZN

5 334 Normal 5 Filamentous bulking, decreasing/low NH4ZN, high NO3ZN

6 4 Abnormal 1 High DO in anoxic phases

7 71 Normal 6 Increasing SV30 (worsening settling), high NO3ZN (10–20), increasing COD

8 94 Normal 7 High SV30 (bad settling), high NO3ZN (.20), increasing COD

9 3 Abnormal 2 High DO in aerobic phases

10 5 Abnormal 3 High DO in anaerobic phase (mixing too intense)

11 289 Normal 8 Filamentous bulking, high NH4ZN, decreasing/low NO3ZN

12 5 Abnormal 4 Cooling system failure

13 2 Abnormal 5 Pump control error: feeding too high in anaerobic phase

14 19 Abnormal 6 Pumping failure

15 116 Normal 9 Filamentous bulking, decreasing/low NH4ZN, high NO3ZN

16 1 Abnormal 7 High DO in aerobic phases

17 43 Normal 10 Filamentous bulking, high NH4ZN, low NO3ZN

1664 K. Villez et al. | MPCA and clustering in data mining of historical data sets of SBR processes Water Science & Technology—WST | 57.10 | 2008



A more detailed interpretation of the relations between the

clustering results and off-line measurements is however not

the subject of this paper.

DISCUSSION

It was shown that, by means of clustering, batches with the

same or similar behaviour are grouped together. Labelling is

then done by investigation of a limited number of batches of

those clusters. Combining MPCA and clustering therefore

provides an efficient and effective tool for data screening

and interpretation of historical data of batch processes.

The first application of the combined MPCA and

clustering approach led to the discrimination of several

clusters that uniquely correspond to a certain fault or set of

faults. These clusters represented 93% of all abnormal

batches found. On the contrary, 35% of all abnormal

batches could be identified by means of the classic

approach. As such, PCA-based clustering was shown to be

a far more effective tool for data screening of large historical

data sets when compared to the classic approach based on

inference statistics.

After the selection of the normal data, the PCA-based

clustering method was repeated on the cleaned-up data set.

By doing so, an increased level of differentiation within this

dataset was observed (10 normal clusters were found

instead of only 5 in the first analysis). Also, it was possible

to link the clusters to certain temporal process behaviour.

Detailed investigation showed that by means of the

combined PCA and clustering methodology both intended

and unintended changes in process behaviour of the

biological system could be discriminated. Importantly, this

implies that the resulting clusters reflect meaningful

changes in the process behaviour.

CONCLUSIONS

It is shown that data mining of historical data sets on the basis

of PCA modelling can be significantly improved by the use of

clustering techniques, such as the LAMDA clustering algor-

ithm.Firstly, thePCA-basedclustering is showntobea fast and

robust tool for data screening.Not only does it allow removing

the larger part of abnormal batches in a single iteration, it also

leads to a robust discrimination between different anomalies.

The latter may help process operators to understand and

interpret the corresponding failures in a fast way.

Secondly, the PCA-based clustering was repeated on the

data assigned to be normal in the first LAMDA clustering

application. Results showed that the combination of PCA

modelling and the LAMDA algorithm allowed a clear-cut

discrimination of applied operational changes to the SBR

system. More important, a priori unknown but meaningful

variation in the data set was revealed by means of the

method presented.
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