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ABSTRACT: Biological processes exhibit different behavior
depending on the influent loads, temperature, microorgan-
ism activity, and so on. It has been shown that a combination
of several models can provide a suitable approach to model
such processes. In the present study, we developed amultiple
statistical model approach for the monitoring of biological
batch processes. The proposed method consists of four main
components: (1) multiway principal component analysis
(MPCA) to reduce the dimensionality of data and to remove
collinearity; (2) multiple models with a posterior probability
for modeling different operating regions; (3) local batch
monitoring by the T2- and Q-statistics of the specific local
model; and (4) a new discrimination measure (DM) to
identify when the system has shifted to a new operating
condition. Under this approach, local monitoring by multi-
ple models divides the entire historical data set into separate
regions, which are then modeled separately. Then, these
local regions can be supervised separately, leading to more
effective batch monitoring. The proposed method is applied
to a pilot-scale 80-L sequencing batch reactor (SBR) for
biological wastewater treatment. This SBR is characterized
by nonstationary, batchwise, and multiple operation modes.
The results obtained for the pilot-scale SBR indicate that
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the proposed method has the ability to model multiple
operating conditions, to identify various operating regions,
and also to determine whether the biosystem has shifted to a
new operating condition. Our findings show that the local
monitoring approach can give more reliable and higher
resolution monitoring results than the global model.
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Introduction

Biological processes will only achieve near-optimal perfor-
mance if they are modeled and monitored using reliable
techniques. An adequate model of a biological process
enhances the understanding of the process and can form the
basis for better process design, control, and operation. In
addition, efficient process monitoring and early fault
detection methods allow corrective action to be taken well
before a dangerous situation occurs. In biological waste-
water treatment plants, most changes are slow when the
process is recovering from a ‘bad’ state to a ‘normal’ state.
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When a problem occurs in such a process, it may give rise to
subtle changes that gradually grow until they become a
serious operational problem. In recently developed indus-
trial biological plants, many variables are measured in
various operating units and an abundance of data is
recorded. However, such data sets are highly correlated and
are subject to considerable noise. In the absence of an
appropriate processing method, only limited information
can be extracted. In such situations, the operator may not
understand the process sufficiently to maintain stable
operation. If properly treated, however, this process data
can provide a wealth of information that can assist plant
operators in understanding the process status and enable
them to take appropriate action when an abnormality is
detected (Carrasco et al., 2004; Lee and Vanrolleghem, 2003,
Rosen and Lennox, 2001; Saarinen et al., 2003; Xiao and
Luong, 2003; Yoo et al., 2003).

Sequencing batch reactor (SBR) processes have demon-
strated their efficiency and flexibility in the treatment of
wastewaters with high concentrations of nutrients (nitrogen,
phosphorous) and toxic compounds from domestic and
industrial sources. A SBR has a unique cyclic batch operation,
usually with five well-defined phases: fill, react, settle, draw,
and idle. Most of the advantages of SBR processes can be
attributed to their single-tank design and their ability to adjust
the durations of the different phases, which endows these
processes with a flexibility that allows them to meet many
different treatment objectives. However, SBR processes are
highly nonlinear, time-varying, and subject to significant
disturbances such as hydraulic changes, composition varia-
tions, and equipment failures. Small changes in concentrations
or flows may have large effects on the biological reaction
kinetics, leading to batch-to-batch variations in effluent
quality and microorganism growth. Such influent variations
cause SBR processes to evolve over time as the microorgan-
isms adapt to the changing operating conditions. These factors
lead to changes in the microbial community and multiple
operation modes within a bioreactor. Moreover, compared
to data from continuous wastewater treatment processes,
SBR operation data have the added dimension of batch
number, which, when combined with the measured variables
and sample times, gives a three-way matrix (batches�
variables� time). Batch processes generally exhibit some
batch-to-batch variation in the trajectories of the process
variables. However, treatment performance, the key indicator
of process performance, is often only examined off-line in a
laboratory. This lack of real-time on-line monitoring of
treatment performance means that situations can arise where
operators are aware of problems in the treatment perfor-
mance, but cannot determine the underlying causes of the
problems or predict when they will occur. Therefore, the
monitoring and supervision of SBR processes are crucial to
the detection and timely correction of faults. Prompt fault
identification and correction is particularly necessary in
biological processes because such processes may take days,
weeks, or even months to recover from an abnormal state
(Lennox et al., 2001; Nomikos and MacGregor, 1994).
688 Biotechnology and Bioengineering, Vol. 96, No. 4, March 1, 2007
Generally, the fault detection and diagnosis system of an
SBR is based on statistical methods and analyzes on-line data
by comparing the data of a new batch to the historical data of
normal and abnormal batches. If a new batch is close to the
identified normal batches, it can be classified as normal,
otherwise if it is close to an identified abnormal batch, it
could be classified to the nearest known abnormal batch. On
the other hand, if it is not close to either normal or abnormal
batches, it could be classified as a new fault batch.

Multiway principal component analysis (MPCA) has been
successfully applied to batch processes (Chen and Liu, 1999;
Nomikos and MacGregor, 1994; Tipping and Bishop,
1997). Although the data are obtained from a process that
is running stable, the biological adaptation characteristics of
biological processes mean that the data may not be found in a
single operating region. Biological treatment plants show
different behavior patterns depending on the influent loads,
temperature, and the activity of the microorganisms. Thus
the models used for such plants should vary depending on the
operating conditions. One approach is to represent the
biological process using a suite of several models, where each
model is valid only in a specific operating domain. Several
studies have sought to develop methods for continuous
monitoring of bioprocesses with multiple operation condi-
tions. Chen and Liu (1999) proposed a mixture PCA model
that takes advantage of PCA and heuristic smoothing
clustering techniques. Xiao and Luong (2003) developed a
method for the on-line monitoring of cell growth and
cytotoxicity using electric cell-substrate impedance sensing to
measure the concentration and time response function.
Tipping and Bishop (1997) suggested a mixture of a
probabilistic principal component (PC) analyzer for image
compression and handwritten digit recognition, and Choi
et al. (2003) applied a Gaussian mixture model to continuous
process monitoring. Yoo et al. (2003) suggested nonlinear
modeling and an adaptive monitoring technique for a
continuous biological treatment plant with various operating
regions.

In this article, we propose a local batch monitoring method
withmultiple probabilistic models in order tomonitor a batch
biological process with several operating conditions and to
identify when a process has shifted to a new operating
condition. First,MPCA is used to reduce the dimensionality of
the data and to remove collinearity. Second, the transformed
data are classified into several operation regions based on the
posterior probabilities of the mixture models. Third, a
discriminant measure (DM) is used to find a new operating
condition that does not belong to known operating regions.
Finally, the corresponding local monitoring system driven by
the probabilistic knowledge is used for SBR supervision.

Materials and Methods

Multiway Principal Component Analysis

MPCA is used for the analysis and monitoring of batch
process data. Batch data are typically reported in terms of
DOI 10.1002/bit



batch numbers, variables, and times. Data are arranged into
a three-dimensional matrix X (I� J�K), where I is the
number of batches, J is the number of variables, and K is the
number of times each batch is sampled. This matrix can be
decomposed using various three-way techniques, one of
which isMPCA.MPCA is equivalent to performing ordinary
PCA on a large two-dimensional matrix X constructed by
unfolding the three-way data in the manner shown
schematically in Figure 1 (Nomikos and MacGregor, 1994).

MPCA decomposes the three-way array X into a
summation of the product of a score tr and a loading
matrix Pr plus a residual array E that is minimized in the
least squares sense as follows:

X ¼
XR

r¼1

tr � Pr þ E ¼
XR

r¼1

trp
T
r þ E ¼ X̂ þ E (1)

where � denotes the Kronecker product (X ¼ t� P) is
Xði; j; kÞ ¼ tðiÞPðj; kÞ; R denotes the number of PCs
retained, tr expresses the relationship among batches, pr is
related to variables and their time variation, and E is the
residual matrix. The first expression in Equation 1 gives
the 3-D decomposition while the second expression
corresponds to the more common 2-D decomposition.

The statistics used for monitoring multivariable batch
processes are Hotelling’s T2-statistic and the Q-statistic
(Nomikos and MacGregor, 1994; Wise and Gallagher,
1996). The T2-statistic is a Mahalanobis distance between
new data and the center of the normal operating condition
data in a reduced dimension. The pattern of the residuals is
monitored using the Q-statistic, also referred to as the
squared prediction error (SPE). The T2-statistic monitors
systematic variations in the PC subspace, while the Q-
statistic represents variations not explained by the retained
PCs. That is, faults in the process that violate the normal
correlation of variables are detected in the PC subspace by
Figure 1. Multiway unfolding of a three-way batch data set.
the T2-statistic, whereas faults that violate the PCA models
are detected in the residual space by the Q-statistic. At end-
of-batch, the T2- andQ-statistics for batch i are calculated as
follows:

T2
i ¼ tTr S

�1tr �
RðI2 � 1Þ
IðI � RÞ FR;I�R (2)

Qi ¼ eie
T
i ¼

XKJ

c¼1

Eði; cÞ2 (3)

where ei is the ith row of E, I is the number of batches in the
reference set, tr is a vector of R scores, S is the (R�R)
covariance matrix of the t-scores calculated during the
model development, which is diagonal due to the
orthogonality of the t-score values, R is the number of
PCs retained in the model, and FR,I-R is the F-distribution
value with R and I–R–1 degrees of freedom. The statistical
limits on the T2- and Q-statistics are computed by assuming
that the data conform to a multivariate normal distribution.
The confidence limits of the T2-statistic are calculated
from the F-distribution. The distribution of the Q-statistic
is calculated from the chi-squared distribution, SPEk;a ¼
ðnk=2mkÞx2

2mk
2=nk;a

, where mk and vk are the mean and

variance of the SPE and x2
2mk

2=n;ak
is the critical value of the

x2 variable with 2m2
k/vk degrees of freedom at significance

level a (Wise and Gallagher, 1996). For a new sample xnew, if
Tnew

2 < Tlim
2 and Qnew < Q2

lim, we consider a current batch
to be in-control with 100(1�a)% confidence. Otherwise, a
batch is designated as out of control. Here, the T2-value is
used to detect faults associated with abnormal variations
within a model subspace, whereas the Q-value is used to
detect new events that are not taken into account in the
model subspace.
Monitoring of Incomplete Batches

In on-line batch monitoring using MPCA, we know only the
values from the start of batch to the current time; however,
on-line monitoring can be achieved by augmenting the
incomplete set of real batch process data with predicted data
to create a data set spanning the entire batch. Nomikos and
MacGregor (1995) suggested three ways to estimate variable
trajectories, that is, to complete the remaining batch data:
(1) zero deviation; (2) current deviation; and (3) PCA
projection method. The choice of the most suitable
approach depends on the characteristics of the batch
process; however, the second and the third filling methods
are mainly used. For on-line monitoring, the distribution
of Tk

2 is approximated by an F distribution and that of SPEk
can be approximated by a weighted x2 distribution of

SPEk�ðnk=2mkÞx2
2mk

2=nk
where mk and vk are the mean and

variance of SPEk at time k. If Tk
2 � T2

lim and SPEk� SPElim,
the current batch at time k is in-control. Otherwise, the
current batch at time instant k is deemed out of control.
Yoo et al.: Statistical Monitoring 689
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Batch Monitoring Using Multiple MPCA Models

As noted in the Introduction section, biological processes
like the SBR process under study have several operation
patterns depending on the influent loads, temperature,
and microorganism activity (see Fig. 4a). For biological
processes with multiple operation modes, it would be
appropriate to use multiple models to capture the local
variations of each operating region. If data corresponding to
different operating modes exhibit dissimilarities due to
different batch trajectories or environmental changes, each
local model can capture its operating region better than a
global model, at the cost of poor characterization of
the other modes. The local MPCA model, however,
provides an effective method to deal with nonlinear
structures in multivariate data, and thus overcomes
some of the limitations of global models. Here, to enhance
the monitoring performance and reduce missed alarms in
the SBR process, we use multiple MPCA models within a
probabilistic framework. When multiple PCA models are
used, the most important issue is how to discriminate
multiple operation modes.

Tipping and Bishop (1997) showed how local PCA
learning can be incorporated into a Gaussian mixture
modeling framework with a probabilistic learning rule.
Their approach is based on a linear Gaussian model that
decomposes the input space into subspaces of multi-
variate data. An arbitrary probability density of a sample
vector x, p (x|u), can be approximated by a mixture of basis
density functions within a Bayesian framework (Bishop,
1995; Tipping and Bishop, 1997) as follows:

pðxjuÞ ¼
Xk

i¼1

pðxjiÞPi (4)

where u is a parameter vector whose entries are model
parameters, p(x|k) is the sample density, and Pi is the prior
probability that a data point is generated from component
i of the mixture. The prior probabilities satisfy

P
k Pi¼ 1

and 0� Pi� 1. Here, the model parameters of the local
models with an isotropic variance are determined by
probabilistic maximum likelihood estimation, that is, the
so-called expectation and maximization (EM) algorithm
(Tipping and Bishop, 1997). In this article, Bayesian
inference modeling with a mixture of MPCA models is
used to capture local subspace behaviors within the SBR
process.

The diagnosis of local models is achieved by the following
procedure. With the loading vectors of the local MPCA
model, P, we can obtain the principal scores. Then, the chi-
squared distance of a batch from the center of each local
model is computed by
x2
j ðkÞ ¼ ðtk � tjÞD�1

j ðtk � tjÞT (5)
690 Biotechnology and Bioengineering, Vol. 96, No. 4, March 1, 2007
where tk is the score vector of sample xk, Dj is the
covariance matrix of the scores t for group j, and tj is the
group center of the principal scores. The posterior
probability that sample x was sampled from the jth group
can be obtained using Bayes’ theorem, as follows:

p vj

��x
� �

¼ pðxjvjÞPjPK
i¼1pðxjvjÞPi

¼
Pj
��Dj

���1=2
expð�x2

j =2Þ
Pc

j¼1 Pj
��Dj

���1=2
expð�x2

j =2Þ
(6)

where pðvj

��xÞ is the probability of a sample x to be class j, vj

is the category of the jth class and Pj is the prior probability
for group j. The Bayes decision rule to minimize risk calls for
selecting the action that minimizes the conditional risk.
Thus, to minimize the average probability of error, we
should select the i that maximizes the posterior probability
pðvj

��xÞ (Duda et al., 2001). Therefore, in our probabilistic
framework a new batch is classified into the group for which
pðvj

��xÞ is highest. A posterior probability in a probabilistic
framework is exploited to find the most likely estimates of
the true batch states by maximizing the probability of the
multiple models. Probabilistic monitoring gives informa-
tion on the shift in the process away from the normal steady
state condition. The probabilities of the current batch for
each local model provide a measure of the degree to which
the current batch conditions conform to a particular local
model. After selecting the corresponding jth specific model,
local batch monitoring is performed using the T2- and Q-
statistics of the jth MPCA model. For this batch, if Tnew

2 <
T2
j;lim and Qnew < Q2

j;lim, we consider the current batch to be
in-control with 100(1�a)% confidence. Otherwise, the
batch is designated as out of control.

Find a New Operating Condition

Another important issue is how to detect and diagnose a new
operation condition that does not belong to the historical
batches. Batch processes such as SBR processes should be
checked to find a new operating condition since typical
biological processes are sensitive to environmental changes.
If a new batch is different from the historical known batches,
this kind of a batch is not diagnosed. Fortunately,
monitoring of the evolution of the posterior probabilities
of the multiple models gives information that can be used to
overcome this problem. As noted above, a posterior
probability provides a measure of the membership of the
current batch to a specific local model. In the case of an
abnormal batch, the posterior probability of one particular
model will suddenly increase, and the posterior probabilities
of the other models will be close to zero. For a new operating
condition, by contrast, the posterior probabilities of all
models will gradually decrease together. Thus, the posterior
probability data provide valuable information for determin-
ing whether the system has shifted to a new operating
condition.
DOI 10.1002/bit



Motivated by the approach of Yoo et al. (2003), here
we propose a new DM: the maximum value of the
entries in the posterior probability matrix

pkp
T
k ; pk ¼ ½pv1jxk pv2jxk � � � pvc jxk �

t :

DMk :¼ arg max
1�k�c

pkp
T
k ð7Þ

For the two-model case, this DM corresponds to the inner
product matrix for two posterior probabilities, pik and pjk,
where each element becomes each inner product (pik, pjk)
between the posterior probabilities (pik and pjk) for models i
and j, respectively. It has a mathematical form similar to that
of a covariance matrix. There can be many advanced
statistical rules to determine the value of the confidence
limit of the DM. For example, the monitoring statistics of
DMwith the kernel density estimation (KDE) can be used to
approximate its distribution, whereafter confidence
limits can be computed. Alternatively, the confidence limit
may be obtained using another assumed distribution
function. For simplicity, we used a heuristic rule to
determine the confidence limit in this paper, for which
the specific limit depends on the number of classes, (1� 1/
c). Using this definition, a value in the DM(k) at batch k
below the specific limit (1� 1/c) means that the current
batch cannot be allocated to the previous mixture models
and has moved into a new operating condition region. That
is, the system is said to have taken on a new, unknown
operating condition when the posterior probabilities from
all of the local models have relatively low values and DM
starts to decrease.
Figure 2. Framework of the multiple batc
Proposed Local Batch Monitoring Framework
Using Probabilistic Multiple MPCA Models

Figure 2 shows the proposed framework of local batch
monitoring using multiple models. First, the global and the
multiple MPCA models with a priori operation knowledge
are constructed using historical batch data. Second,
transformed data in the global model are classified into
several clusters using a posterior probability. Third, based on
the posterior probability of each local model, the local model
that best represents a current operating condition is selected
and used for batch monitoring. In addition, the DM is
monitored to determine whether the system has shifted to a
new operating condition. If the DM indicates a new
operating mode, a new model is built using recent batches.
Finally, the batch at a particular time instant is on-line
monitored using the jth local model and its statistical
models. If the on-line batch monitoring detects a
nonconforming batch using the jth local model, contribu-
tion plots of the jth local model can be used to diagnose the
event so as to assign a cause.

Results and Discussion

Sequencing Batch Reactor

The data used in this research were collected from a pilot-
scale SBR system with the configuration shown in Figure 3.
This fill-and-draw SBR with an 80-L working volume
was operated in a 6-h cycle mode where each cycle consisted
of fill/anaerobic (1 h), aerobic (2h 30 min), anoxic (1 h),
h diagnosis and local monitoring method.

Yoo et al.: Statistical Monitoring 691
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Figure 3. Schematic diagram of a pilot-scale sequencing batch reactor (SBR).
re-aerobic (30 min), and settling/draw (1 h) phases. The
hydraulic retention time (HRT) and the solid retention time
(SRT) were maintained at 12 h and 10 days, respectively. The
loading amounts of chemical oxygen demand (COD) as
synthetic municipal-like sewage, NHþ

4 -N, and PO3�
4 per

cycle in standard conditions were 440, 60, and 95 mg/L,
respectively.

The duration/sequence of phases and on/off status of
peristaltic pumps, mixer, and air supply were automatically
controlled by a Labview data acquisition and control (DAC)
system. The DAC system consisted of a computer, analog/
digital interface cards, sensors, transmitters, and solid-state
relays. Electrodes for measuring pH, oxidation-reduction
potential, dissolved oxygen (DO), temperature, weight, and
conductivity were installed and connected to the individual
sensors (see Table I for a list of variables measured). It has
been reported that on-line sensor values collected in SBRs
are related to the dynamic characteristics of the nutrient
Table I. On-line measured variables of the SBR under study.

No. Variables

1 Temperature (8C)
2 pH

3 Dissolved oxygen concentration (mg/L)

4 Oxidation reduction potential (mV)

5 Conductivity (mS)

6 Weight (g)
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concentrations (COD, NHþ
4 -N, PO

3�
4 , and NO�

3 ) in the
SBRs, where dynamic variations in the pH, ORP, and DO
profiles can detect the ends of phosphate release, ammonia
conversion, and phosphate uptake (Chang and Hao, 1996).
In this work, a multivariate monitoring system using simple
on-line sensors is used to monitor the status of the SBR
process.

Every 1 min, a set of on-line measurements was collected,
including pH, ORP, DO, conductivity, temperature, and
weight of the SBR reactor which do not require advanced or
expensive measurement devices. In total, 521 batches of the
SBR reactor were stored in a database of historical
information that represented the full dynamics of the
biological process. During these 521 batches, three
representative operating condition changes occurred in
the SBR process. Batches 1–280 are operated with the
conventional SBR strategy (operational period 1, OP1), that
is, anaerobic–aerobic–anoxic–re-aerobic–settling phases.
During batches 281–362, the DO control strategy of the
SBR process changed with a new precise control algorithm
(operational period 2, OP2). During batches 363–521, a
model-based optimization scenario with a step-feed control
scheme which exhibits 4 intermittent aeration sub-phases
has been evaluated in a SBR (operational period 3, OP3, Sin
et al., 2004). These operation changes took the form of a
change in the SBR process dynamics, followed by an
alteration in the microbial community, and finally a change
in the sludge type (Sin et al., 2005). Only the first 300
DOI 10.1002/bit



Table II. Percent variance captured by the global MPCA model and the local MPCA models.

Global MPCA model Local MPCA model 1 Local MPCA model 2 Local MPCA model 3

PC

% Variance of

this PC

% Total

variance

% Variance of

this PC

% Total

variance

% Variance of

this PC

% Total

variance

% Total

variance

% Variance of

this PC

1 75.20 75.20 26.09 26.09 38.60 38.60 29.98 29.98

2 13.02 88.22 19.05 45.14 22.66 61.26 19.13 49.11

3 6.27 94.49 17.00 62.14 17.02 78.28 13.90 63.01

4 3.68 98.17 13.22 75.36 5.89 84.18 7.45 70.46
sampling time instants of each 360 min batch were used to
develop the model during normal operating conditions
(NOC), since biological reactions in the settling and drawing
phases (corresponding to those of the last 60 time instants)
were assumed to be negligible (Lee and Vanrolleghem, 2003;
Yoo et al., 2004).
SBR Operation Analysis Using Global and Multiple
MPCA Models

Batch diagnosis and monitoring of all historical batches was
performed using the global MPCA model and three local
MPCA models. When designing an MPCA model, it is
important to determine the number of PCs of the model. In
determining this number, both the curse of dimensionality
and loss of information are taken into account. In the
present work, four PC’s were used for both the global and
local MPCA models to capture the batch dynamics of a SBR
using a cross-validation method (Tipping and Bishop, 1997;
Yoo et al., 2004). The results of the global and local MPCA
models are summarized in Table II. The explained variances
cannot be compared directly because they are based on their
own means and variances. Figure 4a shows the score plot of
all 521 batches of the SBR in the PC1–PC2 plane using the
global and local MPCA models with 99% confidence limits
of the global MPCA model and three ellipsoids of 99%
confidence limits for each local operating condition. As
shown in Figure 4a, since batches with similar operation
conditions tend to cluster together in distinct regions in the
reduced space of global MPCA model, it is possible to
analyze the batch operation history in the reduced
dimensional space. Figure 4b shows the T2 and SPE plots
obtained using the global MPCA model.

From Figure 4a it can be inferred that the first group in the
score plot represents the batches of the first operational
period (OP1). The second group (group 2) represents the
operating region during the second operational period
(OP2) and the third group (group 3) comprises the
observations during the third operational period
(OP3).Given these observations, a single global MPCA
model may not be valid for a time-varying SBR process of
this type. Because the SBR process exhibits several operation
modes, the confidence limits of the single global MPCA
model would need to be widened, leading to less sensitive
monitoring performance.

Local Probabilistic Batch Monitoring of
SBR Using Multiple MPCA Models

In order to represent the distinct groups that characterize
the process dynamics of a process undergoing multiple
variations, the proposed local monitoring method with
multiple MPCA models is used. Figure 5a–c shows the
posterior probabilities of three local MPCA models,
where the posterior probabilities of the local models
indicate the extent to which the current batch belongs to
the respective local models. Figure 5d shows the DM, which
is used to discriminate a change to a new process from the
previous local models.

During batches 1–280, the posterior probability values for
the first local model (Fig. 5a) are large compared to those of
the other models, which are almost zero, indicating that the
batches during this period can be assigned to the first local
model. Moreover, with the exception of two troughs, the
DM value remains above the set limit during this period,
confirming that the first local model can describe the data
well. The batches whose DM values fall below the confidence
limit cannot be represented by any of the three local models;
thus the periods in which these batches occur correspond to
an unknown operating condition. Consistent with this, the
posterior probability values of the first local model are
relatively low during these periods. The three troughs in the
DM values coincide with external disturbances. Detailed
inspection of the process data revealed that the first, at batch
80, was caused by a drain problem of the effluent pump, the
second, spanning batches 90–92, was caused by an abnormal
feeding by the influent pump and the third, spanning
batches 163–164, was caused by an abrupt increase in the air
flow rate to the SBR. During the periods affected by these
disturbances, the performance of the SBR process was
unstable and the effluent quality was quite poor. Because the
microorganisms of the SBR process could control these
external disturbances, the SBR process returned to the
normal operation region in each instance.

During batches 281–362, the posterior probability values
of the second local model are large compared to those of the
other models, which are close to zero. This shift coincides
with the batch at which the DO control strategy of the SBR
Yoo et al.: Statistical Monitoring 693
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process was changed (batch 281). In the period immediately
after the introduction of the new DO control strategy
(batches 281–285), the DM values fall below the confidence
limit, presumably because the microorganisms of the SBR
were adapting to the new operation strategy during those
batches. These findings therefore confirm both the DM’s
ability to immediately detect a change in the DO control
strategy as well as the microorganism’s ability to adapt and
bring the SBR to a new steady state.

After batch 360, the posterior probability values of the
third local model (Fig. 5c) are almost unity, whereas those of
the other two local models are almost zero. Thus, these
batches can be assigned to the third local model. The DM
values are below the confidence limit for batch 363–370,
indicating that a change to a new operation regime occurred
in this interval. This observation coincides perfectly with
the implementation of a new operational step-feed strategy
with 4 intermittent aeration sub-phases at batch 363,
resulting from a model-based optimization. This operation
change improved the nitrogen and phosphorus treatment
performances of the SBR, and affected all process conditions
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Figure 5. Local probabilistic monitoring with multiple MPCA models. a–c: Local-mo

measure (DM) for the detection of operation mode changes.
after this batch, leading to substantial changes to the process.
At around batch 445 the DM value show one dip
representing an abnormal batch caused by an abnormal
continuous feeding of influent pumps, where the process
seems to shift briefly from the third local model to the
second one. These results confirm that the proposed method
can efficiently detect local process changes using the mixture
models. It is therefore an effective technique for extracting
information related to changes in unknown process
operating conditions as well as for localizing multiple
process disturbances.

Figure 6 shows the T2 and SPE charts obtained from the
global and local MPCA models during the third operation
period (batches 363–521). The T2 and SPE data from the
global MPCA model do not indicate the presence of any
abnormal batches during this operation period, whereas the
T2 and SPE charts of the corresponding local model detect
the eight non-conforming batches: 363, 364, 367, 368, 369,
442, 457, and 516 (batch numbers 1,2,4,5,6,79,84,153 in
Fig. 6). Although the single global model could be used to
model the data in the subspace by MPCA, it would ignore
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Figure 5. (Continued )
the local distributed characteristics of each local operational
region. In the single global MPCA model, the symptoms of
abnormal batches are buried in a confidence region that is
too broad to catch such batches. On the other hand, local
batch monitoring using the appropriate local model shows
better monitoring performance and increases the reliability
of the monitoring system because it is capable of
automatically extracting the key components that represent
the kinetics of the biological reaction leading to batch-to-
batch variations in the treatment performance and the
microorganism community.
On-Line Monitoring of an Abnormal Batch
Using the Local MPCA

Figure 7 shows the on-line batch monitoring results (T2 and
SPE charts) of the global model and the third local model for
the abnormal batch 84 identified in Figure 6b. For on-line
batch monitoring, the current deviation is used as a filling
method; in this approach, all future measurements are filled-
in with their current deviation from the average batch. As
shown in Figure 7a, the monitoring charts of the global
MPCA model do not detect this abnormal batch. By
contrast, the T2 chart of the corresponding local model do
detect the abnormal situation (Fig. 7b). Therefore, during
on-line batch monitoring, the local probabilistic model can
696 Biotechnology and Bioengineering, Vol. 96, No. 4, March 1, 2007
detect abnormalities that the global model fails to detect. It is
interesting to note that the confidence limit of the SPE chart
of the global MPCA moves up and down two times, at the
around the 60th and 250th sampling times. These times
correspond to the end of the filling phase and the start of the
second aerobic phase of the old operation strategy
(anaerobic, 1st aerobic, anoxic, and 2nd aerobic phases).
On the other hand, the confidence limit of the SPE chart of
the local MPCA model moves up and down five times
because the operating conditions of this batch have a unique
cyclic batch operation (anaerobic, 4 alternating phases of
aerobic and anoxic and final aerobic phases), as shown in
Figure 4c. These findings illustrate that the local model
approach can better extract the dynamic characteristics, the
biological phenomena and their relationships during the
current operation of the SBR.

On-line monitoring charts only detect non-conforming
batches; contribution plots must then be used to diagnose
the detected events so as to assign a cause. Contribution
plots indicate which variables are predominantly responsible
for the deviations from the normal batch behavior. Figure 8
shows the contribution plots for the T2 chart of the third
local model at 230 h of batch number 84. The deviation of T2

comes from the pH (variable 2), conductivity (variable 5),
and weight (variable 6). To examine this in greater detail,
Figure 9 shows univariate plots of the temperature, pH, DO,
ORP, conductivity, and weight for normal batches and for
DOI 10.1002/bit
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The dotted lines correspond to the 99% confidence limit.
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batch number 87. The univariate plots confirm the findings
indicated by the contribution plots. Specifically, the weight
is the main variable contributing to this abnormal batch,
consistent with the nature of the malfunction: an accidental
influent feeding to the SBR process occurred due to an
influent pumpmalfunction. Thus, it can be inferred that too
much feeding of the carbon source (external disturbance)
affects other variables, especially conductivity and pH. The
T2 chart of the local model in Figure 7b detects the abnormal
carbon source feeding as soon as it occurs. Thus the local-
model based method can give more reliable and higher
resolution monitoring results. We note here that in this
paper our research was constrained to the application of the
multi-model approach to a data set that was also used for
calibration of this specific model. Future research is therefore
warranted to check this approach against new data stemming
from operational regions that are presented in the historical
data set but not used in the calibration step, that is, a true
validation of the method. Also, on-line use of our approach
warrants the search for strategies to detect and identify new
operations in case they are yet not present in the historical
data, that is, methods to tackle contingency problems.
Conclusions

In this work, a new local batch monitoring method based on
multiple probabilistic models has been proposed and applied
to an 80-L SBR. Under this multiple modeling approach, the
entire operation data of the SBR is divided into distinct
regions, each of which is modeled separately. Then, these local
regions can be supervised separately, leading to more effective
batch monitoring. The method developed in this study was
shown to be a valuable tool for supervising a biological batch
process with multiple operating conditions. Specifically, our
local model-based method was able to detect process
disturbances within a SBR that were not detected using a
global model. Moreover, it was able to localize the cause of an
abnormal batch and gave a much more sensitive and clear
indication of the process disturbances within the SBR than did
the global model. The superiority of the local model-based
approach derives from its ability to identify multiple operating
conditions and capture the biological relationship among
batch process variables. The present results indicate that the
proposed local batch monitoring approach may be a good
alternative to a global modeling approach for processes with
multiple operation conditions such as biological processes.
Since model-based optimization and control may lead to
changes in the microbial community or shift the system
dynamics, future studies should endeavor to incorporate
microbial community information into the process monitor-
ing and control method.

Nomenclature
E r
700
esidual matrices
F F
 distribution
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p(x|u) a
 probability density of a sample vector x
p(x|k) a
 component density generated from component k of the

mixture
p(vj|x) th
e posterior probability of sample x from group j
Pi th
e prior probability of the samples
P lo
ading matrix
Q Q
-statistic
Qlim c
onfidence limit for Q-statistic
T s
core matrix
T2 H
otelling’s T2-statistic
T
2
lim c
onfidence limit for Hotelling’s T2-statistic
X th
ree-way batch data array
X in
put data matrix
vj th
e category of the jth class
Greek Letters
x2j(k)
 the chi-squared distance of the jth sample from the center of

each local model
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