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Wastewater treatment models consisting of large sets of non-linear ODE are usually stiff. Because stiff 
solvers cannot typically be applied, due to dynamic inputs, long computation times result. To limit the 
computational burden, model reduction, e.g. by linearization or by singular perturbation, has been applied 
on individual cases with good results, but there are no generalised methods to apply this in DAE systems. 
We therefore developed a method to improve the efficiency of a Diagonally Implicit Runge-Kutta 
(DIRK) DAE solver. The method consists of reducing the number of differential equations in the model 
by transforming some of them into algebraic equations, i.e. assuming instantaneous equilibrium. The 
Homotopy method is used to link the state variables to the large eigenvalues of the Jacobian (i.e. the fast 
dynamics). By solving these “stiff” state equations algebraically, important improvements in calculation 
time can be achieved. However, several practical issues remain. In particular, it is important to confirm 
that the reduction of the original model does not induce instability or unacceptable error. Control of 
instability is achieved by comparing the solution of five simulated steps computed with the reduced 
model to the solution of a single step of equivalent time computed with the full model. Since implicit 
Runge-Kutta methods show highly stable response, the full step can be considered as a converging 
estimate of the true solution, and thus a comparison point to detect instability. In case of unacceptable 
error (i.e. instability detected), the five simulated steps are rejected and the original model is used. An 
unacceptable error typically arises when a stiff state variable loses its stiffness after one step. This is 
common when states are influenced by non-linear equations in themselves, as apparent eigenvalues can 
drop dramatically when the state moves towards equilibrium. In such a case, the variation of the state 
variable away from equilibrium will be too large, missing potentially important events. The eigenvalue 
related to the state will pass from a very high eigenvalue to a much lower eigenvalue after a single 
simulated time step. To detect such a case, eigenvalues are recomputed after one time step and the 
number of “large” eigenvalues is compared before and after the time step. In case of a modification, the 
step is rejected and recalculated with the original model. Results have shown that improvements up to 
45% in the number of function evaluations can be observed. Best improvements have been observed at 
more stringent error tolerances. Stability and error control have shown promising results, but the model 
reduction induces visible changes in intermediate values of stiff state variables. Caution must be used if 
results need high precision in all state variables. 
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1. INTRODUCTION 
Numerical simulation is a computationally intensive process. In the case of wastewater treatment plant 
simulation, this process usually takes minutes to hours of computation. The computation time is 
determined by the complexity of the model to simulate, stiffness and structure of the model, and the 
suitability of the solver used to compute the solution of the simulation.  

A wide variety of solvers exists in literature, ranging from the simplest Euler method to more complex 
Runge-Kutta or predictor-correctors methods. Extensive libraries can be found in software like MATLAB 
(Shampine and Reichelt 1997). Depending of the model, the time needed to complete a simulation run 
can be improved by many orders of magnitude just by selecting the best solver for a specific problem. 

It is also possible to speed up simulation by redefining a model. In the case of wastewater treatment plant 
models, for instance, simulations are usually run to simulate the plant’s behaviour for periods up to a 
year. A common level of output detail is one simulated data point every fifteen minutes. In these 
conditions, information on dynamics occurring over seconds are less important, e.g., if chemical reactions 
are involved. These fast dynamics complicate the solution, as they cause the model to become stiff (i.e., 
containing eigenvalues varying by several orders of magnitude).  Stiff problems can only be efficiently 
solved by stiff solvers (such as backward Euler, and DASSL), which are generally incompatible with 
dynamic inputs, controller transitions, or exogenous noise. It is normally better to restructure the model to 
reduce stiffness.  A well-known way to deal with fast state variables is to solve them as if they were at 
steady state. This method has been used by (Hesstvedt et al. 1978) for air pollution modeling, although 
the speed of reaction is described by the lifetime of the compound. (Steffens et al. 1997) use a Homotopy 
method to determine which state equations are responsible for stiffness in a biological wastewater 
treatment model and then reduce the model accordingly. At this moment, transforming a set of ODE into 
a smaller set of ODE and a set of algebraic equations is done manually by an expert of the system that is 
modelled. This approach has been applied by many to deal with the stiffness of the pH for instance 
(ADM1 (Rosen et al. 2006), RWQM1 (Vanrolleghem et al. 2001)).   

In this paper, an automatic reduction is proposed based on the Homotopy method that can be 
implemented in the integrator solver rather than in the model definition. Even though the principle of 
reduction is well understood, mechanisms must be set to ensure stability of the algorithm. This paper 
presents two possible mechanisms that have shown a good compromise between stability of the algorithm 
and performance. 

Since the reduction is performed at the level of the integrator rather than on the model, an appropriate 
integrator has to be chosen as a base. The Diagonally-Implicit Runge-Kutta (DIRK) developed by 
(Cameron 1983) was chosen to take advantage of its ability of to solve Differential Algebraic Equations 
(DAE), its tolerance for exogenous inputs, and for its strong stability properties across a broad range of 
model eigenvalues.  

2. METHODOLOGY 

2.1. Stiffness 
The stiffness of a model can take many definitions. One of the most accepted ones is the ratio of the 
largest eigenvalue of the Jacobian divided by the smallest one: 

 

The transitional time constants can be calculated from the eigenvalues at a given state as follows: 

 

The eigenvalues of a model can therefore be related to the rate of change of the state variables. This 
relation thus gives a basis to determine whether components of a state equation can be considered fast or 
not.  



Wastewater models are generally stable systems, and all the situations dealt with here have uniformly 
negative eigenvalues. 

2.2. DIRK algorithm 
The Variable-step Variable-order DIRK algorithm (Cameron 1983) shows very strong stability in its 
solution, being A-stable for orders 2 to 4 and L-stable when the order is set to 3. A-stability occurs when  

 

where is the maximal eigenvalue of the model and h is the time step. In other words, the solution is 
stable for any negative eigenvalue. 

L-stability is defined by:  

 

In this case, solution will show an asymptotic behaviour. Stability concerns are well explained in (Bui 
1979).  

Moreover, the implementation proposed by (Cameron 1983) allows solution of differential-algebraic 
equation (DAE) systems. This is a valuable property since the state equations considered fast are to be 
solved as algebraic equations.  

However, it is important to remember that the DIRK algorithm is an implicit method. Hence, the 
algorithm needs to solve for n variables at each step. The solution is computed with a Newton-Raphson 
method. Since old values for  are usually close to , Newton-Raphson performs well in general. 
But it still needs a Jacobian and the solution of an LU decomposition at each iteration of the algorithm. 

2.3. Homotopy method 
The homotopy method used to link eigenvalues of the Jacobian matrix (Jac) of a dynamic model to the 
state variables of this model was first developed by (Steffens et al. 1997). It consists of computing the 
eigenvalues of the diagonal of the Jacobian (DJac). At this point, it is trivial to link each eigenvalue to its 
corresponding state variable. The matrix then receives an increasing contribution from the Jacobian 
through the following relation:  

 

where H is the homotopy matrix, DJac is the diagonal Jacobian and Jac is the full Jacobian. The 
homotopy parameter is r and will be varied from 0 to 1.  

The Figure 1 shows the trace of the sorted eigenvalues as the parameter r is increased almost 
continuously.  
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Figure 1: Real-part of eigenvalue traces through Homotopy method for the Benchmark model (Spanjers 
et al. 1998) 

Only in rare cases the link between the state variable and the eigenvalue cannot be maintained. If an 
imaginary part of the eigenvalue appears during the homotopy process, it means that two eigenvalues 
become identical, e.g. the two traces showed in the zoomed graph in Figure 1, and that these eigenvalues 
share an imaginary part of opposite sign. In the case of automatic stiffness detection, if these eigenvalues 
merge during a finite section, then split again, it is impossible to decide which eigenvalue is linked to 
which state variable. Another case arises if two or more elements of the diagonal of the Jacobian are 
identical. Finally, the number of intermediate values for r will be decided in function of performances 
since computing eigenvalues takes O(n2) operation (Press et al. 1994). In practice, 20 steps have shown to 
be sufficient for a good linkage. 

Some mechanisms must then be set to ensure that the quality of the simulation will be kept. However, as 
will be explained later, the eigenvalues are linked to state variables only to sort the state variables. So if 
two eigenvalues are not linked properly, as long as they stay in the same range, the missed link won’t 
affect the model reduction.   

2.4. Stiffness Reduction 
The stiffness reduction is achieved by solving fast state equations as algebraic equations, i.e. the 
differential is set to 0. Doing so, differential equations responsible for large eigenvalues are solved as if 
they were at steady state.  

The definition of “fast” state equation is of course problem-dependent. In the case of a biological 
wastewater treatment model, the step of interest can be around 10 minutes while in an air pollution model, 
30 seconds may be more appropriate. It is then the user’s responsibility to set the relevant time constant 
based on experience about the model being run and the objectives of the simulation study. 
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2.5. Control of reduction 
The problem with automatic reduction is that there is no guarantee that a good dynamic model will give 
good results if part of it is solved algebraically. In practice, two situations have appeared that need to be 
controlled. The first one pertains to an inappropriate reduction of the model. In this case, an eigenvalue 
linked to a state variable is declared stiff, or fast, but after one calculated step forward, the variable loses 
its stiffness due to model non-linearity, i.e. its related eigenvalue is significantly reduced. The Figure 2 
shows such a bad reduction.  
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Figure 2: Comparison of reduced model to original model for a state reduction. Since solving the state 
variable as an algebraic variable induces large error, the reduction should be prevented.   

This situation occurs when there is a huge change in the dynamics of the variable. A way to identify such 
a change is to recalculate eigenvalues, since after only one step, the variable’s stiffness may have been 
relaxed until the point where it can no longer be considered stiff.  Detection is done by comparing the 
number of stiff variables before and after the first step. This test allows identification of an inappropriate 
reduction before too much effort has been spent in the solution. The remedial action is to restart the 
integration at the time of the reduction. 

A frequently occurring problem with root solvers is solution to an incorrect root (e.g., negative 
concentration). The Newton-Raphson method, for instance, will generally converge to the root closest to 
the initial guess. While in the scope of an integrator the root is usually close to the initial guess, time or 
state events in the model can create important discontinuities in the evolution of certain variables, thus 
enabling convergence to an incorrect root. Since in biological wastewater treatment models such 
controllers or other switches are common, it is important to be able to ensure that the solution will stay 
stable.  

The method proposed to confirm convergence relies on the A-stability property of the DIRK method. 
With a stable solution, it is possible to compare the solution of the reduced model to the stable solution 
computed with the original model. In terms of our implementation, five steps of the reduced model are 
computed before they are compared to one large step using the DIRK algorithm. The steps are considered 
valid if their solution is within a certain tolerance of the stable solution. If the solution of the reduced 
model is considered too far from the stable solution of the full model, the steps are rejected and the full 
model is restarted from the point of reduction to simulate intermediate steps. 

3. RESULTS 
The number of function (model) evaluations is the most commonly used criterion for competitive 
algorithm evaluation. However, in the case of advanced algorithms, the code overhead can be important, 
so this criterion must still be considered with caution.   This is particularly true in comparison of simple 
solvers like ODE45 with DIRK and multistep backward solvers, since there is considerable overhead 
related to Jacobian calculation, and matrix manipulations. 



The ASM1 model (Henze et al. 2000) was implemented in Matlab and solved with different integrators. 
The implemented model only contains 12 state variables, since the concentration of dissolved oxygen was 
considered constant. The comparison between regular DIRK, DIRK with automatic reduction of stiffness 
and ODE45, the most widely used algorithm in Matlab, yields the following results for the number of 
model evaluations at different precisions: 

Table 1: Number of model evaluation for DIRK algorithm, for DIRK algorithm with automatic 
reduction and for ODE45 solver from Matlab 

Precision DIRK with Full model DIRK with Reduced model Improvement ODE45  
10-1 13,118 11,892 10% 483,461 

10-3 122,405 86,296 30% 1,227,050 

10-5 535,782 281,859 46% 1,226,940 
 
It can be observed that improvement is more impressive at higher precisions. This can be explained by the 
good stability of the DIRK algorithm since the algorithm using the full model will not diverge from the 
solution, making it very appropriate for low tolerances. But in this very case, at low precisions, the 
average time step stays near the input time step. In these conditions, the algorithm is slowed down by the 
input resolution rather than by the stiffness of the model.  

An important criterion for an improved solver is its impact on model outputs. State variables with 
medium or slow dynamics should approach the true solution, while stable (convergent) deviations of fast 
dynamics may be acceptable. An acceptable case is illustrated in Figure 3.  Even where an approximate 
intermediate solution as shown in Figure 3 is not appropriate for final presentation, it is very effective for 
optimisation or parameter sampling, where thousands of calculations are required. 
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Figure 3: Ammonia concentration variation in time for both the full model and a reduced model. During 
this simulation, input was sent to the model with a zero order hold, which is responsible for the stair-like 

shape. 

4. CONCLUSION AND FUTURE DEVELOPMENTS 
The automatic reduction of a set of ODE to a smaller set of ODE plus a set of AE can reduce the number 
of function evaluations by almost half. If stability and error tolerance can be ensured, results for reduced 
and full models are identical for most purposes. Differences can be mostly observed in intermediate 
values of fast states.  It is therefore important to define the objective of the model use before enabling and 
setting tolerances for automatic reduction of the model. In sensitivity analysis or optimization, in 
particular, a reduced model may be valuable for rapid solution, while for presentation of simulation 
results, an original model may be preferred.  



However, some issues are still to be solved. For one, the method highly relies on computation of Jacobian 
eigenvalues. The eigenvalues of small models (less than 30 state variables) are rapid to compute. 
However, typical models in biological wastewater treatment can easily contain 500 state variables, and 
the computation of eigenvalues can thus become prohibitive. Possible solutions are adaptive algorithms, 
where past information from the homotopy results could be reused to speed the process of linking state 
variables to eigenvalues, or decoupling of the model into its sub-models and evaluation of the eigenvalues 
of sub-models. In this last case, the precision of eigenvalue calculation could be reduced but since the 
eigenvalues are only to be sorted in “fast” and “slow” eigenvalues, one is interested only in the magnitude 
of the eigenvalue rather than in an exact value.  It would also be appropriate, since blocks of states are 
often associated with discrete variables or points in space. 
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