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ABSTRACT

Mathematica! models provide insight into numeraus biological, physical and chemical systems.
They can be used in process design, optimisation, control and decision support, as acknowledged
in many different fields of scientific research. Mathematical models do not always vield refiable
results and uncertainty should be taken into account. At present, it is passible to identify som#
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factors ceniributing to uncertainty, and the awareness of the necessity of uncertainty assessment Belgium

is tising. In the fields of Environmental Modelling and Computational Fluid Dynamics, for instance,
terminology related to uncertainty exists and is generally accepted. However, the uncertainty due
to the choice of the numerical solver and its settings used fo compuie the solution of the models
did not receive much attention in the past. A motivating example on the existence and effect of
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numerical uncertainty is provided and clearly shows that we can no longer ignore it. This paper

introduces a new terminology to support communication about uncertainty caused by numerical

solvers, so that scientists become perceptive to it.
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INTRODUCTION

The issue of uncertainty was already emphasised by Einstein
when he noted that: “As far as the laws of mathematics refer
to reality, they are not certain, and as far as they are certain,
they do not refer to reality”. The mathematical or numerical
approximations of solutions of differential equations, our
limited computational capacity and our essential lack of
full understanding of the laws of physics and biology all
influence the accuracy of complex environmental model
simulations. The ability of a numerical method to solve a
problem with high accuracy can certainly be demonstrated
but, as stated by Einstein, we should always discern between
reality and model simulations (Freitas 2002).

Computer simulations have become valuable to gain
insight into a plethora of systems such as natural systems
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in physics, chemistry and biclogy; human systems in
economics, psychology and social science, and engineering
of new technology. They could also be a.convenient tool in
decision support, but caution is advisable.

The degree of Conﬁdence-mf:hat a decision-maker or
scientist has in the possiblé ouicomes of a computer
simulation is formalised among researchers using the term
“uncertainty”. For reliable decision support it should be
possible to identify the factors contributing to uncertainty
and an assessment of uncertainty should be performed.

In the field of Environmental Modelling,- Refsgaard
et al. (z007) introduced a terminology and classification of
uncertainty. A framework for the modelling process is
presented and the role of uncertainty at different stages of
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the modelling process is discussed. In their work little
attention goes to uncertainty caused by the choice of the
numerical solver and its settings. In the remainder of
this work, the “numerical solver” is used to indicate the
numerical methods and their implementations used to
conmpute the solutions of the differential equations.

The Numerical Unit Spread Assessment Pedigree
(NUSAP) glossary (van der Sluijs ef al. 2003) contains
some information on the source of uncettainty due to the
numerical solver, In the fields of Compurtational Fluid
Dynamics (Freitas 2002} and Computational Engineering
and Physics (Oberkampf ef al. 2004) concern about “solving
the equations correctly” has been of interest for some time
and is formalised as “verification”. The process of verifica-
tion can be divided into two parts: code verification and
solution verification. Code verification focuses on how
correctly the numerical solvers are implemented and on
Software Quality Assurance. Solution verification deals
with the quantitative estimation of the numerical accuracy
of a solution of a differential equation when solved with
a particular numerical solver.

Although many computational results depend on the
uncertainty related to the numerical solver, this source
of uncertainty has not received much attention in the
past. Because of the importance to expliciﬂy consider
uncertainties related to the numerical solver, we propose a
new terminology to formalise it so that the level of
this uncertainiy shifts from total ignorance to at least
recognised ignorance.

UNCERTAINTY TERMINOLOGY IN THE
ENVIRONMENTAL MODELLING PROCESS

In the field of Environmental Modelling, the distinction
between different types of uncertainty and the use of a
correct terminology for them has been of interest and
has resulted in a generally accepted terminology (Refsgaard
et al. 2007). In this terminology three aspects of uncertainty
are considered: the level, the nature and the source
of uncertainty.

The level of uncertainty characterises the degree of
knowledge. It ranges from total ignorance to deterministic

understanding, the latter being impossible to achieve.
In between these extremes, different levels of uncertainty
can occur. It is useful to distinguish between bounded
uncertainty and unbounded uncertainty. In the case of
bounded uncertainty all possible outcomes are deemed
known, whereas in the case of unbounded uncertainty,
some or all possible ouicomes are deemed unknown.
A lower level of distinction is made between the knowledge
of all probabilities of all outcomes, some probabilities or
none at all. Statistical uncertainty occurs in the case of
bounded uncertainty and knowledge of all probabilities.
Qualitative uncertainty is a term used for bounded or
unbounded uncertainty, while some outcomes and some
probabilities are known (Walker ef al. 2003).

For the nature of uncertainty two extremes exist:
epistemic uncertainty and stochastic uncertainty, Epistemic
uncertainty is caused by the imperfection of knowledge, the
limited accuracy of measurements and the limitations of
state-of-the-art technologies. This nature of uncertainty is
reducible by more research and development. Stochastic
uncertainty is due to the chaotic, unpredictable nature of
natural processes, and due to human behavior together
with social, economic and cultural dynamics. Additional
research cannot reduce stochastic uncertainty. Stochastic
uncertainties can also be the ones that the modelier or
model user decides not to analyse and reduce, rather
than being fundamentally irreducible. A clear distinction
between these two categories is not always easy, because it
is difficult to determine what is reducible by research and
what is an inherent property of the phenomena under
consideration (Walker et al. 2003).

Refsgaard et al. (2007) define five sources of uncertainty:
context and framing, input uncertainty, model structure
uncertainty, . parameter uncertainty and model technical
uncertainty. The uncertainty matrix provides an overview of
the various facets of uncertainty in a modelling process
(see Figure 1). The vertical axis of this matrix identifies the
source of uncertainty, while the horizontal axis considers
the level and nature of uncertainty (Refsgaard et al. 2007);
these two categories are not mutually exclusive. Model
accumulated uncertainty

output uncertainty is an

caused by the uncertainties of context, model and inputs
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Level of uncertainty

Nature of uncertainty

Source of uncertainty Statistical Scenario

Qualitative Recognized ~ Epistemi¢  Stochastic

uncertainty uncertainty uncertainty igllérance uncertainty  uncertainty

Context Natural, technolog-
ieal, economic,
social, political

System data

Inputs
Driving forces

Moadel structure

Mocdlel Technical

Parameters

Figure 1 |The uncertainty matrix, adapted from Refsgaard et al (2007} More insight into the system under consideration is needed to specify the type and nature of the

uncertainties.

(see Figure 1). Several other methodologies for uncertainty
assessment exist and comprehensive descriptions are
available (van der Sluijs ef al. 2003).

UNCERTAINTY IN COMPUTATIONAL ENGINEERING
AND PHYSICS

In the field of Computational Engineering, “solving the
equations correctly” has been of concern to a certain
degree. An effort to quantify the numerical error of the
computations is made and tests to ensure the correctness of
the implementation of the numerical solver exist (verifica-
tion). Whether the numerical solver is suitable for the
problem under consideration is not discussed, however.

Validation analyses the relation between the compu-
tations which result from the computerised model and the
real world. The real world is represented as experimental
measuremients from purposefully designed validation
experifnents (Oberkampf ef al. 2004).

Verification is the assessment of the accuracy by
comparing the solution of a computerised model with
known solutions. The most comprehensive and rigorous
method to verify the code of a numerical solver is the
association of the method of manufactured solutions with
the order of accuracy criterion {Salari & Knupp 2000).
The order-of-accuracy criterion is fulfilled if the measured
order of accuracy of the numerical solver is equal to the

theoretical order of accuracy of the numerical solver.

For example, for a theoretical order of accuracy of 2
the root mean square error (RMS error) between the
analytical and numerical solution should decrease by a
factor of 4 when the grid cell size or step size is halved.
For this criterion the analytical solution of a test problem
is required.

The Method of Manufactured Solutions (MMS) allows
us to manufacture such solutions without knowledge of the
exact analytical solution (Salari & Knupp 2000). But this
method can only be applied to a narrow range of physical
models for which the computation of the numerical
solution is easy and accurate. The models and manufac-
tured solutions (Salari & Knupp zooo) must follow a
multitude of guidelines, and this method also requires
symbolic manipulation operations.

Verification is also done by the use of highly accurate
solutions, or benchmark ODE solutions, as known
solutions. The accuracy of these benchmark ODE solutions
becomes important if the exact solution is unknown
and one moves away from analytical solutions (Oberkanipf
et al. 2004). To ascertain that simulations are highly
accurate without any amalytical solution, some rules of
thumb were developed, but these rules do not guarantee
that the simulations are satisfactory.

Oberkampf ef al. (2004) explain that the Society of
Computer Simulations (SCS) distinguishes two types of
models: a conceptual model and a computerised model.
The conceptual model is a definition of the mathematical
representation of the physical system or process of interest.
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This mathematical representation is realised by means of
mathematical equations and mathematical modelling data.
Computerisation of the conceptual model produces the
computerised model.

THE SCALE OF NUMERICAL SOLVER UNCERTAINTY
VERSUS THAT OF PARAMETER UNCERTAINTY

The model used by Seppelt & Richter (2005) is an
undeniable illustration of the importance of numerical
solver uncertainty. This model is a modification of
the widely known Lotka-Volterra model that describes
predator(y) -prey(x) interactions. It produces completely
different (and wrong) results when a different numerical
solver is chosen. The equations of the model are shown
below, while the parameters are explained in Table 1; for
these parameters the system has a stable limit cycle:

=r(1-f) - o(Frly E= el - wy W

Evaluation of numerical solver uncertainty of the
Lotka-Volterra mode! with different solvers

We have simulated the solution of this model within
Tornado (Claeys et al. 2006), using 29 different numerical
solvers that Tornado supports. Twenty-two solvers did not
fail (i.e. the computation did not stop before the simulated
time was reached). These solvers are: Adams-Bashforth 2

Table 1| Overview of the model parameters of the modified Lotka—volerra model
used by Seppelt & Richter (2005}

Symbol Functioﬁ unie

Value
T Prey growth rate ftime 1] 0.06
K Prey capacity [no. of prey] 1,000
a Predation rate [tirne 1] 5
L Limitation of predation success  [no. of prey?] 50
¥ Efficiency coefficient of predation [-] 0.2
o Mortality of predator population  [time 1] 0.9

[no. of prey] 10
[no. of pred.] 0.02
2,000

%o Initial prey population
Vo Initial predator population

T Simulated time [time]

(Hairer et al. 1993), Adams-Bashforth 3 {Hairer ef al. 1993),
Adams-Bashforth 4 (Hairer ef al 1993), Rosenbrock
(Shampine 1982), RK2a (Abramowitz & Stegun 1965),
Midpoint (Kloeden & Platen 1995), Euler (Flowers 2000),
RK2b (Butcher 2003), Runge-Kutta 4 (Kloeden & Platen
1995), Runge-Kutta-Fehlberg (Press et al 1992), four
variations of LSODE (Hindmarsh 1983), four variations of
CVODE in combination with two types of Krylov solvers
(Hindmarsh et al. 2005), DASRT (Hairer et al. 1993),
DASSL (Brenan et al. 1989) and LSODA (Petzold 19838).
The seven solvers that failed, had unusual or nonstiff settings
were CVODE/Adams/Functional, CVODE/BDEF/Functional,
CVODE/Adams/Newton/Band, CVODE/Adams/Newton with
two types of Krylov solvers, L.SODE/Adams/Newton/
Diagonal and LSODE/Adams/Functional. A detailed
description of the mathematical methods used by these
solvers is beyond the scope of this paper. An overview of the
use of these numerical solvers for non-expert users is
presented in the worlk of Claeys et al. (2007). The accuracy
of these solvers was set to a value of 1072,

As in the work of Seppelt & Richter (2005) the
characteristics of the resulting solution trajectories differed
significantly. In particular, numerical solvers designed to
solve stiff problems produced completely the wrong resuits,
Correct results were computed by 11 solvers only (< 500},
namely Euler, Adams-Bashforth 2, Adams-Bashforth 3,
Adams-Bashforth 4, Runge-Kutta 4, RK2a, RK2b, Mid-
point, Runge-Kutta-Fehlberg, LSODA and Rosenbrock.
For comparison, a Monte Carlo expériment was conducted,
using a numerical solver that was able to compute the
correct solution (AB4). Five hundred sets of model
parameters were selected from uniform probability distri-
bution functions, and varied approximately 20% around the
mean value (Benedetti ef al 2008). The mean values of
the parameter values are given in Table 1,

Comparison of uncertainty due to solver selection
and mode! parameters

Some simple characteristics of the collection of solution
trajectories of the two experiments are shown in Figure 2.
From this figure it is clear that the uncertainty caused by the
choice of the numerical solver, on the left, is much larger
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Flgure 2 [ Overview of the characteristics for the two experiments (solvers on the left and model parameters on the right). MaXeres and Maxecey are the maximum values of the two
outputs; Minpres and Mingrsy are the minimum values of the two outputs, and Meane.q together with Meane.y are the mean values of the two outpuis. The rectangle in
bold contairs the 11 solvers that computed the correct soiutions: 10816(MiNprey) = —0.368, 10840{MiNpreg) = —17.45, [0Z1oiMaXprey) = 3, 108 0{MaXprea) = 1.392,
10810{Meanerey) = 2.833 and 10g,0(MeaNpreq) = —0.285. S .

than the uncertainty caused by the variation of the model EXTENDING UNCERTAINTY TERMINOLOGY AND

parameters, on the right (note that the axes scales differ). METHODOLOGY FOR THE ENVIRONMENTAL
This example illustrates that numerical uncertainty can be MODELLING PROCESS. .

much larger than parameter uncertainty. Detection of the
A detailed description of the newly defined sources of

uncertainty, and an explanation of some of the existing
methodologies to assess these new sources, follows.

correct solution trajectories in this case can be done by
comparing solution trajectories of several solvers. However,
in the case that the correct solution is unknown, many
correct solutions must be present so that they become
distinguishable from the incorrect ones, which are typically
diverging from the correct solution, whereas the correct  In order to formalise the uncertainties related to the
solutions tend to cluster. nunetrical solver that was used to simulate the model,

Overview of the extensions
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new sources of uncertainty need to be distinguished. Model
technical uncertainty (see Figure 1) can be replaced by a
hierarchical structure of newly defined sources of uncer-
tainty (see Figure 3). Making the relation between the newly
defined sources hierarchical enables us to define sources
of uncertainty that are composed of descendant sources of
uncertainty. In other words: some uncertainties actually
are accumulated uncertainties caused by their descendants.
If, for a source of uncertainty, the level or nature can be
deduced in a consistent manner, it is designated by a cross
in Figure 3. The remaining part of the matrix can only be
completed when all specifications of the model under
consideration are known to the user.

Model structure uncertainty

Model structure uncertainty is not a new source of
uncerfainty. It is explained once more to demonstrate the
differences between this source of uncertainty and the
newly defined ones. Model structure uncertainty is only
related to the mathematical equations that are chosen to
describe the system or process of interest (Oberkampf ef al.
2004}. It is a conceptual uncertainty, generated during the
modelling process, and caused by incomplete understand-
ing and simplified descriptions of the processes modelled,
compared to reality (Refsgaard ¢ al. 2007).

Extended peer review (e.g by stakeholders) can
contribute to the reduction of this source of uncertainty.

It allows the use of additiohal knowledge from non-
scientific sources to be involved in the quality assurance of
the modelling process (Refsgaard ef al. 2007). In the work of
van Griensven & Meixner (2004), model structure uncer-
tainty is considered as the uncertainty that is not caused by
parameter uncertainty. Moreover, it is assessed using a split
sample approach, which uses half of the dataset for
calibration and the other half for evaluation of the model.
For more details we refer to van Griensven & Meixner
{2004). Several other validation activities can be used to
assess model structure uncertainty (Oberkampf et al. 2004).

Model computerisation uncertainty

Model computerisation uncertainty is a term that is
proposed to cover the collection of uncertainties induced
by computerising the model. A computerised model resides
on a certain machine, and is an implementation of the
conceptual model in a computer programming language or
modelling language. In addition, the computerised model
comprises a numerical solver; more specifically, it links to
an existing implementation of it or it includes a hard-coded
implementation of a numerical solver.

The nature of this accumulated source of uncertainty
is mainly epistemic, and the limitations of technology are
the main contributors to this uncertainty. At this moment
no automatic tools exist that allow assessment of this
source of uncertainty.

Level of model uncertainty Nature of uncertainty
Source of model uncertainty Statistical Scenario Qualitative Recognized Epistemic  Stochastic

uncertainty uncertainty uncertainty ignorance uncertainty uncertainty
-Model structure X
-Computerization X X
-Coding X
-Machine X
-Numerical solver {x) X x
-Coding (x) X X
-Suitability (x) X X
-Mathematical method (x} X X
-Resolution x) X x

-Parameters

Figure 3 ] Extension to the uncertainty matrix (parentheses stand for possible future levels of uncertainty).
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The level of this uncertainty is now varying between
total and recognised ignorance and with this work we want
to raise its level to gualitative uncertainty.

Model coding uncertainty

Model coding uncertainty is ‘caused by all programming
errors that occur during the implementation of the
conceptual model. It does not cover the coding uncertainty
caused by the coding errors in the modelling framework
that was used to develop the model. The identification of
programming errors is usually referred to as code verifica-
tion in general, and software quality assurance in particular.
Most of the general technigues of software quality

assurance (SQA), such as static analysis, coverage analysis, :

glass box, black box and regression testing, which are used
in software development, can also be used to verify the
code used to implement the conceptual model.

In the work of Zhigou et al. {1997) a quite different
approach to identify and diagnose model coding errors has
been presented. They use predicted feature matrices of the
possible modelling etrors, and design dedicated observers
for the invalid models o generate a feature signal that is
analysed to produce an indication of where the coding error
is located in the model. The whole approach is based on
two independent implementations of the same model and
assumes that it is highly unlikely that the same coding
errors are made in these two implementations.

In the work of Copp ef al. (2008} it was found that
getting five commercial simulation packages to produce
exactly the same results for a benchmark model was
extremely difficult, due to the .presence of model errors
that had to be corrected.

Of course, this source of uncertainty is epistemic. The
NUSAP glossary also mentions this source of uncertainty
under a more general term: “software error” (van der Sluijs
et al. 2003).

Machine uncertainty

Machine uncertainty is a consequence of finite-precision
floating point arithmetic and causes computer round-off
errors, which always corrupt the results. The presence and
accumulation of round-off errors depend on several factors.

Machine architectures'can reserve different types of
floating point precision (= the number of significant
digits) for different types of results. For example, normal
(e.g. four significant digits) precision can be reserved for
initial values and final results, while long precision
(e.g. six significant digits) is reserved for intermediate
results. Furthermore, developers of model and program-
ming language compilers have complete freedom in the
process of associating data types (e.g. double, integer) to
different types of precision. Even software libraries can
provide their own manufactured precision types, which are
the result of mathematical operations on the existing
machine precisions, '

Iterative proceéses, such as numerical integration can
seriously cause accumulation of round-off errors. In the
study of Goel & Dash (2007) on the weather forecasting
model of the National Center for Medium Range Weather
Forecasting it is shown that the difference between
calculations on different machine architectures increases
when the simulated time is increased to several months.

The NUSAP glossary partly handles this source of
uncertainty by introducing a more general term: “hardware
error”, which is defined as all errors in model outcomes that
arise from bugs in hardware. The accumulation of round-off
errors is also mentioned in the NUSAP glossary as
“numerical error” (van der Sluijs ef al. 2003).

An interésting approach to quantify machine uncer-
tainty is to apply some randomisation to floating point
arithmetic and their operands, so that statistical analysis
can be used to assess and predict round-off error accumu-
lation. An overview of some technigques that use this
approach is found in the work of Parker ef a4l (z000).
They introduce the term “Monte Carlo arithmetic” (MCA)
in which an inexact value is randomised as

randomise (x)
x if xis exact (within £ digits) )
Tk + 10%m0kli~t;  Gtherwise

where ¢ is the virtual precision and x is a random
variable typically uniformly distributed over the interval
1 —1/2,1/2[. In this way every arithmetic operation on
an inexact value is randomised in a predefined manner
(see Table 2).
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Table 2 ] Example of randomization using eight-digit decimal arithmetic (t=8)
(Parker 1997)

Sampled value of ¢ —0.14415412810232532...

Value x 475111111

Value of 1015 ¢ —0.000000014415412810232532. ..
Randomise {x) +7.511131085584587189767468. ..

Repeating an arithmetic operation on two inexact valyes
results in a collection of slightly different values that comprise
a sample distribution to which statistical analysis can be
applied. These values differ only in the random digits of their
errors (10780114 for which the expected value is zero.
This sampling distribution has a sample mean u, which is an
estimate of the exact result of the operation, a sample standard
deviation o, which estimates the error in one single result and a
sample standard error 3/S#, which estimates the error in the
mean taken over # results. Calculations using this empirical
approach can detect wrong results in cases where ordinary
floating-point arithmetic is lacking. For example, if during an
iteration the sth calculation has a o that is as large as p,
instability can be a problem of the procesé under consider-
ation. MCA can also deiect catastrophic cancellation: this is
the loss of leading significant digits caused hy subtraction of
two approximately equal values, where at least one of the
values is inexact. Because MCA randomises the non-signifi-
cant digits when the same subtraction is calculated repeatedly,
these randomised digits will not reappear in the results
while the remaining significant ones will (Parker e al. 2000).

The nature of this source of uncertainty is mainly due
to a lack of knowledge and the limited capacity of the
state-of-the-art technology, since from our perspective with
the present and near-fuiure technology round-off errors
will not diséppear.

Numerical solver uncertainty

This accumulated source of uncertainty considers all
aspects of uncertainty that are related to the numerical
solver, which is used to solve the equations of the
conceptual model. This source of uncertainty encompasses
words like “numerical error” and “inexactness” that are
part of the NUSAP glossary (van der Sluijs ef al. 2003).
A numerical solver implemented in a programming
language has an unknown or known range of probiems to

which it is applicable. Sometimes it may also calculate the
error between the calculated value and an estimated
asymptotic solution, obtained when the step size would be
zero. At this moment the level of this uncertainty ranges
from total to recognised ignorance, sometimes even to
qualitative uncertainty, depending on the person who
petforms the simulations, in particular depending on his
or her background and level of experience.

Unfortunately, the application of the most accepted
methodologies for uncertainty assessment is not possible in
this case, because these methods use statistical methods
based on the use of probability distribution functions. These
statistical methods are not applicable {o all solver para-
meters, which often only have a few discrete values.

Two types of numerical solver uncertainty can be
discerned: solver coding uncertainty and solver suitability
uncertainty.

Numerical solver coding uncertainty

Numerical solver coding uncertainty is restricted to all
programming errors that can occur in the implementation
of the numerical solver. When the solver implementation is
separated from the model coding implementation, this
uncertainty is present as a separate source and all
techniques of SQA can be applied to it. The responsibility
for this type of SQA lies with the software developers of
the numerical solver code.

If the code of the numerical solver is intertwined with
the code of the implementation of the conceptual model,
numerical solver coding uncertainty and model coding
uncertainty could be lumped together into a broader term;
coding uncertainty. SQA shouid then be applied by the
maodel developer.

When the implementation of the numerical solver is
lumped with the code of the entire modelling framework,
this separate source of uncertainty still exists, but the
responsibility of SQA then lies with the developers of
the modelling framework.

Numerical solver suitability uncertainty

It is a well-known fact that a numerical solver, although
suitable for a certain type of differential Equations (PDF,

S
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ODE, DAE,; etc.), cannot correctly compute the solution of
every possible conceptual model constructed with that type
of differential equation. When the chosen solver and its
settings are appropriate, it will not influence the behaviour of
the solution significantly, but when it is incorrect the
influence becomes bigger, and so does the total uncertainty
of the model simulation. As an example, we would like to
point out that the correctness of numerous methodologies
used for assessment of other sources of uncertainty is influ-
enced by numerical solver uncertainty. Moreover, numerical
solver uncertainty in general, and numerical solver suitability
uncertainty in particular, have a major impact on the
computation time: choosing a suitable numerical solver can
significantly speed up calculation time (Claeys et al. 2007).
Numerical solver suitability uncertainty can be divided
into a part that relates to the uncertainty caused by the
interaction between the mathematical method (mathe-
matical method uncertainty) and the model's properties
{e.g. stiffness) and a part that applies to the discretisation
grror, which depends on the step size (resolution uncer-
tainty). An explanation of these two categories follows.

Stiffness is one of the properties of the solution trajectory

that can cause mathematical method uncertainty. Scientists
often describe a system as stiff if the rate of change of the
derivable state variables differs widely amongst the derivable
state variables. Stiffness depends on the differential equations
themselves, on the accuracy chosen by the user, on the length
of the integration interval and on the region of absolute
stability of the method. Several stiffness detection mechan-
isms exist (Ascher & Petzold 1998; Cameron ef al. 2001), but
for these the eigenvalues. of the Jacobian matrix are needed,
and for nonlinear systems these eigenvalues strongly depend
on the state of the system which in turn varies with the
independent variable {mostly time). An illustration of these
varying cigenvalues is given in the work of Steffens et al.
(1997) and in that of Seppelt & Richter (2005) for the
predator-prey model (see Equation (1)). Moreover, for
many stiffness tests symbolic manipulations are needed, for
which extra computation time is required, especially in the
case of environmental models, that can contain huge systems
of ODEs. Solvers that are suitable to solve stiff problems,
according to their documentation, are: LSODE/BDF/
Newton/Dense (Hindmarsh 1983), CVODE/BDE/Newton/

Dense (Hindmarsh et al. 2005), DASRT (Brenan et al. 1989),
DASSL (Petzold 19834a) and LSODA (Peizold 19835). '

For resolution uﬁcertainty the discretisation error can
be assessed using numerical error estimation. 'Howevér, a
solution trajectory can diverge from the real solution
trajectory if the choice of the step size is too large for the
numerical method used. In this case instability occurs and
some numerical solvers will no_t' converge. Hence the
computation can fail, giving rise to a convergence error or
can generate wrong results, without failure. Typically a limit
on the step size, which ensures convergence, exists for every
combination of the conceptual model, its initial values and a
numerical method {Ascher & Petzold 1998). This source of
uncertainty is mainly epistemic, because it can be minimised
or bounded by further research, and developmerit of
new technoelogies. Some numerical solvers can detect this
type of uncertainty by testing convergence and returning
error messages, when convergence. fails (e.g. CVODE
(Hindmarsh ef al. 2005) and LSODE (Hindmarsh 1983)).

The suitability of the numerical solver can contribute
significantly to the total uncertainty of the model s_imﬁ-
lation. In order to fcduce numerical solver suitability
uncertainty, future versions of modelling frameworks must
focus on guidance to aid the user with the choice of an
appropriate numerical solver and its settings_. Research
regarding automatic selection of numerical solvers and their
settings has been reported (Claeys 2008).

CONCLUSIONS

Basically, any method that involves the numerical compu-
tation of the solution of differential equations is influenced
by numerical solver uncertainty. For this reason, this source
of uncertainty can be as important as parameter and model
structure uncertainty, as shown in the illustrative example.

It is clear that numerical solver uncertainty should not
be ignored. Future research is needed to assess and reduce
this source of uncertainty. The introduction of a new
terminology to support scientific communication on this
subject is a first step in a long journey towards better
assessment of this type of uncertainty. The goal is to raise
the level from total or recognised ignorance to what is
termed qualitative uncertainty.
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