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General Introduction 

Wastewater treatment processes can be considered as the largest industry in terms of treated mass of 
raw materials. In the European Community, for instance, a daily wastewater volume of approx. 40.106 

m3 has to be processed (Lens & Verstraete, 1992). While this has only been achieved by important 
investments in the last few decades, studies have shown that even well attended plants are 'out of spec' 
(not meeting the effluent quality standards) for 8 to 9 % of operation time (Berthouex & Fan, 1986), 
not including short upsets lasting less than one day. The V.S. Environmental Protection Agency 
estimated that 1 in 3 treatment works are in non-compliance with discharge limitations (Ossenbruggen 
et aI., 1987) and in Germany and the Netherlands clarification problems were found to occur in almost 
half of the evaluated treatment plants (Chambers & Tomlinson, 1982). Besides faulty design, overload­
ing and inadequately trained operators, a lack of process control leading to excessive effluent quality 
variations, was reported as main cause. 

A closer look at the current operation of wastewater treatment plants learns that automation, while 
introduced in the late sixties (Buhr et aI., 1974), can still be considered minimal. Few plants are 
equipped with more than some elementary sensing elements and control loops, mostly concerning flow 
metering and control. Since the early seventies, when a major leap forward was made by the widespread 
introduction of dissolved oxygen control, little progress has been made. 
A number of reasons for this lack of instrumentation, control and automation (ICA) have been put 
forth (Buhr et aI., 1974; Holmberg, 1982; Beck, 1986; Olsson, 1993): 

• Understanding: Insight in the treatment processes is still insufficient 

• Inadequate instrumentation: Non-existing or insufficiently reliable technology 

• Plant constraints: Inapt and insufficient possibilities to act on the processes 

• Economic motivation: There exists a lack of fundamental knowledge concerning benefits vs. costs 
of automated treatment processes. In addition, wastewater treatment processes are not produc­
tive and automation can only contribute to a decrease of operating costs but does not directly 
lead to increased profit 

• Education/Training: Operators are not always adequately trained to operate advanced sensor 
and control equipment and most environmental engineers would need more basic understanding 
of process dynamics and control in order to appreciate the potential of ICA 

• Communication: The interaction between operators, designers, equipment suppliers, re­
searchers and government regulatory agents is often unsatisfactory and leads to poorly designed 
plants 

It is worthwhile to confront these constraints with the potential benefits of the use of dynamic models 
and control systems as put forth by Andrews (1974) some 20 years ago: 

• Peiforrnance: Maintaining plant efficiency nearer to its maximum by improved operation 

• Productivity: Increasing the amount of waste that can be treated per unit process capacity 

• Reliability: Decreasing the frequency of gross process failures with concommitant wastewater 
bypassing 
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technology. As a result, a control algorithm may be deprived of such essential information as substrate 
concentrations or process parameters, e.g. mass transfer coefficients, growth rates. A methodology that 
is proposed to cope with this are the so-called "software sensors" which combine a mathematical 
description of the treatment plant with easily accessible measurements to estimate state variables and 
parameters which cannot be measured directly (Bastin & Dochain, 1990). The data produced by these 
software sensors are then used in the same manner as the other data to feed the control algorithm with 
the necessary information. 

The model building exercise 
The diagram of Figure 2 states the aspects and stages in model building. Three sources of information 
can be used to infer a model: 

• a priori knowledge: general laws, principles and previous investigation 

• experimental data: information obtained from experiments performed to study the underlying 
phenomena 

• goal: information which is the result of requirements and specifications that have been set 

Before a model can be applied, four steps have to be taken: 

• frame definition: choice of the system boundaries, input and output variables, type of models 
considered (e.g. linear/nonlinear, input-output/state-space, ... ) 

• stntcture characterization: infer the level of model complexity (dimension of state vector, degrees 
of polynomials, ... ) and determine the functional relationships between variables 

• parameter estimation: find numerical values for the constants in the functional relationships 

• validation: confront the resulting model performance with the purpose it was built for 

Cl .. ... .. 

Figure 2. Scheme of the modelling exercise (after Vansteenkiste & Spriet, 1982). 



For most physical and chemical applications, the a priori knowledge is of such high quality that the 
system framework and most of the model structure can be deduced from it. The modelling methodology 

developed for these systems is adequate to estimate the parameters and solve the minor uncertainties 
in the model structure by using final validation experiments and eventually iterating a small number of 

times through the procedure. 

In contrast with this, the inherent characteristics of bioprocesses, i.e. their nonlinearity and nonstation­
arity, coupled with the lack of adequate measuring techniques, make that this mathematical modelling 

methodology cannot be applied without modification (Vansteenkiste & Spriet, 1982): more emphasis 
must be given to inductive reasoning to infer a larger part of the model structure from the scarce (or 
harder to obtain) experimental data. Consequently, structure characterization methods become a more 

important tool, because the chance of obtaining an invalid model is much larger and, hence, the number 
of modelling iterations may increase substantially. 

The data scarcity also induces an important problem in the parameter estimation step. Identifiability 
of model parameters, i.e. the possibility to give a unique value to each parameter of a mathematical 

model, is a general concern in current wastewater treatment modelling efforts (Ayesa et aI., 1993; 

Jeppsson & Olsson, 1993). This problem is however more pronounced in on-line identification because 
one is relying much more on real-time information to perform the parameter estimation whereas 

off-line model calibration can take more advantage of the off-line data. 

Modelling: State ofthe art 
In general two approaches can be discerned for the mathematical description of waste water treatment 
processes (Beck, 1976): 

• Black box (or input/output) models that describe the dependency of the system output y at time 
tk on past and present inputs U(ti): 

(1) 

whereA(q) andB(q) are polynomials in the backward shift operator q, i.e. 

q-j ~(ti)) = y(ti-j) (2) 

A(q) = 1 + alq-l + azq-Z + ... + anq-n (3) 

B(q) = ba + blq-l + bZq-Z + ... + bm q-m (4) 

The ai and bi and the order of the polynomials n and m are to be determined from a set of 

input-output data. 

Time series models as the example given above have been developed for description of dynamic 
input-output relations between feeding pattern and anaerobic digester methane production 
rates, air flow rate and dissolved oxygen, flow rates and effluent suspended solids, carbon source 

dosage and denitrification rate, etc. (Beck, 1976; Berthouex et aI., 1978; Novotny et aI., 1992; 

Olsson, 1992). The essential feature of these models is that it assumes no knowledge of physical 
or internal relationships between the system's inputs and output other than that the inputs should 
produce observable responses in the output. Hence, the system is considered 'black box' and no 

use is made of the available a priori knowledge. 
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• Mechanistic models have found wider acceptance due to the possibility to incorporate the 
increasing a priori knowledge of the bioprocesses into these mathematical descriptions. The 
dynamics of the variables considered important for the adequate description of the process can 
be described by the following state-space model: 

dx 
dt =Ax+Bu (5) 

and the output observationsy are given by 

y = Cx (6) 

In this model A, Band C are matrices containing the characteristic (possibily time varying) 
parameters of the system, u is the vector of system inputs or forcing functions and the state vector 
x of the system contains such variables as the heterotrophic biomass, readily biodegradable 
substrate, volatile fatty acids, nitrate, etc. 

The nonlinearities of the bioprocesses involved however ask for another representation than the 

linear one given above. A more general model for wastewater treatment processes is therefore: 

dx 
dt =!(x,u,t,e) (7) 

y = h (x, t, e) (8) 

One can observe the nonlinear relations! and h between the state variables, inputs and outputs 
and the model parameters e. 
Since the early fifties when the first dynamic models were proposed (Goodman & Englande, 

1974), the increasing insights have steadily been incorporated in the mathematical models of 

wastewater treatment processes. Lawrence and McCarty (1970) introduced the rather important 
nonlinear Monod relationship to describe the saturation of degradative capacity at high waste 
concentrations. The first structured models were presented by Andrews and coworkers (Busby 

& Andrews, 1975): biomass was structured in active, stored and inert compartments. The 

research efforts in South Africa to elucidate the effect of different wastewater fractions on 

treatment performance led to the structuring of substrates in the models (Dold et al., 1980). 
These insights and the increased interest in nutrient removal -in a first stage only nitrogen 

removal- eventually culminated in the lA WQ model n° 1 (Henze et al., 1987). Subsequently, 
important efforts have been made to model the complex mechanisms of biological phosphorous 
removal. While the lA WQ model n° 2 is being prepared, the model currently considered to be 

state-of-the-art is the nitrification-denitrification-biological enhanced phosphorous removal 

(NDBEPR) model of Wentzel et al. (1992). The state vector of this model contains 19 com­

pounds and some 25 processes are included to describe the behaviour of heterotroph non-poly­

phosphate, autotroph and polyphosphate organisms under aerobic, anoxic and anaerobic 
conditions. The identification of this model is a tremendous task since no less than 19 kinetic and 

24 stoichiometric parameters have to be identified to complete the model (Demuynck et al., 
1993). 

A remarkable parallellism in the timing of model developments can be found when reviewing 

the models of two other important unit processes of wastewater treatment plants, namely 
anaerobic digestion and final clarification. 
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For the sedimentation process the first models describing solid flux theory were presented in the 
late sixties (Dick & Young, 1972) and were based on the Kynch theory of f10cculent suspensions 
(Kynch, 1952). The partial differential equations necessary to describe the phenomena have 
often been neglected in favour of empirical rules (Lech et aI., 1978; Marsili-Libelli, 1989) or have 
been approximated by dividing the clarifier in a number oflayers, typically 10, through which the 
suspended solids subside. Tracy and Keinath (1974) were the first to introduce this approach 
which has been adopted increasingly in the last few years (Laikari, 1989; Diehl et aI., 1990; 
Ossenbruggen & Mclntire, 1990; Takacs et aI., 1991; Otterpohl & Freund, 1992). New develop­
ments in sedimentation modelling are mainly concerned with the numerical problems inherent 
to the proposed models (Diehl et aI., 1990; Ossenbruggen & Mclntire, 1990), the modelling of 
the gravity settling velocity of the suspension (Takacs et aI., 1991) and the improved description 
of the clarification and compression processes (Takacs et aI., 1991; Hartel & Popel, 1992; 
Otterpohl & Freund, 1992). While the layered models are already rather involved to treat, 
complexity increased even more when two-dimensional models were introduced (Krebs, 1991). 
Several hours of computation, even on supercomputers, are necessary to calculate concentration 
profiles for settlers in which not only vertical but also horizontal phenomena are described 
(Krebs, personal communication). Another difficulty with such 2D models is the increased need 
for experimental data for model calibration. 

In anaerobic digestion, the structure and complexity of the models also followed developments 
in the level of understanding of the process at the microbiological level. For this type of 
wastewater treatment Andrews (1969) was again one of the pioneers in the mathematical 
modelling of the process. Soon the original model was extended with the interactions between 
volatile acids, pH, alkalinity, gas production rate and composition (Andrews, 1974). The struc­
ture of the model which defined these interactions formed the basis for many later models of the 
process. Structuring of anaerobic biomass in acid-forming and methanogenic bacterial groups 
was first introduced by Hill and Barth (1977). To accomodate the insights that the anaerobic 
degradation process could be described by the activity of acid-formers, acetogens, acetoclastic 
methanogens and hydrogen-utilizaing methanogens, Mosey (1983) formulated the four popula­
tion model. Rozzi et al. (1985) combined the kinetic equations of Mosey with the mathematical 
description of the chemical and physical interactions of Andrews into a comprehensive model 
that can be regarded as the state of the art anaerobic digestion model. Costello et al. (1991) made 
an extension to include the reactions resulting in the possible accumulation of lactic acid in the 
system. 

Research topics: 
Current research in the area of process models is concerned with the following items (Henze et aI., 
1993; OIsson, 1993): 

• IncO/poration of latest insights in the different processes: important efforts are made to model 1 ) 
the phosphate removal processes as exemplified by the current preparation of the IA WQ model 
n° 2; 2) hydrolyisis of substrates; 3) the fate of biopolymers and 4) the sedimentation process 
with special emphasis on the interaction between the biological phenomena such as filament 
growth and the settling properties of the sludge, 

• Identifiability: A discrepancy has grown between the amount of data needed to identify the 
increasingly complex models and the amount of information that can be obtained on behalf of 



the process. Especially if only on-line data can be used for model identification, serious problems 
may occur in finding unique parameter estimates. Even combined on-line and off-line data may 

be insufficient for accurate modelling. Current research is therefore directed towards the 

development of new monitoring equipment and new off-line methodologies adapted to the 

information need of the new models (Vanrolleghem & Van Impe, 1992), 

• Verifiability: The models that have been introduced recently are the result of considerable 
fundamental studies aimed at elucidating the mechanisms of certain microbial processes. In 
order to more precisely explain the detailed experimental findings, state variables and par­
ameters have been introduced in the models which are not directly measurable, e.g. active 
heterotrophs (Ayesa et al., 1991, Jeppsson, 1993). Hence, since verification of a model requires 
that all model predictions of the states can be compared with experimental data, current models 
have become intrinsically unverifiable. Here too, new experimental methods are being studied 

to cope with this problem, 

• Model reduction for process control: The identifiability and verifiability problems mentioned 
above ask for considerable efforts devoted to the development of new sensor technology and ex­

perimental methods so that the new process models can be used in adaptive model-based control 
systems. An alternative approach which attracts a lot of attention is directed at the reduction of 
the complexity of existing mechanistic models to such a level that on-line identification with 

existing technology is feasible, at the same time maintaining the necessary predictive capabilities 
of the major phenomena (Marsili-Libelli, 1989; Olsson, 1992; Jeppsson & Olsson, 1993). 

Building Block 2: Monitoring Equipment 

A comprehensive review of existing and new sensor technology was recently presented by Vanroll­
eghem and Verstraete (1993). Developments are many and increasingly sophisticated devices are 

proposed in an attempt to provide the necessary information on the complex processes needed to meet 
effluent standards. Table 1 summarizes the available sensor technology, the processes in which they 

can be implemented and the range of applicability, i.e. the extent to which they are considered proven 
technology. 

Some new measuring principles have been introduced in recent years. To observe the metabolic state 

of the microorganisms the fluorescence of the intracellular NAD(P)H or F420 electron carriers is 
measured on-line. Practical experience with implementations of common measuring principles has 

allowed to improve their design and to promote the confidence in the sensors. A typical example are 

turbidimetric suspended solids meters that were on the market some 20 years ago (Buhr et al., 1974) 

but were not considered sufficiently reliable until recently. 
Two significant trends in the recent developments of new on-line monitoring equipment are the 
application of ultrafiltration systems to bring automated wet chemistry methods to the plant on the one 

hand and the combination of robust, proven sensor technology with extended data interpretation on 
the other hand. 

• Ultrafiltration/wet chemistJy: Since the advent of reliable sample preparation units based on 
cross-flow UF modules in the last 5 years, a lot of efforts have been devoted to the automation 
of typical laboratory wet chemistry methods for on-line use. Typical applications include the 
analysis of the nutrients NH4 +, N03- and P043-. The practical implementation of UF modules 
is illustrated in Figure 3. 
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Table 1. On-line monitoring equipment for wastewater treatment processes 
(Vanrolleghem & Verstraete, 1993). 

Physical Measurements 
Physico-Chemical 

Measurements 
(Bio-)Chemical Measurements 

Variable Applicabilityl j Variable 
Process2 

Temperature G V pH 

Pressure G V Conductivity 

Liquid Level 

Flow Rates 

- Liquid 

-Gas 

Suspended Solids 

- 0.0 - 0.1 g/l 

- 1.0 - 10.0 g/l 

- 10.0 -100.0 g/l 

G V Oxygen 

- Liquid 

G V - Gas 

1 2 3 V Digester Gas , , 

4 3 

1,2,3 3 

Applicability l 
Process 

Variable Applicability l 
Process 

G V Respiration Rate 

V stBOD4 
G 

Toxicity 

2,3 V Sludge Activity 

2,3 V COD 

1 

1 

1 

TOC 

V NH4+ 

V N03-

V P043. 

1 2 3 V Bicarbonate , , 

2,3 V 

2,3 v 

2,3 V 

2,3 V 

1,2,3 0 

1,2,3 0 

3 

3 

3 

3 

3 

3 

1,3 0 

Sludge Blanket 

Sludge Volume 

Settling Velocity 

Sludge Morphology 

Heat Generation 

4 

4 3 Fluorescence Volatile Fatty Acids 1,3 0 

UV absorption 

4 3 

4 0 

-NAD(P)H 

- F420 

G o Redox 

1,2,3 o NH4 + (ISE3) 

- UV absorbance 

2,3 3 

1 0 

1,3 

3 

3 

3 

V 

3 

o 
3 

. 1 Applicability Range: 'if : State of Technology; 3 Applicable in certain cases: ; 
o : Requires development work 

2Process: Unit process in the wastewater treatment plant where the sensor can be implemented: 
1: Anaerobic Digestion; 2: Activated Sludge; 3: Nutrient Removal; 4: Sedimentation; G: AIl 

3ISE: Ion selective electrode 
4stBOD: short term biochemical oxygen demand 
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Figure 4. Nitrate knees (indicated by the arrows) 
in an intermittently aerated nutrient removal plant 

(hatched boxes indicate aerated periods)_ 

• Robust sensors/advanced interpretation: Some sensors like dissolved oxygen, pH and redox 

electrodes have proven their robustness, reliability and limited demand for maintenance. Recent 

efforts have therefore been directed towards the extraction of as much information as possible 
from the primary data these sensors provide. The approach taken is to combine process 
knowledge with these data to produce upgraded information_ 

Two simple examples of the coupling between robust sensors and process knowledge are given 
in Figures 4 and 5. The dynamics of the redox potential contain the necessary information to 

detect the disappearance of nitrate under denitrifying conditions: in Figure 4 typical "nitrate 
knees" can be observed during the unaerated periods reflecting the complete removal of the 

nitrate that was formed during the previous aerated period. 

As another example the potential of interpretation of the dissolved oxygen (DO) data is 

illustrated. The fast dynamics of the DO in Figure 5 are due to the type of controller used, i.e. 
an on/off control with dead-band_ The decrease in frequency of switching the aeration on and 
off can be used as a measure of the oxygen demand_ With the upgraded information, it is possible 

to detect the time when the oxygen consumption drops to the endogenous level and hence, when 

nitrification is completed_ Alternatively, the oxygen uptake rate can readily be calculated from 

the DO data during the unaerated period, providing a direct measure of metabolic activity_ 
The examples given illustrate the potential ofthis approach in providing information concerning 

nitrification and denitrification processes, allowing the development of more advanced control 

strategies (Demuynck et aL, 1993). 

The combination of robust sensor and mathematical model is termed "software sensor", "ob­

server" (if variables are calculated) or "estimator" (if model parameters are estimated) (Bastin 

& Dochain, 1990)_ The more advanced software sensors incorporate the process model as an 
essential element and are designed in different ways. Some currently available design methods 
are given below. 

Taking Eq_ 5 as the process model, the basic concept of a state observer can be illustrated_ 
/<. 

On-line estimates of the states x are obtained from the following observer equation in which a 
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Figure 5. Dissolved oxygen (lines) and deduced oxygen uptake rate (symbols) profiles in a sequencing 
batch reactor with on/off DO control with dead-band. Completion of nitrification is indicated 

(Demuynck et aI., 1993). 

driving term is included aimed at minimizing the "observation error" between measured values 
A A 

Y and model predictions y = C x : 
A 

dx A A 

-=Ax+Bu +K(y -y) 
dt 

(9) 

Estimates of the states are therefore obtained by simply integrating Eq. 9 on the supervisory 
computer on the basis of the experimental data. Remark that it is assumed in this example that 
all parameters,A,B and C and the input u are known. The design of the observer reduces to the 
adequate choice of the matrix K, known as the "gain matrix". The two approaches that have 
become standard, i.e. the Luenberger and Kalman observers, both start from the desire to 
minimize the observation error e. The dynamics of the observation error are readily obtained by 
subtracting the observer equation (9) from the process model (5): 

A 

de d (x - x) A A 

- = = A (x - x) - KC (x - x ) 
dt dt 

(10) 

The aim is now reduced to the problem of designing the gain matrix in such a way that the 
observation error decreases in a desirable way. In the case of Luenberger observers, the 
eigenvalues of [A-KC] and, hence, the elements ofK are chosen in a rather heuristic way, taking 
into account some constraints to guarantee stability and convergence (Bastin & Dochain, 1990). 
The gain matrix ofKalman observers on the other hand is the solution of a quadratic optimization 
problem where the mean square observation error is minimized. The solution considers knowl­
edge of measuring errors as summarized in the covariance matrix. The expressions of the Kalman 
observer can be found in numerous works, e.g. Stephanopoulos and Park (1991). The multirate 
Kalman Filter is an interesting extension for bioprocesses since it allows to accomodate the use 
of a combination of sensors with multiple sampling rates (Gudi & Shah, 1993). 



The design of state observers as given below holds for linear models like the one of Eq. 5. For 
the nonlinear models, as found for many biological systems, approximate observers have been 

proposed. These so-called extended Kalman (EKF) and Luenberger filters are based on 
linearization of the nonlinear model of Eq. 7 into the formalism of Eq. 5, for instance: 

A(x) = [a/ex)] ax A 
X=X 

C(x) = [ah(X)] 
ax A 

X=X 

(11) 

The gain matrix is designed in a similar way as in the linear case (Jones et aI., 1989; Bastin & 

Dochain, 1990; Stephanopoulos & Park, 1991). 

The second type of software sensors are the parameter estimators. A number of techniques have 
been proposed to incorporate the process model as well. 
In the "observer-based parameter estimator", the model (with the unknown parameters) is used 
to predict the states which are compared with the measured states. Subsequently this observation 

error, which is considered to reflect the mismatch between the true parameter values and the 
estimates, is used as the driving force in a parameter update model (Bastin & Dochain, 1990). 

In addition to the observer gain, the user must also supply the gain matrix of the parameter 
updating law. 

A second approach consists of rewriting the process model in a linear form from which the 
parameters are readily estimated (Bastin & Dochain, 1990). This algorithm can be transformed 

into a standard recursive least squares algorithm for on-line use. A number of user supplied 
tuning parameters must be chosen, typically by trial and error. Rather important is the forgetting 
factor. Conceptually it determines the amount of old information retained for parameter 
estimation. Improper choice of this factor may lead to identifiability problems if the dynamics 

of the process are insufficient to provide the necessary richness of information. When the data 
horizon is too small it may occur that only steady-state process behaviour is observed, with the 

result that some parameters are unidentifiable. This may lead to considerable problems known 

as covariance blow up or parameter burst (Gendron et aI., 1993; Yung & Man, 1993). When the 
forgetting factor is set to one, all collected data is retained for parameter estimation. Hence, a 

new observation will have a diminishing contribution on the update of the parameters. On-line 
variation of the forgetting factor by a recursive algorithm has been presented by Yung and Man 

(1993) as an elegant solution to these problems. 

Extended Kalman filters have also been applied for parameter estimation. The basic idea is to 
consider the unknown parameter as an additional state behaving with unknown dynamics. Unless 
the parameter estimates are well initialized, problems of divergence and biased estimates can 

be expected (Bastin & Dochain, 1990). 

The dual problem of estimating both unmeasurable states and parameters is a matter of intense 
research. Such software sensors have been termed adaptive observers because they are state 

observers which are adaptive by introduction of a parameter updating law. Extended Luenberger 
and Kalman adaptive observers have been proposed. Properties and tuning prerequisites are a 

combination of the characteristics of the parameter estimator and state observer algorithms. 
The divergence and stability problems noticed when dealing with an EKF for parameter 
estimation have led to the Sequential StateIParameter Estimation (SSPE) algorithm (Stepha­
nopoulos & Park, 1991). In SSPE the advantages of the EKF for state observation is combined 
with an independent parameter estimator with desirable properties. The operation of this 
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software sensor is as follows: first, the parameter vector is determined so as to minimize 
prediction errors and, subsequently, the states are estimated on the basis of the measurements 
and the updated model. Stephanopoulos and Park (1991) also adressed the problems of the 

proper choice of forgetting factors to maintain the desired convergence and tracking capabilities 
of the parameter update algorithm. 

Research topics 
Main emphasis in current research is given to the following topics (Henze et aI., 1993; Olsson, 1993): 

• Development of new measuring principles: Optic techniques to determine chemical composition 

of influents and effluents are a main research topic, another being the development of techniques 
that measure biological characteristics such as metabolic activity (respirometry) or biomass 
morphology (image analysis). 

• Improvement of the reliability of sensors by incorporation of automated cleaning systems, auto­
calibration and auto diagnosis, 

• Decrease of the maintenance requirements by adapting the design to deal with the harsh conditions 
the sensors have to operate in, 

• Increase of the information content of the data by combination of proven sensor technology with 
new process insights. It is studied how the advances in modelling methodology can be incorpor­

ated in the design of new software sensors, 

Building Block 3: Actuators 

A relatively limited choice of control actions exists in wastewater treatment processes. Confronting the 

list of manipulable variables presented 20 years ago (Buhr et aI., 1974) with current practice (Table 2) 
shows that the possibilities have not increased although the complexity of the processes has increased 
significantly. 

Table 2. Variables available for manipulation of a wastewater treatment process. 

Manipulable Variable Process Applicability 

Bypass/Overflow 1,2,3 V 

Equalization!BufferinglCalamity Basin 1,2,3 3 

Feeding Point/Step Feed 2,3 3 

Aeration Intensity 2,3 V 

External Carbon Source 3 3 

Internal Recycle Flow Rates 1,3 V 

Chemical Dosage 1,3,4 3 

Return Sludge Flow Rate G V 

Waste Sludge Flow Rate G V 

Sludge Storage G 3 
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Some advances have been made in the area of chemical additions. As an example new polyelectrolytes 
and filament burning agents (peroxide) have been introduced to improve settling properties (Switzen­
baum et aI., 1992). With respect to nutrient removal systems, chemical dosage of phosphorous 
precipitants and external carbon sources for increased denitrification capacity have reached wide­
spread full-scale application (Wedi & Niedermeyer, 1992; Aspegren et aI., 1993; Latter & Pitman, 
1993). 

Research topics 
New possibilities to act upon the wastewater treatment processes are mainly situated in the area of a 
more pronounced integration of all systems from the sewer to the receiving water (Henze et aI., 1993; 
Olsson, 1993). 

• Sewer system: While currently almost no integration of operation exists between the sewer 
systems and the wastewater treament plants, new possibilities are being studied, for instance in 
storm water flow management by manipulating pumping stations on the basis of rainfall forecasts 
from weather radar images (Aspegren et aI., 1993). Dynamic sewer operation can be used to 

buffer the loading of the plant to a higher extent than achievable with installed equalization 
basins. Sewer operation has to consider how much load the plant can receive and bypass 
decisions have to be made, based on on-line calculations both in the sewer and treatment plant 
(Lijklema et aI., 1993). 

• Sludge treatment effluents: Recycle streams from sludge treatment may contain high nitrogen and 
phosphate loads. Manipulation of the recycle flows is central to overall plant management and 
enables the optimum use of available treatment capacity, e.g. by buffering sludge treatment 
effluents in highly loaded periods (Grulois et aI., 1993). Another potential use of the sludge 
treatment facilities in control of the wastewater treatment process is the application of hydro­
lysed sludge as a carbon source for denitrification (Kristensen et aI., 1992). 

Building Block 4: Control Systems 

Control strategies currently employed in wastewater treatment processes are mainly conventional 
controllers such as on-off and PID-type feedback control systems. While feedforward control has found 
some applications, other advanced control strategies, adaptive control systems in particular, have been 
evaluated only at pilot-scale and in a few full-scale installations for limited periods. As far as known, 
no regular use is made of the latter control systems in full scale treatment plants. The obstacles to be 
overcome by control systems are considerable, however: 

• Large disturbances in influent flow, load and composition ( toxicity), 

• Adaptation of the sludge, making the process time varying, 

• Although the available sensors and actuators are limited, multiple-input multiple-output 
(MIMO) systems should be considered. 

The following section will revise some advances made in recent years and address some open questions. 

Conventional feedback control 
Although optimal control performance cannot be expected from conventional PID or on-off controllers 
for the timevarying, nonlinear processes considered, their widespread use in industry and the resulting 
familiarity with their properties and concepts for design, have made that these regulators are the most 
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widely applied in wastewater treatment processes and this already for a long time (Andrews, 1974; 

Marsili-Libelli, 1989; Heinzle et aI., 1993). Such controllers essentially calculate a control action on the 

basis of a process output which is continuously compared with a desired value or setpoint (Dunn et al. 
1992). In a PID-controller the error 10 between actual and desired value is used in the following way to 

produce the controller output: 

u(t) = Kp [e(t) + ;J~e(a) da + rd d~~)] (12) 

The three coefficients Kp, ri and rd are weights given to the proportional, integral and derivative action 

respectively and must be tuned for optimum performance of the regulator. To this end either 

experiments on the plant must be performed or, alternatively, simulations with an accurate process 
model can be used (Vaccari et aI., 1988; Dunn et aI., 1992; Marsili-Libelli, 1992; Heinzle et aI, 1993). 

These values depend on the process characteristics and are therefore subject to change in the 

nonstationary case. Moreover, since PID controllers assume a second order process model, any 
deviation of plant behaviour from this process model must be compensated by adaptation of the control 

parameters. The self-tuning PID regulators that have been developed are discussed below. 

Another important remark is that while multiple inputs and outputs should be considered for the 
description and control of the process, the wide span of response times (time constants range from 
minutes to days) makes it possible to decouple many unit processes (Olsson, 1992; Lessard & Beck, 

1993). Hence, separate local controllers of the conventional type can provide reasonable control 
performance, explaining why such SISO (single input/single output) controllers have been succesful in 

wastewater treatment. For instance, the fast dynamics of the dissolved oxygen concentration can be 

controlled independently of the control of the sludge concentration or sludge age. 

Optimal control 
While experimentation is required for the tuning of the abovementioned regulators, either on the plant 
itself or within a simulation environment, design techniques have been developed that allow to devise 

the optimal controller for a particular process model and performance index. Certain constraints 
imposed on the control action, such as a minimization of the control effort, can be accomodated during 

design. 

In case linear (or linearized) models are considered, optimal feedback controller design has become a 
generally accepted technique (Marsili-Libelli, 1989). Linearization around the desired operating point 

was used by Fan et al. (1973) to derive an (approximative) optimal feedback control of the flow rate 
on the basis of effluent substrate concentration measurements. Other examples for sludge recycle and 

dissolved oxygen control are reported in Marsili-Libelli (1989). 
For nonlinear models, only a few results of an analytical solution of the optimal control law have been 
published (d'Ans et aI., 1971). Most results, however, have been obtained by numerical solution of the 

optimization problem (Sincic & Bailey, 1978; Yeung et aI., 1980; Marsili-Libelli, 1982; Kabouris et aI., 
1992; Demuynck et aI., 1993). 

Problems with some of the resulting control strategies are that they are not stated as a closed-loop 

solution and rely on the (unrealistic) assumption of a perfect process model with fixed model structure 
and parameters. The results ofvon Jeszensky and Dunn (1976) and Yeung et al. (1980) are well-known 
examples of the dependency of optimal control actions on the model structure. In view of the 
uncertainty on the correct model and the inherent nonstationarity of the process, it is advisable to be 
cautious with the implementation of such control systems. However, as has been shown in Van Impe 
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et al. (1992) the theoretical results may indicate some process features, e.g. an optimal operating point, 
that could have remained unnoticed if the exercise wouldn't have been done. Results as these may lead 
to so-called heuristic control laws that exploit such an operating point for instance. These control laws 
may be less sensitive to deviations of process behaviour and may therefore give reliable control 
performance. 
Another useful result of such optimization studies is that models can be put into jeopardy, in other 
words, the models are strained to their limits (Boyle & Berthouex, 1974). Model inadequacies or 
differences in model behaviour may stand out and, with these new insights in model behaviour, specific 
experiments may be designed to discriminate between the candidate models. 

Advanced control 
The potential of advanced control systems has been claimed for a long time, but so far only a few 
advanced control laws have been applied in full-scale wastewater treatment plants. Control strategies 
that have been studied rather well are feedforward and ratio controllers, linear and nonlinear adaptive 
control laws, and MIMO control systems. Recently, intensive research is going on in the field of neural 
net and fuzzy control. These different research themes and the potential of the resulting techniques 
are reviewed below. 

• FeedfOlward and ratio control: One of the disadvantages of feedback control is that an error must 
exist before any control action is exerted. This can be a serious disadvantage for processes with 
a slow response to changes because considerable time may elapse before the change is detected. 
An extreme example is the effect of a toxic pulse where feedback action may be initiated when 
the plant is already down. While modifications of the traditional feedback controllers exist in 
which significant dead time can be compensated, their effectiveness and stability depend to a 
large extent on the exact knowledge of the dead time and process model (Stephanopoulos, 1984; 
Gendron et al., 1993). 
In feedforward control laws, on the contrary, the disturbance is measured directly and the 
controller tries to anticipate the effect it will have on the process output. A disadvantage of 
feedforward controllers, similar to the drawback of a dead time compensation solution, is the 
sensitivity to modelling errors. Uncertainty in the process model will therefore probably necessi­
tate a feedback controller to adjust feedforward action (von leszenszky & Dunn, 1976). Ratio 
control is a special case of feedforward control in which a control variable is maintained 
proportional to a measured input value. An early example ofratio control is the strategy in which 
the sludge recycle flow rate is maintained proportional to the influent flow rate (Brett et al., 1973; 
Andrews, 1974). 

• MIMO control systems: As mentioned above, the large differences in time constants of the 
different unit processes allow to decouple their control to a certain extent. Still, performance 
improvements can be expected by considering the MIMO nature of the process during controller 
design. One of the problems of designing MIMO controllers is that the number of feasible, 
alternative configurations of control loops can be very high (Stephanopoulos, 1984). Also, 
interactions between control loops may lead to instability of the controlled system (Lech et al., 
1978). Minimization or complete elimination of the interaction between loops is the goal of 
different design teChniques that have been proposed (Stephanopoulos, 1984). 

• Control of nonlinear processes: The standard methodology to design control systems for nonlinear 
processes consists of linearizing the process model around a certain operating point and then 



design a linear controller for this approximate model. While controller design is much facilitated 
in this way, actual closed loop behaviour will remain nonlinear. Hence, one can only guarantee 

stability in the neighbourhood of the operating point where the approximation was made. In an 
alternative design technique, termed linearizing control, a nonlinear controller is devised which 
is precisely designed so as to achieve linear closed loop behaviour for all operating points 
considered by the nonlinear process model (Ko et aI., 1982; Bastin & Dochain, 1990). 

The design procedure is as follows. Consider a nonlinear process model with one input and 
measurements or estimates of all states: 

dx 
dt = f(x, t, ()) + b u (13) 

Suppose that the aim is to track a certain reference behaviour x * (t), then a control law is to be 
devised for manipulation of u. To impose linear behaviour of the closed loop system, a stable 

linear reference model is imposed on the tracking error e = (x - x * ): 

de 
dt = -Ae 

Rewriting this in x gives: 

dx dx* 
- = -A(x -x*) +­
dt dt 

(14) 

(15) 

The linearizing control law is obtained by elimination Of: between (13) and (15), yielding: 

dx* 
-A(x - x· ) + dt - f(x, t, ()) 

U= 
b 

(16) 

One should remark that the nonlinear process modelfis incorporated into the control law. The 

extension of linearizing control towards MIMO models was presented by Dochain (1991). 

• Adaptive Control: Since the early sixties (Elgerd, 1967) one of the most intense fields of research 
in control theory is the development of adaptive regulators. Adaptation of the controller may 

be necessary for two reasons. First, the linearized models used to design a controller depend on 
the operating point where linearization took place. Hence, if an operating point moves away 

from the design point, the controller's parameters need ajustment so as to maintain optimal 
performance in the new operating conditions. 

A second need for adaptation of the control law is due to the inherent nonstationarity of 
processes like the biotechnological systems considered in this work. Since the regulators are 

designed on the basis of nominal values of the process model, the need exists to adapt the 
controller's parameters. 

Before adaptive control systems are discussed in some more detail, it is worthwhile to mention 

a more recent, alternative approach to deal with systems with time-varying or uncertain dy­
namics. In this methodology, model uncertainty is taken into account and fixed, linear time-in­
variant robust designs are used that are based on the minimization of the infinite-norm of a 

sensitivity function, hence the term ~ or robust control theory. A main disadvantage of these 
control systems is that their performance in terms of conventional performance criteria is 
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Figure 6. Adaptive contralloop with on-line state and parameter estimation 
(M' measuring device, X' State, A: System dynamics, U: input, Y: output). 

sacrificed to ensure robustness (Gendron et aI., 1993). 
Within this research field two schools of thought have grown on the way model uncertainty should 
be described (Goodwin et aI., 1992). The hard bounding approach considers worst case beha­
viour, leading to overly conservative error bounds on the models and considering in fact that all 
values, even the worst cases, are as likely as the others. In the soft bounding school, stochastic 
distributions of the modelling errors are considered, leading to confidence regions of the process 
behaviour rather than hard bounds. Hence, in this approach an engineering tradeoff is sought 
between uncertainty and performance. 

While in the approach mentioned above, a fIxed controller is designed based on a fixed model, 
adaptive control systems on the other hand, will introduce a time-varying control system whose 
parameters are updated as process behaviour changes, for instance by a change of operating 
point or by the inherent time-variancy of the process characteristics. In an adaptive control loop 
three functions must be performed (Elgerd, 1967): 1) Identification of plant dynamics, 2) 
Decision on the proper control strategy and 3) Adjustment of the controller parameters. 
In the case of the linearizing control mentioned above, adaptivity is simply introduced by 
replacing the model parameters e in the control law (16) by their estimates obtained from an 
on-line parameter estimator. The resulting control scheme is schematized in Figure 6. Applica­
tions of adaptive linearizing control have been presented for anaerobic digestion and activated 
sludge systems (Renard et aI., 1988; Dochain & Perrier, 1992). 

An adaptive modification of the conventional PID controller, the self-tuning regulator (Figure 
7), has found widespread application in the process industry, but, so far only some examples have 
been reported in wastewater treatment processes (Marsili-Libelli, 1978; Olsson et aI., 1985; 
Marsili-Libelli, 1990). The adaptation of the PID parameters is essentially based on the on-line 
identification of a simple linear model that gives a local description of process dynamics. From 
this model, the optimal controller parameters are readily calculated using one or another control 
design criterion (Stephanopoulos, 1984). One should remark the three components in the 
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Figure 7. Self-tuning regulator. 

adaptation procedure as mentioned above. A well studied application of self-tuning PID 
regulators is the control of dissolved oxygen in activated sludge plants. Such controllers have 
been shown to be able to deal with changes in mass transfer efficiencies and important variations 
in oxygen demand COlsson et aI., 1985; Marsili-LibeIIi, 1990). 

An important problem with adaptive control systems is the necessity for on-line identification of 
the process model while the plant is in closed-loop operation. To illustrate the nature of this 

problem, the example of Figure 8 is given. Suppose one wants to control the substrate concen­
tration in an activated sludge aeration tank. In a process model, the degradation kinetics can 
take different functional forms. In this example the dependence of the degradation rate on the 
substrate concentration is considered to be either according to the Monod or Haldane kinetic 
laws. However, if the plant is well controlled, it may be that measured substrate concentrations 
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Figure 8. Closed-loop identifiability problem when considering Haldane or Monod descriptions 
for substrate degradation kinetics. 



range only between 1 and 4 mg/1. With such (noisy) measurements it will hardly be possible to 
make a decision on the correct model. Hence, if an important disturbance affects the plant such 
that the substrate concentration rises above the normal concentration range, a suboptimal 
controller action may result because the wrong model was identified. Clearly, the substrate 
concentration range over which data are available should be extended to the range needed for 
proper identification. 
This simple example illustrates that a conflict arises between control performance, which should 
result in very smooth operation, and need for informative data on the process for model 
identification, which requires sufficient variations in the measured variables. These contrasting 
requirements can, however, be reconciled if a probing or excitation signal is superimposed on 
the control action (Box & MacGregor, 1974; Astrom & Hagglund, 1984; Partanen & Bitmead, 
1993). Examples of this solution are found in adaptive control designs for the dissolved oxygen 
concentration (Holmberg, 1982; Howell & Sodipo, 1985; Holmberg et aI., 1989; MarsiIi-Libelli, 
1990; Vanrolleghem & Verstraete, 1993). 
Another approach to deal with the identification problem is to include special numerical 
procedures, such as time-varying forgetting factors that make sure that sufficient information is 
retained to allow reliable estimation of model parameters (Shah & Cluett, 1991; Yung & Man, 
1993). 

Certain identification problems cannot be solved in this way, for instance, the estimation of 
dead-times in a model (Gendron et aI., 1993). A novel approach consists of considering that the 
process model belongs to a bounded class of possible models with fixed parameters. The 
identification is then reduced to the choice of the correct model, or, as in the Model Weighting 
Adaptive Control (MWAC) approach (Gendron et aI., 1993), by weighting the different models 
into a composite process model. Hence, the identification is simplified as only the weights need 
to be estimated. Weighting can be performed on the basis of the probabilities that a certain 
model is the true model, for instance by consideration of their respective prediction errors. The 
resulting identified model is then used to adjust the parameters of the adaptive controller. 
Gendron et al. (1993) confront this approach with the older multi-model adaptive control 
approach (MMAC) (Lainiotis, 1976; Athans et aI., 1977). In MMAC, a number of N models, 
each with corresponding Kalman filters and optimal controllers are run in parallel. For each 
model the probability is calculated that it is a correct model. The probabilities are subsequently 
used to bind the control actions of the N controllers to form the control action that is applied to 
the process. 

Neural and Fuzzy control 
Application of neural networks and fuzzy logic is a recent but very intense research area. Both 
approaches are fit to deal with ill-defined systems, for instance, the nonlinear time-varying biotechno­
logical processes considered in this work. 

Neural networks are based on a black box approach, but in contrast to time series analysis, the internal 
structure of neural nets is adapted to nonlinear systems. An essential characteristic of the use of neural 
nets is the learning stage that precedes the application. During this stage, examples of desired behaviour 
are applied to the net and with a learning algorithm the parameters of the network are adjusted. Once 
trained, neural nets can be applied for different tasks, such as process control (Miller et aI., 1990; Hunt 
et aI., 1992). In a neural net for a control application, the inputs to the network consist of measurements 



of the process. A control action is then obtained as the network output. The neural net is previously 
being trained with measurement/desired output learning data. Adaptive neural nets can also be 

proposed, i.e. by initiating a renewed training. While neural control is being used in other applications 
and has been evaluated in biotechnological applications (Thibault & Van Breusegem, 1991; Chtourou 

et aI., 1993), it has, as far as known, not been implemented in wastewater treatment plants yet. However, 

other applications are studied. For instance Tyagi and Du (1992) applied a neural net for operational 

prediction. Increasing attention is given to neural nets as pattern recognizers (Capodaglio et aI., 1991). 
Vermeersch et al. (1992) proposed to use a neural net to differentiate among candidate bioprocess 
models on the basis of characteristic features contained in data records. 

Fuzzy sets are a means of representing qualitative knowledge ("good", "much", "small") in mathematical 
terms. In view of the considerable uncertainty which surround wastewater treatment processes, it is not 
surprising that this methodology has also found widespread and increasing attention. These last few 
years an increasing number of applications have been studied and the first experimental results are 

presented in the literature. Fuzzy control systems have been designed for the different unit processes 
of waste water treatment, e.g. controlling the influent pumping rate in a sewer system (Fukano, 1993), 

anaerobic digestion regulation (Boscolo et aI., 1993), ammonium control in a combined nitrifica­
tion/denitrification reactor (Aoi et aI., 1992), the supervision of local PID controllers in an activated 

sludge process (Couillard & Zhu, 1992) and the recycle flow rate of a final clarifier (Marsili-Libelli, 
1992). 

Research topics 
Current research is mainly concerned with: 

• The study of the interaction between on-line model identification and adaptive control. Optimal 

choice of the excitation signals needed for on-line identification is one of the topics of interest. 
In addition, the influence of plant design on the quality of measured data is investigated. For 

example, treatment plants characterized by alternating operation or sequencing batch reactors 
have a clear edge in information quality due to their inherently dynamic operation. 

• Another problem gaining a lot of attention is the improvement of the control system while the 
plant is in closed-loop operation. Different design methods have recently evolved in which 
successive iterations of closed-loop model identification and controller design are conducted. 

Problems currently adressed are the search for guaranteed closed loop stability during sub­
sequent iterations, reduction of model and controller complexity, convergence rate of the design 
methodology and optimal experimental design procedures (Bitmead, 1993) 

• New applications of fuzzy control and neural networks are proposed and validation of the 
theoretical results is emphasized in current studies 

• From the theoretical point of view, main attention is focussed on the development of design 
techniques for robust control. The interaction with model identification receives fundamental 

study 

• Hierarchical control systems have been developed in the past but are increasingly applied. 
Hierarchical or multi-level control consists of a set oflocal controllers that each act on a specific 
unit process, e.g. dissolved oxygen or sludge blanket control, and a supervisory control system 
which provides the setpoints for the local controllers in order to guarantee optimal performance 
of the whole plant 
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AIM OF THE THESIS 

Because adaptive controllers need highly informative data in the preceding identification stage, and in 
view of the problems associated with the gathering of such data on a plant in closed-loop operation, an 
alternative approach is developed in this work. It consists of a new type of sensor in which experiments 

are performed, hence the term "In-Sensor Experiments". The experiments are conducted in such a way 
that the information can be used in an identification stage for model selection and calibration. This 
concept is summarized in Figure 9. 
Because these experiments do not affect plant performance, a free choice is available on the type of 

excitation signals applied and, consequently, highly informative data can be obtained. Optimal ex­

perimental design for reliable model identification is therefore a main topic of interest. An important 
aspect of the work was to ensure that the techniques for model identification and optimal experimental 
design could be applied within the real-time constraints imposed by the on-line operation ofthe sensor. 

As a result of the time-varying nature of the considered wastewater treatment processes, these optimal 
experiments are also time-varying. In other words this means that the In-Sensor-Experiments are 
adjusted in such a way that the quality of the data remains optimal. This adaptive nature of the operation 
of such a sensor is the essence of the new "Adaptive Sensor" concept that is developed in this thesis. 
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Figure 9. Adaptive contro!!oop with on-line state and parameter estimation, 
incorporating the llse of 'In-Sensor-Experiments". 



The In-Sensor-Experiment and adaptive sensor concepts were investigated within the framework of 

the activated sludge process. An existing measuring device with proven reliability was upgraded with 
the new methodology. A software sensor was constructed by incorporation of process knowledge in the 

form of mathematical models. More specifically the goal of the sensor is to extract biokinetic charac­
teristics of the interaction between influent wastewater and activated sludge. In addition, the influent 

wastewater is characterized, i.e. information on the main disturbance of the treatment plant is obtained. 

The working principle of the sensor is based on short-term experiments performed in the small aerated 
reactor integrated in the device. 

With respect to the design of control systems for wastewater treatment plants the aim was to show that 
advanced adaptive control systems may be designed that take advantage of the new information. The 
influent characterization is particularly important for feedforward control, while the biokinetic char­

acteristics can be used to update the controller parameters. 

OUTLINE OF THE THESIS 

Chapter Il introduces the respirographic biosensor which was central to the work presented in this 

thesis. In this chapter the state-of-the-art of the device when the research started is presented. Current 
practical applications of the sensor in industry are given. 

In chapter III new methods are presented for on-line estimation of the oxygen mass transfer charac­
teristics in a reactor system with respiring biomass. These methods are essential for the subsequent 

work since they allow to calculate the oxygen uptake rates from the dissolved oxygen data produced 
by the respirographic biosensor. These oxygen uptake rates are the data used in the modelling exercises 
that follow. 

Both chapter IV and V illustrate potential applications of biokinetic parameters and variables esti­
mated by the respirographic biosensor. The model identification results from the biosensor presented 

in part I of chapter IV are directly passed to the adaptive linearizing controller designed around this 
information in part Il ofthe same chapter. The potential benefits of a MIMO controller which combines 

the information of the biosensor with a suspended solids measuring device are illustrated using 
simulations. 
A second application of biokinetic data from on-line respirometry is developed in chapter V of this 

thesis. It concerns the simultaneous biokinetic characterization of the two aerobic populations present 
in activated sludge systems, i.e. the heterotrophic organisms that remove organic carbon and the 
autotrophs that fulfill the nitrification in nutrient removal plants. Applications of the methodology for 

toxicity detection and performance assessment are illustrated. 

The last three chapters of the work are devoted to the optimization of the reliability of the data 
produced by the device. Since all data produced by the sensor are based on model identification, the 
different steps in a modelling exercise are evaluated and optimized in the framework ofthe application 
at hand. 

In chapter VI the problem of the choice of the 'best' model structure is adressed. This means that the 

most appropriate model complexity is selected. Complexity may be expressed, for instance, by the 
number of substrates necessary to describe the observed phenomena. A number of existing and new 
model structure characterization methods are evaluated with respect to their reliability and applica­
bility under the real-time constraints imposed by the requirement for on-line use. 
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The design of experiments for optimal structure characterization is treated in chapter VII. Within the 
degrees of freedom given by the hardware of the sensor, on-line methods for optimal experimental 
design are developed and their application shown for the selection among a number of candidate 
models for activated sludge process description. 

As the last step in the model building process the problem of parameter estimation is treated in 
chapter VIII. The theoretical identifiability of a number of activated sludge models is studied in detail 
and the improvement of the parameter estimation is tackled using optimal experimental design 
procedures. The limitations of the existing hardware were taken into account so that validation of the 
on-line techniques could be achieved without changes to the hardware of the respirographic biosensor. 

In the concluding chapter of this thesis all results are combined to introduce the "adaptive sensor" 
concept. The potential of this new principle in other areas is indicated. Directions for further research 
and perspectives are given. 
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An On-line Respirographic Biosensor 
for the Characterization of Load and Toxicity of Waste waters 

ABSTRACT 

A respirographic biosensor is presented that is capable of monitoring the waste load and potential toxicity 
of wastewaters, both off-line in a laboratory or on-line at the wastewater treatment plant. The principles of 
the sensors' operation have been developed and implications of the design choices evaluated. 
Short term BaD values were obtained every 30 minutes. The linear dynamic range spanned concentrations 
differing by a factor 5000. This range could be expanded with a factor 10 by adjusting the aeration rate of 
the bioreactor in the sensor. The response time for toxicity detection was approx. 1 hour. The use in the 
sensor of activated sludge of the plant concerned ensured relevant toxicity information was obtained. To 
check the condition of the sludge, an independent respiration measurement is proposed. When a significant 
activity change was observed, the sludge in the sensor must be replaced. The presence of oxido-reduction 
chemicals can cause inteiferences that may lead to measurement errors. Based on a difference in reaction 
kinetics, their presence can be assessed and effect eliminated. 

Both on-line and laboratory applications in the chemical industry are presented. Special emphasis is given 
to the usefulness of the sensor data for waste management of production divisions. On-line assessment of 
load variations and hydrogen peroxide spills are given as illustrations of the implementation of the sensor 
on the treatment plant. Attention is drawn to the potential application of the data for process control and 
improved peiformance of the treatment plant. 
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INTRODUCTION 

Whereas computers are now commonly introduced for automation and control in many industrial 

processes, biological wastewater treatment systems still mainly rely on manual control essentially 
influenced by the personal expertise of the plant manager/operator (Beck, 1986). Thus far, the 

follow-up has largely been based on empirical principles, rather than on systematic monitoring and 
control of key process variables. 

In recent years process performance has become an economic reality in view of the standards and 

important levies imposed by government legislation. This has resulted in an increasing demand on the 
installed treatment facilities and upgrade paths have become an important area of research (Hege­
mann et aI., 1989). In general, two approaches to achieve the goal of increased removal capacity can 

be distinguished. One approach is to invest in new process units, e.g. aeration tanks and settlers, 
whereas the alternative approach is to increase reliability and efficiency. An improved control capa­
bility based on adequate on-line data should allow use of the capacity of the treatment plant in a more 
optimal way. In this paper, a sensor is presented that aims at providing the information necessary to 
run existing facilities at higher loadings, coping with important disturbances through improved process 
control. 



Table 1. Characteristics of existing sidestream respirographic biosensors 
used in wastewater treatment systems. 

Oxygen Supply Flow Regime Key Variable 

Reference Closed Open Batch Contin. Sludge Water 

Vernimmen et al. (1967) x x x 

Clarke et al. (1978) x x x 

K6hne (1985) x x x 

Aidun & Smith (1988) x x x 

Sekine et al. (1988) x x x 

Sollfrank & Gujer (1990) x x x 

Spanjers & Klapwijk (1990) x x x 

Drtil et al. (1993) x x x 

Farkas (1969) x x x 

Blok (1974) x x x 

Ros et al. (1990) x x x 

Vanrolleghem et al. (1990) x x x 

Vasel et al. (1991) x x x 

Due to the long response time (incubation takes 5 days at 20DC), the traditional biological oxygen 
demand (BOD) measuring method cannot be used for on-line control of waste water treatment facilities 
and is merely a long term performance evaluation instrument. Alternatives which rely on physicochemi­
cal quantities such as chemical oxygen demand (COD), total organic carbon (TOC) or input flow rates 
have been widely used. However, the relevance of the information obtained is rather restricted and 
can only be relied upon on the premise that the wastewater composition is approximately constant. 

In situ methods for on-line monitoring of the oxidation process all focus on the identification of the 
dissolved oxygen (DO) dynamics as recorded by a DO probe placed in the aeration tank. A number of 
authors have dealt with the problem of combined control/estimation schemes (Holmberg, 1981; Howell 
et aI., 1984; Holmberg et aI., 1989; Marsili-Libelli, 1990). These studies have resulted in appropriate 
procedures for the introduction of the necessary excitation of the aeration rate, ensuring good 
identifiability of the bioprocess within the limits imposed by the DO control. 

In contrast to these estimation schemes based on in situ DO electrode outputs, most respirographic 
sensors are installed on sidestreams providing sludge and/or wastewater to the device. Table 1 
summarizes the characteristics of a number of devices described in the literature. All sludge-centered 
systems are of the closed type, i.e. characterized by the absence of external oxygen supply, yielding 
more sensitive respiration measurements. In such systems the central idea is to obtain the respiration 
rate from a DO mass balance of the respiration chamber. Two approaches have been developed to 
measure the drop in DO. In one type, a stopped-flow batch-wise procedure is used to obtain a 



decreasing DO versus time profile from which the oxygen uptake rate is readily calculated (Aidun & 

Smith, 1988; Sekine et aI., 1988; Drtil et aI., 1993). In the other, continuous flow approach, a difference 

in two DO readings after a certain retention time in the respiration chamber is used to calculate the 

oxygen uptake rate (Clarke et aI., 1978; K6hne, 1985; Sollfrank & Gujer, 1990). An important problem 
to this arrangement concerns reliability since two probes are prone to fouling, drift, etc. A rather elegant 

solution proposed by Spanjers and KJapwijk (1990) is based on a reversing flow mode that allows use 
of the same electrode in both the inlet and outlet of the respiration vessel. 

In the case of systems that focus on input wastewaters, the respiration rate caused by the presence of 
wastewaters is rather high. As a result, either important dilution (K6hne, 1985) or small sample sizes 
(Vernimmen et al., 1967) are necessary to allow measurement of the respiration rate in closed systems. 

In all other cases, aeration is necessary to provide the required oxygen, resulting in open systems that 
are easier to operate because larger sample sizes can be applied (Farkas, 1969; Blok, 1974; Ros et al., 

1990; Vanrolleghem et aI., 1990; Vasel et aI., 1991). 

A new development is the application of microbial sensors as BOD probes. Except in one case 
(Richardson et aI., 1991), these sensors consist of a DO electrode in which the membrane is replaced 
with a sandwich membrane containing different types of biocatalysts. Immobilization of activated 
sludge has been found to be a tedious task with problems of result reproducibility (Karube et aI., 1977; 
Strand & Carlson, 1984; Princz & Olah, 1990). Pure culture BOD-probes are, however, much easier 
to manufacture but lack the broad substrate specificity of an activated sludge community. Yeasts 

especially have been studied (Hikuma et aI., 1979; Kulys & Kadziauskiene, 1980; Riedel et aI., 1988). 

In this paper, an open, batch operation input flow-centered respirographic sensor is presented that is 

able to determine: 

• the BOD of waste water 

• the toxicity of the test sample towards the sludge 

• the specific activity of the biological sludge 

The industrial device is a microprocessor controlled biosensor called RODTOX, acronym for Rapid 

Oxygen Demand and Toxicity Tester. 

HARDWARE CONFIGURATION OF THE BIOSENSOR 

The biosensor (RODTOX, KELMA bvba, Niel, Belgium) consisted of 3 main parts (Figure 1): a 
biological section, the microprocessor with accessories and software and an electronic section that 
interfaced the first two parts. 

The biological unit consisted of a reactor vessel, filled with 10 dm3 of activated sludge taken from the 

wastewater treatment plant at which the device was installed. Under normal operating conditions, the 
mixed liquor was subject to constant aeration of 15 dm3.min-1 and temperature controlled at 25±0.1°C. 
DO and pH-electrodes were installed in the cover of the bioreactor. The steady-state DO concentration 
(see below) was 6-9 mg 02.dm-3 and pH was normally maintained at 7.0±0.2. These values could be 

tuned to specific requirements. Wastewaters and calibration substrates were introduced with precision 
membrane pumps (sample sizes ranged from 2 to 500 cm3). Wastewaters were supplied through a fast 
loop. A coarse (0.5 mm) tangential filter in this fast loop bypass line protected the pumping system 
from clogging. The respirographic data were constantly analyzed by the microprocessor. The whole of 
the apparatus was designed to operate on crude wastewaters at the treatment site. 

TT~ 



1. Reactor (10dm' sludge) 
2. Aerator 
3. Stirrer 
4. Temperature sensor 
5. DO electrode 
6, pH electrode 
7. Calibration pump 
8. Sample pump 
9. Decantation valve 

10. Sludge outlet valve 
11. Bypass 
12. Filter system (O.5mm) 
1 3. Microprocessor 
14. Display I Keyboard 
15. Computer (PC) 
16. Printer 
17. Waste water 
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Figure 1. Scheme of the respirographic biosensor. 

GENERAL PRINCIPLES 

Estimation of Waste water Load (stBOD) 

The DO mass balance in an activated sludge filled reactor vessel is governed by an oxygen supply and 
biological oxygen uptake process. Respiration can be subdivided into endogenous (OURend) and 
exogenous (OURex, substrate degradation induced) oxygen uptake rates. The DO can therefore be 
expressed as follows: 

dc 
dt = KLa (cs - c) - OURend - OURex (1) 

When aeration takes place in the absence of substrate, the DO concentration will reach a steady-state, 
reflecting the equilibrium between oxygen transfer and endogenous respiration: 

dc 
dt = 0 = KLa (cs - Ce) - OURend (2) 

From this, the difference between the equilibrium concentration (Ce) and the saturation level (cs) 
multiplied by the volumetric mass transfer coefficient (KLa) reflects the OURend. Substituting OURend 
by KLa (Cs-Ce) in eqn. (1) results after rearrangement in: 

dc 
dt = KLa (ce - c) - OURex (3) 

Addition of a biodegradable substrate to the mixed liquor causes the DO level to decrease due to 
exogenous respiration. When the substrate is oxidized completely, OURex returns to zero. Due to 
continuous aeration, the DO concentration will increase until the steady-state is reached again. Figure 
2 shows the resulting DO profiles, termed respirograms. 
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Figure 2. Typical DO profiles ("respirograms") obtained after injections of a pulse of wastewater 
(PS: peak slope, PH: peak height, P A: peak area, cs: saturation DO, ce: equilibrium DO). 

These respirograms are characterized by three parameters calculated from the DO data, namely the 
peak slope (PS), peak height (PH) and peak area (P A). By comparing the respirographic parameters 
of the calibration respirogram with the ones obtained from a sample injection, insights can be gained 
into the biodegradation characteristics of the sample. 
The peak slope gives an indication on the degradation rate of the waste. This is a measure particularly 

useful for toxicity assessment (see below). From the two other characteristics, estimates of the 

wastewater load can be obtained. Based on the knowledge of the BODs20 content of the calibration 

solution, the sample BODs20 can be derived using the following formula: 

20 Psample 20 
BODSsample = p BODScalibration 

calibration 
(4) 

with P either peak height or peak area. Peak height gives a first waste load estimate in less than 10 
minutes after injection of the sample while the peak area is obtained within 20 to 40 minutes. 

The BODs20-value is defined as the amount of oxygen consumed during the degradation of substrates. 

Since part of the substrate is not oxidized but incorporated in new biomass, the yield coefficient is a 
factor that influences a BOD measurement. Since a sludge-substrate interaction can occur in different 

ways, for example with different biomass yields, for eqn. (4) to hold, the calibration substrate should 

resemble the composition of the samples. When the composition of the waste is approximately known, 

a representative synthetic medium can be composed. When unknown, wastewater itself can be 
collected, stored, analysed for BODs20-content and subsequently used as calibration substrate. 

There is discussion in the literature as to whether BODs20 measurements are relevant for process 
control of waste water treatment systems (see e.g. Spanjers et aI., 1992). The short term BOD (stBOD) 

value, i.e. the amount of oxygen consumed within the time constraints of a plant, is believed to be more 
relevant to plant control, while BODs20 values relate more to the processes in receiving waters. Since 

the measurements obtained from the sensor presented are based on 30 min. experiments, these data 

should be interpreted as stBOD. Correlation with BODs20 is useful, but is not a goal to be pursued 



with this device. Therefore eqn. (4) should be rewritten as: 

Psample 
stBODsample = P stBODcalibration 

calibration 
(5) 

Integration of eqn. (3) over a respirogram (assuming KLa is constant within the short time interval of 

a respirogram) leads to: 

c(t) - c(O) = KLa f~ (Ce - c(t)) dt - f~ OURex (t) dt (6) 

By definition stBOD is the amount of oxygen consumed for degradation of readily biodegradable 

substrates and equals integral of the latter. Since the DO concentration at the end of a respirogram is 
equal to the initial value, c(t) - c(O) = 0 and as a result: 

o =KLa *PA -stBOD (7) 

which states that the amount of stBOD is proportional to the area of the respirogram multiplied by the 
volumetric mass transfer coefficient. 

Eqn. (7) has a number of consequences with respect to the operational characteristics of the respiro­
graphic biosensor. Firstly, this equation expresses the linear dependence of the peak area on the 
amount of waste injected. The range of stBOD concentrations where this linear relationship is valid 
was verified with a number of wastewaters. In Figure 3, the results for an industrial wastewater are 
given. For this concentrated wastewater (3000 mg BOD520.dm-3) from the chemical industry, linearity 

for peak area was maintained at least up to an injection volume of 150 cm3. Linearity was not checked 
for higher sample injection volumes because respirograms then become too lengthy. From these 

experiments linearity of peak area versus waste content holds within an operating range of 25 to 500 

mg BOD520 injected. 
For comparison, the evolution of peak heights as function of injected volume is also illustrated in Figure 
3. As stated before, peak heights can give a first estimate of the waste load of the wastewater on the 
basis of eqn. (5). However, the range oflinearity is smaller since the peak height is saturating as injection 
volume increases. 

BOD/o added (mg 0,> 

0 75 150 225 300 375 450 525 
100.00 6.00 

• 

'" 5.00 ~ 

.~ 80.00 's , '11 e • 4.00 0" 
'11 
0" 60.00 • .. 

8 .. 3.00 
~ 

-5 c;] ;:; 
40.00 Area .. • .~ • " 2.00 iIl ..: ... ... • • 20.00 • • .. .. 1.00 

0.00 0.00 

0 25 50 75 lOO 125 150 175 

Sample Volume (cm~) 

Figure 3. Evaluation of the linemity of respirogram peak area (closed symbol) 
and height (open symbol) as a function of the amount of waste injected. 
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Figure 4. Respirograms obtained in the biosensor under different aeration conditions q.O, 1.5, 2.0 
and 2.5 vvm). Respirograms are the result of an injection of 200 mg BODs2 

. 

The new steady-state DO was awaited before the sample was injected. 

A second consequence of eqn. (7) is that the peak area is inversely proportional to the volumetric mass 
transfer coefficient. With dynamic re-aeration experiments under different aeration regimes (0 up to 
2.5 vvrn) the aeration system in the biosensor device was shown to allow KLa values ranging between 
0.03 and 0.30 min-l (De Schryver, 1992). Therefore, for the same amount of stBOD injected, eqn. 7 

predicts a ID-fold increase in peak area when changing the air supply from minimum to maximum flow 
rate. 

Figure 4 summarizes the results of an experiment in which respirograms were recorded under different 
aeration conditions (air flow rates of 1.0,1.5,2.0 and 2.5 dm3.dm-3.min-l ), each time with an injection 
of 200 mg COD as acetic acid. Each respirogram is preceded with a transient provoked by the change 
in aeration conditions. When DO had reached the steady-state, the stBOD injection was performed. 
In Table 2, the peak areas and heights obtained are summarized, illustrating their dependence on 
aeration conditions. Also evident from the results listed in the table is that a lower aeration efficiency 
is reflected in longer respirograms since more time elapsed before DO returned to the baseline level. 

Table 2. Dependence of the respirographic peak parameters 
on the air flow rate in the sensors' bioreactor. 

Peak Parameter Aeration Conditions (vvrn) 

1.5 2.5 1.0 2.0 

Peak Area (mg 02.dm-3.min) 32.65 19.09 49.07 25.65 

Peak Height (mg 02.dm-3) 5.76 5.09 6.13 5.48 

Peak Length (min) 20.6 17.3 32.3 18.4 

1.5 

31.01 

5.79 

19.8 



The KLa in the sensor may be adjusted for optimum performance. Two applications are given to 
illustrate this. 

In view of the fact that the time a respirogram takes to finish depends on the KLa value, the measuring 
frequency may be increased by increasing the aeration efficiency. 

Secondly, in a situation where diluted wastewaters are monitored the measurable concentration range 

under the normal operating conditions (maximum sample volumes of 500 cm3 and aeration rates of 
1.5 vvm, corresponding with a KLa of approx. 0.15 min-I

) is situated between 50 and 1000 mg 
BOD520.dm-3. Lower concentrations could not be measured reliably because the peak became 
insignificant compared to the DO data noise. A reduction of the air flow rate to a KLa of 0.03 min-1 

alleviated this, resulting in an inversely proportional shift in the concentration range to 10 to 200 mg 
BOD520.dm-3. The lower concentration corresponded to an initial reactor concentration of only 0.5 

mg BOD520.dm-3 (0.5 dm3 sample x 10 mg BOD520.dm-3 / 10 dm3 reactor) and still gave rise to a 
measurable respirogram. 

Clearly, the operating range can be allocated using the air flow rate as an adjustable system parameter 

allowing a span of a factor 10. With an inherent concentration range up to 20 times the lowest 
concentration and a pumping range that spans a factor of 250, the sensor can accomodate wastewaters 
containing between 10 and 500,000 mg BOD520.dm-3. 

Toxicity Testing 

Evaluation of waste water toxicity towards the activated sludge in the biosensor is based on a comparison 
ofthe respirographic parameters of calibration respirograms before (t1) and after (t2) the addition of 

the potentially toxic wastewater sample (Fig. 2). The % inhibition of the peak slope, peak height and 
peak area may be calculated using: 

%1 = Pcalibration(t1) - Pcalibration(t2) 

P calibration (t1) 
(8) 

with P equal to one of these peak parameters. Subsequently, these inhibition percentages may be 
evaluated against predefined limits and the result used to activate alarm signals. 

In Figure 5, a typical sequence of calibration respirograms is given, in this case with copper intoxication. 
Between each calibration, 4 wastewater samples were injected with increasing copper concentrations. 

As a result, the peak parameters changed. Table 3 illustrates that peak slope was the most sensitive 
parameter. This is acceptable from a biological point of view because the peak slope reflects the 

biodegradation rate of the substrate and is therefore indicative of the sludge degradation capacity. This 

result is also advantageous since the peak slope is the parameter first available after initiation of the 

calibration. Therefore, inhibition can be assessed within 2 to 4 minutes. 

In the example of Figure 5, peak area remained unchanged until complete inhibition of the sludge 
occurred, a typical feature of this respirographic parameter since the peak area reflects the amount of 

substrate oxidized by the sludge and not the condition of the sludge. Toxicity will affect the peak area 
only when the degradation capacity of the sludge with respect to one or more wastewater components 
is lost completely. An application of this phenomenon is the use of a binary calibration substrate 

consisting of a carbon source and ammonium to check the viability of nitrifying organisms in the sludge. 

If the nitrifiers are inhibited completely, this will be reflected by a change in peak area proportional to 
the amount of Nitrogen Oxygen Demand (NOD) present in the calibration liquid. 



Table 3. Influence of copper intoxication on respirographic characteristics recorded in the biosensor. 

Peak Parameter 
Wastewater Copper Concentration 

(mg.dm-3) 

0 1.0 2.0 4_0 

Peak Slope (mg 02.dm-3.min-1) 0_57 0.44 0.19 0.02 

Peak Height (mg 02_dm-3) 2.20 1.81 0.80 0.38 

Peak Area (mg 02.dm-3.min) 18.63 16_68 17.04 17.51 

Baseline Ce (mg 02_dm-3) 7.22 7.20 7.45 7.63 

Peak Length (min) 20.1 22.9 36.3 64.0 

An important factor for toxicity detection is the response time_ From the principle presented above, 
the response time is clearly dependent on the calibration frequency. With a typical respirogram length 
000 minutes and a normal operating mode of 4 to 6 wastewater samples between calibrations, a worst 
case scenario would result in a response time of2 hours (4x30 + 4 minutes) to 3 hours. However, this 

can be decreased to 1 hour in two ways. Firstly, the calibration frequency may be increased, but this 

would be at the expense of stBOD measurements and not recommended therefore. The second method 

does not require a decrease in the number of measurements between calibrations and is based on the 

on-line interpretation ofthe baseline DO (Ce). The central principle is that the endogenous respiration 
rate is also affected if the sludge is intoxicated. As eqn. (2) shows, the baseline reached at the end of 
the respirogram will be shifted proportionally to a toxicity-induced change in OURend. Detection of 
this can be used to set off an alarm. However, before the alarm is activated, a verification test is 
performed, consisting of an enforced calibration respirogram that allows assessment of the inhibition 
of the sludge within minutes. 
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Figure 5. Respirograms observed under copper intoxication with a copper-containing wastewater. The 
copper concentration increased gradually during the experiment from 1 ppm to 4 ppm. 

Four injections were peiformed between calibrations. 



Two types of effects on the baseline have been found experimentally. Mostly, a decrease in OURend 
has been observed, giving rise to an upward shift of Ce (see eqn.(2)). This phenomenon is also apparent 
in Figure 5; the corresponding Ce values have also been compiled in Table 3. In some instances, an 

increase in endogenous respiration due to metabolic uncoupling by a toxic component of the waste­
water can lead to a baseline drop. This effect has been observed in the presence of 1 ppm of penta­

chlorophenol. Observation of this phenomenon will also induce a calibration test to confirm toxicity. 

The sensitivity of respirographic toxicity detection is typically as follows: pentachlorophenol, 1 ppm; 
Hg2+, Cu2+, CN-, 3,5-dichlorophenol, 10 ppm; o-cresol, 100 ppm; toluene, 1000 ppm. 

Activity Measurement 

For toxicity testing, but equally important for reliable wastewater load assessment, the sludge used in 
the sensor should be as close as possible in activity and composition to that in the wastewater treatment 

plant. Regular replacement of the sludge in the bioreactor may be employed, but results in an 
interruption of normal operation. More efficient is to quantify the activity of the sludge present in the 
sensor and check the value regularly. The sludge must be replaced only when a significant deviation is 

observed. 

Although the calibration respirograms are useful in reflecting the sludge condition, an independent 

respirographic measure was sought. Since calibration gave a regular check on exogenous (substrate 
induced) respiration, an obvious choice was to look at endogenous respiration as an additional sludge 

characteristic. 

In the proposed method, the air supply is interrupted and DO will decrease according to eqn. (1) as a 
result of the cellular respiration with OURex and KLa being zero. The slope of the curve obtained 
equals OURend, the measure of sludge activity. Stirring must be continued during the activity test to 
prevent drifting of the DO probe as a result of the stagnant liquid film building up around the electrode 
tip. When a certain DO drop is reached (typically 2 mg 02.dm-3), aeration is started and, after 

reaeration of the mixed liquor, the sensor can return to normal operation. The time taken for such a 
test is approx. 30 minutes. 

Detection of Oxidizing and Reducing Agents 

In any measurement technique based on the interpretation of biologically-induced oxygen uptake, the 
occurrence of purely chemical oxidation or reduction reactions may have detrimental effects on 
deduced variables such as toxicity or stEOD. Wastewater components, such as hydrogen peroxide and 
reduced sulphur compounds, will give rise to erroneous results if their presence is not taken into 

account. 

The method developed to assess the presence of oxido-reduction reagents is based on the difference 

in reaction rate between chemical reactions and biologically-catalyzed reactions. Figure 6 illustrates 
that injection of a wastewater containing 111 mg H202.dm-3 resulted in an almost instantaneous 
increase in the DO concentration. Here, the effect of the peroxide was superimposed on the biological 
oxygen consumption which would otherwise have given a respirogram following the dashed line in 
Figure 6. After an initial increase in DO, the effect of peroxide continues for approx. 3 minutes. During 
this period, eqn. (1) is not valid to describe the DO balance since oxygen is also supplied from the 
peroxide. In the case of reducing compounds, eqn. (1) is otherwise affected since oxygen uptake is no 
longer due only to biological reactions, a significant part being a result of chemical reactions. 
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Figure 6. Effect of the presence of hydrogen peroxide on respirograms, obtained with a wastewater 
containing 111 ppm H20Z. The dashed line illustrates how the respirogram 

would have been in the absence of the peroxide. 

APPLICATIONS OF THE SENSOR 

The system can be used in a laboratory environment or in a wastewater treatment plant for on-line 
input wastewater characterization. 

Laboratory Applications 

Firstly, the sensor may be used for the testing of biodegradability and toxicity of new chemicals. For 
the assessment of toxicity, Kong et al. (1993) proposed a fast method for the estimation of the ICso, 

i.e. the toxicant concentration where the activated sludge is 50% inhibited. This method has been 

validated and compared well to the Microtox method (Kong et aI., 1993). 

The environmental department of Esso Belgium is using the sensor to overview potential dangers of 

different wastewater sources and chemicals such as cleaning agents, paints and fire extinguishers 
(regularly used for training). A toxicity card is produced for each of these, that includes toxicity data 

obtained on the basis of respirographic tests. The cards are subsequently distributed within the 
production facilities to all personnel concerned. 

In another application, Degussa Antwerpen has decided to use the sensor to define the responsibility 

of the different production divisions for their respective waste discharges. The operating costs and part 

of the investment costs of the centralized wastewater treatment plant are paid by the production 

divisions in proportion to their discharges. To obtain the necessary objective data, samples are taken 
regularly at the different discharge points. The stBOD values obtained, together with flow information 

and other wastewater characteristics (suspended solids, COD, nitrogen load), are subsequently used 
to calculate the invoice of each division. 



On-lilU! ImpkmenJation in the Wastewater Treatment Plant 

The importance of a correct choice of the site of installation for the sensor within a treatment plant is 

illustrated with an example from the chemical industry. 

Figure 7 summarizes the wastewater treatment facility for the different production plants operating at 

Degussa in Antwerp. The wastewater is collected through two different channels, one of which 
transports a wastewater with approximately constant composition to the treatment facility. Being a 

concentrated wastewater, this supply route uses a buffer tank (1500 m3
) to equalize load variations to 

the treatment process. A calamity basin with a volume of 6000 m3 can be used in case of overload or 

toxicity problems. After the 600 m3 equalization basin and pH adjustment, f10cculant addition and 
primary settling occurs. Water is then pumped into the surface aerated aeration basin (11000 m3

) where 
carbon oxidation, nitrification and denitrification occur. Two parallel clarifiers (2x1570 m3

) produce 
the final effluent and return sludge. Waste sludge is thickened and combined with primary sludge for 
further dewatering. 

An initial respirographic sensor was installed in mid-1991 at the effluent ofthe primary settler. In Figure 
8, a seven week operational data record of this system is presented (1808 respirograms). Large 

variations in the stBOD loading can be observed (1120±630 mg 02.dm-3
) which may be correlated 

with changes in the batch productions occurring in the firm. As the loading of the treatment plant 
increases due to the expansion of the production facilities, a more optimal use of the installed capacity 

will be required to achieve the required (increasing) effluent quality. Data records as shown may assist 
in an improved scheduling of batch productions with respect to the loading of the plant. 
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1. COD Buffer Tank 10. Sludge Thickener 
2. Equalization Basin 11. FeCI/CaCOs dosing Unit 
3. pH Control Equipment 12. Sludge Conditioning 
4. Primary Clarifier 13. Sludge Buffer Tank 
5. P-dosing Unit 14. Sludge Filter Press 
6. Archimedes Screws 15. Calamity Basin 
7. Aeration Basin 
S. Secondary Clarifier 16. ROOT OX 1 
9. Effluent Tank 17. RODTOX 2 

Figure 7. Flowsheet of a full-scale chemical wastewater treatment facility (Degussa Antwerpen). 
The biosensors are installed to monitor the raw wastewater and also the equalized 

and pretreated input wastewater of the aeration basin. 
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with a mean load of 1120 mg.dm-3 . 

In a number of chemical processes, hydrogen peroxide is used and discharged in high concentrations. 

Typically, a background of 20 ppm H202 is observed in the input wastewater. This amount is not 
detrimental to plant performance, but, occasionally, important peroxide spills occur, e.g. when a batch 

process fails. In Figure 9, the hydrogen peroxide content of the wastewater is displayed for a period of 

one month during which such an event took place (in the night of Tuesday, October 27th). Nine hours 

before the off-line measurement took place by the plant operator, the biosensor had activated an alarm 
for the presence of oxidizing compounds in the wastewater (at 22h02, see Table 4). As soon as the 
importance of the spill had been acknowledged, the wastewater was diverted to the calamity basin to 
protect the sludge. The next step consisted of tracking the source and of evaluating the size of the spill. 
Only when this information was available (by Monday, November 2nd), was the wastewater released 
gradually to the treatment plant in such a way that toxicity thresholds were not exceeded. The sensor 

occasionally reported on the presence of oxidizing compounds during this period (November 3rd-ll th). 

The effect of this toxic waste spill was restricted in terms of removal efficiency, since no deterioration 

could be observed from the off-line data on COD, ammonia and nitrate in the effluent. However, an 

improvement in the settling characteristics (as determined by the sludge volume index, SVI) could be 

correlated with the presence of sub-inhibitory peroxide concentrations. The SVI-values summarized 

in Figure 9 illustrate this phenomenon. Microscopic inspection of the sludge revealed a decrease in 
filament abundance as a result of "peroxide burning" (Switzenbaum et aI., 1992). 

An increasing demand for laboratory tests as described above resulted in periodic interruptions of the 
on-line monitoring of the input wastewater by the first sensor installed. Also, monitoring of the 

wastewater upstream of the equalization basin may lead to improvement of the load variation control 

system and would assist in early toxicity detection. As a result, a second respirographic sensor was 
implemented in the beginning of 1993 (item 17 in Figure 7). At present studies are going on to use the 

information provided by both sensors for the control of the COD buffer tank so as to minimize load 
variations. In a first stage the flow rate out of the buffer tank is controlled manually, but an automated 

control system seems a logical step for the future. 



Table 4. Plintout of the biosensor showing alalms given at an indusmal site 
duling the week of an important hydrogen peroxide spill in October 1992. 

Date Time Alarm Text 

23.10 20.20 Slowly biodegr.compounds in prey. sample 

25.10 06.42 Slowly biodegr.compounds in prey. sample 

27.10 00.21 Slowly biodegr.compounds in prey. sample 

14.08 Slowly biodegr.compounds in prey. sample 

18.47 Slowly biodegr.compounds in prey. sample 

22.02 Abnorm increase of DO level Oxid. or toxic compounds 

22.39 Abnorm increase of DO level Oxid. or toxic compounds 

23.17 Abnorm increase of DO level Oxid. or toxic compounds 

28.10 00.09 Oxid alarm 

01.00 Oxid alarm 

01.38 Oxid alarm 

02.14 Oxid alarm 

02.50 Oxid alarm 

03.27 Oxid alarm 

4.02 Oxid alarm 

30.10 01.10 Oxid alarm 

14.06 No baseline found 
31.10 04.22 Oxid alarm 
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Figure 9. Off-line hydrogen peroxide (0) and SVI (!!..) measurements performed when 
a peroxide spill was detected with the respirographic biosensor. 



CONCLUSIONS 

A respirographic biosensor has been presented that is fit for implementation on a sidestream of the 
input wastewater. The sensor has an inherently large dynamic range for short term BOD measurements 
(0.01-500 g stBOD.dm-3). . 

Toxicity assessment is based on a reference activity test which allows to clearly separate toxic effects 
from load variations. The response time for toxicity detection is typically 2 hours, but severe intoxica­

. tions are more readily detected. 

A separate test is proposed to check the condition of the sludge in the sensor. It allows to minimize the 
number of sludge replacements that are required to keep the sludge in the sensor representative of the 
treatment plants' sludge. Interferences by oxido-reduction chemicals in the wastewater can be elimi­
nated. 

The sensor's potential for improved waste management and control of treatment plant performance 
has been illustrated with applications in the laboratory and on the treatment plant. 
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NOMENCLATURE 

ce 

COD 

Cs 

DO 

KLa 

NOD 

OURend 

OURex 

%1 

PA 

PH 

: Biochemical Oxygen Demand 

: Steady state dissolved oxygen 

: Chemical Oxygen Demand 

: Saturation dissolved oxygen 

: Dissolved Oxygen 

: Volumetric mass transfer coefficient 

: Nitrogen Oxygen Demand 

: Endogenous Oxygen Uptake Rate 

: Exogenous Oxygen Uptake Rate 

: Percentage Inhibition 

: Respirogram Peak Area 

: Respirogram Peak Height 

PS : Respirogram Peak Slope 

RODTOX: Rapid Oxygen Demand and TOXicity tester 

stBOD : Short-term Biochemical Oxygen Demand 

SVI : Sludge Volume Index 

TOC : Total Organic Carbon 

REFERENCES 

(mg 02.dm-3) 

(mg 02.dm-3) 

(mg 02.dm-3) 
(mg 02.dm -3) 

(mg 02.dm -3) 

( . -1) mm 
(mg 02.dm-3) 

(mg 02.dm-3.min-1) 

( 0 d -3 . -1) mg 2. m .mm 

(-) 
(mg 02.dm-3.min) 

(mg 02.dm-3) 
(mg 02.dm-3.min-1) 

(-) 
(mg 02.dm-3) 

(dm3.g-1) 

(mgC.dm-3) 

Aidun B. and Smith D.W. (1988) Design and evaluation of an automated oxygen uptake rate measure­
ment system. Can. J. Civ. Eng., 15, 1015-1021. 

Beck M.B. (1986) Identification, estimation and control of biological waste-water treatment processes. 



lEE Proceedings, 133, 254-264. 

Blok J. (1974) Respirometric measurements on activated sludge. Wat. Res., 8, 11-18. 

Clarke AN., Eckenfelder W.W., McMullen E.D., Roth J.A and Young B.A (1978) Development of 
a continuous respirometer. Wat. Res., 12, 799-804. 

De Schryver T. (1992) On-line schatting van de zuurstofoverdrachts- en zuurstofopnamesnelheidska­
rakteristieken met de RODTOX-biosensor. Engineers Thesis. Fac. Agricultural Sciences. University 
Gent, Belgium. pp. 99. (In Dutch). 

DrtiI M., Nemeth P. and Bodik I. (1993) Kinetic constants of nitrification. Wat. Res., 27, 35-39. 

Farkas P. (1969) Method for measuring aerobic decomposition activity of activated sludge in an open 
system. In: Proceedings 4th Int. Conf. on Water Pollution Control Research, Prague 1969,309-327. 

Hegemann W., Bischofsberger W. and Englmann E. (1989) Upgrading of Wastewater Treatment 
Plants. Pergamon Press, London. 

Hikuma M., Suzuki H., Yasuda T., Karube I. and Suzuki S. (1979) Amperometric estimation of BOD 
by using living immobilized yeast. Eur. J. Appl. Microbiol. Biotechnol., 8, 289-297. 

Holmberg A (1981) Microprocessor-based estimation of oxygen utilization in the activated sludge 
wastewater treatment process. Int. J. Syst. Sci., 12, 703-718. 

Holmberg u., Olsson G. and Andersson B. (1989) Simultaneous DO control and respiration estimation. 
Wat. Sci. Tech., 21, 1185-1195. 

Howell J.A, Yust L.J. and ReiIIy P. (1984) On-line measurement ofrespiration and mass transfer rates 
in an activated sludge aeration tank. J. Water Pollut. Control Fed., 56, 319-324. 

Karube I., Matsunaga T., Mitsuda S. and Suzuki S. (1977) Microbial electrode BOD sensor. Biotechnol. 
Bioeng., 19, 1535-1547. 

K6hne M. (1985) Practical experiences with a new on-line BOD measuring device. Environ. Tech. Lett., 
6,546-555. 

Kong Z., Vanrolleghem P.A. and Verstraete W. (1993) An activated sludge-based biosensor for rapid 
ICso estimation and on-line toxicity monitoring. Biosens. Bioelectron., 8, 49-58. 

Kulys J. and Kadziauskiene K. (1980) Yeast BOD sensor. Biotechnol. Bioeng., 22, 221-226. 

Marsili-LibeIIi S. (1990) Adaptive estimation ofbioactivities in the activated sludge process. IEE Proc., 
137,349-356. 

Princz P. and Olah J. (1990) BOD measurement of non-toxic wastewaters with an improved microbial 
probe. In: Advances in Water Pollution Control. Ed. Briggs R., Pergamon Press, London. 79-87. 

Richardson N.J., Gardner S. and Rawson D.M. (1991) A chemically mediated amperometric biosensor 
for monitoring eubacterial respiration. J. Appl. Bacteriol., 70, 422-426. 

Riedel K., Renneberg R., Kiihn M. and Scheller F. (1988) A fast estimation of biochemical oxygen 
demand using microbial sensors. Appl. Microbiol. Biotechnol., 28, 316-318. 

Ros M., Zagorc-Koncan J., Dular M. and Pompe M. (1990) Respirometric determination of waste water 
biodegradation in a biological treatment plant. Z. Wasser- Abwasser-Forsch., 23, 236-240. 

Sekine T., Sato S., Furuya N. and Sunahara H. (1988) Supervision and control of the activated sludge 
process utilising the respiration rate activity. Environ. Tech. Lett., 9, 1317-1326. 

Sollfrank U. and Gujer W. (1990) Simultaneous determination of oxygen uptake rate and oxygen 
transfer coefficient in activated sludge systems by an on-line method. Wat. Res., 24, 725-732. 

Spanjers H. and KJapwijk A (1990) On-line meter for respiration rate and short-term biochemical 
oxygen demand in the control of the activated sludge process. In: Advances in Water Pollution Control. 
Ed. Briggs R., Pergamon Press, London. 67-77. 

_ TT1h_ 



Spanjers H., Van Impe J. and Vanrolleghem P. (1992) Extracts from the discussions held during the 
workshop on modelling, monitoring and control of the activated sludge process. In: Proceedings 
Workshop Modelling, Monitoring and Control of the Activated Sludge Process. Med. Fac. Landbouww. 
Rijksuniv. Gent, 57, 2257-2276. 

Strand S.B. and Carlson D.A. (1984) Rapid BOD measurement for municipal wastewater samples 
using a biofilm electrode. J. Water Pollut. Control Fed., 56, 464-467. 

Switzenbaum M.S., Plante T.R. and Woodworth B.K. (1992) Filamentous bulking in Massachusetts: 
extent of the problem and case studies. Wat. Sci. Tech., 25(4-5),265-272. 

Vanrolleghem P., Dries D. and Verstraete W. (1990) RODTOX: Biosensor for rapid determination 
of the biochemical oxygen demand and the on-line monitoring of the toxicity of wastewaters. In: 
Proceedings Fifth European Congress on Biotechnology. Copenhagen, Denmark, July 8-131990. Vo!. 
1,161-164. 

Vasel J.-L., Warnier P., Jupsin H. and Schrobiltgen P. (1991) Automatisation et comparaison de 
differentes methodes respirometriques d'estimation rapide de la DBO. Revue des Sciences de l'eau, 
4,415-435. (In French). 

Vernimmen A.P., Henken E.R. and Lamb J.c.m (1967) A short-term biochemical oxygen demand 
test. J. Water Pollut. Control Fed., 39, 1006-1020. 





CHAPTER III 

New Dynamic Estimation Methods 
for the KLa and Saturation Dissolved Oxygen Concentration 

in the Presence of Active Biomass 

Peter Vanrolleghem, Thomas De Schryver, Zaide Kong, 
Paul Willems and Willy Verstraete 





New Dynamic Estimation Methods for the KLa and the 

Saturation Dissolved Oxygen Concentration 
in the Presence of Active Biomass 

ABSTRACT 

A new method for the estimation of KIll, based on the pulse addition of a supplemental amount of readily 
biodegradable substrate, is proposed. The disturbed dissolved oxygen equilibrium allows to estimate KLa 
out of the reaeration curve obtained after the complete removal of this substrate. The method is validated 
on lab-scale on the basis of two independent measures. It is biologically compatible, allowing its use under 
fully operational conditions and is not disturbing the aeration process itself. 

Relative to the traditional gassing-out method based on biological oxygen depletion after interruption of 
aeration, it is shown that the data obtained by the new method allow not only the estimation of the 
volumetlic mass transfer coefficient, but also the saturation dissolved oxygen concentration notwithstanding 
the presence of biological activity. 

KEYWORDS 

Oxygen Transfer Characteristics, Oxygen Solubility, Respirometry, Activated Sludge, Aeration, Probe, 
Modelling 

INTRODUCTION 

Aerobic processes are among the most widely applied biotechnological processes. From an economical 
point of view, the supply of oxygen accounts for an important part ofthe running costs ofthese systems. 
In activated sludge wastewater treatment, for instance, it is reported that more than 40% of the 
operating costs are due to aeration (Realey, 1989; Ashley et al., 1991; Powell-Groves et al., 1992). 

The importance of aeration to process efficiency has raised great interest in methods for measurement 
and evaluation of the oxygen mass transfer characteristics. These characteristics are essential to the 
adequate design, operation and control of aeration equipment. Only two parameters are required for 
a complete description of the oxygen supply and they can be deduced from the dissolved oxygen mass 
balance in an aerobic reactor (liquid mass flows are neglected): 

dC 
- = KLa(Cs-C) - OUR 
dt 

(1) 

The first and second term of the right hand side of the above equation account for the oxygen supply 
and uptake (mg 02.r1.min-1) respectively. The equation states that the oxygen supply rate is propor­
tional to the driving force, i.e. the difference between the actual oxygen concentration C and the 
saturation dissolved oxygen Cs (mg 02.rl) and the volumetric mass transfer coefficient KLa (min-1). 
The maximum oxygen supply rate, i.e. KLa*Cs, is obtained when there is no dissolved oxygen in the 
reactor. 



Several factors influence the mass transfer efficiencies. Among others, geometry of the reactor, 
temperature, barometric pressure and the liquid composition can be mentioned. As a result, the 
characteristics are time-varying and site-specific. Consequently, it has become common practice to 
specify aeration equipment at "standard conditions", i.e. in tap water, at 20°C, atmospheric pressure 
and zero dissolved oxygen concentration. This standard value is sometimes referred to as SOTR 
(Standard Oxygen Transfer Rate) (ASCE, 1993). 

However, the same time and site-dependence of the characteristics leads to the problem that their 
values mlist be determined during the wastewater treatment process for purposes of optimal aeration 
control, failure diagnosis and process performance warranty testing (Goodwin et al., 1982; Holmberg 
et al., 1989; Stenstrom et al., 1989; Marsili-Libelli, 1990). In order to calculate the mass transfer 
efficiencies under process conditions, a number of correction factors have been introduced to account 
for deviations of standard conditions. A review of relevant information regarding these correction 
factors can be found in Stenstrom and Gilbert (1981). 

Although extensive research has been performed and ample data have been reported on these factors, 
many uncertainties still surround their determination (Stenstrom & Gilbert, 1981). Therefore, it is as 
yet not possible to predict the mass transfer conditions in an actual system in full operation with 
sufficient accuracy on the basis of these factors alone. Consequently, a clear need exists for on-line 
methods that allow the in-situ estimation of these characteristics. In the paper, this problem is adressed 
and new methods are proposed for the estimation of the two mass transfer characteristics under 
operational conditions in lab and pilot-scale reactors. First, however, a non-exhaustive overview of 
existing methodologies is given that will allow to situate the new techniques. 

Overview of existing methods for KIP estimation 

The methods for estimation of the volumetric mass transfer coefficient are usually divided into dynamic 
and steady-state methods. The latter methods rely on the oxygen mass balance over the reactor and 
are the only methods that can be used under conditions where the mixed liquor dissolved oxygen is 
maintained in steady state: 

with Ce 
OURe 

0= KLa(Cs-Ce) - OURe 

: steady state dissolved oxygen concentration (mg 02.rl) 
: steady state oxygen uptake rate (mg 02.r1.min-1) 

(2) 

Using measurements of the air flow rate and the oxygen content of the gas leaving the reactor, OURe 
can be determined. The oxygen removal from the liquid phase can be due to biological activity or can 
originate from the supply of chemicals that react with oxygen, e.g. sodium sulphite or hydrazine (Linek 
et al., 1990). In conjunction with a measurement of Ce and an estimate of Cs, KLa can be calculated 
from Eq. (2) (Redmon et al., 1983). A drawback ofthe method is that a number of gas collection hoods 
must be installed in order to establish a gas sample representative oflarge reactors. On the other hand, 
the same argument leads to an advantage since it is possible to quantify spatial variations in oxygen 
transfer efficiency (Daigger et al., 1992). 

Spriet et al. (1982) have assessed the error propagation of the off-gas, gas flow and dissolved oxygen 
measurements on the reliability of the KLa estimates and have shown that the precision of the air flow 
rate measurement and particularly the oxygen gas analysis are critical (see also Boyle et al., 1989). As 

a result the required equipment is rather sophisticated and experiences have shown that it may be 



sensitive to cold weather conditions (Holmberg et aI., 1989). Additionally, from Eq. (2) it can be seen 
that the KLa value obtained is directly dependent on the value of the saturation dissolved oxygen. As 
shown below this dependency may result in erroneous results. Yet, the method is widely used because 
it allows to obtain reasonably accurate KLa estimates under process conditions without disturbance of 
the aeration process (Daigger et aI., 1992, Powell-Groves et aI., 1992). 

Dynamic KLa estimation methods on the other hand are based on the dynamic response of Eq. (1) 
after disturbance of the dissolved oxygen steady state. The dynamic conditions can be enforced by 
temporarily adjusting one of the four parameters in Eq. (2): 

1. Cs: 

2. 

3. 

4. OUR: 

* blowing in Nz-gas in exchange of air (Gauthier et al., 1991) 
* aeration with Oz-enriched air (Chang et aI., 1989) 
* overpressure (pOz) (Linek et aI., 1989) 

* addition of HzOz as an oxygen source (Kayser, 1979) 

* switching off the aeration (Bandyopadhyay et aI., 1967) 
* changing the air flow rate (Holmberg et aI., 1989) 

* addition of chemicals, e.g. sulphite (ASCE, 1993) 

The goal of all these disturbances is to obtain reaeration (Bandyopadhyay et al., 1967; Gauthier et al., 

1991; ASCE, 1993) or deaeration curves (Kayser, 1979; Chang et aI., 1989; Linek et aI., 1989) after the 
system settings have been returned to the operating conditions of interest. Estimation of the volumetric 
mass transfer coefficient from such dissolved oxygen profiles has been subject to a lot of research work, 
and has led to standardized methods that are generally accepted (Stenstrom et aI., 1981; Vasel, 1988). 

Although these dynamic methods have been very useful, some are incompatible with the biological 
process (e.g. the sulphite method), prohibiting their application for mass transfer characterization 
under process conditions. The other techniques rely on the disturbance of the aeration process that is 
to be characterized. It has been shown that this may influence the results due to the effects of liquid 
hydrodynamics and gas phase mixing that are not taken into account (Gauthier et aI., 1991). Also, in 
case of the pressure method, Vardar and Lilly (1982) have pointed towards the danger of neglecting 
the changes in interfacial area due to bubble size variations as a result of the applied overpressure. 

From a practical point of view it is clear that a change of the aeration conditions or gas composition 
requires adapted technology (e.g. Nz and pure Oz supply, mass flow controllers), and that the pressure 
method is only applicable to closed reactors. In this perspective the techniques based on the addition 
of chemicals (sulphite, HzOz) have a distinct advantage. 

In the paper a reaeration test is proposed in which the decrease of the dissolved oxygen concentration 
is biologically induced and obtained through the addition of a pulse of readily biodegradable substrate 
to the reactor. The method combines the advantages of the techniques described above: 1) no 
disturbance of the aerating conditions making the mass transfer characterization more reliable, 2) 
biologically compatible so that application in process conditions is possible and 3) no sophisticated 
technology is required. 



Overview of existing methods for Cs estimation 

Although the saturation dissolved oxygen is as determinative as the volumetric mass transfer coefficient 

with respect to the oxygen supply rate by its influence on the driving force, few studies have been 

devoted to its on-line assessment. This is rather surprising in view of the large number of parameters 

that have been shown to affect gas solubilities, i.e. temperature, pressure, and most importantly, liquid 
composition, i.e. salts, dissolved organics and solids (Stenstrom & Gilbert, 1981; Schumpe et al., 1982). 
Temperature and pressure effects can be corrected with generally accepted formulae: the polynomial 
approximation proposed by Hitchman (1978) for temperature correction and Henry's law that can be 
applied for pressure correction. 

A completely different approach is necessary, however, to account for the effect of water composition. 

As Eckenfelder et al. (1956) pointed out, the saturation dissolved oxygen in industrial wastewaters may 

decrease with as much as 25 % compared to tap water. For municipal wastewaters the effect is less 
pronounced with f3 factors (the ratio of Cs in wastewater to Cs in tap water under identical temperature 
and pressure) of approx. 0.95. A detailed study of the effects of single components on the oxygen 
solubility can be found in Schumpe et al. (1982). Their comprehensive work shows that gas solubilities 
can be predicted by a log-additivity approach, but this is only applicable if the composition of the mixed 

liquor and the solubility parameters of the individual compounds are known. Clearly, this is unfeasible 
for wastewater treatment plants. 

As an approximation, an indirect predictive method was suggested based on the on-line measurement 

of the electrical conductivity of the mixed liquor as an indicator of salt content. However, the 
coefficients in the polynomial used to estimate the saturation constant have to be determined by off-line 

conductivity and solubility measurements, and, moreover, these empirical constants lose their identity 
if the ratios of the concentrations of certain ions in the mixture vary as it is likely during the process. 

From this overview, a number of practical implications can be emphasized that relate to the importance 

of a good estimate of the saturation dissolved oxygen. 

First, a number of adaptive control schemes have been proposed that rely on the interpretation of the 
dissolved oxygen dynamics. In most of these, the saturation dissolved oxygen is assumed known 

(Goodwin et al., 1982; Holmberg, 1990; Marsili-Libelli, 1990). Violation of this assumption may cause 

bias in the process identification and as a result may lead to poor control performance. 

As a second implication it must be stressed that KLa estimation with the steady state method requires 

an estimate of the saturation dissolved oxygen concentration (Eq. 2). A deviation directly influences 

the KLa estimate, especially when the process is evaluated at higher steady state dissolved oxygen 
concentrations. 

Finally, the maximum oxygen transfer efficiency is proportional to the saturation dissolved oxygen 
concentration. Also from this perspective an estimate of Cs under process conditions is essential since 
it allows to assess aeration efficiency more accurately. 

Consequently, a method that allows the on-line determination of the saturation dissolved oxygen 
concentration in process conditions is important for a better characterization of the mass transfer 
process and can allow improved process efficiency. Such a method will be developed in the sequel. 



MATERIALS AND METHODS 

The estimation techniques have been validated in a RODTOX device (Kelma bvba, Niel, Belgium), a 
biosensor aimed at characterizing the interaction between wastewater and activated sludge (Vande­
broek, 1986; Vanrolleghem et aI., 1992; Vanrolleghem et aI., 1994). The central part of the apparatus 

is a constantly aerated, completely mixed reactor containing 10 !iter of activated sludge (diameter 25.4 
cm). The dissolved oxygen concentration data, obtained from the dissolved oxygen electrode (Conducta 
905S), are collected on a personal computer. These data are corrected for the electrode response delay 

as in Linek et al. (1989). The first order time constant, as determined by the method of Philichi and 

Stenstrom (1989), was 12.5 s. 
Standard operating conditions are the following: an aeration of 1.5 1.I.1.min-1, a sludge concentration 
of 4 g.rl, temperature equal to 25.0±0.1 QC and a pH controlled at 7.0±0.2. Acetic acid (HAc) and 
NH4CI have been used as pulse substrates. 

RESULTS AND DISCUSSION 

Principles of the methodfor Kw estimation 

The method which is proposed here can be classified among the dynamic methods, more specifically 
it belongs to the methods in which the oxygen uptake rate is temporarily disturbed. The new approach 

taken is that the increase of the OUR is obtained through the addition of a small pulse of readily 
biodegradable substrate. This makes the method biologically compatible and allows its use under 
process conditions. 
The added substrate results in a temporary supplemental oxygen uptake denoted by OURp superim­

posed on OURe. With OUR = OURe + OURp Eq. (1) becomes: 

dC 
dt = KLa(Cs-C) - OURe - OURp (3) 

with OURp :oxygen uptake rate for pulse substrate degradation (mg Oz.r1.min-1) 

Since the amount of substrate added is very low, i.e. approx. 10 mg COD.rl, the increase in biomass 

concentration due to growth is negligible. Therefore, OURe can be assumed constant. Using Eq. (2) 
and rearranging Eq. (3) results in: 

dC 
dt = KLa(Ce-C) - OURp (4) 

From the moment the supplemented substrate is removed from the solution and its associated oxygen 
uptake has become zero (OURp = 0 mg Oz.r1.min-1), the remaining part of the dynamic dissolved 

oxygen curve (called a respirogram (Figure 1)) can be considered as a first order reaeration curve. 

For the estimation of the first order time constant (l/KLa), three methods are available: the direct 
method, the semi-logarithmic method and the exponential method (Stenstrom et aI., 1981; Vasel, 

1988). Among these the semi-logarithmic method was chosen due to its combination of accuracy and 
ease of implementation, i.e. it only consists of a logarithmic transformation of the dissolved oxygen data 

(In(Ce-C(t))-ln(Ce-C(O)) and a linear regression of these data versus time (Figure 2). In addition, this 
method allows to illustrate the intricacies of the method in a convenient way since true first order 
kinetics result in a linearrelationship in a semi-logarithmic plot. Consequently, deviations from linearity 
can be detected easily and used for diagnostic purposes. 
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Figure 1. Typical dissolved oxygen profile resulting from the pulse addition 
of readily biodegradable substrate at t = 3 min. 

In the semi-logarithmic method, an estimate of the equilibrium dissolved oxygen concentration (Ce) is 
required. Instead of using the mean of final dissolved oxygen values taken with 5 minutes intervals 

(ASCE, 1993), the three point method of Isaacs and Gaudy (1968) was used as it allows to obtain 
estimates without prolonging the experiment. 

An intrinsic problem of the proposed method is to determine at which instant the additional substrate 

is completely degraded: only then the data can be described by a first order kinetic equation. For this 

purpose the semi-logarithmic method was adapted by the introduction of a moving window linear 
regression on the log transformed data. Instead of using the usual dissolved oxygen concentration 

window from 30 to 95 % of the reaeration curve (0.3 - 0.95*(Cmaximum - Cminimum» (ASCE, 1993), 
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Figure 2. Semilog transformed dissolved oxygen data (of Figure 1) for different estimates of Ce, 
showing the dependence of linemity on its value. 



the initial point of the applied data window was allowed to vary between 30 and 70 % of the curve in 
a search for the best linear fit. The initial point of the best linear fit can be considered as the point in 
time where OURp becomes zero, i.e. the time instant corresponding with the complete degradation of 
the readily biodegradable substrate added. 

It is important to note that the same data interval must be used for the estimation of Ce. The three 
point method for estimation of Ce assumes first order dynamics. Consequently, if the data do not obey 

this relationship, erroneous Ce values are calculated and as a result, the nonlinearity of the semiloga­

rithmic curve will become even more pronounced. This is shown in Figure 2. It illustrates the influence 

of the choice of the initial window point (30 % or 50 % of (Cmaximum - Cminimum)) on the estimation 
of Ce and its impact on the linearity of the semi-logarithmic plot. Clearly, a check for best linearity 
allows to deduce the proper initial point and Ce. For illustrative purposes only the effect of a Ce estimate 
of 6.9 mg oz.r1 is added in the figure. 
The method boils down to an optimization problem where nonlinearity must be minimized. A 
convenient measure of nonlinearity was found to be the correlation coefficient of the semi-log 

regression. Maximizing this value allows to find the data interval that gives optimal linearity. Another 

method may consist of minimizing the residual mean variance. 

Principles of the methodfor Cs estimation 

The method which is proposed here is based on an extended interpretation of the data typically 
obtained from the traditional method for KLa estimation under process conditions, i.e. the modified 
gassing out method in which the air supply is interrupted and biological oxygen uptake disturbs the 

dissolved oxygen steady state (Figure 3). The slope ofthe dissolved oxygen decrease (Eq. (1) with KLa 
= 0) is a direct estimate of the steady state oxygen uptake rate OURe. The reaeration curve obtained 
when the aeration is restarted allows to estimate the KLa. 

The central idea behind the Cs estimation method is that Eq. (2) holds, provided the oxygen uptake 
rate is constant within the time frame of such an experiment, i.e. 15-30 minutes. In this equation only 
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the saturation dissolved oxygen concentration remains unknown after the experiment so that it can be 
calculated from the formula: 

C - C OURe s- e+ 
KLa 

(5) 

As an example, the experimental data given in Figure 3 give rise to an estimate of the saturation 

dissolved oxygen of7.76 mg/l. The comparison of this value with the Cs for tap water at the mixed liquor 

temperature of 25°C (8.115 mg/l) results in a ft-factor of 0.956 for this operational lab-scale activated 
sludge system. 

Validation of the methods 

The KLa estimation method was validated using two independent criteria. A first criterion is based on 

the fact that the area of a respirogram peak (P A) is proportional to the amount of pulsed substrate 

added (stBOD : short term biological oxygen demand) and the volumetric mass transfer coefficient 

(Vanrolleghem et al., 1994). Indeed, integration of Eq. (4) between the beginning and the end of a 

respirogram yields (with C(tf)=C(ta)): 

CCtF) - CCta) = 0 = KLa if (Ce-C) dt - ftt OURp dt 
j. to to (6) 

By definition, stBOD equals the latter integral, while the former integral is the product ofthe volumetric 
mass transfer coefficient and the area of the respirogram. This relationship can therefore be applied 
for validation. 

The second validation criterion takes advantage of Eq. (2) in which it is shown that a change in KLa 

will be reflected in a proportional change in Ce under the conditions of constant OURe and constant 
Cs. Figure 1 illustrates this concept. 

Summarizing, the two criteria state that: 

1. 
2. 

KLa*PA = stBOD must be constant 
OURe = KLa*(Cs - Ce) must be constant 

(7) 

(8) 

Validation experiments were performed by the addition of a 10.0 ml pulse of an acetic acid solution 

(20 g COD.r1) to the 10 I RODTOX reactor operated under different aeration conditions, i.e. flow 
rates of 1.0, 1.5, 2.0 and 2.5 1.l-1.min-1 (Results of similar experiments with other substrates such as 

NH4CI and nitrifying sludge are not shown). The raw dissolved oxygen data obtained are summarized 

in Figure 4. The five peaks shown are the result of the acetic acid addition and clear reaeration curves 

are obtained after the biologically induced drop in dissolved oxygen. When a new air flow rate is 
imposed, a new dissolved oxygen steady state is awaited before a new dose of substrate is injected. 

From the respirograms, it follows that lower aeration intensities give rise to larger peaks that require 

longer reaeration times to return to steady state. Using the methodology introduced above, KLa and 
Ce estimates were calculated. The peak areas were obtained through numerical integration ofthe peak. 
The respective values are summarized in Table 1. 

For the first validation criterion, stBOD's of the substrate additions were calculated using Eq. (7). The 
results show a very small standard deviation on the stEOD (Table 1). Considering the accurate 
calculation of the peak area and the care taken to inject a precise amount of substrate, this result 
indicates that KLa's can be estimated with an accuracy of approx. 2.5 %. 



10.00 
1.5 2.5 1.0 2.0 1.5 

I/I.min I/l.min I/l.mln 1/1.mln 1/1.mln 

~ 
8.00 l~:"'''''''''''':':'' E ) <'" " '" " " "'" " ,,, .. :.:-. ( ) 

-=. 
'" oS 
<= 6.00 CD 

'" >-
)( 

( ( 
0 

'" 4.00 ., 
~ 
0 ., ., 
i5 

2.00 

0.00 
0 50 100 150 200 

Time (min) 

Figure 4. Experimental dissolved oxygen profiles obtained in the RODTOX with differing gas flow rates. 

This mass transfer characterization is obtained at the expense of a pulse substrate addition which only 
requires to raise the readily biodegradable substrate concentration in the reactor to 20 mg COD.r1 

(note that this would correspond to a cost of only approx. 10$ if the method would be applied to a 

full-scale 1000 m3 aeration tank). 

The stBOD-values summarized in Table 1 give an initial stBOD-content of the mixed liquor of approx. 
6.9 mg.rl. The discrepancy between stBOD and COD added is due to substrate incorporation in new 
biomass. Therefore, a yield coefficient of 0.65 g biomass.g-1 HAc can be deduced (concentrations are 
expressed as g COD.rl). This agrees with values reported in the literature (Sollfrank & Gujer, 1991). 

Table 1. Experimental and calculated results of a 10 ml pulse of HAc with different aeration conditions. 

AirFlow Ce KLa PA KLa*PA KLa*(Cs-Ce) 
(stBOD) (OURe) 

(1 r1 . -1) . . mIn (mg oz.r1) (min-1) (mgOz.r1.min) (mgOz.r1) (mgOz.r1.min) 

1.5 6.72 0.219 32.650 7.150 0.289 

2.5 7.37 0.350 19.086 6.674 0.233 

1.0 6.47 0.143 49.068 7.020 0.225 

2.0 7.27 0.262 25.651 6.710 0.200 

1.5 6.91 0.224 31.012 6.953 0.253 

average 6.901 0.240 

std 0.183 0.030 

C.v.(%) 2.65 12.4 



Another conclusion is that this result illustrates that only 3.1 mg ofbiomass is produced per !iter mixed 
liquor which is an increase of less than 0.1 %. The requirement in the considered derivation of Eq. (4) 
is therefore fulfilled. 

In order to apply the second criterion, a value of Cs is required, see Eq. (8). For this, an independent 

experiment was performed as described above (results not shown). From the dissolved oxygen data 
collected during the period without aeration, OURe was found to be equal to 0.225 mg Oz.ri.min-i . 

Using the values of KLa and Ce estimated from the reaeration curve obtained when the air supply was 

switched on again, Cs could be calculated from Eq. (5). Cs was found to be 8.04 mg oz.ri, correspond­
ing with,B = 0.991. 
Subsequently, independent estimates of OURe have been calculated with Eq. (8) for the different 
aerating conditions using this Cs value and the estimates of KLa and Ce obtained from the substrate 
pulse dissolved oxygen profiles (Table 1). The mean value of the OURe estimates are close to the value 
obtained by the test in which the aeration was interrupted. A Iow coefficient of variation (C. V.) of these 

calculated values is a good indication of the validity of the KLa estimation method. C.V. was found to 

be 12.5 %. The fact that it is higher than the one calculated in the first validation test probably originates 

from the fact that multiple estimates (KLa, Cs, Ce) are combined, each of them subject to estimation 
errors. Still, this result illustrates that the method gives reliable estimates for the volumetric mass 
transfer coefficient. 

The same data were also used for a validation of the Cs estimation procedure. The rationale of the 
approach is that the variance of the OURe estimates obtained from Eq. (8) will be minimal when the 
exact saturation dissolved oxygen concentration is introduced in the equation. In Figure 5 the standard 
deviation of the OURe estimates is plotted in function of the saturation concentration. A very smooth 
function is obtained with a well defined minimum. The Cs value at which the minimum is reached was 

8.096 mg.ri (fJ = 0.997). This is very close to the value estimated on the basis of the method developed 
above and this result is another indication that the proposed method is valid. 

Application of the method 

In the RODTOX biosensor, dissolved oxygen profiles (respirograms) induced by wastewater sample 

injections are interpreted in order to obtain information with respect to the characteristics of this 
wastewater, e.g. stBOD content and toxicity (Vanrolleghem et aI., 1993). Mass transfer changes within 
the sensor's bioreactor will affect the data obtained. This problem has been adressed up to now by 
frequent calibrations so that these changes are canceled out. The methods that have been developed 

above are another means of treating this problem and some results of their application are given below. 

In Figure 6 the evolution of the KLa is given for a two week experimental run. A gradual decrease of 
the volumetric mass transfer characteristic during the first three days can be seen. After 9 days a general 

check of the apparatus was conducted and it became apparent that a membrane in the air pump was 
leaking. Once this membrane had been replaced, the mass transfer coefficient returned to its normal 
value (0.15 min-i ). These results illustrate the applicability of such mass transfer characterization 
methods for error diagnosis in fully operational systems. 

The biosensor used throughout this work is a fed-batch reactor in which samples are injected until a 
maximum reactor volume is reached. Then a sedimentation period is initiated. After the supernatant 
is withdrawn from the reactor, new samples can be injected. As a result, the reactor volume oscillates 
between a minimum and maximum value. It is well known that the mixed liquor volume has an effect 
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on the volumetric mass transfer coefficient, e.g. through the gas hold up. The evolution of the peak 
areas in Figure 7 illustrate this phenomenon. An oscillation with a period of approx. 1 day can be 

observed. It is caused by the volume changes in the reactor. The sudden drops in peak area can be 
directly correlated with the decantation cycles. 
In this figure a trend both in KLa and peak area is apparent. Probably, this is due to the gradual increase 

of the sludge concentration in the reactor. However, this trend can be completely eliminated when a 

KLa correction is performed. This is illustrated by the finding that a linear regression on the stBOD 
(=KLa *PeakArea) data results in a non-significant slope. It means that the stBOD ofthe sample which 
was added to the sensor remained constant throughout the experiment, which was expected since the 

substrate solution was maintained at 4°C. The residual error on these stBOD values is a measure of 
the reliability of the estimation method. A coefficient of variation of 5.5 % was calculated. This should 
be considered a conservative value since it also includes experimental errors such as dosing errors. 
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Figure 7. Experimental results obtained in the RODTOX under changing reactor volumes. 
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A final experimental evaluation of the developed procedure was conducted with an increased estima­
tion frequency (12 estimates per day). The estimation results over a two-week period are summarized 
in Figure 8. Again coefficients of variation were calculated to assess estimation accuracy. The values 
found were lower than 10 %. These are satisfying in view of the length of the considered period and 
the changing process conditions, such as changes in the composition of the wastewater added to the 
reactor in between mass transfer characterization tests and the varying reactor volume which is inherent 
to the operation of the RODTOX device (see above). In addition, the changes in microbial activity as 
reflected in the variation of the baseline dissolved oxygen concentration Ce do not seem to affect KLa 
estimation accuracy. 

CONCLUSIONS 

A new dynamic KLa estimation method, based on the disturbance of steady state dissolved oxygen 
concentration by the addition of a pulse of readily biodegradable substrate is proposed. It has the 
advantages of being low cost, biologically compatible and not having to rely on a disturbance of the 
aeration process. The method has been validated by two independent measurements, showing the KLa 
estimation reliability through a coefficient of variation of approx. 2.5 %. 
This method seems particularly suited for the evaluation of oxygen mass transfer characteristics in fully 
operational processes where the alterations in aerating conditions required by existing methods are 
not suited or not possibie because of lack of adequate equipment. The method has been validated in 
a lab-scale reactor, but seems promising in full-scale applications. However, validation experiments at 
full scale plant sizes should be performed first. 

Also, a method for the estimation of the saturation dissolved oxygen concentration under process 
conditions has been proposed. It is based on an exhaustive interpretation of the dissolved oxygen 
profiles obtained during a traditional gassing out experiment in which the air supply is switched off and 
the dissolved oxygen drop is caused by biological respiration. The results obtained have shown 
acceptable estimates (j3's of 0.95-0.99) and a cross-validation with the new KLa estimation method 
indicated that reliable estimates can be obtained in the presence of actively respiring biomass. 



NOMENCLATURE 

f3 
C 

Ce 
COD 

Cs 
C.V. 

KLa 

OUR 

OURe 

OUR 

: ratio of Cs in wastewater to Cs in tapwater 

: Dissolved oxygen 

: Steady state dissolved oxygen 

: Chemical Oxygen Demand 

: Saturation dissolved oxygen 

: Coefficient of Variation 

: Volumetric mass transfer coefficient 

: Oxygen Uptake Rate 

: Steady state Oxygen Uptake Rate 

: Oxygen Uptake Rate for pulse substrate degradation 

P A : Respirogram Peak Area 

RODTOX: Rapid Oxygen Demand and TOXicity tester 

stBOD : Short-term Biochemical Oxygen Demand 
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On-line Estimation of Crucial Biological Variables 
with a Respirographic Biosensor 

ABSTRACT 

Although recent literature reports work on advanced process control, most actual activated 

sludge wastewater treatment plants are still operated with only elementary control systems, 

such as manual liquid flow manipulation, sometimes extended with pH and dissolved oxygen 

control. The limited understanding of the biotransformation and sedimentation processes in­

volved, and the lack of adequate monitoring possibilities are the most important reasons for this. 

In this paper, a new monitoring device capable of measuring important biological variables in 

wastewaters, such as amount, potential toxicity, composition and degradation characteristics 

of the ingoing waste is presented. 

The data provided by this RODTOX biosensor are interpreted in the framework of a recent 

structured model of the biotransformation process, which summarizes the state-of-the-art in 

the biochemical knowledge of the activated sludge process. In the paper results are presented 

of the estimation of biological parameters of this model. To allow this, techniques had to be 

developed to estimate mass transfer characteristics (such as [{La and 802,8at) on-line. One 

such method is devised in such a way that normal biosensor operation must not be interrupted. 

The information content of the data obtained from the biosensor is shown to be sufficiently 

rich to allow for the use of a structured compartment model to describe the bioprocess. 

INTRODUCTION 

The most widely used method for wastewater purification is the activated sludge process. 

Compared to traditional production process industries, the automation of wastewater treat­

ment plants has been developing rather slowly. There are several explanations for this. First 

of all, the dynamics and properties of the complex biological processes that perform waste 

degradation, are still not well enough understood to allow the implementation of efficient con­

trol strategies. A probably even more important question comes up when the processes are not 

productive, like in the wastewater treatment application: then automation can contribute only 

to decreasing operational costs and increased efficiency but not directly to increased profit and 

this may limit the motivation for additional investment costs. Furthermore, the instrumen­

tation needed for the on-line measurement of important biological variables and parameters 

-e.g., biomass characteristiCs (concentration, activity, settling behaviour) and substrate(s) 

concentration- has thus far remained quite primitive. 

As a consequence, indirect estimation of the state and parameters of the involved processes has 

been studied but only a limited level of process control has resulted. Especially the interpreta­

tion of dissolved oxygen dynamics received a lot of attention (Holmberg, 1990; Marsili-Libelli 

1990). Furthermore, the estimation of variables and parameters was mostly based on simpli-
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fied (linearized) models with 'lumped terms' in order to short-circuit some of the estimation 

difficulties (Ko et al., 1982). 

The lack of suitable (soft) sensors has hampered the development of more elaborate control 

strategies, which require better descriptions of the bioprocesses. As a result, plant designers 

continue to build oversized systems that require less supervision to meet effluent criteria. 

Moreover, this strategy is stimulated by government policies which give grants for capital 

costs rather than for operation costs (Allsop et al., 1990). 

Recently, more insights have been gained in the processes used for waste removal. The IAWQ 

model N°1 can be mentioned as an example of these efforts. This model summarizes in 

a comprehensive way the state of the art in the knowledge of activated sludge wastewater 

treatment processes (Henze et al., 1987). In addition, significant progress has been made in 

the field of instrumentation. Especially the on-line measurements of variables important for 

the identification of the biological processes in the wastewater treatment system have gained 

a lot of attention (Sollfrank & Gujer, 1990; Vanrolleghem et al., 1993). 

In this paper, oxygen uptake rate profiles (induced by pulse substrate addition) recorded by 

a new bio-sensor, called RODTOX -an acronym for Rapid Oxygen Demand and TOXicity 

Tester-, are interpreted with respect to two models proposed for the biotransformation pro­

cesses. The most important contributions are the following. First, a new on-line technique 

is developed to estimate the mass transfer coefficient KLa in the sensor's bioreactor. It takes 

advantage of the oxygen depletion caused by oxidation of the substrate added to the activated 

sludge-filled reactor of the sensor. As a result, this KLa estimation method does not require in­

terruption of normal biosensor operation. Second, using real life data it is shown that a slightly 

modified version of the structured compartment model IAWQ N°1 may be a better description 

of the biotransformations occurring in the sensor than a simple Monod/decay model involving 

only one substrate and biomass fraction. In Van Impe and Vanrolleghem (1994) it is shown 

that the additional information provided by this respirographic biosensor enables the design 

of nonlinear adaptive control algorithms based on this structured compartment model. 

MATERIALS AND METHODS 

The respirographic sensor consists of a biological unit interfaced to a microprocessor (Figure 

1). A reactor vessel, filled with 10 L of activated sludge (taken from the plant to control) is 

constantly aerated, stirred and thermostated. In the cover of the bioreactor, dissolved oxygen 

(DO) and pH probes are installed. The central element of the respirographic biosensor is this 

DO electrode since it allows to follow the oxygen uptake by the biocatalysts. In order to 

characterize the interaction between the influent wastewater and the activated sludge, short 

term (30 min) batch experiments are performed by injecting a pulse of wastewater sample into 

the reactor. Alternatively, a calibration pump can be activated to inject a sample with known 

composition to verify normal operation of the sensor. The substrates present are oxidized 

by the activated sludge, resulting in so-called respirograms (a typical respirogram is given in 

Figure 2, upper plot). 

In order to maintain the sludge in the sensor's reactor representative of the sludge in the 

treatment plant for as long as possible, the wastewater loading rate of the sludge is kept at 
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Figure 1: Schematic diagram of the RODTOX biosensor. 

the same value as the one of the plant, typically 0.25 g COD/g biomass/d. Moreover, the 

system has been equipped in such a way that sludge replacement is performed easily, the sensor 

being fully operational again after approx. one hour. It is advisable to replace the sludge every 

two weeks, unless internal checks made by the sensor advise that the sludge must be replaced 

earlier. The sensor is designed in such a way that it can operate on crude wastewaters at the 

treatment site. 

The DO-data are constantly preprocessed by the local microprocessor, and transmitted to 

a more powerful computing environment for system identification. The RODTOX provides 

the computer dedicated to model based control with 5 different on-line measurements (Figure 

3): on the one hand, continuous information on influent characteristics such as overall waste 

content -expressed as Biological Oxygen Demand [BOD]-, oxygen mass transfer characteristics 

[KLa, S02,sat], and possible presence of toxicants [PERCENT INHIBIT.]. On the other hand, 

biological characterization of the sludge present in the RODTOX bioreactor, such as its activity 

[BIOL.ACT.] and the substrate induced oxygen uptake rate [OUR], is performed. 

A description of the substrate concentration estimator, toxicity detection, and sludge activity 

measurement can be found elsewhere (Kong et al., 1993; Vanrolleghem et al., 1994). 

The refined characterization of the biosystem is accomplished on a computing environment 

that receives Oxygen Uptake Rate [OUR]-data on-line from the sensor as soon as a respirogram 

is completed. On these data, system identification is performed using the models described 

below and a nonlinear parameter estimation algorithm. The direction set technique as modified 

by Brent (1973) has been applied. 

To obtain the desired OUR-data, interfering processes caused by the DO-electrode and the 

mass transfer processes have to be eliminated from the raw electrode output. To character­

ize the dissolved oxygen probe behaviour, the experimental setup proposed by Philichi and 

Stenstrom (1989) was used. The changes in mass transfer characteristics [KLa, S02,sat] that 

may be the result of sample addition, can be estimated in the RODTOX using the methods 

developed in the paper. 
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Figure 2: Upper plot: typical respirogram recorded by the RODTOX. Lower plot: KLa calcula­

tion performed for determination of the time of zero exogenous oxygen uptake (calculated KLa 

was 0.19 min- I ). 
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For the system identification step it is essential to know whether the sample injection can be 

regarded as a pulse addition. Using tracer experiments, the mixing time was determined and 

found to be less than 10 seconds, which is negligible compared to the biological time constants. 

The sludge used in the experiments was obtained from the wastewater treatment plant of 

Maria Middelares (Gent, Belgium) that predominantly treats municipal wastewater. The 

wastewater that has been evaluated is an effluent of an anaerobic digestor. 

MODELLING 

In this work, parameters and variables describing the substrate degradation kinetics as re­

flected in the respirogram data are estimated for two models. The first one is the IAWQ 

Model N°l as modified by Sollfrank and Gujer (1991) with 7 states. The second model con­

sidered in the paper is a simple Monod growth/decay model with only three state variables. 

In the sequel, the models are presented in the way they would apply for a treatment plant 

as schematized in Figure 4. For the model of the clarifier dynamics, reference is made to 

Van Impe and Vanrolleghem (1994). Since the aim of the respirographic biosensor is to 

provide information with respect to the plant model, the same mathematical description is 

used for the system identification of the OUR-data. However, since the sensor performs batch 

experiments, the transport terms can be omitted, and the initial pulse of substrate added can 

be incorporated in the initial condition of each batch experiment. 
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Figure 4: Schematic overview of an activated sludge wastewater treatment plant. 

Modified IAWQ Structured Model 

In 1987 the IAWQ (former IAWPRC) Task Group for Mathematical Modelling for Design 

and Operation of Biological Wastewater Treatment reviewed existing mathematical models 

and reached a consensus concerning the simplest description having the capability of realistic 

predictions of the performance of single sludge systems carrying out carbon oxidation, nitri­

fication and denitrification (Henze et al., 1987). The simplest model required to reproduce 

process dynamics, was found to be a structured model with numerous parameters. Structur­

ing was found to be needed for both biomass (viable and inert compartments) and substrate 

(soluble, inert and particulate fractions). If experimental conditions are not designed properly 

or if no adequate instrumentation is available, this will clearly lead to parameter estimation 

difficulties (Allsop et al., 1990; Jeppsson and Olsson, 1993). 

In order to explain their experimental findings, Sollfrank and Gujer (1991) extended the 

structured description of carbon oxidation through the incorporation of a fourth (slowly hy­

drolysable particulate) substrate fraction. As a result of appropriate experimental conditions 

both nitrification and denitrification could be neglected in their experiments. In this paper, 

the same experimental approach has been adopted. Furthermore, biomass decay is assumed to 

consume oxygen rather than producing slowly biodegradable substrate as in the IAWQ model. 

In this way the original kinetic expressions could be simplified. 

The resulting aerator basin state vector consists of seven elements (Sr, Ss, XR , X s , XH , XI, 
S02), with the following kinetic relationships among them: 
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Inert Soluble Matter: 

Readily Biodegradable Substrate: 

dSs 
dt 

Rapidly Hydrolysable Material: 

Slowly Hydrolysable Material: 

Heterotrophic Biomass: 

dXs 
dt 

Inert Particulate Material: 

Oxygen Balance: 

- -kRXR 

+ QinXR,in + QrecXR,rec _ Qou,XR 
V V V 

-ksXs 

- flXH - bHXH 

+ QinXH,in + QrecXH,rec _ Qou,XH 
V V V 

dS02 
dt 

1-YH 
Y

H 
flXH - (1 - h)bHXH + KLa(S02,sa' - S02) 

+ QinS02,in + QrecS02,rec _ Qout S02 

V V V 

(1) 

(2) 

(3) 

For an explanation of all symbols used, reference is made to the Nomenclature at the end of 

this paper. All concentrations are uniformly expressed as Chemical Oxygen Demand [COD]. 

While all hydrolysis kinetics are assumed first order, the specific growth rate fl is modeled by 

Monod-kinetics: 
Ss 

fl = flmax KM + Ss 
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Simple Monod/decay Model 

The kinetic description of the simple Monod/decay model can be deduced easily from the 

modified IAWQ model. The model consists of differential equations (1), (2) and (3), omitting 

all terms involving SI, X R, Xs, XI. This results in: 

Readily Biodegradable Substrate: 

Heterotrophic Biomass: 

dSs 
dt 

- /1XH -bHXH 

+ QinXH,in + QrecXH,rec _ QoutXH 
V V V 

Oxygen Balance: 

dS02 
dt 

1-YH 
- - YH /1XH - (1- h)bHXH + K L a(S02,sat - S02) 

+ Qin S02,in + Qrec S02,rec _ Qout S 02 
V V V 

RESULTS AND DISCUSSION 

(4) 

(5) 

The aim of the work presented in this paper is to provide a model based controller with the 

necessary kinetic information on the substrate/ activated sludge interaction. This informa­

tion is given with respect to the models used in the controller and is obtained by performing 

experiments in which sufficient excitation of the system is obtained to allow accurate model 

identification. The sufficiently rich 0 UR-data that result from the batch experiments per­

formed in the sensor represent the impulse response of the activated sludge biosystem. 

Before the oxygen uptake rate data can be used in the system identification step to extract 

biologically meaningful parameters and variables, some device dependent phenomena must 

be filtered from the raw electrode output so that the biological process is separated from 

these parasite processes. One such parasite process is due to the electrode response which 

is not negligible when industrial type (robust but sluggish) electrodes are used. Another 

hardware dependent effect is caused by the oxygen mass transfer which together with the 

respiration rate determines the measured DO profile. In the next sections the way these 

processes are subtracted from the raw data to yield the desired 0 UR-data is explained in detail. 

Subsequently, the obtained oxygen uptake rate will be subjected to system identification. 

Probe Response 

The dynamics of oxygen electrodes have been described most often as first order processes. 

Occasionally, however, the up-response may be different from the (slower) down-response (Lee 

& Tsao, 1979). Therefore, up and downstep-responses of the RODTOX electrode (Conducta 

-IV/1.S-



8.00 120 

~ / ..... ----------------- lOO 
0 6.00 ,. .. / 
a / 80 
~ / 0 • 
~ I g 

~ 
I .. 

4.00 I 60 ; 
0 .. 
... '" 0 4 • • .. 2.00 • 
~ 2. 

0.00 0 
-I 0 2 3 • 5 • 7 

Time (minutes) 

Figure 5: Up- and downstep response of DO-probe. The dashed downstep curve (obtained by 

subtracting the upstep response from its final value) is given for comparison purposes. 

Tristar 905-8) have been recorded with an experimental setup as described by Philichi and 

8tenstrom (1989). These results (Figure 5) show that a first order description with a time 

constant T of 55 seconds is adequate. From this, it is clear that the electrode response cannot 

be neglected when identifying the bioprocess which has time constants in the same range. 

However, knowledge of the electrode model and its parameters allows to calculate the actual 

dissolved oxygen concentration 802 : 

(6) 

where E is the electrode output. Clearly, attention must be paid to noise elimination since 

taking derivatives enhances the effect of noise. Notice that using a faster electrode (with 

thinner membranes) would be at the expense of sensor reliability (increased vulnerability of 

such membranes) and noise rejection. 

The simulations of some impulse responses given in Figure 6, illustrate that actual oxygen 

concentrations (full line) may differ quite substantially from the electrode output (dashed 

line). The simulated respirograms represent a typical run of different wastewaters added to 

the respirographic biosensor. Respirograms I, Il, III and VI are due to the addition of (different 

amounts of) one substrate at a time, while runs IV and V are the result of the injection of a 

mixture of two substrates. 

Mass Transfer and Endogenous Respiration 

As indicated above, the objective from a monitoring point of view is to interpret OUR profiles 

to obtain information on the wastewater/sludge interaction. However, the DO-data which have 

been obtained from the electrode output [equation (6)J are the result of two processes: (1) the 

oxygen uptake, and (2) aeration, of which only the former is related to the wastewater/sludge 

interaction. The dissolved oxygen balance in the RODTOX reactor may therefore be written 
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Figure 6: Simulated respirograms: probe output (dashed line) versus real DO (full line}. Details 

on the additions of single or mixed substrates in different amounts are explained in the text. 

as: 

(7) 

Referring to balance (3), one notices that the exogenous or substrate induced oxygen uptake 

rate (0 URex) corresponds with the first term, while the endogenous respiration rate (0 URend) 
is due to decay of biomass as represented in the second term of the right hand side of (3). 

Since especially the waste degradation kinetics are of interest, and the endogenous respiration 

can be assumed constant within the short time horizon of a respirogram, this dissolved oxygen 

balance can be simplified. Knowing that a steady state dissolved oxygen S02,e is reached in 

the absence of substrate (OURex = 0), OURend can be set equal to: 

(8) 

Introducing this in the DO mass balance (7) results after some rearranging in: 

(9) 

With this equation, the substrate induced oxygen uptake rate can be readily calculated on the 

premise that the oxygen mass transfer process is well characterized. 

Two methods have been developed to assess mass transfer parameters in the RODTOX. One 

is based on the standard J{La determination procedure (ASCE, 1993), while the other takes 

advantage of the perturbation of the steady state oxygen level by exogenous biological oxygen 

removal after substrate injection. 
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The first method, consists of interrupting the aeration, which results in a decrease in the 

oxygen level, according to (7) with KLa = O. After a certain DO-decrease (approx. 2 ppm) 

is reached, aeration is restarted and the resulting DO-data allow identification of the mass 

transfer coefficient KLa with the standardized reaeration curve technique ASCE (1993). When 

the baseline S02,e is reached again, normal operation can continue. 

Since the experiment is initiated only when the previous respirogram has returned to the 

steady state (consequently OURex = 0), the rate at which the dissolved oxygen concentration 

decreases is caused by the endogenous respiration only. From this 0 URend is calculated, 

providing an estimate of the decay related term (1 - /r)bHXH in the models describing the 

bioprocess (3), (5). 

In addition to this, an extra (quite important) parameter estimate can be obtained from this 

specific experiment. The estimated OURend and KLa values can be used to assess the oxygen 

saturation concentration S02,s.': from the steady state DO balance in the RODTOX reactor 

(8) it can be observed that the difference between S02,s.' and the baseline S02,e is equal to 

o URend/ KLa. 

Therefore, with this first method both mass transfer characteristics [KLa, S02,8.,] can be es­

timated. In addition, an important biological characteristic, i.e., the endogenous respiration 

that is related to the decay term in the models can be assessed. However, this information 

can only be obtained at the expense of an interruption of normal operation of the sensor for 

approx. 20 minutes. In this period no data is obtained concerning waste content, degradation 

characteristics nor potential toxicity. Therefore, it is not advisable to perform this procedure 

very often. 

Estimation method 2: ]{ta 

Because mass transfer characteristics, and especially KLa, can be subject to changes from one 

sample to another, a method is required that avoids the disadvantage of the above method. 

Therefore, in the second method the substrate induced perturbation of dissolved oxygen by 

biological oxygen uptake is taken advantage of to estimate the volumetric mass transfer coef­

ficient. Indeed, the latter part of a respirogram looks very similar to a reaeration curve (see 

Figure 2, upper plot). It is therefore tempting to use the same estimation technique to assess 

KLa. However, in order to do so, one has to assume (or prove) that the substrate has been 

oxidized completely during the part of the respirogram that will be used for the estimation. 

Only under this condition, the same oxygen balance (9) (with OURex = 0) as in the previous 

method applies. 

The goal is to prove that from a certain time instant in the batch experiment onwards, the 

dissolved oxygen balance can be described by a model in which the exogenous respiration rate 

is set equal to zero. The method that will be developed here originates from model structure 

characterization techJiiques: a good indication of the adequateness of a model to describe 

a system is that the parameters are time-invariant. If the model is not correct, parameter 

estimates will compensate for model insufficien'cies. The technique that is used in the sequel 

focuses on one of the parameters of the propoJed model and computes the parameter values 
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of the equation at different time instants. Then the following must hold true: if the proposed 

model is correct, the calculated parameter values should be about the same at each time 

instant (Vansteenkiste et al., 1979). 

This technique has been applied to the respirogram shown in Figure 2. For each time instant 

ti, the KLa parameter in the oxygen balance (9) with only endogenous respiration has been 

calculated with dissolved oxygen and slope values of that time instant: 

£:"S02 (ti) 

KLa( ti) ~ S £:,.~ ( ) 
02,e - 02 ti 

From the bottom plot of Figure 2, one clearly distinguishes a period of time in the experiment 

during which the parameter estimates vary substantially, i.e., up to about 12 minutes, the 

proposed model with which the KLa(ti)-values were .calculated is not correct. After this time, 

a period follows in which constant KLa(ti)-estimates are obtained, i.e., here the assumed model 

is correct. From this, one can deduce that in this experiment the substrate was oxidized after 

about 12 minutes. 

Once the time is known where the mass balance (9) applies with OURex = 0, all dissolved 

oxygen measurements after this time can be used to estimate KLa with the standard reaeration 

curve technique (ASCE, 1993). 

The results can be summarized as follows: the first technique for estimation of mass transfer 

and endogenous respiration characteristics has the advantages of being more standardized and 

yielding more useful information [(1 - fr)bHXH, KLa, S02,sa,] than the second method, but 

at the expense of approx. 20 minutes interruption of the normal operation of the RODTOX. 

Both methods of KLa estimation give reproducible results, typically in the range of 0.15 min-1 

(Coefficient of variation C.V.= 2.5 %). These are rather low, but acceptable values in view of 

the non-optimized aeration system of the biosensor. 

The normal procedure for mass transfer characteristic estimation is to assess KLa during each 

respirogram and to have a regular check by imposing an experiment as described in the first 

method. In this way independent validation of the on-line KLa-estimates is obtained. 

Interpretation of Oxygen Uptake Rates 

Once the electrode and mass transfer have been characterized, these parasite processes can 

be eliminated from the respirograms using (9) to calculate the (exogenous) oxygen uptake 

rate curves that represent the impulse response of the activated sludge to substrate addition. 

These data can now be subjected to model based interpretation, i.e., the model predictions 

must fit as close as possible to the experimental data. For a good understanding the following 

basic equation must be kept in mind in case of the modified IAWQ model [equations (1), (3) 

and (7)J: 
dSs 

OURex = -(1 - YH)( Tt - kRXR - (1 - iSI)ksXs) 

In this work, iSI is assumed zero, as proposed by Sollfrank and Gujer (1991). For the 

Monod/decay model OURex reduces to 

OUR = -(1- y'H)dSs 
ex dt 
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Table 1: Results of the model identification on biodegradation of an anaerobic digestor effluent. 

Cost: Relative Error Cost: Absolute Error 

Variable or parameter IAWQ Monod IAWQ Monod 

Ss,in(l - YH) 0.113 306.5 0.000 340.5 

J{M(l- YH) 0.1433 0.8608 0.1691 0.0502 

flmaxXH/YH 77.7 165.3 77.3 39.0 

X R,in(l - YH) 269.6 261.7 

kR 7.1149 5.4003 

X S,in(l - YH) 80.5 71.3 

ks 1.1415 4.3540 

Error 2.8138 8.8270 0.0251 0.2615 

AIC -16.835 -9.940 -78.325 -55.790 

Due to the factor (1 - YH ), some initial states and parameters can only be estimated up to 

this factor. An identifiability analysis has shown that only the parameter couples as given in 

Table 1 are identifiable on the basis of ~URex-data (Vanrolleghem & Dochain, 1993). In order 

to obtain the effective wastewater concentrations (denoted with SS,in, XR,in, XS,in in Table 

1), the initial conditions in the RODTOX reactor, i.e., the initial substrate concentrations 

were recalculated with the dilution of the sample in the reactor liquor. For instance, the 

wastewater concentration XR,in corresponding with an initial reactor concentration XR(O) 

and given a sample volume Vsample and reactor volume Vreactor, is calculated from: 

XRin = XR(O)Vreactor 
, Vsample 

The nonlinear optimization was performed by calculating both absolute and relative errors 

between OURex model outputs fj and measurements yM and combining all errors in the iden­

tification functionals (P denotes the set of parameters and initial conditions to be estimated): 

n 

Jabs(P) = "L,(yr - 11.)2 
i=l 

A typical illustration of the fitting of the IAWQ based model to 0 URex data of an effluent 

of an anaerobic digestor being treated in a subsequent activated sludge system is given in 

Figure 7. In order not to overload the plot, only a limited number of the original OURex data 

(sampling interval 10 s) are shown. It is clear that a reasonable fit is obtained. However, 

depending on the chosen objective functional different fits are obtained. This is reflected in 

the associated parameter values (Table 1): if a relative quadratic error is used (full line), more 

weight is given to the final data values than for an absolute cost functional (dashed line). 

For comparison, the use of a Monod/decay-type model (without hydrolysable particulate 

materials) results in a relatively poor fit (Figure 8). For this simple model, the dependency of 

the fit on the cost function is even more striking. 
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Figure 8: Single substrate (Monod) model identification - same legend as Figure 7. 
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In order to evaluate the results for the two models, the parameter and initial state values 

obtained have been combined in Table 1. A first important conclusion is that the total waste 

content obtained from both models (i.e., (1-YH ) (SS,in +XR,in +XS,in) for IAWQ; (1- YH )SS,in 
for Monod) is conserved (ca. 340 g COD/m3 ). This validates to a certain extent the estimation 

results since the amount of oxygen used for biodegradation of the added waste must be the 

same for both models. 

In contrast to this similarity, the proposed structured model seems more applicable in dynamic 

situations, because the model fittings clearly indicate the better descriptive value of the IAWQ 

based model compared to the Monod equation. 

However, one must be aware that fit is not the only guideline for inferring the mathematical 

structure most adapted to a data set (Ljung, 1987): one has also to compensate for the differ­

ence between models in their number of degrees of freedom. Among a number of techniques 

which take this into account, the method proposed by Akaike (1974) was chosen. His AlC­

criterion was developed as an objective decision tool for structure characterization of linear 

systems which balances parameter parsimony (number of parameters np) and fit (Residual 

Sum of Squared Errors SSE): 
SSE 

AIC = N log N + 2np 

In Table 1 the calculated AlC-values point to the completely structured model as the best one 

of the proposed models (note that the models to discriminate are nonlinear). This indicates 

that the information content of the experimental data is sufficiently rich to justify the use of 

the structured IAWQ based model instead of a Monod-type relation. 

Since this result indicates that a better description of the bioprocess can be obtained on 

the basis of the data provided by the RODTOX respirographic sensor, it is believed that 

more efficient control strategies can be developed that take advantage of this information. As 

a result, 'model based nonlinear adaptive control strategies have been designed around this 

sensor's outputs. (Van Impe and Vanrolleghem, 1994). 

CONCLUSIONS 

In order to improve the control of the activated sludge wastewater treatment process, the 

need for a better mathematical description of the bioprocesses involved is felt. Although such 

structured models have been developed, their application in control systems has been limited 

due to the lack of adequate sensors providing the necessary biological input data. 

In the paper, the new intelligent biosensor RODTOX is presented. This respirographic device 

allows on-line reconstruction of the response of activated sludge to a pulse waste sample 

addition. It is shown that device-specific parasite processes (electrode and mass transfer) 

can be eliminated from the raw data, isolating the necessary biological information (oxygen 

uptake rates). These are subsequently interpreted in the framework of a recent structured 

and a non-structured model of the biotransformation process. The results indicate that the 

generated data provide sufficient information to justify a rather complex structured model of 

the activated sludge process. Since these data can be obtained on-line, this sensor permits the 

development of control strategies which take advantage of this model and the associated data. 
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NOMENCLATURE 

t : time [hJ 

SI : soluble inert organic material [gCOD/m3J 

Ss : soluble readily biodegradable matter [gCOD/m3J 
X R : rapidly hydrolysable material [gCOD/m3J 

Xs : slowly hydrolysable material [gCOD/m3J 

X H : heterotrophic biomass [gCOD/m3J 

XI : inert particulate material [gCOD/m3J 

S02 : dissolved oxygen concentration [g Odm3J 

S02,sat : saturation dissolved oxygen concentration [g 02/m3J 

S02,e : baseline dissolved oxygen concentration [g 02/m3J 

V : aerator volume [m3J 

Qin : influent flow rate [m3/hJ 

Qrec : recycle flow rate [m3/hJ 

Qout : = Qin + Qrec aeration tank output flow rate [m3/hJ 
YH : heterotrophic yield coefficient [gCODXH/gCODssJ 

iSI : fraction of inert soluble material [gCODsI/gCODxsJ 

h : fraction of inert particulate material [gCODxI/gCODxHJ 

[{M : Monod saturation value for Ss [gCOD/m3J 

It : specific growth rate of heterotrophs [1/hJ 

Jlmax : maximum specific growth rate [1/hJ 

kR : rate of rapid hydrolysis [1/hJ 

ks : rate of slow hydrolysis [1/hJ 
bH : decay rate for heterotrophs [1/hJ 
[{La : mass transfer coefficient [1/hJ 

OURex : exogenous oxygen uptake rate [g 02/m3 hJ 

OURend : endogenous oxygen uptake rate [g Odm3 hJ 

AlC : Akaike's information criterion 

N : number of data points 

np : number of model parameters 

SSE : residual sum of squared errors 
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Nonlinear Adaptive Control 
of the Biotransformation and Sedimentation Processes 

ABSTRACT 

The last few decades, there is an increasing concern over water quality by private citizens and 

regulatory agencies. So it is becoming more and more important to design and operate waste 

treatment processes in such a way that a high quality effluent is produced at all times. 

In this paper model based control algorithms are proposed for the activated sludge waste water 

treatment process. In order to improve the overall performance of the plant, the complete 

process consisting of biodegradation and sedimentation is considered. Therefore, the model 

used for simulations and controller design describes both aeration and sludge settling. 

In modelling the biodegradation process, a slightly modified version of the structured com­

partment lA WQ N'1 model which summarizes the current knowledge is used. In this paper a 

combined hardware-software sensor is designed which estimates on-line the missing parameters 

and state variables. 

As for the sedimentation process, a solid flux theory based model is used. In the settler tank 

and the recycle loop, biomass and substrate are considered as lumped variables. 

Based on this global model with high predictive value, it becomes then possible to design nonlin­

ear adaptive control schemes. To illustrate this approach two simulation examples are given: 

control of the sludge blanket level in the settler, and simultaneous control of both the sludge 

blanket level and the heterotrophic biomass concentration in the aeration tank. The interaction 

of the two subprocesses -neglected in most studies up to now- is clearly illustrated. 

INTRODUCTION 

The development of process control strategies based on modern control techniques, in general 

requires both the knowledge of a sufficiently accurate mathematical model and the availability 

of adequate on-line sensors. In contrast with conventional chemical industries, the application 

of advanced control and optimization methods to environmental and biotechnological plants 

has not yet become common practice: much more research effort is needed to develop accurate 

mathematical models and adequate sensors of biological variables. 

The increased interest of the last decades in the control of activated sludge wastewater treat­

ment plants aims at reaching a satisfactory trade-off between stricter environmental norms 

and increasing energy demands. 

The activated sludge wastewater treatment process considered in this text consists of two 

subprocesses (Figure 1). The variable incoming load (flow rate Qin) enters the aerator where 

oxidation of the biodegradable components takes place at the expense of oxygen supply to 

the growing biocatalysts (biomass), i.e., the activated sludge. The effluent stream from the 

aerator (flow rate Qout) is sent to the settler where both clarification and sludge thickening 
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Figure 1: Activated sludge process with recycle loop. 

take place. The main effluent of the settler is the clarified wastewater (flow rate Q eft). A 

recycle flow of sludge (flow rate Qrec) from the settler to the aerator -in order to promote 

oxidation by increasing the biocatalysts concentration- closes the loop. The excess amount of 

sludge is withdrawn as a waste stream (flow rate Qw). 

Most recent studies concerning modelling of this process can be characterized by the following 

considerations. 

First of all, although the two subprocesses mentioned are strongly interconnected by the 

recycle loop, recent papers deal almost exclusively with the biotransformation processes in the 

aerator, while using a very simple sedimentation model for the settler. 

Second, in modeling the biotransformation process so-called reduced-order unstructured -

very often 'single substrate single biomass'- or even linearized dynamic models have been 

used. Some authors (e.g., Marsili-Libelli, 1989, ... ) argue that mathematical models, which 

take into account the complex struCture of the microbial dynamics and give a detailed picture 

of the bioreactions developing in the oxidation stage, can only serve for speculative purposes: 

the complexity of these models, combined with the large number of sometimes difficult to 

determine parameters, makes them less suitable for most control applications. This explains 

why unstructured models (such as the simple Monod/decay model) in an attempt to fill the 

gap between modelling accuracy and contrOl needs, have deserved (and still deserve) so much 

attention in the literature. Marsili-Libelli (1989) couples a sedimentation model based on 

solid flux theory to his simplified biotransformation model-in fact a first order approximation 

of the unstructured Monod/decay model- in order to obtain a complete process description. 

However, already in 1975 some deficiencies of such simplified models have been reported by 

Busby and Andrews (1975). For instance, an unstructured model using a Monod-type law for 

the specific growth rate cannot describe the commonly observed lag phase in the growth curve 

of biomass. 

Third, in many activated sludge models the clarifier is treated as a steady state concentrator, 

possibly including a pure time delay term (Allsop et aI., 1990). In the first attempts to 
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model sedimentation an empirical approach has been used in order to obtain simple relations 

between the important variables involved. Examples are the model of Agnew (1972), the 

model of Bryant et al. (1971), ... Although it can be assumed that there is no bioactivity 

outside the aeration tank, the influence of the biological condition of the sludge on its settling 

characteristics has been shown several times (Sheintuch, 1987). The last few years, more 

attention is being given towards modelling the sedimentation processes in the settler, as a 

clarification failure has an immediate impact on the overall performance of the plant (Sekine 

et aI., 1989; Takacs et aI., 1991). 

As already mentioned, one of the major bottle-necks in designing model based control algo­

rithms for an activated sludge wastewater treatment process is the lack of sufficiently accurate 

on-line sensors. Especially in the case of a structured compartment model it is very diffi­

cult to obtain good measurements and/or estimates of the biological variables needed in the 

control law. As a consequence, indirect estimation of the state and parameters of the pro­

cesses involved -especially by the interpretation of dissolved oxygen dynamics (Holmberg, 

1990; Marsili-Libelli, 1990)- has allowed only a certain level of (adaptive) process control. In 

addition, the estimation of variables and parameters is based mostly on simple unstructured 

or even linearized models with 'lumped terms' so as to short-circuit some of the estimation 

difficulties (Ko et aI., 1982). 

Recently, a significant progress has been made in the field of instrumentation. Especially the 

on-line determination of variables important for the identification of the biological processes 

in the system has gained a lot of attention (Sekine et aI., 1989; Sollfrank & Gujer, 1990). 

Vanrolleghem et al. (1994) reported the application of a new respirographic biosensor ROD­

TOX (Rapid Oxygen Demand and TOXicity tester) in an attempt to justify the use of a 

modified version of the structured compartment IAWq model N°1 (Henze et aI., 1987). The 

data provided by the RODTOX are particularly useful for the estimation of state variables 

(i.e., the different fractions of substrate and biomass) and parameters, because this biosensor 

is a down-scaled real life simulation of the wastewater treatment plant. Experimental results 

clearly illustrated the better predictive value of this structured compartment model compared 

to the (often used) Monod/decay model. 

Recent trends in control of activated sludge processes can be summarized as follows. 

A survey of performance indices is given by Marsili-Libelli (1989). The most important ma­

nipulated variables are the air flow rate to the aerator, the sludge recycle rate and the waste 

flow rate. If the aerator can be considered as a series of ideal continuous flow stirred tank 

reactors (CSTR's) (e.g., plug flow reactor), the splits of the feed and recycle streams between 

the different sections of the aerator are available also: control of the feed distribution. 

Many papers deal with the control of the dissolved oxygen level at some critical value in the 

aerator using the air flow rate as the manipulated variable in a simplified model (Goodwin et 

aI., 1982; Ko et aI., 1982; Marsili-Libelli, 1989). Observe that this problem can be decoupled 

from other control problems. Moreover, if the dissolved oxygen level is kept constant the 

influence on the reaction kinetics must not be considered. In this text it is implicitly assumed 

that this condition is fulfilled. 

Control of the recycle flow rate is reported by SinCic and Bailey (1978). Because of the regular 

diurnal patterns in wastewater treatment plant loadings, the control system is designed as a 
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periodic rather than as a steady state process. Yeung et al. (1980) compared this approach 

with conventional control. They also illustrated the influence of considering a structured 

sludge kinetics model (due to Busby & Andrews, 1975) on the control laws obtained: if for 

instance minimization of effluent BOD is the objective, classical control may produce control 

manipulations which are very nearly opposite to the most effective periodic response. 

Most studies based on optimal (periodic) control result in open-loop schemes, in which a 

collection of precomputed inputs are injected into the system at prescribed time intervals. 

The lack of a feedback adjusting mechanism may be circumvented by prescribing the controller 

structure, and optimizing its parameters with respect to the performance index. Of course, 

this results in suboptimal controllers (see, e.g., Marsili-Libelli, 1982). Schaper et al. (1990) 

designed a robust controller with prescribed structure for the recycle flow rate within a linear 

framework by bounding the nonlinear relationships in a (simplified) model by two linear ones. 

Feedback control of the waste flow rate is reported by Vaccari et al. (1988). An example of 

feed distribution pattern control can be found in two related papers (Sincic & Bailey, 1978; 

Yeung et aI., 1980). 

The contributions reported in this paper can be schematized as follows. 

The design of model based controllers for an activated sludge wastewater treatment plant 

is based on the following global process model for biodegradation and sedimentation. The 

biotransformation processes in the aerator (limitation is made to carbon oxidation only) are 

modeled using the structured compartment IAWQ model N°1 (Henze et aI., 1987), slightly 

modified by Sollfrank and Gujer (1991). Sedimentation is modeled according to the solid flux 

theory to describe the subsidence of suspended solids through layers of differing concentra­

tions (Busby & Andrews, 1975; Marsili-Libelli, 1989). The variables involved are the effluent 

suspended solids concentration, the sludge blanket height and the recycle concentration. 

In order to solve the parameter and state estimation problem a combined hardware-software 

sensor is designed. Using the information obtained from a new respirographic biosensor -as 

reported in Vanrolleghem et al. (1994)- and a limited number of on-line measurements, it is 

possible to estimate the lacking variables with a software sensor. 

As such, the design of high performance closed-loop control algorithms based on a complete 

process model with high predictive value becomes more feasible. In deriving the proposed 

control schemes some techniques of adaptive linearizing control are used. By doing so, the 

non-linear nature of the process itself is incorporated into the control law in order to obtain 

better control. As an example, closed-loop control laws for the waste and recycle flow rates 

Qw and Qrec are derived. The interaction of the subprocesses -neglected in most studies up 

to now- is illustrated with some typical numerical results. 

SYSTEM MODELS AND CONTROL ALGORITHMS 

Biotransformation Process Model 

In modelling the biotransformation processes occurring in the aerator, Busby and Andrews 

(1975) reported for the first time the use of a structured compartment model: the sludge 

is structured in stored mass, active mass and inert mass. One of the key features of this 
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model is a rational expression for the lag phase in the growth rate curve. Note that a simple 

unstructured model using a Monod-type law for the specific growth rate of biomass cannot 

simulate this commonly observed lag phase. 

Recent advances in the knowledge of the processes occurring in the aerator are summarized in 

the IAWQ Model N°1 describing the complete wastewater treatment cycle of carbon oxidation, 

nitrification and denitrification (Henze et al., 1987). It should be mentioned that predictions 

of activated sludge concentration, rather than the concentrations of soluble constituents in 

the vessels were the primary focus in the development of the model. Sollfrank and Gujer 

(1991) reported a slightly simplified and extended model for the first subprocess -i.e., for the 

aerobic heterotrophic degradation of organic matter- characterizing the organic material with 

6 fractions. The following model is written for the aerator of Figure 1: 

dSI 

dt 

dSs 
dt 

dXs 
dt 

dXI 

dt 

dS02 
dt 

- fSIkSXS 

+ QinSI,in + QrecSI,rec _ QoutSI 
V V V 

- -i
H 

X H + kRXR + (1- fSI)ksXs 

+ QinSS,in + QrecSS,rec _ QoutSS 
V V V 

- -kRXR 

- -ksXs 

+ QinXS,in + QrecXS,rec _ QoutXS 
V V V 

- flXH - bHXH 

+ QinXH,in + QrecXH,rec _ QoutXH 
V V V 

- fIbHXH 

+ QinXI,in + QrecXI,rec _ QoutXI 
V V V 

1-YH 
Y

H 
flXH - (1- fI)bHXH + ha(S02,sat - S02) 

+ QinS02,in + QrecS02,rec _ Qout S02 
V V V 

(1) 

As already mentioned, the dissolved oxygen concentration S02 is assumed to be maintained 

at a (sufficiently high) constant level such that its influence on the reaction kinetics must not 

be considered. For an explanation of all symbols and units used, refer to the Nomenclature 

at the end of this paper. The specific growth rate fl is modeled by Monod-kinetics: 

Ss 

The values for the parameters used in all simulations -due to Sollfrank and Gujer (1991)- at 

T = 20 °C are given in Table 1. 
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Table 1: Biotransformation model parameters - Input flow rate and composition mean values. 

parameter T = 20°C input flow mean value 

J1max 1.5/24 Qin 100 

KM 5 

YH 0.64 SI,in 30 

bH 0.24/24 SS,in 2000 

ks 2.5/24 XR,in 50 

kR 25/24 XS,in 100 

h 0.20 XH,in 70 

ISI 0 X/,in 25 

It is common practice to relate the recycle and waste flow rates, Qrec and Qw, to the influent 

flow rate, Qin, by defining the recycle fraction.,. and the waste fraction w respectively: 

and (2) 

Balancing yields: 

(3) 

In activated sludge feed flow rate and composition, large amplitude temporal fluctuations, all 

with a periodicity of one day, are frequently observed. Since these fluctuations are often in 

phase, the ratio of maximum to minimum total feed waste loading during a day is typically 

6 : 1 or greater. This suggests to design the system as a periodic rather than as a steady state 

process (Sincic & Bailey, 1978). 

In the simulations, the following input has been considered. The mean values are listed in 

Table 1. Consider then a factor I defined by: 

t - 10 t - 10 
1= 1 + 0.1875 sin(27r 24 ) + 0.0625 sin(67r 24 ) + 0.03751) 

where 1) represents a zero mean white Gaussian noise signal, with variance 1. Observe that 

the mean value of I, /, is equal to / = 1. The actual input signals to the plant are then 

simulated as follows: 

I SI,in 

In order to evaluate plant performance under disturbances, input signals are considered with 

a period of 7 days, using I as given during the first 5 days, and augmenting I with 0.125 

during the last 2 days. The corresponding values of I for 1 week are shown in Figure 2. 

In comparison with a simple, commonly used Monod/decay model, this structured compart­

ment model is a better description of the aeration process for the following reasons. 

- IV/2.6-



Time [days] 

Figure 2: Factor f. 

From model equations (1) it can be seen easily that this model is an extension of a 

'single substrate (Ss) single biomass (XH )' Monod/decay model. Figure 3 illustrates 

that the structured compartment model allows for simulating an additionallag time in 

the biomass growth curve. 
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Figure 3: Influence of model structuring on the lag time. 

Although the use of a structured compartment model implies the introduction of many 

additional kinetic parameters, such models are believed to have a greater predictive 

value (Nielsen, 1991). This has been illustrated with some real-life experimental results 

in Vanrolleghem et al. (1994). 

Furthermore, it has been indicated (Yeung et al., 1980) that the optimal control law 

for structured sludge kinetics can be substantially different from, e.g., the Monod/decay 

sludge kinetics result, thus illustrating the importance of accurate identification of sludge 

kinetics for optimization purposes. 
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Sedimentation Process Model 

Busby and Andrews (1975) stated that in developing a dynamic model for the settler, consid­

eration must be given to the three primary functions of the solids-liquids separator, namely 

thickening, clarification and sludge storage. Sedimentation is modeled according to the solid 

flux theory (Busby & Andrews, 1975; Marsili-Libelli, 1989). 

In the settler, all particulate material is lumped as follows: 

The motion of the bioflocs generating the solid flux is governed by 2 forces: gravity (with v 

[m/h] the settling velocity) and 'bulk' flow due to sludge withdrawal from the bottom (with 

u [m/h] the bulk velocity). The settling velocity v can be modeled using Cole's law: 

1:> X-n t:>. X.-1 V=Vo =Vo 

where X is expressed in [g/m3
], while the bulk velocity u follows from: 

where A is the settler cross section [m2]. The total flux G [g/h m2
] is then: 

G(X,u) = vX + uX = voX· + uX 

Under normal operating conditions, the parameters Vo and a (or n) are stable. They can be 

estimated from batch settling tests as proposed by Sekine et al. (1989). Letting 8G/8X = 0, 

the following limiting quantities for biomass X and total flux G are obtained: 

1 u 
- exp(--ln( --)) 

a-I voa 

Assuming that the solids depletion rate from the underflow is governed by XL only, the 

underflow sludge concentration X ree [g/m3] is: 

(4) 

A mass balance around the settler gives (M is the solids mass in the settler): 

(5) 

considering that the solids loading rate depends on the incoming concentration X. 

No further biodegradation is assumed in the settler. So, in the recycle loop, X is decomposed 

as follows: 

Xi,ree ~ X ree ;, for i = R, S, H, I 

For the substrates, the following assumption is made: 

1:> 
SI,ree = SI 

1:> 
SS,ree = Ss 
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State and Parameter Estimation 

Vanrolleghem et al. (1994) reported the application of the new respirographic bio-sensor ROD­

TOX (Rapid Oxygen Demand and TOXicity tester) in an attempt to interpret the recorded 

respirograms within the framework of the modified structured compartment model IAWQ 

N°1. This (hardware) sensor is a down-scaled real life simulation of the wastewater treat­

ment plant under control: it reconstructs on-line the impulse response of the bioprocesses 

involved. The following combinations of state variables and parameters can be extracted from 

the respirograms recorded by the RODTOX: (iI - l)bHXH' ks, kR, !1maxXH/YH, J(M(l - YH), 

XR,in(l - YH), X S,in(l - YH) and SS,in(l - YH). 
However, in several control applications this information may not be sufficient. For instance, 

an accurate estimate of the different biomass and substrate fractions in the aeration tank is not 

available. Therefore, an additional software sensor is proposed, i.e., a numerical algorithm, 

which calculates on-line the lacking variables out of the available measurements (including 

the information from the RODTOX). A comprehensive treatment of the design of estimation 

algorithms for biotechnological processes can be found in Bastin and Dochain (1990) and the 

references therein. 

The following assumptions are made: 

1. The information provided by the RODTOX is continuously updated and immediately 

available. Note that ina practical situation an update becomes available approximately 

every 30 minutes. 

2. The heterotrophic biomass concentration in the influent XH,in is neglected in comparison 

with the concentration XH in the aerator. 

3. The parameter fr is assumed to be known. 

4. Total biomass concentrations X in , X and X rec are measured on-line (e.g., by turbidime­

try, ultrasonic or dielectric measurements, ... , see Harremoes et al., 1993), as well as all 

flow rates Q. 

For clarity, the data provided by the RODTOX are written between square brackets. Using 

XH,in = 0, one can write (X denotes the on-line estimation of X): 

x .. ~ X _ [XR ,in(l - YH )] _ [XS,in(1 - YH )] 
I,m - on }I' 1 }I' 

1- H - H 

The following extended Luenberger-observer based scheme is proposed to estimate Ss, the 

four components of X and the parameter YH • 

dSs 
dt 
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- -[kR]XR 

dXs 
dt 

+ [XR,in(1 ::- YH )] Qin + XR X rec Qrec 

1- YH V X V 
• Qout • 

- Xw-v- + WXR(X - X) 

- -[ks]Xs 

+ XH X rec Qrec 
X V 

• Qout • 
- Xw-V- + WXH(X - X) 

(frbHXH] 

The estimator parameters Wi and I are design parameters at the disposal of the user for the 

control of the stability and the tracking properties of the algorithm. 

Adaptive linearizing control 

As can be seen from the model equations given higher, an activated sludge wastewater treat­

ment plant is a nonlinear system. In the standard control approach, one first calculates 

a linearized approximation of the model, and then one designs a linear controller for this 

approximate model. However, the closed loop remains nonlinear, while stabilization is guar­

anteed only locally. In the nonlinear linearizing control approach adopted in this paper, the 

aim is to design a nonlinear controller which realizes a stable linear closed loop, whatever the 

operational conditions (Isidori, 1989). 

First the principle of nonlinear linearizing control is illustrated for a single input/single output 

(SISO) system. Suppose that the process to be controlled is described by a (minimum phase) 

state space model of the form (x is the n-dimensional state space vector): 

dx 
dt = f(x) + b(x) u (6) 
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which is linear in the (scalar) control input u, and with f and b n-dimensional vectors whose 

elements are (in general nonlinear) functions of the state vector x. Suppose the goal is to 

control a scalar output variable y which is a measured linear combination of the state variables: 

where eT is a row vector of known constants. 

The control objective is to track a reference output signal denoted y*(t), which may be time­

varying in general. In the special case of a constant reference, y* is called the set-point. The 

aim is to derive a control law u -which is in general a nonlinear function of the state x and 

the reference y*(t)- such that the tracking error (y - y*) is governed by a prespecified stable 

linear reference model. The design of this linearizing controller u occurs in three steps. 

1. First, an input/output model is derived by appropriate manipulations (e.g., successive 

differentiations) of the state space model (6). Suppose, for simplicity, that the i-th 

component of the state space vector x, i.e., y = Xi is to be controlled. The input/output 

model is then simply the i-th differential equation: 

dy 
dt = J;(x) + bi(x) U (7) 

This I/O-model is said to be of relative degree one. The relative degree is equal to one 

if the output y must only be differentiated once to make the input appear explicitly at 

the right-hand side. For a general output signal y, the input/output model will be a 

higher order differential equation. However, due to the special structure of model (6), 

the input/output model is also linear with respect to the control input u. 

2. Then a stable linear reference model for the tracking error e: ~ (y(t) - y*(t)) is selected: 

with A a positive number. 

de: 
-+Ae:=O 
dt 

3. The linearizing control law is obtained by eliminating dy / dt between (7) and (8): 

dy* 
-J;(x) + Tt - A(y - y*) 

U= 
bi(x) 

(8) 

If the state vector x and/or parameters of model (6) are not completely known or measured 

on-line, this control law is made adaptive by calculating the lacking variables with some on-line 

estimation algorithm. The design problem is then to select an appropriate adaptation law, 

which guarantees the closed-loop stability of the control system, even if the estimated values 

are still far away from their real values. 

Several applications of linearizing adaptive control in bioreactor control can be found in Bastin 

and Dochain (1990). 

The above linearizing controller for single input/single output (SISO) processes can be ex­

tended to the multiple input/multiple output (MIMO) case (see, e.g., Dochain (1991) who also 
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reports applications in bioreactor control). More precisely, the problem of controlling m out­

puts with m inputs is considered here. Suppose that the process to be controlled is described 

by a state space model of the form (u is the m-dimensional control input vector): 

dx 
dt = f(x) + B(x) u (9) 

which is linear in the control input vector u, and with f and B an n-dimensional vector and 

an n X m matrix respectively, whose elements are (in general nonlinear) functions of the state 

vector x. The m X 1 output vector y to be controlled is a linear combination of the n X 1 state 

vector x: 
t:; 

y=Cx 

where C is an m X n matrix of known constants. The design of the m-dimensionallinearizing 

controller u occurs again in three steps. 

1. Supposing that the m relative degrees are equal to one, then the input/output model is: 

t = C f(x) + C B(x) u (10) 

Observe that the extension to higher relative degree processes is theoretically possible. 

2. Assume that the following first order linear stable closed loop dynamics are desired: 

d(y - y*) + A (y _ y*) = 0 
dt 

(11) 

with y*(t) the reference vector -which may be time-varying in general-, and with A a 

stable matrix. An obvious choice for A is: 

A = diag(Ai) 

with Ai, i = 1, ... ,m positive numbers. 

3. The linearizing control law is obtained by eliminating dy/dt between (10) and (11): 

dy* 
u = [C B(X)tl [-C f(x) + Tt - A (y - y*)] 

It is implicitly assumed that the m X m matrix [C B(x)] is non-singular. 

RESULTS AND DISCUSSION 

Steady State Simulation 

In all simulations reported in this paper, in the sedimentation process model the values Vo = 

4 106 and a = -1 (n = 2) are used, representing a good sedimenting sludge. The aerator 

volume is set equal to V = 3500 m3 , while the settler cross section is set equal to A = 500 m 2
• 

The steady state values are obtained as follows. The input flow rate and its composition are 

at their mean values, as given in Table 1 (j = J = 1, Vt). The recycle fraction is set equal to 

r = 0.3; the waste fraction w is manipulated so that the solids mass in the settler M is forced 

towards the set-point M* = 7 106 g (using the control law described below). The steady state 

solution (denoted with a subscript ' • .') is summarized in Table 2. 

These steady state values are used as initial conditions for all subsequent simulations. 
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Table 2: Steady state solution. 

variable steady state value variable steady state value 

Sl,88 30.00000 XR,ss 1.36496 

Ss,ss 1.47177 Xs,ss 26.18704 

XH,ss 2757.98396 

Wss 0.0460 XI,ss 1261.55447 

Xrec,ss 15205.57284 Xss 4047.09043 

Table 3: Initial estimates and estimator parameters. 

initial estimates estimator parameters 

SS O. Wss 0.01 

XR 1. WXR 0.1 

Xs 1. wxs 0.1 

XH 2500. WXH 10. 

XI 1100. WXI 10. 

}rH 0.60 I 0.0005 

State and Parameter Estimation 

With the software sensor proposed higher, the following process has been identified. The 

initial conditions are as given above. The initial value for the solids mass in the settler is 

M(t = 0) = 7.2 106 g, while the recycle fraction is set equal to r = 0.3. The waste fraction W 

is manipulated such that M is forced towards the set-point M* = 7 106 g (by using a control 

law which will be described in the next section). The estimator design parameters Wi and I 

are selected in order to achieve appropriate stability and tracking properties of the software 

sensor. The results are summarized in Table 3 and Figures 4 and 5. 

The fractions Ss, X R and Xs are estimated accurately within about 12 hrs, so they are not 

shown on these plots. In comparison with the convergence of both fractions XH and XI, 
the convergence of the yield coefficient }rH and the total biomass concentration X is much 

faster (approximately after 50 hrs). This is not surprising, as the only variable available for 

updating the estimates is the sum of the 4 biomass components X. Without the additional 

information provided by the RODTOX, it seems even impossible to design a software sensor 

which distinguishes between the different fractions. 

Nonlinear Adaptive Control 

As already mentioned, the most important manipulated variables are the air flow rate to the 

aerator -which is not considered in this paper-, the sludge recycle rate Qrec and the waste flow 

rate Qw' In this section closed-loop control laws are designed for the waste fraction wand the 
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recycle fraction r using the complete process model for biodegradation and sedimentation. As 

such, the interaction between both subprocesses can be clearly illustrated. Controller design 

is based on linearizing control theory, in order to obtain better control by incorporating the 

nonlinear nature of the process into the control law. 

Nonlinear adaptive control of the sludge blanket level using Qw 

First, a nonlinear controller for the sludge blanket level in the settler is derived, using the waste 

fraction w as the manipulated variable. The recycle fraction r is fixed to some prescribed value. 

Since the main effluent flow from the settler Qejj(t) must be positive for all values of time t, it 

follows from (2) and (3) that the waste fraction w(t) satisfies: 

"It: w(t) ::; 1 

Furthermore, the waste flow rate Qw(t) is limited by the maximum waste pump capacity, 

denoted with Qw,ma". If the mean value Qin of the influent flow rate is known, the upper limit 

on the waste fraction w(t) is: 

'" ...:Q..:;w<",m=a=" W max = ~ 

Qin 

Obviously, Qw(t) is also non-negative for all t. Combining yields the following boundaries on 

the waste fraction w(t): 

"It: O < (t) < . (1 Qw,ma,,) - . (1 Qin ) 
_ w _ mm , Q. = mm ,Wma" Q. ( ) 

m(t) m t 
(12) 

Suppose it is desired to regulate the sludge blanket level h(t) in the settler -which can be 

measured on-line- at some piespecified set-point h*. This corresponds to a set-point M* for 

.. the total solids mass M(t) in the settler. Since one has: 

"It: M(t) ::; Ah(t)XL 

a conservative estimation for M(t) can be calculated as: 

M(t) = Ah(t)XL (13) 

So the control of h(t) around h* can be replaced by controlling M(t) around M*, resulting in 

a conservative controller. 

Application of the three step design procedure presented in the previous section results in the 

following linearizing controller. 

1. By using definitions (2) in mass balance (5), one obtains the following input w(t)foutput 
M(t) model: 

which is linear in the control input. 

2. The following stable reference model is imposed for the tracking error cM ~ (M - M*): 

dCM 
Tt +AMcM=O 

uith A M a positive number. 
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Figure 6: Nonliflear control using Qw and r = 0.3: mass in settler. 

3. Elimination of dM / dt yields the linearizing controller: 

Combining this result with boundaries (12) yields: 

if Wc < 0 

'f . (1 Qw,max) 
1 Wc> mm , Qin(t) 

otherwise 

(14) 

(15) 

Besides on-line values for M obtained through the sludge blanket level measurements 

(13), in this controller only the on-line measurements of X and X rec are required. 

Figures 6 and 7 show typical simulation results for r = 0.3, M(t = 0) = 7.2 106 g, and the 

other initial conditions as given in Table 2. The set-point for the solids mass in the settler is 

M* = 7 106 g. The influence of both AM and W max on the tracking behaviour is illustrated. 

Imposing upper and lower limits on the waste fraction W (12) clearly results in both positive 

and negative deviations from the desired total solids mass in the settler M*. The designer 

can search for the combination (AM, w;;'ax) which optimizes the trade-off between the tracking 

behaviour and the amount of waste withdrawn for further treatment. 

Nonlinear adaptive control of the aerator biomass and sludge blanket level using 

Qrec and Qw 

In addition to the sludge blanket level controller, a nonlinear controller for the aerator, using 

the recycle fraction r is designed. As an example, suppose the goal is to keep the time 

- IV /2.16 -



12~--~----~--~--~----~--~---.----~ 

10 L ~ID . M····· .......... , ~ .. M .............. J .. RII .. , .......... ;I ... II mJi:,~~,~I ..... , .... 11,---........... 1: ......... I,-...... :.~ 
.... .. 11 T .llir 

6 ~·:····I····I·;······II·······+··········I····'····I··········I,·······l·······;j·······h··,···I····· .. ······~:ill ............. :.-1 I 

4'kl'···· H· ......... 11········· ·,:1 ........... , ..... ,., ............ k· ............. ·1······· ... q.... IIE!!I· ··!I.T· 1· .. , 

2 .", ............ 1' ........ , ...... ;1 ... 

1 

/.i·U .. , .... .J., ......... ' ........ " ............ I~.' ......... +.,.. .. ,-1 

o ILiJIL_U' "IILL----'--.L ILL..LJ1IIL111 lL..i---LJ ~-Li_--'-_-----'--l 
340 360 380 400 420 

Time [hI 
440 460 480 500 

Figure 7: Nonlinear control using Qw and r = 0.3: waste flow for W ma" = 0.11 and AM = 0.1. 

averaged food-ta-mass ratio constant (which is a typical prerequisite for optimal operation of 

waste water treatment plants): 

With the input as defined previously, this can be done by keeping X H at some set-point 

X'H -i.e., keeping the biocatalysts concentration in the aerator constant- (Ss is negligible in 

comparison with SS,in)' Following a similar line of reasoning as above, the boundaries for r(t) 

are: 

Vt: (16) 

with Qrec,ma" the maximum recycle pump capacity and r ma" the upper limit on the recycle 

fraction r(t) for a given mean value Qin of the influent flow rate. 

The design of linearizing controllers for w(t) and r(t) can be done simultaneously by using the 

MIMO linearizing control approach as presented higher. 

1. By using definitions (2) and (3) in mass balances (5) and (1) -where it is assumed that 

XH,in = 0- the following input/output model is obtained: 

which is linear in the control inputs. 
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2. The following linear stable reference model for the tracking errors is imposed: 

d(M-M*) 
dt XH-X'H 

with AM and AXH positive numbers. 

3. Elimination of dM / dt and dXH / dt yields the linearizing controllers: 

Combining this result with boundaries (12) and (16) yields: 

1 
0 if Wc < 0 

w(t) . (1 Qw,max) 'f . (1 Qw,max) 
- mm 'Qin(t) 1 Wc> mm 'Qin(t) 

Wc otherwise 
(17) 

1 
0 if re < 0 

r(t) Qrec,max 'f > Qrec,max -
Qin(t) 1 re Qin(t) 

re otherwise 

At this point the following observations can be made. 

1. Note that there is need for additional measurements or estimates. These can come from 

the software sensor presented above. Replacing the actual values by their estimates 

results in an adaptive linearizing controller. 

2. Due to the upper triangular structure of the matrix B 

( 

-XTee -(XTee - X) ) 
B-Q' X 

- m 0 --...!!...(X - X) VX Tee 

the linearizing controllers 're and Wc can be calculated one after the other. Notice that the 

expression for Wc is basically the same as control law (14), while 're is now a linearizing 

controller itself. Only after the calculation of both linearizing controllers Wc and rc, the 

control action bounds (17) are imposed. 
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Figure 8: Nonlinear control using Qw and Qree: heterotrophic biomass concentration and 

recycle flow. 

3. The linearizing controller We is function of both tracking errors, (M(t) - M*) and 

(XH(t) - XiI). Due to the diagonal structure of the matrix A, the linearizing con­

troller re is only function of the tracking error (XH(t) - XiI). However, by choosing a 

lower triangular form for the matrix A, re can be made function of the error (M(t) -M*) 
as well. 

4. Clearly, calculation of these linearizing controllers requires non singularity of the matrix 

B. Note that this matrix becomes singular if and only if: 

X ree = X 

which indicates a complete failure of the sedimentation process. 

Figures 8 and 9 show some simulation results for the same initial conditions as mentioned 

above, and a fully converged state estimator. The set-point for XH is XiI = 2780. The 

tracking behaviour of the complete controller is excellent (see Figure 8). Furthermore, from 

Figure 9 it can be seen that the introduction of an additional manipulated variable r has the 

following benefits over controlling the plant using the waste fraction W only. First, comparing 

the full and the dashed line on this plot, it can be seen that the tracking error of the solids 

mass in the settler M further decreases. Second, the waste volume which must be withdrawn 

decreases (with 3.3 %), since the dotted line representing the difference between the waste 

flow rates with controller (15) and with controller (17) respectively has a positive mean value. 

These results clearly illustrate the interaction between both subprocesses. 
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Figure 9: Nonlinear control using Qw and Qrec: mass in settler and waste flow. 

CONCLUSIONS 

In this paper the design of control algorithms for an activated sludge wastewater treatment 

process has been considered. This paper should be seen as a first feasibility study of the design 

of nonlinear linearizing closed-loop controllers based on a global process model. 

It has been discussed why a structured compartment model should be preferred over a simple 

Monod/ decay model in describing the biotransformation processes in the aerator. Description 

of the process has been completed using a sedimentation process model based on solid flux 

theory. Although such models have a large predictive value, their use in model based controller 

design up to now has been hampered by the large number of state variables and parameters 

involved. 

In overcoming such problems as state estimation and parameter identification, a combined 

hardware-software sensor has been proposed. The data of a new respirographic biosensor 

that are interpreted within the framework of a structured compartment model, together with 

(limited) on-line measurements, are fed into a software sensor (based on a Luenberger observer) 

which estimates the lacking variables. The convergence of this scheme has been illustrated 

with some typical simulation results. 

As such, the design of high performance control algorithms based on a complete process model 

becomes more feasible. By using concepts of linearizing control theory, the non-linear nature 

of the process itself is incorporated into the control law in order to obtain better control. Two 

cases have been studied in detail. First, as an example of single input/single output (SISO) 

linearizing control, the nonlinear adaptive control of the sludge blanket level in the settler 

using the waste fraction has been discussed. Second, as an example of multiple input/multiple 

output (MIMO) linearizing control, the simultaneous nonlinear adaptive control of both the 
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aerator biomass and the sludge blanket level by using the recycle and the waste fractions 

has been studied. An extensive simulation study -from which only some typical results have 

been included in this text- indicates that all state variables remain bounded. The results 

further illustrate that controller design should take into account the interaction between the 

two subprocesses (degradation and settling), a fact which has been neglected in most studies 

until now. 
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NOMENCLATURE 

t : time 

SI : soluble inert organic material 

Ss : soluble readily biodegradable material 

X R : rapidly hydrolysable material 

Xs : slowly hydrolysable material 

X H : heterotrophic biomass 

XI : inert particulate material 

X : total biomass concentration 

X rec : biomass concentration in the recycle loop 

V : aerator volume 

Qin, Q eft: influent respectively effluent flow rate 

Qrec, Qw : recycle respectively waste flow rate 

r, W 

u,v 

: recycle respectively waste fraction 

: heterotrophic yield coefficient 

: fraction inert soluble material 

: fraction inert particulate material 

: saturation value for Ss 
: specific growth rate 

: maximum specific growth rate 

: rate of rapid hydrolysis 

: rate of slow hydrolysis 

: decay rate for heterotrophs 

: solids mass in settler 

: settler cross section 

: bulk respectiVely settling velocity 

VD, a, n : sedimentation model parameters 

- IV /2.21 -

[h] 
[gCOD/m3

] 

[gCOD/m3
] 

[gCOD/m3
] 

[gCOD/m3
] 

[gCOD/m3
] 

[gCOD/m3
] 

[gCOD/m3] 

[gCOD/m3
] 

[m3
] 

[m3 /h] 
[m3/h] 

[gCODxH/gCODss] 

[gCODsr/gCODxs] 

[gCODxr/gCODxH] 

[gCOD/m3
] 

[1/h] 
[1/h] 
[1/h] 
[1/h] 

[1/h] 
[g] 

[m2
] 

[m/h] 



REFERENCES 

Agnew R.W. (1972) A mathematical model of a final clarifier. EPA Water Pollution Control 

Research Series Report No. 17090 FJW 02/72. 

Allsop P.J., Moo-Young M. and Sullivan G.R. (1990) The dynamics and control of substrate 

inhibition in activated sludge. CRC Crit. Rev. Environ. Control, 20, 115-167. 

Bastin G. and Dochain D. (1990) On-line Estimation and Adaptive Control of Bioreactors. 

Elsevier, Amsterdam. 

Bryant J.O., Wilcox L.C. and Andrews J.F. (1971) Continuous time simulation of wastewater 

treatment plants. Paper presented at the 69th National Meeting at the American Institute of 

Chemical Engineers, Cincinnati, Ohio. 

Busby J.B. and Andrews J.F. (1975) Dynamic modeling and control strategies for the activated 

sludge process. J. Water Pollut. Control Fed., 47,1055-1080. 

Dochain D. (1991) Design of adaptive controllers for non-linear stirred tank bioreactors: ex­

tension to the MIMO situation. J. Proc. Cont., 1, 41-48. 

Goodwin G.C., McInnis B.C. and Long R.S. (1982) Adaptive control algorithms for waste 

water treatment and pH neutralization. Optim. Control Appl. Methods, 3, 443-459. 

Harremoes P., Capodaglio A.G., Hellstrom B.G., Henze M., Jensen K.N., Lyngaard-Jensen 

A., Otterpohl R. and Soeberg H. (1993) Wastewater treatment plants under transient loading 

- Performance, modelling and control. Wat. Sci. Tech., 27, 71-115. 

Henze M., Grady C.P.L.Jr., Gujer W., Marais G.v.R. and Matsuo T. (1987) Activated sludge 

model N°lo IAWQ Scientific and Technical Reports N°1, London, UK, ISSN 1010-707X. 

Holmberg U. (1990) On identifiability of dissolved oxygen concentration dynamics. In: Pro­

ceedings of the fifth IAWQ Workshop, Yokohama Kyoto (Japan), 113-120. 

Isidori A. (1989) Nonlinear Control Systems: An Introduction. 2nd Edition, Springer Verlag, 

Heidelberg. 

Ko K.Y-J., McInnis B.C. and Goodwin G.C. (1982) Adaptive control and identification of the 

dissolved oxygen process. Automatica, 18, 727-730. 

Marsili-Libelli S. (1989) Optimal control strategies for biological wastewater treatment. In: 

Environmental Systems Analysis and Management. Ed. Rinaldi S., North-Holland, Amster­

dam. 279-287. 

Marsili-Libelli S. (1989) Modelling, identification and control of the activated sludge process. 

Adv. Biochem. Eng. Biotechnol., 38, 89-148. 

Marsili-Libelli S. (1990) Adaptive estimation of bioactivities in the activated sludge process. 

lEE Proceedings, 137, 349-356. 

Nielsen J. (1991) Application of structured fermentation models. In: Modelling and Simulation 

1991. Ed. Mosekilde E., SCS, San Diego. 843-848. 

Schaper C., Mellichamp D. and Seborg D. (1990) Robust control of a wastewater treatment 

system. In: Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawaii, 

2035-2040. 

- IV /2.22-



Sekine T., Tsugura H., Furuya N., Fujimoto E. and Matsui S. (1989) Evaluation of settleability 

of activated sludge using a sludge settling analyser. Wat. Res., 23, 361-367. 

Sheintuch M. (1987) Steady state modeling of reactor-settler interaction. Wat. Res., 21, 1463-

1472. 

Sincic D. and Bailey J.E. (1978) Optimal periodic control of activated sludge processes: 1. 

Results for the base case with Monod/decay kinetics. Wat. Res., 12, 47-53. 

Sollfrank U; and GujerW; (1990) Simultaneous determination of oxygen uptake rate and 

oxygen transfer coefficient in activated sludge systems by an on-line method. Wat. Res., 24, 

725-732. 

Sollfrank U. and Gujer W. (1991) Characterisation of domestic wastewater for mathematical 

modelling of the activated sludge process. Wat. Sci. Tech., 23, 1057-1066. 

Tak<ics 1., Patry G.G. and Nolasco D. (1991) A dynamic model of the clarification-thickening 

process. Wat. Res., 25, 1263-1271. 

Vaccari D.A., Cooper A. and Christodoulatos C. (1988) Feedback control of activated sludge 

waste rate. J. Water Pollut. Control Fed., 60, 1979-1985. 

Vanrolleghem, P.A., Van Impe J.F., Vandewalle J. and Verstraete W. (1994) Model based 

monitoring and control of activated sludge wastewater treatment processes. Part I: On-line 

estimation of crucial biological variables with a respirographic bio-sensor. (Submitted). 

Yeung S.Y.S., SinCic D. and Bailey J.E. (1980) Optimal periodic control of activated sludge 

processes: n. Comparison with conventional control for structured sludge kinetics. Wat. Res., 

14, 77-83. 

- IV /2.23-





CHAPfERV 

Simultaneous Biokinetic Characterization 
of Heterotrophic and Nitrifying Populations of Activated Sludge 

with an On-line Respirographic Biosensor 

Peter Vanrolleghem and Willy Verstraete 

In: Instrumentation, Control and Automation of Water & Wastewater Treatment 
and Transportation Processes. Ed. Jank B., lA WQ, London. p. 227-237. 



Simultaneous Biokinetic Characterization of Heterotrophic 
and Nitrifying Populations of Activated Sludge 

with an On-line Respirographic Biosensor 

The more stringent requirements imposed on wastewater treatment systems result in an increasing demand 
for on-line monitoring equipment for these processes. The paper presents the modification of a fully 
operational respirographic biosensor to allow simultaneous and on-line biokinetic characterization of both 
BaD-removal and nitrification capacities of activated sludge. 

For this characterization, advantage is taken of the calibration measurements that are performed regularly 
(every 2-3 hrs) during normal operation of this biosensor. The injection of a well chosen calibration mixture 
of readily biodegradable BaD and ammonia to a small activated sludge filled bioreactor results in oxygen 
uptake rate profiles that are interpreted in the framework of a mathematical model that describes the 
combined oxygen consumption for BaD removal and nitrification. Model identification gives rise to 
biokinetic parameters (max. conversion rates and affinity constants) that are indicative of the different 
metabolic capacities of the activated sludge. It is shown that this information can be used to assess the effect 
of injected wastewater samples on the sludge condition, e.g. adaptation or inhibition, and allows to follow 
the change in relative abundance of heterotrophic and nitrifYing populations. 

Special attention is paid to the proper composition of the calibration solution. Especially the ratio between 
NOD and BaD is found to be critical. With the aid of simulation, sub-optimal experimental designs are 
proposed that allow reliable estimation of the biokinetic parameters. Finally, validation of the proposed 
design is given with experimental data. 

KEYWORDS 

Activated Sludge Process; Kinetics; BaD Removal; Nitrification; Oxygen Uptake Rate; Biosensors; On-line 
Monitoring; Modelling, Optimal Experimental Design; Model Identification. 

INTRODUCTION 

Wastewater treatment processes are becoming increasingly complex due to the more stringent effluent 
quality requirements that have to be met. Nowadays, not only suspended solids and residual carbon, 
but also nitrogen and phosphorus concentrations of the effluent must be taken into account for the 
design and operation of treatment plants. 

During the last decades, large investments have been made in building wastewater treatment plants. 
A lot of interest exists to increase the capacity of or to add nutrient removal capacity to existing 
installations (Ermel et al., 1992; von der Emde et al., 1992). In the absence of space constraints, the 
construction of additional aeration tanks and clarifiers can be proposed. Alternatively, more elaborate 
control strategies that rely on new monitoring equipment can be installed allowing for an increase of 
the treatment capacity of existing plants. Indeed, in a lot of cases, plants have been largely overdimen­
sioned to reach effluent quality criteria (Allsop et al., 1990). Partly this is due to government policy that 
has provided grants for investment costs rather than operating costs. 



Recent progress in the field of instrumentation is substantial. In addition to a number of physico-chemi­
cal sensors that have reached fully operational status, e.g. suspended solids (Stephenson et al., 1985) 

and nitrate monitors (Isaacs et al., 1992), sensors for the direct monitoring of the biological processes 
involved have also been developed. Among these, respirographic sensors have already reached the 

status of practical implementation on site (Kalte, 1990; Spanjers & Klapwijk, 1990; Vanrolleghem et 
al., 1990). The data provided by these instruments are especially valuable for control purposes because 

!~ ____ th~ya_~pjI'~(;tly rel~lecltQth~centmLjJl'Qc:e~~~!iQL<i~I'obic:!Jiod~gHldatiQn:C:<ir12Q!l9xi!taJio!l<l!lQ ~ ~~~ ~ ~~ ~~_ 
nitrification. 

In this paper, an extension of the capabilities of the RODTOX (acronym for Rapid Oxygen Demand 
and TOXicity tester) respirographic biosensor is proposed. First, the principles of operation of the 
RODTOX device in its current configuration is given. Second, the way oxygen uptake rates can be 

calculated from the raw sensor data is briefly introduced. Next, the model and the methods used to 

obtain biokinetic sludge characteristics from these oxygen uptake rate data are presented. In a fifth 
part, simulations based on the model are used to find an experimental design that allows to obtain 
reliable estimates. Finally, experimental results obtained with nitrifying sludge are presented to show 

the potential of the approach. 

DESCRIPTION OF TIlE RODTOX RESPIROGRAPIDC BIOSENSOR 

Initially, the RODTOX has been developed for the monitoring of the BOD-load and potential toxicity 

of waste waters (Vanrolleghem et al., 1990). The sensor obtains this information by performing pulse 
additions of waste water to a small bioreactor that contains activated sludge under controlled tempera­
ture and pH conditions. 

The dissolved oxygen concentration in the sensor's down-scaled aeration tank is determined by two 
competing processes: oxygen supply by continuous aeration and microbial oxygen uptake for en­
dogenous and exogenous respiration. In the absence of substrate, the former type of respiration gives 
rise to a steady state oxygen concentration, the so-called baseline oxygen level. Pulse addition of 

substrate to the reactor immediately results in increased respiration. This disturbs the steady state in 

the bioreactor: dissolved oxygen decreases rapidly. Since the BOD load of the reactor is restricted, the 

exogenous respiration readily decreases due to substrate limitation. As a result of the oxygen mass 

transfer, the oxygen level will increase and will return to the baseline. Then the device is ready for the 

injection of a new pulse of wastewater. The described dissolved oxygen profile is called a respirogram 
(Figure 1) and is used to calculate the short-term BOD and potential toxicity of the wastewater. 

Essentially these short-term experiments of approx. 30 minutes reflect the impulse response of 
activated sludge on wastewater addition. Model-based interpretation of such respirograms can yield 
information on the biodegradation kinetics of wastewaters. These include hydrolysis constants, max. 

growth rates, saturation constants, etc. (Vanrolleghem et al., 1992). 

In this work attention is focussed only on the interpretation of respirograms obtained after pulse 

addition of a reference substrate. In view of this, it is important to note that in the current RODTOX 
configuration calibrations are performed regularly (every 2-3 hr). At present, the usefulness of these 
calibration measurements is rather restricted. Their main purpose is to check the proper operation of 

the system and to allow the elimination of oxygen mass transfer changes. The goal of the presented 
work is to extend the usefulness of these calibrations by extracting biokinetic characteristics of the two 
main microbial populations of nitrifying sludge. It will be shown that this is achievable by proper choice 
of the reference substrate. 
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Figure 1. Typical run of respirograms obtained in the RODTOX biosensor. 

CALCULATION OF OXYGEN UPTAKE RATES 

As described above, the reactor dissolved oxygen concentration is the result of two processes. Most 
interest is given to the biological oxygen uptake and, therefore, the mass transfer is regarded as a 
parasite process that has to be eliminated from the raw electrode data. Several methods have been 
developed to assess the mass transfer characteristics without interruption of normal operation of the 
sensor (Vanrolleghem et a!., 1992). All are based on the principle ofreaeration after the disturbance 
of the steady state oxygen concentration. In one method this is accomplished by temporarily interrupt­
ing the aeration, in the other method advantage is taken of the increased respiration due to substrate 
oxidation. As exemplified in Figure 1, the final part of a respirogram looks very similar to a normal 
reaeration curve. However, it is essential to determine the time at which the respiration is back at the 
endogenous level. Only when this condition is fulfilled, the traditional interpretation of reaeration 
curves, resulting in KLa estimates, is allowed (Vanrolleghem et al.,1992). Typical KLa-values are 
situated between 6 and 10 hr -i. These are rather low, but acceptable values in view of the suboptimal 
aeration equipment installed. 

Once the mass transfer parameters are identified, oxygen uptake rates can be calculated from the 
dissolved oxygen mass balance. Since the endogenous respiration can be assumed constant in the 
(short) time interval of one respirogram, one can easily eliminate it from total respiration. As a result, 
exogenous respiration rates are available for further interpretation. 

MATHEMATICAL MODEL AND BIOKINETIC CHARACTERIZATION PRINCIPLE 

The exogenous oxygen uptake rate curves reflect the kinetics of aerobic biodegradation of substrates 
by the sludge. In the application developed in this paper, two aerobic processes are involved: nitrifica­
tion and aerobic C-elimination. In most cases, these processes are independent and their oxygen uptake 
rates add up. Different periods of exogenous respiration can be imposed by proper design of the batch 
experiments. This allows to differentiate both processes on the basis of their respective oxygen uptake 
rates. 
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Table 1. Nitrifying sludge process kinetics and stoichiometry. Observed conversion rates 
are given by: /"j = L,vij*pj the stoichiometric coefficients. 

i 
Component -'> I i 1 2 3 4 5 6 Process Rate 

J Process ~ SI Ss XH XA SNH S02 Pi [ML-3r 1] 

1 
Aerobic growth 1 

1 ~iXB 
1-YH Ss 

······pH*···· ······*XBH ... oflieterotroplis ·Yii· Ye Ks+Ss 

Aerobic growth 
1 4.57-YA 

-iXB --;-;- SNH 
2 1 YA YA ItA* *XBA 

of autotrophs KNH+SNH 

3 
Decay of 

[SI -1 - 1 + [SI bH*XH 
heterotrophs 

4 
Decay of 

autotrophs 
[SI -1 -1 + [SI bA*XA 

The extraction of biokinetic parameters from the respiration data requires an accurate model. The 

model used (built in the framework of the lA WQ model n° 1, Henze et al., 1987) is summarized in 
Table 1. A description of all symbols used can be found in the nomenclature at the end of the paper. 

The model describes the growth of the two aerobic populations on ammonium and readily biodegrad­
able BOD. Thus, the degradative capacity of both groups is characterized in this model by their maximal 

growth rate V-tH and itA, resp.) and substrate affinity (Ks and KNH, resp.). It is important to note that 

no hydrolysis of substrates is incorporated. The choice for this simplification is justified by the fact that 
there is no need for the injected calibration mixture to contain particulate substrates to assess the sludge 

biokinetics. On the contrary, such complex calibration solutions would only decrease the reliability of 
the parameter estimates obtained. However, if in a particular application, one is interested in the 

characterization of the hydrolytic capacity of activated sludge, the model can be extended in a 

straightforward way and used to interpret respirographic profiles obtained after the injection of a 
modified calibration mixture. 

Also, biomass decay is not modelled as lysis to particulate material as in the IA WQ model, but the 

description of this process is simplified to a model in which part of the biomass is respired, while a small 

biomass fraction[sJis recalcitrant and is set free as inert matter. The same approach has been proposed 

before (Sollfrank & Gujer, 1991). 

P~ETERES~TION 

The model identification involves the estimation of parameters (YH, YA, iXB, ItH, itA, Ks, KNH,tSI, 

bH, hA) and initial states (Ss(O), SNH(O), SI(O), XBH(O), XBA(O)).The estimation was performed with 

the aid of the MoSiFit (Model Simulator and Fitter) program developed at the Laboratory of Microbial 

Ecology. It incorporates, among others, a variable step 4th order Runge-Kutta routine to solve the stiff 

differential equations (Ralston & Wilf, 1960). A direction set optimization technique (Brent, 1973) was 

found to be the most adapted nonlinear parameter estimation scheme. The objective function to be 
minimized was the sum of squared (absolute) errors. A good introduction in the field of model 

identification of ecological models can be found in Robinson (1985). 



Saez and Rittmann (1992) have demonstrated the importance of diagnostic checking of the residuals 
when least squares is used for model identification. The residual errors must comply with the following 
conditions: independence, randomness and homoscedascity. The first and last conditions were checked 

on a substantial number of experimental data sets and were shown to be met (results not shown). A 

check for randomness is made for each model identification separately with a non-parametric runs test 

(Dixon and Massey, 1957) that attributes a level of confidence to the randomness of the residuals. 

···--Glebal--ieentifiability-Easdis0ussed-byGhappeH-and-G(')dfrey,±99~7(')faIlparameters-inthe-model 

cannot be achieved on the basis of oxygen uptake rate profiles only. Consequently, only combinations 
of certain parameters can be determined with the available data. 
This is the case for the parameter couple f1 *XB (for both autotrophs and heterotrophs) that is 

estimated as such. Eventually, independent measurement of the biomass concentration allows calcu­

lation of max. growth rates. 
Another complication concerns the estimation of the yield coefficients. It is only thanks to the fact that 

known amounts ofBOD and ammonia are injected that theoretically yield coefficients can be estimated 
independently of the other parameters. Vanrolleghem et al. (1992) were confronted with the problem 
of non-identifiability of substrate concentrations and yields when assessing the characteristics of 
wastewaters with unknown composition. They found that some initial state and parameter values could 
only be estimated up to the factor (1 - YH). In this work, the approach to express the substrate 
concentration up to the yield factor was maintained, mainly because the calculation of the yield 

coefficient requires the exact concentration of substrate injected in the reactor. If the estimated initial 
substrate concentration is set equal to the injected amount, then all errors wiII accumulate in the 

estimate of the yield coefficient. This should be avoided. 

In order to decrease the number of parameters and, consequently, make the identification process 
faster and more reliable, some reasonable assumptions were made. First, since the purpose of the work 

was not to determine any changes in decay rate and because biomass decay has only negligible effect 

on the exogenous respiration kinetics within the period of one respirogram, (-1 +!sI)*bH:A was not 

estimated. Moreover, the endogenous respiration is eliminated from the oxygen uptake rate curves 

prior to model identification. 
Since it is not possible to estimate the amounts of biomass, both types of biomass were lumped in a 

term XB, which for its part is then lumped in other parameter combinations as shown above. 

Finally, since the net growth of biomass in the RODTOX testvessel is rather low, the amount of 

ammonia incorporated in the cells iXB is set to zero. 

The resulting combinations of parameters that were estimated in this work from real-life data are given 
in Table 2. 

SUBOPTIMAL EXPERIMENTAL DESIGN 

Once the principle was established to use the combined oxygen uptake rates to characterize the two 
aerobic processes involved, it was essential to find the proper operating conditions that allow reliable 

estimation of the different biokinetic characteristics. Although statistical techniques are available to 

devise optimal experimental designs (e.g. Beck & Arnold, 1977), their use is not straightforward in the 
case of nonlinear models. 

In this paper, a heuristic approach on the basis of simulations was taken to find suboptimal experiments. 
The mathematical model introduced above was used for simulation, all variable and parameter values 



being taken from preliminary experiments where the two groups of organisms were characterized 

separately. In Figure 2a, simulated oxygen uptake rates of an optimized experiment are shown. One 
clearly distinguishes the two aerobic processes, one being terminated halfway before the other's 

exogenous oxygen uptake ceases. The oxygen uptake rate attributed to nitrification (lower line) is 
included in the figure for clarity. 

r-----'Fhe-objective-of-the-pmposed-design-pmcess-for-suboptimal-experiments-is-toobtainaprofilewhere -- - -----­

half of the respirographic data can unequivocally be attributed to the slowest process, i.e. nitrification 

in most sludges, while the other half, through subtraction, yields information on the faster oxidation 
process. Under such conditions, one expects that parameter estimation is reliable. The variables that 
can be manipulated to obtain such a profile are the substrate concentrations of the calibration solution: 

readily biodegradable BOD and ammonia. It is quite straightforward to find a calibration mixture that 
satisfies this design objective. 
Another design criterion is motivated by the requirement for on-line acquisition of the data: the time 
it takes to obtain the required data must be minimized. The length of a respirogram is determined by 

the amount of substrate injected and the respective degradation rates. Consequently, one must restrict 
the injected amounts. 

In Figure 2b, the effect of a wrong choice of substrate ratio is illustrated for worst case conditions. It is 

clear that it is not possible to differentiate the two processes from the overall oxygen uptake rates. The 
parameter estimation algorithm may therefore attribute different parameter sets to the data, still each 
set giving an equal fit. In other words, the model is no longer identifiable. Figure 2c shows an analogous 
case. Here the times of termination of exogenous respiration coincide due to an increased nitrification 
capacity. Note that the same amount of ammonia was injected as in the reference respirogram 
(Figure 2a). 

From these (worst case) examples it can be concluded that the optimal experimental design is 

dependent on the biokinetic characteristics of the sludge. Consequently, it is not possible to propose 

here an experimental design that is generally valid. The main purpose of this paper is to present and 

illustrate the principle of the method so that it can be applied under very diverse conditions. 

In Figures 2d and 2e, it is shown how such problems of non-identifiability can be solved by minor 
modification of the calibration mixture. In the first, extra ammonia was incorporated in the calibration 
solution to change the substrate ratio, leading to a longer respirogram but identifiable parameters. A 
better solution in view of the on-line requirement of the sensor's operation consists of decreasing the 

substrate concentrations and aiming for a new optimal substrate ratio. The result of such optimization 

exercises is that the two oxygen uptake rate profiles again allow reliable biokinetic characterization of 

the nitrifying sludge. 

The cases of non-identifiability that have been illustrated with these examples can occasionally occur 
during on-line operation. It is therefore essential that the approaching of non-identifiable respirograms 
can be detected in time so that the proposed solutions can be applied. On-line detection of changing 
biokinetics is evident and, thus, an alarm signal can be given to the plant operator to change the 
calibration mixture so that subsequent characterizations are no longer endangered. 

In order to eliminate the need for an intervention of the operator, on-line adaptation of the experiment 

to the new situation is required. However, this asks for a method which can yield optimal experimental 
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Figure 2. Simulations of oxygen uptake rate profiles (overan upper line; nitrification, lower line) 
obtained from different experimental designs using different parameter combinations 

and initial substrate concentrations. Parameters common to all simulations are: 
/-lH = 0.012; Ks = 1.0; YH = 0.64; KNH = 0.05; YA = 0.25. 

designs independent of user interaction (non-heuristicaIly). Therefore, currently, investigations are 
aimed at finding optimal experimental designs using the statistical approach mentioned above. How­
ever, the efforts are not directed to the establishment of optimal batch experiments; instead optimal 
fed-batch experiments (i.e. with extra pulse additions in the course of a respirogram) are looked for. 
Munack (1989) has demonstrated that the data from such experiments have an increased information 
content that improves the quality of the parameter estimates. 



EXPERIMENTAL RESULTS 

All experiments described were carried out with sludge taken from the municipal wastewater treatment 
plant situated at the hospital Maria Middelares in Gent. Nitrifying capacity was checked before the 
validation experiments started: a clear respirogram was recorded after the addition of NH4Cl. 

Validation of the proposed method for biokinetic characterization of nitrifying sludge is based on 6 
typical respirograms. The experiments were carried out under the following practical conditions. The 

-----_. 

calibration pump was set to inject a volume of 2 (experiment 1), 3 (experiments 2,4 and 6) or 4 ml 
(experiments 3 and 5) of a calibration solution containing 40 g CODIl of an equimolar HAc/NaAc 
solution to the 10 I RODTOX reactor. In addition, the calibration mixture contained different amounts 
of ammonia nitrogen as NH4CI so that the initial reactor concentrations were: 0 (experiments 1 and 

I 6),0.5 (experiment 4),1.0 (experiments 2 and 3) and 3.0 mg Nil (experiment 6). 

The recorded dissolved oxygen profiles were processed to obtain oxygen uptake rates after elimination 
of the mass transfer. The estimated KLa-values had a mean value of 7.53 hr-I and a coefficient of 
variation of 1.4%. The oxygen uptake rate profiles of the experiments in which ammonia was injected 
are given in Figure 3. In three of the four experiments, one can easily detect the time after which the 
oxygen consumption is only governed by nitrification. The run with only 0.5 mg Nil as initial substrate 
concentration is a clear example of an experiment where the model is non-identifiable, while the run 
with 3.0 mg Nil is illustrative of an experimental design where the on-line requirement is not taken into 

account. 
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The model identification results are summarized in Table 2 and simulations with the estimates 
illustrate the fit in Figure 3. For sake of clarity, the simulated oxygen uptake for nitrification is included 
in the figure. It is clear that the fit is acceptable. 
Conclusions that can be drawn from the results are the following. The data seem to contain ample 
information for model identification since the parameters are reproducible among the experiments. A 
considerable deviation in parameter estimates is found for the nitrification process in experiment 4. It 

is()lJ~i(Jllstha!t:l!isi~tl1eJt:§1lItQftht:J1QIl-QPtiIll<lJityQflbJ~iIlj~(;t~_gmjibIIltiQI1mOO:llI~amlJh~r~sJ.!lliIlg 

non-identifiability of the model. The deduced heterotrophic yield coefficients are reasonable in view 
of the values reported in literature (Henze et aI., 1987; Sollfrank & Gujer, 1991). This is a strong 
indication that the proposed method is valid. The yields of the nitrifying population are less accurrate. 
This can be explained by the following. As already mentioned above, the dosing errors are accumulated 
in the yield coefficients. In addition, since only a small fraction of the nitrogen is incorporated in the 
biomass, it is obvious that the yield coefficient, which is obtained through subtraction, is sensitive to 
small errors. 

The non-parametric runs test shows that the residuals are not distributed at random. This means some 
kinetics of the signal are not incorporated in the model. A closer look at the data, especially in Figure 3b 

Table 2. Model identification results. 
For an explanation of the symbols and units, reference is made to the nomenclature. 

Initial State/ Experiment 

Parameter 1 2 3 4 5 6 

KLa 7.63 7.44 7.50 7.42 7.68 7.51 

,LtH.xB 58.4 50.8 53.2 50.0 55.8 70.3 

Ks*(l-YH) 0.182 0.116 0.112 0.096 0.125 0.179 

Ss(O)*(l-YH) 2.82 4.64 6.11 4.60 6.31 5.29 

Ss(O)real 8.0 12.00 16.00 12.00 16.00 12.00 
YH# 0.65 0.61 0.62 0.62 0.61 0.56 

,LtA.xB - 0.786 0.708 0.486 0.870 -
KNH*(4.57-YA) - 0.435 0.466 0.103 0.501 -

SNH(O)*( 4.57-YA) - 4.54 4.24 1.60 11.57 -

SNH(O)real - 1.00 1.00 0.50 3.00 -
YA# - 0.03 0.33 1.37 0.71 -

Residual Error 148.4 73.0 53.9 30.1 100.7 101.1 

N 160 241 264 220 337 144 

Runs 23 40 43 27 34 25 

# Calculated under the assumption of exact knowledge of the real initial concentrations S.(O)real. 



and 3d, suggests that an oscillation with a period of approx. 2 minutes is superimposed on the data. 

Such oscillations give rise to important sizes of separate runs and this is reflected in the low number of 

runs encountered. A reason for these oscillations is not clear, but it is unlikely that its origin is biological. 

An artefact caused by hardware must be expected. 

From an implementation point of view, it is important to note that the model identification, requiring 
the estimation of 8 parameters in a nonlinear model, takes about 10 minutes computation time per 

~~-----respif0gram-on-a-PG·486!33;Gonsequently,computation-is nota-bottleneck-for a respirographic sensor 

I 
carrying out this kind of on-line sludge characterization. 

Applications of this biokinetic sludge characterization are numerous. As an example, one can follow 
the activity of the heterotrophic and nitrifying populations when subjected to wastewater entering the 
plant where the RODTOX sensor is situated. Indeed, under normal operation, the sludge in the 

sensor's reactor is subject to a loading rate equivalent to that of the sludge in the aeration tank of the 

treatment plant it is supposed to monitor. Therefore, the monitoring of the sludge in the reactor allows 
to follow the effect of a changing wastewater composition on the heterotrophic and nitrifying popula­

. tions of the sludge. Especially adaptation and inhibitory effects seem important from a process control 

point of view. 

To illustrate this, a new batch of sludge was collected from the Maria Middelares treatment plant a few 
months after the first batch (used in the validation experiments) was collected. Again this sludge was 
subjected to injections of a BOD/NH4Cl mixture. The resulting oxygen profiles are illustrated in Figure 
4a. In Figure 4b, the respirographic profile resulting from an injection of BOD only is given for 

comparison. Comparing Figure 3 and Figure 4, it can be deduced that the sludge has completely 
different biokinetic parameters: The heterotrophic capacity has increased, while the nitrifying rates 

have remained constant. 

The latter example also indicates the usefullness of such a sensor in a lab environment for off-line 
. biokinetic characterization of sludges. This may be particularly applicable to firms specialised in 

supervision of treatment plants because it allows to rapidly gain information on the condition of sludge 

collected from the wastewater treatment works they are responsible for. 
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Figure 4. Respirograms obtained with sludge with increased heterotrophic degradation capacity. 
a) Respirogram obtained from a BODINH4Cl-mixture injection (20 mg BODll; 0.5 mg Nil); 

b) Respirogram resulting of an addition of 20 mg BOD/l only. 



CONCLUSIONS 

The operation of an existing respirographic biosensor was modified in order to take more advantage 
of the regular calibrations that are included in the system's working. The injection of an appropriate 
calibration mixture containing readily biodegradable BOD and ammonium to a nitrifying sludge 
containing bioreactor results in oxygen uptake rate profiles rich in kinetic information. It was shown 
that model-based interpretation of these data allows biokinetic characterization of the heterotrophic 

r---anEl-nitrifying-populatitlns-in-the-sludge;----------------------------------------------------------------------- --

From some worst case examples it was deduced that the identifiability of the parameters is dependent 
on the experiment performed. Especially, the composition of the calibration solution was found to be 
essential. As a result, some attention was paid to the design of a -suboptimal- experiment. It was 
concluded that the ratio between the two substrate concentrations is determined by the respective 
degradation kinetics, while the absolute amounts are governed by the allowable response time of the 
measurement. 

The experiments carried out with nitrifying sludge collected at a treatment site at different time instants 
clearly showed the potential of the method to continuously follow any changes in a sludge's capacities 
for heterotrophic carbon elimination and nitrification. This on-line technique therefore allows to 
monitor population shifts caused by changing conditions. 

The possibility that the kinetics change in such a way that the experiment no longer results in 
respirograms that allow model identification is small, but this non-identifiability problem may not be 
neglected. It is quite straightforward to detect such a problem in time so that a modification can be 
made to the experiment, i.e. by changing the calibration mixture. At the time of this writing, this should 
be handled by the operator with the aid of the design principles given in the paper. Current research 
is however aimed at developing a method based on the optimal experimental design theory, that allows 
to do this without user intervention. 

NOMENCLATURE 

bA 

bH 

fSI 

iXB 

KLa 

KNH 

Ks 

: Decay rate for autotrophs 

: Decay rate for heterotrophs 

: Fraction of biomass leading to inert material 

: Mass of nitrogen per mass of COD in biomass 

: Mass transfer coefficient 

: Monod half-saturation coefficient for SNH 

: Monod half-saturation coefficient for Ss 

N : Number of data points 

SI 

S02 

SNH 

Ss 

t 

XB 

XBA 

XBH 

: Inert matter 

: Dissolved oxygen 

: NH4 nitrogen 

: Readily biodegradable material 

: Time 

: Biomass 
: Autotrophic biomass 

: Heterotrophic biomass 

"T 1 1 

(hr-I) 

(hr-I) 

(g COD Srlg COD XB.) 

(gN/gCOD) 
(hr-I) 

(gN/m3) 

(g COD Ss/m3) 

(gCOD/m3) 

(g 0 2/m3) 
(gN/m3) 

(gCOD/m3) 

(hr) 
(gCOD/m3) 

(gCOD/m3) 

(gCOD/m3) 



: Yield coefficient for autotrophic biomass 

: Yield coefficient for heterotrophic biomass 

: Maximum specific growth rate for autotrophic biomass 

: Maximum specific growth rate for heterotrophic biomass 
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ABSTRACT 

On-line Model Structure Characterization 
of Nonlinear Wastewater Treatment Systems 

Biological wastewater treatment is subject to rapidly changing process conditions, e.g. wastewater compo­
sition, adaptation of the microbial populations that act as biocatalysts, changes in equipment charac­
teristics, etc. These factors not only affect the parameters, but also the structure of the nonlinear models 
which describe the bioprocesses involved. As a result, next to parameter estimation, a clear need for model 
structure characterization exists. Moreover, as the changes in the quantitative process description occur 
frequently and within relatively short time intervals, on-line methods are required. 

The paper focusses on new and existing methods for model selection. They are illustrated with real-life data 
provided by a new on-line biosensor that reconstructs the impulse response of the process. 

After an introduction in which the model structure selection is situated within the overall modelling exercise, 
a priori and a posteriori structure characterization are defined. The advantage of a priori over a posteriori 
methods in real-time applications is shown. Subsequently, new a priori techniques that rely on feature 
extraction are presented. Three of these new selection methods are specific for the models of the studied 
process, while one other is more generally applicable relying on neural networks trained by Monte Carlo 
simulations of the candidate models. 
As a posteriori techniques, different methods developed for linear systems model selection are evaluated. 
Also, techniques based on a thorough analysis of the residuals are shown to have potential in discriminating 
between candidate model structures. 

KEYWORDS 

Activated Sludge Wastewater Treatment, Model Structure Selection, Biosensors, Identification 

INTRODUCTION 

Model structure characterization (Se), also termed model structure selection, determination or 
discrimination, is an essential but often overlooked step in any system identification exercise. Figure 1 
situates this task within the overall model building process. Three sources of information can be used 
to infer a model: a priori knowledge on the process, experimental observations and the purpose the 
model will be used for. Before a model can be applied, four steps have to be taken: 1) the model frame 
must be defined, i.e. the system boundaries, the input and output variables and the type of models to 
be chosen from (e.g. linear/nonlinear, input-output/state-space, ... ); 2) the model structure must be 
characterized, which means that the model complexity (e.g. the dimension of the state vector, degrees 
of polynomials, ... ) and the functional relationships among variables must be determined; 3) parameters 
in the functional relationships can be given numerical values and 4) the model must be validated, e.g. 
with respect to the purpose it was built for or the physicality of the parameter values (Spriet & 

Vansteenkiste, 1982; Ljung, 1987). 



Figure 1. Scheme of the modelling exercise 
(after Spriet & Vansteenkiste, 1982). 

Finding the "true model" MT(ST ,PT) with model structure ST and parameters PT is utopian. Rather 
one must aim at finding -from a finite set of N noisy data points- the partial descriptions that are 
purposeful within the application (Ljung, 1987). Settling for the best possible model M(SN,PN), 
however, induces an error that has two components: 

MT(ST,PT) -M(SN,PN) = MT(ST,PT) -M(SN,P*) 
+M(SN,P*) -M(SN,PN) 

The first term is due to the error between the true model structure ST and the model structure SN 

chosen from the set of candidate models with restricted complexity. This so-called bias error reflects 
the unmodelled dynamics (Goodwin et aI., 1992). The second component, the variance error, is caused 
by the particular realization of the noise in the limited number of data used in the system identification. 
Each data set will result in different parameter estimates PNthat will only tend to the real p* (for this 
structure) when there is no noise or when the number of data points tends to infinity. This variance 
error also includes the effect of the overparametrization: The more parameters included in the model, 
the more uncertain their values will be. 

Typically the variance error decreases like 1/N, but increases like p, with p the number of parameters 
in the model structure, a measure of its complexity. The bias error, on the other hand, will decrease as 
p increases, but is independent of N (Linhart & Zucchini, 1986; Ljung, 1987). Hence, as the aim is to 
obtain the model structure giving the lowest total error, the goal will be to find the compromise between 

bias error and variance error. 

The paper will examine a variety of objective decision tools that enable to find this trade-off. The picture 
of approaches, methods and results ofSC is very diverse and scattered over several scientific disciplines. 



Although a number of studies have evaluated different se techniques, none of them has resulted in a 
clear recommendation on a definitely superior method (Akaike, 1978; Spriet & Herman, 1983; de 
Gooijer et aI., 1985; Koehler & Murphree, 1988; Marino et aI., 1992). Here, an analogous study is 

devoted to decide on a se technique most adapted to the problem at hand (see below). Moreover, new 
se methods have been developed. A number of these are specific to the candidate models used in the 
study, while one other is more generally applicable. 

FORMULATION OF THE IDENTIFICATION PROBLEM 

Biological processes are characterized by their nonlinear behaviour. In addition, biological systems 

adapt to changing conditions, making these processes time-varying. For biological wastewater treat­
ment processes adaptation is an important asset, since it allows the biocatalysts in a purification plant 

("activated sludge") to eliminate new types of pollutants from the wastewater or to deal with toxic shock 
loads. However, these characteristics also complicate the control problem since they enforce adaptive 
control strategies that must also be capable to cope with the nonlinearities inherent to the process. 

Because adaptive controllers rely on on-line measurements to track the changing process model, 
reliable and informative data must be supplied. This is exactly where the bottleneck for the implemen­
. tation of such control schemes in treatment plants has to be situated: available sensors have been rather 

unreliable for continuous use or provided insufficient information (Vanrolleghem & Van Impe, 1992). 

Recently, however, important progress has been made in this field, especially with respect to the 
gathering of information on the interaction between wastewater components and the activated sludge 
(Isaacs et aI., 1992; Vanrolleghem et aI., 1992). 

The approach taken in the "bio"-sensor used in this work is the following: within the apparatus a sample 
of activated sludge (taken from the plant to control) is subjected to a pulse injection of wastewater. 
Using a dissolved oxygen electrode, the oxygen consumption for oxidation ofthe wastewater pollutants 

by the sludge is monitored. The resulting oxygen uptake rate (OUR) data reflect the impulse response 

of the biological system and can be used for model identification. The typical impulse responses given 

in Figure 2 illustrate that models of different levels of complexity will be required to describe the 
experimental data. 
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Figure 2. Impulse response curves obtained after injection of different wastewaters to activated sludge 
TYpeJ (left); Type 2 (middle); TYpe 3 (right). 



Based on a priori knowledge, the following set of candidate models was constructed (the set can easily 
be extended, but this is beyond the scope of this paper): 

Candidate Models: 

The biological process considered is the oxidation of pollutants Si by biocatalystsX. The OUR is directly 

linked with the removal of Si in the following way: 
~ ~~--~-~----~-~~---~ ~ ~~~~~~-~~--~~-~-~-~~~-,,~~~--~-----~~~--~~~-~~ -~- ~~~~ ~~~ ~~~~~~ ~~~ ~~- ~~~~ ~ ~~ ~~ ~~~ ~ ~ ~ ~~~~~ ~~ ~~~~~~~~~~-~~~-~~-~~- ~~~~ ~ ~- ~~~ ~ ~ ~~ ~~~-~~~ ~~~- ~~ ~~- ~~~~~~ ~ ~ ~~-

OUR = - 2:(1-Y; ) dSi 
i=1 dt 

In this, Y; (the yield coefficient) is the fraction of pollutant Si which is not oxidized but converted to 
new biocatalysts X The different model complexities taken into account in this work express the 
different number k of pollutants to be considered and the degradation mechanism. The three types of 
wastewater/sludge interaction included are: 

Type 1: One pollutant, first order degradation (k=l) 

dSl = _#IX SI 
dt Yl 

Type 2: One pollutant, Monod type of degradation (k= 1) 

dSl #IX SI 
dt = - Yl KSl+Sl 

Type 3: Two pollutants, both Monod type of degradation (k=2) 

dSl #IX SI 
dt Yl KSl+Sl 

dS2 #2X S2 
dt = - Y2 KS2+S2 

The #i are rate constants, and the KSi are the so-called affinity constants expressing the dependency of 

the degradation rate on the concentration of the pollutant. Note that the pulse of wastewater injected 
is included in the model via the initial conditions Si (0) and that the biocatalyst concentration X is 

assumed constant within the course of these short-term experiments (approx. 30 minutes, see Figure 

2). Via the oxygen uptake rate measured in the "bio"sensor, the rates of substrate degradation are 
monitored allowing identification of the above models. 

As a result of the changing nature of the wastewater and the adaptation of the biocatalysts to the 

pollutants, not only the model parameters, but also the model structure are time-varying. Hence, both 
model structure characterization and parameter estimation must be performed on-line. Since the 
processes are highly nonlinear, parameter estimation is a tedious and time consuming task: for the 
candidate models used throughout the work, nonlinear parameter estimation takes approx. 10 minutes 

computing time for one model and one data-set on a 486 Personal Computer using the direction set 

algorithm of Brent (1973), preferred for its combination of convergence rate and robustness against 

local mimima. In view of the 30 minute interval between consecutive data-sets, this imposes a serious 
real-time constraint on the overall identification process, especially concerning the structure charac­

terization method to be applied (see below). 



STRUCTURE CHARACfERIZATION METHODS 

The se techniques evaluated in this work have been classified according to their impact on the real-time 

constraint. Most existing methods for se evaluate the quality of the different model structures after 
fitting each model to the data. Hence, these methods have been termed a posteriori se (Vanrolleghem 
& Van Impe, 1992). Methods capable of selecting a model without the need of first estimating the 
parameters belong to the other class, the a priori se techniques. In view of the observation that 

parameter estimation taJ{esconsldefal5lelime;TCisC1ear15--aavantageousfo apply-a: priori metllods, 
since they only require estimation of the parameters of the selected model. 

A priori se 
The approach of a priori se has also been termed model structure selection based on preliminary data 
analysis and has been reported to be an underdeveloped field (Ljung, 1987). In this work, however, 
these a priori methods are essential to meet the real-time constraints imposed by the "bio"sensor. 
Two groups of methods are included in the evaluation: one type of methods is generally applicable, 

while the other se methods take advantage of specific features of the model structures present in the 
set of candidate models. 

General Methods 
The pattern recognition capabilities of neural networks (Shi & Shimizu, 1992) has incited a study on 
their applicability as SC technique. Details on the developed method can be found elsewhere (Ver­

meersch et aI., 1994), but the main principles are summarized here: A three-layer recurrent neural net 
architecture receiving preprocessed data is used. Different data preprocessing algorithms were tested, 
all aiming to perform data reduction (to decrease the number of input nodes) without loss of structure 
specific information. The learning stage was performed with 750 training-patterns obtained from 

Monte Carlo simulations of the different candidate models. 

A next method stems from recent developments in identification of linear state space models. Numeri­

cal algorithms for Subspace State Space System Identification (N4SID, read as enforce it) combine the 
estimation of the order of the state with the identification of the system matrices, but, in contrast to 

traditional identification schemes, the order is estimated first (Van Overschee & De Moor, 1994). It is 
this aspect of this data-driven approach which is explored for the nonlinear process described above. 
Clearly, one cannot expect that N4SID will give a direct measure of the number of substrates to be 

included or the degradation mechanism involved. Rather it is hoped that the order returned by the 
algorithm enables to differentiate among the models. The order is determined on the basis of the 

number of non-zero singular values s in a matrix H composed of the following Block Hankel matrices 
containing "past" (Yp) and "future" (Yf) OUR-data: 

OUR1 ... OURj OURi+1 ... 0URi+j 
OURz ... OURj+1 OURi+Z ... OURi+j+1 

Yp= ;Yf= 

OUR; ... OURj+; OURz; .. . OURj+2i 

Different H-matrices were evaluated (Van Overschee, personal communication): 

H y, ovT H Y, T( T)-1 -T T-1 = f'p; = fYp YpYp Yp; H =Lf YfYp Lp 



withLfandLp Cholesky factorizations ofYfY! and YpyJ. The choices ofi andj are important: j must 

be as large as possible G was set N-2i); i must be much smaller thanj, but larger than the largest model 
order expected (i was set 10). Best results were obtained with the first form of H and singular values 

considered o when below 0.1: type 1 models were selected ifs <2; type 2 ifs =2 and type 3 ifs >2. 

Specific Methods 

........ __ Structur.e_characteI"izatiollDllthe_basis.of-Parameterimrariantmodelfeatur.eshasbeen.ad~ocated,.but 

has found little application due to the difficulty in finding such features from the models under 
consideration (Vermeersch et aI., 1994). For the candidate models in this application, however, such 
feature can be found: the number of inflection points is 0, 1 and 3 for models of type 1, 2 and 3 
respectively (see Figure 2). Though this is analytically correct, the determination of inflection points 
on noisy data is not straightforward. Using a moving window regression in which linear and quadratic 

regressions are compared with an F-test, the significance of the second derivative can be assessed, 
leading to a more reliable estimate of the number of inflection points. 

Another model-specific approach consists of fitting an exponential function, a Tanh and a double Tanh 
to the data and comparing the resulting sum of squared residuals (SSR). In other words, this a priori 
method for selection among the biodegradation models is in fact an a posteriori method with respect 

to the Exprranh/double Tanh candidate model set. Empirical threshold values were set to the 
SSR-ratios so as to decide which model to select. Ratios larger than 10 were considered necessary 
before a more complex model was accepted. 

A third method developed for the models of this study is based on the area below the OUR versus time 

data. Some preprocessing of these data was performed prior to the determination of this criterion: first, 
the zero-tail (Figure 2) was cut from the data-set using a t-test on the mean of a data-window and, 
second, the reduced OUR,t-dataset was scaled to the unit square. Type 1 data have the lowest area « 
0.3) and type 2 the largest area (> 0.5) under the curve (Figure 2). These threshold values for the areas 

enable the selection among the three candidate models. 

A posteriori se 
Most methods described in this section have found widespread application. Considering the real-time 

constraint, however, they seem less appropriate for the identification task at hand, especially as the 
number of candidate models may increase. However, these methods have been included as reference 
methods. Moreover, if these a posteriori methods show good selection resuslts, it is not inconceivable 

that a SC strategy is devised in which a priori methods are used to make up a first ranking of the different 
structures, after which a posteriori methods are called in to make the final selection among the 

structures with the highest ranking. As such, the real-time constraint and the selection reliability can 

be sufficed. 

Criteria with complexity terms 
These criteria take one of the following two forms: 

SSR [ ] N l+f3(N,p) 

(
SSR) Nlog N + y(N,p) 



with SSR the sum of squared residuals, and Nand p as defined in the introduction. For N> >p one can 

show that both representations are equivalent if yeN, p) = N f3(N, p) (S6derstr6m & Stoica, 1989). 

For both cases, the first term decreases with increasingp (increasing complexity) while the second term 

penalizes too complex (overparametrized) models. The model structure with the smallest criterion 
value is selected. 

Different authors have proposed several functional forms for the model selection criteria depending 
. on the theoretical starting point. The two best-known are the Final Prediction Error, with f3(N,p) = 

----- - -- - -----

2p/(N-p), and Akaike's Information Criterion, with y(N,p) = 2p (Ljung, 1987). FPE and AlC are not 
consistent (i.e. do not guarantee that the probability of selecting the wrong model tends to zero as the 
number of data points tends to infinity) according to the criteria of Kayshap (1980). However, this 

disadvantage is compensated by the fact that AlC and FPE enjoy certain properties that allow to 

determine good prediction models in case the true model doesn't belong to the set of candidates 
(S6derstr6m & Stoica, 1989). 

An example of a consistent criterion is the Bayesian Information Criterion in which y(N,p) = P log(N) 
(Akaike, 1978; Schwarz, 1978). If p 2:8, it can be seen easily that BIC will tend to favour models of 
lower complexity than those chosen by Ale. Another consistent criterion evaluated in this study is LILC 
where y(N,p) = P log (log(N)) (Hannan, 1980): 

Criteria that assess undermodelling 

Recently, Goodwin et al. (1992) decomposed the total error between the true model and a selected 
one in three components: 1) the effect of the variance of the new noise realization, 2) the effect of the 

parameter errors due to the noise present in the identification data and 3) the effect of the undermod­
elling, corresponding with the bias term mentioned in the introduction. 

This General Information Criterion, GIC, is defined as: 

GIC(N,p) = at + ~ at + undermodelling 

In this equation it is essential to have an estimate of the residual error 0% that is independent of the 

undermodelling. Goodwin et al. (1992) obtained this by fitting a high-dimensional model and using the 
residual variance as an estimate. Here such model is not available, but, fortunately, the zero-tail end 

of the OUR-dataset can be used since this part of the data is characterized by the absence of biological 

dynamics (Vanrolleghem et aI., 1992). As a result, the variance of this part of the data can be used for 

an accurate estimate of the residual error. Using the similarities shown by the authors between the 

expected value ofFPE and GIC, it is possible to write an explicit formula for the undermodelling term: 

. SSR A2 P A2 N-p 
undermodelhng = N - (av + N av) N+p 

Structure characterization was performed by selecting the model with the lowest undermodelling value. 

Statistical Hypothesis Tests 

The F-test is probably the most frequently applied method to choose among model structures. The test 
statistic 

(SSRj-SSRi)l(Pj-Pi) 
SSRjI(N-pj) 



is compared with the F(Pj-Pi, N-pj) distribution to decide whether the more complex model j is 

significantly (with a confidence level a) better than model i. 

The similarities that exist between F- and i -tests and the equivalence between the AICI FPE criteria 
and F -tests with a prespecified significance level have been shown (S6derstr6m & Stoica, 1989). 

Diagnostic checking (analysis of residuals) 
When modelling, some assumptions are made concerninglb~_pmpJ~J:_tLeLQf the noise. In mosCcases,____ __ 
the prediction errors c(t) are assumed to be a realization of independent random variables with zero 

mean and a certain distribution. Model quality can be assessed by analysis of the properties of the 
calculated residuals. Two approaches that check the independence of the residuals (white noise 
property) have been evaluated: the auto correlation and the run test. 

The autocorrelation test (S6derstr6m & Stoica, 1989) is based on the fact that the covariance function 
for a white noise sequence c(t): 

A N-r: 
TeCt) = 2:c(t-,)c(t) 

1=1 

is zero except for ,=0. Structure characterization with these tests is performed by selecting the model 
whose residuals are as white as possible. Two statistical tests allow to make objective decisions on the 
whiteness of the residuals. 

• One test compares the covariance for each lag ,with the limit value N(O,l)/YN, which for 

a=0.05 means that only 5 % of the autocorrelations maybe larger than 1.96/YN. In Figure 3 the 
residuals for the three models fitted to a type 3 dataset are given and in Figure 4 the correspond­
ing autocorrelation function for lags 0 to 20 is depicted. Clearly, the residuals for models 1 and 
2 are highly dependent, while for model 3 only the first 4 correlations (20%) are significantly 
higher than the prescribed level (indicated by the horizontal lines ). Hence, the residuals do not 
originate from a white noise sequence, indicating some unmodelled dynamics. Looking into some 

more detail to the residuals of model 3 (Figure 3), one distinguishes an oscillatory pattern, 

probably causing the autocorrelation. 

• The other auto correlation test compares a combination of the first m covariances 

N m "2 . 
"2 2: re (I) 

re (0) i=1 

with the X2( m) distribution giving a significance level for the independence of the residuals 
(Ljung,1987). 

The other residuals test evaluated is a so-called non-parametric test in which the number of runs R, i.e. 

the number of sign changes in the sequence of residuals, is evaluated against the expected number of 

runs, NI2 (S6derstr6m & Stoica, 1989). To assess the significance of a deviation from this number the 

test-statistic (R-N 12 )/v N /2 can be compared with N(O,l). A posteriori SC with this method selects 
the model with the test-statistic closest to zero. 



1.25 

1.00 
~ = 
~ ...,. 0.75 
0 .. 
e 0.50 ~ 

........ --04- ----------

::> 
0 

0.25 

0.00 

0.20 

-0.00 
~ = 'il -0.20 .... ...,. 
0 0.20 .. 
IS 
~ 

~ 
-0.00 

::> 
0 
;; -0.20 

= 
~ 
~ 

0.04 
u 
~ 

0.00 

-0.04 

0 

I 

2 

3 

----

\ 

j 

15 

.~ 

------~---------~~ 

30 

Time (min) 

Model I 

Model 2 

Model 3 

45 

Figure 3. Typical model fitting results for the three models to a "double Monod" style data-set. 

1.25 

1.00 
u 
0 = 
.~ 

0.75 ~ 
~ 
> 
0 
U 

0.50 

" u 
.~ - 0.25 ~ 

IS 
~ 

0 z 0.00 

o 5 10 15 20 

T 

Figure 4. Normalized covariance function of the residuals for the different models of Figure 3. 



RESULTS AND DISCUSSION 

The different SC methods were evaluated on the basis of 8 typical real-life OUR-datasets. In Table 1 
the selected models are compared with the advice of a human expert. Dataset 4 is difficult to classify 
since it is considered very close to both a type 1 and type 2 model. Hence, both were considered correct. 

Except for the N4SID method, all a priori SC methods produce very good selection results. Among 

them, the Tanh and neural net approaches can be preferred considering the noisy data which may cause___ 
problems in estimating the number of inflection points. Neural nets have an additional advantage as a 
potentially general tool for Se. 

An important finding is that all "information" criteria, i.e. AlC, FPE, BIC and LILC, with the notable 
exception of GIC, result in overfitting of the model compared to the "expert advice". This is probably 
due to the oscillations that can be observed in the OUR-data (see Figure 2 and the residuals in Figure 
3). Since the more complex models possess sufficient flexibility, some of these oscillations can be 

modelled, reducing the residual error to such an extent that any penalty for model complexity is 
compensated. 

Table 1. Model selected on the basis of different a priori and a posteriori se methods. 
The results are compared with the advice of a human expert. (bold figures indicate "right" choice, 

undelfit and overfit refer to the complexity of the selected model compared to the choice of the expert). 

Method of Structure Dataset Evaluation 

Characterization 1 2 3 4 5 6 7 8 under-fit over-fit correct 

N4SID 1 3 2 1 2 2 2 2 3 1 4 

Neural Net 3 2 3 1 3 2 3 2 0 1 7 

Inflection Points 1 2 3 2 3 2 3 2 0 0 8 

Surface 1 2 3 3 3 2 3 2 0 1 7 

Tanh 1 2 3 1 3 2 3 2 0 0 8 

AIC 3 3 3 3 3 3 3 3 0 5 3 

FPE 3 3 3 3 3 3 3 3 0 5 3 

BIC 3 3 3 3 3 3 3 3 0 5 3 

LILC 3 3 3 3 3 3 3 3 0 5 3 

undermodelling-GIC 1 2 3 1 3 2 3 2 0 0 8 

F-test 3 3 3 3 3 3 3 3 0 5 3 

Autocorrelation 1 2 3 2 3 2 3 3 0 1 7 

Run-test 1 2 3 3 3 2 3 3 0 2 6 

Human Expert 1 2 3 2 (1) 3 2 3 2 - - -



As the observed oscillations cannot be explained by any biological process and are probably due to 

some hardware dependent process which is not of interest to the user, this "parasite process" should 
be eliminated from the data before model identification is initiated. 

A possible alternative would be to increase the penalty of overparametrization. This has been proposed 
by Bhansali & Downham (1977) in their generalization of the FPE method where (J(N,p) = 

p(1 +o)!(N-p). Varying 0 allows to give more emphasis to parameter parsimony. 
Still another route is to consider that the information criteria are random~ariables wilh_ass~tcia~led _____ _ 
error distribution. Hence, one should consider the significance of a difference between two criterion 

values before a decision is made. 

The F-test also suffers from the modelling of the parasite processes superimposed on the biological 
response. Identical approaches as given above could improve the quality of the Se. 

With respect to GlC, these overfitting problems are nonexistent because the effect of oscillations is 

included in the estimate of the variance (from the zero-tail). In this way only the undermodelling of the 

biological phenomena is retained leading to model selections congruent with the observation of the 
human expert. 

CONCLUSIONS 

Among the a priori methods, which are preferred since they allow to meet the real-time constraint 

imposed by the biosensor used to identify the wastewater treatment models, the inflection point and 

Tanh-approaches seem most suited. The use of neural nets as a generally applicable method for a priori 
SC showed promising results that ask for confirmation in other applications. 

No traditional information criterion (AlC, BIC, FPE, LILC) was found to give the "right" (defined by 

the human expert) selections for all data-sets, probably because some phenomena, in particular some 
oscillations, were accounted for to a significant extent by the flexible, more complex models. To the 
human expert, however, these phenomena seem not essential and, thus, a way must be found to 
eliminate their effect by a suitable filter. For the F-tests the same remarks hold true. 

In contrast to this, proper selections can be obtained with the recently proposed GIC criterion. Since 

the zero-tail of the OUR-data contains no meaningful (at least to the human expert with his current 
insights) information on the biocatalyst/wastewater interaction, an estimate of the residual variance 

can be obtained that includes the effect of these "parasite" phenomena. Hence, with this estimate 

-obtained in a different way than proposed by Goodwin et al. (1992)- GIC and its undermodelling 
concept can be applied, with a promising outcome. The residual analysis tools (autocorrelation and 

run test) appear to be appropriate as well for a posteriori structure characterization. 

Summarizing, both a priori and a posteriori methods have been found to provide good structure 
selections for the application under study. Once these methods are available, a next step can be made. 
In view of the noisy data, a good experimental design may be an invaluable tool to increase the 
discriminative power (Munack, 1992). Optimal experimental designs (OED) for structure charac­

terization of wastewater treatment models have been devised and are reported by Vanrolleghem & 

Van Daele (1994). 

The development of the a priori SC methods presented in this paper has reduced the computing of 

these OED's to such an extent that even an on-line implementation can be achieved. This allows the 
"bio"sensor described in this work to adapt to the changing nature of the wastewater/biocatalyst 
interaction, keeping the impulse response experiments optimal for structure characterization. 
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NOMENCLATURE 

(3(J.LJi) : complexity term in information criteria N : number of data Roints _ ----- ---

c(t) : residual N(O,I) : normal distribution with zero mean 

y(N,p) : complexity term in information criteria and unit variance 

at : residual error N4SID : numerical algorithms for subspace 

f/i : maximum growth rate state space system identification 

AIC : Akaike's information criterion OED : optimal experimental design 

BIC : bayesian information criterion OUR : oxygen uptake rate 

FPE : final prediction error p : number of parameters of a model 

GIC : general information criterion R : number of runs 

k : number of substrates in model re(r) : covariance 

Ksi : affinity constant SC : structure characterization 

M(SN,PN) : estimated model from N data-points Si : concentration of substrate i 

M(SN,P*) : estimated model from N data points SSR : sum of squared residuals 

with converged parameter estimates X : biomass concentration 

MT(ST,PT) : "true" model Yi : yield coefficient for substrate i 
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Optimal Experimental Design 
for Structure Characterization of Biodegradation Models: 

On-line Implementation in a Respirographic Biosensor 

ABSTRACT 

The interaction between activated sludge and a wastewater is subject to important changes. 

This is reflected not only in changing biokinetic parameters but also in changing model struc­

tures. The need to select the 'right' model structure in a reliable way on the basis of respiro­

graphic data provided by on-line sensors imposes serious real-time constraints on the methods 

used. First of all, fast structure characterization methods are present~d allowing to track the 

model structure on-line. Since these so-called a priori methods are less computing intensive, 

they can be at the basis of optimal experimental design calculations that can be performed on­

line. This allows to maintain the quality of the overall model identification under the changing 

process conditions of a wastewater treatment plant. Two applications of Optimal Experimental 

Design are given. 

KEYWORDS 

Activated Sludge Wastewater Treatment, Model Structure selection, Biosensors, Identification, 

Mathematical Modeling, Optimal Experimental Design, Oxygen Uptake Rate 

INTRODUCTION 

Since 1914, when the process was first described (Arden & Lockett, 1914), activated sludge 

wastewater treatment processes have evolved from 'black box systems' for which little knowl­

edge was available on the process mechanistics to 'grey box systems' where the insights have 

reached considerable levels. As knowledge was acquired, the quantitative description of the 

processes became increasingly elaborate. The interest to improve these models stems from 

a need to quantify the performance of the process and the desire to optimize its design and 

operation. 

It took until the early fifties before dynamic models were proposed (Goodman & Englande, 

1974) and it is interesting to follow the progress in the understanding of the process in the 

complexity of the models: initially, 2 states were found sufficient for a good description, i.e. 

biomass and substrate, and degradation was modeled as a first order reaction (Eckenfelder & 
O'Connor, 1955; McKinney, 1963). Later, saturation of the degradative capacity was included 

by introducing a Monod-type of dependency of the removal rate on substrate concentration 

(Lawrence & McCarty, 1970). To describe their experimental findings, Andrews and cowork­

ers introduced the first structured models: biomass was structured in active, stored and inert 

compartments (Busby & Andrews, 1975). Important research work in South-Africa focussed 

on the characterization of wastewater in terms of different substrate types (Dold et al., 1980). 
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Once methods to differentiate among these fractions were established, substrate compartmen­

talization in the models became possible and eventually culminated in the 'state-of-the-art' 

IAWQ model nr. 1 (Henze et al., 1987). Soon, however, as methods were developed further 

and insights increased, more fractions were needed to accommodate experimental observations 

(Sollfrank & Qujer, 1991) or to include new processes within the models, e.g. enhanced biolog­

ical phosphorus removal (Wentzel et al., 1992). As a result, some current models describe no 

t-___ ~less than 25 interactions between 19 substrate and biomass ty]:>es, incorRorating 19 kinetic and 

24 stoechiometric parameters and 8 switching functions to accommodate for certain process 

conditions (Vanrolleghem & Van Impe, 1992). 

Without doubt these structured models are highly valuable for design of treatment plants 

and the evaluation of process performance. A different attitude exists with respect to their 

applicability for control purposes. Not only is there a lack of adjustable actuators to drive 

process states to their desired values, but with currently available on-line instrumentation, it 

seems unlikely that one is able to dynamically update the more complex structured process 

models mentioned above. This on-line tracking of the model is essential though, since the 

sludge/wastewater interaction is subject to important variations, due to the changing nature 

of the influent and the property of the biocatalysts to adapt to their environment. Still, 

progress in the field of instrumentation is substantial so that increasingly complex models will 

be used for controller design in the future (Vanrolleghem & van Impe, 1992). 

However, there will always remain a discrepancy between the quantity and quality of available 

data for model development (sophisticated pilot-scale treatment plants, large off-line data-sets, 

... ) compared to the on-line measurements (and actuators) available to control systems at full­

scale treatment plants. The danger will therefore always exist that over-parametrized models 

are being used in control strategies, leading to practical identifiability problems due to lack 

of 'sufficiently rich (in terms of their information content) data' from the sensors (Jeppsson 

& Olsson, 1993). As a result of the lack of identifiability, nonsense parameter values may 

be obtained. These estimates are subsequently used within adaptive control schemes that, 

consequently, will fail to produce adequate control actions. 

This misuse can be avoided in two ways. 

• One, more conservative, approach is to use reduced order models that ensure identifi­

ability at all times on the basis of currently available process instrumentation. Such 

models take into account the current insights as summarized in the available (complex) 

models so as to be able to describe the most important phenomena. This approach is 

therefore characterized by the selection of a fixed model structure that ensures reliable 

parameter estimates under all possible process conditions. 

• The different approach that is developed in this paper starts from the observation that 

not only the parameters in a model are time-varying. Also, the model structure that is 

most appropriate for adequate description of the process is time-dependent. This can 

be illustrated by two simple examples. 

Suppose a plant is to be controlled in which both nitrification and carbon oxidation 

take place. With adequate instrumentation, it is feasible to identify a model in 
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which both these processes are incorporated. Suppose, however, that the nitrifying 

capacity of the sludge disappears completely at some time instant. As a result, the 

model describing the process should be simplified and should no longer consider 

the nitrification process and the state variable describing the autotrophs should be 

eliminated. 

Similar ideas can be developed with respect to wastewater composition. For in-

;-----------sst1l,nee,-it-wouhi-be-dangerotls-frorn-an-identifiability-point--e>f-view-t-e>-&ry-t-e>-estim-atee-­

degradation kinetic parameters of different substrate fractions if the data obtained 

only point to the presence of one type of substrate. However, again, influent com­

positions change and on another day, more fractions might be needed within the 

model to adequately describe the observed data. 

The approach then consists in tracking the model structure ensuring that its parameters 

can be identified. 

If one compares both approaches described above, one observes that, for the first one, the 

reduced order model used for the control algorithm is fixed a priori and does not change 

during the course of the process. Only the parameters are estimated on-line. In this paper, 

it is proposed to select the appropriate model structure out of a set of candidate models on­

line, on the basis Of the information obtained from on-line sensors. Only after this so-called 

structure characterization, parameters will be estimated. 

Since the proper choice of the model structure is a first prerequisite in the proposed approach, 

data must be obtained that allow reliable structure characterization. Hence, the aim of this 

paper is to design experiments that provide such data. The outline of the paper is structured 

according to three principal activities: first, the set of candidate models used in this work will 

be described. Next, methods for structure characterization will be discussed. These methods 

will then be central to the design of optimal experiments. First however, some experimental 

constraints will be pointed out. 

EXPERIMENTAL CONSTRAINTS 

As indicated, the paper will focus on the methodology needed to find the 'right' model and how 

to design experiments in such a way that this choice is made most reliably. The experiments 

to be performed with this aim must provide 'rich' information (obtained by proper excitation 

-of the process), but must also obey a number of constraints. 

1. The experiments should not disturb the process to such an extent that plant performance 

is affected. Two approaches are possible. 

(a) Identification-In-The-Loop 

One typical approach for Identification-In-The-Loop is to perform experiments with 

a so-called dual-controller. In treatment plants equipped with dual-control, an ex­

citation signal (that will result in the necessary 'rich' information) is superimposed 

on the control signal (that will try to keep the plant in line with the objective). 
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A well-known example of this approach is the relay-feedback procedure for simul­

taneous estimation of the oxygen uptake rate and the volumetric mass transfer 

coefficient in activated sludge reactors (Holmberg et al., 1989). In this approach 

where the treatment plant itself is used for experimentation, the excitation signals 

must remain rather restricted in view of the second constraint, i.e. plant perfor­

mance. Moreover, the plant itself may not lend itself for this kind of experiments 

:--_______ ~d~u~e~t~o~t=he lack of sufficientlY' adjustable actuators. Hence, the identifiability ];>"'ro"'bc-___ _ 

lem may remain to exist and one will be obliged to restrict the complexity of the 

models applied. 

(b) In-Sensor-Experimenfs 

Recently (Vanrolleghem, 1993), an alternative way to obtain rich information on 

the process has been proposed. The method essentially consists in performing the 

necessary experiments not on the plant itself, but rather on a hardware simulation 

(a special sensor) that is sufficiently representative of the plant, e.g. it contains acti­

vated sludge from the plant maintained under similar process conditions. For these 

so-called In-Sensor-Experiments, no restrictions exist with respect to the excita­

tion signals since the plant is not involved directly. Consequently, the information 

content of the observations is sufficiently large to allow the identification of more 

complex models than would have been possible with Identification-In-The-Loop. 

Hence, more detailed knowledge can be obtained on the process, leading to a more 

elaborate quantitative description that permits the implementation of more ad­

vanced control strategies. 

The experiments mentioned in this paper are performed in such a 'hardware sim­

ulation' of an aeration tank and allow to find the quantitative description (model 

structure and parameters) of the wastewater/sludge interaction. Activated sludge 

in a small aerated reactor is subjected to pulse additions of wastewater producing 

the impulse response of the system. This response can be measured in different 

ways, but the oxygen uptake rate is probably the most adequate variable since it is 

a direct measure of the primary function of any activated sludge system: substrate 

oxidation. 

The availability of dissolved oxygen electrodes has resulted in numerous so-called 

respirometers built around this reliable and sensitive primary sensor. Different 

concepts of respirometers exist, but all enable the monitoring of respiration rates. 

In the implementations of Vanrolleghem et al. (1990) and Ros and Dular (1992), 

the oxygen uptake rate curve, or respirogram, is obtained from the oxygen mass 

balance over the aerated batch reactor incorporated in the device. Details on the 

operation of the respirographic biosensor used in this work can be found elsewhere 

(Vanrolleghem et al., 1990; Vanrolleghem & Verstraete, 1993). For a good under­

standing of the sequel, however, it is to be noted that two types of samples can be 

injected. One is the wastewater itself, the other is a calibration mixture with the 

composition at the disposal of the operator of the biosensor. 
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Typical respirograms obtained after pulse injections can be found in the next sec­

tion. Similar respirographic data can also be obtained with the implementations 

of Sollfrank and Gujer (1991), Spanjers et al. (1993) and Watts & Garber (1993). 

With these instruments the impulse response is followed in a batch reactor to which 

the respirometer is connected. 

2. The results should be available on-line, imposing a real-time constraint. In the biosensor 

used in this study, a new Oxygen Uptake Rate curve (respirogram) is typically obtained 

every 30 minutes. Hence, the total system identification (structure characterization 

followed by parameter estimation) should be completed within this timeframe. Typically, 

a nonlinear parameter estimation with the efficient and robust direction set algorithm 

(Brent, 1973) takes approximately 10 minutes on a 486-type personal computer, implying 

that at most three parameter estimates can be done within the real-time time frame. 

CANDIDATE MODELS 

A first order model, a single Monod model and a double Monod model were chosen as the 

(limited) set of candidate models. This set can be expanded but the aim of this paper is 

to introduce some new methodologies rather than to implement them in a fully operational 

biosensor. For each candidate model, the model equations and a typical data-set obtained with 

the respirographic sensor used to perform the In-Sensor-Experiments are given in Figure 1. 

For all models, X is the biomass concentration, Si is the i-th substrate concentration, Y; is 

the corresponding yield coefficient and J{d is the decay rate constant. All concentrations are 

given in mg COD/I and the time unit used is minutes. For model 1, k is the first order rate 

constant, and for both other models Pi and J{si are the maximum growth rate and affinity 

constant for substrate i respectively. 

STRUCTURE CHARACTERIZATION 

Most of the structure characterization methods currently available to the experimenter aim 

at minimizing a criterion of the form f(SSRi , N) + g(Pi, N) with N the number of measured 

points, Pi the number of parameters of model i and SSR; the Sum of Squared Residuals of 

model i (Soderstrom and Stoica, 1989). The first term is a decreasing function of Pi repre­

senting the fit of the model, the second term is an increasing function of Pi penalizing the 

complexity of a model. Hence, a minimum will exist at some Pi. 

Different forms have been proposed for the functions f and g. Examples are the AIC-criterion 

(Akaike's Information Criterion) and FPE (Final Prediction Error) (Ljung, 1987). The major 

disadvantage of these methods is that the parameters need to be estimated for every candidate 

model in order to obtain the different SSRi 's. This is the reason why these methods have 

been called a posteriori methods (after parameter estimation) (Vanrolleghem & Van Impe, 

1992). The a posteriori methods mentioned above will violate the real-time constraint on 

most of today's computers, especially as the complexity or the number of candidate models 

increases. 
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Figure 1: Model equations and typical respirograms. 
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Therefore, a clear need exists for a priori methods for structure characterization, i.e. tech­

niques that do not rely on parameter estimation to discriminate among the candidate models. 

Ljung (1987) notes that 'model structure selection based on preliminary data analysis ap­

pears to be an underdeveloped field'. For such a priori methods, a model-dependent but 

parameter-independent feature is required. Then, for each incoming data-set, this feature can 

be determined which then allows the selection of the appropriate model. 

For the three models used here, the number of inflection points in the OUR profile is such a 

feature (0 for the first, 1 for the second and 3 for the third model). Other approaches have been 

investigated as well: the difference in fit between a single and a double tangens hyperbolicus 

(Vanrolleghem et al., 1994) and the use of neural networks (Vermeersch et al., 1994). In the 

sequel, the methodology will be illustrated with the feature based on the number of inflection 

points. 

To determine the number of inflection points, the procedure developed in Van Daele (1993) is 

used: 

• Since no information on the biodegradation of substrates is contained in the tail end of 

the OUR curves (see three example respirograms of Figure 1), the zero-tail of the data 

was cut by applying a T-test. A moving window of size m was used to test whether the 

average of the window was significantly different from zero. 

• To make the feature extraction scale-invariant, the data were scaled to the unit square. 

• In order to obtain the number 6f inflection points from the respirograms, the second 

derivative (the curvature) must be calculated. To estimate its value and to determine 

whether it is significant, the following procedure was used: apply a moving window 

regression with window width n and fit both a straight line and a parabola through 

points j till j + n. 

Whether the parabolic fit is significantly better, and therefore, whether the estimated 

value of the curvature is significantly different from zero, can be tested by (Draper & 

Smith, 1981): 

(SSR1 - SSR2 )/1 ~ F(l' _ 2) 
SSR2 /(n _ 2) - , n (11) 

where SSR1 and SSR2 are the not explained variances of the linear and parabolic 

regression respectively. SSR1 - SSR2 is the extra sum of squares due to the inclusion 

of the curvature in the regression. The null hypothesis that the parabolic fit is not 

significantly better than the linear one can be tested by referring this ratio of mean 

squares to the F-distribution with 1 and n-2 degrees of freedom. The 1 in the numerator 

is the difference in degrees of freedom between a straight line and a parabola. 

If the parabolic fit is significantly better, the highest order coefficient (the curvature) is re­

turned, otherwise its value is set to zero. For the three example respirograms of Figure 1, the 

results are displayed in Figure 2 

An inflection point is defined by a point where the curvature crosses zero. Note that the third 

data-set only indicates one inflection point, the second and the third inflection points, to be 
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expected theoretically from the model characteristics (Van Daele, 1993), were not significantly 

enough and are missed. This problem can, however, be alleviated by adding some extra a 

priori knowledge to the structure characterization: knowing that the zero-tail is truncated, 

the inflection point obtained in case a single Monod model should apply, must be situated at 

the end of the interval. Hence, if only one inflection point is detected but it is not at the end 

of the OUR-interval, then a double Monod model will be selected. 

To define the reliability ·of an inflection point, it is to be noticed that, in Figure 2 an inflection 

point is surrounded with two pulses, a positive one and a negative one. These two pulses can 

be used in several ways to define the reliability r(f) of an inflection point f: 

• The surface of both pulses 

• The total height of both pulses 

• The height of the smallest pulse 

• 
The first approach will be used in the sequel. 

In order to increase the discriminative power of the experiments, the aim must be to determine 

the inflection points with the highest reliability, and hence the aim of the optimal experimental 

design is to maximize r(f). 

OPTIMAL EXPERIMENTAL DESIGN FOR 

STRUCTURE CHARACTERIZATION (OED/SC) 

The aim of the main body of this paper is to propose methods for the design of experiments 

which results in the most reliable selection of the model structure. This is also termed Opti­

mal Experimental Design for Structure Characterization and is abbreviated in the sequel as 

OED/SC. The methods will be restricted to the cases where the wastewater influent contains 

two substrates 51 and 52 (hence, a double Monod model can be used) and the aim is to design 

an experiment such that the double Monod model will be selected reliably. Pulse injection of 

such wastewater to the batch reactor of the biosensor results in initial substrate concentrations 

noted as 51 (0) and 52 (0). 
Two related problems will be treated: 
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• OED /SC for Calibrations: Since both the initial concentrations 81 (0) and 82 (0) are at 

the disposal of the experimenter, two degrees of freedom for the optimization problem 

exist . 

• OED/SC for Wastewater: in this case, since the wastewater composition can not be 

altered, the ratio ;:f~l is fixed. Only the amount of wastewater injected is variable and 

hence only one degree of freedom is left. 

OED /SC for Calibrations 

In the respirographic biosensor used in this work, calibrations are regularly performed, mainly 

to verify the correct functioning of the apparatus. As shown by Vanrolleghem and Verstraete 

(1993), this calibration can, however, also be used to characterize independently the two main 

groups of aerobic organisms constituting the activated sludge, i.e. heterotrophs and nitrifiers. 

To achieve this goal, a calibration mixture of ammonia and a readily biodegradable carbon 

source such as acetate is injected. The optimal experimental design is then aimed at obtaining 

the amount of each substrate such that the resulting OUR-curve allows the extraction of 

the three inflection points with the highest reliability. This can be done by maximizing the 

reliability of the three inflection points, or by maximizing the least reliable inflection point. 

The first approach has been chosen and hence the following optimization problem can be 

formulated: 

(12) 

where 8 1 (0) and 82(0) are the initial concentrations of the calibration substrates and rUi) is 

the area of the positive and negative pulse determining the ith inflection point (see previous 

section). 

This optimization problem can be solved approximately by computing the sum of the relia­

bilities for each substrate combination on the grid Sl (0) = 5(5)50 (from 5 to 50 in steps of 5) 

and S2(0) = 5(5)50 mg/l. One obtains a response surface that points to the optimal substrate 

combination. 

In Table 1, the two sets of biokinetic parameters that were used in the simulations are sum­

marized. 

For Set 1, the results are schematized in Figure 3. 

Table 1: Two Parameter Sets used in the simulations. 

Parameter Set 1 Set 2 

X(O) 4000 mg/l 4000 mg/l 

/"1 5. e-4/min 2.62 e-4 /min 

Es1 I.mg/1 0.226 mg/l 

/"2 1. e-4 /min 2.85 e-4 /min 

Es2 0.2 mg/l 0.6 mg/l 
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51 (0) 51(0) 

Figure 3: Contourplot indicating the reliability (left) and the length (right) of the respirogram 

for parameter Set 1. Black indicates lower reliability or a violation of the real time constraint. 
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Figure 4: OUR and substrate removal for parameter Set 1: example 1. 
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Figure 5: OUR and substrate removal for parameter Set 1: example 2. 
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On the left, the sum of surfaces is given as a contour-plot. Black indicates the experimental 

conditions to avoid and the lighter areas result in more reliable inflection points. The length 

of the respirogram is depicted on the right side. An experimental condition resulting in a 

respirogram longer than 30' is colored black, reflecting the importance given to the real-time 

constraint in this optimization problem. From this it is clear that the line 82 (0) = 5 mg/l 

should be avoided and that 82 (0) should be less than 12.5 mg/!. 

In Figure 4 and Figure 5, the OUR-curve and corresponding substrate removal curves for two 

extreme cases, i.e. 81(0) = 25,82 (0) = 12.5 (Figure 4) and 81(0) = 25,82 (0) = 5 (Figure 5) 
are displayed. Note that Figure 5 degenerates in a single Monod model, implying that the 

parameters of the double Monod model have become practically unidentifiable (Vanrolleghem 

& Verstraete, 1993). 

It is very important to note that this optimal experimental design needs to be performed 

on-line, because other biokinetic parameters result in a completely different advice. This is 

clearly illustrated by the OED /se results (Figure 6) for the second set of parameter values of 

Table 1. For these sludge characteristics, the substrate concentrations to avoid, i.e. the line 

81(0) = 82 (0), are clearly different compared to the ones obtained for the first parameter set 

(Figure 6). 
This result emphasizes the need to perform OED /se on-line and therefore stresses the re­

quirement for a priori se methods so as to meet the real-time constraints. 

o 

N 
m 

S1(O) 51(0) 

Figure 6: Contourplot indicating the reliability (left) and the length (right) of the respirogram 

for parameter 8et 2. Black indicates lower reliability or a violation of the real time constraint. 

OED /SC for Wastewater 

~ED/se for wastewater can be derived from the OED/SC for Calibrations. Suppose the 

wastewater is characterized with a ratio r = ~:f~l = 0<. This implies that only initial con­

centrations lying on the line 81(0) = 0<82 (0) need to be considered. This line can be drawn 

on the given contour plots (Figure 3 and Figure 6), reducing the two-dimensional contourplot 

to a one-dimensional plot. This is shown in Figure 7 (left ) for the first set of parameters and 

for a fixed ratio ~:f~l = 1. Equation 12 is plotted versus 81 (0), while 82 (0) can be computed 
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from the known ratio. Figure 7(left) illustrates that the reliability increases monotonically 

with increasing SI(O). The marginal increase however, is variable, implying that the gain in 

reliability is not constant. No maximum is found, but SI (0) is limited by the same real-time 

constraints as in Figure 3, limiting SI(O) to a maximum of about 12.5 mg/l 

r(fl)+r(f2)+r(f3) 

1200 

r(fl)+r(f2)+r(f3) 

1200 

+-------------:tlOnol-----~..----=----___,~"~o!---------------------

800 

600 

400 

200 

10 20 30 40 50S1 (0) 

800 

600 

400 

200 

L...--OC
'

''O -"""20;-----;";;30--.,''''0-...,-5'OSl (0) 

Figure 7: The reliability of the respirogramfor a given SI(O) and a ratio ~:f~l = 1 for parameter 

Set 1 (left) and Set 2 (right). 

The same wastewater composition with an activated sludge characterized by parameter Set 2, 

results in a uncharacterizable respirogram as illustrated in Figure 7(right): no SI (0) can be 

found for which the resulting respirogram will yield significant inflection points and hence no 

double Monod model will be selected. 

CONCLUSIONS 

Respirographic biosensors provide rich information that is particularly suited for the modeling 

of the wastewater-sludge interaction. Every 30' a new dataset is produced by the biosensor 

used in this work. This imposes an important real-time constraint on the identification tools, 

especially because parameter estimation is a computing intensive task. This prohibits the use 

of traditional, a posteriori, structure characterization methods, so that new, a priori, methods 

were needed. 

Besides allowing to track the model structure on-line, these faster SC methods also made it 

feasible to design optimal experiments for improved SC. This Optimal Experimental Design 

also fits within the real-time constraint, and allows to maintain the quality of the overall 

model identification under changing process conditions. The need for this on-line design was 

clearly demonstrated, since even rather small variations in the biokinetic parameters resulted 

in completely different designs. 

NOMENCLATURE 

x 

: substrate i 

: yield coefficient 

: decay rate constant 

first order rate constant 

: biomass concentration 

- VII.12-

[mgCOD/l] 

[mgCODx/mgCODs] 

[I/min] 

[I/min] 

[mgCOD/l] 



Pi 
SSR; 
N 

: max. growth rate on substrate i 

: affinity constant for substrate i 

: number of parameters of model i 

: sum of squared residuals of model i 

: number of measured data 

OUR: oxygen uptake rate 

r(f) : reliability of an inflection point f 

OED/ SC : optimal experimental design for SC 

SC : structure characterization 
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On-line Estimation of Biokinetic Parameters in 
Activated Sludge Processes. From Theory to Practice: A Case Study 

ABSTRACf 

This paper deals-with the estimatian e[parameters a/same kinetie made/s-desClibing the aettWlted sludge 
process. The objective of the paper is to present a case study which covers the important aspects of parameter 
estimation, from the structural identifiability properties to the on-line parameter estimation, via the design 
of informative experiments for parameter estimation. The identification is based on the on-line oxygen 
uptake rate data given by a novel respirographic biosensor. 

Four model candidates (exponentia~ Monod, double Monod and IAWQ n° 1) are considered. For each 
model it was shown that only a smaller set of the original parameters are structurally identifiable. It is also 
shown and discussed how to design experiments so as to obtain on-line accurate parameter estimates. 

KEYWORDS 

Activated Sludge Wastewater Treatment; Biosensors; On-line Monitoring; Mathematical Modelling; Ident­
ifiability; Parameter Estimation; Optimal Experimental Design 

INTRODUCTION 

Process models become increasingly important in different aspects of wastewater treatment systems. 
Examples of the possible application of mathematical models of wastewater treatment processes are: 
1) models can be considered to be a summary of available knowledge and data, 2) they are central to 
the simulation software used for training of operators, 3) they can be the basis for the design or upgrade 
of treatment plants, 4) models are the basic ingredient of software sensors for estimation of unmeasur­
able but important variables and 5) the development of advanced control systems relies on adequate 
process models. 

The complex (mechanistic) models that are currently available reflect the complexity of the treatment 
systems in use today and the detailed process knowledge acquired during important research efforts 
in the last few decades (Vanrolleghem & Van Impe, 1992). Next to the model structure, i.e. the 
functional relationships between the variables that are considered important for process description 
(biomass, substrate, ... ), a large number of parameters in the model are to be inferred from a priori 
process knowledge and experimental data (Spriet & Vansteenkiste, 1982). 

While the model structure can be determined to a certain extent on the basis of a priori knowledge, 
e.g. the process configuration as described by mass balances, most parameter values and part of the 
model structure need to be estimated on the basis of experimental results. This is a non-trivial task in 
view of the lack of available data to feed this identification stage. In order to solve this problem, new 
experimental methods are proposed, mostly in conjunction with a new iteration of the model building 
process (Boyle & Berthouex, 1974). The problem of model structure selection from experimental data 
is treated elsewhere (Vanrolleghem et aI., 1994b ). Examples of new experimental procedures for model 
calibration are described by Cech et al. (1985), Ekama et al. (1986), Grady et al. (1989), Kappeler & 

Gujer (1992), Kristensen et al. (1992) and Larrea et al. (1992). 
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The abovementioned methods require considerable experimentation time (typically 1 day or more) to 
obtain the necessary information for parameter estimation. However, the changing system charac­
teristics, as exemplified by rapidly changingwastewater compositions (time constant of hours (Olsson, 
1992)) and sludge adaptation (days-weeks (Olsson, 1992)) or intoxication (hours), demand faster 
updates from the monitoring systems. Indeed, on-line tracking of parameters in the process model is 
essential for proper performance of adaptive controllers (Bastin & Dochain, 1990). Hence, the 
applicability of the abovementioned off-line methods within adaptive control strategies seems rather 
limited The estimates obtained-fmm-the-of-f-:,m· 1e-1Ces:t.h\:OOiUl<l-b~~iRllOO-as-syitabk~JtiliH'<Il1.wlirei'----­
the identification algorithm (Jeppsson & Olsson, 1993). 

The quality of the on-line estimation of model constants will depend on the amount and quality of 
real-time data that is available to the identification algorithm. Despite considerable efforts, on-line 
sensor technology is still considered to be the weakest part in the real-time process control chain 
(Harremoes et aI., 1993; Vanrolleghem & Verstraete, 1993b). Consequently, it is important to use the 
scarce data provided by these on-line sensors as efficiently as possible. 

Besides these limitations on the available information another problem in the on-line identification of 
the process model appears: the mathematical models required to describe the different processes 
occurring in a wastewater treatment system are highly nonlinear and the model parameters may exhibit 
considerable correlation. Because of these model features, the study of the identifiability, i.e. the 
assessment of the possibility to obtain unique parameter estimates on the basis of data, is complex. 
The methods available to evaluate the identifiability from a theoretical point of view are mainly aimed 
at linear models, and the few existing tests for nonlinear systems are mathematically involved and often 
don't guarantee conclusive results (Pohjanpalo, 1978; Godfrey & DiStefano, 1985; Vajda & Rabitz, 
1989; Vajda et aI., 1989; Chappell et aI., 1990; Chen & Bastin, 1991; Chappell & Godfrey, 1992). 
While the theoretical identifiability is studied under the assumption of perfect, i.e. noiseless, data, the 
problem with highly correlated parameters surfaces when a limited set of experimental, noise-cor­
rupted data is used for parameter estimation. Under such conditions the uniqueness of parameter 
estimates, though predicted by the theoretical analysis, is no longer guaranteed, because a change in 
one parameter can be compensated almost completely bya proportional shift in another, still producing 
a satisfying fit between experimental data and model predictions. In addition, the numerical algorithms 
that perform the nonlinear parameter estimation show poor convergence when faced with this type of 
ill-conditioned optimization problems, the estimates being very sensitive to the initial parameter values 
given to the algorithm (Nihtila & Virkkunen, 1977; Holmberg, 1982; Marsili-Libelli, 1992). Conse­
quently, the estimated parameters may vary over a broad range and little physical interpretation can 
be given to the parameter values obtained. 

The Monod-model (,umax is the maximum growth rate, Km is the half saturation constant), 

(S)= flmaxS 
fl Km+S 

(1) 

widely used to describe different types of saturation phenomena in biological systems is probably the 
best-known example of a model in which parameter estimates may be highly correlated (Boyle & 
Berthouex, 1974, Nihtila & Virkunen, 1977; Holmberg, 1983; Munack, 1989). In many cases the 
experiments provide only sufficient information to estimate the ratio between both parameters in this 
model, flmax/Km, since many combinations of parameters satisfying the relationship flmax/Kin = 

constant, result in an error functionalJ that is not significantly different from the optimal one. A simple 
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Figure 1. Effect of the experimental design on the identifiability of Monad model parameters. 
Left: A limited substrate concentration range is sampled. 

Right: Growth rates are measured over a sufficiently large range. 

example may illustrate this. In Figure 1 the effect of the quality of data on the uniqueness of parameter 

estimates is shown. If only growth rates are measured for substrate concentrations ranging between 0 

and 0.1 mgll, no distinction can be made between different parameter sets, i.e. the Monod model is 
unidentifiable. If, on the other hand, some carefully chosen substrate concentrations are considered, 
the values given in Figure 1 can be considered accurate estimates of the true parameter values. 

Numerous other examples have been presented in the literature (Boyle & Berthouex 1974; Holmberg 
& Ranta, 1982; Vialas et aI., 1985; Jeppsson & Olsson, 1993). 

In order to overcome this problem, it has been proposed to use additional a priori information -such 

as a known maximum growth rate- to impose parameter bounds (Holmberg (1981) as mentioned in 

Munack (1989». Alternatively, Vialas et al. (1985) proposed to sample more frequently in defined 

periods of the experiment in order to increase the informative content of the collected data. 

A few studies were directed at the design of experiments by which more informative data can be 

collected. Holmberg (1982) showed that the practical identifiability of Monod parameters from batch 
experiments depends on the initial substrate concentration. The author stated that the optimal initial 
substrate concentration depends on the noise level and the sampling instants. It is also obvious from 

the results that the experimental design is dependent on the parameter values, which, in view of the 
changing nature of the process studied in this paper, implies that the experimental design is time-va­

rying. Munack (1989) proposed different modifications to batch experiments and illustrates that 

important improvements in parameter confidences can be achieved by optimal experimental design 

techniques. 

The goal of this paper is to study both the theoretical and practical identifiability of a class of 
Monod-based biological models used to describe activated sludge processes. In contrast to the studies 

found in the literature, the analysis will not start from the assumption that measurements of biomass 

and substrates are available but from the assumption that only oxygen uptake rate data are available. 
The experiments that are evaluated with respect to their information content are batch experiments, 

with an extension towards simple fed-batch systems. Optimal experimental designs are proposed and 
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validated with real-life experiments. A novel aspect of this work is that the procedures are implemented 
for on-line use in a respirographic biosensor instaIled at the treatment plant, aIlowing to update the 

parameters in the process models on-line. The so-caIled "In-Sensor-Experiments" performed in this 
respirometer are preferred over data obtained from the fuIl-scale treatment plant since identification­
in-the-loop may be subject to serious experimental constraints (with respect to excitation signals), 
leading to important practical identifiability problems. Of course, data from the treatment plant wiIl 

complete the information used in an adaptive control scheme. 

-,----9T?th""e-.:(mc~pt of on-line adjustment of In-Sensor-Expenments for optImal model IdentIfIcatIOn as 

developed in this paper can be described as an automated on-line version of the iterative modeIling 
cycle as proposed by Boyle and Berthouex (1974): with a model available and some initial parameter 
values, a new experiment is designed, perfonned and analysed (parameter identification and if 

necessary, a change in model structure, see VanroIleghem et al., 1994b) resulting in an updated model 
which can be used for a new experimental design. In this way, knowledge on the process is automaticaIly 

updated at each iteration. Moreover, the outlined procedure aIlows to track the changing process 

characteristics caused by influent disturbances and changing sludge properties. 

The paper is organized as foIlows. First, the theoretical framework of the identification study wiIl be 
adressed, i.e. some important definitions are reviewed and basic concepts for the theoretical identifi­

ability tests are introduced. Next, the class of models studied in the paper and the assumptions taken 
are given. Subsequently, the theoretical identifiability of the models is shown, using two different 
techniques, iIIustrating the possibilities and limitations of both identifiability tests. 
In a second part, the problems of practical identifiability of the models is iIIustrated. Next, the 

theoretical background of optimal experimental design is introduced. The paper then describes the 

practical implementation in a respirographic biosensor and, finaIly, the optimal experimental designs 
for parameter estimation are validated with real-life data. 

THEORETICAL FRAMEWORK 

The notion of theoretical identifiability is related to the possibility to give a unique value to each 
parameter of a mathematical model. In simple words, the theoretical (or structural) identifiability of a 

model can be formulated as foIlows (a rigorous definition can be found e.g. in Godfrey and DiStefano, 

1985): given a model structure and perfect (i.e. that fit perfectly to the model) data of model variables, 

are all the parameters of the model identifiable? From the structural identifiability analysis one may 

conclude that only combinations of the model parameters are identifiable. If the number of resulting 

combinations is lower than the original model parameters, or if there is not a one-to-one relationship 
between both parameter sets, then a priori knowledge about some parameters may be required to 
achieve identifiability. A simple example may iIIustrate this: in the model y = axl + bX2 + C(Xl + X2), 

only the parameters a + C and b + care structuraIly identifiable (and not the three parameters a, b, 
c); Two parameters (e.g. a and b) wiII be identifiable if the value of a third one (here, c) is known a 

priori. 

For linear systems, the structural identifiability is rather weIl understood, and besides classical identi­

fiable models (like dynamical models in canonical form), there exists a number of tests for the global 
identifiability (e.g. Laplace transform method, Taylor series expansion of the observations, Markov 

parameter matrix approach, modal matrix approach, ... , see e.g. Godfrey and DiStefano, 1985). 

However, for models that are nonlinear in the parameters (like the models used in this work), the 
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problem is much more complex. There exist also several structural identifiability tests, but they are 

usually very complex to implement (they typically require the use of symbolic software packages 

(Raksanyi et aI., 1985), as will be illustrated below). In the following several similar approaches are 
used wherein the models are transformed into linear ones, after which the analysis is based on the linear 

model and the transformation. 

Practical identifiability is related to the quality of the data and their "informative" content: are the 
available data informative enough for identifying the model parameters and for giving accurate values? 

+-----ilrnn~11e mudely an + bxz the parameters are structurally IdentIfIable but they Will not be practIcally 

" identifiable if Xl andxz are proportional (Xl = axz) (then only the combination aa + b is identifiable). 

As already mentioned in the introduction, a typical example is the Monod model in simple microbial 
growth processes, which has been shown to be structurally identifiable from (perfect) data of substrate 

and biomass (Aborhey & Williamson, 1978), but which was found to be often not practically identifiable 

because of the usually poor quality of the data and the limited number of datapoints (e.g. Holmberg, 

1982). 

Mathematical Models 

As far as known to the authors, no studies of the theoretical identifiability of the parameters in 
Monod-type models have been reported based on the assumption that only oxygen uptake rate data 
are available to the experimenter. The experiments on which the model identification is to be based, 

are performed in such a way that 

• the change in biomass concentration can be assumed negligible (which is a fair assumption 

provided S(t=O)< <X(t=O)) 

• the oxygen uptake rate data are only due to exogenous (= substrate induced) respiration 
(OURex ), i.e. endogenous respiration is either assumed negligible or is eliminated from the data 

The models considered in this study express the dependence of OURex on the biodegradation of k 

substrates Si present in the mixed liquor: 

k dSi 
OURex = - L(l-Y; ) -

i=l dt 
(2) 

In the above expression, Yi (the yield coefficient) is the fraction of pollutant Si which is not oxidized 
but converted into new biocatalyst X. As usual, all concentrations are expressed in chemical oxygen 
demand (COD) units. 

The different model complexities taken into account in this work express the different number k of 
pollutants to be considered and the degradation mechanism. 

The four types of wastewater/sludge interaction included are: 

Type 1 (EXJlonential): One pollutant, first order degradation (k= 1) . 

dSI 
= 

dt 
(3) 

Type 2 (Single Monod): One pollutant, Monod type of degradation (k=l) 

#maxlX SI 
Y1 Kml+SI 

(4) 
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Type 3 (Double Monod): Two pollutants, both Monod type of degradation (k=2) 

ftmaxlX SI 
YI Kml+SI 

ftmax2X S2 
Y2 Km2+S2 

(5) 

Type 4 (Modified lA WO model n01): Three pollutants, two of them hydrolyse into the first substrate 
--,--------W"micll-is-usOOior growth-ac-roroiBg-to-the-MeneG-r~~deI-is-alse-knGwn-as-the-lAW'tQ)---­

model n01 as modified by Sollfrank & Gujer (1991) (k=l) 

ftmaxl X SI + krXr + ksXs 
YI Kml+SI 

dXr 
-= -krXr dt 

dXs 
([(= -ksXs 

In this model OURex (eqn. 2) should be rewritten as: 

(
dS I ) OURex = - (1-YI ) dt - krXr - ksXs 

(6) 

(7) 

The ftmaxi and ki are rate constants, and the Kmi are the so-called affinity constants expressing the 

dependency of the degradation rate on the concentration of pollutant Si. Note that the models as given 

above can be used to describe batch experiments. Start of a batch experiment by pulse injection of 
wastewater is included in the model via the initial conditions Si (0). An additional term in the mass 

balance is required to describe the fed-batch experiments that are also treated in this paper. In order 
to prevent numerical problems, a pulse injection of wastewater in the course of an experiment is 
described by a Gauss-like function: 

2 Ct -(puis ) 

Spuls e a (8) 

in which tpuls is the time instant at which the pulse is given, a is the width of the pulse and Spulsyna is 

the total amount of substrate injected. 
Note that in the models the biocatalyst concentration X is assumed to be constant during the experiment 
(see above). 

Theoretical ldentiftability 

In this section attention will focus on the structural identifiability of the 4 models introduced above. 
First, one can note that the structural identifiability of the first model is rather straightforward. Indeed, 
if the equation of the model is combined with the one which relates OUR to SI (OURex = 

- (1 - YI)dSIldt) and one defines: 

yet) = t OUR(r)dr o 
(9) 

one readily obtains: (10) 

"{ TTTT ... 



... 

.~ 

;;; 
0 
Q 

g 
x • a: 

::> 
0 

0.50 

0.40 

0.30 

0.20 
. ' .... 

0,00 
0 5 10 15 

Time (mln) 

"'~' . '. '. . . 

20 25 30 

... 
'S 
g 
0 
Q 

g 
x • a: 

::> 
0 

0.60,-------------------, 

Intercept - 0,3845 

0.40 /' 

0.30 .. 

0.20 

();-1 

• /' Slope - ·o.oS755 

...... 
.... . .... 

.', 

0.00 L-~_~~_~~_~~_~~-----' 

o 2 3 • 6 

Integ(OURax) (mg 02/1) 

Figure 2. Transformation of oxygen uptake rate data corresponding with the exponential model (a) 
into a linear regression form (b). 

with: 

81 = /lmax1X (1 - Y1) 
Y1 

82 = /lmax1X (1-Y1) S1(0) 
Y1 

(11) 

(12) 

Because dy(t)/dt is measured and yet) is readily calculated, it is straightforward to see that the 

parameters 81 and 82 are structurally identifiable, or in other words, by considering the above 

definitions (11)(12), that the combinations of the model parameters /lmax1X/Y1 and (1 - Y1)S1(0) are 

theoretically identifiable. This is illustrated in Figure 2b which shows data pairs (OUR(t),J ~OUR(r)dr) 

corresponding with the (OUR(t), t) data presented in Figure 2a: 82 is given by the initial value of OUR, 

and 81 is the slope. 

For the other three models, two approaches have been considered: 

• The Taylor series expansion (Pohjanpalo, 1978), 

• The transformation of the models into models linear in the parameters. 

Taylor Series Expansion 
This method has been applied successfully for the first two models by a symbolic algebra software 

package (Mathematica, Wolfram Research Ltd.). The complexity of the computer calculations for the 

identifiability analysis of the third model was such that the computer was not able to give any conclusive 

results. 

The method is based on Taylor series expansion of the observations (here, OUR(t» around time t=O: 

dOUR r d20UR 
OUR(t) = OUR(O) + t dt (0) + 2! dr (0) + ... (13) 

and consists of looking at the successive derivatives to check if they contain information about the 

parameters to be identified. 
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The approach is illustrated with the second (Single Monod) model. 

OUR(O) = (1 - Yl) ,umaxl X Sl(O) 
Yl (Kml + Sl(O» 

Z 2 
dOUR(O) = _ (1 - Yl),umaxlX Kml Sl(O) 

dt Yr (Kml + Sl(O»3 

___________ :':dZ=O~T~TR ,=-0 - VI) ,d,ox1~m1_St(_Df_{Kml 25'1(0» 
d? (0) = yj (Kml + Sl(O»5 

There are five parameters to be identified: Yl, ,umaxl, X, Kml and Sl(O). By noting: 

one can deduce that the following combinations of the 5 above parameters: 

Ih = ,umaxlX(l - Yl) 
Yl 

()z = (1-Yl) Sl(O) 

()3 = (1-Yl) Kml 

can be calculated from the values of Zi : 

Zo (zozz - 3zr) 

zozz -zr 

()z = _ 2zDzl 
zozz - 3zr 

(zozz - 3zr)(zozz -zr) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

The above example is illustrative of the potential difficulties with the Taylor series expansion: how 

many derivatives of OUR are needed to obtain conclusive results? For certain models the question may 
rise whether one can achieve better identifiability properties by considering more terms in the 
expansion. Here it is not needed because the three terms yield sufficient information. Generally 

speaking the approach may imply more and more symbolic computations, and yet not lead to conclusive 
results. 

Transformation of the N onlinear Models 
Another way to obtain the same results is based on the transform of the model into a model linear in 
the parameters. Similar to the exponential model, see development (9)-(12), the dynamical equation 
of SI( 4) and the equation of OUR (2) are combined, i.e. by considering the definition ofy(t): 

yet) = f~OUR(r)dr (24) 

dy _ ,umax1X(l - YI) (1 - Yl)Sl(O) - Y 
dt Yl (1 - Yl)(Kml + Sl(O» - y 

(25) 



The transformation consists of multiplying both sides of the above equation by ((1 - Yl)(Kml + 
Sl(O» - y ), i.e. 

((1- Yl)(Kml + Sl(O» - y): = .umaxlXi~ - Yl) ((1- Yl)Sl(O) - y) (26) 

The above equation can be rewritten as follows: 

It is obvious that the 3 parameters: 

al = Oz + 03 
az = 01 
a3 = 01 Oz 

(27) 

(28) 
(29) 
(30) 

can be identified from the signals ydY/dt, dY/dt and y (note the great similarity with the "exponential" 

model case above; for instance, the initial value of OUR will give a3/ al). 

Hence, the same set of identifiable parameters as with the Taylor series approach (18)-(20) is obtained, 

since there is a one-to-one relation between the ai and Oi (i=l to 3): 

01 = az (31) 
a3 

(32) Oz =-az 
a3 

(33) 03 = al--az 

Consequently, one can conclude that only three combinations (01, Oz, 03 or aI, az, a3) of the 5 original 

parameters are identifiable. 

Since the nonlinearities are identical in the last two models (Double Monod and modified IA WQ), one 
can proceed similarly. The detailed analysis is presented elsewhere (Vanrolleghem & Dochain, 1993). 

However, the underlying assumptions required to bring the identifiability analysis to an end and the 
final results are summarized here. 

For the Double Monod model it is assumed that one of both substrates considered in the model is 
eliminated from the mixed liquor during part of the experiment. With this assumption the oxygen 

uptake rate can be subdivided in two parts corresponding with the degradation of each substrate. 
Hence, the identifiability analysis reduces to the analysis performed for the Single Monod model. The 

combinations of parameters that are identifiable are summarized in Table 1. 

The analysis carried our for the modified IA WQ model is based on a similar assumption, i.e. during a 

part of the experiment, the concentration of the rapidly hydrolysable substrate Xr should be approxi­

mately zero. A second assumption that is needed in the analysis is due to the first order hydrolysis 
process in the model. As a result, an exponential term appears in the transformed model. In order to 
complete the linearization of the model an expansion of the exponential term is necessary. Table 1 

contains the identifiable parameter combinations that are obtained under these assumptions. 
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Table 1. Identifiable parameter combinations of different biodegradation models 
if only oxygen uptake rate measurements are available. 

Exponential Single Monod Double Monod Modified lA WQ 

(1-Yl) Sl(O) (1-Yl) Sl(O) (1-Yl) Sl(O) (1-Yl) Sl(O) 

,umaxlX (l - Yl) ,umaxlX(l - Yl) ,umaxlX(l - Yl) ,umaxlX(l - Yl) 
-, ----- --- -- -11--- --J'l --- -- ---- --- -------}':l--- ---- -- -- ----------¥l-- -- ---------}"l------- -- -- -

(l-Yl)Kml 

PRACIICAL IDENTIFIABILITY 

(l-Yl)Kml 

(1-Yz) Sz(O) 

,umax2X(l - YZ) 
YZ 

(l-YZ)KmZ 

(l-Yl)Kml 

(1-Yl)Xr(O) 

kr 

(1-Yl)Xs(O) 

ks 

With the results of the previous section it is theoretically shown that it is possible to identify combina­
tions of parameters in the proposed activated sludge models on the premise that an ideal set of 

aURex data is available. Clearly it is practically impossible to collect such data and the identifiability 

of the models is critically reassessed in the presence of a finite set of noise-corrupted data. This is the 
second stage of any identifiability study and it requires other tools which are introduced first. It is shown 

that these tools provide an indication of the information content of an experiment. Hence, with the 
deduced criteria of information content optimal experiments can be designed and this is treated next. 

Finally, experimental results are given which validate the theoretical background given below. 

Theoretical background 

The question addressed in this section is the following: with the available experimental data, can the 
parameters be given unique values, or, in other words, if a small deviation in the parameter set occurs, 

does this have a considerable decrease of the fit as a consequence. Mathematically, this can be 
formalized as follows (Munack, 1991): 

Consider the quadratic objective functional: 

N 
A T A 

1(8) = 2: (yi(8) - Yi) Qi (yi(8) - Yi ) (34) 
i=l 

A 

in which yi and Yi( 8) are vectors of N measured values and model predictions respectively, and Qi is a 

square matrix with user-supplied weighting coefficients. 

Parameter estimation can be formulated as the minimization of the identification functional (34) by 
optimal choice of the parameters 8. 
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To evaluate the effect of a small deviation of the parameters 06 on the model fit, a linearization of the 

model with respect to the parameters is introduced along the nominal trajectory: 

yet, 6 + (6) = yet, 6) + [~(t)] /6 = yet, 6) + Ye(t) 06 (35) 

where Ye(t) denotes the output sensitivity functions with respect to parameter variations, evaluated 

along the nominal output trajectories (see below). The expected value of the objective functional for 

._.aparametersetsIightlydifferentJromtheoptimaLonejsgiyenb)'(Munack,1989):. 

E [J(6+06)] = 06
T '~1 (Ye(fi)lQi Ye(ti)) 06 +J/r(Ci Qi) (36) 

in which Ci is the measurement error covariance matrix (remark that Qi is typically chosen as Ci -1 and 

the second term therefore reduces to Nm, m being the dimension of the measured variable vector; in 
this application m=l and, hence, Qi and Ci are scalar). 

A very important consequence of (36) is that in order to optimize the practical identifiability (i.e. 
maximize the difference betweenJ(6 + (6) andJ(6)) one has to maximize the term between brackets 

involving the sensitivity functions. This term is the so-called Fisher Information Matrix and expresses 
the information content of the experimental data (Ljung, 1987): 

N 
F = 2: (Ye(ti)lQi Ye(ti) 

i=l 
(37) 

This matrix is the inverse of the parameter estimation error covariance matrix of the best linear 

unbiased estimator (Godfrey & DiStefano, 1985). 

V=F- 1 
= '~/ye(ti)lQiye(ti))-l (38) 

The approximation (36) of the objective function allows to draw lines of constant functional values in 

the parameter space. In case a two-parameter problem is adressed, e.g. estimation of ,umax and Km in 

the Single Monod model, these lines form ellipses. An example of such error functional is given in 

Figure 7. As Munack (1989) points out, the axes of the ellipses are given by the eigenvectors of the 

Fisher matrix, and their lengths are proportional to the square root of the inverse of the corresponding 
eigenvalues. Hence, the ratio of the largest to the smallest (in absolute value) eigenvalue is a measure 

of the shape of the functional close to the optimum. Figure 7 shows a valley-like form corresponding 
with a large eigenvalue ratio. 

It is important to note that many numerical optimization algorithms (needed to solve these nonIinear 
parameter estimation problems) have difficulties in finding a global optimum in such valley-like 
functionals. The need to invert the Fisher matrix in many of these algorithms is important in this respect 

(Robinson, 1985). Indeed, the abovementioned ratio of eigenvalues equals the Fisher Matrix's condi­
tion number which is a measure for the reliability by which the inversion can be made. Hence, if an 

appropriate experimental design could be found that alleviates this problem, increased estimation 

accuracy would result. The aim in this respect is to bring the ratio of eigenvalues as near as possible to 
1: this corresponds to circular lines of constant functional values and a cone-like functional shape (see 
further). In addition, manipulation of the experiment may affect the variances of the parameter 
estimates. 
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Sensitivity Functions 
The output sensitivity equations are central to the evaluation of practical identifiability as they are a 

major component of the Fisher Information Matrix, and hence, also of the parameter estimation 

covariance matrix. If the sensitivity equations are linearly dependent, the covariance matrix becomes 
singular and the model is not identifiable (Robinson, 1985). For many models used to describe 

biological phenomena, the sensitivity equations are nearly linearly dependent, resulting in parameter 
. estimates that are highly correlated. This is also visualized in the error functional that looks like a valley, 

----i.e ... several-combinationsofparametersmaydescFibethe··samedataequallywelL 

Therefore, an easy way to study the practical identifiability of a model is to plot the sensitivity equations. 
In the literature numerous studies can be found in which this study is performed, especially for the 
Single Monod model considering measurements of both biomass and substrate concentrations (Holm­

berg, 1982; Holmberg & Ranta, 1982; Robinson, 1985; Vialas et aI., 1985; Marsili-Libelli, 1989; Posten 
& Munack, 1990). 

In the sequel, the sensitivity equations are deduced for the Single Monod (4) and modified IAWQ 
model (6) with aURex measurements as only source of information for the identification of the 
biokinetic parameters. The sensitivity of aURex with respect to flmaxl is: 

aaURex a ( dSI) d ( aSI ) 
aflmaxl = aflmaxl -(1-Y I) dt = -(1-Y I) dt aflmaxl (39) 

in which the state sensitivity a:!~1 is obtained by integration of the differential equation: 

d ( aSI) a (flmaxlX SI ) 
dt aflmaxl = aflmaxl YI Kml + SI 

_ X [ SI + flmaxlKml a:!~ll 
- -YI Kml + SI (Kml + sll 

(40) 

where the substrate concentration SI is calculated by integration of the substrate dynamic model: 

dSI 
dt 

= 
flmaxlX SI 

YI Kml+SI 
(41) 

Simultaneous solution of the differential equations (40) and (41) allows to calculate the output 
sensitivities (39). One can proceed similarly for the sensitivity of aURex with respect to Kml. The 

following relations are obtained: 

aaURex = _ (1-YI) :£ ( aSI ) 
aKml dt aKml 

(42) 

d ( aSI ) 
dt aKml = [ 

aSI 1 Kml---SI 
flmaxlX aKml 

YI (Kml + SI)2 
(43) 

These equations show that the sensitivities ofthe Single Monod model are dependent on the parameter 
values. This is a general characteristic of nonlinear models and this feature has been used to define 
nonlinearity (Draper & Smith, 1981). A consequence is that the Fisher Information Matrix will be 
dependent on the parameter values and this feature will have important implications for the optimal 
experimental design (see below). 
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An example of an OURex profile with the corresponding sensitivity function evolutions is given in 

Figure 3(left). One observes that the sensitivity functions are nearly linearly dependent, a well-known 
characteristic of the Monod model. Intuitively, the sensitivity functions express the dependence of the 
output or state variable on a change in the parameters. Hence, the sensitivity functions indicate 
conditions where the dependence is the largest and therefore, under which conditions the most 
information can be gathered on the parameters. In the example of Figure 3(left) these conditions 
prevail when the substrate concentration has dropped to a !evel close to the affinity constantKml. From 

._- ·thisonecandeduce a first approach· to increase the·information content·ofan experiment: choose the 
sampling times when the parameters are influent, i.e. in the high sensitivity zone (Vialas et aI., 1985). 

The output sensitivities for the IA WQ model as modified by Sollfrank and Gujer (1991) are deduced 
in a similar manner (in case OURex is the only measured variable and the biokinetic parameters 
!lmaxl, Kml, kr and ks are to be inferred): 
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Figure 3. Left: Output sensitivities (bottom) for a Single Monad-type OURex-profile (top) 
Right: Output sensitivities (bottom) for an lA WQ-type OURex-profile (top). 
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State sensitivities needed for the calculation of the output sensitivities (44)-(45) are: 

d (aXr) a ( ) ( aXr) dt akr = akr -krXr = - Xr + kr akr 
(46) 

:t ( :!:) = - (Xs + ks :!: ) (47) 

The output and state sensitivities for Itmoxl and Kml are identical to (39)/(40) and (42)/(43) respec-
,-----tively. 

In Figure 3 (right) the practical identifiability of the IA WQ model is studied by checking the output 
sensitivities for a short term batch experiment. No clear linear dependency between sensitivity functions 

is observed. Stronger evidence can be obtained, however, by calculation of the rank of the Fisher 
Information Matrix. If no linear dependency exists, it should be full rank. This is indeed the case for 

this example. The condition number of the Fisher matrix, or equivalently, the ratio of the largest to the 

smallest eigenvalue, indicates whether the sensitivities are nearly linearly dependent: the higher the 
condition number, the lower the practical identifiability. 

So far, the initial conditions were not included in the practical identifiability study. For the Single Monod 
model (4) for instance, one can write: 

aOURex d ( aSI ) ItmoxlX a ( SI ) 
aSI(O) = -(1-YI) dt aSI(O) = (1-YI) YI aSI(O) Kml + SI 

To solve this, one must introduce the initial condition, using the relationship: 

yielding: 

I~OURex(r)dr 
SI(t) = SI(O) - 1 - YI 

(48) 

(49) 

-::-:::---=c- = (50) 
aOURex (1-YI) Itmoxl X a [ (1 - YI) SI(O) - I ~OURex(r)dr 1 
aSI(O) YI aSI(O) (1 -YI) (Kml + SI(O») - I~OURex(r)dr 

and the final equation: 

2 aOURex _ (1-YI) Itmoxl X Kml 
aSI(O) - YI 

(1 _Y) - It aOURex(r)d 
I 0 aSI(O) r 

2 

((1-YI) (Kml + SI(O») - I~OURex(r)dr) 

Optimal Experimental Design for Parameter Estimation (OEDjPE) 

(51) 

The difficulties one faces in obtaining sufficient information about the behaviour of biological pro­

cesses, is an important motivation for researchers to design their experiments in such a way that the 
highest quality of information is obtained for a given expenditure of time and resources. An essential 
reason for optimal experimental design (OED) is that the measurement data must allow unique 

determination of the (combinations of) parameters that were shown to be theoretically identifiable, 
i.e. produce "informative" experiments (Goodwin, 1987). A second goal must be to increase the 
preciseness of (some of) the parameter estimates. 
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Different strategies have been developed to reach these goals. The Fisher Information Matrix or, 
equivalently, the covariance matrix are the corner-stone of these optimal experimental design proce­
dures because these matrices summarize the information content of an experiment or the preciseness 
of the parameter estimates. Depending on the requirements imposed by the application different scalar 
measures of these matrices are optimized. A number of such deduced variables that have been 
proposed are (Munack, 1991): 

• A-optimal design criterion: 

• modified A-optimal design criterion: 

• D-optimal design criterion: 

• E-optimal design criterion: 

• modified E-optimal design criterion: 

min tr(F·I) 

maxtr(F) 

maxdet(F) 

maxAmin(F) 

. Amax(F) 
mm Amin(F) 

in which Amin(F) and Amax(F) are the smallest and largest eigenvalue of the Fisher information matrix. 

The following interpretation can be given to these optimal experimental design criteria (Munack, 
1991). The A- and D-optimal designs minimize the arithmetic and geometric mean ofthe identification 
errors respectively, while the E-criterion based experimental designs aim at minimizing the largest 
error. Because in both these criteria a maximization of eigenvalues of the Fisher Information matrix is 
pursued, they guarantee the maximization of the distance from the singular (non-informative) case. 
The modified E criterion should be interpreted in the frame of the objective functional shape. As 

mentioned above, the ratio of the largest to the smallest eigenvalue is an indication of this shape. If this 
ratio is infinite, i.e. Amin(F) is zero, this means that an infinite number of parameter combinations can 
be used to describe the experimental data and hence the experiment is non-informative. Remark that 
this means the Fisher matrix is singular and hence that the D- and E-criteria are zero while the 
A-criterion cannot be determined since inversion of F is impossible. This example is also illustrative of 
the problems that can be encountered with the modified A-criterion: even if a non-informative and 
unidentifiable experiment is conducted, the modified A-criterion may still be maximized because one 
of the other eigenvalues has become large (Goodwin, 1987). Finally, it should be mentioned that other 
design criteria can be proposed, e.g. reducing the estimation error of a particular parameter can be 
obtained by designing experiments with this variance component as design criterion. 

Designing identification experiments requires several choices, e.g. what outputs should be measured 
at what time instants and at what frequency, and what inputs to manipulate and in what way. An 
illustrative example of the effect of various output combinations is given in Munack (1991) while the 
problem of optimal timing of sampling is addressed in Holmberg (1982) and Vialas et al. (1985). In this 
work, the output and sampling frequency are no longer available to the experimenter since they are 
fixed by the hardware used in the study. The only degree of freedom left is the design of the input. 
Optimal experimental design therefore reduces to finding the input functions u(t) that lead to the most 
informative experiments. In fact this is an infinite-dimensional optimization problem, since functions 
in the time domain must be optimized (remark that design can also occur in the frequency domain, see 
Zarrop (1979), but considering the nonlinear nature of the models, time-domain design is to be 
preferred (Munack, 1989)). However, the problem maybe transformed into a parameter optimization 
problem by discretizing the input function, e.g. into a restricted sequence of pulses, at a minimal 
sacrifice of parameter estimation performance. 



Finally, it must be stressed that optimal experimental designs for nonlinear model are influenced by 
the parameter values since the design criteria are based on the Fisher information matrix which has 
been shown to be parameter dependent (see above). In the application studied in this work this feature 
has considerable implications. 

Confidence region ofthe parameters 

A rather important remark considering practical identifiability concerns the parameter variance. 
__ --'TYIlically,~1)~~iILmakeJ1S_eQfj:he_my:ariancematrixY(3R)and __ then~sjduaLmeansq:uar_efQr~hich 

an estimate is available: 

i = J(e) 
N-p 

(55) 

withp the number of parameters in the model andJ(B) as defined in (34). Approximate standard errors 
for the parameters can be calculated as: 

a(ei) = S vVa (56) 

However, as Robinson (1985) comments, these standard errors are statistically optimistic due to the 
use of a linear approximation of the nonlinear model in the neighbourhood of the best parameter 
estimates. Alternative more robust techniques such as the jackknife and bootstrap methods produce 
parameter variances that are more realistic (Miller, 1974; Cornish-Bowden & Wong, 1978; Oppen­
heimer et aI., 1981; Robinson, 1985; Gehr et aI., 1986; Valdecasas & Baltanas, 1990). As a drawback 
one should mention that these methods are rather computing intensive. Another way to obtain the 
"true" confidence region of the parameters in nonlinear models is by a systematic exploration of the 
objective functional for an extensive number of parameter combinations. This is a computing intensive 
task as well because the number of evaluations increases as a power function of the number of 
parameters (Lobry & Flandrois, 1991). 

The confidence region can be described as a hypervolume bound by a hypersurface in the parameter 
space. In case of two parameters to be estimated, a 2-dimensional region is constructed in a 3D 
parameter space. This allows to visualize some parameter estimation problems. In this 3D space, the 
objective function is a surface. An example of such surface for a typical Single Monod problem is 
presented in Figure 7: the sum of squared errors J is given as function of ,umax and Km values. One 
observes that a minimum value Jopt can be found at (Umax, Km ) within a "valley" in the objective 
function. The confidence region is the area delimited by the confidence contour line. According to 
Beale (1960) the (I-a) confidence region corresponds with the set of parameter combinations 
resulting in an objective functional less than the threshold value: 

Jopt * (1 + J-pFa;p,N-p) (54) 

Nand p are the number of measurements and model parameters respectively and F is the value of the 
F-distribution with p and N-p degrees of freedom and a confidence level a. In Fig. 7 contour lines are 
drawn for increasing a. 



Application 

While so far all results are generally applicable to the model set and assumptions given above, the next 
section will deal with a specific application to which the models apply. The real-life experiments used 

here are obtained from an on-line respirographic biosensor that performs (fed-)batch experiments 
automatically. Typically 30 minute records of OURex data are produced and subjected to an identifi­

cation procedure. While a number of implementations of such batch-wise operating respirometers exist 

(Spanjers et aI., 1993; Vanrolleghem et aI., 1994a; Watts & Garber, 1993) the one providing the data 
---- usealnTliispaper-is-aescrI6ealnsome··moredehiiLThemalndIfferenceamongtnerespirometers 

mentioned above is the sampling frequency, a consequence of the way the OURex data are obtained 

from the dissolved oxygen electrode incorporated in the device. 

RODTOX respirographic biosensor 
The device producing the data used to identify biokinetic parameters in activated sludge models was 

developed some ten years ago with the purpose of determining the load and toxicity of wastewaters 

entering an activated sludge plant. The RODTOX (Kelma bvba, Niel, Belgium), acronym for Rapid 
Oxygen Demand and TOXicity tester, has since then been implemented on both industrial and 
municipal wastewater treatment plants (Vanrolleghem et aI., 1994a). 

The central unit of the sensor is a small (10 I) aerated bioreactor filled with activated sludge originating 
from the plant to be monitored. A dissolved oxygen probe is used to monitor the oxygen consumption 
by the biocatalysts. To assess the wastewater/sludge interaction, pulses of wastewater are pumped in 
the reactor. The temporarily increased respiration results in so-called respirograms, i.e. oxygen uptake 
rate profiles, which reflect the impulse response of the activated sludge. The exogenous (substrate 

induced) oxygen uptake rate, OURex, data are calculated from the dissolved oxygen (S02) mass balance 

(Vanrolleghem et aI., 1994a), 

dSQ2 ( ) ----cJt = KLa S02,sat - S02 - OURex - OURend (53) 

Based on the assumption that the endogenous respiration, OURend, is constant within the short time 

interval of a pulse experiment (typically 30 minutes), the mass balance can be rearranged to (Vanroll­
eghem et aI., 1994a): 

dS02 ( ) ----cJt = KLa S02,end - S02 - OURex (54) 

in which S02,end is the dissolved oxygen level reached in the bioreactor at equilibrium. With an estimate 

of KLa (Vanrolleghem et aI., 1992), the OURex can be obtained from the S02 measurements. In 

Figure 4, a typical OURex profile is given. All experimental results reported were obtained with sludge 

taken from the wastewater treatment plant at Maria Middelares, Gent and the operational conditions 

are as described in Vanrolleghem et al. (1994a). 

Recent developments aim at a more thorough model-based interpretation of the impulse responses 
that this biosensor provides, e.g. in the context of on-line assessment of nitrification and carbon 

oxidation capacity (Vanrolleghem & Verstraete, 1993a) and adaptive control systems of waste water 
treatment plants (Van Impe et aI., 1992). 



~ 
ai o 
0> 
.§. 

:.l 

1.00 

0.80 

0.60 

0.40 

• 

\ 
~ r---- a: 

~~~--::J--

o 0.20 

~ .~...... . .............. ...... '\.~ 

\\ 
I 

0.00 ~ 

·5 o 5 10 15 20 25 30 

Time (mln) 

Figure 4. 0 URex profile obtained with sludge taken from Maria Middelares 
and an influent sample of 300 ml. 

Degrees of Freedom and Constraints for Optimal Experimental Desigu 
With the available hardware, experiments can be performed with following degrees of freedom and 
constraints 

First, if one only considers batch experiments, the only possibility to change the information content 
ofthe experiment is the initial condition as imposed by the pulse of waste water sample injected at the 
start of the experiment (Holmberg, 1982). Considering the assumption that biomass is constant in the 
course ofthe experiment and the on-line character ofthe sensor, a constraint is placed on the maximum 
initial substrate concentrations. 

As Munack (1989) pointed out, fed-batch experiments are superior to batch experiments with respect 
to the practical identifiability of model parameters. In the respirographic biosensor under study, this 
degree of freedom is available as well since the wastewater pumps can be activated at any time, 
providing additional wastewater pulses to the bioreactor. A constraint is imposed however on the 
amount of sample injected per pulse. Real-time constraints must again be taken into account for the 
experimental design. 

In the sequel, four theoretical examples of OED/PE will be developed: 

• Optimal initial substrate 

• Optimal additional pulse with fixed initial substrate 

• Optimal additional pulse and initial substrate 

• Optimal design with multiple additional pulses 

'( 7TTT --1 Cl 



Table 2. Initial Conditions and parameter values for 

the single Monod reference example of Figure 5. 

State Variable Initial Value 

BiomassX 4000mg!I 

Substrate SI .. 

Figure 5. Reference respirogram obtained by 
simulation of the Monod-model with the 

parameters of Table 2. 
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Theoretical Example 1: initial substrate 

As a reference dataset for these theoretical examples of optimal experimental design, a single Monod 
model simulated OURex profile was calculated with the parameter values given in Table 2. The resulting 

respirogram and corresponding substrate concentration trajectory are iIIustrated in Figure 5. The 
Fisher information matrix and the values of the different OEDJPE criteria that can be deduced from 
it are summarized in Table 3. 

Using the different experimental design criteria introduced above an optimal initial substrate concen­
tration was looked for. In Figure 6 the evolution of the different criterion values as function of the initial 
substrate concentration is iIIustrated. For comparative purposes the optimal concentrations proposed 
by the other criteria are indicated in each graph. It is remarkable that all criteria except the modified 
E criterion tend to a batch experiment with almost 60 mg Sl/l as initial concentration. The modified E 

Table 3. Elements of the Fisher Information Matrix F and Covariance Matrix V 
and deduced OED/PE criterion values for the reference OURexprofile. 

SI(O) max. Eigenval 

23.000 3.456.108 

Fu F12 F21 

Vu V12 V21 

1.175.10-8 3.742.10-4 3.742.10-4 
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Figure 6. Evolution of the different OED/PE criteria as function of the initial substrate concentration 
applied in a batch experiment. Vertical lines indicate the optimal concentration for the different criteria. 



C-
E 
;;i 
0 
Q 

~ 
• • 0: 
:> 
0 

~ ~.\ 
1.70 

0.70 3. h 
~ ., 

0.60 30 ~\ ~ 1.50 OUAe)( Q , ~ 
0.50 2. ~ ~ ~l < 

0 

0.40 20 ~ ., 
1.30 

" ~.~ 0.30 1. 8 
< 
0 

0.20 10 0 1.10 

Substrate 
0.10 • 

o • 10 ,. 20 2. 30 

Time (mln) 

Figure 7. 3D- (middle) and contour plot (right) of the objective function as function of the Monod 
biokinetic parameters for the reference respirogram (left). 

criterion proposes an experiment with a very low substrate concentration of only 2.55 mg SI/I. This 

difference is explained below. 

First, the result of the modified E criterion is interpreted. Considering an estimation problem of 2 
parameters (,umaxl, Km1) allows to visualize the objective functional as function of each parameter 

combination using 3D- and contour plots. In Figure 7 one can observe the flat valley for the parameter 
estimation problem of the reference OURex profile. This flat valley is the main cause for the numerical 

problems related to parameter estimation of Monod-type models. To improve the practical identifi­
ability, the modified E criterion aims at ~ED's where the objective functional's shape is as close as 
possible to a cone or funnel. The modified E based experiment which is obtained starts with a substrate 
concentration which is 10 times lower than the reference experiment. While the objective functionals' 
shape has improved (the eigenvalues ratio has decreased by 3.3), the variances of the parameters 
indicate that this numerical advantage is at the expense of parameter estimation quality, i.e. the 
confidence regions have increased significantly, for f/maxl by an order of magnitude and for Kml with 

a factor 3. This has been achieved by lowering the number of experimental data with a high sensitivity 

towards f/maxl. 

The other four criteria on the contrary propose to design experiments with the highest possible 
information content with the aim to decrease the variances of the estimates. Considering the sensitivity 
functions this means that an experiment is required in which the exogenous oxygen uptake rate is 
different from zero for the longest possible time. Hence, substrate is added initially in such an amount 
that it is not depleted until the allowed experimentation time (in this example 40 minutes). The 
substrate concentrations found in the simulations after 40 minutes are less than Kinl/20, showing that 
the experiment is designed in such a way that the substrate is almost completely oxidized by the end of 
the experiment. Confidences in the estimates of f/maxl and Kml improve with a factor 2.4 and 1.25 

respectively compared to the reference experiment. This indicates that experimental design with the 
initial substrate concentration as degree of freedom is mostly beneficial to the estimation of the 
maximum growth rate. 
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Figure 8. 3D- (middle) and contour plot (right) of the objective function as function of the Monod 
biokinetic parameters for the respirogram with optimal substrate pulse at t=18.2 min (left). 

Theoretical Example 2: One additional pulse 

In this example the effect of an extension of the experiment towards fed-batch operation is evaluated. 
If one considers that the pulse characteristics are fixed by the hardware used, i.e. pulse volume of the 
sample pump and mixing intensity in the reactor, the only degree of freedom to be evaluated here is 
the time of pulse addition, tpuls. In order to illustrate the increased flexibility more clearly, the initial 
substrate concentration is chosen identical to the base case of the previous example. It is, however, 
evident that one should consider the combined optimization problem of pulse and initial substrate 
concentration to take full advantage of the available experimental freedom. This will be treated later. 

Figure 8 illustrates the effect on the error functional's shape of an additional pulse of 8 mg/l given at 
the optimal time in a fed-batch experiment, according to the modified E criterion (tpuls = 18.2 min). 
The OURex and substrate profiles of this experiment are given as well. One observes that, although still 
very 'valley-like', the properties of the error functional have been significantly improved (the eigenvalue 
ratio has decreased by a factor 3.5). A closer look at the covariance matrices V for the reference and 
optimal experiment: 

Reference (Sl(t=0)=23 mg/l, no pulse): 

OEDIPE (Sl(t=0)=23 mg/l, pulse at t=18.2 min): 

v = (1.175.10-
8 

3.742.10-
4

) 

3.742.10-4 1.580.10+1 

V = (9.623.10-
9 

1.752.10-
4

) 
1.752.10-4 6.735.10+0 

shows that all variances and covariances have improved, but in contrast with the previous example, the 
OED with an additional pulse as a degree of freedom is especially attractive for a more accurate 
estimation of the affinity constant. Indeed, while the confidence interval for the flmaxl only decreased 
with 10 percent, the Kml accuracy increased with more than 50 percent. In addition the results show 

that the covariance between both biokinetic parameters is reduced almost to the same extent. 

The study was also extended to evaluate the other OEDIPE criteria. A pulse amount of 2 mg/l was 
taken in this overall study. In Figure 9 the optimized OURex and substrate profiles are summarized. As 

before the differences among the design criteria are considerable. The A- and modified A criteria aim 
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" "E 
~ 
0 
D .s 
x • a: 
::I 
0 

0.70 2. 

A,Mod A 
0.60 t 2. 

0.50 Mod E 

I D,E 1. 
0.40 t A,Mod A 

0.30 j. 1. 

0.20 Mod E 
D,E 

I • j. 0.10 

0.00 • 
0 S 10 1S 20 2S 30 3S 40 0 5 10 15 20 25 30 35 40 

Time (mln) Time (mln) 
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at prolonging the experimental conditions where maximal substrate degradation takes place, a feature 
which was also noticed in the previous example, This can probably be explained by the fact that these 

criteria try to minimize the mean variance of the parameters. It may well be that this can be achieved 
by improving only one of the variances, and potentially one could have designs in which one variance 
improves to such an extent that the variance deterioration of another variance is compensated. With 

the sludge properties of Table 2 the most important improvement seems to be possible for the "'max1 

parameter and experimental conditions are proposed that take advantage of this. 

The D- and E-criteria on the other hand propose experiments in which a fresh amount of substrate is 

injected only after the exogenous respiration has dropped completely. The modified E-criterion results 
in a design which is in between both approaches. With the D-, E- and modified E-criteria the substrate 
concentration is driven to remain for a longer period of time in the lower end of the Monod relationship. 
Consequently, additional information is obtained on the substrate range where the highest sensitivity 

with respect to the affinity constant is found. From this observation it is clear why parameter accuracy 

has improved most for Km1 (see above). As a drawback to the D- and E-criteria it must be noted that 

the proposed experiments are significantly longer (approx. 30%) than the other experiments, which 
should be considered in view of the real-time nature of the re spirographic biosensor. Clearly, imposing 

a maximum experiment length will eliminate this problem but will result in suboptimal experimental 

designs that are a compromise between information content and experimentation time. 

Theoretical Example 3: Additional pulse + Initial substrate 

In this section it is investigated whether the combination of the two degrees of freedom introduced 

above gives rise to an additional improvement in experimentation quality. Clearly, a two-dimensional 
optimization problem is created, i.e, both the optimal initial substrate concentration and optimal time 
of pulse addition must be found within the time frame imposed by the real-time constraint. 

To illustrate the results more clearly, the optimal S1(0) will be sought for a pulse addition at 18.2 

minutes, the optimal pulse addition time obtained for the case with S1(0)= 23 mg/l (see above). At the 

end of this section some comments will then be given on the global 2-dimensional optimization result. 
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In Figure 10 the evolution of the different OED/pE criteria as function of the initial substrate 
concentration is given. The covariance matrices corresponding with the different optimal designs are 
(note the large differences): 

• OED/PE-Mod E 

(Sl(O)= 7.32 mg/l, pulse at t=18.2 min): 
,---- ------------- -------------

• OED/PE-E 

(Sl(0)=23.04 mg/l, pulse at t= 18.2 min): 

• OED/PE-A,D,Mod A 

(Sl(O) =49.98 mg/l, pulse at t=18.2 min): 

v = (8.257.10-
8 

1.050.10-
3

) 

1.050.10-3 1.672.10+1 
- --- - - ---- -- - - ---- -- -------- ------------------------ ---- ---------- -- --------- -------------

v = (9.650.10-
9 

1.761.10-4 
1.761.10-

4 
) 

6.731.10+0 

v = (2.402.10-
9 

1.434.10-
4

) 
1.434.10-4 1.810.10+1 

Again the optimal experimental designs are significantly different. Figure 10 exhibits local extrema 
corresponding to the conditions optimal for the other criteria, especially for the E-optimal experimental 
designs. On one hand, this looks rather reassuring: if the wrong criterion is chosen, still suboptimal 
experiments are performed with respect to the other criteria. On the other hand, this does not seem 
to hold for the D- and modified A criterion where the E-based design gives rise to a local minimum in 
information quality. The modified E criterion has a rather different behaviour compared to the others: 
low initial substrate amounts (7 mg/l) are proposed. This is similar to the behaviour observed to an 
even higher extent in the case where only the substrate concentration was available for design. This 
deviation from the other criteria is probably due to the different underlying objective, i.e. to improve 
the numerical properties of the error functional shape. 

Another interesting result concerns the substrate concentration of 23 mg/l for which the additional 
pulse was optimized (see above). The E-criterion keeps this value as the optimal one. For both the 
modified E and the A-criterion this initial substrate concentration corresponds to a secondary (local) 
minimum. For both other criteria, 23 mg/l is considered as a poor experimental design value. 

The presence oflocal extrema in the criterion profiles illustrates the problems that may arise in looking 
for the global optimal experimental design. While it has not been documented for the designs in which 
even more degrees of freedom are available, it can be expected that attaining the globally optimal 
design may be difficult. The 2-dimensional design problem that is treated next may give a first indication _ 
of the expected problems. 

In order to get insight in the dependency of the ~ED-criteria on the design variables, a grid was 
evaluated of substrate concentrations ranging between 1 and 40 mg/l and a pulse addition at times 
between 1 and 40 minutes after start of the experiment. A total of 4Ox40 combinations were simulated. 
The results are summarized in the 3D-plots of Figure 11. The substrate and time for pulse addition 
that are optimal according to a criterion are marked on these figures. In Table 4 the improvement of 
the criterion values is compared to the values for the reference respirogram (with Sl(O) = 23 mg/l) and 
the values for the experiments in which the time of pulse addition was the only design variable. The 
gains in criterion values are important, but depend on the type of criterion considered. 
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Figure 10. Evolution of the different OED/PE criteria as function of the initial substrate concentration 
applied in a fed-batch experiment with additional pulse after 1B.2 minutes. 

Vertical lines indicate the optimal concentration for the different criteria. 
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Table 4. Optimal experimental design results with both the initial substrate concentration 
and time of pulse addition available for the design. Improvements are compared 

with designs obtained with less degrees offreedom. 

OEDJPE 
Gain in Criterion Value 

compared to 
---- --- --- - -- ---- ---------------------

Criterion --l{eterence ----pUlse----

Sl(O) tpuls 
Optimized 

SI (0) = 23 mg/l; SI(O) = 23 mg/l; 

no pulse tpu!s= 18.2 min 

Modified E 4 36 7.00 2.00 

E 40 36 2.05 1.65 

D 40 36 5.80 1.65 

A 40 36 7.75 2.20 

Modified A 40 22 4.40 1.30 

A more detailed analysis indicates that the initial substrate concentration is maximized within the limit 

of 40 mg/l as imposed by the grid choice, except for the modified E criterion which proposes lower 
substrate concentrations as before, sacrificing /lmax1 estimation accuracy to obtain a more cone-like 

error functional shape. All but the modified A criterion propose to inject the additional amount of 
substrate after 36 minutes. Clearly, this value is influenced by the 40 minute limit of the experiment, 

since to get the full information of the extra OURex peak it is necessary that the decreasing part of this 

peak finishes before data collection stops. This feature is visible in all 3D-plots where the criterion 

values decrease when tpuls exceeds 36 minutes. 

If one compares the 3D-plots (Figure 11) with the graphs in Figure 10 (which are in fact sections of the 
volume along the tpuls= 18.2 min line) the following observations can be made. For all criteria one can 

find a ripple on the surface (indicated with an arrow) that corresponds to conditions in which the pulse 
addition is performed at the time the substrate initially present in the reactor is depleted. The 

experiments with 'ripple conditions' result in OURex profiles similar to the one presented in Figure 9, 

but with different lengths of the batch phase depending on the initial substrate concentration. For the 
modified E criterion surface, the valley is distinct but cannot be considered to be the minimum along 

any tpuls or Sl(O) section. 

One can deduce this also from Figure 10: the minimum at 23 mg/l is only a secondary minimum. For 
the ridge in the E criterion functional one finds that the corresponding experimental designs are the 

optimum in the lower Sl(O) range. At higher initial concentrations, however, the secondary (local) 

optimum becomes more pronounced and eventually takes over from the 'ridge extremum'. 
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Figure 12. Evolution of modified E criterion as function of increasing experimental flexibility. 

Theoretical Example 4: Multiple Pulses 

A next evident optimization step is to consider experimental designs with multiple pulses of substrate 
addition. The obvious question is then whether the quality of the data is consistently improving and to 
what extent the marginal increase decreases. 

In Figure 12 the evolution of the modified E-criterion as a function of increasing experimental freedom 
is depicted. One observes the decreasing effect of adding another degree of freedom to the experimen­
tal design. 
A remarkable result of the study is that the design can sequentially occur, i.e. first the optimum time 
for the first addition is determined and with this I-pulse experiment, the next pulse time is optimized. 
The simulation results indicate that the alternative optimization of both pulses in one step gives only 
a minor improvement of 1.1 % in criterion value. The same conclusion was deduced when the design 
of a 3-pulse experiment was performed in one or three optimization stages. The sequential design has 
the important advantage that the computational burden is considerably lower since only one-dimen­
sional optimization problems must be solved. 

This feature of the optimization problem makes it even conceivable to a certain extent to adapt the 
experiments while they are still running, using the data obtained so far to decide the quality of the 
experiment and add another pulse if neccessary (see also Munack & Posten, 1989). Again one has to 
look for a compromise between accuracy and real-time constraint. 

The optimal experiment obtained with six pulses is given in Figure 13. The numbers in the figure 
indicate the sequence in which the pulses are proposed by the OED method. One observes that the 
first two pulses are proposed to be injected during the decline phase of the aURex . Adding two other 
degrees of freedom to the experimental design gives rise to pulses 3 and 4 that are initiated when the 
substrate is completely removed from the mixed liquor. If one allows two more pulses in the design 
(numbers 5 and 6), then these are scheduled such that the transients of pulse 3 and 4 are increased so 
as to enhance their information content. 
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Figure 13. OURex and substrate trajectories of fed·batch experiments with 6 pulse additions 
at injection times as proposed by the modified E criterion. 

Discussion of Theoretical Examples 

The results presented indicate that the information quality of the experiments is highly dependent on 
the design and that major improvements (see Table 4) can be achieved by changing initial substrate 

concentrations and extending the experiments to fed-batch operation. It was clearly observed that 
different criteria yield different OED's. The constraint imposed by the desired real-time operation of 
the respirographic biosensor is shown to be necessary since all but the modified E criterion would lead 
to prohibitively long experiments. 

As a reasonable compromise of experimentation length and informative quality of the experimental 
data it is proposed to design the respirographic experiments under the conditions given by the 

'ripple/valley' found on the functional of the criterion values (Figure 11). This corresponds with 

experiments in which an additional pulse of substrate is injected at the time when the exogenous oxygen 

uptake rate is substantially decreasing, i.e. when the substrate has dropped to concentrations near to 
the affinity concentration. The amount of substrate at the beginning of the experiment is imposed by 
the allowable experimentation length. 

As pointed out by this theoretical study, a higher number of pulse additions further improves practical 

identifiability but the benefits become marginal as the experiment complexity increases. One or two 
additional pulses seem worth the effort. 

The results described here hold for the estimation of the two biokinetic parameters of the single Monod 

model. A similar study can however be devoted to the other models. Clearly more complicated 
optimization problems will occur as the models contain more parameters to be estimated and this may 

be reflected in more local extrema which correspond with suboptimal experimental designs. 



VALIDATION OF OED/pE 

An important task in the identification study is to validate with real-life experiments the above 
theoretical results which predict considerable improvements in experiment quality. The two degrees 
of freedom (initial substrate + additional pulse) have been evaluated with the RODTOX respiro­
graphic biosensor. Since a single Monod type model was studied above, acetate was chosen as a 
substrate known for its Monod-type degradation characteristics. The activated sludge was obtained 
from the Maria Middelares treatment plant in Gent, Belgium predominantly treating municipal 
wastewater. Operating conditions of the bioreactor integrated in the sensor were 25.0±0.1 QC, pH 
7.00±0.2 and dissolved oxygen above 3 mg 0211. All experiments were run on the same day to make 
sure to have very similar sludge characteristics between the different tests. 

Reference experiment 

The reference experimental aURex profile consists of a batch experiment with an initial acetate 

concentration of 20 mg COD/!. Figure 14 presents the collected experimental data and the fit of the 
single Monod model. Since the validation work was mainly directed to the improvement of the 
numerical properties of the optimization problem via modified E criterion based experimental designs, 
the objective functionals' shape was calculated for a grid of parameter combinations Vtmad ,Kml) in 

the neighbourhood of the optimum. It should be emphasized that the surface and corresponding 
contourplot depicted in Figure 14 is the result of systematic exploration of the error functional in 
parameter space and is not a mere representation of the linearized objective functional around the 

optimum as it is often found in the literature (Lobry & Flandrois, 1991). 

This clear example of a flat valley in the parameter space may be the source of considerable problems 
to certain optimization algorithms. Experience with the cases studied so far tells that there exist 
adequate optimization algorithms, such as the direction set method of Brent (1973), which converge 
to the global minimum (2.457.10-4 /min; 0.456 mg COD/!). Still, the valley is undesirable and the aim 

.1 of the study was to see whether the proposed OED/pE methods would result in improved properties. 

The Fisher Information matrix corresponding with this experiment and the deduced values of the 
different OED/PE criteria are summarized in Table 5. 
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Figure 14. 3D- (middle) and contour plot (right) of the objective function as function of the Monod 
biokinetic parameters for the validation reference respirogram (left). 



Table 5. Fisher Information Matrix and Covariance Matrix and deduced OED/PE criterion values 
for the validation reference OURexprofile. 

Sl(O) mPEmiCP Ii il max. Eigenval 

20.000 3.475.108 

Fl1 F21 

V12 

1.148.10-8 2.443.10.4 2.443.10.4 

Example 1: Initial substrate 

As a first validation test, the effect of a change in initial concentration on the error functional shape 
and the estimation accuracy is assessed. For this purpose a batch experiment was conducted with half 
the initial concentration of the reference experiment. The modified E-criterion value calculated from 

the experimental results was 2.42 times lower than the reference value, confirming the findings of the 

theoretical work described above, i.e. lower substrate concentrations give rise to batch experiments in 
which the error functional is more cone-like. However, theoretically it was also pointed out that this 

numerical improvement was at the expense of estimation accuracy. Hence, the parameter variances 

were calculated and it was indeed found that the variances had increased, especially for the flmaxl 

parameter (increased with a factor 3.82) and to a lesser extent also for the affinity constant (a factor 

1.52). 

The optimal design for the characteristics of the activated sludge and substrate used in these experi­
ments are very similar for all but the modified E criterion. For the latter, an optimal initial substrate 

concentration of 1.54 mg/l is proposed, while all other criteria point to a maximal amount of substrate 

as the best design. 

Example 2: Additio1U1l pulse 

The effect of an additional pulse of substrate was validated with three experiments in which the 
substrate concentration in the bioreactor was increased with 2 mg COD/I. Different injection times 
were tested in order to illustrate the effect of an optimal tpuls. 

Suppose first that the data of the reference example are available and that an additional experiment 

has to be designed with the possibility of adding one more substrate pulse. The calculations result in 

curves of criterion values versus injection time, summarized in Figure 15. These graphs again show the 
differences in optimum time for the different design criteria. The A-, D- and E-criteria propose to inject 

a substrate pulse after 14.6 minutes (after complete degradation of the initial substrate). The modified 
A-criterion based experiment consists of a prolonged batch-phase. And the modified E criterion OED 

results in a respirogram in which the oxygen uptake reaccelerates just before complete disappearance 

of the initial amount of substrate. 
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Figure 15. Evolution of the different OED/PE criteria as function of the time of pulse addition. 
Vertical lines indicate the optimal concentration for the different criteria. 



.~ 

..... '-' 'vJ""" ' .. -

5 10 15 20 25 30 

Time (mln) 

Figure 16. Experimental respirogram obtained 
with a fed-batch experiment with additional 

pulse after 13.0 minutes. 
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Figure 17. Experimental respirogram 
obtained with a fed-batch experiment with 

additional pulse after 14.6 minutes. 

"~r---

0.90 

o.eo 

0.70 

'.00 
'.00 

.. ~ 
0.30 

0.20 

Figure 18. 3D- (middle) and contour plot (right) of the objective function as function of the Monod 
biokinetic parameters for the validation respirogram with additional pulse after 14.1 minutes (left). 
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The three experiments that were performed had injection times of 13, 14.1 and 14.6 minutes respec­
tively. The resulting aURex profiles are given in Figures 16, 17 and 18. 

A first important observation is that the model extension for fed-batch operation is capable of 
simulating the behaviour remarkably well. The pulse is described very well and microbial metabolism 
doesn't seem affected by the important transients imposed. 

The following conclusions can be drawn by focussing on the effect of these fed-batch experiments on 
the error functional shape and parameter variances. 

Although the expected values for the modified E criterion and the variances may change to a certain 
extent from the actually observed values due to changes in noise level, experimental error and also 
biological changes, the trends set by the theoretical analysis are confirmed with these results. Predicted 
modified E criterion values for instance were approx. 20% underestimated compared to the actual 
values. However, the data given in Table 6 clearly illustrate that still a significant improvement in shape 
of the error functional is obtained with fed-batch experiments. Moreover, as Figure 15 illustrates, the 
times of pulse addition that were evaluated were in the secondary minimum and more important effects 
could be achieved if substrate was injected after 11.8 minutes. 
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Table 6. Dependence of modified E criterion and parameter variances on the time of pulse addition. 
Results are relative to the reference validation experiment. 

tpuls (min) ModifiedE Var(umaxl) Var(Kml) Covariance 

No pulse 1 1 1 1 

13.0 0.676 0.411 0.422 0.381 

14:r----0~624--- ----0:ST5---0~405- ------0:-468- ----------------

14.6 0.619 0.480 0.409 0.417 

A second conclusion concerns the variances. The experimental results confirm that significant improve­
ments in parameter estimation accuracy can be obtained by this small extension of the experiment. The 
variances have decreased with more than 50 % (Table 6). One should note that a similar effect can be 
obtained by repeating the experiment twice, but this would double the experimentation time while the 
approach taken here increases the experiment duration with only 3 min., i.e. 10 % of normal operation. 

CONCLUSIONS 

The aim of this paper was to study both the theoretical and practical identifiability of a class of 
Monod-based models of the activated sludge process. In contrast to the studies found in the literature, 
the analysis did not start from the assumption that measurements of biomass and substrates were 
available but was based on oxygen uptake rate data only. 
The theoretical identifiability of a number of parameter combinations of four models frequently 
applied to describe activated sludge wastewater treatment processes was shown. The experiments 
evaluated with respect to their information content were batch experiments, with an extension towards 
simple fed-batch systems. 

Optimal experimental design procedures have been applied to improve the information content of the 
respirographic experiments. The theoretical results were validated with real-life experiments. The 
results indicated that parameter variances can be decreased by a factor two by simply modifying the 
usual batch-wise operation to include the injection of an additional amount of sample at an optimally 
chosen time instant during the experiment. The real-time constraints of sensor operation were not 
violated by this alternative experimental design, since the optimal experiments are only 3 minutes 
longer, corresponding with a 10 percent increase. 
It was also shown theoretically that the optimal experimental design procedure should be performed 
on-line to account for the effect of parameter changes on the optimal experimental design. A novel 
aspect of this work therefore was to show that the algorithms could be implemented for on-line use, 
allowing to adjust sensor operation for optimal, on-line update ofthe parameters in the process models. 

The so-called "In-Sensor-Experiments" performed in the considered respirographic biosensor can be 
preferred over data obtained from the full-scale treatment plant since identification-in-the-loop may 
be subject to serious experimental constraints (to the excitation signals), leading to important practical 
identifiability problems. These constraints are nonexistent when In-Sensor-Experiments are used to 
obtain the necessary data to feed the identification algorithm. However, it is obvious that additional 
data from other sensors installed at the treatment plant will complement the data needed in adaptive 
control schemes. 
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F : Fisher information matrix 

J : Objective functional 

Jopt : Minimal value of the objective functional 

KLa : Volumetric mass transfer coefficient 

Kmi : Monod half-saturation coefficient for substrate i 

kr : Rapid hydrolysis rate constant 

ks 

Amax 

Amin 

m 

Ilmaxi 

: Slow hydrolysis rate constant 

: Largest eigenvalue of F (in absolute values) 

: Smallest eigenvalue of F (in absolute values) 
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: Maximum specific growth rate on substrate i 
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: Exogenous oxygen uptake rate 

: Weighting matrix 

: Residual mean square 
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: Time of pulse addition 

: Parameter i 

: Parameter estimation covariance matrix 
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Conclusions and Perspectives: The Adaptive Sensor Concept 

FRAMEWORK OF THE STUDY 

An important incentive of the work reported in this thesis stems from the need for increased 
performance of both eXlstmg and newly desIgned wastewater treatment plants. It is indeed generally 

felt that a more efficient use should and could be made of the large investments in equipment for 

wastewater treatment (Henze et al., 1993; Olsson, 1993). The introduction of process control systems 
has been proposed for long as one of the most appropriate ways to reach this goal (Buhr et al., 1974). 

In Chapter I, an overview of the current developments and bottlenecks in the control of treatment 

installations has been given. The four building blocks of a control chain (process, sensor, controller and 
actuator) were evaluated and it was observed that, while significant progress had been made in all four 
areas, sensors are still considered to be the weakest part of the chain in real-time process control of 

wastewater treatment plants (Harremoes et al., 1993). 

Modern control systems heavily rely on adequate process models. First, advanced controller design is 
based on a mathematical description of the process. Secondly, an increasingly important source of 
.information on the process originates from software sensors whose central ingredient is a model of the 
process. Because the involved processes are highly nonlinear and time-varying, both software sensors 

and model-based controllers require adjustment of their internal (approximate) models. Indeed, the 
interaction between wastewater and activated sludge may be subject to considerable changes which 
not only affect the model parameters, but also the model structure, i.e. the functional relationships 

between the variables. Therefore, both should be updated on the basis of on-line measurements so as 
to maintain controller performance. 

An example may illustrate this. Consider a nitrifying wastewater treatment plant. A change in 
wastewater composition may affect the biokinetic parameters of the carbon oxidation. However, if a 
toxicant which is completely inhibitory to the nitrifying population of the activated sludge enters the 
plant, then a more important change to the process model occurs, because a different (less complex) 

model structure can and should be chosen to describe the process behaviour. Hence, the characteristics 

of the process not only impose a need for on-line parameter estimation but also for on-line structure 
characterization. In other words, the overall modelling exercise as introduced in Chapter I should be 
performed on-line. 

A second incentive for this study originated from the recent development of a novel biosensor at the 

Laboratory of Microbial Ecology (Vandebroek, 1986). In Chapter 11 the principles and operating 
modes of this biosensor were described, as they were at the beginning of this study. It was illustrated 
that short-term batch experiments in which a pulse of wastewater is injected in the activated sludge 
filled bioreactor of the sensor, could provide good estimates of the waste load and the potential toxicity 

of an influent. However, it was also clear that the information content of the dissolved oxygen profiles 
generated by the respirographic biosensor was not exhausted yet. A major goal of this work was 
therefore to extract more information from the impulse responses generated by this biosensor, with 
special attention to characterization of the biokinetics of the sludge/wastewater interaction by 
application of dynamical models. 



In the following section the different results of this work are combined and integrated into a new 
concept in control systems, termed the "adaptive sensor". Subsequently, the results are described that 
are more specific to the respirographic biosensor used in this work. Finally, the integration of the new 
sensor within a model-based control scheme is presented and some topics for further research are 
discussed. 

THEADAYnVESENSORCONCEPT 

The ability to perform experiments within a sensor is one of the key elements of the adaptive sensor 
concept. These "In-Sensor-Experiments" as they have been termed in this work, can provide highly 
informative data for instance on the dynamics of the process, without disturbing the full-scale process 
operation itself. Hence, the experimenter has complete freedom in choosing the type of experiment to 
be performed in the sensor. Examples of such In-Sensor-Experiments that have been implemented in 
biotechnological processes are on-line sludge settling tests, titrations, chromatographic separations and 
the respirographic experiments of this work. 

If the extraction of information from the raw data produced by the sensor occurs by applying model 
identification techniques, the following tasks should be performed on-line (Figure 1): structure 
characterization and parameter estimation. Structure characterization for the examples given above 
would mean for instance that the type of settling model, the number of acid/base buffer systems, the 
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Figure 1. Flowchart of the operation of an adaptive sensor (for more details, see text). 



number of chromatogram peaks or the number of biodegradable substrates should be determined 
respectively. Parameter estimation would consist of estimating the concentrations of the different 
compounds and the kinetic parameters of the settling or biodegradation process. The sequence in which 
these two tasks are to be performed can be chosen, but within the real-time constraints imposed by the 
on-line operation of the sensor, it is advisable to select the proper model structure before parameter 
estimation is initiated. This preferred route is indicated in Figure 1 with the full arrows. Therefore, the 
output of the sensor to a control system consists of the best model structure among the candidate models 
and the parameters associated with this model. 

The most important innovation included in the adaptive sensor concept is the use of on-line optimal 
experimental design techniques so as to guarantee that the In-Sensor-Experiments provide the most 
informative data within the constraints imposed by the available hardware and real-time operation. 
For the nonlinear models that are frequently necessary for the adequate description of the sensor data, 
the optimal design is, by definition, dependent on the parameter values. Consequently, since the 
processes are time-varying, it can be expected that the experiments proposed by the optimal design 
algorithm will be subject to changes in course of time. In case changes in model structure occur, even 
more pronounced alterations in optimal experiments can be foreseen. Hence, the In-Sensor-Experi­
ments are adaptive. The term 'adaptive sensor' stems from this feature of the sensor's operation. 

This central idea may be illustrated with the example of an on-line gas chromatograph that is used to 

measure a number of chemicals in a sample. The experimental design procedure may consist for 
instance of finding the optimal temperature profile allowing maximum separation of the components 
of interest and therefore ensuring an optimal accuracy of the concentration estimates. It is clear 
however that the optimum temperature profile may be different if a change in composition of the 
sample occurs, e.g. when new components are introduced and some others have disappeared. 

In the next section, the case study of the adaptive sensor developed in this work is described in detail. 
It is emphasized how the constraints of the sensor's operation determine the techniques used in the 
different stages of the operation of this adaptive sensor (Figure 1). 

THE ADAPI1VE RESPIROGRAPIDC BIOSENSOR 

The concept described above gradually emerged during the investigations aimed at extracting more 
information from the respirographic biosensor described in Chapter n. In the sequel, the different 

steps taken to develop an operational adaptive respirographic biosensor are reviewed. 

The raw dissolved oxygen data produced by the sensor are the result of two processes, i.e. oxygen supply 
and biological oxygen uptake. For the control of the treatment plant the effects of wastewater on these 
processes is important information. However, the value of this information from a control point of view 
is rather different for the mass transfer and the biological process. Because mass transfer depends to 
a large extent on the reactor configuration, it is rather difficult to transfer effects from one geometry 
(the reactor in the biosensor) to another (the aeration tank of the treatment plant). In contrast with 
this, it is reasonable to assume that the properties of the sludge in the biosensor match very well with 
the properties of the sludge in the full-scale plant provided the mixed liquor in the sensor is replaced 
at regular intervals and is subject to an environment which is similar to the conditions in the treatment 
plant. From this, it was concluded that it was important to separate these two processes so that full 
attention could be given to the interpretation of the biological response. 



In Chapter III and IV/1, a number of approaches are described which allow to estimate the mass 
transfer characteristics in the presence of active biomass. An important result was that it is possible to 
detect the time instant in a respirographic experiment at which the respiration rate returns to a steady 
state value. It was shown that this result allowed to split the dissolved oxygen dataset into two subsets, 
one of which could be used to estimate the volumetric mass transfer coefficient KLa. Once the mass 
transfer is characterized, it is straightforward to apply the oxygen mass balance and calculate the oxygen 
uptake rate (OUR) profile from the other subset. This OUR dataset can then be the object of model 
identification (see below). 
A second method to separate the biological from the physical mass transfer process took advantage of 
a particular test in which the endogenous respiration of the activated sludge in the biosensor is 
measured (see Chapter Il). This In-Sensor-Experiment is characterized by a temporary interruption 
of the oxygen supply. From the resulting dissolved oxygen profile not only an estimate of the volumetric 
mass transfer coefficient can be obtained, but also an estimate of the saturation dissolved oxygen 
concentration (Chapter Ill). A drawback of this method is that normal operation of the sensor must 
be interrupted, implying that the frequency of this test is kept rather low. However, this is acceptable 
because the value of the saturation dissolved oxygen is rather stable compared to the KLa. 

Once the OUR data were available, the next step in the study was to identify bioprocess models. First, 
the results with respect to model structure characterization are adressed, followed by the study of the 
parameter estimation task. 
In Chapter VI a number of candidate models were introduced and several methods for model selection 
(among which a few new ones) were evaluated. An important criterion in this evaluation was that the 
techniques should comply with the real-time operation of the sensor. The distinction between a priori 
and a posteriori structure characterization methods is of particular importance in this respect. A 
posteriori methods rely on parameter estimation for all candidate models before a decision is made on 
the most appropriate model structure. As a result of the extensive computations required for parameter 
estimation of the nonlinear candidate models, a posteriori methods become gradually infeasible within 
the real-time constraint as the number of candidate models to be evaluated increases. With current 
powerful PC's such as 486-based systems, it was experienced that 3 models could be identified in 
real-time, i.e. within the time frame of a respirogram. Hence, with currently available technology only 
3 candidate models can be evaluated with a posteriori structure characterization methods. 
With this in mind it was obvious that there was a need for methods which could select a model structure 
without the preliminary parameter estimation step. New techniques based on parameter invariant 
model features such as inflection points in the data were developed and found to be well suited for the 
selection task. Moreover, the results of Chapter VI illustrate that their performance in model selection 
was better than many traditionally applied methods such as the ones based on Akaike's Information 
Criterion (AIC) and Final Prediction Error (FPE). Another important result of this study was that it 
was observed that neural networks could be trained to select among the candidate models. Training 
was rather straightforward because it could be based on a large set of data obtained from Monte Carlo 
simulations with the different candidate models. Such neural net can also be classified among the a 
priori techniques. 

The second step in model identification is the parameter estimation stage. An important problem to 
address before model identification starts with real-life data is to evaluate the theoretical identifiability 
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of the parameters in the candidate models. The conventional techniques applied to solve this problem 

for the nonlinear models considered in this thesis are mathematically involved and do not guarantee 
conclusive results. For the simpler models among the candidates, the theoretical identifiability of a 
number of parameter combinations could be shown with these methods, but other techniques were 

required for the more complex models (see Chapter VIII). The method of transformation into a linear 
form proved to be successful for these models: again, some combinations of parameters were shown 
to be theoretically identifiable. 

This study showed that the parameter combinations summarized in Table 1 can be given unique values 

on the basis of perfect data. The parameter combination that is theoretically identifiable from the 
endogenous respiration activity test (Chapter IV /1) is given in Table 2. To complete the list of 
parameters that can be identified from the In-Sensor-Experiments, the identifiable estimates of the 
mass transfer characteristics (Chapter Ill) are included in these tables. 

As mentioned above the sludge/wastewater interaction is subject to considerable variations. It was 
therefore soon acknowledged that experimental design is of utmost importance to maintain the 

accuracy of the structure characterization and parameter estimation. Therefore, a very important 
building block of the adaptive sensor is the optimal experimental design module consisting of design 
procedures for structure characterization (OED/SC) and parameter estimation (OED/PE). 

Table 1. Identifiable parameter combinations of different biodegradation models 
on the basis of respirograms. 

Mass Transfer Exponential Single Monod Double Monod Modified lA WQ 

KLa (1-Yl) Sl(O) (1-Yl) Sl(O) (1-Yl) Sl(O) (1-Yl) Sl(O) 

,umaxlX (l - Yl) ,umaxlX(l - Yl) ,umaxlX(l - Yl) ,umaxlX (l - Yl) 
Yl Yl Yl Yl 

(l-Y l)Kml (l-Yl)Kml (l-Yl)Kml 

(1-Y2) S2(O) (1-Yl) Xr(O) 

,umaxzX(l - Y2) 
kr 

Y2 

(1-Y2)Km2 (1-Yl)Xs(O) 

ks 

Table 2. Identifiable parameter combinations on the basis of endogenous respiration tests. 

Mass Transfer Exponential Single Monod Double Monod Modified lA WQ 

KLa (1 - ff) bHXH (1 - ff) bHXH (l-fI)bHXH (l-fI)bHXH 

S02,sat 

TV C 



Because the experimental design in this application consists of a numerical optimization of the input 
to the In-Sensor-Experiments (e.g. the amount of substrates injected and/or the time of addition of an 
extra substrate pulse) it was important to pay special attention to the computational burden of the 
proposed design techniques. 

OED/SC methods that aim to maximize the difference between a posteriori SC criterion values 
attributed to each of the different models cannot be applied in real-time because these methods would 

rely on too many nonlinear parameter estimations. However, it was shown in Chapter VII that the 
a priori methods that have been developed in this work can serve as a basis for applicable OED/SC 

algorithms. The main reason is that these model selection techniques are associated with variables that 
express the reliability with which the structure characterization can be performed with a certain 

experimental design. On-line optimization of the experiments on the basis of these associated variables 
is feasible because no nonlinear parameter estimation is needed in the design phase. In Chapter VII 
two applications of the proposed on-line OED/SC method are illustrated. In the first one, it is shown 
that the discriminative power of a calibration experiment can be increased by optimizing the ratio 
between the two substrates of the calibration mixture. In the second application, on-line OED/SC 

optimizes the injected amount of wastewater so as to enhance the reliability of the choice between the 
candidate models. 

Optimal experimental design procedures for parameter estimation are less computing intensive 

because they do not require parameter estimation of the bioprocess model. Moreover, it was shown in 

Chapter VIII for the considered degrees of freedom that the optimization of the experiment could 
occur sequentially without significant deterioration of the quality of the resulting experiments. In other 
words, the experiment could be designed with one degree of freedom at a time, for instance: first the 
initial substrate concentration, then the optimal time of the first pulse addition, subsequently the time 
for the second pulse, and so on. The validation ofthe OED/pE method confirmed the theoretical result 
that parameter variances could be divided by two with only a minor (but optimal) change of the 
experimental conditions. 

An important remark which holds for both OED/SC and OED/PE is that a compromise must be 

pursued between the information content of the experiment and the real-time operation of the adaptive 
sensor, because in most cases the optimal experimental design may propose an experiment which is 
prohibitively long. 

This completes the description of the adaptive respirographic biosensor developed in this work. It can 
be concluded that this sensor is capable of providing the information summarized in Tables 1 and 2 
with the highest possible accuracy (given the constraints imposed by real-time operation and hardware 
limitations). 

INTEGRATION WITHIN AN ADAPTIVE CONTROL SYSTEM 

The incorporation of the adaptive respirographic biosensor within a control system of a wastewater 
treatment plant can be schematized as in Figure 2. The fact that the sensor is adaptive is not of direct 
importance to the control system or software sensor. However, the adaptive character of the sensor's 
operation ensures that the quality of the data produced by the sensor is high, which indirectly affects 
the performance of the software sensor and controller. 
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Figure 2. Structure of an advanced control chain with adaptive and software sensors. 

An important feature of the control loop as presented in Chapter IV is the close interrelation between 
the adaptive sensor, the software sensor and the controller. This interrelation is due to the presence of 
a common process model in each of these elements: 

• The respirographic sensor performs the interpretation of the raw data on the basis of, for 
instance, the lA WQ model 

• A Luenberger observer is built with the same model supplemented with the mass balances 
corresponding with the treatment plant and combines the data obtained from the respirographic 

A 

sensor (the parameters P in Figure 2) with some other measurements (for instance, biomass 
A A 

measurements) to yield estimates of the process state vector X and some parameters A which 
cannot be measured directly with available sensor techn()logy 

• An adaptive linearizing controller is designed with this process model augmented with the mass 
A A 

balances and performs the control of the plant on the basis of the states X and parameters A 

received from the software sensor on the one hand and some additional measurements on the 
other hand. 

At this stage no use has been made yet of the information provided by the adaptive sensor concerning 
A 

the model structure S which is most adapted to describe the wastewater/sludge interaction. This may 
be an interesting topic for further research because the abovementioned close relation between 
adaptive sensor, software sensor and model-based controller would imply that a change in model 
structure as observed by the adaptive sensor should also have its effect on the internal model of the 
software sensor and controller. A potential approach may be to consider multiple software sensors and 
controllers (each corresponding with one of the candidate models) running in parallel with the final 
control action being decided on the basis of methods similar to the MW AC and MMAC designs 
described in Chapter I. 



An important feature of the respirographic biosensor used throughout this work is that it monitors the 
composition of the influent to the treatment plant. It means that one of the main disturbances of the 

process is measured. Using this information in a feedforward manner allows to cope with the long time 

delays that exist between the occurrence of a disturbance and the effect on for instance the effluent 
quality. However, feedforward control is open-loop control and its performance is highly dependent 

on the quality of the process model. Although this work has illustrated that considerable progress is 
made with respect to the on-line identification of process models, it is inevitable that some uncertainty 

will remain and this will necessitate a feedback controller to adjust for the modelling errors. In the 
control application of Chapter IV, this feedback compensation is based on the measurement of the 
biomass concentrations in the aerator and recycle flows. A possible criticism to the approach of Chapter 
IV is that it may take considerable time before significant changes can be observed. 

In future research other variables could be included for feedback compensation. Probably the most 
appropriate one is the respiration rate in the aerator because its response to changes in biomass and 
substrate concentrations is fast and significant and, most importantly, its measurement has received 

considerable attention: on the one hand, specific measuring techniques have been developed, so-called 

respirometers (Sollfrank & Gujer, 1990; Spanjers & KJapwijk, 1990; Watts & Garber, 1993). 
Alternatively, the respiration rate can be estimated from the dissolved oxygen dynamics in the aerator 

(Holmberg et aI., 1989; Marsili-Libelli, 1990). 

A third feature of the respirographic biosensor is depicted in Figure 2, i.e. the possibility to apply three 
different inputs to the biosensor: 

• No input, which allows to characterize the endogenous state of the activated sludge; 

• A reference input with a calibration mixture on the basis of which the biokinetic parameters of 
the sludge can be deduced with respect to defined substrates; 

• Injection of the wastewater itself so as to obtain information on the biokinetics of the sludge/ 
wastewater interaction and data concerning the composition of the wastewater. 

The first two inputs are specifically directed at a characterization of the activated sludge. In this way a 
distinction can be made between the intrinsic sludge properties and the properties that are the result 
of the presence of wastewater components in the mixed liquor. With this setup it is therefore possible 
to distinguish a low sludge activity due to intoxication from a decreased activity caused by low substrate 

concentrations in the wastewater (see Chapter II). The potential of detailed model-based analysis of 
calibration respirograms was illustrated in Chapter V. The simultaneous biokinetic characterization of 

both heterotrophic and nitrifying activity was shown to be possible provided the ammonium and carbon 

content of the calibration mixture was carefully chosen. Current research is directed at a more refined 
characterization of the nitrification, aiming at the on-line determination of the biokinetic parameters 
of both steps in the nitrification process. This can be achieved by applying a calibration mixture of 

ammonium and carbon source to which nitrite is added in such an amount that the biokinetic 
parameters of the two steps in the nitrification process are practically identifiable. Also in this 
application the optimal design techniques will be essential for optimal model identification. 
The data obtained from this sludge characterization tests are produced at a lower frequency than the 

data concerning the wastewater/sludge interaction. However, with the exception of the occurrence of 
acute toxicity, it can be expected that the changes in sludge properties occur at a lower rate than the 
changes in wastewater composition. In practice, a compromise must be sought for the frequency at 
which each of the three possible inputs is applied. In this respect it is important to note that toxicity 
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detection is relying on the calibration tests. Hence, if the potential for occurrence of toxic influents is 
rather high, it is advisable to impose a higher calibration frequency. In this way, the sensor can provide 
the control system with the necessary information in due time so that actions can be taken to prevent 
major damage to the sludge in the treatment plant. 

It may be interesting to evaluate how the results of the different tests could be combined to yield 
additional information on the wastewater composition. It could be studied for instance how one could 
take advantage of the biokinetic characterization of the nitrifying population in a calibration 
experiment to determine the ammonium content of an influent in a subsequent experiment with 
wastewater injection. This would open a number of new possibilities because this approach would allow 
the distinction between readily biodegradable COD (rbCOD) and nitrification oxygen demand. Indeed, 
once the rbCOD content of a wastewater is known, some control strategies could be devised for the 
anoxic and anaerobic stages of nutrient removal plants where rbCOD is an essential factor in the 
denitrification and phosphorus release processes (Demuynck et aI., 1993). 

GENERAL DISCUSSION AND PERSPECTIVES 

The results presented in this thesis must be considered as part ofthe solution to the problem of on-line 
identification of process models. The way this problem has been tackled so far is to try to calibrate 
models on the basis of data collected from the plant only. Certain plant configurations such as 
alternating processes (Isaacs et aI., 1992) or sequencing batch reactors (Demuynck et aI., 1993) are 
good candidates for collecting highly informative data because it is rather straightforward to extract 
rate data from the important transients occurring in these designs. However, in the majority of plants 
these transients are not present and, hence, a problem of practical identifiability of process models 
arises. To circumvent this problem, a typical solution consists of imposing conditions to the process 
that induce important transients in the variables one is interested in. Examples of such approach are 
the interruption of the aeration, change of influent flow rate or composition and variation of recycle 
flow rates. These tests are mostly performed irregularly to assess the performance of the treatment 
plant. The results are not directly involved in the control of the plant. In a few cases, the application of 
these excitation signals has been tightly integrated with the control of the process. The most studied 
case is the use of excitation signals to obtain simultaneous identification of the respiration rate and 

mass transfer conditions in a treatment plant under closed-loop operation (Holmberg et aI., 1989; 
Marsili-LibeIIi, 1990). An important prerequisite for these methods is however that the plant must be 
equipped with flexible actuators so as to be able to impose the necessary excitation signals. For instance, 
in treatment plants with aeration systems that are either on or off, the methods introduced above cannot 
be implemented because they rely on continuous variation of the aeration intensity. Moreover, the 
excitations that can be applied must take into consideration that the plant performance should not 
deteriorate and this imposes important constraints on the quality of the information that can be 
obtained. 
Summarizing, the current methodology for on-line closed-loop identification relies to a large extent on 
plant design and the availability of flexible actuators and is hampered by a lack of freedom in applying 
excitation signals to the process. 

The concept of "In-Sensor-Experiments" as proposed in this thesis seems a valuable alternative, 
because it allows to study the process with complete freedom of action on the excitation signals. Hence, 
improved information quality is obtained allowing the application of more advanced process models 
in the control loop. 



An important question that cannot be avoided in this approach is the question whether the batch 
experiments performed in the respirographic biosensor give relevant information regarding the 
full-scale installation. The following discussion of different experimental approaches to identify process 
models may throw some light on this problem. In general three methods can be considered to determine 
the biokinetic parameters of sludge/wastewater interaction: 

• Continuous culture 

• Long-term (fed-)batch experiments with high S(O)/X(O) ratio 

• Short-term (fed-)batch experiments with Iow S(O)/X(O) ratio 

The question of the best method has been subject to long lasting discussions in the literature. Only the 
main lines of reasoning are given here. While continuous culture is generally considered optimal 
(although it takes considerable efforts) for biokinetic characterization of pure culture systems, a 
different view exists in the case of mixed culture characterization. The main reason is that the 
application of different dilution rates to impose growth rates on the culture results in multiple steady 
states that correspond with multiple population compositions (Chiu et aI., 1972). In the plant, however, 
a particular sludge composition is selected on the basis of the operating conditions and, hence, it are 
the characteristics of this population which should be studied for process control purposes. Another 
criticism to the application of continuous culture data is of course that the experiments are prohibitively 
long to be useful within control applications. A final comment concerns the fact that continuous culture 
studies are mainly used to characterize the steady state properties of the sludge, while a process control 
system requires knowledge of its transient behaviour. 
Batch or fed-batch experiments provide data on these transient properties of the sludge. An important 
design variable of these experiments is the loading of the sludge, expressed as the S(O)/X(O) ratio. As 

pointed out clearly by Chudoba et al. (1992), this ratio wiII determine whether significant cell 
multiplication wiII occur during the experiment. Low ratios will result in conditions where the substrate 
is not used for cell division but rather for synthesis of storage polymers and energy production. 
However, if a high loading is provided, cell multiplication wiII start and the proportion between 
slow-growers and fast-growers wiII automatically shift in the direction of the latter. Hence, with such 
experimental conditions, the obtained data are no longer representative for the original mixed culture 
which must be characterized. Moreover, because most models lump biomass in a single variable, this 
shift in population distribution will lead to modelling errors and some simulation results clearly indicate 
that the estimate of the maximum growth rate deduced from such data will be close to the growth rate 
of the fast-growing organism in the population (Bogaert, personal communication), clearly not 
reflecting the biokinetic characteristics of the lumped biomass. 
Another effect of high loading rates and the concommitant change in sludge properties was illustrated 
in Templeton and Grady (1988) and the discussion that followed (Chudoba, 1989). In these papers it 
was stated that physiological adaptation of cells to higher substrate concentrations occurs within time 
periods of hours, and hence it was concluded that experiments for biokinetic characterization should 
not last too long, even when conditions prevail which allow no cell multiplication. The adaptation 
consists of an increase in RNA and enzyme levels that allow the cells to increase the substrate removal 
rate. 
A final conclusion that can be drawn from a careful analysis of this paper is that the kinetic properties 
obtained from short-term (fed-)batch experiments are highly dependent on the state of the original 
system where the cells were taken from. While the authors conclude that this means that one does not 



obtain the true growth parameters by such tests (with true these authors mean for instance the true 
maximum growth rate and not the one allowed by the current physiological state of the cells), it is 

believed that these tests are therefore very representative of the current metabolic potential of the 
sludge and this characterization is therefore considered important for the purpose it is aimed for, i.e. 
process control. 

From this discussion it may be deduced that short-term (fed-)batch experiments with a low S(O)JX(O) 
ratio are most suitable to characterize activated sludge for process control purposes. The In-Sensor­

Experiments carried out in the respirographic biosensor described in this thesis fulfil this requirement. 

Hence, it is felt that these experiments are the best available methodology to obtain biokinetic 
parameters of the sludge in the treatment plant, in view of process control. 

It is evident that it is impossible to predict long-term effects (for instance due to a change in wastewater 
composition) from the data collected within the time period of one such experiment. However, it can 
be expected that it is possible to track a gradual shift in the microbial community (both in composition 
and physiological state) by monitoring the sludge residing in the respirographic biosensor. Prerequisites 
are, however, that the sludge is either subject to similar conditions as the full-scale treatment plant or 

is replaced at regular intervals. The measurement of the evolution of the community is important since 

it would allow to monitor phenomena such as adaptation to new substrates or slowly occurring (chronic) 
intoxication. An in-depth study of this methodology problem seems however required in order to come 

to generally accepted recommendations on the conditions to which experiments must comply in order 
to provide relevant biokinetic data. 

Finally, it must be noted that this work has not dealt with the problem occurring when an optimal 
experimental design for structure characterization is not in agreement with the optimal design for 
parameter estimation. This problem of joint design has received some attention (Hill et aI., 1968; 
Cochran, 1973; Borth, 1975). A possible approach that can be investigated further within the 

application of an adaptive sensor is that the experimental design aims at optimizing a joint criterion in 
which both the parameter estimation accuracy and structure characterizability is included with 

appropriate weighting. In the example given by Hill et al. (1968), it was found that the OED/SC and 

OED/PE were very close to one another and, hence, it was straightforward to solve the dual problem. 

Cochran (1973) observed the opposite: OED/SC and OED/PE were rather distant. While a study is 
required to elucidate this for the considered application, the results given in Chapter V give an 
indication that the compromise will be rather easy to find. 

On the whole, this work has introduced a number of new concepts, In-Sensor-Experiments and adaptive 
sensors, that show potential in providing a control system with increased information, not only 

concerning the disturbance to the process (the influent composition), but also with respect to the 
process model of the wastewater/sludge interaction. It was shown that it is important to consider not 

only the model parameters but also the model structure in the model identification. The theoretical 
identifiability was studied for a number of widely used models of the activated sludge process, showing 
that a number of parameter combinations can be identified from oxygen uptake rate data. New 
methods for structure characterization were developed and optimal design techniques have been 
applied to the In-Sensor-Experiments so as to maximize the quality of the sensor's outputs. 
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Future work should focus on refining the methods further, with special emphasis on the optimal 
experimental design procedures. The evaluation of the benefits of the adaptive respirographic sensor 
within a control loop will be an important area of research. Probably, some theoretical work from a 
process control point of view may be required to take full advantage of the possibilities provided by 
the new data. With the methodology developed in this work, it seems also reasonable to expect that 
new applications of the adaptive sensor concept can be devised within a relatively short time. Especially 
in nutrient removal and sedimentation processes, such sensors could provide essential information for 
improved process control. 
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SUMMARY 

Wastewater treatment processes can be considered the largest industry in terms of volumes of raw 
materials treated. The large treatment plants that have been built to perform this task are generally 
operated with only elementary control systems that are often only fed with off-line data; this situation 
is rather irrational. The state of the art and the current areas of intense research in the field of control 
engineering of wastewater treatment plants were reviewed in Chapter I. The key role of mathematical 
process models in the development of advanced control systems was emphasized: dynamical 
mathematical descriptions of process behaviour are central ingredients of the model-based controllers 
and software sensors that make up these advanced control strategies. However, it was also stressed 
that the available monitoring equipment is still considered the main bottleneck to the application of 
these advanced systems. Important features of biological wastewater treatment processes such as their 
nonlinear and time-varying nature impose additional strains on the control system: time-varying 
parameters should be updated in the process models integrated in the controllers and the nonlinearity 
requires that either adaptive linear controllers are applied (with additional adjustment needs to cope 
with changing operating points) or that nonlinear controllers are devised. Hence, the sensors are not 
only needed to assess process performance and indicate deviations from desired behaviour to the 
controller, but they must also provide the necessary data for adjustment of the control laws to the 
changing process characteristics. 

The main goal of this work was therefore to make a contribution to the development of sensor 
technology capable of providing this information. Special attention was paid to make this. information 
easy to incorporate in the models on which the control system and software sensors are based. It was 
decided to devise a methodology that would facilitate the on-line modelling of the interaction between 
wastewater and activated sludge. 

An important conclusion drawn in Chapter I was that it is relatively hard to obtain sufficiently rich 
information from a plant that operates in closed-loop. This is due to the fact that severe restrictions 
must be imposed on the excitation signals because they might endanger the performance of the plant. 
In this thesis, a new approach has been introduced, consisting of what has been termed 'In-Sensor­
Experiments'. The main characteristic of this approach is that the information on process behaviour is 
no longer obtained directly from the plant, but from a sidestream sensor in which small-scale 
experiments are performed which are relevant to the behaviour of the full-scale process. In such a 
sensor, the excitation signals can be chosen without restriction and, consequently, process behaviour 
can be characterized under much wider conditions than possible in the treatment plant itself. 

The work described in this thesis can be subdivided into two main parts. In the first part of the study 
(Chapters II, Ill, IV and V) the use of In-Sensor-Experiments to identify process models and the 
applicability of this information is investigated. In the second part of the investigations (Chapters VI, 
VII and VIII), attention has been focused on the improvement of the quality of the sensor's output so 
as to increase the reliability of control systems which are set up using the information from this sensor. 



In a first stage of this study it was investigated whether an existing sensor capable of characterizing the 
load and potential toxicity ofthe wastewater (described in Chapter Il) could be modified so as to obtain 
biokinetic characteristics of the interaction between activated sludge and wastewater. It was evident 
from the start that a model-based approach was required to extract these characteristics from the raw 
data produced by this respirographic biosensor. It was also clear that some effects due to the sensor's 
hardware (and therefore not of direct interest to the treatment plant's control) had to be eliminated 
from the raw data before one could initiate the characterization of the biological processes occurring 
in the sensor. In Chapter IV, it is illustrated that the effect of the dissolved oxygen electrode can be 
eliminated from the raw data by applying a mathematical description of the electrode response. With 
this approach the actual oxygen concentration in the mixed liquor can be calculated. 
More intensive research was required to characterize and eliminate the oxygen mass transfer process 
from the dissolved oxygen data. Once this process could be characterized, it would be straightforward 
to deduce the oxygen uptake rates from the dissolved oxygen concentrations and in this way one would 
be able to focus the attention on the bioprocesses occurring in the sensor. In Chapter Ill, two methods 
were developed for mass transfer characterization in the presence of active biomass. In the first method, 
mathematical techniques are applied to split the dissolved oxygen data set into two subsets, one of 
which enables the estimation ofthe volumetric mass transfer coefficient KLa. It was demonstrated that 
the estimation accuracy (a coefficient of variation of approx. 2.5 %) and reliability (the method was 
evaluated over a two week period) of the technique were comparable to existing methods. It was 
indicated that the proposed methodology could be an inexpensive alternative for mass transfer 
characterization of full-scale treatment plants. 
The second method that was implemented requires the (not desirable) interruption of the normal 
operation of the sensor. However, it could be shown that a more involved interpretation of the whole 
data set obtained from this particular in-sensor-experiment not only allowed to estimate the KLa but 
also to obtain a value of the oxygen saturation concentration. This method is considered the first one 
where an estimate of the saturation concentration can be obtained under process conditions with a 
one-step experimental procedure. Its application in full-scale treatment plants may be of importance 
for the assessment of oxygen transfer efficiency under process conditions. 

The most important result of the research described in Chapter III is that the new techniques allow to 
calculate oxygen uptake rate (OUR) data that are reflecting the biological response of the activated 
sludge on the wastewater addition. Therefore, in the remaining chapters full attention could be given 
to the extraction of biokinetic characteristics of this interaction by applying system identification 
teChniques. As a bonus, the estimates of the sensor's mass transfer characteristics can provide an 
indication of probable changes in the full-scale oxygen transfer efficiency. Hence, the use of these data 
in a control system may be valuable. 

In Part I of Chapter IV, it is attempted to estimate some variables and biokinetic parameters from the 
OUR data. A very important result ofthis study was that the potential was shown for the identification 
of rather sophisticated models on the basis of these respirographic data. This result provided the 
confidence that the approach taken would allow to devise more capable software sensors and 
model-based controllers, which would take advantage of the increased information content of the data. 
In Part II of this chapter this step was taken and an extended Luenberger observer was devised as a 
software sensor of the different state variables that constitute the (slightly mOdified) IA WQ model nOlo 
It was shown that all variables and parameters of this rather complex process model could be estimated 
on the basis of the data provided by the respirographic biosensor together with on-line measurements 



ofbiomass concentrations. Subsequently, a model-based multi-input/multi output (MIMO) controller 
was designed using concepts of linearizing control theory. This approach ensures better performance 
because the nonlinear nature of the process is incorporated into the control law. An extensive 
simulation study illustrated the potential of increased process performance. 

The application described in Chapter V was aimed to illustrate the usefulness of In-Sensor­
Experiments for the fast biokinetic characterization of the two main groups of aerobic organisms in 
activated sludge: nitrifiers and heterotrophs. It was shown that experiments in which a mixture of carbon 
source and ammonium is injected to a nitrifying sludge allows to characterize some important biokinetic 
parameters of these populations, such as their maximum substrate removal rate and half-saturation 
coefficients. An important conclusion from this work was that care had to be taken to properly choose 
the composition of the sample mixture so as to guarantee the practical identifiability of the parameters. 
While the solution of this experimental design problem given in Chapter V was purely heuristic, a more 
fundamental approach was taken in Chapters VI, VII and VIII by consideration of optimal 
experimental design techniques which ensure the highest possible quality of the sensor's outputs. 

Chapters VI, VII and VIII constitute the second part of this thesis in which the problem of model 
identification was tackled from a fundamental point of view. From the experimental results it was 
observed that the changes in wastewater composition and sludge properties could be of such a high 
order that not only parameters were affected, but that even the model structure (i.e. the functional 
relationship between variables) could vary with time. Hence, in Chapter VI, methods for model 
structure characterization (SC) were evaluated. It was found that all traditional SC techniques which 
were evaluated relied on parameter estimation of all candidate models before a decision was made on 
the most appropriate model structure. However, parameter estimation of the nonlinear models 
required for adequate description of the bioprocesses is a computing intensive task because numerical 
integration of the models is required. Considering the real-time operation of the sensor, the SC must 
be performed on-line. Hence, these so-called a posteriori SC methods could not be applied and some 
new (a priori) SC methods had to be developed which did not rely on parameter estimation. Two 
approaches proved succesful. The first method consists of the determination of some parameter­
invariant feature from the raw data, for instance the number of inflection points. On the basis of this 
feature it is decided which model is the most appropriate for description of the observations. The 
second approach is a more general method and is based on the pattern recognizing ability of neural 
networks. It proved to be possible to obtain a neural net capable of selecting the correct model structure 
by training it with a set of 750 Monte Carlo simulations with the candidate models. 
From a comparison of these new and traditional methods with the advice of a human expert, a 
remarkable conclusion could be drawn. It was found that all traditional model selection criteria, except 
the GIC-method (which is based on an evaluation of the level of undermodelling) and a test based on 
diagnostic checking of the residuals, gave rise to a decision in favour of too complex models. In contrast 
with this, it was found that the a priori methods which rely on model features give model selections that 
correspond with the human expert's advice. 

With each feature calculated in the a priori SC methods, a value of confidence can be calculated as 
well. This confidence value can be used to quantify the discriminative power of a certain experiment. 
Hence, it was now feasible to make a next step and try to design experiments in such a way that the 
discriminative power is maximized. In Chapter VII, optimal experimental design procedures for 



structure characterization (OED/SC) were developed that maximize the confidence level of the 
inflection point determination as a design criterion. The procedure that was developed can be 
performed on-line and therefore allows to maintain the quality of structure characterization under 
changing process conditions. The need for on-line OED/SCwas clearly demonstrated, since even rather 
small variations in the biokinetic parameters resulted in completely different experimental designs. 

Next to the structure characterization, the second task in any modelling exercise is the estimation of 
the parameters in the model. However, before the estimation starts on the basis of experimental data, 
an important theoretical question must be addressed: is it possible to give an unique value to each 
parameter of the mathematical model on the basis of a perfect (noiseless) dataset. In Chapter VIII, 
this study was performed for a number of models used to describe the behaviour of activated sludge 
processes. With oxygen uptake rates as the sole source of information regarding the process, it was 
found that not all parameters but only a number of combinations of the original parameters are 
structurally identifiable. 
With this knowledge, it was possible to evaluate the practical identifiability, i.e. given a set of 
experimental data, can the parameters be given unique values and what is the confidence of these 
estimates. The evaluation of these properties is based on an evaluation of the information content of 
an experiment as quantified by the Fisher Information Matrix. This matrix is not only usefull to evaluate 
the richness in information of a collected set of experimental data, but it can also be used to predict 
the information content of a proposed experimental design. Hence, it was possible to devise optimal 
experimental design procedures for maximization of the information content of an experiment 
(OED/PE, optimal experimental design for parameter estimation). Five OED/pE criteria deduced 
from the Fisher matrix were evaluated. It was shown that different criteria yield different experimental 
designs, each corresponding with different goals, such as minimization of the largest parameter 
variance, optimization of the numerical properties of the estimation problem, etc. It was also 
demonstrated theoretically that the OED/PE is dependent on the actual parameter values, stressing 
the importance of an on-line experimental design procedure. An aspect of this investigation was 
therefore to show that the algorithms could be implemented for on-line use. 

An important part of this work was the validation of the theoretical OED/PE results in the 
respirographic biosensor. The results indicated that parameter variances can be be reduced by 50 % 
simply by modifying the usual batch-wise operation to fed-batch experiments in which an additional 
pulse of sample is injected at an optimal injection time. The real-time constraints of sensor operation 
are not violated by this extension of the In-Sensor-Experiments, since the duration of the optimized 
experiments increased by only 10 %. 

The on-line optimal experimental design mechanisms described in Chapter VII and VIII are the heart 
ofthe 'Adaptive Sensor Concept' introduced in this thesis. On-line OED allows to adjust the operation 
of a sensor in such a way that the highest possible quality is obtained under the time-varying conditions 
the sensor is confronted with. It is clear that a control system that is relying on sensor data to act on the 
process can benefit from such methodology. This work's case study in wastewater treatment processes 
is an example where this need is very high in view of 1) the lack of adequate monitoring equipment and 
2) the nonlinear and time-varying nature of the process. These features impose an adaptive type of 
controller which relies on high quality measurement data to adjust the control parameters. 



SAMENV ATIING 

Wanneer men het volume aan behandeld ruw produkt beschouwt, kan men waterzuiveringsprocessen 
tot de belangrijkste industrieIe process en rekenen. De grote waterzuiveringsinstallaties die daartoe 
gebouwd zijn, worden meestal nog bedreven met elementaire regelsystemen die hun beslissingen 
meestal baseren op off-line meetgegevens; dit is een vrij irrationele situatie. In hoofdstuk I werd een 
overzicht gegeven van de 'state of the art' en de huidige gebieden van intens onderzoek betreffende 
de kontrole van waterzuiveringsprocessen. De centrale rol die mathematische procesmodellen spelen 
bij het ontwerp van geavanceerde kontrolesystemen werd hierbij benadrukt: dynamische model­
beschrijvingen van de verschillende processen vormen de basisingredienten van modelgebaseerde 
kontrolesystemen en software sensoren waaruit deze geavanceerde regelaars zijn samengesteld. Er 
werd ook benadrukt dat de sensortechnologie nog steeds beschouwd wordt als de zwakke schakel in 
de opbouwvan dergelijke kontrolestrategieen. De eigenschappen van de biologische processen waarop 
waterzuivering gebaseerd is, geven aanleiding tot bijkomende moeilijkheden bij de ontwikkeling van 
modelgebaseerde regelaars: tijdsvariante parameters moeten aangepast worden in de procesmodellen 
die geYntegreerd zijn in de regelaar; de niet-lineariteit van de processen vereist de ontwikkeling van 
niet-lineaire regelaars of de toepassing van adaptieve lineaire kontrole (waarbij de nood bestaat om 
de kontroleparameters aan te passen indien een anderwerkingspunt bereikt wordt). Bijgevolg zijn de 
meetinstrumenten niet alleen nodig om afwijkingen van het gewenst gedragdoor te geven aan de 
regelaar, maar bovendien moet ook voldoende informatie over het proces worden doorgespeeld aan 
het kontrolesysteem teneinde de interne parameters van de regelaar aan te passen aan de steeds 
wisselende procesomstandigheden. 

De hoofddoelstelling van dit werk bestond erin een bijdrage te leveren aan de ontwikkeling van nieuwe 
sensortechnologie die het mogelijk maakt deze informatie te leveren. Tijdens het onderzoekswerk werd 
extra aandacht besteed aan de mogelijkheid deze informatie gemakkelijk in te passen in de modellen 
waarop zowel de regelaars als de software sensoren zijn gebaseerd. Een methodologie werd 
vooropgesteld die moest toelaten de interaktie tussen afvalwater en aktief slib on-line te modelleren. 

Uit Hoofdstuk I volgde dat het vrij moeilijk is voldoende 'rijke' informatie te bekomen van een proces 
dat onder gesloten kring geregeld wordt. Dit gebrek aan kwaliteit van de informatie is het gevolg van 
de beperkingen die moeten opgelegd worden aan de excitatiesignalen. Deze worden aangelegd om de 
informatie-inhoud op te drijven. De beperkingen zijn nodig om de bedrijfsvoering niet in gevaar te 
brengen. 
In dit werk werd een nieuwe benadering voorgesteld: het gebruik van 'In-Sensor-Experimenten'. Bij 
deze aanpak wordt de informatie over het procesgedrag niet langer direkt uit de volschalige installatie 
gewonnen, maar van een sensor waarin het proces op kleine schaal wordt nagebootst. In dergelijke 
sensor kunnen de excitatiesignalen zonder beperking worden gekozen. Bijgevolg kan het procesgedrag 
gekarakterizeerd worden onder meer uitgebreide kondities dan mogelijk in de volschalige installatie. 

Deze thesis kan in twee delen worden onderverdeeld. In het eerste deel (Hoofdstukken II, Ill, IV en 
V) wordt het gebruik van In-Sensor-Experimenten onderzocht ten behoeve van modelidentifikatie. 
De bruikbaarheid van deze informatie wordt geevalueerd in dit eerste deel. In de daarop volgende 
studies (Hoofdstukken VI, VII en VIII) wordt aandacht besteed aan een verfijning van de metho­
dologie zodat de kwaliteit van de informatie verder kan worden opgedreven. Op deze manier werd een 
verhoging beoogd van de betrouwbaarheid van de kontrolesystemen die met deze gegevens werken. 



In het eerste deel van deze studie werd nagegaan of een bestaand meetinstrument voor de bepaling 
van de vuilvracht en de mogelijke toxiciteit van het influent (zoals beschreven in Hoofdstuk Il) kon 
aangepast worden om biokinetische parameters van de interaktie tussen afvalwater en aktief slib te 
schatten. Een modelgebaseerde aanpak was vereist om deze gegevens te extraheren uit de ruwe data 
gegenereerd door deze respirografische sensor. Effekten die voortspruiten uit de praktische werking 
van de sensor (en die bijgevolg niet echt interessant zijn voor de regelaar van de volschalige installatie) 
dienden geelimineerd vooraleer kon worden begonnen met de karakterizatie van de biologische 
process en die doorgaan in de sensor. In Hoofdstuk IV wordt getracht het effekt van de zuurstof­
elektrode te elimineren door het elektrodegdrag te modelleren. Aan de hand van dit model kan de 
zuurstofkoncentratie in de gemengde vloeistof berekend worden op basis van de eiektrode-uitgang. 

Vergeleken met de eliminatie van de elektrodekinetiek diende belangrijker onderzoekswerk te 
gebeuren om de zuurstofoverdracht te karakterizeren en vervolgens te elimineren uit de zuurstof­
meetgegevens. Het is immers vrij eenvoudig de biologische zuurstof-opnamesnelheden te berekenen 
uit de zuurstof-massabalans eens het overdrachtsproces kwantitatiefbeschreven is. Vervolgens zou het 
dan ook mogleijk zijn alle aandacht toe te spits en op de bioprocessen die in de sensor plaatsgrijpen. 
Twee methoden voor schatting van de zuurstofoverdrachtskarakteristieken in aanwezigheid van 
aktieve biomassa werden in Hoofdstuk III uitgewerkt. In een eerste methode werden wiskundige 
technieken aangewend om de originele dataset op te splitsen in twee delen, waarna een van deze 
subsets kon gebruikt worden om de volumetrische massa-overdrachtskoefficient KLa te schatten. Er 
kon aangetoond worden dat de nauwkeurigheid van de schatting (een variatiekoefficient van 2.5 %) 
en de betrouwbaarheid (geevalueerd over een periode van twee weken) vergelijkbaar is met de 
bestaande technieken. Er werd aangegeven dat deze methode een goedkoop alternatief kon zijn voor 
bepaling van de zuurstofoverdracht in volschalige waterzuiveringsinstallaties. 
De tweede techniek die werd geYmplementeerd vereist een onderbreking van de normale werking van 
de sensor. Er kon echter worden aangetoond dat een doorgedreven interpretatie van de dataset 
bekomen uit dit specifieke in-sensor-experiment toeliet niet alleen een schatting van de KLa te 
bekomen, maar tevens een waarde te verkrijgen van de verzadigingskoncentratie van zuurstof. Deze 
methode kan beschouwd worden als de eerste die toelaat deze koncentratie te schatten met een 
eenstapsprocedure in een oplossing waarin aktieve biomassa aanwezig is. Toepassing van deze 
methode in volschalige installaties moet toelaten een beter inzicht te verkrijgen in de overdrachts­
efficientie van het beluchtingssysteem onder proceskondities. 

Het belangrijkste resultaat van het onderzoek beschreven in Hoofdstuk III is dat deze nieuwe 
technieken toelaten de zuurstofopnamesnelheid van het aktief slib (OUR) te bepalen. Deze OUR 
weerspiegelt de res pons van het slib op een pulsadditie van influent. In de daaropvolgende 
hoofdstukken kon de aandacht bijgevolg volledig worden toegespitst op de extraktie van biokihetische 
karakteristieken van deze interaktie door toepassing van systeemidentifikatietechnieken. Het is 
belangrijk op te merken dat de bekomen karakterizatie van de zuurstofoverdracht in de reaktor 
ingebouwd in de sensor indikatief kan zijn voor veranderingen die zich ook kunnen voordoen in de 
volschalige installatie. Bijgevolg lijkt ook het gebruik van deze data perspektieven te bieden voor de 
kontrole van de installatie. 

In Deel I van Hoofdstuk IV wordt een preliminaire studie uitgevoerd om enkele variabelen en 
biokinetische parameters te schatten uitgaande van de OUR data. Een zeer belangrijk resultaat van 
deze studie was dat het mogelijk bleek vrij gesofistikeerde modellen te identificeren op basis van deze 
respirografische gegevens. Dit resultaat gaf het vertrouwen dat de gekozen aanpak de ontwikkeling 



van betere software sensoren en modelgebaseerde regelaars zou toelaten die voordeel halen uit de 
hogere informatiekwaliteit. In Deel II van dit hoofdstuk werd deze stap gezet en werd een 'extended 
Luenberger observer' opgesteld als een software sensor van de verschillende toestandsvariabelen van 
het (licht gemodifieerd) lA WQ model nOlo Er kon worden aangetoond dat alle variabelen en 
parameters van dit vrij komplex model konden geschat warden op basis van de gegevens bekomen uit 
de respirografische sensor enerzijds en enkele biomassametingen anderzijds. Nadien werd een 

. modelgebaseerde multi-input/multi-output (MIMO) regelaar ontworpen gebruik makend van 
koncepten uit de linearizerende kontroletheorie. Bij deze aanpak wordt het niet-lineair karakter van 
het proces geintegreerd wordt in de regelaar waardoor betere regeleigenschappen verwacht kunnen 
worden. Een uitgebreide simulatiestudie illustreerde het potentieel voor toegenomen performantie. 

De toepassing beschreven in Hoofdstuk V had tot doel te illustreren dat In-Sensor-Experimenten 
nuttig kunnen zijn voor de snelle biokinetische karakterizatie van de twee belangrijkste groepen aerobe 
organismen in aktief slib, met name de nitrificerende en heterotrofe organism en. Er werd aangetoond 
dat experimenten waarin een mengsel van ammonium en een koolstofbron werd toegediend aan een 
nitrificerend slib, toelieten enkele belangrijke biokinetische parameters te schatten, by. de maximale 
substraatopnamesnelheid of de affiniteitskonstante. Een belangrijk besluit uit dit werk was dat het 
nodig is aandacht te besteden aan de samenstelling van het substraatmengsel zodat de praktische 
identifieerbaarheid van de parameters gegarandeerd bleef. De oplossing die voor dit probleem werd 
gegeven in Hoofdstuk V was volledig heuristisch. In Hoofdstukken VI, VII en VIII werd dit probleem 
fundamenteel aangepakt en werden technieken voor optimaal experimenteel ontwerp toegepast die 
het mogelijk maken de hoogst mogelijke informatiekwaliteit na te streven. 

In het tweede deel van de studie zoals beschreven in de Hoofdstukken VI, VII en VIII werd het 
probleem van modelidentifikatie vanuit een meer fundamenteel oogpunt benaderd. Experimentele 
resultaten hebben aangetoond dat de veranderingen in afvalwatersamenstelling en slibeigenschappen 
van een dergelijke orde zijn dat niet alleen parameterveranderingen moeten gevolgd worden, maar 
dat tevens aanpassing van de modelstruktuur (de funktionele verbanden tussen de veranderlijken) 
moet worden doorgevoerd. In Hoofdstuk VI werd daarom aandacht besteed aan de evaluatie van 
verschillende struktuurkarakterizatiemethoden (SC). Er werd vastgesteld dat alle klassieke SC 
methoden die werden geevalueerd, gebaseerd zijn op een voorafgaande parameterschatting van alle 
kandidaatmodellen vooraleer een model wordt gekozen. Dit stelt een probleem omdat de parameter­
schatting van de niet-lineaire modellen een rekenintensieve taak is. In het licht van het real-time 
karaktervan de beoogde methodologie moet SCon-line gebeuren en bijgevolg lijken deze zogenaamde 
a posteriori SC technieken niet toepasbaar. Er werd daarom getracht nieuwe (a priori) technieken 
voor struktuurkarakterizatie te ontwikkelen waar geen parameterschatting nodig is. Twee benade­
ringen bleken suksesvol. De eerste methode bestaat erin een aantal parameter-invariante kenmerken 
uit de dataset te extraheren, by. het aantal buigpunten. Op basis van dit kenmerk kan vervolgens beslist 
worden welk model het beste past bij de data. De tweede aanpak is meer algemeen van aard en is 
gebaseerd op de patroonherkenningseigenschap van neurale netwerken. Het bleek inderdaad mogelijk 
een neuraal netwerk te trainen zodat het in staat was het juiste model te selekteren. Het aanleren van 
dit neural netwerk bestond erin een set van 750 Monte Carlo simulaties van de verschillende 
kandidaatmodellen aan het net aan te bieden. 



Het resultaat van een vergelijking tussen de verschillende (klassieke en nieuwe) SC methoden enerzijds 
en de keuze van een menselijk expert anderzijds was opmerkeJijk. Alle klassieke methoden, met 
uitzondering van de GIC-methode (die gebaseerd is op een evaluatie van het 'undermodelling' niveau) 
en een test gebaseerd op diagnostische analyse van de residuelen, gaven aanleiding tot de keuze van 
een te komplex model. In tegenstelling hiermee werd vastgesteld dat de a priori methoden die zich 
baseren op modelkenmerken v~~r de keuze tussen de kandidaatmodellen, resulteren in modelselekties 
die gelijk lopen met die van de menselijke expert. 

Bij elk kenmerk dat berekend wordt in de a priori SC methoden, hoort ook een waarde voor de 
betrouwbaarheid waarmee dit kenmerk bepaald werd. Deze betrouwbaarheidswaarde kan gebruikt 
worden om de diskriminerende waarde van een experiment te kwantificeren. Deze waarde kon 
bijgevolg aangewend worden in een volgende stap waarbij experimenten zodanig worden ontworpen 
dat het diskriminerend vermogen gemaximalizeerd wordt. In Hoofdstuk VII werden optimaal 
experimenteel ontwerp procedures voor struktuurkarakterizatie (OED/SC) ontwikkeld waarbij de 
betrouwbaarheid van de buigpuntsbepaJing optreedt als ontwerpkriterium. De ontwikkelde procedure 
kan on-line uitgevoerd worden en laat bijgevolg toe de kwaliteit van de struktuurkarakterizatie hoog 
te houden, zelfs onder sterk wisselende omstandigheden. De noodzaak voor on-line OED/SC werd 
duideJijk aangetoond aangezien een relatief kleine verandering in biokinetische parameters reeds 
aanleiding gaf tot volledig verschillende experimenten. 

Na de struktuurkarakterizatie volgt de tweede stap in de modelbouwprocedure, nl. het schatten van 
de modelparameters. Het is belangrijk, vooraleer met experimentele data gewerkt wordt, dat de 
theoretische identifieerbaarheid van de modelparameters wordt nagegaan, m.a.w. kunnen unieke 
waarden gegeven worden aan de verschillende parameters op basis van een perfekte dataset. In 
Hoofdstuk VIII werd deze studie uitgevoerd voor een aantal modellen die frekwent worden aangewend 
voor de beschrijving van het aktief slib proces. Met zuurstofopnamesnelheden als enige bron van 
informatie bleek dat slechts een aantal parameterkombinaties theoretisch identifieerbaar zijn. 
Van zodra deze kennis verworven was, kon de praktische identifieerbaarheid onderzocht worden. Dit 
houdt in dat men nagaat of unieke waarden kunnen gegeven worden aan de parameter(kombinatie)s 
op basis van een bepaalde experimentele dataset en wat de betrouwbaarheid van deze parameter­
schattingen dan is. De studie van de praktische identifieerbaarheidis volIedig gebaseerd op de evaluatie 
van de informatie-inhoud van een experiment. Deze wordt gekwantificeerd door de Fisher Informatie 
Matrix. Deze matrix is niet alleen nuttig voor het bepalen van de informatie-inhoud van een dataset, 
maar kan ook een voorspeIling doen van de kwaliteit van een vooropgesteld experimenteel ontwerp. 
Het is dus mogelijk op deze manier experimenteel-ontwerp-procedures voor parameterschatting 
(OED/PE) te ontwikkelen waarbij de informatie-inhoud van een experiment gebruikt wordt als 
optimalizatiekriterium. Vijf OED/PE kriteria afgeleid van de Fisher Informatie Matrix werden 
geevalueerd. Het kon worden aangetoond dat de verschillende kriteria aanleiding geven tot 
verschillende experimentele ontwerpen, die elk overeenkomen met een verschillende doelstelling, vb. 
minimalizatie van de grootste parametervariantie, optimalizatie van de numerieke eigenschappen van 
het parameterschattingsprobleem, enz. Theoretisch kon worden aangetoond dat de OED/PE afhangt 
van de parameterwaarden, wat het belang van een on-line implementatie van OED/PE onderstreept. 
Een bijkomend onderzoeksaspekt was daarom ook aan te tonen dat de algoritmen konden aangepast 
worden voor on-line toepassing. 



Een belangrijk deel van dit werk bestond uit de experimentele validatie van de theoretische OEDIPE 
resultaten in de respirografische biosensor. De experimentele resultaten gaven aan dat parameter­
varianties met 50 % gereduceerd kunnen worden door een kleine uitbreiding van de batch­
experimenten met een bijkomende substraatpuls die gei'njekteerd wordt op een optimaal gekozen 
tijdstip. De real-time werking van de sensor wordt door deze uitbreiding niet in het gedrang gebracht 
aangezien de lengte van de experimenten slechts met 10 % toeneemt. 

De on-line optimaal-experimenteel-ontwerptechnieken beschreven in Hoofdstukken VII en VIII zijn 
het hart van het 'Adaptieve Sensor Koncept' zoals het werd uitgewerkt in het laatste hoofdstuk van 
deze thesis. On-line OED laat toe de werking van de sensor zo aan te passen dat steeds de hoogst 
.mogelijke informatiekwaliteit gewaarborgd blijft, ondanks de veranderende kondities waaraan de 
sensor wordt blootgesteld. Het moet duidelijk zijn dat een kontrolesysteem baat heeft bij een dergelijke 
methodologie. De gevallenstudie van deze thesis waarbij dit koncept werd uitgewerkt voor het 
waterzuiveringsproces is een typevoorbeeld waar de nood aan hoogkwalitatieve data zeer hoog is in 
hetlichtvan 1) het gebrek aan adekwate sensortechnolgie en 2) het niet-lineair en tijdsvariabel karakter 
van het proces. Deze eigenschappen leggen het gebruik van een adaptieve regelaar op. De perfor­
mantie van dergelijke regelaars hangt sterk af van de beschikbare data voor het aanpassen van de 
interne kontroleparameters. 
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