FRÉDÉRIC CLOUTIER

MODÉLISATION DU COMPORTEMENT DES MICROPOLLUANTS DANS UNE STATION D'ÉPURATION

Mémoire présenté à la Faculté des Études Supérieures et postdoctorales de l'Université Laval dans le cadre du programme de maîtrise en Génie Civil pour l'obtention du grade de Maître ès sciences (M.Sc.)

DÉPARTEMENT DE GÉNIE CIVIL ET GÉNIE DES EAUX FACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL QUÉBEC

2011

RÉSUMÉ

Le but de ce travail était de modéliser le comportement de micropolluants en plus des polluants traditionnels dans une station d'épuration. Deux études de cas ont ainsi été réalisées. La première concerne une usine pilote de la station d'épuration de Lynetten à Copenhague, au Danemark. Un modèle tenant compte à la fois de la dégradation aérobie par une bactérie spécifique et de la sorption sur les matières en suspension a été développé afin d'y décrire le comportement de composés organiques xénobiotiques. Les expériences ont été effectuées avec un perturbateur endocrinien, le Bisphénol A. Les résultats démontrent que le modèle parvient à représenter adéquatement la dynamique d'enlèvement du Bisphénol A. Le processus utilisé pour évaluer l'adaptation de la biomasse afin de valider le modèle n'épouse pas parfaitement les données mesurées, mais il permet toutefois de prédire la structure générale du comportement du Bisphénol A.

La seconde étude concerne la station de Norwich, au Royaume-Uni. Dans ce cas-ci, le modèle, qui considère la sorption des métaux lourds sur les matières en suspension comme processus réactionnel, a été évalué à partir de données recueillies à même la station. Les résultats démontrent la grande sensibilité du modèle face aux variations instantanées des concentrations de métaux lourds dans l'affluent. Il est néanmoins capable de prévoir l'évolution des concentrations des métaux lourds à l'intérieur de la station ainsi qu'à l'effluent.

ABSTRACT

The aim of this work was to model micropollutant behavior as well as traditional pollutants in wastewater treatment plants. Two case studies were conducted. The first one concerns a pilot plant located at the Lynetten wastewater treatment plant in Copenhagen, Denmark. A model taking into account degradation by specific bacteria as well as sorption on suspended solids was developed in order to describe the fate of xenobiotic organic compounds. Experiments were performed using Bisphenol A, an endocrine disruptor. Results show that the model is able to adequately represent the removal dynamics of Bisphenol A. The biomass adaptation method used to validate the model does not give a perfect fit, but it is able to predict the general structure of the fate of Bisphenol A.

The other study concerns the Whitlingham Sewage Treatment Works in Norwich, UK. A model considering the sorption of heavy metals on suspended solids was evaluated with data taken at multiple sampling points in the plant. Results show a significant sensitivity of the model output to the heavy metal concentration fluctuations in the influent. Still, the model is able to predict the variations in heavy metal concentrations at different locations in the plant and at the effluent.

AVANT-PROPOS

Ce projet de maîtrise a été rendu possible grâce à la Chaire de Recherche du Canada en modélisation de la qualité de l'eau octroyée au Dr. Peter Vanrolleghem en février 2006. Je tiens par conséquent à remercier en premier lieu monsieur Vanrolleghem qui s'est avéré être un directeur de recherche engagé, patient et toujours disponible. Ses judicieux conseils et son intérêt marqué envers mes travaux ont été une source de motivation omniprésente au cours des trois dernières années.

Je remercie également le Dr. Paul Lessard de l'Université Laval pour les discussions constructives que nous avons eues ainsi que pour m'avoir fourni des données recueillies lors de ses études de doctorat.

Je veux aussi remercier Mogens Henze, Kåre Press-Kristensen et Erik Lindblom du Technical University of Denmark pour m'avoir permis d'utiliser une partie de leurs données. Je tiens également à remercier plus personnellement Erik pour les nombreuses discussions que nous avons eues et pour le support technique qu'il m'a apporté à plusieurs reprises.

De plus, je ne peux passer sous silence l'apport bénéfique des membres du groupe model*EAU*, tant par leur aide lors des moments difficiles que par les nombreuses discussions que nous avons eues tant au bureau, durant les réunions, lors des pauses café, au dîner et lors d'activités organisées. Je voudrais plus particulièrement remercier mes deux collègues de bureau Mathieu Beaupré et Cyril Garneau avec qui j'ai eu beaucoup de plaisir à partager ces journées où rien ne semblait fonctionner.

Enfin, je veux remercier ma conjointe Vicky, mes parents Alain et Rachel, ma sœur Marie-Hélène ainsi que tous mes amis pour leur soutien et leurs encouragements tout au long de cette grande aventure.

I have not failed, I've just found 10,000 ways that won't work.

(Thomas A. Edison)

S'il vous plaît, avant d'imprimer ce mémoire, pensez à l'industrie des pâtes et papiers en difficulté. Supportons nos entreprises, imprimez ce mémoire.

(Adapté de Paul McCormick)

TABLE DES MATIÈRES

RESUME	iii
ABSTRACT	iv
AVANT-PROPOS	
TABLE DES MATIÈRES	vii
LISTE DES TABLEAUX	viii
LISTE DES FIGURES	ix
CHAPITRE I INTRODUCTION	1
1.1 Contexte	
1.2 Division du mémoire	
1.3 Revue de la littérature	5
1.3.1 Bisphénol A	5
1.3.2 Métaux lourds	
1.3.3 Normes et législations	
1.3.4 Modélisation	
1.4 Objectifs	25
CHAPITRE II MATÉRIEL ET MÉTHODES	
2.1 Étude de cas : Bisphénol A	
2.1.1 Présentation de la STEP de Copenhague	
2.1.2 Échantillonnage	30
2.2 Étude de cas : Métaux lourds	
2.2.1 Présentation de la STEP de Norwich	
2.2.2 Échantillonnage	
CHAPITRE III RÉSULTATS ET DISCUSSION	
3.1 Étude de cas : Bisphénol A	
3.1.1 Modélisation	
3.1.2 Concentration de fond	42
3.1.3 Calibration	
3.1.4 Validation	47
3.2 Étude de cas : Métaux lourds	
3.2.1 Modélisation	
3.2.2 Caractérisation de l'entrée	60
3.2.3 Clarificateur primaire	
3.2.4 Lignes d'aération	
3.2.5 Décanteur secondaire	
3.2.6 Bassin de consolidation	
3.2.7 Effluent	
3.2.8 Métaux lourds	
CHAPITRE IV CONCLUSION	
RÉFÉRENCES	95
ANNEXE A DONNÉES UTILISÉES, BISPHÉNOL A	
ANNEXE B DONNÉES UTILISÉES, MÉTAUX LOURDS	109
ANNEXE C FIGURES SUPPLÉMENTAIRES MÉTALIX LOURDS	130

LISTE DES TABLEAUX

Tableau 1. Propriétés caractéristiques du Bisphénol A (European Chemicals Bureau	
(2003))	. 5
Tableau 2. Enlèvement des métaux dans un bioréacteur à membranes (adapté de Fatone et	
al. (2005))	
Tableau 3. Normes applicables aux rejets de métaux pour des nouveaux projets miniers	
Tableau 4. Concentrations maximales tolérées de certains métaux rejetés dans les réseaux	
d'égouts unitaire et domestique de Montréal	
Tableau 5. Concentrations maximales tolérées de certains métaux rejetés dans les réseaux	
d'égouts pluviaux et les cours d'eau de Montréal.	
Tableau 6. Concentrations maximales de métaux lourds rejetés dans les réseaux d'égouts	
Tableau 7. Propriétés caractéristiques des unités de traitement (adapté de Lessard et Beck	
(1993))	32
Tableau 8. Représentation matricielle du modèle de croissance spécifique et de	
sorption/désorption des composés organiques xénobiotiques	
Tableau 9. Paramètres cinétiques et stœchiométriques pour le modèle de Bisphénol A	
Tableau 10. Conditions opératoires de l'usine pilote (adapté de Lindblom et al. (2009))	
Tableau 11. Résultats obtenus pour la concentration de fond en μg BPA/l	
Tableau 12. Résultats obtenus avec la procédure de Lindblom et al. (2009)	43
Tableau 13. Représentation matricielle de la sorption/désorption des métaux	53
Tableau 14. Valeurs du paramètre r _H selon l'intervalle de concentration des matières en	
suspension.	55
Tableau 15. Paramètres cinétiques et stœchiométriques du modèle ASM1	
Tableau 16. Paramètres cinétiques de l'ajout au modèle ASM1 et efficacité d'enlèvement.	
	79
	0.5
Tableau A - 1. Données recueillies pour la procédure de calibration du Bisphénol A 1	
Tableau A - 2. Données recueillies pour la procédure de validation du Bisphénol A 1	
Tableau A - 3. Fichier d'entrée pour le régime permanent, la calibration et la validation. 1	U'/
Tableau B - 1. Données mesurées à l'entrée du clarificateur primaire	11
Tableau B - 2. Données mesurées au surnageant du clarificateur primaire	
Tableau B - 3. Données mesurées à l'entrée des lignes d'aération	
Tableau B - 4. Données mesurées et calculées(*) à l'effluent	
Tableau B - 5. Données mesurées dans la ligne de recirculation	
Tableau B - 6. Données mesurées et calculées(*) dans la liqueur mixte	
Tableau B - 7. Données mesurées et calculées(*) au soutirage des boues du clarificateur	20
primaire	29
Tableau B - 8. Données mesurées et calculées(*) aux boues recirculées au bassin de	
consolidation	32
Tableau B - 9. Données mesurées et calculées(*) au surnageant du bassin de consolidation	
Tableau B - 10 Données mesurées nour l'oxygène dissous au 3/4 d'une ligne d'aération 1	38

LISTE DES FIGURES

Figure 1. Production de Bisphénol A dans le monde au cours des 15 dernières années	7
Figure 2. Solubilité des métaux lourds sous forme d'hydroxyde et de sulfure en fonction	du
pH (adapté de Crear (2001)).	14
Figure 3. Matrice de Gujer pour une croissance bactérienne aérobie (adapté de Henze et	al.
(2000))	23
Figure 4. Réacteurs anaérobie (gris) et aérobie/anoxie (bleu) de l'usine pilote de la station	n
Lynetten.	
Figure 5. Schéma de l'usine pilote fonctionnant selon le principe Biodenipho TM	30
Figure 6. Procédé par boues activées à la station de Norwich (adapté de Lessard et Beck	
(1993))	
Figure 7. Représentation avec le logiciel WEST® de l'usine pilote de Lynetten	
Figure 8. Bisphénol A à la sortie de l'usine pilote selon la procédure de calibration	
Figure 9. Bactéries spécifiques simulées à la sortie de l'usine pilote.	
Figure 10. Pré-adaptation de la biomasse pour l'étape de validation	
Figure 11. Bisphénol A à la sortie de l'usine pilote selon la procédure de validation	
Figure 12. Schéma de la station de Norwich telle que représentée dans le logiciel WEST	
Figure 13. Matières en suspension en fonction du temps à l'entrée du clarificateur primai	
Figure 14. Matières en suspension en fonction du temps à l'entrée et à la sortie du	
clarificateur primaire	65
Figure 15. Matières en suspension à la sortie du clarificateur primaire.	
Figure 16. Azote ammoniacal à l'entrée et à la sortie du clarificateur primaire	
Figure 17. Matières en suspension à l'entrée des lignes d'aération	
Figure 18. Oxygène dissous au 3/4 des lignes d'aération.	
Figure 19. Matières en suspension dans la liqueur mixte	
Figure 20. Azote ammoniacal à l'entrée des lignes d'aération	
Figure 21. Matières en suspension dans la ligne de recirculation.	
Figure 22. Matières en suspension au surnageant du bassin de consolidation	
Figure 23. Matières en suspension à l'effluent de la station.	
Figure 24. Azote ammoniacal à l'effluent de la station.	
Figure 25. Chrome soluble et total mesuré à l'entrée du clarificateur primaire	78
Figure 26. Chrome soluble et total à l'affluent du clarificateur primaire	80
Figure 27. Chrome soluble et total à la sortie du clarificateur primaire	
Figure 28. Chrome soluble et total à l'entrée des lignes d'aération	
Figure 29. Chrome total dans la ligne de recirculation.	
Figure 30. Chrome soluble et total à l'effluent de la station.	
Figure 31. Chrome total à l'effluent de la station selon différentes valeurs de constante de	
sorption.	
Figure 32. Chrome total à l'effluent de la station selon différentes valeurs du coefficient e	
partition	87

Figure C - 1. Cadmium soluble et total mesuré à l'entrée du clarificateur primaire	141
Figure C - 2. Cadmium soluble et total à l'affluent du clarificateur primaire	141
Figure C - 3. Cadmium soluble et total à la sortie du clarificateur primaire	142
Figure C - 4. Cuivre soluble et total mesuré à l'entrée du clarificateur primaire	142
Figure C - 5. Cuivre soluble et total à l'affluent du clarificateur primaire	143
Figure C - 6. Cuivre soluble et total à la sortie du clarificateur primaire	143
Figure C - 7. Nickel soluble et total mesuré à l'entrée du clarificateur primaire	144
Figure C - 8. Nickel soluble et total à l'affluent du clarificateur primaire	144
Figure C - 9. Nickel soluble et total à la sortie du clarificateur primaire	145
Figure C - 10. Plomb soluble et total mesuré à l'entrée du clarificateur primaire	145
Figure C - 11. Plomb soluble et total à l'affluent du clarificateur primaire	146
Figure C - 12. Plomb soluble et total à la sortie du clarificateur primaire	146
Figure C - 13. Zinc soluble et total mesuré à l'entrée du clarificateur primaire	147
Figure C - 14. Zinc soluble et total à l'affluent du clarificateur primaire	147
Figure C - 15. Zinc soluble et total à la sortie du clarificateur primaire	148
Figure C - 16. Cadmium soluble et total à l'entrée des lignes d'aération	148
Figure C - 17. Cuivre soluble et total à l'entrée des lignes d'aération	149
Figure C - 18. Nickel soluble et total à l'entrée des lignes d'aération	
Figure C - 19. Plomb soluble et total à l'entrée des lignes d'aération	150
Figure C - 20. Zinc soluble et total à l'entrée des lignes d'aération	150
Figure C - 21. Cadmium total dans la ligne de recirculation.	151
Figure C - 22. Cuivre total dans la ligne de recirculation.	151
Figure C - 23. Nickel total dans la ligne de recirculation.	152
Figure C - 24. Plomb total dans la ligne de recirculation	
Figure C - 25. Zinc total dans la ligne de recirculation.	
Figure C - 26. Cadmium soluble et total à l'effluent de la station	
Figure C - 27. Cuivre soluble et total à l'effluent de la station	154
Figure C - 28. Nickel soluble et total à l'effluent de la station.	
Figure C - 29. Plomb soluble et total à l'effluent de la station.	155
Figure C - 30. Zinc soluble et total à l'effluent de la station.	155

CHAPITRE I

INTRODUCTION

1.1 Contexte

Il y a plus de 3.5 milliards d'années apparaissait la vie sur Terre. L'origine de ce phénomène est encore disputée par les membres de la communauté scientifique, mais tous sont unanimes : il n'y aurait pas de vie sans eau. En effet, l'eau est essentielle au métabolisme de tous les organismes vivants qui habitent notre planète.

Au Québec, la consommation résidentielle est évaluée à 400 litres d'eau par jour par personne, ce qui le place au premier rang des provinces canadiennes (MDDEP, 2002). Qu'elle serve à accomplir les différentes tâches ménagères telles que le nettoyage des vêtements et de la vaisselle ou pour l'hygiène personnelle avec la douche et la cuvette, cette eau, initialement potable et désormais gorgée de contaminants, est généralement dirigée vers une station d'épuration via un réseau d'égout. Il en est de même pour les eaux de pluie qui, par un phénomène de ruissellement, acheminent de grandes quantités de polluants à la fois organiques et inorganiques à une usine de traitement des eaux usées. Il y a également les différentes industries qui rejettent peintures, huiles, métaux et autres substances toxiques, le tout formant un cocktail nocif qui se doit aussi d'être traité avant d'être dirigé vers un milieu récepteur. La gestion des eaux usées domestiques et des eaux de pluie est attribuée à chaque municipalité et toute industrie qui rejette ses eaux usées à même un réseau municipal doit se conformer aux normes établies. Des exigences gouvernementales ont fait en sorte que de nos jours, la grande majorité des municipalités sont pourvues d'une station d'épuration. Au Québec, elles sont principalement conçues pour dégrader la matière organique, mais certaines installations, particulièrement dans les grands centres urbains, peuvent traiter adéquatement l'azote ammoniacal et le phosphore.

Lors du traitement, ces principaux polluants sont assimilés par les bactéries afin, idéalement, d'abaisser leur concentration à des valeurs compatibles avec la capacité d'autoépuration du milieu récepteur. Cependant, certains polluants ne peuvent qu'être éliminés par des bactéries spécifiques alors que d'autres ne sont tout simplement pas biodégradables. Il est pourtant essentiel de connaître la teneur de ces composés que l'on

rejette puisqu'ils peuvent entrer en contact avec l'homme, soit par les eaux de surface, les sources d'eau potable, la nappe phréatique ou par la chaîne alimentaire via les plantes et les animaux que l'on consomme.

Les modèles mathématiques qui sont utilisés pour concevoir et optimiser les stations d'épuration ont comme principale fonction d'observer le comportement des polluants traditionnels et non celui des différents composés toxiques qui sont présents en plus petite quantité.

Afin de réduire cette forme de pollution, plusieurs équipes de chercheurs ont unis leurs efforts au sein d'un consortium nommé SCORE-PP (Source Control Options for Reducing Emissions of Priority Pollutants, www.scorepp.eu). L'objectif de ce projet européen est de développer des stratégies de contrôle à la source que les gouvernements, les villes et les industries peuvent utiliser afin de réduire l'émission de polluants particulièrement toxiques dans les eaux réceptrices. Les polluants priorisés sont les 33 substances prioritaires (Priority Pollutants) répertoriées dans la Directive Cadre sur l'Eau européenne (Decision No 2455/2001/EC, 2001). Au sein de SCORE-PP, les partenaires sont des scientifiques provenant d'une part d'universités et de compagnies œuvrant dans le domaine de la recherche et d'autre part, des différents paliers gouvernementaux. Ainsi, modelEAU, développé autour de la Chaire de Recherche du Canada en modélisation de la qualité de l'eau obtenue par le Dr. Peter Vanrolleghem en février 2006, est l'un des neuf groupes de recherche participants à ce projet et il est le seul situé à l'extérieur du territoire européen. Il a comme mandat d'étudier le cas du Québec, notamment en ce qui concerne tous les aspects reliés à l'accumulation importante de neige et en particulier de l'influence de la fonte des neiges sur le transport et le comportement des polluants. L'objectif est de trouver des solutions pour diminuer progressivement les rejets de ces principaux polluants en s'attaquant soit à la source, c'est-à-dire en substituant des produits courants par d'autres qui sont moins néfastes, ou soit à même les stations d'épuration en les configurant de façon optimale pour obtenir un traitement plus efficace (Mikkelsen et al., 2007). La présente étude cadre dans l'optique de cette seconde option.

1.2 Division du mémoire

Le présent mémoire se divise en quatre chapitres. Tout d'abord, un premier chapitre aborde le sujet et le présente principalement sous forme de revue de littérature. Le contexte de l'étude et les objectifs recherchés y sont ensuite détaillés. Le deuxième chapitre sert à l'élaboration du matériel et des méthodes utilisés. Les résultats obtenus et leur analyse sont détaillés dans le troisième chapitre. Enfin, les conclusions générales extraites de ces travaux ainsi que les perspectives envisageables font partie du dernier chapitre.

1.3 Revue de la littérature

1.3.1 Bisphénol A

Le Bisphénol A (BPA) est un composé qui ne se retrouve pas de façon naturelle sur Terre. Sa découverte remonte au début du XXème siècle alors qu'il a été synthétisé par le scientifique allemand Thomas Zincke tel que décrit dans un rapport qu'il a publié en 1905 (Zincke, 1905). Ce n'est qu'en 1957 que la production commerciale du BPA a débuté suite à la découverte simultanée d'un procédé de fabrication de polycarbonates avec le BPA comme intermédiaire par le Dr. Hermann Schnell en Allemagne et le Dr. Dan Fox aux Etats-Unis en 1953 (Bisphenol A Global Industry Group, 2002). Le Tableau 1 présente quelques propriétés caractéristiques du Bisphénol A.

Tableau 1. Propriétés caractéristiques du Bisphénol A (European Chemicals Bureau (2003)).

Formule chimique	$C_{15}H_{16}O_2$
Structure moléculaire	$HO \longrightarrow CH_3 \longrightarrow OH$
Masse moléculaire	228.29 g/mol
Point de fusion	155 °C
Point d'ébulition	360 °C
Pression de vapeur	$5.3 \cdot 10^{-9} \text{ kPa}$
Coefficient de partition octanol-eau	3.4
Solubilité dans l'eau (20°C, 1 atm)	300 mg/l

Il est produit industriellement par une réaction de condensation d'acétone et de phénol en présence d'un catalyseur acide à une température de 75°C (European Chemicals Bureau, 2003). Il est utilisé dans plusieurs domaines de l'industrie, mais plus de 95% du Bisphénol A sert à la fabrication de polycarbonate et de résine d'époxy (Senjen et Azoulay, 2008). Sa production a connu une croissance importante au cours des dernières années, passant de 1.1 Mt/an en 1993 à 4.0 Mt/an en 2006. La Figure 1 présente l'évolution de la production de Bisphénol A dans le monde au cours des 15 dernières années.

Les polycarbonates faits à base de Bisphénol A sont produits de deux différentes façons. Le procédé le plus utilisé est celui de la polymérisation interfaciale avec du phosgène. Une méthode alternative consiste à le mélanger avec du carbonate diphényle dans un réacteur. L'utilisation de Bisphénol A pour produire du polycarbonate permet d'obtenir une grande qualité en termes de translucidité, de résistance à l'impact et de ductilité. Ces particularités en font un produit idéal pour fabriquer, entre autres, des disques compact et des biberons (European Chemicals Bureau, 2003).

Il existe plusieurs types de résines d'époxy. L'une d'entre elles, liquide, est synthétisée par un mélange d'épichlorohydrine et de Bisphénol A en présence d'un catalyseur alcalin. On obtient ainsi un éther diglycidyle de Bisphénol A, l'un des plus utilisés dans l'industrie. Il est ensuite possible, en ajoutant encore du Bisphénol A et en augmentant la température, de créer un produit final davantage polymérisé pour ensuite le refroidir et le solidifier dans des récipients. Les résines d'époxy dérivées du Bisphénol A sont curées avec différents agents dépendamment des propriétés voulues, telles que la conductivité électrique, la résistance à la chaleur et l'adhésion. Il existe plusieurs utilités à ce type de résine, notamment pour la fabrication de différents revêtements, d'adhésifs et de composites structuraux (European Chemicals Bureau, 2003).

Figure 1. Production de Bisphénol A dans le monde au cours des 15 dernières années.
¹Groshart et al. (2001), ²Staples et al. (2002), ³Senjen et Azoulay (2008),
⁴Shugart et Rosenberg (2008).

La problématique entourant le Bisphénol A est qu'il s'agit d'un perturbateur endocrinien ayant la particularité d'activer les récepteurs d'œstrogènes, ce qui entraîne des effets physiologiques qui sont comparables à ceux des œstrogènes produites par le corps humain (Krishnan et al., 1993). Malheureusement, de récentes études ont démontré qu'il a tendance à s'extraire des contenants de plastique et des boîtes de conserve pour ainsi se retrouver dans le lait (Kang et Kondo, 2003), l'huile végétale (Kang et al., 2003) et l'alcool (Howe et Borodinsky, 1998). Il a même été détecté dans du jus de pomme conservé à l'intérieur de bouteilles pour bébés réutilisables (Biles et al., 1997). Puisqu'il est de plus en plus utilisé, son exposition aux êtres humains par les voies alimentaires et environnementales a également augmenté, d'où l'intérêt d'en diminuer les rejets (Kang et al., 2006).

Dans le domaine du traitement des eaux usées, le Bisphénol A fait partie d'un ensemble de polluants désignés par le terme « composés organiques xénobiotiques » (XOC). Par

définition, il s'agit de composés chimiques d'origine artificielle, c'est-à-dire synthétisés par l'homme, que l'on ne retrouve pas de façon naturelle dans les organismes vivants et qui, par conséquent, ne sont généralement pas ou peu métabolisés par ces derniers. Bien que les stations d'épuration ne soient pas spécifiquement conçues pour éliminer ce type de polluants, des études ont tout de même mis en évidence une diminution de leur concentration à l'effluent de certaines d'entre elles. Lee et al. (2004) ont étudié quatre stations d'épuration de la région de Toronto et ont mesurés un enlèvement de BPA variant entre 55% et 99% avec une valeur médiane de 83%. Stasinakis et al. (2008) ont quant à eux mesuré les concentrations de BPA à l'entrée et à la sortie de huit stations d'épuration en Grèce et ils ont calculé pour une d'entre elles un pourcentage d'enlèvement de 87%.

1.3.2 Métaux lourds

Les métaux lourds, ou éléments-traces métalliques, forment une catégorie d'éléments qui est encore aujourd'hui plus ou moins bien définie dans la littérature. Plusieurs auteurs considèrent les métaux lourds comme étant des éléments avec un seuil de densité minimal, mais celle-ci varie d'une publication à l'autre : 3.5 g/cm³ (Falbe et Regitz, 1996)*, 4 g/cm³ (Grant et Grant, 1987)*, 4.5 g/cm³ (Streit, 1994)*, 5 g/cm³ (Scott et Mercer, 1997), 6 g/cm³ (Davies, 1987), 7 g/cm³ (Bjerrum et Bell, 1936)*. D'autres auteurs croient plutôt qu'il serait plus convenable de définir les métaux lourds par leur masse ou leur numéro atomique, ce qui rapprocherait le concept davantage avec celui du tableau périodique des éléments qui est omniprésent dans le domaine de la chimie (Duffus, 2002). Ils ne s'entendent toutefois pas sur l'intervalle à utiliser, autant en fonction de la masse ou du numéro atomique. Dans le premier cas, par exemple, Bennet (1986)* propose de considérer tous les métaux de masse atomique supérieure au sodium (23 g/mol) comme étant des métaux lourds, tandis que Rand (1995)* utilise comme seuil minimal une masse atomique de 40 g/mol. Pour ce qui est du second cas, on retrouve dans la littérature des définitions qui considèrent un numéro atomique minimal de 20 (Phipps, 1981; Venugopal et Luckey, 1975)*, 21 (Lyman, 1995)* et 22 (Burrell, 1974)*. Il n'existe donc pas, à ce jour, d'interprétation officielle concernant le terme « métaux lourds ». Par conséquent, le présent travaille se contentera de définir les métaux lourds, de façon générale, comme étant l'ensemble des métaux et

_

^{*} Cités par Duffus (2002).

métalloïdes qui présentent des propriétés toxiques envers les êtres vivants lorsqu'ils sont présents en concentration excessive. Parmi ces éléments, le cadmium, le chrome, le cuivre, le nickel, le plomb et le zinc ont été étudiés. Les informations relatives à chacun de ces composés proviennent de l'Agency for Toxic Substances & Disease Registry (2001), du CRC Handbook of Chemistry and Physics (Lide, 2008) et de Hetherington et al. (2008).

Le **cadmium** (Cd), de numéro atomique 48 et de masse atomique 112.4 g/mol, est un élément chimique qui a été découvert en 1817 par le chimiste allemand Friedrich Stromeyer. On le retrouve dans la croûte terrestre combiné avec de l'oxygène, du soufre ou du chlore. Il est extrait comme un sous-produit dans les mines de zinc. En 2005, 18 500 tonnes de cadmium ont été produites dans le monde, principalement en Chine, en Corée du Sud, au Japon et au Canada. Environ 80% de son utilisation réside dans la fabrication de piles nickel-cadmium. On s'en sert également comme pigment de couleur, comme stabilisant dans la production de plastiques ainsi que dans le domaine de la galvanoplastie. L'exposition au cadmium provient de la proximité d'une manufacture de piles, de la fumée de cigarettes, de l'eau contaminée et de la consommation de fruits de mer. L'ingestion de nourriture ou d'eau contaminée peut causer des douleurs à l'estomac, des vomissements et de la diarrhée. À long terme, une personne en contact même avec de faibles concentrations de cadmium pourrait développer des problèmes aux reins, aux poumons, au foie et aux os.

Le **chrome** (Cr) porte le numéro atomique 24 et pèse 52.0 g/mol. Il a été isolé pour la première fois par le français Louis Nicolas Vauquelin en 1797, mais son utilisation remonte à 3000 ans avant Jésus-Christ. En 2005, 18.9 millions de tonnes de chrome ont été produites, dont 77% uniquement par l'Afrique du Sud, le Kazakhstan et l'Inde, où il est extrait sous forme de chromite (FeCr₂O₄). Bien qu'il soit principalement utilisé pour la fabrication d'acier inoxydable, on s'en sert aussi pour la galvanoplastie, pour le traitement du bois, pour le tannage du cuir ainsi que comme pigment de couleur. Une personne peut être contaminée au chrome si elle consomme de l'eau ou de la nourriture qui en contient, s'il respire l'air qui se trouve dans un milieu où le chrome est présent, s'il fume du tabac ou s'il travaille dans une aciérie ou dans une usine de textiles. En quantité trace et sous sa forme trivalente, il est un nutriment essentiel à l'organisme car il joue un rôle dans le

métabolisme du glucose. Sa carence peut entraîner le diabète de type 2 ainsi que des défaillances cardiaques. Consommer une grande quantité de chrome, particulièrement sous sa forme hexavalente, peut cependant causer des troubles gastriques, des ulcères à l'estomac, des convulsions, des problèmes aux reins et au foie, voire même la mort. L'inhalation de cet élément cause des irritations et des ulcères dans les voies nasales ainsi que le cancer du poumon. Enfin, certaines personnes peuvent avoir des ulcères sur la peau, des rougeurs et même de l'enflure lorsque leur peau entre en contact avec du chrome.

Le cuivre (Cu) est l'élément chimique de numéro atomique 29 ayant une masse atomique de 63.5 g/mol. Sa découverte remonte à plus de 9000 ans avant Jésus-Christ. Les principaux pays producteurs de cuivre sont le Chili, les États-Unis, l'Indonésie et le Pérou qui comptent pour 57% des 15 millions de tonnes extraites en 2005, principalement sous forme de chalcopyrite (CuFeS₂). Il est surtout utilisé pour concevoir des équipements où la conductibilité électrique est importante (fils électriques, électroaimants, circuits intégrés, etc.). On s'en sert également dans la construction pour la plomberie et les toitures. Enfin, il existe également plusieurs alliages fait à partir du cuivre, tels que le bronze (cuivre-étain) et le laiton (cuivre-zinc). Le cuivre est un oligo-élément essentiel pour plusieurs enzymes ainsi que pour la formation de collagène et des neurotransmetteurs. Il est présent dans l'air à proximité des usines qui traitent le minerai et il peut occasionner de l'irritation au nez et à la gorge. On le retrouve dans plusieurs aliments tels que les huîtres, les légumes et le blé entier, ainsi que dans l'eau de robinet où les conduites sont faites en cuivre en raison de la corrosion. Ingérer une grande quantité de cuivre peut causer de la nausée, des vomissements, de la diarrhée, et à plus grande dose, des dommages aux reins et au foie pouvant entraîner la mort.

Le **nickel** (Ni) vient tout juste avant le cuivre dans le tableau périodique, avec son numéro atomique 28 et sa masse atomique de 58.7 g/mol. Bien qu'il soit utilisé depuis plus de 2000 ans, ce n'est qu'en 1751 que le baron Axel Fredrik Cronstedt parvint à l'isoler. La Russie, le Canada, l'Australie, l'Indonésie et la Nouvelle-Calédonie ont extrait 65% des 1.449 millions de tonnes extraites dans le monde en 2005. Dans la croûte terrestre, on le retrouve généralement combiné avec un mélange de soufre et de fer. Il est principalement utilisé

pour faire des alliages, tels que l'acier inoxydable. On s'en sert également pour la fabrication de piles rechargeables nickel-cadmium et dans la galvanoplastie. Chez l'homme, il joue un rôle biologique auprès de nombreuses enzymes, ce qui le rend essentiel en très petite quantité, mais toxique en excès. La principale source d'exposition au nickel provient de l'ingestion de chocolat et de gras, mais aussi de légumes dont le sol où il a été cultivé en est contaminé. Une surconsommation de nickel peut causer des douleurs à l'estomac ainsi que des troubles sanguins et rénaux. Le travail dans une usine de transformation du nickel et la fumée de cigarettes sont des environnements favorables à l'entrée de ce polluant dans les voies nasales, ce qui peut entraîner des crises d'asthme, des bronchites chroniques et des troubles pulmonaires pouvant mener au cancer. Les réactions allergiques de la peau demeurent l'inconvénient le plus répertorié, puisque près d'une personne sur cinq en est affectée. Le contact a généralement lieu avec des bijoux et des ceintures et les symptômes se limitent à des éruptions cutanées.

Le **plomb** (Pb) possède le numéro atomique 82 et pèse 207.2 g/mol. Il est connu de l'homme depuis plusieurs milliers d'années, étant utilisé durant l'Âge du Bronze. On en extrait maintenant 3.3 millions de tonnes par année (2005), principalement en Chine (31%) et en Australie (23%). Son principal minerai, la galène (PbS), se trouve généralement à même les gisements de zinc, de cuivre et d'argent. Durant longtemps, le plomb a été utilisé pour construire des conduites d'aqueduc, comme additif dans l'essence et comme pigment de couleur. Des contraintes environnementales ont grandement diminué ces utilisations nocives au cours des dernières décennies. De nos jours, il est surtout utilisé dans la conception de batteries de voitures, de munitions, de produits chimiques et d'alliages. Il n'a aucun rôle biologique essentiel dans le corps humain, c'est donc dire qu'il n'apporte que des ennuis lorsque respiré ou avalé. Les principales sources de consommation sont les conduites d'approvisionnement en eau dont les parois ou les soudures sont faites en plomb. La fabrication de vitraux, les usines de transformation du plomb et la peinture contenant du plomb sont les principales sources de contamination par la voie des airs. Une intoxication au plomb est couramment appelée saturnisme. Il est nocif pour tous les organes du corps, mais il atteint plus particulièrement le système nerveux. Il entraîne également des troubles de synthèse de l'hémoglobine, de l'anémie, de la haute pression, de l'infertilité, des dommages aux os, aux reins et au cerveau et il est potentiellement mortel. Chez les femmes enceintes, une exposition à de grandes quantités de plomb peut entraîner une fausse couche.

Le zinc (Zn) est l'élément numéro 30 du tableau périodique et sa masse est de 65.4 g/mol. Bien que son minerai ait été utilisé durant l'antiquité, ce n'est qu'au milieu du XVIIIe siècle qu'il a été isolé sous sa forme métallique, de façon simultanée par le chimiste suédois Anton von Swab et son homologue allemand Andreas Sigismund Marggraf. La Chine, l'Australie et le Pérou comptent pour 50% des 10 millions de tonnes extraites en 2005. On le retrouve dans la croûte terrestre sous forme de sulfure. Il est principalement utilisé dans la fabrication d'acier galvanisé et d'alliages, tel que le laiton. Il s'agit d'un oligo-élément essentiel à l'être humain car on le retrouve dans plusieurs enzymes responsables notamment de la reproduction cellulaire, du système immunitaire et de la guérison de diverses blessures. Les principales sources de contamination sont l'eau et les boissons conservées dans des contenants métalliques ainsi que le travail dans les industries manufacturières où le zinc fait partie du procédé. La consommation de grandes quantités de zinc entraîne des crampes à l'estomac, des nausées et des vomissements, alors qu'une très grande quantité peut provoquer des troubles du pancréas, une dysfonction du métabolisme des protéines et de l'artériosclérose. À long terme, il peut causer de l'anémie et une diminution du cholestérol. La respiration de poussières de zinc provoque la fièvre des métaux, une maladie dont les symptômes sont semblables à ceux de la grippe. Au contact de la peau, on observe des rougeurs et de l'irritation chez certaines personnes.

Traitement des métaux lourds

De nos jours, le traitement des métaux lourds dans les stations d'épuration se fait principalement par voie chimique, c'est-à-dire par précipitation, coagulation-floculation, ou échange d'ions, ainsi que par voie physique, avec l'utilisation d'une membrane filtrante ou par un phénomène d'adsorption (Buttiglieri, 2008).

Précipitation

Les principaux agents précipitant utilisés sont la soude caustique (hydroxyde de sodium, NaOH) et la chaux vive (oxyde de calcium, CaO), cette dernière réagissant avec l'eau pour

former de la chaux éteinte (hydroxyde de calcium, Ca(OH)₂). Ces ajouts permettent d'augmenter le pH de l'eau, grâce aux ions hydroxydes, pour atteindre les valeurs auxquelles les métaux sont le moins solubles. En effet, les métaux ont tendance à s'associer avec l'ion hydroxyde pour former un précipité qui est ensuite soutiré en même temps que la boue. Toutefois, les valeurs optimales de pH pour favoriser la précipitation diffèrent d'un métal à l'autre, ce qui empêche d'obtenir un enlèvement optimal pour tous les métaux lourds présents dans l'eau (Figure 2). De plus, certains hydroxydes métalliques ont la propriété d'être ampholytes, c'est-à-dire qu'ils peuvent agir comme un acide ou une base, dépendamment du pH. Ces composés sont donc solubles à pH faible et à pH élevé et, par conséquent, ne forment qu'un précipité uniquement lorsque le pH se trouve dans un intervalle particulier. Cette pratique peut être utilisée avantageusement dans les petites stations, notamment celles étant conçues spécifiquement par une entreprise dont les eaux à traiter renferment une grande concentration de métaux. Pour les stations municipales, particulièrement en présence d'un réseau unitaire où l'eau usée provient à la fois de la pluie, de la fonte des neiges et d'un mélange d'eaux usées domestiques et industrielles, la dilution joue un rôle tel qu'il est impensable d'utiliser cette méthode à bon escient.

Une autre méthode consiste à ajouter un composé sulfureux tel que du sulfure de sodium (Na₂S), de l'hydrosulfure de sodium (NaHS), du sulfure de fer (FeS) ou du sulfure de calcium (CaS) afin de former des sulfures métalliques qui sont très peu solubles (Bhattacharyya et al., 1979). Cette technique offre certains avantages par rapport aux hydroxydes. Tout d'abord, les sulfures métalliques sont nettement moins solubles que les hydroxydes métalliques (Figure 2), ce qui permet d'obtenir un meilleur taux d'enlèvement. De plus, cet enlèvement est efficace à tous les niveaux de pH puisque les sulfures métalliques ne sont pas ampholytes et, par conséquent, les risques de solubilisation en cas de variation de pH ainsi que dans les boues résultantes sont faibles (Peters et Ferg, 1987). Il faut toutefois noter certains inconvénients relativement à cette pratique. En effet, des émissions de sulfure d'hydrogène (H₂S) hautement toxiques pourraient mettre en péril la santé des travailleurs sur place (Peters et Ferg, 1987). Qui plus est, cette méthode ne permet pas de traiter adéquatement certains métaux lourds comme le chrome et le manganèse sans l'utilisation d'un prétraitement, ce qui a pour effet de complexifier le procédé et

d'augmenter les coûts en capital et les coûts opératoires. Enfin, les boues contenant des sulfures métalliques sont considérés comme toxiques et doivent être gérées adéquatement, ce qui occasionne d'autres coûts supplémentaires (EPA, 2002).

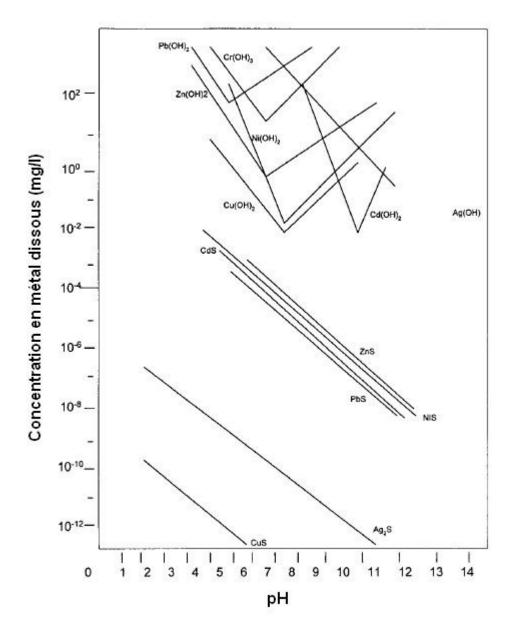


Figure 2. Solubilité des métaux lourds sous forme d'hydroxyde et de sulfure en fonction du pH (adapté de Crear (2001)).

Pour faciliter la sédimentation, il est également possible d'utiliser un polymère organique qui permet aux particules de coaguler entre elles et de former des flocs. D'autres agents coagulants, tels que les sels d'aluminium (AlCl₃) et de fer (FeCl₃), peuvent également se

lier avec les complexes solides-métaux et ainsi former des flocs de plus en plus gros (Ayres et al., 1994). Cette technique peut être utilisée suite à l'ajout d'un précipitant afin de maximiser la présence sous forme particulaire des métaux lourds. Certes, cette méthode améliore la sédimentation des métaux lourds, mais en revanche, on y observe une augmentation de la quantité de boues à traiter en plus d'une augmentation des coûts de traitement suite à l'utilisation des agents coagulants.

Échange d'ions

Il existe également une technique d'échange d'ions afin de traiter les métaux lourds en solution. Celle-ci se fait à l'aide d'un échangeur d'ion, généralement une substance insoluble, ayant la capacité de fixer les métaux lourds à sa surface en larguant un proton chimiquement équivalent sans qu'il y ait d'altération structurelle (Buttiglieri, 2008). Il est ensuite possible de récupérer les métaux par élution à l'aide d'un solvant tel qu'une solution d'acide chlorhydrique (HCl). Les échangeurs d'ions utilisés sont des zéolithes à la fois naturelles (clinoptilolite) ou synthétiques (NaP1) (Alvarez-Ayuso et al., 2003) de même que des résines : Amberlite IR-120 et Dowex 2-X4 (Sapari et al., 1996), Amberlite IRN77 et Diaion SKN1 (Rengaraj et al., 2001), Lewatit TP 207 et Chelex-100 (Gode et Pehlivan, 2003), etc. Contrairement à la précipitation et à la coagulation-floculation, les échangeurs d'ions permettent de traiter des affluents dont la concentration en métaux lourds est plus faible, de l'ordre de quelques mg/l. De plus, ils n'entrainent pas d'augmentation des boues résiduelles. Toutefois, ils sont surtout efficace en milieu acide et lorsqu'il n'y a que peu de matières en suspension. Ils ne permettent pas non plus de traiter tous les métaux lourds. Ces inconvénients font en sorte que la technique est plus adaptée pour le traitement des eaux industrielles que pour les stations d'épuration municipales (Kurniawan et al., 2006).

Adsorption

L'adsorption est de plus en plus étudiée dans le domaine car il s'agit d'une technique peu coûteuse permettant d'obtenir des résultats concluants. Il s'agit d'un phénomène de surface au cours duquel une substance dissoute se fixe à une matière solide (adsorbant) par un lien chimique ou physique. Des chercheurs ont identifié plusieurs substances à la fois

abordables, banales et ubiquistes pouvant servir d'adsorbants, tels que les cendres volantes (Gupta et Ali, 2000), les résidus de thé (Amarasinghe et Williams, 2007), la sciure de bois (Sciban et al., 2007), la poussière de tabac (Qi et Aldrich, 2008) et différents types de charbon actif (Pesavento et al., 2003). Toutefois, leur application n'est pas spécifique aux métaux lourds, c'est donc dire que les sites d'adsorption peuvent être utilisés par les autres polluants présents dans les eaux usées et ainsi diminuer l'efficacité de l'enlèvement des métaux lourds.

Traitement membranaire

Les membranes filtrantes ont la capacité d'éliminer à la fois les matières en suspension, les composés organiques et les composés inorganiques, tels que les métaux lourds. Il existe plusieurs types de traitements par membranes comme l'ultrafiltration, la nanofiltration et l'osmose inverse, le choix étant fait en fonction de la grosseur des particules à soutirer. Les trois processus nécessitent l'application d'une pression afin de permettre aux eaux usées et aux particules de dimension inférieure aux pores de la membrane de la franchir. Une compilation de plusieurs études effectuée par Kurniawan et al. (2006) permet de constater que plus de 94% des métaux lourds solubles peuvent être soutirés des eaux usées dont les concentrations initiales en métaux lourds varient entre 10 mg/l et 2000 mg/l en utilisant l'une des trois techniques de filtration par membranes. Ils notent toutefois que les coûts opérationnels peuvent être élevés en raison de l'encrassement des membranes et de l'énergie requise pour augmenter la pression.

Buttiglieri (2008) rapporte que dans les faits, très peu d'études ont été entreprises sur l'enlèvement des métaux lourds dans les stations d'épuration à des concentrations inférieures à 1 mg/l ainsi que sur l'adsorption des métaux lourds sur la boue sans l'utilisation d'un médium externe pour favoriser l'enlèvement. Une étude de Fatone et al. (2005) sur le traitement d'une eau domestique à faible charge par un processus de cycles alternatifs avec membrane submergée a permis de mesurer la capacité d'enlèvement de certains micropolluants dont plusieurs métaux lourds (Tableau 2). Les auteurs concluent que les pourcentages élevés d'enlèvement sont dus à la capacité de la membrane à produire un perméat dépourvu de solides en suspension sur lesquels les métaux ont été adsorbés.

Tableau 2. Enlèvement des métaux dans un bioréacteur à membranes (adapté de Fatone et al. (2005)).

Métaux	Entrée (µg/l)	Sortie (µg/l)	Enlèvement (%)
Aluminium (Al)	1592	< 50	> 96.9
Arsenic (As)	2	0.7	65.0
Cadmium (Cd)	0.5	< 0.25	> 50
Chrome (Cr)	18.5	4.7	74.6
Cuivre (Cu)	53.9	2.2	95.9
Fer (Fe)	1766	< 50	> 97.2
Mercure (Hg)	7.95	0.5	93.7
Nickel (Ni)	8.65	1.8	79.2
Plomb (Pb)	9.6	2.5	74.0
Zinc (Zn)	461	< 50	> 90.2

1.3.3 Normes et législations

De plus en plus dans le monde, les différents paliers gouvernementaux élaborent des politiques visant à démontrer leurs engagements à l'égard de la protection et de la gestion des cours d'eaux, tel est le cas de la Politique Nationale de l'Eau établit au Québec en 2002, du Canada Water Act (1985), du Clean Water Act aux États-Unis datant de 1972 et de la Directive Cadre sur l'Eau (Water Framework Directive (WFD)) européenne adoptée en l'an 2000. Les organisations gouvernementales ont également conçu une liste de substances considérées comme étant toxiques. Sur celle du Canada, mentionnée dans la Loi Canadienne de Protection de l'Environnement, on retrouve entre autres le plomb ainsi que plusieurs composés à base de cadmium, de chrome, de cuivre, de nickel et de zinc (Environnement Canada, 1999). D'ailleurs, le Canada est devenu en 2008 le premier pays à inscrire le Bisphénol A sur sa liste de substances toxiques (Shugart et Rosenberg, 2008). Dans le cas du Québec, bien qu'une telle liste ne fasse pas partie intégrante de la Politique Nationale de l'Eau, l'intérêt du gouvernement envers la diminution des rejets toxiques y est clairement démontré (MDDEP, 2002) :

Depuis 1978, les efforts entrepris pour l'élimination des rejets industriels, dans le cadre des programmes d'assainissement des eaux usées, des programmes

Canada-Québec et des resserrements importants de réglementation sont probants mais demeurent insuffisants. Il est donc nécessaire de poursuivre les interventions de dépollution entreprises dans le secteur industriel. À ce chapitre le traitement des eaux usées, la réduction à la source et la prévention sont les meilleurs moyens à privilégier. En 1988, le gouvernement a mis en place le Programme de réduction des rejets industriels qui repose sur un système d'attestation d'assainissement. Ce programme a pour objectif de réduire progressivement les rejets de contaminants engendrés par l'activité industrielle, particulièrement les substances toxiques. Il se caractérise par des interventions intégrées touchant la réduction des rejets dans l'eau, l'air et les sols. Le niveau de réduction visé est établi en fonction de la capacité de support des milieux récepteurs, notamment celle des milieux aquatiques. Les interventions comprennent des mesures de prévention de la pollution (réduction des rejets à la source par des modifications des procédés, des changements de matières premières, ou autres) et des mesures d'assainissement. (...) Le gouvernement déterminera des exigences de rejet pour certains paramètres toxiques afin de réduire la toxicité des effluents des stations d'épuration. (...) Il favorisera, par ses programmes d'aide financière, les interventions à la source visant à réduire les rejets de matières toxiques dans les réseaux d'égouts. Il renforcera également l'application des règlements municipaux qui ont été adoptés dans ce domaine. Toutes ces mesures tendent à réduire l'impact des matières toxiques dans l'eau, dans la chaîne alimentaire et, par conséquent, chez l'être humain.

Pour sa part, l'agence de protection environnementale des États-Unis est responsable d'une liste de 126 polluants prioritaires dont font partie tous les métaux lourds de cette étude (EPA, 2001). Enfin, on retrouve dans la liste de 33 polluants prioritaires de la Directive Cadre sur l'Eau le nickel, le plomb et le cadmium, ce dernier étant même considéré parmi les 11 substances prioritaires dangereuses (Decision No 2455/2001/EC, 2001). Dans le cas de l'Europe, l'objectif est de réduire de façon progressive d'ici 2020 toutes formes de rejets de ces 33 polluants. Pour ce qui est des 11 polluants dangereux, l'objectif n'est rien de moins que l'élimination des rejets au cours de la même période. C'est ainsi que les notions de contrôle à la source et de substitution par des composés chimiques moins nocifs deviennent particulièrement significatives. Bien que les substances répertoriées sur les listes canadienne, américaine et européenne soient différentes, l'idée de base demeure la même, c'est-à-dire protéger l'environnement.

Il existe des normes partout à travers le monde en ce qui concerne les rejets de métaux lourds dans l'environnement. Au Québec, la Directive 019 concernant l'industrie minière contient les normes à respecter pour la qualité des effluents des nouveaux projets miniers

(MDDEP, 2005). Le Tableau 3 résume les normes qui s'appliquent à 4 des 6 métaux étudiés (tous sauf le cadmium et le chrome).

Tableau 3. Normes applicables aux rejets de métaux pour des nouveaux projets miniers.

Mátouy	Concentration moyenne acceptable	Concentration maximale acceptable
Métaux (moyenne mensuelle) (mg/L)		(échantillon instantané) (mg/L)
Cuivre	0.3	0.6
Nickel	0.5	1.0
Plomb	0.2	0.4
Zinc	0.5	1.0

La communauté urbaine de Montréal (CUM) dispose d'ailleurs d'un règlement interdisant le rejet dans le réseau d'égout unitaire ou domestique de toute substance dont la concentration est supérieure à celle prescrite dans le Tableau 4 (Communauté Urbaine de Montréal, 1998). Il y est également interdit de déverser une substance dont la masse totale en arsenic, cadmium, chrome, cuivre, nickel, plomb et zinc excède les niveaux suivants :

- 4 kg/j pour un débit inférieur à 180 m³/j;
- 6 kg/j pour un débit se situant entre 180 et 720 m³/j;
- 12 kg/j pour un débit supérieur à 720 m³/j.

Tableau 4. Concentrations maximales tolérées de certains métaux rejetés dans les réseaux d'égouts unitaire et domestique de Montréal.

Métaux	Concentration maximale (mg/L)
Cadmium	2.0
Chrome	5.0
Cuivre	5.0
Nickel	5.0
Plomb	2.0
Zinc	10.0

Enfin, il y est défendu de rejeter un liquide dont la somme des concentrations de ces métaux lourds dépasse 15 mg/L.

Pour ce qui est des réseaux d'égouts pluviaux et des cours d'eau, il est interdit de déverser toute substance présentant des concentrations supérieures à celles indiquées dans le Tableau 5 (Communauté Urbaine de Montréal, 1998). La masse totale de l'arsenic, du cadmium, du chrome, du cuivre, du nickel, du plomb et du zinc ne doit pas dépasser 2 kg/j. Bien sûr, dans tous les cas, il est interdit de diluer un effluent dans le but de satisfaire aux normes.

Tableau 5. Concentrations maximales tolérées de certains métaux rejetés dans les réseaux d'égouts pluviaux et les cours d'eau de Montréal.

Métaux	Concentration maximale (mg/L)
Cadmium	0.1
Chrome	1.0
Cuivre	1.0
Nickel	1.0
Plomb	0.1
Zinc	1.0

Tableau 6. Concentrations maximales de métaux lourds rejetés dans les réseaux d'égouts suggérées par les ministères de l'environnement des provinces du Canada.

suggerees par les illinisteres	de l'environnement des provinces du Canada.
Substances	Concentration totale limite (mg/L)
Composés phénoliques	1.0
Cadmium	0.2
Chrome	0.37
Cuivre	1.0
Nickel	0.55
Plomb	0.1
Zinc	0.03

Une stratégie pancanadienne sur la gestion des effluents d'eaux usées municipales suggère d'interdire le rejet dans un réseau d'égout de métaux lourds dont la concentration dépasse celle mentionnée dans le Tableau 6 (CCME, 2007).

Enfin, pour ce qui est de l'effluent des stations d'épuration municipales, une limite de 20 µg/l s'applique aux composés phénoliques (Environnement Canada, 1976).

1.3.4 Modélisation

De nos jours, la modélisation est partie prenante de la majorité des projets de conception et d'optimisation de stations d'épuration. Le principe est simple : représenter le fonctionnement des différentes unités de traitement (clarificateur primaire, réacteur, décanteur secondaire, digesteur anaérobie, etc.) et des différents processus réactionnels qui s'y produisent à l'aide d'équations mathématiques tout en conservant un équilibre entre simplicité et fidélité. Pour ce faire, il existe plusieurs outils permettant de décrire le comportement des polluants dans une station d'épuration. Une première méthode consiste à implémenter directement du code grâce aux différents langages de programmation tels que C, C++ et Fortran. On retrouve également des logiciels de calcul numérique comme MATLAB® avec lequel on a qu'à développer les équations dynamiques de chaque polluant. Cela permet de faire à la fois de la conception et de l'optimisation via une plateforme de simulation comme Simulink® qui est un module complémentaire de MATLAB®. Enfin, les dernières années ont vu naître plusieurs logiciels de modélisation dédiés explicitement au traitement des eaux usées. Certains d'entre eux fonctionnent entièrement en source fermée, comme STOAT®, alors que d'autres permettent de modifier les modèles présents. C'est le cas de BioWinTM où la matrice de Gujer peut être changée, de GPS-XTM qui permet d'ajuster la matrice de Gujer et quelques modèles et enfin de SIMBA® et WEST® où tous les modèles présents avec le logiciel peuvent être modifiés.

Dans cette étude, la plate-forme WEST® (Wastewater treatment plant Engine for Simulation and Training) a été utilisée (Vanhooren et al., 2003). Il s'agit d'un logiciel présentant un environnement convivial qui permet de se servir de modèles existant ou de créer de nouveaux modèles pour simuler le comportement d'une station d'épuration ou de n'importe quel procédé pouvant être décrit à l'aide d'équations différentielles ordinaires.

L'environnement de travail est composé d'un espace de configuration et d'un espace d'expérimentation. Le premier sert à construire de façon modulaire la station à l'étude en y plaçant des icônes représentant différentes composantes de procédés, telles qu'un réacteur,

un clarificateur et un réservoir. L'utilisateur peut ensuite relier ces éléments entre eux selon le parcours emprunté par l'affluent et choisir pour chacun, parmi une série de modèles, celui qui correspond le plus aux besoins de la simulation. Il est également possible de rajouter des capteurs et des régulateurs de différentes sortes qui permettront lors des simulations de faire du contrôle de procédé. Lorsque le système est complété, le logiciel compile le tout en un fichier qui s'exécute dans l'espace d'expérimentation. À cet endroit, l'utilisateur peut choisir un fichier d'entrée préalablement conçu, définir les valeurs des paramètres opérationnels et cinétiques ainsi que les valeurs initiales des composants dans les différentes unités de traitement. La simulation peut ensuite être lancée et les résultats peuvent être affichés à la fois graphiquement et dans un fichier de sortie. Le logiciel est également pourvu d'outils d'analyse de scénario d'optimisation et de sensibilité. Les modèles sont écrits en MSL (Model Specification Language), un langage de programmation par objet intuitif et facile à maîtriser. Afin d'accéder à la base de modèles, l'utilisateur peut consulter l'onglet « ModelEditor » de la page principale. À cet endroit, il est possible de créer de nouveaux modèles ou de modifier ceux existants, ce qui fait de WEST® un logiciel à source ouverte. Ces modèles représentent en fait la procédure utilisée par le logiciel pour calculer le flux massique et la concentration de chaque composant aux différentes unités de traitement.

La simulation est effectuée selon les règles de la conservation de la masse, suivant l'équation du bilan de matière suivante :

Entrée + Réaction = Sortie + Accumulation
$$(1)$$

Ainsi, pour chaque pas de temps, il est possible de déterminer la variation de la concentration de tous les composants en résolvant l'équation différentielle suivante :

$$\frac{d\left(C(t) \cdot V(t)\right)}{dt} = C_{\text{entrée}}(t) \cdot Q_{\text{entrée}}(t) - C_{\text{sortie}}(t) \cdot Q_{\text{sortie}}(t) + r\left(C(t), p\right) \cdot V(t)$$
 (2)

où : $C(t) \rightarrow Concentration du composant (kg/m³);$

 $V(t) \rightarrow Volume (m^3);$

 $Q(t) \rightarrow D\acute{e}bit (m^3/s);$

 $r(C(t),p) \rightarrow$ Taux de conversion, fonction de la concentration des composants (C(t)) et des valeurs des paramètres (p) $(kg/m^3.s)$.

Le terme de taux de conversion comprend l'ensemble des processus impliquant la production et la consommation du dit composant. Ceux-ci ont été établis au fil du temps par différents chercheurs au point où l'on retrouve maintenant une série de modèles permettant de simuler le comportement des principaux constituants d'une eau usée, nommés « Activated Sludge Models (ASM) » qui proposent des équations cinétiques mettant en relation chacun d'entre eux. Le plus utilisé est à la fois le plus simple, c'est-à-dire l'«Activated Sludge Model No. 1 (ASM1) » (Henze et al., 2000). Il comprend les mécanismes de croissance et de mortalité des bactéries hétérotrophes et autotrophes qui permettent la dégradation biologique de la matière organique et la nitrification.

Composants i	1	2	3	Vitesse de réaction, ρ _j ,
j Processus	X_{B}	S_S	S_{O}	$[\mathrm{ML}^{-3}\mathrm{T}^{-1}]$
1 Croissance	1	$-\frac{1}{Y}$	- 1-Y Y	$\frac{\mu \cdot S_S}{K_S + S_S} \cdot X_B$
2 Mortalité	-1		-1	$b \cdot X_B$
Taux de conversion [ML ⁻³ T ⁻¹]	$r_i = \sum_{i=1}^{n} r_i$	$\sum_{j} r_{ij} = \sum_{j}$	$\sum v_{ij} \rho_j$	Paramètres cinétiques
Paramètre stœchiométrique Rendement de croissance : Y	Biomasse [M(DCO)L ⁻³]	Substrat [M(DCO)L ⁻³]	Oxygène [M(-DCO)L ⁻³]	Taux de croissance spécifique maximal : μ Constante de demi-saturation : K _S Taux de mortalité spécifique : b

Figure 3. Matrice de Gujer pour une croissance bactérienne aérobie (adapté de Henze et al. (2000)).

La matrice de Gujer permet d'afficher de façon pratique ces relations entre les composants et les processus impliqués, de même que les stœchiométries et les cinétiques de réaction qui leurs sont associées. On y retrouve les processus dans la colonne de gauche, les vitesses de réaction dans la colonne de droite et les variables d'état et leur coefficient stœchiométrique au centre. La matrice de Gujer présentée ci-dessus (Figure 3) n'est qu'un aperçu d'un modèle de croissance aérobie. La version complète selon le modèle ASM1 qui a été utilisée dans cette étude peut être consultée dans Henze et al. (2000).

Certains chercheurs ont, par le passé, étudié le comportement de micropolluants dans des stations d'épuration. Différents modèles stochastiques et mécanistiques ont ainsi été développés afin d'y prédire l'enlèvement de micropolluants. Le modèle SimpleTreat (Struijs et al., 1991) décrit la biodégradation de micropolluants solubles avec une réaction de premier ordre. Le modèle WW-TREAT (Cowan et al., 1993) propose en plus de considérer la biodégradation des micropolluants lorsqu'ils sont sorbés, mais toujours avec une réaction de premier ordre. Les cinétiques proposées ne tiennent donc pas compte des variations de concentration de la biomasse active pour la biodégradation. Ces deux modèles se limitent au régime permanent, par conséquent, ils ne peuvent être utilisés pour prédire le comportement de micropolluants dans des conditions dynamiques.

Il existe toutefois des modèles permettant de décrire la dynamique des micropolluants dans les stations d'épuration. Par exemple, le modèle TOXCHEM (Melcer et al., 1994) décrit la biodégradation comme une réaction de pseudo-premier ordre proportionnelle à la concentration de micropolluants solubles et de matières volatiles en suspension. Plus récemment, au cours du projet européen POSEIDON (Ternes et al., 2004) sur l'enlèvement de produits pharmaceutiques des eaux usées, une cinétique semblable a été utilisée, mais celle-ci considère l'ensemble des matières en suspension plutôt que seulement les matières volatiles en suspension. Enfin, le modèle de Govind et al. (1991) considère seulement les bactéries spécifiques capables de dégrader le micropolluant étudié. Cette biomasse dite active est estimée grâce à l'ajout d'un paramètre de rendement de croissance. Tous ces modèles supposent que la sorption est instantanée, par conséquent, ils considèrent que la concentration de polluants sous forme soluble et sorbée est toujours à l'équilibre. Le

modèle TOXCHEM a été utilisé par Monteith et al. (1993) afin de prédire le comportement des métaux lourds dans une station d'épuration. Le modèle tel que formulé n'a toutefois pas été en mesure de bien représenter les variations de la concentration de métaux lourds à l'affluent.

1.4 Objectifs

L'objectif général de ces travaux est de concevoir un modèle permettant de décrire efficacement le comportement d'un composé xénobiotique dans une usine pilote et de plusieurs métaux lourds dans une station d'épuration. La première partie du travail concerne l'étude du Bisphénol A dans une usine pilote à Copenhague, au Danemark, tandis que pour la seconde partie, on s'intéresse plutôt au comportement des métaux lourds dans la station de Norwich, au Royaume-Uni. Le modèle développé doit être capable de bien représenter la dynamique observée de ces polluants lors de l'expérimentation.

CHAPITRE II

MATÉRIEL ET MÉTHODES

2.1 Étude de cas : Bisphénol A

2.1.1 Présentation de la STEP de Copenhague

Cette partie de l'étude se base sur des expériences ayant été réalisées dans une usine pilote (Figure 4) adjacente à la station d'épuration Lynetten, à Copenhague au Danemark. L'usine pilote consiste en un réacteur anaérobie de 1.65 m³ et deux réacteurs aérobie/anoxie de 5 m³ chacun fonctionnant en alternance selon le principe BiodeniphoTM, tel que représenté à la Figure 5. Il s'agit d'un procédé permettant l'enlèvement de la matière organique, de l'azote ammoniacal et du phosphore en alternant l'aération et le sens du débit dans les réacteurs anoxie/aérobie. On y retrouve également un décanteur secondaire dont les boues sont complètement recirculées puisque le soutirage des boues s'effectue à même les réacteurs. On dénombre environ 300 usines fonctionnant sous ce principe dans le monde. L'affluent de l'usine pilote provient de l'affluent prétraité de la STEP selon un débit constant.

Figure 4. Réacteurs anaérobie (gris) et aérobie/anoxie (bleu) de l'usine pilote de la station Lynetten.

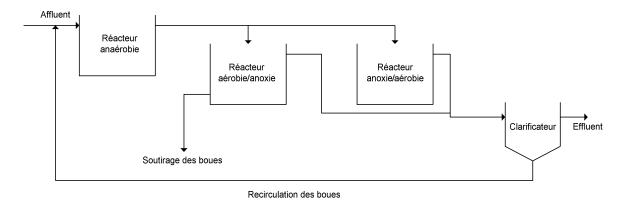


Figure 5. Schéma de l'usine pilote fonctionnant selon le principe Biodenipho™.

2.1.2 Échantillonnage

Les données utilisées dans cette étude proviennent d'une campagne d'échantillonnage dont les résultats et l'analyse sont décrits plus en détails dans Press-Kristensen (2007). Plusieurs expériences ont été réalisées à l'aide de cette usine pilote avec entre autres le Nonylphénol et le Bisphenol A, mais seules celles concernant ce dernier ont été étudiées par le présent auteur, en collaboration avec Erik Lindblom, du Technical University of Denmark (Lindblom, 2009). Les données utilisées pour ce travail ont été recueillies en trois étapes, soit à l'hiver 2005, à l'été 2005 et à l'automne 2006 et sont présentées à l'Annexe A.

2.2 Étude de cas : Métaux lourds

2.2.1 Présentation de la STEP de Norwich

La station d'épuration à l'étude est celle du secteur Whitlingham, à Norwich au Royaume-Uni. Elle est communément appelée la « Whitlingham Wastewater Treatment Works ». En 1986, environ 200 000 habitants sont desservis par cette station qui traite quotidiennement 50 000 mètres cube d'eau usée. Elle est composée de deux systèmes en parallèles, soit un traitement par lits bactériens et un traitement par boues activées. La première étape de traitement, qui est commune aux deux sections, est constituée d'un dessableur, d'un tamis et d'un bassin d'orage. Puisqu'aucune donnée n'a été recueillie dans les lits bactériens, seul le système par boues activées a été étudié. La Figure 6 représente un schéma simplifié de

cette section de la station tout en montrant l'emplacement des points d'échantillonnage. De façon plus détaillée, on y retrouve en premier lieu quatre clarificateurs primaires, mais seulement trois d'entre eux étaient en fonction lors de l'échantillonnage. Par la suite, l'affluent circule dans six lignes d'aération parallèles avec un système d'aération traditionnel en plus d'une injection d'oxygène pur via le procédé VITOX, le tout sous forme d'aération étagée, avant d'être acheminé aux quatre décanteurs secondaires. L'affluent traité est ensuite envoyé au milieu récepteur tandis que les boues soutirées sont soit recirculées à l'entrée des lignes d'aération, soit dirigées vers le traitement des boues ou soit accumulées dans le clarificateur primaire inutilisé avant d'être remélangées avec l'affluent à l'entrée des lignes d'aération. Le Tableau 7 réunit l'ensemble des propriétés caractéristiques de chacun de ces éléments.

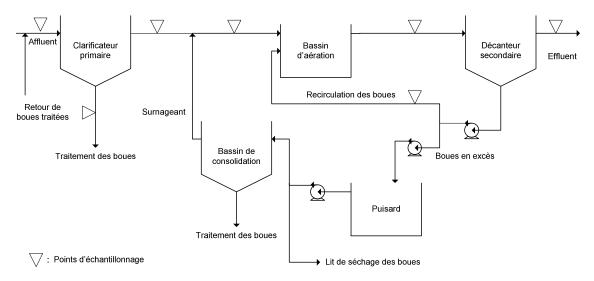


Figure 6. Procédé par boues activées à la station de Norwich (adapté de Lessard et Beck (1993)).

Tableau 7. Propriétés caractéristiques des unités de traitement (adapté de Lessard et Beck (1993)).

Tableau 7. Froprietes caracteristiques des unites de traitement (adapte de Lessard et Deck (1993)).						
Débit de conception	27 000 m³d ⁻¹					
Clarificateurs primaires	4					
Diamètre	30 m					
Profondeur	2.6 m					
Capacité totale	9 080 m³					
Alimentation	Au centre					
Bassins d'aération	6					
Longueur	60 m					
Largeur						
2 bassins	6 m					
4 bassins	12 m					
Profondeur	2.8 m					
Capacité totale	10 400 m ³					
Temps de rétention	9 h					
Type d'aération	Étagée					
Décanteurs secondaires	4					
Diamètre	25.5 m					
Profondeur	2.1 m					
Capacité totale	6 600 m ³					
Alimentation	Au centre					

2.2.2 Échantillonnage

La collecte de données a eu lieu en 1986 sous la direction du Prof. John Lester de l'Imperial College de Londres. Bien que plusieurs années se soient écoulées depuis l'expérimentation, les données sont encore pertinentes car l'étude du comportement des métaux lourds dans ce type de procédé est toujours d'actualité. La prise d'échantillons s'est faite à toutes les trois heures durant dix jours pour la plupart des points d'échantillonnage. Les informations concernant l'objectif initial de l'expérimentation et les tableaux détaillés contenant les données mesurées présentées à l'Annexe B proviennent de Goldstone et al. (1990a, 1990b) et Lessard (1989).

CHAPITRE III

RÉSULTATS ET DISCUSSION

3.1 Étude de cas : Bisphénol A

3.1.1 Modélisation

Tel que décrit au chapitre 1.3.4, le logiciel WEST® permet de schématiser une station d'épuration et d'effectuer des simulations pour observer le comportement des différents polluants d'une eau usée à chaque étape de traitement. Les modèles traditionnels qui sont offerts avec WEST® offrent la possibilité d'étudier les variations de concentration des principaux polluants que l'on retrouve à l'affluent d'une usine de traitement des eaux usées, soit la DCO, l'azote ammoniacal et pour certains d'entre eux le phosphore. Afin de simuler le comportement d'autres composants, il est impératif de modifier les modèles existants afin qu'ils puissent en tenir compte. La première étape consiste donc à définir les polluants à étudier. Puisque certains d'entre eux vont réagir de façon différente dans une station d'épuration réelle, il va de soi qu'il faille déterminer une cinétique de réaction qui reflète le mieux possible le comportement réel du polluant.

Les principaux processus d'enlèvement des polluants solubles dans une station d'épuration sont la volatilisation, la sorption et la biodégradation. En raison de sa faible pression de vapeur de 5.3·10⁻⁹ kPa à 25°C (European Chemicals Bureau, 2003), la volatilisation ne s'impose pas comme une voix de traitement viable pour le Bisphénol A. Il est par contre doté d'un coefficient de partition octanol-eau moyen de 3.4 (European Chemicals Bureau, 2003), ce qui permet de croire que la sorption est une avenue envisageable. Enfin, la littérature abonde d'études sur la biodégradation des composés organiques xénobiotiques, dont le Bisphénol A (Press-Kristensen, 2007; Stavrakakis et al., 2008). En effet, le Bisphénol A ainsi que plusieurs autres composés organiques xénobiotiques ont un comportement similaire dans les stations d'épuration. Il est donc permis de croire qu'ils sont éliminés principalement de deux façons, c'est-à-dire par un phénomène de sorption sur les matières en suspension (X_{TSS}) et par dégradation biologique. Il est également acquis que le Bisphénol A est biodégradable sous conditions aérobies et que la biodégradation anoxie est peu probable (Kjølholt et al., 2003). Par conséquent, le processus réactionnel relié à ce type de croissance a été écarté du modèle, ce qui mathématiquement correspond à l'utilisation d'une valeur nulle pour le facteur de correction de la croissance anoxie des

bactéries spécifiques hétérotrophes ($\eta_{g,XOC}$). La notation XOC sera utilisée dans toutes les équations décrivant le présent modèle puisqu'il peut s'appliquer à l'ensemble des composés organiques xénobiotiques. Il faudrait toutefois déterminer une valeur au paramètre $\eta_{g,XOC}$ dans le cas où la biodégradation anoxie serait considérée.

L'ajout au modèle de base ASM1 est constitué de trois nouveaux processus. Le premier représente la croissance aérobie des bactéries spécifiques $(X_{B,XOC})$ qui utilisent les XOCs solubles (S_{XOC}) comme source de carbone. Tout comme les bactéries hétérotrophes qui croissent en milieu aérobie, elles ont également besoin d'azote ammoniacal (S_{NH}) pour se développer. L'équation 3 montre cette réaction de croissance de la biomasse spécifique, où Y_{XOC} est le rendement de croissance des bactéries spécifiques et $i_{X,B}$ représente la quantité d'azote dans un gramme de DCO dans la biomasse.

$$\frac{1}{Y_{XOC}} \cdot S_{XOC} + \frac{1 - Y_{XOC}}{Y_{XOC}} \cdot S_O + i_{X,B} \cdot S_{NH} \to X_{B,XOC}$$
 (3)

Par le fait même, on assiste également à la mortalité de ces bactéries spécifiques. Les cinétiques représentant ces réactions sont identiques à celles de la croissance aérobie et de la mortalité des bactéries hétérotrophes du modèle ASM1. Le modèle considère toutefois que seules les bactéries spécifiques utilisent les XOCs comme source de carbone et qu'elles n'ont pas la capacité d'utiliser le substrat conventionnel. L'équation 4 représente le taux de conversion de la biomasse spécifique.

$$r(X_{B,XOC}(t)) = X_{B,XOC} \cdot \left(\hat{\mu}_{XOC} \cdot \left(\frac{S_{XOC}}{K_{XOC} + S_{XOC}}\right) \left(\frac{S_O}{K_{O,XOC} + S_O}\right) - b_{XOC}\right)$$
(4)

Ensuite, on retrouve les cinétiques de sorption et de désorption qui permettent aux XOCs de passer du stade soluble au stade particulaire (X_{XOC}) . Ce phénomène peut être décrit par deux équations, celle de sorption étant de pseudo-premier ordre selon un taux de sorption k puisqu'elle dépend à la fois de la concentration en S_{XOC} et en X_{TSS} (Équation 5) et celle de désorption, proportionnelle à la concentration de X_{XOC} , donc de premier ordre, selon un taux k_{des} (Équation 6).

$$S_{XOC} + X_{TSS} \xrightarrow{k} X_{XOC}$$
 (5)

$$X_{XOC} \xrightarrow{k_{des}} S_{XOC} + X_{TSS}$$
 (6)

Le rapport entre les concentrations du composé organique xénobiotique sous forme dissoute et sorbée est appelé coefficient de partition et il est représenté par le symbole K_D . Lorsque le système est à l'équilibre, cela correspond au rapport entre les taux de sorption et de désorption (Équation 7) (Jacobsen et Arvin, 1996).

$$K_{D} = \frac{k}{k_{des}} \tag{7}$$

Avec cette relation, on peut combiner les équations 5 et 6 pour n'en faire qu'une seule représentant à la fois la sorption et la désorption du composé organique xénobiotique (Équation 8). Il s'agit d'une structure semblable à celle permettant de décrire la réaction de précipitation du phosphore dans le modèle ASM2d (Henze et al., 2000). De plus, elle a déjà été utilisée avec des composés organiques xénobiotiques (Lindblom et al., 2006). On peut ensuite, par les équations 9 et 10, décrire le taux de conversion du S_{XOC} et du X_{XOC} .

$$S_{XOC} + X_{TSS} \underset{k}{\overset{k}{\longleftrightarrow}} X_{XOC}$$
 (8)

$$r(S_{XOC}(t)) = -k \cdot \left(S_{XOC}(t) \cdot X_{TSS} - \frac{X_{XOC}(t)}{K_D}\right) - \frac{\mu_{XOC}}{Y_{XOC}} \cdot X_{B,XOC}$$
(9)

$$r(X_{XOC}(t)) = k \cdot \left(S_{XOC}(t) \cdot X_{TSS} - \frac{X_{XOC}(t)}{K_D}\right)$$
 (10)

Le terme μ_{XOC} correspond au taux de croissance des bactéries spécifiques utilisant le XOC comme substrat, il est défini comme suit :

$$\mu_{XOC} = \hat{\mu}_{XOC} \cdot \left(\frac{S_{XOC}}{K_{XOC} + S_{XOC}} \right) \left(\frac{S_O}{K_{O,XOC} + S_O} \right)$$
(11)

En raison de la complexité du principe BiodeniphoTM, notamment en ce qui concerne l'alternance d'aération d'un réacteur à l'autre et le long temps de rétention des boues, ce qui entraîne inévitablement un long temps de calcul pour le logiciel, on pose l'hypothèse que l'usine pilote peut être représentée par un réacteur mélangé. Cela implique de combiner les trois réacteurs en un seul, à volume constant, en ajoutant une variable ($\gamma_{a\acute{e}r}$) représentant le ratio volumique d'aération, c'est-à-dire le pourcentage de temps où la liqueur mixte est aérée, qui remplace la fonction Monod d'aération de la biomasse spécifique (S_O / ($K_{O,XOC}$ + S_O)). En effet, puisque les réacteurs fonctionnent en alternance aérobie/anoxie, l'aération n'est pas continue. Le modèle suggéré ne comptant qu'un seul réacteur, l'ajout de cette variable permet de tenir compte du fait que la biomasse n'est pas aérée en tout temps. La valeur octroyée a été calculée en fonction des informations disponibles sur le procédé BiodeniphoTM lors de l'expérimentation à Lynetten (Lindblom et al., 2009).

La différence entre ces travaux et ceux de Lindblom est que ce dernier a développé le modèle des composés organiques xénobiotiques tandis que dans le cadre du présent travail, la totalité du modèle ASM1 a été ajoutée au modèle de Lindblom (2009). Par conséquent, le présent modèle se veut plus complet, permettant entre autres de prédire différents scénarios tels que des variations au niveau de l'âge des boues et de la demande chimique en oxygène. Par souci de cohérence, certaines cinétiques de réaction du modèle ASM1 ont été modifiées afin d'exclure le terme d'oxygène dissous des équations pour le remplacer par un terme de volume aérobie et de volume anoxie. Ainsi, les fonctions Monod d'aération de la croissance des bactéries hétérotrophes ($S_{\rm O}$ / ($K_{\rm O,H}$ + $S_{\rm O}$)) ont été remplacées par le ratio volumique d'aération, tandis que la fonction d'inhibition par l'oxygène de la croissance anoxie des bactéries hétérotrophes ($K_{\rm O,H}$ / ($K_{\rm O,H}$ + $S_{\rm O}$)) a été remplacée par le ratio volumique anoxie ($\gamma_{\rm ano}$). La valeur de cette variable peut être déduite

en connaissant la valeur du ratio volumique d'aération puisque les réacteurs aérobie/anoxie représentent 86% du volume total alors que la fraction anaérobie représente les 14% restants. La Figure 7 montre le schéma de l'usine pilote dans le logiciel WEST®.

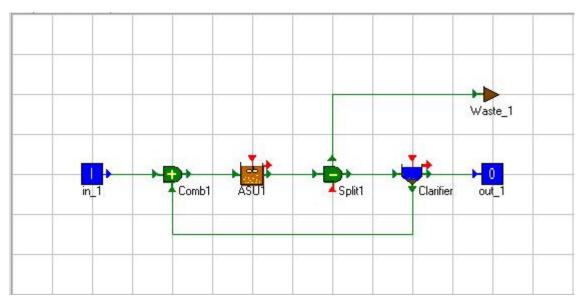


Figure 7. Représentation avec le logiciel WEST® de l'usine pilote de Lynetten.

Les Équations 12, 13 et 14 correspondent au bilan de matière décrivant la variation de la concentration des trois nouveaux composants en fonction du temps dans le réacteur. Ils tiennent compte du fait que le composé organique xénobiotique est uniquement présent sous forme soluble à l'entrée du réacteur, que toutes les matières solides qui sont acheminées au décanteur sont recirculées et que le soutirage des boues a bel et bien lieu à partir du bioréacteur parfaitement mélangé (Lindblom et al., 2009). Ainsi, le modèle de décanteur secondaire utilisé est un « point settler », qui signifie que seule la fraction non-décantable des solides se retrouve à l'effluent et qu'il n'est pas nécessaire de lui fournir des conditions initiales et un volume. Le Tableau 8 présente l'ajout au modèle ASM1 sous forme de matrice de Gujer. Sous cette notation, le terme ($S_O / (K_{O,XOC} + S_O)$) a été remplacé par $\gamma_{aér}$, mais les mêmes résultats seraient obtenus en multipliant $\gamma_{aér}$ par ce terme tout en appliquant une valeur nulle à la constante de demi-saturation de l'oxygène $K_{O,XOC}$.

$$\frac{dS_{XOC}}{dt} = \frac{Q_{entr\acute{e}e}}{V} \cdot \left(S_{XOC,entr\acute{e}e} - S_{XOC}\right) - \frac{\mu_{XOC} \cdot \gamma_{a\acute{e}r}}{Y_{XOC}} \cdot X_{B,XOC} - k \cdot S_{XOC} \cdot X_{TSS} + k_{des} \cdot X_{XOC}$$
(12)

$$\frac{dX_{XOC}}{dt} = k \cdot S_{XOC} \cdot X_{TSS} - \left(k_{des} + \frac{Q_w}{V}\right) \cdot X_{XOC}$$
 (13)

$$\frac{dX_{B,XOC}}{dt} = \left(\mu_{XOC} \cdot \gamma_{a\acute{e}r} - b_{XOC} - \frac{Q_w}{V}\right) \cdot X_{B,XOC} \tag{14}$$

Tableau 8. Représentation matricielle du modèle de croissance spécifique et de sorption/désorption des composés organiques xénobiotiques.

Processus	S_{O}	S_{XOC}	S_{NH}	X_{XOC}	$X_{B,XOC}$	X_{S}	X_{P}	Vitesse du processus g/m³.j
Croissance des bactéries spécifiques	$-\frac{1-Y_{XOC}}{Y_{XOC}}$	$-\frac{1}{Y_{XOC}}$			1			$\gamma_{\text{a\'er}} \cdot \hat{\mu}_{XOC} \cdot \frac{S_{XOC}}{K_{XOC} + S_{XOC}} \cdot X_{B,XOC}$
Mortalité des bactéries spécifiques			-i _{XB}		-1	$1-f_P$	f_P	$b_{XOC} \cdot X_{B,XOC}$
Sorption/ Désorption des XOC		-1		1				$k \cdot \left(s_{xoc} \cdot X_{tss} - \frac{X_{xoc}}{K_{d,xoc}} \right)$

L'utilisation de ce modèle est rendue possible grâce aux travaux d'Erik Lindblom (Lindblom et al., 2009) et à sa méthode de calibration qui permet d'estimer les valeurs des paramètres associés à la cinétique des XOCs. Puisqu'aucune expérience n'a été réalisée dans le but spécifique de déterminer les valeurs réelles de ces paramètres, certains ont dû être approximés afin de permettre aux autres d'être estimés mathématiquement. C'est le cas du rendement de croissance des bactéries spécifiques (Y_{XOC}) pour lequel la valeur typique accordée aux composés organiques a été utilisée, soit $0.67~g_{COD~formé}/g_{COD~oxidé}$ (Henze et al., 2000). Puisque l'expérimentation ne permettait pas de distinguer la croissance de la mortalité des bactéries, une valeur de $0.05~j^{-1}$ a été estimée pour la mortalité des bactéries spécifiques (b_{XOC}) (Lindblom et al., 2009). En convertissant la valeur du coefficient de partition octanol-eau (log K_{ow}) de 3.4 du Bisphénol A, selon l'équation 15 (Karickhoff, 1981), avec une fraction de carbone organique dans les matières en suspension (f_{OC}) estimée à $0.5~g_{Carbone}/g_{SS}$ (Lindblom et al., 2006), on obtiendrait une valeur recommandée de $0.5~m^3/kg$ pour le coefficient de partition (K_D). Les paramètres de sorption et de

désorption choisis, respectivement 0.5 m³/g.j (k) et 1000 j⁻¹ (k_{des}), permettent, par l'équation 7, d'obtenir cette valeur recommandée du coefficient de partition.

$$K_{D} = 0.411 \cdot K_{OW} \cdot f_{OC} \tag{15}$$

Le Tableau 9 présente les paramètres cinétiques et stœchiométriques utilisés lors de la modélisation. Il reste toutefois deux paramètres dont la valeur ne peut être estimée à cette étape, soit le taux de croissance maximal des bactéries spécifiques ($\hat{\mu}_{XOC}$) et la constante de demi-saturation des bactéries spécifiques (K_{XOC}).

En ce qui concerne tous les paramètres du modèle ASM1, les valeurs du COST Simulation Benchmark (Copp, 2002) ont été utilisées puisqu'aucune expérimentation n'a été effectuée pour les déterminer de façon plus précise. Il est toutefois important de noter que ces valeurs de paramètres dites par défaut sont reconnues pour bien représenter le comportement des polluants traditionnels dans une station d'épuration municipale.

Tableau 9. Paramètres cinétiques et stœchiométriques pour le modèle de Bisphénol A.

Paramètres	Définitions	Valeurs
Y _{XOC}	Rendement de croissance des bactéries spécifiques	0.67 g/g
b _{XOC}	Mortalité des bactéries spécifiques	0.05 j ⁻¹
K _{D,XOC}	Coefficient de partition du XOC	0.5 m³/kg
k _{des}	Constante de désorption du XOC	1000 j ⁻¹
k	Constante de sorption du XOC	0.5 m³/g.j

Tel que mentionné dans la section 2.1.2, les données ont été recueillies entre l'hiver 2005 et l'automne 2006 en trois étapes : la concentration de fond, la calibration et la validation. Le Tableau 10 présente les conditions opératoires pour chacune de ces expériences.

Tableau 10. Conditions opératoires de l'usine pilote (adapté de Lindblom et al. (2009)).

Tableau 10. Conditions ope		Expériences					
Paramètres		Concentration	Calibration	Validation			
		de fond					
Débit à l'entrée	Q _{entrée} (m³/j)	10	12	10			
Soutirage des boues	Q _w (m³/j)	0.43	0.23	0.43			
Volume total	V (m³)	11.6	11.6	11.6			
Temps de rétention des boues	SRT (j)	27	50	27			
Ratio aérobie	γ _{aer} (%)	43	39	43			
Ratio anoxie	γ _{ano} (%)	43	47	43			
Température du réacteur	T (°C)	13-16	15-16	19-22			

3.1.2 Concentration de fond

Les premières données, recueillies à l'hiver 2005, servent à représenter l'usine pilote en régime permanent et permettent donc de déterminer la concentration de fond de Bisphénol A à l'entrée et à la sortie, c'est-à-dire la concentration ambiante de Bisphénol A que l'on retrouve dans l'eau usée avant de faire les expériences. Au total, 39 échantillons ont été pris à l'affluent et 19 l'ont été à l'effluent. Le Tableau 11 présente les résultats obtenus lors de cette expérimentation.

Tableau 11. Résultats obtenus pour la concentration de fond en µg BPA/l (adapté de Lindblom et al. (2009)).

	Moyenne	Minimum	Maximum	Écart-type	Médiane
Affluent	8.7	5.5	19	3.2	7.9
Effluent	4.1	1.0	11.1	2.8	3.4

Grâce à ces données, il est maintenant possible de déterminer la valeur des deux derniers paramètres ($\hat{\mu}_{XOC}$ et K_{XOC}) en utilisant une procédure développée et expliquée en détails par Lindblom et al. (2009). Cette procédure, dont l'approche consiste à utiliser les données recueillies en régime stationnaire sur les équations de bilan de matière, permet également de déterminer les concentrations initiales à l'intérieur du réacteur pour les bactéries

spécifiques et le Bisphénol A. Compte tenu que le présent auteur n'a pas participé au développement de cette méthode et que l'objectif de ces travaux n'est pas de valider cette procédure mais plutôt d'en appliquer les résultats obtenus par Lindblom et al. (2009), la démarche mathématique la concernant ne sera pas élaborée davantage. Ainsi, le Tableau 12 présente les valeurs utilisées pour les deux derniers paramètres et les conditions initiales dans le réacteur. En vertu des faibles concentrations de matières en suspension à l'affluent et à l'effluent, respectivement de l'ordre de 100 mg/L et 5 mg/L et considérant que la valeur du coefficient de partition solide/liquide du Bisphénol A indique qu'il est majoritairement présent sous forme soluble, les concentrations particulaires à l'affluent et à l'effluent ont été considérées négligeables. Par conséquent, la valeur initiale à l'intérieur du réacteur pour le Bisphénol A sous forme particulaire est nulle.

Tableau 12. Résultats obtenus avec la procédure de Lindblom et al. (2009).

Paramètres et conditions initiales	Valeur estimée
$\hat{\mu}_{XOC}$ (j ⁻¹)	0.47
K_{XOC} (µg/l)	13
$S^{0}_{XOC} (\mu g/l)$	10
$X^{0}_{B,XOC} (\mu g/l)$	83

3.1.3 Calibration

Lors de l'automne 2006, 10 g/j de Bisphénol A ont été ajoutés de façon continue à l'affluent de l'usine pilote. Au total, 91 échantillons ont été recueillis à la sortie afin d'être analysés pour en déterminer la concentration en BPA. Cette expérimentation dura 46 jours, c'est-à-dire le temps requis pour que les concentrations mesurées à l'effluent soient semblables à la concentration de fond.

Afin de simuler l'ajout de 10 g/j de Bisphénol A dans la configuration WEST® de l'usine pilote, il est nécessaire de créer un fichier d'entrée représentatif de l'affluent. Les travaux de recherche d'Erik Lindblom ont permis de modéliser uniquement l'ajout au modèle ASM1, sans considérer ce dernier. Or, pour la présente étude, il fut décidé de modéliser à la fois le modèle ASM1 et l'ajout permettant de décrire le comportement du Bisphénol A.

Erik Lindblom nous a toutefois permis d'utiliser un vecteur ASM1 représentatif de l'affluent qu'il a lui-même utilisé lors de différents travaux avec cette usine pilote. Il suffit d'y ajouter les trois composantes de l'ajout du modèle (S_{XOC} , X_{XOC} , et $X_{B,XOC}$).

Pour le Bisphénol A soluble, l'ajout de 10 g/j, additionné à la concentration de fond représente une concentration totale de 842 µg/l. Pour ce qui est du Bisphénol A particulaire et des bactéries spécifiques, on considère qu'ils ne sont pas présents à l'entrée (Lindblom et al., 2009).

La première simulation consiste à entrer dans WEST® les conditions opératoires (Tableau 10) et les valeurs des paramètres (Tableau 9 et Tableau 12) déterminées précédemment et à faire tourner le modèle jusqu'à l'obtention d'un régime permanent, soit durant 105 jours. Les concentrations obtenues dans le réacteur pour les variables ASM1 sont ensuite utilisées comme conditions initiales, tandis que les concentrations de Bisphénol A soluble et de bactéries spécifiques sont remplacées par les valeurs présentes dans le Tableau 12. Cela est nécessaire compte tenu que la calibration du modèle est effectuée à partir d'une demande échelon et non à partir d'une série de données. Les concentrations obtenues en régime permanent pour les variables concernant le Bisphénol A ne sont donc pas représentatives de la réalité à l'intérieur du réacteur. En appliquant l'équation 13 en régime permanent $(dX_{XOC}/dt = 0)$, on obtient la concentration initiale de Bisphénol A particulaire avec l'équation 16.

$$X_{XOC} = \frac{k \cdot S_{XOC} \cdot X_{TSS}}{k_{des} + \frac{Q_w}{V}}$$
(16)

La Figure 8 présente les résultats de la simulation en comparaison avec les résultats des analyses des échantillons recueillis.

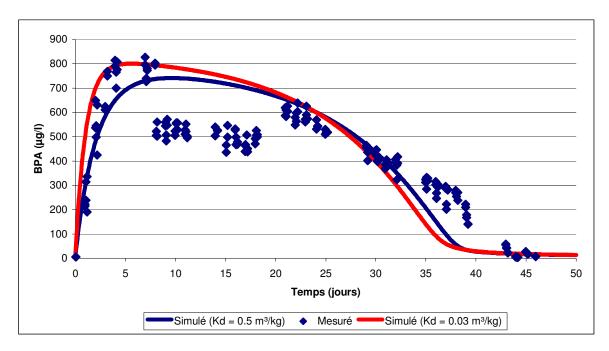


Figure 8. Bisphénol A à la sortie de l'usine pilote selon la procédure de calibration.

Dans le cas des données recueillies, on remarque qu'au cours des sept premiers jours, la concentration de BPA ne fait qu'augmenter, ce qui s'explique par le fait qu'il n'y a pas suffisamment de bactéries spécifiques pour le dégrader. En effet, les valeurs mesurées atteignent 826 µg/l lors du 7^e jour, ce qui correspond presque à la concentration de l'affluent (842 µg/l). La diminution progressive de BPA à l'effluent prévue par le modèle proposé et observée entre les 20^e et 46^e jours est interrompue par deux nuages de données entre les 8^e et 20^e jours. Selon Lindblom et al. (2009), des incertitudes au niveau des observations (procédures d'échantillonnage et d'analyse) ou au niveau des données (configuration de l'usine pilote, équipement de dosage) pourraient en être la cause.

En ce qui concerne les résultats obtenus par les simulations, on constate que le modèle, avec les valeurs des paramètres et des conditions initiales proposées par la procédure de Lindblom et al. (2009), représente bien, dans l'ensemble, le processus d'élimination du Bisphénol A dans le réacteur.

La sous-estimation de la concentration de BPA par le modèle observée entre les 3^e et 7^e jours peut s'expliquer par l'utilisation d'une valeur trop élevée du coefficient de partition. Bien que la valeur utilisée, 0.5 m³/kg, soit la même que celle obtenue par l'équation 15 de

Karickhoff (1981) en utilisant le coefficient de partition octanol-eau recommandé par l'European Chemicals Bureau (2003), 3.4, on retrouve dans la littérature une valeur de coefficient de partition octanol-eau aussi faible que 2.20 (Eadsforth, 1983) avec laquelle on obtiendrait un coefficient de partition de 0.03 m³/kg, dont les résultats sont également présentés dans la Figure 8. Compte tenu de la présence limitée des bactéries spécifiques lors des premiers jours, l'enlèvement est principalement causé par la sorption sur les matières en suspension et en diminuant le coefficient de partition, on augmente la concentration de Bisphénol A à l'effluent durant cette période. Puisqu'aucune donnée sur les matières en suspension n'a été recueillie au cours de l'expérimentation, il est impossible d'affirmer que la valeur du coefficient de partition utilisée représente bien la réalité de l'usine pilote, ce qui n'empêche pas le modèle d'être réaliste et tout à fait plausible. La Figure 9 présente la concentration de bactéries spécifiques au fil du temps prévu par le modèle. Bien que la concentration de Bisphénol A se stabilise autour du 50^e jour, celle des bactéries spécifiques ne se stabilise qu'à partir du 90^e. Il va de soi que l'augmentation rapide de la concentration de bactéries spécifiques se produit au même moment que la diminution rapide de celle du Bisphénol A.

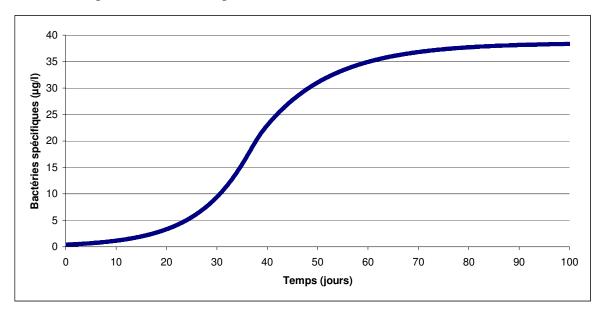


Figure 9. Bactéries spécifiques simulées à la sortie de l'usine pilote.

Puisque le modèle proposé prévoyait une diminution progressive de la concentration de Bisphénol A à l'effluent, il est évident que celui-ci ne réussit pas à bien représenter les deux nuages de données observés. Il parvient toutefois à décrire la diminution progressive qui est

due à la dégradation par les bactéries spécifiques qui ont crû depuis le début de l'expérience. La pente de la courbe est légèrement trop prononcée, ce qui peut s'expliquer par une estimation trop élevée du taux de croissance maximal des bactéries spécifiques. Selon Lindblom et al. (2009), cela s'explique par le fait que, selon la procédure d'estimation des paramètres, la concentration initiale de bactéries spécifiques dans le réacteur obtenue requiert une valeur du taux de croissance maximal des bactéries spécifiques de cette magnitude afin d'atteindre le nouveau régime permanent dans les mêmes délais que lors de l'échantillonnage.

3.1.4 Validation

Au cours du printemps et de l'été 2005, la biomasse dans le réacteur a été pré-adaptée via l'ajout continu de 1 g/j de Bisphénol A durant 60 jours. Par la suite, l'alimentation en BPA a été arrêtée durant une période de 14 jours. Enfin, 10 g/j de BPA ont été ajoutés de façon continue durant 34 jours. Le déroulement de cette expérimentation est illustré dans la Figure 10. Au total, 46 échantillons ont été recueillis à l'effluent afin d'en déterminer les concentrations en BPA.

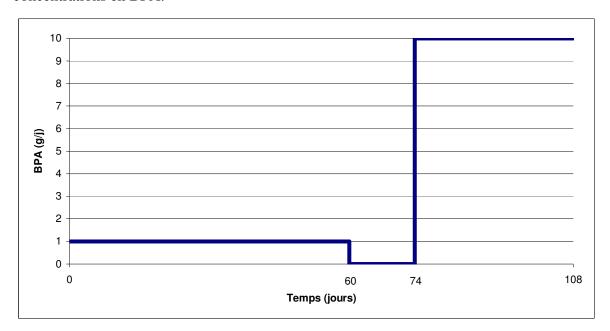


Figure 10. Pré-adaptation de la biomasse pour l'étape de validation.

La simulation dans le logiciel WEST® est effectuée de la même façon que lors de l'étape de calibration. Les conditions opératoires sont celles qui étaient présentes lors de

l'expérience visant à déterminer la concentration de fond, à l'exception de la température des boues qui se situe entre 19 et 22°C (Tableau 10). Pour tenir compte de cette température plus élevée, les paramètres de croissance maximale et de mortalité des bactéries spécifiques, des bactéries hétérotrophes et autotrophes du modèle ASM1 ont été multipliés par un facteur de correction $\theta^{\Delta T}$ où ΔT vaut 5°C. Les valeurs utilisées pour le facteur de correction ont été déduites à partir de Henze et al. (2000) et sont listées dans Benedetti (2006). Pour les bactéries hétérotrophes, la valeur de θ est de 1.072 pour les deux paramètres. Pour les bactéries autotrophes, on utilise une valeur de θ de 1.111 pour le taux de croissance maximal et de 1.116 pour le taux de mortalité. Enfin, pour les bactéries spécifiques, des simulations ont été effectuées autant avec les corrections pour les hétérotrophes que pour les autotrophes.

Pour ce qui est du fichier d'entrée, seul le débit et la concentration en Bisphénol A diffère de la calibration. Pour les 60 premiers jours, la concentration de Bisphénol A est de 109 μg/l. Pour les 14 jours qui suivent, on utilise la concentration de fond, soit 8.7 μg/l. Enfin, pour exprimer la demande échelon, la concentration totale est de 1009 μg/l. La Figure 11 présente les résultats de la validation comparativement aux données mesurées. L'étape de préadaptation n'est pas présentée puisqu'aucune donnée n'a été recueillie durant cette période; le temps 0 correspond donc au moment où l'ajout de 10 g/j a débuté.

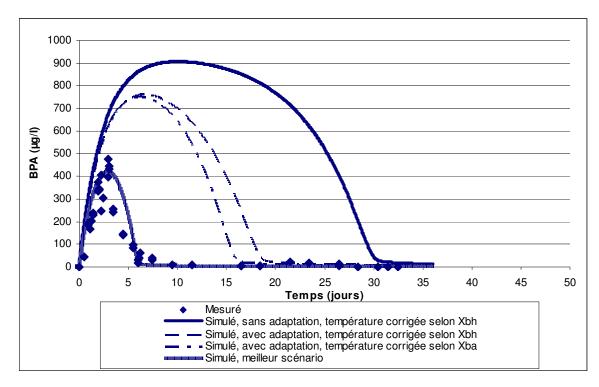


Figure 11. Bisphénol A à la sortie de l'usine pilote selon la procédure de validation.

L'analyse des données recueillies montre que, comparativement à l'étape de calibration, les concentrations de Bisphénol A n'atteignent pas le même niveau que celles de l'affluent. La plus haute valeur mesurée est de 474 µg/l, soit moins de la moitié de l'affluent qui est de 1009 µg/l. L'allure des données représente une cloche typique de ce que l'on observe dans les expériences de demande échelon comparativement aux deux nuages observés lors de l'étape de calibration. De plus, il n'a fallu que onze jours au système pour obtenir un nouvel état stationnaire. Pourtant, la Figure 8 et la Figure 11 présentent toutes les deux un ajout de 10 g/j de Bisphénol A. Par rapport à l'étape de calibration, il est important de noter que le débit de l'affluent, le temps de rétention des boues, la température et le ratio volumique d'aération sont différents (Tableau 10). Ces différentes conditions opératoires et l'état de la biomasse avant les expériences sont les deux facteurs qui expliquent les variations observées. Afin d'évaluer séparément ces différentes influences, une simulation a été effectuée sans utiliser la procédure d'initialisation et elle est représentée par la ligne continue dans la Figure 11. En comparant cette courbe à celle de la Figure 8, on constate que l'augmentation de la température et du ratio volumique d'aération ont eu un impact

significatif sur l'enlèvement du Bisphénol A puisqu'il a fallu moins de temps pour atteindre le régime permanent.

Deux autres simulations ont été effectuées afin d'évaluer l'impact de l'augmentation de la température, mais cette fois en appliquant la procédure d'initialisation. Dans la première, les taux de croissance et de mortalité des bactéries spécifiques ont été corrigés avec un facteur généralement appliqué aux bactéries hétérotrophes. Les résultats de cette simulation sont représentés par la ligne en tirets dans la Figure 11. Une seconde simulation, avec les corrections associées aux bactéries autotrophes permet d'obtenir un résultat encore plus près de la réalité, mais le régime stationnaire n'est atteint qu'au 17^e jour. Celle-ci est représentée par la ligne en tirets-pointillés sur la Figure 11. Enfin, une expérience a été effectuée en considérant que les bactéries spécifiques ne se laissent pas mourir en absence de Bisphénol A. Cette simulation, représentée par les traits en forme de vague dans la Figure 11, a donc été effectuée avec le taux de mortalité des bactéries spécifiques corrigé avec la méthode des bactéries autotrophes mais avec un taux de croissance spécifique de 1.7 j⁻¹, ce qui correspond à une valeur de θ de 1.294.

En somme, la validation du modèle n'a pas permis d'obtenir une simulation permettant de représenter adéquatement les données mesurées, bien que la tendance de la courbe soit semblable à ce qui a été observé. Alors que la période d'adaptation de 60 jours a permis d'engendrer une certaine quantité de bactéries spécifiques, les deux semaines suivantes sans ajout ont fait en sorte que ces organismes n'ont pu demeurer en quantité suffisante pour s'attaquer rapidement à la demande échelon. Il y a donc lieu de croire que le modèle formulé soit trop simple car il limite les bactéries spécifiques à n'utiliser que le Bisphénol A comme substrat. En réalité, ces bactéries sont peut-être aptes à utiliser d'autres sources de carbone pour se nourrir, mais il faudrait effectuer davantage d'expériences afin de confirmer ou d'infirmer cette hypothèse.

3.2 Étude de cas : Métaux lourds

3.2.1 Modélisation

Comme il a été décrit lors de la section 2.1.3, les modèles traditionnels utilisés avec le logiciel WEST® permettent de modéliser l'enlèvement des principaux polluants. Tel que discuté en introduction, la littérature concernant les métaux lourds nous apprend qu'ils ont tendance à former un précipité en présence d'ions hydroxyde (Ayres et al., 1994). Étant donné qu'aucun additif chimique n'est ajouté lors du traitement, et qu'aucun suivi sur le pH n'a été effectué lors de l'échantillonnage, on pose l'hypothèse que ce processus réactionnel est à l'équilibre à l'entrée de la station et qu'aucun hydroxyde métallique ne se forme au cours du traitement. Un phénomène de volatilisation pourrait aussi être à l'origine des variations de concentration en métaux lourds au cours du processus d'épuration, mais cette approche a déjà été étudiée et puisqu'on les retrouve en grande partie dans la boue en fin de traitement, il est permis de considérer cet aspect comme étant négligeable, tel que constaté par Brown et Lester (1979). Enfin, plusieurs auteurs se sont penchés sur un procédé à la fois biochimique et physicochimique, l'adsorption sur la boue, pour expliquer le comportement des métaux lourds (Chipasa, 2003 ; Karvelas et al., 2003). Cela se manifeste par l'obtention d'un équilibre entre l'adsorption du composé dissous sur la surface de l'ensemble des matières solides et la dissolution du complexe boue-métal dans l'eau, où le métal reprend sa forme ionique.

Tout comme dans le cas des composés organiques xénobiotiques, il est possible d'exprimer la sorption sous la forme de deux équations, la première (Équation 17) décrivant le phénomène de sorption de pseudo-premier ordre qui se produit selon un taux de sorption k et la seconde (Équation 18), celui de la désorption de premier ordre, selon un taux $k_{désorption}$. L'équation 7 présentée plus tôt pour décrire le rapport entre les concentrations de composé organique xénobiotique sorbé et dissous s'applique également aux métaux lourds. Enfin, les deux équations précédentes peuvent être combinées afin de n'en faire qu'une seule, l'équation 19.

$$M\acute{e}tal_{Dissous} + X_{TSS} \xrightarrow{k} M\acute{e}tal_{Sorb\acute{e}}$$
 (17)

$$M\acute{e}tal_{Sorb\acute{e}} \stackrel{k_{d\acute{e}sorption}}{\rightarrow} M\acute{e}tal_{Dissous} + X_{TSS}$$
 (18)

$$M\acute{e}tal_{Dissous} + X_{TSS} \overset{k}{\underset{K_{D}}{\longleftrightarrow}} M\acute{e}tal_{Sorb\acute{e}}$$
 (19)

Cette réaction peut ensuite s'écrire de façon mathématique pour décrire la vitesse de réaction de la sorption (Équation 20) et de la désorption (Équation 21) du métal.

$$r(S_{M\acute{e}tal}(t)) = -k \cdot \left(S_{M\acute{e}tal}(t) \cdot X_{TSS} - \frac{X_{M\acute{e}tal}(t)}{K_{D}}\right)$$
(20)

$$r(X_{M\text{\'etal}}(t)) = k \cdot \left(S_{M\text{\'etal}}(t) \cdot X_{TSS} - \frac{X_{M\text{\'etal}}(t)}{K_{D}}\right)$$
(21)

Lorsque cette réaction de sorption/désorption se produit à l'intérieur d'un réacteur dont le volume est constant, l'équation 20 et l'équation 21 peuvent être intégrées à l'équation 2 pour obtenir respectivement l'équation 22 et l'équation 23.

$$\frac{d\left(S_{\text{M\'etal}}(t)\right)}{dt} = \frac{Q(t)}{V} \cdot \left(S_{\text{M\'etal,entr\'ee}}(t) - S_{\text{M\'etal,sortie}}(t)\right) - k \cdot \left(S_{\text{M\'etal}}(t) \cdot X_{\text{TSS}} - \frac{X_{\text{M\'etal}}(t)}{K_{\text{D}}}\right)$$
(22)

$$\frac{d\left(X_{\text{M\'etal}}(t)\right)}{dt} = \frac{Q(t)}{V} \cdot \left(X_{\text{M\'etal,entr\'ee}}(t) - X_{\text{M\'etal,sortie}}(t)\right) + k \cdot \left(S_{\text{M\'etal}}(t) \cdot X_{\text{TSS}} - \frac{X_{\text{M\'etal}}(t)}{K_{D}}\right) \quad (23)$$

Ces équations, sous forme de bilan de masse, s'appliquent aux six métaux à l'étude. Le Tableau 13 montre la représentation sous forme matricielle des douze nouvelles relations qui s'ajoutent au modèle ASM1.

Tableau 13. Représentation matricielle de la sorption/désorption des métaux.

Processus	S_{Cu}	S_{Zn}	S_{Pb}	S_{Cd}	S_{Cr}			X_{Zn}				•	Vitesse du processus g/m³.j
Sorption/ Désorption du cuivre	-1						1						$\mathbf{k}_{Cu} \cdot \left(\mathbf{S}_{Cu} \cdot \mathbf{X}_{TSS} - \frac{\mathbf{X}_{Cu}}{\mathbf{K}_{d,Cu}} \right)$
Sorption/ Désorption du zinc		-1						1					$k_{Zn} \cdot \left(S_{Zn} \cdot X_{TSS} - \frac{X_{Zn}}{K_{d,Zn}}\right)$
Sorption/ Désorption du plomb			-1						1				$k_{Pb} \cdot \left(S_{Pb} \cdot X_{TSS} - \frac{X_{Pb}}{K_{d,Pb}} \right)$
Sorption/ Désorption du cadmium				-1						1			$k_{Cd} \cdot \left(S_{Cd} \cdot X_{TSS} - \frac{X_{Cd}}{K_{d,Cd}} \right)$
Sorption/ Désorption du chrome					-1						1		$k_{Cr} \cdot \left(s_{Cr} \cdot x_{TSS} - \frac{x_{Cr}}{K_{d,Cr}} \right)$
Sorption/ Désorption du nickel						-1						1	$\mathbf{k_{Ni}} \cdot \left(\mathbf{S_{Ni}} \cdot \mathbf{X_{TSS}} - \frac{\mathbf{X_{Ni}}}{\mathbf{K_{d,Ni}}} \right)$

Afin de simplifier l'exercice de modélisation, il est présumé que tout processus réactionnel survient uniquement lorsque l'eau à traiter se situe à l'intérieur du bassin d'aération (lignes d'aération). Il s'agit là d'une méthode utilisée dans la très grande majorité des cas et elle se base sur le fait que l'affluent à traiter passe l'essentiel de son temps de séjour à cet endroit et que les conditions biologiques y sont favorables.

Les trois clarificateurs primaires utilisés le sont de façon parallèle. Il est donc possible de les représenter comme étant une seule unité dont la superficie totale est la somme des trois qui sont en fonction en ajustant uniquement le diamètre pour représenter la capacité totale des clarificateurs. Cela permet de conserver le même taux de débordement et le même temps de rétention hydraulique, qui sont les deux principaux paramètres influençant la sédimentation. Ainsi, la capacité totale du clarificateur primaire unifié est la même que la somme des trois clarificateurs réels. Le modèle choisi pour représenter cette unité de

traitement est celui de Takács et al. (1991), l'un des plus utilisés dans le domaine. Il utilise la vitesse de sédimentation des particules en fonction de leur nature, c'est-à-dire en faible concentration où en flocs selon un bilan de matière unidimensionnel pour chaque couche théorique du clarificateur.

Des données qualitatives et quantitatives ont été recueillies quotidiennement sur les boues soutirées. Le débit de soutirage des boues correspond à la quantité de boues soutirées chaque jour et on le considère comme constant à l'intérieur d'une même journée. En moyenne, cette valeur est de 201.5 m³/j. Cela contraste avec la réalité où le soutirage des boues s'effectue une seule fois par jour plutôt que continuellement.

Les valeurs des paramètres de vitesse de chute théorique ($v_0 = 96 \text{ m/j}$) et pratique ($v_{00} = 80$ m/j) proviennent de Coderre (1999) tandis que celle du paramètre de concentration minimale dans le lit de boue, aussi appelé fraction non-sédimentable ($f_{ns} = 0.0024$) est la valeur par défaut de WEST®. En ce qui concerne les paramètres r_H et r_P, qui gèrent la sédimentation des particules selon qu'elles soient sous forme de flocs (grande concentration) ou lorsqu'elles sédimentent de façon individuelle (faible concentration), leurs valeurs ont été calibrées dans le but d'obtenir un surnageant dont les concentrations en matières en suspension simulées s'approchent le plus possible de celles observées. Ainsi, la valeur du paramètre r_P est fixée à 0.0005 m³/g tandis qu'on pose l'hypothèse que celle de r_H varie selon la concentration de matières en suspension qui entre dans le clarificateur. En conséquence, on obtient des valeurs pour ce paramètre variant entre 0.12 m³/kg et 0.29 m³/kg en fonction de l'écart entre la concentration en matières en suspension à chaque mesure et la moyenne observée sur la durée de l'échantillonnage. La valeur du paramètre varie selon le nombre d'écarts types entre la concentration de matières en suspension et la moyenne observée. En moyenne, la concentration de matières en suspension à l'entrée du clarificateur primaire est de 619 g/m³. Pour chaque valeur inférieure à la moyenne, une même valeur du paramètre r_H a été utilisée. Une valeur différente est par la suite utilisée pour des incréments équivalant à l'écart type qui est de 669 g/m³. Le Tableau 14 présente en détail les valeurs utilisées pour r_H en fonction de l'intervalle des concentrations de matières en suspension. Les modifications apportées à ce paramètre sont nécessaires afin d'avoir un surnageant qui représente le plus fidèlement la réalité, ce qui indique vraisemblablement un problème avec les caractéristiques des matières en suspension que le modèle du clarificateur primaire ne parvient tout simplement pas à représenter. Les grands écarts observés dans la concentration de matières en suspension à l'entrée du clarificateur primaire sont imputables à la recirculation de boues traitées qui sont mélangées à l'affluent après les étapes de traitement préliminaire. La variation des paramètres de sédimentation dans le temps est toutefois nécessaire car le principal facteur influençant le phénomène de sorption est la concentration en matières en suspension. Ainsi, si elles ne sont pas bien représentées, l'étude de la sorption sera inadéquate.

Tableau 14. Valeurs du paramètre r_H selon l'intervalle de concentration des matières en suspension.

Intervalles de concentrations en matières en suspension	Valeurs du paramètre r _H
à l'entrée du clarificateur primaire (g/m³)	(m³/kg)
0 – 619	0.00029
619 – 1288	0.00022
1288 – 1958	0.00018
1958 – 2627	0.00013
2627 et plus	0.00012

Les six lignes d'aération parallèles constituent le cœur biologique de la station. C'est à cet endroit que la matière organique et l'azote ammoniacal sont dégradés par les bactéries. Puisque l'on suppose qu'une même quantité d'eau usée d'une même qualité transite dans chaque ligne d'aération et que ces dernières ont toutes les mêmes conditions d'aération et de qualité de biomasse, il est possible de les combiner en un seul réacteur dont le volume total est la somme des volumes de chaque ligne. Dans ce cas-ci, il est toutefois préférable de séparer ce gros réacteur en plusieurs réacteurs de dimension égale et en série afin de mieux représenter le phénomène d'aération étagée. Puisque les mesures d'oxygène ont été prises au ¾ d'une ligne d'aération, il fut souhaitable de représenter les lignes d'aération par quatre réacteurs en série parfaitement mélangés et utilisés selon le modèle de volume constant. Il est ainsi possible de procéder à des comparaisons de l'oxygène dissous en utilisant ces données mesurées avec celles obtenues par la simulation à l'intérieur du

troisième réacteur de la série. Cette représentation a d'ailleurs été utilisée par Lessard et Beck (1993).

Les réactions ayant lieu dans le réacteur sont décrites dans la matrice de Gujer issue du modèle ASM1 en plus de celles décrites dans le Tableau 13. Bien que certains composants n'aient pas été mesurés lors de l'expérimentation, certaines hypothèses permettent d'en estimer la concentration. Il a donc été convenu de ne pas simplifier le modèle de base, contrairement à l'étude de Lessard et Beck (1993) au cours de laquelle la croissance anoxie des bactéries hétérotrophes (dénitrification) a été laissée de côté, tout comme l'ammonification de l'azote organique soluble et l'hydrolyse de l'azote organique contenue dans la biomasse. Les autres différences entre le modèle ASM1 de cette étude et celui de Lessard et Beck (1993) sont la présence du terme de limitation par l'azote ammoniacal dans la cinétique de croissance aérobie des bactéries hétérotrophes et la limitation par les nitrates dans l'hydrolyse des matières organiques biodégradables particulaires.

Dans le but de comparer les résultats par rapport aux polluants principaux avec ceux de Lessard et Beck (1993), il va de soi qu'il faille utiliser, dans la mesure du possible, les mêmes valeurs de paramètres cinétiques et stœchiométriques, présentés dans le Tableau 15. Les valeurs du taux de production hétérotrophe (Y_H) et autotrophe (Y_A) utilisées par Lessard et Beck (1993) sont respectivement de 0.55 g_{VSS}/g_{DCO} et 0.06 g_{VSS}/g_{NH4} . Pour être utilisées dans WEST®, elles doivent être converties en g_{DCO}/g_{DCO} et en g_{DCO}/g_{NH4} . Pour ce faire, on considère une valeur de 1.48 g_{DCO}/g_{VSS} comme facteur de conversion (Melcer et al., 2003), ce qui permet d'obtenir respectivement 0.814 g_{DCO}/g_{DCO} et 0.089 g_{DCO}/g_{NH4} . Le coefficient de demi-saturation hétérotrophe (K_S) est le seul autre paramètre à avoir été modifié, une valeur de 20 g/m^3 lui ayant été assignée plutôt que les 130 g/m^3 de l'étude originale. De nos jours, l'utilisation dans les modèles de substrat soluble (S_S) et de substrat lentement biodégradable (S_S) pour définir la matière organique a grandement permis d'améliorer les performances des modèles mathématiques. Par le fait même, cela a eu pour effet de diminuer les valeurs de μ_H et de S_S dans les modèles (Grady et al., 1999). Les valeurs typiques se situent autour de 0.25 h^{-1} pour μ_H et de 20 g/m^3 pour S_S (Henze et al.,

2000). Puisque Lessard et Beck (1993) utilisent une valeur de μ_H similaire de 0.24 h⁻¹, il fut décidé d'utiliser la valeur de K_S recommandée.

Tableau 15. Paramètres cinétiques et stœchiométriques du modèle ASM1.

Paramètres	Valeurs
Croissance hétérotrophe (µ _H)	0.24 h ⁻¹
Croissance autotrophe (µ _A)	0.006 h ⁻¹
Mortalité hétérotrophe (b _H)	0.005 h ⁻¹
Mortalité autotrophe (b _A)	0.024 h ⁻¹
Taux de production hétérotrophe (Y _H)	$0.614~\mathrm{g}_{\mathrm{DCO}}/\mathrm{g}_{\mathrm{DCO}}$
Taux de production autotrophe (Y _A)	$0.089~{\rm g_{DCO}/g_{NH4}}$
Coefficient de demi-saturation hétérotrophe (K _S)	20 g/m³
Coefficient de demi-saturation autotrophe (K _{NH})	0.6 g/m³
Taux d'hydrolyse (K _H)	3 j ⁻¹
Constante de demi-saturation de l'hydrolyse de la DCO lentement biodégradable (K _X)	0.03 g _{DCO} /g _{DCO}

Le paramètre k_La, représentant le coefficient de transfert d'oxygène, permet de définir la quantité d'air qui est acheminée à chacun des réacteurs. Puisque la station à l'étude est munie d'un système d'aération étagée, qui permet d'envoyer davantage d'oxygène au début de la ligne d'aération, là où la demande en oxygène est plus grande, il va de soi que les valeurs de k_La seront différentes pour chacun des réacteurs modélisés. Bien que plusieurs efforts aient été déployés afin de faire correspondre les concentrations en oxygène dissous simulées avec celles mesurées au ¾ d'une ligne d'aération de la station, il fut tout simplement impossible d'obtenir à la fois une bonne représentation des matières en suspension et de l'oxygène dissous tout en obtenant un enlèvement presque complet du substrat. Par conséquent, compte tenu des objectifs de ce travail, il fut jugé plus important de bien représenter les matières en suspension au détriment de l'oxygène dissous. Initialement, les valeurs optimales de k_La déterminées par Côté et al. (1995) ont été utilisées, c'est-à-dire 209, 43.2, 8.64 et 8.64 j⁻¹ pour les réacteurs un à quatre. Toutefois, il fut constaté lors des simulations que les valeurs des deux derniers réacteurs entrainaient des

erreurs mathématiques car elles ne permettaient pas d'avoir suffisamment d'oxygène dans ces réacteurs lors de certains pas de temps critiques. Par conséquent, elles ont été augmentées, au détriment du premier réacteur, afin d'éliminer les erreurs rencontrées. Ainsi, les valeurs de k_La ayant permis d'obtenir les résultats présentés au troisième chapitre sont, pour les réacteurs un à quatre, de 170, 45, 33 et 30 j⁻¹.

La station de Norwich possède quatre décanteurs secondaires. Comme dans le cas des clarificateurs primaires, il est possible de les combiner en un seul pour fins de modélisation, en respectant les mêmes règles que celles expliquées plus haut. Le volume total de cette unité de traitement est donc la somme des volumes des quatre décanteurs réels, encore une fois en respectant la hauteur qui se doit d'être identique selon l'hypothèse que la décantation est unidimensionnelle. Le modèle utilisé est également celui de Takács et al. (1991); par conséquent, on considère donc cette unité de traitement exempte de tout processus biologique. Les valeurs des paramètres de vitesse de chute théorique ($v_0 = 474$ m/j), pratique ($v_{00} = 250$ m/j), de concentration minimal dans le lit de boue ($f_{ns} = 0.00228$), de sédimentation en flocs ($r_H = 0.000576$ m³/g) et de sédimentation individuelle ($r_P = 0.00286$ m³/g) sont les valeurs par défaut de WEST®.

L'effluent qui s'échappe au surnageant est envoyé directement au milieu récepteur tandis que les boues recueillies au fond sont recirculées afin de conserver la biomasse. Le volume de boues soutirées, tout comme dans le cas du clarificateur primaire, a été mesuré une seule fois par jour, mais dans ce cas-ci, il est prévu que le débit de soutirage soit constant. Une valeur constante pour chaque période de vingt quatre heures a donc été considérée. Il en va de même pour le débit de boues qui sont immédiatement recyclées et celles qui sont dirigées vers le bassin de consolidation, tel qu'illustré à la Figure 6.

La modélisation de cette étape du traitement diffère considérablement de la méthode employée par Lessard et Beck (1993). En effet, le bassin de consolidation a volontairement été omis à l'époque, et il avait été remplacé par une seconde entrée en utilisant les valeurs mesurées lors de la première journée au surnageant du bassin de consolidation. Dans la présente étude, ce dernier a été ajouté au modèle de telle sorte que le schéma représente le

plus fidèlement possible la station de Norwich. Par contre, lors de l'expérimentation, il avait été observé que le débit du surnageant du bassin de consolidation était intermittent et une seule donnée quantitative avait été prise. Tout comme dans le cas de Lessard et Beck (1993), un débit constant a donc été considéré.

Par conséquent, il est possible que les erreurs engendrées par la complexification du modèle rendent plus difficile l'obtention de résultats près des valeurs mesurées. Seul le paramètre de sédimentation en flocs a été modifié ($r_H = 0.000265 \text{ m}^3/\text{g}$) et ce, de façon à représenter le plus adéquatement possible les matières en suspension à l'entrée des lignes d'aération. Il fut également constaté que la représentation des matières en suspension dans la ligne de recirculation était particulièrement sensible aux variations de ce paramètre, ce qui va de soi compte tenu qu'il est nettement plus influent sur l'entrée des lignes d'aération par rapport au surnageant du clarificateur primaire. La Figure 12 présente la station de Norwich telle que modélisée dans le logiciel WEST®.

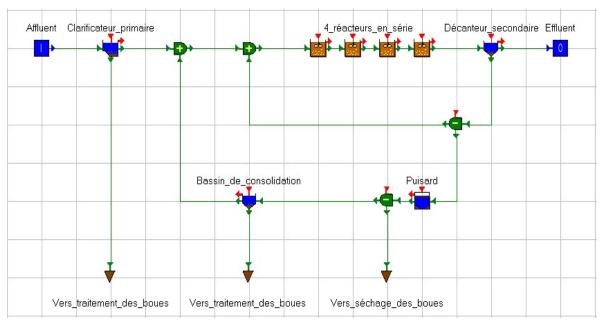


Figure 12. Schéma de la station de Norwich telle que représentée dans le logiciel WEST®.

3.2.2 Caractérisation de l'entrée

Il a été question lors de la section 2.2.2 des données qui ont été recueillies et lors des sections 1.3.4 et 3.2.1 de la formulation du modèle ASM1. Afin de permettre au logiciel d'effectuer des simulations, il est nécessaire de créer un fichier d'entrée contenant les données qui ont été mesurées à l'entrée du système de traitement par boues activées. Les premières variables à y être inscrites sont le temps à chaque prise d'échantillon et le débit mesuré. Par la suite, on constate que les données ne sont pas toutes directement intégrables à l'intérieur du modèle et qu'il est nécessaire de convertir les mesures de demande chimique en oxygène totale (DCO_T) et soluble (DCO_S) sous la forme soluble (S_S, S_I) et particulaire (X_S, X_I) du substrat et des inertes tels qu'ils sont représentés dans la matrice de Gujer. Les Équations 24 et 25 mettent en relation les données mesurées et leur représentation biologique.

$$DCO_{T} = S_{S} + S_{I} + X_{S} + X_{I} + X_{RH}$$
 (24)

$$DCO_{S} = S_{S} + S_{I} \tag{25}$$

Plusieurs chercheurs se sont penchés sur cette problématique si bien que quelques méthodes ont été développées et sont maintenant utilisées pour effectuer ces transformations. La caractérisation de l'affluent à l'étude a ainsi été réalisée à partir de la méthode de Melcer et al. (2003). Elle est rendue possible grâce à l'hypothèse que le long temps de séjour permet l'élimination par les bactéries de toute la matière organique soluble (S_S), considérée comme aisément biodégradable. On définit ensuite la concentration de matière soluble inerte (S_I) à l'affluent comme étant la même que celle qui sort via l'effluent à chaque instant (Équation 26). Par une simple soustraction, il est ensuite possible d'estimer la concentration de matière organique soluble à l'entrée de la station (Équation 27).

$$DCO_{S,sortie} = S_{L,sortie} = S_{L,entrée}$$
 (26)

$$S_{S.entrée} = DCO_{S.entrée} - S_{I.entrée}$$
 (27)

Dans la description du modèle ASM1, on considère que la concentration de biomasse à l'affluent d'une station d'épuration est négligeable par rapport à la quantité de biomasse produite lors du traitement. Ainsi, plusieurs auteurs optent pour simplifier la caractérisation de l'affluent en entrant des valeurs nulles pour la biomasse hétérotrophe et autotrophe, l'intégrant plutôt aux matières lentement biodégradables (X_S). Une étude de la littérature démontre toutefois que des valeurs variant entre 7 et 25% de la concentration de COD_T à l'affluent ont déjà été mesurées (Orhon et Cokgor, 1997) pour la biomasse hétérotrophe. Puisqu'aucun test n'a été effectué pour déterminer la valeur réelle lors de l'échantillonnage et qu'aucune méthode n'est disponible pour estimer de façon plus précise cette variable, à titre de compromis, une valeur de 10% a été utilisée pour chaque pas de temps. En ce qui concerne la biomasse autotrophe, elle est considérée comme étant négligeable à l'affluent. Ainsi on pose l'hypothèse que le long temps de rétention des boues permet de préserver une concentration suffisante de bactéries nitrifiantes dans les lignes d'aération.

Les retours de liqueurs traitées qui sont mélangées à l'affluent en amont du clarificateur primaire, les précipitations et les décharges industrielles qui ont eu lieu durant l'expérimentation et qui ont certainement eu un impact variable sur cette valeur n'ont pas été pris en compte, puisque la quantité de biomasse que ces événements entraînent avec eux est indéterminée. Pour des raisons similaires, la concentration des matières particulaires inertes (X_I) a été approximée à 15% de la valeur du COD_T. En effet, la littérature suggère une concentration en X_I entre 4 et 26% (Orhon et Cokgor, 1997) de la concentration de COD_T. Enfin, on obtient la valeur des composés lentement biodégradables (X_S) en l'isolant de l'équation 24 dont tous les autres termes sont connus. Bien qu'une bonne précision sur les matières solides soit nécessaire pour une bonne représentation du phénomène de sorption, il est important de noter que le rôle de la caractérisation des solides à l'affluent est nettement amoindri dans cette étude puisque le clarificateur primaire soutire en moyenne 74% des matières en suspension et 47% de la demande chimique en oxygène.

Les autres composants se retrouvant dans la matrice de Gujer doivent aussi être définis dans le fichier d'entrée. L'alcalinité (S_{alk}) dans les eaux usées résulte de la présence d'hydroxydes (OH^-) , de carbonates (CO_3^{-2}) et de bicarbonates (HCO_3^{-1}) . Lorsque cette

valeur varie, on peut s'attendre également à une variation du pH. Tel que discuté dans la section 1.3.2, une augmentation du pH entraîne généralement une augmentation de la précipitation des métaux. Toutefois, aucune donnée en ce sens n'a été récoltée lors de l'échantillonnage ce qui rend impossible toute comparaison. D'ailleurs, rien ne laisse croire qu'une variation significative du pH ait eu lieu au cours de l'expérimentation. En considérant que cette valeur est demeurée stable, on peut prétendre que la valeur de la constante de sorption englobe l'effet du pH sur le comportement des métaux lourds. En ce qui concerne les polluants traditionnels, une diminution du pH pourrait entraîner l'inhibition de certains processus, plus particulièrement celui de la nitrification car les bactéries autotrophes utilisent le dioxyde de carbone et les ions carbonates comme source de carbone. Par contre, le modèle ASM1 considère que la concentration de ces ions n'affecte pas les processus biologiques en place; par conséquent, peu d'importance a été accordée à ce composant si ce n'est que l'utilisation de valeurs suffisamment élevées pour que lors de la simulation, elles ne descendent pas sous zéro.

Dans le cas de l'oxygène dissous et des nitrates, aucune mesure n'a été prise à l'entrée de la station et puisqu'il est généralement considéré que ces concentrations sont négligeables, des valeurs nulles ont donc été utilisées.

La concentration d'azote organique soluble (S_{ND}) et particulaire (X_{ND}) peut être approximée, mais cela requiert une mesure de l'azote de Kjeldahl qui n'a pas été prise. L'approche de Lessard et Beck (1993) a été de ne considérer aucun processus impliquant l'azote organique. La présente étude a jugé bon de conserver la totalité du modèle ASM1 et, par conséquent, des valeurs de S_{ND} et X_{ND} ont été estimées considérant que l'azote ammoniacal représente 60% de l'azote total, par rapport à 10% et 25% respectivement pour l'azote biologique dissous et particulaire. Cela revient à poser des rapports S_{ND}/S_{NH} et X_{ND}/S_{NH} de 1/6 et 5/12 (Marsalek et al., 1996). Pour ce qui est de l'azote ammoniacal, des données ont été recueillies au point d'échantillonnage correspondant à l'entrée de la section des boues activées et les valeurs peuvent s'inscrire directement dans le fichier d'entrée. Les mesures prises lors des quatre premiers échantillonnages ont été déclarées non-valides par Lessard et Beck (1993) et elles ont donc toutes été remplacées par la valeur mesurée lors du

cinquième échantillonnage. Cette valeur, très élevée en raison d'un retour massif de liqueurs traitées lors de cette période, désavantage particulièrement la totalité de la première journée de simulation. Il fut donc souhaitable de remplacer ces concentrations par une valeur commune correspondant à la moyenne de toutes les autres mesures prises à cet endroit. Il va de soi que l'importance accordée aux résultats obtenus lors de cette première journée en est amoindrie.

Pour ce qui est des produits de la dégradation de la biomasse (X_P) , ils représentent la forme passive de la biomasse dans les réacteurs et, par surcroît, n'ont aucun rôle biologique. Il est donc convenable de leur donner une valeur nulle à l'affluent.

La première simulation consiste à entrer dans WEST® les conditions opératoires et les valeurs des paramètres déterminées précédemment, d'utiliser un fichier d'entrée correspondant à la moyenne des concentrations de chaque variable ASM1 à l'affluent et à faire tourner le modèle jusqu'à l'obtention d'un régime permanent, soit durant 80 jours. Les concentrations obtenues dans le réacteur pour les variables ASM1 sont ensuite utilisées comme conditions initiales pour la simulation en régime dynamique.

3.2.3 Clarificateur primaire

L'utilisation du modèle de Takács et al. (1991) comme clarificateur primaire entraîne des changements notables uniquement pour les composants particulaires entre l'entrée et la sortie et ces variations sont proportionnelles à la quantité présente à l'affluent. Dans ce casci, le principal intérêt de l'étude du comportement à l'intérieur du clarificateur primaire se situe au niveau des concentrations de matières en suspension qui sont évacuées au surnageant et acheminées aux réacteurs. La Figure 13 présente les concentrations de matières en suspension à l'entrée du clarificateur primaire telles que mesurées lors de la campagne d'échantillonnage et simulées lors de ces travaux. La tendance est respectée pour l'étendue des données, mais démontre une certaine imprécision lors des pas de temps où un afflux massif de matières particulaires entre dans l'unité via les liqueurs recirculées. On peut expliquer cet écart par la caractérisation de l'affluent. En effet, la somme des concentrations des composants particulaires à l'affluent représente la différence entre les mesures de demande chimique en oxygène totale et soluble, tel que défini par les Équations

24 et 25. Toutefois, pour certains échantillons, la concentration de matières en suspension mesurée est supérieure à la demande chimique en oxygène totale. Par conséquent, vu la méthode de caractérisation utilisée, il est tout simplement impossible d'obtenir un profil parfait. On constate également que ce phénomène est d'autant plus prononcé lorsqu'une seule donnée est particulièrement élevée, comme aux temps 5.375 et 6.125 jours.

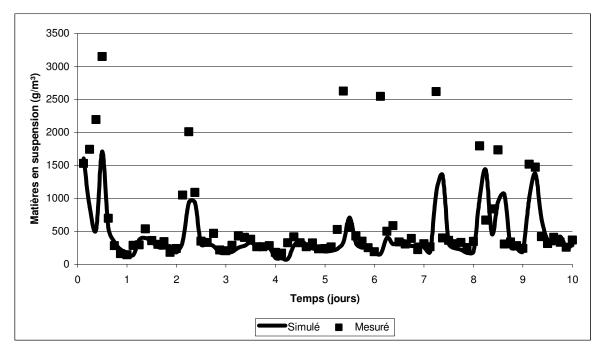


Figure 13. Matières en suspension en fonction du temps à l'entrée du clarificateur primaire.

La Figure 14 présente les concentrations de matières en suspension à l'entrée et à la sortie du clarificateur primaire lors de la simulation. On y constate l'importance du clarificateur primaire dans l'enlèvement des matières particulaires qui permet d'atténuer les importantes pointes observées dues à un retour de liqueurs traitées situé en amont. La Figure 15 montre les concentrations de matières en suspension au surnageant du clarificateur primaire. Puisque ces mesures ont été recueillies uniquement à partir de la deuxième journée d'échantillonnage, les résultats des simulations de la première journée ne peuvent pas être comparés. On constate tout de même que les valeurs obtenues par la simulation lors des neuf derniers jours sont fidèles aux données expérimentales, en partie grâce aux ajustements apportés au paramètre r_H dont l'objectif était justement d'obtenir de tels résultats en raison du rôle important des matières en suspension dans le processus de sorption des métaux lourds. Les pointes observées aux temps 2.375, 5.500 et 5.625 jours

sont cohérentes avec celles de l'affluent aux temps 2.250 et 5.375 dont la caractérisation et la simulation ne permettent pas l'obtention d'un agencement adéquat.

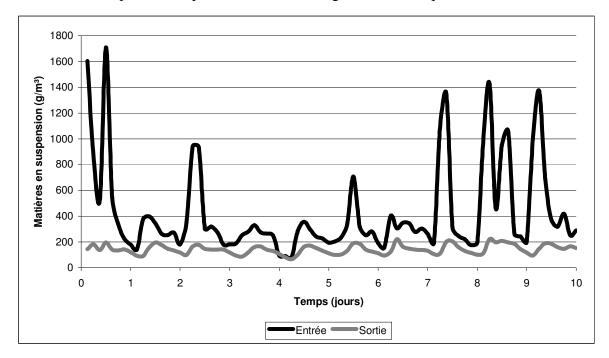


Figure 14. Matières en suspension en fonction du temps à l'entrée et à la sortie du clarificateur primaire.

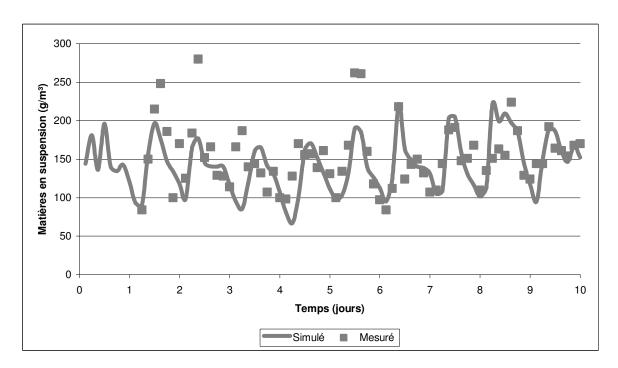


Figure 15. Matières en suspension à la sortie du clarificateur primaire.

Pour ce qui est de l'azote ammoniacal, l'utilisation du modèle de Takács et al. (1991) fait en sorte que les concentrations à l'entrée et à la sortie du clarificateur primaire sont les mêmes alors que les données recueillies montrent une augmentation de l'ordre de 2 g/m³ (~7%) lors du passage dans le clarificateur (Figure 16), ce qui laisse présager une production de NH₄ par hydrolyse des boues (Lessard, 1989). L'utilisation d'un clarificateur primaire réactif qui considérerait l'hydrolyse et l'ammonification aurait été nécessaire afin d'améliorer les résultats de la simulation. Un modèle de clarificateur primaire réactif semblable a d'ailleurs déjà été proposé (Gernaey et al., 2001) et les résultats obtenus ont été encourageants. Toutefois, par mesure de simplicité, et compte tenu que le comportement de l'azote ammoniacal dans la station ne figurait pas parmi les objectifs principaux de cette étude, il a été convenu d'utiliser un modèle élémentaire. Il est intéressant de remarquer que bien qu'il y ait une production d'azote ammoniacal dans le clarificateur, les pointes observées à l'entrée aux temps 7.25, 8.25 et 9.25 jours de même que l'importante baisse aux temps 8 et 8.125 jours sont grandement atténuées à la sortie, un phénomène dont le modèle, et par conséquent la simulation, ne tient simplement pas compte. Il va de soit que la précision sur ce polluant ailleurs dans la station y est amoindrie.

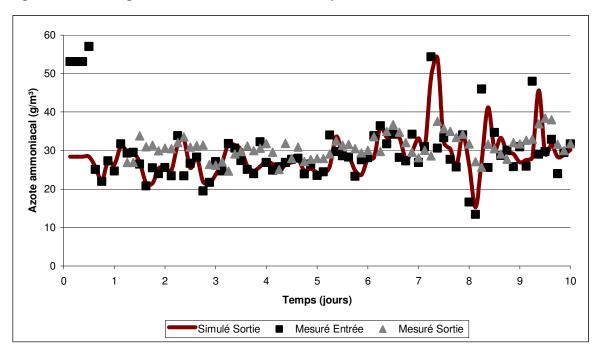


Figure 16. Azote ammoniacal à l'entrée et à la sortie du clarificateur primaire.

3.2.4 Lignes d'aération

L'eau qui est acheminée aux bassins d'aération provient du surnageant du clarificateur primaire et du bassin de consolidation. La principale difficulté lors de la modélisation de cette unité de traitement concerne l'affluent puisque seules des données qualitatives y ont été prises. Tel que discuté précédemment, le débit de l'effluent du clarificateur primaire est considéré comme étant une valeur fixe pour chaque période de 24 heures, tandis que le surnageant du bassin de consolidation est pompé uniquement une fois par jour. Lors de la modélisation, une valeur approximative a dû être utilisée pour représenter ce débit, ce qui augmente l'incertitude sur la composition réelle de l'affluent des lignes d'aération. La Figure 17 présente les concentrations de matières en suspension suite au mélange entre le surnageant du bassin de consolidation et du clarificateur primaire.

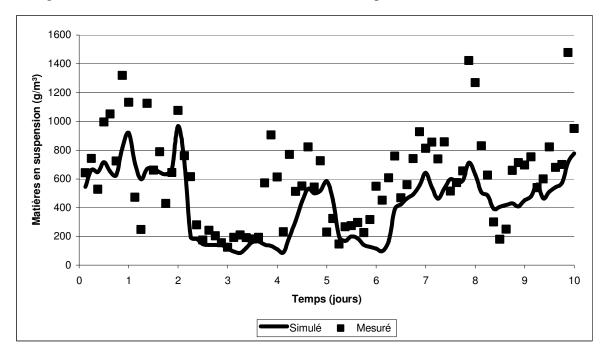


Figure 17. Matières en suspension à l'entrée des lignes d'aération.

Étant donné la précision obtenue en sortie du clarificateur primaire, il y a lieu de croire que les divergences entre les données mesurées et la simulation sont principalement causées le surnageant du bassin de consolidation, dont la teneur en matières en suspension est très élevée. Compte tenu du débit du surnageant approximatif et constant utilisé lors de la modélisation, alors que ce retour de boues était plutôt effectué sous forme discontinue, ces

résultats sont satisfaisants. Qui plus est, ces résultats sont avantageusement comparables à ceux obtenus par Lessard et Beck (1993).

D'autres données recueillies au niveau des lignes d'aération peuvent également être utilisées pour fins de comparaison. La concentration en oxygène dissous a été mesurée au ¾ d'une ligne d'aération, ce qui correspond au troisième réacteur dans la configuration du modèle (section 2.2.3). La Figure 18 compare les résultats obtenus par la modélisation avec ceux mesurés à la station. Malgré tous les efforts déployés, il fut impossible d'obtenir à la fois une bonne représentation de l'oxygène dissous et des matières en suspension. En effet, le modèle s'est avéré très sensible aux ajustements effectués au paramètre k_La des réacteurs. De plus, l'apport d'oxygène se faisant à la fois de façon traditionnelle (air) et via le procédé VITOX (oxygène pur), sous forme d'aération étagée, le tout sans qu'il y ait eu de suivi particulier sur les débits injectés rend difficile l'obtention d'un profil plus représentatif de la réalité. Ces conclusions sont d'ailleurs partagées par Lessard et Beck (1993):

A host of reasons might be advanced for the explanation of this result. For example (Lessard, 1989): (1) the choice of a wrong value for the parameter $k_L a$, the rate constant for aeration; (2) the influence of the VITOX system on oxygen transfer; (3) the distribution of aeration diffusers along the tank cannot be matched perfectly with the true distribution, leading to an « under-aeration » in some CSTR elements and an « over-aeration » in others; (4) the likely variation in the fraction of non-biodegradable soluble COD in the influent; and (5) the presence of an on-line DO control system but no record of hourly variations in the volume of air blown into the mixed liquors. Only during the last 48 h, when the hydraulic surges are experienced, does the simulated response approach that observed, and all attempts at improvement through adjustment of the estimate of $k_L a$ were simply unsuccessful. Without observations of DO towards the head of the aerator and in more than one channel, and without observations of both the DO and the aeration input at a faster sampling frequency, we have been obliged to accept this rather unsatisfactory result.

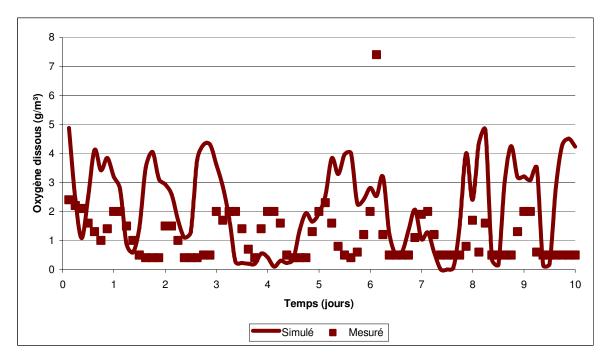


Figure 18. Oxygène dissous au 3/4 des lignes d'aération.

Des échantillons de liqueur mixte ont aussi été soumis à des analyses afin d'en déterminer la concentration en solides, mais ceux-ci ont été amassés uniquement lors des deux dernières journées. La Figure 19, qui met en relief les concentrations mesurées lors des 48 dernières heures et celles obtenues par la simulation à la sortie du dernier réacteur permet de constater que le modèle suit bien la tendance malgré un écart d'environ 1500 g/m³. Cette différence fut également observée par Lessard et Beck (1993). Toutes tentatives d'augmenter les concentrations de solides dans les réacteurs ont entraînées des problèmes au niveau de la ligne de recirculation des boues ainsi qu'une augmentation anormale des concentrations de matières en suspension à l'effluent. Compte tenu des résultats satisfaisants à l'entrée des réacteurs (Figure 17), dans la ligne de recirculation (Figure 21) et à l'effluent (Figure 23), il y a lieu de croire que les données mesurées soient surestimées. C'est d'ailleurs une hypothèse avancée par Lessard (1989) :

The average mixed liquor suspended solids concentration was 5800 gm⁻³ for the last two days of the campaign, and this can be considered quite high, indeed close to the maximum for an activated sludge process. However, doubts have been raised about the validity of these data, and it is thought that they are overestimates of the truth by some 20-30%.

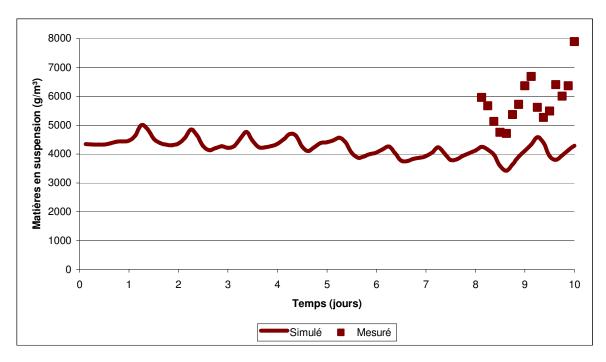


Figure 19. Matières en suspension dans la liqueur mixte.

En ce qui concerne l'azote ammoniacal, il est possible de comparer les résultats de la simulation après le mélange entre le surnageant du bassin de consolidation et du clarificateur primaire avec les données mesurées à l'entrée des lignes d'aération (Figure 20). Le modèle parvient à suivre la dynamique du système à partir du cinquième jour, mais la qualité des résultats n'est certes pas du même niveau que celle obtenue par Lessard et Beck (1993). Cette différence est d'autant plus marquée lors des cinq premiers jours alors que le présent modèle montre un biais significatif. Puisque les résultats en sortie du clarificateur primaire montraient déjà un certain écart avec la réalité, il y a lieu de croire que cette unité de traitement soit à l'origine de ces difficultés.

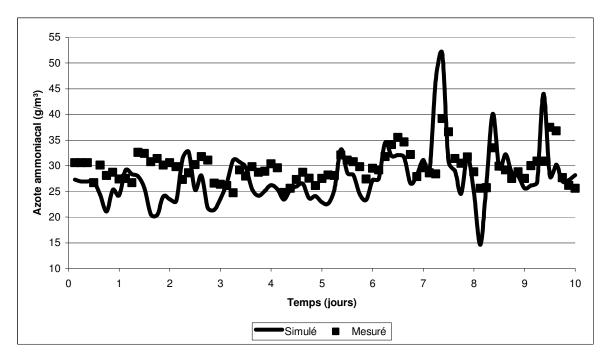


Figure 20. Azote ammoniacal à l'entrée des lignes d'aération.

3.2.5 Décanteur secondaire

Dans le cas qui nous concerne, le surnageant du décanteur secondaire correspond à l'effluent de la station qui sera discuté dans la section 3.2.6. Par conséquent, seules les boues soutirées seront analysées dans cette section-ci. Qui plus est, des mesures sur la liqueur mixte n'ont été effectuées que lors des deux dernières journées de la campagne d'échantillonnage, ce qui rend difficile une analyse exhaustive de cette étape de traitement. Néanmoins, les données recueillies sur les boues recirculées peuvent être utilisées afin de juger de la précision obtenue avec le décanteur. La Figure 21 présente d'ailleurs les concentrations de matières en suspension en fonction du temps dans la ligne de recirculation. Les résultats obtenus pour les huit derniers jours sont comparables aux données mesurées et sont satisfaisantes compte tenu de la sensibilité de cette unité de traitement lors de la modélisation. On remarque toutefois un manque flagrant de précision lors des deux premières journées, ce qui peut s'expliquer par les grandes variations à l'entrée des lignes d'aération au début de l'expérimentation, telles qu'illustrées à la Figure 17. Puisque le modèle n'arrivait pas à suivre ces variations à cet endroit, il était tout simplement improbable d'obtenir une bonne approximation dans la recirculation. Les

résultats obtenus par Lessard et Beck (1993) semblent quelque peu supérieurs, mais il importe de noter le fait que leur étude ne tient pas compte des 48 premières heures, la raison étant que leur fichier d'entrée utilise les données recueillies au surnageant du clarificateur primaire et qu'aucune mesure à cet endroit n'a été effectuée lors de la première journée d'échantillonnage.

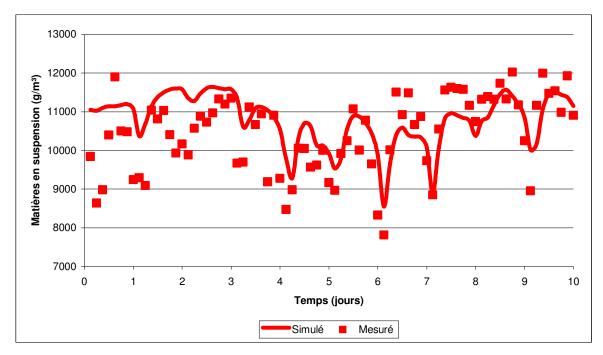


Figure 21. Matières en suspension dans la ligne de recirculation.

3.2.6 Bassin de consolidation

Bien qu'aucune mesure n'ait été prise de façon régulière à l'effluent du bassin de consolidation, il est possible d'en déterminer les concentrations des différents composants simplement à l'aide d'un bilan de matière en considérant les mesures recueillies à l'effluent du clarificateur primaire et à l'entrée des lignes d'aération. La Figure 22 présente les matières en suspension à cet endroit. On constate tout d'abord des valeurs mesurées (déduites) très élevées en raison de la faible sédimentation qui s'y produit. Par moments, ces valeurs sont supérieures à celles que l'on retrouve dans la ligne de recirculation (Figure 21). La seule explication possible provient des débits présumés constants par période de 24 heures, ce qui ne correspond pas à la réalité. On remarque également à quel point les concentrations sont supérieures à celles en sortie du clarificateur primaire (Figure 15), ce

qui explique que malgré les débits très faibles qu'on y retrouve, cette recirculation joue un rôle extrêmement important à l'entrée des lignes d'aération (Figure 17). Une analyse plus détaillée et plus fréquente des matières en suspension et des débits à la sortie du bassin de consolidation aurait très certainement permis d'obtenir de meilleurs résultats sur les matières en suspension dans les lignes d'aération.

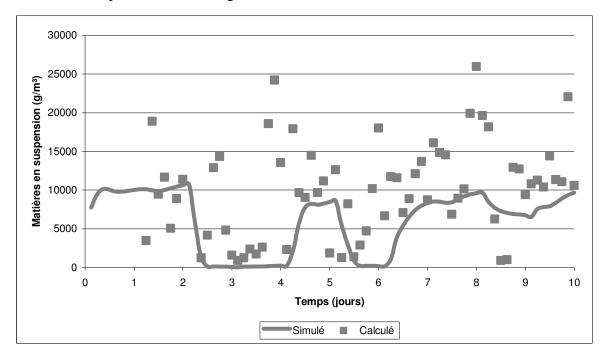


Figure 22. Matières en suspension au surnageant du bassin de consolidation.

3.2.7 Effluent

L'effluent de la station de Norwich correspond au surnageant du décanteur secondaire. Les analyses au laboratoire lors de l'expérimentation ont permis de déterminer les concentrations en matières solides à cet endroit et la Figure 23 compare ces résultats avec la simulation. Force est de constater que la dynamique des résultats n'est pas représentée par la courbe, bien que cette dernière se situe généralement près des données. Les valeurs élevées mesurées lors de la première journée pourraient avoir été causées par un orage survenu quatre heures avant le début de l'échantillonnage et qui aurait créé certains problèmes de sédimentation (Lessard, 1989). La pointe à la fin de la seconde journée ne peut être expliquée par les données mesurées, mais elle coïncide avec une surestimation des concentrations de boues recirculées (Figure 21). Pour ce qui est de la pointe lors de l'avant-

dernière journée, elle s'explique par une augmentation des débits à l'entrée de la station survenue quelques heures auparavant que le modèle n'arrive pas à bien interpréter. En somme, ces résultats sont très similaires à ceux obtenus par Lessard et Beck (1993). Il est difficile de poser un diagnostic pour expliquer le manque de dynamisme de la simulation compte tenu de l'incertitude sur les mesures prises dans la liqueur mixte (Figure 19) qui ne permet pas d'identifier l'unité de traitement problématique. Même si le modèle simule de façon somme toute convenable les matières en suspension dans la ligne de recirculation (Figure 21), notamment à partir du troisième jour, les écarts engendrés sur de si fortes concentrations de solides peuvent nuire considérablement à l'effluent, où les variations par rapport aux faibles concentrations ont un effet plus distinctif.

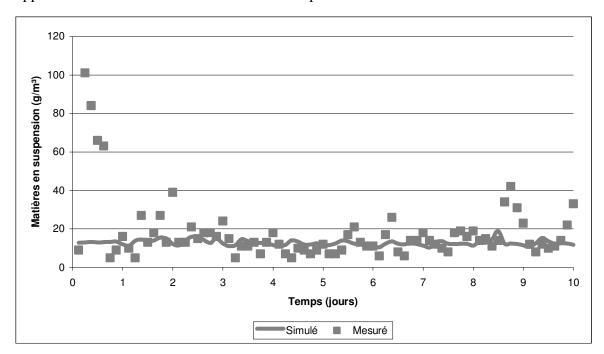


Figure 23. Matières en suspension à l'effluent de la station.

La Figure 24 présente les concentrations d'azote ammoniacal à l'effluent de la station comparativement aux mesures recueillies lors de l'échantillonnage. La dynamique observée par le modèle ne représente pas du tout la réalité. Bien que sous-estimées par le modèle, les pointes aux temps 8.5 et 9.5 sont cohérentes avec ce qui a été observé à la station et peuvent s'expliquer par les augmentations de débit survenues dans les 3 à 6 heures précédentes. Les pointes aux temps 3.5 et 7.5 jours, qui correspondent également à une augmentation de débit et d'azote ammoniacal à l'affluent de la station ont toutefois été bien traitées par

l'usine, ce que le modèle n'est pas parvenu à faire. À l'inverse, le modèle a éliminé presque tout le NH₄ lors des deuxième, troisième, cinquième et sixième journées alors que l'analyse des échantillons recueillis a mis en évidence des pointes variant entre 0.7 et 1.4 g/m³ de NH₄. Compte tenu des difficultés rencontrées au niveau du clarificateur primaire, ces résultats décevants étaient néanmoins prévisibles. Les résultats obtenus par Lessard et Beck (1993) sont d'ailleurs beaucoup plus près de la réalité, eux qui n'ont pas inclus le clarificateur primaire dans leur étude.

L'azote ammoniacal étant principalement éliminé par nitrification en présence d'oxygène, la mauvaise représentation des concentrations en oxygène dissous peut expliquer en partie les erreurs encourues. On constate en effet que lorsque la simulation de la concentration en oxygène dissous descend sous les 0.5 g/m³, on obtient des pointes d'azote ammoniacal à l'effluent. Certaines pointes d'oxygène dissous sont aussi présentes lorsque la simulation sous-estime les concentrations de NH₄ à l'effluent. Toutefois, puisque Lessard et Beck (1993) obtiennent eux aussi une mauvaise représentation de l'oxygène dissous et que cela n'a pas eu d'incidence sur l'azote ammoniacal, il est peu probable que ce soit la cause principale des irrégularités rencontrées dans la présente étude. Dans les faits, le modèle permet tout de même de constater un enlèvement presque total de l'azote ammoniacal et compte tenu de l'absence de données dans la liqueur mixte et dans la ligne de recirculation, il n'est pas possible d'identifier systématiquement la source du problème, qui pourrait être causé par le processus de nitrification dans les lignes d'aération ou par un phénomène de lyse des boues dans le décanteur (Lessard et Beck, 1993). Par conséquent, l'utilisation d'un clarificateur primaire réactif considérant entre autres l'ammonification de l'azote organique soluble (S_{ND}) et l'hydrolyse de l'azote organique particulaire (X_{ND}) tel que celui décrit par Gernaey et al. (2001) et dont il a été question lors de la section 3.2.3 permettrait surement d'obtenir de meilleurs résultats pour l'azote ammoniacal dans l'ensemble dans la station.

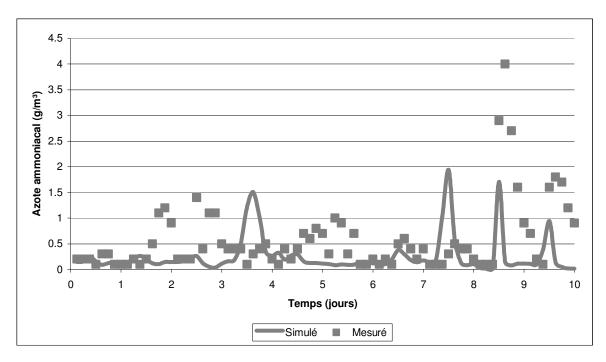


Figure 24. Azote ammoniacal à l'effluent de la station.

3.2.8 Métaux lourds

Une étude sur le comportement des métaux lourds dans la station de Norwich a été effectuée par Goldstone et al. (1990a ; 1990b). Il y a lieu de discuter de certaines conclusions tirées de cette analyse. Pour tous les métaux étudiés, une diminution de la concentration des métaux totaux survient en sortie du clarificateur primaire, suite au soutirage des boues, ce qui confirme l'attachement des métaux envers les matières en suspension. On y observe également pour le cadmium, le chrome, le cuivre et le plomb une diminution des concentrations de solubles tandis que la concentration de nickel soluble est demeurée stable et que celle du zinc soluble a légèrement augmentée, indiquant vraisemblablement qu'il se comporte différemment des autres métaux en présence de matières en suspension. Le retour des boues consolidées a eu pour effet d'augmenter les concentrations totales des métaux et dans tous les cas, sauf pour le zinc, cet apport massif de boues a entraîné une diminution de la concentration des solubles. Cette constatation renforce l'hypothèse selon laquelle le zinc utilise un mécanisme de sorption sur la biomasse différent des autres métaux.

Notons que tous les métaux ont subi une diminution de leur concentration à l'effluent de la station par rapport à l'entrée des lignes d'aération grâce au soutirage des boues du décanteur secondaire. Par contre, dans les mêmes circonstances, le cadmium et le cuivre ont subi une augmentation de leur concentration en solubles due à un phénomène de solubilisation. Il est probable que l'ajout des boues consolidées déjà gorgées de métaux lourds sous forme particulaire ait eu une influence négative sur l'enlèvement du cadmium et du cuivre dans les lignes d'aération. Enfin, par rapport à l'entrée de la station, tous les métaux ont subi une diminution importante de leur concentration totale, malgré que les concentrations solubles du cuivre et du zinc, quoique légèrement dans son cas, aient augmentées. Pour le zinc, cette analyse laisse présager qu'il est peu affecté par la présence ou non de matières en suspension et qu'il pourrait éprouver une certaine affinité avec des ligands solubles.

Tel que discuté précédemment, les métaux lourds sont présents à l'entrée de la station à la fois sous forme soluble et sous forme particulaire. Toutefois, des données sur les solubles sont disponibles uniquement pour les deux dernières journées de la campagne d'échantillonnage (Figure 25). Par conséquent, la moyenne du ratio solubles/totaux pour ces deux dernières journées a été calculée et cette valeur a été multipliée aux données des métaux totaux des huit autres journées pour obtenir la concentration en métaux solubles à l'affluent (S_{Cd}, S_{Cr}, S_{Cu}, S_{Ni}, S_{Pb}, S_{Zn}). Les concentrations en métaux particulaires (X_{Cd}, X_{Cr}, X_{Cu}, X_{Ni}, X_{Pb}, X_{Zn}) sont obtenues en soustrayant les concentrations solubles obtenues aux concentrations totales. Cette méthode suppose une relation proportionnelle entre les concentrations solubles et particulaires au cours des huit premiers jours, tel qu'observable pour le chrome dans la Figure 26 et pour l'ensemble des métaux étudiés en Annexe C. On constate cependant que cette relation proportionnelle n'est pas nécessairement présente lors des deux dernières journées et, par conséquent, l'effort fourni dans l'obtention d'une représentation adéquate des métaux portera plus particulièrement sur les résultats des deux dernières jours.

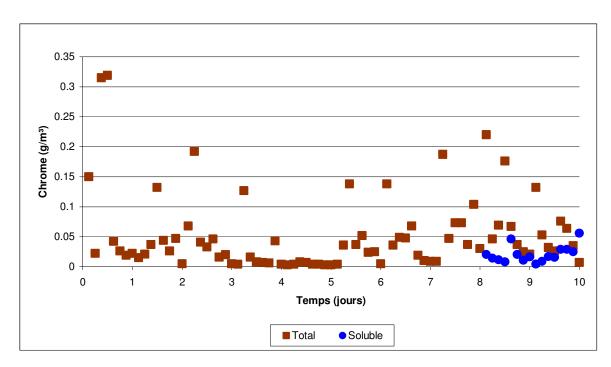


Figure 25. Chrome soluble et total mesuré à l'entrée du clarificateur primaire.

Le retour de liqueurs traitées ayant lieu avant l'entrée du clarificateur primaire est certainement un facteur important qui pourrait influencer le partitionnement des métaux lourds à l'affluent, via un apport de métaux sous forme particulaire. L'analyse des deux dernières journées d'échantillonnage ne permet toutefois pas d'affirmer que toutes les pointes en métaux lourds présentes à l'affluent soient reliées à ces retours de boues car certaines de ces pointes sont d'origine soluble. Par conséquent, il ne fut pas possible, méthodologiquement parlant, de caractériser les métaux lourds solubles à l'affluent d'une façon plus précise.

Pour modéliser les métaux lourds dans les lignes d'aération, la constante de sorption ($k_{M\text{\'e}tal}$) et le coefficient de partition ($K_{D,M\text{\'e}tal}$) de chaque métal ont dû être déterminés. Le Tableau 16 présente les valeurs utilisées et les intervalles de valeurs trouvées dans la littérature (Allison et Allison, 2005). On constate que toutes les valeurs du coefficient de partition utilisées se trouvent à l'intérieur de ces intervalles. Les variations de ce paramètre ont un effet qui se fait principalement sentir sur le ratio soluble/particulaire. Soit, en augmentant les valeurs du paramètre K_D , on augmente la sorption de façon générale sur l'ensemble des pas de temps, ce qui correspond visuellement à une translation verticale des courbes de

concentrations en fonction du temps. Les paramètres K_D ont donc été choisis de telle sorte qu'à l'effluent de la station, les concentrations simulées se situent dans le même ordre de grandeur que celles mesurées. Pour ce faire, plusieurs simulations ont été effectuées avec différentes valeurs de K_D pour chaque métal jusqu'à ce que la courbe chevauche les données mesurées. En ce qui concerne la constante de sorption (k), une augmentation affecte plus particulièrement la dynamique du processus. Ainsi, plus la valeur est élevée, plus les concentrations à la sortie vont varier à chaque pas de temps. L'ajustement de ce paramètre permet d'onduler la courbe de telle sorte qu'elle puisse représenter les différentes augmentations et diminutions des mesures. Le choix final de la valeur de ce paramètre pour chaque métal a été établi en fonction de la meilleure représentation des deux dernières journées d'expérimentation à l'effluent de la station, puisque c'est à ce moment que les mesures ont été prises à la fois sur les solubles et les totaux.

Tableau 16. Paramètres cinétiques de l'ajout au modèle ASM1 et efficacité d'enlèvement.

Tableau 10: 1 at ametics emetiques ue 1 ajout au mouele Asivii et efficacité u emevement.							
Paramètres	Unités	Cuivre	Zinc	Plomb	Cadmium	Chrome	Nickel
k	L/mg.j	0.0002	0.0001	0.002	0.0002	0.0013	0.0008
$Log(K_d)$	L/kg	3.70	5.10	4.60	4.63	4.40	3.90
Log(K _d) (Allison et Allison, 2005)	L/kg	3.1-6.1	3.5-6.9	3.4-6.5	2.8-6.3	3.9-6.0	3.5-5.7
Enlèvement	%	88.6	82.4	93.1	86.2	86.5	69.1

Suite aux efforts de modélisation, il fut déterminé que le chrome était le métal le moins affecté par le partitionnement de l'affluent et celui répondant le plus adéquatement au phénomène de sorption/désorption. Par conséquent, l'analyse des résultats sera axée principalement sur celui-ci, bien que toutes les figures concernant les autres métaux étudiés soient disponibles en Annexe C.

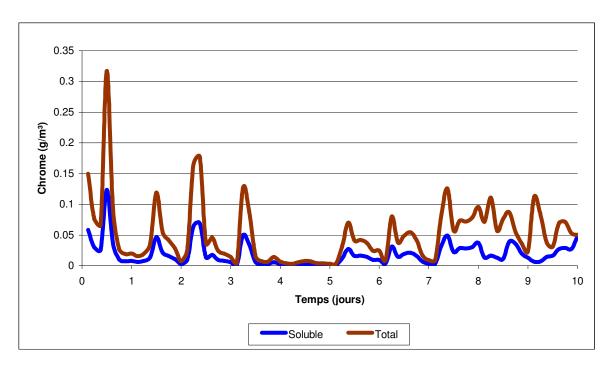


Figure 26. Chrome soluble et total à l'affluent du clarificateur primaire.

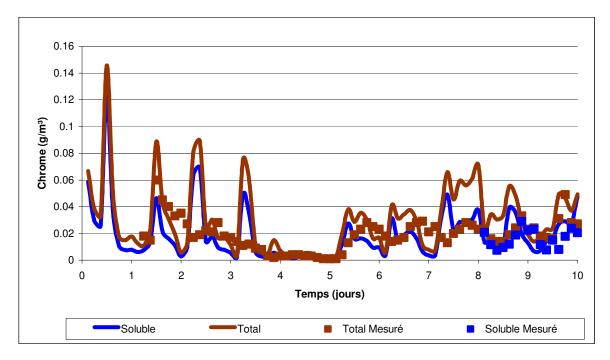


Figure 27. Chrome soluble et total à la sortie du clarificateur primaire.

La Figure 27 permet d'analyser le comportement du chrome à l'intérieur du clarificateur primaire. On constate que règle générale, le modèle surestime la concentration de chrome total au surnageant, ce qui suppose qu'un phénomène de sorption y a lieu alors que le

modèle utilisé ne tient pas compte de la réactivité dans cette unité de traitement. Ce phénomène s'observe davantage lorsque des pointes sont présentes à l'entrée lors des huit premiers jours et permet de mettre en doute la proportionnalité entre les solubles et les totaux qui a été proposée, d'autant plus que les 30 dernières heures présentent une bonne correspondance avec les mesures, autant avec les solubles qu'avec les particulaires. Tel que constaté dans l'analyse de Goldstone et al. (1990a), les métaux présents dans les retours de liqueurs en amont du clarificateur primaire sont généralement associés aux matières en suspension et auraient donc tendance à sédimenter et ainsi être moins présents à la sortie du clarificateur primaire. Les grandes concentrations de matières en suspension à l'entrée du clarificateur primaire dues à ces retours de liqueurs (Figure 14) avaient quant à elles été bien représentées par le modèle à la sortie (Figure 15), ce qui laisse croire qu'une campagne d'échantillonnage avec des mesures recueillies sur les métaux solubles à l'entrée durant les dix jours aurait sans doute permis d'obtenir une représentation beaucoup plus adéquate. Toutefois, le partitionnement ne peut être la seule cause de ces erreurs puisqu'à certains endroits, les concentrations particulaires simulées sont supérieures aux concentrations totales mesurées, ce qui revient à dire que même si l'on supposait que la totalité du chrome à l'affluent lors de ces pointes était sous forme particulaire, pour favoriser sa sédimentation, les concentrations totales obtenues au surnageant seraient tout de même supérieures à celles mesurées. Cette tendance s'observe d'ailleurs pour chacun des métaux étudiés. Il y a donc possiblement un processus réactionnel à l'intérieur du clarificateur primaire, non représenté par le modèle de clarificateur primaire utilisé, qui entraîne une erreur par moments significative entre les résultats de la simulation et les données mesurées.

La Figure 28 présente les concentrations solubles et totales de chrome à l'entrée des lignes d'aération, c'est-à-dire suite au mélange de l'effluent du clarificateur primaire et de l'effluent du bassin de consolidation. De façon générale, le modèle suit bien la dynamique en fonction du temps, à l'exception des jours quatre, cinq et six. Les jours cinq et six étant bien représentés en sortie du clarificateur primaire, il est probable que les erreurs engendrées proviennent de l'effluent du bassin de consolidation. Il est également intéressant de constater que lors de ces deux mêmes journées, les matières en suspension au même endroit (Figure 17) étaient sous-estimées par le modèle. Un phénomène semblable

est également présent à la fin du sixième et du neuvième jour, autant pour le chrome que pour les matières en suspension. Une explication possible réside dans les débits réels au surnageant du bassin de consolidation à chaque pas de temps. En effet, le modèle considère un débit constant pour chaque période de 24 heures, alors que dans la réalité le pompage était effectué de façon intermittente. Bien que ces débits du surnageant soient faibles comparativement à ceux du clarificateur primaire, les teneurs en métaux lourds y sont beaucoup plus importante. Tel qu'expliqué lors de la section 3.2.5, le surnageant du bassin de consolidation joue un rôle primordial dans la composition de l'entrée des lignes d'aération alors que très peu de données sont disponibles pour personnaliser ses paramètres, et ce même si peu de sédimentation y a lieu.

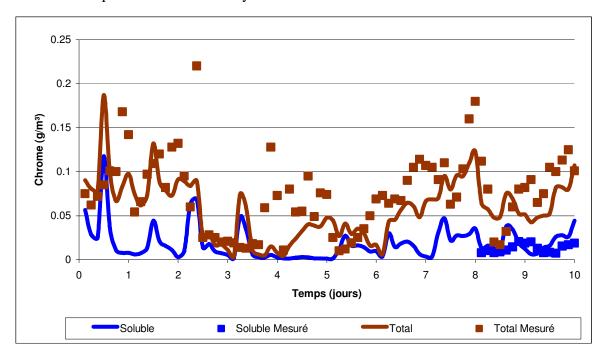


Figure 28. Chrome soluble et total à l'entrée des lignes d'aération.

Suite au passage dans le décanteur secondaire, les métaux lourds sous forme particulaire sont presque tous enlevés et se retrouvent dans la ligne de recirculation, tel que présenté dans la Figure 29. Dans l'ensemble, le modèle parvient à suivre la dynamique du chrome dans le temps, bien que les concentrations simulées soient inférieures à celles mesurées. Compte tenu des valeurs obtenues en sortie du clarificateur primaire et à l'entrée des lignes d'aération, lesquelles étaient inférieures aux valeurs mesurées, et que le modèle de sorption a été calé de façon à obtenir un profil semblable à la réalité à l'effluent, il était à prévoir

qu'un surplus de chrome sous forme particulaire s'accumulerait dans les lignes d'aération. Bien que cela ait une influence sur le modèle de sorption, le fait que l'écart entre les valeurs simulées et mesurées soit relativement constant tout au long de la simulation ne perturbe pas la dynamique. Ainsi, cet écart est comblé par le choix des valeurs des paramètres de sorption et de partition.

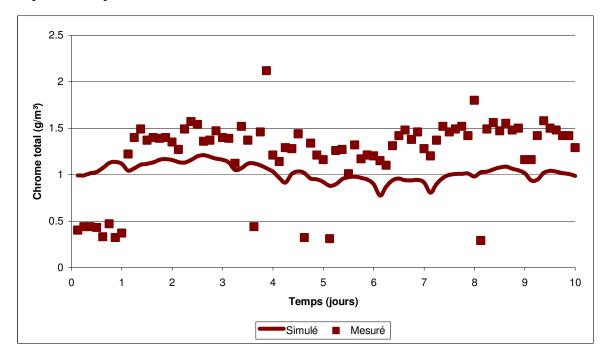


Figure 29. Chrome total dans la ligne de recirculation.

Les données mesurées montrent également que lors de la première journée, il y avait très peu de métaux lourds à cet endroit. À l'exception du nickel, puisqu'aucune donnée n'a été prise lors de la première journée, et du plomb, dont les concentrations lors de cette journée sont supérieures à celles obtenues lors de l'ensemble de l'expérience, tous les métaux montrent une tendance similaire au cours des premières 24 heures. Au cours de la même période, les matières en suspension à l'effluent ont également été perturbées. Tel qu'expliqué précédemment, cela est dû à une période de pluie ayant eu lieu avant le début de l'expérimentation, et cette dernière aurait vraisemblablement nuit aux performances du décanteur secondaire. Cela aurait permis aux matières solides d'être rejetées à l'effluent et au retour de boues d'être moins concentré. Le décanteur secondaire utilisé dans le modèle ne subit pas la même problématique, ce qui explique les résultats divergents obtenus. Il est intéressant de noter que dans le cas du plomb, le phénomène inverse s'est produit, c'est-à-

dire qu'une concentration anormalement plus grande en plomb s'est retrouvée dans la ligne de recirculation. Il y a donc lieu de croire que l'eau de pluie a créé un phénomène de ruissellement ayant entrainé une grande quantité de plomb sous forme soluble à la station, et éventuellement dans la ligne de recirculation suite à une perturbation du bon fonctionnement du décanteur secondaire.

Malgré le phénomène de sorption permettant l'enlèvement des métaux lourds, une certaine quantité de ceux-ci, sous forme soluble, se retrouvent à l'effluent de la station pour être ainsi rejetés dans le milieu récepteur (Figure 30).

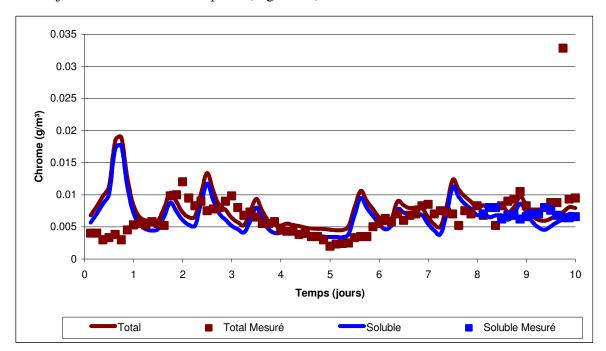


Figure 30. Chrome soluble et total à l'effluent de la station.

Dans l'ensemble, on constate que le modèle représente bien les données mesurées à l'exception de la première journée qui a été marquée par un apport massif de chrome à l'affluent de la station. Par ailleurs, toutes les pointes observées à l'affluent sont également visibles à la sortie de la station, à l'exception de celle ayant lieu lors de la dernière journée (Figure 26). Les données mesurées à cet endroit montrent que la pointe était surtout composée de chrome sous forme particulaire, ce qui peut expliquer l'absence de cette altération en sortie de station lors de la simulation. On remarque également que la tendance observée lors des deux dernières journées, c'est-à-dire celles où des mesures sur les

solubles et les totaux ont été effectuées, est mieux représentée par la simulation que les autres journées. Bien que cela soit dû au choix du coefficient de partition et de la constante de sorption, il y a lieu de croire qu'un échantillonnage complet des solubles à l'affluent aurait permis l'obtention de résultats encore plus près de la réalité pour l'ensemble de la période d'échantillonnage.

En comparant les courbes obtenues pour les solubles et les totaux, on constate que celles-ci sont presque superposées. Cela s'explique par le fonctionnement du modèle de décanteur secondaire qui envoie la totalité des solubles et un très faible pourcentage des particulaires à l'effluent. Puisque cette dernière valeur se trouve nettement inférieure à celle des solubles, l'allure de la courbe n'est que légèrement altérée. Toutefois, plusieurs données solubles recueillies à l'effluent sont d'une valeur supérieure à la mesure prise pour les totaux au même moment. De plus, rien ne permet d'affirmer dans l'analyse des données que seule une fraction très faible de métaux sous forme particulaire se retrouve à l'effluent. Cela fait en sorte qu'il fut impossible d'obtenir une bonne représentativité autant des solubles que des particulaires avec le présent modèle, d'autant plus que seules deux journées ont été échantillonnées pour les solubles.

Afin de donner un aperçu de la sensibilité du modèle par rapport au paramètre de sorption (k) et à celui du coefficient de partition (K_D), deux simulations ont été effectuées avec des valeurs différentes de celles présentées au Tableau 16. Ainsi, une première tentative a eu lieu avec une valeur de k_{Cr} diminuée d'un facteur 10, soit 0.00013 L.mg/j plutôt que 0.0013 L.mg/j. La Figure 31 permet de comparer les résultats obtenus à l'effluent avec ces deux valeurs.

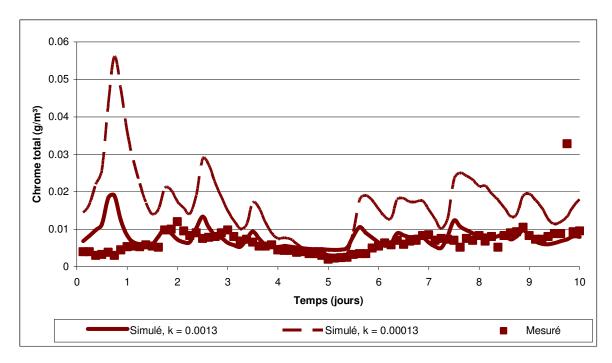


Figure 31. Chrome total à l'effluent de la station selon différentes valeurs de constante de sorption.

À première vue, on constate qu'une diminution de la constante de sorption entraîne une augmentation de chrome à l'effluent, ce qui est tout-à-fait cohérent avec la formulation du modèle présentée au Tableau 13. Bien que le changement soit perceptible sur toute la durée de la simulation, l'effet ressenti varie selon la concentration de chrome soluble à l'intérieur des réacteurs. Ainsi, lorsque très peu de chrome soluble se trouve dans la ligne d'aération, comme lors du cinquième jour, l'impact d'une diminution de la constante de sorption est négligeable par rapport aux endroits où le chrome soluble est présent en plus grande quantité, comme lors du premier jour.

Une autre simulation a été effectuée, cette fois en modifiant la valeur du coefficient de partition (Figure 32). Une augmentation de 25% de la valeur logarithmique ($\log K_{D,Cr}$) a été utilisée, soit 5.50 L/kg plutôt que 4.40 L/kg. Ce changement, bien que considérable, permet tout de même de conserver une valeur logarithmique dans l'intervalle suggéré par la littérature présentée au Tableau 16.

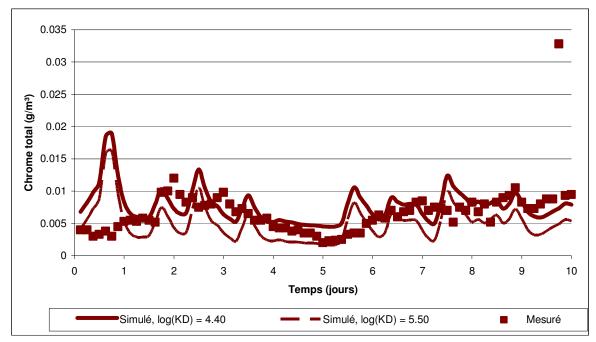


Figure 32. Chrome total à l'effluent de la station selon différentes valeurs du coefficient de partition.

Les résultats obtenus permettent de constater qu'une augmentation de la valeur du coefficient de partition entraîne une augmentation de la sorption, donc une diminution de la concentration de chrome à l'effluent. Cette explication est cohérente avec la définition du coefficient de partition représentée par l'équation 7. On remarque également que la différence observée entre les deux valeurs du coefficient de partition utilisées se manifeste par un écart d'amplitude constant peu importe les concentrations de métal dans le réacteur. Cette indépendance a permis de choisir une valeur de K_D permettant aux résultats de la simulation de chevaucher les données recueillies sur l'ensemble de l'expérimentation.

En observant de plus près les données recueillies avec le chrome par rapport à ceux obtenus avec les autres métaux étudiés, on remarque que le comportement de chacun d'entre eux diffère de celui des autres. Tout d'abord, à l'entrée de la station, certains d'entre eux comme le cuivre et le nickel sont davantage présents sous forme soluble alors que le cadmium, le chrome, le plomb et le zinc le sont surtout sous forme particulaire. Puis, à la sortie du clarificateur primaire, bien qu'une grande quantité de matière particulaire ait été soutirée, certains métaux, comme le cuivre et le plomb, se retrouvent tout de même majoritairement sous forme particulaire alors que presque 100% du chrome et du nickel particulaires ont été éliminés. Le retour des boues recirculées entraîne une augmentation de

métal particulaire pour tous les métaux. En raison du phénomène de dilution, la concentration de métal soluble à cet endroit devrait diminuer, mais un effet inverse s'est plutôt produit chez le zinc. À l'effluent, seul le plomb est présent majoritairement sous forme particulaire. En comparant les données recueillies à l'effluent entre les solubles et les totaux, on constate certaines irrégularités chez le cadmium et le nickel où les valeurs des solubles sont parfois supérieures à celles des totaux. Dans le cas du nickel et du plomb, on ne remarque aucune linéarité entre les deux phases à l'effluent tandis que pour les autres métaux, le ratio soluble/totaux est plus constant. Sur l'ensemble de la station, les concentrations totales de métaux ont toutes diminuées, mais une augmentation des solubles a été notée pour le cuivre et le plomb, ce qui porte à croire qu'ils ont davantage tendance à se solubiliser plutôt qu'à être adsorbés par les matières en suspension. Puisqu'une bonne quantité de ces deux métaux était présente sous forme particulaire à l'entrée de la station, le clarificateur primaire a permis d'en enlever une partie importante. Dans les deux cas, la solubilisation est beaucoup moins importante que l'enlèvement effectué par les unités de séparation, tel que démontré au Tableau 16.

CHAPITRE IV

CONCLUSION

L'objectif général de ces travaux était de concevoir un modèle pouvant décrire efficacement le comportement de micropolluants dans une station d'épuration. D'une part, un modèle tenant compte de la sorption sur les matières en suspension et de la biodégradation par des bactéries spécifiques a été développé pour représenter des composés organiques xénobiotiques. Ce modèle a été mis à l'essai avec des résultats provenant d'une usine pilote située à Copenhague, au Danemark. D'autre part, un modèle ne tenant compte que de la sorption sur les matières en suspension a été conçu afin d'être appliqué aux métaux lourds. Ce dernier a pu être évalué grâce à une base de données provenant de la station d'épuration de Norwich, au Royaume-Uni. Dans les deux cas, un procédé par boues activées était utilisé pour le traitement des eaux usées.

Les deux modèles ont été développés à partir du « Activated Sludge Model No. 1 (ASM1) » qui est très utilisé dans le domaine de la modélisation du traitement des eaux usées. D'un point de vue pratique, les deux modèles sont en fait des ajouts au modèle ASM1.

La première étude de cas concernait une usine pilote de 11.65 m³ fonctionnant selon un principe Biodenipho™ permettant d'éliminer la matière organique, l'azote ammoniacal et le phosphore en alternant l'aération et le sens du débit dans les réacteurs. Cette station a été représentée dans le logiciel WEST® par un réacteur mélangé. Des expériences avec le Bisphénol A et d'autres composés organiques xénobiotiques y ont été effectuées au cours des années 2005 et 2006. C'est à partir de ces résultats que le présent modèle a pu être développé, grâce à une procédure développée par Erik Lindblom, du Technical University of Denmark.

Une première phase de calibration du modèle a été effectuée en ajoutant de façon constante 10 g/j de Bisphénol A à l'entrée de l'usine pilote durant 46 jours, c'est-à-dire la période de temps requise pour que la concentration de Bisphénol A à l'effluent soit semblable à la concentration de fond mesurée avant le début de cet ajout. Ainsi, 91 échantillons ont été recueillis et ont pu être comparés aux résultats obtenus par la simulation du modèle. Les résultats des simulations démontrent bien la dynamique observée par les données mesurées.

En effet, on y observe que la croissance des bactéries spécifiques est un processus relativement long et au cours duquel la concentration de Bisphénol A ne cesse de croître avant de finalement diminuer jusqu'à la concentration de fond lorsque les bactéries spécifiques deviennent suffisamment nombreuses.

Une expérience de validation a ensuite été effectuée au cours de laquelle la biomasse a été pré-adaptée grâce à un ajout continu de 1 g/j de Bisphénol A durant 60 jours suivi d'une période de repos de 14 jours. Par la suite, 10 g/j de Bisphénol A ont été ajoutés de façon constante durant une période de 34 jours, ce qui a permis de recueillir 46 échantillons. L'analyse des résultats a permis de constater que la période d'adaptation a joué un facteur important dans la rapidité de l'obtention du régime stationnaire suite à l'ajout de Bisphénol A. Toutefois, bien que la tendance proposée par le modèle soit satisfaisante, ce dernier ne parvient pas à représenter suffisamment rapidement la dégradation biologique qui a lieu dans les réacteurs. Il est donc probable que le modèle proposé soit trop simple car il considère que les bactéries spécifiques se nourrissent uniquement de Bisphénol A alors que dans la réalité, ces organismes sont vraisemblablement capables d'assimiler d'autres types de substrats, ce qui leur permet de croître plus rapidement, mais surtout de ne pas décroître massivement en cas d'absence de Bisphénol A.

Afin de pousser plus loin l'étude des composés organiques xénobiotiques, il serait donc intéressant de développer un modèle permettant aux bactéries spécifiques d'utiliser à la fois le Bisphénol A et du substrat conventionnel comme sources de carbone. Face aux différentes problématiques actuelles en ce qui concerne le Bisphénol A dans notre environnement, des études approfondies sur le sujet s'avèrent tout à fait pertinentes pour la communauté scientifique et ont le potentiel d'être bénéfiques pour l'ensemble de la population.

La seconde étude de cas a permis d'étudier le comportement des métaux lourds dans une station d'épuration et de développer un modèle considérant la sorption sur les matières en suspension comme processus réactionnel. Les expériences ont eu lieu dans une station d'épuration réelle traitant la matière organique et l'azote ammoniacal. Une vaste campagne

d'échantillonnage effectuée sur une période de dix jours en 1986 a permis de concevoir une base de données complète sur l'ensemble de la section boues activées de la station. En plus des principaux polluants, des données ont également été recueillies sur huit métaux lourds, dont six ont été étudiés lors de ces travaux : le cadmium, le chrome, le cuivre, le nickel, le plomb et le zinc.

La méthodologie utilisée pour cette étude de cas a été de représenter la station dans le logiciel WEST® et de modéliser tout d'abord l'enlèvement de la matière organique et de l'azote ammoniacal. Cela a été rendu nécessaire puisque l'obtention de résultats valides sur les métaux lourds dépend directement d'une bonne représentation des matières en suspension dans l'ensemble de la station. Suite à cela, le modèle de sorption des métaux lourds a été appliqué sur le modèle de base ASM1 afin d'étudier le comportement de ceux-ci à travers la station. Pour palier au fait que les données sur les solubles ont été recueillies uniquement lors des deux dernières journées, il a fallu déterminer les concentrations des solubles pour les huit premiers jours selon le ratio de proportionnalité observé au cours des deux dernières journées. Cela a comme effet d'engendrer des résultats qui ne reflètent pas entièrement la réalité, mais mis à part les périodes où l'on observe des pics importants dans les concentrations totales, l'influence de cette approche n'affecte pas de façon significative les résultats dans leur ensemble.

La modélisation des principaux polluants a été précédée d'une caractérisation de l'entrée. Cela est nécessaire puisque les données recueillies (matières en suspension, matières volatiles, demande chimique en oxygène totale et dissous) doivent être converties en substrats et en inertes solubles et particulaires pour être appliquées au modèle ASM1. Dans l'ensemble, les résultats obtenus sur les matières en suspension et l'azote ammoniacal sont satisfaisants sur toute la station, avec quelques irrégularités pour l'azote ammoniacal à l'effluent. Pour ce qui est de l'oxygène dissous, l'obtention d'une bonne représentation a été laissée de côté au profit d'une meilleure représentation des matières en suspension.

En ce qui concerne les métaux lourds, le présent travail a porté principalement sur les résultats obtenus avec le chrome car ceux-ci ont permis d'obtenir la meilleure

représentation par rapport aux données recueillies. Au niveau du clarificateur primaire, le modèle utilisé surestime la concentration de tous les métaux totaux au surnageant, ce qui laisse croire qu'un phénomène de sorption pourrait y avoir lieu. À l'entrée des lignes d'aération, les résultats sont satisfaisants dans la mesure où l'apport intermittent de métaux lourds provenant du bassin de consolidation est difficile à prédire compte tenu qu'un débit constant pour chaque période de 24 heures a été utilisé. À l'effluent, les résultats obtenus sont particulièrement intéressant pour le cadmium et le chrome alors que la représentativité du nickel n'est pas tout à fait adéquate. L'analyse des résultats permet d'affirmer que le comportement des métaux lourds diffère de l'un à l'autre selon les différentes étapes de traitement. Ainsi, certains d'entre eux ont moins tendance à s'associer aux matières en suspension pour être éliminés, comme le nickel. Les écarts observés entre le modèle et la réalité ne sont pas assez grands pour rejeter le modèle, mais il y a lieu de mettre des efforts dans l'étude du comportement des métaux lourds en utilisant un clarificateur primaire réactif dans lequel la sorption des métaux lourds serait implémentée.

Afin de pousser plus loin l'étude du comportement des métaux lourds, il serait intéressant de réaliser une campagne d'échantillonnage en mesurant les métaux sous forme soluble sur l'ensemble de l'expérimentation afin de limiter les erreurs engendrées par l'estimation de ces valeurs. Plus encore, une étude séparée sur chacune des unités de traitement permettrait de mieux comprendre le comportement de ces polluants et d'adapter cette étude avec, entre autres, un clarificateur primaire réactif.

En somme, bien que certaines irrégularités aient été observées et que certains écarts demeurent entre les modèles conçus et la réalité, les objectifs fixés originellement ont été atteints, c'est-à-dire de concevoir un modèle simple et plausible permettant d'étudier le comportement des composés organiques xénobiotiques et des métaux lourds dans une station d'épuration.

RÉFÉRENCES

- Agency for Toxic Substances and Disease Registry (2001) Toxicological profiles. ATSDR, Atlanta, GA.
- Allison, J.D. et Allison, T.L. (2005) Partition coefficients for metals in surface water, soil, and waste. United States Environmental Protection Agency, Washington, DC.
- Alvarez-Ayuso, E., Garcia-Sanchez, A. et Querol, X. (2003) Purification of metal electroplating waste waters using zeolites. Water Research 37(20), 4855-4862.
- Amarasinghe, B.M.W.P.K. et Williams, R.A. (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chemical Engineering Journal 132(1-3), 299-309.
- Ayres, D.M., Davis, A.P. et Gietka, P.M. (1994) Removing Heavy Metals from Wastewater. University of Maryland, College Park, MD.
- Benedetti, L. (2006) Probabilistic design and upgrade of wastewater treatment plants in the EU Water Framework Directive context. Ph.D., Ghent University, Gand, Belgique.
- Bennett, H. (ed) (1986) Concise Chemical and Technical Dictionary. Chemical Pub. Co., New York, NY.
- Bhattacharyya, D., Jumawan, A.B. et Grieves, R.B. (1979) Separation of toxic heavymetals by sulfide precipitation. Separation Science and Technology 14(5), 441-452.
- Biles, J.E., McNeal, T.P., Begley, T.H. et Hollifield, H.C. (1997) Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food-simulating liquids. Journal of Agricultural and Food Chemistry 45(9), 3541-3544.
- Bisphenol A Global Industry Group (2002) Bisphenol A: Information sheet. Bisphenol A Industry Group, Arlington, VA.
 - Bjerrum, N.J. et Bell, R.P. (1936) Inorganic Chemistry. W. Heinemann, London, UK.
- Brown, M.J. et Lester, J.N. (1979) Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Research 13(9), 817-837.
- Burrell, D.C. (1974) Atomic Spectrometic Analysis of Heavy Metal Pollutants in Water. Ann Arbor Science Publishers, Ann Arbor, MI.
- Buttiglieri, G. (2008) Water micropollutants: Presence in the environment and removal. Ph.D., Politecnico Di Milano, Milan, Italie.
- CCME (2007) Stratégie Pancanadienne sur la Gestion des Effluents d'Eaux Usées Municipales. Conseil canadien des Ministres de l'Environnement, Winnipeg, Canada.

- Chipasa, K.B. (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management 23(2), 135-143.
- Coderre, A. (1999) Simulation du comportement d'unités de décantation primaire: Évaluation du modèle de Takács et al. (1991). Essai de maîtrise, Université Laval, Québec, Canada.
- Communauté Urbaine de Montréal (1998) Règlement 87: Règlement relatif aux rejets des eaux usées dans les réseaux d'égouts et les cours d'eau.
- Copp, J.B. (ed) (2002) The COST simulation benchmark description and simulator manual. Office for Official Publications of the European Communities, Luxembourg.
- Côté, M., Grandjean, B.P.A., Lessard, P. et Thibault, J. (1995) Dynamic modeling of the activated-sludge process Improving prediction using neural networks. Water Research 29(4), 995-1004.
- Cowan, C.E., Larson, R.J., Feijtel, T.C.J. et Rapaport, R.A. (1993) An improved model for predicting the fate of consumer product chemicals in wastewater treatment plants. Water Research 27(4), 561-573.
- Crear, R. (2001) Engineering and Design: Precipitation/Coagulation/Flocculation. Department of the Army, U.S. Army Corps of Engineers, Manual No. 1110-1-4012, Washington, DC.
- Davies, B.E. (1987) Consequences of environmental contamination by lead mining in Wales. Hydrobiologia 149, 213-220.
- Decision No 2455/2001/EC (2001) Decision No 2455/2001EC of the European Parliament and of the Council of 20 November 2001. The List of Priority Substances in the Field of Water Policy and Amending Directive 2000/60/EC. Official Journal of the European Communities.
- Duffus, J.H. (2002) "Heavy metals" A meaningless term? (IUPAC technical report). Pure and Applied Chemistry 74(5), 793-807.
- Eadsforth, C.V. (1983) Diphenylol propane: Determination of the n-Octanol/Water Partition Coefficient Using a Reverse-Phase HPLC Method. Shell Research Limited, Sittingbourne Research Centre, Sittingbourne, Kent, UK.

Environnement Canada (1976) Lignes directrices concernant la qualité des effluents et le traitement des eaux usées dans les établissements fédéraux = Guidelines for effluent quality and wastewater treatment at federal establishments. Service de Protection de l'Environnement, Ottawa, Canada.

Environnement Canada (1999) Loi C-33: Loi Canadienne sur la Protection de l'Environnement.

- EPA (2001) Priority Pollutants. U.S. Environmental Protection Agency. Code of Federal Regulations. Title 40, Part 423, Appendix A.
- EPA (2002) Hazardous Wastes from Non-specific Sources. U.S. Environmental Protection Agency. Code of Federal Regulations. Title 40, Part 261, Subpart C.
- European Chemicals Bureau (2003) 4,4'-Isopropylidenediphenol (Bisphenol A). European Union Risk Assessment Report. Institute for Health and Consumer Protection, European Commission, 302 pp.
- Falbe, J. et Regitz, M. (éd.) (1996) Römpp Chemie Lexikon. Georg Thieme Verlag, Weinheim, Germany. (en allemand)
- Fatone, F., Bolzonella, D., Battistoni, P. et Cecchi, F. (2005) Removal of nutrients and micropollutants treating low loaded wastewaters in a membrane bioreactor operating the automatic alternate-cycles process. Desalination 183(1-3), 395-405.
- Gernaey, K., Vanrolleghem, P.A. et Lessard, P. (2001) Modeling of a reactive primary clarifier. Water Science and Technology 43(7), 73-81.
- Gode, F. et Pehlivan, E. (2003) A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. Journal of Hazardous Materials 100(1-3), 231-243.
- Goldstone, M.E., Kirk, P.W.W. et Lester, J.N. (1990a) The behavior of heavy metals during wastewater treatment .1. Cadmium, chromium and copper. Science of the Total Environment 95, 233-252.
- Goldstone, M.E., Kirk, P.W.W. et Lester, J.N. (1990b) The behavior of heavy metals during wastewater treatment .2. Lead, nickel and zinc. Science of the Total Environment 95, 253-270.
- Govind, R., Lai, L. et Dobbs, R. (1991) Integrated model for predicting the fate of organics in wastewater treatment plants. Environmental Progress 10, 13-23.
- Grady, C.P.L., Daigger, G.T. et Lim, H.C. (1999) Biological Wastewater Treatment. Marcel Dekker, New York, NY.
- Grant, R. et Grant, C. (éd.) (1987) Grant & Hackh's chemical dictionary: American, international, European, and British usage: containing the words generally used in chemistry, and many of the terms used in the related sciences of physics, medicine, engineering, biology, pharmacy, astrophysics, agriculture, mineralogy, etc., based on recent scientific literature. McGraw-Hill, New York, NY.
- Groshart, C.P., Okkerman, P.C. et Pijnenburg, A.M.C.M. (2001) Report: RIKZ/2001.027. Chemical Study on Bisphenol A. National Institute for Coastal and Marine Management, La Haye, Pays-Bas.

- Gupta, V.K. et Ali, I. (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Separation and Purification Technology 18(2), 131-140.
- Henze, M., Gujer, W., Mino, T. et van Loosdrecht, M. (2000) Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, Londres, UK.
- Hetherington, L.E., Brown, T.J., Benham, A.J., Bide, T., Lusty, P.A.J., Hards, V.L., Hannis, S.D. et Idoine, N.E. (2008) World Mineral Production 2002-06. British Geological Survey, Keyworth, Nottingham, UK.
- Howe, S.R. et Borodinsky, L. (1998) Potential exposure to bisphenol A from food-contact use of polycarbonate resins. Food Additives and Contaminants 15(3), 370-375.
- Jacobsen, B.N. et Arvin, E. (1996) Biodegradation kinetics and fate modelling of pentachlorophenol in bioaugmented activated sludge reactors. Water Research 30(5), 1184-1194.
- Kang, J.H., Kito, K. et Kondo, F. (2003) Factors influencing the migration of bisphenol A from cans. Journal of Food Protection 66(8), 1444-1447.
- Kang, J.H. et Kondo, F. (2003) Determination of bisphenol A in milk and dairy products by high-performance liquid chromatography with fluorescence detection. Journal of Food Protection 66(8), 1439-1443.
- Kang, J.H., Kondo, F. et Katayama, Y. (2006) Human exposure to bisphenol A. Toxicology 226(2-3), 79-89.
- Karickhoff, S.W. (1981) Semiempirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10(8), 833-846.
- Karvelas, M., Katsoyiannis, A. et Samara, C. (2003) Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 53(10), 1201-1210.
- Kjølholt, J., Nielsen, P. et Stuer-Lauridsen, F. (2003) Endocrine disrupting compounds and pharmaceuticals in wastewater (In Danish: Hormonforstyrrende stoffer og laegemidler i spildevand). Danish Environmental Protection Agency, Environmental Project No. 799, 46 pp, Danemark.
- Krishnan, A.V., Stathis, P., Permuth, S.F., Tokes, L. et Feldman, D. (1993) Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132(6), 2279-2286.
- Kurniawan, T.A., Chan, G.Y.S., Lo, W.H. et Babel, S. (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal 118(1-2), 83-98.

- Lee, H.B., Peart, T.E., Chan, J. et Gris, G. (2004) Occurrence of endocrine-disrupting chemicals in sewage and sludge samples in Toronto, Canada. Water Quality Research Journal of Canada 39(1), 57-63.
- Lessard, P. (1989) Operational river quality management: Control of storm water discharges. Ph.D., Imperial College of Science, Technology and Medicine, Londres, UK.
- Lessard, P. et Beck, M.B. (1993) Dynamic modelling of the activated sludge process: A case study. Water Research 27(6), 963-978.
- Lide, D.R. (2008) CRC Handbook of Chemistry and Physics. Taylor & Francis Group, Boca Raton, FL.
- Lindblom, E. (2009) Dynamic modelling of micropollutants in the integrated urban wastewater system. Ph.D., Technical University of Denmark, Lyngby, Copenhague, Danemark.
- Lindblom, E., Gernaey, K.V., Henze, M. et Mikkelsen, P.S. (2006) Integrated modelling of two xenobiotic organic compounds. Water Science and Technology 54(6-7), 213-221.
- Lindblom, E., Press-Kristensen, K., Vanrolleghem, P.A., Mikkelsen, P.S. et Henze, M. (2009) Dynamic experiments with high bisphenol-A concentrations modelled with an ASM model extended to include a separate XOC degrading microorganism. Water Research 43(13), 3169-3176.
- Lyman, W.J. (1995) Transport and transformation processes. In: Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. Rand, G.M. (ed), pp. xxi, 1125 p., Taylor & Francis, Washington, D.C.
- Marsalek, J., Maksimovic, C., E., Z. et Price, R. (éd.) (1996) Hydroinformatics Tools for Planning, Design, Operation and Rehabilitation of Sewer Systems. NATO ASI Series, 2. Environnement, Vol. 44, Kluwer Academic Publishers, Dordrecht, Pays-Bas.
- MDDEP (2002) L'eau, la vie, l'avenir : politique nationale de l'eau. Environnement Québec, Québec, Canada.
- MDDEP (2005) Directive 019 sur l'industrie minière. Environnement Québec, Québec, Canada.
- Melcer, H., Bell, J., Thompson, D.J., Yendt, C.M., Kemp, J. et Steel, P. (1994) Modeling volatile organic contaminants' fate in wastewater treatment plants. Journal of Environmental Engineering 120, 588-609.
- Melcer, H., Dold, P.L., Jones, R.M., Bye, C.M., Takács, I., Stensel, H.D., Wilson, A.W., Sun, P. et Bury, S. (2003) Methods for Wastewater Characterization in Activated Sludge Modeling. Water Environment Research Foundation et IWA Publishing, 99-WWF-3, Alexandria, VA.

- Mikkelsen, P.S., Holten Lützhøft, H.-C., Eriksson, E., Ledin, A., Donner, E., Scholes, L., Revitt, M., Lecloux, A., Wickman, T., Atanasova, N., Kompare, B. et Banovec, P. (2007) Source control options for reducing emission of priority pollutants from urban areas Source characterisation. In: Proc. 11th Int. Conf. on Diffuse Pollution and 1st Joint Meeting of the IWA Diffuse Pollution and Urban Drainage Specialist Groups, Belo Horisonte, Brésil, 26-31 août 2007.
- Monteith, H.D., Bell, J.P., Thompson, D.J., Kemp, J., Yendt, C.M. et Melcer, H. (1993) Modelling the fate of metals in municipal water pollution control plants. Water Environment Research 65, 129-137.
- Orhon, D. et Cokgor, E.U. (1997) COD fractionation in wastewater characterization The state of the art. Journal of Chemical Technology and Biotechnology 68(3), 283-293.
- Pesavento, M., Profumo, A., Alberti, G. et Conti, F. (2003) Adsorption of lead(II) and copper(II) on activated carbon by complexation with surface functional groups. Analytica Chimica Acta 480(1), 171-180.
- Peters, R.W. et Ferg, J. (1987) The dissolution-leaching behavior of metal hydroxide-metal sulfide sludges from plating wastewaters. Hazardous Waste & Hazardous Materials 4(4), 325-355.
- Phipps, D.A. (1981) Chemistry and biochemistry of trace metals in biological systems. In: Effect of Heavy Metal Pollution on Plants. Lepp, N.E. (ed), Applied Science Publishers, Barking, UK.
- Press-Kristensen, K. (2007) Biodegradation of xenobiotic organic compounds in wastewater treatment plants. Ph.D., Technical University of Denmark, Lyngby, Copenhague, Danemark.
- Qi, B.C. et Aldrich, C. (2008) Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresource Technology 99(13), 5595-5601.
- Rand, G.M., Wells, P.G. et McCarty, L.S. (1995) Introduction to aquatic toxicology. In: Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. Rand, G.M. (ed), pp. xxi, 1125 p., Taylor & Francis, Washington, D.C.
- Rengaraj, S., Yeon, K.H. et Moon, S.H. (2001) Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials 87(1-3), 273-287.
- Sapari, N., Idris, A. et AbHamid, N.H. (1996) Total removal of heavy metal from mixed plating rinse wastewater. Desalination 106(1-3), 419-422.
- Sciban, M., Radetic, B., Kevresan, D. et Klasnja, M. (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology 98(2), 402-409.
- Scott, T. et Mercer, E.I. (1997) Concise Encyclopedia Biochemistry and Molecular Biology. Walter de Gruyter, Berlin; New York.

- Senjen, R. et Azoulay, D. (2008) Blissfully unaware of bisphenol A: Reasons why regulators should live up to their responsibilities. Friends of the Earth Europe, Bruxelles, Belgique.
- Shugart, I. et Rosenberg, M. (2008) Publication de la décision finale après évaluation préalable d'une substance le 4,4'-Isopropylidènediphénol (bisphénol-A), numéro de CAS 80-05-7 inscrite sur la Liste intérieure [paragraphe 77(6) de la Loi canadienne sur la protection de l'environnement (1999)], Ottawa, Canada.
- Staples, C.A., Woodburn, K., Caspers, N., Hall, A.T. et Klecka, G.M. (2002) A weight of evidence approach to the aquatic hazard assessment of bisphenol A. Human and Ecological Risk Assessment 8(5), 1083-1105.
- Stasinakis, A.S., Gatidou, G., Mamais, D., Thomaidis, N.S. et Lekkas, T.D. (2008) Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Research 42(6-7), 1796-1804.
- Stavrakakis, C., Hequet, V., Faur, C., Andres, Y., Le Cloirec, P. et Colin, R. (2008) Biodegradation of endocrine disrupters: Case of 17 beta-estradiol and bisphenol A. Environmental Technology 29(3), 269-277.
 - Streit, B. (1994) Lexikon Ökotoxikologie. VCH, Weinheim, Germany. (en allemand)
- Struijs, J., Stoltenkamp, J. et Van de Meent, D. (1991) A spreadsheet-based box-model to predict the fate of xenobiotics in a municipal wastewater treatment plant. Water Research 25(7), 891-900.
- Takács, I., Patry, G.G. et Nolasco, D. (1991) A dynamic model of the clarification-thickening process. Water Research 25(10), 1263-1271.
- Ternes, T.A., Janex-Habibi, M.-L., Knacker, T., Kreuzinger, N. et Siegrist, H. (2004) Assessment of Technologies for the Removal of Pharmaceuticals and Personal Care Products in Sewage and Drinking Water Facilities to Improve the Indirect Potable Water Reuse. Rapport final POSEIDON (EVK1-CT-2000-00047).
- Vanhooren, H., Meirlaen, J., Amerlinck, Y., Claeys, F., Vangheluwe, H. et Vanrolleghem, P.A. (2003) WEST: modelling biological wastewater treatment. Journal of Hydroinformatics 05(1), 27-50.
- Venugopal, B. et Luckey, T.P. (1975) Toxicology of nonradioactive heavy metals and their salts. In: Heavy Metal Toxicity, Safety, and Hormology. Luckey, T.D., Venugopal, B. et Hutcheson, D. (eds), pp. 4-73, George Thieme, Stuttgart, Allemagne.
- Zincke, T. (1905) Ueber die Einwirkung von Brom und von Chlor auf Phenole: Substitutionsproducte, Pseudobromide und Pseudochloride. Justus Liebigs Annalen der Chemie 343(1), 75-99. (en allemand)

ANNEXE A

DONNÉES UTILISÉES, BISPHÉNOL A

Tableau A - 1. Données recueillies pour la procédure de calibration du Bisphénol A.

Tableau A -	· 1. Données r	ecueillies pour la pr	océdure de ca	libration du Bisphéi	nol A.
Date/Heure	BPA (μg/l)	Date/Heure	BPA (μg/l)	Date/Heure	BPA (μg/l)
2006-10-23 10:30	5.1	2006-11-02 10:45	554	2006-11-14 08:05	548
2006-10-23 10:30	5.4	2006-11-02 10:45	557	2006-11-14 08:05	579
2006-10-24 07:55	223	2006-11-02 13:30	529	2006-11-14 10:30	598
2006-10-24 07:55	215	2006-11-02 13:30	557	2006-11-14 10:30	564
2006-10-24 10:15	239	2006-11-03 07:55	510	2006-11-14 13:30	638
2006-10-24 10:15	315	2006-11-03 07:55	528	2006-11-14 13:30	603
2006-10-24 13:25	336	2006-11-03 10:10	552	2006-11-15 08:15	571
2006-10-24 13:25	191	2006-11-03 10:10	521	2006-11-15 08:15	561
2006-10-25 09:30	649	2006-11-03 13:15	496	2006-11-15 10:45	625
2006-10-25 09:30	537	2006-11-03 13:15	501	2006-11-15 10:45	591
2006-10-25 10:55	545	2006-11-06 08:25	504	2006-11-15 13:15	574
2006-10-25 10:55	498	2006-11-06 08:25	540	2006-11-16 10:40	569
2006-10-25 13:25	425	2006-11-06 13:15	526	2006-11-16 10:40	530
2006-10-25 13:25	631	2006-11-06 13:15	524	2006-11-16 13:20	544
2006-10-26 08:20	624	2006-11-07 10:25	466	2006-11-16 13:20	542
2006-10-26 08:20	611	2006-11-07 10:25	436	2006-11-17 08:20	530
2006-10-26 13:50	750	2006-11-07 13:30	546	2006-11-17 08:20	510
2006-10-26 13:50	769	2006-11-07 13:30	498	2006-11-17 10:30	519
2006-10-27 08:00	790	2006-11-08 08:15	532	2006-11-17 10:30	518
2006-10-27 08:00	815	2006-11-08 08:15	527	2006-11-17 13:15	517
2006-10-27 10:40	699	2006-11-08 10:20		2006-11-21 10:05	465
2006-10-27 10:40	766	2006-11-08 10:20	468	2006-11-21 10:05	454
2006-10-27 13:15	776	2006-11-08 13:20	468	2006-11-21 13:40	401
2006-10-27 13:15	809	2006-11-08 13:20	479	2006-11-21 13:40	436
2006-10-30 08:30	826	2006-11-09 08:00	464	2006-11-22 07:50	443
2006-10-30 08:30	796	2006-11-09 08:00	439	2006-11-22 07:50	430
2006-10-30 11:00	728	2006-11-09 08:30	468	2006-11-22 10:20	446
2006-10-30 11:00	741	2006-11-09 08:30		2006-11-22 10:20	420
2006-10-30 13:15	781	2006-11-09 11:20		2006-11-22 12:55	397
2006-10-30 13:15	773	2006-11-09 11:20		2006-11-22 12:55	402
2006-10-31 08:10	803	2006-11-09 13:20		2006-11-23 07:50	369
2006-10-31 08:10	795	2006-11-09 13:20		2006-11-23 07:50	386
2006-10-31 11:00	504	2006-11-10 08:10		2006-11-23 10:55	405
2006-10-31 11:00	523	2006-11-10 08:10	491	2006-11-23 10:55	381
2006-10-31 13:15	503	2006-11-10 10:20	506	2006-11-23 13:20	388
2006-10-31 13:15	560	2006-11-10 10:20	525	2006-11-23 13:20	393
2006-11-01 08:35	544	2006-11-10 13:20	508	2006-11-24 07:55	393
2006-11-01 08:35	560	2006-11-10 13:20	499	2006-11-24 07:55	406
2006-11-01 11:00	507	2006-11-13 08:15	620	2006-11-24 11:15	323
2006-11-01 11:00	482	2006-11-13 08:15	586	2006-11-24 11:15	383
2006-11-01 13:15	572	2006-11-13 10:25	584	2006-11-24 12:50	417
2006-11-01 13:15	547	2006-11-13 10:25	610	2006-11-24 12:50	391
2006-11-02 08:10	524	2006-11-13 13:20	605	2006-11-27 07:55	312
2006-11-02 08:10	506	2006-11-13 13:20	627	2006-11-27 07:55	324

Date/Heure	BPA (μg/l)	Date/Heure	BPA (μg/l)	Date/Heure	BPA (μg/l)
2006-11-27 10:25	333	2006-11-30 08:05	279	2006-12-05 13:20	23.0
2006-11-27 10:25	285	2006-11-30 08:05	269	2006-12-05 13:20	21.9
2006-11-27 13:15	330	2006-11-30 10:30	268	2006-12-06 08:05	5.1
2006-11-27 13:15	318	2006-11-30 10:30	254	2006-12-06 08:05	5.0
2006-11-28 08:15	315	2006-11-30 13:20	270	2006-12-06 10:45	4.0
2006-11-28 08:15	302	2006-11-30 13:20	238	2006-12-06 10:45	4.0
2006-11-28 10:25	247	2006-12-01 08:10	222	2006-12-06 13:15	3.6
2006-11-28 10:25	269	2006-12-01 08:10	209	2006-12-06 13:15	3.9
2006-11-28 13:15	305	2006-12-01 10:25	168	2006-12-07 08:35	27.7
2006-11-28 13:15	292	2006-12-01 10:25	179	2006-12-07 08:35	27.9
2006-11-29 08:20	296	2006-12-01 13:30	141	2006-12-07 10:45	22.0
2006-11-29 08:20	287	2006-12-01 13:30	140	2006-12-07 10:45	21.1
2006-11-29 10:10	222	2006-12-05 08:15	57.6	2006-12-07 13:15	17.0
2006-11-29 10:10	201	2006-12-05 08:15	54.4	2006-12-07 13:15	16.8
2006-11-29 13:10	283	2006-12-05 10:25	43.2	2006-12-08 08:00	7.4
2006-11-29 13:10	280	2006-12-05 10:25	41.3	2006-12-08 08:00	6.7

Tableau A - 2. Données recueillies pour la procédure de validation du Bisphénol A.

Date/Houre BRA (ug/l) Date/Houre BRA (ug/l)

Date/Heure	BPA (μg/l)	Date/Heure	BPA (μg/l)
2005-06-14 20:00	43.9	2005-06-19 20:00	98.2
2005-06-15 08:00	184	2005-06-19 20:00	84.2
2005-06-15 08:00	191.9	2005-06-20 08:00	30
2005-06-15 11:00	169.3	2005-06-20 08:00	17
2005-06-15 15:00	204.8	2005-06-20 11:00	40
2005-06-15 15:00	202.4	2005-06-20 11:00	39
2005-06-15 20:00	227.9	2005-06-20 15:00	61
2005-06-15 20:00	236.9	2005-06-21 20:00	40
2005-06-16 08:00	333.2	2005-06-21 20:00	29.7
2005-06-16 08:00	373.3	2005-06-23 20:00	9.5
2005-06-16 11:00	341.4	2005-06-25 20:00	7
2005-06-16 11:00	342.1	2005-06-30 20:00	3.1
2005-06-16 15:00	245	2005-06-30 20:00	5.9
2005-06-16 15:00	407.2	2005-07-02 20:00	3
2005-06-17 08:00	474	2005-07-02 20:00	4
2005-06-17 08:00	396.3	2005-07-05 20:00	21.1
2005-06-17 11:00	433.1	2005-07-07 20:00	16
2005-06-17 11:00	444.6	2005-07-10 20:00	11.6
2005-06-16 20:00	302	2005-07-10 20:00	3
2005-06-17 20:00	244	2005-07-12 20:00	2
2005-06-17 20:00	256	2005-07-14 20:00	2
2005-06-18 20:00	145	2005-07-15 20:00	1.3
2005-06-18 20:00	142	2005-07-16 20:00	2

Tableau A - 3. Fichier d'entrée pour le régime permanent, la calibration et la validation.

		Régime permanent	Calibration	Va	lidation	
t	j	0	0	0	60	74
in_1(H2O)	m3/j	10	12	10	10	10
in_1(S_I)	g/m3	30	30	30	30	30
in_1(S_S)	g/m3	69.5	69.5	69.5	69.5	69.5
in_1(S_XOC)	g/m3	0.0087	0.842	0.1087	0.0087	1.0087
in_1(S_O)	g/m3	0	0	0	0	0
in_1(S_NO)	g/m3	0	0	0	0	0
in_1(S_NH)	g/m3	31.56	31.56	31.56	31.56	31.56
in_1(S_ND)	g/m3	6.95	6.95	6.95	6.95	6.95
in_1(S_ALK)	g/m3	15	15	15	15	15
in_1(X_I)	g/m3	60	60	60	60	60
in_1(X_S)	g/m3	250	250	250	250	250
in_1(X_BH)	g/m3	28.17	28.17	28.17	28.17	28.17
in_1(X_BA)	g/m3	0	0	0	0	0
in_1(X_P)	g/m3	0	0	0	0	0
in_1(X_ND)	g/m3	10.59	10.59	10.59	10.59	10.59
in_1(X_XOC)	g/m3	0	0	0	0	0
in_1(X_BXOC)	g/m3	0	0	0	0	0

ANNEXE B

DONNÉES UTILISÉES, MÉTAUX LOURDS

Tableau B - 1. Données mesurées à l'entrée du clarificateur primaire.

Tomro	Dábir	VTCC	COD			U D - 1. 1						_		Dh tot	Dh acl	7n +c+	7n oct
Temps						Cd_tot	_	_	_	_	_	_	_	_	_	_	
h	m³/h	g/m³	g/m³	_	_	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	864	1530	2380	242	53.1	7.210		0.150		1.950		0.092		0.405		1.240	
6	900	1740	664	228	53.1	7.330		0.022		0.550		0.019		0.011		0.700	
9	864	2195	2690	465	53.1	4.570		0.315		2.920		0.202		0.100		3.100	
12	864	3150	2672	343	57.0	12.600		0.319		2.970		0.206		0.800		1.940	
15	864	698	675	332	25.1	8.000		0.042		0.320		0.048		0.070		0.170	
18	900	284	803	345	22.0	3.460		0.026		0.280		0.015		0.090		0.625	
21	648	160	627	331	27.3	2.530		0.019		0.260		0.017		0.047		0.700	
24	432	146	430	296	24.7	1.330		0.022		0.170		0.012		0.021		0.130	
27	792	288	576	379	31.7	1.320		0.015		0.220		0.070		0.041		0.140	
30	936	296	952	354	29.3	2.280		0.021		0.550		0.024		0.056		0.300	
33	864	536	806	278	29.5	2.130		0.037		0.920		0.055		0.082		0.725	
36	936	360	884	438	26.5	3.600		0.132		0.330		0.072		0.155		0.560	
39	954	302	728	394	20.8	1.540		0.044		0.300		0.051		0.070		0.200	
42	900	344	693	323	25.5	3.190		0.026		0.300		0.022		0.028		0.570	
45	720	180	599	300	24.0	1.430		0.047		0.230		0.017		0.039		0.150	
48	540	236	433	194	25.6	1.460		0.005		0.150		0.012		0.011		0.350	
51	900	1050	1124	177	23.4	7.140		0.068		0.900		0.040		1.550		0.860	
54	1008	2010	1633	290	33.9	9.180		0.192		1.610		0.101		1.766		1.420	
57	972	1088	616	248	23.4	2.900		0.041		0.350		0.027		0.034		0.300	
60	864	350	962	536	26.7	1.900		0.033		0.310		0.026		0.028		0.240	
63	864	331	1057	631	28.3	3.460		0.046		0.290		0.036		0.031		0.755	
66	1008	466	648	304	19.5	1.200		0.016		0.270		0.025		0.058		0.780	
69	828	218	551	321	21.7	2.090		0.020		0.200		0.025		0.048		0.140	
72	576	206	545	285	27.1	4.570		0.005		0.180		0.016		0.021		0.130	
75	576	288	359	219	24.7	8.020		0.004		0.140		0.018		0.014		0.110	
78	1008	426	594	253	31.8	3.500		0.127		0.260		0.016		0.024		0.580	
81	936	408	672	229	30.6	2.200		0.016		0.450		0.022		0.038		0.160	
84	864	380	626	213	27.4	1.000		0.008		0.310		0.057		0.031		0.130	
87	864	266	536	200	25.1	1.500		0.007		0.210		0.013		0.048		0.150	

90	828	266	654	260	24.0	1.710	0.006	0.250	0.012	0.016	0.080
93	648	281	330	206	32.3	0.760	0.043	0.190	0.017	0.014	0.120
96	540	183	340	212	26.9	1.110	0.004	0.160	0.034	0.011	0.340
99	540	170	310	208	24.9	1.100	0.003	0.130	0.014	0.031	0.280
102	936	326	502	198	25.8	0.770	0.004	0.280	0.016	0.014	0.130
105	936	416	709	229	26.9	1.100	0.008	0.310	0.019	0.028	0.140
108	756	328	642	245	27.7	0.950	0.007	0.240	0.015	0.029	0.190
111	720	268	613	225	28.0	0.480	0.004	0.240	0.018	0.020	0.160
114	792	322	482	177	23.9	0.660	0.004	0.190	0.012	0.016	0.460
117	648	234	535	236	26.5	0.670	0.003	0.160	0.018	0.018	0.375
 120	576	238	405	161	23.5	0.480	0.003	0.150	0.080	0.029	0.900
123	720	264	798	488	24.5	0.880	0.004	0.140	0.017	0.021	0.100
126	1008	528	861	527	34.0	1.730	0.036	0.440	0.016	0.065	0.760
129	1044	2624	2106	402	29.7	9.670	0.138	1.700	0.122	0.883	1.180
132	900	556	840	384	28.6	1.060	0.037	0.380	0.040	0.048	0.760
135	864	428	599	368	28.3	1.730	0.052	0.390	0.060	0.096	0.770
138	864	350	674	292	23.3	2.800	0.024	0.350	0.034	0.032	0.710
141	648	252	565	246	27.6	0.930	0.025	0.300	0.020	0.042	0.530
 144	504	191	421	230	28.1	0.930	0.005	0.200	0.013	0.019	0.510
147	756	2544	1669	451	33.9	5.410	0.138	1.650	0.088	0.220	0.800
150	1008	500	773	343	36.4	0.980	0.036	0.380	0.016	0.034	0.200
153	900	586	716	321	31.7	2.280	0.049	0.370	0.022	0.041	0.210
156	864	340	878	397	34.2	3.710	0.048	0.360	0.050	0.057	0.270
159	900	306	703	360	28.2	2.900	0.068	0.360	0.081	0.054	0.760
162	864	390	717	293	27.3	1.460	0.019	0.230	0.017	0.035	0.575
165	720	220	557	184	34.2	0.800	0.010	0.230	0.015	0.024	0.590
168	504	312	544	331	26.9	0.770	0.009	0.210	0.016	0.018	0.170
171	900	268	500	238	31.0	0.770	0.009	0.280	0.024	0.016	0.080
174	1044	2616	2172	361	54.3	8.030	0.187	2.450	0.104	0.480	1.200
177	900	398	756	283	30.6	2.860	0.047	0.390	0.037	0.030	0.210
180	864	364	740	360	33.3	2.670	0.073	0.350	0.049	0.028	0.240
183	864	310	705	430	27.7	2.530	0.073	0.430	0.060	0.020	0.150

186	828	330	791	494	25.7	1.620		0.037		0.330		0.059		0.034		0.270	
189	648	254	470	237	34.1	0.880		0.104		0.250		0.018		0.019		0.520	
192	936	346	1177	889	16.6	3.620		0.030		0.130		0.015		0.020		0.070	
195	900	1793	3135	260	13.4	6.720	0.20	0.220	20.2	1.870	12.5	0.116	25	0.535	3.4	1.460	104
198	1224	670	832	257	46.0	2.310	0.40	0.046	14.0	0.440	38.0	0.037	11	0.113	3	0.410	70
201	1440	840	1000	261	25.6	4.910	0.50	0.069	11.6	0.770	15.0	0.072	33	0.254	2.9	0.600	91
204	1008	1732	2173	464	34.7	7.020	0.80	0.176	8.2	2.030	12.5	0.137	58	0.063	4.1	1.000	135
207	972	308	877	481	28.7	1.540	0.60	0.067	46.0	0.540	65.0	0.044	56	0.070	2.5	0.320	104
210	864	340	744	408	30.1	1.100	1.00	0.037	20.2	0.240	22.5	0.039	28	0.028	1.9	0.170	88
213	684	282	621	334	25.8	0.660	0.40	0.025	10.8	0.160	15.0	0.039	16	0.023	1.7	0.400	48
216	504	242	530	335	31.0	0.660	0.80	0.021	16.2	0.150	13.0	0.022	16	0.014	1.3	0.140	61
219	720	1516	2263	331	25.9	6.310	0.80	0.132	4.4	1.700	7.5	0.088	19	0.016	1.5	0.880	98
222	1188	1472	1373	403	48.0	2.620	1.50	0.053	8.8	0.860	9.0	0.050	22	0.033	1.5	0.470	80
225	1044	418	814	307	29.0	1.530	5.20	0.032	16.8	0.340	42.5	0.028	36	0.054	6.2	0.220	200
228	900	316	1017	547	29.7	2.480	1.10	0.026	15.4	0.680	74.0	0.055	30	0.073	5.6	0.290	118
231	900	406	1163	768	32.9	4.940	1.10	0.076	29.0	0.410	39.0	0.036	28	7.700	1160	0.250	138
234	828	334	1380	664	24.0	2.570	0.40	0.064	29.0	0.260	21.0	0.025	21	0.570	30	1.090	94
237	684	260	652	358	29.5	0.950	0.60	0.035	25.0	0.240	11.0	0.010	7	0.330	8	0.260	70
240	540	368	847	264	31.7	0.660	0.50	0.007	56.0	0.220	10.0	0.067	12	0.130	6	0.170	94

Tableau B - 2. Données mesurées au surnageant du clarificateur primaire.

						1 B - 2. Do								1	ı		1
Temps		XTSS	1	CODs		_	Cd_sol	Cr_tot	Cr_sol	Cu_tot	Cu_sol	_	Ni_sol	_	Pb_sol	_	Zn_sol
h	m³/h	g/m³	g/m³	g/m³	g/m³	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	864																
6	900																
9	864																
12	864																
15	864																
18	900																
21	648																
24	432																
27	792																
30	936	84	468	320	26.9	0.760		0.018		0.180		0.016		0.020		0.100	
33	864	150	455	234	26.9	1.030		0.015		0.242		0.013		0.015		0.180	
36	936	215	619	330	33.8	1.340		0.060		0.312		0.018		0.035		0.174	
39	954	248	574	306	31.0	1.530		0.045		0.270		0.027		0.038		0.200	
42	900	186	542	311	31.4	1.030		0.040		0.210		0.014		0.037		0.136	
45	720	100	462	277	29.9	0.800		0.033		0.165		0.018		0.018		0.130	
48	540	170	492	269	30.6	0.600		0.035		0.140		0.016		0.017		0.100	
51	900	125	373	283	30.5	0.440		0.027		0.127		0.013		0.014		0.090	
54	1008	184	366	235	32.1	0.730		0.017		0.167		0.013		0.027		0.088	
57	972	280	563	259	33.5	0.830		0.019		0.275		0.017		0.031		0.140	
60	864	152	570	270	30.9	1.280		0.022		0.270		0.017		0.029		0.166	
63	864	166	571	342	31.3	1.020		0.021		0.240		0.002		0.025		0.160	
66	1008	129	542	381	31.4	1.150		0.028		0.223		0.022		0.025		0.088	
69	828	128	532	350	26.4	0.850		0.018		0.165		0.012		0.021		0.112	
72	576	114	546	317	26.2	0.480		0.017		0.145		0.012		0.020		0.088	
75	576	166	465	303	27.0	0.480		0.014		0.125		0.013		0.018		0.094	
78	1008	187	458	297	24.7	0.510		0.011		0.162		0.010		0.021		0.092	
81	936	140	431	235	29.1	0.600		0.012		0.164		0.017		0.025		0.110	
84	864	144	443	242	29.7	0.700		0.009		0.240		0.018		0.020		0.066	
87	864	132	421	237	31.2	0.700		0.008		0.187		0.022		0.016		0.090	
90	828	107	419	205	30.0	0.570		0.003		0.157		0.015		0.012		0.080	
93	648	134	373	182	30.6	0.360		0.002		0.142		0.012		0.009		0.056	

96	540	100	303	189	31.8	0.440		0.003		0.125		0.012		0.007		0.072	
99	540	98	282	188	29.6	0.440		0.003		0.125		0.010		0.006		0.062	
102	936	128	325	187	25.1	0.240		0.004		0.137		0.010		0.015		0.050	
105	936	170	334	195	31.9	0.510		0.004		0.142		0.009		0.016		0.080	
108	756	156	381	211	27.9	0.320		0.003		0.133		0.008		0.012		0.080	
111	720	157	397	220	30.9	0.510		0.003		0.145		0.010		0.010		0.082	
114	792	139	382	221	27.2	0.540		0.002		0.142		0.010		0.008		0.068	
117	648	161	365	211	27.7	0.540		0.001		0.128		0.006		0.009		0.042	
120	576	131	326	202	27.9	0.380		0.001		0.113		0.006		0.007		0.072	
123	720	100	326	179	27.9	0.250		0.001		0.132		0.007		0.009		0.090	
126	1008	134	432	227	29.1	0.450		0.004		0.125		0.009		0.014		0.074	
129	1044	168	472	295	32.5	0.440		0.013		0.197		0.035		0.016		0.088	
132	900	262	504	283	31.4	0.640		0.019		0.227		0.021		0.023		0.148	
135	864	261	525	319	31.6	1.010		0.023		0.242		0.023		0.037		0.143	
138	864	160	471	312	30.5	0.860		0.028		0.195		0.018		0.028		0.104	
141	648	118	480	248	29.4	2.130		0.025		0.192		0.023		0.029		0.114	
144	504	97	534	276	30.1	1.010		0.023		0.190		0.020		0.022		0.140	
147	756	84	416	256	33.6	0.700		0.018		0.178		0.020		0.024		0.094	
150	1008	112	509	336	29.8	0.700		0.014		0.185		0.012		0.022		0.082	
153	900	218	502	328	35.0	0.730		0.015		0.172		0.012		0.019		0.084	
156	864	124	480	295	36.7	0.800		0.017		0.172		0.012		0.018		0.104	
159	900	143	513	339	34.8	1.010		0.025		0.200		0.026		0.021		0.100	
162	864	150	516	304	32.1	1.310		0.028		0.163		0.045		0.020		0.158	
165	720	132	476	314	29.5	0.760		0.029		0.150		0.020		0.015		0.046	
168	504	107	412	268	28.1	0.730		0.021		0.137		0.023		0.013		0.110	
171	900	110	417	254	30.1	0.640		0.025		0.130		0.017		0.012		0.108	
174	1044	144	412	272	28.6	0.510		0.017		0.150		0.012		0.018		0.106	
177	900	188	473	260	37.6	0.800		0.013		0.205		0.016		0.023		0.078	
180	864	191	492	282	35.7	1.210		0.020		0.207		0.020		0.022		0.124	
183	864	148	488	299	35.0	0.960		0.023		0.170		0.023		0.020		0.114	
186	828	151	513	315	33.4	1.180		0.028		0.216		0.034		0.018		0.120	
189	648	168	466	356	34.2	0.830		0.026		0.185		0.033		0.016		0.092	
192	936	110	346	296	31.7	0.800		0.023		0.155		0.024		0.010		0.110	
195	900	135	667	338	27.1	0.600	0.70	0.023	20.6	0.120	6.0	0.024	23	0.009	2.2	0.058	104

198	1224	151	435	220	25.7	0.670	0.50	0.016	11.6	0.170	5.0	0.020	18	0.018	2.1	0.084	86
201	1440	163	473	259	31.6	0.860	0.20	0.014	7.4	0.167	11.0	0.021	19	0.041	3.6	0.138	99
204	1008	155	470	284	30.5	1.080	0.30	0.014	9.4	0.166	15.0	0.023	24	0.050	5.9	0.113	122
207	972	224	565	361	29.1	1.210	0.20	0.019	11.9	0.220	11.0	0.038	32	0.043	3.6	0.174	110
210	864	187	546	349	27.7	0.910	0.75	0.024	18.8	0.210	15.0	0.035	48	0.023	4.7	0.122	112
213	684	129	566	367	32.1	0.970	0.10	0.033	28.8	0.162	12.5	0.029	29	0.016	2.7	0.152	88
216	504	124	570	367	31.7	0.800	0.30	0.023	22.2	0.150	10.0	0.026	27	0.015	2.8	0.118	94
219	720	144	532	357	32.7	0.670	1.20	0.024	23.0	0.136	11.0	0.024	29	0.014	2.2	0.100	128
222	1188	144	531	335	33.0	0.700	0.20	0.018	11.6	0.183	5.0	0.022	22	0.022	2	0.088	91
225	1044	192	420	295	37.0	0.730	0.40	0.017	7.6	0.210	8.0	0.025	26	0.023	1.9	0.042	100
228	900	164	528	304	38.4	0.910	0.90	0.016	15.0	0.235	11.0	0.026	24	0.032	2	0.130	128
231	900	161	564	338	38.0	0.850	0.25	0.031	8.0	0.230	15.0	0.033	24	0.036	2.5	0.162	84
234	828	154	593	449	31.6	1.410	0.30	0.049	17.8	0.320	25.0	0.037	27	1.110	190	0.384	145
237	684	168	661	481	30.0	0.960	3.50	0.028	23.6	0.200	10.0	0.023	22	0.875	120	0.572	136
240	540	170	702	506	31.8	0.760	0.40	0.027	20.4	0.172	11.0	0.020	22	0.720	90	0.285	140

Tableau B - 3. Données mesurées à l'entrée des lignes d'aération

Temps	Débit	XTSS	CODt	CODs							Cu_sol			Pb tot	Pb sol	Zn tot	Zn sol
h	m³/h	g/m³	g/m³	g/m³	g/m³	μ g /l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	911	642	938	122	30.6	2.600		0.075		0.670	. 0	0.035		0.140	. 0	0.270	
6	947	742	704	141	30.6	1.950		0.062		0.590		0.029		0.040		0.530	
9	911	528	720	179	30.6	2.100		0.072		0.640		0.031		0.032		0.680	
12	911	996	962	224	26.7	2.600		0.085		0.740		0.026		0.146		0.230	
15	911	1050	749	223	30.1	7.100		0.101		0.780		0.054		0.180		0.340	
18	947	724	1259	320	28.1	2.900		0.100		0.880		0.034		0.200		0.320	
21	695	1318	1587	294	28.7	2.200		0.168		1.680		0.076		0.350		0.600	
24	479	1132	1554	232	27.4	2.300		0.142		1.380		0.064		0.275		0.460	
27	839	472	832	261	27.5	0.900		0.054		0.450		0.010		0.105		0.180	
30	983	248	875	298	26.7	0.840		0.066		0.580		0.010		0.150		0.240	
33	911	1124	1244	234	32.6	1.000		0.097		0.860		0.021		0.180		0.370	
36	983	660	517	230	32.4	1.200		0.109		0.800		0.039		0.180		0.370	
39	1001	788	1252	262	30.8	1.300		0.120		0.680		0.050		0.108		0.320	
42	947	430	834	253	31.4	1.300		0.082		0.680		0.032		0.130		0.280	
45	767	644	620	239	30.1	1.700		0.128		0.830		0.036		0.150		0.350	
48	587	1074	1301	213	30.6	1.800		0.132		0.980		0.058		0.195		0.400	
51	925	760	994	204	29.8	1.700		0.095		0.760		0.028		0.150		0.350	
54	1033	615	798	229	27.3	0.900		0.060		0.530		0.026		0.100		0.220	
57	997	280	508	229	28.6	2.100		0.220		0.250		0.021		0.038		0.130	
60	889	174	521	235	30.2	0.600		0.025		0.240		0.025		0.032		0.140	
63	889	243	613	322	31.8	0.800		0.028		0.210		0.027		0.035		0.190	
66	1033	204	547	287	31.1	0.900		0.025		0.200		0.022		0.025		0.170	
69	853	156	562	312	26.6	0.800		0.020		0.150		0.016		0.040		0.120	
72	601	124	549	314	26.4	1.500		0.021		0.150		0.020		0.030		0.090	
75	598	192	436	273	26.1	0.900		0.019		0.130		0.016		0.020		0.100	
78	1030	209	479	271	24.7	0.650		0.014		0.130		0.014		0.020		0.120	
81	958	190	408	231	29.2	0.400		0.013		0.170		0.017		0.020		0.150	
84	886	182	464	241	28.0	0.900		0.018		0.290		0.024		0.026		0.120	
87	886	192	408	200	29.8	0.550		0.017		0.230		0.026		0.038		0.120	
90	850	572	354	193	28.7	1.300		0.059		0.690		0.048		0.145		0.160	
93	670	904	1375	140	28.9	0.950		0.128		0.990		0.038		0.165		0.290	

96	562	612	858	171	30.4	1.000		0.073		0.690		0.030		0.100		0.210	
99	576	232	376	172	29.6	0.500		0.011		0.220		0.018		0.025		0.090	
102	972	770	958	144	24.8	1.000		0.080		0.860		0.018		0.165		0.310	
105	972	513	748	160	25.6	0.800		0.054		0.600		0.012		0.090		0.200	
108	792	550	683	148	27.3	0.750		0.055		0.620		0.010		0.115		0.190	
111	756	822	1186	192	28.7	1.000		0.095		0.990		0.043		0.163		0.270	
114	828	542	735	156	27.6	0.700		0.049		0.540		0.024		0.077		0.200	
117	684	726	1060	181	26.1	0.600		0.076		0.830		0.016		0.185		0.300	
120	612	230	788	162	27.5	0.550		0.074		0.710		0.020		0.130		0.300	
123	749	324	538	195	28.2	0.600		0.025		0.350		0.006		0.050		0.160	
126	1037	147	377	198	28.1	0.800		0.010		0.170		0.016		0.040		0.060	
129	1073	267	444	303	32.1	0.900		0.012		0.210		0.020		0.020		0.100	
132	929	274	428	292	31.1	0.700		0.019		0.200		0.026		0.030		0.170	
135	893	296	516	352	30.8	0.800		0.025		0.210		0.027		0.030		0.150	
138	893	226	476	334	29.8	0.750		0.035		0.210		0.030		0.020		0.100	
141	677	316	629	249	27.4	0.950		0.050		0.390		0.033		0.070		0.160	
144	533	548	804	233	29.5	1.300		0.069		0.510		0.033		0.157		0.260	
147	799	452	906	175	29.2	0.900		0.073		0.530		0.039		0.127		0.200	
150	1051	606	913	261	31.8	0.900		0.064		0.600		0.025		0.135		0.220	
153	943	758	1099	302	34.1	0.900		0.069		0.690		0.010		0.115		0.230	
156	907	468	854	320	35.5	0.950		0.067		0.510		0.010		0.970		0.250	
159	943	558	1097	266	34.6	1.350		0.090		0.570		0.044		0.130		0.300	
162	907	740	1253	277	32.2	1.500		0.105		0.760		0.040		0.138		0.330	
165	763	926	1495	281	27.9	1.400		0.114		0.900		0.034		0.217		0.320	
168	547	812	1220	181	29.6	1.200		0.107		0.990		0.043		0.213		0.400	
171	943	854	1375	235	28.6	1.500		0.105		1.020		0.038		0.170		0.320	
174	1087	738	933	234	28.4	1.000		0.091		0.740		0.027		0.135		0.290	
177	943	856	1115	239	39.2	1.100		0.110		0.930		0.020		0.210		0.380	
180	907	514	849	258	36.6	0.800		0.063		0.400		0.040		0.090		0.220	
183	907	574	962	282	31.4	0.800		0.071		0.650		0.026		0.130		0.230	
186	871	654	1168	300	30.5	1.000		0.103		0.700		0.055		0.150		0.390	
189	691	1422	2200	284	31.7	1.500		0.160		1.070		0.081		0.230		0.560	
192	979	1268	2155	248	28.8	1.300		0.180		1.620		0.084		0.350		0.600	
195	932	828	724	256	25.6	1.550	0.20	0.112	8.0	0.670	5.0	0.044	12	0.180	2	0.310	84

198	1256	626	958	262	25.7	1.200	0.50	0.080	10.4	0.670	2.5	0.028	14	0.120	2.3	0.270	120
201	1472	300	544	257	33.5	0.750	0.30	0.020	8.0	0.190	12.5	0.014	20	0.037	3.6	0.170	121
204	1040	179	475	288	29.9	1.050	0.40	0.017	8.8	0.150	13.0	0.016	26	0.055	4.7	0.160	116
207	1004	250	589	309	29.2	1.000	0.60	0.032	10.8	0.320	10.0	0.035	31	0.063	4.4	0.150	90
210	896	658	1447	262	27.5	1.200	0.20	0.060	14.4	0.530	12.8	0.040	27	0.100	3.6	0.270	112
213	716	712	1320	373	28.8	0.900	0.20	0.080	20.6	0.570	12.5	0.030	26	0.097	2.4	0.340	104
216	536	696	874	358	27.5	1.100	0.20	0.082	18.7	0.710	7.5	0.037	21	0.137	2.2	0.190	112
219	763	752	896	273	30.0	1.200	1.00	0.091	20.4	0.650	5.5	0.038	24	0.140	2.5	0.200	112
222	1231	538	1038	288	30.9	1.000	0.40	0.065	13.0	0.560	6.0	0.028	24	0.120	2	0.220	134
225	1087	600	1072	288	30.9	1.200	0.20	0.075	8.0	0.640	6.0	0.028	20	0.089	2	0.310	134
228	943	822	1641	269	37.5	1.700	0.20	0.105	8.4	0.880	7.5	0.046	21	0.192	1.9	0.260	139
231	943	678	1135	316	36.8	1.500	0.10	0.100	7.4	0.860	9.0	0.042	24	0.130	1.9	0.300	94
234	871	700	1414	435	27.7	1.400	0.40	0.113	15.4	0.770	54.0	0.045	21	1.120	160	0.490	152
237	727	1478	2124	401	26.2	2.600	0.80	0.125	16.8	1.500	7.0	0.062	18	1.500	100	0.740	138
240	583	948	1466	407	25.6	1.500	0.20	0.101	18.8	0.880	7.0	0.034	19	0.644	70	0.450	137

Tableau B - 4. Données mesurées et calculées(*) à l'effluent

Temps | Débit(*) | XTSS | CODt | CODs | NH4 | Cd | tot | Cd | sol | Cr | tot | Cr | sol | Cu | sol | Ni | tot | Ni | sol | Ph | tot | Ph | sol | Zn | tot | Zn | sol | Sol | Zn | tot | Zn | Zn | to

Temps	Débit(*)						Cd_sol		Cr_sol		Cu_sol				Pb_sol		
h	m³/h	g/m³	g/m³	g/m³	g/m³	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	863	9	32	52	0.2	0.500		0.004		0.047		0.013		0.013		0.068	1
6	899	101	40	90	0.2	0.400		0.004		0.047		0.013		0.004		0.060	1
9	863	84	41	65	0.2	3.750		0.003		0.047		0.013		0.006		0.066	1
12	863	66	50	38	0.1	0.800		0.003		0.042		0.014		0.012		0.058	
15	863	63	53	26	0.3	0.650		0.004		0.045		0.014		0.009		0.040	1
18	899	5	58	36	0.3	0.900		0.003		0.052		0.014		0.011		0.052	
21	647	9	61	55	0.1	1.700		0.005		0.055		0.013		0.011		0.066	
24	431	16	39	45	0.1	0.900		0.005		0.067		0.009		0.012		0.078	
27	792	10	78	78	0.1	1.250		0.006		0.057		0.015		0.010		0.080	
30	936	5	36	61	0.2	0.650		0.005		0.057		0.018		0.012		0.076	1
33	864	27	35	23	0.1	0.950		0.006		0.063		0.018		0.013		0.062	
36	936	13	36	14	0.2	1.100		0.006		0.062		0.014		0.012		0.082	1
39	954	18	52	82	0.5	0.700		0.005		0.070		0.014		0.011		0.100	
42	900	27	74	55	1.1	0.750		0.010		0.067		0.015		0.015		0.078	
45	720	13	44	44	1.2	0.700		0.010		0.072		0.015		0.014		0.140	1
48	540	39	48	31	0.9	3.600		0.012		0.095		0.016		0.017		0.084	
51	890	13	35	30	0.2	1.100		0.010		0.085		0.011		0.012		0.092	
54	998	13	40	61	0.2	0.750		0.008		0.065		0.015		0.011		0.085	
57	962	21	53	44	0.2	0.900		0.009		0.065		0.015		0.013		0.090	1
60	854	15	80	43	1.4	0.850		0.008		0.068		0.013		0.014		0.100	1
63	854	18	52	68	0.4	1.050		0.008		0.069		0.015		0.012		0.128	1
66	998	18	41	51	1.1	0.800		0.008		0.070		0.016		0.015		0.094	1
69	818	16	57	59	1.1	1.150		0.009		0.076		0.013		0.013		0.090	
72	566	24	70	56	0.5	0.750		0.010		0.083		0.015		0.018		0.144	
75	564	15	26	37	0.4	0.800		0.008		0.076		0.018		0.016		0.100	1
78	996	5	35	34	0.4	0.700		0.007		0.082		0.013		0.017		0.120	
81	924	11	50	62	0.4	0.620		0.007		0.065		0.012		0.014		0.140	
84	852	11	80	72	0.1	0.900		0.007		0.072		0.018		0.015		0.124	
87	852	13	70	54	0.3	0.750		0.006		0.082		0.014		0.015		0.080	ı İ

90	816	7	37	49	0.4	0.100	0.006	0.085	0.013	0.015	0.091	
93	636	13	40	29	0.5	0.700	0.006	0.087	0.015	0.013	0.110	
96	528	18	54	26	0.2	0.620	0.005	0.075	0.015	0.014	0.096	
99	533	12	32	37	0.1	0.450	0.004	0.069	 0.015	0.013	0.078	
102	929	7	33	49	0.4	0.450	0.004	0.075	0.016	0.016	0.084	
105	929	5	37	33	0.2	0.400	0.004	0.075	0.011	0.016	0.074	
108	749	10	59	29	0.4	0.350	0.004	0.068	0.011	0.011	0.075	
111	713	9	70	45	0.7	0.370	0.004	0.065	0.011	0.012	0.074	
114	785	7	41	43	0.6	0.450	0.004	0.060	0.013	0.010	0.068	
117	641	9	48	67	0.8	0.350	0.003	0.057	0.010	0.010	0.086	
120	569	12	28	22	0.7	0.500	0.002	0.052	0.009	0.011	0.046	
123	706	7	42	35	0.3	0.200	0.002	0.067	0.011	0.009	0.064	
126	994	7	50	32	1.0	0.700	0.002	0.052	0.009	0.010	0.072	
129	1030	9	78	50	0.9	0.200	0.003	0.060	0.017	0.009	0.050	
132	886	17	56	42	0.3	0.100	0.003	0.057	0.009	0.008	0.044	
135	850	21	68	59	0.7	0.150	0.004	0.070	0.011	0.012	0.062	
138	850	13	49	52	0.1	0.450	0.004	0.065	0.016	0.009	0.050	
141	634	11	35	54	0.1	0.650	0.005	0.069	0.012	0.010	0.086	
144	490	11	48	38	0.2	0.650	0.006	0.072	0.020	0.012	0.068	
147	754	6	32	26	0.1	0.650	0.006	0.078	0.018	0.013	0.100	
150	1006	17	71	29	0.2	0.700	0.006	0.063	0.012	0.015	0.068	
153	898	26	53	54	0.1	0.550	0.007	0.075	0.021	0.013	0.084	
156	862	8	51	50	0.5	0.550	0.006	0.070	0.012	0.012	0.042	
159	898	6	49	71	0.6	0.550	0.007	0.072	0.013	0.013	0.098	
162	862	14	62	48	0.4	0.500	0.007	0.070	0.015	0.012	0.120	
165	718	14	101	38	0.2	0.700	0.008	0.072	0.016	0.015	0.084	
168	502	18	47	50	0.4	0.800	0.009	0.073	0.017	0.014	0.084	
171	899	14	51	29	0.1	0.500	0.007	0.072	0.016	0.014	0.098	
174	1043	12	42	38	0.1	0.700	0.008	0.070	0.016	0.013	0.110	
177	899	10	52	49	0.1	0.400	0.007	0.067	0.016	0.024	0.090	
180	863	8	43	42	0.3	0.450	0.007	0.067	0.013	0.014	0.064	
183	863	18	66	56	0.5	0.600	0.005	0.069	0.013	0.019	0.088	
186	827	19	75	49	0.4	0.400	0.008	0.085	0.015	0.014	0.080	
189	647	16	66	27	0.4	0.750	0.007	0.072	0.016	0.012	0.100	

192	935	19	77	75	0.2	0.600		0.008		0.080		0.008		0.017		0.091	
195	888	14	93	50	0.1	0.620	1.00	0.007	7.0	0.065	67.0	0.016	23	0.013	6.9	0.112	108
198	1212	15	67	77	0.1	0.700	0.00	0.008	8.0	0.067	62.5	0.020	20	0.016	7.7	0.110	110
201	1428	11	57	37	0.1	0.400	0.40	0.005	8.0	0.060	56.0	0.014	20	0.012	8.1	0.120	121
204	996	14	52	34	2.9	0.400	0.30	0.008	6.2	0.060	53.0	0.020	19	0.010	6.5	0.100	130
207	960	34	73	27	4.0	0.550	2.10	0.009	6.8	0.078	49.0	0.016	18	0.018	7	0.090	90
210	852	42	140	58	2.7	0.500	0.30	0.009	6.8	0.087	56.0	0.008	20	0.017	6.7	0.112	94
213	672	31	99	41	1.6	0.700	0.40	0.011	6.2	0.073	52.0	0.019	26	0.023	6.5	0.100	90
216	492	23	14	14	0.9	1.050	0.30	0.008	6.6	0.067	60.0	0.020	21	0.015	7.2	0.100	102
219	719	12	34	42	0.7	0.500	1.00	0.007	7.0	0.062	69.0	0.015	23	0.011	7.4	0.144	110
222	1187	8	54	69	0.2	0.620	0.30	0.007	7.0	0.062	57.5	0.011	27	0.012	7.2	0.100	64
225	1043	12	30	28	0.1	0.700	0.30	0.008	8.0	0.065	55.0	0.020	23	0.014	6.1	0.145	140
228	899	10	42	38	1.6	0.650	0.20	0.009	7.6	0.067	53.0	0.008	24	0.015	7.2	0.112	102
231	899	11	53	66	1.8	0.620	0.20	0.009	6.8	0.070	52.5	0.023	23	0.014	7.2	0.120	110
234	827	14	58	47	1.7	0.400	0.50	0.033	6.4	0.071		0.011	20	0.017	7.7	0.090	64
237	683	22	77	54	1.2	0.800	0.30	0.009	6.4	0.082	60.0	0.021	20	0.027	14.5	0.128	114
240	539	33	74	53	0.9	0.400	1.80	0.010	6.6	0.085	60.0	0.018	21	0.061	25	0.142	114

Tableau B - 5. Données mesurées dans la ligne de recirculation.

Temps	Débit	XTSS	CODt	CODs		Cd tot					Cu sol		Ni sol	Pb tot	Pb sol	Zn tot	Zn sol
h	m³/h	g/m³	g/m³		g/m³	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	542	9840	10336	9,	9,	1.280	L-9, -	0.400	F-9/-	2.60	L-9, -		L9,-	12.00	L.9.	2.750	r9,-
6	542	8640	11176			1.400		0.440		4.00				19.60		0.350	
9	542	8980	12016			1.320		0.440		2.60				16.20		0.550	
12	542	10400	10287			1.280		0.430		3.90				10.30		2.520	
15	542	11900	12471			1.380		0.330		4.35				16.50		2.600	
18	542	10500	11192			1.390		0.470		3.80				11.70		2.500	
21	542	10480	12982			1.560		0.320		3.80				8.90		2.700	
24	542	9240	11173			1.310		0.370		3.40				6.90		2.600	
27	519	9290	9363			8.600		1.220		11.40		0.270		2.40		3.300	
30	519	9095	12471			10.300		1.400		13.40		0.270		2.63		4.200	
33	519	11041	10268			9.600		1.490		12.20		0.450		2.75		5.000	
36	519	10810				10.300		1.370		13.00		0.320		2.75		4.000	
39	519	11030				6.800		1.400		12.00		0.310		2.60		4.100	
42	519	10405				8.600		1.390		11.80		0.350		2.70		3.500	
45	519	9930	10500			8.300		1.400		12.00		0.480		2.60		3.500	
48	519	10165				9.600		1.350		10.80		0.280		2.30		3.600	
51	516	9885	10391			9.800		1.270		10.80		0.250		2.30		3.300	
54	516	10570				9.500		1.490		10.60		0.320		2.50		3.700	
57	516	10880				8.700		1.570		12.80		0.350		2.60		3.600	
60	516	10730				8.100		1.540		12.80		0.470		2.50		4.000	
63	516	10970				7.100		1.360		11.80		0.440		2.70		3.400	
66	516	11330				10.500		1.370		12.20		0.310		2.60		3.600	
69	516	11200				11.100		1.470		11.80		0.450		2.70		3.700	
72	516	11350				14.900		1.400		11.60		0.410		2.08		3.800	
75	567	9670	11840			7.400		1.390		10.20		0.320		2.95		3.300	
78	567	9695	12350			8.800		1.120		11.20		0.290		2.35		3.200	
81	567 567	11120				8.500		1.520		13.20		0.300		2.53		3.500	
84		10665				8.500		1.370		11.60		0.300		2.63		3.700	
87	567	10940	11530			1.410		0.440		12.00				9.50		2.400	

90	567	9185	10000	8.000	1.460	11.60	0.320	2.60	3.300	
93	567	10905	12000	11.200	2.120	11.60	0.400	2.65	3.100	
96	567	9280	12064	7.000	1.210	9.60	0.210	2.41	3.100	
99	562	8475	9178	7.600	1.140	9.50	0.240	2.30	2.800	
102	562	8980	9178	6.000	1.290	10.40	0.270	2.30	3.100	
105	572	10055	11924	9.800	1.280	12.20	0.260	2.43	3.300	
108	562	10050	11460	7.400	1.440	11.20	0.300	2.50	3.400	
111	562	9565	11112	1.230	0.320	11.40		6.00	2.300	
114	562	9620	10678	11.300	1.340	11.20	0.340	2.55	3.100	
117	562	10000	11282	6.000	1.210	11.40	0.460	2.45	3.400	
120	562	9170	9695	5.500	1.160	10.80	0.290	2.30	3.200	
123	539	8965	9500	1.280	0.310	3.20		6.10	2.450	
126	539	9920	11240	9.500	1.260	11.40	0.240	2.60	3.100	
129	539	10250	11857	9.100	1.270	11.20	0.310	2.38	3.300	
132	539	11075	11206	9.100	1.010	12.00	0.350	2.68	3.500	
135	539	10005	11609	6.700	1.320	11.00	0.510	2.41	3.500	
138	539	10775	11404	8.800	1.170	10.60	0.240	2.51	3.400	
141	539	9650	11000	5.300	1.210	10.40	0.270	2.41	3.350	
144	539	8330	9000	5.500	1.200	10.60	0.220	2.25	3.000	
147	513	7815	9300	6.500	1.150	9.80	0.250	2.10	2.400	
150	513	10015	12464	7.400	1.100	11.00	0.290	2.35	3.400	
153	513	11510	11198	9.100	1.310	11.60	0.380	2.36	3.600	
156	513	10925	11413	11.100	1.420	12.60	0.430	2.30	3.300	
159	513	11485	12314	11.400	1.480	11.60	0.290	2.85	3.300	
162	513		12630	8.800	1.380	13.00	0.400	2.30	3.700	
165	513	10875	12145	5.500	1.460	11.40	0.320	2.53	3.200	
168	513	9735	9860	8.100	1.280	12.10	0.270	2.23	4.500	
171	489	8850	11155	9.800	1.200	11.20	0.380	2.10	3.250	
174	489	10550	11460	12.500	1.370	11.60	0.380	2.06	3.500	
177	489	11560		11.400	1.520	12.20	0.350	2.63	3.900	
180	489	11630		5.500	1.460	13.00	0.300	2.56	3.300	
183	489	11595		9.100	1.490	11.20	0.300	2.30	3.100	
186	489		13150	6.700	1.520	12.60	0.330	2.40	3.800	
189	489	11160	13238	6.100	1.420	11.60	0.330	2.60	3.600	

192	489	10740	12450	5.100	1.800	10.80	0.330	2.36	3.100
195	517	11320	13167	1.550	0.290	3.35		5.10	2.410
198	517	11390	12945	9.800	1.490	10.60	0.310	2.63	3.500
201	517	11320	13903	5.700	1.560	12.80	0.340	2.50	4.300
204	517	11735	12969	8.800	1.470	13.20	0.340	2.60	3.900
207	517	11325	12500	8.100	1.550	12.60	0.380	2.60	3.650
210	517	12025	13120	6.400	1.480	12.20	0.340	2.38	3.400
213	517	11180	14832	7.400	1.500	12.00	0.330	2.60	3.400
216	517	10245	12222	8.500	1.160	13.00	0.320	2.23	3.250
219	491	8954	10149	6.700	1.160	9.60	0.250	2.20	3.100
222	491	11165	12781	11.900	1.420	10.70	0.310	2.55	3.400
225	491	11995	13782	11.700	1.580	13.80	0.390	2.75	3.600
228	491	11470	13932	11.000	1.500	11.40	0.350	2.38	3.800
231	491	11540	13734	8.800	1.480	12.40	0.340	2.22	3.400
234	491	10985	13497	11.700	1.420	12.20	0.410	2.31	3.900
237	491	11925	12591	9.800	1.420	12.60	0.210	2.40	3.950
240	491	10910	12001	9.500	1.290	10.20	0.450	2.35	3.300

Tableau B - 6. Données mesurées et calculées(*) dans la liqueur mixte.

Temps	Débit(*)	XTSS	CODt	CODs		Cd tot(*)								Pb tot(*)	Pb sol	Zn tot(*)	Zn sol
h	m³/h	g/m³	g/m³	g/m³	g/m³	- '	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	1405	5000	5		3	2.136	1.3	0.189	1.3	1.35	1.3	0.023	1.3	4.31	1.9	1.142	1.3
6	1441	5000				1.761		0.192		1.76		0.019		6.75		0.468	
9	1405	5000				1.826		0.201		1.33		0.020		5.72		0.634	
12	1405	5000				2.136		0.206		1.85		0.017		3.72		1.035	
15	1405	5000				5.088		0.182		2.04		0.035		5.92		1.135	
18	1441	5000				2.382		0.227		1.88		0.022		4.14		1.068	
21	1189	5000				1.934		0.231		2.56		0.044		3.90		1.473	
24	973	5000				1.797		0.258		2.41		0.031		3.64		1.547	
27	1311	6788				3.671		0.474		4.39		0.104		0.93		1.303	
30	1455	6788				3.907		0.499		4.74		0.094		0.95		1.524	
33	1383	6788				3.934		0.572		4.73		0.167		1.06		1.949	
36	1455	6788				4.151		0.518		4.76		0.130		1.01		1.547	
39	1473	6788				3.062		0.530		4.31		0.133		0.91		1.531	
42	1419	6788				3.727		0.517		4.38		0.138		0.98		1.351	
45	1239	6788				4.213		0.612		5.08		0.205		1.08		1.549	
48	1059	6788		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.275		0.675		5.36		0.157		1.13		1.826	
51	1406	5620				4.472		0.497		4.20		0.104		0.89		1.359	
54	1514	5620				3.633		0.514		3.73		0.119		0.86		1.326	
57	1478	5620				4.249		0.659		4.34		0.128		0.87		1.260	
60	1370	5620				3.234		0.557		4.65		0.181		0.90		1.496	
63	1370	5620				3.013		0.496		4.28		0.172		0.97		1.317	
66	1514	5620				3.951		0.452		4.01		0.114		0.84		1.260	
69	1334	5620				4.515		0.543		4.35		0.173		1.00		1.411	
72	1082	5620				7.458		0.634		5.24		0.193		0.94	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.740	
75	1131					3.963		0.665		4.88		0.159		1.40		1.608	
78	1563					3.430		0.391		3.91		0.108		0.81		1.170	
81	1491					3.296		0.552		4.83		0.118		0.92		1.348	
84	1419					3.755		0.526		4.54		0.128		1.00		1.465	
87	1419					0.873		0.176		4.65		0.016		3.59		0.976	

90	1383		3.882	0.599	4.90	0.153	1.09	1.370
93	1203		5.492	1.011	5.69	0.198	1.27	1.535
96	1095		3.921	0.626	5.03	0.118	1.22	1.617
99	1095		3.864	0.546	4.62	0.123	1.10	1.374
102	1491		2.740	0.501	4.18	0.106	0.91	1.281
105	1501		3.970	0.486	4.69	0.099	0.91	1.292
108	1311		3.381	0.603	4.81	0.125	1.06	1.460
111	1275		1.094	0.187	5.23	0.026	2.54	1.096
114	1347		4.782	0.546	4.65	0.146	1.03	1.317
117	1203		2.929	0.565	5.39	0.207	1.16	1.637
120	1131		2.820	0.572	5.34	0.144	1.13	1.630
123	1245	4290	0.871	0.139	1.49	0.004	2.46	1.073
126	1533	4290	3.616	0.415	3.81	0.089	0.87	1.044
129	1569	4290	3.493	0.410	3.69	0.112	0.77	1.112
132	1425	4290	3.625	0.364	4.31	0.139	0.95	1.330
135	1389	4290	2.908	0.488	4.06	0.200	0.88	1.347
138	1389	4290	3.626	0.440	3.92	0.105	0.91	1.279
141	1173	4290	2.790	0.541	4.62	0.133	1.06	1.509
144	1029	4290	3.325	0.614	5.38	0.123	1.17	1.581
147	1267	4800	2.969	0.471	3.96	0.117	0.86	1.013
150	1519	4800	2.903	0.383	3.81	0.107	0.82	1.200
153	1411	4800	3.621	0.481	4.31	0.133	0.86	1.348
156	1375	4800	4.406	0.528	4.63	0.153	1.42	1.289
159	1411	4800	4.685	0.551	4.23	0.126	1.03	1.295
162	1375	4800	3.986	0.539	4.93	0.163	0.87	1.477
165	1231	4800	2.959	0.626	4.89	0.143	1.10	1.415
168	1015	4800	4.383	0.648	6.11	0.148	1.14	2.291
171	1388	5380	4.162	0.456	4.28	0.148	0.79	1.260
174	1532	5380	4.341	0.463	3.90	0.130	0.69	1.223
177	1388	5380	4.403	0.562	4.54	0.126	0.99	1.509
180	1352	5380	2.347	0.523	4.55	0.126	0.90	1.234
183	1352	5380	3.533	0.538	4.12	0.116	0.84	1.175
186	1316	5380	2.928	0.582	4.72	0.148	0.91	1.543
189	1136	5380	3.302	0.654	5.20	0.179	1.16	1.751

192	1424	5380		2.488	0.686	4.49	0.161	0.98	1.381	
195	1405	4880	6135	1.550	0.172	1.57	0.029	1.84	1.017	
198	1729	4880	6135	3.554	0.466	3.39	0.105	0.81	1.154	
201	1945	4880	6135	1.955	0.395	3.26	0.093	0.64	1.175	
204	1513	4880	6135	3.474	0.472	4.23	0.117	0.85	1.330	
207	1477	4880	6135	3.275	0.518	4.26	0.146	0.88	1.272	
210	1369	4880	6135	2.998	0.551	4.56	0.144	0.89	1.352	
213	1189	4880	6135	3.487	0.645	5.12	0.149	1.09	1.558	
216	1009	4880	6135	4.571	0.588	6.47	0.170	1.12	1.625	
219	1210	4860	6919	3.233	0.486	3.96	 0.116	0.90	1.272	
222	1678	4860	6919	3.906	0.426	3.26	0.103	0.77	1.068	
225	1534	4860	6919	4.262	0.514	4.48	0.134	0.86	1.269	
228	1390	4860	6919	4.693	0.554	4.27	0.144	0.90	1.399	
231	1390	4860	6919	3.849	0.544	4.57	0.138	0.80	1.298	
234	1318	4860	6919	4.896	0.557	4.65	0.169	1.52	1.647	
237	1174	4860	6919	5.343	0.618	5.73	0.118	1.84	1.963	
240	1030	4860	6919	4.974	0.617	4.93	0.215	1.38	1.688	

Tableau B - 7. Données mesurées et calculées(*) au soutirage des boues du clarificateur primaire.

Temps	Débit	XTSS	CODt(*)			Cd_tot(*)				Cu_tot(*)					Pb sol	Zn_tot(*)	Zn_sol
h	m³/h	g/m³	g/m³	g/m³	g/m³	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	8	43200		Ü		. 0	. 0	ŭ	. 0		'	ŭ	. 0	· ·	'	ŭ	
6	8	43200															
9	8	43200															
12	8	43200															
15	8	43200															
18	8	43200															
21	8	43200															
24	8	43200															
27	8	57500															
30	8	57500	54363			170.726		0.337		41.56		0.899		4.04		22.464	
33	8	57500	36392			114.048		2.281		70.30		4.355		6.95		56.506	
36	8	57500	29765			253.843		8.087		2.02		6.065		13.48		43.356	
39	8	57500	17630			1.145		-0.114		3.43		2.748		3.66		0.000	
42	8	57500	16308			233.280		-1.512		9.72		0.864		-0.97		46.872	
45	8	57500	11837			54.432		1.210		5.62		-0.086		1.81		1.728	
48	8	57500				55.728		-1.944		0.65		-0.259		-0.39		16.200	
51	10	54000				603.000		3.690		69.57		2.430		138.24		69.300	
54	10		127714			851.760		17.640		145.45		8.870		175.29		134.266	
57	10	54000	5152			201.204		2.138		7.29		0.972		0.29		15.552	
60	10	54000	33869			53.568		0.950		3.46		0.778		-0.09		6.394	
63 66	10 10	54000 54000	41990 10685			210.816		2.160		4.32 4.74		2.938		0.52 3.33		51.408 69.754	
69	10	54000	1573			5.040 102.672		-1.210 0.166		2.90		0.302 1.076		3.33 2.24		2.318	
72	10	54000	-58			235.584		-0.691		2.90		0.230		0.06		2.316	
75	11	56500	-5636			400.896		-0.532		0.80	l 	0.266		-0.21		0.851	
78	11	56500	12654			278.208		10.793		9.12		0.266		0.28		45.407	
81	11	56500	20822			138.240		0.346		24.71		0.330		1.12		4.320	
84	11	56500	14595			23.926		-0.080		5.58		3.110		0.88		5.104	
87	11	56500	9172			63.803		-0.080		1.83		-0.718		2.55		4.785	
90	11		17961			87.131		0.229		7.11		-0.229		0.31		0.000	

93	11	56500	-2572	23.926	2.452	2.87	0.299	0.30	3.828	
96	11	56500	1844	33.397	0.050	1.74	1.097	0.20	13.359	
99	7	53000	2268	53.460	 0.000	0.41	0.324	 2.03	17.658	
102	7	53000	24851	74.412	0.000	20.08	0.842	-0.14	11.232	
105	7	53000	52650	82.836	0.562	23.59	1.404	1.68	8.424	
108	7	53000	29597	71.442	0.454	12.13	0.794	1.93	12.474	
111	7	53000	23328	-3.240	0.108	10.26	0.864	1.08	8.424	
114	7	53000	11880	14.256	0.238	5.70	0.238	0.95	46.570	
117	7	53000	16524	12.636	0.194	3.11	1.166	0.87	32.368	
120	7	53000	6826	8.640	0.173	3.20	6.394	1.90	71.539	
123	8	52900	40781	54.432	0.259	0.69	0.864	1.04	0.864	
126	8	52900	51892	154.829	3.871	38.10	0.847	6.17	82.979	
129	8	52900	204708	1156.334	15.660	188.30	10.899	108.62	136.806	
132	8	52900	36288	45.360	1.944	16.52	2.052	2.70	66.096	
135	8	52900	7672	74.650	3.007	15.34	3.836	6.12	65.007	
138	8	52900	21047	201.139	-0.415	16.07	1.659	0.41	62.830	
141	8	52900	6610	-93.312	0.000	8.40	-0.233	1.01	32.348	
144	8	52900	-6834	-4.838	-1.089	0.60	-0.423	-0.18	22.378	
147	8	50600	126302	474.768	12.096	148.38	6.854	19.76	71.165	
150	8	50600	35482	37.632	2.957	26.21	0.538	1.61	15.859	
153	8	50600	25680	186.000	4.080	23.76	1.200	2.64	15.120	
156	8	50600	45850	335.232	3.571	21.66	4.378	4.49	19.123	
159	8	50600	22800	226.800	5.160	19.20	6.600	3.96	79.200	
162	8	50600	23155	17.280	-1.037	7.72	-3.226	1.73	48.038	
165	8	50600	7776	3.840	-1.824	7.68	-0.480	0.86	52.224	
168	8	50600	8870	2.688	-0.806	4.91	-0.470	0.34	4.032	
171	7	53300	10865	17.018	-2.095	19.64	0.916	0.52	-3.665	
174	7	53300	267264	1141.946	25.815	349.27	13.971	70.16	166.129	
177	7	53300	37047	269.673	4.451	24.22	2.749	0.92	17.280	
180	7	53300	31167	183.482	6.661	17.97	3.645	0.75	14.578	
183	7	53300	27271	197.306	6.284	32.67	4.650	0.00	4.524	
186	7	53300	33481	52.992	1.084	13.73	3.011	1.93	18.065	
189	7	53300	377	4.713	7.352	6.13	-1.414	0.28	40.341	
192	7	53300	113137	383.930	0.953	-3.40	-1.225	1.36	-5.446	

_										
195	8	52200	280573	695.747	22.396	198.95	10.459	59.80	159.385	
198	8	52200	61380	253.561	4.638	41.74	2.628	14.69	50.403	
201	8	52200	95859	736.674	10.004	109.68	9.277	38.74	84.035	
204	8	52200	216837	756.318	20.627	237.34	14.515	1.66	112.938	
207	8	52200	38307	40.517	5.893	39.29	0.737	3.32	17.926	
210	8	52200	21609	20.736	1.419	3.27	0.437	0.55	5.239	
213	8	52200	4752	-26.784	-0.691	-0.17	0.864	0.60	21.427	
216	8	52200	-2547	-8.913	-0.127	0.00	-0.255	-0.06	1.401	
219	10	50500	124632	406.080	7.776	112.61	4.608	 0.14	56.160	
222	10	50500	100030	228.096	4.158	80.43	3.326	1.31	45.382	
225	10	50500	41134	83.520	1.566	13.57	0.313	3.24	18.583	
228	10	50500	44010	141.300	0.900	40.05	2.610	3.69	14.400	
231	10	50500	53910	368.100	4.050	16.20	0.270	689.76	7.920	
234	10	50500	65164	96.048	1.242	-4.97	-0.994	-44.71	58.457	
237	10	50500	-616	-0.684	0.479	2.74	-0.889	-37.28	-21.341	
240	10	50500	7830	-5.400	-1.080	2.59	2.538	-31.86	-6.210	

Tableau B - 8. Données mesurées et calculées(*) aux boues recirculées au bassin de consolidation.

Temps	Débit	XTSS(*)	CODt(*)			Cd_tot(*)				Cu_tot(*)					Pb_sol	Zn_tot(*)	Zn_sol
h	m³/h	g/m³	g/m³	g/m³	g/m³	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l
3	48	9840	10336			1.280		0.400		2.60				12.00		2.750	
6	48	8640	11176			1.400		0.440		4.00				19.60		0.350	
9	48	8980	12016			1.320		0.440		2.60				16.20		0.550	
12	48	10400	10287			1.280		0.430		3.90				10.30		2.520	
15	48	11900	12471			1.380		0.330		4.35				16.50		2.600	
18	48	10500	11192			1.390		0.470		3.80				11.70		2.500	
21	48	10480	12982			1.560		0.320		3.80				8.90		2.700	
24	48	9240	11173			1.310		0.370		3.40				6.90		2.600	
27	47	9290	9363			8.600		1.220		11.40		0.270		2.40		3.300	
30	47	9095	12471			10.300		1.400		13.40		0.270		2.63		4.200	
33	47	11041	10268			9.600		1.490		12.20		0.450		2.75		5.000	
36	47	10810	11416			10.300		1.370		13.00		0.320		2.75		4.000	
39	47	11030	13997			6.800		1.400		12.00		0.310		2.60		4.100	
42	47	10405	11000			8.600		1.390		11.80		0.350		2.70		3.500	
45	47	9930	10500			8.300		1.400		12.00		0.480		2.60		3.500	
48	47	10165	11000			9.600		1.350		10.80		0.280		2.30		3.600	
51	35	9885	10391			9.800		1.270		10.80		0.250		2.30		3.300	
54	35	10570	11719			9.500		1.490		10.60		0.320		2.50		3.700	
57	35	10880	13060			8.700		1.570		12.80		0.350		2.60		3.600	
60	35	10730	13180			8.100		1.540		12.80		0.470		2.50		4.000	
63	35	10970	13498			7.100		1.360		11.80		0.440		2.70		3.400	
66	35	11330	12040			10.500		1.370		12.20		0.310		2.60		3.600	
69	35	11200	12749			11.100		1.470		11.80		0.450		2.70		3.700	
72	35	11350	12380			14.900		1.400		11.60		0.410		2.08		3.800	
75	34	9670	11840			7.400		1.390		10.20		0.320		2.95		3.300	
78	34	9695	12350			8.800		1.120		11.20		0.290		2.35		3.200	
81	34	11120	12908			8.500		1.520		13.20		0.300		2.53		3.500	
84	34	10665	10709			8.500		1.370		11.60		0.300		2.63		3.700	
87	34	10940	11530	[1.410		0.440		12.00				9.50		2.400	

90	34	9185	10000	8.000	1.460	11.60	0.320	2.60	3.300
93	34	10905	12000	11.200	2.120	11.60	0.400	2.65	3.100
96	34	9280	12064	7.000	1.210	9.60	0.210	2.41	3.100
99	43	8475	9178	7.600	1.140	9.50	0.240	2.30	2.800
102	43	8980	9178	6.000	1.290	10.40	0.270	2.30	3.100
105	43	10055	11924	9.800	1.280	12.20	0.260	2.43	3.300
108	43	10050	11460	7.400	1.440	11.20	0.300	2.50	3.400
111	43	9565	11112	1.230	0.320	11.40		6.00	2.300
114	43	9620	10678	11.300	1.340	11.20	0.340	2.55	3.100
117	43	10000	11282	6.000	1.210	11.40	0.460	2.45	3.400
120	43	9170	9695	5.500	1.160	10.80	0.290	2.30	3.200
123	43	8965	9500	1.280	0.310	3.20		6.10	2.450
126	43	9920	11240	9.500	1.260	11.40	0.240	2.60	3.100
129	43	10250	11857	9.100	1.270	11.20	0.310	2.38	3.300
132	43	11075	11206	9.100	1.010	12.00	0.350	2.68	3.500
135	43	10005	11609	6.700	1.320	11.00	0.510	2.41	3.500
138	43	10775	11404	8.800	1.170	10.60	0.240	2.51	3.400
141	43	9650	11000	5.300	1.210	10.40	0.270	2.41	3.350
144	43	8330	9000	5.500	1.200	10.60	0.220	2.25	3.000
147	45	7815	9300	6.500	1.150	9.80	0.250	2.10	2.400
150	45	10015	12464	7.400	1.100	11.00	0.290	2.35	3.400
153	45	11510	11198	9.100	1.310	11.60	0.380	2.36	3.600
156	45	10925	11413	11.100	1.420	12.60	0.430	2.30	3.300
159	45	11485	12314	11.400	1.480	11.60	0.290	2.85	3.300
162	45	10665	12630	8.800	1.380	13.00	0.400	2.30	3.700
165	45	10875	12145	5.500	1.460	11.40	0.320	2.53	3.200
168	45	9735	9860	8.100	1.280	12.10	0.270	2.23	4.500
171	44	8850	11155	9.800	1.200	11.20	0.380	2.10	3.250
174	44	10550	11460	12.500	1.370	11.60	0.380	2.06	3.500
177	44	11560	13110	11.400	1.520	12.20	0.350	2.63	3.900
180	44	11630	13120	5.500	1.460	13.00	0.300	2.56	3.300
183	44	11595	12120	9.100	1.490	11.20	0.300	2.30	3.100
186	44	11575	13150	6.700	1.520	12.60	0.330	2.40	3.800
189	44	11160	13238	6.100	1.420	11.60	0.330	2.60	3.600

192	44	10740	12450	5.100	1.800	10.80	0.330	2.36	3.100	
195	44	11320	13167	1.550	0.290	3.35		5.10	2.410	
198	44	11390	12945	9.800	1.490	10.60	0.310	2.63	3.500	
201	44	11320	13903	5.700	1.560	12.80	0.340	2.50	4.300	
204	44	11735	12969	8.800	1.470	13.20	0.340	2.60	3.900	
207	44	11325	12500	8.100	1.550	12.60	0.380	2.60	3.650	
210	44	12025	13120	6.400	1.480	12.20	0.340	2.38	3.400	
213	44	11180	14832	7.400	1.500	12.00	0.330	2.60	3.400	
216	44	10245	12222	8.500	1.160	13.00	0.320	2.23	3.250	
219	44	8954	10149	6.700	1.160	9.60	0.250	2.20	3.100	•••••
222	44	11165	12781	11.900	1.420	10.70	0.310	2.55	3.400	
225	44	11995	13782	11.700	1.580	13.80	0.390	2.75	3.600	
228	44	11470	13932	11.000	1.500	11.40	0.350	2.38	3.800	
231	44	11540	13734	8.800	1.480	12.40	0.340	2.22	3.400	
234	44	10985	13497	11.700	1.420	12.20	0.410	2.31	3.900	
237	44	11925	12591	9.800	1.420	12.60	0.210	2.40	3.950	
240	44	10910	12001	9.500	1.290	10.20	0.450	2.35	3.300	

Tableau B - 9. Données mesurées et calculées(*) au surnageant du bassin de consolidation.

Temps	Débit	XTSS(*)	CODt(*)							Cu tot(*)				Pb_tot(*)	Pb sol	Zn tot(*)	Zn sol
h	m³/h	g/m³	g/m³	g/m³	g/m³	μg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μg/l	mg/l	μ <u>g</u> /l	mg/l	_n_g/l
3	48	9	9	3 ,	9	F-9.	F-9-	3.1	r-5	3.1	F-9-1	3.1	r-3	3.1	F-9-		P-9/-
6	48																
9	48																
12	48																
15	48																
18	48																
21	48																
24	48																
27	47																
30	47	3489	8917	-139	22.6	2.416		1.015		8.49		-0.109		2.72		3.007	
33	47	18895	15637	232	136.4	0.445		1.593		12.13		0.167		3.19		3.836	
36	47	9455	-1504	-1749	4.5	-1.577		1.077		10.44		0.454		3.05		4.243	
39	47	11666	14908	-627	26.6	-3.345		1.631		8.94		0.513		1.52		2.736	
42	47	5066	6380	-852	31.2	6.425		0.880		9.61		0.374		1.90		3.016	
45	47	8914	3019	-341	32.9	15.378		1.572		10.94		0.310		2.16		3.694	
48	47	11380	10521	-427	30.4	15.477		1.238		10.56		0.537		2.22		3.820	
51	6	104978	103778	-11733	20.4	209.156		11.302		104.66		2.524		22.43		43.156	
54	6	79969	80961	-57	-738.8			7.972		67.41		2.445		13.53		24.632	
57	6	1244	-7246	-4166	-719.6			35.711		-3.21		0.785		1.38		-1.150	
60	6	4153	-5211	-4332	26.7	-101.781		0.572		-3.54		1.340		0.60		-3.371	
63	6	12907	9176	-1641	218.1	-30.236		1.200		-3.67		3.960		1.69		5.452	
66	6	14347	3327	-15569	84.5	-40.800		-0.426		-3.23		0.098		0.11		15.450	
69	6	4815	6914	-4207	147.7	-3.804		0.383		-1.54		0.660		2.97		1.711	
72	6	1575	2747	1088	137.8	111.115		0.503		1.18		0.908		1.16		0.605	
75 70	21	896	-332	-526	2.6	12.220		0.154		0.27		0.097		0.07		0.264	
78	21	1250	1480	-945	25.4	7.257		0.156		-1.37		0.203		-0.03		1.441	
81	21	2380	-586	62	34.4	-8.330		0.057		0.44		0.017		-0.20		1.902	
84	21	1720	1324	207	-39.8	8.993		0.382		2.32		0.267		0.27		2.302	
87	21	2618	-105	-1287	-25.9	-5.486		0.381		1.97		0.188		0.93		1.334	

90	21	18565	-2149	-266	-20.8	29.558	2.226	21.32	1.325	5.29	3.257	
93	21	24226	31730	-1127	-21.7	18.827	3.944	26.67	0.826	4.89	7.378	
96	21	13538	14875	-278	-4.1	15.147	1.840	14.95	0.485	2.45	3.695	
99	35	2301	1833	-70	30.4	1.437	 0.134	 1.69	0.142	 0.32	 0.523	
102	35	17918	17871	-999	17.4	21.302	2.110	20.17	0.232	4.17	7.255	
105	35	9677	11813	-770	-141.8	8.558	1.389	12.83	0.092	2.07	3.407	
108	35	9055	7209	-1206	15.1	10.036	1.177	11.13	0.053	2.34	2.565	
111	35	14491	17409	-378	-15.7	11.082	1.986	18.36	0.721	3.31	4.135	
114	35	9654	8723	-1307	37.4	4.330	1.111	9.54	0.341	1.64	3.185	
117	35	11181	13925	-368	-2.8	1.724	1.463	13.82	0.201	3.44	5.073	
120	35	1861	8394	-490	21.7	3.355	1.274	10.53	0.250	2.15	4.051	
123	14	12643	12462	1272	76.6	19.956	1.334	12.38	-0.040	2.29	4.077	
126	14	1286	-3297	-1740	-14.3	27.852	0.469	3.73	0.557	2.03	-0.916	
129	14	8230	-1212	1270	38.0	37.507	-0.052	1.46	-1.117	0.35	1.143	
132	14	1389	-4147	1227	46.8	5.504	0.041	-1.37	0.389	0.53	1.832	
135	14	2876	532	2868	15.0	-11.721	0.182	-1.60	0.314	-0.38	0.770	
138	14	4709	1343	2125	19.2	-5.429	0.523	1.41	0.832	-0.47	-0.041	
141	14	10183	8503	583	-37.1	-54.599	1.307	10.34	0.551	2.12	2.552	
144	14	18015	11807	-1105	41.0	13.619	1.866	13.04	0.556	5.38	5.039	
147	45	6657	9157	-1201	-46.3	4.248	1.000	6.46	0.359	1.86	1.985	
150	45	11721	9987	-1440	75.7	5.375	1.189	9.93	0.317	2.68	3.323	
153	45	11599	13075	-233	14.7	4.288	1.153	11.09	-0.031	2.04	3.160	
156	45	7098	8049	791	11.0	3.812	1.031	7.02	-0.029	19.33	3.062	
159	45	8891	12811	-1214	29.3	8.143	1.395	8.00	0.405	2.32	4.315	
162	45	12114	15448	-255	32.9	5.114	1.589	12.27	-0.058	2.41	3.641	
165	45	13677	17848	-261	1.1	11.653	1.479	12.94	0.258	3.46	4.720	
168	45	8728	10282	-807	45.4	6.452	1.072	10.57	0.267	2.46	3.654	
171	44	16114	21019	-160	-2.7	19.129	1.746	19.27	0.468	3.41	4.667	
174	44	14872	13324	-676	23.1	12.652	1.852	14.78	0.384	2.92	4.667	
177	44	14555	14276	-197	71.3	7.239	2.100	15.80	0.102	4.05	6.574	
180	44	6871	7870	-220	53.6	-7.297	0.909	4.20	0.433	1.43	2.108	
183	44	8960	10287	-58	-40.2	-2.369	1.016	10.10	0.085	2.30	2.512	
186	44	10143	13519	11	-24.9	-2.419	1.518	9.83	0.451	2.64	5.483	
189	44	19933	27792	-786	-5.9	11.376	2.138	14.13	0.789	3.39	7.468	

192	44	25971	40743	-782	-33.7	11.952	3.529	32.87	1.364	7.60	11.052	
195	33	19629	2248	-1981	-16.0	27.309	2.526	15.59	0.586	4.82	7.146	
198	33	18156	20251	1805	24.8	20.743	2.442	19.12	0.323	3.88	7.134	
201	33	6245	3612	161	115.0	-4.057	0.280	1.18	-0.291	-0.14	1.555	
204	33	903	611	400	10.6	0.101	0.108	-0.34	-0.198	0.21	1.585	
207	33	1004	1273	-1227	31.1	-5.196	0.412	3.24	-0.054	0.65	-0.559	
210	33	12921	24899	-2016	21.3	8.723	0.997	8.86	0.169	2.10	4.121	
213	33	12726	16845	484	-40.3	-0.576	1.048	8.98	0.050	1.77	4.210	
216	33	9375	5470	209	-37.3	5.627	0.977	9.21	0.203	1.99	1.279	
219	44	10796	6904	-1119	-15.0	9.949	1.198	9.14	0.269	2.22	1.851	
222	44	11281	14858	-998	-26.8	9.173	1.347	10.84	0.191	2.79	3.819	
225	44	10375	16692	117	-115.7	12.454	1.465	10.94	0.100	1.67	6.732	
228	44	14413	24626	-458	18.4	18.008	1.943	14.20	0.459	3.50	2.944	
231	44	11356	12923	-143	11.5	14.917	1.525	13.87	0.228	2.07	3.149	
234	44	11074	17009	163	-46.8	1.192	1.329	9.32	0.197	1.30	2.500	
237	44	22039	25080	-861	-33.8	28.331	1.647	21.90	0.674	11.30	3.370	
240	44	10585	10923	-826	-51.6	10.659	1.017	9.65	0.207	-0.31	2.491	

Tableau B - 10. Données mesurées pour l'oxygène dissous au 3/4 d'une ligne d'aération.

Temps	Débit	DO	Temps	Débit	DO	Temps	Débit	DO
h	m³/h	g/m³	h	m³/h	g/m³	h	m³/h	g/m³
3	48	2.4	84	21	1.4	165	45	1.1
6	48	2.2	87	21	0.7	168	45	1.9
9	48	2.1	90	21	0.4	171	44	2.0
12	48	1.6	93	21	1.4	174	44	1.2
15	48	1.3	96	21	2.0	177	44	0.5
18	48	1.0	99	35	2.0	180	44	0.5
21	48	1.4	102	35	1.6	183	44	0.5
24	48	2.0	105	35	0.5	186	44	0.5
27	47	2.0	108	35	0.4	189	44	8.0
30	47	1.5	111	35	0.4	192	44	1.7
33	47	1.0	114	35	0.4	195	33	0.6
36	47	0.5	117	35	1.3	198	33	1.6
39	47	0.4	120	35	2.0	201	33	0.5
42	47	0.4	123	14	2.3	204	33	0.5
45	47	0.4	126	14	1.6	207	33	0.5
48	47	1.5	129	14	0.8	210	33	0.5
51	6	1.5	132	14	0.5	213	33	1.3
54	6	1.0	135	14	0.4	216	33	2.0
57	6	0.4	138	14	0.6	219	44	2.0
60	6	0.4	141	14	1.2	222	44	0.6
63	6	0.4	144	14	2.0	225	44	0.5
66	6	0.5	147	45	7.4	228	44	0.5
69	6	0.5	150	45	1.2	231	44	0.5
72	6	2.0	153	45	0.5	234	44	0.5
75	21	1.7	156	45	0.5	237	44	0.5
78	21	2.0	159	45	0.5	240	44	0.5
81	21	2.0	162	45	0.5			

ANNEXE C

FIGURES SUPPLÉMENTAIRES, MÉTAUX LOURDS

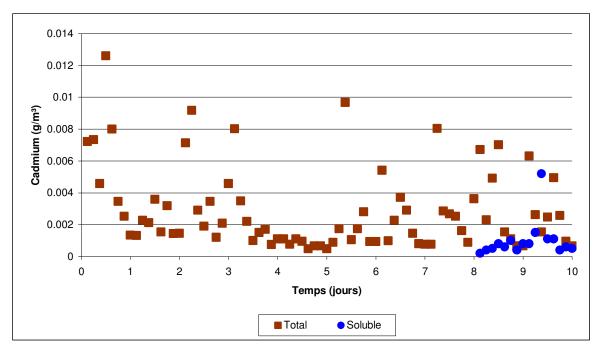


Figure C - 1. Cadmium soluble et total mesuré à l'entrée du clarificateur primaire.

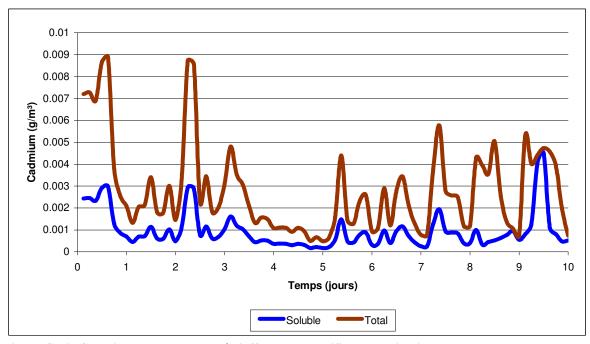


Figure C - 2. Cadmium soluble et total à l'affluent du clarificateur primaire.

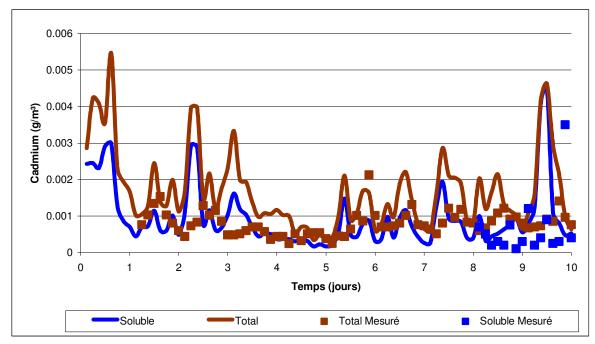


Figure C - 3. Cadmium soluble et total à la sortie du clarificateur primaire.

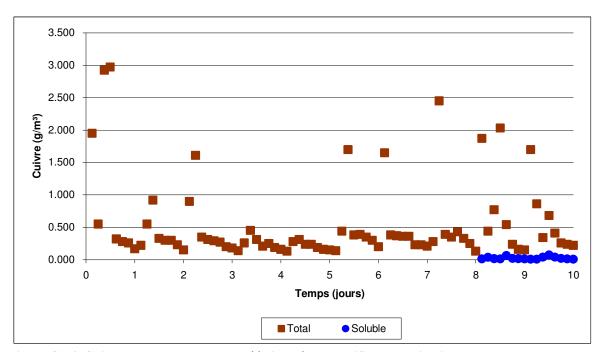


Figure C - 4. Cuivre soluble et total mesuré à l'entrée du clarificateur primaire.

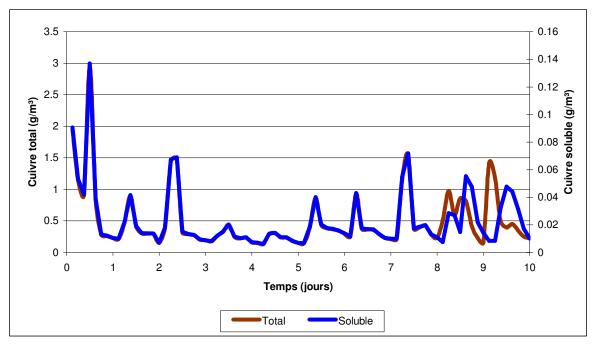


Figure C - 5. Cuivre soluble et total à l'affluent du clarificateur primaire.

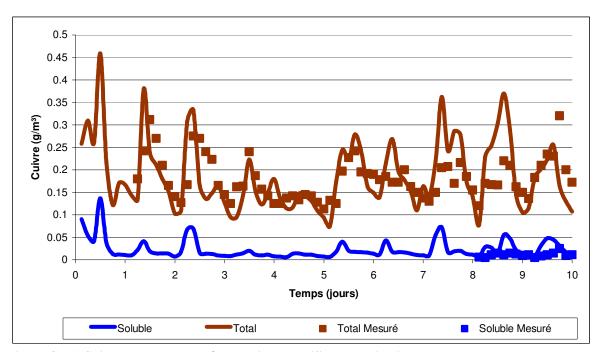


Figure C - 6. Cuivre soluble et total à la sortie du clarificateur primaire.

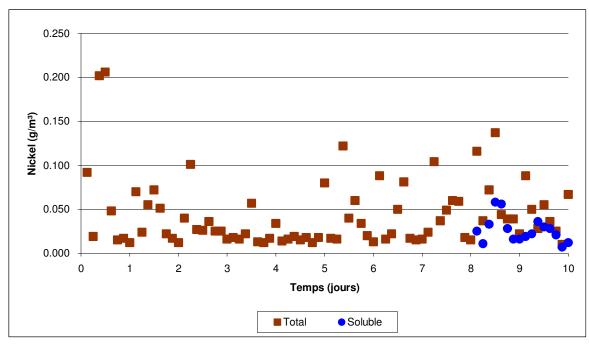


Figure C - 7. Nickel soluble et total mesuré à l'entrée du clarificateur primaire.

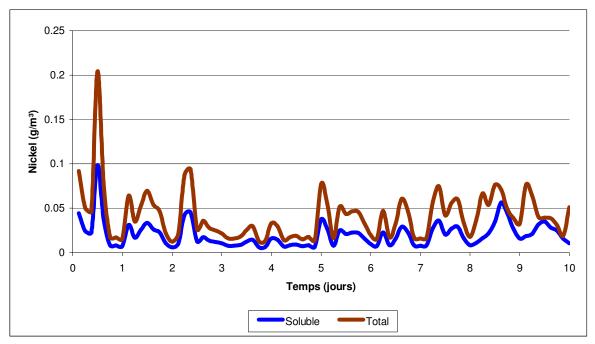


Figure C - 8. Nickel soluble et total à l'affluent du clarificateur primaire.

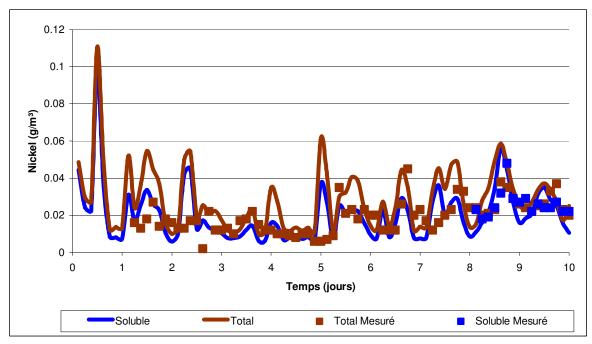


Figure C - 9. Nickel soluble et total à la sortie du clarificateur primaire.

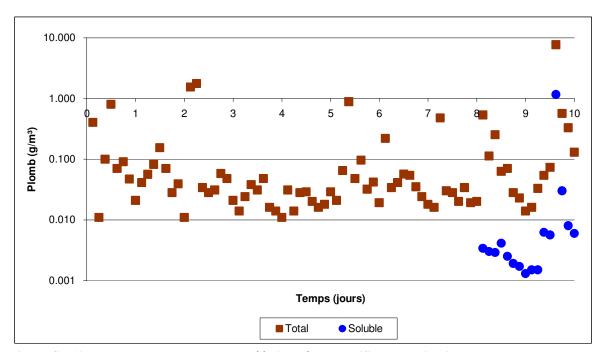


Figure C - 10. Plomb soluble et total mesuré à l'entrée du clarificateur primaire.

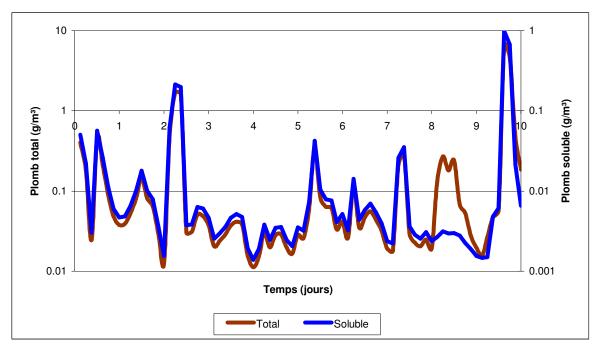


Figure C - 11. Plomb soluble et total à l'affluent du clarificateur primaire.

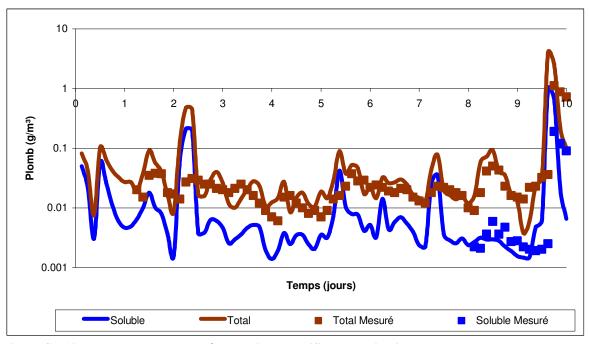


Figure C - 12. Plomb soluble et total à la sortie du clarificateur primaire.

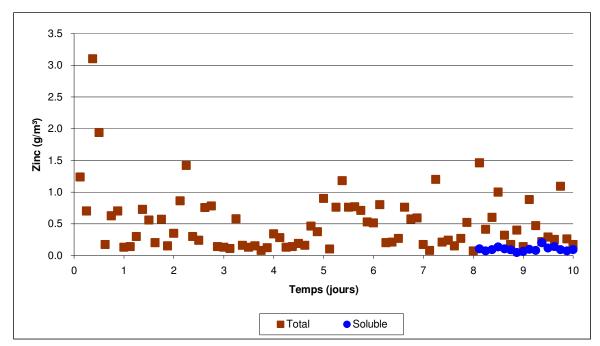


Figure C - 13. Zinc soluble et total mesuré à l'entrée du clarificateur primaire.

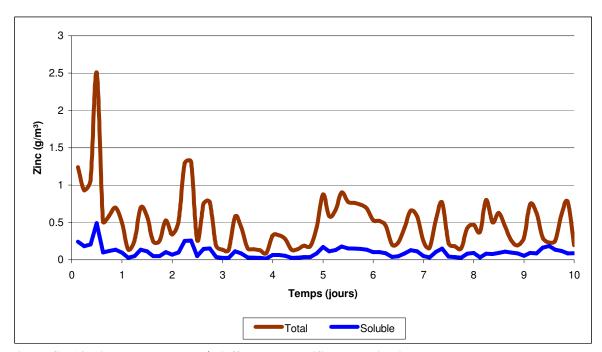


Figure C - 14. Zinc soluble et total à l'affluent du clarificateur primaire.

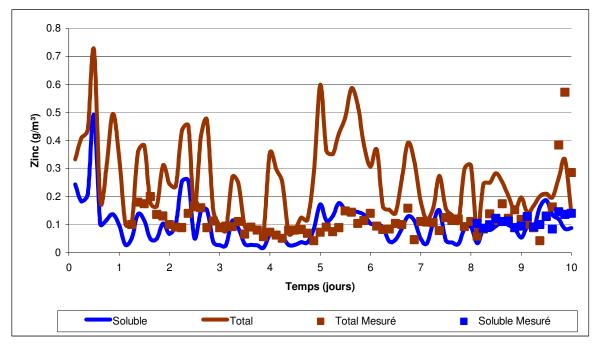


Figure C - 15. Zinc soluble et total à la sortie du clarificateur primaire.

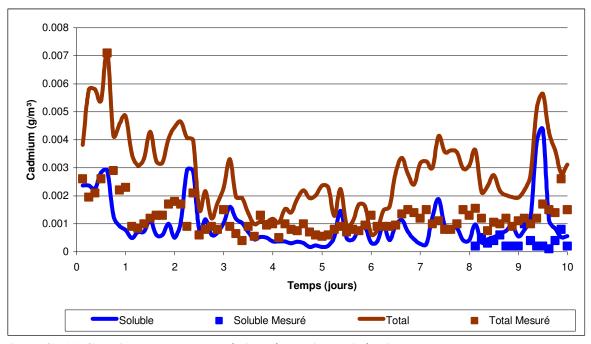


Figure C - 16. Cadmium soluble et total à l'entrée des lignes d'aération.

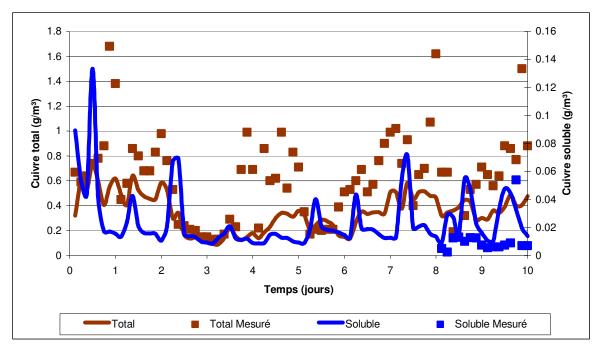


Figure C - 17. Cuivre soluble et total à l'entrée des lignes d'aération.

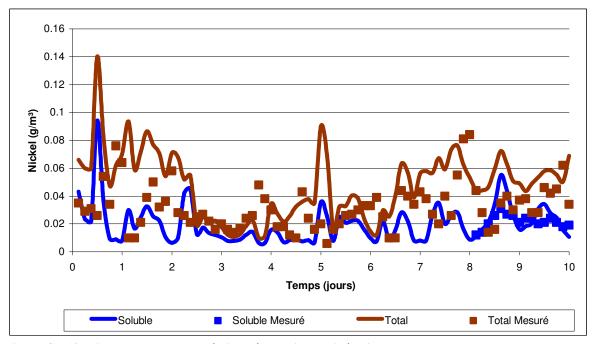


Figure C - 18. Nickel soluble et total à l'entrée des lignes d'aération.

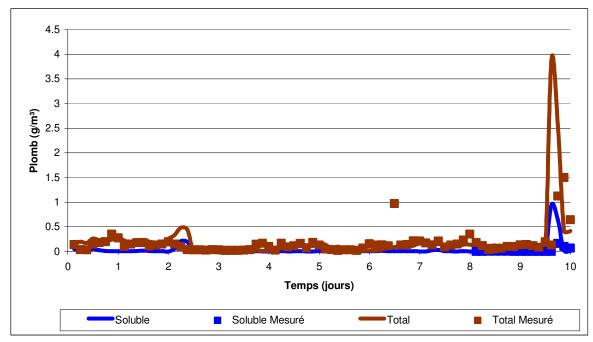


Figure C - 19. Plomb soluble et total à l'entrée des lignes d'aération.

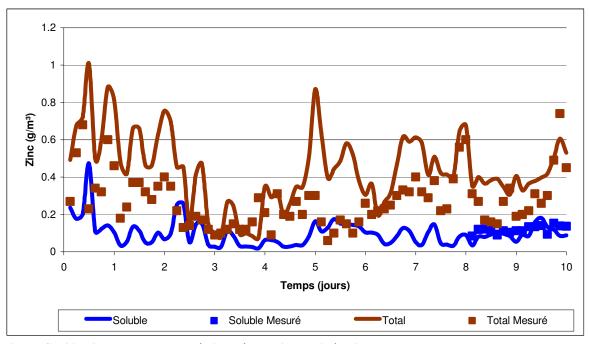


Figure C - 20. Zinc soluble et total à l'entrée des lignes d'aération.

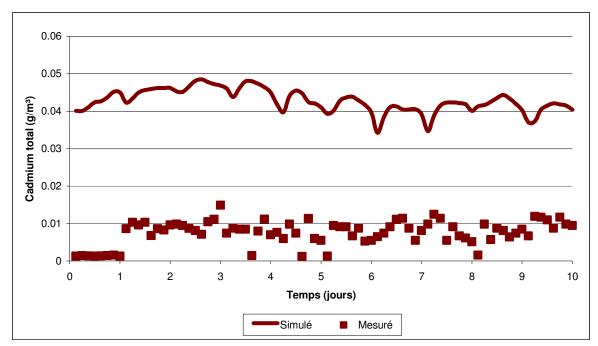


Figure C - 21. Cadmium total dans la ligne de recirculation.

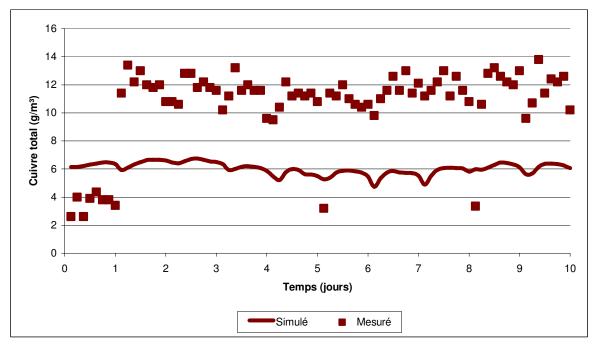


Figure C - 22. Cuivre total dans la ligne de recirculation.

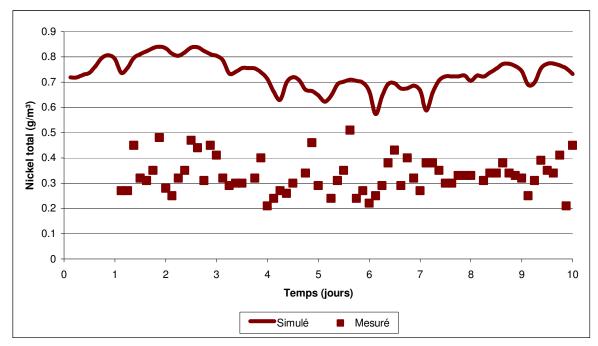


Figure C - 23. Nickel total dans la ligne de recirculation.

Figure C - 24. Plomb total dans la ligne de recirculation.

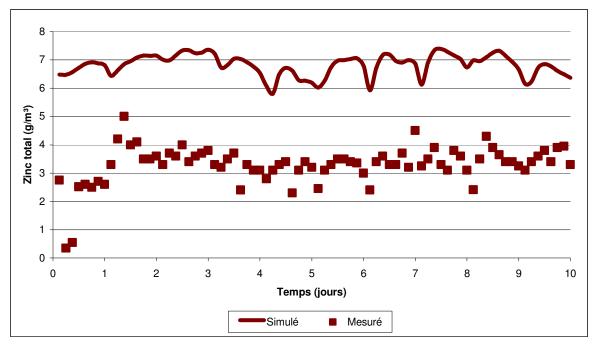


Figure C - 25. Zinc total dans la ligne de recirculation.

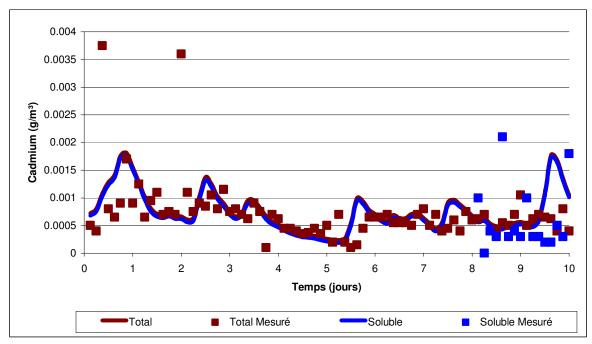


Figure C - 26. Cadmium soluble et total à l'effluent de la station.

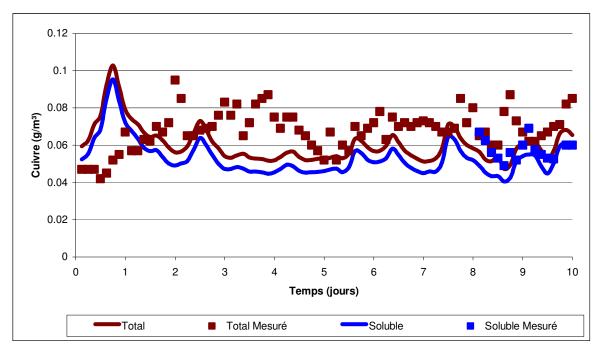


Figure C - 27. Cuivre soluble et total à l'effluent de la station.

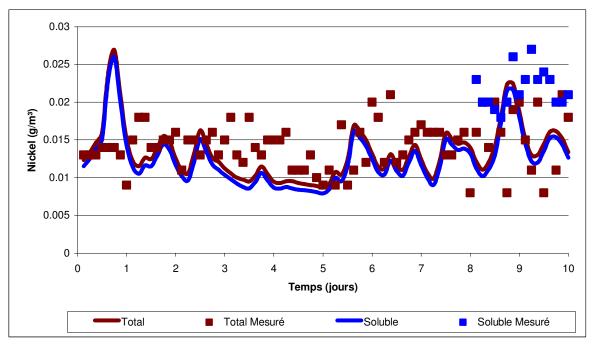


Figure C - 28. Nickel soluble et total à l'effluent de la station.

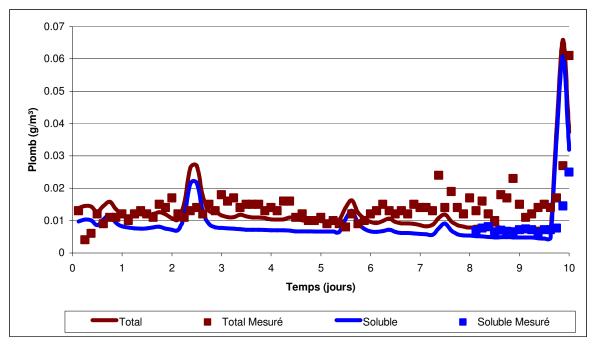


Figure C - 29. Plomb soluble et total à l'effluent de la station.

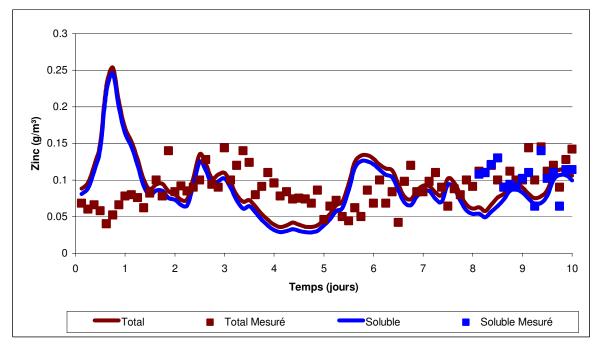


Figure C - 30. Zinc soluble et total à l'effluent de la station.