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Résumé 

Des stations de mesure de la qualité de l’eau sont utilisées pour mesurer la qualité de l'eau à 

haute fréquence. Pour une gestion efficace de ces mesures, la qualité des données doit être 

vérifiée. Dans une méthode univariée précédemment développée, des points aberrants et 

des fautes étaient détectés dans les données mesurées par ces stations en employant des 

modèles à lissage exponentiel pour prédire les données au moment suivant avec l’intervalle 

de confiance. Dans la présente étude, ne considérant que le cas univarié, la détection de 

points aberrants est améliorée par l’identification d’un modèle autorégressif à moyenne 

mobile sur une fenêtre mobile de données pour prédire la donnée au moment suivant. Les 

données de turbidité mesurées à l'entrée d'une station d'épuration municipale au Danemark 

sont utilisées comme étude de cas pour comparer la performance de l’utilisation des deux 

modèles. Les résultats montrent que le nouveau modèle permet de prédire la donnée au 

moment suivant avec plus de précision. De plus, l’inclusion du nouveau modèle dans la 

méthode univariée présente une performance satisfaisante pour la détection de points 

aberrants et des fautes dans les données de l'étude de cas. 
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Abstract 

Water quality monitoring stations are used to measure water quality at high frequency. For 

effective data management, the quality of the data must be evaluated. In a previously 

developed univariate method both outliers and faults were detected in the data measured by 

these stations by using exponential smoothing models that give one-step ahead forecasts 

and their confidence intervals. In the present study, the outlier detection step of the 

univariate method is improved by identifying an auto-regressive moving average model for 

a moving window of data and forecasting one-step ahead. The turbidity data measured at 

the inlet of a municipal treatment plant in Denmark is used as case study to compare the 

performance of the use of the two models. The results show that the forecasts made by the 

new model are more accurate. Also, inclusion of the new forecasting model in the 

univariate method shows satisfactory performance for detecting outliers and faults in the 

case study data. 
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1. Introduction 

Fault detection and diagnosis which can be regarded as a part of the topic Data Quality 

Evaluation, has been an important problem in different industries. In the petrochemical 

industry, for instance, the Abnormal Event Management (AEM) problem was rated as the 

number one problem to be solved (Venkatasubramanian et al., 2003a). Data quality 

evaluation is a subject associated to all domains where sensors monitor the state of a 

system. Thus a variety of mechanisms and techniques have been developed to evaluate the 

quality of data obtained from application fields as different as nuclear power engineering, 

chemical engineering, air pollution control, medicine, water supply and distribution 

networks (Conejo et al., 2007).  

Particularly in water systems effective management of water networks and their 

applications, such as waste water treatment systems and water pollution control, requires 

reliable information about water quality parameters. Control and modeling of water 

systems and subsequently making decisions about their performance and judgment about 

their variations can be carried out with more confidence if the acquired information is 

reliable. Especially the early diagnosis of process and sensor faults in the systems is of 

great importance since it facilitates a more precise understanding of the system and more 

trustable decisions can be made to control, model and supervise the system. Therefore, the 

reliability of data shall be evaluated attentively and in case of detecting faults, the quality of 

data shall be improved.  

Implementation of automated water quality monitoring stations together with in situ 

continuous measurement devices measuring with high frequency has been a great step 

forward in obtaining a better description of water systems. The fast sampling rate enabled 

by these stations, helps getting along with fast dynamics of water systems and also 

improving the reliability of the data describing water quality parameters. In other words, 

the main purpose of implementing automated online water quality measuring stations is to 

monitor water bodies efficiently and to have a more advanced description of the system’s 

fast dynamics. 
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However, the high sampling intensity enabled by online water quality measurement stations 

leads to collection of huge data sets consisting of a large number of physical-chemical 

parameters (Alferes et al., 2013b). However, because of the challenges in measuring 

conditions and sensors, especially during rain events, data collected by means of automated 

water quality measurement stations are prone to different sources of errors and faults 

(Rieger & Vanrolleghem, 2008; Hill & Minsker, 2010). In addition, due to the intrinsic 

properties of water systems, the data sets which describe water quality parameters are often 

co-linear or auto correlated and not normally distributed (Alferes et al., 2012). Thus, the 

main objective of implementing the automated water quality monitoring stations will not be 

efficiently attainable unless the quality of acquired data is verified.  

Quality of data registered with automated water quality measurement stations can be 

largely affected by the conditions of the installed hardware in the field. Some procedures 

can be followed to improve the quality of acquired data. Regular manual cleaning of the 

measurement sensors, application of innovative measuring devices with self-cleaning 

system (Mourad & Bertrand-Krajewski, 2002), increasing the number of measurement 

sensors and selecting the measurement locations which meet certain criteria (Campisano et 

al., 2013) are examples of procedures that are followed in the field. However, despite 

taking all mentioned procedures, the reliability of sensors still remains insufficient and 

different types of faults in the data are inevitable.   

To detect faults in practical systems, outliers in the data should be detected and removed 

before, since they can negatively affect the performance of the fault detection algorithms. 

Outliers are known as sample values that behave significantly different from the data points 

which are believed to depict normal behavior. Outliers might be generated due to different 

reasons. Sensor noise, temporary sensor failures and human-related errors are examples of 

sources that contaminate the data with outliers (Liu et al., 2004; Ting et al., 2007). 

Existence of outliers change considerably different features of the data like mean and 

variance and also might have negative impact over our interpretation from the system. 

Therefore, they must be detected, omitted or replaced by more reliable values (Alferes et 

al., 2012). In automated water quality measurement stations with high frequency which 
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lead to very large data sets, visual detection of outliers is not feasible thus the need for 

automated outlier detection methods is motivated (Pearson, 2002). 

Peter Vanrolleghem and his research team (modelEAU, Université Laval, Québec, Canada) 

have developed automated water quality monitoring stations, called monEAUs, with 

collaboration of public organizations and private companies from North America and 

Europe (Rieger & Vanrolleghem, 2008). These stations, now available from Primodal Inc. 

RSM-30, can automatically register different water quality parameters with fast sampling 

rates in various measurement locations such as rivers, waste water treatment systems and 

sewers. They comprise sensors for conventional and physical-chemical parameters 

(temperature, dissolved oxygen, …) as well as innovative sensors like a UV spectrometer 

and an ion selective device together with water level measurement sensors (Rieger & 

Vanrolleghem, 2008). Univariate and multivariate methods to detect and replace outlier and 

to diagnose probable faults in real time have already been developed for these monitoring 

stations and practically tested successfully by Alferes et al. (2012; 2013b).  

The univariate method proposed by Alferes et al. (2012) consists of three successive steps: 

outlier detection, data smoothing and fault detection. The first and the most challenging 

step is the outlier detection. This applied method is based on fitting an exponential 

smoothing model to the data and defining the smoothing model parameters according to 

historical data. The fitted model is then projected into the future to calculate a one step-

ahead forecast value together with its prediction error interval. The prediction error interval 

is calculated by estimation of the standard deviation of the forecast error. The forecast 

value plus/minus a multiple of the standard deviation of the forecast error will be 

considered as the prediction error interval. If the real observed value falls outside this 

interval, it is considered an outlier and it is replaced by the forecast value.  

This research project focuses on the outlier detection step of the previously proposed 

univariate method. The objective is to propose an alternative method to identify a model for 

the water quality parameters time series according to which the forecast data will be 

calculated. The idea is to find a model which results in a better fit to the system and a better 

forecast of the future behavior of the system in comparison with the exponential smoothing 

model, in particular with respect to the Root Mean Square Error (RMSE) criterion. The 
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outliers will then be identified automatically and replaced by the forecast value according 

to the same approach taken in the previously proposed univariate method. Performance of 

the new model in detecting outliers will be evaluated in comparison with the exponential 

smoothing model with respect to a particular set of criteria. In order to achieve this 

objective, the structure of the work presented in this thesis is as follows: 

In the Introduction, the advantage of using automated water quality monitoring stations was 

discussed. The chapter contained an overview of the general properties of the data series 

obtained from automated water quality monitoring stations and the necessity of data quality 

evaluation in such systems. 

In chapter 2, Literature Review, first a general introduction of fault detection methods 

found in literature will be presented ranging from laborious manual techniques to more 

sophisticated automatic methods. Then the water quality monitoring stations will be 

introduced and the measurement challenges which lead to the collection of datasets with 

specific properties will be discussed. Different data quality evaluation approaches found in 

literature will be presented and feasibility of their application to the case study system will 

be studied. The exponential smoothing models and their corresponding forecasting 

equations will be presented for the approach proposed by Alferes et al. (2012), to cope with 

challenging conditions of monitoring water quality parameters.  

Chapter 3, Materials and Methods, begins with the presentation of the case study water 

quality monitoring stations whose measured water quality parameters will be used to 

evaluate the performance of the alternative model. The chapter continues with introducing 

the three steps of the univariate data quality evaluation method proposed by Alferes et al. 

(2012) and ends with a short discussion about the performance of the method.  

Chapter 4, Results, principally includes a mathematical presentation of the alternative 

model for the system and the method followed to detect outliers in time series data. It also 

consists of a subchapter which revisits the exponential smoothing model used by Alferes et 

al. (2012) and discusses the advantage of using an alternative model to forecast the future 

behavior of the system. The chapter ends with a comparison of the new model and the 
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exponential smoothing model, regarding outlier detection and data quality evaluation 

performance.  

Chapter 5 draws the conclusions of this work and the suggestions for possible future 

research plans. 
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2. Literature Review 

A large number of data quality evaluation methods are proposed in literature ranging from 

simple visual pre-validation tools to more sophisticated analytical methods, artificial 

intelligence tools and statistical approaches. Some data quality evaluation methods can be 

widely applied to several areas while application of some methods is limited due to the 

assumptions made about their characteristics which make them incompatible to specific 

procedures. For example when applying a classical Kalman filter (KF), a linear model, 

quadratic performance criterion and Gaussian probability distribution for the observation 

noise are assumed (Gandhi & Mili, 2010). However, the performance of KF may degrade 

significantly in the presence of outliers or, in general, when the state or measurement noise 

is non-Gaussian (Chan et al., 2005; Ting et al., 2007). Automated water quality monitoring 

systems have specific characteristics that distinguish them from other systems and limit 

application of many of data quality evaluation approaches.   

In this chapter, first a general introduction of the available approaches in literature will be 

presented. Subsequently, challenges of water quality monitoring will be discussed and 

application of the different methods will be practically validated considering the specific 

conditions of the case study system. An approach to model water quality parameters time 

series proposed by Alferes et al. (2012) will be discussed and mathematical details will be 

presented.  

 

2.1.  Introduction to data quality evaluation methods 

In this section, different types of approaches will be presented and the way they regard the 

data quality evaluation problem will be discussed.  

A very primary classification of the methods comprises off-line and on-line methods or 

according to another categorization, manual and automatic methods. Off-line data quality 

evaluation methods such as application of control charts when a reference measurement is 

available (Thomann et al., 2002) are too tedious and time consuming when huge volumes 
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of data are registered in on-line automated systems. Application of manual methods, on the 

other hand, is not feasible in such systems since it requires a full-time inspection operation 

which is not cost effective (Hill & Minsker, 2010). Accordingly, in automated on-line 

systems, a serious need for automatic on-line data quality evaluation tools is identified.   

Automatic on-line data quality evaluation methods can be regarded as univariate or 

multivariate approaches according to Alferes et al. (2012). In univariate methods the 

information from single variables are extracted. Multivariate methods detect correlations in 

the high dimensional measurement space according to which useful information about the 

measurements is extracted. For a huge amount of correlated data an appropriate method to 

draw useful information from the data is needed (Aguadoa & Rosen, 2008). For instance in 

water quality measurement stations, multivariate methods can be used to infer significant 

information from highly correlated variables. Since univariate methods cannot handle 

correlation among variables, they can be only applied to evaluate the quality of single water 

quality parameters. A more reliable decision can be made about the performance of the 

measurement system if the evaluation result of any single variable done by an univariate 

method is regarded with respect to other variables.  

Another fundamental classification of methods in literature concerns parametric (statistical) 

methods and non-parametric (model-free) methods. Statistical parametric methods either 

assume a known underlying distribution of the observations or, at least, they are based on 

statistical estimates of unknown distribution parameters (Ben-Gal, 2005). These methods 

are often unsuitable for high-dimensional data sets and for arbitrary data sets without prior 

knowledge of the underlying data distribution (Ben-Gal, 2005). Within the class of non-

parametric approaches, a special categorization can be done for the data-mining methods, 

also called distance-based methods. These approaches are usually based on local distance 

measures and are capable of handling large databases (Ben-Gal, 2005). Another category of 

non-parametric methods consists of the clustering techniques. In these techniques, each 

object is assigned to the cluster of its nearest neighbor within a certain distance (Abu-el-

zeet et al., 2002). 

According to Venkatasubramanian et al. (2003a; 2003b; 2003c), fault detection strategies 

are largely influenced by the type of a priori knowledge which is available about the 
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system. The a priori knowledge can be developed from a fundamental understanding of the 

physics of the process expressed in terms of functional relationships between the inputs and 

outputs of the system which is referred to as, model-based knowledge. On the other hand, 

the a priori knowledge can be based on the past experience with the process and the 

availability of a large amount of historical data while it does not assume any form of model 

information.  

Consequently, according to Venkatasubramanian et al. (2003c), from a modeling 

perspective, fault detection methods can be classified as model-based and process history-

based approaches. The model-based methods can be subsequently categorized as 

quantitative or qualitative. In quantitative model-based methods, the a priori knowledge 

about the process is expressed in terms of mathematical functional relationship between 

inputs and outputs of the system while in qualitative model-based method this 

understanding is represented in terms of qualitative functions centered around different 

units in the process.  

There are different ways in which the process history knowledge can contribute as a priori 

knowledge to the fault detection system. This is known as feature extraction from process 

history data. Again, one can classify the feature extraction process as either quantitative or 

qualitative. Quantitative feature extraction can be performed by either statistical or non-

statistical methods.        

It should be noted that Venkatasubramanian et al. (2003a) give a classification of 

quantitative model, qualitative model and process history based methods in terms of the 

intrinsic way these methods approach the problem of fault detection. For instance, KFs 

(classified under the quantitative model-based methods), which are based on state-space 

models, broadly use quantitative approaches for generating fault detection results. Similarly 

neural network methods which basically approach the problem of fault detection from a 

pattern recognition point of view and hence are classified as process history based methods 

intrinsically use state-space models (Venkatasubramanian et al., 2003a). If such an overlap 

of method classifications is accepted, this classification of methods is comprehensive. 
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By presenting a general introduction of data quality evaluation methods we can have a 

better perspective on the existing approaches and the feasibility of their application to the 

case study system. In next section, first the general information about the water quality 

monitoring stations will be presented. Then the challenging conditions of monitoring of 

water quality parameters which lead to specific properties of data series will be discussed. 

Subsequently, different fault detection methods will be presented and the efficiency of their 

application to the system will be discussed.      

 

2.2.  Water quality monitoring challenges and alternatives 

2.2.1.  The monEAU water quality monitoring stations 

According the monEAU vision for water quality monitoring presented by Rieger and 

Vanrolleghem (2008), the concept of the resulting monEAU water quality monitoring 

stations is demonstrated in Figure 1. This figure shows the different components of the 

monitoring network. It includes the measurement sensors, the monitoring stations and a 

central server. The monEAU monitoring stations consist of the input/output modules, the 

industrial computer and the data transmission modules. The sensors measure the water 

quality parameters and transmit the data to the monitoring stations. The data can be 

registered in the stations for different monitoring purposes or data quality evaluation or can 

be transmitted to the central servers for further monitoring and control purposes. The 

communication protocol between the sensors and the base stations can be quite diverse, but 

preference is given to bus protocols like Profibus. To connect the monitoring stations to the 

central server, different telemetry modules are available such as telephone line, xDSL, 

dedicated radio link and satellite. The monitoring stations are designed to be flexible to be 

used at different locations such as rivers, WWTPs and sewers with a wide range of types of 

sensors and sampling methods and with a large set of standard communication protocols for 

sensor connections. The number of measured variables used so far with these stations can 

be between 3 and 10 and the sampling time,	 ௦ܶ, can be 5 seconds or 1 minute. Figure 2 

shows a typical monitoring station installed in the field, in this case at the inlet of the 
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primary clarifier of the Lynette wastewater treatment plant in Denmark. Figure 3 shows the 

equipments panel of the monEAU station. 

 

 

Figure 1 – The monEAU network concept 
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Figure 2 – The monEAU monitoring station installed at the inlet of the primary 

clarifier at the Lynette wastewater treatment plant in Denmark 

 

Figure 3 – The equipment panel of the monEAU monitoring station 
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2.2.2.  Characteristics of the water quality monitoring system 

As discussed in chapter  1 the high sampling intensity enabled by online water quality 

monitoring stations leads to collection of huge data sets consisting of a large number of 

physical-chemical parameters (Alferes et al., 2013b). However, since the measurements are 

carried out in very difficult and challenging conditions, especially during rain events, data 

collected from such systems is frequently affected by different types of faults like shift, 

drift, inaccuracy and sometimes complete failure of the measurement system (Alferes et al., 

2013a). In addition, due to the intrinsic properties of water systems, the data sets which 

describe water quality parameters are often auto-correlated, not normally distributed and 

noisy (Alferes et al., 2012). Consequently, finding a fault detection approach which is 

compatible with the operating conditions of this stochastic system with fast dynamics is 

challenging.  

2.2.3.  Methods in literature and their applicability in the system 

There is an abundance of methods in literature covering model-based and process history-

based methods (Venkatasubramanian et al., 2003a) ranging from simple pre-validation tests 

(Bertrand-Krajewski et al., 2000; Mourad & Bertrand-Krajewski, 2002) to more 

sophisticated statistical univariate or multivariate tests, model-based and data mining 

methods (Branisavljevic et al., 2011). Due to the specific characteristics of the case study 

system, application of a large number of data quality evaluation methods in practice might 

not be feasible. Model-based methods for instance, need an explicit model of the system to 

generate residuals (the difference between the actual and expected behavior according to 

the model) and evaluate them statistically for fault detection purposes 

(Venkatasubramanian et al., 2003a). However, finding an exact model that explains all 

physical and chemical variations that might occur especially in this system is a difficult 

task (Alferes et al., 2013a). On the other hand, process history-based methods can be 

employed to extract the relationship between input and output of the system according to 

the history of data without having an accurate model of the system (Venkatasubramanian et 

al., 2003c; Alferes et al., 2013a).  



14 
 

Automated water quality measurement stations need automatic methods for their quality 

assurance. As mentioned before, the off-line manual methods are not appropriate for this 

system. Application of semi-automated data quality evaluation tools in water quality 

monitoring systems also result in a relatively large percentage of data loss (5-40%) (Bijnen 

& Korving, 2008; Thomann, 2008). This can be caused by either the inefficiency of the 

practical methods or by the intrinsic invalidity of data in such systems. On the other hand, 

on-line application of data quality evaluation approaches is limited to the methods which 

are not computationally complicated.  

Statistical methods have been broadly addressed in literatures as powerful techniques in 

fault detection in different fields (Willsky, 1976; Basseville, 1988; Conejo et al., 2007; 

Patcha & Park, 2007); however to apply them safely, accurate information about the system 

characteristics needs to be available (Conejo et al., 2007). Due to the intrinsic properties of 

the system, application of pure statistical methods (such as statistical classifiers) might not 

be feasible since not all behaviors of the system can be expressed as exact statistical 

distributions (Patcha & Park, 2007). 

Patcha and Park (2007) discussed the application of machine learning techniques in the 

domain of fault detection. They are capable of changing their execution strategies and 

improve their performance based on previous information. Despite the variety of machine 

learning approaches available in this domain, these techniques have drawbacks that make 

them inappropriate for real-time fault detection (Hill & Minsker, 2010). The major problem 

with many of the machine learning techniques is that they are computationally complex for 

large volumes of data as collected by automated water quality measurement stations 

(Patcha & Park, 2007). However, as proposed by Patcha, the idea of the Sliding Window 

approach in the frame of machine learning techniques can be inspiring to find a way to get 

adapted to the varying dynamics in the case study system. The idea of using a moving-

window approach has also been proposed by Liu et al. (2004) to capture the dynamic 

variations in on-line process data for outlier detection purposes.  

As previously discussed in  2.1, according to the process history-based model categorization 

(Venkatasubramanian et al., 2003c), there are feature extraction methods that present the 

historical process data as a priori knowledge to the fault detection system. This is also 
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known as data-mining in the literature. It is the process of extracting patterns from the data 

to allow later diagnosis according to the deviation of future behavior with the historical 

pattern (Patcha & Park, 2007; Hill & Minsker, 2010). For stochastic systems, like the water 

quality monitoring stations, whose future state is not completely determined by the past and 

present status of the system, statistical feature extraction methods can be useful too.   

The previously discussed idea of generating residuals is also known as analytical 

redundancy in literature (Basseville, 1988; Bloch et al., 1995; Hill & Minsker, 2010). In 

this approach the output of a model which is fitted to the data stream is considered as a 

redundant sensor whose measurement can be compared with that of the actual sensor. 

Classification of a data point as anomalous or non anomalous is performed according to the 

difference between model prediction and sensor measurement considering a threshold value 

(Pastres et al., 2003; Garcia et al., 2010; Hill & Minsker, 2010; Alferes et al., 2012). Since 

faults in the system cause changes in state variables or model parameters, analytical 

redundancy for fault detection in dynamic systems, mostly concerns monitoring of 

estimated states or model parameters of the system (Venkatasubramanian et al., 2003a). 

According to the solution given by Willksy (1976), Basseville (1988) discussed the 

application of KFs to give optimal state estimates according to the model of the system. KF 

is a well known model-based tool that uses underlying dynamic models to estimate the 

current state of process variables given the noisy measurement data (Bai et al., 2006). The 

filter can also estimate the corresponding output data by using the estimates of the states of 

the dynamic system (Ting et al., 2007).  

However, as mentioned at the beginning of chapter  2, some assumptions are made in the 

application of the classical KFs that may degrade their efficiency (Chan et al., 2005; Ting et 

al., 2007; Gandhi & Mili, 2010). To address this problem, different solutions have been 

presented in literature comprising consideration of non-Gaussian distributions for random 

variables (West, 1981; Smith & West, 1983) or addressing the sensitivity of the squared 

error criterion to noises (Huber, 1964). To get along with the nonlinearity of systems, 

Extended KFs can be used to estimate the states of the system by a nonlinear state space 

model of the system (Basseville, 1988).  
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Application of KFs to water quality monitoring stations can be challenging because of the 

specific properties of these systems. The mentioned robustification approaches can be 

numerically complicated and thus might not be applicable to the case study water system. 

In addition, due to the existence of unknown disturbances in this system, the stochastic 

behavior of the monitored water quality parameters can hardly be precisely known and 

thus, one single model cannot describe the behavior of the system. A possible solution can 

be adopting the system model by using the Extended KFs. Another possible approach is the 

application of a bank of KFs, working independently, designed for all possible modes of 

behavior in the system (Basseville, 1988; Maldonado et al., 2010).  

Maldonado et al. (2010) presented the Multi Model Filtering Algorithm (MMFA). In their 

method, at the calibration phase that uses the history of data, a set of linear models is 

identified for different behavioral modes of the system. For each of the identified models a 

KF is designed according to which the states of the system are estimated. To improve state 

estimation by applying Bayes’ rule the conditional probability of each model to represent 

the actual observed system behavior based on input and output measurements is 

determined. The final estimated state of the system is calculated as a weighted sum of 

model probabilities and their associated states. In water quality monitoring systems, it is 

hard to find the optimal number of possible models of the system; therefore the size of bank 

of KFs may increase (Venkatasubramanian et al., 2003a). This is the reason that the 

application of this approach in this system may not be as straightforward as it seems.  

Auto-Regressive data-driven methods are a class of data quality evaluation approaches that 

are widely used in literature. They are known to be successful in empirical modeling of 

time series data. Hipel and McLeod (1978) demonstrate that data-driven Auto-Regressive 

Moving-Average (ARMA) models can be successful in modeling hydrological time series 

data. According to them, the stochastic model is fitted to the system empirically and it does 

not exactly represent the physical model of the system. Similarly, Berthouex and Box 

(1996) state that an Auto-Regressive Integrated Moving Average (ARIMA) model can be 

fitted empirically to the stochastic time series obtained from waste water treatment plant to 

auto-forecast (uses just its own past to forecast future) future values of the series. Although 

the obtained model is identified empirically and does not exactly represent all physical-
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chemical phenomena, it can be interpreted as a faithful description of physical-chemical 

realities. Garcia et al. (2010) also use a Vector Auto-Regressive Moving Average 

(VARMA) model (which is the extension of ARIMA model to the multivariate case) to 

predict and detect failures in railway networks. They identify parameters of the model using 

the Maximum Likelihood approach. 

 

2.2.4. The alternative approach 

Considering the intrinsic characteristics of the automated water quality measurement 

systems, it can be concluded that the alternative method should be automatic to scale well 

with the large volume of data, on-line applicable in real-time and fast enough to get along 

with the rate of data collection. In addition, it should not be computationally complicated 

and should not need any form of model as a priori knowledge. Since finding a physics-

based model is hard while a large volume of data history is available, a data-driven time 

series model can be used (Hill & Minsker, 2010). Consequently, it is proposed to use the 

ARMA model as an alternative to the expected characteristics. The model can be identified 

according to the history of the data and the expected behavior in the future can be 

forecasted based on the identified model. To adapt to the varying dynamics, the moving 

window idea can be employed and to detect outliers, according to the analytical redundancy 

concept, deviation of the expected behavior from the real behavior can be identified. 

 

2.2.5.  Methods proposed by Alferes et al. (2012) 

Regarding the utilization of data-driven models, Alferes et al. (2012) discussed two 

different approaches to assess data quality in automated water quality monitoring stations 

according to the history of data without having a theoretical model of the system. One is the 

univariate method which employs time series data of a single variable to check the 

acceptability of the measurement noise (Campisano et al., 2013) by means of 

autoregressive models. The other one is the multivariate method which infers significant 
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information from highly correlated variables based on Principal Component Analysis 

(PCA) (Yoo et al., 2008). 

The univariate method comprises three consecutive steps (Figure 4). The first and the most 

challenging step is the outlier detection. According to this approach, a 3rd order exponential 

smoothing model is fitted to the time series data and its parameters are estimated. The 

model is then projected into the future to generate the one-step ahead forecast data. The 

standard deviation of the forecast error (the difference between the forecast and observed 

values) is predicted at each time step by means of the 1st order exponential smoothing 

model. The prediction interval is defined by adding or subtracting a multiple of the standard 

deviation of forecast error to the forecast value. If the observed value at each time step falls 

out of the prediction interval, it will be regarded as an outlier. Once an outlier is detected, it 

is replaced by the forecast value. The output of this step is called the “Accepted data” 

which is smoothed in the next step of the method, using a kernel smoother to remove noise. 

Potential sensor faults are then identified in the third step by applying acceptability limits to 

the data features extracted from the filtered data calculated in the previous step. 

 

Figure 4 – Three steps of the univariate method proposed by Alferes et al. (2012) 

Since water quality data are highly auto and cross-correlated and univariate methods cannot 

intrinsically handle correlation among variables, Alferes et al. (2012) propose a 

multivariate method to infer significant information from highly correlated variables.  

The multivariate method is based on Principal Component Analysis (Yoo et al., 2008). In 

the PCA method, a new set of uncorrelated and orthogonal variables, called Principal 

Components (PCs), are extracted. Each PC is a linear combination of original variables 

which describe the largest process variability in a space with fewer dimensions than the 

original one. In order to detect probable faults in the multivariate method, it is proposed to 

calculate two statistics, T2 and Q, which describe the fit of the model to the system. 
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Comparison of the calculated statistics with their correspondent confidence intervals, leads 

to detection of probable faults in the original system.  

The univariate and multivariate methods developed by Alferes et al. (2012) have been 

successfully applied to detect and replace doubtful data and to diagnose probable faults in 

real time data series collected by the automated monitoring stations in modelEAU. In this 

research project, the univariate method is regarded with special attention. The outlier 

detection step will be studied in more details and its efficiency will be commented. The 

objective is to provide improvements to the univariate method regarding the model fitted to 

the system and the way the one-step ahead forecasts are generated.  

 

2.3.  The objective of the project 

As mentioned before, the objective of this research project is to improve the univariate data 

quality evaluation method of Alferes et al. (2012) that detects outliers and probable faults in 

water quality parameters measured by the automated water quality monitoring stations. The 

evaluation method consists of three consecutive steps and the focus of this work will be on 

the first step which is where outliers are detected. To detect outliers in the univariate 

method, a 3rd order exponential smoothing model is fitted to the time series data and is used 

to perform a one-step ahead forecast. In this work the exponential smoothing models will 

be critically evaluated and the manner in which they fit to the data series and forecast one-

step ahead will be discussed. Subsequently, another forecasting model will be suggested to 

replace the 3rd order exponential smoothing model to give one-step ahead forecasts. As for 

the exponential model this alternative model must be accompanied with an approach to 

adapt the model to the varying dynamics in the data. The proposed forecasting approach 

will be applied to a case study water quality parameter and the accuracy of the one-step 

ahead forecasts will be compared to the ones obtained by the 3rd order exponential 

smoothing model. Both forecasting models will finally be compared through their 

performance within the univariate data quality evaluation method. Their efficiency will be 

compared in terms of detecting probable faults in the case study time series according the 

specified criteria.   
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2.4.  Exponential smoothing models in forecasting time series 

The performance of the outlier detection step in the univariate method is principally based 

on forecasting time series data according to the historical behavior by means of exponential 

smoothing models. Therefore, in this section more details are presented about these models 

and the way they generate forecasts.  

As mentioned by Montgomery et al. (1990), exponential smoothing is a popular method for 

smoothing discrete time series in order to forecast immediate future. Exponential 

smoothing models use special weighted moving averages and a seasonal factor that is 

multiplied by the weighted moving average in order to forecast the immediate future. These 

weighted moving averages are referred to as smoothing statistics. The exponential 

smoothing models are an extension of the moving average model. Generally, an 

exponential smoothing method uses three smoothed statistics that are weighted, so that the 

more recent the data, the more weight is given to the data in producing the forecast.  These 

three averages are referred to as single, double, and triple smoothing statistics and are 

moving averages that are weighted in an exponential declining way. 

According to Montgomery et al. (1990), forecasting systems use three separate forecasting 

equations:  one model called a constant model, the second called a linear model and a third 

called a quadratic model.  The constant forecast uses only the single smoothed statistic and 

performs well when the time series has little trend.  The linear forecast model uses the 

single and double smoothed statistics and is good when there is a linear trend in the time 

series. The quadratic forecast model uses all three statistics namely, single, double, and 

triple smoothed statistics. 

In the next section, different orders of exponential smoothing models will be discussed. It 

includes details about the models, estimation of their unknown parameters and the way they 

produce forecasts for the future according to Montgomery et al. (1990). Since the objective 

is to improve the quality of the model in generating more accurate forecasts, a 

mathematical revision of the models is essential. An alternative model can then be 

proposed once all the details are understood about the current model.  
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2.4.1.  Simple exponential smoothing for a constant process  

If one could assume that the average of a time series does not change over time or if it does, 

it changes very slowly, the fitted discrete-time model might take the form: 

k kx b    (1)

where ݇	represents a discrete time sample, ݔ௞	is the data value at time	݇, ܾ is the mean 

value of the data set and the model’s unknown parameter and ߝ௞ denotes a random error 

term corresponding to that part of the data that cannot be fitted by the model. The random 

term in the model is considered to have an expected value of zero and the constant 

variance.  

At the end of time step	݇, a data history ݔଵ, ,ଶݔ …	,  ௞ is available according to which weݔ

wish to estimate the unknown model parameter	ܾ. To do so, the simple (first) exponential 

smoothing model can be used.  

In this forecasting system, the model parameters are re-estimated at each time	݇. In order to 

take into account the data observed in the most recent period, it can be assumed that at the 

end of period ݇	we have available the estimate of ܾ made at previous time	݇ െ 1, i.e. ෠ܾ௞ିଵ  

and the actual value of current time ݇,	ݔ௞ to calculate an updated estimate	 ෠ܾ௞. A reasonable 

way to get the updated estimate is to modify the old estimate with a fraction of the forecast 

error. The forecast error at time	݇, ݁௞ results from the difference between the current 

observed value and the old estimate. 

1
ˆ

k k ke x b    (2)

The new estimate is computed according to the following equation: 

1 1
ˆ ˆ ˆ[ ]k k k kb b x b       (3)

 namely the smoothing constant, is the fraction according to which we desire to ,ߙ

contribute the forecast error to the calculation of the new estimate.  
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For simplification of the further development of the methods, we define the first 

exponentially smoothed statistic as	ݏ௞ ≡ ෠ܾ
௞. So the above equation will be: 

1 1[ ]k k k ks s x s       (4)

In other words:   

   11k k ks x s      (5) 

The presented procedure is called Simple (First) Exponential Smoothing. 

Generally speaking, the smoothed statistic constitutes a weighted average of past 

observations where the weights sum to unity and decrease geometrically with the age of the 

observations. These statements can be proven if ݏ௞ିଵ in the right-hand side of equation (5) 

is substituted recursively by its equivalent from equation (5). This operation leads to the 

following equation: 

1

0
0

(1 ) (1 )
k

m k
k k m

m

s x s  





     (6)

where ݏ଴	is the initial estimate of ܾ and is used to initialize the algorithm.   

The weights add to 1 since: 

1

0

1 (1 )
(1 ) 1 (1 )

1 (1 )

kk
m k

m

   






 
    

   (7)

The smoothing constant ߙ presented in equation (3) is the forgetting factor in this method 

which controls the rate of decay and determines the behavior of the forecast system with 

respect to the changes in	ܾ. Small values of ߙ give more weight to the historical data 

promoting a slow response. With large values of	ߙ, more weight is assigned to the current 

observation while leading to a faster response. Generally, the ߙ value can range between 0 

and 1, taking typical values between 0.01 and 0.3.  
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As already mentioned and proven in equation (6), the weights associated to previous 

observations decay with time and since these weights decrease exponentially with time, the 

name exponential smoothing is assigned to this procedure.  

For a large enough value of ݇, i.e., the term ሺ1 െ  ଴ is very close to zero, theݏሻ௞ߙ

exponential smoothing operator described in equation (6) leads to an unbiased estimate of 

the real value of the process average ܾ, since: 

0 0 0

( ) [ (1 ) ] (1 ) ( ) (1 )m m m
k k m k m

m m m

E s E x E x b b     
  

 
  

          (8)

So, it is logical to take ݏ௞ as the estimator of the unknown parameter of the model ܾ at 

time	݇: 

ˆ
k kb s  (9)

Finally, because a constant model is considered, the forecast value of the data for any future 

time steps ݇ ൅ ݆	 would be: 

ˆˆ
k j kx b   (10)

To sum up, a first order exponential smoothing operator fits a constant model to the time 

series data (equation (1)) whose only unknown parameter is re-estimated at each time ݇ as 

the new data point emerges (equations  (4) and (9)). Since a constant model is considered, 

for any time in future the estimated model at current time is projected into future and 

according to that the forecast of the data is produced (equation (10)). 

 

2.4.2.  Double exponential smoothing for a linear trend process 

A second order exponential smoothing model is the extension of the first order exponential 

smoothing to the cases in which the mean of the process changes linearly with time and 

there is a trend in the data, according to the following discrete-time model: 
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k kx a bk   
 

(11)

where ܽ the intercept and ܾ the slope of the linear model are the unknown parameters 

which are supposed to be estimated. The definitions of ݔ௞ and ߝ௞ remain the same as the 

ones for the constant model in the previous section. 

If the simple exponential smoothing operator described in equations (6) is applied to the 

linear process defined in equation (11) and the expected value is calculated, we obtain: 
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0
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 
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


 (12)

where ߚ is equivalent to	ሺ1 െ  .ሻ and is considered for simplification of the demonstrationsߙ

For sufficiently large value of		݇,  ߚ tends to zero, then equation (12) can be expressed as: 

0 0

( ) ( ) m m
k

m m

E s a bk b m a bk b
   


 

 

        (13)

and since, 

( )kE x a bk   (14)

for equation (13) we have: 

( ) ( )k kE s E x b



   (15) 

This means that the expected value of the first order exponentially smoothed statistic, when 

applied to a linear model, lags behind the process by a value equal to	ఉ
ఈ
ܾ. 

If the exponential smoothing operator is applied once more to equation (5), we obtain: 
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[2] [2]
1(1 )k k ks s s      (16)

where ݏ௞
ሾଶሿ denotes double (second-order) exponential smoothing.  

Similarly for the output of equation (15) we can show that: 

[2]( ) ( )k kE s E s b



   (17) 

And consequently, 

[2][ ( ) ( )]k kb E s E s



   (18) 

So it is reasonable to estimate b at the end of time period ݇ as: 

[2]ˆ [ ]k k kb s s



   (19) 

By substituting equation (17) in equation (15), the expected value of the data at the end of 

the time period ݇ can be obtained as: 

[2]

[2]

( ) ( ) [ ( ) ( )]

2 ( ) ( )

k k k k

k k

E x E s E s E s

E s E s

 
 

   

 

 (20) 

Therefore, it seems reasonable to say: 

[2]ˆ 2k k kx s s   (21) 

On the other hand, estimation of ܽ can be performed according to two different approaches 

which both lead to the same estimation of the intercept. One is to estimate the intercept at 

the original time origin by employing equations (19) and (21), as: 
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 [2] [2]ˆˆ ˆ 2k k k k k k ka x kb s s k s s



       (22)

According to this approach, the calculation of the forecast value made at time ݇ for any 

time step ݆ in the future will be: 

  ˆˆ ˆ
k j k kx a k j b     (23) 

Another approach is to think the origin of time as shifted to the end of time period ݇ and 

then estimate the current-origin intercept according to the following equation: 

[2]

ˆ ˆ

2

k k

k k

a x

s s



 
 (24) 

In this case, the forecasting equation for any time step in future is as follows: 

ˆˆ ˆ
k j k kx a jb    (25) 

Initial values of	ݏ଴	and ݏ଴
ሾଶሿare obtained from initial estimates of the two coefficients ܽ and 

ܾ which may be developed through simple linear regression analysis of historical data.  

 

2.4.3.  Triple exponential smoothing for a process with quadratic model  

A third order (triple) exponential smoothing model takes into account trends and seasonal 

changes. The corresponding model takes the quadratic form: 

21

2k kx a bk ck      (26) 

According to the explanations presented in the previous sections, assuming that we have 

estimates of the model parameters based on the original origin of time, the forecasting 

equation at the end of period ݇ for ߬ step ahead is: 
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  21ˆˆ ˆ ˆ( )
2k j k k kx a k j b k j c       (27)

However, if we define the origin of time at the end of the period	݇, the coefficients will take 

different values and the forecasting equation will be: 

21ˆˆ ˆ ˆ
2k j k k kx a b j c j     (28)

For the latter case, the coefficients of the model,	 ොܽ௞, 	 ෠ܾ௞	 and	ܿ̂௞ are computed using the 

first, second and third exponentially smoothed statistics,	ݏ௞, ௞ݏ
ሾଶሿ and ݏ௞

ሾଷሿcalculated at the 

end of time period	݇. The smoothed statistics are calculated by: 
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 (29)

Once the statistics have been calculated, the coefficients of the model are obtained as 

follow: 
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(30)

Therefore, in the third order exponential smoothing model, a quadratic model (equation 

(26)) will be considered for the system. The unknown parameters of the model, ܽ, ܾ and ܿ, 

can be estimated at each time step through equations (30), while the smoothing statistics 

have been already calculated through equations (29). The forecast for any time step in 

future can be generated by projecting the quadratic model into the future through equation 

(27). 
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2.4.4.  Simple exponential smoothing in calculating the Standard Deviation of forecast 

error   

The exponential smoothing models are used in the univariate method to first, produce the 

one step-ahead forecasts and then to calculate the standard deviation of the forecast error to 

detect and replace outliers in water quality parameter time series. At each time step, the 

forecast is calculated together with its prediction error interval which gives the amount by 

which the real observed data can deviate from the forecast data.  

The prediction error interval is indentified by analyzing the one-step-ahead forecast error at 

each time step, ݁௞ሺ1ሻ	calculated as: 

ˆ(1)k k ke x x   (31)

where	ݔො௞ is the forecast for time ݇ made at previous time step, ݇ െ 1 and ݔ௞ is the real 

observed value at time	݇. 

To provide an estimation of the local variance and to quantify the extent by which the 

actual value differs from the forecast according to Montgomery (2009), a method is applied 

to estimate the variance of forecast error,	ߪ௘ଶ, through the estimation of the Mean Absolute 

Deviation (MAD), ߂, by means of a simple exponential smoothing model. According to 

this method, assuming that the forecast error is normally distributed at time ݇, the estimate 

of ߪ௘ଶ is obtained as: 

,
ˆˆ 1.25e k k    (32) 

where ߪො௘,௞ is the estimate of the standard deviation of forecast error for time ݇ and ∆෠௞, 

calculated according to the 1st order exponential smoothing method as:  

    1
ˆ ˆ1 1k k ke        (33)

where ߟ is the forgetting factor. 
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Finally, the prediction error interval,	݈݉݅ݔ, is defined based on a probability statement 

about the forecast error by adding or subtracting to the forecast data a multiple of the 

standard deviation of the forecast error: 

,
ˆ ˆ

k k e kxlim x L   (34)

where ܮ is a proportional constant. Smaller values of ܮ make the limits more restrictive 

while larger values lead to less restrictive limits.  

In this chapter, the exponential smoothing models used in forecasting the data as well as 

used for estimation of the prediction error interval, were explained. The next chapter is 

dedicated to the explanation of the water quality monitoring system and its corresponding 

measured variables. Details of the three steps of the previously explained univariate data 

quality evaluation method will then be presented. An alternative method cannot be 

proposed unless a complete knowledge about the previous method is acquired. 
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3. MATERIALS AND METHODS  

As discussed in section  2.3, the objective of this project is to propose a new model to fit to 

the fast dynamics of the time series that describe water quality parameters in the monEAU 

automated water quality monitoring stations. General information about these stations is 

presented in section  2.2.1. The monitoring stations have been so far installed in different 

water sources with diverse purposes. The case study in this project is a station installed at 

the municipal treatment plant in Denmark. Time series related to one of the water quality 

parameters in this station will be selected and the new method will be calibrated and its 

performance will be evaluated according to that.  

In this chapter, first the case study monitoring station will be introduced. The water quality 

parameter registered by this station, which will be used for tuning and evaluation of the 

new model, will be introduced. The chapter continues with an explanation of the different 

steps of the previously discussed univariate method. With a focus on the outlier detection 

step, the chapter ends with a discussion about the potential of substituting the forecasting 

model of the outlier detection system. 

 

3.1.  In situ monitoring station – Case study 

As mentioned before, the automated water quality monitoring stations, monEAUs, have 

been installed in different water systems with different purposes. The case study in this 

project used two automated monitoring stations (RSM30, Primodal System) which were 

installed one at the inlet and the other one at the outlet of a primary clarifier of the 700,000 

PE municipal treatment plant in Lynetten (Copenhagen, Denmark) (Alferes et al., 2013b). 

Figure 2, illustrates one of the mentioned monitoring stations. The objective of installing 

these stations was to study the inflow dynamics as well as the performance of the primary 

clarifier. To achieve this objective, these stations comprise the following measurement 

instruments: 
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1. Instruments for measuring conventional physical-chemical parameters, such as 

temperature, pH, turbidity and conductivity. 

2. A UV spectrometer for measuring total suspended solids (TSS), total chemical oxygen 

demand (CODt) and filtered chemical oxygen demand (CODf). 

3. Ion selective electrodes for measuring ammonia, potassium and chloride. 

Depending on the type of instrument, the sampling time of the data collected by the 

different measurement devices can be 5 or 60 seconds, which is very fast and generates a 

huge volume of information-rich data sets. 

Among all water quality parameters registered in this system, turbidity was selected as the 

case study variable. Turbidity, Nephelometric Turbidity Unit (NTU), is known as the 

cloudiness of the fluid that is caused by suspended particles which are not visible by naked 

eye. In the monitoring stations this variable is measured by a Solitax (Hach, USA) sensor 

each 5 seconds. According to the experiments, turbidity data are known to be more 

sensitive to the variations in the status of the system in comparison with many other 

measured water quality parameters. The turbidity sensors are easily affected by clogging 

and fouling that may cause many errors in the data. That is why it was selected as the case 

study variable and according to that time series the new method will be tuned and its 

performance will be evaluated. We believe that any model that is successful in representing 

the real dynamics of this variable can work successfully for other variables. Figure 5 

illustrates the case study turbidity sensor installed at the inlet of the primary clarifier of the 

Lynette wastewater treatment plant. This can be considered one of the most challenging 

locations for such sensor. In Figure 6 , the same sensor is shown after two weeks of 

utilization in sewage. This figure shows an example of the fouling problems that affect 

measurement in this system.   
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Figure 5 – The case study turbidity sensor installed at the primary clarifier of the 

Lynette wastewater treatment plant in Denmark 

 

 

Figure 6 – The case study turbidity sensor – Sensor fouling problems 
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Figure 7 shows 45 days of raw turbidity data collected at the inlet of the wastewater 

treatment plant where probably the hardest measurement conditions for sensors can be 

found (Alferes et al., 2013a). Since the new method will be tuned according to this variable, 

the properties of this variable should be studied in more details. Figure 8 shows a 86 minute 

zoom.  

 

Figure 7 – Raw data – Turbidity – Ts = 5s 

 

Figure 8 – Turbidity – Ts = 5s – A closer look  
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Taking a glance at the dynamics of the raw turbidity data in Figure 7 and Figure 8 shows 

that a 5 second sampling interval is relatively fast and may lead to intensive computations 

for data validation. A slower sampling interval, e.g. 1 minute, will not miss the important 

dynamics in the data while it may accelerate the mathematical calculations. In this study the 

raw turbidity data will thus be re-sampled at 1/12 the rate of the original data set, which 

leads to a 1 minute final sampling period. The result is shown in Figure 9. 

 

Figure 9 – Re-sampled turbidity – Ts = 1min – A closer look 

Figure 10 shows a graph of rainfall data collected by the same monitoring system. 

Theoretically, it is expected that the rainfall intensity directly affects the level of 

contamination of water bodies by suspended particles and thus increases the level of 

turbidity. In other words, a positive correlation between precipitation and turbidity 

dynamics is expected. However, when the dynamics of the turbidity data in Figure 7 are 

regarded with consideration of the rainfall information of Figure 8, it can be observed that 

not all the large variations in the turbidity data correspond to rainfall events. However, as 

also previously discussed, due to the characteristics of water systems, such correlation does 

not necessarily exist in practice. Specifically for this case study system, different operation 

modes of the wastewater treatment system during the 24 hours of a day caused variations in 

turbidity data, which are not necessarily related to rainfall events. This behavior was the 
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main limitation in view of the automatic detection of abnormal behaviors in these types of 

data. 

 

Figure 10 – Rainfall intensity data 

A closer look of the turbidity data in Figure 11 shows that, harmonics of 1 hour and 24 

hours can be observed. As mentioned before, there are different modes of operation in this 

wastewater treatment plant, such as pumping modes during the day, which may cause these 

hourly and daily harmonics to happen.   

 

Figure 11 – Turbidity – Harmonics 
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This knowledge about the varying dynamics in the system could give an idea about the 

appropriate method that could be selected or the model that could be identified for the 

system.   

To conclude, turbidity data collected using a sampling time of 1 minute will be employed 

to first select the proper structure of the new model and then to validate the performance of 

the method to detect and replace outliers. The results will then be compared with those 

obtained from the reference univariate method with the application of the exponential 

smoothing models to detect and replace outliers.  

    

3.2.  A univariate method for automatic data quality evaluation – Proposed by 

Alferes et al. (2012) 

The univariate data validation method consists of three consecutive steps. The first step 

uses the algorithm to detect and replace outliers and to generate a proper time series which 

is smoothed in the next step to reduce the negative effects of noise. Potential sensor faults 

are then identified in the third step by calculating some data features according to the 

smoothed data and calculating their acceptability limits according to the raw data. Figure 

12 schematizes the three steps of the univariate data quality evaluation method. In the next 

section, each of the mentioned steps will be explained theoretically and where necessary 

their mathematical equations will be provided. 

 

Figure 12 – Univariate method proposed by Alferes et al. (2012) 

3.2.1.  Outlier detection 

As previously discussed, in this univariate method, an exponential smoothing model is 

fitted to the time series data where the unknown parameters are estimated based on the 

historical data. The model is then projected one step-ahead to obtain forecasts. To detect 
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outliers, an exponential smoothing model will be used as well to estimate the standard 

deviation of the forecast error, a coefficient of which will be used to decide on the 

acceptable prediction interval. Outliers can then be detected by comparing the observed 

data with the estimated prediction interval of the forecast value. 

The basics of the exponential smoothing models and the way they generate forecasts are 

already explained in section  2.4. Exponential smoothing models are often selected to 

forecast time series data in immediate future due to their simplicity, their computational 

efficiency, the ease of adjusting their responsiveness to changes in the process and their 

adequate accuracy (Taylor, 2010). To be more precise, the third order exponential 

smoothing model which takes into account trends and seasonal changes, is chosen to 

forecast the time series data in the univariate method.  

Considering the developments in section  2.4.3 for the 3rd order exponential smoothing 

model, equation (28) is used to give the one-step ahead forecast (݆ ൌ 1ሻ, equations (30) are 

used to compute the coefficients of the model, ොܽ, ෠ܾ	and	ܿ̂, using the first, second and third 

exponentially smoothed statistics	ݏ௞, ௞ݏ
ሾଶሿ and ݏ௞

ሾଷሿ, calculated according to equations (29).  

The first step to start the algorithm is to know the initial values of the smoothing statistics, 

i.e. ݏଵ, ଵݏ
ሾଶሿ and	ݏଵ

ሾଷሿ. These values are simply considered equal to	ݔଵ. Subsequent values of 

the smoothing statistics will be calculated at each time step using equations (29) by having 

  .݇	at each time step ݔ and the observed value ߙ

To choose the smoothing constant	ߙ, the model should be calibrated using the so-called 

“Good data”. A Good data set is a subset of the whole data that is selected by the expert 

using his/her previous knowledge of working with similar systems and refers to a set of 

data which does not include any important number of faults and represents modes of the 

normal behavior of the system. This normal behavior is also defined according to the 

knowledge of the expert about the system. Therefore, for all possible values that ߙ can take 

from 0.01 to 1 (with an interval of 0.01) the RMSE between the observed values and the 

forecast values (which is calculated according to the same 3rd order exponential smoothing 
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method) will be calculated using the Good data time series. The ߙ value that leads to the 

least RMSE will be selected as the desired value.  

To sum up, the calculation of the forecast according to the 3rd order exponential smoothing 

method is done according to the following algorithm: 

1. The initial values of ݏଵ, ଵݏ
ሾଶሿ and	ݏଵ

ሾଷሿ are simply taken equal to	ݔଵ 

2. ොܽଵ, ෠ܾଵ and ܿ̂ଵ are calculated according to (30) 

3. The one-step ahead forecast data made at time step 1,	ݔොଶ is calculated according to 

(28) 

4. For subsequent steps	݇, ݏ௞, ௞ݏ
ሾଶሿ and	ݏ௞

ሾଷሿ are calculated according to equations (29) by 

having the observed value ݔ௞  

5. The model parameters ොܽ௞, ෠ܾ௞ and ܿ̂௞ are calculated according to (30) 

6. The one-step forecast data ݔො௞ାଵ is calculated according to (28) 

7. The steps 4 to 6 can be repeated until all data points have been treated 

It should be noted that the algorithm mentioned above should be followed to find the best 

value for ߙ according to the Good data time series before starting the main algorithm. 

Once the one-step-ahead forecast value is calculated at each time step, outliers can be 

identified by comparing the real observed data with the prediction error interval. As 

discussed in section  2.4.4, at each time step the forecast data is calculated together with its 

confidence interval. Calculation of this confidence interval, also known as the prediction 

error interval, is done by analyzing the one-step-ahead forecast error calculated in equation 

(31). 

To provide an estimation of the local variance, the Standard Deviation of Forecast Error at 

each time step	݇,	ߪො௘,௞, is computed by equation (32) where the Mean Absolute Deviation, 
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∆෠௞, is estimated according to  the 1st order exponential smoothing method given in equation 

(33).  

To select the	ߟ value in equation (33), a procedure similar to the one already explained for 

the selection of ߙ in equations (29) and (30) should be followed. Accordingly, for a period 

of Good data, for different values of ߟ from 0.01 to 1 (with an interval of 0.01) the RMSE 

between the forecast Mean Absolute Deviation, ∆෠௞ and the absolute value of the one-step 

ahead forecast error, |݁௞ሺ1ሻ| is calculated. The desired value of ߟ is the one which 

corresponds to the least value of RMSE.  

Finally, the prediction error interval	xlim, is calculated by: 

,
ˆ ˆ

k k e kxlim x L   (35)

 is a proportional constant that is selected by trial and error with a Good data series during ܮ

the calibration phase. Smaller values of ܮ make the limits more restrictive while its larger 

values lead to less restrictive limits. This parameter may be adjusted manually according to 

the previous experience with similar systems so that the method does not reject the real 

dynamics as outliers. For different data sets the fine tuning of this parameter may be needed 

after the calibration phase. 

To sum up, to detect outliers at each time step	݇, a forecast value and its prediction interval, 

made at time	݇ െ 1, are available. If the observed data at time ݇,  ௞ exceeds the predictionݔ

interval, it is considered as an outlier and the data is replaced by the forecast value	ݔො௞. This 

procedure continues until the data points are exhausted. The result of substituting detected 

outliers in time series data is a new data series which is called Accepted Data.  
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Figure 13 – Graphical representation of the outlier detection algorithm 

It is important to note that the outlier detection step in the univariate method is equipped 

with an algorithm that consists of the backward reinitialisation of the algorithm in case the 

outlier detection procedure gets out of control. The algorithm is called out of control when 

a large number of consecutive data samples are rejected as outliers. In such situations, the 

algorithm reinitiates in the backward direction to recover the lost data and continues until a 

specific numbers of data points before the starting point of the out of control occurrence. 

Then the algorithm continues in the forward direction again. In this way data points that 

have caused the out of control situation can be skipped.  

 

3.2.2.  Data Smoothing 

Subsequent to the detection and replacement of outliers (producing the accepted data) and 

before applying the fault detection methods, the treated data will pass through a smoother 

to smooth the data and reduce noise. This smoothing step is necessary since the noise 

present in the data will negatively affect the statistical data features that will be extracted in 

the fault detection block and hence will negatively affect the proper conclusion about 

system fault.  

According to the univariate method proposed by Alferes et al. (2012), the accepted data 

will pass through a Kernel smoother to decrease the amount of noise by which the data is 

contaminated. According to the definition of Takahama and Sakai (2009), a kernel 
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smoother estimates a smooth function on noisy observations when no parametric model for 

this function is available. To estimate the smooth value Schimek (2013) proposes using the 

Nadarya-Watson kernel estimator to estimate the smooth function as a locally weighted 

average using a kernel as a weighting function. According to this estimator, at each point 

 :଴ the estimation of the smooth value by using the neighboring points isݔ

0 01
ˆ ( ) ( , ; ). ( )

n
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
  

(36)

where ݕො௛ሺݔ଴ሻ is the estimation of the smooth value of the observed point at ݔ଴, ݊ is the 

number of observed points, ܹሺݔ଴, ;௜ݔ ݄ሻ is a weighting function, ݕሺݔ௜ሻ are the observations 

at ݔ௜ points and ݄, the band width, is the number of neighboring points around ݔ଴ that are 

considered to estimate the smooth value.  

The weighting function is given by: 
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(37)

where ܭሺ. ሻ is a kernel function. 

Equation (36) means that the kernel smoother estimator is just a weighted sum of the 

observations	ݕሺݔ௜ሻ. In other words, when a data series is smoothed by a kernel smoother, 

all the points of the time series are weighted using the weights which are the results of the 

computation of the kernel function.  

Kernel functions are normally symmetric with non negative values that decrease from a 

central (maximum) value to zero. In literature one finds symmetric probability density 

functions used as kernel functions. They can take different forms like Uniform, Triangular, 

Quadratic, Gaussian or Normal (Takahama & Sakai, 2009). The kernel smoother used in 

the univariate data quality evaluation method proposed by Alferes et al. (2012) employs a 

Gaussian kernel function with the following form: 
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
  (38)

in which ݔ ൌ ௫బି௫೔
௛

 

݄ is a positive parameter which controls the smoothness or roughness of the estimates and 

leads to under-smoothing or over-smoothing situations. For very small values of ݄ the 

variance of the estimates will be too large while for very large values of ݄ the bias of the 

estimates will be too large. There are various criteria according to which ݄ can be selected. 

Normally it is selected automatically in a way that it minimizes the sum of squared 

residuals between the raw data and the smoothed data (Schimek, 2013). In the univariate 

method there is the possibility of selecting ݄ automatically to minimize the sum of squared 

residuals or manually according to the further applications of the data. For example, when 

the data is going to be used for modeling purposes, if the simplicity of the model is desired, 

the larger values of ݄ may be required. 

The principal theories about the kernel smoother were just presented. The accepted data 

passes through a kernel smoother that smoothes the data and reduces the noise. According 

to this smoothed data, some statistical data features will be calculated in next step which 

help detection of probable faults in the data. These data features will be defined in next 

section and their contribution in detecting potential sensor faults will be discussed. 

 

3.2.3.  Fault detection 

At each time step	݇, Alferes et al. (2012) propose a number of statistical data features to be 

calculated from the smoothed data sets. For each of these data features, the acceptability 

limits are calculated based on the raw data time series. Probable faults in the system can be 

detected by comparing each of these data features with reference to their acceptability 

limits according to which a proper validation mark can be assigned to each data point. 

Table 1 summarizes the definitions of the data features calculated for fault detection 

purposes according to Alferes et al. (2013a) 
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Table 1 – Data features for fault detection  

Data feature Definition Purpose of calculation 

Percentage of 

replaced data 

Fraction of forecast values that 

have replaced the outliers in the 

raw data 

Demonstrates the situation in which 

the abnormal behavior of data is 

replaced with the forecast value and 

evaluates the goodness of the 

smoothed data and data features 

Rate of change 
Slope between two consecutive 

data points in smoothed data 

Gives information about the 

dynamics of the data and helps 

detection of too sudden changes 

Physical 

realistic range 

Range where values are usually 

observed in a given measurement 

site with the corresponding sensor 

Investigates if the data lies inside 

the expected range 

Residual’s 

standard 

deviation 

Standard deviation of residuals 

(difference between accepted data 

and smoothed data) 

Estimation of variance of the data, 

large standard deviation of 

residuals can be a sign of faulty 

data 

Auto-

correlation of 

residuals 

Applying the Run Test (Dochain & 

Vanrolleghem, 2001) to the 

residuals (difference between 

accepted and smoothed data) to 

detect autocorrelation among them 

Evaluates whether residuals are 

randomly distributed. If the run test 

fails, residuals are auto-correlated 

and if so, either the smoothed data 

is not representative of the accepted 

data or the noise is not randomly 

distributed 
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Acceptability limits for the data features in Table 1 are defined based on realistic values 

obtained in the field and can be adjusted to make the fault detection phase more or less 

restrictive. They are calculated by using raw data and can vary according to the measured 

variables, measurement sensors and measurement locations (Alferes et al., 2013a).  

After calculating the data features together with their acceptability limits, data points are 

validated by regarding the data features with reference to their acceptability limits. For any 

specific period of data, if all the data features lie inside their acceptability limits, the 

validation mark 0 is assigned to the data which means the data is “Valid”. If some of the 

tests fail for a specific period of data, the validation mark 1 is given to the data, which 

means the data is “Doubtful” and further analysis is necessary to judge about the validity of 

the data. Finally, if all the tests or the most important ones fail for a data period, the 

validation mark 2 is assigned to that period which means the data is “Not valid”. 

 

3.2.4.  Discussion 

Three consecutive steps of the univariate data quality evaluation method were presented 

and detailed to 1) detect and replace outliers, 2) remove noise and 3) detect probable faults 

in time series data collected by monEAU automated water quality monitoring stations. 

It is believed that the most drastic step in this univariate method is the first step, which is 

the detection and replacement of outliers. The reason behind this claim concerns in the first 

place the intrinsic characteristics of the system under study. The outlier detection is based 

on forecasting the future behavior of the system according to a model of the system. 

However, as also discussed in section  2.2, finding an exact model that describes all physical 

and chemical phenomena in water systems is difficult. As Alferes et al. (2013a) have 

proposed, one alternative is the identification of the system model according to historical 

data. This approach also has its own challenges since the system under study has very fast 

dynamics and is prone to significant noise and many uncertainties.  

Practical results presented by Alferes et al. (2012; 2013b) demonstrate that the application 

of the 3rd order exponential smoothing model, which is selected as the model of the water 
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system in their univariate approach, gives very good performance. However, theoretically it 

can be shown that this model has drawbacks that made us decide about a more systematic 

approach to identify a new type of model for the system. For instance, as discussed in  2.4.3, 

according to this method it is assumed that the water quality parameter time series follow a 

quadratic model which is presented in equation (26), while the system does not necessarily 

behave like a quadratic system. That is why the next chapter is dedicated to revise the 

exponential smoothing models, with a different theoretical point of view. This revision of 

the model includes a mathematical reorganization of the equations presented in section  2.4 

that will help us better understand the actual function of the models.  

With this improved understanding, in the next chapter the idea of presenting an alternative 

model will be discussed and hence the procedure related to this new approach will be 

developed. At the end of the chapter, the results of applying the new model to the 

univariate method will be presented in comparison with the exponential smoothing model.
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4. RESULTS 

This chapter includes three principal sections. First the exponential smoothing models in 

modeling and forecasting the behavior of the water quality monitoring system will be 

theoretically revisited. Then, the proposed approach and the underlying theories will be 

presented as an alternative to the third order exponential smoothing model. The section 

continues by presenting the steps followed to tune the new model and identify its final 

structure. Finally, the performance of the univariate method with reference to the specific 

criteria will be evaluated for the new model and compared with the exponential smoothing 

model. 

  

4.1.  Exponential Smoothing Models – Revisited 

The purpose of this section is to discuss the essence of exponential smoothing models 

through a different theoretical approach. It will help to better comprehend the intrinsic 

performance of the smoothing methods in forecasting time series data.  

 

4.1.1.  1st order exponential smoothing model 

If equation (5) in section  2.4.1 is written in the form of an input-output transfer function 

model in the discrete-time domain, we obtain: 

11 (1 )k ks x
z


 

 
     (39)

in which z-1 is the backward-shift operator and ݏ௞ିݖଵ represents a one-step delay in	ݏ௞     

Equation (39) expresses that the first order exponential smoothing operator is actually a 

first order low-pass filter. 

On the other hand, according to equations (9) and (10), the forecast data for any time in the 

future,	ݔො௞ାఛ, is in fact equal to the value of the filtered data at time ݇, ݏ௞, which is held 
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constant for any time in future. The performance of the explained behavior is demonstrated 

graphically in Figure 14. It should be noted that the values in this figure are demonstrative 

and they do not necessarily correspond to a real system.  

 

Figure 14 – 1st order exponential smoothing – Forecasting 

4.1.2.  2nd order exponential smoothing model 

A similar approach to the 1st order exponential smoothing model can be followed to explain 

the forecasting behavior of the second order exponential smoothing model. If the equations 

(5) and (16) in sections  2.4.1 and  2.4.2 are rewritten as an input-output transfer function 

model in the discrete-time domain, we get: 

[2] 2
1

( )
1 (1 )k ks x

z


 
 

 
(40)

According to the above equation, the 2nd order exponential smoothing operator can be 

regarded as the combination of two identical low-pas filters in series that take ݔ௞ as the 

input and give ݏ௞
ሾଶሿ as the output. 

To develop a new approach regarding the forecasting behavior of the 2nd order exponential 

smoothing operator, the previously stated equations in section  2.4.2 shall be reconsidered. 

It can be demonstrated that the forecasting equation (25) can be expressed as a function of 
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the simple and double smoothed statistics ݏ௞ and	ݏ௞
ሾଶሿ. To address this, the procedure 

mentioned below should be followed. 

According to the current origin of time	݇, the forecasting statement for one step ahead is: 

1
ˆˆ ˆ

k k kx a b    (41) 

in which the unknown parameters ොܽ௞ and  ෠ܾ௞ can be estimated according to equations (19) 

and (24). If ݏ௞ and ݏ௞
ሾଶሿ in equations (19) and (24) are substituted by their equivalents of 

equations (5) and (16), after some simplifications the new expressions of ොܽ௞ and ෠ܾ௞ can be 

replaced in equation (41), yielding the one-step ahead forecast: 

[2]

1 1
ˆ 2k k kx s s                (42)

From equation (42) it can be inferred that the one step-ahead forecast data calculated at 

time ݇, simply follows a linear function of the simple smoothed statistic value at time ݇, ݏ௞ 

and the double smoothed statistic value at time ݇ െ ௞ିଵݏ ,1
ሾଶሿ . In other words, it can be 

simply proven that ݔො௞ାଵ lies on the straight line that passes through ݏ௞ and	ݏ௞ିଵ
ሾଶሿ . The 

performance of the explained behavior is demonstrated graphically in Figure 15. 

 

Figure 15 – 2nd order exponential smoothing – Forecasting 
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To prove this, the general equation of a straight line should be considered. For a straight 

line we have: 

( )f k ak b   (43)

We declare that: 

[2]
1( 1) ( 1)

( )
k

k

f k s a k b

f k s ak b
    

  
 (44)

Equations (44) can be re-organized with respect to ܽ and ܾ which are the unknown 

parameters of the straight line in equation (43). The result will be: 

[2]
1

[2]
1(1 )

k k

k k

a s s

b k s ks





 

  
 (45)

If ܽ and ܾ in (43) are substituted by their equivalents from equation (45), a unique straight 

line results that passes through ݏ௞ and	ݏ௞ିଵ
ሾଶሿ  with the following equation: 

[2] [2]
1 1( ) ( ) (1 )k k k kf k s s k k s ks       (46)

The value of ݂ሺ݇ ൅ 1ሻ will be: 

[2]
1( 1) 2 k kf k s s     (47)

While, according to equation (42), we know that: 

[2]
1 1ˆ 2k k kx s s    (48)

So: 

[2]
1 1ˆ( 1) 2k k kf k x s s      (49)

Therefore it is proven that the one step ahead forecast data made by a 2nd order exponential 

smoothing operator lie on the straight line that passes through ݏ௞ and ݏ௞ିଵ
ሾଶሿ . 
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4.1.3.  3rd order exponential smoothing model  

A similar approach can be followed for a 3rd order exponential smoothing model and the 

results mentioned below can be developed. 

The 3rd smoothing statistic,	ݏ௞
ሾଷሿ, can be regarded to be the result of filtering the data 

string	்ݔ three times:  

[3] 3
1

( )
1 (1 )k ks x

z


 
 

 (50)

Similar to the 1st and 2nd order exponential smoothing models, a new mathematical 

relationship can be developed for a 3rd order exponential smoothing operator to produce 

the forecasts.  

According to equation (28) in section  2.4.3, the one-step ahead forecast given by the 3rd 

order exponential smoothing model is: 

1

1ˆˆ ˆ ˆ
2k k k kx a b c     (51)

in which the unknown coefficients of the model, ොܽ௞, ෠ܾ௞ and ܿ̂௞, are computed by equations 

(30).  

By considering the equations in (29), the unknown coefficients of the model, ොܽ௞, ෠ܾ௞ and ܿ̂௞, 

can be rewritten as functions of	ݏ௞, ௞ିଵݏ
ሾଶሿ 	and ݏ௞ିଶ

ሾଷሿ  as: 

2 2 [2] 2 [3]
1 2

2 2 [2] 2 [3]
1 2

2 2 [2] 2 [3]
1 2

ˆ ( 3 3) ( 2 5 3) ( 2 1)

3 1ˆ ( 2 ) (3 5 ) ( 3 4 )
2 2

ˆ 2

k k k k

k k k k

k k k k

a s s s

b s s s

c s s s

     

     

  

 

 

 

         

       

  

               (52)

Substitution of equations (52) in (51) and the consecutive simplifications lead to the 

following relationship: 
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[2] [3]
1 1 2ˆ 3 3k k k kx s s s      (53)

By having a priori information about the second order exponential smoothing model, it can 

be inferred that for a third order exponential smoothing model, a quadratic relationship 

exists among the three smoothing statistics as demonstrated in Figure 16.  

 

Figure 16 – 3rd order exponential smoothing – Forecasting 

To prove this, the general equation of a quadratic function should be considered: 

21
( )

2
f k a bk ck    (54)

We declare that: 

[3]
2

[2]
1

1

( 2)

( 1)

( )

ˆ( 1)

k

k

k

k

f k s

f k s

f k s

f k x







 

 


 

 (55)
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In the quadratic function of equation (54), estimation of the three unknown parameters, 

ܽ, ܾ	and	ܿ, will be possible if at least three points of the function are available; Thus, the 

quadratic model will be then uniquely identifiable. Based on (55), the three points will be: 

[3] 2
2

[2] 2
1

2

1
( 2) ( 2) ( 2)

2
1

( 1) ( 1) ( 1)
2

1
( )

2

k

k

k

f k s a b k c k

f k s a b k c k

f k s a bk ck





      

      

   

 
(56)

 

Equations (56) can be re-organized and the unknown parameters ܽ, ܾ and ܿ can be stated as 

functions of ݇, ,௞ݏ ௞ିଵݏ
ሾଶሿ  and	ݏ௞ିଶ

ሾଷሿ .  

On the other hand, we know that: 

2
1

1
ˆ( 1) ( 1) ( 1)

2kf k x a b k c k        (57)

If the calculated parameters ܽ, ܾ and	ܿ, are substituted in equation (57) it leads to: 

[2] [3]
1 2( 1) 3 3k k kf k s s s      (58)

Equation (58) is equal to the equation (53) for	ݔො௞ାଵ.  

The presented development proves that ݔො௞ାଵ lies on the quadratic relation that exists among 

,௞ݏ ௞ିଵݏ
ሾଶሿ  and	ݏ௞ିଶ

ሾଷሿ .  

 

4.1.4.  Discussion 

According the above discussions, it can be concluded that using the exponential smoothing 

approach consists of two parts, filtering and prediction. The data is filtered by the low-pass 

filters (once, twice and three times) and then the predictions are made according to the 

filtered data. 
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The purpose of filtering the data with an ideal low-pass filter is to remove noise while the 

informative part of the data does not change. The cut-off frequency in the filters must be 

selected according to the frequency contents that are meant to be eliminated. However, in 

the exponential smoothing approach, selection of the order of the filter and the cut-off 

frequency is done empirically, without detailed analysis of the system. Specifically, for the 

3rd order exponential smoothing method, filtering the data repeatedly with the same time 

constant cannot be logically explained from a cut-off frequency point of view.   

On the other hand, prediction of the behavior of the system should be done according the 

available information about that system or according the model of that system. The 

limitation of the exponential smoothing approaches is in the way they address the models 

they fit to the system and the way these models produce forecasts. For example, the first 

order exponential smoothing model fits a constant model to the data. The last estimated 

value by this model is kept constant and projected into the future to produce forecasts. 

However, as will be demonstrated later, this is in fact an integrator model that keeps the last 

value constant as forecast for the future. On the other hand, the 3rd order exponential 

smoothing model fits a quadratic model to the history of the data and the same quadratic 

model continues into the future to produce forecasts. However, it seems that this model was 

selected empirically for the system. Water quality dynamics can be very fast, auto-

correlated and noisy but the choice of the quadratic model, considering the way it generates 

the forecasts, is not systematic.  

With respect to the previous discussions, it is attempted in this work to replace the model of 

the system and the forecasting approach. As mentioned before, this is the main objective of 

this research project. In section  2.2, the challenging conditions of the data quality 

evaluation in water quality monitoring stations were discussed and the desired 

characteristics of the alternative approach were enumerated. Accordingly, the idea is to find 

an alternative approach that respects the following characteristics: 

- It should be automatic and online applicable so that it can be applied to the automated 

water quality monitoring systems. 

- It should be fast to get along with the fast dynamics of the system under study.  
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- It should be selected systematically according to the characteristics of the system. 

- It should not be computationally complicated and costly.  

In the next section the alternative approach, that respects the desired characteristics, will be 

proposed and the corresponding theories will be presented.  

 

4.2.  Forecasting Time Series – An Alternative Method 

As discussed in section  4.1.4, the 3rd order exponential smoothing model has some 

limitations. The results with the univariate method show that the 3rd order exponential 

smoothing model can be successful in detecting the outliers in a time series (Alferes et al., 

2012); (Alferes et al., 2013a); (Alferes et al., 2013b). However, we propose using a more 

systematic approach for the system.  

In this chapter, the mathematical background of the proposed model and the forecasting 

expression are developed. A procedure to find a more representative structure of the model 

will be presented in further steps.   

 

4.2.1.  Theoretical background 

4.2.1.1. Auto-Regressive Moving-Average (ARMA) model 

As discussed before, due to the specific characteristics of the water quality monitoring 

stations, dynamic of the data collected by these systems can be affected by numerous 

factors. For instance, variations in the turbidity parameter can be affected by precipitation, 

the discharges from the water sources, defects in measurement devices, measurement and 

system noise and a few other factors that are not precisely known. As proposed by 

Berthouex and Box (1996), a reasonable approach to describe such systems can be the 

consideration of a stochastic behavior for the system and trying to fit an auto-regressive 

moving average model to it. In these models, the term auto-regressive relates the current 
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value of the time series to its own previous values and the term moving-average relates the 

current value of the series to the current or past white noise error terms (Berthouex & Box, 

1996). 

Application of the auto-regressive class data-driven models has been successful in 

empirical modeling of time series data in different papers (Hipel & Mcleod, 1978; Hau & 

Tong, 1989; Berthouex & Box, 1996; Garcia et al., 2010). According Berthouex & Box 

(1996), an Auto-Regressive Integrated Moving Average (ARIMA) model can be fitted 

empirically to the time series obtained from a wastewater treatment plant. They state that 

the stochastic models that describe a time series can be employed to give optimal forecasts 

of future values of that time series. Therefore, the ARIMA class of models is selected to be 

tested for this system. The mathematical theories related to these models are developed 

according to Ljung (1987) in the next section.  

Mathematical model and forecasting equation 

The discrete-time input-output model of a linear ARMA model takes the form: 

1
1

1

( )
( ) ( ) ( ) ( )

( )

C z
y k e k H z e k

A z




   
(59)

 

where ݁ሺ݇ሻ is the white noise signal and ܥሺ1ିݖሻ and ܣሺ1ିݖሻ are the polynomials from 

orders ݊௖ and	݊௔ respectively (denoted as ARMA[݊௔, ݊௖ሿሻ and defined by:  

1 1 2
1 2

1 1 2
1 2

( ) 1 ...

( ) 1 ...

na
na

nc
nc

A z a z a z a z

C z c z c z c z

   

   

    

    
 (60)

where 1ିݖ is the backward-shift operator. 

In the data-driven proposed ARMA model, the unknown parameters of the model, 

ሾܽ1	ܽ2 	…	ܽ௡௔ሿ	and	ሾܿ1	ܿ2 	…	ܿ௡௖ሿ, will be identified according to the history of the data and 

based on the minimization of the variance of the prediction error.  

The prediction error is defined as: 
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ˆ( ) ( ) ( | )k j y k j y k j k        (61)

where the term ݕොሺ݇ ൅ ݆|݇ሻ is the optimal prediction made for time ݇ ൅ ݆ according to the 

available data until time ݇, calculated as: 

1
ˆ( | ) ( )

( )
jF

y k j k y k
C z   (62)

in which, ܨ௝  is calculated according to the following Diophantine equation: 

1

1 1

( )

( ) ( )
jj

j

FC z
Quotient Remainder E q

A z A z




      (63)

for which ܧ௝ has degree	݆ െ 1 and ݆ is the prediction interval. 

For the special case that only a one-step ahead forecast data needs to be calculated, ݆ will be 

equal to 1. To calculate	ܨ௝ in this case, the long division of  
஼ሺ௭ష1ሻ

஺ሺ௭ష1ሻ
 will be carried out once 

to have ܧ௝ of order zero.  

A challenge in this approach is the selection of the order of the model. There are different 

criteria to identify the order of the model, such as Akaike’s information criterion (Akaike, 

1974), the final prediction error and the minimum description length suggested by Rissanen 

(1978). Indeed, according to the principle of parsimony, the model should possess as few 

parameters as possible while it adequately represents the data (Berthouex & Box, 1996). In 

this research project, by considering the principal of parsimony, different orders of the 

model will be tried and their fit to the system will be verified using the RMSE criterion.  

 

4.2.1.2. Forcing integrator to the ARMA model – ARIMA model  

In order to represent a non-stationary time series, which is the case of many environmental 

applications, a useful solution is to add an integrator to the ARMA model presented in (59) 

(Berthouex & Box, 1996) to have an ARIMA model. 
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Mathematical model and forecasting equation 

According to Ljung (1987), the ARIMA model transfer function takes the following form: 

1 1

1 1 1

( ) ( )
( ) ( ) ( )

( )(1 ) ( )

C z C z
y k e k e k

A z z A z

 

   
 

 (64)

where the term		∆	ൌ ሺ1 െ  1ሻ represents the differencing operator, which forces the modelିݖ

to possess a pole on the unitary circle in z-plane.  

To calculate the ݆-step ahead forecasts, a similar procedure to that presented for the ARMA 

model is followed. The only difference is that the denominator possesses an integrator in 

addition to	ܣሺିݖଵሻ. 

 

4.2.1.3. Pure integrator model 

If we tend to model a system by a pure integrator, in the ARIMA model we have	ܣሺିݖଵሻ ൌ

ଵሻିݖሺܥ ൌ 1, so the transfer function in the discrete-time will be:  

1

1 1
( ) ( ) ( )

1
y k e k e k

z
 

   

(65)

A pure integrator model produces forecasts according to the equation below: 

ˆ( | ) ( )y k j k y k   

  

(66)

4.2.1.4. Prediction theory for an ARMA model 

To demonstrate how an ARMA model performs the forecasting of the unseen future in a 

stochastic system, the following simple system can be considered: 
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1

1
( ) ( )

1
y k e k

az



 

 (67)

where ݁ሺ݇ሻ is a white noise signal. 

According to equation (62), the forecasting expression for ݆ step-ahead will be: 

ˆ ( | ) ( )jy k j k a y k    (68)

The forecasting behavior of the model is simulated for three different values of	ܽ ൌ 0, 0.5 

and	1,  ݇	 ൌ 	1, 2, … ,90 and	݆	 ൌ 	10. 

 

Figure 17 – Forecasting behavior for a = 0 

As demonstrated in Figure 17, for	ܽ ൌ ሺ݇ሻݕ	,0 ൌ ݁ሺ݇ሻ, the forecasts are equal to zero.  
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Figure 18 – Forecasting behavior for a = 0.5 

Figure 18 shows the forecasts for	ܽ ൌ 0.5. As expected from equation (68), for all the 

values of	0 ൏ ܽ ൏ 1, the forecasts tend to zero exponentially and the rate of this tendency 

to zero depends on the magnitude of	ܽ. As ܽ gets closer to zero, the forecasts tend faster to 

zero. 

 

  Figure 19 – Forecasting behavior for a = 1 
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For a pure integrator system, as demonstrated in Figure 19 and also discussed in section 

 4.2.1.3, the forecasts for the whole prediction interval will be equal to the latest value of the 

data.  

 

4.2.1.5. Moving window data approach 

In order to follow the varying dynamics in the data, according to the idea presented by Liu 

et al. (2004) for outlier detection, we propose using the moving window approach. 

Accordingly, a limited number of consecutive data samples, called a window of data, will 

be considered and it will move along the whole length of the data to catch the dynamics. 

The moving window approach used with an ARMA-class model is principally based on the 

identification of the model for the window of data, producing forecast data according to the 

identified model and moving the window one step ahead while discarding the oldest data 

point from the window. Figure 20 demonstrates the performance of the moving window 

approach for a Window Size (WS) of 4, starting at time	݇ െ 4. 

 

Figure 20 – Moving Window approach 

In general, if ܰ is the size of the moving window, i.e. the number of data samples included 

in the moving window data for each iteration of the algorithm, the proposed algorithm to fit 
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an ARMA-class model to a moving window data and calculate a ݆ step-ahead forecast data 

is proposed below: 

1- ܰ number of data points are considered.  

2- The parameters of the ARMA-class model are identified according to this window of 

data. 

3- Based on the identified model, the ݆ step-ahead forecast data is calculated. 

4- The data window moves one data point further. Thus, a new data point is considered in 

the window and the oldest data point is ejected from the window. 

5- Steps 2 to 4 are repeated consecutively until the last data point is reached in the window. 

It should be noted that the moving window approach is actually equivalent to working with 

the on-line data in real-time. To be more clear, at the initialization of the algorithm one 

should wait until at least ܰ	data points are available. According to this period of data, the 

above mentioned algorithm can be followed to produce the ݆ step-ahead forecast. The 

procedure continues until the end of the data collection period.  

Window size selection 

Regarding the application of the moving window approach, one challenge is to select the 

window size. Specifically for systems with special dynamics, such as those of water quality 

monitoring stations, selection of a proper window size is of great importance, in the sense 

that, for an extremely large window size, the important dynamics will be averaged and 

missed. On the other hand, by selection of a small window size, the algorithm will be more 

sensitive to noise and the model will adapt to the noise instead of the real dynamics. 

In section  3.1, the case study monitoring stations and the water quality parameter were 

introduced. Our knowledge about the dynamics of the data and the existing harmonics give 

us an idea about the proper window size. However, to select a value that gives the best fit to 

the dynamics of the system, different window sizes should be tested and their fits to the 

system should be verified. 
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4.2.2.  Model structure and window size selection 

In this section, the procedure which is followed to identify the proper model, the structure 

and the window size will be presented.  

In section  4.2.1, the models ARMA, ARIMA and the pure integrator were presented as 

proposed alternatives for the system. ARMA and ARIMA models can possess different 

numbers of poles and zeros and thus the order of the model is another effective parameter 

in the fit of the model to the system. As discussed before, the window size of the data is 

another factor that affects the quality of the approach in forecasting the data one step-ahead. 

Therefore, the performance of different structures in forecasting the one-step ahead data 

should be evaluated. To compare the accuracy of the forecasts, the RMSE criterion is 

calculated for the different cases.  

The RMSE is a criterion which is frequently used to evaluate the quality of a model or 

estimator to forecast future values. According to Berthouex & Box (1996), RMSE is an 

estimate of the variance of the one step-ahead forecast. A model with a small RMSE leads 

to better forecasts than a model with large RMSE. According to the definition, RMSE is the 

root of the average square of residuals of the forecasts and can be formulated as: 

2

1

1 N

i
i

RMSE e
N 

   (69)

for which N is the total number of data samples and ݁௜ is the residual, the difference 

between forecasts and observed values.   

The ARIMA model structure and the window size will be selected according to a Good 

period of turbidity data, demonstrated in Figure 21, which includes a rain event on 

2013.02.19. The definition of the Good data set was already given in section  3.2.1. 
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Figure 21 – Good data for model selection 

According to the previous explanations, all combinations of the different models are tested 

for the Good data set as follows: 

1- ARMA([1,1],[1,2],[2,1],[2,2]), ARIMA([1,1],[1,2],[2,1],[2,2]) and Pure integrator 

2- Window sizes: 1000, 100, 30, 10 

The window sizes are selected according to the existing harmonics in the data discussed in 

 3.1. It is important to have a window size that is smaller than the fastest harmonic in the 

time series. With 10 and 30 data points in the window, knowing that the sampling time is 1 

minute, we can follow the 1 hour harmonic in the data. With 1000 and 100 window sizes, 

the 24 hours harmonic in the data can be followed. 

It should be noted that the tests have been limited to the orders of the model structures 

mentioned above since more numbers of poles and zeros may lead to the overfit of the 

model to the data.  

Table 2 shows the results of the accuracy of the one step-ahead forecasts made by the 

different structures. 
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Table 2 – Model and window size selection, ranked according to the RMSE order 

Rank Model [݊௔, ݊௖] Window Size RMSE 

1 ARIMA [2,2] 10 26.773 

2 ARIMA [2,1] 10 29.384 

3 ARIMA [1,1] 10 31.453 

4 ARIMA [2,2] 30 32.748 

5 ARIMA [1,2] 10 32.787 

6 ARMA [2,2] 10 33.141 

7 ARIMA [1,2] 30 33.9 

8 ARIMA [2,1] 30 33.967 

9 ARIMA [1,1] 30 35.556 

10 ARIMA [2,2] 100 36.139 

11 ARIMA [1,2] 100 37.061 

12 ARIMA [2,1] 100 37.304 

13 ARMA [2,1] 30 37.377 

14 ARMA [2,1] 10 37.715 

15 ARMA [2,2] 100 37.762 

16 ARIMA [1,1] 100 38.193 

17 ARIMA [2,2] 1000 38.922 

18 ARMA [1,2] 10 39.013 

19 ARMA [2,2] 1000 39.172 

20 ARIMA [1,2] 1000 39.174 

21 ARIMA [2,1] 1000 39.267 

22 ARMA [1,2] 1000 39.348 

23 ARMA [1,2] 100 39.471 

24 ARMA [1,1] 30 39.515 

25 ARMA [1,1] 100 39.537 

26 ARMA [2,1] 100 39.549 

27 ARMA [2,2] 30 39.597 

28 ARIMA [1,1] 1000 39.643 

29 ARMA [1,1] 1000 39.919 

30 ARMA [2,1] 1000 40.376 

31 Pure integrator - 41.898 

32 ARMA [1,2] 30 42.005 

33 ARMA [1,1] 10 43.038 
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A quick look at Table 2 shows that the best fits are obtained by an ARIMA model with 10 

data points in the moving window and among them, the ARIMA with two poles and two 

zeros gives the least RMSE. However, as mentioned in section  4.2.1.5, for this small 

window of the data the model may adapt to the noise instead of to the real dynamics. On 

the other hand, with two poles and two zeros the model may overfit to the data.  

According to the given explanations, in order to be more confident about our choice, we 

also select the ARIMA with one pole and one zero and 30 data points in the moving 

window and will test its performance in the univariate method to detect outliers and faults. 

From now on the terms ARIMA10[2,2] and ARIMA30[1,1] will be used to represent the 

selected model structures. Figure 22 shows the real data and forecasts made by the 

ARIMA30[1,1].  

 

Figure 22 – Forecasts with ARIMA30[1,1] 

The identified parameters of the ARIMA10[2,2] and ARIMA30[1,1] and their standard 

deviations (in parenthesis) are presented for 14th of February 2013 at 22:10’:30’’ in 

equations (70) and (71). 
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ARIMA10[2,2]:  

1 1 2

1 1 2
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  

  

    

    

 (70)

 

ARIMA30[1,1]: 

1 1

1 1

( ) 1 0.7359( 0.2272)

( ) 1 0.9611( 0.1228)

A z z

C z z

 

 

  

  
 

(71)

 

4.2.3.  Calibration of the exponential smoothing model  

In the previous section, the procedure followed to select the ARIMA model structure and 

the moving window size for the Good data set was presented. However, the objective is to 

compare the performance of this model with the exponential smoothing model in giving the 

one-step ahead forecasts. To do so, different orders of the exponential smoothing model 

should first be calibrated for the same Good data set shown in Figure 21. The calibration 

step for this model simply consists of calculating the optimal forgetting factor for different 

orders of the exponential smoothing model according to the procedure explained in section 

 3.2.1. The best ߙ	values for the 1st, 2nd and 3rd order exponential smoothing models were 

respectively 0.63, 0.28 and 0.19. Figure 23, Figure 24 and Figure 25 show the RMSE 

evolution as function of	ߙ, for the 1st, 2nd and 3rd order exponential smoothing models, 

respectively. 
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Figure 23 – RMSE minimization with the 1st order exponential smoothing model 

 

 
Figure 24 – RMSE minimization with the 2nd order exponential smoothing model 
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Figure 25 – RMSE minimization with the 3rd order exponential smoothing model 

 

Once the optimal forgetting factors are obtained, the one-step ahead forecasts can be 

produced according to the equations in section  2.4. The accuracy of the forecasts are 

calculated according to the RMSE and the results are compared with the ones made by the 

ARIMA10[2,2] and ARIMA30[1,1] in Table 3. 

 

Table 3 – Exponential smoothing models compared to ARIMA10[2,2] and 

ARIMA30[1,1] – Accuracy of the 1 step-ahead forecasts 

Rank Model RMSE 

1 ARIMA10[2,2] 26.773 

2 ARIMA30[1,1] 35.556 

3 1st order exponential smoothing model 42.521 

4 2nd order exponential smoothing model 44.181 

5 3rd order exponential smoothing model 45.896 
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The results in Table 2 and Table 3 show that, in general, the quality of the one-step ahead 

forecasts made by the moving window ARIMA model has improved according to the 

RMSE criterion. Specifically, if we compare the 3rd order exponential smoothing and the 

ARIMA10[2,2], we can notice a 43% of improvement in the accuracy of the forecasts. This 

can be due to either the capability of the ARIMA model to forecast the one-step ahead 

value or the advantage of adapting to the varying dynamics by using the moving window 

approach.   

However, since the ARIMA model with moving window takes a very small window of data 

at each time of the iteration of the algorithm, at the calibration phase, it is computationally 

relatively heavy and time consuming in comparison with the exponential smoothing 

method.  

 

4.3. Application of the univariate method to the case study system 

In the previous section, the ARIMA model structure and window size were selected 

according to the Good data set by using the RMSE criterion. The next step is to apply the 

identified moving window ARIMA model to the univariate method and to study its 

performance in detecting outliers and faults in comparison with the univariate method using 

the third order exponential smoothing model.  

The procedure consists of two steps. One is the calibration step and the other one is the 

validation step. In the calibration step, parameters of different blocks in the univariate 

method (explained in section  3.2) are tuned for the Good data set in Figure 21. In the 

validation step, the calibrated parameters will be used and the performance of the two 

models, i.e. the moving window ARIMA model and the 3rd order exponential smoothing 

model, in the univariate method will be validated for the validation data sets. 

 



 

71 
 

4.3.1.  Calibration of the univariate method 

Figure 26 shows the different blocks of the univariate method. The parameters that need to 

be calibrated in each step are also indicated in parentheses. In the outlier detection step, the 

procedure consists of 1) Forecasting the one-step ahead data and 2) Calculating the 

prediction error interval. To forecast the one-step ahead data, two different models are 

tested. 1) The moving window ARIMA model (ARIMA10[2,2] and ARIMA30[1,1]) and 2) 

The 3rd order exponential smoothing model. The 3rd order exponential model was calibrated 

for the Good data set in section  4.2.3 and ߙ௢௣௧ ൌ 0.19 was obtained.  

To calculate the prediction error interval, according to which outliers are detected, the 1st 

order exponential smoothing model is used to estimate the standard deviation of the 

forecast errors. This part is also calibrated for the same Good data set in Figure 21 and 

consists of calculating the optimal value for ߟ in equation (33) and tuning the proper value 

for the coefficient ܮ in equation (34).  

 

Figure 26 – Application of the moving window ARIMA model to the Univariate 

method 



72 
 

Figure 27 shows the RMSE changes as function of ߟ for the forecasts made with the 3rd 

order exponential smoothing model. The ߟ value that gives the minimum RMSE between 

the forecast mean absolute deviation and the absolute value of the one-step ahead forecast 

error is 0.17.   

 
Figure 27 – ࣁ	minimization 

To tune ܮ, different values of the this coefficient used for calculating the prediction error 

interval were tested for the Good data set to make the outlier detection more or less 

restrictive. Figure 28 shows that the outlier detection with ܮ	 ൌ 	3 is too restrictive (for 

instance on February 18th) and leads to the incorrect rejection of real dynamics that are 

falsely detected to be outliers.  
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Figure 28 – Outlier detection with ARIMA10[2,2] – L = 3 – Bad tuning effects 

 

 

Figure 29 – Outlier detection with ARIMA10[2,2] – L = 5 – Good tuning 

It should be noted that due to time limitations the backward reinitialisation algorithm, that 

prevents the outlier detection of getting out of control with the 3rd order exponential 

smoothing model (explained in section  3.2.1), is not adapted to the outlier detection with 

the moving window ARIMA model. In order to compare the two models in the univariate 
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method, this algorithm was thus disabled for the exponential smoothing model to provide 

the same situation for both models. 

To smooth the data with the kernel smoother in the second block of Figure 26, the only 

parameter that had to be tuned, was	݄. As discussed in section  3.2.2, this parameter was set 

to 10 using the previous experience with similar data and according to the further 

application of the data.  This selection leads to a good trade-off between the large variance 

and the large bias of the smoothed data. 

Figure 30 shows the accepted data (when the forecasts are made with the ARIMA10[2,2]) 

and the smoothed data with	݄ ൌ 10. 

 
Figure 30 – Accepted and smoothed data with L = 5  

The last step in the univariate method shown in Figure 26 is the detection of faults in the 

data.  In order to compare the efficiency of the two models, the moving window ARIMA 

model and the 3rd order exponential smoothing model, in detecting the probable faults in 

the data series, two of the data features (introduced in Table 1) were taken into account. 

The “percentage of replaced data” and the “Auto-correlation of the residuals” will be 

calculated with accepted data and smoothed data produced by the two models for different 

data sets. The reason for selecting these two data features is that they give good measures 

of the fit of the model to the system or the goodness of the models in detecting outliers.  
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The percentage of replaced data represents the fraction of the raw data that is detected to be 

outliers for the windows of the data from ݇ െ ݄ to	݇ ൅ ݄. The auto-correlation of the 

residuals shows the fit of the model to the raw data or the randomness of the residuals. The 

data features will be calculated for accepted and smoothed data produced by the two 

models and will then be considered with their acceptability limits to detect faults.  

In practice, the acceptability limits are defined according to the knowledge of the expert 

about the characteristics of the variables, the measurement sensors and their locations and 

finally the decision of the user according to the further application of the data. In this 

project in order to provide the tools to compare the performance of the two models, the 

following limits are considered to classify the data features as valid or invalid. If the 

percentage of replaced data exceeds the limit of 20%, the data for that period is considered 

doubtful. If the failure of the runs test exceeds the 95% confidence interval (i.e. the 

residuals are non-randomly correlated) the data for that period is also considered doubtful. 

If there is a period for which the two tests vote for the doubtfulness of the data, the data for 

that period is considered invalid.  

The percentage of doubtful data and invalid data will be calculated with both models for the 

different data sets. An expert can then make a decision about the efficiency of the models 

according to his/her knowledge about the data. If a model leads to a large percent of 

doubtful data, while the expert knows that the period is clean and does not include many 

faults, we can include that the model is not efficient in detecting outliers or faults.  

Figure 31, Figure 32 and Figure 33 show the application of the univariate method with the 

ARIMA10[2,2], ARIMA30[1,1] and 3rd order exponential smoothing models respectively 

for the calibration data set shown in Figure 21 with ܮ ൌ 5. In all of these figures, the first 

plot shows the flow data. This figure is included for the reader to better understand certain 

dynamics observed in the turbidity data. The second and third plots show the turbidity 

dynamics while the upper (red) and lower (blue) confidence limits are removed in the third 

figure to show more clearly the detection of outliers. The green line represents the 

smoothed data. The fourth and fifth plots show the two data features, the percentage of 
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replaced data and the auto-correlation of the residuals (applying the run test). The straight 

lines in the run test plots show the 95% confidence interval for the data to be independent.   

 

Figure 31 – Univariate method with the ARIMA10[2,2] model – Calibration data set 

(explanation of the figure, see text) 

 
Figure 32 – Univariate method with the ARIMA30[1,1] model – Calibration data set 

(explanation of the figure, see text) 
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Figure 33 – Univariate method with the 3rd order exponential smoothing model – 

Calibration data set (explanation of the figure, see text) 

 

Table 4 gives the results of the analysis of the fault detection tests for the calibration data 

set. It can be observed that the results of the ARIMA30[1,1] and the 3rd order exponential 

smoothing models are similar with very slight differences. As was previously known, the 

calibration data set is clean and does not have many outliers or any faults. Therefore, both 

models perform correctly in detecting outliers and faults in the calibration phase. However, 

the ARIMA10[2,2] model detects less outliers and thus less doubtful data. The reason may 

be that this model was selected according to its best fit to the calibration data set and thus 

may be overfitted to the data.  
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Table 4 – Fault detection for calibration data set 

Model % Replaced data % Doubtful data % Invalid data 

ARIMA10[2,2] 0.8571 1.0285 0 

ARIMA30[1,1] 1.7571 1.9285 0 

3rd order exponential 
smoothing 

1.8685 2.0399 0 

 
 

4.3.2.  Validation of the univariate method 

After calibrating the parameters of the models and the univariate method according to the 

calibration data set, the performance of the univariate method in detecting outliers and 

faults should be also validated on the basis of data sets different from the calibration data 

set. Similar to the calibration step the percentage of doubtful data and invalid data detected 

by both models will be calculated and the results will be compared.  

Two validation data sets were selected. One is related to the rain event occurring on the 30th 

of January and the other one is related to the rain of the 26th of April. The univariate 

method with the ARIMA10[2,2] model was applied to the validation data sets and the 

results are shown in Figure 34 and Figure 35. 
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Figure 34 – Univariate method with ARIMA10[2,2] model – Validation data set of  

January 30th (explanation of the figure, see text) 

 

Figure 35 – Univariate method with the ARIMA10[2,2] model – Validation data set of 

April 26th (explanation of the figure, see text) 
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In Figure 34 and Figure 35, a few periods are detected and marked in which the real 

dynamics are rejected as outliers. As previously discussed in section  4.2.2, the reason for 

this behavior of the ARIMA10[2,2] model can be that very few data points are taken in the 

moving window or the model is overfitted to noise. In section  4.2.2, the ARIMA10[2,2] 

was selected according to its fit to the calibration data set. However, for the validation data 

sets, no satisfactory results are obtained. Therefore, the ARIMA30[1,1] model, which led to 

a trade-off between the acceptable fit to the calibration data set and the simpler structure 

with more data points in the moving window, was also applied to the univariate method. 

The results are shown in Figure 36 to Figure 39.  

  

Figure 36 – Univariate method with the ARIMA30[1,1] model – Validation data set of  

January 30th (explanation of the figure, see text) 
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Figure 37 – Univariate method with the ARIMA30[1,1] model – Validation data set of 

April 26th (explanation of the figure, see text) 

It can be observed that the problematic periods of the ARIMA10[2,2] model do not exist 

for the ARIMA30[2,2].  

A closer look of the periods marked in Figure 36 and Figure 37 are shown in Figure 38 

respectively in Figure 39. In these figures it can be observed that the moving window 

ARIMA model performs correctly in the detection and replacement of the outliers.  
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Figure 38 – Closer look of the outlier detection of the period marked in Figure 36 

(explanation of the figure, see text) 

 

 

Figure 39 – Closer look of the outlier detection of the period marked in Figure 37 

(explanation of the figure, see text) 
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Considering the results of the application of the ARIMA30[1,1] model to the univariate 

method, we can conclude that the model is successful in getting adapted to the dynamics in 

rain periods while detecting the outliers in dry periods. 

Similar results related to the application of the 3rd order exponential smoothing model to 

the univariate method are demonstrated in Figure 40 and Figure 41. 

 

Figure 40 – Univariate method with the 3rd order exponential smoothing model – 

Validation data set of January 30th (explanation of the figure, see text) 
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Figure 41 – Univariate method with the 3rd order exponential smoothing model – 

Validation data set of April 26th (explanation of the figure, see text) 

Table 5 shows the results of the analysis of the fault detection tests with the 

ARIMA10[2,2], ARIMA30[1,1] and 3rd order exponential smoothing models for the 

validation data sets. 

  Table 5 – Fault detection for validation data sets 

 
 

Comparison of the results in Table 5 shows that the ARIMA30[1,1] model and the 3rd order 

exponential smoothing model lead to similar fault detection performance. As discussed 

before, the ARIMA10[2,2] model rejected more data as outliers in the January 30th data set. 

That is also the reason why we notice the difference especially in the percentage of replace 

Model

Rain event 
% Replaced 

data
% Doubtful 

data
% Invalid 

data
% Replaced 

data
% Doubtful 

data
% Invalid 

data
% Replaced 

data
% Doubtful 

data
% Invalid 

data

January 30th 8.0014 8.4854 0.070586 4.7948 5.4805 0.0202 5.1578 5.662 0

April 26th 3.1878 3.1878 0 3.6052 3.6052 0 3.1721 3.1721 0

ARIMA10[2,2] 3rd order exponential SmoothingARIMA30[1,1]
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data for this period. Therefore the ARIMA30[1,1] is finally selected as the alternative 

model of the outlier detection system.  

 

4.4.  Discussion 

In this chapter the exponential smoothing models and the way they give forecasts were 

revisited. Considering the empirical way these models are employed to detect outliers, the 

aim was to propose a more systematic approach to find a model to describe the system.  

Accordingly, in the calibration step the ARIMA models were fitted to a moving window 

data of the turbidity time series and the quality of the one-step ahead forecasts were 

compared to the ones made by the exponential smoothing models according to the RMSE 

criterion. An ARIMA model structure was found with two poles and two zeros and 10 data 

points in the moving window that led to the least RMSE. However, in order to prevent the 

overfit of the model to the system, the ARIMA30[1,1] model, that provided a good trade-

off between an acceptable performance and a simple structure with a larger window size, 

was selected as an alternative model of the system.  

The identified moving window ARIMA models, ARIMA10[2,2] and ARIMA30[1,1], were 

then used in the univariate method to detect outliers and faults in the turbidity time series in 

comparison with the 3rd order exponential smoothing model. The results showed that while 

at the calibration step all the models performed similarly, the performance of the 

ARIMA10[2,2] degraded slightly for the validating data sets. Therefore, the 

ARIMA30[1,1] was selected as the model of the system.    

Tuning of different steps of the univariate method is really important to obtain the 

satisfactory performance. It was observed that in tuning of the method the previous 

experience of the expert in working with similar systems and his/her knowledge about the 

further application of the data is of great importance. 

Using the moving window concept with the ARIMA model helped getting adapted to the 

varying dynamics. The results in the RMSE calculation for one-step ahead forecasts 
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demonstrated the improvement made by this approach compared to the exponential 

smoothing model. In addition, this model was successful in rejecting outliers while 

following the fast turbidity dynamics during rain events. However, according to the 

calculation of data features like the percentage of replaced data and the auto-correlation of 

the residuals, not much difference could be noticed in their application to the univariate 

method for outlier rejection and fault detection compared to the exponential smoothing 

model. This can be related to different reasons.  

One of the possible reasons is that in the univariate method only the one-step ahead 

forecasts are taken into consideration. For further steps ahead the ARIMA model with 

moving window is expected to perform considerably better and may show better 

performance in detection of outliers and faults. Since the objective of the univariate method 

application has always been to study the one-step ahead forecasts, the ARIMA approach for 

further steps ahead predictions was not tested.  

The other reason may be that for the estimation of the standard deviation of the forecast 

error, according to which the prediction error interval is calculated, a 1st order exponential 

smoothing model is fitted to the one-step ahead forecast errors. Due to time limitations, 

only the same approach with the ARIMA model to detect outliers was tested. If another 

method to calculate the confidence interval of the forecasts more compatible with the new 

forecasting method would have been used, different results may have been obtained.  

After all, the performance of the two models in the univariate method has been compared 

for only a few periods of data in specific situations. The two models may perform 

differently in different situations such as collected periods with faster dynamics or with 

more outliers and faults. On the other hand, it is hard to exactly know whether a data point 

is an outlier or a fault. More reliable comparison results may be obtained if one can test the 

method for artificially produced data sets to which specific outliers and faults are added 

deliberately.  

Due to the application of the moving window approach, which repeats the model 

identification at each time step, the calibration and even validation of the new method 

imposes a heavier calculation load compared to the exponential smoothing method. 
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However, in the online application of the method, this task will not impose any limitation 

since at each time step the new model will be identified as the new data point emerges. For 

this case, identification of the new model according to the recent data set will no longer be 

time consuming. 
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5. CONCLUSIONS AND FUTURE WORK 

In this research project, different steps of the univariate method proposed by Alferes et al. 

(2012) for detecting outliers and faults in the data provided by the monEAU water quality 

monitoring stations were studied. The focus in this project was mostly on the outlier 

detection step. To detect outliers in the univariate method, Alferes et al. (2012) proposed 

fitting a 3rd order exponential smoothing model to the system, projecting it into the future 

and calculating one-step ahead forecasts. The exponential smoothing models and the way 

they produced the one-step ahead forecasts were revisited. Some mathematical 

developments allowed to discuss the empirical way the model was fitted to the system and 

the way the one-step ahead forecasts were calculated.  

Accordingly, the objective was defined to propose a more systematic approach in 

calculating the one-step ahead forecasts. To do so, the ARIMA model with moving window 

approach was proposed. 

The turbidity time series collected from the inflow to the primary clarifier at the inlet of a 

wastewater treatment plant in Copenhagen was selected as the case study time series. 

Different ARIMA model structures and window sizes were tested and the quality of their 

forecasts was compared by using the RMSE criterion. Finally, an ARIMA model with one 

pole and one zero with 30 data points in the moving window, that led to a trade-off between 

the acceptable fit to the calibration data set and the simpler structure, was proposed as the 

alternative model of the water quality monitoring system. This resulted in around 30% of 

improvement in the accuracy of the forecasts compared to the 3rd order exponential 

smoothing model.  

Using the moving window approach with the ARIMA model imposed a heavier calculation 

load at the calibration and even validation steps in comparison with the exponential 

smoothing model. However, in the online application of the approach, identification of the 

new model according to the recent data set will no longer be time consuming. 

Consequent to finding the moving window ARIMA model structure, outliers and faults in 

the time series were detected by the univariate method and the results were compared to the 
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ones detected by the 3rd order exponential smoothing model. It was observed that the two 

models behave similarly in detecting outliers and faults according to the specified criteria.  

It was discussed that tuning of different steps of the univariate method was very effective in 

the method. To have the proper tunings, expert knowledge about the further application of 

the data is important and his/her previous experience working with similar systems is very 

helpful. 

The objective of using the moving window approach was to adapt the model to the varying 

dynamics. The results of the RMSE calculation for the one-step ahead forecasts with the 

moving window ARIMA model at the calibration step proved the improvement made by 

this model compared to the exponential smoothing model. However, according to the 

specified criteria, the expected improvement in detection of outliers and faults was not 

observed. One of the possible reasons is that the categorization of the data as outlier or 

faulty can hardly be done with 100% confidence. Models can be compared with more 

reliability for artificial data sets with deliberately added outliers and faults. In addition, in 

the univariate method only the one-step ahead forecasts are taken into consideration while 

the moving window ARIMA model is expected to perform considerably better in 

forecasting for further steps ahead and may then also show better performance in detection 

of outliers and faults when applied to the univariate method. Above all, calculation of the 

prediction error interval according to which the data is classified as outlier or not is done by 

estimating the standard deviation of the forecast error using the 1st order exponential 

smoothing model also in the proposed ARIMA-based method. Using another approach to 

calculate the confidence interval of the forecasts, more compatible with the new forecasting 

model, may lead to different results.  

For the future, it is first suggested to theoretically analyze the performance of the proposed 

moving window ARIMA approach using a simulated data set or a test bench.  
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It is also proposed to develop an alternative method to calculate the prediction error 

interval, by using a method to generate confidence intervals from an adaptive estimate of 

the variance of forecast errors.  

Another suggestion is to add the backward reinitialisation algorithm proposed by Alferes et 

al. (2012) to the outlier detection step with the moving window ARIMA model. However, 

application of a similar procedure with the moving window data might not be as 

straightforward as it seems. Instead, it is proposed to consider an adaptive approach that 

modifies the value of	ܮ, the coefficient to make the prediction error interval more or less 

restrictive, according to the rate of change in the standard deviation of the forecast error. 

It should be noted that the turbidity time series, which was measured at a specific location 

in a water system, was selected as the case study water quality parameter according to 

which the ARIMA model with moving window was calibrated. However, water quality 

parameters have different dynamics and properties. In addition, different parameters are not 

measured with the same measurement instrument and at the same sampling rate. Therefore, 

if one would like to apply the approach to other water quality parameters in future, all 

conducted tests should be repeated, possibly leading to a new model structure and window 

size.  

Since water quality time series are often highly correlated, it is proposed to continue the 

work on the use of multivariate methods besides the univariate to draw useful information 

from the set of correlated data.    

Using the RMSE criterion may not be the most systematic approach to select the best 

moving window ARIMA model structure. It is suggested to follow an alternative approach 

to find the order of the model or the window size and compare the results with the current 

model structure.  

Finally, the Multi Model Filtering Algorithm (Maldonado et al., 2010), explained in section 

 2.2.3, could be applied to the system. This method can be useful for the case study system 

that exhibits various behavioral modes and may lead to very interesting results. In the 

calibration phase, to determine different states of the system, the range of variations in the 
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moving window ARIMA model parameters can be monitored and a limited number of 

possible model combinations can be considered. Subsequently, a bank of Kalman filters 

can be designed for the set of identified models according to which the states of the system 

can be estimated. By using Bayes’ rule, the conditional probability of each model to 

represent the data can be calculated at each time step. The model that leads to the highest 

probability can be selected to represent the data and according to that the one-step ahead 

forecasts can be generated. 
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