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Samenvatting

Dit proefschrift behandelt de kwestie van de efficiënte uitvoering van computa-
tioneel intensieve toepassingen binnen gedistribueerde omgevingen, zoals clusters,
peer-to-peer netwerken en grids. Meer in het bijzonder, onderzoeken we hoe run-
time informatie over de status van het systeem kan worden opgenomen in het job
scheduling proces. Typisch voor grote gedistribueerde systemen is dat hun reken-
capaciteit en beschikbaarheid sterk kan variëren in functie van de tijd. Bovendien
zijn hun resources vaak gedeeld door verschillende gebruikersgroepen, wat resul-
teert in een hoge diversiteit en uiteenlopende complexiteit van de uitgevoerde ap-
plicaties (jobs). Deze kenmerken suggereren dat schedulers die rekening houden
met dynamische systeem- en job-veranderingen, een belangrijke meerwaarde kun-
nen bieden in vergelijking met klassieke statische oplossingen.

Het proces van de gedistribueerde uitvoering brengt verschillende uitdagingen
met zich mee, dewelke zich situeren op zowel organisatorisch als op soft- en hard-
ware niveaus. In deze context richten we ons op twee belangrijke problemen, die
een aanzienlijk effect hebben op de prestaties en de flexibiliteit van gedistribueerde
omgevingen: fout-tolerantie en scheduling van toepassingen met afhankelijkheden
(workflows). Verschillende dynamische checkpointing-, replicatie- en scheduling-
oplossingen worden voorgesteld die rekening houden met het dynamische karak-
ter van gedistribueerde systemen en hun toepassingen, door het herevalueren van
eerder genomen beslissingen at run-time.

Om het gedrag van de voorgestelde oplossingen te bestuderen binnen dynamis-
che grid-omgevingen werd gebruik gemaakt van een discrete-event simulator, ge-
naamd DSiDE. DSiDE werd ontwikkeld in het kader van dit onderzoek en vormt
een flexibel en portabel framework voor modellering en simulatie van gedistribu-
eerde computationele omgevingen. Tot dusver bevat DSiDE voornamelijk inge-
bouwde grid-componenten, die echter gemakkelijk kunnen worden uitgebreid met
modellen voor andere soorten van gedistribueerde systemen, zoals P2P-netwerken
en clouds. De belangrijkste voordelen van DSiDE, in vergelijking met andere
bestaande algemene en grid-specifieke simulatoren, zijn uitbreidbaarheid, gener-
iciteit, korte simulatietijden en de mogelijkheid tot eenvoudig modelleren en si-
muleren van het dynamisch gedrag van gedistribueerde systemen en applicaties.
Het dynamisch gedrag ondersteund door DSiDE omvat onder andere wisselende
belasting en beschikbaarheid van resources, variërende aankomstfrequenties van
jobs, veranderende applicatie dynamiek, etc. In het algemeen bestaat de architec-
tuur van de simulator uit drie afzonderlijke modules:
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• DGen: grid-modellen en het dynamisch systeemgedrag worden gespeci-
ficeerd als input in de simulator met behulp van een XML-formaat. Event-
patronen uit de input file worden vertaald door DGen in een reeks van indi-
viduele events die kunnen worden geladen in de DExec module.
• DExec: is de kern van DSiDE, waar simulaties worden uitgevoerd door de

sequentiële verwerking van geregistreerde events.
• DMExec: zorgt voor automatische uitvoering van een aantal voorgedefini-

eerde simulatie-experimenten of van hetzelfde experiment met verschillende
seeds voor random number generators.

Het eerst behandelde onderwerp is fout-tolerantie van grid-systemen. We be-
schouwen onbetrouwbare grids, d.w.z grids waar resources onderworpen zijn aan
het regelmatig falen en heropstarten, waar toepassingen van verschillende duur
worden uitgevoerd. Het doel van deze studie is om een kwantitatieve indicatie te
geven van het effect van het falen van resources op de grid-prestaties en om het
gebruik van fout-tolerante technieken in deze dynamische omgevingen te recht-
vaardigen. De resultaten hebben aangetoond dat een aanzienlijke vermindering
van grid-performantie wordt bereikt in onstabiele systemen voor jobs met lange
uitvoeringstijden. Een andere conclusie is dat de frequentie van het falen van een
resource een groter effect op de grid prestaties heeft dan de tijd die nodig is om
een resource te herstellen. Als gevolg van deze studie werden verschillende dy-
namische fout-tolerantie algoritmen voorgesteld. De algoritmen zijn gebaseerd op
bekende replicatie- en checkpointing-technieken. Het belangrijkste probleem met
deze technieken is de grote overhead geı̈ntroduceerd wanneer het aantal replica’s
en het checkpointing-interval niet optimaal worden gekozen. Veel bestaand onder-
zoek op dit gebied is gewijd aan het analytisch bepalen van de waarden van beide
parameters, gebaseerd op kennis van de toepassing en de gedistribueerde omgevin-
gen. Helaas baseren de daaruit voortvloeiende oplossingen zich vaak op veronder-
stellingen of onrealistische vereenvoudigingen. De algoritmes geı̈ntroduceerd in
dit werk anderzijds, wijzigen het aantal replica’s en het checkpointing-interval dy-
namisch, respectievelijk op basis van run-time informatie over de belasting van
het systeem en de geschiedenis van resource fouten. Simulatie-resultaten hebben
aangetoond dat adaptieve replicatie de meest low-cost aanpak is in systemen met
een lage en variabele belasting, terwijl in zwaar beladen omgevingen, de dynamis-
che checkpointing-intervalselectie meestal resulteert in een aanzienlijke vermin-
dering van run-time overhead, in vergelijking met periodieke checkpointing. De
voordelen van beide technieken kunnen worden gecombineerd in een hybride aan-
pak die het best kan worden gebruikt als de systeemeigenschappen niet vooraf
bekend zijn.

Een andere kwestie die wordt behandeld in dit onderzoek is de uitvoering van
workflow-toepassingen met input-afhankelijkheden. Input-afhankelijkheden im-
pliceren dat een taak binnen een job input genereert die vereist is voor de uitvo-
ering van een andere taak. Dit soort afhankelijkheden introduceert beperkte run-
time communicatie-overhead en levert een aanzienlijke prestatieverbetering bij de-
centrale uitvoering van parallelle taken. Daarom stellen wij een dynamisch algo-
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ritme voor workflows voor dat gebaseerd is op de veronderstelling dat de taken
binnen een job wisselende computationele complexiteit vertonen. Het algoritme
werkt op jobs waarvoor de vooruitgang van de uitvoering kan worden opgevraagd
at run-time. Op basis van de vooruitgang en op basis van de huidige resource-
capaciteiten, worden de taken herscheduled zodanig dat de uitvoeringstijden van
parallele taken met dezelfde afhankelijkheden in balans blijven. Het idee is dat
een afhankelijke taak niet kan worden uitgevoerd totdat al de outputs van haar an-
tecedenten gegenereerd zijn. Daarom is het wenselijk om aan antecedenten met
korte uitvoeringstijden trage computationele resources toe te kennen en om de
snelle resources voor te behouden voor taken die een snelle verwerking vereisen.
De prestaties van het voorgestelde algoritme werden geëvalueerd met behulp van
een workload model afgeleid van een real-world tool voor het modelleren en si-
muleren van milieusystemen, genaamd Tornado. De resultaten suggereren een
workflow makespan vermindering van ongeveer 35 %. Toch is het belangrijk te
vermelden dat de prestatie van het algoritme afhankelijk is van de kwaliteit van
de voorspellingen van de taakuitvoeringstijden, vermits deze voorspellingen wor-
den gebruikt voor evenwichtige (re)scheduling. Aanvankelijk werden de uitvoer-
ingstijden voorspeld door extrapolatie van de laatste meting van de taakvooruit-
gang. Helaas, deze eenvoudige methode is gevoelig voor interne dynamiek van
toepassingen en voor variaties in resource-belasting, wat leidt tot overijverig en
overhead-gevoelige taakmigraties binnen elke algoritme-iteratie. Om deze over-
head te reduceren, werd een meer doeltreffende voorspellingsmethode ingevo-
erd. De methode is gebaseerd op niet-lineaire curve-fitting van de voorspellingen
(gebouwd door extrapolatie) tegen een aantal vooraf gedefinieerde voorspellings-
modellen. Simulatie-experimenten met Tornado werkload suggereren tot 15 %
prestatieverbetering in geval van curve-fitting.





Summary

In this dissertation we address the issue of efficient execution of computationally
intensive applications within distributed environments, such as clusters, peer-to-
peer networks, grids. More specifically, we investigate how to incorporate runtime
information in the job scheduling process. Typical for large distributed systems is
that their computational capacity and availability can strongly vary over time. Fur-
thermore, their resources are often shared among different user groups, resulting
in high diversity and varying complexity of application (jobs) runs.

There are different challenges related to the process of distribution execution,
which are situated at the organizational as well as at software and hardware levels.
In this context, we focus on two important problems, which have significant im-
pact on the performance and flexibility of distributed environments: fault-tolerance
and scheduling of applications with dependencies (workflows). Several dynamic
checkpointing, replication and scheduling solutions are proposed that take into
account the dynamic nature of distributed resources and applications, by reconsid-
ering previously taken decisions at run-time.

To study the behaviour of grid environments in dynamic scenarios, we have
developed a discrete-event simulator, called DSiDE. DSiDE forms a flexible and
portable framework for modeling and simulation of distributed computing envi-
ronments. Thus far, it mainly contains a set of built-in grid components, which,
however, can easily be extended with components for other types of distributed
systems, such as P2P networks and clouds. The main advantages of DSiDE,
compared to other existing general and grid-specific simulation frameworks, are
its extensibility, genericity, relatively short simulation times and ability to easily
model dynamic system and application behaviour. Dynamic behaviour supported
by DSiDE includes varying resource load and availability, varying job arrival fre-
quency, changing application dynamics, etc. In general, the simulator is composed
of three separate modules:

• DGen: grid models and dynamic behaviour modeling event distributions are
provided as input into the simulator using an XML-based format. Recurrent
events from the input file are translated by DGen into a set of individual
events that can be loaded into the DExec module.
• DExec: is the kernel of the simulator, where simulations are run by process-

ing all registered events one after the other.
• DMExec: allows for automatic execution of either several predefined sim-

ulation experiments or of the same experiment with different seeds for ran-
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dom number generators.

The first issue addressed is fault-tolerance in grid systems. We consider un-
reliable grids, i.e. grids where resources are subject to failure and restart, where
applications of different duration are executed. The aim of this study is to give
a quantitative indication of the effect of resource failure on grid performance and
to justify the use of fault-tolerant techniques in these dynamic environments. The
results have shown considerable performance degradation of jobs with long exe-
cution times in unstable systems. Also, they suggest that the frequency of resource
failure has a larger effect on grid performance than the time it takes a resource
to restore. As a consequence of this study, several dynamic fault-tolerance algo-
rithms were proposed. The algorithms are based on well-known job replication and
checkpointing techniques. The main issue with these techniques is the large over-
head introduced when the number of replicas and the checkpointing intervals are
chosen inappropriately. Many existing research efforts in this area are dedicated
to determining the values of both parameters analytically, based on knowledge of
the application and distributed environments at hand. Unfortunately, the resulting
solutions are often based on unrealistically simplified assumptions or limited to
a certain type of applications. Therefore, the algorithms introduced modify the
number of replicas and the checkpointing intervals dynamically, based on run-
time information on system load, and the history of resource failures respectively.
Simulation results have shown that adaptive job replication is the most low-cost
approach in systems with low and variable load, while in heavily loaded envi-
ronments, checkpointing with dynamic interval can significantly reduce run-time
overhead, compared to periodic checkpointing. The advantages of both techniques
can be combined in a hybrid approach that can best be utilized when system prop-
erties are not known in advance.

Another issue addressed in this research is scheduling of workflow applica-
tions with input dependencies. Input dependencies imply that a task within a job
requires inputs generated by another task before it can proceed with its execution.
This is a loosely-coupled type of dependencies with limited run-time communi-
cation overhead, which can gain significant performance improvement from dis-
tributed execution of parallel tasks. Therefore, we propose a dynamic algorithm
for workflows that is based on the assumption that tasks within a job have vary-
ing computational complexity. The algorithm operates on applications for which
execution progress can be monitored at run-time. Based on the monitored task
progress and current resource capacity, tasks are (re)scheduled to resources to keep
the execution times of parallel tasks with the same dependents in balance. The idea
is that a dependent task cannot be executed until all its parents have generated the
required outputs. Therefore, it is desirable to assign parents with low execution
times to slow computational resources and keep fast resources for tasks requiring
fast processing. The performance of the algorithm proposed was evaluated using
a workload model derived from a real-world tool for modeling and virtual exper-
imentation with environmental systems, called Tornado. The results suggested a
makespan reduction of about 35% for the job as a whole. However, it is important
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to mention that the performance of the algorithm depends on the quality of task
execution time predictions, since these predictions are used to balance the execu-
tion time of running tasks. Initially, execution time predictions are constructed
by extrapolation from the last task progress measurements. Unfortunately, this
simple method is sensitive to internal application dynamics and variations in re-
source load, which leads to overzealous and overhead-prone task migrations within
each scheduling iteration. To reduce this overhead, a more effective prediction
method is introduced. The method is based on non-linear curve-fitting of pre-
dictions (constructed by extrapolation) against a number of predefined prediction
evolution models. Simulation experiments with Tornado workload suggested up to
15% performance improvement in case the curve-fitting based prediction method
is applied to the dynamic algorithm proposed.
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1
Introduction

This chapter provides a short introduction to distributed computing, its application
areas and challenges. Focus is on optimization of distributed execution of compu-
tationally intensive applications by means of intelligent scheduling. Related work
in this area is introduced, together with an outline of this dissertation.

1.1 Distributed Computing

By the term “distributed computing” we understand the execution of an application
on a number of distributed computational resources connected by computer net-
works. Distributed computing differs from the well-known client/server paradigm
by the granularity of the distribution process. In a client/server system an appli-
cation is submitted integrally from a client to a remote server where it is sequen-
tially processed. In distributed computing, typically, jobs are initially subdivided
into independent or partially dependent tasks, each of which can be executed on
a different resource. This process is called “gridification” and its main purpose is
parallelisation of applications to achieve computational speed-up. Generally, only
computationally intensive jobs can benefit from parallel execution, since gridifi-
cation and task distribution impose significant overhead that can exceed run times
of short applications. Therefore, distributed computing is usually applied in com-
putationally complex domains, such as high-energy physics, pharmaceutical drug
discovery, economics, weather forecasting, etc.
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(a) (b)

Figure 1.1: An example of a Peer-to-Peer architecture:(a) a P2P system without central
server; (b) a P2P system with central server.

1.1.1 Distributed Computing Technologies

The four most common technologies in the domain of distributed computing are:
peer-to-peer computing, cluster computing, grid computing and cloud computing.

Peer-to-peer computing, often abbreviated to P2P, utilizes P2P networks (see
Figure 1.1) for data sharing or execution of distributed applications. P2P net-
works are composed of distributed desktop machines or servers sharing a portion
of their processing power, storage resources or network resources with other users
typically within a Wide Area Network (WAN). In a P2P network each node is a
supplier and a consumer of resources at the same time, in contrast to the clien-
t/server approach where each machine has its own predefined non-overlapping
role. P2P networks are formed by ad hoc addition of nodes and their capacity
strongly depends on the number of available nodes at each point in time. How-
ever, the weakness of P2P is at the same time its strength since the distributed and
dynamic nature of this network provides for enhanced scalability and service ro-
bustness. As shown in Figure 1.1 we differentiate between two P2P architectures:
peers that communicate through direct connections established between nodes that
know each other; and peers that connect through a central server that is used for
system bootstrap and indexing. A well-known P2P application is SETI@home
(Search for Extra-Terrestrial Intelligence) [1]. The SETI project uses scientific
methods to search for electromagnetic transmissions from civilizations on distant
planets. These methods result in a large number of computationally demanding
tasks that are executed on distributed community resources.

A cluster computing environment (see Figure 1.2) is a collection of homo-
geneous collocated desktops or servers interconnected by a Local Area Network
(LAN) or by a high speed bus (i.e. blade clusters). Each cluster resource is called
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Figure 1.2: An example of a cluster architecture.

a “node” and it serves as a computational/storage resource for local or remote
users running distributed applications. At first sight clusters have a lot in common
with traditional supercomputers: supercomputers are also composed of multiple
processors interconnected by a local high-speed computer bus; supercomputers as
well as clusters are purchased and maintained by a single organization. However,
clusters have a number of significant advantages that have made them probably
the most popular High-Performance Computing (HPC) medium over the past 10
years. First of all, cluster nodes are relatively cheap and their acquisition can be
spread in time to reduce costs. Secondly, it is much easier to upgrade a cluster ca-
pacity by adding extra nodes, to replace malicious nodes and to provide redundant
components for security and availability reasons. The most well-known example
of a cluster is the Beowulf-cluster [2] system that connects a number of Personal
Computers (PC) running a Free and Open Source Software (FOSS) and a Unix-like
Operating System (OS).

Grid computing (see Figure 1.3) is a distributed computing technology that was
introduced middle 1990s [3]. It takes the principles of resource reuse and flexibil-
ity even further than cluster computing. Grids comprise heterogeneous world-wide
distributed computational resources from different administrative domains. Grid
resources can be dedicated machines, local clusters, supercomputers and desktops,
all working together to achieve a common goal. The main principle of a compu-
tational grid is resource sharing: instead of purchasing redundant resources for
a local cluster to cope with occasionally occurring peak loads, organizations can
make use of idle resources all over the world, possibly subject to payment. This
certainly cuts budgets for hardware infrastructure and increases resource utiliza-
tion. To avoid that some organizations absorb most of the available grid resources,
all grid users are subdivided into Virtual Organizations (VO). Resource sharing
is allowed only between users belonging to the same VO. To guarantee smooth
and reliable operation of grids, several important issues such as efficient resource
utilization, fault-tolerance, security, Service Level Agreements (SLA), service ac-
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Figure 1.3: An example of a grid architecture.

counting, etc. have to be addressed. Since most of the currently existing solutions
for these issues are either too complex and time consuming or not sufficiently reli-
able, grids are until now mainly used in academic environments. One of the largest
grid infrastructures in the world was built by the Enabling Grids for E-sciencE
(EGEE) project [4]. The EGEE project led by the European Organization for Nu-
clear Research (CERN) currently incorporates 250 resource centers world-wide,
providing about 40.000 CPUs and several Petabytes of storage. The infrastructure
is mainly used to run High Energy Physics (HEP) applications.

Finally, cloud computing [5] (see Figure 1.4) is an emerging technology, which
has in recent years received a growing interest from academic as well as commer-
cial communities. Cloud computing can be compared to the electricity grid, which
allows end-users to utilize the available resources, without requiring expertise or
control of the underlying technology. While grid computing is mainly utilized for
transparent processing of large computational tasks, cloud computing goes further
by providing all kinds of dynamically scalable and virtualized resources (hard-
ware, software and information) in the form of Internet services. Cloud services
can be provided at three levels of abstraction: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS). The first level typi-
cally delivers a platform virtualization environment as a service, which means that
instead of purchasing servers, data space and network equipment a client can buy
these resources as a fully outsourced service. The second level delivers a comput-
ing platform as a service, which often consumes cloud infrastructure and provides
cloud applications. Finally, the third layer delivers software as a service over the
Internet, eliminating the need to install, run and maintain applications on customer
computers. IaaS and PaaS guarantee the most flexibility, but they also require the
most maintanance and knowledge of underlying technologies. Cloud technology is
confronted with the same issues as grid computing: fault-tolerance, security, load
balancing, interoperability, scalable data storage, etc. Most of the currently ex-
isting cloud infrastructures are delivered through data centers, which build cloud
services on top of their servers. Well-known cloud service providers are Ama-
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Figure 1.4: An example of a cloud architecture.

zon [6] and Google [7]. Amazon Elastic Compute Cloud (Amazon EC2) [8] is a
PaaS web service that provides dynamically resizable computational capacity on
the Amazon cloud. Users can scale up and down the number of server instances
utilized, depending on changing application needs, while paying only for com-
pute capacity they actually consume. The same principles are also implemented
in Google App Engine [9], which is a PaaS enabling users to build and host web
applications on the same systems as those powering Google applications.

1.1.2 Problems and Challenges

There are different challenges related to distributed execution of computationally
intensive applications. These challenges are situated at the organizational level as
well as at the level of software and hardware infrastructure. We summarize only
the most prominent ones:

• No clear standards. There exists a broad variety of software for manage-
ment of distributed resources. This software, usually referred to as “mid-
dleware”, coordinates interaction between processes running within a dis-
tributed environment. Currently an insufficient number of common prac-
tices, agreements and specifications are defined to guarantee interoperability
and reuse between different types of middleware.
• Distributed system management. This issue is mainly related to grid com-

puting where heterogeneous devices are managed by different organizations.
To construct a systematic framework for software, hardware and protocol
administration, hierarchical management domains have to be defined.
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• Application gridification. To gain advantage from distributed execution,
applications have to be gridified or split into distributable components. While
gridification of some applications is relatively straightforward, gridification
of other applications is a complex and time consuming task. Unfortunately,
it has to be performed manually, since no general automatic gridification
procedure exists.
• Software licensing. Distributed execution requires application to be de-

ployed to remote nodes, which leads to copyright and licensing issues.
• Internal application dependencies. Complex applications can contain in-

terdependent tasks, which enforce a certain order on application execution.
For many of the existing distributed systems, dependency preservation and
efficient scheduling of tasks remain an open issue.
• Centralized nature of middleware. In many distributed computing sys-

tems we deal with centralized resource management infrastructures. These
infrastructures usually consist of a number of servers performing one of the
general functions, such as scheduling, monitoring, data storage etc that are
crucial for the performance of distributed environments. A centralized in-
frastructure, however, often forms a performance bottleneck, limits the sys-
tem scalability and creates a single point of failure.
• Security. This is a particularly prominent issue in a commercial context.

Before sensitive data can be processed/stored on resources located outside
an organization, users have to be sure that computational resources, data
storage and network links are protected against malicious attacks.
• Fault-tolerance. Hardware failures of computational, storage or network

resources within large distributed environments are commonplace. These
should be handeled automatically without loss of important data and without
noticable delays in application execution.

In this work, several solutions for system fault-tolerance are proposed, which
are based on the well-known replication and checkpointing techniques.
• Scheduling. A scheduling algorithm determines when and where applica-

tions are started within a distributed environment, while taking into account
system status information, application properties and a scheduling objective.
The following objectives are often employed:

– CPU utilization. A scheduler tries to increase CPU utilization and to
reduce idle periods.

– Throughput. Maximization of the number of jobs that complete their
execution within a predefined time unit.

– Makespan. Minimization of the time difference between the start and
finish of a sequence of jobs or tasks.

– Turnaround. Minimization of the time interval between a job submis-
sion and its completion.



INTRODUCTION 7

– Waiting time. Minimization of waiting time of a job in a scheduler
queue.

– Response time. Minimization of the time interval between a job sub-
mission and availability of the first output.

– Fairness. A scheduler ensures that each user gets equal processing
time.

– Deadline preservation. Guaranteeing the compliance of the schedule
with predefined deadlines.

– Fault-tolerance. Minimization of computational loss due to resource
failures.

There exists a large variety of scheduling approaches for which different
taxonomies are defined in literature [10–12]. In this thesis we differenti-
ate between two categories: static scheduling and dynamic scheduling. By
the term “static scheduling” we understand techniques with a predefined
scheduling policy that does not change over time. Furthermore, once a job is
scheduled by a static algorithm to a particular resource, it continues execut-
ing on the same resource until it completes or a resource failure interrupts its
execution. On the other hand, dynamic scheduling comprises algorithms that
can reassign jobs at run time, based on dynamically collected information
on execution environment changes. Some dynamic algorithms are designed
to adapt their internal scheduling policy in reaction to modifications of ap-
plication execution patterns and changes in distributed environments (e.g.
resource or link failure, arrival of new CRs, changing load on CRs). This
group of algorithms is typically called adaptive. A dynamic or an adaptive
scheduling approach is usually more sophisticated than a static mechanism.
It requires extended monitoring facilities for distributed environments and
applications as well as checkpointing and migration mechanisms. Obvi-
ously, execution of a complex scheduling algorithm, monitoring, periodic
checkpointing and migration introduce a certain degree of computational
overhead. This overhead should be compensated by the computational gain
of intelligent scheduling, for an algorithm to be usable.

Design, optimization and evaluation of dynamic scheduling approaches form
the main theme of this thesis.

1.2 Main Research Contributions

As was mentioned in the previous section, the design of efficient dynamic schedul-
ing solutions is the main objective of this work. We consider two large topics
particularly relevant for the operation of a large distributed environment running
computationally intensive applications: fault-tolerance and scheduling of applica-
tions with dependencies. To cope with these issues we investigate several dynamic
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solutions, whose efficiency is proven by simulation-based comparison with static
approaches.

In a first instance, fault-tolerance of distributed environments is taken into con-
sideration. We get a clear view on the effect resource failure has on the execution
of applications with different duration by simulating and observing an unreliable
grid environment. The grid is exposed to workloads with varying characteris-
tics, for which parameters are derived from a real-world application. Furthermore,
we consider two approaches commonly applied to deal with fault-tolerance: job
replication and job checkpointing. When job replication is used, several copies
(“replicas”) of the same job are distributed to different CRs. If a failure or a com-
putational slowdown occurs on some of the resources, the results from other re-
sources can still be utilized to provide users with required outputs, ideally without
introducing a noticeable delay. The more job replicas are executed, the lower the
chance of computational loss or slow down. Checkpointing, on the other hand, pe-
riodically saves job status, in the form of so-called “checkpoints”, to a failure-safe
location, referred to as the Checkpointing Server (CS). To guarantee availability
of checkpoints, this server is typically deployed in a redundant fashion. In case
of a CR failure, affected jobs do not have to be re-run from the start but can in-
stead be resumed from their latest checkpoint. Frequent checkpointing obviously
requires less recomputations to be performed after a failure. A major problem with
the replication and the checkpointing approaches is that they introduce significant
computational overhead, if respectively an inappropriate number of replicas and
exceedingly high checkpointing frequency are chosen. The optimal values for
both parameters are hard to determine analytically, since they largely depend on
resource load, size of checkpoints and the frequency of resource failure that can
change dynamically over time. To automatically approximate these optimal val-
ues at any time during a job execution, we propose adaptive scheduling algorithms
that modify the number of job replicas and the checkpointing frequency during
the system operation, taking into account dynamic changes within the distributed
environment.

In the next phase of this research, scheduling of applications composed of tasks
with internal dependencies, also called “workflows”, is studied. In particular, we
consider input dependencies, whereby tasks can require inputs produced by other
tasks before they can proceed with the execution. A dynamic scheduling algo-
rithm for workflows is proposed that minimizes makespan of an application as a
whole, at cost of potentially slower execution of individual tasks. The algorithm
works for applications for which task execution progress can be monitored at run
time. Using the progress information, predictions can be constructed on the total
task processing time by means of extrapolation of the latest progress measurement.
The execution time predictions calculated are applied to generate an efficient ap-
plication schedule. Since resource load and internal application dynamics vary
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over time, the algorithm periodically recalculates task execution time predictions
and potentially reschedules already running tasks. However, rescheduling, or task
migration, has to be performed cautiously since it can significantly delay task ex-
ecution due to rescheduling overhead. Therefore, a number of possible optimiza-
tions of the algorithm are proposed, with as a goal the elimination of overzeal-
ous migrations. Finally, it is important to mention that the quality of execution
time predictions largely determines the number of migrations performed. Since
extrapolation-based predictions are very sensitive to internal application dynamics
and variations in resource load, in the next phase, we propose a prediction method
based on non-linear curve-fitting. The method matches historical data on extrapo-
lated predictions against a number of predefined prediction evolution models. The
“best-fit” coefficients obtained allow for more accurate prediction of task execu-
tion times.

To evaluate the performance of the algorithms discussed above, a novel grid
simulation environment, called DSiDE (Dynamic Scheduling in Distributed Envi-
ronments), was developed in the scope of this research. DSiDE has several advan-
tages over other existing grid simulators: a simple and clear design; its speed of
simulation execution; and its high flexibility with respect to modeling of dynamic
system events, such as CR failure, CR load variations, changing task execution
time predictions, etc. We choose grid systems for evaluation of the developed dy-
namic solutions, since resource failure and varying resource load are more promi-
nently present in this type of computational environments. This can be explained
by the internal complexity and highly distributed nature of grids. However, it is
important to mention that the algorithms proposed also apply to other types of dis-
tributed systems. To provide realistic workload within our simulations, job param-
eters utilized were derived from an existing tool for modeling and virtual experi-
mentation with environmental systems, called Tornado [13, 14]. Tornado forms an
interesting use case for the evaluation of the developed dynamic solutions since it
possesses a broad variety of jobs or “virtual experiments” with diverse characteris-
tics in terms of computational complexity, dependencies, size of input and output,
the possibility to monitor job progress, etc.

1.3 Important HPC systems

In this section we give a short overview of the most remarkable HPC systems.
Some of them implement in one form or another fault-tolerance mechanisms and
support for distributed execution of dependent tasks.

Globus Toolkit [15] is an open source software toolkit for building grids. It
includes software services and libraries for resource discovery, management and
monitoring, in addition to security services and data management. A noticeable
flaw is the lack of Globus support for fault-tolerance. While an attempt was made
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to foresee in a fault detection mechanism by means of the Heartbeat Monitor In-
terface (HBM) (is now disconnected as a separate module), the fault monitor alone
is not sufficient to provide proper support for fault-tolerance, as long as tools and
libraries essential for checkpointing and recovery are not available. Globus also
does not provide support for scheduling of dependent tasks.

Condor [16] is a workload management system, mainly designed to coordi-
nate job processing on clusters of homogeneous dedicated computational nodes.
Condor provides support for intelligent cycle scavenging on idle desktop machines
within a LAN. This interesting feature allows for more efficient resource utilization
within an organization, without introducing any disadvantages for desktop users.
When a user resumes his activity on a previously idle resource, user space is check-
pointed and Condor jobs are canceled or migrated to a new idle resource. This ap-
proach can be seen as a form of resource-initiated dynamic scheduling. Consider-
ing fault-tolerance: Condor avoids computation loss through periodic kernel-level
checkpointing and roll-back of affected jobs. Unfortunately, the Condor check-
pointing library is only available for a limited number of software/hardware ar-
chitectures, reducing the fault-tolerance support to a few platforms. Additionally,
there exists a DAGMan (Directed Acyclic Graph Manager) [17] meta-scheduler
for Condor that supports execution of jobs with simple as well as complex depen-
dencies. However, there is no automatic job execution time prediction mechanism
and all scheduling decisions are solely based upon best effort estimates provided
by end users.

Condor and Globus technologies were combined in the Condor-G [18] project
that allows multiple Condor computing environments to work together, forming
a grid-like system. Condor-G combines advantages of both tools: it provides
security and resource usage across domain boundaries, as supported within the
Globus Toolkit; extensive job monitoring, logging, notification, fault-tolerance and
scheduling of dependent tasks, are the features inherited from the Condor system.

LSF (Load Sharing Facility) [19] is a commercial workload management so-
lution for HPC environments. It allows for scheduling of batch and interactive
applications on clusters and grids. LSF contains user-level checkpointing libraries
and supports kernel-level checkpointing on a limited number of platforms. When
a failure occurs, users are provided with a choice to either restart their jobs from
the latest checkpoints or from the beginning of their execution. LSF also imple-
ments several preemptive scheduling methods. Preemptive scheduling refers to
job execution interruption to free resources for jobs with higher priority. After the
high priority jobs terminate, the original jobs are restarted on the same resources.
Finally, LSF supports a mechanism for specification of job dependencies and for
preservation of their execution order.

PBS (Portable Batch System) [20] is a commercial resource management sys-
tem for clusters, with an integrated scheduler. The software also has a limited open
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source version, referred to as OpenPBS [21]. PBS does not provide user-level
checkpoint libraries or support for job migration. However, kernel-level check-
pointing is supported on several hardware platforms. Within PBS it is possible to
specify job dependencies either by providing job execution order or by specifying
particular execution conditions.

TORQUE (Terascale Open-Source Resource and QUEue Manager) [22] is
an open source cluster management system that is based on the OpenPBS soft-
ware. Compared to OpenPBS, Torque incorporates significant advances with re-
spect to scalability, fault-tolerance and scheduling facilities. For instance, the mid-
dleware checks for additional failure conditions and these conditions are handled
by restoring the affected jobs from their latest checkpoints. For improved utiliza-
tion, scheduling and administration of clusters, Torque can be integrated with the
Moab Workload Manager [23]. Moab is a commercial scheduler that optimizes
cluster performance with intelligent resource allocation and workload ordering. It
supports job prioritization, fairness policies, QoS, advanced reservation and job
preemption. Moab does not provide direct support for job dependencies, but in-
stead relies on the support by resource managers, such as Torque. Torque, in turn,
allows basic dependencies specification through dynamically allocated linked lists,
which are attached to jobs.

MOSIX [24] is a middleware solution for Linux clusters that can also operate
on a multi-cluster scale. The middleware provides an advanced fully transpar-
ent dynamic load-balancing mechanism that monitors system state and attempts
to improve the overall performance and provides fault-tolerance by dynamic re-
source (re)allocation. A unique feature of MOSIX is that it operates at the process-
level, while most of the existing HPC systems operate at the job-level. This means
that the system redistributes its workload when the number of processes changes,
which is useful for load balancing of parallel jobs. On the other hand, process-
level operation limits MOSIX in scheduling of dependent tasks, since there is no
workflow notion.

LCG (LHC Computing Grid) [25] is a grid middleware developed by CERN,
in the scope of the EGEE project [4], to process the immense amount of data gen-
erated by the Large Hadron Collider (LHC). LCG is based on the Globus Toolkit
and adopts most of the services provided by Globus. LCG is a heavy-weight
grid with huge unstable code base and relatively limited functionality. In par-
ticular, there are only limited job monitoring facilities, no support for any form of
fault-tolerance, no possibility for dependencies presentation and preservation, etc.
To address these issue a successor of LCG, called gLite [26], was introduced by
EGEE. Fault-tolerance is provided in the new middleware by means of a resource
failure monitoring facility in combination with automatic job resubmission. There
are two kinds of resubmissions available in gLite: the deep resubmission and the
shallow resubmission. The resubmission is deep when the job fails after it has
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started running on a resource, and shallow otherwise. The maximum number of
resubmissions can be defined on both types. gLite also supports job dependen-
cies, which are represented using the Job Description Language (JDL), derived
from the Classified Advertisement language (ClassAd) [27]. A flexible ClassAd
language was initially introduced in the scope of the Condor project and it allows
representation of dependencies of arbitrary structure.

OpenNebula [28] is an open source toolkit for cloud computing, providing
mainly PaaS services. The toolkit maps user workload to the available physical
resources, executed within Virtual Machines (VM), using one of several resource-
aware allocation policies (e.g. packing, load-aware, affinity-aware, etc). Important
to mention is that a recent part of the work performed in the scope of this thesis and
discussed in [29], was dedicated to the efficient assignment of VMs within cloud
environments. In concreto, we proposed an algorithm that assigns VMs according
to the expected load of applications run within them. Apart from scheduling on
the VM level, a workload assignment policy for multi-tier VMs, i.e. groups of in-
terconnected VMs, is required. This functionality is not provided by OpenNebula
but expected to be implemented at the application level. For this purpose, the al-
gorithms proposed in the remainder of this work can be applicable. Finally, Open-
Nebula supports VM migrations and fault-tolerance, through a persistent database
backend for storing VM information.

1.4 Thesis structure

To a large extent this thesis is organized based on a number of publications. The
publications are selected to provide an integral and consistent overview of the work
performed in scope of this PhD.

Chapter 2 introduces the DSiDE grid simulator: DSiDE is compared to a num-
ber of well-known simulators for grids, its architecture is clarified and input and
output specifications are discussed. In Chapter 3, the effect of unexpected CR
failure on application execution is studied. Chapter 4 proposes several adaptive
algorithms to deal with the fault-tolerance issue. The algorithms are based on the
task replication and the checkpointing concepts. Finally, scheduling of dependent
tasks in presence of dynamic task progress information is addressed in Chapter 5,
while Chapter 6 extends the algorithm developed in Chapter 5 with a curve-fitting-
based task execution time prediction approach.

1.5 Publications

The PhD research performed resulted in several publications in scientific journals
and in a series of presentations at international conferences. The following list
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provides an overview of the publications.

1.5.1 A1: Publications indexed by the ISI Web of Science “Sci-
ence Citation Index”

[1] M. Chtepen, F. Claeys, B. Dhoedt, P.A. Vanrolleghem, P. Demeester, Com-
putational complexity and distributed execution in water quality manage-
ment, published in Lecture Notes in Computer Science 3515, Proceedings
of the 5th International Conference on Computational Science, MSN 2005,
edited by V.S.Sunderam, G.D. van Albada, P.M.A. Sloot, J.Dongarra, ISBN:
978 – 3 – 540 – 26043 –1, Vol. LNCS 3515:1116–1119, Atlanta, GA, 22 –
25, May 2005

[2] F. Claeys, M. Chtepen, L. Benedetti, B. Dhoedt, P.A. Vanrolleghem, Dis-
tributed virtual experiments in water quality management, Water Science
and Technology, ISSN 0273-1223, 53(1):297 – 305, Published by IWA Pub-
lishing, 2006

[3] M. Chtepen, F.H.A. Claeys, B. Dhoedt, F. De Turck, P. Demeester, P.A.
Vanrolleghem, Adaptive task checkpointing and replication: Towards ef-
ficient fault-tolerant grids, IEEE Transactions on Parallel and Distributed
Systems, ISSN 1045 – 9219, 20(2):180 – 190, Published by IEEE Computer
Society, February 2009

[4] M. Chtepen, F.H.A. Claeys, B. Dhoedt, F. De Turck, P. Demeester, P.A.
Vanrolleghem, Dynamic Approach for Workflow Scheduling in Grids, sub-
mitted to IEEE Transactions on Parallel and Distributed Systems

[5] M. Chtepen, F.H.A. Claeys, B. Dhoedt, F. De Turck, J. Fostier, P. De-
meester, P.A. Vanrolleghem, On-line Execution Time Prediction for Compu-
tationally Intensive Workflow Applications with Periodic Progress Updates,
submitted to the Journal of Supercomputing

1.5.2 P1: Publications indexed by the ISI Web of Science “Con-
ference Proceedings Citation Index – Science”

[1] F. Claeys, M. Chtepen, L. Benedetti, B. Dhoedt, P.A. Vanrolleghem, Dis-
tributed virtual experiments in water quality management, The 6th Interna-
tional Symposium on Systems Analysis and Assessment in Water Manage-
ment (WATERMATEX 2004), Beijing, China, November 3 – 4, 2004

[2] M. Chtepen, F.H.A. Claeys, B. Dhoedt, F. De Turck, P. Demeester, P.A.
Vanrolleghem, Dynamic scheduling of computationally intensive applica-
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tions on unreliable infrastructures, The 2nd European Modeling and Simu-
lation Symposium (EMSS 2006), Barcelona, Spain, October 4 – 6, 2006

[3] F.H.A. Claeys, M. Chtepen, L. Benedetti, W. De Keyser, P. Fritzson, P.A.
Vanrolleghem, Towards transparent distributed execution in the Tornado
framework, The 2006 Environmental Application and Distributed Comput-
ing Conference (EADC 2006), Bratislava, Slovakia, October 16 – 17, 2006

[4] M. Chtepen, F.H.A. Claeys, B. Dhoedt, F. De Turck, P. Demeester, P.A.
Vanrolleghem, Evaluation of replication and rescheduling heuristics for grid
systems with varying resource availability, The 18th IASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS 2006),
Dallas, TX, November 13 – 15, 2006

[5] M. Chtepen, F.H.A. Claeys, F. De Turck, B. Dhoedt, P.A. Vanrolleghem,
P. Demeester, Providing fault-tolerance in unreliable grid systems through
adaptive checkpointing and replication, The 7th International Conference
on Computational Science (ICCS 2007), Beijing, China, May 27 – 30, 2007

[6] M. Chtepen, F.H.A. Claeys, F. De Turck, B. Dhoedt, P.A. Vanrolleghem, P.
Demeester, Scheduling of dependent grid jobs in absence of exact job length
information, The 4th IEEE/IFIP International Workshop on End-to-end Vir-
tualization and Grid Management (EVGM 2008), Samos Island, Greece,
September 22 – 26, 2008

[7] M. Chtepen, F.H.A. Claeys, B. Dhoedt, F. De Turck, P. Demeester, P.A.
Vanrolleghem, Adaptive checkpointing in dynamic grids for uncertain job
durations, The 31st International Conference on Information Technology
Interfaces (ITI 2008), Dubrovnik, Croatia, June 22 – 25, 2009

[8] M. Chtepen, F.H.A. Claeys, F. De Turck, B. Dhoedt, P.A. Vanrolleghem, P.
Demeester, Performance evaluation and optimization of an adaptive schedul-
ing approach for dependent grid jobs with unknown execution time, The
18th International Congress on Modelling and Simulation (MODSIM 2009),
Cairns, Australia, July 13 – 17, 2009

1.5.3 C1: Other Publications in International and National Con-
ferences

[1] M. Chtepen, B. Dhoedt, P.A. Vanrolleghem, Dynamic scheduling in grid
systems, published in 6th FTW PHD Symposium, Interactive poster session,
paper nr. 110 (proceedings available on CD-Rom), Gent, Belgium, Novem-
ber 30, 2005.
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2
DSiDE Simulator

This chapter introduces the DSiDE grid simulator, which was developed in the
context of this PhD research. DSiDE was used to evaluate the performance of
the designed dynamic scheduling solutions and to compare these to a number of
existing static approaches. In this chapter the following topics are successively
discussed: comparison of existing simulators with DSiDE, DSiDE design and ar-
chitecture, input and output specification.

2.1 Existing HPC Simulators

It is not always financially and technically feasible to build a realistically-sized
grid testbed for evaluating the performance of dynamic scheduling algorithms.
First of all, the majority of the existing grids are operational and cannot be used
for experimental purposes, while building a separate research grid requires sig-
nificant investments for hardware infrastructure and support staff. Secondly, in a
real testbed it is difficult to achieve a controlled and repeatable sequence of events,
often required to test algorithms under certain conditions. Therefore, grid simula-
tors provide a cheap, fast and relatively accurate means for algorithm performance
measurements.

We evaluated a number of well-known discrete-event simulators with respect to
their extensibility, scalability, efficiency, ability to model grid components and dy-
namic grid behavior. These simulators can be subdivided into two groups: general
purpose simulators (e.g. GPSS [1–3], SLX [1, 4]) and grid specific simulators (e.g.
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GridSim [5, 6], SimGrid [7], NSGrid [8], HyperSim-G [9] and ChicSim [10]). Ta-
ble 2.1 shows a qualitative comparison between different simulation environments,
including DSiDE.

From the evaluation study performed, it can be concluded that general purpose
simulators are usually easy to learn and to use due to the extended documentation
and time-aware debugging mechanisms available. Furthermore, they are fast and
easily extensible. Their main disadvantages are the difficulty of implementation of
dynamic components and the lack of built-in models for relevant grid and network
resources.

In contrast to general purpose simulators, grid-specific simulators possess built-
in grid models. However, the models are often not flexible enough to be extended
with additional functionality. Furthermore, most of the simulators do not support
modeling of dynamic resource and job behavior, have long simulation times and
limited scalability. Also, the absence of detailed documentation and debugging
facilities complicates their usage.

To address the issues of existing simulators discussed above, DSiDE was con-
ceived. DSiDE is a discrete-event simulator that provides built-in models for the
most relevant grid components. Thanks to its general and clear architecture, the
simulator can easily be extended with new, not necessarily grid-related, mod-
els. The main advantage of DSiDE is its extended support for easy and flexible
modeling of all kinds of dynamic grid behavior. The simulator is also relatively
fast, partly thanks to the selection of appropriate implementation technologies and
partly thanks to design choices made with respect to network implementation. The
latter requires only a limited number of events to model sufficiently accurate net-
work delays. So far, the scalability of DSiDE was tested with up to 1,000 nodes,
running several thousands of jobs simultaneously. However, the scalability is de-
termined not only by the size of the grid simulated, but also by the dynamics of
the simulation. In particular, the number of events processed is the main factor
influencing the speed and the scalability of DSiDE. Finally, there is a possibility to
debug DSiDE through an Integrated Development Environment (IDE), but there is
no DSiDE specific debugging facility. Also the currently available documentation
is rather limited.

2.2 Design of DSiDE

In general, the simulator built can be described as a flexible and portable frame-
work for modeling and simulation of distributed computing environments. The
term “flexible” refers to the fact that although currently DSiDE primarily contains
built-in models for grid components, the simulator can be easily extended for a
wide variety of problems. DSiDE is also “portable” since it is available for win32,
win64, linux and potentially other platforms. The simulator was developed in
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Table 2.1: Discrete-event simulator comparison: “+” indicates that a feature is supported;
“+/-” indicates that a feature is partially supported; “-” indicates that a feature is
not supported.
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Figure 2.1: DSiDE conceptual diagram.

C++, as this object-oriented programming language offers a good compromise be-
tween efficiency and advanced features such as high-level data constructs, abstract
interfaces, smart pointers, exception handling, namespaces, etc.

The architecture of DSiDE consists of three separate modules: DGen, DMExec,
and DExec (see Figure 2.1). Simulation scenarios and grid models are specified
in DSiDE through an initial XML event file that contains descriptions of recurrent
event types and the way in which they should be generated (offline or at run-time).
DGen translates this initial specification into individual events that can be loaded
into the DExec module. At the heart of DExec is the Kernel component, which
maintains two event chains: the Future Event Chain (FEC) and the Current Event
Chain (CEC). All simulation initialization events and events representing dynamic
grid changes arrive into the FEC where they are sorted by their simulated times-
tamp. During each iteration, the first event in the FEC is moved to the CEC to-
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gether with all other events with the same timestamp. Afterwards, the events in the
CEC can be sorted and executed in any predefined order. The simulator keeps run-
ning until either the end event is executed, or the simulation end-time is reached.
Next to the Kernel, DExec implements a grid simulation environment, containing
models for the following grid elements: Computational Resource (CR), Storage
Resources (SR), User Interface (UI), Grid Scheduler (GS), Information Service
(IS) and Checkpointing Server (CS). CRs and SRs are the actual grid resources,
where respectively jobs are executed and inputs/outputs are stored. The capacity of
CRs is measured in Million Instructions Per Second (MIPS) and of SRs in KBytes.
Two CR models are implemented in DSiDE: in the first model the capacity of each
CR is equally divided between all jobs running on the resource; in the second
model a percentage of the total CR capacity (determined by job requirements) is
assigned to each arriving job, until the resource get filled. While the second model
is rather straightforward, Figure 2.2 gives an example for the first model. When a
job is scheduled to a resource by a GS, the resource remains reserved for the job
until the input data transfer terminates. Afterwards, the job starts running, sharing
the resource capacity with other active jobs. In the example a CR initially execut-
ing a single job J1 is considered. J1 running on the resource with speed MIPS=1
will execute during 6 time units (EJ1 = 6). When the second job J2 arrives, the
resource speed is divided by 2 (MIPS=0.5) and the remaining execution time of
J1 is prolonged by the factor of 2. Similarly, when the third job J3 arrives, the re-
maining execution times of the first two jobs are prolonged with the factor of 3, as
the total computational capacity is now divided among 3 jobs. When J1 execution
ends, the remaining execution times of J2 and J3 are reduced to reflect the fact that
MIPS per job increase from 0.33 to 0.5. When job outputs are transferred to some
SR, it is assumed that the job is not longer consuming computational resources.
Therefore, the computational speed of concurrently running jobs increases and an-
other job can eventually be started on the resource. The model for SR, in turn,
assumes a certain storage capacity that is decreased each time new data has to be
stored.

The UI is a grid service responsible for the dynamic generation of jobs with
particular characteristics, which are submitted to the GS with a specified fre-
quency. Grid models can contain an unlimited number of UIs. In contrast to
UIs, DSiDE currently supports only a centralized scheduling model, where a sin-
gle GS is responsible for distribution of all arriving jobs to the available resources,
according to a particular scheduling strategy. Currently, various scheduling al-
gorithms are implemented in DSiDE. They can be subdivided into the following
categories:

• Benchmark: algorithms discussed in literature that have been used as bench-
marks.
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Figure 2.2: CR capacity sharing model.

– First Come First Served (FCFS): schedules the longest waiting jobs
in the GS job queue to a random resource. Only available resources
are considered for job execution, where the term “available resource”
refers to a non-failed CR, with less than nmaxCR jobs running. On an
available resource each job is assigned an equal amount of hardware
resources (CPU, IO bus, etc.).

– First Job Best Computational Resource (FJBCR): assigns jobs to
CRs in the order of their arrival into the GS job queue. Each job is
assigned to the fastest available resource CR, i.e. a resource with the
highest speed (MIPSCR) and the smallest number of jobs (nCR) cur-
rently scheduled to this CR.

– MaxMax: assigns the longest (i.e. with longest execution time) idle
job in the GS job queue to the fastest available resource.

– MinMax: assigns the shortest idle job in the GS job queue to the fastest
available resource.

– Unconditional Replication (UnconditionalRL): assigns a predefined
number (Rep) of job replicas to preferably widely distributed CRs,
to reduce the chance of simultaneous failure. When all resources are
occupied, job replication is postponed.

– Workqueue with Replication (WQR): distributes the first job copy to
a random idle resource in FCFS order. When the job queue is empty
and the system has free resources, replication is activated.

– Failure Detection and Migration: in case of a resource failure detec-
tion, restarts affected jobs from the their last checkpoints.

– Rescheduling: considers the situation when CR load dynamically var-
ies over time. Each job is initially scheduled to the fastest available
resource in FCFS order. In each scheduling iteration, system status
is evaluated and jobs are eventually rescheduled to faster available re-
sources.
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• Fault-tolerant scheduling: algorithms developed to provide system fault-
tolerance (see Chapter 4).

– Load Dependent Replication (LoadDependentRep): performs replic-
ation only when there are a sufficient number of idle CRs available
within a distributed environment. When the system is overloaded and
a predefined idle CPU limit is reached, replication is postponed until
the system load decreases.

– Failure Detection and Replication: combines job failure detection and
restart with unconditional replication.

– Failure Detection and Load Dependent Replication (FailureDepen-
dentRep): combines job failure detection and restart with load depen-
dent replication.

– Replication and Migration (CombinedFT): alternates between job rep-
lication and checkpointing. As long as enough CRs are available, job
replication is performed. When the system gets overloaded, the algo-
rithm switches to job checkpointing.

• Workflow scheduling: algorithms that address scheduling of jobs com-
posed of dependent tasks (see Chapter 5).

– Workflow Scheduling: schedules jobs composed of internal tasks or-
ganized into a workflow. Jobs are processed in FCFS order, while tasks
are executed in the order indicated by their dependency graph. Each
task is assigned to the fastest available resource.

– Balanced Workflow Scheduling: balances execution times of tasks
having the same dependents, so that the execution time of the longest
task is minimized and the other tasks finish more or less simultane-
ously with the longest task. A dependent task is a task that depends
on data generated by other tasks to proceed with its execution. The
idea of the algorithm is to optimize resource utilization (by schedul-
ing tasks to resources with minimum required speed) and at the same
time to decrease execution time of workflows. The algorithm is able to
deal with highly dynamic computational environments, where resource
speed and expected task execution time vary over time. Checkpointing
and task rescheduling are applied to address these dynamic variations.

– Balanced Workflow Scheduling with Resource Grouping: the algo-
rithm operates similar to the previous one, except that instead of match-
ing each task to each available resource, tasks are matched against
groups of CRs to improve scalability of the algorithm. CRs are grouped
based on their location and speed, and the average parameters of each
group are utilized by the matchmaking algorithm.
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– Balanced Workflow Scheduling with Reduced Overhead: the algo-
rithm operates similar to “Balanced Workflow Scheduling” but to re-
duce the migration overhead, workflows are rescheduled only when ex-
pected remaining tasks execution times are sufficiently long and when
significant profit is expected to be achieved by migration.

• VM scheduling: algorithms that address scheduling of interactive session-
based applications within clouds (see [11]).

– Capacity Matching and User Clustering: deals with user-specific ap-
plications with varying, a priori known requirements with respect to
resource computational capacity. The algorithm assigns jobs based on
their origin, which means that jobs from the same user are scheduled
together, as much as possible. Therefore, resources are processed in or-
der of the decreasing number of running jobs originating from the same
user and the next job is assigned to the first processed resource with
sufficient capacity. This algorithm does no support a waiting queue
but instead jobs are either scheduled immediately after their arrival or
rejected and lost forever.

– Capacity Matching Full Fill: similar to the previous algorithm, but
jobs are no longer clustered according to their user. Instead, CRs are
filled as much as possible with consecutively arriving jobs in order of
their appearance in the IS resource queue.

– Capacity Matching Full Fill Round Robin: analogous to the previ-
ous approach, but resources are considered for job execution in Round
Robin (RR) order.

– Capacity Matching with Limit: operates on the same type of appli-
cations as “Capacity Matching and User Clustering”. The algorithm
iterates over resources in RR order and only schedules jobs that have
capacity requirements below a predefined resource-bounded limit. All
jobs with resource requirements above the limit are rejected.

– Capacity Matching with Dynamic Limit: similar to the previous algo-
rithm, except that the resource-bounded limit dynamically varies over
time. If a sufficient number of “light” (i.e. with capacity requirements
below the limit) jobs are running on a resource, its limit can be dy-
namically increased to allow processing of “heavy” jobs (i.e. with ca-
pacity requirements above the limit) and visa versa. The Erlang B
formula [12] is used to calculate the limit values at run time, based on
job arrival frequency and processing times.

Each of the above mentioned scheduling approaches can be provided with various
input parameters that can be used for further refinement of a scheduling policy.

Scheduling decisions taken by the algorithms are always based on information
collected from the IS in each scheduling iteration. At this moment only one IS can
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be defined, which can function in two modes: changes in system status are prop-
agated to the IS immediately; the IS requests status from resources periodically
using a constant time interval IIS .

As was mentioned earlier, DSiDE also supports checkpointing of jobs. Three
checkpointing strategies are currently implemented in DSiDE:

• Periodic Checkpointing (PeriodicCP): jobs/tasks are checkpointed using
a predefined constant time interval (I).
• Last Failure Dependent Checkpointing (LastFailureCP): periodic check-

points are saved / omitted depending on the estimated chance of a job (or a
task) to fail during the next interval I . This chance is estimated based on
total job execution time and on time expired since the last failure of the CR,
where the job is assigned.
• Mean Failure Dependent Checkpointing (MeanFailureCP): the check-

pointing interval I is enlarged / reduced depending on the total job execution
time and on the measured mean failure frequency of the CR, where the job
is assigned.

Multiple CSs can be modeled for checkpoint storage. However, since data man-
agement is out of scope of this dissertation, no strategies are implemented for
intelligent allocation of checkpointing data between different CSs.

It is important to mention that DSiDE provides a set of events to specify net-
work links and routes (sequence of links), which form the network model of the
simulator. The DSiDE network is similar to the SimGrid network model, which
differentiates between two types of links: WAN or Internet links; and LAN or
intra-site links. WAN links are assumed to be fully interconnected with equal
bandwidth assigned to each route going through them (a small fraction of the
total bandwidth). On the other hand, intra-site links are always organized into
a tree topology and the available bandwidth is proportionally shared among the
simultaneous active data transfers [13]. This simple model has proven to be a
good approximation for real network behavior [14], while preserving relatively
low computational complexity and short simulation times.

Finally, the DMExec module of DSiDE is used to either execute a batch of
predefined simulation experiments automatically or to run the simulation with dif-
ferent seed values for the Random Number Generator (RNG). A RNG is used
within DSiDE to generate event occurrences and parameter values according to
selected distributions. Successively initializing RNG with different seeds, results
in different sequences of pseudo random numbers and provides us with a clear
view on the variance of the obtained simulation results. If the variance is relatively
high, it suggests that the system experiences difficulties to reach a single steady
state situation, for example due to an insufficient number of job runs or due to an
insufficiently long simulation period considered, or due to inherent bi-stability.
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2.3 DSiDE Input
Models and simulation scenario descriptions are specified in DSiDE by means of
an XML-input file of the form shown below. Input to DSiDE is composed of a
sequence of events, located under the tag Events. Each individual event within
the Events-tag contains a description of recurrent events to be simulated. The ar-
guments “Type” and “Number” indicate respectively the type of events and the
number of event instances. For instance, instantiation of CRs with similar capac-
ity, similar activation times, located within the same LAN and having the same
load variation pattern can be specified as one event, indicating the “arrival” of the
required number of similar CR instances into a grid. Properties within Event-tags
stand for static component characteristics (e.g name, location, user name), as well
as dynamic component behavior (e.g CR load variation, job execution progress
variation, variation in job submission pattern), described by different RNG distri-
butions (Uniform, Normal, LogNormal, Poisson, Weibull, etc.).

<DSiDE>
<Events Version="1.0">
<Event Type="Sched.Add">
<Description>
<Props>
<Prop Name="Number" Value="1"/>
<Prop Name="RegisterTime" Value="0"/>
...

</Props>
<Algorithm Name="CostAwareRescheduling">
<Props>
<Prop Name="Checkpoint" Value="true"/>
...

</Props>
</Algorithm>

</Description>
</Event>

<Event Type="Job.Add" Number="0">
<Description>
<Props>
<Prop Name="SubmissionType" Value="Dynamic"/>
<Prop Name="SubmissionFrequency" Value="RNG0"/>
...

</Props>
<Distributions>
<RNG>
<Props>
<Prop Name="Name" Value="RNG0"/>
<Prop Name="Distribution" Value="Uniform"/>
<Prop Name="LBound" Value="100"/>
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<Prop Name="UBound" Value="100"/>
</Props>

</RNG>
...

</Distributions>
</Description>

</Event>

<Event Type="Resource.Add" Number="4">
<Description>
<Props>
<Prop Name="Name" Value="CR"/>
<Prop Name="RegisterTime" Value="0"/>
...

</Props>
...

</Description>
</Event>

...

</Events>
</DSiDE>

This short form specification is converted into a list of individual events, suit-
able for execution by DExec, using the DGen Command-Line-Interface (CLI):

dgen [options] <XMLEventsFile>

Options:
-h, --help Show this message.
-o, --out <File> Specify output file name.

This interface requires as input the name of a file (“-o” option) where the con-
verted list of events can be stored and the name of the input XML-file. An example
of a list of converted Events is shown below:

<DSiDE>
<Events Version="1.0">
<Event Type="Network.Add" Time="0">...</Event>
<Event Type="Sched.Add" Time="0">...</Event>
<Event Type="Sched.Run" Time="0">...</Event>
<Event Type="Job.Add.Dynamic" Time="1">...</Event>
<Event Type="CR1.Add" Time="0">...</Event>
<Event Type="CR2.Add" Time="0">...</Event>
<Event Type="CR3.Add" Time="0">...</Event>
<Event Type="CR4.Add" Time="0">...</Event>
...
</Events>
</DSiDE>
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The output of DGen can either be used to run a single simulation within the
DExec module or multiple simulations, using the DMExec CLI. DMExec is called
using the following command:

dmexec [options] <ExecutionMode> <StopMode> <XMLEventsFile>

Options:
-h, --help Show this message.
-l, --log <File> Specify log file name.
-o, --out <File> Specify output file name.
-ml, --mlog <File> Specify common log file name.

DMExec can be run in two different execution modes:

• Batch: several numbered input files can be automatically processed by DExec
one after another. This mode is run to speed up execution of a batch of simu-
lations on a local host, where only one simulation can be run simultaneously
at reasonable speed. The “-en” argument (is not an option and is not speci-
fied in the option list above) specifies the number of simulations in a batch
(Nbatch). The names of an input files for each simulation should have a pre-
fix “XMLEventsFile” followed by a sequential number from 0 to Nbatch, to
be recognized and executed by DMExec.
• Seed: runs the same simulation experiments with varying seeds. The “-

sn” argument specifies the number of different seeds (Nseed) the simulation
should be run with. By default, a seed is incremented with 1 in each it-
eration. Low variance between the results obtained with different seeds,
indicates that the steady state is reached within a simulation experiment.

There are also two modes to specify the end condition for simulations incor-
porated into DMExec:

• NoJobs: simulation ends when the number of jobs, indicated by the “-j”
argument, is successfully executed.
• Time: simulation ends when the simulated time, indicated by the “-t” argu-

ment, is reached.

Next to logs and output files per simulation (respectively “-l” and “-o” options),
DMExec produces an output file (“-ml” options) with statistics on the results of all
simulation experiments run.

The CLI of DExec is more or less similar to the previous one, except that it
does not include options for multiple simulation runs:

dexec [options] <StopMode> <XMLEventsFile>

Options:
-h, --help Show this message.
-l, --log <File> Specify log file name.
-o, --out <File> Specify output file name.
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2.4 DSiDE Output

DSiDE generates three types of output: output files with statistics on the results of
batch simulations; log files containing information on Events executed during one
simulation; and output files including statistics on jobs and resources during one
simulation run.

A common output file is a text file of the following form:

I Jan 07 14:35:09 2010 Run 0: JobDone=4554
I Jan 07 14:35:09 2010 Run 0: AccJobStableState=4602
I Jan 07 14:35:09 2010 Run 0: RejJobStableState=1057
I Jan 07 14:35:09 2010 Run 0: CPULoadAccJobs=9.144
I Jan 07 14:35:09 2010 Run 0: SubmitJobsUnderLimit=3027
I Jan 07 14:35:09 2010 Run 0: AccJobsUnderLimit=2792
I Jan 07 14:35:09 2010 Run 0: AccJobsUnderLimitPr=0.922
I Jan 07 14:35:09 2010 Run 0: SubmitJobsAboveLimit=2632
I Jan 07 14:35:09 2010 Run 0: AccJobsAboveLimit=1810
I Jan 07 14:35:09 2010 Run 0: AccJobsAboveLimitPr=0.687
I Jan 07 14:35:09 2010 Run 0: SystemLoad=0.645
I Jan 07 14:35:09 2010 Run 0: JobsOnCRAvg=9.101
I Jan 07 14:35:09 2010 Run 0: CPULoadAvg=76.681
I Jan 07 14:35:09 2010 Run 0: LongJobsProfit=0
I Jan 07 14:35:09 2010 Run 0: R-limit=0
I Jan 07 14:35:34 2010 Run 1: JobDone=3492
I Jan 07 14:35:34 2010 Run 1: AccJobStableState=3531
I Jan 07 14:35:34 2010 Run 1: RejJobStableState=727
I Jan 07 14:35:34 2010 Run 1: CPULoadAccJobs=9.663
I Jan 07 14:35:34 2010 Run 1: SubmitJobsUnderLimit=2250
I Jan 07 14:35:34 2010 Run 1: AccJobsUnderLimit=2056
I Jan 07 14:35:34 2010 Run 1: AccJobsUnderLimitPr=0.913
I Jan 07 14:35:34 2010 Run 1: SubmitJobsAboveLimit=2008
I Jan 07 14:35:34 2010 Run 1: AccJobsAboveLimit=1475
I Jan 07 14:35:34 2010 Run 1: AccJobsAboveLimitPr=0.734
I Jan 07 14:35:34 2010 Run 1: SystemLoad=0.524
I Jan 07 14:35:34 2010 Run 1: JobsOnCRAvg=7.884
I Jan 07 14:35:34 2010 Run 1: CPULoadAvg=64.298
I Jan 07 14:35:34 2010 Run 1: LongJobsProfit=0
I Jan 07 14:35:34 2010 Mean=4066.5 Variance=573520.5
I Jan 07 14:36:04 2010 Run 2: JobDone=4035
I Jan 07 14:36:04 2010 Run 2: AccJobStableState=4054
I Jan 07 14:36:04 2010 Run 2: RejJobStableState=783
I Jan 07 14:36:04 2010 Run 2: CPULoadAccJobs=9.373
I Jan 07 14:36:04 2010 Run 2: SubmitJobsUnderLimit=2591
I Jan 07 14:36:04 2010 Run 2: AccJobsUnderLimit=2433
I Jan 07 14:36:04 2010 Run 2: AccJobsUnderLimitPr=0.939
I Jan 07 14:36:04 2010 Run 2: SubmitJobsAboveLimit=2246
I Jan 07 14:36:04 2010 Run 2: AccJobsAboveLimit=1621
I Jan 07 14:36:04 2010 Run 2: AccJobsAboveLimitPr=0.721
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I Jan 07 14:36:04 2010 Run 2: SystemLoad=0.572
I Jan 07 14:36:04 2010 Run 2: JobsOnCRAvg=8.104
I Jan 07 14:36:04 2010 Run 2: CPULoadAvg=71.819
I Jan 07 14:36:04 2010 Run 2: LongJobsProfit=0
I Jan 07 14:36:04 2010 Mean=4062.3 Variance=286812.3
I Jan 07 14:36:04 2010 ********************************
I Jan 07 14:36:04 2010 JobDoneMean=4027
I Jan 07 14:36:04 2010 AccJobMean(stable st.)=4062.333
I Jan 07 14:36:04 2010 RejJobMean(stable st.)=855.666
I Jan 07 14:36:04 2010 AccJobMeanPr=0.826
I Jan 07 14:36:04 2010 AccJobsUnderLimitMeanPr=0.925
I Jan 07 14:36:04 2010 AccJobsAboveLimitMeanPr=0.714
I Jan 07 14:36:04 2010 SystemLoadPr=0.580
I Jan 07 14:36:04 2010 JobsOnCRAvg(stable st.)=8.363
I Jan 07 14:36:04 2010 CPULoadAvg(stable st.)=70.933
I Jan 07 14:36:04 2010 TotalLongJobsProfit=0

The file is generated during the execution of DMExec and has a free format.
It contains the desired statistics per simulation run, as well as general statistics for
all simulations within a batch. New statistics can be added or old statistics can be
removed, but this requires DMExec to be recompiled. Furthermore, each line of
the file specifies either it contains a standard output (“I” symbol) or an error (“E”
symbol) message and the timestamp of the generation of each message is provided.

A simulation log file of the DExec module is also a free style output file that is
utilized for debugging purposes as it contains information on all Events executed
by DExec during each simulation:

I Apr 16 20:50:28 2010 Loading: Test.Exec.Events0.xml
I Apr 16 20:50:29 2010 0: (Event=2): Network.Add:...
I Apr 16 20:50:29 2010 0: (Event=3): Routing.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (Event=4): Sched.Add:...
I Apr 16 20:50:29 2010 0: (Event=5): Sched.Run: Sched0
I Apr 16 20:50:29 2010 0: (Event=6): IS.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (Event=7): CS.Add:...
I Apr 16 20:50:29 2010 0: (Event=9): CR.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (Network): Route.Add:...
I Apr 16 20:50:29 2010 0: (IS0): ResourceAdd CR0

...

Finally, after each simulation run DExec generates an XML-output file (see
listing below). Similar to the input file, the Events-tag specifies output events.
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Individual output events contain extensive statistical information, grouped per re-
source type: CR (availability, average load,etc.), SR (average disk space occu-
pied, etc.), network (amount of input and checkpointing data transferred, etc.),
distributed system in general (number of jobs processed, characteristics of exe-
cuted jobs, etc.).

<DSiDE>
<Events Version="1.0">
<Event Type="Jobs.Output"/>
<Event Type="ResourceStatistics.Output">
<Description>
<Resource>
<Props>
<Prop Name="Name" Value="CR0"/>
<Prop Name="FailureTime" Value="0"/>
<Prop Name="Availability" Value="100"/>
<Prop Name="ProcessedInstr" Value="146629211"/>
<Prop Name="NonIdleTime" Value="44635515"/>
<Prop Name="NonIdleTimePr" Value="51.661"/>
<Prop Name="FullyLoadedTime" Value="44635515"/>
<Prop Name="FullyLoadedTimePr" Value="51.661"/>

</Props>
</Resource>

...

</Description>
</Event>
<Event Type="NetworkStatistics.Output">
<Description>
<JobAllocationPath>
<Props>
<Prop Name="Name" Value="N3:N1"/>
<Prop Name="JobAllocated" Value="6991"/>
<Prop Name="JobAllocatedPr" Value="100"/>

</Props>
</JobAllocationPath>
<NetworkPath>
<Props>
<Prop Name="Name" Value="N3:N1"/>
<Prop Name="NetworkDataTransfer" Value="209730"/>

</Props>
</NetworkPath>

</Description>
</Event>
<Event Type="SystemStatistics.Output">
<Description>
<Props>
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<Prop Name="JobTotal" Value="9724"/>
<Prop Name="JobDoneNoDouble" Value="6986"/>
<Prop Name="JobDoneDouble" Value="6986"/>
<Prop Name="FinalJobDone" Value="6986"/>
<Prop Name="JobLost" Value="0"/>
<Prop Name="JobSysTimeMean" Value="4249030132.202"/>
<Prop Name="JobExecTimeMean" Value="37551.124"/>
<Prop Name="FinalJobExecTimeMean" Value="0"/>
<Prop Name="JobLengthMean" Value="617687.604"/>
<Prop Name="CheckpointNoMean" Value="0"/>
<Prop Name="FailedJobsLengthMean" Value="0"/>
<Prop Name="RescheduleNo" Value="0"/>
<Prop Name="CancelNo" Value="0"/>
<Prop Name="SystemAvailability" Value="100"/>
<Prop Name="SubmitInstrNo" Value="4323751862.239"/>
<Prop Name="TotalProcessedInstr" Value="4315162273"/>
<Prop Name="TotalProcessedInstrNoPr" Value="99"/>
<Prop Name="UsefulProcessedInstr" Value="4315165605"/>
<Prop Name="UsefulFinalProcInstr" Value="4315165605"/>
<Prop Name="TotalNonIdleTimePr" Value="44.278"/>
<Prop Name="TotalFullyLoadedTimePr" Value="44.278"/>
<Prop Name="TotalSystemLoadPr" Value="44.278"/>
<Prop Name="SubmittedJob" Value="6991"/>
<Prop Name="SubmittedJobNoDouble" Value="6991"/>
<Prop Name="JobToSchedSubmitStableState" Value="9724"/>
<Prop Name="JobToCRSubmitStableState" Value="6991"/>
<Prop Name="JobRejectedStableState" Value="2733"/>
<Prop Name="CPULoadAcceptedJobsMean" Value="8.518"/>

</Props>
</Description>

</Event>
</Events>
</DSiDE>

An XML parser can be used to automatically extract data from this output file.
Outputs of individual simulation are, for instance, utilized by DMExec to calculate
final experiment results.
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? ? ?

In this chapter, we consider the grid distributed computing paradigm. Typical
for grids is that their resources are highly distributed and often belong to different
organizations. Therefore, resource availability and stability form an important
issue that should be taken into account when designing scheduling mechanisms
for grid systems. Currently, most existing grids make use of static schedulers,
which are not sufficient to deal with the dynamic nature of grid resources. This
paper is touching on the dynamic scheduling concept, justifying its usefulness for
computationally intensive applications (jobs).

All results claimed in this chapter are based upon simulations done in the
DSiDE simulation environment. As a use-case for this study, a computationally
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intensive generic modeling and simulation tool, named Tornado, was chosen. The
effect of dynamic resource availability on the execution of Tornado jobs will be
shown.

3.1 Introduction

Grid computing [1] is a relatively new technology in the domain of distributed
computing, which has recently gained importance as a consequence of a continu-
ously increasing demand for elaborate sources of computational power. Grids are
defined as an aggregation of heterogeneous, (globally) distributed resources, of-
ten belonging to different administrative domains. Although functionally different
classes of grids exist (compute, information, desktop, etc.), most of them define
the same set of services: through a User Interface users are able to submit their
applications to a grid system; a Scheduler assigns applications received from UIs
to distributed Computational and/or Storage Resources; Information Services, col-
lects information about the grid status that helps the Scheduler to take decisions
for job assignment.

The ultimate goal of grid technology is to allow for transparent execution of
a users jobs, optimally exploiting the combined capacities of multiple resources
while taking into account administrative policies, user requirements and system
status. The ability to accomplish this goal implies the existence of an intelligent
and flexible scheduling mechanism for grids.

In general, scheduling algorithms can be divided into two broad categories:
static and dynamic. Static algorithms assign jobs to available resources before the
execution of the jobs starts. Once jobs are running, they can no longer be inter-
rupted by the scheduler. In case of dynamic algorithms, previously taken schedul-
ing decisions are regularly re-evaluated and adjusted to the changing status of grid
resources and jobs. It is clear that dynamic scheduling is much more complex
to accomplish than its static equivalent, therefore currently there exist very few
systems supporting rescheduling [2–4].

In distributed environments, such as grids, with highly dynamic resources and
diverse user requirements, situations where static scheduling does not suffice to
guarantee efficient workload execution often occur. For example, resources can
fail or become unavailable; new resources can join the system; load on computa-
tional or network resources can vary significantly; applications with high priority
or critical deadlines can arrive, requiring the best possible execution service. In
grids that make use of cycle scavenging, applications are typically submitted to a
number of free machines, but during execution the load of the computational re-
sources can change drastically. At that moment the initial assignment of the work-
load is no longer “optimal”. In a system that employs static scheduling the jobs
will continue executing on the slow machines while more appropriate resources
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can be unutilized. From this example it is clear that static methods are not suitable
to guarantee the optimal resource utilization in highly dynamic systems, which
justifies the efforts required to develop dynamic scheduling solutions.

In this work we consider varying resource availability, i.e. resources becoming
temporarily unavailable for job processing, and its effect on the execution of vary-
ing types of workload. We give a precise indication on the amount of jobs lost in
these dynamic environments, due to job interruption in absence of a rescheduling
mechanism. The remainder of this chapter is structured as follows: the assumed
grid environment is described in Section 3.2; in Section 3.3 the results of simula-
tion experiments with varying jobs executed on our unreliable grid infrastructure
are presented; a case study on Tornado follows in Section 3.4; and the chapter is
terminated with concluding remarks in Section 3.5.

3.2 Grid Infrastructure

A desktop grid model consisting of 10 CRs was modeled in DSiDE. Each resource
is assumed to process one job at a time and has a constant speed MIPSCR =

1. The underlying network is modeled with fixed bandwidth of 100 Mbit/s and
latency of 10 ms per data transfer.

The concept of a desktop grid is that PCs of individual users are utilized for
job execution during idle periods (during a lunch break, meeting, at night). How-
ever, when the owner of the machine starts his/her own applications, all external
jobs have to be terminated. This dynamic resource behaviour was simulated for
a varying frequency and time span of resource unavailability periods. Measure-
ments were performed for a total grid unavailability fluctuating from 0% up to
97%. This implies that desktop resources with high utilization (where only 3% of
the time can be spent on external job execution) were considered, next to systems
fully dedicated to the execution of the latter. A constant arrival stream of workload
was modeled with job submission times uniformly distributed from 1 to 5 minutes.
Furthermore, 3 classes of jobs where considered: short (10 minutes), medium (1.5
hours) and long (3.5 hours). The grid behaviour was observed during 5 weeks of
simulated time.

3.3 Simulation Results

All DSiDE simulations discussed in this and the following section were executed
on the UGent Grid infrastructure [5], consisting of 41 HP DL145 Dual Opteron
nodes with 4 GB RAM and 40GB HD space each. All nodes are running Scien-
tific Linux 3.0.5 and version 2.7.0 of the LCG grid middleware [6]. Only coarse-
grained gridification of DSiDE experiments was performed (i.e. a simulation was
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Availability Failure Restart

100% U(1 s, 500 s) U(1 s, 40 s)
95% U(1 s, 400 s) U(1 s, 60 s)
80% U(1 s, 300 s) U(1 s, 100 s)
70% U(1 s, 300 s) U(1 s, 150 s)
60% U(1 s, 300 s) U(1 s, 200 s)
50% U(1 s, 200 s) U(1 s, 200 s)
30% U(1 s, 200 s) U(1 s, 280 s)
20% U(1 s, 200 s) U(1 s, 350 s)
15% U(1 s, 100 s) U(1 s, 350 s)
10% U(1 s, 50 s) U(1 s, 350 s)
5% U(1 s, 20 s) U(1 s, 350 s)

Table 3.1: Simulated unavailability and restart frequencies of grid resources.

considered as an undividable unit of work). Fine-grained gridification would entail
splitting up a simulation into constituents, which is a complex task that is believed
to cause severe overhead. The time to complete each simulation experiment varied
from 15 minutes to 3 hours.

Figure 3.1 summarizes the outcomes of the experiments performed. The figure
depicts the ratio of useful work processed by the modeled grid environment versus
the work lost due to abrupt resource unavailability. It is important to notice that
these outcomes are strongly dependent on the way a certain unavailability percent-
age was acquired. More specifically, the inaccessibility ratio of a resource depends
on two parameters: frequency of “failure” and the time it takes the resource to “re-
store”. Thus, the same ratio can be achieved in different ways: a resource can
frequently become unavailable for a short time period; or it can become unavail-
able less frequently and restore its activity over a longer time interval. Throughout
all the simulations described in this paper, values of resource “failure” and “re-
store” parameters are distributed uniformly in the intervals shown in Table 3.1.
From the results in Figure 3.1, it is clear that in a heavily loaded system, the longest
jobs suffer the most from system instability. When resource unavailability periods
occur rarely (5% of total system time), only 3% of the work will be lost in case of
short jobs, 34% in case of medium jobs and 57% in case of long jobs. Further, the
frequency of a resource unavailability has a larger effect on grid performance than
the time it takes a resource to restore. This can be seen from fast changing ratios
between useful and lost work, which occur at points where “failure” frequency
changes. More specifically, in case of medium jobs there is a sudden decrease in
the percentage of useful work done when the move is made from a system that is
unavailable 36% of its total run time to a grid that is unavailable half of its total run
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(a)

(b)

(c)

Figure 3.1: Simulated grid performance results for different job classes: (a) short jobs, (b)
medium jobs and (c) long jobs.
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Figure 3.2: Tornado conceptual diagram.

time. At the same time, the move from 51% to 61% failure time seems to be less
important. This can be explained by the fact that in the first case the failure fre-
quency changes, while the restart frequency remains the same, and in the second
case vice versa. The “jump” is larger when the job size increases.

With this simple simulation scenario, a quantitative comparison of grid perfor-
mance degradation due to dynamic changing resource availability for different job
classes is given. From the collected results can be concluded that a scheduler with
dynamic detection of changes in resource status, combined with either job restart
or migration mechanisms, can significantly improve system performance.

3.4 Case Study: Tornado Application

The aim of this PhD research is to develop efficient application-aware dynamic
scheduling algorithms. As a use-case for this project, the Tornado kernel [7] was
chosen. Tornado is an advanced software system for modeling and virtual ex-
perimentation with biological systems, which thus far has mainly been applied to
water quality processes. Tornado has an object-oriented design and is composed of
strictly separated modeling and virtual experimentation environments (see Figure
3.2).

The main elements of the Tornado modeling environment are model com-
piler and model builder. The model compiler converts models described in a
high-level, declarative, object-oriented modeling language to flattened, executable
model code. The model builder then compiles and links the executable model
code into a binary object that can be dynamically loaded into the experimentation
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Software 1 run 1,084 runs
Tornado 6 min 4.5 days
Tornado + LCG–2 6 min 3.5 hours

Table 3.2: Execution times for Marselisborg on the UGent grid infrastructure consisting of
41 HP DL145 Dual Opteron nodes

environment.
In the Tornado experimentation environment different types of virtual experi-

ments can be designed, such as simulations, optimizations, sensitivity and scenario
analyses, which are run using the executable models developed in the modeling en-
vironment. Virtual experiments can be subdivided in two categories: atomic and
hierarchically structured (i.e. consisting of one or more sub-experiments), where
in the second case the order of execution can be random or fixed.

Depending on model complexity, simulation intervals and desired accuracy,
the execution time of a Tornado experiment varies from several minutes to several
days. Therefore it seemed desirable to provide a means for distributed execution
of virtual experiments. So far, only coarse-grained gridification was considered,
with a simulation experiment as the smallest unit of work.

Currently, Tornado supports semi-automated execution of its jobs in two dis-
tributed environments: Typhoon [8] and LCG-2. Table 3.2 illustrates the perfor-
mance improvement gained by an introduction of distributed execution. As an
example the scenario analysis experiment for the Marselisborg Waste Water Treat-
ment Plant (WWTP) in Denmark was used. The experiment was performed on the
UGent Grid infrastructure, mentioned in the previous section. Distributed execu-
tion can significantly speed up the execution of Tornado jobs, however practical
experience has shown that there is still a need for more advanced forms of schedul-
ing. From September 2005 until April 2006, measurements of resource availabil-
ity in the Belgian compute/data grid infrastructure for research (BEGrid) [9] were
performed. The measurements suggest that the mean availability of the grids com-
putational resources is about 85% of the observed time, and “failures” occur with
varying frequency, depending on the resource provider. Since BEgrid and UGent
Grid (which is a part of the BEgrid grid) both only support static scheduling of
workload, all running jobs are lost, even without owner notification, each time a
resource failure occurs. To measure the exact impact of such failures on execution
of Tornado experiments, a number of simulations with DSiDE were performed.

The UGent Grid infrastructure is modeled consisting of 41 CRs, each able to
run 2 jobs simultaneously. The speed of all resources is set to 2 MIPS and band-
width of the network is 100 Mbit/sec. Further, the model defines a single Sched-
uler, running the FCFS scheduling algorithm, and a single IS. This grid model
arrangement agrees with the actual architecture of the UGent Grid.
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Figure 3.3: Simulated grid performance results for Tornado jobs.

Typical to the behaviour of Tornado users is that jobs are submitted once or
twice a day in batches of approximately 1,000 jobs. The most common type of
Tornado jobs is modeled, where job lengths are normally distributed with an aver-
age of 10 minutes and a standard deviation of a couple of minutes. Jobs use inputs
of 2 Mbytes and produce 10 Mbytes output data. Table 3.1 summarizes the failure
and restart frequencies that are used to model dynamic resource behaviour. The
grid is observed during 5 weeks of simulated time.

Figure 3.3 shows simulation outcomes for 10 Tornado users, generating sys-
tem workload following the above- described job submission pattern. In case of
computational grid resources with about 10% downtime, 7% of all workload will
be lost as a consequence of system instability. If the system workload increases, a
larger percentage of lost jobs is expected.

3.5 Conclusions
Functional tests and calibration form an essential part of the design of efficient dy-
namic scheduling algorithms for grids. A number of experiments were performed
using DSiDE simulator, in order to show the effect of dynamic resource unavail-
ability periods on the execution of various types of applications.

Resource failure is just one facet of dynamic grid behaviour. The effect of other
aspects, such as changing resource load, changing job characteristics etc. will be
taken into consideration in the following chapters of this dissertation. Further,
dynamic solutions for the above-stated problems will be proposed.
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A grid is a distributed computational and storage environment often composed
of heterogeneous, autonomously managed subsystems. As a result, varying re-
source availability becomes commonplace, often resulting in loss and delay of
executing jobs. To ensure good grid performance, fault-tolerance should be taken
into account. Commonly utilized techniques for providing fault-tolerance in dis-
tributed systems are periodic job checkpointing and replication. While very robust,
both techniques can delay job execution if inappropriate checkpointing intervals
and replica numbers are chosen. In this chapter we introduce several heuristics
that dynamically adapt the above-mentioned parameters, based on information on
grid status, to provide high job throughput in the presence of failure while reduc-
ing the system overhead. Furthermore, a novel fault-tolerant algorithm combining
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checkpointing and replication is presented. The proposed methods are evaluated in
the DSiDE simulation environment. Simulations are run employing workload and
system parameters derived from logs that were collected from several large scale
parallel production systems. Experiments have shown that adaptive approaches
can considerably improve system performance, while the preference for one of the
solutions depends on particular system characteristics, such as load, job submis-
sion patterns and failure frequency.

4.1 Introduction

Compared to other distributed environments, such as clusters, complexity of grids
mainly originates from decentralized management and resource heterogeneity. The
latter refers to hardware as well as to foreseen utilization. These characteristics of-
ten lead to strong variations in grid availability, which in particular depends on re-
source and network failure rates, administrative policies and fluctuations in system
load. Apparently, run-time changes in system availability can significantly affect
application execution. Since for a large group of time-critical or time-consuming
jobs delay and loss are not acceptable, fault-tolerance should be taken into account.

Providing fault-tolerance in a distributed environment, while optimizing re-
source utilization and job execution times, is a challenging task. To accomplish
it, two techniques are often applied: job checkpointing and job replication. In this
chapter it is argued that both techniques in their pure static form are not able to
cope with unexpected load and failure conditions within grids. Therefore, several
solutions are proposed that dynamically adapt the checkpointing frequency and the
number of replicas as a reaction on changing system properties (number of active
resources and resource failure frequency). Furthermore, a novel hybrid scheduling
approach is introduced that switches at run-time between checkpointing and rep-
lication depending on the system load. Decisions taken by the above-mentioned
algorithms are primarily based on monitored grid state, but also on job character-
istics and on collected historical information. Currently, the proposed techniques
are limited to address hardware failure in grids running applications composed of
independent jobs.

Simulation-based experiments, using the DSiDE grid simulator and a data set
derived from realworld logs collected from different large scale parallel production
systems [1, 2], have shown that the adaptive approaches significantly improve dis-
tributed system performance. They achieve throughput and fault-tolerance com-
parable with that of static checkpointing and replication with optimal parameters.
However, to make an appropriate choice between strategies, some knowledge on
system parameters is still required. To deal with the latter issue, the hybrid ap-
proach, combining the advantages of both techniques, may be preferred.

The remainder of this chapter is organized as follows: Section 4.2 discusses
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related work; Sections 4.3 elaborate on adaptive checkpointing and provides a
simulation-based comparison between different checkpointing approaches; Sec-
tion 4.4, in turn, discusses and compares replication-based and hybrid sheduling
solutions; while section 4.5 concludes this discussion.

4.2 Related Work

A large number of research efforts have already been devoted to fault-tolerance in
the scope of distributed environments. Aspects that have been explored include
the design and implementation of fault detection services [3, 4], as well as the de-
velopment of failure prediction [2, 5–7] and recovery strategies [8–10]. The latter
are often implemented through job checkpointing in combination with migration
and job replication. Although both methods aim to improve system performance
in the presence of failure, their effectiveness largely depends on tuning run-time
parameters, such as the checkpointing interval and the number of replicas [11–13].
Determining optimal values for these parameters is far from trivial, for it requires
good knowledge of the application and the distributed system at hand.

4.2.1 Checkpointing

To tackle the checkpointing overhead and scalability concerns, different approaches
are addressed in literature. One well researched technique is known as incre-
mental checkpointing [14]. It reduces data stored during checkpointing to only
blocks of memory modified since the last checkpoint. In [15] a checkpointing-
based fault tolerance protocol for MPI jobs is presented, which lowers the over-
head during normal execution and allows fast crash recovery by using the ideas of
message logging and object-based processor virtualization. The latter limits the
re-execution to only the failed processor and allows to distribute the failed work
among the other processors. Clearly, this approach is only applicable to homoge-
neous environments. Yet another important approach is based on determination
of the optimal checkpointing frequency and is called the optimal checkpoint in-
terval problem. Several researches have addressed this problem [16–18], but they
have provided analytical solutions applicable only under specific system assump-
tions. For instance, it is often assumed that interoccurrence times of failures and
repairs for each resource are independent and exponentially distributed. In prac-
tice failures tend to cluster in time, while being caused by a relatively small set
of computational nodes [2, 6, 7]. Since optimal solutions do not appear to be
generally applicable, static sub-optimal solutions were addressed. For instance,
in [19] a min-max checkpoint placement method is introduced that determines the
sub-optimal checkpoint sequence under uncertain circumstances in terms of the
system failure time distribution. However, even if the (sub)optimal checkpointing
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interval is computed beforehand, the distributed system or application parameters
upon which the interval is based will presumably change over time. Therefore, new
forms of checkpointing optimization were recently considered in literature. One
of them is the so-called cooperative checkpointing concept, introduced in [20, 21],
which addresses system performance and robustness issues by allowing the appli-
cation programmer, the compiler and the run-time system to jointly decide on the
necessity of each checkpoint. The checkpointing algorithms proposed in this pa-
per are based on this concept and thus are cooperative (adaptive) heuristics. In [22]
another set of cooperative checkpointing schemes is proposed that dynamically ad-
just the checkpointing interval with as an objective timely job completion in the
presence of failure. The schemes use information on remaining job execution time,
time left before the deadline and the expected remaining number of failures before
job termination. The latter implies that the system failure distribution should be
known in advance. [23], in turn, considers only dynamic checkpointing interval
reduction in case it leads to computational gain, which is quantified by the sum
of the differences between the means for fault-affected and fault-unaffected job
response times. In [24] yet another adaptive fault management scheme (FT-Pro)
is discussed. Opposite to the combined approach proposed in this paper that uses
adaptive checkpointing in combination with replication, FT-Pro combines adaptive
checkpointing with proactive process migration. The approach optimizes applica-
tion execution time by considering the failure impact and the prevention costs.
FT-Pro supports three prevention actions: skip checkpoint, take checkpoint and
migrate. The appropriate action is selected based on the predicted frequency of
failure. Therefore, the effectiveness of FT-Pro strongly depends on the quality of
this prediction.

4.2.2 Replication

Similar to deciding upon the best checkpointing interval, finding a generally appli-
cable procedure to calculate the optimal number of job replicas is a complicated
issue. Several studies have attempted to address this problem [12, 25], but unfor-
tunately they enforce a number of restrictions on the execution environment, job
interdependency, etc. Nowadays, most of the replication-based fault-tolerant algo-
rithms assume a fixed number of job duplicates. However, dynamic solutions have
recently started to receive attention. In [9] a dynamic replication-based method
is described, called Workqueue with Replication (WQR). Initially, the algorithm
distributes a single copy of a job to random idle resources in FCFS order. When
the job queue is empty and the system has free resources, replication is activated to
cope with varying availability of hosts. The disadvantage of this “delayed-copy”
approach is that if a system is heavily loaded for a long period, which is often
the case in large scientific or production grids, the replication will be significantly
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delayed or not activated at all. Furthermore, as was mentioned in [6], most of
the failures in distributed environments tend to occur during peak hours, when the
WQR failure prevention is turned off by definition. Other interesting research on
job replication is reported on in [26] where a group-based dynamic replication
mechanism for peer-to-peer grid computing environments is proposed. Whereas
the algorithms introduced in our paper dynamically vary the number of job replicas
dependent on the system load, the group-based approach determines the amount
of replication taking into account the reliability of each volunteer group, which is
a group of resources with similar properties.

4.2.3 Combined approaches

Several papers [27, 28] describe schemes that combine checkpointing and job rep-
lication to deal with transient fault detection. Transient faults are often hard to
detect because they do not result in a resource crash but only in a job state mod-
ification, which however can lead to wrong output. Therefore, duplicate jobs are
executed on different nodes and their state is compared to track faults. The check-
pointing mechanism, in turn, serves two purposes: preservation of a job state,
to reduce the fault-recovery time; and state comparison of job replicas. To our
knowledge, no work combining checkpointing and replication was performed thus
far with the objective of achieving better resource utilization and improving job
execution time.

4.3 Adaptive Checkpointing Heuristics

4.3.1 The checkpointing model

The grid model considered in this paper consists of geographically dispersed com-
putational Sites (S), aggregating altogether 128 Computational Resources and a
number of general services (Figure 4.1). The latter include a User Interface (UI),
through which jobs are submitted into the system; a Grid Scheduler (GS) respon-
sible for job-resource matchmaking; an Information Service (IS), which collects
job and resource status information required by the GS; and a Checkpoint Server
(CS) where checkpointing data is made persistent. The GS invokes the matchmak-
ing procedure within the predefined scheduling interval IGS , while the IS collects
changes in resource status with a delay IIS , to reflect the modification propaga-
tion time occurring in actual deployments. The grid sites reside within a WAN,
while resources belonging to a single site are interconnected by LANs. Finally, it
is assumed that all grid management services are protected against failure and only
CRs are unstable, with a resource failure affecting all CPUs within a CR. Contrary
to the traditional assumptions considering failures to be independent and equally
spread over all system resources with a particular distribution, failures in this work
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Figure 4.1: Example grid architecture: User Interface (UI), Grid Scheduler (GS), Informa-
tion Service (IS), Checkpoint Server (CS), Wide Area Network (WAN), Local
Area Network (LAN).

can be spatially and temporarily correlated, which has proven to be a more realistic
presumption in case of large scale distributed systems [2, 6, 7].

In this model, the benefits of checkpointing are limited by the following fac-
tors: the run-time overhead (C), which is the time delay resulting from interrup-
tion of job execution to perform checkpointing; the network latency (L) (a time
interval between the checkpoint generation and its availability on the CS); and
the recovery delay (R), which is the time to download a failed job checkpoint
from the CS to the CR where the job is rescheduled to run. The L and R pa-
rameters are mainly determined by the available network capacities, the distance
between the CS and the considered resource and checkpoint size. The values
of both parameters could be reduced by applying checkpoint replication on mul-
tiple storage servers. However, this paper concentrates on the reduction of the
checkpointing run-time overhead and therefore proposes several algorithms that
differentiate the checkpointing interval (I) based on history statistics and current
status of a particular job and its execution environment. By this means we will on
the one hand eliminate unnecessary checkpointing and on the other hand introduce
extra job state savings where the danger of failure is considered to be severe. More
specifically, the optimal checkpointing interval for a job J (IoptJ ) running on the
computational node CR depends on the following parameters: ECRJ is the execu-
tion time of J on the resource CR (taking into account load of CR); FCR is the
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Figure 4.2: Operation of LastFailureCP on a resource running a single job.

average time between failures of CR; and CSJ is the size of the J checkpoint.
Additionally, the value of IoptJ should satisfy the inequality C < IminJ ≤ IoptJ to
be sure that jobs make execution progress despite of periodic checkpointing. IminJ

is the minimum checkpointing interval of J , which should be initialized with a de-
fault value, for example a small percentage of ECRJ . It is considered that after the
ICRJ interval expires, either the next checkpointing event can immediately be per-
formed by the application, or a flag is set indicating that the checkpointing can be
accomplished as soon as the application is able to provide a consistent checkpoint.
Furthermore, it is important to notice that deciding upon the job execution time is
a complicated problem, often requiring an application-specific approach [29]. In
our paper the problem is simplified by assuming that the execution time can be
exactly determined in advance. Therefore, the simulation results presented in the
following sections show the upper bounds of the algorithms performance, with re-
spect to this parameter. In the next sections the proposed algorithms are discussed
in more detail.

4.3.2 Last Failure Dependent Checkpointing (LastFailureCP)

The main disadvantage of unconditional periodic job checkpointing (PeriodicCP)
is that it performs identically whether the job is executed on a volatile or on a stable
resource. The goal of LastFailureCP is to reduce the overhead introduced by exces-
sive checkpointing in relatively stable distributed environments, i.e., the algorithm
omits unnecessary checkpoints of the job J based on its estimated total execution
time and the failure frequency of the resource CR, to which J is assigned (see
Figure 4.2). For each resource the algorithm keeps a timestamp LFCR of its last
detected failure (Step 1). When no failure has occurred, LFCR is initiated with
the system start time. After an execution interval I , each job running on an active
resource generates a checkpointing request (Step 2). The request is subsequently
evaluated by the GS and it is allowed only if the comparison tc − LFCR ≤ ECRJ
evaluates to true (Step 3), where tc is the current system time. As was previously
mentioned, each checkpoint generation leads to run-time overhead C, which pro-
longs the execution of J (Step 3). If tc−LFCR > ECRJ , the checkpoint is omitted
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Figure 4.3: Operation of MeanFailureCP on a resource running a single job.

to avoid the overhead as it is assumed that the resource is “stable” (Step 4). To
prevent excessively long checkpoint suspension, a maximum number of omissions
can be defined.

4.3.3 Mean Failure Dependent Checkpointing (MeanFailureCP)

Contrary to LastFailureCP that only considers checkpoint omissions, MeanFail-
ureCP dynamically modifies the initially specified checkpointing frequency to deal
with inappropriate checkpointing intervals (see Figure 4.3). The algorithm mod-
ifies the checkpointing interval based on the run-time information on the remain-
ing job execution time (RECRJ ) and the average failure interval (MFCR) of the
resource CR where the job J is assigned, which results in a customized check-
pointing interval ICRJ . Use of MFCR, instead of LFCR, reduces the effect of an
individual failure event. While PeriodicCP and LastFailureCP are first run after
the expiration of the predefined checkpointing interval, the MeanFailureCP acti-
vates checkpointing within a fixed and preferably short time period ti after the
beginning of a job execution (Step 1). The latter approach opens the possibility to
modify the checkpointing frequency at the early stage of job processing. Each time
the checkpointing is performed, ICRJ is adapted as follows: if RECRJ < MFCR
and ICRJ < α × ECRJ , where α < 1, the frequency of checkpointing will be re-
duced by increasing the checkpointing interval ICRJnew

= ICRJold+I (Step 2). The first
inequality in the condition ensures that either CR is sufficiently stable or the job
is almost finished, while the second limits the excessive growth of ICRJ compared
to the job length. The latter can particularly be important for short jobs, for which
the first condition almost always evaluates to true. On the other hand, when the
above-mentioned inequalities are not satisfied, it seems to be desirable to decrease
ICRJ and thus to perform checkpointing more frequently ICRJnew

= ICRjold − I (Step
3). When reducing the checkpointing interval, the following constraint should be
taken into account: C < Imin ≤ ICRJnew

. Imin is a predefined value, which secures
that the time between consecutive checkpoints is never less than the time overhead
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added by each checkpoint. In case of stable grid systems it is desirable to choose
relatively large values for IminJ (5% - 10% of the total job length) to prevent an
undesirably steep decrease of the checkpointing interval. Experiments have shown
that gradually incrementing ICRJ by I ensures rapid achievement of IoptJ in most
distributed environments. However, in case of rather reliable grids, the calibration
of ICRJ can be accelerated by replacing I with a desirable percentage of the job
execution time.

4.3.4 Simulation Results

Since grids are complex and often unpredictable environments, it is difficult to
build a grid testbed on a realistic scale for validation and calibration of grid schedul-
ing strategies. Therefore, the algorithms proposed in this paper were validated us-
ing the DSiDE grid simulator. In addition to standard events, such as resource and
job registration, DSiDE supports several types of dynamic system modifications,
including alternating resource availability. The latter is modelled as a sequence
of failure and restore events occurring with particular distributions. Failure events
can either be correlated or independent. Therefore, the total grid resource avail-
ability, which is the percentage of time during which the resource performed useful
computations, can be defined as:

ACR = ((1− (

N∑
n=1

(tfCR,n − t
r
CR,n)/T

sim))× 100) (4.1)

where N is the number of resource failures; tfCR,n and trCR,n are respectively the
timestamp of the resource failure and restore; and T sim is the total wall clock
simulation time. From the individual resource availability, total grid availability is
computed as follows:

Agrid = (

Ntotal∑
n=1

ACRn
)/N total (4.2)

where N total is the total number of resources in the grid.
It is assumed that grid services and the underlying network are fully reliable

and thus failures can only originate from CRs.
To compare the performance of the proposed checkpointing heuristics, realistic

workload and system failure models, derived from production grid logs, were uti-
lized. More specifically, the submitted workload follows the Lublin job generation
model [30], where execution of batch jobs running on a single node was assumed.
In this simulation scenario the model parameters are initialized to represent a heav-
ily loaded grid system with a daily cycle job arrival pattern. Figure 4.4(a) depicts
the proportion of jobs submitted into the grid system each hour, during an ob-
servation period of 24 hours. Apparently, most of the jobs (almost 80%) arrive
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(a)

(b)

Figure 4.4: Lublin workload model: (a) job arrival pattern with daily cycle; (b) job execu-
tion time distribution.

during the day-time, while the remaining 20% are submitted between 21 PM and
7 AM. The run-times of the submitted jobs vary as shown in Figure 4.4(b), where
11 categories of job lengths (from less than an hour to more than 10 hours) are
differentiated. More than 80% of all submitted jobs have medium execution times,
varying from 1 hour to 6 hours. Furthermore, to simplify the comparison between
different algorithms, it is assumed that all jobs use inputs and outputs of 10 MB;
and a job checkpointing delay varies from 100 ms to 5 s, depending on the execu-
tion time.

The above-described workload is submitted into the grid system discussed in
Section 4.3.1. The system parameters are set as follows: WAN links have equal
bandwidth of 100 Mit/s and latency varying from 3 to 10 ms; CRs inside the
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sites communicate through LAN networks arranged into a star-topology, with link
bandwidths of 100 Mbit/s and latency of 1 ms; GSched is run every 10 min, while
the longest propagation delay for the IS is initialized to 5 min; and, finally, each CR
has 1 MIPS CPU speed and is limited to process at most 2 jobs simultaneously.
Failure and restore patterns of the grid resources follow the model represented
in [2]. These models are constructed based on the analysis of failure data collected
over the past 9 years at Los Alamos National Laboratory, which is currently one of
the largest high-performance computing sites worldwide. In the grid environment
considered each of the 4 sites is modelled to posses different failure and restore
behaviour. Failure frequency ranges over the sites from several hours to several
weeks and is modeled by a Weibull distribution with decreasing hazard rate. Mean
repair time, in turn, varies across the sites from less than an hour to more than a
day and is modeled by a logarithmic distribution. The considered grid system has
a total availability of 90%.

The grid model described was observed during 7 days of simulated time. Fig-
ures 4.5(a) - 4.5(b) and 4.6(a) - 4.6(b) show a comparison between the performance
of the proposed dynamically adapting heuristics and the PeriodicCP approach for
a randomly varying initial checkpointing interval I . From the figures it is clear
that the efficiency of PeriodicCP strongly depends on the chosen value of I , which
remains constant during the simulation. For instance, overly frequent as well as
scarce checkpointing can result in up to 40% decrease in number of processed
jobs, compared to the best achieved situation, and significantly increase the av-
erage job execution time. Furthermore, from Figure 4.6(b) can be observed that
at high checkpointing frequencies the average job length significantly decreases.
This relates to the fact that exaggerated checkpointing substantially prolongs job
execution and therefore only short jobs finish within the observed time interval.
However, when I decreases and longer jobs can get processed, an increase in job
run-time is in effect.

The results achieved with PeriodicCP are partially improved by LastFailureCP
due to omittion of redundant checkpoints. Apparently, the technique provides the
best results for short checkpointing intervals. Since the algorithm does not con-
sider checkpoint insertion, it performs slightly worse than PeriodicCP for large
values of I . However, in the latter case the effectiveness of LastFailureCP strongly
depends on failure periodicity. In the best case when failures occur quite periodi-
cally and thus can easily be predicted by the algorithm, LastFailureCP will perform
similar to PeriodicCP.

Finally, the fully dynamic scheme of MeanFailureCP proves to be the most
effective. Starting from a random checkpointing frequency it results in a number
of executed jobs and average job run-time that are close to the results achieved by
PeriodicCP with the best performing checkpointing interval. Important to notice
is the slight decrease in the number of checkpoints taken by MeanFailureCP as
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I is getting closer to the best performing checkpointing values. This decrease
can be explained by a shorter calibration period required to achieve the “optimal”
value of I . On the other hand, for large values of I an increase in the number
of generated checkpoints is observed, which is the consequence of the constraint
Imin ≤ ICRJ < α × ECRJ , where Imin and α were initialized with respectively
0.01×ECRJ and 1. When ICRJ grows, this restriction evaluates to false for a larger
part of jobs and therefore their adapted checkpointing interval starts to decrease,
resulting in more checkpoints performed. As can be seen from the simulation
results, this selective increase in checkpointing keeps the number of processed jobs
and the average execution time of MeanFailureCP more or less constant, while in
the case of the PeriodicCP and LastFailureCP algorithms the performance drops
considerably.

4.4 Replication-based Heuristics

4.4.1 Load Dependent Replication (LoadDependentRep)

Providing fault-tolerance in distributed environments through replication has as an
advantage that otherwise idle resources can be utilized to run job copies without
significantly delaying the execution of the original job. Obviously, the more job
copies are running on the grid, the larger is the chance that one of them will execute
successfully. On the other hand, running additional replicas on a distributed en-
vironment with an insufficient number of free resources can considerably reduce
throughput and prolong job execution. To deal with this dilemma, the proposed
heuristic considers the system load and postpones or reduces replication during
peak hours. The algorithm requires a number of parameters to be provided in
advance, i.e. the minimum (Repmin) and maximum (Repmax) number of job
copies, and the CPU limit (CL). The latter parameter specifies the lower bound
on the number of active free CPUs for replication to take place. An example of
the heuristic operation is shown in Figure 4.7, where the required parameters are
initialized as follows: Repmin and Repmax are set respectively to 1 and 2; and
CL equals to 2 CPUs. In each iteration, the GSched consults the IS for the system
status (Step 1). Based on this information, CA and CL are compared, where CA
is the number of active CPUs able to execute the next job. The outcome of the
comparison determines the choice for the next job to be scheduled:

• CA ≥ CL: select a job J with the earliest arrival timestamp and the number
of active replicas less than Repmax (Step 1)

• 0 < CA < CL: select a job J with the earliest arrival timestamp and the
number of active replicas less than Repmin (Step 2)

• CA = 0: skip the current scheduling round (Step 3).



ADAPTIVE TASK CHECKPOINTING AND REPLICATION: TOWARDS EFFICIENT

FAULT-TOLERANT GRIDS 59

(a)

(b)

Figure 4.5: Checkpointing heuristics performance for varying initial checkpointing interval:
(a) number of successfully executed jobs; (b) average number of checkpoints
initiated by different heuristics.

However, even if the grid system is heavily loaded it can be desirable to consider
Repmin > 1, since the failure rate of resources in distributed environments in-
creases with the intensity of the workload running on them. When one of the job
duplicates finishes, other replicas are automatically canceled (Step 4). If the sys-
tem load decreases before the job was executed, the remaining Repmax−Repmin
replicas are activated (Step 5).

The algorithm assigns the selected job J to the site S with some free resources
and with the smallest number of J replicas (Step 1, Step 5), since spreading repli-
cas over different sites increases the probability that one of them will be success-
fully executed. If multiple sites have an equal number of job copies, a site that can
provide for the fastest job execution is preferred. The speed or capacity of a site is
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(a)

(b)

Figure 4.6: Checkpointing heuristics performance for varying initial checkpointing interval:
(a) job average run-time; (b) job average length.

defined as:

MIPSS = (
∑
CR∈S

MIPSCR)/((
∑
CR∈S

nCR) + 1) (4.3)

where MIPSCR is the speed of CR and nCR is the number of jobs on CR. In
the above equation, only resources executing no other replicas of J are taking
into account. Distribution of similar replicas to a single CR is avoided because
it is assumed that CPUs inside a single node have more chance to fail simultane-
ously in case of the resource malfunction. Therefore, inside the chosen site the job
will be submitted to the fastest available resource with no identical job replicas:
max(MIPSCR/(nCR + 1)). If no such resource exists the distribution of J is
postponed and the next job from the GS queue is scheduled.
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Figure 4.7: Operation of LoadDependentRep on a distributed environment consisting of 2
resources, each able to run 2 jobs simultaneously. Repmax = 2, Repmin = 1
and CL = 2.

4.4.2 Failure Detection and Load Dependent Replication (Fail-
ureDependentRep)

To increase fault-tolerance of the previously discussed LoadDependentRep heuris-
tic, the approach was combined with a failure-detection technique. The principle
of failure detection is straightforward: as soon as a resource failure is discovered
by the GS, all jobs submitted to the failed resource are redistributed. The algo-
rithm proceeds as LoadDependentRep, except that in each scheduling round not
only newly arrived jobs are considered for submission to a CR, but also all jobs
distributed to failed nodes. To construct a list of active CRs, GS queries the IS.
However, in order for a resource failure to be detected, the restore time should
exceed IIS + IGS . This means that although the method offers a higher level of
fault-tolerance compared to solely replication-based strategies, it does not ensure
job execution.

4.4.3 Adaptive Checkpoint and Replication-Based Fault- Tol-
erance (CombinedFT)

In this section a combined checkpointing and adaptive replication-based schedul-
ing approach is considered that dynamically switches between both techniques
based on run-time information on system load. The algorithm can be particularly
advantageous for grids with frequent or unpredictable alternations between peak
hours and idle periods. In the first case, replication overhead can be avoided by
switching to checkpointing, while in the second case the checkpointing overhead
is reduced by using low-cost replication. An example of the CombinedFT heuris-
tic operation is shown in Figure 4.8, where the required parameters are initialized
as follows: Repmin and Repmax are set respectively to 1 and 2; and CL equals to
2 CPUs.
When the CPU availability is low (CA < CL) the algorithm is in checkpointing
mode (Step 1). In this mode, CombinedFT rolls back, if necessary, the earlier dis-
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Figure 4.8: Operation of CombinedFT on a distributed environment consisting of 2 re-
sources, each able to run 2 jobs simultaneously. Repmax = 2, Repmin = 1
and CL = 2. The PeriodicCP method is applied in the checkpointing mode.

tributed active job replicas (ARJ ) and starts job checkpointing. When processing
the next job J , the following situations can occur:

• ARJ > 0: start checkpointing the most advanced active replica, cancel
execution of other replicas (Step 1)

• ARJ = 0 and CA > 0: start J on the least loaded available resource within
the least loaded site, determined respectively by (2) and (1) (Step 2). Start
checkpointing of J .

• ARJ1 = 0 and CA = 0 and ∃J2 : ARJ2 > 1: select a random replicated
job J2 if any, start checkpointing its most advanced active replica, cancel
execution of other replicas of J2, submit J1 to the best available resource
(Step 3)

• ARJ1 = 0 andCA = 0 and ¬∃J2 : ARJ2 > 1: skip the current scheduling
round (Step 4).

The algorithm switches to replication mode when either the system load decreases
or enough resources restore from failure (CA ≥ CL) (Step 5). In replication mode
all jobs with less than Repmax replicas are considered for submission to the avail-
able resources, in the order defined by the FailureDependentRep algorithm (see
Section 4.4.1). When a job J is selected, it is assigned to the fastest resource (with
no similar job replicas) connected to a grid site S with the maximum MIPSS
and the smallest number of identical replicas. If J was previously in checkpoint-
ing mode and the replication completed successfully, the checkpointing of J is
switched off (Step 6).
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(a)

(b)

Figure 4.9: Performance of replication-based, checkpointing-based and hybrid algorithms
on heavily loaded grids with varying availability: (a) number of successfully
executed jobs; (b) number of jobs lost.

4.4.4 Simulation Results

In this section the performance of the replication-based and hybrid approaches is
compared against the performance of the best checkpointing heuristic (MeanFail-
ureCP). The comparison is performed within grid systems with varying load and
availability. Four replication algorithms are considered: UnconditionalRep(2), un-
conditional job replication with 2 job copies; UnconditionalRep(3), unconditional
job replication with 3 copies; LoadDependentRL(1,3,40) adaptive replication with
the minimum (Repmin) and maximum (Repmax) number of job replicas set to
respectively 1 and 3, and the free CPU limit initialized to 40 (approximately 1/3 of
the total grid capacity); FailureDependentRep(1,3,40), failure detection and adap-
tive replication based algorithm with the same parameters as LoadDependentRep.
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(a)

(b)

Figure 4.10: Performance of replication-based, checkpointing-based and hybrid algorithms
on heavily loaded grids with varying availability: (a) average job run-time; (b)
average job length.

Also the performance of FCFS (or UnconditionalRep(1)) was observed to serve
as a reference for comparison with the other algorithms. The combined approach
(CombinedFT) is initialized with the same replication parameters as FailureDepen-
dentRep and switches in the checkpointing mode to the MeanFailureCP approach.
The chosen parameter values for the replication-based heuristics are not necessar-
ily optimal but they are believed to be reasonable for the case at hand. The term
“unconditional job replication algorithm” refers to an algorithm that sequentially
processes jobs arriving to the GS, based on the timestamp of their arrival. Indepen-
dent of the current system load, the algorithm creates for each job a predetermined
number of replicas that are assigned to different available resources, until all re-
sources are filled.
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(a)

(b)

Figure 4.11: Performance of replication-based, checkpointing-based and hybrid algorithms
on grids with low load: (a) number of successfully executed jobs; (b) number
of jobs lost.

The algorithms are evaluated for high and low grid loads, which are accom-
plished by varying the job submission parameters of the Lublin model (see Sec-
tion 4.3.4). In the case of high grid load, the same model parameters are utilized
as the ones applied in the simulation scenario of the Section 4.3.4. In this sce-
nario about 7,000 jobs arrive into the system during the observation period of 7
days (simulated time), which leads to long periods of system overload alternating
with relatively short “idle” time-intervals. In the case of low grid load, jobs are
generated occasionally (about 700 during 7 days of simulated time), while most
of the time a large part of the resources remains idle. To warrant low system uti-
lization, also the average job length is reduced from 2.5 hours in the first scenario
to 0.3 hours in the latter. The size of job input and output data in both simu-
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(a)

(b)

Figure 4.12: Performance of replication-based, checkpointing-based and hybrid algorithms
on grids with low load: (a) average job run-time; (b) average job length.

lation scenarios is set to 10 GB, to yield large data volumes often generated by
real-world computationally intensive applications. Finally, varying system avail-
ability is achieved by modifying the parameters of the Weibull distribution within
Schroeder and Gibson’s model (for more details see Section 4.3.4). It is again con-
sidered that each site possess different failure and restore patterns, with failure and
restore intervals varying respectively from 2 hours to a week and from 30 min to a
day.

Figures 4.9(a) - 4.9(b) and 4.10(a) - 4.10(b) visualize the evaluated schedul-
ing methods’ performance on a highly loaded grid, while Figure 4.11(a) - 4.11(b)
and 4.12(a) - 4.12(b) summarizes the results for low grid load. The following sys-
tem parameters are observed: number of successfully executed / lost jobs, average
job execution time and average job length. Important to notice is that a replicated
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job is assumed to be lost when all its replicas were started and afterwards failed.

For heavily as well as lightly loaded grids with relatively low availability, ad-
ditional replication clearly provides better system performance and lower job loss
rate. This is the consequence of the fact that replication-related overhead is com-
pensated by increased grid reliability and consequently by a higher ratio of suc-
cessfully executed jobs. However, as the grid availability improves (95%), ad-
ditional replication provided by UnconditionalRep(2) and UnconditionalRep(3)
leads to system throughput reduction. This reduction is getting more significant
as the grid load increases and resources become more scarce. The results for
LoadDependentRep show that the performance of unconditional replication can
be improved by postponing the execution of additional replicas during the peak
hours. The higher the system load, the more gain can be achieved from the post-
ponement (see Figure 4.9(a)). On the other hand, for slightly loaded systems (see
Figure 4.11(a)), LoadDependentRep performs only slightly better than Uncondi-
tionalRep(3), since replication almost never has to be delayed. The main advantage
of FailureDependentRep is certainly its high reliability in absence of sophisticated
mechanisms for providing fault-tolerance. Implementation of the algorithm re-
quires only a replica counter and a simple job monitoring facility. Another benefit
is that failure-sensitive long jobs have a higher chance to finally get processed
due to the restart mechanism (see longer average job lengths in Figures 4.10(b)
and 4.12(b)). The disadvantage of FailureDependentRep is the slower grid per-
formance (larger average execution times) as a result of the postponed replication
in combination with the run-time overhead related to repetitive restart of failed
jobs (see Figures 4.10(a) and 4.12(a)). However, lightly loaded systems are less
sensitive to this last disadvantage since most of the time enough computational
resources are available and thus multiple job restarts do not penalize the execution
of other jobs. In the condition of high load, the fully fault-tolerant MeanFailureCP
results in the best system throughput compared to the other considered heuristics.
This is the consequence of the considerable overhead introduced by the execution
of additional replicas in an overloaded grid system. On the other hand, the aver-
age job execution time in case of the checkpointing approach is always relatively
high, which leads to the algorithm performance reduction in the lightly loaded
grid, where replication provides for almost costless fault-tolerance. However, it is
important to notice that the exact relation between the performance of the check-
pointing and the replication-based solutions is largely determined not only by the
system load, but also by the run-time cost of checkpointing and the size of job input
and output data. Finally, the throughput and average job execution times generated
by CombinedFT for both types of system load are located, as can be observed in
the Figures 4.9(a) and 4.10(a), and 4.11(a) and 4.12(a), between respectively the
throughputs and average job execution times of FailureDependentRep and Mean-
FailureCP. This is the logical consequence of the fact that job submissions are
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clustered in time and that the heuristic performs some calibrations, after each vari-
ation in the system load, before achieving its “optimal” state. Regarding the other
observed performance parameters, CombinedFT is almost fully fault-tolerant and
results in one of the best average job lengths among the considered algorithms.

4.5 Conclusion
Fault-tolerance forms an important problem in the scope of grid computing envi-
ronments. To deal with this issue several adaptive heuristics, based on job check-
pointing, replication and the combination of both techniques, were designed. The
heuristics where evaluated in the DSiDE grid simulator under varying system load
and availability. The results have shown that the run-time overhead characteristic
to periodic checkpointing can significantly be reduced when the checkpointing fre-
quency is dynamically adapted in function of resource stability and remaining job
execution time. Furthermore, adaptive replication-based solutions can provide for
even lower cost fault-tolerance in systems with low and variable load, by postpon-
ing replication in function of system parameters. Finally, the advantages of both
techniques are combined in the hybrid approach that can best be applied when the
distributed system properties are not known in advance.
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? ? ?

Scheduling of workflows within grid environments is complicated by the het-
erogeneous and dynamic nature of grid resources, and often incomplete knowl-
edge of workflow parameters. In this chapter we deal with workflows composed
of loosely-coupled tasks with input-dependencies for which the execution progress
can be monitored at run-time. We introduce an online scheduling algorithm that
uses progress information to estimate dynamically the remaining task execution
time. Based on the execution time estimates and on the updates on resource load
and availability, the algorithm reschedules tasks to minimize the makespan of the
workflow as a whole. To evaluate the algorithm’s performance, simulation exper-
iments were run with workflow parameters derived from a real world application
and system parameters originating from logs of several large scale production par-
allel environments. The results have shown that the dynamic approach proposed
can reduce job makespan by up to 35%.
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5.1 Introduction

Grids are composed of heterogeneous, not necessarily dedicated resources that are
often managed by different departments or even different organizations. There-
fore, characteristic to grids is dynamic and difficult to predict behaviour, whereby
resource load and availability strongly vary over time. At the same time, applica-
tions or jobs run on grids are often time-consuming, composed of interdependent
tasks (workflows). It is clear that under these circumstances the scheduling strat-
egy adopted significantly influences grid performance.

Most of the scheduling approaches currently implemented in operational grid
systems are static, which means that the system status is evaluated at particular
points in time, and based on this information, the final scheduling decision is taken.
Static schedulers are relatively easy to implement but their efficiency is obviously
limited by their disability to react to dynamic changes within the execution en-
vironment. Therefore, in this work we turn our attention to a more sophisticated
dynamic scheduling approach, which makes use of checkpointing and migration
mechanisms to reschedule already running tasks when significant system changes
occur. However, when designing rescheduling based solutions, we should not for-
get that migration decisions have to be taken carefully since they can lead to major
system overhead. Therefore, a dynamic scheduler has to posses complete and re-
liable information on system status as well as on workflow execution times. To
address the former requirement there exist monitoring tools, such as Ganglia [1],
which can provide sufficiently detailed grid status records. Determining workflow
execution times, on the other hand, is a much more complicated issue, for which
it is difficult to define an effective general solution. The latter can be explained by
the fact that when dealing with applications running on grids we have to take into
account not only the application complexity and different forms of tasks dependen-
cies, but also the involvement of several grid resources and the dynamics of a grid
infrastructure. For this reason, the dynamic scheduling algorithm introduced in
this chapter considers only a group of workflow applications for which the execu-
tion progress can be monitored at run-time. Based on the progress information, the
total workflow execution time on a particular resource is estimated. The proposed
algorithm uses these periodic estimates, as well as dynamically collected updates
on computational resource status, to reschedule already running tasks. The objec-
tive of our method is to minimize the makespan of each workflow at the cost of
potentially slower execution of individual tasks.

It is important to mention that the algorithm operates on workflows composed
of tasks with input-dependencies. Input-dependent tasks, as opposed to MPI-
based (Message Passing Interface) tasks [2], do not interact at run-time but in-
stead require inputs generated by other tasks within the workflow before they can
be executed. While MPI-based dependent tasks can better be assigned to closely
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collocated resources, to reduce the communication overhead, the loosely-coupled
input-dependent tasks have more potential for execution optimization by means
of intelligent scheduling on widely distributed grid resources, due to the limited
number of interactions between tasks.

Finding an optimal schedule within large grid infrastructures, containing hun-
dreds of resources and thousands of jobs running simultaneously, can be extremely
time consuming. Therefore, the introduced algorithm is based on a sub-optimal
heuristic procedure. Next to the proposed heuristic, we discuss several refinements
of the algorithm that all have as a goal the reduction of (re)scheduling overhead.

The algorithm performance is evaluated using the workload model derived
from an existing tool for modeling and virtual experimentation with complex en-
vironmental systems (Tornado [3]). In particular, we take into account complexity,
size of input/output data and variations of execution time predictions of Tornado
jobs. The observed values are used to initialize the Lublin job generation model [4]
that provides realistic job arrival patterns with a daily cycle, together with the ap-
propriate job length variations.

The remainder of this chapter is organized as follows: in Section 5.2 the re-
lated work is discussed; Section 5.3 describes the considered grid and workload
models; in Section 5.4 the proposed dynamic algorithm is represented; Section 5.5
discusses some possible algorithm optimizations; in Section 5.6 the performance
of the algorithm is evaluated; and, finally, Section 5.7 concludes the article.

5.2 Related Work

Efficient execution of workflow applications in distributed computational envi-
ronments is recognized by the computer science community as an important and
complicated issue. Therefore, in recent years different research efforts were per-
formed that address varying aspects of this problem. The method preferred is
in the first place determined by the employed optimization criterion, which can
vary from minimization of a workflow application makespan [5–13] and opti-
mization of resource usage [14] to guaranteeing a certain quality of service (QoS)
[15–17, 17–19] and maximizing operational profit [20].

Another issue is that methods proposed often rely on a priori user knowledge
or on (semi)automatic prediction mechanisms to determine system and job param-
eters upon which the scheduling decisions are based. Of particular importance is
finding a reliable mechanism for prediction of job execution times, since the latter
parameter largely determines the quality of the provided schedule.

Related work on both issues is summarized in the following sections.
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5.2.1 Scheduling of Workflow Applications

With regard to scheduling of workflow applications, the available approaches can
be subdivided into two categories: static (offline) and dynamic (online).

Static approaches often rely on the so-called ranking concept, where ranks
are associated either with tasks or with task-resource pairs. In the first case the
assigned ranks determine task scheduling priorities, whereby the task with the
highest priority is often submitted to the fastest closest located resource [6–8]. In
the second case ranking is applied to sort the available resources in the order of
their preference for the execution of a particular task [5, 9]. Within both categories
different approaches can be utilized to assign ranks: for instance, ASKALON work-
flow manager [6] ranks tasks based on their average execution time and average
communication time between resources of two successive tasks; in [7] a task rank-
ing is computed as the maximum “distance” from this task to the starting node and
exiting node in the workflow, where distance refers to the sum of computational
and communication costs; in [8] task rank increases with the decrease in difference
between the Absolute Earliest Start Time (AEST) and the Absolute Latest Start
Time (ALST), which are determined respectively as the maximum of the comple-
tion times of the parent tasks and minimum expected start time of the child tasks.
ILP-modeling or one of the well-known heuristics from the domain of scheduling
parameter sweep applications (Min-min, Max-min and Suffrage) can be applied to
construct the full schedule using these individual task rankings.

Using static scheduling within grids has two major disadvantages: (1) Limited
ability to adapt to dynamic changes in grid and task status. Some of the above
mentioned algorithms [7, 8] try to address this issue by dynamically updating task
ranking, taking into account resource performance fluctuations and execution time
progress of running tasks. Other algorithms refer to advanced resource reserva-
tion [9]. However, in both cases the already performed task assignments remain
irreversible, which is strongly disadvantageous in situations when performance of
some executing resources drops suddenly or new resources are added to the grid;
(2) Accuracy of parameter estimate. As was mentioned earlier, performance of
static approaches mainly depends on the quality of job execution time estimates
and resource performance prediction. Unfortunately, values of both parameters
are extremely difficult to determine in advance, which often leads to poor algo-
rithm performances.

As opposed to static approaches, dynamic algorithms rely on rescheduling to
improve task-resource mapping when dynamic system changes occur. In [10, 12]
dynamic approaches are discussed that perform the initial task assignment based
on resource performance and job execution models, constructed using historical
information on previous application runs. Afterwards, the algorithms keep track
of dynamic system updates to perform rescheduling and to modify the historical in-
formation repository to improve the estimate accuracy in the subsequent planning.
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The major difference between the algorithms lies in fact that rescheduling deci-
sions are taken using different sets of performance parameters: in [10] resource
load is monitored; while in [12] batch queue wait time of each resource, network
bandwidth and disk write speed are considered. Furthermore, in [10] rescheduling
is triggered each time new parameters can lead to reduction of workflow makespan,
while [12] tries to reduce the rescheduling overhead by omitting migrations when
performance degradation due to dynamic changes does not exceed a particular tol-
erance threshold. In [21] three dynamic application level scheduling algorithms
for workflows are proposed: Application Modified Critical Path (AMCP), Appli-
cation Improved Critical Path using Descendant Prediction (AICPDP) and Ap-
plication Highest Level First with Estimated Times (AHLFET). The algorithms
are modified versions of the three often used low level DAG scheduling methods:
Modified Critical Path (MCP), Improved Critical Path using Descendant Predic-
tion (ICPDP) Algorithm and Highest Level First with Estimated Times (HLFET)
Algorithm. While the original methods are static, the modified algorithms take
their scheduling desisions dynamically, based on execution statistics of previous
tasks in the present workflow. Yet another dynamic workflow assignement ap-
proach for grids, relying on graph partitioning, is discussed in [22]. The approach
considers QoS-based scheduling with focus on communication overhead and trust
relationships between grid nodes to provide a trust, cost and deadline based sched-
ule (TCD).

5.2.2 Execution Time Estimation

Most of the above mentioned studies assume that exact task execution times are
somehow known in advance or can be provided by the end-user [7–9]. Others
make use of historical information [10] or apply application component perfor-
mance modeling [5], which implies observation of the number of floating point
operations executed by the application as well as its memory access pattern. How-
ever, both latter approaches are complex and error prone. The historical approach
requires a large number of historical records to be stored before matchmaking of
an executed application against the available entries provides a sufficiently accu-
rate estimate. However, the more records are stored in the database, the longer
the matchmaking procedure takes. On the other hand, estimate of the number of
floating point operations and the memory access pattern is neither trivial, since
the course of the applications execution can vary dynamically, and is, furthermore,
strongly dependent on input parameters.

Several studies were explicitly dedicated to application execution time esti-
mate. In [23] the ScoPred performance predictor is discussed. ScoPred applies
multiple linear regression using rough estimates of application execution time pro-
vided by the end-user and historical application-run data to predict the execution
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Figure 5.1: Considered grid model: Computational Resource (CR), Grid Scheduler (GS),
User Interface (UI), Information Service (IS), Checkpoint Server (CS), Storage
Resource (SR).

times. A similar approach is proposed in [24], where an online workflow applica-
tion execution time prediction system relies on historical records, classified using
similarity templates. A template refers to a set of selected workflow attributes.
Matchmaking of templates is supervised by an expert user, who is supposed to
indicate relevance of each attribute for a particular application.

5.3 Grid and Workload Models

The design of efficient, autonomic and widely applicable mechanisms for work-
flow applications running on grids is an extremely difficult issue. Therefore, in
this article we make several assumptions, with respect to the scheduled applica-
tions and grid architectures. The properties of the considered workflow and the
distributed environment are discussed in details in the following subsections.

5.3.1 Grid Model

The grid model considered in this work (see Figure 5.1) consists of geographically
dispersed heterogeneous Sites (S), containing an arbitrary number of Computa-
tional Resources (CRs). CRs can either be dedicated machines or simply personal
computers, used to run grid applications during idle periods. Consequently, CRs
have different computational capacities and load on the resources can strongly vary
over time. Since the actual resource capacity is determined by various parameters,
for simplicity, we use an often applied theoretical metric, called MIPS, to compare
the performance of resources in our model.
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Another simplifying assumption is taken regarding CR sharing among different
grid tasks, where we assume that each task submitted to a resource receives a
fair share of its computational capacity. However, besides grid jobs, background
load MIPSex is imposed on some CRs. Therefore, the speed MIPSCR, with
which the computational resources CR can run some grid task is determined by
the following equation:

MIPSCR =
MIPStotalCR −MIPSexCR

nCR
, (5.1)

where MIPStotalCR stand for the total resource capacity and nCR is the number of
grid tasks running on CR.

To avoid resource overload and consequently the stagnation of the progress of
all tasks running on it, we define the maximum number of grid jobs that can be
run simultaneously on a resource nmaxCR . When this maximum number is reached,
tasks submitted to the resource are rejected.

Next to CRs, the assumed grid infrastructure includes a number of general ser-
vices, such as a Grid Scheduler (GS), which maintains a job queue and is responsi-
ble for task-resource matchmaking; several distributed User Interfaces (UIs), uti-
lized by end-users to submit their applications to the grid; an Information Ser-
vice (IS) required to collect information on grid status; a Checkpoint Server (CS)
where checkpoints are saved; and a Storage Resource (SR) where output data is
transferred after job execution. Important to mention is that an elaborate grid in-
frastructure usually includes several SRs, which requires an implementation of an
appropriate SR selection algorithm. The latter is, however, not the focus of the
present article and therefore we limit the considered grid architecture to a single
SR.

We take into account most of the operational overhead of the above-mentioned
components and interactions between them to provide for a realistic environment
for execution of workflow applications. The modeled overheads are based on the
overhead analysis for scientific workflows presented in [25]. According to this
study, the overheads can be subdivided into the following four categories:

• Middleware overhead relates to the overhead of grid middleware services,
such as the time to query the IS, the time to predict task execution period, the
time to compute a schedule (scheduling overhead), the time to recalculate
the previous schedules (rescheduling overhead), the time to prepare tasks
for distribution on a grid and the time to checkpoint / rollback workflows.
These overheads are included in our model in the form of constant delays of
typically several seconds.
• Data transfer overhead mainly originates from input / output file staging

and additional transfers upon workflow rescheduling and rollback. In our
grid model all sites are interconnected by a Wide Area Network (WAN),
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while the communication within the sites go by different Local Area Net-
works (LANs). Network overhead of transferring a task J is calculated as
stated in the formula (5.2), where r is the network route (or a sequence of
links) between the old and the new resources; InJ and CSizeJ are respec-
tively input data size and checkpoint size of the task J ; Ll is latency of a link
l; and λlbr is the bandwidth allocated to route r when lb ∈ r is the bottleneck
link, i.e. the link determining the transmission rate of the data.

NOJr =
InJ + CSizeJ

λlbr
+
∑
l∈r

Ll (5.2)

=
(InJ + CSizeJ)×

∑
lb∈r̃

1
φr̃

1
φr
×Blb

+
∑
l∈r

Ll, (5.3)

It is assumed that network transfers within LANs originate exclusively from
grid jobs, while WANs are open to background network traffic. This differ-
ence leads to varying models for bandwidth (B) allocation within network
links. We use the network model described in [26] and assume that ev-
ery data transfer route going through a WAN link gets a small equal share
of the total link capacity, while capacities of LAN links are proportionally
shared among simultaneous active grid transfers according to the INV-RTT-
BOUNDED model, which allocates to each flow r a share of the bandwidth
of the bottleneck link lb with a weight ω = 1/φr, where φr is the round-trip
time of route r that is calculated as φr = 0.2×

∑
l∈r Ll. Applying the INV-

RTT-BOUNDED model we can transform the formula (5.2) to the formula
(5.3). The latter states that λlbr depends on the capacity of lb (Blb ) and on
the round-trip time φ of each route going through lb. In contrast to the often
applied fair bandwidth sharing model, where bandwidth is equally shared
among all active data transfers, we compute λlbr in such a way that shorter
transfers get more bandwidth assigned, which is a better approximation for
the TCP-protocol [26]. For simplicity we assume that total link capacities
do not change over time and that links are not subject to failure.
• Loss of parallelism happens, for instance, when a grid does not contain suf-

ficient resources to run all parallel tasks simultaneously (serialization), or
when some parallel computational activities finish faster than others, leav-
ing the allocated processors idle (load imbalance). In the case of input-
dependent workflows, we can talk about load imbalance when there is a
difference between the execution times of several in parallel running tasks,
inputs from which are required for processing of another task(s) within the
workflow. This issue is explained in detail in the following sections.
• Activity overhead results from background load imposed on grid resources,

or from the loss of computations due to re-execution of computational ac-
tivities when failure occurs, or when a new powerful site is added to the
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Figure 5.2: Example of a workflow with input-dependencies, organized into a DAG struc-
ture.

system. In this work we do not consider resource failure and dynamic site
arrival explicitly. However, similar effect is achieved by allowing strong
variations in resource load.

5.3.2 Workload Model

Workflows considered in this work can be represented as a Directed Acyclic Graph
(DAG)W = (Nodes,Edges) with a single initial or root node and a single final
node. Figure 5.2 shows an example of a possible dependency structure, where
Nodes = ∪ni=0Ji indicate application tasks and Edges = ∪0≤j<k≤n(Jj , Jk)
show the dependency flows. In concreto, the task from which an edge departs (par-
ent task) generates output data that serves as input into the task where the edge ar-
rives (child or dependent task). In this work we only consider input-dependencies
between tasks, since this type of dependencies imply relatively limited communi-
cation overhead and allow for assigning interdependent tasks to resources widely
distributed within a global grid environment. Furthermore, it is assumed that jobs
submitted are batch jobs with the dependency hierarchy fixed a priori.

Important to mention is that the considered dependency structure often occurs
in real world applications. For example, complex simulations with varying param-
eter values can be represented as a single initial task generating inputs (parameter
values) for an arbitrary number of dependents, outputs of which can in turn be
either grouped together or split to serve as inputs for dependent tasks on the next
level of the dependency graph. There can be an arbitrary number of dependency
levels but the temporary outputs on intermediate levels should be combined into a
single final task, where the definite application result is calculated.

In general, when a task is submitted into the grid, the system either does not
posses any information on its execution time, or, at best, there is a rough estimate
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Figure 5.3: Examples of evolution of execution time estimates for the “Orbal”, “Lux”,
“Bamberg” and “Galindo OL” simulation experiments.

of the task complexity available. However, there exists a relatively broad group
of applications for which the execution progress can be monitored at run-time. In
this article we consider this type of workloads and we use dynamically collected
information on task progress and resource parameters to periodically estimate task
execution times. The reference (i.e. resource independent) execution time of task
J can be estimated as

EestJ =
100%× TJ × (MIPStotalCR −MIPSexCR)

PJ × nCR
, (5.4)

where we assume that J is currently running on some computational resource CR,
PJ is the percentage of the task workload already completed and TJ is the execu-
tion time thus far. EestJ can be interpreted as the estimated execution time on a
theoretical reference machine, which is assumed to have MIPS = 1 and n = 1.
Periodically constructed estimates can strongly vary over time, but in general, the
longer the task is running the better is the estimate.

To construct a realistic model describing the evolution of the execution time es-
timates, the behaviour of a large number of experiments originating from the Tor-
nado tool was observed. From these observations it can be seen that the courses of
the prediction curves show strong variations as experiment type, input parameters
and used solvers change. Figure 6.2 shows the estimate evolution for four Tornado
simulations, respectively called “Orbal”, “Lux”, “Bamberg” and “Galindo OL”
[27]. However, all the observed curves can be categorized according to following
approximation models:

• Overestimate means gradual decrease of the estimated values until the sta-
ble state is reached. In the stable state the exact execution time is known
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and the prediction does not change any longer.“Orbal” is a simulation ex-
periment following the overestimate model.

• Underestimate refers to gradually increasing estimates. “Lux” is a good
example of this model.

• Fluctuating stands for predictions that are oscillating over time or exhibit
rather an erratic pattern. In the cases of “Galindo OL” and “Bamberg” we
can talk about the fluctuating model.

In this article we generalize the above described theoretical models using the
following mathematical descriptions: EestJ = ErefJ + r1Ae

−bt describes an expo-
nentially decreasing overestimate model;EestJ = ErefJ −r1Ae−bt stands for an ex-
ponentially increasing underestimate model; and EestJ = ErefJ ± r1Ae−btsin(2π
Ft + r2ϕ) represents fluctuating evolution of execution time estimates. In the
above equations ErefJ stands for the reference total execution time of the task J ;
r1 and r2 are random weight factors that can take values between 0 and 1; A is
the amplitude of the estimates’ oscillations; t is the current simulated time; b is a
weight factor that determines the speed in the decrease / increase of A over time;
F stands for the oscillation curve period; and, finally, ϕ represents the oscillation
curve phase.

5.4 Dynamic Scheduling Algorithm

The overhead analysis of workflow applications presented in [25] were verified
using the WIEN2k package for performing electronic structure calculations of
solids [28]. The results suggested that the largest overhead originates from se-
rialization, when a grid has a frequent deficit of free resources to run parallel jobs
simultaneously. Serialization overhead can be extremely high (up to 90%) when
the system is badly dimensioned and approaches zero when the grid includes a
sufficient number of resources. If extending the grid size is not an issue, this type
of overhead can be neglected.

The second largest overhead results from load imbalance, followed by data
transfer overhead.

Obviously, the exact impact of both types of overhead strongly depends on
properties of the considered application: variation in computational complexity of
parallel tasks, size of inputs / outputs, size of checkpoints, etc. However, the study
certainly serves as an indication of the importance of different overheads.

The algorithm proposed in this chapter mainly addresses the load imbalance
overhead issue. It reschedules parallel tasks at run-time, based on dynamically col-
lected updates on system status and task progress. While making (re)scheduling
decisions our method also takes into account other categories of overhead, such as
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data transfer, migration and restart overheads. The objective is to reduce the over-
all application makespan by finding a good balance between rescheduling over-
head and more efficient utilization of the available resources.

In the following sections the dynamic scheduling approach is introduced in
several phases. Initially the basic version of the algorithm is discussed, followed
by several important optimizations.

5.4.1 Basic Dynamic Scheduling Algorithm

Basically, in each scheduling iteration all idle/failed root tasks as well as idle/failed
dependent tasks, whose parents have finished their execution, can be considered
for scheduling on the available CRs. A set of such tasks at each point in time is
called a ready or a parallel set. If we assume that we operate on an ordered set of
nodes, a parallel set can be formally defined as

RS(t) = {Ji ∈ Nodes | Ji = Idle ∧ (¬∃(Jk, Ji) ∈ Edges∨

∀(Jk, Ji) ∈ Edges : Jk = Done(t)) ∧ k < i}.

However, to speed up the execution of workflows, we have to take into account
dependency structures. Therefore, we introduce the notion of a parent set. A
parent set is a set of tasks generating input for the same group of dependents:

PSJi = {Jk ∈ Nodes | (k < i) ∧ (Jk ∈ RS(t))

∧(∃(Jk, Ji) ∈ Edges)}.

For example, in Figure 5.2 tasks {0}, {1}, {2,3,4}, {4}, {6,7,8}, {9,10}, {11},
{5,12,13,14,15} form parent sets for respectively tasks 1-4, 5-8, 9, 10-11, 12, 13-
14, 15 and 16. Clearly, each task in the considered workflows, except for the initial
task, has a parent set. Parent sets of different tasks are not necessarily unique and
they can overlap, which is the case for the sets {2,3,4} and {4} in the example
above.

The idea behind the proposed algorithm is to minimize the execution time of
a parent set as a whole, but at the same time to guarantee that the included tasks
finish more or less simultaneously.

In real-world applications, individual tasks within workflows often have sig-
nificantly varying execution times, which can result in imbalanced execution of
a parent set, whereby some tasks finish much faster than others. However, their
dependents can not proceed with the execution, since they require inputs from the
whole parent set. Therefore, it seems desirable to schedule short tasks on slower
resources, as long as it does not delay the execution of the parent set, and leave
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Figure 5.4: Flow of the operation phases of the proposed dynamic scheduling algorithm.

faster CRs to tasks requiring fast processing. Our optimization heuristics can be
described by the following equations:

min
∀PS∈W

( max
∀Ji∈PS

{EestJi }) (5.5)

∀PS ∈ W : min
∀Ji,Jk∈PS

| EestJi − E
est
Jk
| (5.6)

, where EJi and EJk stands for execution times of tasks Ji and Jk respectively.
In concreto, the operation of the proposed algorithm can be subdivided into

three iterative steps (see Figure 5.4): collection of dynamic information, reschedul-
ing of running PSs, scheduling of ready tasks.

5.4.1.1 Step 1: Collection of Dynamic Information

At the beginning of each scheduling round, the algorithm requests a grid status
update from the IS. In particular, the information on speed and resource availability
(failure, restart, new CR registrations), as well as the information on job status
and progress of running jobs is collected. Here we have to take into account that
the collected data can sometimes be outdated, leading to “erroneous” scheduling
decisions. The severity of these faults will mainly depend on the dynamics of the
grid at hand, the length of the interval used by the IS to query the grid, and the data
transfer delays.

5.4.1.2 Step 2: Rescheduling of Running PSs

In this section we gradually explain the functionality of the rescheduling step of the
algorithm, using pseudocode. In this step, running PSs (RPSs) are reassigned to
balance the execution times of the included tasks, based on newly collected updates
on tasks progress and grid status. Under the term running PS we understand a PS
that exclusively contains finished tasks and tasks actually running on active grid
resources. Clearly, to be rescheduleable an RPS should contain at least one non-
finished task.
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The pseudo code below describes the operation of the proposed algorithm (see
Table 5.1 for a listing of symbols):

1: Input: Set of current RPS’s:U = {ρ1, ..., ρn}
2: Output: Set of current available CR’s:R = {τ1, ..., τm}
3: repeat
4: ρshortest ⇐ getSmallestSet(U)

5: ξ = ∅, χ = ∅, ξmax = 0

6: for all ηi ∈ ρshortest do
7: τcur ⇐ getCurrentCR(ηi)

8: ξi ⇐ RE(ηi, τcur)

9: ξ ⇐ ξ ∪ (ξi, ηi)

10: if ξi > ξmax then
11: ξmax ⇐ (ξi, ηi)

12: end if
13: end for
14: repeat
15: τcur ⇐ getCurrentCR(ηi)

16: τbest = ∅, ξbest = 0

17: if ξi ≡ ξmax then
18: ξmin = ξmax
19: for all τj ∈ R do
20: ξtemp ⇐ RE(ηi, τj) +NO(ηi, τcur, τj)

21: if ξtemp < ξmin then
22: τbest ⇐ τj , ξmin ⇐ ξtemp
23: end if
24: end for
25: ξbest ⇐ ξmin
26: else
27: σmin = ξmax − ξi, ξnew = 0

28: for all τj ∈ R do
29: ξtemp ⇐ RE(ηi, τj) +NO(ηi, τcur, τj)

30: if ξmax − ξtemp < σmin then
31: τbest ⇐ τj , σmin ⇐ ξmax − ξtemp
32: ξnew ⇐ ξtemp
33: end if
34: end for
35: ξbest ⇐ ξnew
36: end if
37: if τbest 6= ∅ and τcur 6= τbest then
38: D ⇐ getDependentTasks(τbest)

39: if ¬delayExecution(D) then
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Parameter Value

U Set of currently available RPS’s
R Set of currently available CR’s

ρshortest RPS with smallest number of running tasks
ηi ith task from ρshortest
ξ List of remaining execution times of tasks within ρshortest
ξi Remaining execution time of task i

ξmax Maximum remaining execution time within ξ
ξbest “Optimal” execution time of a task
ξmin “Minimum” execution time of a task
τcur CR executing ηi
τbest Best CR to execute a particular task
σmin Minimum difference with execution time of the longest task
D Set of dependent tasks
C Set of independent tasks
χ List of tasks already assigned within ρshortest

Table 5.1: Listing of symbols

40: C ⇐ getIndependentTasks(τbest)

41: checkpoint&Cancel(C, τbest)

42: submitToFastestAvailableResources(C,R)

43: checkpoint&Cancel(ηi, τcur), submit(ηi, τbest)

44: update(R), ξ ⇐ ξ ∩ ¬(ξi, ηi) ∪ (ξbest, ηi)

45: else
46: R⇐ R ∩ ¬τbest
47: end if
48: else
49: χ ∪ (ξi, ηi)

50: end if
51: until χ ≡ ξ or R ≡ ∅
52: U ⇐ U ∩ ¬ρshortest
53: until U ≡ ∅

A set of RPSs containing non-finished tasks, together with a set of the available
resources form the input for the rescheduling algorithm (Lines 1 – 2). However, it
is important to mention that we omit RPSs containing a single root task. The point
is that root tasks are independent of any other tasks and thus can be scheduled
immediately after their arrival into the GS queue. If the submission frequency
is high, root tasks will occupy to a large extent fast grid resources, delaying the
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execution of dependent tasks.
To find a solution for the problem stated in Formulas 5.5 and 5.6 we can match

tasks within each running PS against each available resource. Available refers in
this context to a non-failed resource with nCR ≤ nmaxCR . This approach basically
leads to solving a m-combinatorial problem, where we select m resources (to run m
tasks) from a total set of n resources. The computational complexity of solving this
m-combinatorial problem can be approximated as O(n!), which means that even
relatively small values of n lead to a combinatorial explosion. To reduce the search
space, we propose a heuristic search method that instead of processing all running
PSs at one time, assigns the latter to the available resources in the order of the
increasing number of tasks within a set (Lines 4 – 13). Assigning a higher priority
to small parent sets advances job throughput, since short or almost finished jobs
are scheduled to the fastest available resources. In concreto, the algorithm iterates
over the set U, selecting in each iteration the RPS with the smallest number of
running tasks (function getSmallestSet(U) in the pseudocode above). For each task
J within the shortest PS the algorithm applies the formula (5.4) on dynamically
collected task progress information to find the expected total execution time EestJ .
Knowing the latter and the execution progress PJ , we can easily calculate the
remaining execution time REestJ,CR of J on each available resource CR:

REestJ,CR =
(EestJ − EestJ × PJ/100%)× nCR

MIPStotalCR −MIPSexCR
. (5.7)

In the second iteration over the shortest PS, the algorithm tries to balance the
execution times of already running tasks, taking into account updates on resource
status and task progress. First of all, the algorithm searches for the fastest currently
available resource to execute the task with the longest remaining execution time
(Lines 14 – 26). Secondly, for each task with shorter remaining execution time,
the algorithm tries to find a resource that minimizes the difference (σmin) with the
execution time of the longest task (Lines 27 – 37).

It is important to mention that not only available resources are considered for
task rescheduling but also non-failed resources running root tasks. Since the ex-
ecution of a dependent task has higher priority than the execution of a root tasks,
the latter can be interrupted if it is running on the resource that is the best suit-
able for processing of the dependent task. Therefore, the described rescheduling
algorithm considers the capacity of each available resource with and without root
tasks running on it. Besides, when considering a task migration we have to take
into account not only the computational speed up that can be achieved on a faster
or less loaded resource but also the network transfer overhead NOJr .

Finally, if a better resource for the execution of some dependent task is found,
the algorithm checks if the rescheduling does not delay the execution of other
dependent tasks eventually running on this resource (function delayExecution(D)
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in the pseudocode above). If a migration of the task causes a slow down in the
execution of some RPS, the migration is canceled and the algorithm looks for
a new candidate resource. On the other hand, when there is no delay for other
RPSs the algorithm can proceed with the task migration. At that time some of
the root tasks running on the selected resource can in their turn be interrupted and
migrated to the fastest still available resource (checkpoint&Cancel(C, τbest). If,
however, the root tasks can not be reassigned to another resource without delaying
the execution of some RPS, then their execution is postponed (Lines 38 – 51).

5.4.1.3 Step 3: Scheduling of Idle or Failed Tasks

After the rescheduling phase, the algorithm proceeds with the assignment of ready
tasks to the remaining resources. The tasks are processed in the order of their
arrival into the GS-queue. If sufficient CRs are available, the algorithm tries to
schedule the whole parent set, where the next to schedule task belongs, in a single
iteration. When a parent set can only partially be processed, it gets the highest
priority in the next scheduling iteration.

For some applications and particularly for failed tasks we may posses an initial
estimate of the total tasks execution time. In this case the scheduler proceeds as
described in Step 2. Otherwise, tasks are assigned randomly.

5.5 Dynamic Scheduling Algorithm Optimizations
The dynamic scheduling approach introduced in the previous section has a com-
plexity of O(k2n), where k is the number of RPSs to be scheduled and n is the
number of grid resources. This complexity is significantly lower than O(n!), im-
posed by the optimal solution. However, for large and heavily loaded grids an
online matchmaking of each task against each available resource remains a time
consuming operation. Furthermore, task migrations have a considerable impact on
performance of most applications, as they require the application task execution to
be interrupted, checkpointing to be performed, data (input and checkpoint) to be
transferred over the network to a new resource and the task to be restarted. If not
applied carefully, rescheduling overhead can exceed the benefits of adaptation to
dynamic system changes.

In this section we discuss several possible optimizations that have as a goal the
improvement of the algorithm performance into two directions: (1) search space
reduction and (2) elimination of unprofitable task migrations.

5.5.1 Total Remaining Execution Time Monitoring

Since migration costs time, it can be omitted in case a task approaches the end of
its execution.
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Currently, the algorithm considers task rescheduling when the remaining ex-
ecution time on the current resource exceeds the sum of the execution time on
another resource and data transfer time between both resources. However, we do
not consider the task checkpointing overhead (C) and the restart time (R). Values of
both parameters can vary from several milliseconds to several minutes, depending
on the checkpointing mechanism utilized and the complexity of the application at
hand. Besides the fact that migration slightly enlarges task execution time, it can
also indirectly delay the execution of other scheduled tasks by consuming band-
width and occupying fast resources, but also by initiating rescheduling of running
root tasks.

Therefore, we expand the algorithm with an additional control statement ξcur >
REmin before proceeding with the rescheduling step (see Section 5.4.1.2). Here
ξcur is the expected execution time on the CR where the task ηi is currently run-
ning and REmin is the minimum remaining execution time required to proceed
with the rescheduling.

5.5.2 Migration Profit Prediction

This approach performs task migration only if the currently predicted execution
time is expected to be improved with at least a certain predefined percentage γ.
Therefore, for the longest task within a PS the rescheduling criterion becomes
ξbest + γ × ξcur < ξcur, while the migration of other tasks to some resource CR
is considered only if (ξmax − ξCR) + γ × σmin < σmin.

5.5.3 Oscillation Pattern Detection

Is Section 5.3.2 several possible execution time prediction models are discussed.
One of them is a frequently occurring fluctuating model. The issue with this model
is that strong periodic variations in execution time prediction can lead to frequent
rescheduling of PSs. It can be advantageous for these tasks to keep track of their
average estimated execution time Eavg and use it instead of Eest to filter out os-
cillations, providing for smoother flow of the prediction curves and reducing un-
necessary rescheduling.

5.5.4 Resource Grouping

Instead of consecutively matching each task against each available CR, we group
resources according to similarity of their properties. Therefore, the original algo-
rithm is modified as follows:

• All available resources are initially subdivided into a number of groups
(G#), with a maximum of θ = n

G#
resources within each group. Since

the scheduling decisions taken by the proposed algorithm are mainly based
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on resource speed and location, we group CRs based on their MIPS charac-
teristic and LAN assignments: G# most collocated resources with similar
MIPSCR are assigned to the same group. G# can either be specified by
the end-user or derived automatically, based on size and topology of each
grid system at hand, as well as on variations of resource capacities. In gen-
eral, the more groups we have, the larger is the search space, but the more
accurate is the provided schedule.

Important to mention is that CRs within each group are sorted in the order of
increasing capacity, while groups themselves are sorted in the order of the
increasing capacity of the included resources.

• For the longest task ηmax within each considered PS (see Section 5.4.1.2)
we compute its minimum remaining execution time ξmin as

ξmin = min
∀g∈G

(RE(ηmax, τ
g
max) +NO(ηmax, τcur, τ

g
max)),

where G is a list of all resource groups and τgmax is the “fastest” resource
within each group.

• For the other tasks ηi (see Section 5.4.1.2) we calculate ξtemp for each group
g ∈ G as

ξtemp = RE(ηi, τ
g
avg) +NO(ηi, τcur, τ

g
avg)),

where τgavg is the “average” resource within the group g. The speed of the
“average” resource is calculated as

MIPSτg
avg

=

∑
i∈gMIPSi

θ
.

Based on the average resource speed within each group, the algorithm can
decide to migrate a task to a new group of resources. In this case, the task
is scheduled on a random CR within the new group, where it does not delay
the execution of other PSs.

• After each (re)scheduling procedure, modified resources are reinserted into
the appropriate positions into the G-list.

Due to resource grouping the algorithm complexity is reduced fromO(k2n) to
O(nlog(n) + k2G#).

5.6 Dynamic Algorithm Evaluation

In this section we evaluate the performance of the proposed dynamic scheduling
method in its original form and when it is optimized as discussed in the previous
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Figure 5.5: Job arrival pattern with daily cycle.

section. The evaluations are performed in the DSiDE [29] grid simulation en-
vironment. DSiDE was chosen among other existing grid simulation tools (Grid-
Sim [30], SimGrid [31], NSGrid [32]) because of its high flexibility with respect to
modeling and simulation of dynamic grid events, such as resource failure, resource
and network load variations, changes in job execution progress, etc.

5.6.1 Experiment Description

Our simulation scenarios operate on a grid system including 4 widely distributed
sites, each containing 32 CRs that can execute a maximum of 2 grid tasks simulta-
neously (see Table 5.2 for a listing of parameter values). Tasks are run with speeds
varying between 0.1 and 4 MIPS. The network model discussed in Section 5.3.1
is applied: within WAN links each data transfer is assigned an equal share of 5
Mbit/s of the available bandwidth, while within LAN links 1 Gbit/s transfer ca-
pacity is divided among the active transfers within the link. Additionally, WAN
link latency varies between 3 and 10 ms, and LAN links possess fixed 1 ms data
transfer latency. Next to data transfers, running intervals of the GS and the IS are
important sources of system delays. In our case, rescheduling and new task as-
signment procedures are run every 10 min, while grid status information in the IS
is updated every 5 min.

It is difficult to determine a general and realistic approach to describe load
variation of grid resources, since it depends on the nature of a resource at hand
(dedicated machines, PCs, etc.), the type of applications run and user behaviour
patterns. Therefore, we simply assume that load variations occur periodically ev-
ery 20 min and that the load can increase or decrease with a certain percentage P



A DYNAMIC SCHEDULING ALGORITHM FOR GRID WORKFLOWS 93

(a)

(b)

(c)

Figure 5.6: Task execution time variation models: (a) high execution time variation between
dependent tasks; (b) medium execution time variation between dependent tasks;
(c) low execution time variation between dependent tasks.
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Parameter Value

A U(Eref × 150%, Eref × 200%)
b U(0, 1)

Bl, (for LAN links) 1 GBit/s l
C 2 s

CSizeJ 1 GB
F U(Eref × 5%, Eref × 10%)
IJ 1 GB

IntervalCRLoadV ar 20 min
IntervalGSched 10 min
IntervalIS 5 min

λlbr (for WAN links) 5 MBit/s
Ll (for WAN links) U(3 ms, 10 ms) ms l
Ll (for LAN links) 1 ms l

MIPStotalCR U(0.1 MIPS, 4 MIPS)
n 128

nmaxCR 2
OJ 1 GB
ϕ U(Eref × 1%, Eref × 2%)

Table 5.2: Listing of parameter values
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of the original load. P is modeled to be uniformly distributed between 1 and 100%.
Arrival of applications into the considered grid environment follows the Lublin

submission model. This model describes a daily cycle job arrival pattern, often
observed in production parallel environments [4]. According to the Lublin model,
most of the jobs (about 80%) arrive during the day time, between 8 AM and 8 PM,
as shown in Figure 6.6.

As was mentioned previously, the characteristics of modeled jobs are derived
from an existing tool for modeling and virtual experimentation with environmen-
tal systems, called Tornado. Tornado possesses a broad category of virtual exper-
iments with input-dependent tasks, whereby all Tornado input-dependencies can
be subdivided into two groups:

• Parameter sweep: sub-experiments (Tornado equivalent for a task) are run
on the same model but with different parameters, which results in similar
execution times between the tasks.

• Model sweep: sub-experiments are run on different models, often leading
to strongly varying execution times.

Therefore, in our simulation experiments we consider the following possibili-
ties for execution time variations between parallel tasks: tasks have strongly vary-
ing execution times (HighVariation model); tasks execution time variations are
moderate (MediumVariation model); task execution times are practically similar
(LowVariation model). The parameters of the three models were chosen such that
the execution times generated correspond to the observed execution times of Tor-
nado experiments executed on UGent-grid [33]. UGent-grid is a part of the Belgian
grid infrastructure and it consists of 76 CRs having a total of 222 CPUs, 304 GB
memory and 4.4 TB disk space. For outcome of the three models, refer to Fig-
ure 5.6, where the execution times on the graphs are shown for the case when all
tasks are executed on some reference machine CRref with MIPSCRref = 1 and
nCRref = 1.

Finally, we consider the algorithm behaviour for the three job execution time
estimate models described in Section 5.3.2. The parameters of these models where
initialized as follows: Eref refers to execution times depicted in Figure 5.6; A
is uniformly distributed between Eref×150% and Eref×200%; b is uniformly
distributed between 0 and 1; F is uniformly distributed between Eref×5% and
Eref×10%; and ϕ is uniformly distributed between Eref×1% and Eref×2%.
Additionally, the maximum value of Eest for the exponentially increasing under-
estimate model was set equal to amplitude A.

To simplify comparison between different models, we assume that input, out-
put, and checkpointing data of all task are equally sized and amount to 1 GB. A
checkpointing delay of 2 s is also similar for all tasks.
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In all simulation scenarios the system performance is observed during 24 hours
of simulated time.

5.6.2 Static versus Dynamic Algorithm

First of all we compare the performance of the originally proposed dynamic algo-
rithm (i.e. disabling the optimizations discussed in Section 5.5) against the perfor-
mance of a static scheduling approach. The considered static approach works simi-
lar to the algorithm discussed in Section 5.4.1, except that it omits the rescheduling
phase (Step 2 of the algorithm). It means that the static approach is not able to re-
act on run-time system changes and bases its decisions solely on the information
available at the moment a task is scheduled.

This time we assume that an initial rough estimate of the total task execution
time is available a priori. The initial estimate provided is a random sample of
overestimate, underestimate and fluctuating job length variation models, whose
parameters were discussed in the previous section. In [34] similar simulations are
performed without initial information on task execution time. In the latter case
tasks are scheduled randomly, showing, however, analogueous algorithm perfor-
mance tendencies.

In Figure 5.7 the average makespan of workflows executed by the static and
the dynamic algorithms is shown. The results are depicted for jobs with strong,
medium and low variations between execution times of the included parallel tasks.
Also the effect of a varying degree of parallelism within a job is observed, by
considering parallel sets containing 2, 5, 10 and 20 tasks.

From Figure 5.7 can be concluded that, in general, the dynamic algorithm per-
forms better than its static equivalent. However, the improvement depends on the
rescheduling overhead and of course of the execution time predictions. For in-
stance, jobs with underestimated execution times, seem to benefit the most from
the rescheduling mechanism, which can be explained by the fact that in this case
we deal with tasks with relatively long run-times. On the other hand, tasks with
overestimated execution times have the least profit from rescheduling, since the
rescheduling overhead is not compensated by the speed up of the balanced execu-
tion of short tasks. In the worst case (low degree of parallelism of overestimated
tasks), the static approach is even more profitable than the dynamic one. Finally,
the computational gain for fluctuating tasks is somewhere in between the compu-
tational gains of tasks following the underestimated and overestimated execution
time prediction models.

Regarding task length variations and the degree of parallelism within jobs, we
can conclude that the more tasks are running within parallel sets and the larger
is their execution time difference, the more performance gain is achieved with
the dynamic algorithm. For example, in the best case of 20 parallel tasks with
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(a)

(b)

(c)

Figure 5.7: Average makespan of processed workflows for dynamic and static scheduling
approaches for (a) underestimated, (b) fluctuating and (c) overestimated task
execution time prediction models. Different average number of tasks within
a PS (2, 5, 10, 20) as well as varying load variation models (HighVariation,
MediumVariation, LowVariation) are considered.
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underestimated strongly varying execution times, the dynamic algorithm reduces
job makespan by about 40%, compared to the static algorithm. For the same task
execution time prediction model but for low degree of parallelism and low dif-
ference in execution times, the utilization of the dynamic algorithm improves the
makespan only by 8%.

Table 5.3 summarizes once again the performance improvement realized by
the dynamic algorithm, compared to the static approach operating under the same
circumstances. We can see clearly that only in the worst case scenario, when
relatively short jobs (i.e. overestimated prediction), with low degree of parallelism
and low variation in task lengths, are scheduled, the static algorithm results in
better performance.

5.6.3 Original versus Improved Dynamic Algorithm

In this section we discuss the effect the optimizations presented in Section 5.5 have
on the dynamic algorithm performance. We compare useful workload executed by
different versions of the algorithm. The term useful workload refers to the fraction
of workload that belongs to tasks successfully terminated within the observed time
interval, versus total processed workload. As a use case we choose the fluctuating
execution time prediction model with tasks with highly varying actual execution
times. The model parameters remain unmodified since the previous section.

5.6.3.1 Total Remaining Execution Time Monitoring

Figure 5.8 shows the percentage of useful workload processed by the dynamic al-
gorithm, when initialized with different values of REmin. For the grid at hand,
the best performance was achieved for REmin=4 min, with up to 15% more use-
ful workload processed compared to the original algorithm, with no REmin limit.
This gain is mainly the result of the reduced number of checkpoints and migra-
tions performed per task but also of the faster processing of the parallel tasks with
sufficiently long remaining execution times. The latter have larger choice of the
available CRs.

The results shown suggest high sensitivity of the algorithm to relatively small
changes in REmin. This can be explained by the choice of the fluctuating model
where even a small REmin means migration omission at an early stage of task
execution. For the overestimated and the underestimated models larger variance in
REmin is necessary to get significant performance difference, since overly small
values of REmin have no or little effect due to their rare occurrence. The opti-
mal REmin value should be determined experimentally for each particular grid
environment and it depends mainly on application rescheduling overheads (size of
inputs/checkpoints, complexity of checkpointing algorithm), execution time pre-
diction evolution, grid load and frequency with which the rescheduling algorithm
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Table 5.3: Workflow makespan reduction achieved with the dynamic algorithm, compated
to the static approach.
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Figure 5.8: Useful load processed for fluctuating execution time estimate model with dif-
ferent values of minimum remaining execution time limit.

is activated.
Important to mention is that despite the fact that Figure 5.8 suggests the largest

performance improvement for jobs with limited number of parallel tasks within a
PS, also the reduction of the processing time for jobs with large PSs is observed.
However, when the degree of parallelism gets high, compared to the number of
available resources, the slight grid performance improvement due to checkpoint
and rescheduling omission is insufficient to make a difference in the number of
processed jobs.

5.6.3.2 Migration Profit Prediction

The γ-based approach is similar to the approach discussed in the previous section
and thus it can be used in combination or as an alternative to REmin.

Figure 5.9 shows useful workload processed by the dynamic algorithm ini-
tialized with different γ-values. We again can observe an improvement of the
algorithm performance for small values of γ, due to the rescheduling procedure
omissions. However, when γ gets larger and useful migrations get skipped, per-
formance degradation continues until the performance matches the performance of
the static approach.

In general, the utilization of γ leads to smaller variations in processed workload
compared to the case when REmin is defined. This is the result of the fact that in
the first case we only take into the account the performance improvement of tasks
within a PS, while in the second case we consider the remaining execution time of
PS-tasks as well as tasks chosen for cancellation (see Section 5.4.1.2). Therefore,
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Figure 5.9: Useful load processed for fluctuating execution time estimate model with dif-
ferent values of computational gain limit.

REmin also addresses the overhead related to the restart of canceled tasks.

5.6.3.3 Oscillation Pattern Detection

Taking into account execution time prediction oscillations leads to small additional
computational gain (see Figure 5.10). The exact performance improvement de-
pends on oscillation pattern and on the overhead of the rescheduling procedure,
however, in general the average execution time prediction based scheduling has
shown to be advantageous only when the rescheduling overhead is relatively high.

5.6.3.4 Resource Grouping

Finally, Figure 5.11 shows useful workload processed by the algorithm when re-
sources are grouped using different limits (θ) for the number of CRs within a
resource category. The original algorithm performance is indicated by grouping
containing a single resource (θ = 1).

The simulation results show that combining up to 4 resources together gives
only slight performance degradation, since in our case we manage to include
closely collocated CRs with similar execution speeds within a single group. Fur-
ther reduction of resource categories leads, however, to more significant perfor-
mance decrease. For instance, in case of θ = 16 the algorithm performs worse
than its static equivalent. Also, when PSs are relatively large, the effect of group-
ing is more distinct, because a single job loss has a larger effect on the overall
system performance.
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Figure 5.10: Useful load processed for fluctuating execution time estimate model using es-
timated execution time and average of estimated execution times.

The optimal grouping is largely influenced by the variation in resource capac-
ities and distribution of resources over the network.

5.7 Conclusion

This chapter addresses the issue of scheduling tasks with input interdependencies
and unknown execution time within widely distributed grid environments. Tasks
are considered for which the execution progress can be monitored at run-time.

We propose a dynamic scheduling algorithm that, based on the periodically
collected task progress information and system status updates, constructs total ex-
ecution time predictions. The latter are used by the algorithm to reschedule al-
ready running dependent tasks with the objective to reduce the overall application
makespan by finding a good balance between rescheduling overhead and efficient
utilization of the available resources. The algorithm evaluation within a grid sim-
ulation environment shows a performance improvement of up to 35%, compared
to the static version of the algorithm.

Despite good performance results, the proposed dynamic algorithm can be sub-
ject to further optimizations. The latter mainly address rescheduling overhead
reduction and shrinking the search space for the job-resource matchmaking pro-
cedure. The following optimizations are considered: migration omission for tasks
with short remaining execution time prediction and for cases when the reschedul-
ing profit is expected to be low; utilization of average execution time prediction
values when the prediction history suggests an ossilating behaviour pattern; group-
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Figure 5.11: Useful load processed for fluctuating execution time estimate model with dif-
ferent granularity of resource grouping.

ing of similar CRs into categories and performing task assignment per categories.
Our simulation results show that the suggested approaches lead to performance
improvement, varying from 0.5% to 15%.
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The effectiveness of distributed execution of computationally intensive appli-
cations (jobs) largely depends on the quality of the applied scheduling approach.
However, most of the existing non-trivial scheduling algorithms rely on prior knowl-
edge or on prediction of application parameters, such as execution time, size of
input and output, dependencies, etc., to assign applications to the available com-
putational resources. A major issue is that these parameters are hard to determine
in advance, especially if the end user does not possess an extensive history of pre-
vious application runs.

We address the issue of job execution time prediction, mentioned in Chapter
5, by proposing an on-line prediction method for applications for which execution
progress can be collected at run-time. In the previous chapter, the total job execu-
tion time is predicted using extrapolation of the last progress update. However, the
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predictions achieved by extrapolation are far from precise and often vary over time
as a result of changing application dynamics and varying resource load. There-
fore, to compute the actual job execution time we propose to match a number of
predefined prediction evolution models against the consecutive extrapolations, by
adopting nonlinear curve-fitting. The “best-fit” coefficients allow for more accu-
rate execution time prediction.

The predictions made are used to enhance a dynamic scheduling algorithm for
workflows introduced in the previous chapter. The scheduling algorithm is run
with and without curve-fitting, showing a performance improvement of up to 15%
in the former case.

6.1 Introduction

When dealing with application complexity and long execution times, one often
thinks of distributed solutions such as clusters and grids. However, the benefit of
distributed approaches largely depends on the scheduling strategy applied. Most of
the currently existing schedulers for distributed systems require sufficiently accu-
rate information to be provided on the applications scheduled and on the available
resources, to perform effective job-resource matchmaking. Unfortunately, this in-
formation is hard to obtain in advance, due to high job diversity, large variation in
input parameters and the dynamic nature of distributed resources.

One of the major issues in the domain of distributed computing is considered
to be prediction of application run-times. Taking into account the diversity of the
existing applications, it seems extremely difficult to define a general solution to the
problem. Therefore, in this chapter we concentrate on the category of applications
for which the execution progress can be monitored at run-time. We propose a
dynamic prediction mechanism that iteratively refines estimates of job execution
time based on periodic run-time updates on the job progress.

In concreto, there exists a broad group of applications for which execution
progress can either be collected periodically or at particular timepoints during the
application execution. Examples of such applications are simulations with a total
simulated time T total that is known a priori. If, for instance, the current simulated
time (t) can be collected at run time, we can predict the total execution time of our
job J (EestJ ) using extrapolation: EestJ = TJ ∗ (T total/t), where TJ is the pro-
cessing time of J thus far. Other examples are applications consisting of a number
of consecutive runs. When the total and the current number of runs are known, we
can extrapolate as above, to predict EestJ . The problem of this simple approach
is that the predicted execution time EestJ can strongly vary over time, depending
on system dynamics, complexity of individual job runs and changes in resource
load. To address this dynamic behaviour of applications and distributed resources,
we modify EestJ at run-time, taking into account the previous job execution time
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predictions.
We make the realistic assumption that EestJ converges over time to a certain

end point, which means that the longer a job is running, the closer EestJ converges
to the actual job execution time (EactJ ). Therefore, we can match the course of
EestJ against a number of prediction evolution models, determined using histori-
cal information on previous application runs. The matchmaking is realized using
a curve-fitting optimization procedure. Parameters determined by the optimiza-
tion provide an accurate estimate of the convergence point and thus of the total
execution time.

Obviously, only a dynamic scheduling approach can benefit from the proposed
prediction mechanism. A scheduler should be able to assign arriving jobs ran-
domly to the available resources and to reschedule them at run time as more infor-
mation on individual job progress becomes available. Therefore, to evaluate the
performance of our prediction method, the latter is incorporated into a dynamic
scheduling algorithm for workflow applications that is introduced in our previous
publication [1]. The algorithm was simulated in a grid simulation environment
(DSiDE [2]), using realistic workload derived from a modeling and simulation
tool for environmental systems (Tornado [3]).

The remainder of this chapter is structured as follows: Section 6.2 introduces
related work; Section 6.3 describes the job/task execution time prediction method
proposed; the use case scenario utilized for evaluation of the prediction method
is discussed in Section 6.4; simulation results can be found in Section 6.5; and,
finally, Section 6.6 concludes the chapter.

6.2 Related Work

Currently existing approaches for estimating execution times of jobs running in
distributed environments can be subdivided into two main categories: application
component performance modeling and historical prediction.

Application component performance modeling considers the number and the
complexity of instructions executed for particular input parameters. A concrete
example of this approach can be found in [4], where a job is run initially with
several small-size input problems. The computational complexity for each run is
determined as a function of the number of floating point operations performed and
the memory access pattern. After the data collection phase, least square curve-
fitting is applied on the collected data to make prediction for a specific input data
set. The main disadvantage of this approach is that it operates at a fine-grained
instruction level and is, therefore, only applicable to small, deterministic applica-
tions with a limited number of input parameter combinations. A slightly different
mechanism is proposed in [5]. Here the execution time prediction is taken to a
next level of abstraction, by identifying a number of primitive routines performed
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by a job. The total execution time prediction is derived from the job performance
within the routines. Other application model-based prediction solutions are dis-
cussed in [6] and [7]. In [6] dynamic models of workload evolutions are designed
to predict the execution time of non-deterministic bulk synchronous computations
on multiprocessors. In [7] a modeling approach to estimating the execution time
of long-running scientific applications is presented. The approach is based on the
observation of resource usage behaviour of a job and job profiling.

In general, it can be concluded that while exhaustive profiling within applica-
tion performance modeling provides for very accurate estimates, correct applica-
tion models are hard or sometimes even impossible to obtain. Furthermore, the
approach yields insufficient insights on the impact of input data changes on appli-
cation execution.

On the other hand, the historical prediction method that utilizes sets of past
observations to predict execution times, seems to be more performant and more
generally applicable. Therefore, it is frequently applied within recent research
projects. For instance, in [8] the ScoPred performance predictor is discussed,
which applies multiple linear regression using rough estimates of application ex-
ecution time provided by the end user and historical application execution data to
predict the execution times. Other regression-based methods are described in [9]
and [10]. Here regression models and filtering techniques are applied on a subset
of previous application runs in order to discover the relationships between vari-
ables that affect the run times of applications (e.g., application input, resource
capacities). In [11] and [12] similarity template-based approaches are proposed.
A similarity template refers to a set of selected attributes that allow to determine
similarities between application runs. In [11] matchmaking of templates is super-
vised by an expert user, who is supposed to indicate the relevance of each attribute
for a particular application. In [12], on the other hand, similarity distance calcu-
lations are performed on attributes in a predefined order. Hereby, the similarity
calculation of the second most relevant attribute will occur only for those cases
that get high similarity for the most relevant attribute.

The main disadvantage of the historical approach is that a large number of
historical records must be stored before matchmaking of a job against the available
records can provide a sufficiently accurate estimate. However, the more records are
stored, the longer the matchmaking procedure takes.

The approach proposed in this chapter can be classified as high level applica-
tion performance modeling, where the possible models of job execution progress
evolution are provided by end users in advance. The advantage of our approach
is that it requires a relatively limited number of prediction evolution models to
deliver acceptable prediction accuracy.
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6.3 Prediction Algorithm Description

The algorithm proposed is primarily designed for dynamic schedulers assigning
jobs with a priori unknown execution times within dynamic distributed environ-
ments. The mechanism is implemented as an independent module that can be
plugged into a scheduler. The idea is that the scheduler periodically consults the
prediction algorithm to determine a new job execution time estimate, based on the
earlier collected job progress history. The remainder of this chapter presents the
algorithm pseudo code and gives explanation on consecutive steps.

The functionality of the proposed algorithm can be formalized as follows:

Input: Job name: J ,
Set of (estimate, progress collection time)-pairs: Hist = {(E1, T1), ..., (En, Tn)},
Set of initial parameter values: Init = {i1, ..., im},
Set of prediction evolution functions: Func = {(ψ1, ..., ψk}
Output: Job execution time estimate: EestJ

1: if Size(Hist) ≡ GetPreviousEstimatesNo(J) then
2: EestJ ⇐ En
3: else
4: SetPreviousEstimatesNo(J, Size(Hist))

5: if Size(Hist) ≡ 1 then
6: EestJ ⇐ E1

7: else
8: for all ψj ∈ Func do
9: [Xψj , ResNormψj ]⇐MatchCurve(ψj , Init,Hist)

10: end for
11: ψj ⇐MinResNormGet(ResNorm)

12: EestJ ⇐ CalculateLimit(ψj , Xψj
)

13: end if
14: end if

The input to the algorithm consists of the following parameters: the name of
a job (J), for which a new estimate of the execution time is required; the pre-
diction history Hist, containing pairs of execution time predictions E, computed
by extrapolation of consecutive progress measurements, and progress collection
timestamps T ; and a set Init of initial parameter values (i). The initial parameters
serve to initialize the optimization performed in the scope of curve-fitting. The
parameters within Init are provided by end users, which are presumed to possess
sufficient application knowledge to provide for the appropriate initial values. A
good choice of the latter is highly important for the accuracy of the prediction
mechanism, since it avoids the optimization ending in a local optimum. Also the
set Func of functions ψ is provided to the algorithm. Each function ψ describes
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a possible scenario for an execution time estimates evolution over time. The his-
torical input-data (E) is matched against the available functions to provide a new
estimate EestJ , which is the output of the algorithm.

Before proceeding with calculating EestJ , the algorithm first checks whether
new information on job progress has become available since the last algorithm
run. If the latter is not the case, the previous value of EestJ still applies (see Lines
1 – 2). On the other hand, when the number of extrapolated estimates increases
(Size(Hist)), this number is saved for the next run and the algorithm proceeds
with computing the new EestJ (see Lines 3 – 14).

Obviously, it is assumed that the prediction algorithm is called only after at
least one progress indication is collected. However, since no curve fitting can
be performed for a single point, the algorithm simply returns the initial estimate
value E1 (see Lines 5 – 6). When the set Hist contains multiple estimates, for
each predefined function ψ the curve-fitting optimization procedure MatchCurve
is called (see Lines 7 – 9). The MatchCurve method takes as arguments a function
ψ, the initial parameter values and the execution time estimate data points, together
with the estimate timestamps. The outputs of the method are two vectors: X
contains the parameter values that best fit function ψj(X,T ) to the data Hist; and
ResNorm, which represents the residual norm, used by the prediction algorithm
to determine the function ψj that best fits the provided input data. ResNorm is
calculated as the squared 2-norm of the residuals (see Formula 6.1), which means
the parameter depicts the squared difference between the optimized function and
the input data. Clearly, the smaller the difference, the better the curves fit.

ResNormψj =
∑
k

(ψj(Init, Tk)− Ek)2 (6.1)

Finally, the limit of the function with the minimum ResNorm is calculated, which
provides us with the a new execution time prediction (see Lines 11 – 12). As was
mentioned previously, we assume that the longer a job is running, the closer its ex-
ecution time prediction gets to the real execution time value. This means that the
function representing the execution time evolution converges over time to a certain
limit-value. Since there are always only a limited number of functions provided,
the limit expression can easily be determined analytically by an end user and pro-
vided to the algorithm together with the prediction evolution functions (Func).
Afterwards, the predictions can be calculated by substituting the X-parameters
into the limit expression of the ψj-function.

6.4 Use Case Description

To evaluate the performance of the proposed prediction algorithm we integrate the
latter into the dynamic workflow scheduler introduced in the previous chapter [1].
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The scheduler is implemented in an existing grid simulation environment, called
DSiDE [2], which allows for easy modeling and monitoring of dynamic resource
and application behaviour. To get an accurate indication on the overhead peri-
odic prediction and rescheduling introduce in distributed environments, a realistic
medium-sized grid model and a workload model deduced from a real-world appli-
cation are considered.

In the remainder of this section, the workload and the grid models, together
with the utilized dynamic scheduling approach are discussed in more details.

6.4.1 Workload Model

The performance of the proposed algorithm is simulated using a workload model
derived from Tornado [3], an existing application for modeling and virtual exper-
imentation with complex environmental systems. Tornado is particularly interest-
ing as a use case since it generates jobs with strongly varying properties in terms
of job execution times, mutual dependencies, size of input/output data, etc.

In this chapter we consider Tornado jobs composed of tasks with input depen-
dencies. It means that some tasks require inputs generated by other tasks, before
they can proceed with their execution. This type of dependency can significantly
benefit from distributed execution, compared, for instance, to MPI-based [13] de-
pendencies, since it does not require extensive communication between tasks at
run-time.

In general, a Tornado job with input dependent tasks can be represented as a
DAG of the form shown in Figure 6.1. As depicted on the figure, each job contains
a single initial task, which generates inputs for one or several dependent tasks,
which in turn generate inputs for their dependent tasks, etc. The procedure con-
tinues until the final level of the dependency hierarchy is reached, where a single
final task produces job results. An example of such a dependency structure within
Tornado is the Scenario Analysis experiment: the initial task determines different
parameter values, input variable values and/or initial conditions; afterwards, in-
dividual simulation experiments (dependent tasks) are run with each combination
of inputs and during each run the simulated trajectories of a number of selected
quantities are saved; the final task is executed to compute a variety of objective
values.

Due to a large diversity of possible inputs for Tornado experiments, it is hard
to predict the execution time of an experiment in advance. However, for a large
group of Tornado jobs the execution progress can be monitored at run time and
their total execution time can be predicted using extrapolation:

EestJ =
100%× TJ ×MIPSCR

PJ × nCR
(6.2)

where J is a Tornado task running on a distributed computational resource CR;
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Figure 6.1: Example of a workflow consisting of tasks with input-dependencies, organized
into a DAG structure

TJ is the wall clock execution time of J thus far; MIPSCR is the speed of the
resource CR; PJ is the percentage of the task J completed within the time period
TJ ; and nCR is the total number of tasks running on CR. In fact, we compute
the execution time prediction on a theoretical reference resource CRref , having
MIPSCRref = 1 and nCRref = 1.

To provide for a realistic model for evolution of execution time estimates, a
number of Tornado experiments were observed. From these observations can be
concluded that the estimate curves show strongly alternating evolution (see Figure
6.2). However a common tendency can be distilled by defining the following three
approximation models:

• The overestimate model represents estimates that are gradually decreasing
until the stable state is reached. In the stable state the exact execution time
is known and the predictions no longer change. An example of this model is
the “Galindo CL” simulation experiment.
• The underestimate model is the opposite of the overestimate model. Here

the execution time prediction increases until the stable state. “BSM1 CL”
is an example of this model.
• The fluctuating model represents an erratic pattern, whereby predictions

oscillate over time. In the case of “Galindo OL” and “Bamberg” we can
talk about the fluctuating model.

The above mentioned models can be approximated mathematically by the fol-
lowing exponential functions: EestJ = ErefJ + r1Ae

−bt± r3, r1 > 0 describes the
exponentially decreasing overestimate model;EestJ = ErefJ −r1Ae−bt±r3, r1 > 0

represents the exponentially increasing underestimate model; and, finally, EestJ =

ErefJ ± r1Ae−btsin(2πFt + r2ϕ) ± r3, r1 > 0 represents the fluctuating model.
In these equations ErefJ is a reference execution time value for the job J that pre-
vents the models from having too short initial execution time estimates; r1 and
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Figure 6.2: Examples of evolution of execution time estimates for the “Galindo CL”,
“Galindo OL”, “BSM1 CL” and “Bamberg” simulation experiments.

r2 are random weight factors that can take values between 0 and 1; A is the am-
plitude of estimate oscillations; b is a weight factor that determines the speed in
the increase/decrease of A over time; F stands for the oscillation curve period; ϕ
represents the oscillation curve phase; and, finally, r3 = pA is white noise that is
defined as a small percentage p of the amplitude. Obviously, the larger p, the more
noise is imposed on the model and the more difficult it is to classify the curve.
To eliminate/reduce noise, filtering or smoothing can be applied on the input data
before the optimization step.

Another issue is that it is often difficult to distinguish noise from the oscillating
model pattern. However, we are not really interested in oscillations but rather in the
end values, which remain after the oscillations have decayed. We partially address
both issues by providing to the prediction algorithm the following two prediction
evolution functions: ψ1 = x1 + x2e

(−x3t) and ψ2 = y1 − y2e(−y3t), where xj
and yj stand for the parameter values to be determined. To a certain extent, the
functions have the effect of a smoothing technique, since after sufficiently long
task run-times they capture the increasing/decreasing data pattern and manage to
eliminate noise and oscillations. The limits of the functions can be analytically
determined as x1 and y1.
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Figure 6.3: Considered grid model: Computational Resource (CR), Grid Scheduler (GS),
User Interface (UI), Information Service (IS), Checkpoint Server (CS).

6.4.2 Grid Model

We model a grid environment (see Figure 6.3) consisting of a number of distributed
Sites (S), aggregating heterogeneous dedicated Computational Resources (CR).

In practice, resource capacity is a complex quantity, which is influenced by
different hardware components. In this work, we use a simplified metric, called
MIPS, which is often applied theoretically to compare resource capacities.

Another assumption relates the sharing of CR capacity among simultaneously
active tasks. Normally, each application requires different and alternating amounts
of hardware resources (CPU, IO bus, etc.), but we assume that each task J is
allocated an equal share of a resource capacity (MIPSCRJ ), which is determined
using the following equation:

MIPSCRJ =
MIPSCR
nCR

. (6.3)

To avoid overzealous partitioning of MIPSCR, the number of tasks allowed to
run on a CR simultaneously is limited by the boundary nmaxCR : nCR ≤ nmaxCR .

Next to CRs, the considered grid infrastructure includes a number of gen-
eral services, such as a Grid Scheduler (GS), which maintains a job queue and
is responsible for task-resource matchmaking; several distributed User Interfaces
(UIs), utilized by end users to submit their applications to the grid; an Information
Service (IS) required to collect information on the grid status; a Checkpoint Server
(CS) where checkpoints are saved; and a Storage Resource (SR) where output data
is transferred after a job execution.

Often, a real-world grid infrastructure contains several SRs. The allocation
of input/output data to an appropriate SR is then performed using a certain data
scheduling policy. Since data scheduling is out of the scope of this work, we limit
the considered grid infrastructure to a single SR.
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The performance evaluation of the proposed prediction algorithm would not
be accurate if we would not consider different types of overhead, related to the
dynamic information collection and the rescheduling process.

The first important source of overhead relates to the grid middleware services:
querying IS for dynamic resource/task status, periodic task execution time predic-
tions, (re)schedule computations by GS, and, finally, checkpointing and migration
slow down task execution. These types of overhead are taken into account by
adding constant delays to our model.

The second significant cause of task slow down originates from network trans-
fers, such as input/output file staging, workflow rescheduling and rollback. In our
model all grid sites are interconnected by a Wide Area Network (WAN), while the
communication within the sites go by different Local Area Networks (LANs). It is
assumed that network transfers within LANs originate exclusively from grid jobs,
while WANs are open to external network traffic. Therefore, two different models,
described in [14], are used for bandwidth (B) sharing among simultaneous trans-
fers: every data transfer route going through a WAN link gets a small equal share
of the total link capacity; while capacities of LAN links are proportionally shared
among simultaneous active grid transfers. For simplicity we assume that total link
capacities do not change over time and that links are not subject to failure.

6.4.3 Dynamic Scheduling Algorithm

In this work we integrate our execution time prediction module into a dynamic
scheduling algorithm introduced in the previous chapter, to observe to what extent
the predictions made improve the algorithm performance. The algorithm operates
in dynamic grid environments where tasks with input dependencies and unknown
execution times (for which, however, periodic progress information can be col-
lected) are run. The algorithm makes use of information services to collect dy-
namic system updates and applies these updates to (re)schedule dependent tasks.
Figure 6.4 gives a brief overview of the different algorithm steps, which are de-
scribed in more details in the remainder of this section.

The objective of the algorithm is to reduce the execution time of a job (see
Figure 6.1) running on a set of distributed heterogeneous resources, by taking into
account task interdependencies. Before we proceed, we define the notion of a
parent set (PS), which is a set of tasks generating input for the same group of
dependent tasks. For example, in Figure 6.1 tasks {0}, {1}, {2,3,4}, {4}, {6,7,8},
{9,10}, {11}, {5,12,13,14,15} form parent sets for respectively tasks 1 – 4, 5 – 8,
9, 10 – 11, 12, 13 – 14, 15 and 16. Clearly, each task in the considered workflow,
except for the initial task, has a parent set. Parent sets of different tasks are not
necessarily unique and they can overlap, which is the case for the sets {2,3,4} and
{4} in the example above.
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Figure 6.4: Flow of the operation phases of the dynamic scheduling algorithm.

Several issues arise when we are dealing with input-dependency constraints.
First of all, if jobs arrive with high frequency into a grid, initial tasks, which do
not have input dependencies and can be started immediately, occupy the available
resources to a large extent. This leads to a delay in the execution of dependent tasks
and thus prolongs the job execution as a whole. Secondly, not all tasks within a
parent set are computationally equally intensive, which means that some tasks may
finish much faster than others, when executed on resources with similar capacity.
The imbalanced task execution, however, is not advantageous because the output
of a whole parent set is required to proceed with the execution of its dependent
tasks.

Since we are usually not interested in partial results but only in the results
produced by final tasks, the algorithm tries to reduce the execution time of a job
at the cost of possibly slower execution of individual tasks. The idea behind the
algorithm is to give the processing of dependent tasks a higher priority than the
execution of initial tasks. In fact, the latter are scheduled only when no dependent
tasks are waiting for the execution. Furthermore, the execution of parent sets is
balanced by scheduling the computationally most intensive tasks within a set to the
fastest available resources, leaving slow resources to short tasks. Our optimization
heuristics can formally be described by the following equations:

min
∀PS∈W

( max
∀Ji∈PS

{EestJi }) (6.4)

∀PS ∈ W : min
∀Ji,Jk∈PS

| EestJi − E
est
Jk
| (6.5)

These equations mean that the maximum execution time prediction (max∀Ji∈PS
{EestJi

}) as well as the difference of task execution time predictions (| EestJi
−

EestJk
|,∀Ji, Jk ∈ PS) within each parent set should be minimized consecutively.

Clearly, to satisfy these criteria and to provide an appropriate schedule, the al-
gorithm requires a good task execution time estimate mechanism. The better the



ON-LINE EXECUTION TIME PREDICTION FOR COMPUTATIONALLY INTENSIVE

APPLICATIONS WITH PERIODIC PROGRESS UPDATES 121

provided estimate, the less rescheduling needs to be performed on each system /
task dynamic information update.

In concreto, the algorithm of Figure 6.4 proceeds as follows:

• Collection of dynamic information. The information on resource load and
availability, as well as the information on job status and progress of running
jobs is collected. Important to mention is that the data collected can be
outdated, depending on the length of the interval used by the IS to query the
grid.
• Execution time prediction. In this step, the execution time predictions of

tasks within running PSs (RPSs) are (re)computed, based on updates in task
progress and resource status. By the term running PS we understand a PS
that exclusively contains finished tasks and tasks actually running on active
grid resources, but no waiting tasks.
• Rescheduling of Running PSs. Tasks within RPSs are reassigned to bal-

ance their predicted execution times: the longest task is assigned to the
fastest available resource (minimizing maximum execution time), while other
tasks are assigned such that their execution times are as close as possible
to the execution time of the longest task within the RPS, without actually
exceeding it (minimizing processing time difference). This means that the
shortest tasks are migrated to slowest resources, leaving the fastest resources
to the tasks requiring fast execution.
• Scheduling of idle tasks. The parent sets containing idle tasks are assigned

to the resources remaining after the rescheduling step. The PSs are pro-
cessed in the order of their arrival into the GS-queue. For some applications
we may possess an initial estimate of the total tasks execution time. In this
case the scheduler proceeds as described in the previous step. Otherwise,
tasks are assigned randomly.

More detailed information on the different steps of the algorithm can be
found in [1].

6.5 Algorithm Performance Evaluation
To measure the benefit of the proposed prediction algorithm for complex jobs with
unknown execution times, a number of simulation experiments were performed
in the DSiDE simulation environment. In this section we describe the simulation
scenario parameters (see Table 6.1), together with the performance results.

6.5.1 Simulation Experiment Description

A grid consisting of 4 computational sites, with 32 CRs each, is observed during
24 hours of simulated time. Each CR within the grid has a computational capac-
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Figure 6.5: Task length distribution for model sweep-based jobs.

ity between 0.5 and 4 MIPS (uniformly distributed among CRs) and is limited to
run a maximum of 2 tasks simultaneously. To focus on the variation of the exe-
cution time progress and on the accuracy of the predictions, we assume that once
initialized, the computational speed of CRs remains unmodified during the whole
simulation experiment.

The WAN links connecting the 4 distributed sites transfer data at a constant
rate of 5 Mbit/s, with a latency uniformly distributed between 3 en 10 ms per
link. On the other hand, intra-site transfers occur with a maximum speed of 1
Gbit/s. However, since link capacity within LANs is shared among the active data
transfers, the more data traffic has to be processed, the lower the transfer rate.
Finally, all the LAN links possess a fixed latency of 1 ms per link within a transfer
route.

As was mentioned earlier, job parameters for the simulated grid model are
derived from an existing tool for modeling and virtual experimentation with envi-
ronmental systems, called Tornado. Tornado possesses a broad category of jobs, or
virtual experiments, with input dependencies. In this work, we consider a group of
input dependencies resulting from model sweeps. It means that tasks are derived
from different mathematical models and have strongly varying execution times.
The considered execution times (Eact) on CRref and their variations are depicted
in Figure 6.5.

In this work, we simulate jobs containing 10 dependent tasks on average, or-
ganized into a 3-level dependency hierarchy. For simplicity, we assume that input,
output, and checkpointing data of all tasks are equally sized and amount to 1 GB.
A checkpointing delay of 2 s is also identical.

The task parameters considered correspond with the actual task properties ob-
served when running Tornado experiments on the UGent grid infrastructure [15].
The UGent grid is a part of the Belgian grid infrastructure and consists of 76 CRs
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Figure 6.6: Job arrival pattern with daily cycle. U(Umin, Umax) = uniform distribution
within Umin and Umax.

having a total of 222 CPUs, 304 GB memory and 4.4 TB disk space.
The workload described above is submitted into the considered grid environ-

ment according to the Lublin job generation model [16]. The model implies that
most of the jobs (about 80%) arrive during day time, between 8 AM and 8 PM,
resulting in peak hour loads alternating with relatively idle periods, as shown in
Figure 6.6. This cyclic behaviour largely corresponds to the behaviour of Tornado
users observed on the UGent grid.

We assume that an equal number of tasks following the overestimate, the un-
derestimate and the fluctuating progress evolution models are submitted. The
model parameters are initialized as follows (see also 6.1): Eref for the over-
estimate model is uniformly distributed between Eact×150% and Eact×200%;
Eref for the underestimate model equals Eact×10% + A; Eref for the fluctu-
ating model equals Eact; A is uniformly distributed between Eact×150% and
Eact×200%; b is uniformly distributed between 0 and 1; F is uniformly dis-
tributed between Eact×5% and Eact×10%; ϕ is uniformly distributed between
Eact×1% and Eact×2%; and, finally, we observe 3 types of noise r2 = 0 (no
noise), r2 = 0.05A (low noise oscillation amplitude) and r2 = 0.5A (high noise
oscillation amplitude). The task execution progress is updated every Eact×0.5%.

Finally, it is also important to mention that we utilized the Tornado modeling
and virtual experimentation framework for fitting periodic extrapolated execution
time predictions to a number of predefined functions within the prediction algo-
rithm. Tornado routines were called from the DSiDE code using the TornadoCPP
Software Development Kit (SDK) that consists of a Dynamically Linked Library
(DLL), an import library and corresponding header files. In particular, to perform
nonlinear curve-fitting (data-fitting) within Tornado, the following procedure is to
be followed:

• Implementation of the prediction evolution functions as algebraic models,
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Parameter Value

A U(Eref × 150%, Eref × 200%)
ActivationintervalofIS 5 min

b U(0, 1)
B of LAN links 1 Gbit/s
B of WAN links 5 Mbit/s

C 2 s
CJ 1 GB

CRNumber 128
F U(Eref × 5%, Eref × 10%)
IJ 1 GB

Latency of LAN links 1 ms
Latency of WAN links U(3 ms, 10 ms)

MIPSCR U(0.5 MIPS, 4 MIPS)
MIPSCRref 1 MIPS

nmaxCR 2
nmaxCRref 1
OJ 1 GB
P U(1%, 100%)

SchedulingintervalofGS 10 min
ϕ U(Eref × 1%, Eref × 2%)

Table 6.1: Listing of model parameters.
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specified in one of the two modeling languages supported by Tornado: Model
Specification Language (MSL) [17] or Modelica [18].
• Creation of a Simulation Experiment (ExpSimul) that simulates the models

over the desired time interval.
• Creation of an Objective Evaluation Experiment (ExpObjEval) that calcu-

lates the Sum of Squared Errors (SSE) between the values simulated by
ExpSimul and the input data.
• Creation of an Optimization Experiment (ExpOptim) that executes ExpOb-

jEval iteratively for different model parameters, until the minimum SSE is
reached. We have used the Simplex [19] optimization solver to provide ini-
tial model parameter values.

6.5.2 Simulation Results

In this section we compare the performance of the dynamic algorithm when using
two different task execution time prediction approaches. In the first approach the
prediction value is simply derived by extrapolation from the last task progress
measurement. The second approach is the proposed curve-fitting based prediction
mechanism. The performance of both methods is observed for job progress curves
with different amplitude white noise. An example for the overestimate model in
Figure 6.7 suggests that we consider job execution time predictions with a perfectly
exponential course (or a sinusoidal course in the case of the fluctuating model), as
well as jobs with noise with low and high amplitudes.

The simulation results on the performance of the two prediction algorithms are
depicted in Figures 6.8 and 6.9. In concreto, Figure 6.8 (a) shows the fraction of
useful workload processed by the dynamic scheduler in both cases. The term useful
workload refers to the total processing time on CRref , spent running successfully
executed jobs. Formally this definition can be written as follows:

E =

∑
J∈DoneE

CRref

J∑
J∈SubmittedE

CRref

J

(6.6)

where Done is a set of jobs, for which the final result is successfully computed
within the observed time interval; and Submitted is a set of all submitted jobs. We
have to emphasize that successfully executed tasks, belonging to jobs that have not
managed to execute within the predefined interval, do not contribute to the useful
workload.

The simulation results suggest that when the curve-fitting-based prediction
method is used, the dynamic algorithm achieves up to 15% better performance,
compared to the case when the extrapolation method is applied. The advantage of
the curve-fitting procedure is particularly remarkable in the case of noise with low
amplitude (“Low Noise”). In this case the trend of the progress curve is preserved,
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(a)

(b)

(c)

Figure 6.7: Examples of white noise, used to evaluate the prediction algorithm performance
(a) exponential progress evolution without noise, (b) exponential progress evo-
lution with low amplitude noise and (c) exponential progress evolution with
high amplitude noise.
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(a)

(b)

Figure 6.8: Performance comparison between extrapolation-based and curve-fitting-based
prediction approaches: (a) proportion of successfully processed useful work-
load; (b) network load.
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(a)

(b)

Figure 6.9: Performance comparison between extrapolation-based and curve-fitting-based
prediction approaches: (a) total number of migrations within the time interval
observed; (b) number of checkpoints per task.
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simplifying the selection of an appropriate prediction evolution function and thus
giving a correct indication of the total execution time in an early stage of a task
processing. It means that the task can be assigned to the best suited resource at the
beginning of its execution. Furthermore, matchmaking with an exponential curve
largely eliminates oscillations in prediction values, reducing overzealous check-
pointing and migration. The latter statement is confirmed by the simulation results
in Figures 6.8 (b) and 6.9 (a) – (b), which show respectively the proportions of
rescheduling operations, network traffic and checkpoints performed by the curve-
fitting and the extrapolation-based algorithms.

Obviously, when the prediction curves show smooth evolution (“No Noise”),
extrapolation-derived values show less variation and thus need less rescheduling
operations to calibrate task execution times. Therefore, the performance of the
dynamic algorithm with extrapolation gets closer to the performance of the curve-
fitting-based algorithm, compared to the “Low Noise” case.

Finally, large amplitude white noise (“High Noise”) conceal the trend of the
prediction curve, obstructing the curve matchmaking procedure. The curve-fitting
algorithm takes in this case wrong fitting decisions regularly, by selecting an inap-
propriate prediction evolution function to match with. In Figures 6.9 (a) – (b) can
be observed that the numbers of migrations and checkpoints performed by both
algorithm get close to each other. As a result, the curve-fitting approach performs
only slightly better than the extrapolation-based method with respect to the useful
workload processed.

6.6 Conclusion

In large distributed environments it is difficult to determine the execution time of
applications due to a variety of input parameters, internal application dynamics
and changing properties of distributed resources. However, knowledge of the total
job execution time is essential for the implementation of an efficient scheduling
policy. As this issue is difficult to address in a generic way, we consider a group
of applications for which the execution progress can be monitored at run-time. An
on-line prediction approach is proposed that uses the progress history to determine
the course of the prediction curve and thus to estimate the total execution time. To
achieve this goal, the approach makes use of curve-fitting of the current prediction
evolution data to a number of predefined models.

To evaluate the prediction approach performance, the latter is integrated into
an existing dynamic scheduler for workflow applications. The scheduler is in turn
implemented in a grid simulator, called DSiDE, where a realistic medium-sized
distributed environment with computational load derived from a real-world bio-
logical application is simulated. Under these conditions, the performance of the
dynamic scheduler was evaluated for two situations: the scheduler uses the pro-
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posed prediction mechanism; the scheduler uses an extrapolation-based execution
time predictor. The simulation results suggest the performance improvement of up
to 15% in the former case.
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7
Conclusions and Perspectives

In this dissertation, two important aspects of application execution in distributed
computational systems were investigated: fault-tolerance and scheduling of appli-
cation workflows. This chapter highlights the most important contributions of this
work and summarizes perspectives for future research.

7.1 DSiDE Simulator

A discrete event simulation environment, called DSiDE, was designed and imple-
mented in the scope of this dissertation. DSiDE has a general, clear and extensible
architecture, but thus far was mainly applied to performance evaluation of dynamic
scheduling algorithms in grid-like systems. Therefore, the simulator principally
contains built-in grid components, which however, can easily be completed with
components for different types of distributed environments. For example, recently
performance of thin client systems was tested in DSiDE.

The main advantage of DSiDE, compared to other existing grid and general
purpose simulators, is that it allows for easy and flexible modeling of system and
job dynamics. Examples of such events are resource failure and restart, changes in
resource load, varying job progress evolution etc.

One of the main disadvantages of DSiDE is that it currently supports only
modeling of centralized, i.e. bottleneck sensitive, distributed environments with
a single scheduler and a single information service. This limitation should in the
future be eliminated by providing a means for hierarchical or decentralized dis-
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tributed systems modeling. Another practical improvement to DSiDE would be to
allow addition of new computation and data scheduling algorithms in the form of
Dynamically Linked Libraries (DLLs), which would avoid the necessity of system
rebuilds when scheduling strategies are added or modified.

7.2 Fault-Tolerance in Distributed Systems

Adaptive replication- and checkpointing-based algorithms were introduced to over-
come shortcomings of existing static fault-tolerant solutions. The main advantage
of the proposed methods is that they modify the number of job replicas and the
checkpointing interval at run-time as a function of system load and the resource
failure frequency observed. Furthermore, to take advantage from the fact that re-
sources within large distributed environments often alternate between heavy sys-
tem load and idle periods, a hybrid scheduling algorithm was developed. The
algorithm switches between checkpointing and replication dynamically, depend-
ing on system load monitored. The results have shown that dynamic selection of
checkpointing intervals significantly reduces the run-time overhead in comparison
with periodic checkpointing. On the other hand, adaptive replication-based solu-
tions can provide fault-tolerance at lower cost in systems with low and variable
load, by postponing replication in function of system parameters. Finally, the ad-
vantages of both techniques are combined in the hybrid approach that can best be
applied when the distributed system properties are not known in advance.

A possible extension to the replication-based algorithms proposed would be
to take into account the data transfer overhead, when deciding on replica location.
Considering checkpointing-based algorithms, more refined criteria for checkpoint-
ing interval determination can be taken into account. For instance, profiles can be
constructed for each resource or group of resources, based on system logs, to de-
termine failure and restore patterns more precisely.

7.3 Scheduling of Workflows in Distributed Systems

A novel dynamic approach for balanced execution of workflow application was
proposed in this work. The approach deals with applications with loosely coupled
input dependencies, for which execution progress can be monitored at run-time.
Based on this progress information, the algorithm makes periodic predictions on
remaining execution times of tasks within each workflow. Tasks are scheduled in
such a way that the makespan of each workflow is minimized, by balancing execu-
tion times of parent tasks, generating input for the same group of dependents. This
procedure ensures that short non-critical tasks (i.e. outputs of these tasks can not
be used immediately by dependent tasks) are scheduled on slow resources, while
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compute intensive tasks get faster processing. The novelty of the algorithm lies
in the combination of its balanced approach with a dynamic, progress information
driven, rescheduling phase. Simulation results suggested a significant reduction
(up to 35%) of job makespan when the dynamic balanced algorithm is applied,
compared to the makespans achieved by a static scheduling solution.

Our research has considered static workflows, which means that the workflow
structure is not subject to changes during run-time. As some applications contain
dynamic task dependencies, it would be appropriate to extend this work to these
more complex type of workflows.

7.4 Execution Time Prediction
An online task execution time prediction approach, which makes use of historical
information on task progress evolution, was introduced. The approach matches
task progress evolution curves against a number of predefined models by means of
a nonlinear curve-fitting procedure. The prediction method proposed is general in
nature and can be used as a plug-in for existing scheduling algorithms.

While most of the prediction mechanisms described in literature are complex
and time consuming (as they either rely on detailed modeling of application com-
ponents or on an extended set of historical performance records) the main advan-
tages of the algorithm proposed are its simplicity and the ability to make relatively
accurate predictions even with a limited number of historical data records avail-
able. The algorithm was integrated into the dynamic algorithm for workflows
proposed earlier in this dissertation, enhancing its performance with up to 15%,
compared to the case when extrapolation-based execution time predictions are uti-
lized.

Currently, prediction evolution models used by the algorithm should be speci-
fied manually by end-users, based on their knowledge of the applications being
executed. In practice, it would be more convenient to extend the model base
dynamically, as more application types with different progress evolution curves
arrive into a distributed system. This dynamic approach will require in the first
place an unambiguous model classification procedure. Furthermore, the predic-
tion algorithm proposed leaves space for further optimizations of the workflow
scheduling algorithm introduced earlier. For example, the uncertainty of predic-
tions made (determined by means of non-linear regression) can be used to refine
the task rescheduling procedure within the algorithm: high uncertainty, in combi-
nation with low computational gain, can suggest that migrations should be omitted.






