}

Universiteit Gent
Faculteit Ingenieurswetenschappen
Vakgroep Informatietechnologie

UNIVERSITEIT
GENT

Dynamische planning van rekenintensieve
toepassingen in gedistribueerde computationele
omgevingen

Dynamic Scheduling of Computationally Intensive
Applications in Distributed Computing Environments

Maria Chtepen

Proefschrift tot het bekomen van de graad van
ff-\\\ Doctor in de Ingenieurswetenschappen:
Computerwetenschappen
Academiejaar 2010-2011

Z
-
m
@)



Summary

In this dissertation we address the issue of efficient execution of computationally
intensive applications within distributed environments, such as clusters, peer-to-
peer networks, grids. More specifically, we investigate how to incorporate runtime
information in the job scheduling process. Typical for large distributed systems is
that their computational capacity and availability can strongly vary over time. Fur-
thermore, their resources are often shared among different user groups, resulting
in high diversity and varying complexity of application (jobs) runs.

There are different challenges related to the process of distribution execution,
which are situated at the organizational as well as at software and hardware levels.
In this context, we focus on two important problems, which have significant im-
pact on the performance and flexibility of distributed environments: fault-tolerance
and scheduling of applications with dependencies (workflows). Several dynamic
checkpointing, replication and scheduling solutions are proposed that take into
account the dynamic nature of distributed resources and applications, by reconsid-
ering previously taken decisions at run-time.

To study the behaviour of grid environments in dynamic scenarios, we have
developed a discrete-event simulator, called DSiDE. DSiDE forms a flexible and
portable framework for modeling and simulation of distributed computing envi-
ronments. Thus far, it mainly contains a set of built-in grid components, which,
however, can easily be extended with components for other types of distributed
systems, such as P2P networks and clouds. The main advantages of DSiDE,
compared to other existing general and grid-specific simulation frameworks, are
its extensibility, genericity, relatively short simulation times and ability to easily
model dynamic system and application behaviour. Dynamic behaviour supported
by DSiDE includes varying resource load and availability, varying job arrival fre-
quency, changing application dynamics, efc. In general, the simulator is composed
of three separate modules:

e DGen: grid models and dynamic behaviour modeling event distributions are
provided as input into the simulator using an XML-based format. Recurrent
events from the input file are translated by DGen into a set of individual
events that can be loaded into the DExec module.

e DExec: is the kernel of the simulator, where simulations are run by process-
ing all registered events one after the other.

e DMExec: allows for automatic execution of either several predefined sim-
ulation experiments or of the same experiment with different seeds for ran-



ii

dom number generators.

The first issue addressed is fault-tolerance in grid systems. We consider un-
reliable grids, i.e. grids where resources are subject to failure and restart, where
applications of different duration are executed. The aim of this study is to give
a quantitative indication of the effect of resource failure on grid performance and
to justify the use of fault-tolerant techniques in these dynamic environments. The
results have shown considerable performance degradation of jobs with long exe-
cution times in unstable systems. Also, they suggest that the frequency of resource
failure has a larger effect on grid performance than the time it takes a resource
to restore. As a consequence of this study, several dynamic fault-tolerance algo-
rithms were proposed. The algorithms are based on well-known job replication and
checkpointing techniques. The main issue with these techniques is the large over-
head introduced when the number of replicas and the checkpointing intervals are
chosen inappropriately. Many existing research efforts in this area are dedicated
to determining the values of both parameters analytically, based on knowledge of
the application and distributed environments at hand. Unfortunately, the resulting
solutions are often based on unrealistically simplified assumptions or limited to
a certain type of applications. Therefore, the algorithms introduced modify the
number of replicas and the checkpointing intervals dynamically, based on run-
time information on system load, and the history of resource failures respectively.
Simulation results have shown that adaptive job replication is the most low-cost
approach in systems with low and variable load, while in heavily loaded envi-
ronments, checkpointing with dynamic interval can significantly reduce run-time
overhead, compared to periodic checkpointing. The advantages of both techniques
can be combined in a hybrid approach that can best be utilized when system prop-
erties are not known in advance.

Another issue addressed in this research is scheduling of workflow applica-
tions with input dependencies. Input dependencies imply that a task within a job
requires inputs generated by another task before it can proceed with its execution.
This is a loosely-coupled type of dependencies with limited run-time communi-
cation overhead, which can gain significant performance improvement from dis-
tributed execution of parallel tasks. Therefore, we propose a dynamic algorithm
for workflows that is based on the assumption that tasks within a job have vary-
ing computational complexity. The algorithm operates on applications for which
execution progress can be monitored at run-time. Based on the monitored task
progress and current resource capacity, tasks are (re)scheduled to resources to keep
the execution times of parallel tasks with the same dependents in balance. The idea
is that a dependent task cannot be executed until all its parents have generated the
required outputs. Therefore, it is desirable to assign parents with low execution
times to slow computational resources and keep fast resources for tasks requiring
fast processing. The performance of the algorithm proposed was evaluated using
a workload model derived from a real-world tool for modeling and virtual exper-
imentation with environmental systems, called Tornado. The results suggested a
makespan reduction of about 35% for the job as a whole. However, it is important



iii

to mention that the performance of the algorithm depends on the quality of task
execution time predictions, since these predictions are used to balance the execu-
tion time of running tasks. Initially, execution time predictions are constructed
by extrapolation from the last task progress measurements. Unfortunately, this
simple method is sensitive to internal application dynamics and variations in re-
source load, which leads to overzealous and overhead-prone task migrations within
each scheduling iteration. To reduce this overhead, a more effective prediction
method is introduced. The method is based on non-linear curve-fitting of pre-
dictions (constructed by extrapolation) against a number of predefined prediction
evolution models. Simulation experiments with Tornado workload suggested up to
15% performance improvement in case the curve-fitting based prediction method
is applied to the dynamic algorithm proposed.





