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Chapter 1

Introduction

1.1 Setting

The European Water Framework Directive (WFD)(EC, 2000) is oneefitiving
forces in environmental policy in the European Union (EU). The WFDsral
environmental objective is the achievement of a ‘good status’ for all objris
surface- and ground waters within a 15-year period. Its implementationigs a b
challenge for the European environmental managers. The WFD trigtieredh-

ter authorities to design monitoring programmes. Thus, large amounts of enviro
mental data are being collected, processed and stored throughopeElirey are
for instance needed for a coherent and comprehensive overvibe wofater status,

to identify pressures on water systems, as a warning system for deteetjatjve
changes in the water quality and to detect trends. Like other environmexiéal d
water quality data have a complex nature. They contain a considerable aofioun
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noise, due to their natural variability and the measurement error. Thay aite

tain missing values, are often censored due to the detection limits of the measuring
methods, and are commonly gathered on irregular time intervals. They alscemay b
mutually dependent, non-normally distributed, possess cyclic variationshena
nonlinear trends (e.g. Hirsch et al., 1982, Van Belle and Hughes, I®&d4and
Tiwari, 2000 and McMullan, 2004).

Due to the large amount of data and their complex nature, modelling has besome a
essential tool to extract information from these observations. Within tlearels
community, monitoring and modelling have now become generally accepted to be
interlinked activities (e.g. Parr et al., 2003; Hgjberg et al., 2007). Frasnptr-
spective, models can be used for a number of different purposemdtance, they

can be useful to assure data quality, for inter- and extrapolation in timepaoe,s

to increase the conceptual understanding of the underlying procéssasluate

the impact of (future) management strategies, to assess the effect mipganic
activities and to design monitoring programmes (Hgjberg et al., 2007).

High quality data is essential for an adequate management of the watercessou
Therefore, quality assurance is specifically mentioned as an importavityaiti

the WFD guidance document on monitoring (EC, 2003; Hgjberg et al., 200d}s
before the data can be used in an assessment, they have to be validated. Er
might be introduced during the analysis in the laboratory, wrong calibrafitreo
equipment or while entering the data. It is, however, also possible thatithare
change in the system that causes changes in the water quality. Thegafpbs
validation procedure is thus twofold: it should act as a tool to provide &tgua
check and as a warning system to detect negative changes. The nawgateof
water quality data and its complex nature, however, make it difficult for thie en
ronmental agencies to validate all incoming data. An ICT tool could be ot grea
help to assist experts with the maintenance of monitoring databases compelled by
the WFD. Such a tool should be able to deal with the complex nature of the water
quality data and it also should be adaptive because the environmentah sgste
likely to change, e.g. due to more stringent environmental legislation.

Once the environmental agencies have a consistent database at thesabitpe
data should be used to assess the evolution of the water status and to eve@uate
impact of their management strategies. Such an assessment shouldible @bss
the level of individual sampling locations as well as on a more regional.dekaey
classical statistical techniques cannot be used for these purposeséelata orig-
inating from environmental monitoring networks are clearly not indepemdérwry
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are sampled from a dynamic process that evolves over space and tinmefofége

the methodology should incorporate this spatio-temporal dependenceistrirc
order to provide valid statistical inference. Until recently, researcimtisly fo-
cussed on the assessment of water quality at the level of the individualiag
locations. There have been some attempts in the past to provide technigees to p
form an analysis on a spatial scale, but they used rather ad hoc metramtotomt

for the spatial dependence. Only the last couple of years spatio-telnmpadals
have been developed to take the specific spatio-temporal dependeartarstof
river networks explicitly into account (Gardner et al., 2003; Monestied. ©2005;
Cressie et al., 2006; Ver Hoef et al., 2006). But they are all relatedatiiaspre-
diction in river networks. Our aim, however, is to enable an assessméine alata
that is observed at the sampling locations. Therefore the observatitimes wion-
itoring network at a certain time instant can be considered as the realisation of
finite-dimensional multivariate random variable with each dimension cormgspo
ing to each of they sampling locations. Here, the spatio-temporal dependence also
has to be taken into account to provide valid statistical inference.

Both the data validation problem and the development of spatio-temporal mod-
els for river networks have become the major themes of this dissertationreBef
we give the outline of this dissertation, we will introduce the data that weré use
throughout the work to test and illustrate the developed methodology.

1.2 Introduction to the data used in this study

In the region of Flanders (Belgium), the Flemish Environmental Agency (VMM
established several monitoring networks. Their physico-chemical morjtogt
work was established in 1989 and now covers 1425 sampling locations ulisttib
over the different catchments of Flanders. Each sampling location is ésdlla

to 26 times a year on a basic spectrum of physico-chemical variables: temter
perature, dissolved oxygen (DO), pH, chemical oxygen demand (Ca)gen
compounds, phosphorus, chloride and conductivity. All these datstared in a
database, which is also managed by the VMM. The data can be classif@d-acc
ing to the catchment it belongs to. One of the catchment area’s is the YZer bas
The data of this catchment is considered in this dissertation.

The Yzer is a typical lowland river, located in a polder area. A map of ther Yz
catchment indicating the sampling locations maintained by the VMM is given in
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Figure 1.1: The Yzer catchment. In the left panel the main river is showriten
three parts are indicated. In the right panel the entire catchment is given
along with the sampling locations of the VMM (indicated with black
circles)

Figure 1.1. The total area of the catchment is 1102 .kits spring and one third

of the catchment is located in France, two thirds are located in Belgium. The
stream length is 76 km and 44 km of it is located in Belgium. At the French borde
the river is relatively narrow, between 8 to 10 m. The river gets gradwather

to reach a width of 20 to 25 m near to its mouth at Nieuwpoort, Belgium. The
river enters the North Sea by a complex of sluices. In Belgium, the rivetbea
subdivided in 3 major parts. Part | is an area where the river is more ®iires
its original state. In part Il, the river is straightened and has marshes rigtits
side. In part lll, the river has artificial dammed banks (De Rycke et2@0]1).
The Yzer is used for the production of potable water, so that the watafdsimeet

the standards for this production. However, the river is subject to ghitration

due to the high nitrate and phosphate concentrations originating from weensi
agricultural activity. Besides the agricultural pollution, other sourcedram an
industrial origin and from untreated sewage discharged by households

In most chapters we will illustrate our methods on five sampling locations where a
considerable amount of data is available. The five sampling locations atedoca
along two joining river reaches.
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Figure 1.2: Top Left: Network topology of the sampling locations. Bottom Left:
Map of the river reaches considered in this case study. Locations S1,
S2, S4 and S5 are located on the Yzer river while location S3 is lo-
cated on a joining creek. Right: Map of the part of the Yzer catchment
located in Flanders, Belgium. The area considered in this study is indi-
cated with the ellipse and the five sampling locations are indicated with
black dots

Sampling locations S1, S2, S4 and S5 are located on the Yzer while sampling loca
tion S3is located on a joining creek. Their river network topology and locaiio

the catchment are shown in Figure 1.2. Monthly observations are avaittiledn
January 1990 and August 2004.

1.2.1 Data exploration

The nitrate series at each sampling location is presented in Figure 1.3. Fegom th
measurements it can be seen that a number of observations are missirgx- For
ample all observations of 1995 are missing at the sampling locations of the main
river, and the observations between January 1996 and Novembéai®nissing

at sampling location S3. To enable the use of methods that cannot handlegmissin
data, the nitrate series was augmented with simulated data. To simulate the missing
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Figure 1.3: Nitrate observations at five sampling locations of the river. \&am-
pling locations S1, S2, S4, S5 are located on the Yzer river while sam-
pling location S3 is located on a tributary

data an additive model that consists of a trend component and a seefeokis

used. An introduction to additive models can be found in Chapter 2. Simulbted o
servationgy; are generated by using the prediction of the additive mggoahd by
adding a random residuéj to it, y; = y;+¢é;. The augmented dataset is presented

in Figure 1.4. When this augmented dataset is used, we ignore that missing data
was present and we act as if all the data from the augmented datasdiseassul.

An interesting method for a first examination of the water quality is the use of the
loess scatterplot smoother (Cleveland and Grosse, 1991; McMullad).20be
loess smoother is based on local polynomial regression and a more dewiled d
scription can be found in Section 2.2.3. Cleveland et al. (1990) develn pmebs
based method to decompose the data into a seasnal {rend {") and a residual

(R) component. They referred to it as the STL procedure. Suppose tha¢-th
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Figure 1.4: Nitrate observations at five sampling locations of the river. \Sam-
pling locations S1, S2, S4, S5 are located on the Yzer river while sam-
pling location S3 is located on a tributary. Open circles: Observed data,
Dots: Augmented data

sponsey = (y1, ..., yn) CONSists ofr observations measured at time- 1,...,n
then the STL procedure decompogeinto

y=S+T+R.

This method is implemented in the STL-routine of the tseries package for R (Tra-
pletti, 2004). The STL-method is applied to the data of sampling location S1.
As many standard techniques for time series analysis, the method howewet ca
handle missing data. Hence the augmented dataset is used. An STL plowis sho
in Figure 1.5. The seasonal pattern is very obvious, it has an amplitude iy

N/I. The contribution of the seasonal effect is low in summer and high in winter.
This could be expected, during summer the fertilised nitrogen is still in the fébrm o
insoluble ammonium which is converted in the soil by micro-organisms to soluble
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Figure 1.5: STL analysis of the augmented data at sampling location S1

nitrate. The accumulated nitrate is then washed out in the colder and wet winter
period. The trend component indicates an increasing trend in the begivfrting
series, the trend reaches its maximum in 1998 and from there on a degrieasih

is established that seems to level off at the end of the series. Note that thigrigeth
only explorative. It does not provide formal tests and/or variance ets@wa the
estimated seasonal effect and the trend which are needed for irdgrermoses.

The seasonal effect is also obvious when data from the raw nitrats segiplotted
against the day of yeari( which has supporil, 365]). A common approach to
model the variation is to include sinusoidal functions of fixed periods toribesc

the seasonal cycle within a year (e.g. Hirst, 1998; Cai and Tiwari, 200®ullan

et al., 2003; McMullan, 2004). Another possibility is to use the loess smother

let the data drive the functional relationship between the nitrate measuresnents

the day. A plot of nitrate in function of is shown in Figure 1.6. From the raw
data the seasonal effect is estimated with a smoother and with the Fourier basis
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Figure 1.6: Plot of the nitrate data collected at sampling location S1 against the
day of the year (all years are included in the plot). The dashed line

represents the fit with the Fourier basis and the full line represents the
fit with a local linear regression smoother

(71 sin(27 d/365) 4+ v2 cos(2m d/365)), whered is the day of year. The resulting
estimated functions are added to the plot. Both fits clearly indicate the presience
the seasonal pattern. Again the contribution is high in winter and low in summer.
The smoother and the Fourier basis are the two methods that will be used in this
dissertation to model the seasonal effect.

Now that the reader is familiar with the data, we will give the outline of this work.

1.3 Objectives and outline

In this dissertation we have two major objectives. On the one hand, we aim to de
velop of a semi-automatic data validation procedure for water quality data.eOn th
other hand, we want to develop spatio-temporal models to assess theablosesr

at the sampling locations of a river network.

A validation tool could be of great help for experts in environmental aigsrsince
it would enable them to focus on potential suspicious observations instéas-o
ing to validate all the data. An important feature of a validation tool that is used o
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a day-to-day basis is that it requires a minimum amount of user interactian. Th
method should also be able to handle data acquired at irregular time intendgls, a
it has to deal with nonlinear relationships and trends present in water qdatay
Preferable, the method should also be able to detect observations whesahine

is not in agreement with the measured values of the other water quality variable

Spatio-temporal models for river networks should enable a valid statisisaba-
ment of the water quality. The method should enable statistical inference at the
level of individual sampling locations and on a more regional scale. We wgitl fi
develop a fully parametric model. Then we will relax the assumptions to allow the
estimation of nonlinear trends. Finally, we aim to generalise the spatio-temporal
model in order to handle non-normal data that is distributed according themo
member of the exponential family. Remark that the methods in this dissertation are
not designed to perform interpolation at intermediate locations. Thus in thiks wo

an analysis on a ‘regional’ scale should be interpreted as a simultanealysian

at a finite number of sampling locations that are located within the study region.

An schematic overview of our objectives is given below,

1. The development of a statistical data validation procedure for watéityqua
data that
(&) can handle the nonlinear relationships and trends in water quality data,
(b) can handle data acquired at irregular time intervals,
(c) restricts the amount of user interaction,

(d) enables experts in environmental agencies to focus mainly on potential
suspicious observations,

(e) and detects suspicious observations when their relationship with other
water quality variables is unusual.

2. The development of spatio-temporal models for river monitoring netsvork
that

() enable valid statistical inference at individual sampling locations as
well as at a larger spatial scale,
(b) can be used for the estimation of nonlinear trends,

(c) and can deal with non-Gaussian observations.

10
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The first issue that will be addressed in this dissertation is the complex rwdture
the water quality data that makes the assumption of linearity often too rigid. The
assumption of full parametrical models is easily relaxed by using nonparametr
smoothing techniques. These techniques are much more flexible and ¢arecap
local trends and complex relationships between environmental variablegn W
multiple predictor variables are available, these techniques can be easiigexte
to surface smoothing (e.g. Cleveland and Devlin, 1988). Buja et al. {188%-
ever, showed that there were a number of disadvantages related to naikiva
smoothers. Therefore, they introduced additive models as a honpacaroetito
model a multivariate regression surface. Instead of combining all preglictone
multivariate smoother, they have proposed an additive model structure wheh
component is a one-dimensional smoother which models the contribution of a pa
ticular predictor. In time-series studies of air pollution and mortality, the use of
nonparametric models is widespread, since they allow for adjustments flan-non
ear confounding effects of seasonality, trends, and other envirdaheamditions
such as meteorological conditions (e.g. Dominici et al., 2002 and Gianmirapa
etal., 2005). Recently, nonparametric modelling has also been considensad-
elling water quality (e.g. Qian et al., 2000, Cai and Tiwari, 2008]r&tcke et al.,
1999, McMullan et al., 2003, McMullan, 2004). Within this context, we will ex-
plore additive models i€hapter 2 andChapter 3. In both chapters inference is
performed at the level of the individual sampling locations and missing daga wa
present in all example€hapter 2 gives a general introduction to additive models
and inChapter 3 we make use of additive models to design a semi-automatic data
validation procedure. In our approach, additive models are used axeitforma-

tion from the historical data, and the bootstrap is used to incorporate thdisgmp
variability.

The second part of this dissertation deals with the development of spatiot&mp
models that enable the analysis of water quality data at the level of indivddoa!
pling locations as well as on a more regional scale. To our knowledge daly a
references are available on spatio-temporal models for river netwW@&siner

et al., 2003; Monestiez et al., 2005; Cressie et al., 2006; Ver Hoef 20&i6) and
they are all related to spatial prediction. The focus in this dissertation,yeowie

on the assessment of the data that is observed at the sampling locationgwbsmse
Therefore the observations of the monitoring network at a certain time ircant
be considered as the realisation of a finite-dimensional multivariate random v
able with each dimension corresponding to each ofteampling locations. This
enables us to write the model ag-@limensional state-space model. After we have
given a general introduction to state-space mode@hapter 4, we will construct

11
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a model for the spatio-temporal correlation structure of river monitoring orésv

in Chapter 5. The river topology is used to derive the spatial dependence structure
and an autoregressive process is proposed for the temporal @gpendo assess
the evolution in water quality, a parametric mean model is use@hbmpter 5 we

will also provide an efficient algorithm to estimate the model parameters. Howev
many environmental processes are characterised by a nonlinear treGthap-

ter 6 we therefore combine the spatio-temporal correlation structure deveiloped
Chapter 5 with a semi-parametric mean model. The evaluation of the local trend
can be done by testing whether the first derivative of the nonlinear iseatifferent
form zero. Because these tests have to be performed at each time instiint, mu
plicity is another problem which has to be addressed in this chapt€hdpters 5
and6 the observations are assumed to be Gaussian. To deal with non-Ganlssian
servations a generalisation of our spatio-temporal model is presen@uhijpter

7. In particular a Bernoulli response is considered. Environmental conuglies
often based on threshold levels, providing a binary response to thectheciaker.

We will make use of generalised linear mixed models so that binary respcaises
be used to assess trends in the violation frequency of water quality standar

With Chapter 8 we conclude this dissertation by a discussion of the presented
methodologies, we bring the main conclusion and provide an outlook to future
research perspectives.

12
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Chapter 2

Review of additive models (AM’s)

2.1 Introduction

In Europe, the design of water quality monitoring networks is one of the &ey a
tions of the Water Framework Directive (WFD)(EC, 2000). This resultshigha
amount of water data, that is collected, stored and processed in Elikp@ther
environmental data, water quality data have a complex nature. They comaim a
siderable amount of noise, due to their natural variability and the measuremen
error. They may contain missing values, may be censored due to the detection
limits of the measuring methods and are commonly gathered on irregular time in-
stants. They also may be mutually dependent, non-normally distributed,sposse
cyclic variations and contain nonlinear trends (e.g. Hirsch et al., 198RJWMan,

2004).
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The large amount of the data together with its complex nature have triggered mod
elling as an additional tool to extract information for those observations.ivtie
research community, monitoring and modelling have become generally actepted
be related activities (e.g. Parr etal., 2003; Hgjberg et al., 2007). Inifsisrtiation,

we will focus on modelling to validate new observations, to identify trends and to
evaluate the impact of actions which were taken to improve the water quality. With
respect to these aims, we will use models from three different persgechirstly,

the models are used to describe the dependence of a water quality vafialde-o

est, the response (or dependent) variablg 6n several predictor (or independent)
variables {1, ..., X,). Possible predictors are for instance a trend term, a seasonal
component, a temperature effect and other water quality variables wieichea-
sured simultaneously. This use typically involves estimation of parametersrand/o
regression functions. Secondly, the relative contribution of each gbrisictors

in explainingY” can be studied and this gives us insight in the evolution/trend of the
response and its relationships with other water quality variables. A thirdbperp

is prediction, where we want to predict the mean response given a ceetadi
valuesXy, ..., X,.

We now introduce the modelling framework which we will use for these p@pos
Suppose we have observations of the respon¥esampled at different times=
1,...,n. They are denoted by am x 1 vectory = (y1,...,y,)’ and they are
measured simultaneously with thepredictor vectorse; = (zj1,...,2j,)7, j =
1,...,q. Then a typical water quality datasBX is represented by am x (¢ + 1)
matrix D = (x1,...,x4,y). A general framework to model the relationships
between the mean of and its predictors{ can be written in the following form,

Y =m(X1,...,X,) +e, (2.1)

wherem is the unknown regression function ands a zero mean random term.
The data-analyst now has to choose a certain structural form to modebthe
ditional meanm(Xy,...,X,). This can be done in a parametric, nonparametric
or semi-parametric way. When a parametric model is used, it is assumed that the
functional form is known and can be completely parameterised. In a nexmgéric
regression analysis, however, no functional form is assumed andghession is
completely data-driven. In a semiparameteric approach, the functiomaliganot

fully specified and some components are modelled parametrically while otleers ar
modelled in a nonparametric way. A well known example of a fully parametric
model is the standard multiple linear regression model. Because the relat®nship
between the response and the predictors are assumed to be linear, iE@dlio

20



2.1 Introduction

can be written as

q
Y=a+BXi+.. . +8Xs+e=a+> BiX;+e (2.2)
j=1

with the parameter and aq x 1 parameter vectoB = (fi,...,3,)". To fit

the model to the data, the parameters have to be tuned so that the fitted values
y=&+ Z?Zl Bja:j are in some sense as close as possible to the observed values
y (e.g. by using least squares). The popularity of linear models is largelyadu
their simplicity and easy interpretation. However, the model depends onraystro
assumption of linearity between the predictors and the response. Urstalyn

like other environmental data, trends and relations between water qualityydata
ically are nonlinear (e.g. Cai and Tiwari, 2000; Dominici et al., 2002; Waiod
Augustin, 2002; McMullan et al., 2003; McMullan, 2004). Therefore duhd be
better to let the data drive the specification of the functional relation bettteen
predictor variables and the response. This is exactly what scatterplotisen®

do for the two-dimensional cas®’, X;). They modelY asY = fi(X1) + ¢,
where f1(X) is a smooth function used to approximate the underlying function
m(X1) without imposing a rigid parametric relationship such as linearity. A prin-
ciple used by many smoothers is to estimate the regression surface locallg instea
of globally. The fit at a certain predictor valugis only based on the data that lays

in a certain neighbourhood af;. This adds much more flexibility to the estima-
tion of the underlying function. An example is the loess smoother (Clevelathd an
Devlin, 1988), which is illustrated in Figure 2.1. The resulting smooth indicates a
increase in the nitrate level between January 1990 and December h@offown

there on a steady decrease in the average nitrate concentration is esthblisa
linear regression fit remains more or less constant over the entire terdpanaln
because it cannot handle slope changes. The idea of scatterplot srgazth be
easily extended to thedimensional case (e.g. Cleveland and Devlin, 1988; Cleve-
land and Grosse, 1991; Loader, 1999b) whe(eX, . .., X,) is approximated by
ag-dimensional smoothefi (X7, ..., X,). Note that the number of dimensions
equals the number of regressors. There are unfortunately somemsotgkated to
multidimensional smoothers. In particular,

1. Buja et al. (1989) showed that most multidimensional extensions ofritiva
ate smoothers are not attractive from a computational point of view.

2. Due to their multivariate nature, they also suffer from “the curse of dimen
sionality”. These problems are mainly triggered by the multidimensional
neighbourhoods which have to be defined. Hastie et al. (2001) illustized
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Figure 2.1: Scatterplot of nitrate concentration in function of time, a leastrequ
regression line (dashed line) and a loess smoother (solid line)

the neighbourhoods are less local when the number of predictors sestea
Another issue is also related to the data sparseness in a high dimensional set-
ting. Therefore, more data ends up in the boundary region. Since smoothe
estimates are known to be more biased in the boundary regions, the bpundar
problem is more dominant in a multidimensional setting.

3. Itis difficult to define a sensible metric for the multidimensional neighbour-
hoods, because the predictors are often measured in different units.

4. The visualisation of multivariate smoothers is less obvious. Especially when
the number of predictors gets beyond two. In order to study the effettis of
individual predictors, projections from the hyper-surface can beentsda
lower dimensional space, but this projection depends on the fixed values o
the remaining predictors and thus they are rather noisy.

To overcome the above mentioned problems, Buja et al. (1989) came up with an
ternative approach. They suggested to use one-dimensional smoatlaeiditive
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Figure 2.2: Nitrate concentration in function of the time (day number) and tem-
perature {C). Left panel: linear model, Middle panel: additive model
using two univariate local linear regression smoothers and Right panel:
a two-dimensional local linear regression smoother

building blocks of the model. This results in a more restricted class of nomeara
ric regression models, also referred to as additive models. Additive mexkelsd
standard linear models and model this response variable as

q
Y=a+) fi(X;)+e (2.3)
j=1

where f; can be any function, however in most cases smoothers are used. Similar
to linear models, additive models are additive in the covariates but notsagees

ily in a linear way. Due to this additivity, the effect of a predictor on the fitted
response surface does not depend on the values of the other medidtaus,

the contribution of each predictor can still be studied individually. This ksab

the user to decompose the model in each of its smooth functions, which can be
graphically depicted. Figure 2.2 shows the differences between a linedel mo

Y = a+ 51 X1 + B2Xs + ¢, an additive model = o + fl(Xl) + fQ(XQ) + €

and a multivariate regression smoothér= fi2(X1, X2) + ¢, whereY  is the ni-

trate concentrationX; represents time anil; temperature. Due to the additivity
assumption, the bump at low temperatures and at intermediate dates is less high fo
the additive model than in the multivariate smoother model . However the bump
is situated in a data sparse region and might be a boundary effect fromuthe
tivariate smoother. Apart from this feature, the fits by the additive modikize
multivariate smoother look similar. This can also be seen in Figure 2.3 where the
fitted models are plotted as a function of each predictor separately. Similaiato wh
was observed in Figure 2.1, both fitted models show higher fits around dhefen
1997 and the beginning of 1998 and seem to decline afterwards. Tiieisreb-
scured by the large oscillations on a smaller time scale. They originate from the
temperature effect which is modelled simultaneously. When the modelled surfac
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is projected onto the nitrate-temperature plane, the overall trend seems tténdic
an inverse relationship between nitrate levels and temperature. This casilye e
explained. During summer the fertilised nitrogen is still in the form of insoluble
ammonium which is converted in the soil by micro-organisms to soluble nitrate.
The accumulated nitrate is then washed out in the colder and wet winter period
The oscillations observed in the temperature effect are due to similar tempsratu
which are measured on different dates.

The additive model, however, enables the analyst to look at the contritaftéath

of the predictors separately. This is illustrated in Figure 2.4. At the end3# 8
contribution of the long term trend shows a steep incline and reaches a maximum
at the beginning of 1998. From this point on, it seems to decline up to therfires
This decline is possibly due to the introduction of two manure action plans (8)AP’
introduced in 1996 and 2000 (Vlaams Parlement, 1995, 1999), resglgctivhe

aim of these MAP’s was the reduction of the nutrient pollution originating from
agriculture. In Figure 2.4 the interpretation of the contributions of each ef th
predictors is much easier. The inverse relation between temperature ad isitr
also more obvious.

Because smoothers are used as the basic building blocks of the additieéspzod
brief review on smoothing is needed before we can move on to model fitting and
selection.

2.2 Smoothing

Hart (1997) mentioned that the aim of smoothing is to remove data variability that
has no assignable cause and to make systematic features of the data nanre app
ent. Smoothing however has become synonymous with a variety of nongecame
methods used in the estimation of functions. In this dissertation, the term smooth-
ing is used in the latter sense. Smoothing resorts under the class of noepéra
tools for regression analysis since they generally do not assume a rnigidfdo

the dependence between the mean response and the predictor vaHabtesand
Tibshirani (1990) defined a smoother as a tool for summarising the treadesf
sponseY” as a function of one or more predictaks, . .., X,, and it produces an
estimator which is less variable th&nitself. According to Cleveland and Devlin
(1988) and Hastie and Tibshirani (1990), they have three major usesfirst is

to provide an exploratory graphical tool which gives the user insighttheadbe-
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Figure 2.3: Nitrate concentration in function of the date (top panels) and tempe
ature (bottom panels). In the left panels nitrate data are represented
along with the fit of the additive model, in the right panels the ni-
trate data was modelled using a two-dimensional local linear regression
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haviour of the data and which helps him/her to choose an appropriate fgacame

Nitrate (mg N/I)

Nitrate (mg N/I)

5 10 15 20 25 30

0

5 10 15 20 25 30

0

Multivariate smoother

01/90 01/94 01/98 01/02

Time

Temperature ( C)

model. Secondly, they are used as a regression diagnostic to checletheeay

of the fitted parametric models. Their third use is to estimate a regressionesurfac

without resorting to a parametric class of functions. This can be dondlgjnes-
ing a multivariate smoother or by the use of additive models, which use tatvar
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Figure 2.4: Contribution of long term trend (left) and temperature (right) to the
nitrate concentration predicted by an additive model

smoothers as basic building blocks. We will mainly focus on smoothers from tha
third point of view. In this section, for notational comfort, only one predig$o
taken into account. Hence, the model in Equation (2.1) reduces to

Y =m(X)+e. (2.4)

When a smoother is used to estimate the functignit is basically an approxima-
tion of the true regression function, and it generally contains a certain renobu
bias. To stress that the smoother is only an approximation of the true funation
we will use the notatiorf to represent the smooth function. Our brief overview of
smoothing is restricted to linear smoothers since their statistical propertiegkre w
studied in literature. A linear smoothéican be estimated as a linear combinations
of the response. Linear smoothers can thus always be written as

f =5y, (2.5)

where f is then x 1 vector of the estimations of at each of the: observations

f = (fi,...,fn)T and S is then x n smoother matrix which consists of a set

of unique weightsS;; for eachz;. The specific value of the weights depends on
the type of smoother that is used. For local polynomial smoothing they are de-
fined in Section 2.2.3. When similar assumptions are made as in the parametric
regression framework, linear smoothers can inherit a whole set oéimferproce-
dures known from the classical parametric regression context, e.gon#ection
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of confidence intervals (Cleveland and Devlin, 1988). Two important elesnp
of such assumptions are Gaussian residuals and an unbiased estimatidoyof
the functionf(x). In this section, splines, kernel smoothing and local polynomial
regression smoothers are covered.

2.2.1 Splines

We start with a brief introduction to univariate splines, where the meanmespe
modelled as a function of the one-dimensional predictor varidbldo provide a
flexible tool for approximating the underlying process of Y, piecewisepmtyials

can be used to represent the functipfX). This transforms the global nature
of polynomial regression into a fitting procedure which has a more localeatu
(Hastie and Tibshirani, 1990). The piecewise polynomials are obtaineidibing

the domain onX into intervals using a number of breakpoints, also known as
knots. In each intervalf is then locally represented by a separate polynomial
(Hastie et al., 2001). In most applications, one typically wants the function to
join smoothly at these knots. By allowing more knots, the function becomes more
flexible. Our eye is apparently skilled to pick up second order and lowdsror
discontinuities, but not the higher order discontinuities. Therefore thympmials

are generally forced to be continuous up to the second order degisatithe knots.
Cubic splines are the lowest order splines that fulfil these conditions.sk/olee

is interested in smooth derivatives, there is generally no real reason splirses

of higher orders (Hastie et al., 2001).

When splines are used for prediction, they are known to suffer froge lextrap-
olation errors. Polynomial fits are known to be erratic at the boundanesthais
extrapolation can be dangerous. This behaviour is even more expliait ugdieg
splines, because the fit at the endpoints is based on less data. To tleckeer-
rors, natural cubic splines can be used. These add an additionélatonat the
endpoints of the regression, the secofit) @nd third derivative () of f are equal

to zero, /" = f” = 0. In this way they impose the spline to behave in a linear
way beyond the boundary knots and thus stabilise the variance of the sphne
the endpoints (Hastie and Tibshirani, 1990).

Computationally, cubic splines can be calculated by using a set of bast®fns)c
saysi(x),...,sm(x). The regression function is then estimated by simply re-
gressing the respongeagainst thes;(x)'s. Basis functions which are commonly
used are for instance the truncated power basis or the numerically supesdine
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basis (Hastie et al., 2001; Hastie and Tibshirani, 1990; Hart, 1997; BibekrMarx,
1996). Splines are computationally attractive when the number and the loo&tion
the knots are known, because this reduces the fitting procedure to arkgeas-

sion problem. The difficulty however in fitting splines is choosing the number an
the location of the knots. When a small number of knots is used, the spline often
shows some undesired non-local behaviour. However, using mote knoften
limited by the available number of degrees of freedom. Controlling the desired
amount of smoothing by restricting the number of knots is not straightforvirand
smoothing purposes, it is easier to use a third type of splines, smoothingsspline
In contrast to the previous splines, they originate from the following optimisatio
problem in which

n

b
S (o — F() + / £ de (2.6)

t=1

is to be minimised. Hereg is a fixed constant, and < z; < ... < z, < b. The
first term is the sum of squared errors, which measures the closenbssfitted
regression function to the data, while the second term penalises curiratine
function. Remarkably, it can be shown that Equation (2.6) has a unique mémimis
which is a natural cubic spline with knots at the eaght = 1,...,n. At first
sight, the family seems overparameterised: fitting such a spline requi@ame-
ters. However, the coefficients are constrained as well due to the [iweliterm.
This brings down the effective dimension drastically (Hastie and Tibshit880).
The parametefy controls the amount of smoothness. Large values pfoduce
smoother curves, while smaller values produce more wiggly curves.

We now continue with a totally different concept of smoothing, which is Kerne
smoothing.

2.2.2 Kernel smoothing

Local averaging is a very intuitive and appealing method for the approximatio
aregression functiom. It is easy to understand that points close to x contain more
information onm(x) than points which are more remote from x. The principle
can be improved by computing a locally weighted average. This is exactlyisvhat
done by kernel smoothers. L&Y, be a real-valued weight function which depends
on the bandwidthh. The functionK} is assumed to be a symmetric probability
density function and is also referred to as Keenel function With this notation,
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the Nadaraya-Watson kernel estimator is given by

. i Kn(zt — )yt
fulz) =51 , 2.7)
t; Ky (z; — x)

which was independently derived by Nadaraya (1964) and Wats@4)19

The Gasser-Mller estimator is another common kernel estimator,

fu@) =Y [ Kafu -z (2.8)
=1 g7

S

with s; = (x4 + x441)/2, xg = —o0 andx,+1 = +oo (Gasser and Miler, 1979).
Both kernel estimators are zero order approximations of the regreasictidn
m. Fan (1992) and Fan and Gijbels (1996) have shown that the Nad@fatgan
kernel gives a more biased estimator in an interior point than the GaddrM
kernel, but the latter corrects the bias at the expense of the variance.

Both methods are also seriously biased at the boundaries. Althoughdrguoua-
rection methods are possible, they are complicated and not as effedivdwitive
as the automatic boundary correction of the local polynomial regressiootsaro
(Fan, 1992; Fan and Gijbels, 1996; Hasti and Loader, 1993), whichtroduce
in the next section.

2.2.3 Local polynomial regression

The idea of local polynomial regression can easily be motived by apprtirigna
the regression functiom in a neighbourhood afy by a Taylor expansion,

(@) ~ meo) + 3 0 (g (2.9)
m(x) =~ m(xg il T —xo) , .
k=1

wherem ) (zy) = %%Tuo. Local weighted least squares can be used to fit this

polynomial by minimising

> Iy =Y Bolw — o) PPK (xt ;L x()) : (2.10)

t=1 k=0
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Chapter 2. Review of additive models (AM’s)

where K (.) is a kernel function which will be introduced later on ahds the
bandwidth which defines the size of the neighbourhéag— h,zo + h). The
kernel function assigns weights to each observation.

The solution to this local weighted least squares problem is

By = (@I Woz.) 'zl Wy, (2.11)
wherex, is ann x (p + 1) matrixx, = (1, Xy, ..., Xhe), 1 = (1,...,1)T isan
n x 1 vector of onesx,. = (z1 — 2o, ..., T, —x0)" iSann x 1 vector andWy is

ann x n diagonal matrix build up by the kernel weights (Fan and Gijbels, 1996).
The responsgy corresponding ta:, is then estimated by

Jo=[10...0]By=[10...0) (xIWoz.) 'xIWoy =Sy, (2.12)

where the centered vector of; is [1 (zo — o) ... (zg — x0)P] =[10...0].
Hence the fit of local polynomial smoothers is a linear combination of the re-
sponses. If this procedure is performed foratibservationgz;, y;), t = 1,....n,
the fity can be written as

y = Sy, (2.13)

whereS is ann x n matrix and is also referred to as the smoother matrix. Since
this predictor is of the same form as Equation (2.5), this estimator is also a linear
smoother.

Several important choices have to be made before local polynomiabeigmecan

be used. The size of the bandwidth has to be selected, but descriptioractcal
procedures for bandwidth selection are kept for the next sectiondddee of the
polynomial has to be set. Because the bias is mainly controlled by the bandwidth,
the choice of the degree of the local polynomial is less important. Howeyres, f
fixed bandwidth, increasing the degree reduces the bias, but this isetgbase

of an increasing variance of the fit and of a higher computational cosenAim-
portant issue was pointed out by Fan (1992, 1993). He showed theaiiability
remains unchanged by going from a local constant to a local linear fit. lde als
showed that the local constant fit suffers from low asymptotic efficierscgom-
pared to the local linear fit. Fan and Gijbels (1996) generalised thedésraad
proved that the variability does not increase by going from an even padgno-
mial fit to an odd order polynomial fit. The extra parameter can howevercesd
the bias significantly. They also argued that even order fits suffer fernous
boundary effects, in contrast to odd order fits which have nice adaptiundary
properties. From this point of view Fan and Gijbels (1996) recommendesttthe
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2.2 Smoothing

lowest possible odd order for the polynomial fit. Hence, throughout thsedes-
tion the degree is setto 1, unless derivatives have to be estimated. Agoéston
which has to be addressed is the choice of the kernel funéiohe choice of
the kernel is not that important from a practical point of view. Howekan and
Gijbels (1996) have shown that the Epanechnikov kerfdl) = 3/4(1 — u?)

for —1 < u < 1 and zero foru outside that range, is asymptotically optimal for
the interior of the domain. When the Epanechnikov kernel is to be used ia-Equ
tion (2.10),u has to be replaced by = (x; — z¢)/h. This kernel is used in the
remainder of this dissertation.

There is a vast amount of literature on the attractiveness and advaotdmes lin-

ear regression smoothers (e.g. Cleveland, 1979; Cleveland and O&8iy, Fan,
1992, 1993; Hasti and Loader, 1993; Fan and Gijbels, 1996; Lo4868b). Fan
(1992) showed that the local linear regression smoother is the best dmeag
smoothers. Fan and Gijbels (1996) studied the linear minimax risk of polynomial
regression in order to compare with other linear smoothers. For an ajgieop
choice of the bandwidth and the kernel, estimating the me@r,) by local linear
regression and the first derivatiwe(’) () by a local polynomial of second order
is efficient both in the interior of the design and at the boundaries. F&2)19
Fan and Gijbels (1996), and Hasti and Loader (1993) also showelbdahpoly-
nomial regression adjusts automatically for bias at the boundaries andige des
adaptive in the sense that they also adjust for bias in regions whereettiietprs
are nonuniform. As another advantage, the weighted least squanemelip@lso
enables straightforward generalisations of classical statistical infeprocedures
(Cleveland and Devlin, 1988; Fan and Gijbels, 1996; Loader, 19%9hbally, Fan
and Gijbels (1996) and Loader (1999b) also reviewed some fast corgmalyn-
rithms for local polynomial regression, which enable them to compete with other
numerical smoothing techniques from a computational point of view. Their co
putational aspects, simplicity and attractive properties are a strong pleaour fa
of the use of local polynomial smoothing. Therefore the local linear smo@her
used as the basic smoothing procedure throughout this dissertation.

2.2.4 Tuning the smoothing parameters of local polynomialegression

The bandwidth and the kernel functidn control the size of the local neighbour-
hood. Therefore the choice of the bandwidth in local polynomial regness a
crucial one. When taking the bandwidth close to zero, the data are integola
leading to an overparameterised model. A bandwidth taken arbitrarily lagge, r
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Figure 2.5: Fit of the nitrate data with local linear regression with bandwiditlleq
to 2 months (left), 4 months (middle), 2 years (right panel)

sults in a polynomial of degree p which is fitted globally. Hence, the bandwidth is
a key element in controlling the complexity of the smoother. The smaller the band-
width, the more degrees of freedom that can be used for controlling the Bid

this reduction in bias does not come for free. Smaller bandwidths will alsadead
an increase of the variance associated with the estimators. Too small b#relwid
typically result in more wiggly curves and this can conceal the main featuriehw

are present in the data. This problem is addressed in literature as modéng.

Too large bandwidths on the other hand tend to oversmooth the data andrthis ca
lead to the introduction of a substantial bias. This is illustrated in Figure 2.5ewher
nitrate data are modelled using a local linear smoother and 3 different ithdw
When a bandwidth of two months is taken, the obtained curve is too wiggly and
highlights features which may be inherent to the sampling variability. A band-
width of 4 months still highlights the cyclic pattern in the nitrate concentration but
produces a smoother fit. A large bandwidth is sensitive to oversmoothirdy, lea
ing to an estimate which can miss certain features of the curve. A bandwidth of
2 years, for example, looses the ability to pick up the cyclic behaviour ofithe n
trate concentration. The size of the bandwidth can be chosen to be domstan

the domain ofX, or can be variable. For variable bandwidths a further distinction
can be made between local variable bandwidtisy), varying with the location

xo, and global variable bandwidth&(z;), changing with the observations. An
example of a variable bandwidth with a very simple nature is the nearest oeighb
bandwidth. The selector requires that a fixed fraction of the data is irgtlude

the neighbourhood. This fraction is referred to as the spahadapts automati-
cally the amount of smoothing to the local situation, using small bandwidths in a
dense design region, and large bandwidths in sparse regions (Alt@22y, A&n

and Gijbels, 1996; Loader, 1999b). This method thus prevents thatghession
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2.2 Smoothing

in sparse data regions is based on only a limited number of points. For thetfade
between the amount of bias and the associated variance of the estimaiterjacr
is needed which takes both terms into account.

Two criteria are commonly used for this purpose: the Mean Squared BRIE)
and the Mean Integrated Squared Error (MISE). The MSE is defined as

MSE(wo) = E ((fu(w0) = m(0))*) = var ( fa(wo) )+ |E (fa(a0) = m(z0))]
(2.14)

It is the sum of the variance and the squared bias of the estimator. Minimising this

criterion will give the theoretical optimal local bandwidth. However, thisicko

depends on the true underlying function which is unknown. An optimal band-

width could be defined @swhich minimisesM SE(x). An asymptotical approx-

imation of this optimal bandwidth is given by Fan and Gijbels (1996),

2

o2 (a 1/(2p+3)
hopt(l'o) = Cv,p(K) {m<p+1)(£0$;2p(mo) n 1/(2+3p)7 (2.15)

wherewv is the order of the derivative af of interest (it is zero when we are
interested in the mean function and 1 if the prime interest is the first deriygtive
is the order of the polynomial, which is usually equabte 1, P(x¢) is the design
density function evaluated iy andC, ,(K) is a constant depending on the kernel
(e. g. for the Epanechnikov kernel it is 1.719 whers= 0 andp = 1 and 2.275
whenv = 1 andp = 2). The mathematical definition af, ,(K) and values for
other kernels and/or other valueswadindp are reported in Fan and Gijbels (1996).

The second criterion is the MISE. It is defined as a weighted integrationeof th
MSE over the domain of X9,

/MSE(:L‘)w(x)dx, (2.16)
0.

wherew is a non-negative weight function. Using the MISE leads to the specifica-
tion of a global optimal bandwidth, which stays fixed over the entire domain of x
The following solution is provided by Fan and Gijbels (1996),

n~ 1/ (2+3p) (2.17)

[ o2(z)w(z)/P(x)dz 1/ (2P+3)
hopt = Cy p(K) [ ?x{m(p+1)($)}2w(x)dg;]

Oz

These asymptotical results can not be used directly to find the optimal bahdwid
because they rely on some unknown quantities such as the design densiat
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Chapter 2. Review of additive models (AM’s)

the design points, the conditional variance?(.) and the conditional meam(.).
Therefore alternative methods are needed to estimate the bandwidth inearactic
Two main approaches are described in the literature: classical methodkigad p
methods.

Classical methods consist in the minimisation of certain criteria as the leave-one-
out cross validation (CV), generalised cross validation (GCV) or thek&kiafor-
mation criterion (AIC). The CV criterion can be written as
1< .
CV(h) = > lye— @) (2.18)

t=1

Wherefh‘t(xt) indicates the estimation at obtained by fitting the smootheft
to the reduced dataset which does not contain the data point at.tiffa linear
smoothers the CV criterion can be rewritten so that the explicit recalculatiie of
smoother is not needed.
1y — fu(e) (o
CV(h)=— = 2.19
( ) ntzl{l_Stt(h)} 7 ( )

whereS,; indicates the*" diagonal element of the smoother matfx The GCV
criterion replaces thé;; by their average tS/n). The GCV is thus defined as

1, v — ful@e) 1o
h)=— TNl 2.20
GCV(h) n;{l_tr(s)/n} (2.20)
The use of the CV and GCV criteria can be justified because they are bhwtls€o
tent estimators for the MISE (Fan and Gijbels, 1996).

Another popular criterion is the Akaike information criterion (AIC),
AIC = =21 + 2df, (2.21)

wherel is the log-likelihood andf are the degrees of freedom used by the smoother,
calculated as {iS) . When the errors are Gaussian and when the variance has to be
estimated, the first term reduces-+t@l = nlog(27) + nlog(3> 1 (é7)/n) + n.

Note that in this casdf has to be increased by 1 due to the estimation of the
unknown variance. In particuladf = tr(S) + 1.

The concept of plug-in bandwidth selection is based on the replacemte oh-
known quantities needed in Equation (2.17) by their estimates. These estimates
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2.3 Fitting additive models

are mainly based on local polynomial regression of higher order polyri®msa

ing pilot bandwidths. By doing so the problem of bandwidth selection is shifted
to the selection of appropriate pilot bandwidths. A plug-in estimator for loeakle
squares regression can be found in Ruppert et al. (1995). An dfpeated criti-
cism on the classical approach is that the resulting bandwidths are oftearieo
able and frequently undersmooth (e.g. Loader, 1999a). When in a sinmsatidy
repeated samples are drawn from a model, cross validation can seldutitiéns

that are very different from sample to sample. However, Loader @Ra&ued

that this can be expected when bandwidth selection is applied to problems with
features which are difficult to detect since the selector has to decide fdaeh
tures in the dataset are real. He also showed that less variable bandsiddiios
display this difficulty in another way: by consistently oversmoothing. Tloeeef

he claimed that the variability of the bandwidth estimates by classical methods is
rather a symptom than a problem of the difficulty in estimating the bandwidth.
Loader (1999a) also showed that the plug-in based estimates are asyatigtotic
beaten by their pilot estimates and prone to oversmooth when they aretpoeten
difficult smoothing problems.

Bandwidth selection in this section has to be seen in the framework of unearia
smoothers used in additive models, wheteandwidths have to be selected which
are not mutually independent. Apart from the date, the other water qualifyieo
ates behave as arandom design, and therefore a variable banduédtbrde more
appropriate. For additive models, only a few references on fixediplbgndwidth
estimators exist to our knowledge (Opsomer and Ruppert, 1998; Ops2hoér,
Mammen and Park, 2005). The definition of variable plug-in bandwidthses ev
more complex. The use of nearest neighbourhood bandwidths in an AMxto
is relatively simple, and guarantees that each local regression usppraprate
number of observations. The spans. . ., s, are typically estimated by classical
methods. In this respect, and given Loader’s (1999a) comments, weokijan
deeper into the problem of plug-in based bandwidth estimators and we arsshe
neighbourhood bandwidths which are defined by the span in the remaifithés
dissertation. We now explore the fitting procedure of additive models.

2.3 Fitting additive models

In practice, the backfitting algorithm proposed by Buja et al. (1989) is th&t mo
widely used method to estimate the additive components. From Equation (2.3) it
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Chapter 2. Review of additive models (AM’s)

is obvious that each function can be written as
HX) =Y —a=) " fulXp) — e (2.22)
k#j

When; is a linear smoother with smoother matS% and in the hypothetical case
that the other predictor terms are knowfn can be estimated as

fi=8i{y—a-) fi} (2.23)
ki#j
where f,. is then x 1 vector (fy(zx1), .- -, fr(zrn))T anda is ann x 1 vector
(a,...,a)T. When only linear smoothers are used in the model, a similar ex-

pression can be used for each smoother. By combining all these drpedbe
following set of equations has to be solved,

I S; S1 ... 81 17 [fi] [S1]
S2 I S2 “ e . 52 ]_ f2 52
=| .|y (2.24)
Sy S¢ Sq¢ ... I 1| |f, Sq
1/n1/nl/n...1/n 1] [ o] [1/n]
wherelT is then x n identity matrix andl is then x 1 vector(1,...,1)’. The

backfitting algorithm solves this set of equations iteratively. Inithdteration,
fg.l_l) is updated by

1) =Sity—a=3 1" =3 1) 225)

k<j k>j
In order to make each function identifiable, an additional constraint hasitdro-
duced,>"} ; fj(zj¢) = 0. This is simply done by replacing ea®j in Equations
(2.23)-(2.25) by the centered smoother maSix= (I — 117 /n)S; (Kauermann
and Opsomer, 2004). This also foree$o be estimated by the sample maan

For a semi-parametric model, sagy = f; + X3 + €, which contains only
one linear smoother, Hastie and Tibshirani (1990) showed that an exoliatton
exists,

f1="51y— Xnp) (2.26)
B=(XT(I-8)Xnm) 'XL(I- Sy, (2.27)
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provided that X T (I — §,) X ,,) " exists. They also showed that for the bivariate
additive modell” = f1(X1) + f2(X2) + ¢, the backfitting estimators converge to

F = (I~ (I~ 818)" (I~ 81))y (2.28)
£ = (I — (I - $281)"1(I - Sa))v, (2.29)

as the number of backfitting iterations approaches infinity and given thabtine
IIS1S2|| < 1. The fitis then given by

G=f ) = (I - (I - So)(I - 828)"'(I - S1))y,  (230)

which shows thay is a linear combination o with then x n projection matrix
H = (I — (I — SQ)(I — Sgsl)_l(I — Sl))

After fitting the model, predictions and point estimates of the smooth functions
are obtained at each predictor combination. To assess their uncertaititpdsie

to derive variance estimators and confidence intervals are introduced mnexhe
section.

2.4 Confidence intervals for additive models

Since we use linear smoothers, we can rely on techniques from classézal det
gression to derive variance estimates and pointwise confidence intdtoeaiswise
intervals have a local nature. They reflect the uncertainty associated ypattic-

ular predictor location. This will be done in Section 2.4.1. In Section 2.4.2 we
will consider the bootstrap as a nonparametric procedure to derive thevise
confidence bands and in Section 2.4.3 global confidence sets will heddar
additive models.

2.4.1 Variance estimator and pointwise confidence interval

In classical parametric statistics, a variance estimate is the key element fdi-statis
cal inference. Similar to linear regression, the residual sum of sq(R&3) can be
used for variance estimation. TS is defined as usuakSS = (y — 9)% (y —

7). In linear regression, the variance estimate then becérmes RS S/df, where

its degrees of freedond() equals: — (¢+ 1), with ¢+ 1 the number of parameters
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that have been estimated amthe number of observations. In the context of linear
regression smoothers we already have used the trace of the smoothey tni&tix
as a definition of the degrees of freedom when we defined the GCV amklthe
criteria. Hastie and Tibshirani (1990) showed that it is better to use araxfiai-
tion for the degrees of freedom of tl&S'S. In the next paragraph their definition
is explained in detalil.

When all components of the AM are linear or linear smoothers, am projection
matrix H can be derived such thgt= Hy. This is already illustrated in Equation
(2.30) for the case of two linear smoothers. For nonparametric AM’s Usiagr
smoothers, the additive component functions can be solved by a setrofino
equations presented in Equation (2.24). Equation (2.24) can thus alsities as

Pf=Qy, (2.31)

where f is theng + 1 vector f = (fF, ..., qu, a)T. In general, a solution for
Equation (2.24) is found by applying a backfitting algorithm. However, as Op
somer (2000) mentioned, it is possible, at least conceptually, to write the &stma
directly as

f=P"1Qy, (2.32)

and after obtainind®—1, § can be written as

g=[III...1

=[III1...1
= Hy.

1] f

1] P7'Qy (2.33)
Recall that is then x n identity vector andl is ann x 1 vector of ones, and
so[I ... I 1]isann x (¢gn + 1) matrix. From this derivation, it is clear that
an additive model using linear smoothers is a linear smoother itself with>amn
projection matrixH . Further, for linear smoothers, it can be shown thatAi$
has the expectation ®&SS) = {n — tr(2H — HHT)}o? + bTb, whereb is the

bias (Hastie and Tibshirani, 1990). The btas defined ad = m — E(Hy) =
m — Hm. Thus, when the bias is negligible, the variance can be estimated by

62 = R55 T (2.34)
n—tr(2H — HHT)

where, in analogy with linear regression, tiegrees of freedom of the errozan
be defined agf*” =n —tr(2H — HHT).
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When the residuals are i.i.d, the estimate of variance-covariance mafyizast be
calculated as

3, =HHT:. (2.35)

Similar to ¢, a projection matrixH ; can be defined for each compongﬁt =
H ;y. The variance-covariance matrix of each component is simply obtained by
replacingH in Equation (2.35) by ;.

The calculation o~ is not interesting from computational point of view since it
involve inverting an(ng+1) x (ng+1) matrix. Moreover, the inverse @ does not
always exist. Recently, Giannitrapani et al. (2005) provided a verylsimpthod

to keep track of the important projection matrices while the backfitting algorithm

proceeds. When linear smoothers are used, the estimate of each comﬁgﬂ)nen

in the [* iteration step can be written aﬁjl) = Hgl)y. Hence, the backfitting
scheme can be expressed as

H =s:1-S HY -S HI™). (2.36)

k<j k>j

At each stage, the updated projection mafm);() remains independent gf When

the backfitting algorithm has converged, a set of projection matfi¢és, j =
1,...,q} is obtained. They can be used to estimate the individual components and
the fitted valuegy = Hy, whereH = 117 /n + 23:1 H . The variance estima-

tors can now be used for construction of approxintate o) confidence intervals.

The term approximate confidence interval is used because it only hokis tib

bias is negligible. Here the interval is only given explicitly for the estimator

[ — Z(l,%)ﬁyt, Ut + Z(l—%)&yt]a (2.37)

wherez(;_q) is the(1 — §) percentile of the standard normal distribution a@nd
the square root of thé”" diagonal element Oﬁy. The formulation of confidence
bands for the component functiorfis(x ;) is trivial. We still have to keep in mind
that the intervals are only correct when the bias is negligible. When this th@&ot
case, the additive model fit is a fit for Hm rather than for the true underlying

surfacem evaluated at the design points (Hastie and Tibshirani, 1990).

Pointwise confidence intervals are illustrated in Figure 2.6. Note that, thealgerv
are centred about the estimates.
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Figure 2.6: 95% pointwise confidence bands for an additive model withsogal
component and a trend. Top panel: data and the model fit, Middle
panel: contributions of the seasonal component, Bottom panel: contri-
bution of the trend (fit in black and 95% pointwise confidence bands in

grey)

2.4.2 Pointwise bootstrap confidence intervals

The bootstrap is a statistical inference technique that relies on only some wea
distributional assumptions. Bootstrapping consists of resampling from alsamp
D = (Dy,...,D,), with replacement, to generate bootstrap replicad¢b),
b=1,...,B,ofthe same size. The bootstrap replicates are then used to simulate
B estimates of a given statistic, resulting in an empirical probability distribution of
the statistic. Suppose one wishes to estimate the empirical cumulative distribu-
tion function G of a statisticd = ¢(D) which is estimated from a given sample

D = (x1,...,%p,y). Each observatiol; = (x1,...,zq,y:) is sampled with
replacement, and with an equal probabilitylof.. The sampleD is resampled

with replacemen®B times, until B bootstrap replicateB*(b), b = 1,..., B, are
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2.4 Confidence intervals for additive models

generated. With each bootstrap replicBx&(b), the statistid¥ can be evaluated,
yielding B bootstrap estimates (b). The acquired empirical distributio@™ can
also be used to calculate for instance the variance or confidence intenvals

When applying the bootstrap in a regression context, there are two common ap
proaches for generating bootstrap samples: (1) by resampling the IDases

(x1t, - - -, xqt, y¢) OF (2) by resampling the errorg.j. The method of resampling
cases is not really an option, since it changes the sample design. Waliey qua
data are gathered over time, and so the time covariate is not sampled at random.
Environmental agencies commonly sample water quality data at intervals larger
than two weeks. For such a sampling frequency, a large portion of the tampo
dependencies are related to seasonality and trend (Van Belle and Hu§Bé3.
These considerations provide a strong argument in favour of resantphu-

als. In this case, bootstrap samples are generated by resampling fromginea!
distribution of the residuals, sdy, and creating the bootstrapped responses

y*(b) =9 +e*(b), (2.38)

wheree*(b) is a bootstrap replicate of the errors. A bootstrap dataset is then con-
structed adD*(b) = (x1,...,Xq,¥"(b)). The most straightforward method to
obtaine*(b) is to resample the crude errais When a projection matrif ex-

ists for the models, Davison and Hinkley (1997), however, suggesteuirtpls the
errors from the distribution of the centred adjusted residuals 7, wherer; is
defined as

€t
Tt = )

whereh,, is thet!" diagonal element of the projection matkandr is the average

of ther;. For linear smoothers it can be shown that the variance of the estimated
residualsé; is equal too?(1 — hy). Hence, resampling from the distribution of
the centred adjusted residuals is preferred because they have thess&@neevas

the true errorg;. Now that the bootstrap is introduced in the regression context,
it can be applied for inference purposes. Suppose the aim is to cdrestroafi-
dence interval for the fitted mean corresponding to a certain predictoricatian

(211, - - ., T4). Then the point estimaté,= ¢(D), is a prediction with the additive
modeld = t(D) = m(z1, - . . , Tqt).

(2.39)

A very natural way to calculate — « bootstrap confidence intervals, is to take the
5 and1l — 5 percentiles of the bootstrap distributi6if. This can be easily done

by first ranking thef*'s into f7,, < ... < 675 and then take thg and1 — §
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percentiles, giving the interval

W85 O1B0-g)+1)- (2.40)
This interval is known as the bootstrap percentile interval. However, therco
ages of these intervals are known to be problematic (Efron and Tibshii@9,
Davison and Hinkley, 1997). To improve the coverages, correctiorsligen pro-
posed such as bias-corrected and accelerated bootstrap confitengas, which
are referred to as the BGntervals. Instead of taking ther/2)!" and(1 — «/2)""
percentile of the bootstrap distributig#‘, the BG, interval is given by (Efron and
Tibshirani, 1993)

A~

[0(1): 0o (2.41)
where
20+ 2Z(a
o1 =P | 30 + AOA (%)
1-— a(Z() + Z(%))

oo = (2 4 — 0T F0-%) (2.42)
1—&(204-2(1,%)) ’ .

(2.43)

Here®(.) indicates the standard normal cumulative distribution function:gnd,

is its 100" percentile point. We still have to defineandz,. The bias correction
can be easily calculated from the fraction of the bootstrap replications thestsis
than the plug-in estimat

20 = OV (#{6*(b) < 6}/B), (2.44)

where®~1(.) indicates the inverse of the standard normal cumulative distribution
(Efron and Tibshirani, 1993; Davison and Hinkley, 1997). An easy twwa&ompute

the acceleration is provided by Efron and Tibshirani (1993), using the jackknife
values of the statistié = (D). A jackknife value for thet" observation is
obtained when the statistic is calculated on the original sample without the obser-
vation at timet. Let D, represent the original sample without if¥e observation

Dy, 04 = t(D(y)) andfy = 37, 6 /n, then the acceleration is calculated as

~

S (00— 0w)?
o= . (2.45)
6[>°(0¢) — Ow))?13/?

t=1

42



2.4 Confidence intervals for additive models

A third type of intervals which we will consider, are studentised bootstrapvalte
These intervals are acquired by computing for each bootstrap replirdte,

2*(b) = eﬁb)(b_ ‘. (2.46)

where&*(b) is the estimated standard error @f(b). The studentised bootstrap
interval, after ordering the*'s to zZ‘l) <...< z{B) is then given by

D>

0= 2{11-5)81+1)5:0 = {38 ): (2.47)

Davison and Hinkley (1997) showed that the studentised bootstrap enoéidn-
tervals and Bg intervals are preferred over bootstrap percentile intervals, both
on the basis of empirical as well as theoretical arguments. Efron andifEibsh
(1993), however, argued that the studentised bootstrap confidetereais are
particularly applicable to location statistics, like the mean, median or percentiles.
We will use the bootstrap for inference on location statistics such as the mean
m(X1,...,X,) and for the location of the contributions of the componghisso

we do not expect problems related to the use of the studentised bootstrap.

Pointwise intervals foj or fj can be obtained by applying the above bootstrap

methods to eachy or fj(xjt). Pointwise bootstrap intervals are illustrated in Fig-
ure 2.7. Two different intervals are shown, percentile based booisteapals and
studentised bootstrap intervals. The intervals are fairly similar to each atder a
to the analytical intervals for the model fit and the seasonal componenthé&or
trend, differences are observed at the peak of the curve. Heretberpile based
confidence interval is shifted downwards and the studentised conéidetezval

is shifted upwards in comparison with the analytical confidence intervatiand
estimated curve. In this region a number of very high nitrate levels arewvauser
and most of the bootstrap replicates result in a trend effect, which is systalya
lower than the estimated trend from the original dataset. The studentisedinterv

corrects for this because it calculates the bootstrap replicatés = 9;(*’)()159 and

9*(1)) will be systematically lower thaf. This reflects the high nitrate levels which
are observed. From Equation (2.47) it can be seen that this leads tovardughift
of the intervals in this region.

Sometimes it is useful to make simultaneous inference on more than one point in
the covariate space (e.g. when checking whether a predictor functiagnifi-s
cantly different from a least squares fit). Pointwise intervals are rrogpiate for
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Figure 2.7: 95% bootstrap pointwise confidence intervals for an additivéeimo
with a seasonal component and a trend. Top panel: The data and the
model fit, Middle panel: Contribution of the seasonal component and

Bottom panel: Contribution of the trend. Dashed line: percentile based
bootstrap intervals, Solid line: studentised bootstrap intervals

this purpose. Therefore we will now introduce global confidence setsifnulta-
neous inference about an entire regression curve or surface.

2.4.3 Global confidence sets

When we wish to infer on more than one function value at the same time, point-
wise confidence intervals may be misleading. Suppose we would like to check if
a straight line fits in a confidence band of one of the predictor functioas)eed

a kind of global confidence band. A common approach to go from pointwise
fidence bands to global confidence bands is to make the pointwise barefstavid
implicitly correct for multiple comparisons (Eubank and Speckman, 1993-Ho
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2.4 Confidence intervals for additive models

ever, Hastie and Tibshirani (1990) disagree with this approach. Thayatethat

a confidence set for the values of the true underlying function is a set in/an
dimensional space and a global confidence band is a projection or @o\ghaf
such a set onto each direction. Therefore the information of a conédeard is
limited. Moreover, it gives no information on the functional shape of the mesnbe
of then-dimensional set. Hastie and Tibshirani (1990) also argued that a floojec
of ann-dimensional global confidence set into a confidence band doesvetda
be larger than the pointwise confidence bands. To construct suchfidesue
band, we should be able to construct curves that belong to the globfademee
set. Those curves can then be used to construct the global confiosmite

We here discuss the approach of Hastie and Tibshirani (1990) to aonatconfi-
dence set foy = Hm. When the errors are assumed to be Gaussian, the likeli-
hood ratio method for constructing such a set uses the approximate stadgiiis

otal (§ — g)T(HHTo%)~1 (¢ — g) which is asymptotically-distributed. Since

o2 is unknown, it has to be estimated. Hence the approximate pivotal

v=(9—g) (HH"*)"(§—g) (2.48)

should be used. Le&t¥ denote the distribution af. Hastie and Tibshirani (1990)
showed that this distribution could be approximated based oA'tlistribution or
by using the bootstrap. According to their results, the bootstrapped>apyation
works better than the one based on idistribution. Hence, we restrict ourselves
to the bootstrap approximation of G. The bootstrap is used to gengféie as
described in the previous section and to calculate bootstrapped stajistigs—
Hy*(b), 5*?(b) = RSS*(b)/df", and

v (0) = (5(b) — 9)" (HHT5**(6)) "' (5"(b) — 9). (2.49)

After ranking thev*(b)’s so thaty}) <... < Vip)» the(1 — «) confidence set can
be derl\{ed from the-lnterva{baj?a/.%), ’_’a(_l—a/2)J+1)]' All bootstrap r.epllcates
¥*'s which resulted inv*(b)’s within this interval belong to the confidence set.
A simultaneous confidence band can be displayed by creating an enveiage

is containing these curves. Once an envelope is established, a projefctien o
envelope onto each direction can be made.

The simultaneous interval obtained after projecting the envelopes of thalglob
bootstrap confidence sets is illustrated in Figure 2.8. The intervals aralifaldg
similar to the intervals shown in Figure 2.7 and support the findings of Haglie an
Tibshirani (1990).
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Figure 2.8: Envelopes for 95% global bootstrap confidence bandmfadditive
model with a seasonal component and a trend. Top panel: data and the
model fit, Middle panel: the contribution of the seasonal component
and Bottom panel: the contribution of the trend

2.5 Model selection

Although model selection is a fundamental part in the building process otitaltis
models, we will only give a very brief overview on model selection andictgiur
attention to the procedure used in this dissertation.

Model selection for additive models is often performed in two stages: ({d-ba
width or span selection of the smoothing parameters. . ., s,), and (2) selection

of predictor variables in the model. As mentioned in Section 2.2.4, neares$i-neig
bourhood bandwidths are used for the local polynomial smoothers in thelmfod
neighbourhood contains a fixed fraction of the total number of obsengtichis
fraction is referred to as the span The spans;, ..., s, are typically tuned by
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2.5 Model selection

using criteria as the AIC, CV and GCV. In principle, numerical optimisersctba
used for this purpose, but generally a grid search is used to determiopttirel
spans. When the number of smoothgmmcreases, this leads to an exponential
increase in the number of AM’s to be evaluated. For variable selection,iigp
dure has to be further embedded in a model selection procedure, sclassisal
forward and backward stepwise selection techniques (e.g. Hastie astuirdaitd,
1990). In the forward approach, one starts with a one-dimensional nagdeh
contains the predictor that results in the best evaluation of the selectionotriter
In each cycle, the model is extended with the predictor which results in thestarg
improvement of the criterion. The procedure stops when the criterion ifunot
ther improved by the addition of a predictor or when all predictors are eshier
the model. The backward procedure starts with the most complex model and the
leaves out, in each step, the predictor which results in the model with thedaést e
uation of the criterion. The algorithm proceeds as long as the criterion irapitoy
the reduction of the model complexity. To ensure that the appropriate smgothin
parameters are used in each step of both procedures, the smoothimg{easeof
each of the candidate models should be determined. Wyets large and when

a dense grid is used for the selection of the smoothing parameters, thiaeppro
gets quickly computationally demanding. When the contributions of the preslictor
are orthogonal, the computational burden can be reduced. The multidimahsio
grid search can then be replaced by an iterative procedure whdré&eation is a
one-dimensional grid search to find the optimaby keeping the other smoothing
parameterss, k # j) fixed.

Hastie and Tibshirani (1990) introduced the BRUTO algorithm as a pragswtic
lution to keep the computational burden limited. The algorithm is an adaptation
of the backfitting algorithm so that it combines model fitting, smoothing param-
eter selection and model selection. To avoid computational problems, Hadtie an
Tibshirani (1990) adjusted the GCV criterion

> &
_ t=1
GCV (s1,...,8p) = WL =0 (H(s1, .5/ (2.50)
to the modified GCV criterion,
> &
GOV(sy,. .. =1 (2.51)

) R S (UGS, (s5)) — /)

In this way the computational difficulties are circumvented which are assdciate
with the calculation of fH(sq, ..., s,)). But, as shown in the previous section,
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Giannitrapani et al. (2005) provided a very simple method to keep trackeof th
important projection matrices and when their approach is used in the backfitting
algorithm, the projection matri¥ is known and its trace can easily be acquired.
Therefore, a modification of the GCV is not required and we have chtodanor-
porate the original GCV criterion in the BRUTO algorithm.

The BRUTO algorithm starts with the null fit, where all projection matriEgs—=

0,j = 1,...,¢. In each iteration one parameteris selected. Hence, the span
selection is performed one smoothing parameter at a time, while the other smooth-
ing parameters remain unchanged. In particulasttie adjusted which minimises

the global GCV. In the cycl€) this is applied by using the appropriate smoothing

parametesg.l) to update the projection matrix

H (s\) = s5(s)(T = S_H (s, (2.52)
k]

while the other projection matrices are left unaltered. Hence, each iteratipn o
provides for an update of one smoothing parametand its corresponding projec-

tion matrixH,(s;). The BRUTO algorithm is continued until the GCV converges.
The convergence is guaranteed, because each iteration produserease in the
criterion. The BRUTO algorithm can easily be extended to incorporate nsedel
lection. When the GCV is allowed to be optimised by the selection of the null fit,
H; = 0, it enables the removal of the associated explanatory variable from the
model. Hence, a particular variable can be included at a certain iteratiopaits s
can be adjusted in a next iteration and the variable can even be omitted from the
model later on.

An example on how the BRUTO algorithm proceeds is given in Figure 2.9. The
dataset consists of the response nitrate {NN@nd 7 predictor variables: (1) Day
number throughout the year, (2) Time, (3) temperature, (4) dissolwageox DO),

(5) nitrite (NQ, ), (6) chemical oxygen demand (COD) and (7) pH. In Figure 2.9,
the numbers in the plot indicate which of the predictors was adjusted in eeleh cy
During the first 4 cycles predictors 1, 6, 7 and 2 are included in the modem F
the 5" up to the 9" cycle the spans of the selected predictors are adjusted. During
cycle 10 and 11 predictors 5 and 4 are selected. And the last cyclestcohs
adjusting the spans of predictors 7 and 6. The final model includes pegdic
1,2,4,5,6 and 7. Notice that th&3predictor is never included in the model. At
first, the GCV decrease is steep due to the inclusion of extra predictorsirotle.

This is also reflected in the steep increase of the associated degressdufiir.
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Figure 2.9: Left: Convergence of the GCV criterion in function of the iteratio
number of the BRUTO algorithm. Right: The evolution of the total
degrees of freedom in the model in function the iteration number. The
numbers along the curve indicate which of the predictors has been up-
dated and/or included

2.6 Conclusions

A review of additive modelling is given with a special focus on its application to
water quality data. Local polynomial smoothers were used as the additieedns

of the additive model. The review covers the important issues of modette,ic
the selection of the smoothing parameters, the derivation of confidenceaister
and a brief introduction to model selection.

For researchers who want to apply additive models, the main contributitirisof
review is that it explicitly includes all mathematical derivations needed to fit the
models and to assess their uncertainty. In the existing statistical literature, pro
cedures to obtain analytical pointwise confidence intervals are often orén g
implicitly. In this review, the analytical and bootstrapped pointwise confidence
intervals are included in full detail.
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Chapter 3

Data validation

3.1 Introduction

High quality data are essential for an adequate management of the watece=s
Therefore, quality assurance is specifically mentioned as an importavityaiti

the WFD guidance document on monitoring (EC, 2003; Hgjberg et al., 2007)
Thus, new data have to be validated before they can be considereduidher
evaluation of the water status. Observations can be suspicious due toklod lac
the quality of the data, i.e. originating from errors introduced during thiysisan

the laboratory, wrong calibration of the equipment or while entering the &atf.

it is also possible that they are due to a change in the system that causgesima
the water quality.

The detection of suspicious observations in environmental data is notafoaig
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Chapter 3. Data validation

ward because such data typically possess a complex nature. Theatiosermay

be dependent, non-normally distributed, may show cyclic variations, flperde
dence, and, the trend and relations among the water quality variables may-be n
linear (Hirsch et al., 1982; Cai and Tiwari, 2000; Dominici et al., 2002p@/and
Augustin, 2002; McMullan et al., 2003; McMullan, 2004). Therefore itiffi-

cult for experts to validate the large amounts of water quality data originating fr
these monitoring networks. In this chapter we aim to provide a semi-automatic
data validation procedure that can support experts at the environnagietaties

to validate their large amounts of monitoring data. Before we elaborate on our
data validation method, we first introduce some existing methods which might be
used for this purpose. They consist of techniques from time seriessaalyd
statistical process control.

3.1.1 Time series approach

One way to deal with the validation problem is to use models to predict future
measurements based on the historical data. In time series literature, this is called
forecasting. The new observations can then be compared with forexfatsis
model. However, the use of point forecasts to compare with incoming cisaTs

is meaningless if the extent of associated uncertainty is unknown. Infergahsts
should be used instead. They provide more information on future undgréaid

take the sampling variance correctly into account. These intervals, téésad

by an upper and lower limit, correspond to a specified coverage probdHKiiity,
1999; Chatfield, 1993). In time series literature, AutoRegressive Mdviegages
(ARMA) and AutoRegressive Integrated Moving Average (ARIMA) retelare
mainly used. However, in order to obtain stationarity, trends and seasoiation

have to be eliminated first. Subsequently the ARMA model is fitted to the station-
ary residual time series (Pourahmadi, 2001). The models are then usadpate

a forecast and a forecast interval. To reduce the assumptions ontititeutien of

the residuals, bootstrap-based intervals were developed (Kim, 200%e@ig and
Taylor, 2001; Kim, 1999; Chatfield, 1993). In an automated validationquiore,
however, the interaction of the user should be limited. This requirement, makes
the use of a classical time series approach such as ARMA, ARIMA or ARX d
cult. They require expert knowledge to select the proper structure diftle series
model. Moreover, the temporal dependence structure is also susceptibbige.
One reason, for instance, is that the optimal structure can change overditne
database gets larger. We will now explore methods that are available in stistic
process control.
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3.1.2 Statistical process control

Statistical process control is developed within the context of quality coatrdl

the improvement of manufactured goods and services used by socipiyally, a
product should be produced by a stable or repeatable process mordeet the
costumers expectations. In particular, the process must be able to tgedtzat the
quality of the product fluctuates with little variability around a certain targetevalu
(Montgomery, 2005). In this respect, the use of control charts is widadp A
control chart is a graphical tool which displays a certain quality chaiatitethat

was measured in function of the sample number or the time. It contains a center
line representing the average of the quality characteristic of the prodess v

is in control, and, an upper and lower control limit chosen in such a way that
most sample points are expected to fall in between them. The following charts ar
commonly used:

e ‘X’-charts which are plots of the observations themselves in function of time
(Shewart, 1931).

e EWMA-charts, representing an exponentially weighted moving average of
the measurements against time (first proposed by Roberts (1959)).

e CUMSUM-charts, where the cumulative sum of the differences between
measurement and a target value is plotted against time (introduced by Page
(1954)).

e MA-charts, plotting a moving average of the measurement series against
time.

An example of an ‘x’-chart and an EWMA-chart applied to the nitrate seaite
sampling location S5 along the river Yzer is given in Figure 3.1. The ‘xt-islde-
signed as such that there is a small chance to detect an out-of-contrall wigen
the process is in control, and to have a higher change on a signal wheirotsss
is out of control. When only one observation is available at each time instant, th
‘X’-plot consists of the individual measurements. The centerline of taet¢hthe
overall process mean when the process is in control, and is assumedriovioe. k
The lower and upper control limit are usually a constarstandard deviationss,
below and above the centerline (Wardell et al., 1992). For EWMA-chiwgsex-
ponentially weighted moving average is definedas vyy; + (1 — v)z;—1, where
~ is a weight constant between 0 and 1, and the starting value p. Hence,
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Figure 3.1: Examples of univariate monitoring charts, ‘x’-chart (leftyVMA
chart (right)

more recent data are receiving heavier weights. EWMA-charts detédtt &
mean more quickly than the ‘x’-charts. The centerline is again the process, me

1 and the control limits argy + Lo\/4[1 — (1 —)%]/(2 — v) (Wardell et al.,
1992; Montgomery, 2005). For the construction of these charts the nesasnts

are assumed to be i.i.d and Gaussian. The EWMA charts, however, amm kno
to be robust to deviations of normality (Montgomery, 2005). They arecbase

a weighted sum of the measurements, and thus allow the use of the central limit
theorem when the measured series is long. Environmental agenciesafiptes

the river water quality data at intervals that are larger than two weeksisloake

the observations are often assumed to be independent when seasaonktigna

are considered (Van Belle and Hughes, 1984). However seasonalityend are

not taken into account when constructing the basic monitoring charts.eiHtrec

i.i.d assumption is violated when the monitoring charts are based on the original
nitrate measurements. Many authors have reported that this will lead to a false
rejection of the data if they are positively correlated (e.g. Montgomenrys;280

wan, 1992; Montgomery and Mastrangelo, 1991). To overcome thisggmliwo
general approaches exist to monitor autocorrelated processes. @rethand, the
autocorrelation can be modelled and standard charts are constructedmiitbl c
limits that have been adjusted to account for the autocorrelation. On thehatingr

a time series model can be fitted to the data and the residuals or forecestremo

this model can be used in a control chart (Montgomery, 2005; Reynaldi$ @,
1997). In the latter approach, a quality characterigtis modelled ag; = u; + €
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Figure 3.2: Model based univariate monitoring chart: Nitrate series tageitte
the fit of an additive model with a trend and seasonal component (left),
Residual based ‘x’-chart (right)

where the:;'s are assumed to be i.i.d and Gaussian,ssay N (0, o2). The center

line for the residuals is located at 0 and upper and lower control limits artetbca
at LCL; = —20 andUCL; = 20. This approach is represented in Figure 3.2.
To remove the serial correlation, the nitrate concentration was modelled using th
additive models introduced in Chapter 2. Local linear regression smadtivahe
trend and the seasonal component were used. The model was fitteplyapgthe
BRUTO algorithm. In the left panel the nitrate data are given along with the imode
fit. The model-based control chart is represented in the right panel.

In chemical and environmental engineering, history-based methods thatera
large amount of historical data are often used. They consist of neetabrks or
multivariate statistical techniques (e.g. Venkatasubramanian et al., 2008y,Pe
1996; Yoo et al., 2004, 2007). Multivariate process control is mainletbam
projection methods. The multivariate observations are then projected orea low
dimensional space which can explain the main features in the multivariate data.
Principle component analysis (PCA) is one of the widely used methods for this
purpose. The standard multivariate methods imply the presence of a donstan

ber of variables measured simultaneously. However, in many databasei no
variables are measured at each time instant. In Flanders, for instatroentsuare
measured with a higher frequency than heavy metals. In this dissertatiae; we
stricted our attention to univariate methods. Compared to multivariate apgmach
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univariate control charts will only detect water quality measurements locdted
the endpoints of the univariate distribution as anomalous, while multivariate ap-
proaches can also detect malicious observations in the middle of the utdvaria
distribution in case there is something wrong with their relationship with the other
water quality variables.

Classical univariate control charts are not suited for water quality dsggalthe
trend, cyclic variations and other forms of temporal dependences. INtaded
control charts can correct for this, because a model can be usettdadithe data
and to remove other forms of dependences. But, we think that an impogaatiss
not addressed when using residual-based control charts, benaunsst applica-
tions the model uncertainty is ignored. Another general drawback ofiéissical
methods is that they rely heavily on distributional assumptions and are pai@metr
The complex nature of water quality data, however, makes it inappropriateeto
these existing methods for the validation of new observations.

In this chapter, we introduce a new semi-automatic data validation procedure. |
Section 3.2 the method is introduced. A flowchart of the method is presented in
Figure 3.3. First, knowledge is extracted from the historical data by thefuse

a model. To deal with the nonlinear character of the data and to enable an ap-
propriate flexibility of the method towards changes in the process, nanptnia
additive models (AM’s) are proposed. Next, the AM is used to constrpeedic-

tion interval (PI) for a new observation at time+ 1. If the new observation is
included in the PI, the observation is accepted and can be added to thécaistor
data. Otherwise the observation is rejected and has to be passed on tmedn ex
for further evaluation. Analytical and bootstrap based Pl's are m@o They
incorporate both the model uncertainty due to the estimation of the mean model,
as well as the additional uncertainty associated with single observationar¢éhat
typically fluctuating around the modelled mean. In contrast to techniques from
time series analysis and statistical process control, the procedure is entirely
parametric when bootstrapping is used. This reduces the number of d&ssnp
considerably. Since other physico-chemical variables are allowed in tdelras
predictor variables, it is possible that an outlier in one of these varialdeiseén

a false rejection of the incoming response data: A predictor has an adsfithet

on the outcome of the model, and outliers can result in an extreme value of the
predictor function, resulting in a shift in the PI. At first sight this looks like a
anomaly of our methodology. However, diagnostic plots to detect such ahdfts
presented. Moreover, in a practical implementation allthe observed variables
acquired at timex 4+ 1 have to be validated. This is done by repeating the proce-
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Figure 3.3: Flowchart of the data validation procedure

dureq + 1 times and each time taking another variables to be the response and the
g remaining variables to be the predictors. Due to the use of other water quality
variables as predictors, our method also can detect suspicious dizsesvacated

at the middle of the univariate distribution when there is something wrong with
their relationship with the other water quality variables. In Section 3.3 the entire
methodology is first illustrated on a real data case. The model that is ohtained
is then used to generate synthetic data for a simulation study and a power study
These studies are used to check the coverage and the performaregiadittion
intervals. Finally, the method is applied to two case studies to validate the nitrate
data of Yzer basin measured in 2003 and 2004.
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Figure 3.4: Flowchart of the data validation procedure, the fitting step is high
lighted

3.2 Methods

In section Section 3.2.1 we start with an outline of the modelling procedure. In
Section 3.2.2, the prediction intervals to validate new incoming observations are
constructed. Finally, we present diagnostic plots to asses observatainaréh
rejected by the prediction intervals.

3.2.1 Additive modelling of the historical data

The main idea of the procedure is to use the historical data to confrontlvesv-o
vations with. In our approach, the information in the historical data is sumndarise
into a fitted model. The position of this modelling step is indicated on the flowchart
in Figure 3.4. The model should be able to capture the nonlinear relationsdetw
the water quality variables and should also adapt to changes in these sHgion

In this respect, nonlinear models such as AM'’s are commonly used in emaron
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tal applications (e.g. Dominici et al., 2002; Wood and Augustin, 2002; @di a
Tiwari, 2000; McMullan et al., 2003). To be fully functional for the enviroen-

tal agencies, the interaction of the user should be limited. Thus, the model fitting
and selection procedure should be completely data driven, and the mesttondd

rely on a minimum number of assumptions. This requirement, makes the use of
a classical time series approach, such as ARMA, ARIMA or ARX, difficilice
expert knowledge is typically needed to select the proper structure tifrtbseries
model. Moreover, the structure is also susceptible to change. The optimal-temp
ral structure can for instance change over time as the database getsHarteer,

the data of environmental agencies are often based on samples thallectedo

at time intervals that are larger than two weeks. With such a sample freqaency
large part of the temporal dependence is due to trend and seasaatibuar Wa-

ter quality data are often considered to be independent when seasondlitgiad

are accounted for (Van Belle and Hughes, 1984). Finally, it is alsoatdsithat

the method can assist the operator to gain insight in the relations betweerténe wa
quality variables. This can be of great value for the in-depth analysisjected
data.

Given these considerations, we propose to use additive models forgbiepdien

of the historical data. They were introduced in Chapter 2. Suppgsedictor
variablesz;;, j = 1,...,¢q, and a response variable are sampled at timels=
1,...,nandletr; be amx1vectorz; = (z;1,...,zj,)" andy be amx 1 vector

y = (y1,...,y.)". Then a typical dataset can be represented by an(q + 1)
matrixD = (z1,...,x,,y). Furthery is assumed to be normally distributed with
a conditional mean ky|xz1,...,x,) = m(z1,...,x,) and a constant variance
o2. In the additive model framework, the regression surfaie) is approximated
by the sum of; additive functions ang is modelled byy = o + E?Zl [+ e,
where then x 1 vector f; = (fj(x;1),..., fj(z;n))” contains the contributions
corresponding to eachy;. This structure allows additive models to possess a nice
interpretation feature. Once the model is fitted, the predictor effects cstudied
separately. This enables the operator to get a simple graphical rejpteseof
the relationships between the response and each of its predictors (coaiddio
the other predictors in the model). But a price has to be paid for this additieity,
the model will always remain an approximation of the true regression syfac
hopefully a good one.

Since we want to avoid an ARIMA-like approach, the predictors in the model
should be capable of capturing the temporal dependence which is phegba
original time series. Therefore we will model the respopdey the use of a sea-
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sonal effect coded by the day number (1-365), a long-term trendethperature
and several other water quality variables. Because we want the datixedtdr
functional relationship between the predictor variables and the resparsese
local polynomial regression smoothers to model each relation betweerdia-pre
tor and the mean response. In Section 2.2.3 local polynomial smoothersnwere
troduced. Fan (1992) showed that the local linear regression smaster best
among linear smoothers. Fan (1992), Fan and Gijbels (1996), and Hdstoader
(1993) also showed that local polynomial regression adjusts automaticaljefs

at the boundary and are design adaptive in the sense that they alsofadpias

in regions where the predictors are nonuniform. As another advarttegyealso
enable straightforward generalisations of classical statistical infemocedures
(Cleveland and Devlin, 1988; Fan and Gijbels, 1996; Loader, 1998bj).local
polynomial regression smoothers the degree of smoothness is determitieel by
bandwidth. A choice has to be made between fixed or variable bandwidiBect
tion 2.2.4 we have motivated the use of nearest neighbourhood bandwidthis
case, the size of the neighbourhood is determined by the span, whichatiarir

of the total number of data points. On data-rich locations this results in smaller
bandwidths, and in data-sparse regions larger bandwidths are used.v& are
interested in the mean model (degree 0), the degree of the local polynouwtiatis
sen to be 1, following Fan and Gijbels (1996) recommendations to use thet lowes
odd order for the local polynomial (see also Section 2.2.3)

Model selection is a crucial step in the construction of a new model. Here, the
model selection involves the selection of the predictor variables and theiatssb
bandwidths of the local linear smoothers. As shown in Section 2.5, the BRUTO
algorithm can be used for both model fitting, model selection and tuning of the
smoothing parameters. From a practical point of view, this is computationally in-
teresting since the additive model only has to be fitted once. Other modela@elec
algorithms often require fitting multiple candidate models and tuning their corre-
sponding smoothing parameters. The model selected by the BRUTO algorithm is
subsequently used for the validation of the new observation. The modettiogp

dure is illustrated extensively on a real data case in Section 3.3.1.

In the flowchart represented in Figure 3.4 it can be seen that the moddduistr

each time a new observation is validated and added to the database. Hence, th
BRUTO algorithm is executed each time the data series is extended. Thisappro
ensures an optimal model fit at each time instant, i.e. as the data set grosrs larg
better approximations of the underlying surfageand a lower variance estimator

are often obtained. Because the model is used for the constructiondiétpe
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Historical
data

Fit
AM

To expert
for evaluation

Figure 3.5: Flowchart of the data validation procedure. The construatidnthe
application of the Pl are highlighted

bands, a smaller variance ensures a better detection of suspiciousatiosesrv
Methods to obtain these intervals are given in the next section.

3.2.2 Prediction intervals

To validate new data, a prediction interval (PI) is constructed and the data a
considered valid if it is located within the PI. These steps in the data validation
process are indicated on the flowchart in Figure 3.5.

A PI, however, differs from the pointwise confidence intervals for thamraerived

in Section 2.4. A confidence interval reflects how accurate the mean is estimate
The data validation procedure, however, requires an interval estinsteiated
with the location of a new single observation. Under the normality assumption,
the conditional distribution of an observation at time- 1, given the covariates, is
N(m(zx,11),0%). Hence, the prediction interval has to incorporate both the model
uncertainty due to the estimation of(x,,,1) and the additional variabilityo(%)
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Chapter 3. Data validation

associated with single observations that fluctuate around the mean.

Two different approaches are presented to construct predictiovatgeran ana-
Iytical procedure which only works for AM’s with linear smoothers anduasss

the errors to be Gaussian, and double bootstrap procedures thatimaek less
stringent conditions. The latter are fully nonparametric and they can cadpe w
any type of AM and non-Gaussian errors. Both methods assume thatsitia-re
als are independently distributed. The data used in this study is based orlymonth
grab samples. When the water quality data are sampled at intervals largexnthan
weeks, a large amount of the dependences are known to be only relaemstm-
ality and trend (Van Belle and Hughes, 1984). Additionally other water quality
variables are used as predictors and they can also model a part of trwaéde
pendence. Another assumption is that the bias of the estimator is negligible. In
the presence of bias, the variance estimate is inflated and this would resultdn mo
conservative interval estimates (e.g. Giannitrapani et al., 2005).

3.2.2.1 Analytical prediction intervals

Before the analytical PI's can be constructed, an estimator of the varadracnew
prediction is needed. As shown in Section 2.4.1, a projection matrix exists when
the AM is build up by linear smoothers. In this case, the prediction by the snmoothe
at a certain predictor value is always a linear combination of the obsernladsy

of the responses. From Section 2.2.3 we know that for local linear smedfirst
order polynomial), the prediction corresponding to a predictor vajue

[10] (zfWoz.) 'zl Woy. (3.1)
Thus its corresponding (row)smoothing vector can be written as
So = [1 0] (@I Woz.) 'alW,. (3.2)

In the additive model; smoothers are used and to make each function identifi-
able, an additional constraint was introduc®d,_; fj(z;) = 0,j = 1,...,q.

Let Sj .1 be a similar row smoothing vector for thé" smoother evaluated in
Trne1. TO calculate the contribution of thig” predictor at timen + 1 its cen-
tered smoothing (row)vector is needed. In Section 2.3 it was shown thatsthe
centered smoother matrig; = (I — 117 /n)S; are used for that purpose. The

k" centeredl x n smoothing (row)vector corresponding i@, is given by

62



3.2 Methods

Skn+1 = Sknt1 — 178, /n. Similar as in Equation 2.23 an estimate of the
contribution of thek!” predictor functionfk,nﬂ of the additive model is given by

fk,n-{-l = Slt:,n-&—l(y - — ij)
py
= Sin1(I =) Hjy
oy
=Hjp1y. (3.3)

The estimate of the mean response at time 1, 4,1, then becomes

q
Unt1 = O+ Z G+l (3.4)
j=1

q
= (1T/n + Z Hjni1)y
j=1

= Hn+1y7

and its variance is thus

o5 . =Hn H], 0% (3.5)
This variance refers to the uncertainty associated with prediction of the of das
new observation at time + 1, and not to the variance of a new single observation.
The variance needed for the construction of a Pl of a new single cismris

decomposed into a part related to the uncertainty of the modelled w@gg, and
into the part due to residual varianee’. Thus, the variance for calculating a Pl
becomes

o, = (HnJrlHZ-i-l + 1)0-23 (3.6)

Yn+1
ando? is estimated as in Equation (2.34). After plugging this into Equation (3.6),
al — a Plis given by
[In+1 = 2(1-2)0ypsr> Unt1 + 2(1-2)0y, i), (3.7)

andz;_,/s is thel — a/2 percentile from the standard normal distribution. This
analytical Pl is also referred to as aPl.

3.2.2.2 Bootstrap intervals

In general, the estimation of additive models does not have an analyticibsolu
and the errors can deviate from normality. The analytical intervals asibedc
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in Section 3.2.2.1, only exists when linear smoothers are used as building block
and their coverages are only correct when the errors are Gaulsiduis section,

a procedure is proposed for the construction of the prediction intervalscén
cope with additive models in general. Unfortunately, an analytical derivakoes

not exist for the PI for the general case and it implies the use of compualiyion
intensive methods for variance estimation such as bootstrapping. Thd thee o
bootstrap, however, has the advantage that it does not impose stn@mgyepac
assumptions on the distribution of the errors.

A general introduction to the bootstrap in a regression context is giveadgtic®

2.4.2. It was used to approximate the distribution of an certain stafisti¢(D).

Here the aim is to construct a prediction interval for a new single obsenvatio
Hence we pu = t(D) = yn+1. In Section 2.4.2 we have motivated to generate
bootstrap samples by resampling the erréfs (Resampling cases is not really an
option, since it changes the sample design. Water quality data are gatlvered o
time, and so the time covariate is not sampled at random. In this case, bootstrap
samples are generated by resampling from the empirical distribution of ideres

als, sayF’, and creating bootstrapped responses by

y*(b) =9+ e"(b), (3.8)
wheree*(b) is a bootstrap replicate of the residuals. A bootstrap dataset is then
constructed ad*(b) = (x1,...,x4, y*(b)). The most straightforward method

to obtaine*(b) is to resample the crude errots When a projection matrixd

exists for the models, Davison and Hinkley (1997), however, suggésteinple
the residuals from the distribution of the centred adjusted residuals, where
r¢ is defined as

€t
V1—hy’
whereh;, is thet” diagonal element of the projection mat#k andr is the average
of ther,.

(3.9)

Tt =

In Section 2.4.2 we have derived a bootstrap procedure to constmiitence
intervals. Here, the aim is to construct a prediction interval on a single few o
servation. Hence, two sources of variability are involved in the derivatfche

PI: the uncertainty due to the model prediction and the variability of the rdsidua
Therefore a double bootstrap procedure is needed. The main loopthakesri-
ability of the model estimator into account. The second loop adds the additional
variability that is associated with a single observation. Two types of bootstrap
tervals are considered: a percentile based Pl and a standardiséxtigneeiror
based PI, where the prediction erfgy, ; is defined by, 11 = Un+1 — Ynt1-
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The percentile method proceeds as follows:

=

Fit the additive model to the historical dataget
Use the fitted model to calculate the predictign

Extract the empirical distributiof of the residuals

p wo DN

First bootstrap loop: Fan = 1,..., B

(a) Take a bootstrap sample of the residugl&;) and construct a boot-
strapped respongg (b;) by adding these residuals to the fitted values
of the AM, y*(b1) = y + e*(b1). The bootstrapped datasbt*(b; )

now become®D*(b1) = (1,...,xp, y*(b1)).
(b) Fitan AM model toD*(b,), and compute the bootstrapped prediction
g;kl+1 -

(c) Second bootstrap loop: Foy =1, ..., By

i. Sample at random a residusl(b2) from the empirical distribution
of the residualsKk).

ii. The bootstrap estimat# (b1, by) for the new observation is given
by 9*(b1, bg) = Q;+1 + 6*(b2) .

5. 1 — « confidence intervals are calculated from the bootstrap distribution of

6*, sayG*. First thed*'s are ordered so tha}(*l) < ... < éEkBle)- The

interval is obtained by taking the/2 and1 — «/2 percentiles of7* (Efron
and Tibshirani, 1993) and is denoted as

A~

[G?LBIB2%J)’9213132(1—%”-{-1)]' (3.10)

This percentile bootstrap Pl is referred to as the %bPI.

Davison and Hinkley (1997) showed for linear models that the Pl also easb
timated by computing the bootstrap distribution of the studentised predictions er-
rors,z = ¢/a, mimicking the standard normal theory, where the prediction error
On+1 = Unt1 — Ynt1 @ndé = /(RSS/dfe). This idea can easily be adopted to
additive models and require steps 4 and 5 of the main bootstrap loop to beaepla
by
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Chapter 3. Data validation

4. First bootstrap loop: Fan = 1,..., B;

(a) Take a bootstrap sample of the residugl&®;) and construct a boot-
strapped respongg (b;) by adding this residuals to the fitted values of
the AM. y*(b1) = y + e*(b1). The bootstrapped datasbt*(b;) now
becomeD*(b1) = (x1,...,Zp, y*(b1)).

(b) Fitan AM model toD*(b;), and compute the bootstrapped prediction
9y 1 and the standard deviation of the corresponding residéials] ).

(c) Second bootstrap loop: Foy =1, ..., By

i. Sample at random a residusl(b2) from the empirical distribution
of the residualsk).

ii. Compute the standardised prediction errtib1b2) = §*(b1b2)/5*(b1)
With 67 4 1 (0102) = 9511 — (Gn1 + €7 (b2)).

5. The bootstrap prediction interval, after ranking #fés to za) < ... <
Z(p, B, 1S given by
[9nt1 = 62( (B Bo)(1-2) | +1) Ynt1 = TZ{| (B, Byya - (3.11)

This standardised prediction error based bootstrap Pl is referredstiPhs

3.2.3 Diagnostic plots

When an observation is rejected it has to be passed on to an expertliervalu-
ation. This step requires the interaction of the user and is indicated in thenfioiwc

of Figure 3.6. There are several possible causes for the rejectiooarhing data,
such as changes in the system, illegal spills, errors during the analysislabtie
ratory, wrong calibration of the equipment, outliers in the predictor varizdotels

so on. Since other physico-chemical variables are present in the maateldictor
variables, it is possible that an outlier in one of these variables results isea fa
rejection of the incoming response data: A predictor has an additive effieihe
outcome of the model, and outliers can result in an extreme value of the predicto
function, resulting in a shift in the PI. At first sight this looks like an anomdly o
our methodology. However, such shifts can be detected by simply leaviyehe
dictor out of the model: If the prediction was performed at an outlying clasien

in a particular predictor variable, the interval will shift back when this oted
variable is omitted from the model. The plots of the PI's made with these reduced
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Figure 3.6: Flowchart of the data validation procedure. The expedaian stage
is highlighted

models can assist the expert in his/her evaluation of rejected data. Tloé thee
diagnostic plots is illustrated in the case study in Section 3.3.4.

3.3 Results and discussion

The data that we use in this section all belongs to the Yzer catchment. A diescrip

of the catchment can be found in Section 1.2. First the entire methodology is
illustrated on a real data case. The results of this case are then usecttatgen
synthetic data for a simulation study and a power study. These studiesdetite
check the coverage and the performance of the derived predictiovatgeFinally,

the method is applied to two case studies to validate the nitrate data of the river Yze
measured in 2003 and 2004. In a first case, two years of data aretedlmtzone
sampling location. In a second case, the data validation is applied to two years o
data on all sampling locations of the river basin that contain enough datdtte fit
AM models.
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Chapter 3. Data validation

3.3.1 lllustration of the methodology on a real data case

The methodology is illustrated on the data of sampling location S5 which was
introduced in Section 1.2. The sampling location is located along the river Yzer
and its particular location is highlighted in Figure 1.2. The dataset consists of
8 variables, (1) Day number throughout the year, (2) time, (3) tempetatdy
dissolved oxygen (DO), (5) nitrite (NP, (6) chemical oxygen demand (COD), (7)
pH and (8) nitrate (NQ@). The observations of the following months were missing:
July-September 1990, December 1991, December 1993, NovembeJhddry-
December 1995, January 1997, November 1998, July 1999, Decdd®@rand
September 2001. First, the additive model is built by using all available d&isebe
01/01/2003 and the quality of the model is evaluated in a residual analyss. Th
this AM is used to validate a new observation obtained at 14/01/2003 by uging th
different PI's.

3.3.1.1 Procedure to build the additive model

The nitrate concentration is modelled using an additive model. For the predictor
functions of the model only local linear smoothers are used. Hence, thel misod
fully nonparametric. The first 7 variables are allowed to be included in tlaé fin
model. In Chapter 1 it was shown that a considerable amount of seasoiaion

was present in the data. A common approach to model this variation is to include
sinusoidal functions of fixed periods to describe the seasonal cyclevaithear

(e.g. Hirst, 1998, Cai and Tiwari, 2000 McMullan et al., 2003 and McMuyllan
2004). The day of year (suppdft, 365]) is often used for this purpose. In Figure
1.6 two fits are shown. One by using sinusoidal functions and anothesiby u

a smoother to model the seasonal effect. Both approaches use the s afs
predictor. In this section we have chosen for a fully nonparametric apprand

use a smoother to model the the seasonal effect. The BRUTO algorithndionse
model selection. The BRUTO algorithm starts with the nulijfic g, whereg is

then x 1 vectorg = (7,...,y)7 . During each iteration the GCV is optimised
either by including a certain variable in the model, by adjusting its span or by
removing the variable from the model. For each iteration the change of the GCV
and the degrees of freedom of the model are given in Figure 3.7. Thbers in

the plot indicate which of the predictors was adjusted in each cycle. Dureng th
first 4 cycles predictors 1, 6, 7 and 2 are included in the model. FronthgSo

the 9" cycle the spans of the selected predictors are adjusted. In cycle 1dand 1
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Figure 3.7: Left: Convergence of the GCV criterion when BRUTO is appieed
the data of sampling location S5 along the river Yzer. Right: The evo-
lution of the total degrees of freedom in the model in function of the
iteration number. The numbers along the curve indicate which of the 7
predictors is updated

predictors 5 an 4 are selected. And the last cycles consist of adjustisgahe of
predictors 7 and 6. The final model includes predictors 1,2,4,5,6 andtiteNbat
the temperature {3 predictor) is never included in the model. At first, the GCV
decrease is steep, which is due to the take up of extra predictors in the mbigel.
is also reflected in the steep increase of the associated degrees ofrireed

The resulting model is presented in Figure 3.8. To enable a graphicakmpa-
tion of the high dimensional regression surface, we have chosen &segithe fit

as a function of the temporal dimension (Figure 3.8 top). The effect ¢f ekihe
predictors is shown in Figure 3.8 in the remaining panels. All fits are accaesgan
by 95% pointwise confidence intervals. A fitted valizeis equal to the sum of
the general mean and each of the contributions of the corresponding predictor
valuesf;(x;;). The figure shows a clear seasonal pattern with low contributions
in summer and high contributions in winter, and an increasing contribution of the
temporal trend (Time) until 1998 and decreasing trend from 1999 on.Owon-
centrations seem to have a negative contribution on the nitrate concentvatitn
high DO concentrations have a positive contribution. The contribution dd GO
inversely related to the nitrate concentration and levels off at high CODeodrae
tions. The contributions of DO and COD can be explained from the biochémica
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processes that are taking place in the river. Low dissolved oxygereatmnations
limit the nitrification process which converts ammonium to nitrate as it requires
oxygen to be completed. Such low oxygen levels are typically occurringght h
COD levels. Additionally, in anoxic conditions (in the absence of oxygenthad
presence of nitrate), certain micro-organisms can use nitrate to replpgeross
electron acceptor and in the presence of organic matter they convet¢ ndnai-
trogen gas which eventually escapes from the water phase. The ctatribi
nitrite seems to be approximately proportional to the actual nitrate concentration
In Figure 3.8 it can be seen that the model is sufficiently flexible to model a larg
part of the variation of the original data series.

Once the model is fitted, one can predict the mean response for a newailuse

by simply adding the individual effects for each of the predictor variabibserved

at timen + 1. In this way a new nitrate value can be calculated, given its day
of year, time, DO, N@, COD and pH values measured for the particular sample
under validation.

The model quality is checked in a residual analysis. Residual plots as¢raoted

by plotting the residualé;’s in function of each predictor. They are presented in
Figure 3.9. From the residual plots the data seem more or less homoscedastic
The variance estimate of the residual$fg = 18.7. Friedman’s supersmoother
(Friedman, 1984) is added to each residual plots to assist in visualisingsideal
pattern. They show that the mean of the residuals is centred arounexzeept in
data sparse regions at the endpoints. This is likely to be a boundary efffibet
smoother. At the boundaries, the data are sparse and a few residudlaveaa
large influence on the fit of the smoother used in the residual plot. In FRylite
the histogram and the QQ-plot of the residuals indicate deviations from fityyma
in the upper tail and suggest that the residuals are distributed with a sligtd tail
the right. The boxplot also shows some outliers. When the outliers are remove
the residuals appear to be almost Gaussian (results not shown). Note et
application these nitrate observations cannot be removed because thdybmigh
extreme events which are characteristic for the data-generating prodtesover,

the technique is based on the assumption that all historical data has beatedhlid
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Figure 3.8: AM for nitrate at sampling location S5 at the river Yzer. Nitrate is
modelled by a seasonal effect (day), long term trend (Time), DO, COD,
nitrite and pH. The top panel shows the data and the lower panels show
the contribution of each predictor
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Figure 3.9: Residual plots for the additive model in Figure 3.8. Friedmaipsrs
smoother is added to each plot to assess the residual pattern
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Figure 3.11: Variogram of the original nitrate series (left) and of the uedsdafter
fitting the AM from Figure 3.8 (right). 10 variograms generated from
white noise with the same variance are added to the plot (thin grey
lines)

The presence of serial correlation in the residuals is checked usingrbaest
and by making a variogram of the residuals. The runs test is a honpaiatastr
that checks the randomness hypothesis of a data sequence (seb|@jlligms,
1990)). The run test on the residuals gives a p-value of 0.78, whiahlglgccepts

the null hypothesis of randomness. A variogram is a tool to visualise adtoco
relation in unequally spaced observations. To construct the variogresnthfe
differencesd(ij) = y; — y; and the time differenced(ij) = t; — t; are cal-
culated for all observationsand j. According to their time differencé\,(ij),

all differencesd(ij) are classified in time distance classes with mean time dis-
tanceA, . The distance classes are taken to be equal in size and the bin-length
is taken at 30 days. For each distance clashe semivariance is estimated as
pr = > ik d?/(2ny). The semivariancey, is then plotted againgh; . The left
panel of Figure 3.11 represents the variogram for the original daessamnd the
right panel displays the variogram for the residuals of the AM. The Gneg in

the background are variograms obtained when white noise was createth&ith
same variance as the variograms of interest. The original nitrate measuseresn
clearly autocorrelated and the seasonal pattern is very obvious. Adtémthwas
fitted, the autocorrelation is completely removed and the variogram behages in
similar way as the ones originating from white noise.
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The additive model for the historical data is fitted and the residuals arendiodve
independent. The model can now be used to construct a prediction Iritermaw
observations. In the next section, the validation is performed using théeBedfit
PI's described in Section 3.2.2.

3.3.1.2 \Validation of a new observation by the use of prediction interda

In the previous section an additive model was established using the data bef
01/01/2003. The first new observation is acquired on 14/01/2003 antewlal-
idated. The AM is used to perform a prediction of the fitted respanse s; =

12.3. The estimated variance corresponding to this predictioﬁgis% = 2.6.

The prediction interval for nitrate on 14/01/2003 is given in Figuré 3.18tekd

of creating a two-sided interval, it makes more sense for nitrate to use sicete-
interval by concentrating all the uncertainty in the upper tail. Low nitrate @onc
trations are not harmful for the environment, so it is more interesting to foous

a faster detection of abnormal high nitrate concentrations. In the doubtstiap
procedure 1000 bootstraps are calculated for each bootstrapMyam( B;) re-
sulting in 1 million bootstrap replicate#( B2). In the left panel the historical data
are presented together with the optimal fitted model. In the right panel, the new
observation is represented by a dot and the upper limit of the bootstragainter
indicated using the 3 different methods. The %bPI seems to be slightly higimer tha
the aPl and the sbPl. The new observation lays in all intervals. Hencegthe
observation is declared valid and can be added to the historical database.

In this study,B; and B, are chosen to be 1000, resulting in 1 million bootstrap
replicates 31 B>). In the ideal case, however, the number of bootstrap replicates
should be taken to bso. In practice this is not feasible and the number of bootstrap
replicates is set at a large value. This leads to a bootstrap resamplinglitgriab
Thus, when the calculation of the bootstrap Pl is repeated on the same dath; th
tained P1 will be slightly different. To stabilise the bootstrap resampling variability
the number of bootstrap replicates should be taken large enough. Ik daot-
strap procedure, the bootstrap resampling variability is introduced in bopis.loo
To control the bootstrap resampling variability due to the first loop, the siZ® of
should be appropriate. The bootstrap resampling variability caused bgdbad
loop is controlled byB; B,. Hence stable intervals are obtained by takgnand

By B, large enough. The latter can be obtained by taking the numbBherery
large and by taking3, = 1 or by using moderate values for boffy and B,.

In a practical implementation, the computational complexity associated with both
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Figure 3.12: Prediction interval for the nitrate concentration on 14/01/2068
panel: historical data with model fit. Right panel: The new observa-
tion (dot) is accepted by the tree one-sided prediction intervals

bootstrap loops has to be taken into account. Here, the computational Itz of
second loop is negligible compared to the first loop. Hence, it is interestingeo ta
B, as small as possible in order to reduce the computational power. The impact
of the sizes ofB; and B, is assessed in Figure 3.13. One sided intervals were
calculated to validate nitrate measurements. For the same dataset 50 bootstrap in
tervals are calculated for (1 = 1000, B2 = 1, (2) B1 = 10000, B2 = 1,

(3) B1 = 10000, B2 = 100 and (4)B1 = 1000, B2 = 1000. For cases (1)

and (4), the time needed to calculate the intervals was almost equal because th
computational complexity associated with the calculation of 1000 AM’s in the first
bootstrap loop is much larger than the complexity needed for the secondrstep.
case (2) and (3), however, 10 times more computational time was needmagsbec
the first loop was executed 10 times more. The figure clearly illustrates tiede

(4) the one sided interval is estimated much more accurately than in casegt® wh
there is still a considerable amount bootstrap resampling variability. The stability
of the intervals in (4) was slightly better than in case (2). This is becausethe s
ond loop was only executed 10000 times for case (2) compared to 1006689

for case (4). In case (3) a small gain in accuracy can be observegred to case

(4). In both cases the second loop is assessed 1000000 times. Hehoetdteap
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Figure 3.13: Effect of the number of bootstraps in the first and secoryl do
the bootstrap resampling variability of one-sided 95% sbPI. Each his-
togram displays the empirical distribution of the upper limit of the
one-sided 95% sbPI and is based on 50 PI's. Bl is the number of
bootstraps in the main bootstrap loop and B2 is the number of boot-
straps in the second bootstrap loop

resampling variability induced by the second loop is controlled at the same level.
In case (3) the first loop is executed 10 times as much as in case (4) aetbtber

a slight reduction of the bootstrap resampling variability is established. Busthis

at the expense of an increase in the computational time by a factor of 1€ddn o

to reach an acceptable accuracy while keeping the computational time limited we
decided to usé; = 1000 and By = 1000.
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3.3.2 Evaluation of the coverage of the PI's in a simulation sitdy

In theory, 95% prediction intervals should contain (cover) 95% of the iflittay

follow the model. In a simulation study we can calculate the coverage empirically.
A large number of simulated datasets have to be generated and for easdt data
observation at time + 1 should be validated. The data are simulated from a known
mean model and a pre-specified distribution of errors. The empiricalageeas

then calculated as the ratio between the number of simulations where the validated
observation is accepted and the total number of simulations. In this study the em-
pirical coverages of three different PI's derived in Section 3.2.aasessed. Five
different types of distributions are used in this study, normal residuatstyfpes of
residuals originating from right-tailed distributions and two types of residurais
inating from left-tailed distributions. The results of the nitrate dataset at lotatio
S5 in Section 3.3.1 are used to generate the data for the simulation study. d=irst w
will explain how we obtain samples from right-tailed distributions. Weibull distri-
butions with shape factors of 1 and 2 are used. The scale parametez chaden
arbitrarily because the simulated residuals are standardised and multiplied with the
standard deviatiodgs of the residuals obtained from the fitted model in Figure
3.8. The residuals from the left-tailed distributions are generated by oiwatige

sign of the residuals from the right-tailed distributions. Plots of the distribution
functions that are used in the simulation study are given in Figure 3.14. €or th
normal residuals we sample from a normal distribution with mean 0 and variance
62

Once we can generate new residuals with the same variance as the oraaal d
simulated datasets are constructed. Fingsiduals are simulated from a particular
distribution, and they are denoted &Y. The simulated datasef3* then consist of
the original predictorsay, . . . , x4) and the simulated respongé = § + €*. For
the simulated datasets, the values of the true underlying funetiany, ..., zq),

t =1,...,n, and the observation under validation at time- n + 1 are known.
They are thej s andy, 1 g5 represented in Figure 3.12, respectively.

For each distribution, 5000 datasets were constructed. Because thetsayfilg
originate from a distribution with a mean @f,;1,s5, the empirical coverage of

the 95% PI's should be close 95%. The empirical coverage for the efiffen-
tervals are given in Table 3.1. The aPI's seem to be slightly too large for the
Gaussian case. The coverage of the aPI's reduces when the daigh&itailed

and increases when the data are left-tailed. This effect is even moneappden

the distribution becomes more asymmetric. The %bPI seems to have the tendency
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Figure 3.14: Density functions of the residuals used to generate the datsefo

Table 3.1:

coverage study

Coverage (in %) of 95% PI's for data originating from differaistri-
butions

Analytical ~ Bootstrap

Distribution aPlI %bPl sbPI
Gaussian 96.4 97.2 95.0
Right-tailed, W1 94.1 96.0 945

Moderately right-tailed, W2 95.5 96.6 94.8
Moderately Left-tailed, W3 98.8 985 95.2
Left-tailed, W4 99.8 99.9 96.6

to be too large, the results for the different distributions are all above 338ty
the sbPI seems to reach the correct coverage and is robust to deviedionsor-
mality. The coverage of %bPI is known to be problematic (Efron and Tihshira
1993; Davison and Hinkley, 1997). Corrections for percentile bagedvils exist,
for instance Efron and Tibshirani (1993) suggested bias and aatielecorrected

intervals.

But the implementation of the methods they suggested is not straightfor

ward for our the double bootstrap procedure because the seconddosists of
adding a random residual. For the semi-automatic data validation proceélise,
are preferred from a computational point of view. However, their aye can be-
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have poorly, particularly for the combination of upper bounded onedditd's and
residuals that follow a left-tailed distribution. The coverage of studentisedi@

tion error based bootstrap Pl's (sbPI) however are rather robtisé tdistribution
of the residuals and therefore we suggest to use this PI for data valigatiposes.

For all 5 distributions, the coverage of the sbPl is close to the nominal ve8s6
and in the data validation procedure, we will use this PI to validate a newvabser
tion. Under the null hypothesif, a new observation is valid given the observed
historical data when it lays in the PI. Under the alternative hypothésishe new
observation is not valid. The decision error of concludiigwhen in realityH, is
true is called the type | error. It may also be called a false positive. WhnFS
are used to validate the new observation, the corresponding probabiity).05

is referred to as the type | error rate or the type | error level. Becaesentipirical
coverage of the sbPI is close to the nominal value of 95%, it correctly @entr
for the type one error. Beside controlling the type one error, the povwardther
feature which is important in statistical testing. It is the probability to refégt
when H; is true. Hence, the higher the power, the higher the probability to detect
a deviating observation. The power of the validation procedure is a&sbesthe
next section.

3.3.3 Evaluation of the power

Again, the model fitted in Figure 3.8 is used to construct simulated datasets. The
residuals,e*, are simulated from the normal distributigvi(0, &gs) . The simu-
lated dataset®™* consist of the original predictors(, ..., z,) and the simulated
responsg* = ggq5 + €*. Thus for the simulated datasets, the values of the under-
lying mean functiorm(z1, . . ., z4) evaluated at the predictor poirtsy, . .., ;)
andxz, 1 areggs andy, 41,55, respectively. Now a systematic deviation is intro-
duced in the simulated data,, 1, y;, , ;) that will be validated. Instead of validat-
iINg Yy 1 = Unt1,55 + € Ypn = Unt1,55 + € + 1655 is used and the corresponding
power to detect this deviation is calculated. To derive a complete powee,curv
different values foi are taken( € [0,4]). For each value of, 5000 datasets are
generated to calculate the empirical power. The resulting power curveplayksl

in Figure 3.15 (thick line). In the same figure a theoretical power curvepiere
sented. The theoretical power was found under the assumption that tle¢ umed
certainty could be neglected. In this case, the model predigfidollows a normal
distribution N (9,,+1,55, 6%5). The validated observatiogf;, ; however follows a
normal distributionV (g, 41,55 + (5.5, 635). Hence the power to detect the devia-
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Figure 3.15: Power curve for the detection of deviations in validated datack
line: empirical power, thin grey line: theoretical power when the
model uncertainty is neglected). The size of the deviations ranges
between 0 and 4 timesss

tioninyy ., is established by using the distribution functidify, +1 + 155, 6%5)

to calculate the probability’(y;: . | > n+1,55 +21-a0s5). This theoretical power
cannot be exceeded because model uncertainty is always preseattingl appli-
cations. At the beginning, when= 0 both curves start at 5%. This is due to the
use of the 95% PI's which correctly control the type | error at the 5%l lever
moderate values df the empirical power curve is lower than the theoretical one,
but the empirical power remains remarkable high. This suggests that oundneth
is well suited for data validation purposes.

3.3.4 Case study I: Validation at one sampling location

The data of sampling location S5 for the years 2003 and 2004 are valid&ted.
dataset at this location contains 8 variables: day number to model the deasona
effect, date to model the long term trend, temperature (T), dissolved nxgaye
centration (DO), nitrite concentration (NQ, chemical oxygen demand (COD),
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pH and nitrate concentration (NQ. The time series starts at April 1990 and ends

in December 2004. All 8 variables are measured on a monthly basis. Thieaata
1990 until December 2002 are considered as historical data. The niatatéram

2003 and 2004 are validated in chronological order. In particular iiaotEserva-

tion lays within the 95% PI, then the measurement is accepted and considered a
historical data for the validation of the next observation.

The results of the data validation are presented in Figure 3.16. All data2e®d

are accepted. The observations in January and February of 200djected. To
assist the expert with the interpretation of the rejected observations,odiggn
plots can be generated. First reduced models are created by omittingfeheh o
predictors one by one from the fitted model. The diagnostic plots consiseof th
representation of new PI's that were obtained with the reduced modéelse dib-
servation is accepted by the Pl constructed with the reduced models, it irdicate
that there might be something wrong with the relationship between the validated
observation and the omitted predictor. Diagnostic plots for the rejectedvabser
tions are given in Figure 3.17 and 3.18, respectively. In the x-axis, ititea
variable is indicated.

From these diagnostic plots possible explanations for the rejection of thendsita
become clear. The measurement in January is only accepted when th@tneay

is omitted from the model, giving a strong indication that this measurement does
not follow the expected long-term trend in the data. The measurement indfgbr

is accepted when the trend or pH are omitted from the model. This indicates again
that a potential cause of the deviation is related to the trend. The nitratenconce
trations in the beginning of 2004 are known to be unexpectedly high (Anoos,
2005). The river Yzer is located in the countryside and 2003 was diy; wich
resulted in an accumulation of nitrate in the soil in summer and autumn. The dry
summer of 2003 had a beneficial effect on the nitrate concentration, thiape

was a limited amount of nitrate washed to the water course by rain. Hence, the
nitrate accumulated in the soil and was washed out in the winter period. Moreo
January 2004 is recognised to be extremely wet by the Belgian Royal iM&ige

ical Institute (KMI). It can be concluded from their data that this phenaneat

most happens once in a 100 years. The dry summer combined with an exteéme w
winter provoked high nitrate concentrations in the receiving water.
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Figure 3.16: Validation of nitrate at sampling location S5 of the Yzer monitoring
network. Nitrate concentrations in January and February 2004 are
considered as anomalous by the automatic validation procedure. The
dots represent the actual measurements, the solid line the predictions
by the additive model and the horizontal bars are the 95% PI’s

3.3.5 Case study lII: Validation of an entire basin

The data from 2003 and 2004 are validated for all sampling locations ofzke Y
basin, containing enough data to fit the models. The dataset at each Idzagion
information on 8 variables: Day number, date, T, DO, N@OD, pH and NQ.
Again, all 8 variables are measured on a monthly basis. The data fromub®90
December 2002 are considered as historical data. The nitrate data®@8rad
2004 are validated in chronological order. If a new observation laysmiitie PI,
then the measurement is accepted and considered as historical dataviaidhe
tion of the next observation. The data validation is carried out using 932tssb
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Figure 3.17: Diagnostic plots for rejected nitrate concentration of JarR@0dy
at sampling location S5 of the Yzer monitoring network. The dot
represents the observation and the black line indicates the location of
the upper limit of the 95% interval

The empirical coverage of the intervals in a certain period is calculated/tuirdj
the number of accepted observations in this period by the total number cditealid
observations in this period. The coverage of the intervals for the whabatian
period, is 91%. However, the coverages for the 2003 data is 94.7% alu$eésto
what is expected from theory when no deviations are present. In 28@bterage
is only 80 % indicating the presence of a considerable number of anomaltaus d
In Figure 3.19 the results of the data validation based on the sbPI's impgdse
The top panel shows the results of the validation in 2003, in the middle panel the
results of 2004 are given and the bottom panel shows the evolution obtkeeage
of the sbPI’s during the whole validation period. Accepted data are indieeta
open dots and the rejected data are presented by black dots. From thepaidelle
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Figure 3.18: Diagnostic plots for rejected nitrate concentration of Fep2@04
at sampling location S5 of the Yzer monitoring network. The dot
indicates the observation and the black line indicates the location of
the upper limit of the 95% interval

of Figure 3.19, it can be concluded that a lot of the data in the period abiaunp

to March 2004 are rejected. This is even more obvious in the results pedsan
the bottom panel. The bottom panel shows the evolution of the empiricalageer
in each month. In 2003 the coverage is more or less stable at 95%. In time beg
ning of 2004 a clear drop of the coverages of the PI's is observediéin 56%,
February 66% and March 67%) indicating that there was a change in skensy
during the first months of 2004.

A more general feature can be derived from Figure 3.19: similar to mu#iear
techniques, our method can also detect observations to be suspicioui$ teey
are laying in the centre of the univariate distribution of the nitrate concengatio
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Figure 3.19: Validation of nitrate at at all sampling locations of Yzer monitoring
network. The top panel: validation in 2003, middle panel: results
for 2004 and the bottom panel: evolution of the coverage of the PI's
during the whole validation period. Accepted data are indicated with
an open dot and the rejected data are indicated with a grey dot

Hence, our methodology combines the interesting features of multivariate outlier
detection without imposing restricted assumptions on the relationship between the
response and the predictor variables.
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3.4 Conclusions

A method for the validation of river water quality data is proposed. Basettien
historical data an additive model is fitted, which is subsequently used térgons
prediction intervals for future observations.

Our study indicates that the additive models are clearly able to catch the cgtlic p
tern present in the data and could model the nonlinear behaviour andnshags
typically associated with river water quality data. As an interesting featuee, th
observed associations between the response and the predictortsweflémown
physical and biochemical relationships. Since the model selection is cauted
at each time step, the models succeed to adapt to changes in the protélsses o
underlying river.

From the different prediction intervals which are derived, the studehtisedic-

tion error based bootstrap Pl's (sbPI's) are most interesting to beinigedctice.

The coverages of the 95% sbPI’'s have been assessed in a simulatiparstiich
comparison with analytical intervals, which assume the residuals to be Gaussia
they appear to be much more robust against deviations from normality. oliter p

of the method was also shown to be adequate.

The case studies have illustrated that our method could detect anomalots eve
such as an abnormal high nitrate release due to a dry summer which wasefbllow
with an extreme wet winter period. The diagnostic plots are also usefulith tes
operator with the analysis of the rejected observations: here they indieatd¢h
rejection is related to the trend. In the case studies, the semi-automatic pecedu
detects suspicious observations laying at the edges as well as obserlatated

in the centre of the univariate distribution of the nitrate observations. Heéince
combines the interesting features of classical multivariate outlier detection tools
without having to impose linear relationships typically associated with these meth-
ods.

An ICT-tool based on this methodology could be of great value to analyde a
maintain environmental databases originating from monitoring networks such a
the ones which are implied by the WFD. Such a tool can be used to check the
quality of the data and it can also detect abnormal changes in the water quality
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Chapter 4

An introduction to state-space
models

4.1 Introduction

Current environmental legislation has triggered the establishment of monitoring
networks to assess environmental quality. Environmental processeslygioow
variability over space and time. Hence, environmental monitoring networks ge
erate vast amounts of spatio-temporal data. In general these data shather
complicated dependence structure and cannot be treated as a setpeithelet

and identically distributed (i.i.d.) observations. Standard statistical data analys
techniques relying on this i.i.d. assumption are thus not valid. A correctggaly
should take the spatio-temporal correlation into account.
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In this dissertation, we aim to infer on the data at the sampling locations of river
monitoring network and we do not aim to perform predictions at intermediate lo-
cations that are not sampled. Therefore the observations of the monitetimgrik

at a certain time instant can be considered as the realisation of a finite-dinansion
multivariate random variable with each dimension corresponding to eacteof th
sampling locations. The state-space model framework, is particularly widbsu

to handle multivariate dynamic data. It can be used to treat a wide rangelsf pr
lems in time series analysis. A nice feature of state-space time series models is
that the observations are considered to consist of several distincooemig such

as a trend, seasonal effect, regression elements and disturbancevtéomsre

all modelled separately. The models for these components are then combined in
single model, thetate-space modethich forms the basis of the analysis (Durbin
and Koopman, 2001). State-space modelling assumes that the underlytegpr

is driven by a unobserved seriesmafx 1 vectorsSy,...,.S,, the states, that are
associated with a series pfx 1 observed vectorg,,...,y,. The states are as-
sumed to follow a stochastic transitional model. Generally, the state-spdgsisina
aims to infer on the properties of the stafgsby the knowledge of the set of ob-
servationsY ; = (yy,...,y,)T. The estimation ofS; given Y, is referred to

as

1. filtering fort = s,

2. smoothing fot < s and

3. prediction fort > s.

When all stochastic processes are GaussianKéheman filtercan be used to ad-
dress the filtering and the prediction problem andKhé&man smoothesolves the
smoothing problem. Another interesting feature of the Kalman filter is that it can
be used as a computational efficient algorithm to factorise the likelihood of the
model.

Before we look to Kalman filtering and smoothing into more detail, we first intro-
duce the state-space representation of the model.
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4.2 State-space model

In this section, we assume that no predictor variables are available. fouge
variables will be introduced later on in Section 4.3.4. The state-space &sumes
that ap-dimensional multivariate process = (yit, - - -, ypt)” , is driven by am-
dimensional state process = (Si, ..., Sm¢)’. This state process is believed to
be generated by a first-order Markovian process,

Sy = P51+ 0y, (4.1)
witht =1,...,n, anm x m transition matrix®; and independent. x 1 vectors
d1,...,0, with zero mean andn x m variance-covariance matric&€g,. The

state process however cannot be observed, instead we only obsaoigy linear
transformed version of ity,. The observationg, are related to the state variable
S via the measurement equation

Yy = ZSi + €, (4.2)

whereZ, is ap x m matrix and the; (t = 1,...,n) are independentx 1 vectors

with zero mean ang x p covariance matri¥f,. The matricesp;, Q,, Z; andH;

are also referred to as the system matrices. They are assumed to Hectastic

and to change over time in a predetermined way. The resulting system is thus
linear. When the system matrices do not change over time, the resulting model is
time-invariant. For the model to be completely specified, the distribution of the
initial state, S, has to be specified is assumed to be Gaussian with mé@@

and covariance matri® . Further thed; ande; are assumed to be uncorrelated
with each other in all time periods and with the initial state. Hence,

E(d.ef)=0 foralls,t=1,....n (4.3)

and
E(S06{) =0, E(Soe/)=0 foralls,t=1,...,n. (4.4)

4.3 Kalman filter and smoother

Most of this section is based on Harvey (1989) and Durbin and Koop&Qo1j.
Once a model is written in its state-space formulation, the Kalman filter and smoother
can be applied to find the optimal estimator of the state praSesstimet.
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The Kalman Filter provides an estimator o§; given all observationg,;, which

are observed at the time steps=1,....,t. LetY, beY; = (yI,...,y])7, the
filtered estimator of is then the conditional expectation B;|Y ;). The Kalman
filter is important for e.g. online estimation and prediction because it contifyuous
updates our knowledge of the system each time a new obseryai®brought in.
Another interesting feature of the Kalman filter is that it provides a convenian

for calculating the likelihood when the initial state vector and the disturbamees a
Gaussian.

In offline applications, it is more appropriate to estimate the state vector agincer
timet conditional on all the information which is availab¥,y = (y?,...,y1)7,
Hence, to provide the optimal predictor of the state process atttithe measure-
ments that are obtained on later time instants1, ..., n should also be consid-
ered. In this setting ES;|Y x) is the appropriate estimator and is provided by the
Kalman smoother

4.3.1 General form of the Kalman filter

Suppose a system is defined by Equations (4.1) and (4.2), and supposs!
distributions are normal. Let the skt;,_; be the vector of the past observations
Y1 = (yF,...,yl1)T. Then the conditional distribution o§; givenY;_;

is also normal,N (A1, Pyje—1), wheredy,_; = E(S:|Y 1) and Py, =
E((St — Ajt—1) (St — Aye—1)"). They can be immediately determined from Equa-
tion (4.1),

)‘t|t—1 = (I)t)\t—1|t—1
and

Py = (I)tPt—l|t—1<I):tF + Q.

When a new observation becomes available it is our aim to incorpggdatethe
estimation ofS;. In this case the conditional distribution &f; given Y; has
to be defined. We will denote this particular distribution/égX,,, P,). Here
Ae = E(S(|Y) and Py, = E((Sy — At) (St — Aye)™) have to be determined.

We first introduce the innovations that are defined agpthkel vectorv, = y, —
Zi—1- They can be regarded as the prediction error. The innovations are no
mally distributed with a zero mean and variance-covariance matix
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4.3 Kalman filter and smoother

Since all variables are Gaussian, standard formulae from multivariateahoe-
gression theory can be used to obtajp and P;;. Eubank (2006) has shown that
these estimators are basically the best linear unbiased predictor (BLtHe)sihte
S; based on the innovations.

At|t = At\t—l + COV(St, v;) Var(’l)t)il (7
= Agp—1 + Pt\tflthFt_llvtv

and
Py, = Py —cov(Sy,vy)var(v,) ' cov(Se, ve)"
=Py 1 — Pt\t—lthF;thPﬂt—h
where
cov (S, vi) = Pt|t71ZtTy
and

var(vy) = Fy = Zvar(Sy|Y 1) Z! + var(e;)
= ZPy, 1 Z] + H,.

The recursions for;_, Py;—1, Ay, F'+ and Py, form the hart of the Kalman
filter.

Suppose\y|y and Py, are known, then the Kalman filter can be summarised as

follows: fort = 1,...,n the following forward recursions are used and they are
started with time = 1,

Prediction step

Atji—1 = PeX_1ji—1 (4.5)
Py =®P,_ 1,19 +Q, (4.6)

Update step
Abje = Age—1 + Pt\t—lsz;I(yt — ZiAyji—1) (4.7)
F,=Z,Py_Z] + H,. (4.8)
Py, =Py — Py 1Z{F;'Z, Py, 4. (4.9)
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Chapter 4. An introduction to state-space models

4.3.2 Likelihood and the predictor error decomposition

In a classical setting, the observatiaps . . ., y,, are i.d.d. This enables the log-
likelihood function to be written as a sum,

n

log Ly, (%) = Y p(ys), (4.10)
t=1

wherep(y) is the joint density function evaluateddn and indexed by the param-
eter vector¥’ (dependence is suppressed for notational comfort). The maximum
likelihood estimator is then found by maximising Equation (4.10) with respect to
the parametew.

When the observations are dependent, the decomposition (4.10) is tiotblgp
Fortunately, the state-space representation allows a factorisation of thiteoldde
by using conditional density functions, resulting in a convenient decoitiquosf
the log-likelihood

n
log Ly  (®) = > logp(y| Y1) (4.11)
t=1

wherep(y,|Y;—1) is the conditional density function af, given all previous ob-
servationsY';_; = (yI,...,yl ;)T. When the disturbances and initial state vec-
tor Sy are normally distributed, those conditional density functions are explicitly
known and also Gaussian. From the Kalman recursion in Equations #4%)#(
can be seen that the expected valueSefconditional onY;_; is normally dis-
tributed with mearn\;;_; and covariance matri®,;_,. Therefore, from Equation
(4.2) it follows that the conditional distribution af, is normal with conditional
mean

E(y|Yi-1) = Zt)‘t|t71 (4.12)

and covariance matri¥';. Thus, for a Gaussian model, the Kalman filter can be
exploited to formulate the log-likelihood immediately as

_ pn 1 & I~ 7o
log Ly, (¥) = —?log 2 — 3 ;log |F'¢| — 3 ;vt F; v, (4.13)

where the innovations; can be interpreted as the vector of the prediction errors.
Equation (4.13) is therefore referred to as the prediction error decsitigyoof the
log-likelihood.
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4.3 Kalman filter and smoother

When appropriate prior information &Y, is available, the prediction error decom-
position of the log-likelihood will yield the exact log-likelihood of all observaso

Y n. In most cases, however, genuine prior information is not availableer&ev
possibilities that are commonly used for initialisation are introduced in the next
section.

4.3.3 Kalman filter initialisation conditions

In a Bayesian framework and in the absence of genuine prior informatien,
Kalman filter is often initialised by the use of a diffuse prior. The state variable
Sy is then assumed to be Gaussian distributed,$ay~ MV N(0,xI), where

k is a positive scalat is anm x m identity matrix. The diffuseness is obtained
whenk becomes large. Howevet,is not allowed to grow unboundedly because
thenPa‘é no longer exists and the distribution does no longer integrate to one. For
most practical cases is set at an arbitrary large finite value. A larganakes

the variances (diagonal elements Bf,) large, and so it limits the amount of

information contained 9.

Another common approach is to look 2|, and Py as parameters that have
to be estimated. In this case; parameters have to be estimated .?QJI[O and
m(m + 1)/2 parameter estimates are neededRyy,. To restrict the number of
parameters related to the initial conditioi, is often considered to be fixed. This
is established by settin§y = Ag|g and P, = 0. In the next section we will show
that in this case the state-space model can be reformulated as a stateisgate
with exogenous predictors and initial conditiohg, = 0 and Pyo = 0. The
initial parameters can here be estimated by generalised least squarentiRec
Eubank (2006) showed that this approach, as well as the diffuse ggfmoach
are closely related. Although they start from a completely different viemtpbe
showed they ultimately provide the same predictions.

Up to now, we did not take exogenous predictors into account. In maricapp
tions, however, the observations are modelled by taking such predictoradn
count. In this chapter we assume that the relation between the mean reapdnse
its predictors is linear. Due to the dependence structure in the data, tmegters.
related to the predictors are more efficiently estimated by the use of gengéralise
least squares (GLS). The next section illustrates how the Kalman filterecasdul

for this purpose.
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Chapter 4. An introduction to state-space models

4.3.4 Using the Kalman filter to perform generalised least sgares

Suppose; exogenous predictors at time t, s&j); = [x1,..., x|, are used to
predicty,, and that the state-space model (4.1)-(4.2) is reformulated as
St = ®St-1 + 0y, (4.14)
Y, = ZtSt—l—Xtﬁ‘f‘Gt. (415)

In this case the state-space model can be further reformulated asssregmodel
Yy, = X8+ uy, (4.16)

with correlated error terma; = Z;S: + €;. Writing it in matrix notation we find
YnN=XNnB+Un, (4.17)

Wlth YN = {y,{a R 7y£]T1 XN = [X’{7 M 7X;[7,1]T andUN = [U,{7 R UZ]T’
and let the covariance matrix &f 5 be V. Thus, the regression problem reduces
to a generalised least squares (GLS) problem, where the estimgdas given by

Bars = (XAVIXN) T IXEV Yy, (4.18)

From GLS theory, the variance-covariance matrix of the parangkigr, is known
to be A
var (BGLS) = (XTvlx )L (4.19)

Harvey (1989) showed that the Kalman filter can be used to effectivetgrpe a
Cholesky decomposition df . This is done by applying the same Kalman filter to
y, as well as to each of the columns Xi;. Hence g x 1 vector of innovations on
the observationg,, sayy;, and ap x ¢ matrix of innovations on the explanatory
variablesX,, say X7, are produced. The fact that the same Kalman filter is used
for they,’s and theX;’s suggests that for a given set of paramet®rshe recur-
sions forP,;_, P,; andF'; are run only once, rather than+ 1 times. The GLS
estimator of3 becomes

n -1 n
Bcrs = !Z X::TF;lX:] > XTF My (4.20)
t=1 t=1

with innovations
v =y; —x;BgLs- (4.21)
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4.3 Kalman filter and smoother

These innovations can be used for the calculation oftimeentrated log-likelihood

_ pn 1 & I~ 7o
log Ly, (¥) = —710g 2 — 3 ;10g |F'y| — 3 ;vt F; v (4.22)

A special application of GLS performed by the Kalman filter is the situation where
the initial conditions are considered to be fixed parametg§s< Ao andPgq =

0) which have to be estimated. This approach was first introduced by Wanoke
Ansley (2002). They showed that the state vector at ticen be written as

t
Se= ][] ®;| So+S;, (4.23)
j=1
whereS; satisfies the following transition equation of the form of Equation (4.14),
S; = @tS;_l + 515, (424)

which now has the starting value 8f, = 0. SubstitutingS; in the measurement
equation (4.15) gives

v = 2,8, + X [50] ‘e, (4.25)
where
t
X! = [Xt Z, 11 qg] _ (4.26)
j=1

Thus the model with fixed initial conditions can be written as model (4.24)-(4.26)
with initial conditionsX;, = 0 and P, = 0. The parameter vector in this model
is simply augmented witt§,. An estimate ofS, can then be calculated by the
GLS procedure.

4.3.5 The Kalman smoother

In the previous section it was shown how the Kalman filter provides the &egbec
value of the state variable at timeonditional on the information which is available

up to this time instant, i.eA,; = E(S|Y;). In many applications it is useful to
incorporate all the information which is available to estimate the state variable at
time ¢. Hence, also the information obtained beyariths to be incorporated to
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Chapter 4. An introduction to state-space models

estimateS;. This leads to the expected value of the state variable conditional on
the entire sample, i.e. &:|Y v) = Ay, which is also referred to as the smoothed
estimate and which can be found by applying the Kalman smoother. Because the
smoother is based on more information than the filtered estimator, it has a mean
squared error which is generally smaller than that of the filtered estimator.

To obtain the smoothed estimates, the Kalman filter should be followed by a set
of recursions which are known as the Kalman smoother. The Kalman smoother
recursions start with the final quantities, ,, and P,,,, and proceeds backwards.
Fort = n —1,...,0, it consists of the following backward recursions (Harvey,
1989; Shumway and Stoffer, 2006),

A = e + Je(Xigipn — Aegape) (4.27)
Py =Py + Ji(Pyyyjn — Prap)J7 (4.28)
J; = Pt‘tqﬁﬂpt—jl't. (4.29)

Digalakis et al. (1993) provided recursions for the calculation of the fegcovari-
ance estimator®, ,_;; = cov(S;, S;-1|Ys). Filtered values can be calculated
by the additional forward recursion

Pt,tfl\t - (I - Pt\tflng;IZt)étPtfl|tfl7 (4.30)
and smoothed values can be obtained by the additional backward recursio

Py gjn=Pryapp+ (Pyp — Pt|t)P;t1Pt,t71|t- (4.31)

4.4 Maximum likelihood estimation

4.4.1 Introduction

We have already introduced the Kalman filter as a tool for the calculation of the
likelihood. For obtaining maximum likelihood parameter estimates, the likelihood
function has to be maximised. This can be done numerically by using classical
algorithms such as the Newton Raphson approach. When the state-spieidéamo
time-invariant, another possibility was introduced by Shumway and StoB&2(1

They derived an Expectation-Maximisation (EM) type algorithm to obtain maxi-
mum likelihood estimates of the parameters. The basic idea of EM algorithms was
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4.4 Maximum likelihood estimation

introduced by Dempster et al. (1977). It provides maximum likelihood estimates
in incomplete data situations. A nice property of EM algorithms is that under cer-
tain conditions, the likelihood cannot decrease throughout the iteratioesce;

the likelihood always converges to a local maximum (McLachlan and Krigshna
1997). An EM algorithm can be specified for the state-space setting, astie
servable state can be considered as missing data.

4.4.2 EM algorithm

The EM algorithm which is considered here, is based on Shumway anciStoff
(2006). They presented an EM algorithm for time-invariant state-spaceiso
without exogenous predictors. For time-invariant state-space modelsydtesns
matrices®;, Q,, H; and Z; are constant and the indeéxcan thus be dropped.
First, we should act as if the state vector is observable. In this case weomsigder
(Sn,Y n) as the complete data, and their joint log-likelihood is given by

1 1 _
log Ly, (®) ~ — log |35, | = 5 (S0 — po)" T, (So — o)
n 1 —
-5 loglQl -5 D (S -85, 1)"Q (S — @S, 1)

t=1
n

n 1
—5log |H| - B ;(Yt - Z,8)"H (Y, - Z,S,), (4.32)

which is referred to as theompleted log-likelihood

This likelihood cannot be calculated because the state variable is unablgefhe
EM algorithm overcomes this by iterating between two steps, a so-dalsdp
and anM-step. In the E-step of the (k + 1) iteration the conditional expected
value of the completed likelihood given the observed déta and the current
value of the parameter estimat®$ is calculated. This conditional expectation is
given by

Q(¥, ¥*) = E (—210g Ly.s(®)|Y y, \Ilk) (4.33)
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Hence,
Q¥ w*) ~ E (log By | + (So — 1) "5 (S0 — o) |¥ v, )

+E (nlog QI+ (S — 885, 1)"Q7(S; — ®S,1)[Yw, \Ilk>

t=1

+E (n log |[H|+ Y (Y¢— Z:S)"TH (Y, — Z,5,)|Y x, \Ilk> . (4.34)
t=1

Shumway and Stoffer (2006) showed that this yields

QP F) ~ log [T | + tr {25! [Pojn + opn — 0) Ao — 10)7] }
+nlog|Q| +tr {Q—l (A1 — A1p@" — BA] + 2AYWDP"|} + nlog |H|

{ -1 Z — Z )Yy — Zidign)” + Z0 Py, ZT } ., (4.35)
where

A = zn:(,\tmngln + Py, (4.36)

t=1
A = zn:(Aﬂn)\;{un + Pyi1n); (4.37)

and -
A= En:()\t—un)\tT_”n + Py_1n)- (4.38)
- (4.39)

In the subsequeril-step, the expected log-likelihood has to be maximised, or,
alternatively, Q(¥, ¥*) has to be minimised so as to obtain the update of the
parameter seP**1. This yields

DM =A 0 Ay, (4.40)

QM =n"1 (A — A Ay ATY), (4.41)
and

HF =p1 Z — Z )Yy — Zidn)T + ZoPy ZT) . (4.42)
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4.4 Maximum likelihood estimation

The updates for the initial mean and covariance matrix are
pett = Ao, andSt! = Py, (4.43)

Thus, the overall procedure alternates betweerkttisteepwhere the Kalman filter
and the Kalman smoother are calculated, andMhstep which consists of the
parameter estimates updates (4.40)-(4.43).

Now that it is clear how the parameters can be estimated, a method is needed to
calculate the variance of these estimators so that their uncertainty careseeaks

and inference becomes possible. The variance-covariance matrix patame-

ter estimators can be obtained by perturbation or by the derivation of therFish
Information Matrix (FIM) as explained below.

4.4.3 Fisher information matrix

When parameter estimators are obtained by maximum likelihood, the Fisher infor-
mation matrix (FIM) provides an estimate of the inverse of their covariance matrix
The prediction error decomposition can be used to obtain the expected E1M.
denote the FIM, and itgj*" element is given by

1 & _,0F; _,0F,
I(w) =2 Fl 7l
o 23 [tr< L T 3‘1’j)}+
" 81:,5 T 7181)15

In some cases the observed FIM is easier to evaluate, and is obtaineapipyndr
the expectation operator in the second term. The derivativds; gind v; may
be obtained numerically by perturbation. This requires an additional gake o
Kalman filter for each parameter valde to obtain the perturbed versiafi, "’
andv}“"*. The derivatives are then approximated by

OF, [F}"" —F

~ o (4.45)
ov; W —
8'Ut ['Uferj — ’Ut]

~ er; . (4.46)
ov; W —
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4.5 Summary

The state-space model representation enables the modeller to use the Kisdman fi
and smoother recursions. These recursions can be exploited topgdoeralised
least squares estimation of the parameter of the mean model. They are &l$o use
for the calculation of the likelihood when all error terms and the initial conditions
are Gaussian. Maximum likelihood estimators of the parameters of the system ma-
trices can be obtained by the use of an EM algorithm and a covariance matrix o
these estimators can easily be calculated by the evaluation of the obseled FI
In the next chapters, the state-space representation is used to formsfstoa
temporal model for river monitoring networks. The specific spatial strectd

river networks, however, imposes some restrictions on the system mafriwre-

fore, an adjusted version of the EM algorithm is heeded.
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Chapter 5

Spatio-temporal modelling of river
monitoring networks, a parametric
approach

5.1 Introduction

In the light of the European Water Framework Directive (WFD)(EC, 20@0s
important for environmental agencies and policy makers to dispose of g tm
assess the evolution/change of the water quality. This assessment sh@aissh
ble at individual sampling locations as well as on a more regional scaletirigxis
statistical techniques cannot be used for this purposes because tloegiatting
from environmental monitoring networks are clearly not independenty ahe
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sampled from a dynamic process that evolves over space and time. ltenst-
tistical methodology should incorporate these spatio-temporal depersienees

to allow valid statistical inference. Traditional approaches to addressrtiirem

have focused on the geo-statistical paradigm (Bilonick, 1983; Cresdi®dajure,
1997) and on multivariate time-series methods, which specify dynamic models tha
are linked spatially (Rouhani and Wackernagel, 1990). If both tempoxhkpatial
components are present, it is natural to combine them in a statistical model that
is temporally dynamic and spatially descriptive. Such a model is referreddo as
space-time dynamic model (Wikle and Cressie, 1999).

Wikle and Cressie (1999) classify time-series as dynamic since the temperal d
pendence arises from a unidirectional correlation; the AR(1) model isaa ele
ample. This unidirectional structure is often utilised in time series techniques.
Geo-statistical methods, on the other hand, are classified as descriptizasie

of the non-directional correlation, there is no causal interpretatiorceded with

the observed spatial correlation. Based on these considerations Eudu@yessie
(1996) derived a temporal dynamic and spatially descriptive Kalman filter.

In this chapter we develop a spatio-temporal model for the analysis ofmigai-
toring network data. With respect to the spatial dependence structure artamip
distinction has to be made with the classical spatial structures. Since the water
flows only in one direction within the river reaches, a causal interpretatiorbe
given to the correlations. However, in contrast to time, rivers can joirphit. s
This implies a more general branched unidirectional structure. Theredfocord-
ing to Cressie’s terminology, the presented spatio-temporal model is dynamic w
both the spatial and the temporal dependence structure. Once we kmoto ho
build spatio-temporal models that can deal with the specific dependenctistru
of a river network, we can perform an assessment that incorpahstelependence
structure correctly.

To answer the question of interest we still need a model for the mean. Two
paradigms can be used for this purpose: the marginal and the conditiodellimg
paradigm. Diggle et al. (1994) suggested that the choice between batltigras
should be motivated by the research question. Since many environmextiims

are clearly related to the marginal mean, we have adopted the marginal modelling
paradigm and we model the marginal mean and dependence structuaalgpa

The focus in this dissertation is on the assessment of the observed dasatth
pling locations and we do not aim to perform predictions at intermediate losation
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that are not sampled. Therefore the observations of the monitoring rkedtor

a certain time instant can be considered as the realisation of a finite-dimensional
multivariate random variable with each dimension corresponding to eacle pf th
sampling locations. This enables us to write the model aglmnensional state-
space model. The state-space model representation allows the use ofrttaKa
filter and smoother recursions for estimation purposes. In particular, dhmdt

filter provides a convenient factorisation of the likelihood (e.g. Harveg9land
Shumway and Stoffer, 2006). For the maximisation of the likelihood function,
we use an expectation-maximisation (EM) algorithm (e.g. Shumway and Stoffer
1982, Harvey, 1989 and Shumway and Stoffer, 2006). A generaldattion to
state-space models, the Kalman filter and smoother and the EM algorithm for pa-
rameter estimation can be found in Chapter 4.

To deal with specific spatio-temporal structures or to reduce the compatition

den in large monitoring networks, restrictions are imposed on the model matrices
of the state-space model. Xu and Wikle (2005) proposed several paisatiens

for spatio-temporal models with a descriptive spatial component. The EM algo
rithm specified by Shumway and Stoffer (1982), however, assumetueteml
parametrisation of the state-space model and updates all elements of time syste
matrices. However, in a restricted model specification, a number of elemients o
the system matrices are known (fixed), e.g. when certain elements of thpretate
cess can be assumed to be independent, the covariance matrix of thestass pr
will contain a number of zeroes. Applying the EM algorithm of Shumway and
Stoffer (1982) on such a restricted state-space model, will also update fiked
parameters. Hence, after each update of the algorithm, the fixed parasteiatd
immediately be imputed by the known values. Xu and Wikle (2005) argued that it
is not clear whether this approach leads to maximum likelihood estimates. There-
fore they suggested to adjust the EM algorithm so as to take the restrictient\dir

into account.

In this chapter we develop a spatio-temporal model for the analysis of dgta o
inating from river monitoring networks. The river topology is used to aefin
spatio-temporal model that is dynamic with respect to both the spatial and the tem-
poral dependence structure. In reality the environmental conditions bsguce

the unidirectional spatial dependence structure implied by the river topdge

to this confounding factor, the state, s&yof the underlying river process cannot

be observed. We therefore propose to embed the latent vafablan observation
model that allows cross-correlation between sampling locations that atedoata
different branches of the river. To formulate the model for the meargdopt the
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marginal modelling paradigm and we model the marginal mean and dependence
structure separately. In this chapter a linear mean model is used. Forgiaras-
timation, we adjust the EM-algorithm to take the specific restrictions implied by the
river topology explicitly into account. To handle the exogenous predidatotise

mean model, the EM-algorithm is further modified to an expectation-conditional-
maximisation (ECM) algorithm. An ECM algorithm is a natural extension of the
EM algorithm obtained by replacing its M-step by a humber of computationally
simpler conditional maximisation (CM) steps. It keeps the attractive propeaty th
under suitable conditions, the likelihood does not decrease at any itefstény

and Rubin, 1993; McLachlan and Krishnan, 1997).

This chapter is organised as follows. In Section 5.2 the model is formulated an
in Section 5.3 the ECM algorithm for parameter estimation is given. Finally, in
Section 5.4, the model is applied to real data where the annual mean of nitaate in
certain region is compared to the annual means of previous years.

5.2 Spatio-temporal model

First, in subsections 5.2.1 and 5.2.2 a zero-mean model is constructedohe ¢
plete model is given in subsection 5.2.3.

5.2.1 Spatial dependence structure

Let thep x 1 vectorS = (54, ..., S,)T denote a stationary spatial process, where
S; (i =1, ..., p) represents the response variable at sampling locatidhe corre-
lation structure ofS is completely defined by its conditional dependence structure
which is directly derived from the river monitoring network architectureisT$
illustrated in Figure 5.1 which shows 5 sampling locations along 2 joining river
reaches. The direction of the flow is also indicated. The same figure cabeais-
terpreted as a Directed Acyclic Graph (DAG) (see e.g. Whittaker, 1990hich

the circles represent the graph’s vertices associated with the candiegd;’s.
Missing edges or arrows indicate the conditional independences. fdmasHig-

ure 5.1 we reathLSg; SQ_LLS?); S4_U_51’S2; S5J_|_51‘SQ; S5JJ_51‘S4; S5JJ_S2‘S4
andSs_ L S3|Ss. The DAG implies zeroes in the variance-covariance matri$ of
Thus it can equivalently be represented by a recursive system afiens (Wer-
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OSCN
(0~
@/

Figure 5.1: Directed Acyclic Graph (DAG) of five sampling locations along two
joining river reaches

muth, 1980),
S =AS +7, (5.1)

where the order of the elements 8f can always be rearranged so thtis a
p x p lower triangular square matrix with zeroes at the diagonal,~argdap x 1
multivariate zero-mean random vector with a diagonal variance-coeariaatrix
3,. We further assume that ~ MV N(0,3,). For the DAG represented in
Figure 5.1,A becomes

0 0 0 0O
asi 0 0 00
A=]10 0 0 00
0 a42 43 00
0 0 O as4 0

wherea;; models the dependence between sampling locatj@nd.S;.

5.2.2 Spatio-temporal dependence structure

In a river monitoring network the data are gathered over time. VeStor=

(Sit, ..., Spt)T now represents the observations at the sampling locations at time
t(t =1,...,n). Sothe dependence structure has to be extended with a temporal
component which we assume to be autoregressive of order 1 (ARf8).fitting

the model, the quality of the proposed temporal structure has to be asgeased
analysis of the innovations. To incorporate the temporal structure, Equatib)

is extended to

Si=AS:+ BSi-1+ 1y, (5.2)
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whereB is ap x p matrix containing the temporal autocorrelation coefficients (di-
agonal elements) and the spatio-temporal cross-correlation coeffi@érdgagonal
elements), ang, ~ MV N (0, 3,) with ap x p diagonal variance-covariance ma-
trix X,. Similar to matrixA, we propose to use only cross-correlations between
sampling locations which are directly connected according to the DAG steuctur
The off-diagonal elements @ are thus structured in a similar way as the elements
of matrix A. HenceB can be written as

by 0 0 0 O
bap b O 0O O
B=]10 0 b3 0 0
0 bs2 bsz bgg O

0 0 O bsg bss

Wheni # j theb;; model the spatio-temporal dependence betwgeand.S;;
and theb;; model the temporal dependence betwsgrandS;;_ .

Again, this assumption has to be assessed in an analysis of the innovatjolas. E
tion (5.2) can be reorganised so that the model can be written in its getadeal s
space model representation ,

Sy =®S5;_1 + 4, (5.3)

where® = (I — A)"'B andd; ~ MV N(0,Q) with covariance matrixQ =
(I-A)"'%,(I-A)~Tandt = 1,...,n. For the model to be completely defined,
we assumeS to be multivariate normally distributed, i.6y ~ MV N (0, Xg,).

5.2.3 Observation model

In reality, however, the dependence structure presented in ModghftgBt possi-
bly be obscured by common environmental influences such as rainfdifrato-
logical conditions in general. The rather strict structure implied by Mod&) (8
therefore assumed to hold only for an isolated river system. To allow formon
environmental disturbances, the unobservable state vaaislembedded into an
observation model,

Yy, = St + €, (5.4)

(t =1,...,n), wherey, is thep x 1 observation vector corresponding$@, and
€; iS @ zero-mean error term. In particular ~ MV N(0,X.). No restrictions
are imposed or¥, which enables cross-correlations between sampling locations
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that are not connected according to the river topology. This specificat#ikes the
spatio-temporal model given by Equations (5.3) and (5.4), a state-spba.

So far we have assumed that the mearypfs zero, i.e. Ey,) = 0 for all t.

This can be further extended to a linear model, e.dy i = X3, where3 =
(B1y.-ry 6q)T is theq x 1 parameter vector ani’; is thep x ¢ design matrix which

may contain time-dependent covariates. After embedding the mean model into
Model (5.4) we obtain

Y, =St + X8 + €, (5.5)

which specifies together with Model (5.3) the complete spatio-temporal state-sp
model. Note that this state-space model is time-invariant because the system ma-
trices®, QQ andX. do not change over time.

Another equivalent formulation of the spatio-temporal model is accomplibiied
recognising that the Model (5.3) and (5.5) can be written as a Structqedtion
Model (SEM) (see e.g. Maruyama, 1997),

CSy = ¢ (5.6)
YNy =XnNB+ SN+, (5.7)

whereSy = (ST,.... 8T, vy = (v7,...,yD)T, XNy = (XT,..., X])T,

C is apn x pn square matrix constructed from the elements of the matrkcesd
B,{ ~ MVN(0,X.), whereX, is a diagonal matrix built from the corresponding
elements o&,, andy ~ MV N(0,X,) whereX,, is block-diagonal with blocks
... From this SEM formulation the covariance structure of the observatiadoec
Y is readily found,

Ty (¥,) =var(Yy)=C'2.Cc T+ 3%, (5.8)

with ¥, a vector containing all the parametersdn B, Xs,, X,, andX.. Both
representations will lead to slightly different approaches to estimate thenptees.

5.3 Parameter estimation and statistical inference

The parameter estimation is based on maximum likelihood. In Section 5.3.1 we
formulate the likelihood. For the calculation of the likelihood we apply the Kalman

115



Spatio-temporal river network model, a parametric approach

filter (Section 5.3.2) for it enables a very natural factorisation of the likelihof
state-space models. Numerical maximisation of the likelihood is done by an ECM
algorithm. In Section 5.3.3 an ECM algorithm is derived in case the state-space
representation is used. In Section 5.3.4 this algorithm is adjusted to provide the
use of the SEM representation. In Section 5.3.5 we conclude with a briefiaicc

on model selection criteria and the joint asymptotic distribution of the parameter
estimators.

5.3.1 Likelihood

Our state-space model is basically a statistical model representation ofge ob
vation vectorY . It implies that

YN~ MVN(XnNB, Zy, (¥,)). (5.9)
The variance-covariance matr®y,, (¥,,) is completely parameterised by the el-

ements of®,. Maximum likelihood is thus a natural framework for parameter
estimation. The log-likelihood is given by

log Ly, () ~ —L (¥~ X8)" Sy, (%) (Y — X )

1
- 5 log |2YN (lIla)|a (5-10)
whereW is the vector containing all parameters of the model (3).

Conditional on¥ ,, the likelihood is maximised by the general least squares (GLS)
estimator

B(¥,) = (XEy! (Ta) X n) ' XTE) (W)Y . (5.11)

Substitution ofB(\Ila) into Equation (5.10) gives the concentrated log-likelihood
for ¥,

log Ly (%) ~ 5 (¥ v = X (%)) S5 (Wa) (¥ — XnB(P0))

1
— 5 10g|Syy (o). (5.12)
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5.3 Parameter estimation and statistical inference

Maximisation oflog Ly, (¥ ) yields ¥, and by substitution of?,, in Equation
(5.11), the maximum likelihood estimatgr = 3(¥,) is obtained. If in Equa-

tion (5.11),%y, (¥,) is substituted by an estimator, thénis known as thdea-

sible generalised least squares estimateGLS, e.g. Prucha (1984)). The state-
space representation of the model admits the use of the Kalman filter and smoothe
In particular, the Kalman filter enables a further factorisation of the likeliliood
Equation (5.10) because the initial conditions and all residual procass€zaus-
sian. This distributional assumption has to be checked for in the assessrttent
innovations. Another interesting feature of the Kalman filter is its use to calculate
the GLS estimates of the parameters of the mean model.

5.3.2 Kalman filter and smoother

When all the parameters of the state-space mddet (¥, 3) are known, the
Kalman filter and smoother recursions can be used to calculate the conditional
mean and covariance of the state variables (e.g. Harvey, 1989) whidhewiked

in the algorithm to maximise the log-likelihood. Although these recursions are
already introduced in Chapter 4, they are presented here for compstene

First, the conditional mean of the state variablg giveny,,...,y, is denoted

by Ays = E[Si|yy,---,ys]- In particulard,;_q, Ay and Ay, are referred to as
the predicted, filtered and smoothed values, respectively. Similarly, titicoal
covariance matrix is denoted W,, = var(S:|y,,...,y,) and the lag one co-
variance matrixP, ; |, = cov (S, Si-1]ys, - - -, y,). Finally, the innovations are
defined a; = y,—Ay;—1 — X3 and they have the corresponding covariance ma-
trix F'y = Py, + X¢. The predicted and filtered values are given by the Kalman
filter (e.g. Harvey, 1989). Far= 1,...,n the following forward recursions are
used and they are started with time- 1,

Aijm1 = BNy (5.13)
Py = ¢'Pt—1|t—1’i’T +Q (5.14)
Nt = Mije—1 + Py Fy oy (5.15)
Py =Py, — Py F;'Py,_, (5.16)
Fi=Py_;+ 3, (5.17)

whereX o = E[Sq] = 0 and Py, = var(Sp) = Xg,.
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Smoothed estimates are given by the Kalman smoother. It starts ont time
with the final quantities\,,,, and P,,,, and then proceeds backwards. The Kalman
smoother consists of the following backward recursions (Harvey, )19@0time
t=n-1,...,0

Atin = Mgt + Je(Apin — Aesage) (5.18)
Py, = Py + Ji(Pyyyjn — Proap) I (5.19)
J; = Pt‘t@TP;w. (5.20)

Digalakis et al. (1993) provided recursions for the calculation of the sy am-
variance estimators. Filtered values can be calculated by the additionarébrw
recursion

Py 1=~ Pt\tlet_l)cI)Ptthfla (5.21)

and smoothed values can be obtained by the additional backward recursio

Py ijn=Priapp+ (Pyp — Pt|t)Pat1Pt,t—1|t- (5.22)
In our application, the system matricds Q and X, are time-invariant. Time-
invariant state-space systems are stationary when the eigenvalesreflocated
in the unit circle (Harvey, 1989). For a time-invariant stationary stateesggs-
tem with a positive semidefinite initial covariance maffiy,, theP,;_; becomes
time-invariant and the Kalman filter is known to converge exponentially to steady
state (Harvey, 1989). Hence, once the Kalman filter has convergadtiBas
(5.14), (5.16) and (5.17) become redundant. Computationally, this is enggt-
ing because the calculations Bf;,_,, P, andF; are the most time-consuming
part of the Kalman filter.

Harvey (1989) also showed that the Kalman filter can be used to perfudnt&
obtain parameter estimates of the mean model. When the same Kalman filter is
applied toy, and each of the columns &, the filter can be used to effectively
perform a Cholesky decomposition By, (¥,) (Harvey, 1989). Hence, @ x 1

vector of innovationgy;, on the observationg, and ap x ¢ matrix of innovations

X, on the explanatory variablé€s;, ..., x;,) are produced. Applying the same
Kalman filter to they,’s and thex,;’s means that for a given set of parametés

the recursions fo;;,_;, P,, and F'; are run only once rather than- 1 times.

The GLS estimator o8 becomes

n -1 n
Bops = [z x:Tpglx:] S XTEyL (629
t=1 t=1
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5.3 Parameter estimation and statistical inference

For small networks this is computationally much more efficient, for it consists of
inverting low dimensional matrices. The actual innovatiopgsan be rewritten as

v, = y¥ — X! B 5. Because all the disturbances and the initial state vector are
multivariate normally distributed, the Kalman filter can also be used to decompose
the log-likelihood as-21log Ly, (®) ~ Y7 | |Fi| + S0, vl F; 'v, (Harvey,
1989). This allows the use of classical numerical algorithms for direct maximis
tion of the likelihood. In this dissertation, however, we consider an ECMrigo

for this purpose. The derivation of the algorithm is presented in the nbgestion.

5.3.3 The ECM algorithm using the state-space representation

The river monitoring network topology imposes a restricted parametrisatithe of
dependence structure of the spatial process. As Xu and Wikle (280%)esl for
more general spatio-temporal dependence structures, the expeatatkamisation
(EM) algorithm of Shumway and Stoffer (1982) presented in Section 4h&ald

be modified to deal with these restrictions. Si@eand ® have some parame-
ters in common, our particular parametrisation is not covered by the thedty of
and Wikle (2005), and thus we have to adapt the EM algorithm so that itezn d
with the specific restrictions induced by our spatio-temporal process.t®tine
presence of the exogenous variables, we further extend the EM afgadwtfan
expectation conditional maximisation (ECM) algorithm. In particular, the M-step
is split into a sequence of two CM-steps. First the parameters of the dapsnd
structure¥ , are estimated given the current values of the parameter estimates of
the mean modeB. Next GLS is used to obtain an estimatediising the updated
values of®¥ .. Before each step of the ECM algorithm is discussed in detail, we
first present an overview of the different steps that are used in tiogithig. Let
[.(¥) = log Ly, s, (¥) denotes theompleted log-likelihoodjiven by the joint
log-likelihood of Y 5 andS . Due to the unobservable state procSsshis like-
lihood can not be calculated. In thé&" iteration, the ECM algorithm starts with
anE-stepto calculate the conditional expectation of the completed log-likelihood
given the observation¥ » and given the current values of the parametfs In

the succeedin@M-steps, new parameter values are calculated that maximise the
conditional expected log-likelihood (.(¥)|Y n, ¥*). The ECM algorithm can

be summarised as follows & 0,1, .. ),

1. Choose initial estimates®

2. E-step CalculateQ(¥, ¥, 85) = E (1.(¥)|Y v, TF)
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3. CM-step 1: Find the covariance parametak§ ! that maximiseQ (¥, ¥~ g¥)
4. CM-step 2 Find 85*! that maximise) (¥, T+ gF)

5. Repeat steps 2-4 until convergence

For our particular state-space model, both the E- and the CM-steps cangie s
fied. Details are provided in the next paragraphs.

E-stepConsider first the factorisation
Qw, Wk, 8Y) = E (1.(w)|Y v, ¥*)
— E (1og Ly (9)[¥ v, ®*) + E (log Ls, 5, (%) Vv, ")
+E <log Ly, 55 (®)[Y y, \Ilk) . (5.24)

Neglecting the parameter independent term, we find
1 _
Q¥ wh B ~ — E <log S| + STE5 So[Y v, \Ilk)

1 n
_5 E<n10g ‘277| + Z(St — ASt — BSt,1>T2771
t=1

(S; — AS; — BS; 1)|Y x, xp’f)

1 - -
—3 E(nlog |Xe| + Z(yt - X8 - St)TEe !
t=1 (5.25)

(yt - Xt/B - St)’YNv‘I’k> .

Because the distributions of boi and S belong to the regular exponential fam-
ily, the calculation of Equation (5.24) can be reduced to the replacement of th
sufficient statistics by their conditional expectations ihto¥) (McLachlan and
Krishnan, 1997). For conditioning o¥i 7, only the expectations of the sufficient
statistics based of; and onS;_; have to be determined. In particular,

E[Si{Y N] = Ay, (5.26)
E[S:Si|Y N] = Py + An A, (5.27)
E[SiSi 1Y N] = Py_qjn + At|nA?_1\n- (5.28)
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5.3 Parameter estimation and statistical inference

They are calculated using the Kalman filter and smoother recursions (Eggsiatio
(5.13)-(5.22)).

CM-step 1In this step the covariance parametds are estimated conditional on
B*. BecauseX,, is diagonal, the second term in Equation (5.25) can be further
factorized,

E (log Ls, ()Y y, \Iz’f) ~

1< 1 & il s Y
-3 Z E (nlog 07271_ + Py Z(Sit — AE.Z]SE il _ BE{;Z}S£ZZ}1)2|YN’ \Iﬂf) :
=1 M t=1

(5.29)

where[q;] represents the index séf, . . ., j;) corresponding to the non-zero el-
ements of theé*” row of A, and[b;] is a similar set for theé* row of matrix B.
The elements ofa;] can be derived from the DAG. The index $&f expands the
index set[a;] by sampling locatiori under consideration, because the state vari-
ableS;; does not only depend a$}; ; but also on its parents in the DAG on time
t—1. Thus,AE‘”} andBE”'] are the non-zero elements of thé row of A and B,

respectiverSlEai] = (Sjits- > Sj0)T andSE’_"]1 = (Sjit—1,---Sjyt—1,Si—1)T.

Furthermore, from Equation (5.25) it is observed that ti(qEN, \Il’“) operation
cannot introduce any other parameters containeijnand the first and third term

at the right hand side of Equation (5.25) do not contain any parametemsAr,

B andX,. Therefore the ECM-approach considered here implies an estimation
orthogonality and each term in Equation (5.25) may be maximised separately. We
use a result of Ansley and Kohn (1985) for the maximisation of Equatio®)5.2

In particular, they showed that the variance components can be caxteeut of

the likelihood, resulting in

1< RSS
Egr (log Lg, (¥)|]Y) ~ —§ZEW nlog —= +n|Y (5.30)
=1

where RS$= Y7, I2, andI;; = Sy — Al"dsi®l — B gl sampling lo-
cationsS; for which [a;] = ¢ imply thatAk”] = ¢, SL‘“] = ¢, [b;] = i, and
also imply that the vectorB!¥! and&[f’j]1 reduce to the diagonal elemeBt; and

the scalatS;;_1, respectively. The maximum likelihood estimator (MLE)criji is

given by%. Note that maximising Equation (5.30) in the CM step is equiva-

lent to the minimisation of RSS The solution is obtained by equating the partial
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aRSS

derivatives 2A" and 8RSS to zero after the sufficient statistics are replaced by

their condltlonal expectatlons as calculated in the E-step (Equations (5.2&)).
In the E-step, these sufficient statistics were calculated conditionally omthep
eters®* of the previous iteration. Thus this replacement does not introduce any

additional A\, B" nor oy, We propose to soIv@LSS = 0 and 8RSS =0
first, and subsequently replace the sufficient statlstlcs in the expresfsnoth}a

MLE's of AE‘?’] andBZ[' 1, eventually leading toalg‘.“} andBE. 1" Some ma-
trix algebra gives

n —1
k:+1 [Z Sztsl[gb ]1 <Z SZtS[al ) <Z Sl[tal S[az] )

ail olbi] T

n n -1
b; b; T b; (11 a; a;
S sty - (z stst ") (osls )

t=1 t=1

n -1
j : ail olbi] T
t=1

k+1 as] 4 n 0 e T
] <Z Szts[ B[bz]kle Z Sgb—]lsz[t | )
t=1
n -1
[ai] glai] T
> 5 St , (5.32)
t=1

in which all the sufficient statistics have to be replaced by their correspgnd
conditional expectations given in Equations (5.26)-(5.28). The derivaf these

results can be found in the appendix of this chapter. In case sampling lo&4tio
has no parents according to the DAG;] = ¢ and Agf”} = ¢. This causes the

terms contalnlngS'[‘” in Equation (5.31) to disappear.

(5.31)

1E+1 Tk+1
After BE’Z] andAm] are computed, the estimated}, is calculated as

RS +1
0_2 k—i—l %C

i n

: (5.33)

122



5.3 Parameter estimation and statistical inference

in which the sufficient statistics are replaced, as before.

Shumway and Stoffer (2006) showed that the first term in Equation (& 2ipjti-
mised by
3s, = Pojn- (5.34)

The maximisation of the third term in the right hand side of Equation (5.25) gives

n

1
=) (Wi S0 - S)"
t=1

= % > i) =D wiSH = (S )+ (8iST)|, (5.35)
t=1 t=1 t=1

t=1

wherey; = yt—Xtﬁ’“ and in which the sufficient statistics are again to be replaced
by their conditional expectations given in Equations (5.26)-(5.28).

CM-step 2 In this CM step, the parameters of the mean model are estimated by
means of the Kalman filter resulting in the feasible generalised least squstires e
mate3(¥,). The estimation is conditional cB**!. In Section 5.3.2 it was shown
that the Kalman filter can be used to perform the GLS and its solution is given in
Equation (5.23). For the calculation of Equation (5.23), the forwardrsaaos dis-
played in Equations (5.14), (5.16) and (5.17) have to be calculated andethdts

can be used in the next iteration step.

To conclude, we summarise the whole algorithm=0, 1, .. .):

(1) Choose initial estimatesg®

(2) E-step  Calculate the expected sufficient statistics using Equations (5.26)-
(5.28)

(3) CM-step 1: Estimate the covariance paramet@$"! using Equations (5.31)

- (5.35)

(4) CM-step 2 Use the covariance parameta¥§*! to calculate the FGLS esti-
matoerJrl by using Equation (5.23)

(5) Repeat steps 2-4 until convergence

To obtain initial parameter value®® we suggest to perform an ordinary least
squares (OLS) regression. As an initial estimated@®ithe parameter vector ob-
tained by OLS can be used. The residuals, gy, of the OLS regression can
be used to provide the initial values for the parameterd iand B, by fitting the
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following regression modek; = A%, + B;_; + e;. 22 can be obtained from
thee;’s by the method of moments and finally the parameteis,jrshould be set
on an arbitrary value.

5.3.4 ECM algorithm using the SEM representation

We now use the structural equation model (SEM) representation prd$eiigua-

tions (5.6) and (5.7) to derive an ECM algorithm. This representation implias so
adaptations of the ECM algorithm presented in Section 5.3.3. Instead ofthging
Kalman filter and smoother to calculate the expectations of the sufficient statistics
in the E-step, the SEM representation has to be used. The sufficient stairstic
now calculated as follows,

Egr (ShYn) = %, (D5, +3) 7 (Yy - xu8")  (5.30)

T -1
Ege (SxSNIYw) = 2528 + 3k sk (z’;N + z§> % (5.37)

whereXf§ = Ckilz’gck*T andZ* = Egk (Sn|Y n). In the CM step-1, the
calculation of the estimate of the covariance parameleys' remains unaltered.
These estimates are then used to constifct!, =¢+! and=!. By plugging

C*, B! and =™ into Equation (5.8), an estimal®{’ ! is obtained. In the
original CM step-2, the Kalman filter was used to perform the GLS. In the SEM
approach, the GLS has to be performed explicitly by

-1
A = (XEEEH T Xw) XEEED Yy (5.38)

The SEM approach involves the calculations of the inverse of the matfi&es
andz’f/;l. The dimensions of these matrices agex np. In our application, the
number of time instants is much larger than the number of sampling locations
p. For such networks, it is computationally less attractive to calculate the évers
of C**! and 2’;;1 than to calculate: times the inverse of the x p matrices

F; and P, ), needed to evaluate the Kalman filter and smoother. Moreover, the
Kalman filter also reaches a steady state after a certain time instant,. salyis
implies that for instance the matricd?,,_,, P;, and F'; do not alter anymore

for time instantst > w. Therefore we use the ECM algorithm derived for the
state-space representation to perform the parameter estimation. Hofeevhe
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statistical inference procedures presented in the next section, we wi# ok
the SEM representation to calculate an estimate of the variance-covariatioe ma
Yy (Fa).

5.3.5 Statistical Inference

Model selection can be performed by using a modified AIC criteria which ac-
counts for the dependence of the data. Akaike (1973) showed-thgl) =
—2log Ly, (¥) is a biased estimator of the exact Kullback-Leibler divergence be-
tween the true and the fitted model. The bias adjustment for this estimator is of-
ten approximated bgdf, wheredf is the number of degrees of freedom used by
the model. State-space models usually require a large number of obsesvation
make this asymptotic approximation work well. Bengtsson and Cavanaug8)(200
defined arimprovedAIC criterion for state-space model selection, referred to as
AICi. They suggested a Monte Carlo approximation of the bias, BayTheir
criterion is then defined as AI€i —21(¥) + B. Unfortunately, for our river mon-
itoring network model this method is computationally too demanding because the
maximum likelihood estimates are needed for each Monte Carlo simulation run.
We therefore suggest to use the original AIC criterion for model selectize:

sides model selection criteria, diagnostics are useful to check the qualitye of
model structure. In the state-space framework, plots of the standaidizadh-
tionsv, F, ~1/2 can be used as diagnostic plots for the temporal dependence struc-
ture and the mean model (Harvey, 1989).

Statistical inference on the parameters of the mean model requires the joint sa
pling distribution of3. Since we deal with a linear model for the mean and with
a stationary Gaussian process sampled on regular time steps, theoremas- of M
dia and Marshall (1984) can be applied to establish that the maximum likelihood
estimators3 and ¥, are consistent and asymptotically normally distributed. In
particular,

B(Ta) L MVN(@B,(XTE1 X)), (5.39)

whenn — co. Finally, since®,, is a consistent estimator, the variance3¢f¥ )
is estimated consistently by

3= (XTEy () X) (5.40)

To obtain the standard errors of the parameter estimators of the depersiiere
ture, itis possible to evaluate the Hessian matrix after convergence. Ampatbe-
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bility is to perturbate the likelihood function and to apply numerical differentiation
to find the observed Fisher information matrix (e.g. Harvey, 1989 and Shymw
and Stoffer, 2006). In the case study we apply the latter approach.

5.4 Case study

One of the key actions of the WFD is the design and maintenance of water quality
monitoring networks. In Flanders, several water quality monitoring netsvar
maintained by the VMM. An example is the physico-chemical monitoring network
of the surface waters. The VMM reports on the water quality on an afasé. In

their annual reports they use yearly averages of the water qualityultivibe very
informative if they could use a statistical tool to compare the mean of the ¢urren
year with that of the general mean and with the means of recent yeafsrdbig,

such atool would incorporate statistical tests on the level of the individuabbng
locations as well as on a more regional scale. In this case study we willunse o
spatio-temporal model for river monitoring networks for this purpose ddita of

5 sampling locations of the physico-chemical monitoring network of the Flemish
surface waters are used. They are located along 2 joining reaches Yrdhe
catchment. Their DAG and location in the catchment is indicated on the map in
Figure 5.2. Sampling locations S1, S2, S4 and S5 are located on the Yzer while
sampling location S3 is located on a joining creek. Every sampling location is
monitored on a monthly basis. Nitrate data between 1990 and 2003 are available
Hence, the 5 sampling locations are monitored on 168 time instants and the entire
dataset consists of 840 observations.

The observations are taken at time intervals that are much larger than thealienesc
of the water flow. Therefore we make the assumption that the mBYrised to
describe the temporal correlation, is diagonal. Hence, we only model the taimpo
autocorrelations for a particular stafg at timet and not the spatio-temporal cross
correlations betweesi;; and its parents in the DA(S][fL_"]1 attimet—1. This leads to
the reduction of the parent gét] to [b;] = ¢, containing only the current sampling
location. Instead of assessing the annual mean at the level of indiadomdling
locations, we aim to perform an assessment on a more regional scaleazidité

we will calculate the annual mean based on all 5 sampling locations. In this case
study two questions will be addressed. On the one hand we want to tetstawhe
this “regional” annual mean for nitrate in 2003 is different from the gahmean.

On the other hand we also want to test whether the “regional” annual m2aei
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Figure 5.2: Top Left: Directed Acyclic Graph (DAG) of the sampling locations
along the 2 river reaches. Bottom Left: Map of the river reaches con-
sidered in this case study. Locations S1, S2, S4 and S5 are located on
the Yzer river while location S3 is located on a joining creek. Sam-
pling location S1 is located in France. Right: Map of the part of the
Yzer catchment located in Flanders, Belgium. The sampling locations
are indicated by the dots. The area considered in this study is indicated
with the ellipse and the black dots are the sampling locations included
in this study

is different from the “regional” mean of the two most recent years (20@i12002).

The annual mean is modelled by a factor with one level for each yearosdas
variation also is typically present in water quality data and the model has to ac-
count for it. This was illustrated in Chapter 1. In the introduction, the sedson
variation is illustrated in Figure 1.6 where nitrate data of all years is plotted in
function of the day of the year. A common approach to deal with this seasona
variation is to include sinusoidal functions of fixed periods to describe ¢he s
sonal cycle within a year (e.g. Hirst, 1998, Cai and Tiwari, 2000, McMudigal.,
2003 and McMullan, 2004). A common function which is used for this pugpos
is acos(2n(t/P) + 0), whereP is the period which is taken to be 1 year,is

the amplitude of the seasonal trend #&nd a parameter to allow for a phase shift.
This function however is nonlinear in the parameterBut, it can be expressed
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in a linear form by using a standard trigonometric expansion. With a péfiod
of one year we get; sin(27t/12) + 72 cos(27t/12)). To enable the assessment
on a regional scale, the interaction between sampling location and yeadd $igou
neglected. This assumption will be checked in the analysis of the standhitise
novations. The models that are considered are given in Table 5.1, wherthe
general meang; is the effect for the*” sampling locationf3; /15 is the effect

of the Lt/12Jth year,~, are the parameters for the seasonal component modelled
by Fourier terms, and thevy);x and(37)|;/12) are the parameters for the sam-
pling location-season and year-season interactions respectivelyinfEinactions
between year and season are included because the seasonal vafiatter qual-

ity variables often changes from year to year (e.g. Hirst, 1998; McMuteal.,
2003; McMullan, 2004). The models are estimated by using the ECM-algorithm
from Section 5.3.3.

Model Il has the lowest AIC and is selected. The results of the GLS estimatio

the mean model are visualised in Figure 5.3. The model indicates that a akeason
pattern changes over time. The amplitude drops from 1999 on. From Fagire

it also seems that the annual mean is decreasing in the most recent ybars. T
marginal mean at the joining creek (S3) seems to be overestimated in the more
recent years and this deviation increases as time evolves. The parastietetes

of the mean mode3, are presented in Table 5.2. Along with the parameter value,
the standard deviation and a p-value are given. This two-sided p-vadtesponds

to the null-hypothesis that the particular parameter value is equal to zero.

Table 5.1: Mean models to assess the evolution in the “regional” annual mean

Model E(yit) AlIC

| p+ i+ Bl 12) + 1 sin(2mt/12) + 2 cos(2nt /12) 5100.5

Il o+ o+ Bli12) + y1sin(27t/12) + yo cos(27t /12) 5096.4
+(ay)i1 sin(27t/12) 4 (ary)se cos(27mt/12)

1 n+ oy +ﬁ\_t/12j +7 Sin(27Tt/12) + Y2 COS(27Tt/12) 5063.9
+(B7)t/12)1 sin(2mt /12) + (B7) |¢/12)2 cos(2mt /12)

Y p+ i+ Bli12) + 71 sin(27t/12) + 2 cos(27t /12) 5179.1
+(ay)i sin(27t/12) + (ary)42 cos(2mt/12)
+(B87)1¢/12)1 8in(27t/12) + (B7)|4/122 cos(27t/12)
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Figure 5.3: Evolution of the water quality at five sampling locations of the river
Yzer. Sampling locations S1, S2, S4, S5 are located on the main river,
sampling location S3 is located on a tributary which drains into the
Yzer between S2 and S4. The line indicates the model fit according to
Model Il

Table 5.2: The parameter estimates of the mean model of Model Ill

parameter value std error p-value
i 11.96 0.72 <0.0001
B4 —-2.92 0.42 <0.0001
[GE -0.60 0.34 0.0790
B2 —0.99 0.34 0.0035
P11 0.49 0.34 0.1500
B1o 0.68 0.34 0.0460
Bo 3.35 0.34 <0.0001
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Table 5.2 — Continued

parameter value std error p-value
3s 370 0.34 <0.0001
By —-0.34 034 0.3100
s —-0.75 0.34 0.0260
Bs 0.09 034 0.7800
B4 020  0.34 0.5600
35 —-056 0.34 0.0960
3o 0.45  0.34 0.1800
e 279 0.24 <0.0001
s —~1.62 0.46 0.0005
ay —250  0.49 <0.0001
s —3.04 059 <0.0001
a1 —-2.82 0.8 <0.0001
o3 9.98  1.82 <0.0001
v 255  0.25 <0.0001
72 499  0.25 <0.0001
(By)21  —0.99  0.83 0.2300
(By)s1 ~ —2.52  0.78 0.0013
(B7)41 244  0.78 0.0018
(B7)5, 079 078 0.3100
(B7)6,1 022 078 0.7800
(By)71  —1.06  0.78 0.1700
(By)s1  —4.81 0.78 <0.0001
(B7)9,1 024  0.78 0.7600
(87)101 081  0.78 0.3000
(By)111 300  0.78 0.0001
(By)121  0.40  0.78 0.6100
(By)131 —0.60  0.78 0.4400
(By)a1 482 078 <0.0001
(87)22  —059  1.06 0.5800
(By)32  —3.61  0.98 0.0002
(By)s2  —021  0.98 0.8300
(By)s2  —1.68  0.98 0.8400
(6762  —329  0.98 0.0008
(B)7,2 3.06  0.98 0.0017
(87)s,2 3.17  0.98 0.0011
(B7)92  —1.13  0.98 0.2500
(6v)102 —0.05  0.98 0.9600
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Table 5.2 — Continued

parameter value std error p-value
(BY)112 —-221 0.98 0.0240
(B)12,2 3.08 0.98 0.0016
(By)132 —0.07  0.98 0.9400
(By)1a2  —3.04 0.98 0.0019

As mentioned earlier, the effect of the year is modelled by the use of a factor
with one level for each of the 14 years. The size of each of these bafieet

is modelled by the parametefs;, ..., 814). According to the p-values the mean
nitrate level of a number of years is not significantly different from theegal
mean (e.g. for,, G4, Bs, B7, B11 and (y3). For the seasonal-year interactions
(Ba); , also a number of non-significant parameters occur. Note, howevehthat
seasonal effect is coded by two parameters to provide an amplitude drabsa p
shift. Here, this is done by the use of a sine and a cosine term. Hence, for a
particular yearj there is a season-year interaction as soon as one of the parameters
(Ba) ;1 or (Ba);2 is different from zero. The non-significant parameters are not
eliminated from the model because other parameters of the main and the interactio
effect are (highly) significant. Moreover, the conclusion that certarameters are
non-significant is a weak conclusion as we do not have any informatiout &he
power of the tests.

For the spatio-temporal parametersdn B, 33,, and X, the following estimates
are obtained (standard error between brackets)

0 0 0 0 0
0.78(0.11) 0 0 0 0
A= 0 0 0 0 0],
0 1.31(0.21) 0.10(0.05) 0 0
| 0 0 0 0.63(0.11) 0
[—0.14(0.08) 0 0 0 0
0 0.72(0.07) 0 0 0
B= 0 0 1.01(0.01) 0 0
0 0 0 —0.21 (0.11) 0
i 0 0 0 0 0.35(0.11)
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11.1(1.8) 0 0 0 0
0 0.21075(0.11073) 0 0 0
3, = 0 0 0.31(0.3) 0 0
0 0 0  3.8107%(0.91073) 0
0 0 0 0 0.41075(0.11073)
and
7.5(0.5)
A 8.3(1.3) 23.9(2.8)
3= | 42(23 13.6(3.7) 89.8(10)

2.9(1.0) 7.3(2.1) 6.0(3.2) 16.6(2.7)
13.7(0.01) 17.2(1.7) 13.3(3.7) 11.8(1.8) 27.8(0.9)

Note that the estimate dB at S3 is larger than 1. This provokes an eigenvalue of
the transition matrixp that is larger than 1. Hence the estimated state-space model
is not stationary.

As mentioned before, the model quality has to be checked and in this work this
is done by the use of an assessment of the standardised innovatioss. ifine-
vations should be independent which can be assessed by a plot ofttlcerae+
lation function (ACF). The ACF plot of the original series is shown in Fighiée

From these plots, the correlation in the original nitrate measurements is obvious
Moreover, they also indicate the presence of seasonal correlation. ATk of

the standardised innovations are shown in Figure 5.5. The model ssasetdn
reducing a considerable amount of the serial correlation present imitheab se-

ries. A joint test of significance of the firsautocorrelation coefficients is provided

by the Ljung-Box portmanteau test (Ljung and Box, 1978). The p-vdiuethe
Ljung-Box portmanteau test of the autocorrelation coefficients of the atdised
innovations are given in Table 5.3. Significant p-values appeared toeser at

S1. This is due to the negative autocorrelation at lag 2. An ACF plot at $d lag

100 is provided in Figure 5.6 and it can be seen that only 3 large auttai@ns
occur during the first 100 lags. Based on the ACF-plots the AR(1) seelibs to
sufficient to model the temporal correlation.

The quality of the mean model is checked in Figure 5.7 showing the standhrdise
innovations with respect to time. Friedman’s supersmoother is added to leach p
to study the residual pattern present in the standardised innovationdn{iarie
1984). From Figure 5.7 it can be seen that the smoothers remain closeto zer
suggesting that the model quality is good. For S2, S3, S4 and S5 the snsoother
give larger predictions near the boundaries. This is probably due toothéic
nation of a boundary effect of the smoother, large nitrate values mebsutiee
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Figure 5.4: Autocorrelation plots of original nitrate series at the diffesantpling
locations

Table 5.3: p-values for the Ljung-Box portmanteau test of the autoctorleo-
efficients of the standardised innovations for the first 5 lags
lag S1 S2 S3 S4 S5
0.78 0.87 0.63 0.90 0.11
095 0.97 0.10 0.96 0.27
0.20 0.99 0.17 0.74 0.37
0.05 1.00 0.14 046 0.52
0.04 0.99 0.06 0.52 0.58

O s WN P

beginning of the time series and the Kalman filter which might not have reached
steady state yet. Figure 5.3 indicated a systematic deviation of the estimated mean
at sampling location S3. In Figure 5.7, however, the smoother only suggests
small deviation in the standardised innovations at S3. Hence, the systenvidic de
tion in the marginal mean at S3 is modelled by the temporal dependence structure
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Figure 5.5: Autocorrelation plot of the standardised innovations of Midldel

This is reflected by the estimate of the AR(1) coefficient for S3 which is slightly
larger than 13 3 = 1.01). The deviation of the mean model at S3 and the non-
stationary autocorrelation coefficient at S3 might be due to the assumptibn tha
there was no interaction between the year and the sampling location. However
when this interaction term would be included in the model, we can not infer on
a “regional” scale. Another assumption that has to be checked is related to th
distributional assumptions that were imposed. All processes were assarbed
Gaussian. Therefore, the standardised innovations should followdastamormal
distribution and we expect about 95% of standardised innovations to be in-th
terval[—2, 2]. In Figure 5.7 it can be seen that at each sampling location a number
of outliers are present. The normality of the innovations is further ass@sség-

ure 5.8. Both the boxplot and the QQ-plot show a clear departure fremaiiby.

The boxplot indicates a considerable amount of outliers and the QQ-ploated

that the distribution has larger tails than the normal distribution. On the othdr han
from all plots it can be seen that the distribution of the standardised innosasio
symmetric. To answer the research question, we need to infer on the parame
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Figure 5.6: Autocorrelation plot at S1 of the standardised innovationsooleMI|

of the mean model. The mean model is included in the observation equation and
it is a deterministic component of the model. When the normality assumption is
dropped, the asymptotic distribution associated with the deterministic components
is not affected (Harvey, 1989). Hence, the inference on the parestadtdhe mean
model remains approximately valid.

To compare the annual mean of the most recent year with the mean (or a linear
combination of means of) the other years, a general linear hypothesisedan b
mulated. A general linear hypothesis is formulated88 = 0 where H is the

r x ¢ hypothesis matrix. Based on the estimate of the variang@ (Equation
(5.40)) the hypotheses can for instance be tested by means of a Wald sype te
statistic (Casella and Berger, 2002),

= (HB)'(HXsH") ' (HP), (5.41)

which is asymptoticallyy? distributed under the general linear null hypothesis.
To answer the research question, one test is needed to check whetheedn
nitrate level of 2003 a%'1, . . ., S5 is different from the mean of the years 2001 and
2002; and another test is needed to check whether the mean of 200Ziemiff
from the general mean. For the first question the contsast- (513 + (12)/2

is assumed to be 0 undéf,. For the second question, we can test fpx =

0. We will use the Holms correction for multiplicity (see e.g. Shaffer (1995)).
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Figure 5.7: Plot of the standardised innovations of Model Ill. Friedsyanper-
smoother is added to the plots to assess the residual pattern

When this method is applied to the data, we conclude that for the study reggon, th
mean nitrate concentration in 2003 is very significantly different from thenmea
of the two years before¥(s — (313 + (12)/2 = —2.13, p < 0.0001). The mean
concentration in 2003 is also very significantly different from the gdnaean

(P14 = —2.92, p < 0.0001). The point estimates further show a reduction in the
annual mean of the nitrate concentration in the study region. Although thk fit o
the mean model at S3 might be biased, the p-values of the tests allow us to feel
confident about our conclusions.

To improve the fit of the mean model we can extend model Il to allow for ardiffe
ent annual mean in the main rive¥1, 52, S4 andS5) and the joining creeky3).
The mean model becomes

E(yit) = 1+ i + B¢ /12) +718in(27t/12) + 72 cos(27t /12)
+ (87)¢/12)1 8In(27t/12) + (87)(¢/12)2 cos(27t/12) + (o) ¢/12)1 (1), (5.42)
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Figure 5.8: Histogram, boxplot and QQ-plot of the standardised innowtbn
Model Il

where (i) is an indicator function which is -1 for the sampling location S3 and
which is 1 elsewhere. This model is referred to as Model llIb. If this rhgdes
satisfying results, we can infer on a regional scale in the main river atitedavel

of an individual sampling location in the tributary. The AIC of Model Illb 87.4
which is higher than the AIC of Model Ill. Hence, according to the AIC higher
complexity of Model lllb is not adequately reflected in an improved modeTfie
GLS fit is shown in Figure 5.9. The fit of the mean model at sampling location
S3 seems much better now. The estimates, standard errors and p-valthes fo
parameters of the mean model are given in Table 5.4. The p-value camdssp
again to the null-hypothesis that the particular parameter value is equalao zer
Again a number of parameters coding for the main and interaction effeat®are
significant. However, this is a weak conclusion. Moreover, the othempeters
corresponding of the main and interaction effects are significant. Tdrerethe
non-significant parameters are not removed from the model.
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Figure 5.9: Evolution of the water quality at five sampling locations of the river
Yzer. Sampling locations S1, S2, S4, S5 are located on the main river,
sampling location S3 is located on a tributary which drains into the
Yzer between S2 and S4. The line indicates the model fit obtained by
Model IlIb

Table 5.4: The parameter estimates of the mean model of Model Ilib

parameter value std error p-value
w 11.91 0.62 <0.0001
B4 -5.65 0.70 <0.0001
B3 -3.42 0.66 <0.0001
B2 —-4.01 0.66 <0.0001
b1 —-2.72  0.66 <0.0001
Bo —-2.88 0.66 <0.0001
Bo -0.22 0.66 0.7400
Os 2.10 0.66 0.0014
B7 2.46 0.66 0.0002
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Table 5.4 — Continued

parameter value std error p-value
Bs 1.08  0.66 0.1000
Bs 6.05  0.66 <0.0001
fa 430  0.66 <0.0001
s 097  0.66 0.1400
o 352  0.66 <0.0001
B ~1.58 0.56 0.0046
o —-2.60 0.60 <0.0001
o —2.67 0.44 <0.0001
a3 1.94 051 0.0002
o —-2.77 051 <0.0001
s ~1.70  0.43 <0.0001
o 245  0.29 <0.0001
Yo 403 029 <0.0001
(aB)314  2.76 1.19 0.0200
(aB)313  3.39 1.19 0.0042
(af)3n2  3.34 1.19 0.0048
(aB)311  3.66 1.19 0.0020
(@B)310  3.43 1.19 0.0038
(@B3)3,9 2.74 1.19 0.0210
(@B)ss 0.67 1.19 0.5700
(aB)s7  —1.60  1.19 0.1800
(@B)s,6 0.11 1.19 0.9200
(aB)ss  —5.96  1.19 <0.0001
(aB)34  —3.94 119 0.0009
(aB)s3  —1.63 119 0.1700
(aB)32  —3.39 119 0.0043
(aB)sp  —3.59  1.18 <0.0001
(By)141 —1.64  0.97 0.0890
(ﬁ’y>1371 -2.32 0.92 0.1100
(Bv)121 107  0.92 0.2500
(By)111 075  0.92 0.4200
(8v)101 090  0.92 0.3300
(Bv)91  —1.65  0.92 0.0730
(By)sq ~ —2.06  0.92 0.0250
(BY)7.1 090  0.92 0.3300
(Bv)eq  —0.72  0.92 0.4400
(Bv)s1 ~ —0.54  0.92 0.5500
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Table 5.4 — Continued

parameter value std error p-value
(B7)a1 1.47 0.92 0.1100
(B7)3,1 1.57 0.92 0.0880
(B7)2,1 5.52 0.92 <0.0001
(BY)142 -115 115 0.3100
(BY)132 —3.85  1.10 0.0005
(8v)122 —0.08  1.10 0.9400
(BY)112 —-029  1.10 0.7900
(Bv)102 —1.80  1.10 0.1000
(87)9.2 2.88 1.10 0.0087
(B7)82 1.26 1.10 0.2500
(By)72  —0.90  1.10 0.4100
(B7)6.2 0.19 1.10 0.8700
(Bv)s2  —3.58  1.10 0.0011
(B7)a2 3.45 1.10 0.0017
(B7)3,2 0.49 1.10 0.6500
(87)22  —3.08 1.10 0.0050

The estimates of the spatial parametdrsB, X,, and3. are (standard error and
p-value between brackets)

0 0 0 0 0
1.1(0.3) © 0 0 0
A= 0 0 0 0 0
0 07(0.3)04(02) 0 0
| 0 0 0 0.6(0.1)0
[—0.008(0.1) 0 0 0 0
0 0.3(0.1) 0 0 0
B= 0 0 —0.2(0.1 0 0
0 0 0 —0.03(0.1) 0
i 0 0 0 0 0.72(0.7)
7.0(3.1) 0 0 0 0
0 < 107°(0.003) 0 0 0
3, = 0 0 34.7(19.3) 0 0
0 0 0 < 107°(0.002) 0
0 0 0 0 <107%(107%)
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Figure 5.10: Autocorrelation plot of the standardised innovations of Mdithe
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A 5.
3= 3.

Note that the estimate @8 for S3 is now within the unit circle.

ACF plots and a plot of the standardised innovations in function time can Inel fou

in Figure 5.10 and Figure 5.11, respectively. The ACF plots seem quite similar

to the plots of Model lll. In Figure 5.11 the standardised innovations anéeced

around 0. As compared to Figure 5.7 the smoother at S3 does not alter ranymo

at the boundaries. Again the smoothers indicate a deviation from zero stahe
dardised innovations at early dates for S1, S2, S3 and S4. This is aghiabty
due to the combination of a boundary effect of the smoother, large nitratesva

measured in the beginning of the time series and the Kalman filter which might not

have reached steady state yet. The p-values of Ljung-Box test of tlzeitbeor-
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Figure 5.11: Analysis of the standardised innovations of Model Il1b icfion of
time

Table 5.5: p-values for the Ljung-Box portmanteau test of the autoctorleo-
efficients of the standardised innovations of model llib at the first 5 lags
lag S1 S2 S3 S4 S5
0.93 0.80 0.85 0.57 0.55
0.55 0.88 0.93 0.73 0.19
0.63 0.92 0.90 0.89 0.08
0.58 0.97 0.14 094 0.15
0.23 0.99 0.03 0.30 0.14

O s WN P

relations up to the lag 5 are given in Table 5.5. Only at S3 the Ljung-Box test is
significant at lag 5. Note that the AR(1) coefficient at S3 and the eifeswaf

& are now in the unit circle. We now thus conclude that the state-space model is
stationary. Finally, an assessment on the normality of the standardise@iiomsv

is presented in Figure 5.12. Again, both the boxplot and the QQ-plot stubearn
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Figure 5.12: Histogram, boxplot and QQ-plot of the innovations of Moldlel |

departure from normality. A considerable amount of outliers is preseatrditig

to the boxplot and the QQ-plot indicates that the distribution has larger tailhthat
normal distribution. Similar to the residuals of Model Ill, from all plots it can b
seen that the distribution of the standardised innovations is symmetric. T@answ
research guestion, we are again interested in the inference on the tasaofi¢che
mean model and their asymptotic distribution is known to be unaffected when the
Gaussianity assumption is dropped (Harvey, 1989).

To answer the research question by using model lllb, four tests adede

1. Hy: In the main river, the annual mean of 2003 is equal to the mean of the
year 2001 and 2002

Hy : (Bra+ ()34 — 1/2(B12 + (af)3,12 + iz + (af)3.13) =0

2. Hpy: In the main river, the annual mean of 2003 is equal to the general mean
Ho : (B1a + (aB)3,14) = 0.
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Table 5.6: p-values of the tests to assess the annual mean of 2003
Test contrast  p-value p-holm
Main river (“Regional”)

2003+ 2001-2002 -2.54 0.016 0.031

2003+ generalmean -2.88 0.0005 0.0014
Joining creek (S3)

2003+ 2001-2002 -1.32 0.56 0.56

2003« generalmean  -8.40 < 0.0001 < 0.0001

3. Hy: In S3 located at the joining creek, the annual mean of 2003 is equal to
the mean of the year 2001 and 2002

Hy : (B1a — ()34 — 1/2(B12 — (af)3,12 + i3 — (af)3.13) =0

4. Hy: In sampling location S3, the annual mean of 2003 is equal to the general
meanH : (814 — (af)3,14) = 0.

Again, we use the Holms correction for multiplicity. The contrasts, uncormecte
p-values and the corrected p-values are presented in Table 5.6. fEésake show
that in the main river, the mean in 2003 differs significantly from the mean of the
last two years and from the general mean. At sampling locaiibithe mean in
2003 is very significantly different from the general mean, but the me2Q08 is

not different from the mean of the last two years in that sampling locatioainAg
the point estimates indicate that the significant differences corresponctiue

tion in the mean nitrate concentration.

5.5 Discussion and Conclusions

A spatio-temporal state-space model is proposed for river monitoringonew
where the spatial dependence structure of the state variable is diredtlydieom
the river topology and the temporal dependence structure is modelledAfR (@n
process. The state variable is embedded into an observation model ttehsen
model for the mean. The latter is needed to answer research questionghig/ith
model it is, for instance, possible to infer on the annual mean nitrate ctvatien

of a river monitoring network. The methodology is shown to be very flexihkd a
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enables the user to test at the level of individual sampling locations as wellas
more regional scale.

A Kalman filter and smoother is formulated for the state-space model, and for
the parameter estimation an ECM algorithm is developed. In this algorithm, the
parameters of the mean model are estimated by generalised least squiages. T
parameter estimators are shown to be asymptotically normally distributed. The
AIC criterion and an assessment of the standardised innovations driousgdel
selection and for the evaluation of the quality of the model, respectively.

The temporal correlation structure is restricted to an AR(1) process.elodbe
study presented here, this seemed to be the right model, but when more xomple
temporal structures are needed, the methodology can be extended.staoce
Harvey (1989) showed that more general ARMA structures can baldzhby the
Kalman filter. For example, for an AR(2) process, the state varidhlbas to

be replaced by a vectqSyy, ..., Spt, S1i—1, ...,Spt,l)T containing also the state
variable at the previous time step. This leads to a reformulation of the oliserva
model and the Kalman filter equations.

The spatial variance-covariance matrix of the observation mBEdalsed a satu-
rated parametrisation. To reduce the complexity in large monitoring netwiks,
can be further parameterised (e.g. Xu and Wikle, 2005). Due to the estimation
orthogonality in the first CM step, this will only change update Equation (5.35)

The methodology has been applied on a case study at five sampling locédtions o
the river Yzer. Depending on the formulation of the mean model, inference is
possible on a regional scale, on the level of a river reach as well teedavel of
individual sampling locations. The case study infers on the annual meatraik
concentrations of the most recent year. A general linear hypothesigseal to test
whether the annual mean of the most recent year was different fromehas of

the two most recent years and from the general mean. In the studyteremnual
average of the nitrate concentration in 2003 is shown to be lower than teeagen
mean < 0.01). Moreover, in the main river, the mean nitrate concentration of
2003 was also lower than the mean of the two most recent year<(03).
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5.6 Appendix: Calculation of the parameters inA and B
in CM-step 1

L n [ai] glai] [bi] albil \2 . _
etRSS = >, <Sit —A;"S;" - B, St_1> . The estimators in the CM

step for Al*l and Bl are obtained by maximising Equation (5.30) in the CM
step. This is equivalent to the minimisation of RS@th respect toAl*! and
Bl respectively. We find

ORSS

pall "

0= Xn:(g _A[aL]Sal] B[b]Sb]>Sa1]
t=1

n

a; a; a;]T - al T ) n ; T
& AN gt =N g s - B S T st sl
=1 t=1

=1

~+

-1

n T n T
PN A[az (Z St S[az Byli] Z Sglﬁ]ls)[;li] ) (Z Sgai]sgai] )
t=1 t=1

- ol s T 4T
0= (8u— s/ - BMIsl ) sl

& Bl s“’ ZSS 7A[azisal]sb]T
t=1

146
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Chapter 6

Spatio-temporal modelling of river
monitoring networks,
a semi-parametric approach

6.1 Introduction

The Water Framework Directive (WFD)(EC, 2000) aims to trigger local@uitibs

to improve the aquatic environment. To reach that goal, the Flemish environmenta
agency (VMM) is developing basin management plans to improve the watiéyqua

of the rivers in Flanders (Belgium). A dominant problem in Flemish water Isodie
is the eutrophication due to nutrient pollution. One of the main nutrient pollution
sources originates from agricultural activities. In Flanders there is temsive
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pig farming activity and in the past the produced manure was mainly disposed o
agricultural lands. A major action to reduce this nutrient load was the introduc
tion of two Manure Action Plans (MAP’s) (Vlaams Parlement, 1995, 1999 T
MAP’s restrict the amount of fertilisers that may be used by farmers irsandsch

are susceptible to eutrophication. The first MAP was introduced in 198&(vs
Parlement, 1995) and after an evaluation a new and more restrictive MéRnwa
plemented in 2000 (Vlaams Parlement, 1999). When such actions are taiken, it
important to assess whether they indeed have an effect on the water.qliadite-

fore water quality monitoring networks are needed to assess the evoluttbe of
water quality. In Flanders, the VMM has developed several monitoringarksy
along the rivers. In their physico-chemical monitoring network, a basctspm

of physico-chemical variables is evaluated monthly at each sampling locdtion.
this chapter we assess the evolution of the nitrate concentration in a smaii regio
of the Yzer basin. This river is located in the Western part of Flandeisaltural
area with a large agricultural activity.

The focus of this chapter lays on the development of a methodology to @eiect
to locate trends in the water quality data. Instead of assessing trends atethef le
individual sampling locations, our aim is to develop a methodology for tretetede
tion on a more regional scale. Standard techniques cannot be useid fourhose
because river monitoring networks typically generate data with a stromiglsgrzd
temporal dependence structure. In order for the statistical inferencedure to

be formally valid, this dependence has to be taken into account. Manychees
however, have avoided the estimation of the spatio-temporal dependericerin
monitoring network data by simply ignoring it or by using ad hoc methods. Burn
and Hag Elnur (2002), for instance, adopted an approach to deternafielth
significancethat is involved in the calculation of a regional value for the Mann
Kendall statistic. To correct for serial correlation, they proposed $b fiierform

a pre-whitening step which preserves the trend. To correct for the@akparrela-
tion, they suggested a resampling strategy that constructs bootstrajpasetsiay
selecting the time instants to be included at random until the original number of
sampling times is reached. For each of the selected time instants the coriagpond
data at all sampling locations has to be used to preserve the spatial pataoe, H
the temporal structure such as trends that existed in the original data, ie-not
produced in the resampled datasets, but the spatial pattern remains. Rizaliy,
Kendall statistics are calculated for each of the sampling locations of thapésh
datasets to derive a kind of field significance level under the null-hypisth&€his
field significance is then used to assess the trends on a more regionaBssidie

the stagewise removal of the dependences, another disadvantage apfreach
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is the assumption of monotonic trends. In environmental systems, howeser, th
trend is often nonlinear and changes over time. Hence, if there are siggehin
the trend during the period of interest, tests for monotonic trends are efot.us

To control the type | error rate of the trend tests at more than one sampling lo-
cation, we suggest to use a spatio-temporal model for a river monitoringrietw
that takes the spatio-temporal dependence structure explicitly into acéoanh-

trast with ad hoc methods, the modelling approach provides a very natayal w
to introduce the spatio-temporal dependence structure into the testinglprece
River monitoring networks, however, possess a specific spatial depee struc-
ture. As compared to classical geostatistical models, an important distinction has
to be made with respect to the spatial dependence structure: due to thedioéc

the flow a causal interpretation can be given to the correlations. Marebxers

can join or split, which implies a more general branched unidirectional steictu

In reality the environmental conditions may obscure the unidirectional splatial
pendence structure implied by the river topology. We therefore only inpasee-
strictive topology-implied dependence structure on an unobservablevat&ble

S. The latent variableS is embedded in an observation mogehat allows cross-
correlation between sampling locations that are located at differentheamt the
river, so that more realistic dependence structures are allowed. Behigl@le-
pendence structure, we also have to model the marginal mean to assesedbke tr
Trends in water quality are often nonlinear. Therefore we proposedrend de-
tection based on local polynomial regression smoothers. To enableessamEnt

of the trend on a regional scale, a common nonparametric trend is estimated at a
sampling locations. The evaluation of the local trend is done by testing that the
first derivative of the nonlinear trend is significant. This has to be pmdd at
each time instant, and leads to a large number of simultaneous tests. Theaaefore
multiplicity correction procedure is required. In general, observatiorishwére
close in time are likely to have similar trends. Thus, in our setting, the trend tests
are not independent, and this reduces the actual dimension of the multipladity pr
lem. In this chapter we present a procedure that corrects for multiplicityeded

the dependence between the tests explicitly into account. This leads to et corre
statistical inference procedure that is not too conservative.

The organisation of the chapter is as follows. First the spatio-temporallrsode
briefly presented in Section 6.2. The difference with the model presentp-

ter 5 is situated in the formulation of the mean model. The mean model is now
semi-parametric because a smoother is used for the trend estimation. Time para
eter estimation procedure is introduced in Section 6.3. Section 6.4 deals with the
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Figure 6.1: Directed Acyclic Graph (DAG) of five sampling locations along two
joining river reaches

trend detection method, and in Section 6.5 the methodology is illustrated in a case
study. Finally we will formulate some conclusions in Section 6.6.

6.2 Spatio-temporal model

LetS = (51,...,5,)T represent the x 1 vector of response variablés at sam-

pling locationsi = 1, ..., p. The correlation structure & is completely defined

by the river topology. This is illustrated in Figure 6.1, which shows the tiveol-

ogy of 5 sampling locations. The same figure can also be interpreted ascéeDire
Acyclic Graph (DAG) (see e.g. Whittaker, 1990) in which the circles regme

S;'s and arrows immediately determine the conditional independence structure.
For example, observations at sampling locatidhare independent of1 given
observations a$2 because all the water frosil has to pass throughi2 before it

can reachb4. The DAG can be modelled by

S=AS+7~, (6.1)

whereA = (a;;);; can be written as @ x p lower triangular square matrix with
zeroes at the diagonal, andis multivariate normally distributed (MVNYy ~
MV N(0,X,) with a diagonal variance-covariance matkx. When the model is
applied to the graph in Figure 6.1, it can be seen théiecomes

0 0 0 0O
asy 0 0 00
A=]10 0 0 00O
0 a49 43 00
0 0 0 as54 0
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wherea;; models the dependence between sampling locatj@nd.S;.

The river monitoring network, however, generates data over time. Tdt@abkpat-

tern of the DAG is thus repeated over time and we have to extend Equation (6.1)
to also take the temporal dependence into accountSket (Sy;, ..., Sy)’. We
assume a Markovian dependence structure and we nfdey conditioning on
S:_1. Extending and rearranging Equation (6.1) gives

Si=I,—A)'BS;_1+ I, — A) ', (6.2)

t = 1,...,n, wherel, is thep x p identity matrix,n, ~ MV N(0,%,) with
ap x p diagonal variance covariance mati,, and B is ap x p matrix con-
taining the temporal autocorrelation (diagonal elements) and the spatio-@mpor
cross-correlation coefficients (off-diagonal elements). Similar to the matrixe
propose to only use cross-correlations between sampling locationsetditextly
connected according to the DAG structure. The off-diagonal elemenis afe
thus structured in a similar way as the elements of ma#ixHenceB can be

written as
by 0 0 0 O

bor b0 0 0 O
B=]10 0 b3 0 0
0 bso bsz bag O

Wheni # j theb;; model the spatio-temporal dependence betwgeand.S;;
and theb;; model the temporal dependence betw&grand.S;; ;. For complete-
ness the initial conditions have to be defined at time instant 0. We asSyihoebe
MVN(0,%g,).

In reality, however, the dependence structure might be obscuredtoyon envi-
ronmental confounders, such as rainfall. Therefore, the model isddebento an
observation model,

Yy, = St + €, (6.3)

t =1,...,n, wherey, is the observation vector correspondingdg ande; ~
MV N(0,X,). No restrictions are imposed . This enables cross correlations
between sampling locations that are not connected according to the podogy.

Model (6.3) only defines the spatio-temporal dependence structuwran e eas-

ily seen thatE[y;] = 0 at all time instants. To model the trend, Equation (6.3)
is extended with an additive model for the mean. Besides a trend, seasoinal
ation is typically present in water quality data. In Chapter 1 we introduced some
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of the data. The seasonal variation was illustrated in Figure 1.6 where mitrte

of all years was plotted in function of the day of the year (suppor65]). A
common approach to deal with this variation is to include sinusoidal functions of
fixed periods to describe the seasonal cycle within a year (e.g. Hirss; T3

and Tiwari, 2000; McMullan et al., 2003; McMullan, 2004). A common funatio
which is used for this purpose dscos(27(t/P) + 0), whereP is the period which

is taken to be 1 yeaty is the amplitude of the seasonal trend énsla parameter to
allow for a phase shift. Hence, andf have to be estimated. This term, however,
is nonlinear in the parametérbecause the parameter appears within the cosine
function. However, this term can be expressed in a linear form by ussigra
dard trigonometric expansion of the cosine term. This is also the parametrisation
of our choice and therefore we use Fourier basis functions to model élsersa
effecty; sin(27t/365) + 2 cos(27t/365). Hence, the following mean model is
proposed: B;:] = X8+ f(t), whered = (B, ..., 3,)T is theq x 1 parameter
vector andX ;; is thel x ¢ design vector that includes the proper Fourier basis
functions and some other linear predictors, gitd) is a local linear regression
smoother for the estimation of the nonlinear trend. Note fiiat does not depend

on the sampling location because we want to assess the trend on a regaeal s
After embedding the mean model into Model (6.3), we obtain

Yy, = X4B+ f(t) + St + &, (6.4)

which specifies together with Model (6.2) the complete time-invariant spatio-tem-
poral state-space model.

An equivalent formulation of the spatio-temporal model is accomplisheddmgre
nising that the Model (6.2) and (6.4) can be written as a Structural EquUdtice!
(SEM) (see e.g. Maruyama, 1997),

CSy = ¢ (6.5)
Yy =XnNB+ fy+ SN+, (6.6)

whereSy = (ST,... .S vy = (yT,...,yD)T, Xy = (XT,..., X])T,
fx=TQ),...,ff ()T, Cisapn x pn square matrix constructed from the
elements of the matrice4 andB, { ~ MV N(0, 3.), whereX, is a diagonal ma-
trix built from the corresponding elements Bf,, andy ~ MV N(0, 3,) where
3, is block-diagonal with block&,. From this SEM formulation the covariance
structure of the observation vect®ry is easily found,

Sy (To) =var(Yy) = C'E.C T + 3y, (6.7)

with ¥, the vector that contains all parametersdn B, Xg,, X, andX..
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6.3 Parameter estimation and statistical inference proce-
dure

As in Chapter 5 it is possible to perform the parameter estimation and the ioéeren
procedure completely in the likelihood framework. However, in order tdrobn

the computational burden we will consider a slightly different approactraithe
mean model is estimated by ordinary least squares (OLS). OLS also mevidm-
biased estimator but it is asymptotically less efficient than generalised leasesq
(GLS) (e.g. Shin and Oh, 2002). Thus, the variance of the OLS estimaiibtze
larger. The parameter estimation of the mean model is given in Section 6.3.1. In
Section 6.3.2 the estimation procedure for the parameters of the depestteee
ture is briefly discussed.

6.3.1 Mean model

In Chapter 5 a linear spatio-temporal model was used to model the mean. The
parameter estimation was done within the likelihood framework which implies the
use of generalised least squares (GLS) for the estimation of the pararokttke

mean model. In this chapter the approach of Chapter 5 is extended by ritrgdu

a smoother in the mean model for the estimation of a nonlinear trend. This nonlin-
ear trend is estimated by the use of a polynomial smoother (An overview of fitting
local polynomial smoothers can be found in Section 2.2.3). Because a snooth
is involved in the mean model, we will have to obtain the smoother matrix to fit
the semiparametric mean model. In a GLS context, the dependence structure is
involved in the calculation of the smoother matrix (see e.g. Giannitrapani et al.,
2005). Hence, the only adjustment which is heeded to use the ECM algorithm o
Chapter 5, is to adapt the second CM to enable the fit of the semiparametric mean
model. However, this would imply the recalculation of the projection matrix of the
smoother at each iteration and would lead to a drastic increase of the compaltatio
power that is needed to estimate the model parameters. Therefore we waittlirse

nary least squares (OLS) to fit the mean model. OLS estimators are alsseohbia
and consistent, but they are asymptotically less efficient (e.g. Shin anz0OB).

Thus, the variance of the OLS estimator will be larger than the variance 8f GL
estimators. From a computational point of view, however, they have adevable
advantage because the parameters of the mean model only have to be estimated
once and the parameters of the dependence structure can then be eaisirajed
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the residuals of the OLS estimation procedure. Given these considenaBqre-
fer OLS.

When the OLS procedure is applied to our particular additive model, the estgnatin
equations have an analytical solution (see Section 2.3, and Hastie andtaribsh
(1990)). The following results are obtained for the OLS of our model,

B=(XNUInx—-Sp)XN)'XN(In—-S)YN=HgYy  (6.8)
f=8;Yy—XnB), (6.9)

whereS s is the smoother matrix anfiy is the NV x N identity matrix. Hence, a
projection matrixH ; can be constructed for the smoother term,

H;=S;(In - Xn(XK(In—Sp)XnN) ' XN(In—5p).  (6.10)

For inference procedures, this is advantageous. Once the covamaidx of the
observationsY y is available, the covariance matrix of the smoother estimators
can be obtained. To assess whether a beneficial trend occurs afte¢aia time,

we have to infer the first derivative of the trend. For local polynomigtession
smoothers, a smoother mati#;«, for the first derivativef () is available (Fan
and Gijbels, 1996). The smoother, however, is embedded in an additivelmod
thus a projection matridd ;) for the first derivative has to be calculated. For
local polynomial smoothers, this becomes

()

f=8;0(YN—-XnpB)
=S,y — XN(XNIn—Sp)XN) ' XNIN —8p)Y N (6.11)
=H;Yny,
with

Hpo)=8;0 Iy — Xn(XNIn—Sp)XN) ' XN(IN - Sy)  (6.12)

6.3.2 Dependence structure

To fit the parameters of the dependence structure, we propose to agljintly
adjusted version of the ECM algorithm of Section 5.3.3. Because the paramete
of the mean model are estimated by OLS, the second CM step dealing with the
estimation of the parameters of the mean model is redundant and only the first
CM step is used. The only adjustment that is needed here is to rep|dog

Y =y, — X8 — f(1).
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6.4 Statistical inference procedure

Since the parameters of the seasonal component and the nonlineargenkha

ear combination of the responsegs,— HgY and f = H Y y, inference on

the mean parameters and the nonlinear trend require an estimator of the com-
plete variance-covariance matrix of the observation vekigr. From the SEM
model representation an estimatorXy,, can be calculated directly by plugging

in the parameter estimates in Equation (6.7). f)% denote this estimator. The
variance-covariance matrix of the parameter estimators for the seadi@uali®

thus consistently estimated by

35 = HgSy, Hj. (6.13)

To know whether the nonlinear trend is present at a certaindjiaue analysis of its
derivative,f(!)(¢), is proposed. For local linear regression smoothers the derivative
can be calculated and is linear in the response. Since projection matricef®exis
the local polynomial regression smoother and its first derivative, thelesilcn of

the estimator of the variance-covariance matrix of the nonlinear t®Ep)ignd of

the derivative E f(l)) is straightforward. They are given by

S =H;SyH} (6.14)
30 = H Sy H o). (6.15)

Simple test statistics can thus be used for asymptotic pointwise inference on the
derivative, e.gt = f() (t)/s ) (t) is asymptotically standard normally distributed
under the null-hypothesis of no trend. Since the test is performed atiezeim-
stant, we have to correct for multiplicity. A widely used method to take multiplicity
into account is to use adjustgdralues. Well-known examples of this approach are
classical methods such as the Bonferroni or Holm procedures. Tareyder all
the tests to be independent and they are known to be too conservatinghigis

not the case (e.g. Shaffer, 1995). In our application, tests at time insthiuis are
close to one another are likely to be correlated. Thus, the effective diomerfthe
multiplicity problem is reduced. We therefore propose to use a procechichw
can take these dependences explicitly into account. In particular we hasercto
use the free step-down resampling method (algorithm 2.8 of Westfall analgYou
1993). Their procedure proceeds as follows

1. Rank the originap-values:p(;y < pe) < ... < p(n), Where(j) denotes the
rank number and store the rankedalues in the vectofp(y), . - . , (n))
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2. Initialise the count variable€ OUNT; =0,i =1,...,n

3. Generate a vecthpZ*l), e ,p?‘n)) from the same (or at least, approximately
the same) distribution of theriginal p-values(py,...,p)) under the
complete null hypothesis. Note that the sequefige} is fixed through-
out the simulation. Thus tlﬁj) will not have the same monotonicity as the
original p-valuesp ;.

4. Define the successive minima;
I = p?n)
Q:Lfl = mln(Q:wp?n—l))

Gp—o = min(g,_1, P?n—z))

qi = min(gs, p(y))-

5. If ¢ < p(s), thenCOUNT; = COUNT; + 1.
B)  ~(B)

: . ~(
6. Repeat step 3-8 times, compute the adjustgdvaluesp ;) asp =
COUNT;
T

7. Enforce monotonicity using successive maximisation:

~(B) ~B
Pay =Pq)
~(B) ~(B) ~(B)
p(l) = max(p(l) ,p(g) )

Westfall and Young (1993) argue that once the monotonicity is enfonoedf &3

is sufficiently large that th§(g are reasonable approximations of the acﬁ{@l.
They also recommend to takeé > 10000. One of the possibilities Westfall and
Young (1993) proposed to perform step 3 is to sample from a parameirntaés

of the null distributiony,. WhenFE is a known function that depends on a vector
of unknown parameter®, F, = Fy(®), one can sample fronty = Fy(©),
where® is a consistent estimate @. In our application, a simulated sample
from F, can be obtained by
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1. sampling a new set of derivativﬁél)* under the null-hypothesis of no trend
from MV N (0, ¥ ;q)),

2. calculating the-valuesp; that correspond to each of the simulated deriva-
tives (%, and

3. ranking these-values according to theriginal p-values(p(yy, . - ., p(n)) to
obtain(p?l), . ,pZ‘n)).

In the above, inference is provided for the components of the mean model. T
obtain standard errors of the parameter estimators of the dependerterstrwe

will estimate the observed Fisher information matrix. In this dissertation, this is
done by numerical perturbation of the likelihood function (e.g. Harve§91&nd
Shumway and Stoffer, 2006).

Model selection will be based on the AIC criterion and the quality of the model
will be checked in an analysis of the standardised innovations (for mtadsdece
Section 5.3.5).

6.5 Case study

The data used in this case study is part of a public database of the Flemisimenv
mental agency (http://www.vmm.be). Five sampling locations along two joining
river reaches located in the Yzer basin (Belgium) are used to asse8sewtiere
exists a trend in the nitrate concentration between January 1990 and Bmcemb
2003. Their DAG and locations in the catchment are shown in Figure 6.2. Sam-
pling locations S1, S2, S4 and S5 are located on the Yzer while sampling location
S3is located on a joining creek. For each sampling location, monthly nitrate mea-
surements are available between January 1990 and December 2008.thiefive
sampling locations are sampled on 168 different time instants resulting in a total
sample size of 840 observations. Since the observations are taken at timalénte
which are much larger than the time scale of the water flow, the matrix B describing
the temporal correlation, can be assumed to be diagonal, i.e. an AR(ltustruc
Instead of looking for trends at the level of individual sampling locatiavesaim

to detect the trend on a more regional scale and impose the restriction that all lo
cations have the same trend in common. This assumption is later assessed in the
analysis of the innovations. The nonlinear trend is estimated by means ofla loca
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Figure 6.2: Top Left: Directed Acyclic Graph (DAG) of the sampling locations
along the 2 river reaches. Bottom Left: Map of the river reaches con-
sidered in this case study. Locations S1, S2, S4 and S5 are located on
the Yzer river while location S3 is located on a joining creek. Sam-
pling location S1 is located in France. Right: Map of the part of the
Yzer catchment located in Flanders, Belgium. The sampling locations
are indicated by the dots. The area considered in this study is indicated
with the ellipse and the considered sampling locations are indicated
with black dots

polynomial regression smoother for which we use the Epanechnikoelkdmcal
polynomial regression was introduced in Section 2.2.3. The choice of thelke
is not that important from a practical point of view (e.g. Fan and Gijbel9619
But, Fan and Gijbels (1996) showed that the Epanechnikov kerneldmas sice
asymptotical properties. The bandwidth was selected by a grid searahthsin
AIC criterion (see e.g. Chapter 2). Next we introduce the models that fitiee

to the data. Lef denote the intercept at sampling location 5, andhe effect
of thei'® sampling location relative to sampling location 5 (henge= 0). The
value of the regional trend at tintés denoted byf(¢), the~;, are the parameters of
the seasonal component modelled by Fourier terms, an@thg; are parameters
of the sampling location-season interactions. In contrast to the models in €hapte
5 no year-season interaction term could be used to enable the sed$ectaloe
change from one year to another. We would only include an interactioniterm
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Table 6.1: Mean models to assess the “regional” nonlinear trend in the nitrate c

centration
Model E(yit) AlIC

I p+ a; + y1sin(27t/12) 4+ 2 cos(2wt/12) + f(t)  5102.0

Il p+ a; + y1sin(27t/12) 4+ 2 cos(2nt/12) + f(t) 5096.4
+(ay)i1 sin(27t/12) + (avy)io cos(2mt/12)

the model if the model also contains the main effect, and the factor for yeat co
not be included in the model since a main effect as it would interfere with the es
mation of the nonlinear trend. Table 6.1 presents the models that were gedside
The models are fitted by using the methods described in Section 6.3.

Model Il has the lowest AIC and it is selected as the final model. The regultin
OLS fit of the mean model is shown in Figure 6.3. The plot clearly shows the
presence of seasonal variation and a decreasing trend from 1€8Bb&arend of

the time series. The parameter estimates of the mean nidale given in Table
6.2. The parameters of the dependence structure consist of the elerhémds o
matricesA, B, X, andX.. Their estimates are listed below (standard errors are
shown between brackets).

0 0 0 0 0
0.77 (0.52) 0 0 0 0
A= 0 0 0 0 0],
0 1.05 (0.42) 0.04 (0.07) 0 0
.o 0 0 0.39 (0.29) 0
[0.14 (0.7) 0 0 0 0
0 0.35(0.17) 0 0 0
B= 0 0 0.98 (0.02 0 0
0 0 0 —0.14 (0.16) 0
.0 0 0 0 0.12 (0.21)
12 (13)
0 0.01(5.9)
3, = 0 0 1.11 (1.0)
0 0 0 14.2 (14.9)
0 0 0 0 0.02 (7.40)
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Figure 6.3: Model fit at five sampling locations of the river Yzer accardio
model II. Sampling locations S1, S2, S4, S5 are located on the main
river and sampling location S3 is located on a tributary which drains
into the Yzer between S2 and S4.

and

12(13.7)
8.0(6.9) 21.6(6.2)
3. = [10.4(3.7) 13.5(4.1) 90.4(10.4)
4.9(8.2) 6.7(6.4) 4.6(3.8) 3.2(18.8)
17.0(4.7) 18.8(4.3) 13.6(4.3) 8.3(10.4) 26.9(11.6)

The model quality has to be checked by the use of an assessment of terdtan
ised innovations. These innovations should be independent. This isedseith
a plot of the autocorrelation function (ACF). The ACF plot of the origiraies is
given in Figure 6.4. The original nitrate observations are clearly cdegtlalrhe
ACF of the standardised innovations are given in Figure 6.5. For thete ple
see that the model succeeds in reducing a considerable amount ofitheser
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Table 6.2: Parameter estimates, standard errors and p-values for thigoknieim
the mean model (Model II)
Parameter Estimate Standard error p-value

1 9.85 0.20 0.00
oy —0.90 0.14 0.00
as  —0.79 0.14 0.00
o —0.66 0.07 0.00
o3 3.84 10.20 0.71
Yo 3.70 0.38 0.00
" 3.71 0.39 0.00
(ay)s2  —0.28 0.26 0.29
(a7)2,2 0.50 0.25 0.04
(a)1,2 1.23 0.15 0.00
(a7)3,2 0.36 1.18 0.76
(ay)s1  —0.92 0.26 0.00
(ay)e1 ~ —0.04 0.25 0.87
(ay)11  —0.18 0.15 0.23
(ay)s1  —0.23 1.20 0.85

Table 6.3: p-values for the Ljung-Box portmanteau tests of the autocioretzo-
efficients of the standardised innovations at the first 5 lags
lag S1 S2 S3 S4 S5
1 078 087 063 090 0.11
2 095 0.97 0.10 0.96 0.27
3 020 099 0.17 0.74 0.37
4 0.06 100 0.14 0.46 0.52
5 0.04 099 0.05 052 0.58

relation present in the original series. A joint test of significance of ttsg fir
autocorrelation coefficients can be provided by the Ljung-Box portmanrtest
(Ljung and Box, 1978). The p-values for the Ljung-Box portmanteats t&fsthe
autocorrelation coefficients of the standardised innovations are peeseanTable
6.3. In Table 6.3, the test is only significant for S1 at lag 5. From the AC#s plo
and the Ljung Box tests, we therefore conclude that the AR(1) struct@rasto

be adequate. The quality of the mean model is checked in a plot of the stesediar
innovations with respect to time. This graph is displayed in Figure 6.6. Frigdman
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Figure 6.4: Autocorrelation plots of original nitrate series at the diffesantpling
locations

supersmoother (Friedman, 1984) is added to each plot to check whedtesisthtill

a pattern present in the standardised innovations. From Figure 6.6 iecseeh

that the smoothers stay close to zero. For S2, S3 and S4 the smootherteindica
deviations from zero at the boundaries.This was also observed in thstcaly in
Section 5.4 and again these deviations are probably due to the combination of a
boundary effect of the smoother, large nitrate values measured in thlegof

the time series and the Kalman filter which might have not reached steady dtate ye
Because no severe deviations are indicated by the smoother, the asswhtit®n
existence of a regional trend seems acceptable. All processes wareeakto be
Gaussian. The standardised innovations should therefore be distrdndedtling

to the standard normal distribution. Hence, most of standardised innavatien
expected to lay approximately in the interyal2, 2]. In Figure 6.6 it can be seen
that at each sampling location a number of outliers are present. The normality o
the standardised innovations is further assessed in Figure 6.7. Bothxihietand

the QQ-plot show a clear departure from normality. The boxplot indicateasid-
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Figure 6.5: Autocorrelation plots for the standardised innovations of Mbde

erable amount of outliers and the QQ-plot indicates that the distribution s lar
tails than the normal distribution. On the other hand, from all plots it can be see
that the distribution of the standardised innovations is symmetric. For thechsea
guestion, we need to infer on the mean model included in the observatioticequa
This is a deterministic component in the model and from Harvey (1989) we& kno
that the asymptotic distribution of the estimators associated with the deterministic
components are not affected when the Gaussianity assumption is drégreck,

the inference on the parameters of the mean model remains approximately valid.

Thanks to the additive model structure, the contribution of each prediatobe
studied individually. This enables us to decompose the model into componants th
can be represented graphically. The trend and its derivative arenshdugure 6.8,
along with 95% asymptotic pointwise confidence intervals. A naive apprtmach
assess the trend is to perform a t-test at each individual time instant. Avakso
result is obtained by assessing at which time instants zero is not contained in th
95% confidence intervals of the derivatives. In Figure 6.8 pointwiseifgignt
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Figure 6.6: Plots of the standardised innovations of Model II, Friedmgersu
smoothers are added to the plots to assess the residual pattern

results ¢ = 0.05) are indicated with a dot and it can be seen that a trend is present
from January 1999 until July 2003.

For the test procedure to be formally valid, a multiplicity correction is needed to
control the familywise Type | error at the-level instead of controlling the Type |
error of the individual tests. When the Holm procedure was applied tecidior
multiplicity, no significant results were observed (results not shown). Hdlen
procedure however acts as if all tests are independent. But obsessatitich are
close in time are likely to have similar trends. Thus, in our setting, the trend tests
are dependent, and this reduces the actual dimension of the multiplicity problem.
Therefore we have proposed to use a modified maximum T approach that co
rects for multiplicity and takes the dependences between the tests explicitly into
account . The results of this approach are illustrated in Figure 6.9. Fam#lywis
significant first derivativeso{ = 5%) are indicated with dots superimposed on the
point estimates. The derivatives of the nonlinear trend are significanfbrefiit
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Figure 6.7: Histogram, boxplot and QQplot of the innovations of Model Il

from O between September 1999 and January 2002. Since the estimate$ist th
derivatives of the nonlinear trend are negative, a significant deeiaanitrate con-
centration is concluded for this period. The fact that we exploited thendigmees
between the t-tests, clearly leads to a less conservative test procemuntetsical
corrections such as the Holms procedure. Compared to the naive elpptba
nonlinear trend is not significant in 2002 and 2003. This is not surprassthe
variance of the predictions based on smoothers is typically inflated in thelapun
regions.

Although this data analysis methodology has no causal interpretation, itecan b
concluded that a decreasing trend in the nitrate concentration in the sgidy re

is established between the introduction of the first MAP and the second TW&P.
trend remains significant until January 2002.
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Figure 6.8: Evaluation of the common nonlinear trend (NLT) along the rivzaryY
The estimated trend is presented in the left panel, and its first derivative
is shown in the right panel. In both graphs, 95% pointwise confidence
bands are depicted. Pointwise significant decreases are indicated with
a dot superimposed on the point estimates

6.6 Discussion and conclusions

In this chapter a statistical methodology was developed for the detectiomef no
linear trends in river monitoring network data. A spatio-temporal model was ¢
structed to model the marginal mean and the dependence structure. iAgdue
specification of the marginal mean model, the trend can be studied at theflevel o
individual sampling locations, or on a more regional scale.

In contrast with existing methodologies for (non)linear trend detectionpmgae-
dure takes the spatio-temporal dependence explicitly into account. As oeafrtpa
ad hoc methods such as the methods based on the field significance (e.gnBur
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Figure 6.9: Evaluation of the common nonlinear trend (NLT) along the rivryY
The estimated trend is presented in the left panel, and its first derivative
is shown in the right panel. In both graphs, 95% pointwise confidence
bands are depicted. Familywise significant decreases are indicated with
a dot superimposed on the point estimate

Hag Elnur, 2002), our method provides statistical inference which is forwvedid.

For the detection of trends in water quality, the use of a nonparametricsségme
method is more flexible. Classical tests such as Mann Kendall tests for teend d
tection are not appropriate when sign changes occur in the trend. Ouvchredto
enables the detection of trends on a more local time scale. To verify at which time
instants the nonlinear trend is beneficial, t-tests are performed at each tierg.ins
Due to the specific dependence between these tests, classical multiplicity- corre
tions are too conservative. We have adopted the free step-down fegampthod
Westfall and Young (1993) and sampled from an appropriate null dissifbtio

take the dependences between the statistical tests into account.

The methodology has been illustrated in a case study where a significaeaskec
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in the nitrate concentration was detected in the study region between September
1999 and January 2002 (= 0.05), indicating a beneficial effect of the introduction
of the manure action plans.
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Chapter 7

Spatio-temporal modelling of river
monitoring networks, a binary data
approach

7.1 Introduction

The authorities of the member states of the European Union are responsible to
develop a long term vision in order to comply with the environmental quality stan-
dards imposed by the European environmental legislation. Such staadamsn-
monly expressed in terms of threshold levels. This provides a binarynssyo

the decision maker. In case of nitrate, a value which is below the threshaid ind
cates a good nitrate status, and a value above the threshold indicates ti@athe
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status is problematic. To evaluate and refine their strategy it is important td detec
whether their actions have a beneficial effect. From the policy makers pbin
view it is relevant to assess the impact of management strategies on the violation
frequency of water quality standards. This question can directly besssdy
transforming the observations into binary data using the water quality sthadar

a threshold. In this way the response variable is Bernoulli distributed stréimals

in the compliance frequency can be modelled. A beneficial effect of audns-
formation is that the statistical tests become distribution free in the sense that no
distributional assumptions have to be made concerning the original distrilmition
the water quality variable. Such an approach is particularly useful wheating

with water quality indicators with a large fraction of censored observatioos s

as for instance heavy metals and pesticides. Censoring of water qualitpaata
curs due to concentrations which are below the detection limit of the measuring
method. Although the transformation to binary data reduces the data complexity,
the spatio-temporal dependence still remains.

To deal with non-normal data, a generalisation of the model framewodktbhessugh-
out this dissertation is needed. Before we introduce the generalisedifoaikyeve
will start from the classical linear model to introduce the different comptahat

we will need later on. Leg;; be an observation acquired ontime = 1,...,n, at
thest sampling location; = 1. ..p and letz;; be thel x ¢ vector of corresponding
predictor valuesc;s = (z4.1,. .., i) that are measured simultaneously. Actu-

ally x;; is a row from a linear design matrix. Thus, if an intercept is to be included
in the model, one of the elementsof should be set to 1. For the moment we will
also assume thg;'s to be i.i.d. normally distributed. The classical linear model
can be written as,

Yit = T3 + €it, (7.1)

where the systematic part for the model is specified in terms of a number of pa-
rameterg3 = (1, ..., 3,) and can be written as @it |xi;) = wir = xi3. For the
random part, we assume the residugl$o be i.i.d. normally distributed with zero
mean and constant varianeg, i.e. ¢;; ~ N(0,0%). Thus, they;'s are normally
distributed with meamn;; and variance?.

In many cases this model is not appropriate. An important case is the onécim wh
they;; andu;; are bounded. For example, if thg’s represent count datg;; > 0

and iz > 0. In this chaptery;; is considered to be binary. In particular we
write y;; = 1 if the environmental threshold is violated apg = 0 if the water
quality variable is below the threshold. Thus, the mgarhas to be in the interval

0 < ui < 1. The standard linear model is inadequate in these cases because
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complicated and unnatural constraints @mwould be required to make sure that
i Stays in the range. McCullagh and Nelder (1989) give an extensiveieweof
generalised linear modethat can be used for this purpose. To make the transition
to generalised linear models more easy, we will rewrite Equation (7.1) to peodu
a three-part specification:

1. Therandom componentthe y;;'s are independently normally distributed
with meany;; and constant variance?,

yir ~ N (pit, o). (7.2)

2. The systematic componentovariatesz;; produce ainear predictor 7;;
given by
Nit = TitB. (7.3)

3. Thelink between the random and systematic components:

Nit = it (7.4)

In doing so, we have introduced a new notatignfor the linear predictor and a
third component that specifies that andn;; are identical. We can also write the
link more generally as

nit = g(pit), (7.5)

whereg(.) is referred to as thénk function Classical linear models use a nor-
mal distribution for component 1 and the identity link function for component 3.
Generalised linear models extend classical linear models by allowing a differe
distribution for component 1 and by using another monotonic differentiaipie-f
tion for the link function in component 3. Recall the constraints for couts da
yir > 0 andu;; > 0 and for binary datay;; = 1 ory; = 0 and0 < pi < 0.

For these caseg(.) will be used to transform the;, to a scale on which they
are unconstrained. For example we may yée;;) = log(ug) if pie > 0 or
g(pir) = logit(uit) = log[uir/(1 — wit)] if 0 < pie < 1. Other link functions are
also possible, e.g. the probit link can be used for Bernoulli data insteheé tdgit
link. The probit link is the inverse of the cumulative standard normal distributio
function. Further, the distribution in component 1 becomes the Poisson diiirib
for count data and the Bernoulli distribution for binary observationg Udsual re-
striction on component 1, is that this distribution should belong to the expohentia
family.
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So far we have considered the observations to be i.i.d. Observationsatingin
from a river monitoring network data, however, are not independenbti#er ex-
tension is therefore needed to incorporate the dependence structw@nron
extension to model dependent outcomes, is to include random terms in the lin-
ear predictor. Such models are than classifiegeaseralised linear mixed models
(GLMM’s, e.g. Breslow and Clayton, 1993). Itis often a reasonabe@pmation

to assume that the random error terms are distributed according to a nastrial d
bution. Although a full maximum likelihood analysis is possible, it usually involves
irreducible high-dimensional integrals (Breslow and Clayton, 1993).réffbee a
number of approximation methods have been developed to deal with GLMM’s.
Depending on the research question, different approaches aiblpodVhen one

is interested in the marginal mean, Marginal Quasi likelihood (MQL) can bd us
(Breslow and Clayton, 1993). In case the dependence structureecssbmed to
have a block diagonal structure, the MQL can be optimised by the use efalen
estimation equations (e.g. Liang and Zeger, 1986, Zeger and Liang, Z6§6ér

et al., 1988 and Breslow and Clayton, 1993). If one is interested in tlzeneders

of the mean model conditional on the random effects, penalised quasilizdlino
(PQL) can be adopted (Breslow and Clayton, 1993). In this dissertati®mfer

on the marginal mean. However, the approximations which are commonly made to
apply MQL do not hold, e.g. the data at the sampling locations of a river mietwo
are not mutually independent and thus their dependence structure barmdtten

as a block diagonal structure. Hence, MQL cannot be used directiythE&anfer-
ence procedure to be formally valid we have therefore chosen to worlwaitiall
Bayesian framework. A short introduction to this statistical framework isrgin
Section 7.3.1.

In this chapter, a first onset is given towards the generalisation of thosp
temporal models presented in Chapters 5 & 6. In particular, a logistic state spa
model for the probability of violating a threshold is presented. This moddicexp

itly incorporates the dependence structure of the data. It uses a meahtmode
assess the impact of the introduction of a manure action plan (MAP) on the ni-
trate concentration and to correct for the seasonal variation. The f@tioruof the
mean model allows the assessment to be done at the level of individual sgmplin
locations or on a more regional scale. The dependence structure iuicgcbdy

the use of a latent variablg and temporal dependence is assumed to be behave
as an AR(1) process. These assumptions have to be checked aferv@mi-

lar to the previous Chapters 5 & 6, the spatial dependence of the latéablear

is assumed to be a branched unidirectional structure that can be rdpokas a
Directed Acyclic Graph (DAG).
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Figure 7.1: Directed Acyclic Graph (DAG) of five sampling locations along two
joining river reaches

7.2 Spatio-temporal model

First the spatial dependence structure is derived in Section 7.2.1. fio5&é2.2
this model is extended to include a temporal structure. Finally, the mean model is
introduced in Section 7.2.3.

7.2.1 Spatial dependence structure

Let thep x 1 vectorS = (Si,...,S,)T denote a stationary spatial process, where
S; (i =1,...,p) represents the response variable at sampling locéatidhe corre-
lation structure ofS is completely defined by the river monitoring network topol-
ogy. This is illustrated in Figure 7.1 which shows 5 sampling locations along 2
joining river reaches. The direction of the flow is also indicated and it ¢sm a
be interpreted as a Directed Acyclic Graph (DAG) (see e.g. Whittakef)1ia9
which the circles represent the graph’s vertices associated with thesporrd-

ing S;’s. Missing edges or arrows indicate the conditional independencass Th
from Figure 7.1 we read; 1L.S3; So1L.S3; Sy 1LS1|Sa; S51.51]S2; S51LS1|Sy;

S5 1L S5|S4 and S5 1L.S5|S4. The DAG implies zeroes in the variance-covariance
matrix of S. Thus it can equivalently be represented by a recursive system of
equations (Wermuth, 1980),

S=AS+~, (7.6)

where the order of the elements 8f can always be rearranged so thtis a
lower triangular square matrix with zeroes at the diagonal,~argla multivariate
zero-mean random vector with a diagonal variance-covariance nafrixVe fur-
ther assume thay ~ MV N(0,3,). For the DAG represented in Figure 7 A,
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becomes
0O 0 0 0O
asy 0 0 00
A=[0 0 0 00
0 a49 43 00
0 0 0 as4 0

wherea;; models the dependence between sampling locatj@md.S;.

7.2.2 Spatio-temporal dependence structure

In a river monitoring network the data are gathered over time. VeSior=

(Sit, - - -, Spt)T now represents the observations at the sampling locations at time
witht = 1,...,n. A Markovian structure is assumed for the temporal dependence.
The quality of the temporal model has to be assessed through a residlyaisn

To incorporate the temporal dependence structure, Equation (7.6) mslegtéo

St = ASt + BSt,1 + 14, (77)

where B is a matrix containing the temporal autocorrelation coefficients (diago-
nal elements) and the spatio-temporal cross-correlation coefficieftgiggbnal
elements), andy, ~ MV N(0,X,) with a diagonal variance-covariance matrix
3.,. Similar to matrixA, we propose to only use cross-correlations between sam-
pling locations which are directly connected according to the DAG structire.
off-diagonal elements aB are thus structured in a similar way as the elements of
matrix A. HenceB can be written as

b1 0 0 O O
bo1 b0 0 0 O
B=]10 0 b3 0 0
0 bg2 by3z bgy O

0 0 O bsq bss

Fori # j theb;; model the spatio-temporal dependence betwgeandsS;;_; and
theb;; model the temporal dependence betwsgrandS;;_ 1.

Equation (7.7) can be reorganised so that the model can be written in itabene
state-space model representation,

Sy =®S5; 1+ 9y, (7.8)
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7.2 Spatio-temporal model

where® = (I — A)~'B andd; ~ MV N(0,Q) with covariance matrixQ =
(I-A)~'%,(I-A)~Tandt = 1,...,n. For the model to be completely defined,
we assumeS to be multivariate normally distribute&y ~ MV N (0, Xg,).

Alternatively, the following notation can be used,
CSy =¢, (7.9)

whereSy = (ST,...,ST)T, Cis apn x pn square matrix constructed from the
elements of the matriced andB, { ~ MV N(0,X.), whereX is a diagonal
matrix built from the corresponding elements®f. Hence,Sy is multivariate
normally distributed with a zero mean and a covariance maigy given by

Yoy, =C 2. CT. (7.10)

7.2.3 Mean model and formulation of the GLMM

The latent procesS; cannot be observed. Instead a variadp)ds observed that
indicates whether a certain water quality standard is violated or not. Hegnce,
gives a binary response and it is coded to be 1 in case of violation aneQuik.
Theyy'si=1,...,pandt = 1,...,t are believed to be independent conditional
on a number of explanatory variables and on the latent spatio-temporakgfic

Its conditional distribution is assumed to be Bernoulli. In the GLMM framework
the model can be written as follows:

1. Random component: thg, are assumed to be Bernoulli conditional on the
predictorsz;; and the latent spatio-temporal procégs Their conditional
mean is given by

E (yit|Sit> Tie) = pusy- (7.11)

2. Systematic component: predictarg and the latent spatio-temporal process
S;t produce the linear predictof, given by

I/l-ct = xit,Bc + S (712)

3. Link between random and systematic components:

Vit = 9(kir) (7.13)
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4. The random effects are given by the spatio-temporal latent pré&&ess:
(S1,...,8,), which are multivariate normally distributed

Sy ~ MVN(0,Zsg,) (7.14)

When this model would be used for inference, the paramgterave an interpre-
tation conditional on the latent proceSs In an environmental context, however,
we want to infer on the marginal mean. Via integration over the latent variable,
every conditional model implies a marginal model (e.g. Heagerty and Z20@0,

and Griswold and Zeger, 2004),

it = E(yit) = Es(E (yit|Sit)) = Es(uiy)- (7.15)

This marginal mean.; is now further linked to a linear predictof;’ = x;8™
by v} = g(ul}), where the link functiory(.) is defined as before an@” repre-
sents the parameter vector with the correct marginal interpretation. Fittingmakarg
models, however, usually involves the application of approximation methatis su
as the use of generalised estimation equations (e.g. Liang and ZegerZ&g@6
and Liang, 1986, Zeger et al., 1988 and Breslow and Clayton, 199@) approx-
imations which are commonly used, do not hold here because the variarase co
ance structure of the observations is not block diagonal. To enablelikélihood
based inference procedure for marginal models, Heagerty and Z2&§#), Hea-
gerty (2002) and Griswold and Zeger (2004) formulated a marginalissibwneof
the GLMM model:

1. Random components: the marginal mean ofytheonditional on the pre-
dictorsx;; is given by
E (yit|®it) = pgy- (7.16)
They;; are assumed to be Bernoulli conditional on the predictgsand the
latent spatio-temporal proceSs.

E (yit|xit, Sie) = 1y (7.17)

2. Systematic components: the predictafsproduce the linear predictof}
for the marginal component given by
Vit = Tit3 (7.18)

The predictorse;; and the latent spatio-temporal process produce the
predictoryf, for the conditional component given by

vy = Qi + Si (7.19)
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whereA;; forms a mapping between the conditional and marginal model
components.

3. Link between random and systematic components:

vy = g(uiy) (7.20)
vy = g(ug) (7.21)

4. The random effects are given by the spatio-temporal latent pr&tess
(S1,...,85), which are multivariate normally distributed

Sy ~ MVN(0,Zs,). (7.22)

Leth(.) be defined as the inverse of the link functfon) = ¢~!(.). From Equation
(7.15), it can be seen that;; can be found as the solution to the integral

W) = /% i+ SAP(S ), (7.23)

where P (S ) is the probability distribution o x. When the probit link is used,
Heagerty and Zeger (2000) and Griswold and Zeger (2004) havensthat

Aij =4/1+ Szztiltztﬁm (724)

Hence, they identified a conditional model structure that induces the mhrgina
model of interest. Once this particular conditional model is known, the estima-
tion of the desired marginal model only involves the estimation of this conditional
model.

In this chapter, these GLMM’s are estimated within the Bayesian framewadik. T
statistical framework is briefly introduced in the next section.

7.3 Parameter estimation and Bayesian inference

First a very brief introduction to the Bayesian paradigm is given. Theosethen
continues with some practical considerations on how to fit a Bayesian model by
using Markov Chain Monte Carlo.
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7.3.1 Introduction to Bayesian inference

Most of this section is taken from Gilks et al. (1996b). In the previougptdra
we worked within the frequentistic framework where the observationsarsia-
ered to be realisations of random variables and the model parametessanecal
to be fixed but unknown. In the Bayesian framework, however, nddorental
distinction is made between the observed random variables and the pasaaieter
a statistical model: they are all considered as random quantities and thelg@re
referred to as nodes. L& denote the observed data, ahthe model parameters.
Then inference is provided by setting up a joint probability distributitfD, 0)
over all random quantities. Lét(@) denote the prior distribution on the model pa-
rameters. The s& denotes the support éfand P(D|0) denotes the traditional
likelihood function. Then the joint probability becomes

P(D,0) = P(D|0)P(8). (7.25)
Once D is observed, Bayes theorem can be used to derive the distributi@n of
conditional onD:

P(D,0) P(D|0)P(0)

POID) =55y = TP(DI6)P6)de’
(C]

(7.26)

which is also referred to as the posterior distributio@of-or inference, features
such as moments, quantiles and credibility intervals of the posterior distribution
can be used. A&redibility intervalis the Bayesian counterpart of a confidence in-
terval in the frequentistic setting, however their interpretation is differeayeBian
inference treats parameters as random variables and therefore a&%bdity in-
terval on a certain paramet@means that 95% of the potential valuessokill fall

within the boundaries of the credibility interval.

In general, the statistic of interest is a functiordofThe posterior expectation of a
function f(0) is given by

G{f(l‘))P(D!9)1’(9)d9

E(f(6)|D) = (7.27)

| P(D|6)P(6)d6
e

Analytical solutions of these integrations do often not exist. Numerical method
have therefore to be used. An example of such a technique is the usenté¢ Mo
Carlo methods. A Monte Carlo algorithm evaluatesf9)|D) by drawing sam-
ples6y, k = 1,...,m from P(8|D) and it approximates the expected value
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E(f(0)/D)by1l/m3 ;" f(0x). Ingeneral, itis not feasible to draw the samples
independently. Fortunately, for the Monte Carlo approximation to hold@thgo

not have to be independent as long as they are drawn from the sopgti@| D)

in the correct proportions. This can be done by the use of a Markax blyasam-
pling the next stat@y; from the conditional distributiod (61|60, D), under

the restriction that the Markov chain h@&@|D) as its stationary distribution.
Such an approach is calleédarkov Chain Monte CarldMCMC). An introduc-

tion to Markov Chain Monte Carlo is beyond the scope of this dissertation and
interested readers find a good introduction in Gilks et al. (1996a).

7.3.2 Fitting a model using MCMC

Most of this section is taken from Spiegelhalter et al. (1996). When omésvia
use MCMC to fit a model, several steps are needed

1. Provide starting values of all unobserved quantities (parameterg, Varén
ables and missing data)

2. Construct the full conditional distribution for each node
3. Drawk samples with the MCMC algorithm

4. Monitor the output to establish the total run length and the length of the
burn-innumber, which is the number of iterations needed before the Markov
Chain converged to the stationary posterior distribution

5. Repeat steps 3 - 4 until the total run length has been reached

6. Calculate summary statistics of the quantities of interest for inferencet abou
the true values of the parameters

7. Assess the quality of the model

In principle the initialisation in step 1 is not that important since the chain must be
run long enough “to forget” its starting values. However, extreme starihges

can lead to a very long burn-in, or can make the sampler to fail to convetpe to
main support of the posterior distribution.
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Step 2 can be carried out analytically or by dedicated the model in spedific so
ware, such as e.g. BUGS (http://mathstat.helsinki.fi/openbugs/) or JAGS (http//ww
fis.iarc.fr/ martyn/software/jags/).

In step 3 the output of the MCMC sampler should be assessed to check fagmix
and convergence. This can be done by plotting the evolution of the MCMI(D ch
for each of the parameters. When parallel chains are used they owdréapcon-
vergence is reached. In case parallel chains are simulated, the GelchRuilain
(1992) statistic (GR-statistic) can also be used for this purpose (Gelm8@).19
For each parameter, these chains can be used to provide a pooled esfiitsate o
variance. The GR-statistic estimates the potential scale reduction in the pseled e
timate of variance which could be reached if the chain would be continued until
infinity. As the simulation continues, this estimate becomes closer to one, indicat-
ing that the chains are overlapping. The GR-statistic is implemented in the CODA
package of R (Plummer et al., 2004). This package provides a point estintbée a
97.5% percentile for the GR-statistic. If the point estimate and the 97.5% paénts ar
near to 1, this indicates that a reasonable convergence is reached &ssttssed
parameter.

To assess the quality of fit of a binary response regression modeladysianof
the residuals;; = y;+ — u4t is suggested by Albert and Chib (1993). In a Bayesian
analysis, they have a continuous posterior distribution which can givenaficon
about outliers (Albert and Chib, 1995). The residuals can be obtainedch
iteration. If the posterior distribution qi;; is in conflict with the observed value
of y;+, then the posterior distribution af; will be concentrated towards extreme
values (Albert and Chib, 1995). For Bernoulli distributed data, the ey r;;

is in the intervally; — 1,y;). Hence, an observatiogy; = 0 is unusual if the
posterior distribution of-;; is located close to the value -1, and an observation
yir = 1is considered as an outlier if the posteriorgfis concentrated towards the
endpoint 1.

7.4 Case study

A dominant problem in Flemish water bodies is the eutrophication due to nutrient
pollution. A considerable nutrient load originates from agricultural actsit@ne

of the major actions to restrict the nutrient pollution from agriculture was the in-
troduction of two Manure Action Plans (MAP’s)(Vlaams Parlement, 19998919
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Figure 7.2: Top Left: Directed Acyclic Graph (DAG) of the sampling locations
Bottom Left: Map of the river reaches considered in this case study.
Locations S1, S2, S4 and S5 are located on the Yzer river while location
S3 is located on a joining creek. Right: Map of the part of the Yzer
catchment located in Flanders, Belgium. The sampling locations are
indicated by the dots. The area considered in this study is indicated
with the ellipse and the black dots are the sampling locations included
in this study

Such a MAP restricts the amount of fertilisers that can be used by farmareas
which are susceptible to eutrophication. The first MAP (MAPI) was inteedun
1996 (Vlaams Parlement, 1995) and after an evaluation a new and moreikestr
MAP (MAPII) was implemented in 2000 (Vlaams Parlement, 1999). The aim of
this case study is to assess whether the introduction of these MAP’s hdfgen e
on the violation frequency of the nitrate standard of 11.3 mg N/I.

The data of 5 sampling locations of the physico-chemical monitoring network of
the Flemish surface waters are used. They are located along 2 joinirigeseiac

the Yzer catchment. Their DAG and location in the catchment is indicated on the
map in Figure 7.2. Sampling locations S1, S2, S4 and S5 are located on the Yzer
while sampling location S3 is located on a joining creek. Every sampling location
is monitored on a monthly basis. Data between 1990 and 2003 are availabtee He
the number of time instants at which a sample was taker=s168 and the entire
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dataset consists of 840 observations in total.

The observations are taken at time intervals that are much larger than thealienesc
of the water flow. Therefore we can assume the maRixused to describe the
temporal correlation, to be diagonal. Hence, we only model the temporal auto
correlations for a particular statg; at time¢ and not the spatio-temporal cross-
correlations betweef;; and its parents in the DACS'I[t“j]1 attimet — 1. This leads

to the reduction of the parent sgf] to [b;] = 4, containing only the current sam-
pling location. The nitrate series are transformed into a binary resportbe lige

of the nitrate threshold of 11.3 mg N/I. In particular the response is 1 if the nitrate
concentration is above the threshold and zero when the nitrate concenisdim-

low the threshold. Seasonal variation is typically present in water qualityasiata
the model has to account for it.

A linear model is used to assess the impact of the introduction of MAPI andIMAP
on the trend in the violation frequency of this nitrate standard. The model also
has to account for seasonal variation. The presence of seasoralon in the
nitrate series was clearly illustrated in Figure 1.6 where nitrate data of ak year
was plotted in function of the day of the year. A common approach to deal with
this variation is to include sinusoidal functions of fixed periods to describe th
seasonal cycle within a year (e.g. Hirst, 1998, Cai and Tiwari, 2000Jibflan

et al., 2003 and McMullan, 2004). A function which is often used for thippse

is acos(2m(t/P) + 6), whereP is the period which is taken to be one years

the amplitude of the seasonal trend @&nid a parameter to allow for a phase shift.
Hence,« andé have to be estimated. This function, however, is nonlinear in the
parametef because the parameter is appears within the cosine function. However,
it can be expressed in a linear form by using standard trigonometric sixpaof

the cosine term. This is the parameterisation of our choice and thereforeene u
Fourier basis functions to model the seasonal effect. They have @ péooe year

(71 sin(27t/12) 42 cos(2nt/12)). To answer the research question, the following
model is considered for the linear predictor corresponding to the margeh:

g(wiy) = vy = oo + o + it + Potyrapr + Bstaaprr

.27t 27t
+m Sm(ﬁ) + 72 cos(ﬁ) (7.28)

wheret = 1...n, g(.) is the probit link,x is the effect of sampling location 5, and
«; is the effect for the?” sampling location relative to sampling location 5 (hence
as = 0), (1 is the effect of the long term treng, is the trend change due to the
introduction of the first MAP% s 4 pr indicates the time since the introduction of the
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first MAP wherety;apy = 0fort < 72 andtpapyr =t — 72 fort > 72, B3 is the

trend change due to the introduction of the second MAR, p;; is the time since

the introduction of MAP Il and s sap;r = 0 fort < 120 andtpy;aprr = t—120 for

t > 120, and~; and~; are the parameters for the seasonal component modelled
by the Fourier terms. The formulation of the mean model thus enables the trend to
change at 1996 and 2000 when MAP | and MAP Il were implemented, cigply.

Note that the parametefs and 33 do not depend on the sampling location. This
enables inference on a regional scale, but this restrictive model assnmuust

be assessed by using diagnostics on the fitted model.

To estimate the marginal model, we need to identify the conditional structure that
induces the marginal model of interest. Let us first rewrite the marginalrlinea
predictor as;;' = x;3™. In the case study, the probit link is used. From Equation
(7.24) we know that the functior;; that connects the marginal model part to

the conditional model part then becomaxs; = (/1 + S2x;3™ (Griswold and

Zeger, 2004). From the model formulation (7.17)-(7.22) it can be dsditiat the
following GLMM has to be implemented to obtain the posterior distributions of
the parameter8™ of the marginal model,

E (yit|xit, Sit) = iy (7.29)

Yit| Sit, Tt ~ Bernoulli(us,) (7.30)
vy = (\/rsi)wuﬁm + Sit (7.31)
viy = 9(15) (7.32)

Sy ~MVN(0,Zsg, ). (7.33)

This GLMM was implemented in the JAGS software. Uniform priors were used
for all parameters. Their supports are given in Table 7.1. The spditficaf the

prior distributions on the parameters of the mean model enables the contribution
of each term in the mean model to be in the intefvas, 8] on the probit scale.

Two parallel chains were used in the MCMC. In the first chain the parameter

the mean model and the latent variable were set 0, the spatio-tempetand B

were set 0.5 and the varianoe%ii were set 1. The second chain was initialised

by (1) setting the parameters of the mean model at the estimates obtained by a
GLM-fit, (2) using the values obtained in the case study of Chapter 6 to initialise
the values of latent variable and the spatio-temporal dependence sructur

30000 iterations were used as burn in and another 120000 iterationsusexte
to approximate the posterior distributions of the parameters. Diagnostic plots to
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Table 7.1: Support of the uniform priors on the model parameters

Parameter Supports
Oéi’S [—8, 8]

By [—0.05,0.05]
B2 [—0.08, 0.08]
B3 [—0.16,0.16]
71 andy, (-8, 8]
Precisions /o7 ;; [0.005, 1]
Spatial parameters iA [—0.99,0.99]

Temporal parameters in matrB  [—0.99, 0.99]

assess the model quality and plots to assess the convergence of the M@MC a
rithm can be found in the Appendix of this chapter. For all parameters haihs
are shown to be clearly overlapping. The GR-statistic was used to chestkevh
both chains had converged. The point estimates and the 97.5 percentites of
test statistics are given in Table 7.2, which shows that they are all closeTtusl.
indicates that both chains converged (Gelman, 1996).

Summary statistics for all parameters in the model are given in Table 7.3. For
each parameter a 95% credibility interval is given. There is strong ewadiEmc

an effect if zero is not included in the credibility interval. Note that there is no
much evidence in favour of temporal correlation (paramefigisand that there

is a strong evidence in favour of a positive spatial correlation betweaplsa
locations in the main river (parametets). The evolution of the marginal mean

of the violation probability and corresponding 95% credibility intervals aoevsh

in Figure 7.3. The plot indicates a seasonal pattern and it also seems that the
probability of violation is decreasing in the most recent years. Since tédity
intervals of the parameterg and~, are above zero, these parameters are very
likely to be positive. The contribution of the seasonal effeetfas represented in
Figure 7.4. The plot is obtained by using the posterior means of the paramgter
and~,. The contribution of the seasonal effect is positive in winter and negativ
summer indicating that there is a higher probability of violation during the winter
period. This could be expected because the run-off of the soluble ngtgfgcally
much higher during the wet winter period.

To infer on the effect of both MAP's, the 95% credibility intervalsbfandss have
to be assessed, they dre0.03,0.01] and [-0.06, —0.004], respectively. Hence,
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Table 7.2: GR-statistics of the parameters

Parameter Pointest. 97.5% quantile

o1 1.02 1.09
1% 1.00 1.00
o3 1.00 1.00
oy 1.00 1.00
oy 1.00 1.00
5 1.02 1.09
Bo 1.02 1.03
B3 1.02 1.06
" 1.00 1.02
Yo 1.01 1.07
b11 1.01 1.03
baa 1.00 1.01
b33 1.00 1.02
by 1.00 1.01
bss 1.00 1.03
a1 1.02 1.08
a42 1.04 1.12
a43 1.00 1.00
asq 1.01 1.02
Oyl 1.05 1.13
0'77722 1.16 1.37
Op33 1.07 1.13
Oy 1.01 1.02
.55 1.00 1.00
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Table 7.3: Posterior means and 95% credibility intervals of the parameters
Parameter Estimate 2.5% percentile 97.5% percentile

%) —0.28 —0.76 -0.23
o —0.20 —0.40 —0.01
%) —-0.14 —-0.35 0.07

a0 -0.02 ~0.24 0.20

) 0.46 0.13 0.80
51 0.003 -0.01 0.01

B2 —0.007 —0.03 0.01

B3 —0.032 —0.06 —0.004
Y1 0.67 0.44 0.90
Y 0.53 0.30 0.75
b1 0.13 —0.28 0.48

bas 0.08 -0.13 0.29

b33 0.38 —0.06 0.68

by 0.02 -0.22 0.24

bss 0.10 —0.29 0.35

a1 0.79 0.41 0.98
a42 0.82 0.50 0.98
a43 0.46 -0.13 0.95

as4 0.86 0.61 0.99
oyl 5.68 3.19 1.44
0'71’22 1.44 1.01 2.8
.33 1.49 1.01 3.27
. 1.43 1.01 2.44
0.5 1.22 1.01 1.86

only very little evidence is supporting a trend change due to the introduction of
MAPI while we may conclude that there is much evidence in favour of a trend
change after the introduction of MAPII. The point estimateggfindicates that

the magnitude of the trend decreases after the introduction of MAPIl.derdo

infer on size of the trend after the introduction of MAPII, a credibility intéhe

sum of 3; 4+ B2 + B3 is needed. The posterior mean of this sum is -0.037 and the
corresponding credibility interval is [-0.057,-0.017]. Hence after thechiction

of MAPII, a decreasing trend in the violation probability is established.
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Figure 7.3: Evolution of the violation frequency of the nitrate standard & frig
N/l at five sampling locations of the river Yzer. The black line indicates
the posterior mean probability to violate the standard, and the grey lines
are the 95% credibility bands

7.5 Conclusions

In this chapter an extension of the spatio-temporal model for river morgt ot
works is proposed for non-normal data. In particular, Bernoulli disted obser-
vations originating from transforming the data using an environmental tbicsh
were considered. This approach can be further adapted as long @ntigonal
distribution of the data is a member of the exponential family, by using the appro-
priate link function. The spatial dependence structure was restrictednoctuse

that was induced by river topology. The temporal dependence steustas as-
sumed to be an AR(1) process. The temporal dependence can besektewdrds

an AR(p), process including the states at earlier time instants in Equation (7.8)
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Figure 7.4: Contribution of the seasonal effectfp obtained by using the poste-
rior means of the distributions ef, and~,

We think that our approach is also well suited to deal with water quality vagable
that consists of a large fraction of censored data. To reduce the lo¥siwhation

due to the transformation into a binary response, the resolution could hedefi
by introducing a transformation of the continuous variable into a multinomial re-
sponse.

The methodology was illustrated on a small case study on the river YzeiuBelg

It consists of an assessment of the probability to violate the nitrate stanfdbtBo
mg N/I. In the study region a strong seasonal pattern was present in thgoriola
probability. This probability was larger during the wet winter period than in the
dry summer period. There is strong evidence in favour of a trend chahgé is
associated with the introduction of the second manure action plan. In pasteula
decreasing trend in the probability to violate the standard is established indye stu
region after the introduction of the second manure action plan in 2000.eTher
is also much evidence in favour of the presence of a positive spatialaton
between subsequent sampling locations in the main river. However, a t@mpor
dependence was not likely to be strong.

192



7.6 Appendix

7.6 Appendix

In Figure 7.5 diagnostic plots are given for the residugls= y;; — 15, obtained us-

ing MCMC. In the Bayesian framework, the residuals have a continuosiepor
distribution and they can give information about outliers (Albert and CHaB5).

If the posterior distribution of:;; is in conflict with the observed value gf;, then

the posterior distribution of;; will be concentrated towards extreme values (Albert
and Chib, 1995). For Bernoulli distributed data, the support,af in the interval

lyir — 1, yi]. Hence, an observatiap, = 0 is unusual if the posterior distribution

of r;; is located close the value -1, and an observagipn= 1 is considered as an
outlier if the posterior of-; is concentrated towards the endpoint 1. On each time
instant, the residual distribution is represented using boxplots. The bmosf
boxplots start close to zero. Some boxplots are entirely shifted to the etslpoin
This indicates that there may be outliers present. In particular some outlgms se
to be present in the middle of the time series for sampling locations S4 and at the
end of the time series for S3. This can indicate that a mean model which canside
a separate trend in S3 and/or S4 could be more appropriate.

In Figure 7.6-7.15 the evolution of the two MCMC chains are given for the pa
rameters of the mean model. In all figures the chains are overlapping,tindica
that they converged. Along with the evolution of the MCMC chains a plot of the
posterior distribution of the parameter is given as well.
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Figure 7.5: Diagnostic plots from the residuals
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Chapter 8

Discussion, conclusions and future
research perspectives

Our research was initially triggered by the Flemish environmental agency{\M
Back in 2000 they introduced us to the large amount of data they collectagythro
their monitoring networks. At that time the VMM'’s data validation procedure was
entirely based on human experts. Due to the large amount of data a clelar nee
was felt for an automated procedure to assist the experts with this validatien p
cess. Since the development of water quality monitoring networks is one of the
key actions of the Water Framework Directive (WFD)(EC, 2000), ddidaton is
clearly a problem that involves all European water authorities. After ploeatory
analysis it quickly became clear that the considerable amount of missingltata,
irregular sampling frequency and the nonlinear patterns and relationsfgipsnt

in the water quality variables required flexible models that are too a largetexten
driven by the data. Within this perspective, additive models were explovile
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examining the literature in context of the data validation problem, a second re-
search opportunity became clear. At that time, the assessment of wattr data

was mainly performed at the level of individual sampling locations and felaoad
methods existed to infer on the water quality on a more regional scale. Houreve
order to reach the goals of the WFD, environmental agencies need sthtstisa

to infer on the evolution of the water status on a larger spatial scale. Dheref
spatio-temporal models for river networks have to be developed. Tthevdbda-

tion problem and spatio-temporal modelling became the two major themes of this
dissertation and the conclusions will be structured accordingly. In Se8tiothe
conclusions and perspectives on the validation procedure are gitde,Section

8.2 deals with spatio-temporal modelling.

8.1 Statistical data validation

Quality assurance is specifically mentioned as an important activity in the WFD
guidance document on monitoring (EC, 2003; Hgjberg et al., 2007). eHeata
validation is an important activity in order to construct high quality environmenta
databases. In the next section our contribution to this problem is given.

8.1.1 Major contributions

In this dissertation a method for the validation of river water quality data is pro-
posed. Based on the historical data an additive model is fitted. The modehis th
used to construct a prediction interval for a future observation. Whemdwv
observation is located within the interval the new observation is declardid™\va
otherwise it should be passed on to an expert for further evaluation.

The additive models were clearly able to catch the cyclic pattern present in the
data, and they could model the nonlinear behaviour and relationships Itypica
associated with river water quality data. As an interesting feature, thevelse
associations between the response and the predictors were foungeot flesown
physical and biochemical relationships. Since the model selection is catrted

at each time step, the models succeed to adapt to changes in the protéisses o
underlying river. The models were also capable to capture most of taé canre-

lation that was present in the monthly observations of the monitoring network.
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8.1 Statistical data validation

Different prediction intervals were considered, analytical PI's (gi&jcentile based
bootstrap intervals (pbPI) and the studentised prediction error baststiap Pl's
(sbPI). The coverages of the 95% sbPI’'s have been shown to be &ettenore
robust than the other intervals. The sbPI's was also shown to be ddequietect
suspicious observations.

When the semi-automatic procedure is applied in practice, it should be used in
an alternating fashion. One by one, each of the monitored variables sbeuld
chosen to be the response that has to be validated, while the remainindegriab
are used as potential predictors. This allows our procedure to detgutisws
observations located at the edges as well as observations laying in tihe aen

the univariate distribution of the validated response variables. In caaplusur
method combines the interesting features of classical multivariate outlier datectio
tools without having to impose linear relationships typically associated with these
methods.

An ICT-tool based on this methodology is currently implemented at the VMM. Itis
used to validate all incoming measurements of their physico-chemical monitoring
network on a day-to-day basis.

8.1.2 Future perspectives

For river monitoring networks that are sampled at a higher frequencynethod

will no longer deal correctly with the serial correlation that is present irdtite.

The presented validation procedure should be adapted so as to afmraerially
correlated observations. One could try to model the serial correlatidicidyp

e.g. by including AR terms in the additive model. Another possibility is the use
of moving block bootstrap techniques to resample the time series by the use of
independent blocks that capture the real-world dependence striiBrumaback

et al., 2000). A challenge to both methods is that they should be adapte@ befo
they are able to work with missing observations and observations thatcrieext

at irregular time steps. The selection of the smoothing parameters by the use of
traditional techniques such as cross validation are also known to be imatiden

the presence of correlated errors (e.g. Hart, 1991). There is thigschdllenge
related to the development of automatic validation procedures for envirdamen
data obtained at higher, possibly irregular frequencies.

Another interesting problem that was not addressed in this study is thenpeesf
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censored observations. In environmental time series, censored/aiiwmes often
occur due to the detection limits of the measuring methods. An additional problem
is that these detection limits change over time due to technical improvements, the
use of other protocols and/or the agencies that are contracting otheatlaiies

for the analysis of their samples. Further research is needed to enallatthe
validation procedure to deal with censored observations in a proper way

8.1.3 Conclusion from the case study

Our method was applied to the raw data of the Yzer basin. It detected wtedfe

high nitrate concentrations in the beginning of 2004. The diagnostic plotaénat
constructed indicated that the rejection of the nitrate data was related to tte tren
After consulting the literature, this event could be explained by a dry summer in
2003 that was followed by an extremely wet period during the first montBe@4.
During the dry summer and the autumn large amounts of nitrate had accumulated
in the soils and the nitrate was washed to the receiving water during thegsiginge
extremely wet winter period.

8.2 Spatio-temporal models for river networks

To infer on the water status on a more spatial scale, spatio-temporal models are
needed. Recently, river network modelling has entered the spatio-telnapena
(Gardner et al., 2003; Monestiez et al., 2005; Cressie et al., 2006id4&fret al.,
2006). With respect to the spatial dependence structure an importanttitistinas

to be made with the classical spatial structures. Due to the directional water flo
within the river reaches, a causal interpretation can be given to thelaons.
However, in contrast to time, rivers can join or split. This implies a more génera
branched unidirectional structure.

8.2.1 Major contributions

The few existing contributions in literature focus on spatial prediction onet ri
network. We do not aim to perform predictions at intermediate locations that a
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not sampled. We want to perform an assessment at the sampling locations, f
which we also have to take the spatio-temporal dependence structuredntmac

to assure valid statistical inference. From this perspective, we prd@ospatio-
temporal state-space model for river monitoring networks where the sgagian-
dence structure of the state variable is directly deduced from the riveliogpp and

the temporal dependence structure is modelled by an AR(1) processtatégari-
able is embedded into an observation model that contains a model for the ntean a
accounts for cross-correlation between sampling locations that are@noected
according to the river architecture. A marginal mean model is used to atisave
research questions. The methodology is shown to be very flexible anddatg

to the specification of the mean model, an assessment is possible on the level of
individual sampling locations as well as on a more regional scale.

We proposed an expectation-conditional-maximisation (ECM) algorithm for the
parameter estimation of spatio-temporal models with a parametric mean model. It
makes use of the Kalman filter and smoother recursions, and uses geudedist
squares for the estimation of the parameters of the mean model.

To assess nonlinear trends, the parametric mean model was replaceay a s
parametric model. The estimation procedure however had to be adjusted to limit
the computational burden. Therefore ordinary least squares wpega to esti-
mate the mean model. This also provides unbiased estimators for the pararheters o
the mean model. However, the reduction of the computational complexity does no
come for free: the estimators are asymptotically less efficient. The residaals f

the OLS fit are subsequently used for the estimation of the dependenciiisru
Only some minor adjustments were needed to use the ECM algorithm that was
obtained for fully parametric models. In contrast with existing methodologies fo
(non)linear trend detection, our procedure takes the spatio-temporahdiepce
explicitly into account. Moreover, our method enables the detection of tremds

a more local time scale. To verify at which time instants the nonlinear trend is
significant, tests on its first derivative are performed at each time instigsiCal
methods for multiple hypothesis testing were too conservative becauseatisytc
incorporate the specific dependence between the tests. We have atthephesk
step-down resampling method Westfall and Young (1993) and sampleafiamp-
propriate null distribution to take the dependences between the statisticahtests
account. This procedure explicitly takes the dependences between tibtcsia
tests into account.

Finally, an extension is proposed to deal with non-normal data. Margidaise-
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eralised linear mixed models were used to incorporate the dependendearstruc
and to enable inference on the marginal mean. The method is derived in detail
for binary data. The binary response was obtained by transformingotitena-

ous data using the environmental threshold. According to us the transionma

of the water quality data into binary data seems to be particularly suited to deal
with water quality variables that consist of a large fraction of censoréa dde
spatial dependence structure was restricted to the structure that waesedruzuthe

river topology and the temporal dependence structure was assumedricNBi{1)
process.

8.2.2 Future perspectives

Spatio-temporal modelling in rivers is still in its initial stage. Hence, a lot of unex
plored opportunities are waiting to be tackled by researchers. The gavefd of
more realistic correlation structures is one of the topics which should be st
Some interesting issues are

e When rivers enter tidal areas, the spatial dependence will becomecbidire
tional.

e In our model, the temporal correlation structure is restricted to an AR(1)
process. For water quality data sampled at time intervals of one month,
this seemed to be the right model. For higher sampling frequencies more
complex temporal structures will be needed. The methodology, howewer, ¢
be easily extended to use more general ARMA structures. Harvey 1989
for instance, showed how AR(p) processes can be handled by the KKalma
filter. In case of an AR(2) process the state variagyje= (S, ..., Syt)? has
to be replaced by a vectdSyy, ..., Spt, S1t—1, - .., Spt,l)T. This leads to a
reformulation of the observation model and the Kalman filter equations.

e The spatial variance-covariance matrix of the observation madelnables
cross-correlations between sampling locations that were not connected b
the river. In this work we used a saturated parameterisatiodforHow-
ever, for large monitoring networks too many parameters are involved and
to reduce the complexit¥. should be further parameterised. Due to the
estimation orthogonality in the first CM step, this will only alter the update
Equation (5.35).
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The presented ECM algorithm cannot handle missing data. Therefore &xien-
sions of the ECM are needed. Both the ECM algorithm and the Kalman filter are
in principle well suited to deal with missing data. In particular, the E-step of the
EM algorithm should be modified to provide sufficient statistics for both thetaten
variable as for the missing observations.

A big challenge is the development of methods to deal with non-normal data that
are acquired on a river network. We have given a first impulse on havead bi-

nary data. To reduce the loss of information due to the transformation intagybin
response, the resolution could be refined by introducing a transformatithe
continuous variable into a multinomial response. For other types of nanator
data, the approach can be further adapted as long as the condition@uticatr

of the data is a member of the exponential family. By using an appropriate link
function and an appropriate mapping function between the marginal madi¢ien
conditional model, an appropriate generalised linear mixed model can tine-for
lated for the estimation of the parameters of the marginal mean model. The use of
more realistic correlation structures is also an issue that should be asttine$isis
setting.

8.2.3 Conclusions on the study region

The methodology was applied on a case study at five sampling locations of the
river Yzer. The augmented data had to be used because our estimatinthalgo

are currently not designed to deal with missing data. In the sampling periiost, a
manure action plan (MAP) was introduced in 1996 (Vlaams Parlement, 18€5) a

a second and more restrictive MAP was established in 2000 (Vlaams PatJemen
1999). Both MAP’s aim to reduce the nutrient pollution originating from agric
tural activities (Vlaams Parlement, 1995, 1999). Depending on the formulatio

the mean model inference is possible on a regional scale, on the levelvefra r
reach or on the level of individual sampling locations.

In a first case study the annual average of the nitrate concentratiof3i28hown
to be very significantly lower than the general mean(0.01). Moreover, in the
main river, the mean nitrate concentration of 2003 was also significantly tbaer
the mean of 2001 and 2002 € 0.03).

In the second case study, the spatio-temporal model was used to estimae a no
linear trend. A significant decrease in the nitrate concentration is establishe
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the study region between the introduction of the first MAP and the second MA
(a = 0.05). The trend remains significant until January 2002.

Finally an assessment was done on the violation frequency of the nitratlastan
of 11.3 mg N/I. In the study region a strong seasonal pattern was prest in
violation probability. The probability to violate the standard was larger duriag th
wet winter period than in the dry summer period. There was also strongeéde
in favour of a trend change after the introduction of the second mantios atan.

In particular, a decreasing trend in the probability to violate the standarteistdd

in the study region after the introduction of MAPII.

Although the data analysis has no causal interpretation, the results otthstod-
ies give a strong indication that the introduction of the manure action plana had
beneficial effect on the nitrate status in the study region.
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Summary

The European Water Framework Directive (WFD)(EC, 2000) is oneenfitiving
forces in environmental policy in the European Union. The WFD’s overali-
ronmental objective is the achievement of ‘good status’ for all of Eusapeface-

and ground waters within a 15-year period. Its implementation is a big challenge
for the European environmental managers. One of the key actions of FeisV

the design of operational monitoring programmes. Thus, large amountst@f wa
quality data are being collected, processed and stored throughouieE uboie to

the large amount of the data and their complex nature, statistical modelling has
become an essential tool to extract reliable information from these oliseisia
Because high quality data is essential for an adequate management ofténe wa
resources, data validation procedures are required to build condilstttases.
Once the environmental agencies have a consistent database at thesalitpe

data should be used to assess the evolution of the water status and to ehauate
impact of their management strategies. Such an assessment shouldibke @dss
the level of individual sampling locations as well as on a more regional.SDake

to the spatio-temporal dependence structure of monitoring network dattig-sp
temporal models are needed for a correct statistical assessment. éranai-
toring networks the development of spatio-temporal models has just bddum.
data validation problem and the development of spatio-temporal modelséor ri
network data are the two major themes of this dissertation.

In the first part the data validation problem is addressed. Like otheroemagn-

tal data, water quality data have a complex nature. They contain a cofsalera
amount of noise due to their natural variability and the measurement etney T
may contain missing values, are often non-normally distributed and are commonly
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gathered at irregular time instants. Moreover, they possess cyclic vasatil
contain nonlinear trends. With this respect, additive models are exploreddel mo
water quality data. These models are then used to design an automatic validation
procedure for new observations that are acquired with a river monitogtwork.
Based on historical data, additive models are fitted to predict new obismvand

to construct prediction intervals (PI's). A new observation is declaadidi ¥f it

is located within the interval. Several methods were developed to derihePsisc

and the Pl that was based on bootstrapping studentised predictiorvesiosiown

to be most accurate and most robust to deviations from normality. Theagmvef
these prediction intervals and their power to detect anomalous data aessiudly
established in a simulation study. The method is illustrated on two case studies in
which the method detected abnormal nitrate concentrations in the water kody pr
voked by a dry summer which was followed by an extremely wet winter period.
Currently, the Flemish environmental agency is also using our method foalihe v
dation of new observations from their physico-chemical monitoring network

In the second part a spatio-temporal model is developed for river mmgtoet-

work data. The aim was to enable valid statistical inference based on the data
that is observed at the sampling locations. Therefore the observatitims wion-
itoring network at a certain time instant can be considered as the realisation of
finite-dimensional multivariate random variable with each dimension comgspo

ing to each of thep sampling locations. This enables us to write the model as
a p-dimensional state-space model. The state variable is defined by a Directed
Acyclic Graph (DAG) that is derived from the river network topology. réality

the dependence structure based on the DAG may be obscured by emsiraih
factors such as rainfall and climatological conditions in general. This i tate
account by embedding the state variable into an observation model. Initially, the
observation model was extended with a linear model for the mean. The specifi
tion of the mean model allows the assessment of different research qsestio
efficient expectation-conditional-maximisation (ECM) algorithm is proposed f
parameter estimation, using the Kalman filter and smoother in both E- and CM-
steps. However, many environmental processes are characterigseddnjinear
trend. To allow the estimation of such a nonlinear trend, we replaced thegara

ric mean model by a semiparametric model that used a smoother for the estimation
of the trend component. This procedure also allows to test for trends oalées

time scale. To detect if the local trend is significant, tests on the first demvati

of the nonlinear trend are performed at each time step. This results, éovirev

a large number of simultaneous tests. Multiplicity is thus another problem which
had to be addressed. Many environmental processes are also nesigba To
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handle such data, a generalisation of our spatio-temporal model is nefefiest
attempt is presented that can handle binary data. Environmental compliarfee is
ten based on threshold levels, providing a binary response to the detiakar.

We made use of generalised linear mixed models (GLMM) to model such a binary
response. Again, the spatio-temporal dependence structure is irgtbdyaising

a latent state variable. In a GLMM the parameters of the mean model have a con
ditional interpretation. In an environmental context, however, we wantfép on

the marginal mean. Therefore the marginalised version of the GLMM of étgag
and Zeger (2000) is used. They introduced a mapping function betweeaoth
ditional and marginal model components to identify a conditional model steictur
that allows immediate estimation of the marginal mean parameters.

The spatio-temporal models are applied on a case study of five sampling ihgcatio
of the river Yzer. In the sampling period, a first manure action plan (MA&3
introduced in 1996 (Vlaams Parlement, 1995) and a second and moretirgstric
MAP was established in 2000 (Vlaams Parlement, 1999). Both MAP’s aim to re-
duce the nutrient pollution originating form agricultural activities. Our modgllin
procedure was shown to be very flexible. Depending on the formulatigheof
mean model, inference is possible on a regional scale, on the level @raeach

or on the level of individual sampling locations. In a first case study tmeian
average of the nitrate concentration in 2003 is shown to be very signifidanity

than the general meap « 0.01). Moreover, in the main river, the mean nitrate
concentration of 2003 was also significantly lower than the mean of the two most
recent yearsy( = 0.03). In the second case study, the spatio-temporal model was
used to estimate a nonlinear trend. A significant decrease in the nitrateneonce
tration is established in the study region between the introduction of the firet MA
and the second MARY = 0.05). The trend remains significant until January 2002.
Both case studies indicated a strong seasonal variation with lower nitratsyalu
summer and higher contributions in winter. Finally an assessment was dire of
violation of the nitrate standard of 11.3 mg-N/I. In the study region a strong sea
sonal pattern was present in the violation probability. The probability to vithate
standard was larger during the wet winter period than in the dry summedperio
There was a strong evidence in favour of the presence of a trengeladter the
introduction of the second manure action plan. The trend change waglaggh

to establish a decreasing trend in the violation probability of the standard in the
study region. Although the data analysis has no causal interpretatioesthéesrof

the case studies give a strong indication that the introduction of the martime ac
plans had a beneficial effect on the nitrate status in the study region.
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Samenvatting

De Europese kaderrichtlijn water (KRLW)(EC, 2000) heeft verragaagevolgen
voor het waterbeleid in de Europese lidstaten. De algemene doelstellingevan d
richtlijn is een goede toestand voor opperviaktewater en grondwaterdikdete-

gen eind 2015. De uitbouw van meetnetteBéa van de kernactiviteiten die door
de richtlijn wordt beoogd. Hierdoor worden in Europa grote hoeveelheda-
terkwaliteitsdata bemonsterd en opgeslagen. De grote hoeveelheid \@regeg
en de complexiteit van milieukundige data vereisen het gebruik van modelben vo
een doeltreffende analyse van de waterstatus. Voor de uitbouw vgioednvater-
beleid is het essentieel om te beschikken over data van hoge kwaliteibrbagn
efficiente methoden voor het valideren van de meetgegevens vereist. Uidiszard
nen de gegevens die beschikbaar zijn na de validatie te worden geandlyidet
opvolgen van de evolutie van de waterstatus en het evalueren van dd wapac
de reeds getroffen maatregelen zijn cruciaal voor de verdere uitboweréjning

van een langetermijnvisie met het oog op het behalen van de algemenellilogIste
van de KRLW. Aangezien de KRLW de waterproblematiek integraal behage
stroomgebiedniveau is het wenselijk om de gevens niet enkel op meat@autn

te analyseren maar tevens op een subbekken- en bekkenniveawinidelifke

en temporele afhankelijkheid van de waterkwaliteitsdata vereisen hetilgehru
spatio-temporele statistische modellen voor het uitvoeren van een cottiatte s
tische analyse. Voor riviernetwerken staat de ontwikkeling van dergedipfatio-
temporele modellen nog in de kinderschoenen. Om aan deze noden tegemoed
komen zijn de ontwikkeling van methoden voor datavalidatie en de ontwikkeling
van spatio-temporele modellen voor riviernetwerken de twee kernthemua'dit/
doctoraatsonderzoek.
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Het eerste deel van dit onderzoek spitst zich toe op de ontwikkelingarmsami-
automatische methode voor de validatie van waterkwaliteitsdata. Waterkwaliteits-
data worden gekarakteriseerd door ondermeer een grote variabiliteituragey-
clische variatie, niet-lineare trends en ontbrekende waarnemingenndaaarns

de bemonsteringsfrequentie dikwijls onregelmatig. Dit zorgt ervoor debéiée
modellen zijn vereist. Daarom wordt geopteerd voor het gebruik vaitiedemo-
dellen voor de ontwikkeling van de datavalidatiemethode. Aan de hand J@is-de
torische data worden deze modellen gefit. Vervolgens worden ze gebooikhet
voorspellen van nieuwe metingen en voor het construeren van veimgsihter-
vallen. Wanneer een nieuwe meting in het verwachtingsinterval ligt, worathae
vaard. Als dit niet het geval is, moet ze verder worden onderzamtit @xperten.

Op deze manier kunnen de experten zich toespitsen op de analyse vanemeting
die een potenéile afwijking bevatten. Voor het opstellen van de verwachtingsin-
tervallen worden verschillende methoden gebruikt. De methode waarlijigeb
gemaakt wordt van het bootstrappen van predictiefouten bleek het atmesaat

te zijn. Tevens zijn deze intervallen meer robuust voor afwijkingen vamalor

teit. Uit een simulatiestudie blijken deze intervallen over een hoge kracht te be-
schikken om mogelijke afwijkende observaties te detecteren. De methodé wor
géllustreerd aan de hand van een gevallenstudie waarbij alle nitraatmetingen va
2003 en 2004 worden gevalideerd in het IJzerbekken. De methodaatateier-

bij een grote hoeveelheid afwijkende metingen in het begin van 2004. Uiece

tuur bleek dat deze hoge metingen toe te wijzen zijn aan de droge zomerQ@an 20
die werd gevolgd door een extreem nat voorjaar in 2004. Onze metbodeata-
validatie wordt momenteel gebruikt door de Vlaamse milieumaatschappij (VMM)
voor het valideren van de meetgegevens afkomstig van het fysico-afemeset-

net voor opperviaktewater.

Het tweede deel van dit doctoraatsonderzoek focust zich op de detimigy van
spatio-temporele modellen voor de analyse van riviernetwerken. Hierligma
we gebruik van toestandsmodellen. De afhankelijkheidsstructuur wendodel-
leerd aan de hand van een latent proces. Voor de temporele afhardidiginuc-
tuur wordt een AR(1) proces verondersteld. De spatiale afhankaligsteuctuur
wordt afgeleid van de riviertopologie. Een dergelijke afhankelijkheidssiur is
echter nogal restrictief. Meetpunten die dichtbij elkaar liggen maar niét-rec
streeks verbonden zijn met elkaar door de rivier zullen in de realiteit segen
correleerd zijn. Dit kan bijvoorbeeld door het voorkomen van gelijkigar&li-
matologische condities. Daarom wordt het latent proces opgenomen inbeen
servatiemodel die wel correlatie toelaat tussen meetpunten die niet verboij
door de rivier. In het observatiemodel wordt tevens een lineair modgdragmen
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voor het gemiddelde. Naargelang de specificatie van dit model is hetriogtse
verschillende onderzoeksvragen mogelijk. Naast de ontwikkeling vamabeel,
hebben we tevens een schattingsalgoritme ontwikkeld dat gebruik maakiievan
Kalman filter en smoother. Milieukundige processen worden echter vikakaje
teriseerd door niet-lineaire trends. Om een analyse van dergelijke meogidijk

te maken hebben we het lineaire model voor het gemiddelde vervangeee&too
semi-parametrisch model. Het semi-parametrische model wordt uitgerusemet e
smoother voor het schatten van de trend. Dat maakt tevens een aratykerv
tetermijntrends mogelijk. De analyse bestaat erin om op elk tijdstip na te gaan
of de eerste afgeleide van de niet-lineaire trend significant is. Dat imdlieeler

ter dat een groot aantal testen simultaan moeten worden uitgevoerd. nDaro
een aangepaste methode voor multipliciteitscorrecfimglementeerd. Tenslotte
hebben we een eerste aanzet gegeven voor het uitbreiden van oteéemooor
niet-normale meetgegevens. Hierbij hebben we ons toegespitst op biatare d
Milieukundige reglementeringen maken dikwijls gebruik van normen die niet mo-
gen worden overschreden. De norm zorgt dus voor een binairemstkeoor de
beleidsmaker. Opnieuw wordt een latent proces gebruikt voor de modglien

de afhankelijkheidsstructuur. Aan de hand van veralgemeende lineanengee
modellen (GLMM) hebben we de binaire uitkomstvariable gemodelleerd. De pa-
rameters van een GLMM hebben echter een conditionele betekenis. &e dev
verandering weer, gegeven een bepaalde waarde voor het lateasptn milieu-
kundige toepassingen is het echter interessanter om gebruik te makeargina-

le modellen. Daarom hebben we gebruik gemaakt van de modelstructuwratie d
Heagerty and Zeger (2000) werdigeoduceerd. Aan de hand van het verband
tussen conditionele en marginale modellen, kan een specifieke GLMM structuu
worden gédentificeerd die het toelaat om de parameters van het marginaal model
rechtstreeks te schatten.

De spatio-temporele aanpak wordtilgestreerd aan de hand van drie gevallen-
studies waarin 5 meetpunten van het IJzerbekken worden beschadijdehs de
bemonsteringsperiode werden mestactieplan | (MAPI)(Vlaams Parleméd§) 19
en mestactieplan Il (MAPII)(Vlaams Parlement, 1999) van kracht. MARdwe
geintroduceerd op 1 januari 1996, en MAPII op 1 januari 2000. In deappor-
ten maakt de VMM gebruik van jaarlijkse gemiddelden. In dit kader wortlt he
spatio-temporeel model gebruikt om het nitraatgemiddelde van 2003 irtthet s
diegebied te vergelijken met het algemene gemiddelde en de gemiddeldes van de
meest recente jaren. In een eerste gevallenstudie wordt aangetadmed digraat-
gemiddelde in het studiegebied in 2003 heel significant lager is dan hetetge
gemiddelde van de volledige bemonsteringsperigde (0.01). Tevens blijkt het
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nitraatgehalte in de 4 meetpunten van de 1Jzer gemiddeld significant lager te zijn
dan het gemiddelde van de metingen in 2002 en 2p0% (0.03). In een tweede
gevallenstudie wordt de detectie van een niet-lineaire trend in het studiddes
oogd. Uit de analyse blijkt zich een significant dalende trend voor te tobet
nitraatgehalte tussen september 1999 en januari 2062 (.05). De daling start
dus tussen het invoeren van het mestactieplan van 1996 (MAPI) en bttatie-
plan van 2000 (MAPII). In de laatste studie wordt nagegaan of beid®®$l8en
trendbreuk teweeg brachten in de kans op de overschrijding van datndren.
Het model detecteert een trendbreuk na de implementatie van MAPII. Bieven
blijkt de trendbreuk voldoende groot te zijn om een daling te veroorzakele
kans dat de nitraatnorm wordt overschreden. De drie gevallenstgeies een
sterke indicatie dat de introductie van de mestactieplannen een gunstichefiic
op de nitraatstatus in het studiegebied.
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sources and Utilities and in Care of the Environment 2003 (SpruceVitid Lu
Sweden, June 15-19, 2003.

2. Clement, L., Thas, O., Vanrolleghem, P.A. and Ottoy, J.P. (2004) Spatio-
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