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Dankwoord

Over hoe de aanloop naar dit proefschrift een verhaal werd van heel veel spelers.
Over een verhaal dat begon als een sprong van de hak op de tak om uiteindelijk
opnieuw overtuigend te eindigen op de hak. En zoals het verhaal, zo ookde struc-
tuur van dit dankwoord. Het ultieme bewijs dat je alweer gelijk hebt, Olivier.Ik
denk aan te veel tergelijkertijd en wil dan al die spinsels wanhopig inéén zin neer-
schrijven.

De aanloop naar de hak
Onderzoekertje spelen zat er bij mij steeds in.
Tot groot jolijt, en af en toe tot grote ergernis,
heb ik mijn omgeving
al van in mijn vroege jeugd
met vragen gebombardeerd.

Deze drang naar kennis
werd het eerst gekanaliseerd
door Antoon Verelst.
In het secundair legde hij mijn fundamenten
in de wetenschappen.

Op de unief
vond ik in LabMET mijn tweede mentor.
Bij prof. Verstraete en prof. Top
leerde ik hoe intrigerend en creatief
wetenschappelijk onderzoek kan zijn.
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2000: De hak
Een verhaal dat startte met de VMM.
Bedankt voor het aanbrengen van de problematiek,
de financiering en de data.
Statistiek werd zo mijn doel
en daar belandde ik dan als groentje
op BIOMATH. Al snel maakte ik kennis
met het enthousiasme en de mens
achter prof. Peter Vanrolleghem.

Mijn priv é was toeńeén grote puinhoop
en dat had Peter al snel in het oog.
Hij gaf me in die eerste weken de ruimte
om mijn leven ook buiten de universiteit
weer op de rails te zetten.
Het resultaat van die turbulente weken mag er wezen.
Fien en ik vonden toen elkaar.
Twee werd drie dus samen vijf.

2000-2001: Tussen hak en tak
In mijn eerste maanden
had ik af en toe heimwee
naar het werken in een labo.
Samen met Peters onstuitbare enthousiasme
vertaalde dat zich in de aanvraag van een beurs.

Prof. Olivier Thas,
toen nog mijn inspirerende bureaugenoot,
wijdde me ondertussen in
in de beginselen van de statistiek.
Hoe verder het jaar vorderde,
hoe meer plezier ik kreeg
in het statistische spel van analyses.

En die besmetting van de statistiekmicrobe
veranderde ook stilaan mijn wereldbeeld.
Gedaan met het denken in zwart-wit,
bij elke uitspraak komt sindsdien
die onvermijdelijke nuance.
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2001: Op de tak
Met spijt in het hart
nam ik in oktober 2001
afscheid van de statistiek.

Een nieuwe uitdaging lag te wachten:
Een BOF-mandaat bij prof. Vanrolleghem en prof. Sorgeloos.
Maar de rotiferen hadden het niet op mij begrepen.
Ze gingen dood nog voor ik me vertoonde.

2003: En nu voorgoed op de hak
In 2003 werd ik assistent.
En daar lonkte het statistische beestje weer.

Opnieuw werd het een oefening tussen twee promotoren.
Prof. Peter Vanrolleghem van BIOMATH
en Prof. Olivier Thas van BIOSTAT.
Bedankt voor de kennis, de vrijheid, het plezier en alle kansen.
Als ik terugblik op mijn doctoraatsperiode,
is het eigenlijk een uit de hand gelopen hobby geworden.

Peter,
terug kon ik bij jou terecht,
nu voor de link met de praktijk.

Olivier,
mijn mentor in de statistiek,
bedankt voor je talloze ideeën,
de vele boeiende en verhelderende gesprekken,
je gevoel voor humor,
en af toe de nodige portie hilariteit.
Onze zoektocht in Southampton
en onze dolle vijfdaagse in Pamplona
zal ik niet zo snel vergeten.
Ik kijk alvast uit naar onze nieuwe episode.
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De sociale ‘glue’ op de vakgroep
De eerste jaren was ik nogal dikwijls op de ‘move’.
Heel wat bureaus heb ik toen versleten.
Memorabel waren de momenten
tijdens mijn verblijf bij Ellen, Heidi en Olivier.

Daarna stockeerde Peter me maandenlang
met Veronique, een hub en tussen stapels dozen
in de ‘cartonage’ van Mie.
Dat werd werken, lachen en af en toe
op ontdekkingstocht tussen al die relikwieën.

De beruchte ‘incubator room’,
daar heb ik ook gezeten.
Gehersenspoeld door Guru Gazza
kon ik weer op doortocht,
maar nu als volleerde linux-nerd.

Een tussendoortje met de ‘Klis’
‘Yu’, ‘Yu’, ‘Yu’
Chinese vis, dat is niet mis.

Ten gepaste tijden,
gezever en gezwets,
het spastische ontstressen.
Bram en mijn nieuwe buren Peter P. en Petra,
die moesten het nu ontgelden.

Het P-team met zijn fuiven, zijn weekends, cocktails, ...
Ester die me redde met de TEX-templates.
Ellen en Heidi met hun kunst- en vliegwerk op diverse vlakken.
En zo kan ik uren doorgaan.

Kortom iedereen
van secretariaat,
KERMIT,
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hebben zeker de kiem gelegd
voor het voltooien van dit werk.

Frie en Dirk,
Pieter en Melanie,
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Chapter 1

Introduction

1.1 Setting

The European Water Framework Directive (WFD)(EC, 2000) is one of the driving
forces in environmental policy in the European Union (EU). The WFD’s overall
environmental objective is the achievement of a ‘good status’ for all of Europe’s
surface- and ground waters within a 15-year period. Its implementation is a big
challenge for the European environmental managers. The WFD triggeredthe wa-
ter authorities to design monitoring programmes. Thus, large amounts of environ-
mental data are being collected, processed and stored throughout Europe. They are
for instance needed for a coherent and comprehensive overview ofthe water status,
to identify pressures on water systems, as a warning system for detecting negative
changes in the water quality and to detect trends. Like other environmental data,
water quality data have a complex nature. They contain a considerable amount of
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Chapter 1. Introduction

noise, due to their natural variability and the measurement error. They often con-
tain missing values, are often censored due to the detection limits of the measuring
methods, and are commonly gathered on irregular time intervals. They also may be
mutually dependent, non-normally distributed, possess cyclic variations andshow
nonlinear trends (e.g. Hirsch et al., 1982, Van Belle and Hughes, 1984,Cai and
Tiwari, 2000 and McMullan, 2004).

Due to the large amount of data and their complex nature, modelling has become an
essential tool to extract information from these observations. Within the research
community, monitoring and modelling have now become generally accepted to be
interlinked activities (e.g. Parr et al., 2003; Højberg et al., 2007). From this per-
spective, models can be used for a number of different purposes. For instance, they
can be useful to assure data quality, for inter- and extrapolation in time and space,
to increase the conceptual understanding of the underlying processes, to evaluate
the impact of (future) management strategies, to assess the effect of anthropogenic
activities and to design monitoring programmes (Højberg et al., 2007).

High quality data is essential for an adequate management of the water resources.
Therefore, quality assurance is specifically mentioned as an important activity in
the WFD guidance document on monitoring (EC, 2003; Højberg et al., 2007). Thus
before the data can be used in an assessment, they have to be validated. Errors
might be introduced during the analysis in the laboratory, wrong calibration of the
equipment or while entering the data. It is, however, also possible that thereis a
change in the system that causes changes in the water quality. The purpose of the
validation procedure is thus twofold: it should act as a tool to provide a quality
check and as a warning system to detect negative changes. The large amount of
water quality data and its complex nature, however, make it difficult for the envi-
ronmental agencies to validate all incoming data. An ICT tool could be of great
help to assist experts with the maintenance of monitoring databases compelled by
the WFD. Such a tool should be able to deal with the complex nature of the water
quality data and it also should be adaptive because the environmental system is
likely to change, e.g. due to more stringent environmental legislation.

Once the environmental agencies have a consistent database at their disposal, the
data should be used to assess the evolution of the water status and to evaluatethe
impact of their management strategies. Such an assessment should be possible at
the level of individual sampling locations as well as on a more regional scale. Many
classical statistical techniques cannot be used for these purposes because data orig-
inating from environmental monitoring networks are clearly not independent. They
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1.2 Introduction to the data used in this study

are sampled from a dynamic process that evolves over space and time. Therefore,
the methodology should incorporate this spatio-temporal dependence structure in
order to provide valid statistical inference. Until recently, researchersmainly fo-
cussed on the assessment of water quality at the level of the individual sampling
locations. There have been some attempts in the past to provide techniques to per-
form an analysis on a spatial scale, but they used rather ad hoc methods toaccount
for the spatial dependence. Only the last couple of years spatio-temporal models
have been developed to take the specific spatio-temporal dependence structure of
river networks explicitly into account (Gardner et al., 2003; Monestiez et al., 2005;
Cressie et al., 2006; Ver Hoef et al., 2006). But they are all related to spatial pre-
diction in river networks. Our aim, however, is to enable an assessment onthe data
that is observed at the sampling locations. Therefore the observations ofthe mon-
itoring network at a certain time instant can be considered as the realisation ofa
finite-dimensional multivariate random variable with each dimension correspond-
ing to each of thep sampling locations. Here, the spatio-temporal dependence also
has to be taken into account to provide valid statistical inference.

Both the data validation problem and the development of spatio-temporal mod-
els for river networks have become the major themes of this dissertation. Before
we give the outline of this dissertation, we will introduce the data that were used
throughout the work to test and illustrate the developed methodology.

1.2 Introduction to the data used in this study

In the region of Flanders (Belgium), the Flemish Environmental Agency (VMM)
established several monitoring networks. Their physico-chemical monitoring net-
work was established in 1989 and now covers 1425 sampling locations distributed
over the different catchments of Flanders. Each sampling location is evaluated 12
to 26 times a year on a basic spectrum of physico-chemical variables: watertem-
perature, dissolved oxygen (DO), pH, chemical oxygen demand (COD), nitrogen
compounds, phosphorus, chloride and conductivity. All these data arestored in a
database, which is also managed by the VMM. The data can be classified accord-
ing to the catchment it belongs to. One of the catchment area’s is the Yzer basin.
The data of this catchment is considered in this dissertation.

The Yzer is a typical lowland river, located in a polder area. A map of the Yzer
catchment indicating the sampling locations maintained by the VMM is given in

3



Chapter 1. Introduction

Figure 1.1: The Yzer catchment. In the left panel the main river is shown and the
three parts are indicated. In the right panel the entire catchment is given
along with the sampling locations of the VMM (indicated with black
circles)

Figure 1.1. The total area of the catchment is 1101 km2. Its spring and one third
of the catchment is located in France, two thirds are located in Belgium. The
stream length is 76 km and 44 km of it is located in Belgium. At the French border
the river is relatively narrow, between 8 to 10 m. The river gets graduallywider
to reach a width of 20 to 25 m near to its mouth at Nieuwpoort, Belgium. The
river enters the North Sea by a complex of sluices. In Belgium, the river can be
subdivided in 3 major parts. Part I is an area where the river is more or less in
its original state. In part II, the river is straightened and has marshes to itsright
side. In part III, the river has artificial dammed banks (De Rycke et al.,2001).
The Yzer is used for the production of potable water, so that the water should meet
the standards for this production. However, the river is subject to eutrophication
due to the high nitrate and phosphate concentrations originating from intensive
agricultural activity. Besides the agricultural pollution, other sources are from an
industrial origin and from untreated sewage discharged by households.

In most chapters we will illustrate our methods on five sampling locations where a
considerable amount of data is available. The five sampling locations are located
along two joining river reaches.
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1.2 Introduction to the data used in this study

S1 S2

S3

S5S4

Figure 1.2: Top Left: Network topology of the sampling locations. Bottom Left:
Map of the river reaches considered in this case study. Locations S1,
S2, S4 and S5 are located on the Yzer river while location S3 is lo-
cated on a joining creek. Right: Map of the part of the Yzer catchment
located in Flanders, Belgium. The area considered in this study is indi-
cated with the ellipse and the five sampling locations are indicated with
black dots

Sampling locations S1, S2, S4 and S5 are located on the Yzer while sampling loca-
tion S3 is located on a joining creek. Their river network topology and locations in
the catchment are shown in Figure 1.2. Monthly observations are available between
January 1990 and August 2004.

1.2.1 Data exploration

The nitrate series at each sampling location is presented in Figure 1.3. From the
measurements it can be seen that a number of observations are missing. Forex-
ample all observations of 1995 are missing at the sampling locations of the main
river, and the observations between January 1996 and November 1997 are missing
at sampling location S3. To enable the use of methods that cannot handle missing
data, the nitrate series was augmented with simulated data. To simulate the missing
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Figure 1.3: Nitrate observations at five sampling locations of the river Yzer. Sam-
pling locations S1, S2, S4, S5 are located on the Yzer river while sam-
pling location S3 is located on a tributary

data an additive model that consists of a trend component and a seasonaleffect is
used. An introduction to additive models can be found in Chapter 2. Simulated ob-
servationsyst are generated by using the prediction of the additive modelŷt and by
adding a random residualê∗t to it, yst = ŷt+ ê∗t . The augmented dataset is presented
in Figure 1.4. When this augmented dataset is used, we ignore that missing data
was present and we act as if all the data from the augmented dataset was observed.

An interesting method for a first examination of the water quality is the use of the
loess scatterplot smoother (Cleveland and Grosse, 1991; McMullan, 2004). The
loess smoother is based on local polynomial regression and a more detailed de-
scription can be found in Section 2.2.3. Cleveland et al. (1990) developeda loess
based method to decompose the data into a seasonal (S), a trend (T ) and a residual
(R) component. They referred to it as the STL procedure. Suppose that the re-
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Figure 1.4: Nitrate observations at five sampling locations of the river Yzer. Sam-
pling locations S1, S2, S4, S5 are located on the Yzer river while sam-
pling location S3 is located on a tributary. Open circles: Observed data,
Dots: Augmented data

sponsey = (y1, . . . , yn) consists ofn observations measured at timet = 1, . . . , n
then the STL procedure decomposesy into

y = S + T +R.

This method is implemented in the STL-routine of the tseries package for R (Tra-
pletti, 2004). The STL-method is applied to the data of sampling location S1.
As many standard techniques for time series analysis, the method however cannot
handle missing data. Hence the augmented dataset is used. An STL plot is shown
in Figure 1.5. The seasonal pattern is very obvious, it has an amplitude of 13.7 mg
N/l. The contribution of the seasonal effect is low in summer and high in winter.
This could be expected, during summer the fertilised nitrogen is still in the form of
insoluble ammonium which is converted in the soil by micro-organisms to soluble
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Figure 1.5: STL analysis of the augmented data at sampling location S1

nitrate. The accumulated nitrate is then washed out in the colder and wet winter
period. The trend component indicates an increasing trend in the beginningof the
series, the trend reaches its maximum in 1998 and from there on a decreasing trend
is established that seems to level off at the end of the series. Note that this method is
only explorative. It does not provide formal tests and/or variance estimates on the
estimated seasonal effect and the trend which are needed for inference purposes.

The seasonal effect is also obvious when data from the raw nitrate series are plotted
against the day of year (d, which has support[1, 365]). A common approach to
model the variation is to include sinusoidal functions of fixed periods to describe
the seasonal cycle within a year (e.g. Hirst, 1998; Cai and Tiwari, 2000;McMullan
et al., 2003; McMullan, 2004). Another possibility is to use the loess smootherto
let the data drive the functional relationship between the nitrate measurementsand
the day. A plot of nitrate in function ofd is shown in Figure 1.6. From the raw
data the seasonal effect is estimated with a smoother and with the Fourier basis
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Figure 1.6: Plot of the nitrate data collected at sampling location S1 against the
day of the year (all years are included in the plot). The dashed line
represents the fit with the Fourier basis and the full line represents the
fit with a local linear regression smoother

(γ1 sin(2π d/365) + γ2 cos(2π d/365)), whered is the day of year. The resulting
estimated functions are added to the plot. Both fits clearly indicate the presenceof
the seasonal pattern. Again the contribution is high in winter and low in summer.
The smoother and the Fourier basis are the two methods that will be used in this
dissertation to model the seasonal effect.

Now that the reader is familiar with the data, we will give the outline of this work.

1.3 Objectives and outline

In this dissertation we have two major objectives. On the one hand, we aim to de-
velop of a semi-automatic data validation procedure for water quality data. On the
other hand, we want to develop spatio-temporal models to assess the observations
at the sampling locations of a river network.

A validation tool could be of great help for experts in environmental agencies since
it would enable them to focus on potential suspicious observations instead of hav-
ing to validate all the data. An important feature of a validation tool that is used on
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a day-to-day basis is that it requires a minimum amount of user interaction. The
method should also be able to handle data acquired at irregular time intervals, and
it has to deal with nonlinear relationships and trends present in water qualitydata.
Preferable, the method should also be able to detect observations when their value
is not in agreement with the measured values of the other water quality variables.

Spatio-temporal models for river networks should enable a valid statistical assess-
ment of the water quality. The method should enable statistical inference at the
level of individual sampling locations and on a more regional scale. We will first
develop a fully parametric model. Then we will relax the assumptions to allow the
estimation of nonlinear trends. Finally, we aim to generalise the spatio-temporal
model in order to handle non-normal data that is distributed according to another
member of the exponential family. Remark that the methods in this dissertation are
not designed to perform interpolation at intermediate locations. Thus in this work,
an analysis on a ‘regional’ scale should be interpreted as a simultaneous analysis
at a finite number of sampling locations that are located within the study region.

An schematic overview of our objectives is given below,

1. The development of a statistical data validation procedure for water quality
data that

(a) can handle the nonlinear relationships and trends in water quality data,

(b) can handle data acquired at irregular time intervals,

(c) restricts the amount of user interaction,

(d) enables experts in environmental agencies to focus mainly on potential
suspicious observations,

(e) and detects suspicious observations when their relationship with other
water quality variables is unusual.

2. The development of spatio-temporal models for river monitoring networks
that

(a) enable valid statistical inference at individual sampling locations as
well as at a larger spatial scale,

(b) can be used for the estimation of nonlinear trends,

(c) and can deal with non-Gaussian observations.
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The first issue that will be addressed in this dissertation is the complex natureof
the water quality data that makes the assumption of linearity often too rigid. The
assumption of full parametrical models is easily relaxed by using nonparametric
smoothing techniques. These techniques are much more flexible and can capture
local trends and complex relationships between environmental variables. When
multiple predictor variables are available, these techniques can be easily extended
to surface smoothing (e.g. Cleveland and Devlin, 1988). Buja et al. (1989), how-
ever, showed that there were a number of disadvantages related to multivariate
smoothers. Therefore, they introduced additive models as a nonparametric tool to
model a multivariate regression surface. Instead of combining all predictors in one
multivariate smoother, they have proposed an additive model structure where each
component is a one-dimensional smoother which models the contribution of a par-
ticular predictor. In time-series studies of air pollution and mortality, the use of
nonparametric models is widespread, since they allow for adjustments for nonlin-
ear confounding effects of seasonality, trends, and other environmental conditions
such as meteorological conditions (e.g. Dominici et al., 2002 and Giannitrapani
et al., 2005). Recently, nonparametric modelling has also been consideredfor mod-
elling water quality (e.g. Qian et al., 2000, Cai and Tiwari, 2000, Stålnacke et al.,
1999, McMullan et al., 2003, McMullan, 2004). Within this context, we will ex-
plore additive models inChapter 2 andChapter 3. In both chapters inference is
performed at the level of the individual sampling locations and missing data was
present in all examples.Chapter 2 gives a general introduction to additive models
and inChapter 3 we make use of additive models to design a semi-automatic data
validation procedure. In our approach, additive models are used to extract informa-
tion from the historical data, and the bootstrap is used to incorporate the sampling
variability.

The second part of this dissertation deals with the development of spatio-temporal
models that enable the analysis of water quality data at the level of individualsam-
pling locations as well as on a more regional scale. To our knowledge only afew
references are available on spatio-temporal models for river networks(Gardner
et al., 2003; Monestiez et al., 2005; Cressie et al., 2006; Ver Hoef et al.,2006) and
they are all related to spatial prediction. The focus in this dissertation, however, is
on the assessment of the data that is observed at the sampling locations themselves.
Therefore the observations of the monitoring network at a certain time instantcan
be considered as the realisation of a finite-dimensional multivariate random vari-
able with each dimension corresponding to each of thep sampling locations. This
enables us to write the model as ap-dimensional state-space model. After we have
given a general introduction to state-space models inChapter 4, we will construct
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a model for the spatio-temporal correlation structure of river monitoring networks
in Chapter 5. The river topology is used to derive the spatial dependence structure
and an autoregressive process is proposed for the temporal dependence. To assess
the evolution in water quality, a parametric mean model is used. InChapter 5 we
will also provide an efficient algorithm to estimate the model parameters. However,
many environmental processes are characterised by a nonlinear trend.In Chap-
ter 6 we therefore combine the spatio-temporal correlation structure developedin
Chapter 5 with a semi-parametric mean model. The evaluation of the local trend
can be done by testing whether the first derivative of the nonlinear trendis different
form zero. Because these tests have to be performed at each time instant, multi-
plicity is another problem which has to be addressed in this chapter. InChapters 5
and6 the observations are assumed to be Gaussian. To deal with non-Gaussianob-
servations a generalisation of our spatio-temporal model is presented inChapter
7. In particular a Bernoulli response is considered. Environmental compliance is
often based on threshold levels, providing a binary response to the decision maker.
We will make use of generalised linear mixed models so that binary responsescan
be used to assess trends in the violation frequency of water quality standards.

With Chapter 8 we conclude this dissertation by a discussion of the presented
methodologies, we bring the main conclusion and provide an outlook to future
research perspectives.
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Chapter 2

Review of additive models (AM’s)

2.1 Introduction

In Europe, the design of water quality monitoring networks is one of the key ac-
tions of the Water Framework Directive (WFD)(EC, 2000). This results in ahigh
amount of water data, that is collected, stored and processed in Europe.Like other
environmental data, water quality data have a complex nature. They contain acon-
siderable amount of noise, due to their natural variability and the measurement
error. They may contain missing values, may be censored due to the detection
limits of the measuring methods and are commonly gathered on irregular time in-
stants. They also may be mutually dependent, non-normally distributed, possess
cyclic variations and contain nonlinear trends (e.g. Hirsch et al., 1982; McMullan,
2004).

19
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The large amount of the data together with its complex nature have triggered mod-
elling as an additional tool to extract information for those observations. Within the
research community, monitoring and modelling have become generally acceptedto
be related activities (e.g. Parr et al., 2003; Højberg et al., 2007). In this dissertation,
we will focus on modelling to validate new observations, to identify trends and to
evaluate the impact of actions which were taken to improve the water quality. With
respect to these aims, we will use models from three different perspectives. Firstly,
the models are used to describe the dependence of a water quality variable of inter-
est, the response (or dependent) variable (Y ), on several predictor (or independent)
variables (X1, . . . , Xq). Possible predictors are for instance a trend term, a seasonal
component, a temperature effect and other water quality variables which are mea-
sured simultaneously. This use typically involves estimation of parameters and/or
regression functions. Secondly, the relative contribution of each of thepredictors
in explainingY can be studied and this gives us insight in the evolution/trend of the
response and its relationships with other water quality variables. A third purpose
is prediction, where we want to predict the mean response given a certainset of
valuesX1, . . . , Xq.

We now introduce the modelling framework which we will use for these purposes.
Suppose we haven observations of the responseY sampled at different timest =
1, . . . , n. They are denoted by ann × 1 vectory = (y1, . . . , yn)

T and they are
measured simultaneously with theq predictor vectorsxj = (xj1, . . . , xjn)

T , j =
1, . . . , q. Then a typical water quality datasetD is represented by ann × (q + 1)
matrix D = (x1, . . . ,xq,y). A general framework to model the relationships
between the mean ofY and its predictorsX can be written in the following form,

Y = m(X1, . . . , Xq) + ǫ, (2.1)

wherem is the unknown regression function andǫ is a zero mean random term.
The data-analyst now has to choose a certain structural form to model thecon-
ditional meanm(X1, . . . , Xq). This can be done in a parametric, nonparametric
or semi-parametric way. When a parametric model is used, it is assumed that the
functional form is known and can be completely parameterised. In a nonparametric
regression analysis, however, no functional form is assumed and the regression is
completely data-driven. In a semiparameteric approach, the functional form is not
fully specified and some components are modelled parametrically while others are
modelled in a nonparametric way. A well known example of a fully parametric
model is the standard multiple linear regression model. Because the relationships
between the response and the predictors are assumed to be linear, Equation (2.1)
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2.1 Introduction

can be written as

Y = α + β1X1 + . . . + βqXq + ǫ = α +

q
∑

j=1

βjXj + ǫ, (2.2)

with the parameterα and aq × 1 parameter vectorβ = (β1, . . . , βq)
T . To fit

the model to the data, the parameters have to be tuned so that the fitted values
ŷ = α̂+

∑q
j=1 β̂jxj are in some sense as close as possible to the observed values

y (e.g. by using least squares). The popularity of linear models is largely due to
their simplicity and easy interpretation. However, the model depends on a strong
assumption of linearity between the predictors and the response. Unfortunately,
like other environmental data, trends and relations between water quality datatyp-
ically are nonlinear (e.g. Cai and Tiwari, 2000; Dominici et al., 2002; Woodand
Augustin, 2002; McMullan et al., 2003; McMullan, 2004). Therefore it would be
better to let the data drive the specification of the functional relation betweenthe
predictor variables and the response. This is exactly what scatterplot smoothers
do for the two-dimensional case(Y, X1). They modelY asY = f1(X1) + ǫ,
wheref1(X1) is a smooth function used to approximate the underlying function
m(X1) without imposing a rigid parametric relationship such as linearity. A prin-
ciple used by many smoothers is to estimate the regression surface locally instead
of globally. The fit at a certain predictor valuexi is only based on the data that lays
in a certain neighbourhood ofxi. This adds much more flexibility to the estima-
tion of the underlying function. An example is the loess smoother (Cleveland and
Devlin, 1988), which is illustrated in Figure 2.1. The resulting smooth indicates an
increase in the nitrate level between January 1990 and December 1997, and from
there on a steady decrease in the average nitrate concentration is established. The
linear regression fit remains more or less constant over the entire temporaldomain
because it cannot handle slope changes. The idea of scatterplot smoothing can be
easily extended to theq-dimensional case (e.g. Cleveland and Devlin, 1988; Cleve-
land and Grosse, 1991; Loader, 1999b) wherem(X1, . . . , Xq) is approximated by
aq-dimensional smootherf1...q(X1, . . . , Xq). Note that the number of dimensions
equals the number of regressors. There are unfortunately some problems related to
multidimensional smoothers. In particular,

1. Buja et al. (1989) showed that most multidimensional extensions of univari-
ate smoothers are not attractive from a computational point of view.

2. Due to their multivariate nature, they also suffer from “the curse of dimen-
sionality”. These problems are mainly triggered by the multidimensional
neighbourhoods which have to be defined. Hastie et al. (2001) illustratedthat
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Figure 2.1: Scatterplot of nitrate concentration in function of time, a least squares
regression line (dashed line) and a loess smoother (solid line)

the neighbourhoods are less local when the number of predictors increases.
Another issue is also related to the data sparseness in a high dimensional set-
ting. Therefore, more data ends up in the boundary region. Since smoother
estimates are known to be more biased in the boundary regions, the boundary
problem is more dominant in a multidimensional setting.

3. It is difficult to define a sensible metric for the multidimensional neighbour-
hoods, because the predictors are often measured in different units.

4. The visualisation of multivariate smoothers is less obvious. Especially when
the number of predictors gets beyond two. In order to study the effects ofthe
individual predictors, projections from the hyper-surface can be made on a
lower dimensional space, but this projection depends on the fixed values of
the remaining predictors and thus they are rather noisy.

To overcome the above mentioned problems, Buja et al. (1989) came up with anal-
ternative approach. They suggested to use one-dimensional smoothers as additive
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Figure 2.2: Nitrate concentration in function of the time (day number) and tem-
perature (◦C). Left panel: linear model, Middle panel: additive model
using two univariate local linear regression smoothers and Right panel:
a two-dimensional local linear regression smoother

building blocks of the model. This results in a more restricted class of nonparamet-
ric regression models, also referred to as additive models. Additive modelsextend
standard linear models and model this response variable as

Y = α +

q
∑

j=1

fj(Xj) + ǫ, (2.3)

wherefj can be any function, however in most cases smoothers are used. Similar
to linear models, additive models are additive in the covariates but not necessar-
ily in a linear way. Due to this additivity, the effect of a predictor on the fitted
response surface does not depend on the values of the other predictors. Thus,
the contribution of each predictor can still be studied individually. This enables
the user to decompose the model in each of its smooth functions, which can be
graphically depicted. Figure 2.2 shows the differences between a linear model
Y = α + β1X1 + β2X2 + ǫ, an additive modelY = α + f1(X1) + f2(X2) + ǫ
and a multivariate regression smootherY = f12(X1, X2) + ǫ, whereY is the ni-
trate concentration,X1 represents time andX2 temperature. Due to the additivity
assumption, the bump at low temperatures and at intermediate dates is less high for
the additive model than in the multivariate smoother model . However the bump
is situated in a data sparse region and might be a boundary effect from themul-
tivariate smoother. Apart from this feature, the fits by the additive model and the
multivariate smoother look similar. This can also be seen in Figure 2.3 where the
fitted models are plotted as a function of each predictor separately. Similar to what
was observed in Figure 2.1, both fitted models show higher fits around the end of
1997 and the beginning of 1998 and seem to decline afterwards. The trend is ob-
scured by the large oscillations on a smaller time scale. They originate from the
temperature effect which is modelled simultaneously. When the modelled surface
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is projected onto the nitrate-temperature plane, the overall trend seems to indicate
an inverse relationship between nitrate levels and temperature. This can be easily
explained. During summer the fertilised nitrogen is still in the form of insoluble
ammonium which is converted in the soil by micro-organisms to soluble nitrate.
The accumulated nitrate is then washed out in the colder and wet winter period.
The oscillations observed in the temperature effect are due to similar temperatures
which are measured on different dates.

The additive model, however, enables the analyst to look at the contributionof each
of the predictors separately. This is illustrated in Figure 2.4. At the end of 1992 the
contribution of the long term trend shows a steep incline and reaches a maximum
at the beginning of 1998. From this point on, it seems to decline up to the present.
This decline is possibly due to the introduction of two manure action plans (MAP’s)
introduced in 1996 and 2000 (Vlaams Parlement, 1995, 1999), respectively. The
aim of these MAP’s was the reduction of the nutrient pollution originating from
agriculture. In Figure 2.4 the interpretation of the contributions of each of the
predictors is much easier. The inverse relation between temperature and nitrate is
also more obvious.

Because smoothers are used as the basic building blocks of the additive models, a
brief review on smoothing is needed before we can move on to model fitting and
selection.

2.2 Smoothing

Hart (1997) mentioned that the aim of smoothing is to remove data variability that
has no assignable cause and to make systematic features of the data more appar-
ent. Smoothing however has become synonymous with a variety of nonparametric
methods used in the estimation of functions. In this dissertation, the term smooth-
ing is used in the latter sense. Smoothing resorts under the class of nonparametric
tools for regression analysis since they generally do not assume a rigid form for
the dependence between the mean response and the predictor variables.Hastie and
Tibshirani (1990) defined a smoother as a tool for summarising the trend ofa re-
sponseY as a function of one or more predictorsX1, . . . , Xq, and it produces an
estimator which is less variable thanY itself. According to Cleveland and Devlin
(1988) and Hastie and Tibshirani (1990), they have three major uses. The first is
to provide an exploratory graphical tool which gives the user insight intothe be-
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Figure 2.3: Nitrate concentration in function of the date (top panels) and temper-
ature (bottom panels). In the left panels nitrate data are represented
along with the fit of the additive model, in the right panels the ni-
trate data was modelled using a two-dimensional local linear regression
smoother

haviour of the data and which helps him/her to choose an appropriate parametric
model. Secondly, they are used as a regression diagnostic to check the adequacy
of the fitted parametric models. Their third use is to estimate a regression surface,
without resorting to a parametric class of functions. This can be done directly, us-
ing a multivariate smoother or by the use of additive models, which use univariate
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Figure 2.4: Contribution of long term trend (left) and temperature (right) to the

nitrate concentration predicted by an additive model

smoothers as basic building blocks. We will mainly focus on smoothers from that
third point of view. In this section, for notational comfort, only one predictor is
taken into account. Hence, the model in Equation (2.1) reduces to

Y = m(X) + ǫ. (2.4)

When a smoother is used to estimate the functionm, it is basically an approxima-
tion of the true regression function, and it generally contains a certain amount of
bias. To stress that the smoother is only an approximation of the true functionm,
we will use the notationf to represent the smooth function. Our brief overview of
smoothing is restricted to linear smoothers since their statistical properties are well
studied in literature. A linear smootherf can be estimated as a linear combinations
of the response. Linear smoothers can thus always be written as

f̂ = Sy, (2.5)

wheref̂ is then × 1 vector of the estimations off at each of then observations
f̂ = (f̂1, . . . , f̂n)

T andS is then × n smoother matrix which consists of a set
of unique weightsSij for eachxi. The specific value of the weights depends on
the type of smoother that is used. For local polynomial smoothing they are de-
fined in Section 2.2.3. When similar assumptions are made as in the parametric
regression framework, linear smoothers can inherit a whole set of inference proce-
dures known from the classical parametric regression context, e.g. the construction
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of confidence intervals (Cleveland and Devlin, 1988). Two important examples
of such assumptions are Gaussian residuals and an unbiased estimation ofm by
the functionf̂(x). In this section, splines, kernel smoothing and local polynomial
regression smoothers are covered.

2.2.1 Splines

We start with a brief introduction to univariate splines, where the mean response is
modelled as a function of the one-dimensional predictor variableX. To provide a
flexible tool for approximating the underlying process of Y, piecewise polynomials
can be used to represent the functionf(X). This transforms the global nature
of polynomial regression into a fitting procedure which has a more local nature
(Hastie and Tibshirani, 1990). The piecewise polynomials are obtained by dividing
the domain onX into intervals using a number of breakpoints, also known as
knots. In each interval,f is then locally represented by a separate polynomial
(Hastie et al., 2001). In most applications, one typically wants the function to
join smoothly at these knots. By allowing more knots, the function becomes more
flexible. Our eye is apparently skilled to pick up second order and lower order
discontinuities, but not the higher order discontinuities. Therefore the polynomials
are generally forced to be continuous up to the second order derivatives at the knots.
Cubic splines are the lowest order splines that fulfil these conditions. Unless one
is interested in smooth derivatives, there is generally no real reason to usesplines
of higher orders (Hastie et al., 2001).

When splines are used for prediction, they are known to suffer from large extrap-
olation errors. Polynomial fits are known to be erratic at the boundaries, and thus
extrapolation can be dangerous. This behaviour is even more explicit when using
splines, because the fit at the endpoints is based on less data. To reducethese er-
rors, natural cubic splines can be used. These add an additional constraint at the
endpoints of the regression, the second (f ′′) and third derivative (f ′′) of f are equal
to zero,f ′′′ = f ′′ = 0. In this way they impose the spline to behave in a linear
way beyond the boundary knots and thus stabilise the variance of the splinenear
the endpoints (Hastie and Tibshirani, 1990).

Computationally, cubic splines can be calculated by using a set of basis functions,
says1(x), . . . , sm(x). The regression function is then estimated by simply re-
gressing the responsey against thesj(x)’s. Basis functions which are commonly
used are for instance the truncated power basis or the numerically superior B-spline
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basis (Hastie et al., 2001; Hastie and Tibshirani, 1990; Hart, 1997; Eilersand Marx,
1996). Splines are computationally attractive when the number and the locationof
the knots are known, because this reduces the fitting procedure to a linearregres-
sion problem. The difficulty however in fitting splines is choosing the number and
the location of the knots. When a small number of knots is used, the spline often
shows some undesired non-local behaviour. However, using more knots is often
limited by the available number of degrees of freedom. Controlling the desired
amount of smoothing by restricting the number of knots is not straightforward. For
smoothing purposes, it is easier to use a third type of splines, smoothing splines.
In contrast to the previous splines, they originate from the following optimisation
problem in which

n
∑

t=1

(yt − f(xt))
2 + γ

b
∫

a

f ′′(x)
2
dx (2.6)

is to be minimised. Hereγ is a fixed constant, anda ≤ x1 ≤ . . . ≤ xn ≤ b. The
first term is the sum of squared errors, which measures the closeness of the fitted
regression function to the data, while the second term penalises curvaturein the
function. Remarkably, it can be shown that Equation (2.6) has a unique minimiser
which is a natural cubic spline with knots at the eachxt, t = 1, . . . , n. At first
sight, the family seems overparameterised: fitting such a spline requiresn parame-
ters. However, the coefficients are constrained as well due to the penalisation term.
This brings down the effective dimension drastically (Hastie and Tibshirani,1990).
The parameterγ controls the amount of smoothness. Large values ofγ produce
smoother curves, while smaller values produce more wiggly curves.

We now continue with a totally different concept of smoothing, which is kernel
smoothing.

2.2.2 Kernel smoothing

Local averaging is a very intuitive and appealing method for the approximation of
a regression functionm. It is easy to understand that points close to x contain more
information onm(x) than points which are more remote from x. The principle
can be improved by computing a locally weighted average. This is exactly whatis
done by kernel smoothers. LetKh be a real-valued weight function which depends
on the bandwidthh. The functionKh is assumed to be a symmetric probability
density function and is also referred to as thekernel function. With this notation,
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the Nadaraya-Watson kernel estimator is given by

f̂h(x) =

n
∑

t=1
Kh(xt − x)yt

n
∑

t=1
Kh(xt − x)

, (2.7)

which was independently derived by Nadaraya (1964) and Watson (1964).

The Gasser-M̈uller estimator is another common kernel estimator,

f̂h(x) =

n
∑

t=1

yt

st
∫

st−1

Kh(u− x)du, (2.8)

with st = (xt + xt+1)/2, x0 = −∞ andxn+1 = +∞ (Gasser and M̈uller, 1979).
Both kernel estimators are zero order approximations of the regression function
m. Fan (1992) and Fan and Gijbels (1996) have shown that the Nadaraya-Watson
kernel gives a more biased estimator in an interior point than the Gasser-Müller
kernel, but the latter corrects the bias at the expense of the variance.

Both methods are also seriously biased at the boundaries. Although boundary cor-
rection methods are possible, they are complicated and not as effective and intuitive
as the automatic boundary correction of the local polynomial regression smoother
(Fan, 1992; Fan and Gijbels, 1996; Hasti and Loader, 1993), which we introduce
in the next section.

2.2.3 Local polynomial regression

The idea of local polynomial regression can easily be motived by approximating
the regression functionm in a neighbourhood ofx0 by a Taylor expansion,

m(x) ≈ m(x0) +

p
∑

k=1

m(k)(x0)

k!
(x− x0)

k, (2.9)

wherem(k)(x0) = ∂km
∂xk |x0 . Local weighted least squares can be used to fit this

polynomial by minimising

n
∑

t=1

[yt −
p
∑

k=0

β0(xt − x0)
k]2K

(

xt − x0

h

)

. (2.10)
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whereK(.) is a kernel function which will be introduced later on andh is the
bandwidth which defines the size of the neighbourhood(x0 − h, x0 + h). The
kernel function assigns weights to each observation.

The solution to this local weighted least squares problem is

β̂0 = (xTcW 0xc)
−1xTcW 0y, (2.11)

wherexc is ann × (p + 1) matrix xc = (1,xvc, . . . ,x
p
vc), 1 = (1, . . . , 1)T is an

n× 1 vector of ones,xvc = (x1−x0, . . . , xn−x0)
T is ann× 1 vector andW0 is

ann × n diagonal matrix build up by the kernel weights (Fan and Gijbels, 1996).
The responsey0 corresponding tox0, is then estimated by

ŷ0 =
[

1 0 . . . 0
]

β̂0 =
[

1 0 . . . 0
]

(xTcW 0xc)
−1xTcW 0y = S0y, (2.12)

where the centered vector ofx0 is
[

1 (x0 − x0) . . . (x0 − x0)
p
]

=
[

1 0 . . . 0
]

.
Hence the fit of local polynomial smoothers is a linear combination of the re-
sponses. If this procedure is performed for alln observations(xt, yt), t = 1, . . . , n,
the fit ŷ can be written as

ŷ = Sy, (2.13)

whereS is ann × n matrix and is also referred to as the smoother matrix. Since
this predictor is of the same form as Equation (2.5), this estimator is also a linear
smoother.

Several important choices have to be made before local polynomial regression can
be used. The size of the bandwidth has to be selected, but descriptions ofpractical
procedures for bandwidth selection are kept for the next section. Thedegree of the
polynomial has to be set. Because the bias is mainly controlled by the bandwidth,
the choice of the degree of the local polynomial is less important. However, for a
fixed bandwidth, increasing the degree reduces the bias, but this is at theexpense
of an increasing variance of the fit and of a higher computational cost. A very im-
portant issue was pointed out by Fan (1992, 1993). He showed that thevariability
remains unchanged by going from a local constant to a local linear fit. He also
showed that the local constant fit suffers from low asymptotic efficiencyas com-
pared to the local linear fit. Fan and Gijbels (1996) generalised these results and
proved that the variability does not increase by going from an even order polyno-
mial fit to an odd order polynomial fit. The extra parameter can however reduce
the bias significantly. They also argued that even order fits suffer fromserious
boundary effects, in contrast to odd order fits which have nice adaptive boundary
properties. From this point of view Fan and Gijbels (1996) recommended to use the
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2.2 Smoothing

lowest possible odd order for the polynomial fit. Hence, throughout this disserta-
tion the degree is set to 1, unless derivatives have to be estimated. Anotherquestion
which has to be addressed is the choice of the kernel functionK. The choice of
the kernel is not that important from a practical point of view. However,Fan and
Gijbels (1996) have shown that the Epanechnikov kernel,K(u) = 3/4(1 − u2)
for −1 < u < 1 and zero foru outside that range, is asymptotically optimal for
the interior of the domain. When the Epanechnikov kernel is to be used in Equa-
tion (2.10),u has to be replaced byu = (xi − x0)/h. This kernel is used in the
remainder of this dissertation.

There is a vast amount of literature on the attractiveness and advantagesof local lin-
ear regression smoothers (e.g. Cleveland, 1979; Cleveland and Devlin,1988; Fan,
1992, 1993; Hasti and Loader, 1993; Fan and Gijbels, 1996; Loader, 1999b). Fan
(1992) showed that the local linear regression smoother is the best amonglinear
smoothers. Fan and Gijbels (1996) studied the linear minimax risk of polynomial
regression in order to compare with other linear smoothers. For an appropriate
choice of the bandwidth and the kernel, estimating the meanm(x0) by local linear
regression and the first derivativem(1)(x0) by a local polynomial of second order
is efficient both in the interior of the design and at the boundaries. Fan (1992),
Fan and Gijbels (1996), and Hasti and Loader (1993) also showed thatlocal poly-
nomial regression adjusts automatically for bias at the boundaries and is design
adaptive in the sense that they also adjust for bias in regions where the predictors
are nonuniform. As another advantage, the weighted least squares approach also
enables straightforward generalisations of classical statistical inference procedures
(Cleveland and Devlin, 1988; Fan and Gijbels, 1996; Loader, 1999b).Finally, Fan
and Gijbels (1996) and Loader (1999b) also reviewed some fast computing algo-
rithms for local polynomial regression, which enable them to compete with other
numerical smoothing techniques from a computational point of view. Their com-
putational aspects, simplicity and attractive properties are a strong plea in favour
of the use of local polynomial smoothing. Therefore the local linear smootheris
used as the basic smoothing procedure throughout this dissertation.

2.2.4 Tuning the smoothing parameters of local polynomial regression

The bandwidth and the kernel functionK control the size of the local neighbour-
hood. Therefore the choice of the bandwidth in local polynomial regression is a
crucial one. When taking the bandwidth close to zero, the data are interpolated,
leading to an overparameterised model. A bandwidth taken arbitrarily large, re-
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Figure 2.5: Fit of the nitrate data with local linear regression with bandwidth equal
to 2 months (left), 4 months (middle), 2 years (right panel)

sults in a polynomial of degree p which is fitted globally. Hence, the bandwidth is
a key element in controlling the complexity of the smoother. The smaller the band-
width, the more degrees of freedom that can be used for controlling the bias. But
this reduction in bias does not come for free. Smaller bandwidths will also leadto
an increase of the variance associated with the estimators. Too small bandwidths
typically result in more wiggly curves and this can conceal the main features which
are present in the data. This problem is addressed in literature as undersmoothing.
Too large bandwidths on the other hand tend to oversmooth the data and this can
lead to the introduction of a substantial bias. This is illustrated in Figure 2.5 where
nitrate data are modelled using a local linear smoother and 3 different bandwidths.
When a bandwidth of two months is taken, the obtained curve is too wiggly and
highlights features which may be inherent to the sampling variability. A band-
width of 4 months still highlights the cyclic pattern in the nitrate concentration but
produces a smoother fit. A large bandwidth is sensitive to oversmoothing, lead-
ing to an estimate which can miss certain features of the curve. A bandwidth of
2 years, for example, looses the ability to pick up the cyclic behaviour of the ni-
trate concentration. The size of the bandwidth can be chosen to be constant over
the domain ofX, or can be variable. For variable bandwidths a further distinction
can be made between local variable bandwidths,h(x0), varying with the location
x0, and global variable bandwidths,h(xi), changing with the observationsxi. An
example of a variable bandwidth with a very simple nature is the nearest neighbour
bandwidth. The selector requires that a fixed fraction of the data is included in
the neighbourhood. This fraction is referred to as the spans. It adapts automati-
cally the amount of smoothing to the local situation, using small bandwidths in a
dense design region, and large bandwidths in sparse regions (Altman, 1992; Fan
and Gijbels, 1996; Loader, 1999b). This method thus prevents that the regression
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2.2 Smoothing

in sparse data regions is based on only a limited number of points. For the tradeoff
between the amount of bias and the associated variance of the estimator, a criterion
is needed which takes both terms into account.

Two criteria are commonly used for this purpose: the Mean Squared Error(MSE)
and the Mean Integrated Squared Error (MISE). The MSE is defined as

MSE(x0) = E
(

(f̂h(x0)−m(x0))
2
)

= var
(

f̂h(x0)
)

+
[

E
(

f̂h(x0)−m(x0)
)]2

.

(2.14)
It is the sum of the variance and the squared bias of the estimator. Minimising this
criterion will give the theoretical optimal local bandwidth. However, this choice
depends on the true underlying functionm, which is unknown. An optimal band-
width could be defined ash which minimisesMSE(x0). An asymptotical approx-
imation of this optimal bandwidth is given by Fan and Gijbels (1996),

hopt(x0) = Cv,p(K)
[

σ2(x0)

{m(p+1)(x0)}2P (x0)

]1/(2p+3)
n−1/(2+3p), (2.15)

wherev is the order of the derivative ofm of interest (it is zero when we are
interested in the mean function and 1 if the prime interest is the first derivative), p
is the order of the polynomial, which is usually equal tov + 1, P (x0) is the design
density function evaluated inx0 andCv,p(K) is a constant depending on the kernel
(e. g. for the Epanechnikov kernel it is 1.719 whenv = 0 andp = 1 and 2.275
whenv = 1 andp = 2). The mathematical definition ofCv,p(K) and values for
other kernels and/or other values ofv andp are reported in Fan and Gijbels (1996).

The second criterion is the MISE. It is defined as a weighted integration of the
MSE over the domain of x,Θx,

∫

Θx

MSE(x)w(x)dx, (2.16)

wherew is a non-negative weight function. Using the MISE leads to the specifica-
tion of a global optimal bandwidth, which stays fixed over the entire domain of x.
The following solution is provided by Fan and Gijbels (1996),

hopt = Cv,p(K)

[
R

Θx

σ2(x)w(x)/P (x)dx

R

Θx

{m(p+1)(x)}2w(x)dx

]1/(2p+3)

n−1/(2+3p). (2.17)

These asymptotical results can not be used directly to find the optimal bandwidth,
because they rely on some unknown quantities such as the design densityP (.) at
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the design pointsx, the conditional varianceσ2(.) and the conditional meanm(.).
Therefore alternative methods are needed to estimate the bandwidth in practice.
Two main approaches are described in the literature: classical methods and plug-in
methods.

Classical methods consist in the minimisation of certain criteria as the leave-one-
out cross validation (CV), generalised cross validation (GCV) or the Akaike infor-
mation criterion (AIC). The CV criterion can be written as

CV (h) =
1

n

n
∑

t=1

[yt − f̂−th (xt)]
2, (2.18)

where f̂−th (xt) indicates the estimation atxt obtained by fitting the smootherf
to the reduced dataset which does not contain the data point at timet. For linear
smoothers the CV criterion can be rewritten so that the explicit recalculation ofthe
smoother is not needed.

CV (h) =
1

n

n
∑

t=1

{yt − f̂h(xt)

1− Stt(h)
}2, (2.19)

whereStt indicates thetth diagonal element of the smoother matrixS. The GCV
criterion replaces theSii by their average tr(S/n). The GCV is thus defined as

GCV (h) =
1

n

n
∑

t=1

{ yt − f̂h(xt)

1− tr(S)/n
}2. (2.20)

The use of the CV and GCV criteria can be justified because they are both consis-
tent estimators for the MISE (Fan and Gijbels, 1996).

Another popular criterion is the Akaike information criterion (AIC),

AIC = −2l + 2df, (2.21)

wherel is the log-likelihood anddf are the degrees of freedom used by the smoother,
calculated as tr(S) . When the errors are Gaussian and when the variance has to be
estimated, the first term reduces to−2l = n log(2π) + n log(

∑n
t=1(ê

2
t )/n) + n.

Note that in this casedf has to be increased by 1 due to the estimation of the
unknown variance. In particular,df = tr(S) + 1.

The concept of plug-in bandwidth selection is based on the replacement ofthe un-
known quantities needed in Equation (2.17) by their estimates. These estimates
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2.3 Fitting additive models

are mainly based on local polynomial regression of higher order polynomials us-
ing pilot bandwidths. By doing so the problem of bandwidth selection is shifted
to the selection of appropriate pilot bandwidths. A plug-in estimator for local least
squares regression can be found in Ruppert et al. (1995). An oftenrepeated criti-
cism on the classical approach is that the resulting bandwidths are often toovari-
able and frequently undersmooth (e.g. Loader, 1999a). When in a simulation study
repeated samples are drawn from a model, cross validation can select bandwidths
that are very different from sample to sample. However, Loader (1999a) argued
that this can be expected when bandwidth selection is applied to problems with
features which are difficult to detect since the selector has to decide whichfea-
tures in the dataset are real. He also showed that less variable bandwidth selectors
display this difficulty in another way: by consistently oversmoothing. Therefore
he claimed that the variability of the bandwidth estimates by classical methods is
rather a symptom than a problem of the difficulty in estimating the bandwidth.
Loader (1999a) also showed that the plug-in based estimates are asymptotically
beaten by their pilot estimates and prone to oversmooth when they are presented to
difficult smoothing problems.

Bandwidth selection in this section has to be seen in the framework of univariate
smoothers used in additive models, whereq bandwidths have to be selected which
are not mutually independent. Apart from the date, the other water quality covari-
ates behave as a random design, and therefore a variable bandwidth selector is more
appropriate. For additive models, only a few references on fixed plug-in bandwidth
estimators exist to our knowledge (Opsomer and Ruppert, 1998; Opsomer,2000;
Mammen and Park, 2005). The definition of variable plug-in bandwidths is even
more complex. The use of nearest neighbourhood bandwidths in an AM context
is relatively simple, and guarantees that each local regression uses an appropriate
number of observations. The spanss1, . . . , sq are typically estimated by classical
methods. In this respect, and given Loader’s (1999a) comments, we will not go
deeper into the problem of plug-in based bandwidth estimators and we use nearest
neighbourhood bandwidths which are defined by the span in the remainderof this
dissertation. We now explore the fitting procedure of additive models.

2.3 Fitting additive models

In practice, the backfitting algorithm proposed by Buja et al. (1989) is the most
widely used method to estimate the additive components. From Equation (2.3) it
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is obvious that each function can be written as

fj(Xj) = Y − α−
∑

k 6=j

fk(Xk)− ǫ. (2.22)

Whenfj is a linear smoother with smoother matrixSj and in the hypothetical case
that the other predictor terms are known,fj can be estimated as

f̂ j = Sj{y −α−
∑

k 6=j

fk}, (2.23)

wherefk is then × 1 vector(fk(xk1), . . . , fk(xkn))T andα is ann × 1 vector
(α, . . . , α)T . When only linear smoothers are used in the model, a similar ex-
pression can be used for each smoother. By combining all these expressions, the
following set of equations has to be solved,
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whereI is then × n identity matrix and1 is then × 1 vector(1, . . . , 1)T . The
backfitting algorithm solves this set of equations iteratively. In thelth iteration,
f

(l−1)
j is updated by

f
(l)
j = Sj(y −α−

∑

k<j

f
(l)
k −

∑

k>j

f
(l−1)
k ). (2.25)

In order to make each function identifiable, an additional constraint has to be intro-
duced,

∑n
t=1 fj(xjt) = 0. This is simply done by replacing eachSj in Equations

(2.23)-(2.25) by the centered smoother matrixS∗

j = (I −11T/n)Sj (Kauermann
and Opsomer, 2004). This also forcesα to be estimated by the sample meany.

For a semi-parametric model, sayy = f1 + Xmβ + ǫ, which contains only
one linear smoother, Hastie and Tibshirani (1990) showed that an explicitsolution
exists,

f̂1 = S1(y −Xmβ̂) (2.26)

β̂ = (XT
m(I − S1)Xm)−1XT

m(I − S1)y, (2.27)
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provided that(XT
m(I−S1)Xm)−1 exists. They also showed that for the bivariate

additive modelY = f1(X1) + f2(X2) + ǫ, the backfitting estimators converge to

f
(∞)
1 = (I − (I − S1S2)

−1(I − S1))y (2.28)

f
(∞)
2 = (I − (I − S2S1)

−1(I − S2))y, (2.29)

as the number of backfitting iterations approaches infinity and given that thenorm
‖S1S2‖ < 1. The fit is then given by

ŷ = f
(∞)
1 + f

(∞)
2 = (I − (I − S2)(I − S2S1)

−1(I − S1))y, (2.30)

which shows that̂y is a linear combination ofy with then × n projection matrix
H = (I − (I − S2)(I − S2S1)

−1(I − S1)).

After fitting the model, predictions and point estimates of the smooth functions
are obtained at each predictor combination. To assess their uncertainty, methods
to derive variance estimators and confidence intervals are introduced in thenext
section.

2.4 Confidence intervals for additive models

Since we use linear smoothers, we can rely on techniques from classical linear re-
gression to derive variance estimates and pointwise confidence intervals.Pointwise
intervals have a local nature. They reflect the uncertainty associated witha partic-
ular predictor location. This will be done in Section 2.4.1. In Section 2.4.2 we
will consider the bootstrap as a nonparametric procedure to derive the pointwise
confidence bands and in Section 2.4.3 global confidence sets will be derived for
additive models.

2.4.1 Variance estimator and pointwise confidence intervals

In classical parametric statistics, a variance estimate is the key element for statisti-
cal inference. Similar to linear regression, the residual sum of squares(RSS) can be
used for variance estimation. TheRSS is defined as usual,RSS = (y− ŷ)T (y−
ŷ). In linear regression, the variance estimate then becomesσ̂2 = RSS/df , where
its degrees of freedom (df ) equalsn−(q+1), with q+1 the number of parameters
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that have been estimated andn the number of observations. In the context of linear
regression smoothers we already have used the trace of the smoother matrix, tr(S),
as a definition of the degrees of freedom when we defined the GCV and theAIC
criteria. Hastie and Tibshirani (1990) showed that it is better to use another defini-
tion for the degrees of freedom of theRSS. In the next paragraph their definition
is explained in detail.

When all components of the AM are linear or linear smoothers, ann×n projection
matrixH can be derived such thatŷ = Hy. This is already illustrated in Equation
(2.30) for the case of two linear smoothers. For nonparametric AM’s usinglinear
smoothers, the additive component functions can be solved by a set of normal
equations presented in Equation (2.24). Equation (2.24) can thus also be written as

P̂ f̂ = Q̂y, (2.31)

wheref̂ is thenq + 1 vector f̂ = (fT1 , . . . ,fTq , α)T . In general, a solution for
Equation (2.24) is found by applying a backfitting algorithm. However, as Op-
somer (2000) mentioned, it is possible, at least conceptually, to write the estimators
directly as

f̂ = P̂−1Q̂y, (2.32)

and after obtaininĝP−1, ŷ can be written as

ŷ =
[

I I I . . . I 1
]

f̂

=
[

I I I . . . I 1
]

P̂−1Q̂y (2.33)

= Hy.

Recall thatI is then × n identity vector and1 is ann × 1 vector of ones, and
so [I . . . I 1] is ann × (qn + 1) matrix. From this derivation, it is clear that
an additive model using linear smoothers is a linear smoother itself with ann× n
projection matrixH. Further, for linear smoothers, it can be shown that theRSS
has the expectation E(RSS) = {n− tr(2H −HHT )}σ2 + bTb, whereb is the
bias (Hastie and Tibshirani, 1990). The biasb is defined asb = m − E(Hy) =
m−Hm. Thus, when the bias is negligible, the variance can be estimated by

σ̂2 =
RSS

n− tr(2H −HHT )
, (2.34)

where, in analogy with linear regression, thedegrees of freedom of the errorscan
be defined asdferr = n− tr(2H −HHT ).
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When the residuals are i.i.d, the estimate of variance-covariance matrix ofŷ can be
calculated as

Σ̂ŷ = HHT σ̂2. (2.35)

Similar to ŷ, a projection matrixHj can be defined for each componentf̂ j =
Hjy. The variance-covariance matrix of each component is simply obtained by
replacingH in Equation (2.35) byHj .

The calculation of̂P−1 is not interesting from computational point of view since it
involve inverting an(nq+1)×(nq+1) matrix. Moreover, the inverse of̂P does not
always exist. Recently, Giannitrapani et al. (2005) provided a very simple method
to keep track of the important projection matrices while the backfitting algorithm
proceeds. When linear smoothers are used, the estimate of each component f (l)

j

in the lth iteration step can be written asf (l)
j = H

(l)
j y. Hence, the backfitting

scheme can be expressed as

H
(l)
j = S∗

j (I −
∑

k<j

H
(l)
k −

∑

k>j

H
(l−1)
k ). (2.36)

At each stage, the updated projection matrixH(l)
j remains independent ofy. When

the backfitting algorithm has converged, a set of projection matrices{Hj , j =
1, . . . , q} is obtained. They can be used to estimate the individual components and
the fitted valueŝy = Hy, whereH = 11T/n +

∑q
j=1Hj . The variance estima-

tors can now be used for construction of approximate(1−α) confidence intervals.
The term approximate confidence interval is used because it only holds when the
bias is negligible. Here the interval is only given explicitly for the estimatorŷt,

[ŷt − z(1−α
2
)σ̂yt , ŷt + z(1−α

2
)σ̂yt ], (2.37)

wherez(1−α
2
) is the(1− α

2 ) percentile of the standard normal distribution andσ̂yt

the square root of thetth diagonal element of̂Σŷ. The formulation of confidence
bands for the component functionsfj(xjt) is trivial. We still have to keep in mind
that the intervals are only correct when the bias is negligible. When this is notthe
case, the additive model fit̂y is a fit forHm rather than for the true underlying
surfacem evaluated at the design points (Hastie and Tibshirani, 1990).

Pointwise confidence intervals are illustrated in Figure 2.6. Note that, the intervals
are centred about the estimates.
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Figure 2.6: 95% pointwise confidence bands for an additive model with a seasonal
component and a trend. Top panel: data and the model fit, Middle
panel: contributions of the seasonal component, Bottom panel: contri-
bution of the trend (fit in black and 95% pointwise confidence bands in
grey)

2.4.2 Pointwise bootstrap confidence intervals

The bootstrap is a statistical inference technique that relies on only some weak
distributional assumptions. Bootstrapping consists of resampling from a sample
D = (D1, . . . , Dn), with replacement, to generate bootstrap replicatesD∗(b),
b = 1, . . . , B, of the same sizen. The bootstrap replicates are then used to simulate
B estimates of a given statistic, resulting in an empirical probability distribution of
the statistic. Suppose one wishes to estimate the empirical cumulative distribu-
tion functionG of a statisticθ = t(D) which is estimated from a given sample
D = (x1, . . . ,xp,y). Each observationDt = (x1t, . . . , xqt, yt) is sampled with
replacement, and with an equal probability of1/n. The sampleD is resampled
with replacementB times, untilB bootstrap replicatesD∗(b), b = 1, . . . , B, are
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2.4 Confidence intervals for additive models

generated. With each bootstrap replicateD∗(b), the statisticθ can be evaluated,
yielding B bootstrap estimateŝθ∗(b). The acquired empirical distribution̂G∗ can
also be used to calculate for instance the variance or confidence intervalson θ̂.

When applying the bootstrap in a regression context, there are two common ap-
proaches for generating bootstrap samples: (1) by resampling the casesDt =
(x1t, . . . , xqt, yt) or (2) by resampling the errors (êt). The method of resampling
cases is not really an option, since it changes the sample design. Water quality
data are gathered over time, and so the time covariate is not sampled at random.
Environmental agencies commonly sample water quality data at intervals larger
than two weeks. For such a sampling frequency, a large portion of the temporal
dependencies are related to seasonality and trend (Van Belle and Hughes, 1984).
These considerations provide a strong argument in favour of resamplingresidu-
als. In this case, bootstrap samples are generated by resampling from the empirical
distribution of the residuals, saŷF , and creating the bootstrapped responses

y∗(b) = ŷ + e∗(b), (2.38)

wheree∗(b) is a bootstrap replicate of the errors. A bootstrap dataset is then con-
structed asD∗(b) = (x1, . . . ,xq,y∗(b)). The most straightforward method to
obtaine∗(b) is to resample the crude errorsêt. When a projection matrixH ex-
ists for the models, Davison and Hinkley (1997), however, suggested to sample the
errors from the distribution of the centred adjusted residualsrt − r̄, wherert is
defined as

rt =
ǫ̂t√

1− htt
, (2.39)

wherehtt is thetth diagonal element of the projection matrixH andr̄ is the average
of thert. For linear smoothers it can be shown that the variance of the estimated
residualŝǫt is equal toσ2(1 − htt). Hence, resampling from the distribution of
the centred adjusted residuals is preferred because they have the same variance as
the true errorsǫt. Now that the bootstrap is introduced in the regression context,
it can be applied for inference purposes. Suppose the aim is to construct a confi-
dence interval for the fitted mean corresponding to a certain predictor combination
(x1t, . . . , xqt). Then the point estimate,̂θ = t(D), is a prediction with the additive
modelθ̂ = t(D) = m̂(x1t, . . . , xqt).

A very natural way to calculate1− α bootstrap confidence intervals, is to take the
α
2 and1 − α

2 percentiles of the bootstrap distribution̂G∗. This can be easily done
by first ranking thêθ∗’s into θ̂∗(1) ≤ . . . ≤ θ̂∗(B) and then take theα2 and1 − α

2
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percentiles, giving the interval

[θ̂∗(⌊B(α
2
)⌋), θ̂

∗
(⌊B(1−α

2
)⌋+1)]. (2.40)

This interval is known as the bootstrap percentile interval. However, the cover-
ages of these intervals are known to be problematic (Efron and Tibshirani,1993;
Davison and Hinkley, 1997). To improve the coverages, corrections have been pro-
posed such as bias-corrected and accelerated bootstrap confidenceintervals, which
are referred to as the BCa intervals. Instead of taking the(α/2)th and(1− α/2)th

percentile of the bootstrap distribution̂G∗, the BCa interval is given by (Efron and
Tibshirani, 1993)

[θ̂∗(α1), θ̂
∗
(α2)], (2.41)

where

α1 =Φ

(

ẑ0 +
ẑ0 + z(α

2
)

1− â(ẑ0 + z(α
2
))

)

α2 =Φ

(

ẑ0 +
ẑ0 + z(1−α

2
)

1− â(ẑ0 + z(1−α
2
))

)

. (2.42)

(2.43)

HereΦ(.) indicates the standard normal cumulative distribution function andz(α/2)

is its 100αth percentile point. We still have to definêa andẑ0. The bias correction
can be easily calculated from the fraction of the bootstrap replications that isless
than the plug-in estimatêθ,

ẑ0 = Φ−1(#{θ̂∗(b) < θ̂}/B), (2.44)

whereΦ−1(.) indicates the inverse of the standard normal cumulative distribution
(Efron and Tibshirani, 1993; Davison and Hinkley, 1997). An easy way to compute
the acceleration̂a is provided by Efron and Tibshirani (1993), using the jackknife
values of the statistiĉθ = t(D). A jackknife value for thetth observation is
obtained when the statistic is calculated on the original sample without the obser-
vation at timet. LetD(t) represent the original sample without thetth observation

Dt, θ̂(t) = t(D(t)) andθ̂(.) =
∑n

t=1 θ̂(t)/n, then the acceleration is calculated as

â =

n
∑

t=1
(θ̂(.) − θ̂(t))

3

6[
n
∑

t=1
(θ̂(.) − θ̂(t))2]3/2

. (2.45)

42



2.4 Confidence intervals for additive models

A third type of intervals which we will consider, are studentised bootstrap intervals.
These intervals are acquired by computing for each bootstrap replicateD∗(b),

z∗(b) =
θ̂∗(b)− θ̂

σ̂∗(b)
, (2.46)

whereσ̂∗(b) is the estimated standard error ofθ̂∗(b). The studentised bootstrap
interval, after ordering thez∗’s to z∗(1) ≤ . . . ≤ z∗(B) is then given by

[θ̂ − z∗((⌊1−α
2
)B⌋+1)σ̂, θ̂ − z∗(⌊α

2
B⌋)σ̂]. (2.47)

Davison and Hinkley (1997) showed that the studentised bootstrap confidence in-
tervals and BCa intervals are preferred over bootstrap percentile intervals, both
on the basis of empirical as well as theoretical arguments. Efron and Tibshirani
(1993), however, argued that the studentised bootstrap confidence intervals are
particularly applicable to location statistics, like the mean, median or percentiles.
We will use the bootstrap for inference on location statistics such as the mean
m(X1, . . . , Xq) and for the location of the contributions of the componentsf j , so
we do not expect problems related to the use of the studentised bootstrap.

Pointwise intervals for̂y or f̂ j can be obtained by applying the above bootstrap

methods to eacĥyt or f̂j(xjt). Pointwise bootstrap intervals are illustrated in Fig-
ure 2.7. Two different intervals are shown, percentile based bootstrapintervals and
studentised bootstrap intervals. The intervals are fairly similar to each other and
to the analytical intervals for the model fit and the seasonal component. Forthe
trend, differences are observed at the peak of the curve. Here the percentile based
confidence interval is shifted downwards and the studentised confidence interval
is shifted upwards in comparison with the analytical confidence interval andthe
estimated curve. In this region a number of very high nitrate levels are observed,
and most of the bootstrap replicates result in a trend effect, which is systematically
lower than the estimated trend from the original dataset. The studentised interval

corrects for this because it calculates the bootstrap replicatesz∗(b) = θ̂∗(b)−θ̂
σ̂∗(b) and

θ̂∗(b) will be systematically lower than̂θ. This reflects the high nitrate levels which
are observed. From Equation (2.47) it can be seen that this leads to an upward shift
of the intervals in this region.

Sometimes it is useful to make simultaneous inference on more than one point in
the covariate space (e.g. when checking whether a predictor function is signifi-
cantly different from a least squares fit). Pointwise intervals are not appropriate for
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Figure 2.7: 95% bootstrap pointwise confidence intervals for an additive model
with a seasonal component and a trend. Top panel: The data and the
model fit, Middle panel: Contribution of the seasonal component and
Bottom panel: Contribution of the trend. Dashed line: percentile based
bootstrap intervals, Solid line: studentised bootstrap intervals

this purpose. Therefore we will now introduce global confidence sets for simulta-
neous inference about an entire regression curve or surface.

2.4.3 Global confidence sets

When we wish to infer on more than one function value at the same time, point-
wise confidence intervals may be misleading. Suppose we would like to check if
a straight line fits in a confidence band of one of the predictor functions, we need
a kind of global confidence band. A common approach to go from pointwisecon-
fidence bands to global confidence bands is to make the pointwise bands wider to
implicitly correct for multiple comparisons (Eubank and Speckman, 1993). How-
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2.4 Confidence intervals for additive models

ever, Hastie and Tibshirani (1990) disagree with this approach. They motivate that
a confidence set for then values of the true underlying function is a set in ann-
dimensional space and a global confidence band is a projection or a “shadow” of
such a set onto each direction. Therefore the information of a confidence band is
limited. Moreover, it gives no information on the functional shape of the members
of then-dimensional set. Hastie and Tibshirani (1990) also argued that a projection
of ann-dimensional global confidence set into a confidence band does not have to
be larger than the pointwise confidence bands. To construct such a confidence
band, we should be able to construct curves that belong to the global confidence
set. Those curves can then be used to construct the global confidenceband.

We here discuss the approach of Hastie and Tibshirani (1990) to construct a confi-
dence set forg = Hm. When the errors are assumed to be Gaussian, the likeli-
hood ratio method for constructing such a set uses the approximate studentised piv-
otal (ŷ − g)T (HHTσ2)−1(ŷ − g) which is asymptoticallyχ2-distributed. Since
σ2 is unknown, it has to be estimated. Hence the approximate pivotal

ν = (ŷ − g)T (HHT σ̂2)−1(ŷ − g) (2.48)

should be used. LetG denote the distribution ofν. Hastie and Tibshirani (1990)
showed that this distribution could be approximated based on theF -distribution or
by using the bootstrap. According to their results, the bootstrapped approximation
works better than the one based on theF -distribution. Hence, we restrict ourselves
to the bootstrap approximation of G. The bootstrap is used to generatey∗(b) as
described in the previous section and to calculate bootstrapped statisticsŷ∗(b) =
Hy∗(b), σ̂∗2(b) = RSS∗(b)/dferr, and

ν∗(b) = (ŷ∗(b)− ŷ)T (HHT σ̂∗2(b))−1(ŷ∗(b)− ŷ). (2.49)

After ranking theν∗(b)’s so thatν∗(1) ≤ . . . ≤ ν∗(B), the(1− α) confidence set can
be derived from the interval[ν∗(⌊Bα/2⌋), ν

∗
(⌊(1−α/2)⌋+1)]. All bootstrap replicates

ŷ∗’s which resulted inν∗(b)’s within this interval belong to the confidence set.
A simultaneous confidence band can be displayed by creating an envelopewhich
is containing these curves. Once an envelope is established, a projection of the
envelope onto each direction can be made.

The simultaneous interval obtained after projecting the envelopes of the global
bootstrap confidence sets is illustrated in Figure 2.8. The intervals are indeed fairly
similar to the intervals shown in Figure 2.7 and support the findings of Hastie and
Tibshirani (1990).
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Figure 2.8: Envelopes for 95% global bootstrap confidence bands foran additive
model with a seasonal component and a trend. Top panel: data and the
model fit, Middle panel: the contribution of the seasonal component
and Bottom panel: the contribution of the trend

2.5 Model selection

Although model selection is a fundamental part in the building process of statistical
models, we will only give a very brief overview on model selection and restrict our
attention to the procedure used in this dissertation.

Model selection for additive models is often performed in two stages: (1) band-
width or span selection of the smoothing parameters(s1, . . . , sq), and (2) selection
of predictor variables in the model. As mentioned in Section 2.2.4, nearest neigh-
bourhood bandwidths are used for the local polynomial smoothers in the model. A
neighbourhood contains a fixed fraction of the total number of observationsn, this
fraction is referred to as the spansj . The spanss1, . . . , sq are typically tuned by
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2.5 Model selection

using criteria as the AIC, CV and GCV. In principle, numerical optimisers could be
used for this purpose, but generally a grid search is used to determine theoptimal
spans. When the number of smoothersq increases, this leads to an exponential
increase in the number of AM’s to be evaluated. For variable selection, this proce-
dure has to be further embedded in a model selection procedure, such asclassical
forward and backward stepwise selection techniques (e.g. Hastie and Tibshirani,
1990). In the forward approach, one starts with a one-dimensional modelwhich
contains the predictor that results in the best evaluation of the selection criterion.
In each cycle, the model is extended with the predictor which results in the largest
improvement of the criterion. The procedure stops when the criterion is notfur-
ther improved by the addition of a predictor or when all predictors are entered in
the model. The backward procedure starts with the most complex model and then
leaves out, in each step, the predictor which results in the model with the best eval-
uation of the criterion. The algorithm proceeds as long as the criterion improves by
the reduction of the model complexity. To ensure that the appropriate smoothing
parameters are used in each step of both procedures, the smoothing parameters of
each of the candidate models should be determined. Whenq gets large and when
a dense grid is used for the selection of the smoothing parameters, this approach
gets quickly computationally demanding. When the contributions of the predictors
are orthogonal, the computational burden can be reduced. The multidimensional
grid search can then be replaced by an iterative procedure where each iteration is a
one-dimensional grid search to find the optimalsj by keeping the other smoothing
parameters (sk, k 6= j) fixed.

Hastie and Tibshirani (1990) introduced the BRUTO algorithm as a pragmaticso-
lution to keep the computational burden limited. The algorithm is an adaptation
of the backfitting algorithm so that it combines model fitting, smoothing param-
eter selection and model selection. To avoid computational problems, Hastie and
Tibshirani (1990) adjusted the GCV criterion

GCV (s1, . . . , sp) =

n
∑

t=1
ǫ̂2t

n(1− tr(H(s1, . . . , sp))/n)2
, (2.50)

to the modified GCV criterion,

GCV b(s1, . . . , sp) =

n
∑

t=1
ǫ̂2t

n(1− [1 +
∑p

j=1{tr(Sj(sj))− 1}]/n)2
. (2.51)

In this way the computational difficulties are circumvented which are associated
with the calculation of tr(H(s1, . . . , sp)). But, as shown in the previous section,
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Giannitrapani et al. (2005) provided a very simple method to keep track of the
important projection matrices and when their approach is used in the backfitting
algorithm, the projection matrixH is known and its trace can easily be acquired.
Therefore, a modification of the GCV is not required and we have chosento incor-
porate the original GCV criterion in the BRUTO algorithm.

The BRUTO algorithm starts with the null fit, where all projection matricesHj =
0, j = 1, . . . , q. In each iteration one parametersj is selected. Hence, the span
selection is performed one smoothing parameter at a time, while the other smooth-
ing parameters remain unchanged. In particular thesj is adjusted which minimises
the global GCV. In the cycle(l) this is applied by using the appropriate smoothing

parameters(l)
j to update the projection matrix

H
(l)
j (s

(l)
j ) = S∗

j (sj)(I −
∑

k 6=j

H
(l−1)
k (s

(l−1)
k )), (2.52)

while the other projection matrices are left unaltered. Hence, each iteration only
provides for an update of one smoothing parametersj and its corresponding projec-
tion matrixHj(sj). The BRUTO algorithm is continued until the GCV converges.
The convergence is guaranteed, because each iteration produces a decrease in the
criterion. The BRUTO algorithm can easily be extended to incorporate modelse-
lection. When the GCV is allowed to be optimised by the selection of the null fit,
Hj = 0, it enables the removal of the associated explanatory variable from the
model. Hence, a particular variable can be included at a certain iteration, its span
can be adjusted in a next iteration and the variable can even be omitted from the
model later on.

An example on how the BRUTO algorithm proceeds is given in Figure 2.9. The
dataset consists of the response nitrate (NO−

3 ) and 7 predictor variables: (1) Day
number throughout the year, (2) Time, (3) temperature, (4) dissolved oxygen (DO),
(5) nitrite (NO−2 ), (6) chemical oxygen demand (COD) and (7) pH. In Figure 2.9,
the numbers in the plot indicate which of the predictors was adjusted in each cycle.
During the first 4 cycles predictors 1, 6, 7 and 2 are included in the model. From
the 5th up to the 9th cycle the spans of the selected predictors are adjusted. During
cycle 10 and 11 predictors 5 and 4 are selected. And the last cycles consist of
adjusting the spans of predictors 7 and 6. The final model includes predictors
1,2,4,5,6 and 7. Notice that the 3th predictor is never included in the model. At
first, the GCV decrease is steep due to the inclusion of extra predictors in themodel.
This is also reflected in the steep increase of the associated degrees of freedom.
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Figure 2.9: Left: Convergence of the GCV criterion in function of the iteration
number of the BRUTO algorithm. Right: The evolution of the total
degrees of freedom in the model in function the iteration number. The
numbers along the curve indicate which of the predictors has been up-
dated and/or included

2.6 Conclusions

A review of additive modelling is given with a special focus on its application to
water quality data. Local polynomial smoothers were used as the additive functions
of the additive model. The review covers the important issues of model structure,
the selection of the smoothing parameters, the derivation of confidence intervals
and a brief introduction to model selection.

For researchers who want to apply additive models, the main contribution ofthis
review is that it explicitly includes all mathematical derivations needed to fit the
models and to assess their uncertainty. In the existing statistical literature, pro-
cedures to obtain analytical pointwise confidence intervals are often only given
implicitly. In this review, the analytical and bootstrapped pointwise confidence
intervals are included in full detail.
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Chapter 3

Data validation

3.1 Introduction

High quality data are essential for an adequate management of the water resources.
Therefore, quality assurance is specifically mentioned as an important activity in
the WFD guidance document on monitoring (EC, 2003; Højberg et al., 2007).
Thus, new data have to be validated before they can be considered for afurther
evaluation of the water status. Observations can be suspicious due to the lack of
the quality of the data, i.e. originating from errors introduced during the analysis in
the laboratory, wrong calibration of the equipment or while entering the data.But
it is also possible that they are due to a change in the system that causes changes in
the water quality.

The detection of suspicious observations in environmental data is not straightfor-
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ward because such data typically possess a complex nature. The observations may
be dependent, non-normally distributed, may show cyclic variations, flow depen-
dence, and, the trend and relations among the water quality variables may be non-
linear (Hirsch et al., 1982; Cai and Tiwari, 2000; Dominici et al., 2002; Wood and
Augustin, 2002; McMullan et al., 2003; McMullan, 2004). Therefore it isdiffi-
cult for experts to validate the large amounts of water quality data originating from
these monitoring networks. In this chapter we aim to provide a semi-automatic
data validation procedure that can support experts at the environmentalagencies
to validate their large amounts of monitoring data. Before we elaborate on our
data validation method, we first introduce some existing methods which might be
used for this purpose. They consist of techniques from time series analysis and
statistical process control.

3.1.1 Time series approach

One way to deal with the validation problem is to use models to predict future
measurements based on the historical data. In time series literature, this is called
forecasting. The new observations can then be compared with forecastsof the
model. However, the use of point forecasts to compare with incoming observations
is meaningless if the extent of associated uncertainty is unknown. Intervalforecasts
should be used instead. They provide more information on future uncertainty and
take the sampling variance correctly into account. These intervals, characterised
by an upper and lower limit, correspond to a specified coverage probability(Kim,
1999; Chatfield, 1993). In time series literature, AutoRegressive MovingAverages
(ARMA) and AutoRegressive Integrated Moving Average (ARIMA) models are
mainly used. However, in order to obtain stationarity, trends and seasonalvariation
have to be eliminated first. Subsequently the ARMA model is fitted to the station-
ary residual time series (Pourahmadi, 2001). The models are then used to compute
a forecast and a forecast interval. To reduce the assumptions on the distribution of
the residuals, bootstrap-based intervals were developed (Kim, 2004; Clements and
Taylor, 2001; Kim, 1999; Chatfield, 1993). In an automated validation procedure,
however, the interaction of the user should be limited. This requirement, makes
the use of a classical time series approach such as ARMA, ARIMA or ARX diffi-
cult. They require expert knowledge to select the proper structure of the time series
model. Moreover, the temporal dependence structure is also susceptible tochange.
One reason, for instance, is that the optimal structure can change over timeas the
database gets larger. We will now explore methods that are available in statistical
process control.
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3.1.2 Statistical process control

Statistical process control is developed within the context of quality controland
the improvement of manufactured goods and services used by society. Typically, a
product should be produced by a stable or repeatable process in order to meet the
costumers expectations. In particular, the process must be able to guarantee that the
quality of the product fluctuates with little variability around a certain target value
(Montgomery, 2005). In this respect, the use of control charts is widespread. A
control chart is a graphical tool which displays a certain quality characteristic that
was measured in function of the sample number or the time. It contains a center
line representing the average of the quality characteristic of the process when it
is in control, and, an upper and lower control limit chosen in such a way that
most sample points are expected to fall in between them. The following charts are
commonly used:

• ‘x’-charts which are plots of the observations themselves in function of time
(Shewart, 1931).

• EWMA-charts, representing an exponentially weighted moving average of
the measurements against time (first proposed by Roberts (1959)).

• CUMSUM-charts, where the cumulative sum of the differences between
measurement and a target value is plotted against time (introduced by Page
(1954)).

• MA-charts, plotting a moving average of the measurement series against
time.

An example of an ‘x’-chart and an EWMA-chart applied to the nitrate series at
sampling location S5 along the river Yzer is given in Figure 3.1. The ‘x’-plot is de-
signed as such that there is a small chance to detect an out-of-control signal when
the process is in control, and to have a higher change on a signal when theprocess
is out of control. When only one observation is available at each time instant, the
‘x’-plot consists of the individual measurements. The centerline of the chart is the
overall process mean when the process is in control, and is assumed to be known.
The lower and upper control limit are usually a constantL standard deviations,σ,
below and above the centerline (Wardell et al., 1992). For EWMA-charts, the ex-
ponentially weighted moving average is defined aszi = γyi + (1− γ)zi−1, where
γ is a weight constant between 0 and 1, and the starting valuez0 = µ. Hence,
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Figure 3.1: Examples of univariate monitoring charts, ‘x’-chart (left), EWMA
chart (right)

more recent data are receiving heavier weights. EWMA-charts detect shifts in
mean more quickly than the ‘x’-charts. The centerline is again the process mean,
µ and the control limits areµ ± Lσ

√

γ[1− (1− γ)2i]/(2− γ) (Wardell et al.,
1992; Montgomery, 2005). For the construction of these charts the measurements
are assumed to be i.i.d and Gaussian. The EWMA charts, however, are known
to be robust to deviations of normality (Montgomery, 2005). They are based on
a weighted sum of the measurements, and thus allow the use of the central limit
theorem when the measured series is long. Environmental agencies often sample
the river water quality data at intervals that are larger than two weeks. In this case
the observations are often assumed to be independent when seasonality and trend
are considered (Van Belle and Hughes, 1984). However seasonality and trend are
not taken into account when constructing the basic monitoring charts. Hence, the
i.i.d assumption is violated when the monitoring charts are based on the original
nitrate measurements. Many authors have reported that this will lead to a false
rejection of the data if they are positively correlated (e.g. Montgomery, 2005; Al-
wan, 1992; Montgomery and Mastrangelo, 1991). To overcome this problem, two
general approaches exist to monitor autocorrelated processes. On theone hand, the
autocorrelation can be modelled and standard charts are constructed with control
limits that have been adjusted to account for the autocorrelation. On the otherhand,
a time series model can be fitted to the data and the residuals or forecast errors from
this model can be used in a control chart (Montgomery, 2005; Reynolds and Lu,
1997). In the latter approach, a quality characteristicyt is modelled asyt = µt+ ǫt
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Figure 3.2: Model based univariate monitoring chart: Nitrate series together with
the fit of an additive model with a trend and seasonal component (left),
Residual based ‘x’-chart (right)

where theǫt’s are assumed to be i.i.d and Gaussian, sayǫt ∼ N(0, σ2). The center
line for the residuals is located at 0 and upper and lower control limits are located
at LCLt = −2σ andUCLt = 2σ. This approach is represented in Figure 3.2.
To remove the serial correlation, the nitrate concentration was modelled using the
additive models introduced in Chapter 2. Local linear regression smoothers for the
trend and the seasonal component were used. The model was fitted by applying the
BRUTO algorithm. In the left panel the nitrate data are given along with the model
fit. The model-based control chart is represented in the right panel.

In chemical and environmental engineering, history-based methods that require a
large amount of historical data are often used. They consist of neuralnetworks or
multivariate statistical techniques (e.g. Venkatasubramanian et al., 2003; Penny,
1996; Yoo et al., 2004, 2007). Multivariate process control is mainly based on
projection methods. The multivariate observations are then projected on a lower
dimensional space which can explain the main features in the multivariate data.
Principle component analysis (PCA) is one of the widely used methods for this
purpose. The standard multivariate methods imply the presence of a constant num-
ber of variables measured simultaneously. However, in many databases not all
variables are measured at each time instant. In Flanders, for instance, nutrients are
measured with a higher frequency than heavy metals. In this dissertation, were-
stricted our attention to univariate methods. Compared to multivariate approaches,
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univariate control charts will only detect water quality measurements locatedat
the endpoints of the univariate distribution as anomalous, while multivariate ap-
proaches can also detect malicious observations in the middle of the univariate
distribution in case there is something wrong with their relationship with the other
water quality variables.

Classical univariate control charts are not suited for water quality data due to the
trend, cyclic variations and other forms of temporal dependences. Model-based
control charts can correct for this, because a model can be used to detrend the data
and to remove other forms of dependences. But, we think that an important issue is
not addressed when using residual-based control charts, becausein most applica-
tions the model uncertainty is ignored. Another general drawback of the classical
methods is that they rely heavily on distributional assumptions and are parametric.
The complex nature of water quality data, however, makes it inappropriate touse
these existing methods for the validation of new observations.

In this chapter, we introduce a new semi-automatic data validation procedure. In
Section 3.2 the method is introduced. A flowchart of the method is presented in
Figure 3.3. First, knowledge is extracted from the historical data by the useof
a model. To deal with the nonlinear character of the data and to enable an ap-
propriate flexibility of the method towards changes in the process, nonparametric
additive models (AM’s) are proposed. Next, the AM is used to construct apredic-
tion interval (PI) for a new observation at timen + 1. If the new observation is
included in the PI, the observation is accepted and can be added to the historical
data. Otherwise the observation is rejected and has to be passed on to an expert
for further evaluation. Analytical and bootstrap based PI’s are proposed. They
incorporate both the model uncertainty due to the estimation of the mean model,
as well as the additional uncertainty associated with single observations thatare
typically fluctuating around the modelled mean. In contrast to techniques from
time series analysis and statistical process control, the procedure is entirelynon-
parametric when bootstrapping is used. This reduces the number of assumptions
considerably. Since other physico-chemical variables are allowed in the model as
predictor variables, it is possible that an outlier in one of these variables results in
a false rejection of the incoming response data: A predictor has an additiveeffect
on the outcome of the model, and outliers can result in an extreme value of the
predictor function, resulting in a shift in the PI. At first sight this looks like an
anomaly of our methodology. However, diagnostic plots to detect such shiftsare
presented. Moreover, in a practical implementation all theq+1 observed variables
acquired at timen + 1 have to be validated. This is done by repeating the proce-
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Figure 3.3: Flowchart of the data validation procedure

dureq + 1 times and each time taking another variables to be the response and the
q remaining variables to be the predictors. Due to the use of other water quality
variables as predictors, our method also can detect suspicious observations located
at the middle of the univariate distribution when there is something wrong with
their relationship with the other water quality variables. In Section 3.3 the entire
methodology is first illustrated on a real data case. The model that is obtained,
is then used to generate synthetic data for a simulation study and a power study.
These studies are used to check the coverage and the performance of the prediction
intervals. Finally, the method is applied to two case studies to validate the nitrate
data of Yzer basin measured in 2003 and 2004.
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Figure 3.4: Flowchart of the data validation procedure, the fitting step is high-
lighted

3.2 Methods

In section Section 3.2.1 we start with an outline of the modelling procedure. In
Section 3.2.2, the prediction intervals to validate new incoming observations are
constructed. Finally, we present diagnostic plots to asses observations that are
rejected by the prediction intervals.

3.2.1 Additive modelling of the historical data

The main idea of the procedure is to use the historical data to confront new obser-
vations with. In our approach, the information in the historical data is summarised
into a fitted model. The position of this modelling step is indicated on the flowchart
in Figure 3.4. The model should be able to capture the nonlinear relations between
the water quality variables and should also adapt to changes in these relationships.
In this respect, nonlinear models such as AM’s are commonly used in environmen-
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tal applications (e.g. Dominici et al., 2002; Wood and Augustin, 2002; Cai and
Tiwari, 2000; McMullan et al., 2003). To be fully functional for the environmen-
tal agencies, the interaction of the user should be limited. Thus, the model fitting
and selection procedure should be completely data driven, and the methodsshould
rely on a minimum number of assumptions. This requirement, makes the use of
a classical time series approach, such as ARMA, ARIMA or ARX, difficult,since
expert knowledge is typically needed to select the proper structure of thetime series
model. Moreover, the structure is also susceptible to change. The optimal tempo-
ral structure can for instance change over time as the database gets larger. Further,
the data of environmental agencies are often based on samples that are collected
at time intervals that are larger than two weeks. With such a sample frequencya
large part of the temporal dependence is due to trend and seasonal variations. Wa-
ter quality data are often considered to be independent when seasonality and trend
are accounted for (Van Belle and Hughes, 1984). Finally, it is also desirable that
the method can assist the operator to gain insight in the relations between the water
quality variables. This can be of great value for the in-depth analysis of rejected
data.

Given these considerations, we propose to use additive models for the description
of the historical data. They were introduced in Chapter 2. Supposeq predictor
variablesxjt, j = 1, . . . , q, and a response variableyt are sampled at timest =
1, . . . , n and letxj be ann×1 vectorxj = (xj1, . . . , xjn)

T andy be ann×1 vector
y = (y1, . . . , yn)

T . Then a typical dataset can be represented by ann × (q + 1)
matrixD = (x1, . . . ,xq,y). Further,y is assumed to be normally distributed with
a conditional mean E(y|x1, . . . ,xq) = m(x1, . . . ,xq) and a constant variance
σ2. In the additive model framework, the regression surfacem(.) is approximated
by the sum ofq additive functions andy is modelled byy = α +

∑q
j=1 f j + ǫi,

where then × 1 vectorf j = (fj(xj1), . . . , fj(xjn))
T contains the contributions

corresponding to eachxjt. This structure allows additive models to possess a nice
interpretation feature. Once the model is fitted, the predictor effects can bestudied
separately. This enables the operator to get a simple graphical representation of
the relationships between the response and each of its predictors (conditional on
the other predictors in the model). But a price has to be paid for this additivity,i.e.
the model will always remain an approximation of the true regression surface, but
hopefully a good one.

Since we want to avoid an ARIMA-like approach, the predictors in the model
should be capable of capturing the temporal dependence which is present in the
original time series. Therefore we will model the responsey by the use of a sea-
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sonal effect coded by the day number (1-365), a long-term trend, thetemperature
and several other water quality variables. Because we want the data to drive the
functional relationship between the predictor variables and the response, we use
local polynomial regression smoothers to model each relation between a predic-
tor and the mean response. In Section 2.2.3 local polynomial smoothers werein-
troduced. Fan (1992) showed that the local linear regression smootheris the best
among linear smoothers. Fan (1992), Fan and Gijbels (1996), and Hasti and Loader
(1993) also showed that local polynomial regression adjusts automatically for bias
at the boundary and are design adaptive in the sense that they also adjust for bias
in regions where the predictors are nonuniform. As another advantage,they also
enable straightforward generalisations of classical statistical inferenceprocedures
(Cleveland and Devlin, 1988; Fan and Gijbels, 1996; Loader, 1999b).For local
polynomial regression smoothers the degree of smoothness is determined bythe
bandwidth. A choice has to be made between fixed or variable bandwidths. In Sec-
tion 2.2.4 we have motivated the use of nearest neighbourhood bandwidths. In this
case, the size of the neighbourhood is determined by the span, which is a fraction
of the total number of data points. On data-rich locations this results in smaller
bandwidths, and in data-sparse regions larger bandwidths are used. Since we are
interested in the mean model (degree 0), the degree of the local polynomial ischo-
sen to be 1, following Fan and Gijbels (1996) recommendations to use the lowest
odd order for the local polynomial (see also Section 2.2.3)

Model selection is a crucial step in the construction of a new model. Here, the
model selection involves the selection of the predictor variables and the associated
bandwidths of the local linear smoothers. As shown in Section 2.5, the BRUTO
algorithm can be used for both model fitting, model selection and tuning of the
smoothing parameters. From a practical point of view, this is computationally in-
teresting since the additive model only has to be fitted once. Other model selection
algorithms often require fitting multiple candidate models and tuning their corre-
sponding smoothing parameters. The model selected by the BRUTO algorithm is
subsequently used for the validation of the new observation. The modelling proce-
dure is illustrated extensively on a real data case in Section 3.3.1.

In the flowchart represented in Figure 3.4 it can be seen that the model is rebuilt
each time a new observation is validated and added to the database. Hence, the
BRUTO algorithm is executed each time the data series is extended. This approach
ensures an optimal model fit at each time instant, i.e. as the data set grows larger,
better approximations of the underlying surfacem and a lower variance estimator
are often obtained. Because the model is used for the construction of prediction
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Figure 3.5: Flowchart of the data validation procedure. The constructionand the
application of the PI are highlighted

bands, a smaller variance ensures a better detection of suspicious observations.
Methods to obtain these intervals are given in the next section.

3.2.2 Prediction intervals

To validate new data, a prediction interval (PI) is constructed and the data are
considered valid if it is located within the PI. These steps in the data validation
process are indicated on the flowchart in Figure 3.5.

A PI, however, differs from the pointwise confidence intervals for the mean derived
in Section 2.4. A confidence interval reflects how accurate the mean is estimated.
The data validation procedure, however, requires an interval estimate associated
with the location of a new single observation. Under the normality assumption,
the conditional distribution of an observation at timen + 1, given the covariates, is
N(m(xn+1), σ

2). Hence, the prediction interval has to incorporate both the model
uncertainty due to the estimation ofm(xn+1) and the additional variability (σ2)
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associated with single observations that fluctuate around the mean.

Two different approaches are presented to construct prediction intervals: an ana-
lytical procedure which only works for AM’s with linear smoothers and assumes
the errors to be Gaussian, and double bootstrap procedures that workunder less
stringent conditions. The latter are fully nonparametric and they can cope with
any type of AM and non-Gaussian errors. Both methods assume that the residu-
als are independently distributed. The data used in this study is based on monthly
grab samples. When the water quality data are sampled at intervals larger thantwo
weeks, a large amount of the dependences are known to be only related toseason-
ality and trend (Van Belle and Hughes, 1984). Additionally other water quality
variables are used as predictors and they can also model a part of the temporal de-
pendence. Another assumption is that the bias of the estimator is negligible. In
the presence of bias, the variance estimate is inflated and this would result in more
conservative interval estimates (e.g. Giannitrapani et al., 2005).

3.2.2.1 Analytical prediction intervals

Before the analytical PI’s can be constructed, an estimator of the variance of a new
prediction is needed. As shown in Section 2.4.1, a projection matrix exists when
the AM is build up by linear smoothers. In this case, the prediction by the smoother
at a certain predictor value is always a linear combination of the observed values
of the responses. From Section 2.2.3 we know that for local linear smoothers (first
order polynomial), the prediction corresponding to a predictor valuex0 is

[

1 0
]

(xTcW 0xc)
−1xTcW 0y. (3.1)

Thus its corresponding (row)smoothing vector can be written as

S0 =
[

1 0
]

(xTcW 0xc)
−1xTcW 0. (3.2)

In the additive modelq smoothers are used and to make each function identifi-
able, an additional constraint was introduced,

∑n
t=1 fj(xjt) = 0, j = 1, . . . , q.

Let Sk,n+1 be a similar row smoothing vector for thekth smoother evaluated in
xkn+1. To calculate the contribution of thekth predictor at timen + 1 its cen-
tered smoothing (row)vector is needed. In Section 2.3 it was shown that then× n
centered smoother matrixS∗

j = (I − 11T/n)Sj are used for that purpose. The

kth centered1 × n smoothing (row)vector corresponding toxkn+1 is given by
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S∗
k,n+1 = Sk,n+1 − 1TSk/n. Similar as in Equation 2.23 an estimate of the

contribution of thekth predictor functionf̂k,n+1 of the additive model is given by

f̂k,n+1 = S∗
k,n+1(y −α−

∑

k 6=j

f̂ j)

= S∗
k,n+1(I −

∑

k 6=j

Hj)y

= Hk,n+1y. (3.3)

The estimate of the mean response at timen + 1, ŷn+1, then becomes

ŷn+1 = α̂ +

q
∑

j=1

f̂j,n+1 (3.4)

= (1T /n +

q
∑

j=1

Hj,n+1)y

= Hn+1y,

and its variance is thus
σ2
ŷn+1

= Hn+1H
T
n+1σ

2. (3.5)

This variance refers to the uncertainty associated with prediction of the meanof the
new observation at timen + 1, and not to the variance of a new single observation.
The variance needed for the construction of a PI of a new single observation is
decomposed into a part related to the uncertainty of the modelled mean,σ2

ŷn+1
, and

into the part due to residual variance,σ2. Thus, the variance for calculating a PI
becomes

σ2
yn+1

= (Hn+1H
T
n+1 + 1)σ2, (3.6)

andσ2 is estimated as in Equation (2.34). After plugging this into Equation (3.6),
a1− α PI is given by

[ŷn+1 − z(1−α
2
)σ̂yn+1 , ŷn+1 + z(1−α

2
)σ̂yn+1 ], (3.7)

andz1−α/2 is the1 − α/2 percentile from the standard normal distribution. This
analytical PI is also referred to as aPI.

3.2.2.2 Bootstrap intervals

In general, the estimation of additive models does not have an analytical solution
and the errors can deviate from normality. The analytical intervals as described
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in Section 3.2.2.1, only exists when linear smoothers are used as building blocks
and their coverages are only correct when the errors are Gaussian.In this section,
a procedure is proposed for the construction of the prediction intervals that can
cope with additive models in general. Unfortunately, an analytical derivation does
not exist for the PI for the general case and it implies the use of computationally
intensive methods for variance estimation such as bootstrapping. The use of the
bootstrap, however, has the advantage that it does not impose strong parametric
assumptions on the distribution of the errors.

A general introduction to the bootstrap in a regression context is given in Section
2.4.2. It was used to approximate the distribution of an certain statisticθ̂ = t(D).
Here the aim is to construct a prediction interval for a new single observation.
Hence we put̂θ = t(D) = ŷn+1. In Section 2.4.2 we have motivated to generate
bootstrap samples by resampling the errors (êi). Resampling cases is not really an
option, since it changes the sample design. Water quality data are gathered over
time, and so the time covariate is not sampled at random. In this case, bootstrap
samples are generated by resampling from the empirical distribution of the residu-
als, sayF̂ , and creating bootstrapped responses by

y∗(b) = ŷ + e∗(b), (3.8)

wheree∗(b) is a bootstrap replicate of the residuals. A bootstrap dataset is then
constructed asD∗(b) = (x1, . . . ,xq,y

∗(b)). The most straightforward method
to obtaine∗(b) is to resample the crude errorsêi. When a projection matrixH
exists for the models, Davison and Hinkley (1997), however, suggestedto sample
the residuals from the distribution of the centred adjusted residualsrt − r̄, where
rt is defined as

rt =
ǫ̂t√

1− htt
, (3.9)

whereht is thetth diagonal element of the projection matrixH andr̄ is the average
of thert.

In Section 2.4.2 we have derived a bootstrap procedure to construct confidence
intervals. Here, the aim is to construct a prediction interval on a single new ob-
servation. Hence, two sources of variability are involved in the derivationof the
PI: the uncertainty due to the model prediction and the variability of the residuals.
Therefore a double bootstrap procedure is needed. The main loop takesthe vari-
ability of the model estimator into account. The second loop adds the additional
variability that is associated with a single observation. Two types of bootstrapin-
tervals are considered: a percentile based PI and a standardised prediction error
based PI, where the prediction errorδn+1 is defined byδn+1 = ŷn+1 − yn+1.
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The percentile method proceeds as follows:

1. Fit the additive model to the historical datasetD

2. Use the fitted model to calculate the predictionŷn+1

3. Extract the empirical distribution̂F of the residuals

4. First bootstrap loop: Forb1 = 1, . . . , B1

(a) Take a bootstrap sample of the residualse∗(b1) and construct a boot-
strapped responsey∗(b1) by adding these residuals to the fitted values
of the AM, y∗(b1) = ŷ + e∗(b1). The bootstrapped datasetD∗(b1)
now becomesD∗(b1) = (x1, . . . ,xp,y∗(b1)).

(b) Fit an AM model toD∗(b1), and compute the bootstrapped prediction
ŷ∗n+1 .

(c) Second bootstrap loop: Forb2 = 1, ..., B2

i. Sample at random a residuale∗(b2) from the empirical distribution
of the residuals (̂F ).

ii. The bootstrap estimatêθ∗(b1, b2) for the new observation is given
by θ̂∗(b1, b2) = ŷ∗n+1 + e∗(b2) .

5. 1 − α confidence intervals are calculated from the bootstrap distribution of
θ̂∗, sayĜ∗. First theθ̂∗’s are ordered so that̂θ∗(1) ≤ . . . ≤ θ̂∗(B1B2). The

interval is obtained by taking theα/2 and1− α/2 percentiles ofĜ∗ (Efron
and Tibshirani, 1993) and is denoted as

[θ̂∗(⌊B1B2
α
2
⌋), θ̂

∗
(⌊B1B2(1−α

2
)⌋+1)]. (3.10)

This percentile bootstrap PI is referred to as the %bPI.

Davison and Hinkley (1997) showed for linear models that the PI also can be es-
timated by computing the bootstrap distribution of the studentised predictions er-
rors,z = δ/σ̂, mimicking the standard normal theory, where the prediction error
δn+1 = ŷn+1 − yn+1 andσ̂ =

√

(RSS/dferr). This idea can easily be adopted to
additive models and require steps 4 and 5 of the main bootstrap loop to be replaced
by
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4. First bootstrap loop: Forb1 = 1, . . . , B1

(a) Take a bootstrap sample of the residualse∗(b1) and construct a boot-
strapped responsey∗(b1) by adding this residuals to the fitted values of
the AM. y∗(b1) = ŷ + e∗(b1). The bootstrapped datasetD∗(b1) now
becomesD∗(b1) = (x1, . . . ,xp,y∗(b1)).

(b) Fit an AM model toD∗(b1), and compute the bootstrapped prediction
ŷ∗n+1 and the standard deviation of the corresponding residuals,σ̂∗(b1).

(c) Second bootstrap loop: Forb2 = 1, ..., B2

i. Sample at random a residuale∗(b2) from the empirical distribution
of the residuals (̂F ).

ii. Compute the standardised prediction errorz∗(b1b2) = δ∗(b1b2)/σ̂∗(b1)
with δ∗n+1(b1b2) = ŷ∗n+1 − (ŷn+1 + e∗(b2)).

5. The bootstrap prediction interval, after ranking thez∗’s to z∗(1) ≤ . . . ≤
z∗(B1B2) is given by

[ŷn+1 − σ̂z∗(⌊(B1B2)(1−α
2
)⌋+1), yn+1 − σ̂z∗(⌊(B1B2)α

2
⌋)]. (3.11)

This standardised prediction error based bootstrap PI is referred to assbPI.

3.2.3 Diagnostic plots

When an observation is rejected it has to be passed on to an expert for further evalu-
ation. This step requires the interaction of the user and is indicated in the flowchart
of Figure 3.6. There are several possible causes for the rejection of incoming data,
such as changes in the system, illegal spills, errors during the analysis in thelabo-
ratory, wrong calibration of the equipment, outliers in the predictor variablesand
so on. Since other physico-chemical variables are present in the model aspredictor
variables, it is possible that an outlier in one of these variables results in a false
rejection of the incoming response data: A predictor has an additive effect on the
outcome of the model, and outliers can result in an extreme value of the predictor
function, resulting in a shift in the PI. At first sight this looks like an anomaly of
our methodology. However, such shifts can be detected by simply leaving thepre-
dictor out of the model: If the prediction was performed at an outlying observation
in a particular predictor variable, the interval will shift back when this predictor
variable is omitted from the model. The plots of the PI’s made with these reduced
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Figure 3.6: Flowchart of the data validation procedure. The expert evaluation stage
is highlighted

models can assist the expert in his/her evaluation of rejected data. The useof the
diagnostic plots is illustrated in the case study in Section 3.3.4.

3.3 Results and discussion

The data that we use in this section all belongs to the Yzer catchment. A description
of the catchment can be found in Section 1.2. First the entire methodology is
illustrated on a real data case. The results of this case are then used to generated
synthetic data for a simulation study and a power study. These studies are needed to
check the coverage and the performance of the derived prediction intervals. Finally,
the method is applied to two case studies to validate the nitrate data of the river Yzer
measured in 2003 and 2004. In a first case, two years of data are validated at one
sampling location. In a second case, the data validation is applied to two years of
data on all sampling locations of the river basin that contain enough data to fitthe
AM models.
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3.3.1 Illustration of the methodology on a real data case

The methodology is illustrated on the data of sampling location S5 which was
introduced in Section 1.2. The sampling location is located along the river Yzer
and its particular location is highlighted in Figure 1.2. The dataset consists of
8 variables, (1) Day number throughout the year, (2) time, (3) temperature, (4)
dissolved oxygen (DO), (5) nitrite (NO−2 ), (6) chemical oxygen demand (COD), (7)
pH and (8) nitrate (NO−3 ). The observations of the following months were missing:
July-September 1990, December 1991, December 1993, November 1994, January-
December 1995, January 1997, November 1998, July 1999, December1999 and
September 2001. First, the additive model is built by using all available data before
01/01/2003 and the quality of the model is evaluated in a residual analysis. Then
this AM is used to validate a new observation obtained at 14/01/2003 by using the
different PI’s.

3.3.1.1 Procedure to build the additive model

The nitrate concentration is modelled using an additive model. For the predictor
functions of the model only local linear smoothers are used. Hence, the model is
fully nonparametric. The first 7 variables are allowed to be included in the final
model. In Chapter 1 it was shown that a considerable amount of seasonalvariation
was present in the data. A common approach to model this variation is to include
sinusoidal functions of fixed periods to describe the seasonal cycle within a year
(e.g. Hirst, 1998, Cai and Tiwari, 2000 McMullan et al., 2003 and McMullan,
2004). The day of year (support[0, 365]) is often used for this purpose. In Figure
1.6 two fits are shown. One by using sinusoidal functions and another by using
a smoother to model the seasonal effect. Both approaches use the day ofyear as
predictor. In this section we have chosen for a fully nonparametric approach and
use a smoother to model the the seasonal effect. The BRUTO algorithm is used for
model selection. The BRUTO algorithm starts with the null fitŷ = ȳ, whereȳ is
then × 1 vector ȳ = (ȳ, . . . , ȳ)T . During each iteration the GCV is optimised
either by including a certain variable in the model, by adjusting its span or by
removing the variable from the model. For each iteration the change of the GCV
and the degrees of freedom of the model are given in Figure 3.7. The numbers in
the plot indicate which of the predictors was adjusted in each cycle. During the
first 4 cycles predictors 1, 6, 7 and 2 are included in the model. From the 5th up to
the 9th cycle the spans of the selected predictors are adjusted. In cycle 10 and 11
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Figure 3.7: Left: Convergence of the GCV criterion when BRUTO is appliedto
the data of sampling location S5 along the river Yzer. Right: The evo-
lution of the total degrees of freedom in the model in function of the
iteration number. The numbers along the curve indicate which of the 7
predictors is updated

predictors 5 an 4 are selected. And the last cycles consist of adjusting thespans of
predictors 7 and 6. The final model includes predictors 1,2,4,5,6 and 7. Notice that
the temperature (3th predictor) is never included in the model. At first, the GCV
decrease is steep, which is due to the take up of extra predictors in the model.This
is also reflected in the steep increase of the associated degrees of freedom.

The resulting model is presented in Figure 3.8. To enable a graphical representa-
tion of the high dimensional regression surface, we have chosen to represent the fit
as a function of the temporal dimension (Figure 3.8 top). The effect of each of the
predictors is shown in Figure 3.8 in the remaining panels. All fits are accompanied
by 95% pointwise confidence intervals. A fitted valueŷt is equal to the sum of
the general meanα and each of the contributions of the corresponding predictor
valuesfj(xjt). The figure shows a clear seasonal pattern with low contributions
in summer and high contributions in winter, and an increasing contribution of the
temporal trend (Time) until 1998 and decreasing trend from 1999 on. LowDO con-
centrations seem to have a negative contribution on the nitrate concentration, while
high DO concentrations have a positive contribution. The contribution of COD is
inversely related to the nitrate concentration and levels off at high COD concentra-
tions. The contributions of DO and COD can be explained from the biochemical
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processes that are taking place in the river. Low dissolved oxygen concentrations
limit the nitrification process which converts ammonium to nitrate as it requires
oxygen to be completed. Such low oxygen levels are typically occurring at high
COD levels. Additionally, in anoxic conditions (in the absence of oxygen andthe
presence of nitrate), certain micro-organisms can use nitrate to replace oxygen as
electron acceptor and in the presence of organic matter they convert nitrate to ni-
trogen gas which eventually escapes from the water phase. The contribution of
nitrite seems to be approximately proportional to the actual nitrate concentration.
In Figure 3.8 it can be seen that the model is sufficiently flexible to model a large
part of the variation of the original data series.

Once the model is fitted, one can predict the mean response for a new observation
by simply adding the individual effects for each of the predictor variablesobserved
at timen + 1. In this way a new nitrate value can be calculated, given its day
of year, time, DO, NO−2 , COD and pH values measured for the particular sample
under validation.

The model quality is checked in a residual analysis. Residual plots are constructed
by plotting the residualŝǫt’s in function of each predictor. They are presented in
Figure 3.9. From the residual plots the data seem more or less homoscedastic.
The variance estimate of the residuals isσ̂2

S5 = 18.7. Friedman’s supersmoother
(Friedman, 1984) is added to each residual plots to assist in visualising the residual
pattern. They show that the mean of the residuals is centred around zero,except in
data sparse regions at the endpoints. This is likely to be a boundary effectof the
smoother. At the boundaries, the data are sparse and a few residuals can have a
large influence on the fit of the smoother used in the residual plot. In Figure3.10
the histogram and the QQ-plot of the residuals indicate deviations from normality
in the upper tail and suggest that the residuals are distributed with a slight tailto
the right. The boxplot also shows some outliers. When the outliers are removed,
the residuals appear to be almost Gaussian (results not shown). Note thatin our
application these nitrate observations cannot be removed because they might be
extreme events which are characteristic for the data-generating process. Moreover,
the technique is based on the assumption that all historical data has been validated.
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Figure 3.8: AM for nitrate at sampling location S5 at the river Yzer. Nitrate is
modelled by a seasonal effect (day), long term trend (Time), DO, COD,
nitrite and pH. The top panel shows the data and the lower panels show
the contribution of each predictor
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Figure 3.9: Residual plots for the additive model in Figure 3.8. Friedman’s super-
smoother is added to each plot to assess the residual pattern

residuals (mg−N/l)

F
re

qu
en

cy

−10 0 5 10 15

0
5

10
15

20
25

30

−
5

0
5

10
15

re
si

du
al

s 
(m

g−
N

/l)

−2 0 1 2

−
5

0
5

10
15

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 3.10: Histogram, boxplot and QQ-plot of the residuals from the additive
model in Figure 3.8
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Figure 3.11: Variogram of the original nitrate series (left) and of the residuals after
fitting the AM from Figure 3.8 (right). 10 variograms generated from
white noise with the same variance are added to the plot (thin grey
lines)

The presence of serial correlation in the residuals is checked using the runs test
and by making a variogram of the residuals. The runs test is a nonparametric test
that checks the randomness hypothesis of a data sequence (see, e.g., (McWilliams,
1990)). The run test on the residuals gives a p-value of 0.78, which clearly accepts
the null hypothesis of randomness. A variogram is a tool to visualise autocor-
relation in unequally spaced observations. To construct the variogram, first the
differencesd(ij) = yi − yj and the time differences∆t(ij) = ti − tj are cal-
culated for all observationsi and j. According to their time difference∆t(ij),
all differencesd(ij) are classified in time distance classes with mean time dis-
tance∆t,k. The distance classes are taken to be equal in size and the bin-length
is taken at 30 days. For each distance classk the semivariance is estimated as
ρk =

∑nk

i=1 d2
i /(2nk). The semivarianceρk is then plotted against∆t,k. The left

panel of Figure 3.11 represents the variogram for the original data series and the
right panel displays the variogram for the residuals of the AM. The greylines in
the background are variograms obtained when white noise was created withthe
same variance as the variograms of interest. The original nitrate measurements are
clearly autocorrelated and the seasonal pattern is very obvious. After the AM was
fitted, the autocorrelation is completely removed and the variogram behaves ina
similar way as the ones originating from white noise.
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The additive model for the historical data is fitted and the residuals are shown to be
independent. The model can now be used to construct a prediction interval for new
observations. In the next section, the validation is performed using the 3 different
PI’s described in Section 3.2.2.

3.3.1.2 Validation of a new observation by the use of prediction intervals

In the previous section an additive model was established using the data before
01/01/2003. The first new observation is acquired on 14/01/2003 and willbe val-
idated. The AM is used to perform a prediction of the fitted responseŷn+1,S5 =
12.3. The estimated variance corresponding to this prediction isσ̂2

ŷn,S5 = 2.6.
The prediction interval for nitrate on 14/01/2003 is given in Figure 3.12. Instead
of creating a two-sided interval, it makes more sense for nitrate to use a one-sided
interval by concentrating all the uncertainty in the upper tail. Low nitrate concen-
trations are not harmful for the environment, so it is more interesting to focuson
a faster detection of abnormal high nitrate concentrations. In the double bootstrap
procedure 1000 bootstraps are calculated for each bootstrap loop (B1 andB2) re-
sulting in 1 million bootstrap replicates (B1B2). In the left panel the historical data
are presented together with the optimal fitted model. In the right panel, the new
observation is represented by a dot and the upper limit of the bootstrap interval is
indicated using the 3 different methods. The %bPI seems to be slightly higher than
the aPI and the sbPI. The new observation lays in all intervals. Hence, thenew
observation is declared valid and can be added to the historical database.

In this study,B1 andB2 are chosen to be 1000, resulting in 1 million bootstrap
replicates (B1B2). In the ideal case, however, the number of bootstrap replicates
should be taken to be∞. In practice this is not feasible and the number of bootstrap
replicates is set at a large value. This leads to a bootstrap resampling variability.
Thus, when the calculation of the bootstrap PI is repeated on the same data, the ob-
tained PI will be slightly different. To stabilise the bootstrap resampling variability,
the number of bootstrap replicates should be taken large enough. In a double boot-
strap procedure, the bootstrap resampling variability is introduced in both loops.
To control the bootstrap resampling variability due to the first loop, the size ofB1

should be appropriate. The bootstrap resampling variability caused by the second
loop is controlled byB1B2. Hence stable intervals are obtained by takenB1 and
B1B2 large enough. The latter can be obtained by taking the numberB1 very
large and by takingB2 = 1 or by using moderate values for bothB1 andB2.
In a practical implementation, the computational complexity associated with both
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Figure 3.12: Prediction interval for the nitrate concentration on 14/01/2003. Left
panel: historical data with model fit. Right panel: The new observa-
tion (dot) is accepted by the tree one-sided prediction intervals

bootstrap loops has to be taken into account. Here, the computational load ofthe
second loop is negligible compared to the first loop. Hence, it is interesting to take
B1 as small as possible in order to reduce the computational power. The impact
of the sizes ofB1 andB2 is assessed in Figure 3.13. One sided intervals were
calculated to validate nitrate measurements. For the same dataset 50 bootstrap in-
tervals are calculated for (1)B1 = 1000, B2 = 1, (2) B1 = 10000, B2 = 1,
(3) B1 = 10000, B2 = 100 and (4)B1 = 1000, B2 = 1000. For cases (1)
and (4), the time needed to calculate the intervals was almost equal because the
computational complexity associated with the calculation of 1000 AM’s in the first
bootstrap loop is much larger than the complexity needed for the second step.For
case (2) and (3), however, 10 times more computational time was needed because
the first loop was executed 10 times more. The figure clearly illustrates that for case
(4) the one sided interval is estimated much more accurately than in case (1) where
there is still a considerable amount bootstrap resampling variability. The stability
of the intervals in (4) was slightly better than in case (2). This is because the sec-
ond loop was only executed 10000 times for case (2) compared to 1000000times
for case (4). In case (3) a small gain in accuracy can be observed compared to case
(4). In both cases the second loop is assessed 1000000 times. Hence thebootstrap

75



Chapter 3. Data validation

B1=1000, B2=1

Nitrate (NO3−N mg/l)

F
re

qu
en

cy

16 20 24

0
5

15
25

B1=10000, B2=1

Nitrate (NO3−N mg/l)

F
re

qu
en

cy

16 20 24

0
5

10
20

B1=10000, B2=100

Nitrate (NO3−N mg/l)

F
re

qu
en

cy

16 20 24

0
4

8
12

B1=1000, B2=1000

Nitrate (NO3−N mg/l)

F
re

qu
en

cy

16 20 24

0
5

10
15

Figure 3.13: Effect of the number of bootstraps in the first and second loop on
the bootstrap resampling variability of one-sided 95% sbPI. Each his-
togram displays the empirical distribution of the upper limit of the
one-sided 95% sbPI and is based on 50 PI’s. B1 is the number of
bootstraps in the main bootstrap loop and B2 is the number of boot-
straps in the second bootstrap loop

resampling variability induced by the second loop is controlled at the same level.
In case (3) the first loop is executed 10 times as much as in case (4) and therefore
a slight reduction of the bootstrap resampling variability is established. But thisis
at the expense of an increase in the computational time by a factor of 10. In order
to reach an acceptable accuracy while keeping the computational time limited we
decided to useB1 = 1000 andB2 = 1000.
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3.3.2 Evaluation of the coverage of the PI’s in a simulation study

In theory, 95% prediction intervals should contain (cover) 95% of the dataif they
follow the model. In a simulation study we can calculate the coverage empirically.
A large number of simulated datasets have to be generated and for each dataset an
observation at timen+1 should be validated. The data are simulated from a known
mean model and a pre-specified distribution of errors. The empirical coverage is
then calculated as the ratio between the number of simulations where the validated
observation is accepted and the total number of simulations. In this study the em-
pirical coverages of three different PI’s derived in Section 3.2.2 areassessed. Five
different types of distributions are used in this study, normal residuals, two types of
residuals originating from right-tailed distributions and two types of residualsorig-
inating from left-tailed distributions. The results of the nitrate dataset at location
S5 in Section 3.3.1 are used to generate the data for the simulation study. First we
will explain how we obtain samples from right-tailed distributions. Weibull distri-
butions with shape factors of 1 and 2 are used. The scale parameter can be chosen
arbitrarily because the simulated residuals are standardised and multiplied with the
standard deviation̂σS5 of the residuals obtained from the fitted model in Figure
3.8. The residuals from the left-tailed distributions are generated by changing the
sign of the residuals from the right-tailed distributions. Plots of the distribution
functions that are used in the simulation study are given in Figure 3.14. For the
normal residuals we sample from a normal distribution with mean 0 and variance
σ̂2
S5.

Once we can generate new residuals with the same variance as the original data,
simulated datasets are constructed. Firstn residuals are simulated from a particular
distribution, and they are denoted byǫ∗. The simulated datasetsD∗ then consist of
the original predictors (x1, . . . ,xq) and the simulated responsey∗ = ŷ + ǫ∗. For
the simulated datasets, the values of the true underlying functionm(x1t, . . . , xqt),
t = 1, . . . , n, and the observation under validation at timet = n + 1 are known.
They are thêyS5 andŷn+1,S5 represented in Figure 3.12, respectively.

For each distribution, 5000 datasets were constructed. Because the simulatedy∗n+1

originate from a distribution with a mean of̂yn+1,S5, the empirical coverage of
the 95% PI’s should be close 95%. The empirical coverage for the different in-
tervals are given in Table 3.1. The aPI’s seem to be slightly too large for the
Gaussian case. The coverage of the aPI’s reduces when the data areright-tailed
and increases when the data are left-tailed. This effect is even more apparent when
the distribution becomes more asymmetric. The %bPI seems to have the tendency
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Figure 3.14: Density functions of the residuals used to generate the data for the
coverage study

Table 3.1: Coverage (in %) of 95% PI’s for data originating from different distri-
butions

Analytical Bootstrap
Distribution aPI %bPI sbPI
Gaussian 96.4 97.2 95.0
Right-tailed, W1 94.1 96.0 94.5
Moderately right-tailed, W2 95.5 96.6 94.8
Moderately Left-tailed, W3 98.8 98.5 95.2
Left-tailed, W4 99.8 99.9 96.6

to be too large, the results for the different distributions are all above 95%. Only
the sbPI seems to reach the correct coverage and is robust to deviationsfrom nor-
mality. The coverage of %bPI is known to be problematic (Efron and Tibshirani,
1993; Davison and Hinkley, 1997). Corrections for percentile based intervals exist,
for instance Efron and Tibshirani (1993) suggested bias and acceleration corrected
intervals. But the implementation of the methods they suggested is not straightfor-
ward for our the double bootstrap procedure because the second loopconsists of
adding a random residual. For the semi-automatic data validation procedure,aPI’s
are preferred from a computational point of view. However, their coverage can be-
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have poorly, particularly for the combination of upper bounded one-sided PI’s and
residuals that follow a left-tailed distribution. The coverage of studentised predic-
tion error based bootstrap PI’s (sbPI) however are rather robust tothe distribution
of the residuals and therefore we suggest to use this PI for data validationpurposes.

For all 5 distributions, the coverage of the sbPI is close to the nominal value of 95%
and in the data validation procedure, we will use this PI to validate a new observa-
tion. Under the null hypothesisH0, a new observation is valid given the observed
historical data when it lays in the PI. Under the alternative hypothesisH1, the new
observation is not valid. The decision error of concludingH1 when in realityH0 is
true is called the type I error. It may also be called a false positive. When 95% PI’s
are used to validate the new observation, the corresponding probabilityα = 0.05
is referred to as the type I error rate or the type I error level. Because the empirical
coverage of the sbPI is close to the nominal value of 95%, it correctly controls
for the type one error. Beside controlling the type one error, the power isanother
feature which is important in statistical testing. It is the probability to rejectH0

whenH1 is true. Hence, the higher the power, the higher the probability to detect
a deviating observation. The power of the validation procedure is assessed in the
next section.

3.3.3 Evaluation of the power

Again, the model fitted in Figure 3.8 is used to construct simulated datasets. The
residuals,ǫ∗, are simulated from the normal distributionN(0, σ̂2

S5) . The simu-
lated datasetsD∗ consist of the original predictors (x1, . . . ,xq) and the simulated
responsey∗ = ŷS5 + ǫ∗. Thus for the simulated datasets, the values of the under-
lying mean functionm(x1t, . . . , xqt) evaluated at the predictor points(x1, . . . ,xq)
andxn+1 areŷS5 andŷn+1,S5, respectively. Now a systematic deviation is intro-
duced in the simulated data(xn+1, y

∗
n+1) that will be validated. Instead of validat-

ing y∗n+1 = ŷn+1,S5 + ǫ∗, y∗n = ŷn+1,S5 + ǫ∗ + lσ̂S5 is used and the corresponding
power to detect this deviation is calculated. To derive a complete power curve,
different values forl are taken (l ∈ [0, 4]). For each value ofl, 5000 datasets are
generated to calculate the empirical power. The resulting power curve is displayed
in Figure 3.15 (thick line). In the same figure a theoretical power curve is repre-
sented. The theoretical power was found under the assumption that the model un-
certainty could be neglected. In this case, the model predictionŷ∗n follows a normal
distributionN(ŷn+1,S5, σ̂

2
S5). The validated observationy∗n+1 however follows a

normal distributionN(ŷn+1,S5 + lσ̂S5, σ̂
2
S5). Hence the power to detect the devia-
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Figure 3.15: Power curve for the detection of deviations in validated data. (Black
line: empirical power, thin grey line: theoretical power when the
model uncertainty is neglected). The size of the deviations ranges
between 0 and 4 timeŝσS5

tion in y∗n+1 is established by using the distribution functionN(ŷn+1 + lσ̂S5, σ̂
2
S5)

to calculate the probabilityP (y∗n+1 > ŷn+1,S5 +z1−ασ̂S5). This theoretical power
cannot be exceeded because model uncertainty is always present in practical appli-
cations. At the beginning, whenl = 0 both curves start at 5%. This is due to the
use of the 95% PI’s which correctly control the type I error at the 5% level. For
moderate values ofl, the empirical power curve is lower than the theoretical one,
but the empirical power remains remarkable high. This suggests that our method
is well suited for data validation purposes.

3.3.4 Case study I: Validation at one sampling location

The data of sampling location S5 for the years 2003 and 2004 are validated.The
dataset at this location contains 8 variables: day number to model the seasonal
effect, date to model the long term trend, temperature (T), dissolved oxygen con-
centration (DO), nitrite concentration (NO−2 ), chemical oxygen demand (COD),
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pH and nitrate concentration (NO−3 ). The time series starts at April 1990 and ends
in December 2004. All 8 variables are measured on a monthly basis. The datafrom
1990 until December 2002 are considered as historical data. The nitrate data from
2003 and 2004 are validated in chronological order. In particular if a new observa-
tion lays within the 95% PI, then the measurement is accepted and considered as
historical data for the validation of the next observation.

The results of the data validation are presented in Figure 3.16. All data from2003
are accepted. The observations in January and February of 2004 are rejected. To
assist the expert with the interpretation of the rejected observations, diagnostic
plots can be generated. First reduced models are created by omitting each of the
predictors one by one from the fitted model. The diagnostic plots consist of the
representation of new PI’s that were obtained with the reduced models. Ifthe ob-
servation is accepted by the PI constructed with the reduced models, it indicates
that there might be something wrong with the relationship between the validated
observation and the omitted predictor. Diagnostic plots for the rejected observa-
tions are given in Figure 3.17 and 3.18, respectively. In the x-axis, the omitted
variable is indicated.

From these diagnostic plots possible explanations for the rejection of the datamay
become clear. The measurement in January is only accepted when the trend(Time)
is omitted from the model, giving a strong indication that this measurement does
not follow the expected long-term trend in the data. The measurement in February
is accepted when the trend or pH are omitted from the model. This indicates again
that a potential cause of the deviation is related to the trend. The nitrate concen-
trations in the beginning of 2004 are known to be unexpectedly high (Anonymous,
2005). The river Yzer is located in the countryside and 2003 was dry year, which
resulted in an accumulation of nitrate in the soil in summer and autumn. The dry
summer of 2003 had a beneficial effect on the nitrate concentration, sincethere
was a limited amount of nitrate washed to the water course by rain. Hence, the
nitrate accumulated in the soil and was washed out in the winter period. Moreover,
January 2004 is recognised to be extremely wet by the Belgian Royal Meteorolog-
ical Institute (KMI). It can be concluded from their data that this phenomenon at
most happens once in a 100 years. The dry summer combined with an extreme wet
winter provoked high nitrate concentrations in the receiving water.
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Figure 3.16: Validation of nitrate at sampling location S5 of the Yzer monitoring
network. Nitrate concentrations in January and February 2004 are
considered as anomalous by the automatic validation procedure. The
dots represent the actual measurements, the solid line the predictions
by the additive model and the horizontal bars are the 95% PI’s

3.3.5 Case study II: Validation of an entire basin

The data from 2003 and 2004 are validated for all sampling locations of the Yzer
basin, containing enough data to fit the models. The dataset at each locationhas
information on 8 variables: Day number, date, T, DO, NO−

2 , COD, pH and NO−3 .
Again, all 8 variables are measured on a monthly basis. The data from 1990until
December 2002 are considered as historical data. The nitrate data from 2003 and
2004 are validated in chronological order. If a new observation lays within the PI,
then the measurement is accepted and considered as historical data for thevalida-
tion of the next observation. The data validation is carried out using 95% sbPI’s.
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Figure 3.17: Diagnostic plots for rejected nitrate concentration of January2004
at sampling location S5 of the Yzer monitoring network. The dot
represents the observation and the black line indicates the location of
the upper limit of the 95% interval

The empirical coverage of the intervals in a certain period is calculated by dividing
the number of accepted observations in this period by the total number of validated
observations in this period. The coverage of the intervals for the whole validation
period, is 91%. However, the coverages for the 2003 data is 94.7% and isclose to
what is expected from theory when no deviations are present. In 2004 the coverage
is only 80 % indicating the presence of a considerable number of anomalous data.
In Figure 3.19 the results of the data validation based on the sbPI’s is presented.
The top panel shows the results of the validation in 2003, in the middle panel the
results of 2004 are given and the bottom panel shows the evolution of the coverage
of the sbPI’s during the whole validation period. Accepted data are indicated with
open dots and the rejected data are presented by black dots. From the middlepanel
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Figure 3.18: Diagnostic plots for rejected nitrate concentration of February 2004
at sampling location S5 of the Yzer monitoring network. The dot
indicates the observation and the black line indicates the location of
the upper limit of the 95% interval

of Figure 3.19, it can be concluded that a lot of the data in the period of January up
to March 2004 are rejected. This is even more obvious in the results presented in
the bottom panel. The bottom panel shows the evolution of the empirical coverage
in each month. In 2003 the coverage is more or less stable at 95%. In the begin-
ning of 2004 a clear drop of the coverages of the PI’s is observed (January 56%,
February 66% and March 67%) indicating that there was a change in the system
during the first months of 2004.

A more general feature can be derived from Figure 3.19: similar to multivariate
techniques, our method can also detect observations to be suspicious even if they
are laying in the centre of the univariate distribution of the nitrate concentrations.
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Figure 3.19: Validation of nitrate at at all sampling locations of Yzer monitoring
network. The top panel: validation in 2003, middle panel: results
for 2004 and the bottom panel: evolution of the coverage of the PI’s
during the whole validation period. Accepted data are indicated with
an open dot and the rejected data are indicated with a grey dot

Hence, our methodology combines the interesting features of multivariate outlier
detection without imposing restricted assumptions on the relationship between the
response and the predictor variables.
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3.4 Conclusions

A method for the validation of river water quality data is proposed. Based onthe
historical data an additive model is fitted, which is subsequently used to construct
prediction intervals for future observations.

Our study indicates that the additive models are clearly able to catch the cyclic pat-
tern present in the data and could model the nonlinear behaviour and relationships
typically associated with river water quality data. As an interesting feature, the
observed associations between the response and the predictors reflect well known
physical and biochemical relationships. Since the model selection is carriedout
at each time step, the models succeed to adapt to changes in the processes of the
underlying river.

From the different prediction intervals which are derived, the studentised predic-
tion error based bootstrap PI’s (sbPI’s) are most interesting to be usedin practice.
The coverages of the 95% sbPI’s have been assessed in a simulation study and in
comparison with analytical intervals, which assume the residuals to be Gaussian,
they appear to be much more robust against deviations from normality. The power
of the method was also shown to be adequate.

The case studies have illustrated that our method could detect anomalous events,
such as an abnormal high nitrate release due to a dry summer which was followed
with an extreme wet winter period. The diagnostic plots are also useful to assist the
operator with the analysis of the rejected observations: here they indicate that the
rejection is related to the trend. In the case studies, the semi-automatic procedure
detects suspicious observations laying at the edges as well as observations located
in the centre of the univariate distribution of the nitrate observations. Hence, it
combines the interesting features of classical multivariate outlier detection tools
without having to impose linear relationships typically associated with these meth-
ods.

An ICT-tool based on this methodology could be of great value to analyse and
maintain environmental databases originating from monitoring networks such as
the ones which are implied by the WFD. Such a tool can be used to check the
quality of the data and it can also detect abnormal changes in the water quality.
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Chapter 4

An introduction to state-space
models

4.1 Introduction

Current environmental legislation has triggered the establishment of monitoring
networks to assess environmental quality. Environmental processes typically show
variability over space and time. Hence, environmental monitoring networks gen-
erate vast amounts of spatio-temporal data. In general these data show arather
complicated dependence structure and cannot be treated as a set of independent
and identically distributed (i.i.d.) observations. Standard statistical data analysis
techniques relying on this i.i.d. assumption are thus not valid. A correct analysis
should take the spatio-temporal correlation into account.
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In this dissertation, we aim to infer on the data at the sampling locations of river
monitoring network and we do not aim to perform predictions at intermediate lo-
cations that are not sampled. Therefore the observations of the monitoring network
at a certain time instant can be considered as the realisation of a finite-dimensional
multivariate random variable with each dimension corresponding to each of the
sampling locations. The state-space model framework, is particularly well suited
to handle multivariate dynamic data. It can be used to treat a wide range of prob-
lems in time series analysis. A nice feature of state-space time series models is
that the observations are considered to consist of several distinct components such
as a trend, seasonal effect, regression elements and disturbance termswhich are
all modelled separately. The models for these components are then combined ina
single model, thestate-space modelwhich forms the basis of the analysis (Durbin
and Koopman, 2001). State-space modelling assumes that the underlying process
is driven by a unobserved series ofm × 1 vectorsS1, . . . ,Sn, the states, that are
associated with a series ofp × 1 observed vectorsy1, . . . ,yn. The states are as-
sumed to follow a stochastic transitional model. Generally, the state-space analysis
aims to infer on the properties of the statesSt by the knowledge of the set of ob-
servationsY s = (y1, . . . ,ys)

T . The estimation ofSt given Y s is referred to
as

1. filtering for t = s,

2. smoothing fort < s and

3. prediction fort > s.

When all stochastic processes are Gaussian, theKalman filtercan be used to ad-
dress the filtering and the prediction problem and theKalman smoothersolves the
smoothing problem. Another interesting feature of the Kalman filter is that it can
be used as a computational efficient algorithm to factorise the likelihood of the
model.

Before we look to Kalman filtering and smoothing into more detail, we first intro-
duce the state-space representation of the model.
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4.2 State-space model

In this section, we assume that no predictor variables are available. Exogenous
variables will be introduced later on in Section 4.3.4. The state-space form assumes
that ap-dimensional multivariate processyt = (y1t, . . . , ypt)

T , is driven by am-
dimensional state processSt = (S1t, . . . , Smt)

T . This state process is believed to
be generated by a first-order Markovian process,

St = ΦtSt−1 + δt, (4.1)

with t = 1, . . . , n, anm×m transition matrixΦt and independentm× 1 vectors
δ1, . . . , δn with zero mean andm × m variance-covariance matricesQt. The
state process however cannot be observed, instead we only observea noisy linear
transformed version of it,yt. The observationsyt are related to the state variable
St via the measurement equation

yt = ZtSt + ǫt, (4.2)

whereZt is ap×m matrix and theǫt (t = 1, . . . , n) are independentp×1 vectors
with zero mean andp× p covariance matrixHt. The matricesΦt,Qt,Zt andHt

are also referred to as the system matrices. They are assumed to be non-stochastic
and to change over time in a predetermined way. The resulting system is thus
linear. When the system matrices do not change over time, the resulting model is
time-invariant. For the model to be completely specified, the distribution of the
initial state,S0, has to be specified.S0 is assumed to be Gaussian with meanλ0|0

and covariance matrixP 0|0. Further theδt andǫt are assumed to be uncorrelated
with each other in all time periods and with the initial state. Hence,

E
(

δsǫ
T
t

)

= 0 for all s, t = 1, . . . , n (4.3)

and
E
(

S0δ
T
t

)

= 0, E
(

S0ǫ
T
t

)

= 0 for all s, t = 1, . . . , n. (4.4)

4.3 Kalman filter and smoother

Most of this section is based on Harvey (1989) and Durbin and Koopman (2001).
Once a model is written in its state-space formulation, the Kalman filter and smoother
can be applied to find the optimal estimator of the state processSt at timet.
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The Kalman Filter provides an estimator ofSt given all observationsyk which
are observed at the time stepsk = 1, . . . , t. LetY t beY t = (yT1 , . . . ,yTt )T , the
filtered estimator ofSt is then the conditional expectation E(St|Y t). The Kalman
filter is important for e.g. online estimation and prediction because it continuously
updates our knowledge of the system each time a new observationyt is brought in.
Another interesting feature of the Kalman filter is that it provides a convenient way
for calculating the likelihood when the initial state vector and the disturbances are
Gaussian.

In offline applications, it is more appropriate to estimate the state vector at a certain
timet conditional on all the information which is available,Y N = (yT1 , . . . ,yTn )T .
Hence, to provide the optimal predictor of the state process at timet, the measure-
ments that are obtained on later time instantst + 1, . . . , n should also be consid-
ered. In this setting E(St|Y N ) is the appropriate estimator and is provided by the
Kalman smoother.

4.3.1 General form of the Kalman filter

Suppose a system is defined by Equations (4.1) and (4.2), and supposethat all
distributions are normal. Let the setY t−1 be the vector of the past observations
Y t−1 = (yT1 , . . . ,yTt−1)

T . Then the conditional distribution ofSt givenY t−1

is also normal,N(λt|t−1,P t|t−1), whereλt|t−1 = E(St|Y t−1) andP t|t−1 =

E
(

(St − λt|t−1)(St − λt|t−1)
T
)

. They can be immediately determined from Equa-
tion (4.1),

λt|t−1 = Φtλt−1|t−1

and

P t|t−1 = ΦtP t−1|t−1Φ
T
t +Qt.

When a new observation becomes available it is our aim to incorporateyt in the
estimation ofSt. In this case the conditional distribution ofSt given Y t has
to be defined. We will denote this particular distribution asN(λt|t,P t|t). Here
λt|t = E(St|Y t) andP t|t = E

(

(St − λt|t)(St − λt|t)T
)

have to be determined.

We first introduce the innovations that are defined as thep × 1 vectorvt = yt −
Ztλt|t−1. They can be regarded as the prediction error. The innovations are nor-
mally distributed with a zero mean and variance-covariance matrixF t.
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Since all variables are Gaussian, standard formulae from multivariate normal re-
gression theory can be used to obtainλt|t andP t|t. Eubank (2006) has shown that
these estimators are basically the best linear unbiased predictor (BLUP) ofthe state
St based on the innovations.

λt|t = λt|t−1 + cov
(

St,v
T
t

)

var(vt)
−1 vt

= λt|t−1 + P t|t−1Z
T
t F

−1
t vt,

and

P t|t = P t|t−1 − cov(St,vt) var(vt)
−1 cov(St,vt)

T

= P t|t−1 − P t|t−1Z
T
t F

−1
t ZtP t|t−1,

where

cov(St,vt) = P t|t−1Z
T
t ,

and

var(vt) = F t = Ztvar(St|Y t−1)Z
T
t + var(ǫt)

= ZtP t|t−1Z
T
t +Ht.

The recursions forλt|t−1, P t|t−1, λt|t, F t andP t|t form the hart of the Kalman
filter.

Supposeλ0|0 andP 0|0 are known, then the Kalman filter can be summarised as
follows: for t = 1, . . . , n the following forward recursions are used and they are
started with timet = 1,

Prediction step
λt|t−1 = Φtλt−1|t−1 (4.5)

P t|t−1 = ΦtP t−1|t−1Φ
T
t +Qt. (4.6)

Update step

λt|t = λt|t−1 + P t|t−1Z
T
t F

−1
t (yt −Ztλt|t−1) (4.7)

F t = ZtP t|t−1Z
T
t +Ht. (4.8)

P t|t = P t|t−1 − P t|t−1Z
T
t F

−1
t ZtP t|t−1. (4.9)
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4.3.2 Likelihood and the predictor error decomposition

In a classical setting, the observationsy1, . . . ,yn are i.d.d. This enables the log-
likelihood function to be written as a sum,

log LYN
(Ψ) =

n
∑

t=1

p(yt), (4.10)

wherep(yt) is the joint density function evaluated inyt and indexed by the param-
eter vectorΨ (dependence is suppressed for notational comfort). The maximum
likelihood estimator is then found by maximising Equation (4.10) with respect to
the parameterΨ.

When the observations are dependent, the decomposition (4.10) is not applicable.
Fortunately, the state-space representation allows a factorisation of the likelihood
by using conditional density functions, resulting in a convenient decomposition of
the log-likelihood

log LY N
(Ψ) =

n
∑

t=1

log p(yt|Y t−1) (4.11)

wherep(yt|Y t−1) is the conditional density function ofyt given all previous ob-
servationsY t−1 = (yT1 , . . . ,yTt−1)

T . When the disturbances and initial state vec-
tor S0 are normally distributed, those conditional density functions are explicitly
known and also Gaussian. From the Kalman recursion in Equations (4.5)-(4.9) it
can be seen that the expected value ofSt conditional onY t−1 is normally dis-
tributed with meanλt|t−1 and covariance matrixP t|t−1. Therefore, from Equation
(4.2) it follows that the conditional distribution ofyt is normal with conditional
mean

E(yt|Y t−1) = Ztλt|t−1 (4.12)

and covariance matrixF t. Thus, for a Gaussian model, the Kalman filter can be
exploited to formulate the log-likelihood immediately as

log LY N
(Ψ) = −pn

2
log 2π − 1

2

n
∑

t=1

log |F t| −
1

2

n
∑

t=1

vTt F
−1
t vt, (4.13)

where the innovationsvt can be interpreted as the vector of the prediction errors.
Equation (4.13) is therefore referred to as the prediction error decomposition of the
log-likelihood.
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When appropriate prior information onS0 is available, the prediction error decom-
position of the log-likelihood will yield the exact log-likelihood of all observations,
Y N . In most cases, however, genuine prior information is not available. Several
possibilities that are commonly used for initialisation are introduced in the next
section.

4.3.3 Kalman filter initialisation conditions

In a Bayesian framework and in the absence of genuine prior information,the
Kalman filter is often initialised by the use of a diffuse prior. The state variable
S0 is then assumed to be Gaussian distributed, sayS0 ∼ MV N(0, κI), where
κ is a positive scalar,I is anm ×m identity matrix. The diffuseness is obtained
whenκ becomes large. However,κ is not allowed to grow unboundedly because
thenP−1

0|0 no longer exists and the distribution does no longer integrate to one. For
most practical casesκ is set at an arbitrary large finite value. A largeκ makes
the variances (diagonal elements ofP 0|0) large, and so it limits the amount of
information contained inS0.

Another common approach is to look toλ0|0 andP 0|0 as parameters that have
to be estimated. In this case,m parameters have to be estimated forλ0|0 and
m(m + 1)/2 parameter estimates are needed forP 0|0. To restrict the number of
parameters related to the initial conditions,S0 is often considered to be fixed. This
is established by settingS0 = λ0|0 andP 0|0 = 0. In the next section we will show
that in this case the state-space model can be reformulated as a state-spacemodel
with exogenous predictors and initial conditionsλ0|0 = 0 andP 0|0 = 0. The
initial parameters can here be estimated by generalised least squares. Recently,
Eubank (2006) showed that this approach, as well as the diffuse priorapproach
are closely related. Although they start from a completely different viewpoint, he
showed they ultimately provide the same predictions.

Up to now, we did not take exogenous predictors into account. In many applica-
tions, however, the observations are modelled by taking such predictors into ac-
count. In this chapter we assume that the relation between the mean responseand
its predictors is linear. Due to the dependence structure in the data, the parameters
related to the predictors are more efficiently estimated by the use of generalised
least squares (GLS). The next section illustrates how the Kalman filter can be used
for this purpose.
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4.3.4 Using the Kalman filter to perform generalised least squares

Supposeq exogenous predictors at time t, sayXt = [x1t, . . . ,xqt], are used to
predictyt, and that the state-space model (4.1)-(4.2) is reformulated as

St = ΦtSt−1 + δt, (4.14)

yt = ZtSt +Xtβ + ǫt. (4.15)

In this case the state-space model can be further reformulated as a regression model

yt = Xtβ + ut, (4.16)

with correlated error termsut = ZtSt + ǫt. Writing it in matrix notation we find

Y N = XNβ +UN , (4.17)

with Y N = [yT1 , . . . ,yTn ]T ,XN = [XT
1 , . . . ,XT

n ]T andUN = [UT
1 , . . . ,UT

n ]T ,
and let the covariance matrix ofUN beV . Thus, the regression problem reduces
to a generalised least squares (GLS) problem, where the estimator ofβ is given by

β̂GLS = (XT
NV

−1XN )−1XT
NV

−1Y N . (4.18)

From GLS theory, the variance-covariance matrix of the parameterβ̂GLS is known
to be

var
(

β̂GLS

)

= (XT
NV

−1XN )−1. (4.19)

Harvey (1989) showed that the Kalman filter can be used to effectively perform a
Cholesky decomposition ofV . This is done by applying the same Kalman filter to
yt as well as to each of the columns ofXt. Hence ap× 1 vector of innovations on
the observationsyt, sayy∗t , and ap × q matrix of innovations on the explanatory
variablesXt, sayX∗

t , are produced. The fact that the same Kalman filter is used
for theyt’s and theXt’s suggests that for a given set of parametersΨ, the recur-
sions forP t|t−1, P t|t andF t are run only once, rather thanq + 1 times. The GLS
estimator ofβ becomes

β̂GLS =

[

n
∑

t=1

X∗T
t F

−1
t X

∗
t

]−1 n
∑

t=1

X∗T
t F

−1
t y

∗
t , (4.20)

with innovations
vt = y∗t − x∗t β̂GLS . (4.21)
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These innovations can be used for the calculation of theconcentrated log-likelihood

log LY N
(Ψ) = −pn

2
log 2π − 1

2

n
∑

t=1

log |F t| −
1

2

n
∑

t=1

vTt F
−1
t vt. (4.22)

A special application of GLS performed by the Kalman filter is the situation where
the initial conditions are considered to be fixed parameters (S0 = λ0|0 andP 0|0 =
0) which have to be estimated. This approach was first introduced by Wecker and
Ansley (2002). They showed that the state vector at timet can be written as

St =





t
∏

j=1

Φj



S0 + S′
t, (4.23)

whereS′
t satisfies the following transition equation of the form of Equation (4.14),

S′
t = ΦtS

′
t−1 + δt, (4.24)

which now has the starting value ofS′
0 = 0. SubstitutingSt in the measurement

equation (4.15) gives

yt = ZtS
′
t +X ′

t

[

β

S0

]

+ ǫt, (4.25)

where

X′

t =

[

Xt Zt

t
∏

j=1
Φj

]

. (4.26)

Thus the model with fixed initial conditions can be written as model (4.24)-(4.26)
with initial conditionsλ′0|0 = 0 andP ′

0|0 = 0. The parameter vector in this model
is simply augmented withS0. An estimate ofS0 can then be calculated by the
GLS procedure.

4.3.5 The Kalman smoother

In the previous section it was shown how the Kalman filter provides the expected
value of the state variable at timet conditional on the information which is available
up to this time instant, i.e.λt|t = E(St|Y t). In many applications it is useful to
incorporate all the information which is available to estimate the state variable at
time t. Hence, also the information obtained beyondt has to be incorporated to
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estimateSt. This leads to the expected value of the state variable conditional on
the entire sample, i.e. E(St|Y N ) = λt|n, which is also referred to as the smoothed
estimate and which can be found by applying the Kalman smoother. Because the
smoother is based on more information than the filtered estimator, it has a mean
squared error which is generally smaller than that of the filtered estimator.

To obtain the smoothed estimates, the Kalman filter should be followed by a set
of recursions which are known as the Kalman smoother. The Kalman smoother
recursions start with the final quantities,λn|n andP n|n and proceeds backwards.
For t = n − 1, . . . , 0, it consists of the following backward recursions (Harvey,
1989; Shumway and Stoffer, 2006),

λt|n = λt|t + J t(λt+1|n − λt+1|t) (4.27)

P t|n = P t|t + J t(P t+1|n − P t+1|t)J
T
t (4.28)

J t = P t|tΦ
T
t+1P

−1
t+1|t. (4.29)

Digalakis et al. (1993) provided recursions for the calculation of the lag one covari-
ance estimatorsP t,t−1|s = cov(St,St−1|Y s). Filtered values can be calculated
by the additional forward recursion

P t,t−1|t = (I − P t|t−1Z
T
t F

−1
t Zt)ΦtP t−1|t−1, (4.30)

and smoothed values can be obtained by the additional backward recursion

P t,t−1|n = P t,t−1|t + (P t|n − P t|t)P
−1
t|t P t,t−1|t. (4.31)

4.4 Maximum likelihood estimation

4.4.1 Introduction

We have already introduced the Kalman filter as a tool for the calculation of the
likelihood. For obtaining maximum likelihood parameter estimates, the likelihood
function has to be maximised. This can be done numerically by using classical
algorithms such as the Newton Raphson approach. When the state-space model is
time-invariant, another possibility was introduced by Shumway and Stoffer (1982).
They derived an Expectation-Maximisation (EM) type algorithm to obtain maxi-
mum likelihood estimates of the parameters. The basic idea of EM algorithms was
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introduced by Dempster et al. (1977). It provides maximum likelihood estimates
in incomplete data situations. A nice property of EM algorithms is that under cer-
tain conditions, the likelihood cannot decrease throughout the iterations. Hence,
the likelihood always converges to a local maximum (McLachlan and Krishnan,
1997). An EM algorithm can be specified for the state-space setting, as theunob-
servable state can be considered as missing data.

4.4.2 EM algorithm

The EM algorithm which is considered here, is based on Shumway and Stoffer
(2006). They presented an EM algorithm for time-invariant state-space models
without exogenous predictors. For time-invariant state-space models, the system
matricesΦt, Qt, Ht andZt are constant and the indext can thus be dropped.
First, we should act as if the state vector is observable. In this case we may consider
(SN ,Y N ) as the complete data, and their joint log-likelihood is given by

log LY ,S(Ψ) ∼ −1

2
log |ΣS0 | −

1

2
(S0 − µ0)

TΣ−1
S0

(S0 − µ0)

− n

2
log |Q| − 1

2

n
∑

t=1

(St −ΦSt−1)
TQ−1(St −ΦSt−1)

− n

2
log |H| − 1

2

n
∑

t=1

(Y t −ZtSt)
TH−1(Y t −ZtSt), (4.32)

which is referred to as thecompleted log-likelihood.

This likelihood cannot be calculated because the state variable is unobservable. The
EM algorithm overcomes this by iterating between two steps, a so-calledE-step
and anM-step. In theE-step of the (k + 1)th iteration the conditional expected
value of the completed likelihood given the observed dataY N and the current
value of the parameter estimatesΨk is calculated. This conditional expectation is
given by

Q(Ψ,Ψk) = E
(

−2 log LY ,S(Ψ)|Y N ,Ψk
)

(4.33)
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Hence,

Q(Ψ,Ψk) ∼ E
(

log |ΣS0 |+ (S0 − µ0)
TΣ−1

S0
(S0 − µ0)|Y N ,Ψk

)

+ E

(

n log |Q|+
n
∑

t=1

(St −ΦSt−1)
TQ−1(St −ΦSt−1)|Y N ,Ψk

)

+ E

(

n log |H|+
n
∑

t=1

(Y t −ZtSt)
TH−1(Y t −ZtSt)|Y N ,Ψk

)

. (4.34)

Shumway and Stoffer (2006) showed that this yields

Q(Ψ,Ψk) ∼ log |ΣS0 |+ tr
{

Σ−1
S0

[

P 0|n + (λ0|n − µ0)(λ0|n − µ0)
T
]

}

+ n log |Q|+ tr
{

Q−1
[

A11 −A10Φ
T −ΦAT

10 + ΦA00Φ
T
]}

+ n log |H|

+ tr

{

H−1

n
∑

t=1

[

(yt −Ztλt|n)(yt −Ztλt|n)
T +ZtP t|nZ

T
t

]

}

, (4.35)

where

A11 =
n
∑

t=1

(λt|nλ
T
t|n + P t|n), (4.36)

A10 =
n
∑

t=1

(λt|nλ
T
t−1|n + P t,t−1|n), (4.37)

and

A10 =
n
∑

t=1

(λt−1|nλ
T
t−1|n + P t−1|n). (4.38)

(4.39)

In the subsequentM-step, the expected log-likelihood has to be maximised, or,
alternatively,Q(Ψ,Ψk) has to be minimised so as to obtain the update of the
parameter setΨk+1. This yields

Φk+1 =A10A
−1
00 , (4.40)

Qk+1 =n−1(A11 −A10A
−1
00 A

T
10), (4.41)

and

Hk+1 =n−1
n
∑

t=1

[

(yt −Ztλt|n)(yt −Ztλt|n)
T +ZtP t|nZ

T
t

]

. (4.42)
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The updates for the initial mean and covariance matrix are

µk+1
0 = λ0|n andΣk+1

0 = P 0|n. (4.43)

Thus, the overall procedure alternates between theE-stepwhere the Kalman filter
and the Kalman smoother are calculated, and theM-step which consists of the
parameter estimates updates (4.40)-(4.43).

Now that it is clear how the parameters can be estimated, a method is needed to
calculate the variance of these estimators so that their uncertainty can be assessed
and inference becomes possible. The variance-covariance matrix of theparame-
ter estimators can be obtained by perturbation or by the derivation of the Fisher
Information Matrix (FIM) as explained below.

4.4.3 Fisher information matrix

When parameter estimators are obtained by maximum likelihood, the Fisher infor-
mation matrix (FIM) provides an estimate of the inverse of their covariance matrix.
The prediction error decomposition can be used to obtain the expected FIM.Let I
denote the FIM, and itsijth element is given by

Iij(Ψ) =
1

2

n
∑

t=1

[

tr

(

F−1
t

∂F t

∂Ψi
F−1
t

∂F t

∂Ψj

)]

+

E

(

n
∑

t=1

(

∂vt

∂Ψi

)T

F−1
t

∂vt

∂Ψj

)

. (4.44)

In some cases the observed FIM is easier to evaluate, and is obtained by dropping
the expectation operator in the second term. The derivatives ofF t andvt may
be obtained numerically by perturbation. This requires an additional pass of the
Kalman filter for each parameter valueΨj to obtain the perturbed versionF

perj
t

andvperkt . The derivatives are then approximated by

∂F t

∂Ψj
≈
[

F
perj
t − F t

]

Ψ
perj
j −Ψj

(4.45)

∂vt
∂Ψj

≈
[

v
perj
t − vt

]

Ψ
perj
j −Ψj

. (4.46)
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Chapter 4. An introduction to state-space models

4.5 Summary

The state-space model representation enables the modeller to use the Kalman filter
and smoother recursions. These recursions can be exploited to perform generalised
least squares estimation of the parameter of the mean model. They are also useful
for the calculation of the likelihood when all error terms and the initial conditions
are Gaussian. Maximum likelihood estimators of the parameters of the system ma-
trices can be obtained by the use of an EM algorithm and a covariance matrix of
these estimators can easily be calculated by the evaluation of the observed FIM.
In the next chapters, the state-space representation is used to formulate aspatio-
temporal model for river monitoring networks. The specific spatial structure of
river networks, however, imposes some restrictions on the system matrices. There-
fore, an adjusted version of the EM algorithm is needed.
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Chapter 5

Spatio-temporal modelling of river
monitoring networks, a parametric
approach

5.1 Introduction

In the light of the European Water Framework Directive (WFD)(EC, 2000), it is
important for environmental agencies and policy makers to dispose of ICT tools to
assess the evolution/change of the water quality. This assessment should be possi-
ble at individual sampling locations as well as on a more regional scale. Existing
statistical techniques cannot be used for this purposes because the dataoriginating
from environmental monitoring networks are clearly not independent. They are
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sampled from a dynamic process that evolves over space and time. Hence,the sta-
tistical methodology should incorporate these spatio-temporal dependences so as
to allow valid statistical inference. Traditional approaches to address this problem
have focused on the geo-statistical paradigm (Bilonick, 1983; Cressie and Majure,
1997) and on multivariate time-series methods, which specify dynamic models that
are linked spatially (Rouhani and Wackernagel, 1990). If both temporaland spatial
components are present, it is natural to combine them in a statistical model that
is temporally dynamic and spatially descriptive. Such a model is referred to asa
space-time dynamic model (Wikle and Cressie, 1999).

Wikle and Cressie (1999) classify time-series as dynamic since the temporal de-
pendence arises from a unidirectional correlation; the AR(1) model is a clear ex-
ample. This unidirectional structure is often utilised in time series techniques.
Geo-statistical methods, on the other hand, are classified as descriptive because
of the non-directional correlation, there is no causal interpretation associated with
the observed spatial correlation. Based on these considerations Huangand Cressie
(1996) derived a temporal dynamic and spatially descriptive Kalman filter.

In this chapter we develop a spatio-temporal model for the analysis of river moni-
toring network data. With respect to the spatial dependence structure an important
distinction has to be made with the classical spatial structures. Since the water
flows only in one direction within the river reaches, a causal interpretationcan be
given to the correlations. However, in contrast to time, rivers can join or split.
This implies a more general branched unidirectional structure. Therefore, accord-
ing to Cressie’s terminology, the presented spatio-temporal model is dynamic w.r.t.
both the spatial and the temporal dependence structure. Once we know how to
build spatio-temporal models that can deal with the specific dependence structure
of a river network, we can perform an assessment that incorporatesthe dependence
structure correctly.

To answer the question of interest we still need a model for the mean. Two
paradigms can be used for this purpose: the marginal and the conditional modelling
paradigm. Diggle et al. (1994) suggested that the choice between both paradigms
should be motivated by the research question. Since many environmental problems
are clearly related to the marginal mean, we have adopted the marginal modelling
paradigm and we model the marginal mean and dependence structure separately.

The focus in this dissertation is on the assessment of the observed data at the sam-
pling locations and we do not aim to perform predictions at intermediate locations
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that are not sampled. Therefore the observations of the monitoring network at
a certain time instant can be considered as the realisation of a finite-dimensional
multivariate random variable with each dimension corresponding to each of the p
sampling locations. This enables us to write the model as ap-dimensional state-
space model. The state-space model representation allows the use of the Kalman
filter and smoother recursions for estimation purposes. In particular, the Kalman
filter provides a convenient factorisation of the likelihood (e.g. Harvey, 1989 and
Shumway and Stoffer, 2006). For the maximisation of the likelihood function,
we use an expectation-maximisation (EM) algorithm (e.g. Shumway and Stoffer,
1982, Harvey, 1989 and Shumway and Stoffer, 2006). A general introduction to
state-space models, the Kalman filter and smoother and the EM algorithm for pa-
rameter estimation can be found in Chapter 4.

To deal with specific spatio-temporal structures or to reduce the computational bur-
den in large monitoring networks, restrictions are imposed on the model matrices
of the state-space model. Xu and Wikle (2005) proposed several parametrisations
for spatio-temporal models with a descriptive spatial component. The EM algo-
rithm specified by Shumway and Stoffer (1982), however, assumes a saturated
parametrisation of the state-space model and updates all elements of the system
matrices. However, in a restricted model specification, a number of elements of
the system matrices are known (fixed), e.g. when certain elements of the statepro-
cess can be assumed to be independent, the covariance matrix of the state process
will contain a number of zeroes. Applying the EM algorithm of Shumway and
Stoffer (1982) on such a restricted state-space model, will also update these fixed
parameters. Hence, after each update of the algorithm, the fixed parameters should
immediately be imputed by the known values. Xu and Wikle (2005) argued that it
is not clear whether this approach leads to maximum likelihood estimates. There-
fore they suggested to adjust the EM algorithm so as to take the restrictions directly
into account.

In this chapter we develop a spatio-temporal model for the analysis of data orig-
inating from river monitoring networks. The river topology is used to define a
spatio-temporal model that is dynamic with respect to both the spatial and the tem-
poral dependence structure. In reality the environmental conditions may obscure
the unidirectional spatial dependence structure implied by the river topology. Due
to this confounding factor, the state, sayS, of the underlying river process cannot
be observed. We therefore propose to embed the latent variableS in an observation
model that allows cross-correlation between sampling locations that are located at
different branches of the river. To formulate the model for the mean, weadopt the
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marginal modelling paradigm and we model the marginal mean and dependence
structure separately. In this chapter a linear mean model is used. For parameter es-
timation, we adjust the EM-algorithm to take the specific restrictions implied by the
river topology explicitly into account. To handle the exogenous predictorsin the
mean model, the EM-algorithm is further modified to an expectation-conditional-
maximisation (ECM) algorithm. An ECM algorithm is a natural extension of the
EM algorithm obtained by replacing its M-step by a number of computationally
simpler conditional maximisation (CM) steps. It keeps the attractive property that,
under suitable conditions, the likelihood does not decrease at any iteration(Meng
and Rubin, 1993; McLachlan and Krishnan, 1997).

This chapter is organised as follows. In Section 5.2 the model is formulated and
in Section 5.3 the ECM algorithm for parameter estimation is given. Finally, in
Section 5.4, the model is applied to real data where the annual mean of nitrate ina
certain region is compared to the annual means of previous years.

5.2 Spatio-temporal model

First, in subsections 5.2.1 and 5.2.2 a zero-mean model is constructed. The com-
plete model is given in subsection 5.2.3.

5.2.1 Spatial dependence structure

Let thep× 1 vectorS = (S1, . . . , Sp)
T denote a stationary spatial process, where

Si (i = 1, ..., p) represents the response variable at sampling locationi. The corre-
lation structure ofS is completely defined by its conditional dependence structure
which is directly derived from the river monitoring network architecture. This is
illustrated in Figure 5.1 which shows 5 sampling locations along 2 joining river
reaches. The direction of the flow is also indicated. The same figure can also be in-
terpreted as a Directed Acyclic Graph (DAG) (see e.g. Whittaker, 1990) inwhich
the circles represent the graph’s vertices associated with the corresponding Si’s.
Missing edges or arrows indicate the conditional independences. Thus from Fig-
ure 5.1 we readS1⊥⊥S3; S2⊥⊥S3; S4⊥⊥S1|S2; S5⊥⊥S1|S2; S5⊥⊥S1|S4; S5⊥⊥S2|S4

andS5⊥⊥S3|S4. The DAG implies zeroes in the variance-covariance matrix ofS.
Thus it can equivalently be represented by a recursive system of equations (Wer-
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S1 S2

S3

S5S4

Figure 5.1: Directed Acyclic Graph (DAG) of five sampling locations along two
joining river reaches

muth, 1980),

S = AS + γ, (5.1)

where the order of the elements ofS can always be rearranged so thatA is a
p × p lower triangular square matrix with zeroes at the diagonal, andγ is ap × 1
multivariate zero-mean random vector with a diagonal variance-covariance matrix
Σγ . We further assume thatγ ∼ MV N(0,Σγ). For the DAG represented in
Figure 5.1,A becomes

A =













0 0 0 0 0
a21 0 0 0 0
0 0 0 0 0
0 a42 a43 0 0
0 0 0 a54 0













whereaij models the dependence between sampling locationSi andSj .

5.2.2 Spatio-temporal dependence structure

In a river monitoring network the data are gathered over time. VectorSt =
(S1t, . . . , Spt)

T now represents the observations at the sampling locations at time
t (t = 1, . . . , n). So the dependence structure has to be extended with a temporal
component which we assume to be autoregressive of order 1 (AR(1)).After fitting
the model, the quality of the proposed temporal structure has to be assessedin an
analysis of the innovations. To incorporate the temporal structure, Equation (5.1)
is extended to

St = ASt +BSt−1 + ηt, (5.2)
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whereB is ap× p matrix containing the temporal autocorrelation coefficients (di-
agonal elements) and the spatio-temporal cross-correlation coefficients(off-diagonal
elements), andηt ∼ MV N(0,Ση) with ap×p diagonal variance-covariance ma-
trix Ση. Similar to matrixA, we propose to use only cross-correlations between
sampling locations which are directly connected according to the DAG structure.
The off-diagonal elements ofB are thus structured in a similar way as the elements
of matrixA. HenceB can be written as

B =













b11 0 0 0 0
b21 b22 0 0 0
0 0 b33 0 0
0 b42 b43 b44 0
0 0 0 b54 b55













.

Wheni 6= j thebij model the spatio-temporal dependence betweenSit andSjt−1

and thebii model the temporal dependence betweenSit andSit−1.

Again, this assumption has to be assessed in an analysis of the innovations. Equa-
tion (5.2) can be reorganised so that the model can be written in its general state-
space model representation ,

St = ΦSt−1 + δt, (5.3)

whereΦ = (I − A)−1B andδt ∼ MV N(0,Q) with covariance matrixQ =
(I−A)−1Ση(I−A)−T andt = 1, . . . , n. For the model to be completely defined,
we assumeS0 to be multivariate normally distributed, i.e.S0 ∼ MV N(0,ΣS0).

5.2.3 Observation model

In reality, however, the dependence structure presented in Model (5.3) might possi-
bly be obscured by common environmental influences such as rainfall or climato-
logical conditions in general. The rather strict structure implied by Model (5.3) is
therefore assumed to hold only for an isolated river system. To allow for common
environmental disturbances, the unobservable state variableS is embedded into an
observation model,

yt = St + ǫt, (5.4)

(t = 1, . . . , n), whereyt is thep × 1 observation vector corresponding toSt, and
ǫt is a zero-mean error term. In particularǫt ∼ MV N(0,Σǫ). No restrictions
are imposed onΣǫ which enables cross-correlations between sampling locations
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that are not connected according to the river topology. This specification makes the
spatio-temporal model given by Equations (5.3) and (5.4), a state-spacemodel.

So far we have assumed that the mean ofyt is zero, i.e. E(yt) = 0 for all t.
This can be further extended to a linear model, e.g. E(yt) = Xtβ, whereβ =
(β1, ..., βq)

T is theq×1 parameter vector andXt is thep× q design matrix which
may contain time-dependent covariates. After embedding the mean model into
Model (5.4) we obtain

yt = St +Xtβ + ǫt, (5.5)

which specifies together with Model (5.3) the complete spatio-temporal state-space
model. Note that this state-space model is time-invariant because the system ma-
tricesΦ,Q andΣǫ do not change over time.

Another equivalent formulation of the spatio-temporal model is accomplishedby
recognising that the Model (5.3) and (5.5) can be written as a Structural Equation
Model (SEM) (see e.g. Maruyama, 1997),

CSN = ζ (5.6)

Y N = XNβ + SN +ψ, (5.7)

whereSN = (ST1 , . . . ,STn )T , Y N = (yT1 , . . . ,yTn )T , XN = (XT
1 , . . . ,XT

n )T ,
C is apn× pn square matrix constructed from the elements of the matricesA and
B, ζ ∼ MV N(0,Σζ), whereΣζ is a diagonal matrix built from the corresponding
elements ofΣη, andψ ∼ MV N(0,Σψ) whereΣψ is block-diagonal with blocks
Σǫ. From this SEM formulation the covariance structure of the observation vector
Y is readily found,

ΣYN
(Ψα) = var(Y N ) = C−1ΣζC

−T + Σψ, (5.8)

with Ψα a vector containing all the parameters inA, B, ΣS0 , Ση, andΣǫ. Both
representations will lead to slightly different approaches to estimate the parameters.

5.3 Parameter estimation and statistical inference

The parameter estimation is based on maximum likelihood. In Section 5.3.1 we
formulate the likelihood. For the calculation of the likelihood we apply the Kalman
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filter (Section 5.3.2) for it enables a very natural factorisation of the likelihood of
state-space models. Numerical maximisation of the likelihood is done by an ECM
algorithm. In Section 5.3.3 an ECM algorithm is derived in case the state-space
representation is used. In Section 5.3.4 this algorithm is adjusted to provide the
use of the SEM representation. In Section 5.3.5 we conclude with a brief account
on model selection criteria and the joint asymptotic distribution of the parameter
estimators.

5.3.1 Likelihood

Our state-space model is basically a statistical model representation of the obser-
vation vectorY N . It implies that

Y N ∼ MV N(XNβ,ΣYN
(Ψα)). (5.9)

The variance-covariance matrixΣYN
(Ψα) is completely parameterised by the el-

ements ofΨα. Maximum likelihood is thus a natural framework for parameter
estimation. The log-likelihood is given by

log LYN
(Ψ) ∼ −1

2
(Y N −XNβ)TΣ−1

Y N
(Ψα)(Y N −XNβ)

− 1

2
log |ΣYN

(Ψα)|, (5.10)

whereΨ is the vector containing all parameters of the model (Ψα,β).

Conditional onΨα, the likelihood is maximised by the general least squares (GLS)
estimator

β̂(Ψα) = (XT
NΣ−1

YN
(Ψα)XN )−1XTΣ−1

YN
(Ψα)Y N . (5.11)

Substitution ofβ̂(Ψα) into Equation (5.10) gives the concentrated log-likelihood
for Ψα,

log LYN
(Ψα) ∼ −1

2
(Y N −XN β̂(Ψα))TΣ−1

YN
(Ψα)(Y N −XN β̂(Ψα))

− 1

2
log |ΣYN

(Ψα)|. (5.12)
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Maximisation oflog LYN
(Ψα) yieldsΨ̂α and by substitution of̂Ψα in Equation

(5.11), the maximum likelihood estimator̂β ≡ β̂(Ψ̂α) is obtained. If in Equa-
tion (5.11),ΣYN

(Ψα) is substituted by an estimator, then̂β is known as thefea-
sible generalised least squares estimator(FGLS, e.g. Prucha (1984)). The state-
space representation of the model admits the use of the Kalman filter and smoother.
In particular, the Kalman filter enables a further factorisation of the likelihoodin
Equation (5.10) because the initial conditions and all residual processesare Gaus-
sian. This distributional assumption has to be checked for in the assessmentof the
innovations. Another interesting feature of the Kalman filter is its use to calculate
the GLS estimates of the parameters of the mean model.

5.3.2 Kalman filter and smoother

When all the parameters of the state-space modelΨ = (Ψα,β) are known, the
Kalman filter and smoother recursions can be used to calculate the conditional
mean and covariance of the state variables (e.g. Harvey, 1989) which willbe used
in the algorithm to maximise the log-likelihood. Although these recursions are
already introduced in Chapter 4, they are presented here for completeness.

First, the conditional mean of the state variableSt, giveny1, . . . ,ys is denoted
by λt|s = E[St|y1, . . . ,ys]. In particularλt|t−1, λt|t andλt|n are referred to as
the predicted, filtered and smoothed values, respectively. Similarly, the conditional
covariance matrix is denoted byP t|s = var(St|y1, . . . ,ys) and the lag one co-
variance matrixP t,t−1|s = cov(St,St−1|y1, . . . ,ys). Finally, the innovations are
defined asvt = yt−λt|t−1−Xtβ and they have the corresponding covariance ma-
trix F t = P t|t−1 + Σǫ. The predicted and filtered values are given by the Kalman
filter (e.g. Harvey, 1989). Fort = 1, . . . , n the following forward recursions are
used and they are started with timet = 1,

λt|t−1 = Φλt−1|t−1 (5.13)

P t|t−1 = ΦP t−1|t−1Φ
T +Q (5.14)

λt|t = λt|t−1 + P t|t−1F
−1
t vt (5.15)

P t|t = P t|t−1 − P t|t−1F
−1
t P t|t−1 (5.16)

F t = P t|t−1 + Σǫ, (5.17)

whereλ0|0 = E[S0] = 0 andP 0|0 = var(S0) = ΣS0 .
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Smoothed estimates are given by the Kalman smoother. It starts on timet = n
with the final quantities,λn|n andP n|n and then proceeds backwards. The Kalman
smoother consists of the following backward recursions (Harvey, 1989), for time
t = n− 1, . . . , 0

λt|n = λt|t + J t(λt+1|n − λt+1|t) (5.18)

P t|n = P t|t + J t(P t+1|n − P t+1|t)J
T
t (5.19)

J t = P t|tΦ
TP−1

t+1|t. (5.20)

Digalakis et al. (1993) provided recursions for the calculation of the lag one co-
variance estimators. Filtered values can be calculated by the additional forward
recursion

P t,t−1|t = (I − P t|t−1F
−1
t )ΦP t−1|t−1, (5.21)

and smoothed values can be obtained by the additional backward recursion

P t,t−1|n = P t,t−1|t + (P t|n − P t|t)P
−1
t|t P t,t−1|t. (5.22)

In our application, the system matricesΦ, Q andΣǫ are time-invariant. Time-
invariant state-space systems are stationary when the eigenvalues ofΦ are located
in the unit circle (Harvey, 1989). For a time-invariant stationary state-space sys-
tem with a positive semidefinite initial covariance matrixP1|0, thePt|t−1 becomes
time-invariant and the Kalman filter is known to converge exponentially to steady
state (Harvey, 1989). Hence, once the Kalman filter has converged, Equations
(5.14), (5.16) and (5.17) become redundant. Computationally, this is very interest-
ing because the calculations ofPt|t−1, Pt|t andFt are the most time-consuming
part of the Kalman filter.

Harvey (1989) also showed that the Kalman filter can be used to perform GLS to
obtain parameter estimates of the mean model. When the same Kalman filter is
applied toyt and each of the columns ofXt, the filter can be used to effectively
perform a Cholesky decomposition ofΣYN

(Ψα) (Harvey, 1989). Hence, ap × 1
vector of innovationsy∗t , on the observationsyt and ap× q matrix of innovations
X∗

t , on the explanatory variables(xt1, . . . ,xtq) are produced. Applying the same
Kalman filter to theyt’s and thextk’s means that for a given set of parametersΨ,
the recursions forP t|t−1, P t|t andF t are run only once rather thanq + 1 times.
The GLS estimator ofβ becomes

β̂GLS =

[

n
∑

t=1

X∗T
t F

−1
t X

∗
t

]−1 n
∑

t=1

X∗T
t F

−1
t y

∗
t . (5.23)
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For small networks this is computationally much more efficient, for it consists of
inverting low dimensional matrices. The actual innovationsvt can be rewritten as
vt = y∗t −X∗

t β̂GLS . Because all the disturbances and the initial state vector are
multivariate normally distributed, the Kalman filter can also be used to decompose
the log-likelihood as−2 log LYN

(Φ) ∼ ∑n
t=1 |F t| +

∑n
t=1 v

T
t F

−1
t vt (Harvey,

1989). This allows the use of classical numerical algorithms for direct maximisa-
tion of the likelihood. In this dissertation, however, we consider an ECM algorithm
for this purpose. The derivation of the algorithm is presented in the next subsection.

5.3.3 The ECM algorithm using the state-space representation

The river monitoring network topology imposes a restricted parametrisation ofthe
dependence structure of the spatial process. As Xu and Wikle (2005) showed for
more general spatio-temporal dependence structures, the expectation-maximisation
(EM) algorithm of Shumway and Stoffer (1982) presented in Section 4.4.2 should
be modified to deal with these restrictions. SinceQ andΦ have some parame-
ters in common, our particular parametrisation is not covered by the theory ofXu
and Wikle (2005), and thus we have to adapt the EM algorithm so that it can deal
with the specific restrictions induced by our spatio-temporal process. Dueto the
presence of the exogenous variables, we further extend the EM algorithm to an
expectation conditional maximisation (ECM) algorithm. In particular, the M-step
is split into a sequence of two CM-steps. First the parameters of the dependence
structureΨα are estimated given the current values of the parameter estimates of
the mean modelβ. Next GLS is used to obtain an estimate ofβ using the updated
values ofΨα. Before each step of the ECM algorithm is discussed in detail, we
first present an overview of the different steps that are used in the algorithm. Let
lc(Ψ) = log LYN ,SN

(Ψ) denotes thecompleted log-likelihoodgiven by the joint
log-likelihood ofY N andSN . Due to the unobservable state processS, this like-
lihood can not be calculated. In thekth iteration, the ECM algorithm starts with
anE-step to calculate the conditional expectation of the completed log-likelihood
given the observationsY N and given the current values of the parametersΨk. In
the succeedingCM-steps, new parameter values are calculated that maximise the
conditional expected log-likelihood E

(

lc(Ψ)|Y N ,Ψk
)

. The ECM algorithm can
be summarised as follows (k = 0, 1, . . .),

1. Choose initial estimates:Ψ0

2. E-step: CalculateQ(Ψ,Ψk
α,βk) = E

(

lc(Ψ)|Y N ,Ψk
)
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3. CM-step 1: Find the covariance parametersΨk+1
α that maximiseQ(Ψ,Ψk

α,βk)

4. CM-step 2: Findβk+1 that maximisesQ(Ψ,Ψk+1
α ,βk)

5. Repeat steps 2-4 until convergence

For our particular state-space model, both the E- and the CM-steps can be simpli-
fied. Details are provided in the next paragraphs.

E-stepConsider first the factorisation

Q(Ψ,Ψk
α,βk) = E

(

lc(Ψ)|Y N ,Ψk
)

= E
(

log LS0(Ψ)|Y N ,Ψk
)

+ E
(

log LSN |S0
(Ψ)|YN ,Ψk

)

+ E
(

log LYN |SN
(Ψ)|Y N ,Ψk

)

. (5.24)

Neglecting the parameter independent term, we find

Q(Ψ,Ψk
α,βk) ∼ −1

2
E
(

log |ΣS0 |+ ST0 Σ−1
S0
S0|Y N ,Ψk

)

−1

2
E

(

n log |Ση|+
n
∑

t=1

(St −ASt −BSt−1)
TΣ−1

η

(St −ASt −BSt−1)|Y N ,Ψk

)

−1

2
E

(

n log |Σǫ|+
n
∑

t=1

(yt −Xtβ − St)TΣ−1
ǫ

(yt −Xtβ − St)|Y N ,Ψk

)

.

(5.25)

Because the distributions of bothY andS belong to the regular exponential fam-
ily, the calculation of Equation (5.24) can be reduced to the replacement of the
sufficient statistics by their conditional expectations intolc(Ψ) (McLachlan and
Krishnan, 1997). For conditioning onY N , only the expectations of the sufficient
statistics based onSt and onSt−1 have to be determined. In particular,

E[St|Y N ] = λt|n (5.26)

E[StSt|Y N ] = P t|n + λt|nλ
T
t|n (5.27)

E[StSt−1|Y N ] = P t,t−1|n + λt|nλ
T
t−1|n. (5.28)
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They are calculated using the Kalman filter and smoother recursions (Equations
(5.13)-(5.22)).

CM-step 1 In this step the covariance parametersΨα are estimated conditional on
βk. BecauseΣη is diagonal, the second term in Equation (5.25) can be further
factorized,

E
(

log LSN
(Ψ)|Y N ,Ψk

)

∼

− 1

2

p
∑

i=1

E

(

n log σ2
ηi

+
1

σ2
ηi

n
∑

t=1

(Sit −A[ai]
i. S

[ai]
t −B[bi]

i. S
[bi]
t−1)

2|Y N ,Ψk

)

,

(5.29)

where[ai] represents the index set(j1, . . . , jq) corresponding to the non-zero el-
ements of theith row ofA, and[bi] is a similar set for theith row of matrixB.
The elements of[ai] can be derived from the DAG. The index set[bi] expands the
index set[ai] by sampling locationi under consideration, because the state vari-
ableSit does not only depend onSit−1 but also on its parents in the DAG on time
t− 1. Thus,A[ai]

i. andB[bi]
i. are the non-zero elements of theith row ofA andB,

respectively,S[ai]
t = (Sj1t, . . . , Sjqt)

T andS[bi]
t−1 = (Sj1t−1, . . . Sjqt−1, Sit−1)

T .

Furthermore, from Equation (5.25) it is observed that the E
(

.|Y N ,Ψk
)

operation
cannot introduce any other parameters contained inΨα, and the first and third term
at the right hand side of Equation (5.25) do not contain any parameters fromA,
B andΣη. Therefore the ECM-approach considered here implies an estimation
orthogonality and each term in Equation (5.25) may be maximised separately. We
use a result of Ansley and Kohn (1985) for the maximisation of Equation (5.29).
In particular, they showed that the variance components can be concentrated out of
the likelihood, resulting in

EΨk (log LSN
(Ψ)|Y ) ∼ −1

2

p
∑

i=1

EΨk

(

n log
RSSi

n
+ n|Y

)

(5.30)

where RSSi =
∑n

t=1 I2
it, andIit = Sit − A[ai]

i. S
[ai]
t − B[bi]

i. S
[bi]
t−1. Sampling lo-

cationsSi for which [ai] = φ imply thatA[ai]
i. = φ, S[ai]

t = φ, [bi] = i, and

also imply that the vectorsB[bi] andS[bi]
t−1 reduce to the diagonal elementBii and

the scalarSit−1, respectively. The maximum likelihood estimator (MLE) ofσ2
ηi

is

given by RSSi

N . Note that maximising Equation (5.30) in the CM step is equiva-
lent to the minimisation of RSSi. The solution is obtained by equating the partial
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derivatives∂RSSi

∂A
[ai]
i.

and ∂RSSi

∂B
[bi]
i.

to zero after the sufficient statistics are replaced by

their conditional expectations as calculated in the E-step (Equations (5.26)-(5.28)).
In the E-step, these sufficient statistics were calculated conditionally on the param-
etersΨk of the previous iteration. Thus this replacement does not introduce any

additionalA[ai]
i. , B[bi]

i. nor σ2
ηi

. We propose to solve∂RSSi

∂A
[ai]
i.

= 0 and ∂RSSi

∂B
[bi]
i.

= 0

first, and subsequently replace the sufficient statistics in the expressionsfor the

MLE’s of A[ai]
i. andB[bi]

i. , eventually leading toA[ai]
i.

k+1
andB[bi]

i.

k+1
. Some ma-

trix algebra gives

B
[bi]
i.

k+1
=

[

n
∑
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SitS
[bi]
t−1

T
−
(

n
∑
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SitS
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T

)(
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S
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t S
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T
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(

n
∑

t=1

S
[ai]
t S

[bi]
t−1

T
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×
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S
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t−1
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(5.31)

A
[ai]
i.

k+1
=

(

n
∑

t=1

SitS
[ai]
t

T
−B[bi]

k+1
n
∑

t=1

S
[bi]
t−1S

[ai]
t

T

)

(

n
∑

t=1

S
[ai]
t S

[ai]
t

T

)−1

, (5.32)

in which all the sufficient statistics have to be replaced by their corresponding
conditional expectations given in Equations (5.26)-(5.28). The derivation of these
results can be found in the appendix of this chapter. In case sampling location Si

has no parents according to the DAG,[ai] = φ andA[ai]
i. = φ. This causes the

terms containingS[ai]
t in Equation (5.31) to disappear.

AfterB[bi]
i.

k+1
andA[ai]

[i.]

k+1
are computed, the estimate ofσ2

ηi
is calculated as

σ2
ηi

k+1
=

RSSk+1
i

n
, (5.33)
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in which the sufficient statistics are replaced, as before.

Shumway and Stoffer (2006) showed that the first term in Equation (5.25)is opti-
mised by

Σ̂S0 = P 0|n. (5.34)

The maximisation of the third term in the right hand side of Equation (5.25) gives

Σk+1
ǫ =

1

n

n
∑

t=1

(y′t − St)(y′t − St)T

=
1

n

[

n
∑

t=1

(y′ty
′T
t )−

n
∑

t=1

(y′tS
T
t )−

n
∑

t=1

(Sty
′T
t ) +

n
∑

t=1

(StS
T
t )

]

, (5.35)

wherey′t = yt−Xtβ
k and in which the sufficient statistics are again to be replaced

by their conditional expectations given in Equations (5.26)-(5.28).

CM-step 2 In this CM step, the parameters of the mean model are estimated by
means of the Kalman filter resulting in the feasible generalised least squares esti-
mateβ̂(Ψ̂α). The estimation is conditional onΨk+1

α . In Section 5.3.2 it was shown
that the Kalman filter can be used to perform the GLS and its solution is given in
Equation (5.23). For the calculation of Equation (5.23), the forward recursions dis-
played in Equations (5.14), (5.16) and (5.17) have to be calculated and their results
can be used in the next iteration step.

To conclude, we summarise the whole algorithm (k = 0, 1, . . .):
(1) Choose initial estimates:Ψ0

(2) E-step: Calculate the expected sufficient statistics using Equations (5.26)-
(5.28)
(3) CM-step 1: Estimate the covariance parametersΨk+1

α using Equations (5.31)
- (5.35)
(4) CM-step 2: Use the covariance parametersΨk+1

α to calculate the FGLS esti-

matorβ̂
k+1

by using Equation (5.23)
(5) Repeat steps 2-4 until convergence

To obtain initial parameter valuesΨ0 we suggest to perform an ordinary least
squares (OLS) regression. As an initial estimate forβ0 the parameter vector ob-
tained by OLS can be used. The residuals, sayet’s, of the OLS regression can
be used to provide the initial values for the parameters inA andB, by fitting the
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following regression model:et = A0et +B
0et−1 + e′t. Σ0

ǫ can be obtained from
thee′t’s by the method of moments and finally the parameters inΣη should be set
on an arbitrary value.

5.3.4 ECM algorithm using the SEM representation

We now use the structural equation model (SEM) representation presented in Equa-
tions (5.6) and (5.7) to derive an ECM algorithm. This representation implies some
adaptations of the ECM algorithm presented in Section 5.3.3. Instead of usingthe
Kalman filter and smoother to calculate the expectations of the sufficient statistics
in the E-step, the SEM representation has to be used. The sufficient statistics are
now calculated as follows,

EΨk (SN |Y N ) = Σk
SN

(

Σk
SN

+ Σk
ǫ

)−1 (

Y N −XNβ
k
)

(5.36)

EΨk

(

SNS
T
N |Y N

)

= ZkZkT + Σk
SN
−Σk

SN

(

Σk
SN

+ Σk
ǫ

)−1
Σk
SN

,(5.37)

whereΣk
SN

= Ck−1
Σk
ζC

k−T andZk = EΨk (SN |Y N ). In the CM step-1, the

calculation of the estimate of the covariance parametersΨk+1
α remains unaltered.

These estimates are then used to constructCk+1, Σk+1
ζ andΣk+1

ψ . By plugging

Ck+1, Σk+1
ζ andΣk+1

ψ into Equation (5.8), an estimateΣk+1
YN

is obtained. In the
original CM step-2, the Kalman filter was used to perform the GLS. In the SEM
approach, the GLS has to be performed explicitly by

βk+1 =
(

XT
N (Σk+1

YN
)−1XN

)−1
XT

N (Σk+1
YN

)−1Y N . (5.38)

The SEM approach involves the calculations of the inverse of the matricesCk+1

andΣk+1
YN

. The dimensions of these matrices arenp × np. In our application, the
number of time instantsn is much larger than the number of sampling locations
p. For such networks, it is computationally less attractive to calculate the inverse
of Ck+1 andΣk+1

YN
than to calculaten times the inverse of thep × p matrices

F t andP t+1|t needed to evaluate the Kalman filter and smoother. Moreover, the
Kalman filter also reaches a steady state after a certain time instant, sayw. This
implies that for instance the matricesP t|t−1, P t|t andF t do not alter anymore
for time instantst > w. Therefore we use the ECM algorithm derived for the
state-space representation to perform the parameter estimation. However,for the

124
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statistical inference procedures presented in the next section, we will make use
the SEM representation to calculate an estimate of the variance-covariance matrix
ΣYN

(Ψα).

5.3.5 Statistical Inference

Model selection can be performed by using a modified AIC criteria which ac-
counts for the dependence of the data. Akaike (1973) showed that−2l(Ψ̂) =
−2 log LYN

(Ψ̂) is a biased estimator of the exact Kullback-Leibler divergence be-
tween the true and the fitted model. The bias adjustment for this estimator is of-
ten approximated by2df , wheredf is the number of degrees of freedom used by
the model. State-space models usually require a large number of observations to
make this asymptotic approximation work well. Bengtsson and Cavanaugh (2006)
defined animprovedAIC criterion for state-space model selection, referred to as
AICi. They suggested a Monte Carlo approximation of the bias, sayB̂. Their
criterion is then defined as AICi= −2l(Ψ̂) + B̂. Unfortunately, for our river mon-
itoring network model this method is computationally too demanding because the
maximum likelihood estimates are needed for each Monte Carlo simulation run.
We therefore suggest to use the original AIC criterion for model selection. Be-
sides model selection criteria, diagnostics are useful to check the quality ofthe
model structure. In the state-space framework, plots of the standardisedinnova-
tionsvtF

−1/2
t can be used as diagnostic plots for the temporal dependence struc-

ture and the mean model (Harvey, 1989).

Statistical inference on the parameters of the mean model requires the joint sam-
pling distribution ofβ̂. Since we deal with a linear model for the mean and with
a stationary Gaussian process sampled on regular time steps, theorem 3 of Mar-
dia and Marshall (1984) can be applied to establish that the maximum likelihood
estimatorsβ̂ andΨ̂α are consistent and asymptotically normally distributed. In
particular,

β̂(Ψα)
d→ MV N(β, (XTΣ−1

YN
X)−1), (5.39)

whenn →∞. Finally, sinceΨ̂α is a consistent estimator, the variance ofβ̂(Ψ̂α)
is estimated consistently by

Σ̂β = (XTΣ−1
YN

(Ψ̂α)X)−1. (5.40)

To obtain the standard errors of the parameter estimators of the dependence struc-
ture, it is possible to evaluate the Hessian matrix after convergence. Another possi-
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bility is to perturbate the likelihood function and to apply numerical differentiation
to find the observed Fisher information matrix (e.g. Harvey, 1989 and Shumway
and Stoffer, 2006). In the case study we apply the latter approach.

5.4 Case study

One of the key actions of the WFD is the design and maintenance of water quality
monitoring networks. In Flanders, several water quality monitoring networks are
maintained by the VMM. An example is the physico-chemical monitoring network
of the surface waters. The VMM reports on the water quality on an annualbasis. In
their annual reports they use yearly averages of the water quality. It would be very
informative if they could use a statistical tool to compare the mean of the current
year with that of the general mean and with the means of recent years. Preferably,
such a tool would incorporate statistical tests on the level of the individual sampling
locations as well as on a more regional scale. In this case study we will use our
spatio-temporal model for river monitoring networks for this purpose. The data of
5 sampling locations of the physico-chemical monitoring network of the Flemish
surface waters are used. They are located along 2 joining reaches in theYzer
catchment. Their DAG and location in the catchment is indicated on the map in
Figure 5.2. Sampling locations S1, S2, S4 and S5 are located on the Yzer while
sampling location S3 is located on a joining creek. Every sampling location is
monitored on a monthly basis. Nitrate data between 1990 and 2003 are available.
Hence, the 5 sampling locations are monitored on 168 time instants and the entire
dataset consists of 840 observations.

The observations are taken at time intervals that are much larger than the timescale
of the water flow. Therefore we make the assumption that the matrixB, used to
describe the temporal correlation, is diagonal. Hence, we only model the temporal
autocorrelations for a particular stateSit at timet and not the spatio-temporal cross
correlations betweenSit and its parents in the DAGS[ai]

t−1 at timet−1. This leads to
the reduction of the parent set[bi] to [bi] = i, containing only the current sampling
location. Instead of assessing the annual mean at the level of individualsampling
locations, we aim to perform an assessment on a more regional scale and therefore
we will calculate the annual mean based on all 5 sampling locations. In this case
study two questions will be addressed. On the one hand we want to test whether
this “regional” annual mean for nitrate in 2003 is different from the general mean.
On the other hand we also want to test whether the “regional” annual mean in2003
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S1 S2

S3

S5S4

Figure 5.2: Top Left: Directed Acyclic Graph (DAG) of the sampling locations
along the 2 river reaches. Bottom Left: Map of the river reaches con-
sidered in this case study. Locations S1, S2, S4 and S5 are located on
the Yzer river while location S3 is located on a joining creek. Sam-
pling location S1 is located in France. Right: Map of the part of the
Yzer catchment located in Flanders, Belgium. The sampling locations
are indicated by the dots. The area considered in this study is indicated
with the ellipse and the black dots are the sampling locations included
in this study

is different from the “regional” mean of the two most recent years (2001and 2002).

The annual mean is modelled by a factor with one level for each year. Seasonal
variation also is typically present in water quality data and the model has to ac-
count for it. This was illustrated in Chapter 1. In the introduction, the seasonal
variation is illustrated in Figure 1.6 where nitrate data of all years is plotted in
function of the day of the year. A common approach to deal with this seasonal
variation is to include sinusoidal functions of fixed periods to describe the sea-
sonal cycle within a year (e.g. Hirst, 1998, Cai and Tiwari, 2000, McMullan et al.,
2003 and McMullan, 2004). A common function which is used for this purpose
is α cos(2π(t/P ) + θ), whereP is the period which is taken to be 1 year,α is
the amplitude of the seasonal trend andθ is a parameter to allow for a phase shift.
This function however is nonlinear in the parameterθ. But, it can be expressed
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in a linear form by using a standard trigonometric expansion. With a periodP
of one year we getγ1 sin(2πt/12) + γ2 cos(2πt/12)). To enable the assessment
on a regional scale, the interaction between sampling location and year should be
neglected. This assumption will be checked in the analysis of the standardised in-
novations. The models that are considered are given in Table 5.1, whereµ is the
general mean,αi is the effect for theith sampling location,β⌊t/12⌋ is the effect

of the⌊t/12⌋th year,γk are the parameters for the seasonal component modelled
by Fourier terms, and the(αγ)ik and(βγ)⌊t/12⌋k are the parameters for the sam-
pling location-season and year-season interactions respectively. Theinteractions
between year and season are included because the seasonal variationof water qual-
ity variables often changes from year to year (e.g. Hirst, 1998; McMullanet al.,
2003; McMullan, 2004). The models are estimated by using the ECM-algorithm
from Section 5.3.3.

Model III has the lowest AIC and is selected. The results of the GLS estimation of
the mean model are visualised in Figure 5.3. The model indicates that a seasonal
pattern changes over time. The amplitude drops from 1999 on. From Figure5.3
it also seems that the annual mean is decreasing in the most recent years. The
marginal mean at the joining creek (S3) seems to be overestimated in the more
recent years and this deviation increases as time evolves. The parameter estimates
of the mean model,̂β, are presented in Table 5.2. Along with the parameter value,
the standard deviation and a p-value are given. This two-sided p-value corresponds
to the null-hypothesis that the particular parameter value is equal to zero.

Table 5.1: Mean models to assess the evolution in the “regional” annual mean

Model E(yit) AIC

I µ + αi + β⌊t/12⌋ + γ1 sin(2πt/12) + γ2 cos(2πt/12) 5100.5

II µ + αi + β⌊t/12⌋ + γ1 sin(2πt/12) + γ2 cos(2πt/12) 5096.4
+(αγ)i1 sin(2πt/12) + (αγ)i2 cos(2πt/12)

III µ + αi + β⌊t/12⌋ + γ1 sin(2πt/12) + γ2 cos(2πt/12) 5063.9
+(βγ)⌊t/12⌋1 sin(2πt/12) + (βγ)⌊t/12⌋2 cos(2πt/12)

IV µ + αi + β⌊t/12⌋ + γ1 sin(2πt/12) + γ2 cos(2πt/12) 5179.1
+(αγ)i1 sin(2πt/12) + (αγ)i2 cos(2πt/12)

+(βγ)⌊t/12⌋1 sin(2πt/12) + (βγ)⌊t/12⌋2 cos(2πt/12)
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Figure 5.3: Evolution of the water quality at five sampling locations of the river
Yzer. Sampling locations S1, S2, S4, S5 are located on the main river,
sampling location S3 is located on a tributary which drains into the
Yzer between S2 and S4. The line indicates the model fit according to
Model III

Table 5.2: The parameter estimates of the mean model of Model III

parameter value std error p-value

µ 11.96 0.72 <0.0001
β14 −2.92 0.42 <0.0001
β13 −0.60 0.34 0.0790
β12 −0.99 0.34 0.0035
β11 0.49 0.34 0.1500
β10 0.68 0.34 0.0460
β9 3.35 0.34 <0.0001
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Table 5.2 – Continued

parameter value std error p-value
β8 3.70 0.34 <0.0001
β7 −0.34 0.34 0.3100
β6 −0.75 0.34 0.0260
β5 0.09 0.34 0.7800
β4 0.20 0.34 0.5600
β3 −0.56 0.34 0.0960
β2 0.45 0.34 0.1800
β1 −2.79 0.24 <0.0001
α5 −1.62 0.46 0.0005
α4 −2.50 0.49 <0.0001
α2 −3.04 0.59 <0.0001
α1 −2.82 0.58 <0.0001
α3 9.98 1.82 <0.0001
γ1 2.55 0.25 <0.0001
γ2 4.99 0.25 <0.0001
(βγ)2,1 −0.99 0.83 0.2300
(βγ)3,1 −2.52 0.78 0.0013
(βγ)4,1 2.44 0.78 0.0018
(βγ)5,1 0.79 0.78 0.3100
(βγ)6,1 0.22 0.78 0.7800
(βγ)7,1 −1.06 0.78 0.1700
(βγ)8,1 −4.81 0.78 <0.0001
(βγ)9,1 0.24 0.78 0.7600
(βγ)10,1 −0.81 0.78 0.3000
(βγ)11,1 3.00 0.78 0.0001
(βγ)12,1 0.40 0.78 0.6100
(βγ)13,1 −0.60 0.78 0.4400
(βγ)14,1 4.82 0.78 <0.0001
(βγ)2,2 −0.59 1.06 0.5800
(βγ)3,2 −3.61 0.98 0.0002
(βγ)4,2 −0.21 0.98 0.8300
(βγ)5,2 −1.68 0.98 0.8400
(βγ)6,2 −3.29 0.98 0.0008
(βγ)7,2 3.06 0.98 0.0017
(βγ)8,2 3.17 0.98 0.0011
(βγ)9,2 −1.13 0.98 0.2500
(βγ)10,2 −0.05 0.98 0.9600
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Table 5.2 – Continued

parameter value std error p-value
(βγ)11,2 −2.21 0.98 0.0240
(βγ)12,2 3.08 0.98 0.0016
(βγ)13,2 −0.07 0.98 0.9400
(βγ)14,2 −3.04 0.98 0.0019

As mentioned earlier, the effect of the year is modelled by the use of a factor
with one level for each of the 14 years. The size of each of these annual effect
is modelled by the parameters(β1, . . . , β14). According to the p-values the mean
nitrate level of a number of years is not significantly different from the general
mean (e.g. forβ2, β4, β5, β7, β11 andβ13). For the seasonal-year interactions
(βα)j,k also a number of non-significant parameters occur. Note, however thatthe
seasonal effect is coded by two parameters to provide an amplitude and a phase
shift. Here, this is done by the use of a sine and a cosine term. Hence, for a
particular yearj there is a season-year interaction as soon as one of the parameters
(βα)j,1 or (βα)j,2 is different from zero. The non-significant parameters are not
eliminated from the model because other parameters of the main and the interaction
effect are (highly) significant. Moreover, the conclusion that certain parameters are
non-significant is a weak conclusion as we do not have any information about the
power of the tests.

For the spatio-temporal parameters inA, B, Ση andΣǫ the following estimates
are obtained (standard error between brackets)

Â =

2
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6

6

6

4

0 0 0 0 0
0.78(0.11) 0 0 0 0

0 0 0 0 0
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,
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−0.14(0.08) 0 0 0 0
0 0.72(0.07) 0 0 0
0 0 1.01(0.01) 0 0
0 0 0 −0.21 (0.11) 0
0 0 0 0 0.35(0.11)
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Σ̂η =

2
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11.1(1.8) 0 0 0 0
0 0.2 10−6(0.1 10−3) 0 0 0
0 0 0.31(0.3) 0 0
0 0 0 3.8 10−6(0.9 10−3) 0
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Note that the estimate ofB at S3 is larger than 1. This provokes an eigenvalue of
the transition matrixΦ that is larger than 1. Hence the estimated state-space model
is not stationary.

As mentioned before, the model quality has to be checked and in this work this
is done by the use of an assessment of the standardised innovations. These inno-
vations should be independent which can be assessed by a plot of the autocorre-
lation function (ACF). The ACF plot of the original series is shown in Figure5.4.
From these plots, the correlation in the original nitrate measurements is obvious.
Moreover, they also indicate the presence of seasonal correlation. The ACF of
the standardised innovations are shown in Figure 5.5. The model succeeds well in
reducing a considerable amount of the serial correlation present in the original se-
ries. A joint test of significance of the firsti autocorrelation coefficients is provided
by the Ljung-Box portmanteau test (Ljung and Box, 1978). The p-valuesfor the
Ljung-Box portmanteau test of the autocorrelation coefficients of the standardised
innovations are given in Table 5.3. Significant p-values appeared to be present at
S1. This is due to the negative autocorrelation at lag 2. An ACF plot at S1 upto lag
100 is provided in Figure 5.6 and it can be seen that only 3 large autocorrelations
occur during the first 100 lags. Based on the ACF-plots the AR(1) seems tobe
sufficient to model the temporal correlation.

The quality of the mean model is checked in Figure 5.7 showing the standardised
innovations with respect to time. Friedman’s supersmoother is added to each plot
to study the residual pattern present in the standardised innovations (Friedman,
1984). From Figure 5.7 it can be seen that the smoothers remain close to zero,
suggesting that the model quality is good. For S2, S3, S4 and S5 the smoothers
give larger predictions near the boundaries. This is probably due to the combi-
nation of a boundary effect of the smoother, large nitrate values measured in the
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Figure 5.4: Autocorrelation plots of original nitrate series at the differentsampling
locations

Table 5.3: p-values for the Ljung-Box portmanteau test of the autocorrelation co-
efficients of the standardised innovations for the first 5 lags

Lag S1 S2 S3 S4 S5
1 0.78 0.87 0.63 0.90 0.11
2 0.95 0.97 0.10 0.96 0.27
3 0.20 0.99 0.17 0.74 0.37
4 0.05 1.00 0.14 0.46 0.52
5 0.04 0.99 0.06 0.52 0.58

beginning of the time series and the Kalman filter which might not have reached
steady state yet. Figure 5.3 indicated a systematic deviation of the estimated mean
at sampling location S3. In Figure 5.7, however, the smoother only suggestsa
small deviation in the standardised innovations at S3. Hence, the systematic devia-
tion in the marginal mean at S3 is modelled by the temporal dependence structure.
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Figure 5.5: Autocorrelation plot of the standardised innovations of ModelIII

This is reflected by the estimate of the AR(1) coefficient for S3 which is slightly
larger than 1 (b3,3 = 1.01). The deviation of the mean model at S3 and the non-
stationary autocorrelation coefficient at S3 might be due to the assumption that
there was no interaction between the year and the sampling location. However,
when this interaction term would be included in the model, we can not infer on
a “regional” scale. Another assumption that has to be checked is related to the
distributional assumptions that were imposed. All processes were assumedto be
Gaussian. Therefore, the standardised innovations should follow a standard normal
distribution and we expect about 95% of standardised innovations to be in the in-
terval[−2, 2]. In Figure 5.7 it can be seen that at each sampling location a number
of outliers are present. The normality of the innovations is further assessed in Fig-
ure 5.8. Both the boxplot and the QQ-plot show a clear departure from normality.
The boxplot indicates a considerable amount of outliers and the QQ-plot indicates
that the distribution has larger tails than the normal distribution. On the other hand,
from all plots it can be seen that the distribution of the standardised innovations is
symmetric. To answer the research question, we need to infer on the parameters
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Figure 5.6: Autocorrelation plot at S1 of the standardised innovations of Model III

of the mean model. The mean model is included in the observation equation and
it is a deterministic component of the model. When the normality assumption is
dropped, the asymptotic distribution associated with the deterministic components
is not affected (Harvey, 1989). Hence, the inference on the parameters of the mean
model remains approximately valid.

To compare the annual mean of the most recent year with the mean (or a linear
combination of means of) the other years, a general linear hypothesis can be for-
mulated. A general linear hypothesis is formulated asHβ = 0 whereH is the
r × q hypothesis matrix. Based on the estimate of the variance ofβ̂ (Equation
(5.40)) the hypotheses can for instance be tested by means of a Wald type test
statistic (Casella and Berger, 2002),

T = (Hβ̂)T (HΣ̂βH
T )−1(Hβ̂), (5.41)

which is asymptoticallyχ2
r distributed under the general linear null hypothesis.

To answer the research question, one test is needed to check whether the mean
nitrate level of 2003 atS1, . . . , S5 is different from the mean of the years 2001 and
2002; and another test is needed to check whether the mean of 2003 is different
from the general mean. For the first question the contrastβ14 − (β13 + β12)/2
is assumed to be 0 underH0. For the second question, we can test forβ14 =
0. We will use the Holms correction for multiplicity (see e.g. Shaffer (1995)).
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Figure 5.7: Plot of the standardised innovations of Model III. Friedman’s super-
smoother is added to the plots to assess the residual pattern

When this method is applied to the data, we conclude that for the study region, the
mean nitrate concentration in 2003 is very significantly different from the mean
of the two years before (̂β14 − (β̂13 + β̂12)/2 = −2.13, p < 0.0001). The mean
concentration in 2003 is also very significantly different from the general mean
(β̂14 = −2.92, p < 0.0001). The point estimates further show a reduction in the
annual mean of the nitrate concentration in the study region. Although the fit of
the mean model at S3 might be biased, the p-values of the tests allow us to feel
confident about our conclusions.

To improve the fit of the mean model we can extend model III to allow for a differ-
ent annual mean in the main river (S1, S2, S4 andS5) and the joining creek (S3).
The mean model becomes

E(yit) = µ + αi + β⌊t/12⌋ + γ1 sin(2πt/12) + γ2 cos(2πt/12)

+ (βγ)⌊t/12⌋1 sin(2πt/12) + (βγ)⌊t/12⌋2 cos(2πt/12) + (αβ)i⌊t/12⌋I(i), (5.42)
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Figure 5.8: Histogram, boxplot and QQ-plot of the standardised innovations of
Model III

where I(i) is an indicator function which is -1 for the sampling location S3 and
which is 1 elsewhere. This model is referred to as Model IIIb. If this model gives
satisfying results, we can infer on a regional scale in the main river and onthe level
of an individual sampling location in the tributary. The AIC of Model IIIb is 5070.4
which is higher than the AIC of Model III. Hence, according to the AIC thehigher
complexity of Model IIIb is not adequately reflected in an improved model fit.The
GLS fit is shown in Figure 5.9. The fit of the mean model at sampling location
S3 seems much better now. The estimates, standard errors and p-values for the
parameters of the mean model are given in Table 5.4. The p-value corresponds
again to the null-hypothesis that the particular parameter value is equal to zero.
Again a number of parameters coding for the main and interaction effects arenon-
significant. However, this is a weak conclusion. Moreover, the other parameters
corresponding of the main and interaction effects are significant. Therefore, the
non-significant parameters are not removed from the model.
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Figure 5.9: Evolution of the water quality at five sampling locations of the river
Yzer. Sampling locations S1, S2, S4, S5 are located on the main river,
sampling location S3 is located on a tributary which drains into the
Yzer between S2 and S4. The line indicates the model fit obtained by
Model IIIb

Table 5.4: The parameter estimates of the mean model of Model IIIb

parameter value std error p-value

µ 11.91 0.62 <0.0001
β14 −5.65 0.70 <0.0001
β13 −3.42 0.66 <0.0001
β12 −4.01 0.66 <0.0001
β11 −2.72 0.66 <0.0001
β10 −2.88 0.66 <0.0001
β9 −0.22 0.66 0.7400
β8 2.10 0.66 0.0014
β7 2.46 0.66 0.0002
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Table 5.4 – Continued

parameter value std error p-value
β6 1.08 0.66 0.1000
β5 6.05 0.66 <0.0001
β4 4.30 0.66 <0.0001
β3 0.97 0.66 0.1400
β2 3.52 0.66 <0.0001
β1 −1.58 0.56 0.0046
α1 −2.60 0.60 <0.0001
α2 −2.67 0.44 <0.0001
α3 1.94 0.51 0.0002
α4 −2.77 0.51 <0.0001
α5 −1.70 0.43 <0.0001
γ1 2.45 0.29 <0.0001
γ2 4.03 0.29 <0.0001
(αβ)3,14 2.76 1.19 0.0200
(αβ)3,13 3.39 1.19 0.0042
(αβ)3,12 3.34 1.19 0.0048
(αβ)3,11 3.66 1.19 0.0020
(αβ)3,10 3.43 1.19 0.0038
(αβ)3,9 2.74 1.19 0.0210
(αβ)3,8 0.67 1.19 0.5700
(αβ)3,7 −1.60 1.19 0.1800
(αβ)3,6 0.11 1.19 0.9200
(αβ)3,5 −5.96 1.19 <0.0001
(αβ)3,4 −3.94 1.19 0.0009
(αβ)3,3 −1.63 1.19 0.1700
(αβ)3,2 −3.39 1.19 0.0043
(αβ)3,1 −3.59 1.18 <0.0001
(βγ)14,1 −1.64 0.97 0.0890
(βγ)13,1 −2.32 0.92 0.1100
(βγ)12,1 1.07 0.92 0.2500
(βγ)11,1 0.75 0.92 0.4200
(βγ)10,1 0.90 0.92 0.3300
(βγ)9,1 −1.65 0.92 0.0730
(βγ)8,1 −2.06 0.92 0.0250
(βγ)7,1 0.90 0.92 0.3300
(βγ)6,1 −0.72 0.92 0.4400
(βγ)5,1 −0.54 0.92 0.5500

139



Spatio-temporal river network model, a parametric approach

Table 5.4 – Continued

parameter value std error p-value
(βγ)4,1 1.47 0.92 0.1100
(βγ)3,1 1.57 0.92 0.0880
(βγ)2,1 5.52 0.92 <0.0001
(βγ)14,2 −1.15 1.15 0.3100
(βγ)13,2 −3.85 1.10 0.0005
(βγ)12,2 −0.08 1.10 0.9400
(βγ)11,2 −0.29 1.10 0.7900
(βγ)10,2 −1.80 1.10 0.1000
(βγ)9,2 2.88 1.10 0.0087
(βγ)8,2 1.26 1.10 0.2500
(βγ)7,2 −0.90 1.10 0.4100
(βγ)6,2 0.19 1.10 0.8700
(βγ)5,2 −3.58 1.10 0.0011
(βγ)4,2 3.45 1.10 0.0017
(βγ)3,2 0.49 1.10 0.6500
(βγ)2,2 −3.08 1.10 0.0050

The estimates of the spatial parametersA,B, Ση andΣǫ are (standard error and
p-value between brackets)

Â =

2

6

6

6

6

4

0 0 0 0 0
1.1(0.3) 0 0 0 0

0 0 0 0 0
0 0.7(0.3) 0.4(0.2) 0 0
0 0 0 0.6(0.1) 0

3

7

7

7

7

5

,

B̂ =

2

6

6

6

6

4

−0.008(0.1) 0 0 0 0
0 0.3(0.1) 0 0 0
0 0 −0.2(0.1) 0 0
0 0 0 −0.03(0.1) 0
0 0 0 0 0.72(0.7)

3

7

7

7

7

5

,

Σ̂η =

2

6

6

6

6

4

7.0(3.1) 0 0 0 0
0 < 10−5(0.003) 0 0 0
0 0 34.7(19.3) 0 0
0 0 0 < 10−5(0.002) 0
0 0 0 0 < 10−5(10−4)
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7

7
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5

,
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Figure 5.10: Autocorrelation plot of the standardised innovations of Model IIIb
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Note that the estimate ofB for S3 is now within the unit circle.

ACF plots and a plot of the standardised innovations in function time can be found
in Figure 5.10 and Figure 5.11, respectively. The ACF plots seem quite similar
to the plots of Model III. In Figure 5.11 the standardised innovations are centered
around 0. As compared to Figure 5.7 the smoother at S3 does not alter anymore
at the boundaries. Again the smoothers indicate a deviation from zero of thestan-
dardised innovations at early dates for S1, S2, S3 and S4. This is again probably
due to the combination of a boundary effect of the smoother, large nitrate values
measured in the beginning of the time series and the Kalman filter which might not
have reached steady state yet. The p-values of Ljung-Box test of the theautocor-
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Figure 5.11: Analysis of the standardised innovations of Model IIIb in function of
time

Table 5.5: p-values for the Ljung-Box portmanteau test of the autocorrelation co-
efficients of the standardised innovations of model IIIb at the first 5 lags

Lag S1 S2 S3 S4 S5
1 0.93 0.80 0.85 0.57 0.55
2 0.55 0.88 0.93 0.73 0.19
3 0.63 0.92 0.90 0.89 0.08
4 0.58 0.97 0.14 0.94 0.15
5 0.23 0.99 0.03 0.30 0.14

relations up to the lag 5 are given in Table 5.5. Only at S3 the Ljung-Box test is
significant at lag 5. Note that the AR(1) coefficient at S3 and the eigenvalues of
Φ are now in the unit circle. We now thus conclude that the state-space model is
stationary. Finally, an assessment on the normality of the standardised innovations
is presented in Figure 5.12. Again, both the boxplot and the QQ-plot show aclear
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Figure 5.12: Histogram, boxplot and QQ-plot of the innovations of Model IIIb

departure from normality. A considerable amount of outliers is present according
to the boxplot and the QQ-plot indicates that the distribution has larger tails thatthe
normal distribution. Similar to the residuals of Model III, from all plots it can be
seen that the distribution of the standardised innovations is symmetric. To answer
research question, we are again interested in the inference on the parameters of the
mean model and their asymptotic distribution is known to be unaffected when the
Gaussianity assumption is dropped (Harvey, 1989).

To answer the research question by using model IIIb, four tests are needed:

1. H0: In the main river, the annual mean of 2003 is equal to the mean of the
year 2001 and 2002
H0 : (β14 + (αβ)3,14 − 1/2(β12 + (αβ)3,12 + β13 + (αβ)3,13) = 0

2. H0: In the main river, the annual mean of 2003 is equal to the general mean
H0 : (β14 + (αβ)3,14) = 0.
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Table 5.6: p-values of the tests to assess the annual mean of 2003
Test contrast p-value p-holm

Main river (“Regional”)
2003↔ 2001-2002 -2.54 0.016 0.031

2003↔ general mean -2.88 0.0005 0.0014
Joining creek (S3)

2003↔ 2001-2002 -1.32 0.56 0.56
2003↔ general mean -8.40 < 0.0001 < 0.0001

3. H0: In S3 located at the joining creek, the annual mean of 2003 is equal to
the mean of the year 2001 and 2002
H0 : (β14 − (αβ)3,14 − 1/2(β12 − (αβ)3,12 + β13 − (αβ)3,13) = 0

4. H0: In sampling location S3, the annual mean of 2003 is equal to the general
meanH0 : (β14 − (αβ)3,14) = 0.

Again, we use the Holms correction for multiplicity. The contrasts, uncorrected
p-values and the corrected p-values are presented in Table 5.6. Theseresults show
that in the main river, the mean in 2003 differs significantly from the mean of the
last two years and from the general mean. At sampling locationS3 the mean in
2003 is very significantly different from the general mean, but the mean in2003 is
not different from the mean of the last two years in that sampling location. Again
the point estimates indicate that the significant differences correspond to areduc-
tion in the mean nitrate concentration.

5.5 Discussion and Conclusions

A spatio-temporal state-space model is proposed for river monitoring networks
where the spatial dependence structure of the state variable is directly derived from
the river topology and the temporal dependence structure is modelled by anAR(1)
process. The state variable is embedded into an observation model that contains a
model for the mean. The latter is needed to answer research questions. Withthis
model it is, for instance, possible to infer on the annual mean nitrate concentration
of a river monitoring network. The methodology is shown to be very flexible and
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enables the user to test at the level of individual sampling locations as well ason a
more regional scale.

A Kalman filter and smoother is formulated for the state-space model, and for
the parameter estimation an ECM algorithm is developed. In this algorithm, the
parameters of the mean model are estimated by generalised least squares. The
parameter estimators are shown to be asymptotically normally distributed. The
AIC criterion and an assessment of the standardised innovations are used for model
selection and for the evaluation of the quality of the model, respectively.

The temporal correlation structure is restricted to an AR(1) process. In the case
study presented here, this seemed to be the right model, but when more complex
temporal structures are needed, the methodology can be extended. For instance,
Harvey (1989) showed that more general ARMA structures can be handled by the
Kalman filter. For example, for an AR(2) process, the state variableSt has to
be replaced by a vector(S1t, ..., Spt, S1t−1, ..., Spt−1)

T containing also the state
variable at the previous time step. This leads to a reformulation of the observation
model and the Kalman filter equations.

The spatial variance-covariance matrix of the observation modelΣǫ used a satu-
rated parametrisation. To reduce the complexity in large monitoring networks,Σǫ

can be further parameterised (e.g. Xu and Wikle, 2005). Due to the estimation
orthogonality in the first CM step, this will only change update Equation (5.35).

The methodology has been applied on a case study at five sampling locations of
the river Yzer. Depending on the formulation of the mean model, inference is
possible on a regional scale, on the level of a river reach as well as onthe level of
individual sampling locations. The case study infers on the annual mean ofnitrate
concentrations of the most recent year. A general linear hypothesis was used to test
whether the annual mean of the most recent year was different from themeans of
the two most recent years and from the general mean. In the study area,the annual
average of the nitrate concentration in 2003 is shown to be lower than the general
mean (p < 0.01). Moreover, in the main river, the mean nitrate concentration of
2003 was also lower than the mean of the two most recent years (p = 0.03).
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5.6 Appendix: Calculation of the parameters inA andB
in CM-step 1
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Chapter 6

Spatio-temporal modelling of river
monitoring networks,
a semi-parametric approach

6.1 Introduction

The Water Framework Directive (WFD)(EC, 2000) aims to trigger local authorities
to improve the aquatic environment. To reach that goal, the Flemish environmental
agency (VMM) is developing basin management plans to improve the water quality
of the rivers in Flanders (Belgium). A dominant problem in Flemish water bodies
is the eutrophication due to nutrient pollution. One of the main nutrient pollution
sources originates from agricultural activities. In Flanders there is an intensive
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pig farming activity and in the past the produced manure was mainly disposed on
agricultural lands. A major action to reduce this nutrient load was the introduc-
tion of two Manure Action Plans (MAP’s) (Vlaams Parlement, 1995, 1999). The
MAP’s restrict the amount of fertilisers that may be used by farmers in area’s which
are susceptible to eutrophication. The first MAP was introduced in 1996 (Vlaams
Parlement, 1995) and after an evaluation a new and more restrictive MAP was im-
plemented in 2000 (Vlaams Parlement, 1999). When such actions are taken, itis
important to assess whether they indeed have an effect on the water quality. There-
fore water quality monitoring networks are needed to assess the evolution ofthe
water quality. In Flanders, the VMM has developed several monitoring networks
along the rivers. In their physico-chemical monitoring network, a basic spectrum
of physico-chemical variables is evaluated monthly at each sampling location.In
this chapter we assess the evolution of the nitrate concentration in a small region
of the Yzer basin. This river is located in the Western part of Flanders. Itis a rural
area with a large agricultural activity.

The focus of this chapter lays on the development of a methodology to detectand
to locate trends in the water quality data. Instead of assessing trends at the level of
individual sampling locations, our aim is to develop a methodology for trend detec-
tion on a more regional scale. Standard techniques cannot be used for this purpose
because river monitoring networks typically generate data with a strong spatial and
temporal dependence structure. In order for the statistical inference procedure to
be formally valid, this dependence has to be taken into account. Many researchers,
however, have avoided the estimation of the spatio-temporal dependence inriver
monitoring network data by simply ignoring it or by using ad hoc methods. Burn
and Hag Elnur (2002), for instance, adopted an approach to determine the field
significancethat is involved in the calculation of a regional value for the Mann
Kendall statistic. To correct for serial correlation, they proposed to first perform
a pre-whitening step which preserves the trend. To correct for the spatial correla-
tion, they suggested a resampling strategy that constructs bootstrapped datasets by
selecting the time instants to be included at random until the original number of
sampling times is reached. For each of the selected time instants the corresponding
data at all sampling locations has to be used to preserve the spatial pattern. Hence,
the temporal structure such as trends that existed in the original data, is notre-
produced in the resampled datasets, but the spatial pattern remains. Finally,Mann
Kendall statistics are calculated for each of the sampling locations of the resampled
datasets to derive a kind of field significance level under the null-hypothesis. This
field significance is then used to assess the trends on a more regional scale.Beside
the stagewise removal of the dependences, another disadvantage of their approach
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is the assumption of monotonic trends. In environmental systems, however, the
trend is often nonlinear and changes over time. Hence, if there are sign changes in
the trend during the period of interest, tests for monotonic trends are not useful.

To control the type I error rate of the trend tests at more than one sampling lo-
cation, we suggest to use a spatio-temporal model for a river monitoring network
that takes the spatio-temporal dependence structure explicitly into account.In con-
trast with ad hoc methods, the modelling approach provides a very natural way
to introduce the spatio-temporal dependence structure into the testing procedure.
River monitoring networks, however, possess a specific spatial dependence struc-
ture. As compared to classical geostatistical models, an important distinction has
to be made with respect to the spatial dependence structure: due to the direction of
the flow a causal interpretation can be given to the correlations. Moreover, rivers
can join or split, which implies a more general branched unidirectional structure.
In reality the environmental conditions may obscure the unidirectional spatialde-
pendence structure implied by the river topology. We therefore only imposethis re-
strictive topology-implied dependence structure on an unobservable statevariable
S. The latent variableS is embedded in an observation modely that allows cross-
correlation between sampling locations that are located at different branches of the
river, so that more realistic dependence structures are allowed. Besides the de-
pendence structure, we also have to model the marginal mean to assess the trends.
Trends in water quality are often nonlinear. Therefore we propose here a trend de-
tection based on local polynomial regression smoothers. To enable an assessment
of the trend on a regional scale, a common nonparametric trend is estimated at all
sampling locations. The evaluation of the local trend is done by testing that the
first derivative of the nonlinear trend is significant. This has to be performed at
each time instant, and leads to a large number of simultaneous tests. Therefore, a
multiplicity correction procedure is required. In general, observations which are
close in time are likely to have similar trends. Thus, in our setting, the trend tests
are not independent, and this reduces the actual dimension of the multiplicity prob-
lem. In this chapter we present a procedure that corrects for multiplicity andtakes
the dependence between the tests explicitly into account. This leads to a correct
statistical inference procedure that is not too conservative.

The organisation of the chapter is as follows. First the spatio-temporal model is
briefly presented in Section 6.2. The difference with the model presented inChap-
ter 5 is situated in the formulation of the mean model. The mean model is now
semi-parametric because a smoother is used for the trend estimation. The param-
eter estimation procedure is introduced in Section 6.3. Section 6.4 deals with the
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S1 S2

S3

S5S4

Figure 6.1: Directed Acyclic Graph (DAG) of five sampling locations along two
joining river reaches

trend detection method, and in Section 6.5 the methodology is illustrated in a case
study. Finally we will formulate some conclusions in Section 6.6.

6.2 Spatio-temporal model

LetS = (S1, . . . , Sp)
T represent thep× 1 vector of response variablesSi at sam-

pling locationsi = 1, . . . , p. The correlation structure ofS is completely defined
by the river topology. This is illustrated in Figure 6.1, which shows the rivertopol-
ogy of 5 sampling locations. The same figure can also be interpreted as a Directed
Acyclic Graph (DAG) (see e.g. Whittaker, 1990) in which the circles represent
Si’s and arrows immediately determine the conditional independence structure.
For example, observations at sampling locationS4 are independent ofS1 given
observations atS2 because all the water fromS1 has to pass throughS2 before it
can reachS4. The DAG can be modelled by

S = AS + γ, (6.1)

whereA = (aij)i,j can be written as ap × p lower triangular square matrix with
zeroes at the diagonal, andγ is multivariate normally distributed (MVN):γ ∼
MV N(0,Σγ) with a diagonal variance-covariance matrixΣγ . When the model is
applied to the graph in Figure 6.1, it can be seen thatA becomes

A =













0 0 0 0 0
a21 0 0 0 0
0 0 0 0 0
0 a42 a43 0 0
0 0 0 a54 0













152



6.2 Spatio-temporal model

whereaij models the dependence between sampling locationSi andSj .

The river monitoring network, however, generates data over time. The spatial pat-
tern of the DAG is thus repeated over time and we have to extend Equation (6.1)
to also take the temporal dependence into account. LetSt = (S1t, . . . , Spt)

T . We
assume a Markovian dependence structure and we modelSt by conditioning on
St−1. Extending and rearranging Equation (6.1) gives

St = (Ip −A)−1BSt−1 + (Ip −A)−1ηt, (6.2)

t = 1, . . . , n, whereIp is thep × p identity matrix,ηt ∼ MV N(0,Ση) with
a p × p diagonal variance covariance matrixΣη, andB is a p × p matrix con-
taining the temporal autocorrelation (diagonal elements) and the spatio-temporal
cross-correlation coefficients (off-diagonal elements). Similar to the matrixA, we
propose to only use cross-correlations between sampling locations that are directly
connected according to the DAG structure. The off-diagonal elements ofB are
thus structured in a similar way as the elements of matrixA. HenceB can be
written as

B =













b11 0 0 0 0
b21 b22 0 0 0
0 0 b33 0 0
0 b42 b43 b44 0
0 0 0 b54 b55













.

Wheni 6= j thebij model the spatio-temporal dependence betweenSit andSjt−1

and thebii model the temporal dependence betweenSit andSit−1. For complete-
ness the initial conditions have to be defined at time instant 0. We assumeS0 to be
MV N(0,ΣS0).

In reality, however, the dependence structure might be obscured by common envi-
ronmental confounders, such as rainfall. Therefore, the model is embedded into an
observation model,

yt = St + ǫt, (6.3)

t = 1, . . . , n, whereyt is the observation vector corresponding toSt, andǫt ∼
MV N(0,Σǫ). No restrictions are imposed onΣǫ. This enables cross correlations
between sampling locations that are not connected according to the river topology.

Model (6.3) only defines the spatio-temporal dependence structure. Itcan be eas-
ily seen thatE[yt] = 0 at all time instants. To model the trend, Equation (6.3)
is extended with an additive model for the mean. Besides a trend, seasonalvari-
ation is typically present in water quality data. In Chapter 1 we introduced some
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of the data. The seasonal variation was illustrated in Figure 1.6 where nitratedata
of all years was plotted in function of the day of the year (support[1, 365]). A
common approach to deal with this variation is to include sinusoidal functions of
fixed periods to describe the seasonal cycle within a year (e.g. Hirst, 1998; Cai
and Tiwari, 2000; McMullan et al., 2003; McMullan, 2004). A common function
which is used for this purpose isα cos(2π(t/P ) + θ), whereP is the period which
is taken to be 1 year,α is the amplitude of the seasonal trend andθ is a parameter to
allow for a phase shift. Hence,α andθ have to be estimated. This term, however,
is nonlinear in the parameterθ because the parameter appears within the cosine
function. However, this term can be expressed in a linear form by using astan-
dard trigonometric expansion of the cosine term. This is also the parametrisation
of our choice and therefore we use Fourier basis functions to model the seasonal
effect γ1 sin(2πt/365) + γ2 cos(2πt/365). Hence, the following mean model is
proposed: E[yit] = Xitβ + f(t), whereβ = (β1, . . . , βq)

T is theq × 1 parameter
vector andXit is the1 × q design vector that includes the proper Fourier basis
functions and some other linear predictors, andf(t) is a local linear regression
smoother for the estimation of the nonlinear trend. Note thatf(t) does not depend
on the sampling location because we want to assess the trend on a regional scale.
After embedding the mean model into Model (6.3), we obtain

yt = Xtβ + f(t) + St + ǫt, (6.4)

which specifies together with Model (6.2) the complete time-invariant spatio-tem-
poral state-space model.

An equivalent formulation of the spatio-temporal model is accomplished by recog-
nising that the Model (6.2) and (6.4) can be written as a Structural EquationModel
(SEM) (see e.g. Maruyama, 1997),

CSN = ζ (6.5)

Y N = XNβ + fN + SN +ψ, (6.6)

whereSN = (ST1 , . . . ,STn )T , Y N = (yT1 , . . . ,yTn )T , XN = (XT
1 , . . . ,XT

n )T ,
fN = (fT (1), . . . ,fT (n))T ,C is apn× pn square matrix constructed from the
elements of the matricesA andB, ζ ∼ MV N(0,Σζ), whereΣζ is a diagonal ma-
trix built from the corresponding elements ofΣη, andψ ∼ MV N(0,Σψ) where
Σψ is block-diagonal with blocksΣǫ. From this SEM formulation the covariance
structure of the observation vectorY N is easily found,

ΣYN
(Ψα) = var(Y N ) = C−1ΣζC

−T + Σψ, (6.7)

with Ψα the vector that contains all parameters inA, B, ΣS0 , Ση andΣǫ.
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6.3 Parameter estimation and statistical inference proce-
dure

As in Chapter 5 it is possible to perform the parameter estimation and the inference
procedure completely in the likelihood framework. However, in order to control
the computational burden we will consider a slightly different approach where the
mean model is estimated by ordinary least squares (OLS). OLS also provides an un-
biased estimator but it is asymptotically less efficient than generalised least squares
(GLS) (e.g. Shin and Oh, 2002). Thus, the variance of the OLS estimatorswill be
larger. The parameter estimation of the mean model is given in Section 6.3.1. In
Section 6.3.2 the estimation procedure for the parameters of the dependencestruc-
ture is briefly discussed.

6.3.1 Mean model

In Chapter 5 a linear spatio-temporal model was used to model the mean. The
parameter estimation was done within the likelihood framework which implies the
use of generalised least squares (GLS) for the estimation of the parameters of the
mean model. In this chapter the approach of Chapter 5 is extended by introducing
a smoother in the mean model for the estimation of a nonlinear trend. This nonlin-
ear trend is estimated by the use of a polynomial smoother (An overview of fitting
local polynomial smoothers can be found in Section 2.2.3). Because a smoother
is involved in the mean model, we will have to obtain the smoother matrix to fit
the semiparametric mean model. In a GLS context, the dependence structure is
involved in the calculation of the smoother matrix (see e.g. Giannitrapani et al.,
2005). Hence, the only adjustment which is needed to use the ECM algorithm of
Chapter 5, is to adapt the second CM to enable the fit of the semiparametric mean
model. However, this would imply the recalculation of the projection matrix of the
smoother at each iteration and would lead to a drastic increase of the computational
power that is needed to estimate the model parameters. Therefore we will useordi-
nary least squares (OLS) to fit the mean model. OLS estimators are also unbiased
and consistent, but they are asymptotically less efficient (e.g. Shin and Oh,2002).
Thus, the variance of the OLS estimator will be larger than the variance of GLS
estimators. From a computational point of view, however, they have a considerable
advantage because the parameters of the mean model only have to be estimated
once and the parameters of the dependence structure can then be estimatedusing
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the residuals of the OLS estimation procedure. Given these considerationswe pre-
fer OLS.

When the OLS procedure is applied to our particular additive model, the estimating
equations have an analytical solution (see Section 2.3, and Hastie and Tibshirani
(1990)). The following results are obtained for the OLS of our model,

β̂ = (XT
N (IN − Sf )XN )−1XT

N (IN − Sf )Y N = HβY N (6.8)

f̂ = Sf (Y N −XN β̂), (6.9)

whereSf is the smoother matrix andIN is theN × N identity matrix. Hence, a
projection matrixHf can be constructed for the smoother term,

Hf = Sf (IN −XN (XT
N (IN − Sf )XN )−1XT

N (IN − Sf )). (6.10)

For inference procedures, this is advantageous. Once the covariance matrix of the
observationsY N is available, the covariance matrix of the smoother estimators
can be obtained. To assess whether a beneficial trend occurs after a certain time,
we have to infer the first derivative of the trend. For local polynomial regression
smoothers, a smoother matrixSf (1) for the first derivativef (1) is available (Fan
and Gijbels, 1996). The smoother, however, is embedded in an additive model,
thus a projection matrixHf (1) for the first derivative has to be calculated. For
local polynomial smoothers, this becomes

f̂
(1)

= Sf (1)(Y N −XN β̂)

= Sf (1)(IN −XN (XT
N (IN − Sf )XN )−1XT

N (IN − Sf ))Y N (6.11)

= Hf (1)Y N ,

with

Hf (1) = Sf (1)(IN −XN (XT
N (IN − Sf )XN )−1XT

N (IN − Sf )) (6.12)

6.3.2 Dependence structure

To fit the parameters of the dependence structure, we propose to apply aslightly
adjusted version of the ECM algorithm of Section 5.3.3. Because the parameters
of the mean model are estimated by OLS, the second CM step dealing with the
estimation of the parameters of the mean model is redundant and only the first
CM step is used. The only adjustment that is needed here is to replacey′t by
y′t = yt −Xtβ − f(t).
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6.4 Statistical inference procedure

Since the parameters of the seasonal component and the nonlinear trend are a lin-
ear combination of the responses,β̂ = HβY N and f̂ = HfY N , inference on
the mean parameters and the nonlinear trend require an estimator of the com-
plete variance-covariance matrix of the observation vectorY N . From the SEM
model representation an estimator ofΣYN

can be calculated directly by plugging
in the parameter estimates in Equation (6.7). LetΣ̂YN

denote this estimator. The
variance-covariance matrix of the parameter estimators for the seasonal effect is
thus consistently estimated by

Σ̂β = HβΣ̂YN
HT

β . (6.13)

To know whether the nonlinear trend is present at a certain timet, an analysis of its
derivative,f (1)(t), is proposed. For local linear regression smoothers the derivative
can be calculated and is linear in the response. Since projection matrices exist for
the local polynomial regression smoother and its first derivative, the calculation of
the estimator of the variance-covariance matrix of the nonlinear trend (Σf ) and of
the derivative (Σf (1)) is straightforward. They are given by

Σ̂f = Hf Σ̂YH
T
f (6.14)

Σ̂f (1) = Hf (1)Σ̂YH
T
f (1) . (6.15)

Simple test statistics can thus be used for asymptotic pointwise inference on the
derivative, e.g.t = f (1)(t)/sf (1)(t) is asymptotically standard normally distributed
under the null-hypothesis of no trend. Since the test is performed at eachtime in-
stant, we have to correct for multiplicity. A widely used method to take multiplicity
into account is to use adjustedp-values. Well-known examples of this approach are
classical methods such as the Bonferroni or Holm procedures. They consider all
the tests to be independent and they are known to be too conservative when this is
not the case (e.g. Shaffer, 1995). In our application, tests at time instantswhich are
close to one another are likely to be correlated. Thus, the effective dimension of the
multiplicity problem is reduced. We therefore propose to use a procedure which
can take these dependences explicitly into account. In particular we have chosen to
use the free step-down resampling method (algorithm 2.8 of Westfall and Young,
1993). Their procedure proceeds as follows

1. Rank the originalp-values:p(1) ≤ p(2) ≤ . . . ≤ p(n), where(j) denotes the
rank number and store the rankedp-values in the vector(p(1), . . . , p(n))
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2. Initialise the count variables:COUNTi = 0, i = 1, . . . , n

3. Generate a vector(p∗(1), . . . , p
∗
(n)) from the same (or at least, approximately

the same) distribution of theoriginal p-values(p(1), . . . , p(n)) under the
complete null hypothesis. Note that the sequence{(j)} is fixed through-
out the simulation. Thus thep∗(j) will not have the same monotonicity as the
originalp-valuesp(j).

4. Define the successive minima:

q∗n = p∗(n)

q∗n−1 = min(q∗n, p
∗
(n−1))

q∗n−2 = min(q∗n−1, p
∗
(n−2))

...

q∗1 = min(q∗2, p
∗
(1)).

5. If q∗i ≤ p(i), thenCOUNTi = COUNTi + 1.

6. Repeat step 3-5B times, compute the adjustedp-values
∼
p

(B)

(i) as
∼
p

(B)

(i) =
COUNTi

B .

7. Enforce monotonicity using successive maximisation:

∼
p

(B)

(1) =
∼
p
B

(1)

∼
p

(B)

(1) = max(
∼
p

(B)

(1) ,
∼
p

(B)

(2) )

...
∼
p

(B)

(n) = max(
∼
p

(B)

(n−1),
∼
p

(B)

(n) ).

Westfall and Young (1993) argue that once the monotonicity is enforced and if B

is sufficiently large that the
∼
p

(B)

(j) are reasonable approximations of the actual
∼
p(j).

They also recommend to takeB ≥ 10000. One of the possibilities Westfall and
Young (1993) proposed to perform step 3 is to sample from a parametric estimate
of the null distributionF̂0. WhenF0 is a known function that depends on a vector
of unknown parametersΘ, F0 = F0(Θ), one can sample from̂F0 = F0(Θ̂),
whereΘ̂ is a consistent estimate of̂Θ. In our application, a simulated sample
from F̂0 can be obtained by
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1. sampling a new set of derivativesf (1)∗ under the null-hypothesis of no trend
from MV N(0, Σ̂f(1)),

2. calculating thep-valuesp∗k that correspond to each of the simulated deriva-

tivesf
(1)∗
k , and

3. ranking thesep-values according to theoriginal p-values(p(1), . . . , p(n)) to
obtain(p∗(1), . . . , p

∗
(n)).

In the above, inference is provided for the components of the mean model. To
obtain standard errors of the parameter estimators of the dependence structure, we
will estimate the observed Fisher information matrix. In this dissertation, this is
done by numerical perturbation of the likelihood function (e.g. Harvey, 1989 and
Shumway and Stoffer, 2006).

Model selection will be based on the AIC criterion and the quality of the model
will be checked in an analysis of the standardised innovations (for more details see
Section 5.3.5).

6.5 Case study

The data used in this case study is part of a public database of the Flemish environ-
mental agency (http://www.vmm.be). Five sampling locations along two joining
river reaches located in the Yzer basin (Belgium) are used to assess whether there
exists a trend in the nitrate concentration between January 1990 and December
2003. Their DAG and locations in the catchment are shown in Figure 6.2. Sam-
pling locations S1, S2, S4 and S5 are located on the Yzer while sampling location
S3 is located on a joining creek. For each sampling location, monthly nitrate mea-
surements are available between January 1990 and December 2003. Hence the five
sampling locations are sampled on 168 different time instants resulting in a total
sample size of 840 observations. Since the observations are taken at time intervals
which are much larger than the time scale of the water flow, the matrix B describing
the temporal correlation, can be assumed to be diagonal, i.e. an AR(1) structure.
Instead of looking for trends at the level of individual sampling locations,we aim
to detect the trend on a more regional scale and impose the restriction that all lo-
cations have the same trend in common. This assumption is later assessed in the
analysis of the innovations. The nonlinear trend is estimated by means of a local
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S1 S2

S3

S5S4

Figure 6.2: Top Left: Directed Acyclic Graph (DAG) of the sampling locations
along the 2 river reaches. Bottom Left: Map of the river reaches con-
sidered in this case study. Locations S1, S2, S4 and S5 are located on
the Yzer river while location S3 is located on a joining creek. Sam-
pling location S1 is located in France. Right: Map of the part of the
Yzer catchment located in Flanders, Belgium. The sampling locations
are indicated by the dots. The area considered in this study is indicated
with the ellipse and the considered sampling locations are indicated
with black dots

polynomial regression smoother for which we use the Epanechnikov kernel. Local
polynomial regression was introduced in Section 2.2.3. The choice of the kernel
is not that important from a practical point of view (e.g. Fan and Gijbels, 1996).
But, Fan and Gijbels (1996) showed that the Epanechnikov kernel has some nice
asymptotical properties. The bandwidth was selected by a grid search using the
AIC criterion (see e.g. Chapter 2). Next we introduce the models that werefitted
to the data. Letµ denote the intercept at sampling location 5, andαi the effect
of the ith sampling location relative to sampling location 5 (henceα5 = 0). The
value of the regional trend at timet is denoted byf(t), theγk are the parameters of
the seasonal component modelled by Fourier terms, and the(αγ)ik are parameters
of the sampling location-season interactions. In contrast to the models in Chapter
5 no year-season interaction term could be used to enable the seasonal effect to
change from one year to another. We would only include an interaction termin
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Table 6.1: Mean models to assess the “regional” nonlinear trend in the nitrate con-
centration

Model E(yit) AIC
I µ + αi + γ1 sin(2πt/12) + γ2 cos(2πt/12) + f(t) 5102.0

II µ + αi + γ1 sin(2πt/12) + γ2 cos(2πt/12) + f(t) 5096.4
+(αγ)i1 sin(2πt/12) + (αγ)i2 cos(2πt/12)

the model if the model also contains the main effect, and the factor for year could
not be included in the model since a main effect as it would interfere with the esti-
mation of the nonlinear trend. Table 6.1 presents the models that were considered.
The models are fitted by using the methods described in Section 6.3.

Model II has the lowest AIC and it is selected as the final model. The resulting
OLS fit of the mean model is shown in Figure 6.3. The plot clearly shows the
presence of seasonal variation and a decreasing trend from 1998 until the end of
the time series. The parameter estimates of the mean model,β̂, are given in Table
6.2. The parameters of the dependence structure consist of the elements of the
matricesA, B, Ση andΣǫ. Their estimates are listed below (standard errors are
shown between brackets).
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2

6

6

6
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0 0 0 0 0
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Figure 6.3: Model fit at five sampling locations of the river Yzer according to
model II. Sampling locations S1, S2, S4, S5 are located on the main
river and sampling location S3 is located on a tributary which drains
into the Yzer between S2 and S4.
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The model quality has to be checked by the use of an assessment of the standard-
ised innovations. These innovations should be independent. This is assessed with
a plot of the autocorrelation function (ACF). The ACF plot of the original series is
given in Figure 6.4. The original nitrate observations are clearly correlated. The
ACF of the standardised innovations are given in Figure 6.5. For these plots, we
see that the model succeeds in reducing a considerable amount of the serial cor-
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Table 6.2: Parameter estimates, standard errors and p-values for the linear part in
the mean model (Model II)

Parameter Estimate Standard error p-value
µ 9.85 0.20 0.00

α4 −0.90 0.14 0.00
α2 −0.79 0.14 0.00
α1 −0.66 0.07 0.00
α3 3.84 10.20 0.71
γ2 3.70 0.38 0.00
γ1 3.71 0.39 0.00

(αγ)4,2 −0.28 0.26 0.29
(αγ)2,2 0.50 0.25 0.04
(αγ)1,2 1.23 0.15 0.00
(αγ)3,2 0.36 1.18 0.76
(αγ)4,1 −0.92 0.26 0.00
(αγ)2,1 −0.04 0.25 0.87
(αγ)1,1 −0.18 0.15 0.23
(αγ)3,1 −0.23 1.20 0.85

Table 6.3: p-values for the Ljung-Box portmanteau tests of the autocorrelation co-
efficients of the standardised innovations at the first 5 lags

Lag S1 S2 S3 S4 S5
1 0.78 0.87 0.63 0.90 0.11
2 0.95 0.97 0.10 0.96 0.27
3 0.20 0.99 0.17 0.74 0.37
4 0.06 1.00 0.14 0.46 0.52
5 0.04 0.99 0.05 0.52 0.58

relation present in the original series. A joint test of significance of the first i
autocorrelation coefficients can be provided by the Ljung-Box portmanteau test
(Ljung and Box, 1978). The p-values for the Ljung-Box portmanteau tests of the
autocorrelation coefficients of the standardised innovations are presented in Table
6.3. In Table 6.3, the test is only significant for S1 at lag 5. From the ACF plots
and the Ljung Box tests, we therefore conclude that the AR(1) structure seems to
be adequate. The quality of the mean model is checked in a plot of the standardised
innovations with respect to time. This graph is displayed in Figure 6.6. Friedman’s
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Figure 6.4: Autocorrelation plots of original nitrate series at the differentsampling
locations

supersmoother (Friedman, 1984) is added to each plot to check whether there is still
a pattern present in the standardised innovations. From Figure 6.6 it can be seen
that the smoothers stay close to zero. For S2, S3 and S4 the smoothers indicate
deviations from zero at the boundaries.This was also observed in the case study in
Section 5.4 and again these deviations are probably due to the combination of a
boundary effect of the smoother, large nitrate values measured in the beginning of
the time series and the Kalman filter which might have not reached steady state yet.
Because no severe deviations are indicated by the smoother, the assumptionof the
existence of a regional trend seems acceptable. All processes were assumed to be
Gaussian. The standardised innovations should therefore be distributedaccording
to the standard normal distribution. Hence, most of standardised innovations are
expected to lay approximately in the interval[−2, 2]. In Figure 6.6 it can be seen
that at each sampling location a number of outliers are present. The normality of
the standardised innovations is further assessed in Figure 6.7. Both the boxplot and
the QQ-plot show a clear departure from normality. The boxplot indicates aconsid-
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Figure 6.5: Autocorrelation plots for the standardised innovations of Model II

erable amount of outliers and the QQ-plot indicates that the distribution has larger
tails than the normal distribution. On the other hand, from all plots it can be seen
that the distribution of the standardised innovations is symmetric. For the research
question, we need to infer on the mean model included in the observation equation.
This is a deterministic component in the model and from Harvey (1989) we know
that the asymptotic distribution of the estimators associated with the deterministic
components are not affected when the Gaussianity assumption is dropped.Hence,
the inference on the parameters of the mean model remains approximately valid.

Thanks to the additive model structure, the contribution of each predictor can be
studied individually. This enables us to decompose the model into components that
can be represented graphically. The trend and its derivative are shown in Figure 6.8,
along with 95% asymptotic pointwise confidence intervals. A naive approachto
assess the trend is to perform a t-test at each individual time instant. An equivalent
result is obtained by assessing at which time instants zero is not contained in the
95% confidence intervals of the derivatives. In Figure 6.8 pointwise significant
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Figure 6.6: Plots of the standardised innovations of Model II, Friedman super-
smoothers are added to the plots to assess the residual pattern

results (α = 0.05) are indicated with a dot and it can be seen that a trend is present
from January 1999 until July 2003.

For the test procedure to be formally valid, a multiplicity correction is needed to
control the familywise Type I error at theα-level instead of controlling the Type I
error of the individual tests. When the Holm procedure was applied to correct for
multiplicity, no significant results were observed (results not shown). TheHolm
procedure however acts as if all tests are independent. But observations which are
close in time are likely to have similar trends. Thus, in our setting, the trend tests
are dependent, and this reduces the actual dimension of the multiplicity problem.
Therefore we have proposed to use a modified maximum T approach that cor-
rects for multiplicity and takes the dependences between the tests explicitly into
account . The results of this approach are illustrated in Figure 6.9. Familywise
significant first derivatives (α = 5%) are indicated with dots superimposed on the
point estimates. The derivatives of the nonlinear trend are significantly different
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Figure 6.7: Histogram, boxplot and QQplot of the innovations of Model II

from 0 between September 1999 and January 2002. Since the estimates of the first
derivatives of the nonlinear trend are negative, a significant decrease in nitrate con-
centration is concluded for this period. The fact that we exploited the dependences
between the t-tests, clearly leads to a less conservative test procedure than classical
corrections such as the Holms procedure. Compared to the naive approach, the
nonlinear trend is not significant in 2002 and 2003. This is not surprisingas the
variance of the predictions based on smoothers is typically inflated in the boundary
regions.

Although this data analysis methodology has no causal interpretation, it can be
concluded that a decreasing trend in the nitrate concentration in the study region
is established between the introduction of the first MAP and the second MAP.The
trend remains significant until January 2002.
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Figure 6.8: Evaluation of the common nonlinear trend (NLT) along the river Yzer.
The estimated trend is presented in the left panel, and its first derivative
is shown in the right panel. In both graphs, 95% pointwise confidence
bands are depicted. Pointwise significant decreases are indicated with
a dot superimposed on the point estimates

6.6 Discussion and conclusions

In this chapter a statistical methodology was developed for the detection of non-
linear trends in river monitoring network data. A spatio-temporal model was con-
structed to model the marginal mean and the dependence structure. According the
specification of the marginal mean model, the trend can be studied at the level of
individual sampling locations, or on a more regional scale.

In contrast with existing methodologies for (non)linear trend detection, ourproce-
dure takes the spatio-temporal dependence explicitly into account. As compared to
ad hoc methods such as the methods based on the field significance (e.g. Burn and

168



6.6 Discussion and conclusions

Time

E
ffe

ct
 N

LT
 (

m
g 

N
O

3/
l)

−
6

−
4

−
2

0
2

4

01/90 01/94 01/98 01/02

NLT

Time

fir
st

 d
er

iv
at

iv
e

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

01/90 01/94 01/98 01/02

NLT: First derivative

Figure 6.9: Evaluation of the common nonlinear trend (NLT) along the river Yzer.
The estimated trend is presented in the left panel, and its first derivative
is shown in the right panel. In both graphs, 95% pointwise confidence
bands are depicted. Familywise significant decreases are indicated with
a dot superimposed on the point estimate

Hag Elnur, 2002), our method provides statistical inference which is formally valid.
For the detection of trends in water quality, the use of a nonparametric regression
method is more flexible. Classical tests such as Mann Kendall tests for trend de-
tection are not appropriate when sign changes occur in the trend. Our method also
enables the detection of trends on a more local time scale. To verify at which time
instants the nonlinear trend is beneficial, t-tests are performed at each time instant.
Due to the specific dependence between these tests, classical multiplicity correc-
tions are too conservative. We have adopted the free step-down resampling method
Westfall and Young (1993) and sampled from an appropriate null distribution to
take the dependences between the statistical tests into account.

The methodology has been illustrated in a case study where a significant decrease
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in the nitrate concentration was detected in the study region between September
1999 and January 2002 (α = 0.05), indicating a beneficial effect of the introduction
of the manure action plans.
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Chapter 7

Spatio-temporal modelling of river
monitoring networks, a binary data
approach

7.1 Introduction

The authorities of the member states of the European Union are responsible to
develop a long term vision in order to comply with the environmental quality stan-
dards imposed by the European environmental legislation. Such standardsare com-
monly expressed in terms of threshold levels. This provides a binary response to
the decision maker. In case of nitrate, a value which is below the threshold indi-
cates a good nitrate status, and a value above the threshold indicates that thenitrate
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status is problematic. To evaluate and refine their strategy it is important to detect
whether their actions have a beneficial effect. From the policy makers point of
view it is relevant to assess the impact of management strategies on the violation
frequency of water quality standards. This question can directly be assessed by
transforming the observations into binary data using the water quality standard as
a threshold. In this way the response variable is Bernoulli distributed so that trends
in the compliance frequency can be modelled. A beneficial effect of sucha trans-
formation is that the statistical tests become distribution free in the sense that no
distributional assumptions have to be made concerning the original distributionof
the water quality variable. Such an approach is particularly useful when dealing
with water quality indicators with a large fraction of censored observations such
as for instance heavy metals and pesticides. Censoring of water quality dataoc-
curs due to concentrations which are below the detection limit of the measuring
method. Although the transformation to binary data reduces the data complexity,
the spatio-temporal dependence still remains.

To deal with non-normal data, a generalisation of the model framework used through-
out this dissertation is needed. Before we introduce the generalised framework, we
will start from the classical linear model to introduce the different components that
we will need later on. Letyit be an observation acquired on timet, t = 1, . . . , n, at
theith sampling location,i = 1 . . . p and letxit be the1×q vector of corresponding
predictor valuesxit = (xit,1, . . . , xit,q) that are measured simultaneously. Actu-
ally xit is a row from a linear design matrix. Thus, if an intercept is to be included
in the model, one of the elements ofxit should be set to 1. For the moment we will
also assume theyit’s to be i.i.d. normally distributed. The classical linear model
can be written as,

yit = xitβ + ǫit, (7.1)

where the systematic part for the model is specified in terms of a number of pa-
rametersβ = (β1, . . . , βq) and can be written as E(yit|xit) = µit = xitβ. For the
random part, we assume the residualsǫit to be i.i.d. normally distributed with zero
mean and constant varianceσ2, i.e. ǫit ∼ N(0, σ2). Thus, theyit’s are normally
distributed with meanµit and varianceσ2.

In many cases this model is not appropriate. An important case is the one in which
theyit andµit are bounded. For example, if theyit’s represent count data,yit ≥ 0
and µit ≥ 0. In this chapter,yit is considered to be binary. In particular we
write yit = 1 if the environmental threshold is violated andyit = 0 if the water
quality variable is below the threshold. Thus, the meanµit has to be in the interval
0 ≤ µit ≤ 1. The standard linear model is inadequate in these cases because
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complicated and unnatural constraints onβ would be required to make sure that
µit stays in the range. McCullagh and Nelder (1989) give an extensive overview of
generalised linear modelsthat can be used for this purpose. To make the transition
to generalised linear models more easy, we will rewrite Equation (7.1) to produce
a three-part specification:

1. The random component: the yit’s are independently normally distributed
with meanµit and constant varianceσ2,

yit ∼ N(µit, σ
2). (7.2)

2. The systematic component: covariatesxit produce alinear predictor ηit
given by

ηit = xitβ. (7.3)

3. Thelink between the random and systematic components:

ηit = µit. (7.4)

In doing so, we have introduced a new notationηit for the linear predictor and a
third component that specifies thatµit andηit are identical. We can also write the
link more generally as

ηit = g(µit), (7.5)

whereg(.) is referred to as thelink function. Classical linear models use a nor-
mal distribution for component 1 and the identity link function for component 3.
Generalised linear models extend classical linear models by allowing a different
distribution for component 1 and by using another monotonic differentiable func-
tion for the link function in component 3. Recall the constraints for count data
yit ≥ 0 andµit ≥ 0 and for binary datayit = 1 or yit = 0 and0 ≤ µit ≤ 0.
For these cases,g(.) will be used to transform theµit to a scale on which they
are unconstrained. For example we may useg(µit) = log(µit) if µit ≥ 0 or
g(µit) = logit(µit) = log[µit/(1 − µit)] if 0 ≤ µit ≤ 1. Other link functions are
also possible, e.g. the probit link can be used for Bernoulli data instead ofthe logit
link. The probit link is the inverse of the cumulative standard normal distribution
function. Further, the distribution in component 1 becomes the Poisson distribution
for count data and the Bernoulli distribution for binary observations. The usual re-
striction on component 1, is that this distribution should belong to the exponential
family.
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So far we have considered the observations to be i.i.d. Observations originating
from a river monitoring network data, however, are not independent. Another ex-
tension is therefore needed to incorporate the dependence structure. Acommon
extension to model dependent outcomes, is to include random terms in the lin-
ear predictor. Such models are than classified asgeneralised linear mixed models
(GLMM’s, e.g. Breslow and Clayton, 1993). It is often a reasonable approximation
to assume that the random error terms are distributed according to a normal distri-
bution. Although a full maximum likelihood analysis is possible, it usually involves
irreducible high-dimensional integrals (Breslow and Clayton, 1993). Therefore a
number of approximation methods have been developed to deal with GLMM’s.
Depending on the research question, different approaches are possible. When one
is interested in the marginal mean, Marginal Quasi likelihood (MQL) can be used
(Breslow and Clayton, 1993). In case the dependence structure can be assumed to
have a block diagonal structure, the MQL can be optimised by the use of general
estimation equations (e.g. Liang and Zeger, 1986, Zeger and Liang, 1986, Zeger
et al., 1988 and Breslow and Clayton, 1993). If one is interested in the parameters
of the mean model conditional on the random effects, penalised quasilikelihood
(PQL) can be adopted (Breslow and Clayton, 1993). In this dissertation,we infer
on the marginal mean. However, the approximations which are commonly made to
apply MQL do not hold, e.g. the data at the sampling locations of a river network
are not mutually independent and thus their dependence structure cannot be written
as a block diagonal structure. Hence, MQL cannot be used directly. For the infer-
ence procedure to be formally valid we have therefore chosen to work within a full
Bayesian framework. A short introduction to this statistical framework is given in
Section 7.3.1.

In this chapter, a first onset is given towards the generalisation of the spatio-
temporal models presented in Chapters 5 & 6. In particular, a logistic state space
model for the probability of violating a threshold is presented. This model explic-
itly incorporates the dependence structure of the data. It uses a mean model to
assess the impact of the introduction of a manure action plan (MAP) on the ni-
trate concentration and to correct for the seasonal variation. The formulation of the
mean model allows the assessment to be done at the level of individual sampling
locations or on a more regional scale. The dependence structure is introduced by
the use of a latent variableS and temporal dependence is assumed to be behave
as an AR(1) process. These assumptions have to be checked afterwards. Simi-
lar to the previous Chapters 5 & 6, the spatial dependence of the latent variable
is assumed to be a branched unidirectional structure that can be represented as a
Directed Acyclic Graph (DAG).
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S1 S2

S3

S5S4

Figure 7.1: Directed Acyclic Graph (DAG) of five sampling locations along two
joining river reaches

7.2 Spatio-temporal model

First the spatial dependence structure is derived in Section 7.2.1. In Section 7.2.2
this model is extended to include a temporal structure. Finally, the mean model is
introduced in Section 7.2.3.

7.2.1 Spatial dependence structure

Let thep× 1 vectorS = (S1, . . . , Sp)
T denote a stationary spatial process, where

Si (i = 1, ..., p) represents the response variable at sampling locationi. The corre-
lation structure ofS is completely defined by the river monitoring network topol-
ogy. This is illustrated in Figure 7.1 which shows 5 sampling locations along 2
joining river reaches. The direction of the flow is also indicated and it can also
be interpreted as a Directed Acyclic Graph (DAG) (see e.g. Whittaker, 1990) in
which the circles represent the graph’s vertices associated with the correspond-
ing Si’s. Missing edges or arrows indicate the conditional independences. Thus
from Figure 7.1 we readS1⊥⊥S3; S2⊥⊥S3; S4⊥⊥S1|S2; S5⊥⊥S1|S2; S5⊥⊥S1|S4;
S5⊥⊥S2|S4 andS5⊥⊥S3|S4. The DAG implies zeroes in the variance-covariance
matrix of S. Thus it can equivalently be represented by a recursive system of
equations (Wermuth, 1980),

S = AS + γ, (7.6)

where the order of the elements ofS can always be rearranged so thatA is a
lower triangular square matrix with zeroes at the diagonal, andγ is a multivariate
zero-mean random vector with a diagonal variance-covariance matrixΣγ . We fur-
ther assume thatγ ∼ MV N(0,Σγ). For the DAG represented in Figure 7.1,A
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becomes

A =













0 0 0 0 0
a21 0 0 0 0
0 0 0 0 0
0 a42 a43 0 0
0 0 0 a54 0













whereaij models the dependence between sampling locationSi andSj .

7.2.2 Spatio-temporal dependence structure

In a river monitoring network the data are gathered over time. VectorSt =
(S1t, . . . , Spt)

T now represents the observations at the sampling locations at timet
with t = 1, . . . , n. A Markovian structure is assumed for the temporal dependence.
The quality of the temporal model has to be assessed through a residual analysis.
To incorporate the temporal dependence structure, Equation (7.6) is extended to

St = ASt +BSt−1 + ηt, (7.7)

whereB is a matrix containing the temporal autocorrelation coefficients (diago-
nal elements) and the spatio-temporal cross-correlation coefficients (off-diagonal
elements), andηt ∼ MV N(0,Ση) with a diagonal variance-covariance matrix
Ση. Similar to matrixA, we propose to only use cross-correlations between sam-
pling locations which are directly connected according to the DAG structure.The
off-diagonal elements ofB are thus structured in a similar way as the elements of
matrixA. HenceB can be written as

B =













b11 0 0 0 0
b21 b22 0 0 0
0 0 b33 0 0
0 b42 b43 b44 0
0 0 0 b54 b55













.

For i 6= j thebij model the spatio-temporal dependence betweenSit andSjt−1 and
thebii model the temporal dependence betweenSit andSit−1.

Equation (7.7) can be reorganised so that the model can be written in its general
state-space model representation,

St = ΦSt−1 + δt, (7.8)
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whereΦ = (I − A)−1B andδt ∼ MV N(0,Q) with covariance matrixQ =
(I−A)−1Ση(I−A)−T andt = 1, . . . , n. For the model to be completely defined,
we assumeS0 to be multivariate normally distributed,S0 ∼ MV N(0,ΣS0).

Alternatively, the following notation can be used,

CSN = ζ, (7.9)

whereSN = (ST1 , . . . ,STn )T ,C is apn× pn square matrix constructed from the
elements of the matricesA andB, ζ ∼ MV N(0,Σζ), whereΣζ is a diagonal
matrix built from the corresponding elements ofΣη. Hence,SN is multivariate
normally distributed with a zero mean and a covariance matrixΣSN

given by

ΣSN
= C−1ΣζC

−T . (7.10)

7.2.3 Mean model and formulation of the GLMM

The latent processSt cannot be observed. Instead a variableyt is observed that
indicates whether a certain water quality standard is violated or not. Hence,yt
gives a binary response and it is coded to be 1 in case of violation and 0 otherwise.
Theyit’s i = 1, . . . , p andt = 1, . . . , t are believed to be independent conditional
on a number of explanatory variables and on the latent spatio-temporal processSit.
Its conditional distribution is assumed to be Bernoulli. In the GLMM framework
the model can be written as follows:

1. Random component: theyit are assumed to be Bernoulli conditional on the
predictorsxit and the latent spatio-temporal processSit. Their conditional
mean is given by

E(yit|Sit,xit) = µcit. (7.11)

2. Systematic component: predictorsxit and the latent spatio-temporal process
Sit produce the linear predictorνcit given by

νcit = xitβ
c + Sit (7.12)

3. Link between random and systematic components:

νcit = g(µcit) (7.13)
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4. The random effects are given by the spatio-temporal latent processSN =
(S1, . . . ,Sn), which are multivariate normally distributed

SN ∼ MV N(0,ΣSN
) (7.14)

When this model would be used for inference, the parametersβc have an interpre-
tation conditional on the latent processS. In an environmental context, however,
we want to infer on the marginal mean. Via integration over the latent variable,
every conditional model implies a marginal model (e.g. Heagerty and Zeger,2000
and Griswold and Zeger, 2004),

µmit = E(yit) = ES(E(yit|Sit)) = ES(µcit). (7.15)

This marginal meanµmit is now further linked to a linear predictorνmit = xitβ
m

by νmit = g(µmit ), where the link functiong(.) is defined as before andβm repre-
sents the parameter vector with the correct marginal interpretation. Fitting marginal
models, however, usually involves the application of approximation methods such
as the use of generalised estimation equations (e.g. Liang and Zeger, 1986, Zeger
and Liang, 1986, Zeger et al., 1988 and Breslow and Clayton, 1993). The approx-
imations which are commonly used, do not hold here because the variance covari-
ance structure of the observations is not block diagonal. To enable a fulllikelihood
based inference procedure for marginal models, Heagerty and Zeger(2000), Hea-
gerty (2002) and Griswold and Zeger (2004) formulated a marginalised version of
the GLMM model:

1. Random components: the marginal mean of theyit conditional on the pre-
dictorsxit is given by

E(yit|xit) = µmit . (7.16)

Theyit are assumed to be Bernoulli conditional on the predictorsxit and the
latent spatio-temporal processSit.

E(yit|xit, Sit) = µcit. (7.17)

2. Systematic components: the predictorsxit produce the linear predictorνmit
for the marginal component given by

νmit = xitβ (7.18)

The predictorsxit and the latent spatio-temporal processSit produce the
predictorνcit for the conditional component given by

νcit = ∆it + Sit (7.19)
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where∆ij forms a mapping between the conditional and marginal model
components.

3. Link between random and systematic components:

νmit = g(µmit ) (7.20)

νcit = g(µcit) (7.21)

4. The random effects are given by the spatio-temporal latent processSN =
(S1, . . . ,Sn), which are multivariate normally distributed

SN ∼ MV N(0,ΣSN
). (7.22)

Leth(.) be defined as the inverse of the link functionh(.) = g−1(.). From Equation
(7.15), it can be seen that∆it can be found as the solution to the integral

h(νmit ) =

∫

ℜp

h(∆it + Sit)dP (SN ), (7.23)

whereP (SN ) is the probability distribution ofSN . When the probit link is used,
Heagerty and Zeger (2000) and Griswold and Zeger (2004) have shown that

∆ij =
√

1 + S2
itxitβ

m. (7.24)

Hence, they identified a conditional model structure that induces the marginal
model of interest. Once this particular conditional model is known, the estima-
tion of the desired marginal model only involves the estimation of this conditional
model.

In this chapter, these GLMM’s are estimated within the Bayesian framework. This
statistical framework is briefly introduced in the next section.

7.3 Parameter estimation and Bayesian inference

First a very brief introduction to the Bayesian paradigm is given. The section then
continues with some practical considerations on how to fit a Bayesian model by
using Markov Chain Monte Carlo.
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7.3.1 Introduction to Bayesian inference

Most of this section is taken from Gilks et al. (1996b). In the previous chapters
we worked within the frequentistic framework where the observations are consid-
ered to be realisations of random variables and the model parameters are assumed
to be fixed but unknown. In the Bayesian framework, however, no fundamental
distinction is made between the observed random variables and the parameters of
a statistical model: they are all considered as random quantities and they arealso
referred to as nodes. LetD denote the observed data, andθ the model parameters.
Then inference is provided by setting up a joint probability distributionP (D,θ)
over all random quantities. LetP (θ) denote the prior distribution on the model pa-
rameters. The setΘ denotes the support ofθ andP (D|θ) denotes the traditional
likelihood function. Then the joint probability becomes

P (D,θ) = P (D|θ)P (θ). (7.25)

OnceD is observed, Bayes theorem can be used to derive the distribution ofθ

conditional onD:

P (θ|D) =
P (D,θ)

P (D)
=

P (D|θ)P (θ)
∫

Θ

P (D|θ)P (θ)dθ
, (7.26)

which is also referred to as the posterior distribution ofθ. For inference, features
such as moments, quantiles and credibility intervals of the posterior distribution
can be used. Acredibility interval is the Bayesian counterpart of a confidence in-
terval in the frequentistic setting, however their interpretation is different. Bayesian
inference treats parameters as random variables and therefore a 95% credibility in-
terval on a certain parameterβ means that 95% of the potential values ofβ will fall
within the boundaries of the credibility interval.

In general, the statistic of interest is a function ofθ. The posterior expectation of a
functionf(θ) is given by

E(f(θ)|D) =

∫

Θ

f(θ)P (D|θ)P (θ)dθ

∫

Θ

P (D|θ)P (θ)dθ
. (7.27)

Analytical solutions of these integrations do often not exist. Numerical methods
have therefore to be used. An example of such a technique is the use of Monte
Carlo methods. A Monte Carlo algorithm evaluates E(f(θ)|D) by drawing sam-
ples θk, k = 1, . . . , m from P (θ|D) and it approximates the expected value
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E(f(θ)|D) by 1/m
∑m

k=1 f(θk). In general, it is not feasible to draw the samples
independently. Fortunately, for the Monte Carlo approximation to hold, theθk do
not have to be independent as long as they are drawn from the supportof P (θ|D)
in the correct proportions. This can be done by the use of a Markov chain by sam-
pling the next stateθk+1 from the conditional distributionP (θk+1|θk,D), under
the restriction that the Markov chain hasP (θ|D) as its stationary distribution.
Such an approach is calledMarkov Chain Monte Carlo(MCMC). An introduc-
tion to Markov Chain Monte Carlo is beyond the scope of this dissertation and
interested readers find a good introduction in Gilks et al. (1996a).

7.3.2 Fitting a model using MCMC

Most of this section is taken from Spiegelhalter et al. (1996). When one wants to
use MCMC to fit a model, several steps are needed

1. Provide starting values of all unobserved quantities (parameters, latent vari-
ables and missing data)

2. Construct the full conditional distribution for each node

3. Drawk samples with the MCMC algorithm

4. Monitor the output to establish the total run length and the length of the
burn-innumber, which is the number of iterations needed before the Markov
Chain converged to the stationary posterior distribution

5. Repeat steps 3 - 4 until the total run length has been reached

6. Calculate summary statistics of the quantities of interest for inference about
the true values of the parameters

7. Assess the quality of the model

In principle the initialisation in step 1 is not that important since the chain must be
run long enough “to forget” its starting values. However, extreme starting values
can lead to a very long burn-in, or can make the sampler to fail to converge tothe
main support of the posterior distribution.
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Step 2 can be carried out analytically or by dedicated the model in specific soft-
ware, such as e.g. BUGS (http://mathstat.helsinki.fi/openbugs/) or JAGS (http://www-
fis.iarc.fr/ martyn/software/jags/).

In step 3 the output of the MCMC sampler should be assessed to check for mixing
and convergence. This can be done by plotting the evolution of the MCMC chain
for each of the parameters. When parallel chains are used they overlapwhen con-
vergence is reached. In case parallel chains are simulated, the Gelman and Rubin
(1992) statistic (GR-statistic) can also be used for this purpose (Gelman, 1996).
For each parameter, these chains can be used to provide a pooled estimate of its
variance. The GR-statistic estimates the potential scale reduction in the pooled es-
timate of variance which could be reached if the chain would be continued until
infinity. As the simulation continues, this estimate becomes closer to one, indicat-
ing that the chains are overlapping. The GR-statistic is implemented in the CODA
package of R (Plummer et al., 2004). This package provides a point estimate and a
97.5% percentile for the GR-statistic. If the point estimate and the 97.5% points are
near to 1, this indicates that a reasonable convergence is reached for the assessed
parameter.

To assess the quality of fit of a binary response regression model, an analysis of
the residualsrit = yit−µit is suggested by Albert and Chib (1993). In a Bayesian
analysis, they have a continuous posterior distribution which can give information
about outliers (Albert and Chib, 1995). The residuals can be obtained at each
iteration. If the posterior distribution ofµit is in conflict with the observed value
of yit, then the posterior distribution ofrit will be concentrated towards extreme
values (Albert and Chib, 1995). For Bernoulli distributed data, the support of rit
is in the interval[yit − 1, yit]. Hence, an observationyit = 0 is unusual if the
posterior distribution ofrit is located close to the value -1, and an observation
yit = 1 is considered as an outlier if the posterior ofrit is concentrated towards the
endpoint 1.

7.4 Case study

A dominant problem in Flemish water bodies is the eutrophication due to nutrient
pollution. A considerable nutrient load originates from agricultural activities. One
of the major actions to restrict the nutrient pollution from agriculture was the in-
troduction of two Manure Action Plans (MAP’s)(Vlaams Parlement, 1995, 1999).
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S1 S2

S3

S5S4

Figure 7.2: Top Left: Directed Acyclic Graph (DAG) of the sampling locations.
Bottom Left: Map of the river reaches considered in this case study.
Locations S1, S2, S4 and S5 are located on the Yzer river while location
S3 is located on a joining creek. Right: Map of the part of the Yzer
catchment located in Flanders, Belgium. The sampling locations are
indicated by the dots. The area considered in this study is indicated
with the ellipse and the black dots are the sampling locations included
in this study

Such a MAP restricts the amount of fertilisers that can be used by farmers inareas
which are susceptible to eutrophication. The first MAP (MAPI) was introduced in
1996 (Vlaams Parlement, 1995) and after an evaluation a new and more restrictive
MAP (MAPII) was implemented in 2000 (Vlaams Parlement, 1999). The aim of
this case study is to assess whether the introduction of these MAP’s had an effect
on the violation frequency of the nitrate standard of 11.3 mg N/l.

The data of 5 sampling locations of the physico-chemical monitoring network of
the Flemish surface waters are used. They are located along 2 joining reaches in
the Yzer catchment. Their DAG and location in the catchment is indicated on the
map in Figure 7.2. Sampling locations S1, S2, S4 and S5 are located on the Yzer
while sampling location S3 is located on a joining creek. Every sampling location
is monitored on a monthly basis. Data between 1990 and 2003 are available. Hence
the number of time instants at which a sample was taken isn = 168 and the entire
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dataset consists of 840 observations in total.

The observations are taken at time intervals that are much larger than the timescale
of the water flow. Therefore we can assume the matrixB, used to describe the
temporal correlation, to be diagonal. Hence, we only model the temporal auto-
correlations for a particular stateSit at timet and not the spatio-temporal cross-
correlations betweenSit and its parents in the DAGS[ai]

t−1 at timet− 1. This leads
to the reduction of the parent set[bi] to [bi] = i, containing only the current sam-
pling location. The nitrate series are transformed into a binary response bythe use
of the nitrate threshold of 11.3 mg N/l. In particular the response is 1 if the nitrate
concentration is above the threshold and zero when the nitrate concentration is be-
low the threshold. Seasonal variation is typically present in water quality dataand
the model has to account for it.

A linear model is used to assess the impact of the introduction of MAPI and MAPII
on the trend in the violation frequency of this nitrate standard. The model also
has to account for seasonal variation. The presence of seasonal variation in the
nitrate series was clearly illustrated in Figure 1.6 where nitrate data of all years
was plotted in function of the day of the year. A common approach to deal with
this variation is to include sinusoidal functions of fixed periods to describe the
seasonal cycle within a year (e.g. Hirst, 1998, Cai and Tiwari, 2000, McMullan
et al., 2003 and McMullan, 2004). A function which is often used for this purpose
is α cos(2π(t/P ) + θ), whereP is the period which is taken to be one year,α is
the amplitude of the seasonal trend andθ is a parameter to allow for a phase shift.
Hence,α andθ have to be estimated. This function, however, is nonlinear in the
parameterθ because the parameter is appears within the cosine function. However,
it can be expressed in a linear form by using standard trigonometric expansion of
the cosine term. This is the parameterisation of our choice and therefore we use
Fourier basis functions to model the seasonal effect. They have a period of one year
(γ1 sin(2πt/12)+γ2 cos(2πt/12)). To answer the research question, the following
model is considered for the linear predictor corresponding to the marginalmean:

g(µmit ) = νmit = α0 + αi + β1t + β2tMAPI + β3tMAPII

+ γ1 sin(
2πt

12
) + γ2 cos(

2πt

12
) (7.28)

wheret = 1 . . . n, g(.) is the probit link,α0 is the effect of sampling location 5, and
αi is the effect for theith sampling location relative to sampling location 5 (hence
α5 = 0), β1 is the effect of the long term trend,β2 is the trend change due to the
introduction of the first MAP,tMAPI indicates the time since the introduction of the
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first MAP wheretMAPI = 0 for t ≤ 72 andtMAPI = t− 72 for t > 72, β3 is the
trend change due to the introduction of the second MAP,tMAPII is the time since
the introduction of MAP II andtMAPII = 0 for t ≤ 120 andtMAPII = t−120 for
t > 120, andγ1 andγ1 are the parameters for the seasonal component modelled
by the Fourier terms. The formulation of the mean model thus enables the trend to
change at 1996 and 2000 when MAP I and MAP II were implemented, respectively.
Note that the parametersβ2 andβ3 do not depend on the sampling location. This
enables inference on a regional scale, but this restrictive model assumption must
be assessed by using diagnostics on the fitted model.

To estimate the marginal model, we need to identify the conditional structure that
induces the marginal model of interest. Let us first rewrite the marginal linear
predictor asνmit = xitβ

m. In the case study, the probit link is used. From Equation
(7.24) we know that the function∆it that connects the marginal model part to

the conditional model part then becomes∆ij =
√

1 + S2
itxitβ

m (Griswold and
Zeger, 2004). From the model formulation (7.17)-(7.22) it can be deduced that the
following GLMM has to be implemented to obtain the posterior distributions of
the parametersβm of the marginal model,

E(yit|xit, Sit) = µcit (7.29)

yit|Sit,xit ∼ Bernoulli(µcit) (7.30)

νcit = (
√

1 + S2
it)xitβ

m + Sit (7.31)

νcit = g(µcit) (7.32)

SN ∼ MV N(0,ΣSN
). (7.33)

This GLMM was implemented in the JAGS software. Uniform priors were used
for all parameters. Their supports are given in Table 7.1. The specification of the
prior distributions on the parameters of the mean model enables the contribution
of each term in the mean model to be in the interval[−8, 8] on the probit scale.
Two parallel chains were used in the MCMC. In the first chain the parameters of
the mean model and the latent variable were set 0, the spatio-temporal inA andB
were set 0.5 and the variancesσ2

η,ii were set 1. The second chain was initialised
by (1) setting the parameters of the mean model at the estimates obtained by a
GLM-fit, (2) using the values obtained in the case study of Chapter 6 to initialise
the values of latent variable and the spatio-temporal dependence structure.

30000 iterations were used as burn in and another 120000 iterations wereused
to approximate the posterior distributions of the parameters. Diagnostic plots to
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Table 7.1: Support of the uniform priors on the model parameters
Parameter Supports
αi’s [−8, 8]
β1 [−0.05, 0.05]
β2 [−0.08, 0.08]
β3 [−0.16, 0.16]
γ1 andγ2 [−8, 8]
Precisions1/σ2

η,ii [0.005, 1]

Spatial parameters inA [−0.99, 0.99]
Temporal parameters in matrixB [−0.99, 0.99]

assess the model quality and plots to assess the convergence of the MCMC algo-
rithm can be found in the Appendix of this chapter. For all parameters both chains
are shown to be clearly overlapping. The GR-statistic was used to check whether
both chains had converged. The point estimates and the 97.5 percentiles ofthe
test statistics are given in Table 7.2, which shows that they are all close to 1.This
indicates that both chains converged (Gelman, 1996).

Summary statistics for all parameters in the model are given in Table 7.3. For
each parameter a 95% credibility interval is given. There is strong evidence for
an effect if zero is not included in the credibility interval. Note that there is not
much evidence in favour of temporal correlation (parametersbij) and that there
is a strong evidence in favour of a positive spatial correlation between sampling
locations in the main river (parametersaij). The evolution of the marginal mean
of the violation probability and corresponding 95% credibility intervals are shown
in Figure 7.3. The plot indicates a seasonal pattern and it also seems that the
probability of violation is decreasing in the most recent years. Since the credibility
intervals of the parametersγ1 andγ2 are above zero, these parameters are very
likely to be positive. The contribution of the seasonal effect toνmit is represented in
Figure 7.4. The plot is obtained by using the posterior means of the parametersγ1

andγ2. The contribution of the seasonal effect is positive in winter and negative in
summer indicating that there is a higher probability of violation during the winter
period. This could be expected because the run-off of the soluble nitrateis typically
much higher during the wet winter period.

To infer on the effect of both MAP’s, the 95% credibility intervals ofβ2 andβ3 have
to be assessed, they are[−0.03, 0.01] and [−0.06,−0.004], respectively. Hence,
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Table 7.2: GR-statistics of the parameters
Parameter Point est. 97.5% quantile

α1 1.02 1.09
α2 1.00 1.00
α3 1.00 1.00
α4 1.00 1.00
α4 1.00 1.00
β1 1.02 1.09
β2 1.02 1.03
β3 1.02 1.06
γ1 1.00 1.02
γ2 1.01 1.07
b11 1.01 1.03
b22 1.00 1.01
b33 1.00 1.02
b44 1.00 1.01
b55 1.00 1.03
a21 1.02 1.08
a42 1.04 1.12
a43 1.00 1.00
a54 1.01 1.02

ση,11 1.05 1.13
ση,22 1.16 1.37
ση,33 1.07 1.13
ση,44 1.01 1.02
ση,55 1.00 1.00
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Table 7.3: Posterior means and 95% credibility intervals of the parameters
Parameter Estimate 2.5% percentile 97.5% percentile

α0 −0.28 −0.76 −0.23
α0 −0.20 −0.40 −0.01
α0 −0.14 −0.35 0.07
α0 −0.02 −0.24 0.20
α0 0.46 0.13 0.80
β1 0.003 −0.01 0.01
β2 −0.007 −0.03 0.01
β3 −0.032 −0.06 −0.004
γ1 0.67 0.44 0.90
γ2 0.53 0.30 0.75
b11 0.13 −0.28 0.48
b22 0.08 −0.13 0.29
b33 0.38 −0.06 0.68
b44 0.02 −0.22 0.24
b55 0.10 −0.29 0.35
a21 0.79 0.41 0.98
a42 0.82 0.50 0.98
a43 0.46 −0.13 0.95
a54 0.86 0.61 0.99

ση,11 5.68 3.19 1.44
ση,22 1.44 1.01 2.8
ση,33 1.49 1.01 3.27
ση,44 1.43 1.01 2.44
ση,55 1.22 1.01 1.86

only very little evidence is supporting a trend change due to the introduction of
MAPI while we may conclude that there is much evidence in favour of a trend
change after the introduction of MAPII. The point estimate ofβ3 indicates that
the magnitude of the trend decreases after the introduction of MAPII. In order to
infer on size of the trend after the introduction of MAPII, a credibility interval the
sum ofβ1 + β2 + β3 is needed. The posterior mean of this sum is -0.037 and the
corresponding credibility interval is [-0.057,-0.017]. Hence after the introduction
of MAPII, a decreasing trend in the violation probability is established.
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Figure 7.3: Evolution of the violation frequency of the nitrate standard of 11.3 mg
N/l at five sampling locations of the river Yzer. The black line indicates
the posterior mean probability to violate the standard, and the grey lines
are the 95% credibility bands

7.5 Conclusions

In this chapter an extension of the spatio-temporal model for river monitoring net-
works is proposed for non-normal data. In particular, Bernoulli distributed obser-
vations originating from transforming the data using an environmental threshold
were considered. This approach can be further adapted as long as theconditional
distribution of the data is a member of the exponential family, by using the appro-
priate link function. The spatial dependence structure was restricted to a structure
that was induced by river topology. The temporal dependence structure was as-
sumed to be an AR(1) process. The temporal dependence can be extended towards
an AR(p), process including the states at earlier time instants in Equation (7.8).
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Figure 7.4: Contribution of the seasonal effect toνmit obtained by using the poste-
rior means of the distributions ofγ1 andγ2

We think that our approach is also well suited to deal with water quality variables
that consists of a large fraction of censored data. To reduce the loss ofinformation
due to the transformation into a binary response, the resolution could be refined
by introducing a transformation of the continuous variable into a multinomial re-
sponse.

The methodology was illustrated on a small case study on the river Yzer, Belgium.
It consists of an assessment of the probability to violate the nitrate standard of 11.3
mg N/l. In the study region a strong seasonal pattern was present in the violation
probability. This probability was larger during the wet winter period than in the
dry summer period. There is strong evidence in favour of a trend changewhich is
associated with the introduction of the second manure action plan. In particular, a
decreasing trend in the probability to violate the standard is established in the study
region after the introduction of the second manure action plan in 2000. There
is also much evidence in favour of the presence of a positive spatial correlation
between subsequent sampling locations in the main river. However, a temporal
dependence was not likely to be strong.
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7.6 Appendix

In Figure 7.5 diagnostic plots are given for the residualsrit = yit−µcit obtained us-
ing MCMC. In the Bayesian framework, the residuals have a continuous posterior
distribution and they can give information about outliers (Albert and Chib, 1995).
If the posterior distribution ofµit is in conflict with the observed value ofyit, then
the posterior distribution ofrit will be concentrated towards extreme values (Albert
and Chib, 1995). For Bernoulli distributed data, the support ofrit is in the interval
[yit − 1, yit]. Hence, an observationyit = 0 is unusual if the posterior distribution
of rit is located close the value -1, and an observationyit = 1 is considered as an
outlier if the posterior ofrit is concentrated towards the endpoint 1. On each time
instant, the residual distribution is represented using boxplots. The box ofmost
boxplots start close to zero. Some boxplots are entirely shifted to the endpoints.
This indicates that there may be outliers present. In particular some outliers seem
to be present in the middle of the time series for sampling locations S4 and at the
end of the time series for S3. This can indicate that a mean model which considers
a separate trend in S3 and/or S4 could be more appropriate.

In Figure 7.6-7.15 the evolution of the two MCMC chains are given for the pa-
rameters of the mean model. In all figures the chains are overlapping, indicating
that they converged. Along with the evolution of the MCMC chains a plot of the
posterior distribution of the parameter is given as well.
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Figure 7.5: Diagnostic plots from the residuals
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Figure 7.6. Evolution of the MCMC chains for the parametersα0
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Figure 7.7. Evolution of the MCMC chains for the parametersα1
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Figure 7.8. Evolution of the MCMC chains for the parametersα2
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Figure 7.9. Evolution of the MCMC chains for the parametersα3
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Figure 7.10. Evolution of the MCMC chains for the parametersα4

199



Spatio-temporal river network models for binary data

Figure 7.11. Evolution of the MCMC chains for the parametersβ1
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Figure 7.12. Evolution of the MCMC chains for the parametersβ2
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Figure 7.13. Evolution of the MCMC chains for the parametersβ3
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Figure 7.14. Evolution of the MCMC chains for the parametersγ1
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Figure 7.15. Evolution of the MCMC chains for the parametersγ2
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Chapter 8

Discussion, conclusions and future
research perspectives

Our research was initially triggered by the Flemish environmental agency (VMM).
Back in 2000 they introduced us to the large amount of data they collected through
their monitoring networks. At that time the VMM’s data validation procedure was
entirely based on human experts. Due to the large amount of data a clear need
was felt for an automated procedure to assist the experts with this validation pro-
cess. Since the development of water quality monitoring networks is one of the
key actions of the Water Framework Directive (WFD)(EC, 2000), data validation is
clearly a problem that involves all European water authorities. After an exploratory
analysis it quickly became clear that the considerable amount of missing data,the
irregular sampling frequency and the nonlinear patterns and relationshipspresent
in the water quality variables required flexible models that are too a large extent
driven by the data. Within this perspective, additive models were explored. While
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examining the literature in context of the data validation problem, a second re-
search opportunity became clear. At that time, the assessment of water quality data
was mainly performed at the level of individual sampling locations and few adhoc
methods existed to infer on the water quality on a more regional scale. However, in
order to reach the goals of the WFD, environmental agencies need statistical tools
to infer on the evolution of the water status on a larger spatial scale. Therefore,
spatio-temporal models for river networks have to be developed. The data valida-
tion problem and spatio-temporal modelling became the two major themes of this
dissertation and the conclusions will be structured accordingly. In Section8.1 the
conclusions and perspectives on the validation procedure are given,while Section
8.2 deals with spatio-temporal modelling.

8.1 Statistical data validation

Quality assurance is specifically mentioned as an important activity in the WFD
guidance document on monitoring (EC, 2003; Højberg et al., 2007). Hence data
validation is an important activity in order to construct high quality environmental
databases. In the next section our contribution to this problem is given.

8.1.1 Major contributions

In this dissertation a method for the validation of river water quality data is pro-
posed. Based on the historical data an additive model is fitted. The model is then
used to construct a prediction interval for a future observation. When the new
observation is located within the interval the new observation is declared “valid”,
otherwise it should be passed on to an expert for further evaluation.

The additive models were clearly able to catch the cyclic pattern present in the
data, and they could model the nonlinear behaviour and relationships typically
associated with river water quality data. As an interesting feature, the observed
associations between the response and the predictors were found to respect known
physical and biochemical relationships. Since the model selection is carriedout
at each time step, the models succeed to adapt to changes in the processes of the
underlying river. The models were also capable to capture most of the serial corre-
lation that was present in the monthly observations of the monitoring network.
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Different prediction intervals were considered, analytical PI’s (aPI), percentile based
bootstrap intervals (pbPI) and the studentised prediction error based bootstrap PI’s
(sbPI). The coverages of the 95% sbPI’s have been shown to be better and more
robust than the other intervals. The sbPI’s was also shown to be adequate to detect
suspicious observations.

When the semi-automatic procedure is applied in practice, it should be used in
an alternating fashion. One by one, each of the monitored variables shouldbe
chosen to be the response that has to be validated, while the remaining variables
are used as potential predictors. This allows our procedure to detect suspicious
observations located at the edges as well as observations laying in the centre of
the univariate distribution of the validated response variables. In conclusion, our
method combines the interesting features of classical multivariate outlier detection
tools without having to impose linear relationships typically associated with these
methods.

An ICT-tool based on this methodology is currently implemented at the VMM. It is
used to validate all incoming measurements of their physico-chemical monitoring
network on a day-to-day basis.

8.1.2 Future perspectives

For river monitoring networks that are sampled at a higher frequency, our method
will no longer deal correctly with the serial correlation that is present in thedata.
The presented validation procedure should be adapted so as to accountfor serially
correlated observations. One could try to model the serial correlation explicitly,
e.g. by including AR terms in the additive model. Another possibility is the use
of moving block bootstrap techniques to resample the time series by the use of
independent blocks that capture the real-world dependence structure(Brumback
et al., 2000). A challenge to both methods is that they should be adapted before
they are able to work with missing observations and observations that are acquired
at irregular time steps. The selection of the smoothing parameters by the use of
traditional techniques such as cross validation are also known to be problematic in
the presence of correlated errors (e.g. Hart, 1991). There is thus a big challenge
related to the development of automatic validation procedures for environmental
data obtained at higher, possibly irregular frequencies.

Another interesting problem that was not addressed in this study is the presence of
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censored observations. In environmental time series, censored observations often
occur due to the detection limits of the measuring methods. An additional problem
is that these detection limits change over time due to technical improvements, the
use of other protocols and/or the agencies that are contracting other laboratories
for the analysis of their samples. Further research is needed to enable thedata
validation procedure to deal with censored observations in a proper way.

8.1.3 Conclusion from the case study

Our method was applied to the raw data of the Yzer basin. It detected unexpectedly
high nitrate concentrations in the beginning of 2004. The diagnostic plots thatwere
constructed indicated that the rejection of the nitrate data was related to the trend.
After consulting the literature, this event could be explained by a dry summer in
2003 that was followed by an extremely wet period during the first months of2004.
During the dry summer and the autumn large amounts of nitrate had accumulated
in the soils and the nitrate was washed to the receiving water during the subsequent
extremely wet winter period.

8.2 Spatio-temporal models for river networks

To infer on the water status on a more spatial scale, spatio-temporal models are
needed. Recently, river network modelling has entered the spatio-temporal arena
(Gardner et al., 2003; Monestiez et al., 2005; Cressie et al., 2006; VerHoef et al.,
2006). With respect to the spatial dependence structure an important distinction has
to be made with the classical spatial structures. Due to the directional water flow
within the river reaches, a causal interpretation can be given to the correlations.
However, in contrast to time, rivers can join or split. This implies a more general
branched unidirectional structure.

8.2.1 Major contributions

The few existing contributions in literature focus on spatial prediction on a river
network. We do not aim to perform predictions at intermediate locations that are
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not sampled. We want to perform an assessment at the sampling locations, for
which we also have to take the spatio-temporal dependence structure into account
to assure valid statistical inference. From this perspective, we proposed a spatio-
temporal state-space model for river monitoring networks where the spatial depen-
dence structure of the state variable is directly deduced from the river topology, and
the temporal dependence structure is modelled by an AR(1) process. Thestate vari-
able is embedded into an observation model that contains a model for the mean and
accounts for cross-correlation between sampling locations that are not connected
according to the river architecture. A marginal mean model is used to answer the
research questions. The methodology is shown to be very flexible and according
to the specification of the mean model, an assessment is possible on the level of
individual sampling locations as well as on a more regional scale.

We proposed an expectation-conditional-maximisation (ECM) algorithm for the
parameter estimation of spatio-temporal models with a parametric mean model. It
makes use of the Kalman filter and smoother recursions, and uses generalised least
squares for the estimation of the parameters of the mean model.

To assess nonlinear trends, the parametric mean model was replaced by a semi-
parametric model. The estimation procedure however had to be adjusted to limit
the computational burden. Therefore ordinary least squares was proposed to esti-
mate the mean model. This also provides unbiased estimators for the parameters of
the mean model. However, the reduction of the computational complexity does not
come for free: the estimators are asymptotically less efficient. The residuals from
the OLS fit are subsequently used for the estimation of the dependence structure.
Only some minor adjustments were needed to use the ECM algorithm that was
obtained for fully parametric models. In contrast with existing methodologies for
(non)linear trend detection, our procedure takes the spatio-temporal dependence
explicitly into account. Moreover, our method enables the detection of trendson
a more local time scale. To verify at which time instants the nonlinear trend is
significant, tests on its first derivative are performed at each time instant. Classical
methods for multiple hypothesis testing were too conservative because they cannot
incorporate the specific dependence between the tests. We have adoptedthe free
step-down resampling method Westfall and Young (1993) and sampled froman ap-
propriate null distribution to take the dependences between the statistical testsinto
account. This procedure explicitly takes the dependences between the statistical
tests into account.

Finally, an extension is proposed to deal with non-normal data. Marginalised gen-
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eralised linear mixed models were used to incorporate the dependence structure
and to enable inference on the marginal mean. The method is derived in detail
for binary data. The binary response was obtained by transforming the continu-
ous data using the environmental threshold. According to us the transformation
of the water quality data into binary data seems to be particularly suited to deal
with water quality variables that consist of a large fraction of censored data. The
spatial dependence structure was restricted to the structure that was induced by the
river topology and the temporal dependence structure was assumed to bean AR(1)
process.

8.2.2 Future perspectives

Spatio-temporal modelling in rivers is still in its initial stage. Hence, a lot of unex-
plored opportunities are waiting to be tackled by researchers. The development of
more realistic correlation structures is one of the topics which should be addressed.
Some interesting issues are

• When rivers enter tidal areas, the spatial dependence will become bidirec-
tional.

• In our model, the temporal correlation structure is restricted to an AR(1)
process. For water quality data sampled at time intervals of one month,
this seemed to be the right model. For higher sampling frequencies more
complex temporal structures will be needed. The methodology, however, can
be easily extended to use more general ARMA structures. Harvey (1989)
for instance, showed how AR(p) processes can be handled by the Kalman
filter. In case of an AR(2) process the state variableSt = (S1t, ..., Spt)

T has
to be replaced by a vector(S1t, ..., Spt, S1t−1, ..., Spt−1)

T . This leads to a
reformulation of the observation model and the Kalman filter equations.

• The spatial variance-covariance matrix of the observation modelΣǫ enables
cross-correlations between sampling locations that were not connected by
the river. In this work we used a saturated parameterisation forΣǫ. How-
ever, for large monitoring networks too many parameters are involved and
to reduce the complexityΣǫ should be further parameterised. Due to the
estimation orthogonality in the first CM step, this will only alter the update
Equation (5.35).
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The presented ECM algorithm cannot handle missing data. Therefore future exten-
sions of the ECM are needed. Both the ECM algorithm and the Kalman filter are
in principle well suited to deal with missing data. In particular, the E-step of the
EM algorithm should be modified to provide sufficient statistics for both the latent
variable as for the missing observations.

A big challenge is the development of methods to deal with non-normal data that
are acquired on a river network. We have given a first impulse on how totreat bi-
nary data. To reduce the loss of information due to the transformation into a binary
response, the resolution could be refined by introducing a transformationof the
continuous variable into a multinomial response. For other types of non-normal
data, the approach can be further adapted as long as the conditional distribution
of the data is a member of the exponential family. By using an appropriate link
function and an appropriate mapping function between the marginal model and the
conditional model, an appropriate generalised linear mixed model can be formu-
lated for the estimation of the parameters of the marginal mean model. The use of
more realistic correlation structures is also an issue that should be addressed in this
setting.

8.2.3 Conclusions on the study region

The methodology was applied on a case study at five sampling locations of the
river Yzer. The augmented data had to be used because our estimation algorithms
are currently not designed to deal with missing data. In the sampling period, afirst
manure action plan (MAP) was introduced in 1996 (Vlaams Parlement, 1995) and
a second and more restrictive MAP was established in 2000 (Vlaams Parlement,
1999). Both MAP’s aim to reduce the nutrient pollution originating from agricul-
tural activities (Vlaams Parlement, 1995, 1999). Depending on the formulation of
the mean model inference is possible on a regional scale, on the level of a river
reach or on the level of individual sampling locations.

In a first case study the annual average of the nitrate concentration in 2003 is shown
to be very significantly lower than the general mean (p < 0.01). Moreover, in the
main river, the mean nitrate concentration of 2003 was also significantly lowerthan
the mean of 2001 and 2002 (p = 0.03).

In the second case study, the spatio-temporal model was used to estimate a non-
linear trend. A significant decrease in the nitrate concentration is established in
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the study region between the introduction of the first MAP and the second MAP
(α = 0.05). The trend remains significant until January 2002.

Finally an assessment was done on the violation frequency of the nitrate standard
of 11.3 mg N/l. In the study region a strong seasonal pattern was present inthe
violation probability. The probability to violate the standard was larger during the
wet winter period than in the dry summer period. There was also strong evidence
in favour of a trend change after the introduction of the second manure action plan.
In particular, a decreasing trend in the probability to violate the standard is detected
in the study region after the introduction of MAPII.

Although the data analysis has no causal interpretation, the results of the case stud-
ies give a strong indication that the introduction of the manure action plans hada
beneficial effect on the nitrate status in the study region.
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Summary

The European Water Framework Directive (WFD)(EC, 2000) is one of the driving
forces in environmental policy in the European Union. The WFD’s overallenvi-
ronmental objective is the achievement of ‘good status’ for all of Europe’s surface-
and ground waters within a 15-year period. Its implementation is a big challenge
for the European environmental managers. One of the key actions of the WFD is
the design of operational monitoring programmes. Thus, large amounts of water
quality data are being collected, processed and stored throughout Europe. Due to
the large amount of the data and their complex nature, statistical modelling has
become an essential tool to extract reliable information from these observations.
Because high quality data is essential for an adequate management of the water
resources, data validation procedures are required to build consistentdatabases.
Once the environmental agencies have a consistent database at their disposal, the
data should be used to assess the evolution of the water status and to evaluatethe
impact of their management strategies. Such an assessment should be possible at
the level of individual sampling locations as well as on a more regional scale. Due
to the spatio-temporal dependence structure of monitoring network data, spatio-
temporal models are needed for a correct statistical assessment. For river moni-
toring networks the development of spatio-temporal models has just begun.The
data validation problem and the development of spatio-temporal models for river
network data are the two major themes of this dissertation.

In the first part the data validation problem is addressed. Like other environmen-
tal data, water quality data have a complex nature. They contain a considerable
amount of noise due to their natural variability and the measurement error. They
may contain missing values, are often non-normally distributed and are commonly
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gathered at irregular time instants. Moreover, they possess cyclic variations and
contain nonlinear trends. With this respect, additive models are explored to model
water quality data. These models are then used to design an automatic validation
procedure for new observations that are acquired with a river monitoringnetwork.
Based on historical data, additive models are fitted to predict new observations and
to construct prediction intervals (PI’s). A new observation is declared valid if it
is located within the interval. Several methods were developed to derive such PI’s
and the PI that was based on bootstrapping studentised prediction errorswas shown
to be most accurate and most robust to deviations from normality. The coverage of
these prediction intervals and their power to detect anomalous data are successfully
established in a simulation study. The method is illustrated on two case studies in
which the method detected abnormal nitrate concentrations in the water body pro-
voked by a dry summer which was followed by an extremely wet winter period.
Currently, the Flemish environmental agency is also using our method for the vali-
dation of new observations from their physico-chemical monitoring network.

In the second part a spatio-temporal model is developed for river monitoring net-
work data. The aim was to enable valid statistical inference based on the data
that is observed at the sampling locations. Therefore the observations ofthe mon-
itoring network at a certain time instant can be considered as the realisation ofa
finite-dimensional multivariate random variable with each dimension correspond-
ing to each of thep sampling locations. This enables us to write the model as
a p-dimensional state-space model. The state variable is defined by a Directed
Acyclic Graph (DAG) that is derived from the river network topology. Inreality
the dependence structure based on the DAG may be obscured by environmental
factors such as rainfall and climatological conditions in general. This is taken into
account by embedding the state variable into an observation model. Initially, the
observation model was extended with a linear model for the mean. The specifica-
tion of the mean model allows the assessment of different research questions. An
efficient expectation-conditional-maximisation (ECM) algorithm is proposed for
parameter estimation, using the Kalman filter and smoother in both E- and CM-
steps. However, many environmental processes are characterised bya nonlinear
trend. To allow the estimation of such a nonlinear trend, we replaced the paramet-
ric mean model by a semiparametric model that used a smoother for the estimation
of the trend component. This procedure also allows to test for trends on a smaller
time scale. To detect if the local trend is significant, tests on the first derivative
of the nonlinear trend are performed at each time step. This results, however, in
a large number of simultaneous tests. Multiplicity is thus another problem which
had to be addressed. Many environmental processes are also non-Gaussian. To

230



Summary

handle such data, a generalisation of our spatio-temporal model is needed. A first
attempt is presented that can handle binary data. Environmental compliance isof-
ten based on threshold levels, providing a binary response to the decisionmaker.
We made use of generalised linear mixed models (GLMM) to model such a binary
response. Again, the spatio-temporal dependence structure is introduced by using
a latent state variable. In a GLMM the parameters of the mean model have a con-
ditional interpretation. In an environmental context, however, we want to infer on
the marginal mean. Therefore the marginalised version of the GLMM of Heagerty
and Zeger (2000) is used. They introduced a mapping function between the con-
ditional and marginal model components to identify a conditional model structure
that allows immediate estimation of the marginal mean parameters.

The spatio-temporal models are applied on a case study of five sampling locations
of the river Yzer. In the sampling period, a first manure action plan (MAP)was
introduced in 1996 (Vlaams Parlement, 1995) and a second and more restrictive
MAP was established in 2000 (Vlaams Parlement, 1999). Both MAP’s aim to re-
duce the nutrient pollution originating form agricultural activities. Our modelling
procedure was shown to be very flexible. Depending on the formulation ofthe
mean model, inference is possible on a regional scale, on the level of a river reach
or on the level of individual sampling locations. In a first case study the annual
average of the nitrate concentration in 2003 is shown to be very significantlylower
than the general mean (p < 0.01). Moreover, in the main river, the mean nitrate
concentration of 2003 was also significantly lower than the mean of the two most
recent years (p = 0.03). In the second case study, the spatio-temporal model was
used to estimate a nonlinear trend. A significant decrease in the nitrate concen-
tration is established in the study region between the introduction of the first MAP
and the second MAP (α = 0.05). The trend remains significant until January 2002.
Both case studies indicated a strong seasonal variation with lower nitrate values in
summer and higher contributions in winter. Finally an assessment was done ofthe
violation of the nitrate standard of 11.3 mg-N/l. In the study region a strong sea-
sonal pattern was present in the violation probability. The probability to violatethe
standard was larger during the wet winter period than in the dry summer period.
There was a strong evidence in favour of the presence of a trend change after the
introduction of the second manure action plan. The trend change was largeenough
to establish a decreasing trend in the violation probability of the standard in the
study region. Although the data analysis has no causal interpretation, the results of
the case studies give a strong indication that the introduction of the manure action
plans had a beneficial effect on the nitrate status in the study region.
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De Europese kaderrichtlijn water (KRLW)(EC, 2000) heeft verregaande gevolgen
voor het waterbeleid in de Europese lidstaten. De algemene doelstelling van de
richtlijn is een goede toestand voor oppervlaktewater en grondwater te bereiken te-
gen eind 2015. De uitbouw van meetnetten iséén van de kernactiviteiten die door
de richtlijn wordt beoogd. Hierdoor worden in Europa grote hoeveelheden wa-
terkwaliteitsdata bemonsterd en opgeslagen. De grote hoeveelheid van gegevens
en de complexiteit van milieukundige data vereisen het gebruik van modellen voor
een doeltreffende analyse van de waterstatus. Voor de uitbouw van eengoed water-
beleid is het essentieel om te beschikken over data van hoge kwaliteit. Daarom zijn
efficiënte methoden voor het valideren van de meetgegevens vereist. Uiteraarddie-
nen de gegevens die beschikbaar zijn na de validatie te worden geanalyseerd. Het
opvolgen van de evolutie van de waterstatus en het evalueren van de impact van
de reeds getroffen maatregelen zijn cruciaal voor de verdere uitbouw en verfijning
van een langetermijnvisie met het oog op het behalen van de algemene doelstelling
van de KRLW. Aangezien de KRLW de waterproblematiek integraal benadert op
stroomgebiedniveau is het wenselijk om de gevens niet enkel op meetpuntniveau
te analyseren maar tevens op een subbekken- en bekkenniveau. De ruimtelijke
en temporele afhankelijkheid van de waterkwaliteitsdata vereisen het gebruik van
spatio-temporele statistische modellen voor het uitvoeren van een correcte statis-
tische analyse. Voor riviernetwerken staat de ontwikkeling van dergelijke spatio-
temporele modellen nog in de kinderschoenen. Om aan deze noden tegemoedte
komen zijn de ontwikkeling van methoden voor datavalidatie en de ontwikkeling
van spatio-temporele modellen voor riviernetwerken de twee kernthema’s van dit
doctoraatsonderzoek.
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Het eerste deel van dit onderzoek spitst zich toe op de ontwikkeling van een semi-
automatische methode voor de validatie van waterkwaliteitsdata. Waterkwaliteits-
data worden gekarakteriseerd door ondermeer een grote variabiliteit, meetruis, cy-
clische variatie, niet-lineare trends en ontbrekende waarnemingen. Daarnaast is
de bemonsteringsfrequentie dikwijls onregelmatig. Dit zorgt ervoor dat flexibele
modellen zijn vereist. Daarom wordt geopteerd voor het gebruik van additieve mo-
dellen voor de ontwikkeling van de datavalidatiemethode. Aan de hand van dehis-
torische data worden deze modellen gefit. Vervolgens worden ze gebruikt voor het
voorspellen van nieuwe metingen en voor het construeren van verwachtingsinter-
vallen. Wanneer een nieuwe meting in het verwachtingsinterval ligt, wordt zeaan-
vaard. Als dit niet het geval is, moet ze verder worden onderzocht door experten.
Op deze manier kunnen de experten zich toespitsen op de analyse van metingen
die een potentiële afwijking bevatten. Voor het opstellen van de verwachtingsin-
tervallen worden verschillende methoden gebruikt. De methode waarbij gebruik
gemaakt wordt van het bootstrappen van predictiefouten bleek het meest accuraat
te zijn. Tevens zijn deze intervallen meer robuust voor afwijkingen van normali-
teit. Uit een simulatiestudie blijken deze intervallen over een hoge kracht te be-
schikken om mogelijke afwijkende observaties te detecteren. De methode wordt
gëıllustreerd aan de hand van een gevallenstudie waarbij alle nitraatmetingen van
2003 en 2004 worden gevalideerd in het IJzerbekken. De methode detecteert hier-
bij een grote hoeveelheid afwijkende metingen in het begin van 2004. Uit delitera-
tuur bleek dat deze hoge metingen toe te wijzen zijn aan de droge zomer van 2003
die werd gevolgd door een extreem nat voorjaar in 2004. Onze methode voor data-
validatie wordt momenteel gebruikt door de Vlaamse milieumaatschappij (VMM)
voor het valideren van de meetgegevens afkomstig van het fysico-chemisch meet-
net voor oppervlaktewater.

Het tweede deel van dit doctoraatsonderzoek focust zich op de ontwikkeling van
spatio-temporele modellen voor de analyse van riviernetwerken. Hierbij maken
we gebruik van toestandsmodellen. De afhankelijkheidsstructuur wordt gemodel-
leerd aan de hand van een latent proces. Voor de temporele afhankelijkheidsstruc-
tuur wordt een AR(1) proces verondersteld. De spatiale afhankelijkheidsstructuur
wordt afgeleid van de riviertopologie. Een dergelijke afhankelijkheidsstructuur is
echter nogal restrictief. Meetpunten die dichtbij elkaar liggen maar niet recht-
streeks verbonden zijn met elkaar door de rivier zullen in de realiteit tevens ge-
correleerd zijn. Dit kan bijvoorbeeld door het voorkomen van gelijkaardige kli-
matologische condities. Daarom wordt het latent proces opgenomen in eenob-
servatiemodel die wel correlatie toelaat tussen meetpunten die niet verbonden zijn
door de rivier. In het observatiemodel wordt tevens een lineair model opgenomen
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voor het gemiddelde. Naargelang de specificatie van dit model is het toetsen van
verschillende onderzoeksvragen mogelijk. Naast de ontwikkeling van het model,
hebben we tevens een schattingsalgoritme ontwikkeld dat gebruik maakt vande
Kalman filter en smoother. Milieukundige processen worden echter vaak gekarak-
teriseerd door niet-lineaire trends. Om een analyse van dergelijke trendsmogelijk
te maken hebben we het lineaire model voor het gemiddelde vervangen door een
semi-parametrisch model. Het semi-parametrische model wordt uitgerust met een
smoother voor het schatten van de trend. Dat maakt tevens een analyse van kor-
tetermijntrends mogelijk. De analyse bestaat erin om op elk tijdstip na te gaan
of de eerste afgeleide van de niet-lineaire trend significant is. Dat impliceert ech-
ter dat een groot aantal testen simultaan moeten worden uitgevoerd. Daarom is
een aangepaste methode voor multipliciteitscorrectie geı̈mplementeerd. Tenslotte
hebben we een eerste aanzet gegeven voor het uitbreiden van onze modellen voor
niet-normale meetgegevens. Hierbij hebben we ons toegespitst op binaire data.
Milieukundige reglementeringen maken dikwijls gebruik van normen die niet mo-
gen worden overschreden. De norm zorgt dus voor een binaire uitkomst voor de
beleidsmaker. Opnieuw wordt een latent proces gebruikt voor de modellering van
de afhankelijkheidsstructuur. Aan de hand van veralgemeende lineaire gemengde
modellen (GLMM) hebben we de binaire uitkomstvariable gemodelleerd. De pa-
rameters van een GLMM hebben echter een conditionele betekenis. Ze geven de
verandering weer, gegeven een bepaalde waarde voor het latent proces. In milieu-
kundige toepassingen is het echter interessanter om gebruik te maken vanmargina-
le modellen. Daarom hebben we gebruik gemaakt van de modelstructuur die door
Heagerty and Zeger (2000) werd geı̈ntroduceerd. Aan de hand van het verband
tussen conditionele en marginale modellen, kan een specifieke GLMM structuur
worden gëıdentificeerd die het toelaat om de parameters van het marginaal model
rechtstreeks te schatten.

De spatio-temporele aanpak wordt geı̈llustreerd aan de hand van drie gevallen-
studies waarin 5 meetpunten van het IJzerbekken worden beschouwd.Tijdens de
bemonsteringsperiode werden mestactieplan I (MAPI)(Vlaams Parlement, 1995)
en mestactieplan II (MAPII)(Vlaams Parlement, 1999) van kracht. MAPI werd
gëıntroduceerd op 1 januari 1996, en MAPII op 1 januari 2000. In de jaarrappor-
ten maakt de VMM gebruik van jaarlijkse gemiddelden. In dit kader wordt het
spatio-temporeel model gebruikt om het nitraatgemiddelde van 2003 in het stu-
diegebied te vergelijken met het algemene gemiddelde en de gemiddeldes van de
meest recente jaren. In een eerste gevallenstudie wordt aangetoond dat het nitraat-
gemiddelde in het studiegebied in 2003 heel significant lager is dan het algemene
gemiddelde van de volledige bemonsteringsperiode (p < 0.01). Tevens blijkt het
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nitraatgehalte in de 4 meetpunten van de IJzer gemiddeld significant lager te zijn
dan het gemiddelde van de metingen in 2002 en 2001 (p = 0.03). In een tweede
gevallenstudie wordt de detectie van een niet-lineaire trend in het studiegebied be-
oogd. Uit de analyse blijkt zich een significant dalende trend voor te doenin het
nitraatgehalte tussen september 1999 en januari 2002 (α = 0.05). De daling start
dus tussen het invoeren van het mestactieplan van 1996 (MAPI) en het mestactie-
plan van 2000 (MAPII). In de laatste studie wordt nagegaan of beide MAP’s een
trendbreuk teweeg brachten in de kans op de overschrijding van de nitraatnorm.
Het model detecteert een trendbreuk na de implementatie van MAPII. Bovendien
blijkt de trendbreuk voldoende groot te zijn om een daling te veroorzakenin de
kans dat de nitraatnorm wordt overschreden. De drie gevallenstudiesgeven een
sterke indicatie dat de introductie van de mestactieplannen een gunstig effect heeft
op de nitraatstatus in het studiegebied.
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