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Mountains should be climbed with as little effort as possible and without desire. 

The reality of your own nature should determine the speed. 

If you become restless, speed up. 

If you become winded, slow down. 

 

 

 

quote I from ‘Zen and the art of motorcycle maintenance’ 

 

by Robert M. Pirsig 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

 

 

 

 

 

 

 

 

In our highly complex organic state we advanced organisms respond to our environment with an 

invention of many marvellous analogues. We invent earth and heavens, trees, stones and oceans, 

gods, music, arts, language, philosophy, engineering, civilization and science. We call these 

analogues reality. And they are reality. We mesmerize our children in the name of truth into 

knowing that they are reality. We throw anyone who does not accept these analogues into an 

insane asylum. But that which causes us to invent the analogues is Quality. Quality is the 

continuing stimulus which our environment puts upon us to create the world in which we live. All 

of it. Every last bit of it. 

 

 

quote II from ‘Zen and the art of motorcycle maintenance’ 

 

by Robert M. Pirsig 
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The research presented in this dissertation is situated in the field of ecotoxicology, i.e. the science 

which aims at understanding the exposure and the effects of stressors on different levels of 

biological organisation in the environment. Ecotoxicology is an interdisciplinary science that 

combines biology, ecology, chemistry, toxicology and physiology with quantitative techniques 

adopted from mathematics and statistics.  

The subject of this work is ecological effect assessment. This branch of ecotoxicology is especially 

concerned with the effects chemicals may have on ecosystems. When combined with results from 

exposure assessments, it allows to predict the risk of chemicals in the environment. Based on this 

risk, for example water quality criteria for chemicals can be derived as a concentration of a given 

chemical which is unlikely to result in adverse effects on ecosystems. 

Current approaches for the derivation of ecological risk and water quality criteria mostly rely on 

results from laboratory single-species ecotoxicity tests. Results from single-species tests reflect the 

direct effect of a chemical on one isolated species in a laboratory setting. Single-species toxicity 

test results obtained with a number of species are then extrapolated to assess the effect of the 

considered chemical on an ecosystem-level. Methods to perform these extrapolations consider 

species as isolated entities and do not take into account ecological interactions between populations 

of species. However, populations do interact with each other through processes such as 

consumption and competition. For example, phytoplankton species may compete for available 

nutrients, and experience grazing pressure from zooplankton. 

It has been shown that effects at the ecosystem-level are determined by (1) ecological interactions 

and (2) direct effects. Hence, ecological effects predicted using current methods will most likely be 

inaccurate. It is therefore questionable whether ecological effect assessments relying on these 

inaccurate predictions can result in an accurate assessment of chemical risk to aquatic ecosystems.  

Dynamic ecosystem modelling is a technique aimed at mathematically describing the different 

processes within an ecosystem. It is based on differential equations quantifying the growth of many 

different populations while accounting for ecological interactions between these populations. When 

applied to the field of ecotoxicology, such models are combined with toxic effect sub-models 

which allow the incorporation of direct chemical effects. As such, direct effects and ecological 

interactions can be combined into one predictive framework. This enables us to perform virtual 

experiments to examine the effects of many different chemicals on different ecosystems. 

Unfortunately, no information is available about which toxic effect sub-model should be used so 

that the ecosystem model accurately predicts ecological effects. 

A prerequisite for the use of any model is that its predictions are validated using results from 

independent experimental ecosystem studies. In the open literature, articles describing such 
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validation exercises are scarce. Moreover, these exercises only validate predictions in a qualitative 

way, or include populations in the model which are not present in the considered experimental 

ecosystem study. Also, the calibration of ecosystem models on observed population dynamics has 

received more attention than the accurate prediction of ecological effects.  

 

In this thesis, a new ecosystem modelling approach is developed which is suited for the prediction 

of ecological effects of chemicals on ecosystems. After having examined the predictive capacity of 

ecosystem models with different toxic effect sub-models, the approach will be validated using 

experimentally observed effects described in literature. The validated ecosystem model will be 

applied in two theoretical studies and in one practical ecosystem study. The aim of these three 

studies is to elucidate the ecological significance of some assumptions underlying effect 

extrapolation methods currently used in risk assessment procedures. The last chapter gives an 

overview of the conclusions drawn in this thesis and proposes a number of suggestions for future 

research. This work consists of 10 chapters covering the following topics: 

 

• Chapter II: methodologies to examine the relationship between ecosystem effects and single-

species toxicity test results are reviewed 

• Chapter III: the developed ecosystem model is described 

• Chapter IV: the methodology to derive ecological effects from ecosystem model predictions 

is described 

• Chapter V: the predictive capacity of ecosystem models with different toxic effect sub-

models is examined 

• Chapter VI: ecosystem model predictions are validated using experimentally observed effects 

described in literature  

• Chapter VII: a theoretical model application is performed to test if ecological interactions 

change sensitivity distributions for chemicals 

• Chapter VIII: a second theoretical model application is performed to test if ecosystem 

structure is equally or more sensitive than ecosystem function 

• Chapter IX: a practical model application is performed to derive the ecological significance 

of different percentiles of an SSD for copper in a planktonic ecosystem 

• Chapter X: general conclusions and suggestions for further research. 
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General introduction  

and conceptual framework 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I : General introduction and conceptual framework 

 

I. 1. Pollutants in surface waters 

 

Together with the exponential growth of the world’s human population, the use of freshwater has 

grown over the past 100 years (Gleick, 1998; Jackson et al., 2001). Freshwater is an important 

resource because it provides a wide range of sociological, agricultural, and industrial benefits 

(Postel and Carpenter, 1997). From the total human appropriation of freshwater (≈ 7000 km
3
 yr

-1
), 

almost 50% is used for agricultural purposes (Postel and Carpenter, 1997). This is illustrated by the 

concurrence of the increase in irrigated area and the increase in freshwater use (Fig I.1). Next to 

agriculture, industry is another important source of freshwater consumption, representing nearly 

10% of the global human freshwater use.  

 

 

Figure I.1: Global data for human population number, water withdrawal, and irrigated land area. This graph 

has been reprinted from Jackson et al. (2001) and contains updated data from Gleick (1998). 

 

One of the consequences of this increased water use is the presence of chemical pollutants in 

surface water. The relationship between human activity and polluted surface water is being re-

experienced in countries where modern industrial activity has only recently started (Ntengwe, 

2006; Zhang and Zhang, 2006).  

 

Within the variety of chemicals which are commonly categorized as pollutants, two classes can be 

distinguished: macro- and micropollutants. Examples of macropollutants are acids, salts, nutrients, 

and natural organic matter (Schwarzenbach et al., 2006). Those substances primarily originate 
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from agricultural, industrial, and municipal sources and occur in the aquatic environment in the µg 

L
-1

 to mg L
-1

 range. Their behaviour and effects in the aquatic environment has been intensively 

studied which makes their role in environmental problems relatively well understood (Jackson et 

al., 2001). Biological effects of acidification in surface waters for example, include the increased 

mortality of sensitive aquatic species, such as fish (Staurnes et al., 1996), while elevated levels of 

nutrients and organic matter can lead to excessive primary production (Schindle, 1971), oxygen 

depletion, and toxic algal blooms.  

 

Although micropollutants are present in lower concentrations than macropollutants (from ng L
-1

 to 

µg L
-1

; Schwarzenbach et al., 2006), the number of micropollutants in the aquatic environment is 

higher than the number of macropollutants. Therefore, the contribution of micropollutants to 

surface water pollution may be higher than that of macropollutants. Worldwide fluxes of 

macropollutants in surface waters are limited to 22·10
6
 tons year

-1
, while for micropollutants this is 

450·10
6
 tons year

-1
 (McGinn, 2002; FAO, 2006). 

 

The chemical structures of these micropollutants exhibit considerable variation. This is reflected by 

the numerous applications of these chemicals (Table I.1). These pollutants exhibit a wide variety of 

modes of action in biological systems and some have slow degradation kinetics which prolongs 

their presence in the environment. The locations where they enter the aquatic environment, as well 

as the locations where they are transported to via the network of rivers and streams can thus be 

exposed.  

 

Because micropollutants are highly dispersed in space and time, a large number of organisms 

may be exposed to these pollutants. Given that the chemical formulations of these pollutants 

indicate a variety of mode of actions, biological systems may experience adverse effects. 

Therefore, research aimed at understanding effects of such chemicals on different levels of 

biological organisation is of primary importance. Any measure taken to prevent the chemical 

pollution of surface and groundwater resources resulting from such research, will not only 

improve the health of aquatic life, but will also benefit both the production of clean water and 

safe food for human consumption (Reddy and Behera, 2006; Schwarzenbach et al., 2006). 
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Table I.1: Examples of ubiquitous micro pollutants found in surface waters, re-drafted after Schwarzenbach et al (2006).

origin/usage class selected examples related problems reference

industrial chemicals solvents tetrachloromethane drinking-water contamination ECETOC, 1999

intermediates methyl-t-butylether

petrochemicals BTEX (benzene, toluene, xylene)

industrial products additives phtalates MacDonald et al., 2000

lubricants PCBs biomagnification, long-range transport

flame retardants polybromilated diphenylesters Eriksson et al., 2001

consumer products detergents nonylphenol ethoxylates endocrine active transformation product Ahel et al., 1994

pharmaceuticals antibiotics bacterial resistance, nontarget effects Kolpin et al., 2002

hormones ethinyl estradiol feminization of fish Geyer et al., 2000

personal-care products uv-filters multitude of (partially unknown) effects Daughton and Ternes, 1999

biocides pesticides DDT toxic effects and persistent metabolites Iwata et al., 1994 

and Bignert et al., 1998

atrazine effects on primary producers Solomon et al., 1996

nonagricultural biocides tributyltin endocrine effects Tanabe, 1999

triclosan nontarget effects, persistent degradation Lindstrom et al., 2002

product

geogenic/ metals lead, cadmium, mercury Nriagu and Pacyna, 1988

natural chemicals inorganics arsenic, selenium, fluoride, uranium risks for human health WHO, 2004

taste and odor geosmin, methylisoborneol drinking-water-quality problems

cyanotoxines microcystins Svrcek and Smith, 2004

human hormones estradiol feminization of fish Eggen et al., 2003

disinfection/oxidation disinfection by-products trihalomethanes, drinking-water-quality, human health problems Richardson and Simmons, 2002

haloacetic acids, bromate

transformation products metabolites from all above metabolites of bioaccumulation despite low hydrophobicity Martin et al., 2004

perfluorinated compounds

chloroacetanilide drinking-water-quality problems Hladik et al., 2005

herbicide metabolites

et al., 2002
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I. 2. Ecological risk assessment  

 

The interest in the biological consequences of the increasing degree of pollution, although initiated 

in the 1950s, really took-off in the 1970s (Truhaut, 1977). Scientists with a toxicological 

background started setting up experiments to reveal the effects of chemicals on measurable traits of 

animals and plants. This new science, at the crossroads of ecology and toxicology, was termed 

‘ecotoxicology’, and was defined as ‘the branch of toxicology concerned with the study of toxic 

effects, caused by natural and synthetic pollutants, to the constituents of ecosystems - animal 

(including humans), vegetable, and microbial constituents - in an integrated context’ (Truhaut, 

1977). More recent definitions tend to exclude humans as the object of study (e.g., Forbes and 

Forbes, 1994; Walker et al., 2001).  

From the early 1980s on, a sub-discipline within ecotoxicology developed with the aspiration of 

‘estimating the likelihood of a specified adverse effect or ecological event due to a defined 

exposure to a stressor’ (Newman and Unger, 2003). This discipline has been termed ‘ecological 

risk assessment’. Although the health of humans and the state of the environment are in many cases 

interconnected, human and ecological risk assessment have evolved separately, mainly due to the 

different study objects treated by both assessments. Human risk assessments study human 

populations, while ecological risk assessments study ecosystems. Golley (1993) defines 

‘ecosystem’ as an aggregation of interacting populations of three or more species (‘community’) 

within an abiotic environment. In many publications, the term ‘environmental risk assessment’ is 

used instead of ‘ecological risk assessment’. However, the former is more closely associated with 

the practical application of the knowledge gained by ecological risk assessments, and may involve 

parts of the human risk assessment procedure.  

As previously suggested, ‘ecological risk’ of a chemical comprises the comparison of its exposure 

and biological effects (Newman and Unger, 2003). More precisely, the predicted (PEC) or 

measured (MEC) environmental concentration of a chemical is compared with the concentration 

which is not expected to result in adverse effects on ecosystems (predicted no effect concentration, 

PNEC). This comparison can be expressed in a risk quotient:  

 

Risk Quotient (RQ) = (PEC or MEC)/ PNEC 

 

If RQ is > 1, there is an indication that the considered chemical might pose a risk to ecosystems 

(Fig I.2). Because of the complexity of determining PECs, MECs and PNECs, exposure and effect 

assessment are classically treated separately. 
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Figure I.2: The risk quotient-approach in ecological risk assessments: A predicted or measured exposure 

concentration (PEC or MEC) and predicted no effect concentration (PNEC) are calculated and compared. The 

former represents the predicted (or measured) concentration of the chemical in the environment, the latter 

represents a concentration which is unlikely to cause adverse effects to ecosystems in the environment. 

 

I. 2. 1. Exposure assessment 

 

In exposure assessments, the behaviour of a substance in the environment is studied, starting with 

its introduction in the environment (emission), and including various processes of transport and 

transformation (Newman and Unger, 2003). Where applicable, the partitioning within and between 

biota (e.g., bioaccumulation, biomagnification,…) is also taken into account. The ultimate goal of 

an exposure assessment is the derivation of the predicted (or measured) environmental 

concentrations (PECs or MECs) of the chemical for different environmental compartments, i.e. air, 

soil, water, and sediment. Again because of the scope of this work, ‘PEC’ or ‘MEC’ are 

consistently used throughout the rest of this dissertation to denote the PEC or MEC for the water 

compartment.  
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I. 2. 2. Effect assessment - current practice 

 

Apart from predicting the behaviour of a chemical in the environment, an ecological risk 

assessment also requires the assessment of ecological effects. The European Chemicals Bureau 

proposes a concentration-effect approach for ecological effect assessments (TGD, EU 2003). The 

concentration-effect assessment is concerned with deriving a predicted no effect concentration 

(PNEC), i.e. a concentration which is expected to cause no adverse ecological effects.  

 

Ecological effects of chemicals are the result of a complex interplay between various factors. The 

effects of exposing an ecosystem to a given chemical concentration during a given period of time 

are a function of (1) the inherent sensitivity of the species present; (2) physical and chemical water 

characteristics; and (3) indirect effects due to ecological interactions between species (Fig I.3). 

 

(1) The inherent sensitivity of a species for a chemical can be examined in a single-species toxicity 

test. In such an assay, the direct effect of a chemical on a measurement endpoint of a small 

population of one species is evaluated. With ‘measurement endpoint’ is meant: the trait of a species 

which is used to evaluate chemical’s effects. In theory, the number of possible measurement 

endpoints is as large as the number of traits a species has. However, in practice, the most 

commonly used measurement endpoints include survival, growth, and reproduction (Hoffman et 

al., 1995). In many single-species tests, a concentration-effect approach is followed: the effect of 

different chemical concentrations on the measurement endpoint is observed in order to establish a 

concentration - effect relationship. This allows the estimation of the ECx, the concentration at 

which x% effect is observed. This ECx reflects the sensitivity of the tested species for the 

considered chemical: the lower an ECx of a species is, the higher its sensitivity for the considered 

chemical. Additionally, a no observed effect concentration (NOEC) can be derived. This is the 

highest tested concentration which did not result in significant effects on the examined endpoint. 

Note that ECx and NOEC are quantities that can also be used in other experimental settings than 

single-species toxicity tests. As will be discussed hereunder, this inherent sensitivity is mediated by 

the physical and chemical characteristics of the surrounding water. In most single-species tests, 

these water characteristics are standardized to enhance reproducibility of test results. 

 

(2) A plethora of water characteristics have been found to influence the result of single-species 

tests and thus the sensitivity of a species. Water temperature is an example of a physical quantity 

which can influence chemical effects on organisms (Heugens et al., 2001). Dissolved Organic 
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Carbon (DOC) and pH are examples of chemical characteristics which can influence the 

bioavailability of metals to organisms (De Schamphelaere and Janssen, 2002). The observed effect 

of a chemical on a species thus results from its inherent sensitivity after correction for physical and 

chemical water characteristics. Note that this observed effect is termed the ‘direct effect’ of the 

chemical on the considered species at given water characteristics. If water characteristics are set as 

desired, this direct effect can also be observed in a single-species toxicity test. 

 

(3) Indirect effects of chemicals originate from consumer-resource interactions (Strauss, 1991; 

Wootton, 1994) between species. Hence, the study of indirect effects requires the presence of 

multiple species. As a result, multi-species experiments are needed to address this issue, since 

single-species test results merely reflect direct effects. Indirect effects are well-studied, and are 

generally considered in terms of ‘top–down’ (influence of higher on lower trophic levels) and 

‘bottom–up’ mechanisms (influence of lower on higher trophic levels). The direct effects of a 

chemical on grazers (e.g. increased mortality) leading to an increased abundance of less sensitive 

prey species is an example of a top-down indirect effect. A decreased abundance of a less sensitive 

predator because of direct effects on its more sensitive prey population is an example of a bottom-

up indirect effect. Reports of bottom–up indirect effects are less ubiquitous (Posey et al., 1999) 

than reports of top–down indirect effects (e.g., Kneib, 1991; Posey and Ambrose, 1994; Menge, 

1995; Brett and Goldman, 1996; Hay, 1997; Havens, 1995). When chemicals directly affect 

‘keystone species’ or ‘ecosystem engineers’ (Paine 1966; Mills et al., 1993; Jones et al., 1994), 

trophic cascades may extend far beyond the closely associated species by modifying important 

ecosystem functions (e.g., decomposition rates, oxygen dynamics and nutrient cycling). A review 

of indirect effects has been performed by Fleeger et al. (2003). This review concludes that indirect 

effects are a major issue for many types of chemicals in various types of ecosystems. 

 

Given the interplay of different biotic and abiotic factors, the most realistic way to assess effects of 

chemicals on aquatic ecosystems is to make direct observations in enclosed ecosystems (Cairns, 

1983; Clements and Kiffney, 1994). However, because of the inherent stochasticity of biological 

processes, the reproducibility of such observations is expected to be low (Schindler, 1998). 

Associated with this limited reproducibility is the low statistical power to detect chemical effects.  

 

As a compromise between the reproducibility of a laboratory-setting and the realism of ecosystem 

enclosures, artificial ecosystems have been proposed. These are termed microcosms or mesocosms, 

depending on their dimensions and complexity. Apart from statistical power issues, advantages of 
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these experimental settings are (1) that they involve multiple species, which allows studying 

indirect effects of chemicals; and (2) that water characteristics more closely resemble field 

conditions. Unfortunately, these advantages cannot compensate for the disadvantages of high costs 

and long study duration. Therefore, micro- and mesocosms are still not used in routine and as a 

result, data sets from such experiments are scarce. Therefore, risk assessors, whether they are 

regulators or scientists, often have to rely on single-species toxicity test results to derive a PNEC. 

Depending on the type and number of single-species toxicity test results available, one of two 

approaches is applied: application factors (AFs) or species sensitivity distributions (SSDs).  

 

 

Figure I.3: Direct and indirect chemical effects. The dotted arrows represent a decrease in abundance resulting 

from direct chemical effects, which are influenced by physical and chemical water characteristics. The size of 

the arrow represents the magnitude of the effect. This decrease can be observed in a single-species test. In a 

multi-species experiment, the direct effect of the chemical on the zooplankton species at concentrations lower 

than those causing effects on the phytoplankton species eventually results in an increase in phytoplankton 

abundance because of a reduced grazing pressure (dashed upward arrow). The latter is called an ‘indirect 

effect’ and cannot be observed in a single-species test. 

 

When only short-term, or 1 to 3 long-term single-species toxicity test results from 3 trophic levels 

are available, EU guidance documents prescribe to divide the lowest test result by an ‘application 

factor’ (‘AF’, TGD, EU 2003) to derive the PNEC. The use of AFs is inherently associated with 

the choice of an arbitrary number to represent the uncertainty when extrapolating a single-species 

effect concentration (ECx) established in a laboratory, to a PNEC. Because of the lack of scientific 

arguments to motivate its use, this approach has been criticized (Chapman et al., 1998; Forbes et 

al., 2001). The use of these AFs has been found to result in a rather conservative approach for TBT 

and LAS (Selck et al., 2002). Those authors found that the ratio between the lowest NOEC from 
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enclosure experiments and PNECs calculated using extrapolation of single-species test results, 

ranged from 1.5 to 6.7 for TBT, and from 10 to ca. 1733 for LAS.  

 

If a larger number of long-term single-species toxicity test results is available, the SSD approach 

can be followed. Test results are ranked in increasing order and their cumulative probabilities are 

calculated assuming a statistical distribution type (parametric) or using nonparametric techniques 

such as bootstrapping. The resulting cumulative distribution is called the ‘species sensitivity 

distribution’ (Fig I.4). A chemical concentration corresponding to a lower percentile ‘y’ of such an 

SSD is called the ‘hazardous concentration for y % of the tested species’ (HCy). The value of ‘y’ is 

almost always set at 5. In a regulatory context, the HC5 may additionally be divided by an 

additional application factor (1 to 5) (TGD, EU 2003) to derive a PNEC. 

 

Figure I.4: The species sensitivity distribution (SSD) approach in ecological risk assessment: single-species 

toxicity test results (e.g., EC10s; the concentration at which a measurement endpoint is affected for 10%) from 

different species (in this case, a macrophyte, a cladoceran, and a fish) are ranked and a cumulative probability 

function is fitted to these data. Note that also non-parametric methods can be used instead of an a priori defined 

probability function. A lower percentile from such an SSD is called the hazardous concentration for y% of the 

species (HCy) and is used to derive a predicted no effect concentration (PNEC). In this example, as in the vast 

majority of SSD applications, y is set at 5. 
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I. 3. Ecological effect assessment - limitations of current practice 

 

Ever since their introduction, both extrapolation techniques (AFs and SSDs) have been criticized 

for their underlying assumptions and arbitrariness (e.g., Forbes and Forbes, 1993). The latter is 

typically more closely associated with AFs, and the former more with SSDs. The AF approach 

assumes that by protecting the most sensitive species, ecosystems are protected against adverse 

effects. Unfortunately, the lack of an underlying theory for the AF approach impedes estimation of 

the uncertainty associated with the resulting PNEC, i.e. it is unknown how conservative this PNEC 

is likely to be. Hence, findings that SSD- and AF-PNECs are conservative (e.g. Selck et al., 2002) 

are interesting from a regulatory point of view, yet they can not replace a sound scientific basis for 

extrapolation techniques.  

 

As demonstrated by Forbes and Calow (2002), the SSD methodology is based on a set of 

assumptions, of which 6 are related to the way the methodology is applied in practice, i.e. ‘P-

assumptions’, and 3 to the theoretical background of the SSD concept, i.e. ‘T-assumptions’ (Table 

I.2; Forbes and Calow, 2002).  

 

Table I.2: Assumptions associated with the SSD concept and its use (re-drafted from Forbes and Calow, 2002). 

 

 

I. 3. 1. Assumptions of the underlying theory of the SSD concept (T-assumptions) 

 

Amongst the three assumptions on which the theoretical background of the SSD concept is 

founded (Table I.2), the key assumption is that ecological interactions do not influence the SSD 

(T1). The other assumptions (T2 and T3) are somehow related to T1. For example, arguments to 

criticize the assumption that all species are weighted equally in an SSD (T2) are based on the 

Assumptions behind the theory 

T1. Interactions between species do not influence the sensitivity distribution  

T2. All species are weighted equally  

T3. Structure is the target of concern  

 

Assumptions in the application 

P1. The sample of species used to construct the sensitivity distribution is an 

unbiased sample of the target group of species about which conclusions are to be drawn.  

P2. The endpoint is ecologically relevant.  

P3. The chosen level of protection is appropriate.  

P4. Chosen confidence limits around the protection level are appropriate.  

P5. The shape of the distribution is appropriate.  
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distinct ecological roles of those species (e.g. Forbes and Calow, 2002). It is argued that species 

performing specific ecological functions, e.g., keystone species (Paine 1966), should receive higher 

weights than functionally more redundant species. As such, this argument also serves to urge for an 

incorporation of ecological interactions in the SSD concept. The assumption that ecosystem 

structure is equally or more sensitive than ecosystem function (T3), is equivalent with the 

statement that species composition is equally or more sensitive than the underlying processes 

involving fluxes of energy and matter (Cairns and Pratt, 1995). These fluxes of energy and matter 

represent consumer-resource interactions, i.e. ecological interactions. Until now, only the 

assumption that ecosystem structure is equally or more sensitive than ecosystem function (T3), has 

been tested, and found to be valid for TBT and LAS (Selck et al., 2002). The validity of the crucial 

assumption T1, i.e. that ecological interactions do not influence the SSD, has never been examined. 

 

I. 3. 2. Assumptions about the application of the SSD concept (P-assumptions) 

 

Papers discussing P-assumptions show that there are many degrees of freedom when actually 

applying the SSD concept. Distribution type, number and nature of toxicity test results, 

taxonomical composition, and chosen percentile HCy are characteristics of the SSD application 

which may influence the resulting PNEC. The most commonly used distribution-types are the log-

normal (Wagner and Lokke, 1991) and log-logistic distributions (Aldenberg and Slob, 1993). 

However, numerous distribution types (empirical, log-normal, log-logistic distribution, or others) 

and methods to derive the HC5 (bootstrap, Bayesian techniques, or others) exist. The influence of 

the applied method and distribution type on the resulting HC5 has been examined (e.g., Wheeler et 

al., 2002; Verdonck et al., 2001; Aldenberg and Jaworska, 2000; van der Hoeven, 2004; Newman 

et al., 2000; Jagoe and Newman, 1997). These studies indicate that application of the various 

methods to the same set of data, can result in HC5s differing by a factor of three (Grist et al., 2002).  

Also the taxonomic composition of the SSD has been shown to influence the HC5. Maltby et al. 

(2005) found that SSDs for specific taxonomic groups (vertebrates, arthropods, nonarthropod 

invertebrates) were different from one another. Duboudin et al. (2004a) found that the HC5 is 

influenced more by intra-species variability and taxonomical composition of the SSD than by the 

statistical method used to derive the HC5.  

Finally, the choice for the HC5 instead of other percentiles has been evaluated by Versteeg et al. 

(1999). Those authors showed that, for 11 different substances, HCys higher and lower than the 

HC5 may also be protective. The finding that the HC5 almost never bears its intended significance, 

i.e. that more (or less) than 95% of the species within an ecosystem will be affected when exposed 
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to HC5 (Kefford et al., 2005), can help to understand the results by Versteeg et al. (1999). The fact 

that both higher and lower percentiles than the HC5 can protect ecosystems, indicates that the 

ecological significance of the HC5 is not the ‘hazardous concentration for 5% of the species’. 

Hence, the selection of the HC5 results from a tradition in statistical testing rather than from 

experimentally derived ecological thresholds. 

Given the multitude of choices for each of the different SSD characteristics, combination calculus 

learns that the ways to actually apply the SSD are even more abundant. This makes 

recommendations about how to apply the SSD methodology difficult and case-specific. 

 

In literature, P-assumptions have received more attention (e.g., Kefford et al., 2005; Maltby et al., 

2005; Duboudin et al., 2004a; Forbes et al., 2001; Hose and Van den Brink, 2004) than T-

assumptions (Selck et al., 2002; Balczon and Pratt, 1994). The reasons for this may be that (1) 

there are more P-assumptions than T-assumptions; and (2) the examination of P-assumptions 

seems to bear more relevance in the light of ecological/environmental effect assessments. 

However, it should be clear that an ill-suited theoretical foundation can never serve its goal, despite 

a proper application. Therefore, we feel that discussions on T-assumptions are under-represented in 

literature.  

 

In summary, it can be concluded that the two discussed extrapolation methods lack a sound 

scientific basis or rely on unproven assumptions which ignore ecological interactions 

occurring in ecosystems. Because numerous micro- and mesocosm studies have demonstrated 

the occurrence of indirect effects, it is suspected that the assumptions underlying both 

approaches will not always be valid. Hence, predictions of ecological effects by an 

extrapolation approach will most likely be inaccurate. It is therefore questionable whether 

ecological effect assessments relying on such inaccurate predictions can result in accurate 

assessments of chemical risk to aquatic ecosystems. An underestimation of the risk of a 

chemical will result in adverse effects on aquatic life. An overestimation of this risk can result 

in extra time needed for refinements of risk assessments and possibly in unnecessary 

remediation costs. 
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I. 4. Effect assessments using ecosystem models: a possible solution? 

 

I. 4. 1. Ecosystem models in ecotoxicology 

 

To address the need for alternative methods which can incorporate ecological interactions in 

ecological effect assessments of chemicals, ecosystem models have been developed. Although the 

term ‘ecosystem model’ can bear different meanings (e.g., conceptual models, fuzzy logic-based 

toolboxes), the type of ecosystem model most often used for ecological effect assessments is a 

dynamic ecosystem model and consists of three parts, as shown in Fig I.5 (Bartell et al., 1988; 

DeAngelis et al., 1989; Bartell et al., 1999; Hanratty and Liber, 1996; Traas et al., 1996; Traas et 

al., 1998; Traas et al., 2004a): 
 

• a bioenergetic food web model 

• a model for nutrient and detritus cycling 

• toxic effect sub-models 

 

Figure I.5: An example of an ecosystem model consisting of (1) a bioenergetic food web model (within the dotted 

line); (2) a model for nutrient and detritus cycling (within the dashed line); (3) toxic effect sub-models (within 

bold line). 
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Across published examples of such ecosystem models, the food web models used are similar and 

rely on differential equations describing the growth of populations on a biomass basis. The 

variables which are governed by differential equations are termed ‘state variables’. The different 

terms in the differential equations are called ‘rates’. Differential equations for the state variable 

‘phytoplankton biomass’ may include processes like photosynthesis, excretion, respiration, 

intrinsic mortality, sinking, and consumption by zooplankton. Differential equations for 

zooplankton biomass may include consumption of phytoplankton, defecation, respiration, 

excretion, intrinsic mortality, and predation by fish. Differential equations for fish biomass may 

include the same processes as those for zooplankton, except that consumption of phytoplankton is 

mostly replaced by consumption of zooplankton, if appropriate.  

Also the model for nutrient and detritus cycling is similar across different publications. Similar to 

the biomass of populations, nutrients and detritus are also considered as state variables. Detritus 

mass increases by processes such as excretion by zooplankton and fish, and sinking of 

phytoplankton. Detritus mass converts into nutrient mass by mineralisation according to 

stoichiometric laws.  

Toxic effect sub-models are used to calculate direct chemical effects on selected parameters of the 

different populations. These parameters represent the endpoints affected by the chemical. For 

example, if a chemical directly affects the intrinsic mortality of a population, the parameter 

‘intrinsic mortality rate’ of this population will be a function of the chemical concentration. This 

function is called a ‘toxic effect sub-model’ in this dissertation, because it is embedded in the 

ecosystem model. Indirect effects result from the combination of (1) direct effects; and (2) 

ecological interactions which are represented within the food web model (see also Fig I.3). Two 

types of toxic effect sub-models have been used in ecosystem models: highly realistic toxicokinetic 

models (Bartell et al., 1988; Traas et al., 1996; Traas et al., 2004b), as well as more simple external 

concentration-effect functions (Traas et al., 2004a; Bartell et al., 1999). The toxicokinetic sub-

models suffer from parameter uncertainty, e.g., uptake and elimination rates, which are difficult to 

measure (Sijm and van der Linde, 1995). The more straightforward concentration-effect functions 

have the advantage that they are derived in frequently performed single-species toxicity tests. 

Consequently, laboratory generated L/EC50s are parameters of such toxic effect sub-models 

(Bartell et al., 1999; Traas et al., 2004a). The type of concentration-effect function used varies 

between ecosystem models. While Bartell et al. (1999) use linear concentration-effect functions, 

Traas et al. (2004a) use logistic concentration-effect functions. Which type of toxic effect sub-

model is more appropriate to obtain accurate predictions of ecological effects is currently 

unexplored.  
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I. 4. 2. The potential of ecosystem models in ecotoxicology 

 

In the context of ecotoxicology, ecosystem models are applied for two major reasons: (1) for 

predictive ecological effect assessments; and (2) to increase our understanding of how ecological 

principles co-determine ecological effects caused by chemicals.  

 

Ecosystem models have been used to predict a maximal chemical concentration which does not 

result in adverse ecological effects (e.g., Hanratty and Liber, 1996; Naito et al., 2002; Naito et al., 

2003). Simulations of the behaviour in time of population’s biomass (i.e. population dynamics) at 

different chemical concentrations are compared with population dynamics in untreated (control) 

systems. The highest exposure concentration at which the difference between the dynamics in both 

treatments is less than a given cut-off value is defined as the no observed effect concentrations 

(NOEC) for that population, i.e. the population-NOEC. This cut-off value is usually set at 20 % 

(e.g., Naito et al., 2003) because it is the observed natural variability of community characteristics 

in the field (Suter II, 1993). The lowest population-NOEC in an ecosystem can serve as an 

ecosystem-NOEC, i.e. a concentration which does not adversely affect the biomass of the 

populations present. The advantage of such a measure is that it summarizes the information on the 

sensitivity of an ecosystem for biomass changes of its populations into one number. It can thus be 

used as a basis for water quality criteria derivation. 

 

Additionally, ecosystem models have been used in parallel with micro- and mesocosm studies to 

provide additional explanations of the observed phenomena (e.g., Traas et al., 2004a; Taub, 1997). 

For example, the importance of indirect effects can be examined with ecosystem models. Direct 

effects on populations are given by the toxicity test results, used as input for the toxic effect sub-

models. Net effects on populations predicted by an ecosystem model are the combined result of 

direct and indirect effects. If these predictions are in agreement with the net effects observed in the 

micro- and mesocosm studies, statements can be made on the importance of indirect chemical 

effects. This can be done by comparing the net effect on a population with the direct effect on this 

population (e.g., Naito et al., 2003). The use of an ecosystem model allows this comparison to be 

made at concentrations which are not tested in the micro- or mesocosm study.  
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I. 4. 3. Possible bottlenecks for the use of ecosystem models in ecotoxicology 

 

Studies which quantitatively compare predicted with observed population-NOECs are almost non-

existing. However, such a validation is needed to support the firmness of the results (and decisions 

based on these results) originating from the use of such models. 

 

Current literature indicates that predictions of ecosystem-NOECs obtained from ecosystem models 

are rather conservative. The Lake Suwa version of the Comprehensive Aquatic Systems Model 

(CASM_SUWA) was used to predict ecosystem-NOECs for a variety of chemicals in various 

ecosystems (Naito et al., 2003). Predicted ecosystem-NOECs were compared with ecosystem-

NOECs observed in experimental micro- and mesocosm studies. It was found that for most 

chemicals, predicted ecosystem-NOECs were one to two orders of magnitude lower than observed 

ecosystem-NOECs. From this it can be concluded that CASM_SUWA overestimates ecological 

effects. 

A first reason for the low accuracy may be the use of one ecosystem model, which specifically 

represents the Lake Suwa ecosystem, to predict effects in a variety of - sometimes very different - 

ecosystems. This approach somehow contradicts the rationale for ecosystem modelling, i.e. the 

need for incorporating relevant ecological interactions in ecological effect assessments. For 

example, the presence of fish populations in the CASM_SUWA is problematic when using this 

model to make predictions about chemical effects in ecosystems without fish.  

A second reason for the low predictive power may be the use of unsuited toxic effect sub-models. 

Indeed, which type of toxic effect sub-model should be used in an ecosystem model to obtain 

accurate predictions of ecological effects is currently unexplored. Because toxic effect sub-models 

predict the direct chemical effects on populations, they cause indirect effects to appear. Hence, they 

form the basis of the prediction of the effects on the different populations within an ecosystem.  

A third reason why ecosystem models may not predict the expected ecological effects, is the use of 

non-representative single-species toxicity test results as parameters of toxic effect sub-models. For 

example, Hanratty and Liber (1996) have predicted diflubenzuron effects in a microcosm which 

was conducted concurrently. Although the modelled ecosystem was representative for the 

experimental ecosystem, predictions of effects on population dynamics were poor. These authors 

attributed the discrepancies between model predictions and observations to the use of non-

representative single-species toxicity test results for Daphnia magna, an important zooplankton 

species in the studied ecosystem.  
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A fourth reason may be that the use of ecosystem models in predictive ecological effect 

assessments is hindered by the complexity of ecological systems (Egler, 1970). It has been debated 

that ecosystems may not obey any law, because there are too many variables which may affect 

ecosystem behaviour (Lawton, 1999). The behaviour of an experimental ecosystem depends to a 

large extent on the organisms involved and the environmental boundary conditions set in the 

experiment. For this reason, Van Straalen (2003) argues that the observed behaviour of an 

ecosystem can not be replicated, let alone predicted. However, despite the difficulty of exactly 

predicting ecosystem behaviour, patterns in the behaviour of ecosystems can be predicted more 

easily. Sommer et al. (1986) have studied reported seasonal successions of planktonic events in 24 

lakes and constructed a linguistic model based on this information. This model describes patterns 

of population dynamics which are typically observed across many different lake types. This 

generality makes the linguistic model much simpler than the complex ecosystem behaviours which 

are classically described in other ecosystem studies. However, this linguistic model will not be able 

to explain the exact population dynamics in one specific ecosystem. Yet, it can be argued that the 

exact prediction of population dynamics is not a primary goal of ecological effect assessments. 

Effect assessors are interested in how common patterns of biomass dynamics, as those given by 

Sommer et al. (1986), change as a result of exposure to a chemical. It may thus be that too much 

effort is put in calibrating ecosystem models with the aim of exactly reproducing population 

dynamics of one given ecosystem. Publications aimed at deriving chemical effects on patterns of 

population dynamics have not been found.  

 

Based on the current knowledge, it is difficult to say whether the reasons summarized in the 

above lead to differences between predicted and experimentally observed ecosystem-NOECs, 

or whether the ecosystem modelling approach itself is not suited for ecological effect 

assessments. This leads to the question: can ecosystem models be used in ecological effect 

assessments? 
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I. 5. Problem formulation - Rationale for this thesis 

 

Current approaches used in ecological effect assessments of chemicals are based on the 

extrapolation of single-species toxicity test results to ecosystem effects. Such extrapolations rely on 

a set of assumptions and pragmatic ‘rules of thumb’. The validity of these is largely unexplored. 

Hence, the ecological significance of predicted no effect concentrations (PNECs) resulting from 

these approaches is poorly understood.  

 

The extent to which ecosystem models can be used as an alternative to these extrapolation 

approaches is unknown. However, validation efforts have been carried out in which predicted and 

observed NOECs are compared. Yet, those validation studies:  

 

• include populations in the model which are different from those present in the studied 

ecosystem, 

• do not always use representative single-species toxicity test results, 

• may not use an appropriate toxic effect sub-model, 

• focus on the exact replication of population dynamics instead of on the prediction of 

ecological effects, 

• are aimed at quantitatively validating ecosystem-NOECs, while only qualitatively 

validating population-NOECs. 
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I. 6. Goals of this thesis - Outline 

 

Schemes of the outline of this thesis are given in Figs I.6 and I.7. 

 

I. 6. 1. Relationship between single-species toxicity test results and ecosystem effects 

 

Because current ecological effect assessments have to rely on the relationship between single-

species toxicity test results and effects on ecosystems, chapter II reviews different studies which 

are designed to examine this relationship. Rather than gathering available information on this 

relationship, the conceptual background of these studies is critically evaluated. Based on this 

evaluation, a selection of the reviewed studies is made, and the therein reported relationships 

between single-species toxicity test results and ecosystem effects are compared. 

 

I. 6. 2. Model development and validation 

 

In chapter III and IV, the construction of a new ecosystem model is described. A dynamic 

ecosystem model is constructed in such a way that it can be customized to represent different lentic 

(i.e. non-running) aquatic ecosystems. Also toxic effect sub-models can be customized. The 

ecosystem model aims at accurately predicting ecological effects, rather than pursuing the exact 

replication of observed population dynamics. Model equations, the methodologies to account for 

variability in model parameters, and processing of predictions to obtain ecological effects are 

elaborated. As an example, the application of the ecosystem model is demonstrated in aquatic 

microcosms exposed to copper. 

 

Chapter V seeks to determine which type of toxic effect sub-model is most appropriate for the 

ecosystem model presented in the previous chapter. To this end, the ecosystem model described in 

the previous chapter is configured with different toxic effect sub-models. The capacity of the 

model to predict experimentally observed population-NOECs and ecosystem-NOECs is tested for 

the different configurations.  
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Figure I.6: Overview of the issues addressed in chapters III to VI of this dissertation. Details on the structure of 

the ecosystem model are given in the caption of Fig I.5.  

*Chapter III and IV: How can an ecosystem model predict ecosystem effects without exactly predicting the 

population dynamics in this system? 

**Chapter V: Which toxic effect sub-model should be incorporated in such an ecosystem model to increase the 

accuracy of the predictions? 

***Chapter VI: Can the resulting ecosystem model be used in ecological effect assessments? 
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Figure I.7: Overview of the issues addressed in chapters VII to IX of this dissertation.  

*Chapter VII: Is it correct to assume that ecological interactions do not affect the species sensitivity 

distribution? 

**Chapter VIII: What is more sensitive: ecosystem function or structure? 

***Chapter IX: What is the ecological significance of different HCy-values? 
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In chapter VI, the configuration which gave best predictions in chapter V is used for validation 

using 11 other datasets described in literature. The goal of this chapter is to explore the capacity of 

ecosystem models to aid in ecological effect assessments. To this end, predictions of ecological 

effects of different chemicals in different ecosystems are compared with observations in micro- and 

mesocosm studies reported in literature, bearing in mind to: 

 

• include the same populations in the ecosystem model as in the observed ecosystem; 

• use the proper toxic effect sub-model with representative single-species toxicity test 

results; 

• focus on the prediction of ecological effects rather than on exact population dynamics; 

• also validate predicted population-NOECs in a quantitative way.  

 

In this way, the following question is addressed: can ecosystem models be used in ecological effect 

assessments? 

 

I. 6. 3. Theoretical model applications 

 

In a second research line, the validated ecosystem model is used to test the assumptions underlying 

extrapolation approaches currently used in ecological effect assessments. In chapters VII and 

VIII, assumptions T1 and T3 of the SSD concept (Table I.2) are tested. To this end, a hypothesis-

testing approach is followed: 

 

Chapter VII: Null hypothesis: T1 is valid, i.e. ecological interactions do not influence the 

sensitivity distribution. 

 

Chapter VIII: Null hypothesis: T3 is valid, i.e. ecosystem structure is as or more sensitive than 

ecosystem function. 

 

These hypotheses are tested for a simple freshwater ecosystem individually exposed to 1000 

hypothetical toxicants. Amongst these 1000 toxicants, different toxicant types are represented. 

‘Toxicant type’ is defined here on the basis of the trophic levels directly targeted by the toxicant. 

For example, a toxicant primarily targeting zooplankton (e.g., an insecticide) and a toxicant 

primarily targeting phytoplankton (e.g., a herbicide) will be considered as different toxicant types. 
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This approach allows to interpret the validity of the tested assumptions, i.e. to answer the 

questions: “for which toxicant types are T1 and T3 valid?”. Results obtained in these chapters can 

provide scientific arguments in deciding whether or not to use the SSD approach for an ecological 

effect assessment of a specific chemical. 

 

I. 6. 4. Practical model applications 

 

In chapter IX, the ecosystem model is used to evaluate the ecological significance of the 

hazardous concentration for y % of the tested species (HCy) for different values of ‘y’ in a 

freshwater planktonic ecosystem exposed to copper. The ecosystem model is used to estimate 

effects of different HCys of copper on ecosystem structure and function. 

 

I. 6. 5. Conclusion 

 

In the final chapter X, the information obtained in this dissertation is reviewed and summarized in 

a set of conclusions. By comparing these conclusions with the problem statements from this 

introductory chapter, possibilities for further research are suggested. 
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Questions addressed by this dissertation (see also Figs I.6 and I.7) 

 

���� Chapter II: What is meant with ‘ecosystem effects’ and how has their relationship with 

single-species toxicity test results been examined until now? 

 

���� Chapter III and IV: Can an ecosystem model accurately predict ecosystem effects if it is 

not calibrated on observed population dynamics? 

 

���� Chapter V: Which toxic effect sub-model should be incorporated in such an ecosystem 

model to increase the accuracy of the predictions? 

 

���� Chapter VI: Can the resulting ecosystem model be used in ecological effect assessments? 

 

���� Chapter VII and VIII: Which assumptions associated with current approaches for 

ecological effect assessments are valid and for which chemicals? 

 

���� Chapter IX: What is the significance of different y-values HCy in a planktonic ecosystem? 

 

���� Chapter X: Conclusions and research perspectives 
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Chapter II 

 

Relating single-species toxicity test results to ecosystem effects: a review of 

current methodologies 

 

Abstract - Most methodologies used in ecological effect assessments rely on assumptions about 

the relationship between single-species toxicity test results and ecosystem effects. This 

relationship is mostly examined by (1) experimental ecosystem studies and (2) ecosystem models. 

After having characterized the available single-species toxicity test results and studies on 

ecosystem effects, we review these two methods. Between 1990 and 2006, 75% of the single-

species toxicity tests conducted are short-term tests (< 5d) with animals using immobility or 

mortality as an endpoint. Most frequently studied ecosystem effects are changes in abundance or 

biomass of populations. Ecosystem studies indicate that ECxs for a population’s biomass or 

abundance are generally within a factor two of single-species immobility ECxs. However, this 

conclusion partly originates from the focus on effects on invertebrates in ecosystem studies with 

insecticides. Results from the few modelling studies found apparently contradict with the findings 

from experimental ecosystem studies. The conservatism of the model predictions and the focus on 

toxicants for which prey are more sensitive than predators in the considered modelling studies can 

explain the difference between results from experimental ecosystem studies and results from 

modelling studies. 

 

 

 

 

 

 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Vanrolleghem, P.A., Janssen, C.R. Relating single-

species toxicity test results to ecosystem effects: a review of current methodologies. Ecotoxicology 

and Environmental Safety, submitted. 
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II. 1. Introduction 

 

Water quality criteria for chemicals aim at establishing environmental concentrations which do 

not adversely affect the structure and functions of ecosystems (EU, 2003). To this end, ecological 

effect of chemicals have to be assessed. The most realistic way to study ecological effects of a 

chemical is to expose enclosed ecosystems to different concentrations of the chemical and assess 

the effects at the community level. To increase reproducibility of such tests, multi-species toxicity 

tests such as microcosm and mesocosm tests have been conducted. Those tests still enable the 

evaluation of indirect effects of chemicals resulting from ecological interactions (Fleeger et al., 

2003) without contaminating real ecosystems. However, the routine use of mesocosm tests to 

assess the impact of chemicals on ecosystems is not feasible because of the associated costs 

(Newman and Unger, 2003). Hence, the potential adverse effects of chemicals on ecosystems is 

generally derived using ecotoxicity tests in which a single species is exposed to a series of 

increasing chemical concentrations. However, the higher reproducibility of these so called 

“single-species toxicity tests” is at the expense of a lower degree of realism (Schindler, 1998; 

Sanderson et al., 2004). Results from such single-species toxicity tests do not give accurate 

information on chemical effects at the ecosystem-level. Methodologies to relate single-species 

toxicity test results to effects on ecosystems have been developed and include the use of 

application factors (AFs), species sensitivity distributions (SSDs) and ecosystem models. The 

assumptions used by the latter approach are based on knowledge about ecological mechanisms 

and processes obtained through quantitative ecological research. In contrast, the first two 

methodologies rely on assumptions which are largely pragmatic and not always based on 

sufficient ecological research.  

 

In this chapter, primary studies published between 1990 and 2006 are reviewed which compare 

(1) single-species toxicity test results to (2) ecosystem effects in the aquatic environment. The 

meaning of these two terms is reviewed and databases are examined to map out available data. 

The factors which may drive the relationship between both types of results are discussed. To 

focus on the influence of environmental factors on these results, genetic differences between field 

species and standard test species are not discussed here. The different ways in which this 

relationship is examined are critically evaluated with special attention to sources of variability 

which may distort this relationship.  
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II. 2. Definitions 

 

II. 2. 1. Single-species toxicity tests 

 

In a single-species toxicity test, the direct effect(s) of a (mixture of) chemical(s) on a small 

population of one isolated species is evaluated. In theory, the number of endpoints on which 

direct effects of chemicals can be examined is as large as the number of traits a species has. Tests 

are performed under controlled laboratory conditions: temperature, light regimen, physical and 

chemical water characteristics, and resources are standardized to increase reproducibility.  

To examine which types of single-species toxicity test results have been performed most, a search 

in the aquatic part of the USEPA database ECOTOX was performed 

(http://cfpub.epa.gov/ecotox/). This search was constrained by selecting “concentration based 

endpoints”, “lab”, “environmental OR not reported” as endpoints, study location, and exposure 

type, respectively. Only data between 1990 and 2006 were considered. Both animal and plant data 

were collected. Results from multi-species experiments (e.g. microcosm) were deleted a 

posteriori. The collected single-species toxicity test results primarily reflect the effects of 

chemicals on animals (4450 records found). Only 228 records for plants were found. Although the 

number of endpoints which can be examined is theoretically unlimited, the main endpoints 

studied were mortality or immobility (75%) and photosynthesis (25%) for animals and plants, 

respectively.  

Ninety percent of the single-species tests with animals we found in the USEPA database used an 

exposure time of 5 days or less (Fig II.1). Similar to the variation in studied endpoints for plants, 

also exposure time of single-species tests with plants exhibits a slightly higher variability than in 

tests with animals (Fig II.1): ninety percent of the considered single-species tests with plants had 

an exposure time of 15 days or less. 
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Figure II.1: Probability distributions of the duration of single-species toxicity tests (in days) with plants (black 

symbols), animals (black line), and ecosystems (open triangular symbols). Data come from the aquatic part of 

the USEPA database ECOTOX. 

 

II. 2. 2. Ecosystem effects 

 

In the context of ecotoxicology, the term “ecosystem effect” is often used to denote effects on 

structure and function of an ecosystem. These effects can be studied in artificial ecosystems or in 

field enclosures. Depending on the study design and its dimensions, environmental conditions are 

more (microecosystem as in Kersting and van Wijngaerden, 1992) or less controlled (field 

enclosures as in Brock et al., 2004). A higher reproducibility implies a lower degree of realism 

(Schindler, 1998). As with single-species tests, a large amount of endpoints can be used to assess 

chemical effects. Considering their higher spatial and temporal scale, endpoints used in ecosystem 

studies are expected to be more diverse and more complex than those of single-species. We 

examined 192 primary studies, published between 1990 and 2006, reporting ecosystem effects of 

a chemical in aquatic environments [ISI Web Of Science: TS=((mesocosm* OR microcosm* OR 

enclosure* OR semi-field OR semi field) AND (ecosystem* OR communit*) AND tox* NOT soil 

AND effect*]. Studies on benthic communities were omitted. References to these studies are 

given in the appendix (XI.2.1). References to studies explicitly cited in this chapter are integrated 

in the references at the end of this thesis, as usual. Reported ecosystem endpoints differ in 

complexity and range from population abundance to case-specific indices such as the quantitative 
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macro-invertebrate community index (Hickey et al., 1999). In nearly half of the collected papers 

(48%), effects on the abundance or biomass of a species or a trophic level are used as an 

ecosystem endpoint (Fig II.2). As such, these studies refer to “ecosystem effects” as effects on 

populations or trophic levels within an ecosystem. This is defensible, since effects on populations 

within an ecosystem are influenced by the presence or absence of other populations. Different 

ecosystems can have different populations, making effects on populations ecosystem-specific. 

Hence, the way populations react to environmental stress is a characteristic of the ecosystem. 

 

Figure II.2: Ecosystem effects studied in 190 ecosystem studies between 1990 and 2006. Note that “other” 

consists of several minor classes. 

 

Next to population’s biomass and abundance, ecosystem studies also use endpoints describing 

their organization (e.g. dominance patterns) and functioning (e.g. functional diversity). Examples 

of such endpoints are diversity indices and rates of primary production. There are fewer 

ecosystem studies (30%) using such an endpoint than there are ecosystem studies using 

abundance or biomass as an endpoint.  

As expected, the duration of these studies is higher than those used in single-species toxicity tests 

(Fig II.1). However, from the 192 considered ecosystem studies reviewed here, 50% had a 

duration of 35 days, or less. Whether this is a sufficiently long period for indirect effects to 

become apparent, is unclear (Fleeger et al., 2003). 

From this overview, it can be concluded that ecosystem effects of chemicals are assessed in two 

ways, depending on the endpoint considered: changes in (1) biomass/abundance of populations 

and/or trophic levels; and (2) aggregate ecosystem measures. Those two different endpoints will 

be termed ECO1 and ECO2 endpoints throughout this chapter, respectively.  
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II. 3. Single-species toxicity test results vs. ecosystem effects: concepts 

 

How a relationship between single-species toxicity test results and ecosystem effects can be 

interpreted depends on what is meant with the latter (effects on ECO1 or ECO2). 

The interpretation of a relationship between single-species toxicity test results and effects on 

ECO1 endpoints is straightforward. As described earlier, ECO1 endpoints are biomass or 

abundance-based, and as such are comparable to the majority of single-species toxicity test 

results. The similarity of both endpoints allows to compare effects quantitatively. For example, an 

EC50,immobility and an EC50,ECO1 both have the same meaning: a 50 % reduction in abundance of a 

population. The major difference between both results is the experimental design used to derive 

them. 

The factors determining the relationship between effects on ECO1 endpoints and single-species 

toxicity test results can be divided in biological, physical and chemical, and scale factors. Here, 

biological factors are defined as the ecological interactions between populations. Biological 

factors can thus result in indirect effects of chemicals on populations which were intrinsically not 

directly targeted by the toxicant. Two types of indirect effects have been reported (Fleeger et al., 

2003): an increased abundance resulting from reduced predation pressure, and an increased or 

reduced abundance because of altered competition. Physical and chemical factors include 

temperature and bioavailability-determining water characteristics, both of which may change the 

sensitivity of species (Heugens et al., 2001; De Schamphelaere and Janssen, 2002). Finally, the 

smaller spatial and temporal scale of a small population of one species in a single-species toxicity 

test compared to that of an aggregation of species into a food web within an ecosystem, are also 

expected to influence the relationship between single-species toxicity test results and ECO1 

endpoints. The mechanisms of how these factors interact to result in effects on ECO1 endpoints is 

complex. This is reflected by models which try to account for each of these factors separately. 

Ecological interactions between populations of species are inherently nonlinear (e.g., Sun et al., 

1991) since these are density-dependent. Models accounting for some physical and chemical 

factors (e.g., bioavailability models), use iteration procedures to solve implicit equations (De 

Schamphelaere and Janssen, 2002).  

The interpretation of a relation between single-species toxicity test results and effects on ECO2 

endpoints is problematic. ECO2 endpoints reflect the organization and functioning of populations 

within an ecosystem, and are therefore inherently incomparable with single-species endpoints. 

The question how effects on ECO2 endpoints relate to effects on single-species endpoints should 

therefore be considered as two separate issues (Fig II.3).  
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Figure II.3: The two separate issues when studying the relationship between ECO2 endpoints and single-

species toxicity test results. Within the dashed square, an ecosystem study is represented. ECx,ECO1s are effect 

concentrations derived with abundance data from this ecosystem study. A first issue is the relationship 

between those ECx,ECO1s and ECx,single-speciess, i.e. effect concentrations resulting from single-species tests 

conducted alongside the ecosystem study. A second issue is the relationship between ECx,ECO1s and ECxECO2s, 

i.e. effect concentrations of n aggregate ecosystem measures, e.g., of ecosystem functions.  

 

The first issue addresses the relationship between single-species toxicity test results and effects on 

the abundance of populations of the same species within an ecosystem. Note that the latter are 

termed ‘ECO1 endpoints’ in this chapter. Considering the complexity of this issue, it should be 
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treated separately from the second issue. The second issue addresses the relationship between 

effects on ECO1 endpoints and effects on ECO2 endpoints, i.e. how effects on populations within 

an ecosystem propagate to effects on overall ecosystem organization and functioning. 

 

II. 4. Single-species toxicity test results vs. ecosystem effects: practical approaches 

 

The relationship between single-species toxicity test results and ecosystem effects can be 

examined in two ways: by executing experimental ecosystem studies, or by using ecosystem 

models. 

 

II. 4. 1. Experimental ecosystem studies 

 

When reporting findings from experimental ecosystem studies, it is a common practice to put 

effect concentrations (ECs) measured for some ecosystem endpoint(s) in perspective by 

comparing those with (previously published) single-species toxicity test results. In many cases, 

the motivation for doing so is to examine the relationship between single-species toxicity test 

results and ecosystem effects. Unfortunately, the outcome of such a comparison is highly case-

specific. These comparisons are transparent when considered individually, but their collective 

significance is unclear. The fact that different ecosystem studies define (and measure) ecosystem 

effects in a variety of ways and use single-species toxicity test results produced by other authors, 

impedes any generalization across chemicals. These issues will be elaborated in the following 

paragraphs. 

As previously discussed, different interpretations of the term “ecosystem effects” are given in the 

literature. Depending on the used interpretation (ECO1 or ECO2), the relation between ecosystem 

effects and single-species toxicity test results will be different.  

Among the 192 articles we considered, only 5 have performed (and reported) single-species 

toxicity tests concurrent with the experimental ecosystem study. However, inter-laboratory 

variability originating from differences in sensitivity between clones of the same species and 

different laboratory practices has been observed (Environment-Canada, 1990). As such, it is 

unclear to what extent the difference between effects on ECO1 endpoints and effects observed in 

a single-species toxicity test originates from this inter-laboratory variability or from the factors 

given in II.3. The extent to which this inter-laboratory variability has influenced the outcome of 

previous comparisons is unclear.  
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Another issue that impedes generalizations across studies and chemicals originates from the way 

in which single-species toxicity test results are compared with ecosystem effects. Some authors 

compare one single-species test result with effect concentration(s) of one (or more) ecosystem 

endpoint(s) (e.g., Berard et al., 1999a). In other studies, a given percentile of many single-species 

toxicity test results is compared with effect concentration(s) of one (or more) ecosystem 

endpoint(s) (Maltby et al., 2005). This percentile is often calculated using the species sensitivity 

distribution concept (SSD): a statistical distribution is fitted to a set of single-species toxicity test 

results. Type of distribution and the used toxicity data all may influence the chosen percentile 

(Duboudin et al., 2004a). Verdonck et al., (2001) found that the methodology to derive a 

percentile from a set of single-species toxicity test results should be chosen based on the number 

of toxicity test results available. As such, the methodology by which such a percentile is derived 

will also influence the examined relationship between single-species toxicity test results and 

effect concentration(s) of one (or more) ecosystem endpoint(s).  

In summary, the true mechanisms determining the relationship between single-species toxicity 

test results and ecosystem effects may thus be distorted by (1) how “ecosystem effects” are 

defined; (2) inter-laboratory variability of single-species toxicity test results; and (3) how multiple 

single-species toxicity test results are treated. As a result, the true mechanisms behind the 

envisaged relationship may get unidentifiable. 

In an attempt to minimize possible influences of unwanted sources of variability (1+2+3) on the 

relationship between single-species toxicity test result and ecosystem effects, we re-analysed the 

results from the considered ecosystem studies. Only articles which avoided these sources of 

variability were considered.  

 

II. 4. 1. 1. Experimental ecosystem studies: single-species toxicity test results vs. effects on 

ECO1 

 

In only 5 of the 192 studies, single-species toxicity tests based on abundance were conducted and 

reported alongside measurements of effects on ECO1 endpoints, as such eliminating inter-

laboratory variability and enhancing comparability between ecosystem effects and single-species 

toxicity test results. Those studies were: Fairchild et al. (1992), van Wijngaarden et al. (1996), 

Schroer et al. (2004), van der Hoeven et al. (1997), Hose et al. (2003). Exposure duration in the 

ecosystem studies was always longer than in the accompanying single-species tests. Only van der 

Hoeven et al. (1997) and Hose et al. (2003) used the same exposure duration in both single-

species test and the ecosystem study. Details on the effect concentrations obtained in the 5 studies 
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are given in the appendix (XI.2.2). In general, exposure durations of the single-species toxicity 

tests in the USEPA database and exposure duration of those reported in the 5 selected studies 

showed good agreement.  

Results obtained in these studies indicate that for most species, ECx,ECO1 is within a factor 2 of 

ECx,single-species (Fig II.4). Findings by Roessink et al. (2006) indicate that for triphenyltin acetate, 

invertebrate-SSDs based on LC50,single-species values have a higher mean than invertebrate-SSDs 

based on ECx,ECO1values measured in microcosms. This contrast with the data presented in Fig 

II.4 may originate from chronic exposure through the food chain and latency effects of 

triphenyltin acetate. 

Across studies and species, EC50,single-species values are almost consistently lower than EC50,ECO1s. 

This is in contrast with EC10 values, which are comparable for ECO1 endpoints and single-species 

endpoints. As such, the similarity of ECx,ECO1 and ECx,single-species seems to depend on x. A reason 

for this might be the higher probability of the occurrence of indirect effects at higher 

concentrations than at lower concentrations. Since the number of affected single-species 

endpoints increases with increasing chemical concentration, possible routes for indirect effects 

also increase. As a result, the probability that ECx,ECO1 and ECx,single-species are different will 

increase as the exposure concentration increases, i.e. as x increases. All 5 studies which were re-

analyzed examined ecosystem effects of insecticides, i.e. substances which primarily target 

invertebrates. No evidence was found that phytoplankton is directly affected by the studied 

chemical in 4 of the 5 studies, i.e. by esfenvalerate, chlorpyrifos, or lambda-cyhalothrin. For 

endosulfan, however, a 96h-EC50 of 427.8 µg L
-1

 for photosynthesis-inhibition of the 

phytoplankton species Pseudokirchneriella subcapitata has been reported (Delorenzo et al., 

2002). This EC50 is well above the range of the endosulfan concentrations tested in the ecosystem 

study conducted by Hose et al. (2003) (< 100 µg L
-1

). Hence, it is unlikely that phytoplankton 

species would have experienced any direct effect in the 5 considered studies. If ECx,single-speciess 

would have been determined for phytoplankton photosynthesis inhibition in those studies, they 

would probably have been higher than the exposure concentrations used in the experimental 

ecosystems. Because indirect effects on phytoplankton abundance are observed by Fairchild et al. 

(1992), an ECx,ECO1 for phytoplankton would likely be in the range of the experimental 

concentrations. Thus ECxECO1 would be lower than ECx,single-species for phytoplankton. If the same 

holds for the other 4 studies is impossible to say, since phytoplankton abundances are not reported 

there. It has, however, been reported that phytoplankton blooms are frequently observed in 

experimental ecosystems exposed to insecticides such as pyrethroids (Hanazato, 2001). From this 

it can be concluded that, for many insecticides, the ECx,ECO1 of phytoplankton is expected to be 
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lower than the ECx,single-species. The observation made here, i.e. that effects in the field are more 

severe than effects in the lab, thus partly originates from the focus on effects on invertebrates and 

vertebrates in ecosystem studies with insecticides.  

 

Figure II.4: The relationship between ECx,ECO1 and ECx,single-species , i.e. between effect concentrations for the 

abundance of populations within an ecosystem study and effect concentrations derived in a single-species test, 

performed concurrently with the ecosystem study. Endpoints of both ECxs are abundance-based. In most 

cases, exposure durations differ between both ECxs. White diamond symbols represent EC50s, black diamond 

symbols represent EC10s, and square white symbols represent LC50s. Error bars denote upper and lower 95% 

confidence intervals. The dotted line represents a factor two difference. Data originate from Fairchild et al., 

1992; van Wijngaarden et al., 1996; Schroer et al., 2004; van der Hoeven et al., 1997; and Hose et al., 2003. 

Details on these data are given in the appendix (XI.2.2). 

 

II. 4. 1. 2. Experimental ecosystem studies: effects on ECO1 vs. effects on ECO2 

 

From the 5 studies which were retained after screening, only 3 also examined the relationship 

between effects on ECO1 and effects on ECO2 endpoints. In these studies this relationship was 

examined only using relational operators, i.e. “>”, “<”, or “=”. Fairchild et al. (1992) concluded 

that community metabolism was less sensitive for esfenvalerate than population biomass. The 

NOEC for species composition of a community exposed to the insecticide λ-cyhalothrin was 

always higher than the established population-ECxs (Schroer et al., 2004). Conversely, Hose et al. 

(2003) found that the species composition was altered at concentrations which did not affect 

populations of the same species. A mechanistic approach to relate effects on ECO1 endpoints to 

effects on ECO2 endpoints was not found. The difficulty in doing so is the inherent difference 
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between ECO1 endpoints (abundance-based) and ECO2 endpoints (related to ecosystem 

organization and functioning). One possibility to overcome this difficulty is to compare effects on 

ECO1 endpoints with effects on associated ECO2 endpoints. For example, in chapter IX, the 

probability of copper effects on zooplankton and phytoplankton biomass (i.e. both ECO1 

endpoints) was lower than and equal to the probability of effects on total ingestion by 

zooplankton and total photosynthesis by phytoplankton (i.e. both ECO2 endpoints), respectively. 

The ubiquitous finding that populations within an ecosystem are equally or more sensitive than 

the ecosystem functions they perform (e.g., Selck et al., 2002; Balczon and Pratt, 1994) also 

indicates that ECO1 endpoints are more sensitive than ECO2 endpoints.  

 

II. 4. 2. Ecosystem models 

 

Because of the high cost of large-scale studies, mathematical models have been proposed as an 

alternative to examine ecosystem effects of chemicals. These models mostly consist of a food web 

in which toxic effect sub-models are incorporated. These toxic effect sub-models vary in 

complexity, going from highly realistic toxicokinetic models to simple concentration-effect 

functions, which use single-species test results as parameters. Here, we only focus on ecosystem 

models with the latter type of toxic effect sub-models, since those are specifically designed to 

relate single-species test results into ecological effects, i.e. their goal is equivalent with the goal of 

the 5 ecosystem studies discussed in the previous section. In the literature covering the period 

between 1990 and 2006, three models were found (Hanratty and Liber, 1996; Bartell et al., 1999; 

and Traas et al., 2004a) which use single-species L/EC50s to predict ecosystem effects. Not all of 

those models incorporate all parameters of a single-species toxicity test. Exposure duration of the 

single-species toxicity test is taken into account in two models (Bartell et al., 1999; and Traas et 

al., 2004a), while only one model also takes slope into account (Traas et al., 2004a). The 

advantage of these models is that they explicitly use single-species toxicity test results to predict 

ecosystem effects. As such, the ECx,single-species values of the considered populations are 

unambiguously defined.  

The comparison of predicted effects on ECO1 endpoints with single-species toxicity test results in 

a quantitative way is rare. Naito et al. (2003) found that for the concentration at which a 50% fish 

biomass reduction is predicted, is 1 to 5 orders of magnitude lower than the single-species LC50 

for this fish species. The sensitivity of zooplankton and/or benthic invertebrates - i.e. food sources 

for omnivorous fish - for the considered chemicals is proposed as an explanation for this 

observation (Naito et al., 2003). A second reason may be the conservative effect estimates 
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produced by the comprehensive aquatic systems model (CASM). Indeed, in the same study, 

predicted ecosystem-no observed effect concentrations for a range of chemicals were one to two 

orders of magnitude lower than observed ones. The 5 studies reviewed in this chapter (Fig II.4) 

only include one study where fish were present. Fairchild et al. (1992) report that bluegill 

population biomass was affected at esfenvalerate concentrations similar to their LC50,single-species. 

The slightly lower LC50,single-species obtained for bluegill than for cladocerans (Fairchild et al., 

1992) indicates that the bluegill populations were affected at lower concentrations than their food 

source. As such, indirect effects due to a reduction of food availability, as found for the chemicals 

examined by Naito et al. (2003), is less likely in the case of esfenvalerate. This may explain why 

Naito et al. (2003) found ECx,ECO1 to be lower than ECx,single-species for fish populations while 

Fairchild et al. (1992) found that ECx,single-species ≈ ECx,ECO1. 

A reason for the scarcity of modelling studies focusing on the relationship between single-species 

toxicity test results and ecosystem effects might be that ecosystem models are mostly used to 

derive chemical concentrations which do not result in adverse ecological effects (Hanratty and 

Liber, 1996; Bartell et al., 1999). Alternatively, ecosystem models have also been used alongside 

microcosm studies to provide additional explanations for observed phenomena and to evaluate 

ecosystem effects at concentrations which were not tested in the microcosm (e.g., Traas et al., 

2004a).  

Because they are primarily used for deriving environmentally ‘safe’ concentrations, predictions of 

effects on ECO1 endpoints are rarely quantitatively validated using more than one dataset. 

Qualitative tests have been conducted (Naito et al., 2003). Yet, more than large-scale 

experiments, ecosystem models are based on a set of ecological and mathematical assumptions. 

Therefore, validation of predicted population-level effects is a prerequisite for the use of 

ecosystem models to address the issues discussed here.  

Although these models are not often used in the specific context of the relation between single-

species toxicity test results and ecosystem effects, they do provide insight in the mechanisms 

determining this relation. In applications of all of the three models (Hanratty and Liber, 1996; 

Bartell et al., 1999), the emphasis is put on revealing patterns of indirect effects which result in 

effects on populations which were unpredictable from single-species toxicity test results alone. 
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II. 5. Conclusions 

 

The majority of single-species toxicity test results given in the aquatic part of the USEPA 

database report acute effects of chemicals on the mobility or survival of animals. Effects of 

chemicals on these endpoints are mostly examined in tests with a duration of 5 days or less. 

Single-species toxicity test results with plants are underrepresented in this database. 

Across experimental ecosystem study reports, the studied ecosystem effects differ. Depending on 

the endpoint considered we can distinguish: effects on ECO1 endpoints, i.e. on the abundance or 

biomass of populations and/or trophic level; or effects on ECO2 endpoints, i.e. on aggregate 

ecosystem measures. Roughly half of the reviewed studies focus on effects on ECO1 endpoints 

and have a duration of 35 days, or less. Because they are both based on abundance or biomass, 

single-species toxicity test results and effects on ECO1 endpoints have the same meaning. 

However, reported comparisons between single-species toxicity test results and ecosystem effects 

in ecosystem studies are highly case-specific and their collective meaning is unclear. The reason 

for this is the presence of unwanted sources of variability in the majority of the articles reviewed 

here: (1) the fact that effects on ECO2 endpoints are related with inherently incomparable single-

species toxicity test results; (2) inter-laboratory variability; and (3) the fact that multiple single-

species toxicity test results are treated in a variety of ways following the species sensitivity 

distribution concept. 

Only 5 studies did perform single-species toxicity tests together with ecosystem studies in which 

effects on ECO1 endpoints were measured. As such, these studies eliminate inter-laboratory 

variability and enhance the comparability between single-species test results and effects on 

ecosystem endpoints. Results from these 5 studies indicate that for most species, ECx,ECO1 is 

within a factor 2 of ECx,single-species. However, this conclusion partly originates from the focus on 

effects on invertebrates in ecosystem studies with insecticides. If more combined ECx,single-species 

and ECx,ECO1 for phytoplankton species would be available, this conclusion could change, 

depending on the relative sensitivities of the interacting populations. 

Although they are perfectly suited to pursue the relationship between single-species toxicity test 

results and effects on ECO1 endpoints, ecosystem models are rarely used for this purpose. 

Clearly, more modelling studies are needed to take advantage of this potential. The few modelling 

studies we found in literature stress the importance of ecological interactions to understand 

ecosystem effects, especially for populations which are not directly targeted by the toxicant. 

Although the ecosystem modelling approach requires additional validation, it can aid in 
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understanding some of the true mechanisms which determine the relationship between single-

species toxicity test results and ecosystem effects. 
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Chapter III : Equations and assumptions of the ecosystem models 

III. 1. Introduction  

 

The findings presented in this thesis result from predictions made with different ecosystem models. 

Although these models differ in that they represent different ecosystems, their scientific basis is 

identical. The dynamic ecosystem models developed in this dissertation all rely on the same object 

oriented basis. This object oriented basis consists of a set of objects, where each object describes 

the growth of a population (e.g., phytoplankton, zooplankton). Growth is described in terms of 

biomass concentration using differential equations. In these differential equations, terms proceeded 

by a minus sign represent biomass losses (e.g. respiration) while positive terms represent biomass 

gains (e.g. food consumption). The number of populations that can be modelled is unlimited and 

available objects are phytoplankton, macrophytes, zooplankton, planktivorous fish, and piscivorous 

fish. To construct a model for a given ecosystem, objects corresponding to the populations present 

in this system are selected from the object oriented basis. By defining feeding interactions between 

these objects (i.e. ecological interactions), a customized food web is designed (Fig III.1). 

Additionally, the growth kinetics of these objects can be adjusted through parameter tuning (e.g., 

slow growing populations vs. fast growing populations). Also an object for the dynamic behaviour 

of detritus and nutrients is available. Implementation of the object oriented framework was done in 

the software package WEST (®, MOSTforWATER NV, Kortrijk, Belgium). 

In what follows, the equations underlying these objects are listed and discussed. Equations are 

based on the AQUATOX model (USEPA, 2002). The USEPA-equations, in turn, were taken from 

other ecosystem models described in earlier publications by a variety of authors. It is not the 

intention to refer to all these original articles and books. Only when deemed necessary in terms of 

reproducibility of the results obtained in this thesis, further references are given. 

 

 

Figure III.1: Illustration of object-oriented based ecosystem modelling. Objects represent populations or nutrient and detritus pools. One 

object can be used several times and differentiation between two identical objects can be done by parameter tuning (e.g. zooplankton1 and 

2). An ecosystem model can be developed by selecting appropriate objects and defining relationships between them (arrows). Bold arrows 

represent feeding relationships, dashed arrows represent nutrient flows, dotted arrows are detritus flows.  
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III. 2. Equations 

 

III. 2. 1. Phytoplankton  

 

The main differential equation describing the growth of phytoplankton biomass (Biophytoplankton) is: 

 

 

with: 

photosynthesis = photosynthesis (mg L
-1

 d
-1

) 

respiration = respiratory losses (mg L
-1

 d
-1

) 

excretion = excretion (mg L
-1

 d
-1

) 

mortality = intrinsic mortality, i.e. not resulting from consumption by zooplankton (mg L
-1

 d
-1

) 

sinking = sinking of phytoplankton to the bottom (mg L
-1

 d
-1

) 

consumptionzooplankton = consumption of phytoplankton by zooplankton (mg L
-1

 d
-1

) 

 

III. 2. 1. 1. Photosynthesis 

 

Photosynthesis is modelled as a maximum rate which is reduced by a limitation factor: 
 

 
 

with: 

PSmax = maximum photosynthesis (d
-1

) 

PSlimit = limitation factor (-) 

Biophytoplankton = phytoplankton biomass concentration (mg L
-1

) 

 

A value of 1 for PSlimit means no limitation, a value of zero means total limitation. When 

ecosystem models are applied in the context of ecotoxicology, i.e. to study effects of toxicants on 

ecosystems, the value of PSmax depends on a given maximum in control conditions (PSmax,0) and 

the toxicant concentration in the ecosystem. Which functions f are to be used in such applications, 

will be discussed in chapter V: 
 

 
 

Apart from toxicants, also suboptimal light, temperature, and nutrients can limit photosynthesis. 

These three factors are grouped in an overall limitation factor (PSlimit): 
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with: 

Nutrlimit = limitation of photosynthesis due to insufficient nutrient concentrations (-) see III. 2.5.5.4. 

Templimit = limitation due to suboptimal water temperature (-) see III. 2.5.5.1. 

Lightlimit = limitation of photosynthesis due to suboptimal light conditions (-) 

Photoperiod = the fraction of day with sunlight (-) 

Extinction = extinction of sunlight by organic matter and phytoplankton (m
-1

) 

Depth = depth of the reservoir (m) 

Light = photosynthetically active fraction of light intensity (cal m
-2

 day
−1

) 

Lm = optimal light intensity for phytoplankton photosynthesis (cal m
-2

 day
−1

) 

Solar = average daily incident solar radiation (cal m
-2

 day
−1

) 

 

It is assumed that half of the solar radiation is photosynthetically active (Edmondson, 1956). Like 

in many other ecosystem models (Park, 1974; O'Connor et al., 1981; Osidele and Beck, 2004; and 

others) light limitation is calculated using the Steele equation (Steele, 1966). The light intensity is a 

driver variable, i.e. it is known a-priori. For the variable ‘Extinction’, the formula of Chapra (1997) 

was used. The term for light extinction by phytoplankton and organic matter is based on the 

product of the concentrations of these variables with their extinction coefficient: 
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with: 

Extinctionwater = light extinction by water (m
-1

) 

Extinctionphytoplankton = light extinction by phytoplankton (m
-1

) 

Extinctionmacrophytes = light extinction by macrophytes (m
-1

) 

ExtinctionDOM = light extinction by DOM (m
-1

) 

ExtinctionPOM = light extinction by POM (m
-1

) 

Ecoeffphytoplankton = extinction coefficient of phytoplankton (m
-1

 mg
-1

 L) 

Ecoeffmacrophytes = extinction coefficient of macrophytes (m
-1

 mg
-1

 L) 

EcoeffDOM = extinction coefficient of DOM (m
-1

 mg
-1

 L) 

EcoeffPOM = extinction coefficient of POM (m
-1

 mg
-1

 L) 

DOM = dissolved organic matter (mg L
-1

) 

POM = particulate organic matter (mg L
-1

) 

Bioall phytoplankton = total biomass of all p phytoplankton populations (mg L
-1

) 

Bioall macrophytes = total biomass of all m macrophyte populations (mg L
-1

) 

 

The calculation of DOM and POM is discussed in the section on nutrient and detritus cycling 

(III.2.5). 

 

III. 2. 1. 2. Respiration 

 

Respiratory losses consist of an intrinsic respiration rate representing maintenance costs multiplied 

by an exponential factor for increased respiration because of increased water temperature (Riley, 

1963): 
 

 
 

with: 

Resp0 = intrinsic respiration (d
-1

) 

TempResp = exponential coefficient for increased respiration because of increased water 

temperature (°C
-1

) 

Temperature = water temperature (°C) 

Biophytoplankton = phytoplankton biomass concentration (mg L
-1

) 
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III. 2. 1. 3. Excretion 

 

Excretion, i.e. the release of photosynthate, is totally dependent on photosynthesis and light. If the 

amount of available light is high (Lightlimit approaches 1), excretion decreases (e.g., Collins, 1980): 
 

 
 

with: 

Exc = excretion / photosynthesis ratio (-) 

photosynthesis = photosynthesis (mg L
-1

 d
-1

) 

Lightlimit = limitation of photosynthesis due to suboptimal light conditions (-)  

 

III. 2. 1. 4. Mortality 

 

The mortality term does not include consumption by zooplankton. The latter is included in another 

term which will be discussed further on. It is assumed that non-predatory mortality consists of 

three parts: (1) intrinsic mortality; (2) increased mortality because of elevated temperature; and (3) 

increased mortality by suboptimal nutrient and light levels. 
 

 
 

 
 

 
 

 

with: 

Mort = intrinsic mortality (d
-1

) 

ExcessT = increased mortality because of too high water temperature (d
-1

) 

Stress = increased mortality resulting from stress associated with suboptimal nutrients and light 

levels (d
-1

) 

Biophytoplankton = biomass concentration of considered phytoplankton population (mg L
-1

) 

Temperature = water temperature (°C) 

Tmax = maximum water temperature above which photosynthesis is impeded (°C) 

Emort = exponential coefficient for stress-related increased mortality (-) 

Nutrlimit = limitation of photosynthesis due to insufficient nutrient concentrations (-) see III. 2.5.5.4. 

Templimit = limitation due to suboptimal water temperature (-) see III. 2.5.5.1. 
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III. 2. 1. 5. Sinking 

 

An intrinsic sinking rate is multiplied by a factor reflecting accelerated sinking because of nutrient 

and light limitation, as observed by Smayda (1974): 
 

 
 

 

 

with: 

Sed = intrinsic sinking velocity (m d
-1

) 

Depth = depth of the reservoir (m) 

SedAccel = accelerated sedimentation (-) 

Biophytoplankton = phytoplankton biomass concentration (mg L
-1

) 

ESed = exponential factor for accelerated sinking (-) 

Lightlimit = limitation of photosynthesis due to suboptimal light conditions (-) 

Nutrlimit = limitation of photosynthesis due to insufficient nutrient concentrations (-) see III. 2.5.5.4. 

Templimit = limitation due to suboptimal water temperature (-) see III. 2.5.5.1. 

 

III. 2. 1. 6. Consumption 

 

Losses because of zooplankton grazing on phytoplankton (consumption) are discussed in the 

section on zooplankton (III.2.3). 

 

III. 2. 2. Macrophytes 

 

Growth of macrophyte populations is described using the same equation as for phytoplankton. 

However, two processes are not incorporated for macrophytes: sinking and consumption by 

zooplankton. Also, parameter values are different from those of phytoplankton to represent the 

different growth kinetics of macrophytes. Note that in the AQUATOX model, macrophytes are 

assumed not to be limited by aqueous nutrient concentrations, as the sediment is thought of as 

containing nutrients in excess. As much as this may hold in large lakes, experimental ecosystems 

are often closed and always smaller than real ecosystems. Competition for nutrients between 

phytoplankton and macrophytes have been reported in such circumstances (e.g. Ozimek et al., 
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1993). Therefore, photosynthesis of macrophytes also includes the variable ‘PSlimit’ in the 

presented model.  

 

III. 2. 3. Zooplankton 

 

The main differential equation describing the growth of zooplankton biomass (Biozooplankton) is: 
 

 
 

with: 

consumption = consumption of resources (mg L
-1

 d
-1

) 

defecation = defecation of ingested resources (mg L
-1

 d
-1

) 

respiration = respiratory losses (mg L
-1

 d
-1

) 

excretion = excretion of dissolved organic matter (mg L
-1

 d
-1

) 

mortality = intrinsic mortality (mg L
-1

 d
-1

) 

predation = consumption of zooplankton by planktivorous fish (mg L
-1

 d
-1

) 

 

III. 2. 3. 1. Consumption 

 

Zooplankton biomass increases by consumption of two types of food: phytoplankton and 

particulate organic matter (POM): 
 

 

 

 
 

with: 

consumptionphytoplankton = consumption of all p phytoplankton populations (mg L
-1

 d
-1

) 

consumptionPOM = consumption of POM (mg L
-1

 d
-1

) 

 

Similar to the equation for photosynthesis of phytoplankton, consumption by zooplankton is 

modelled as the product of a maximum consumption rate with limiting factors: 
 

 
 

with: 

Cmax = maximum ingestion rate (d
-1

) 

SatFeedingphytoplankton i = kinetic factor to express feeding saturation (-) 
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Templimit = limitation due to suboptimal water temperature (-) see III. 2.5.5.1. 

Biozooplankton = zooplankton biomass concentration (mg L
-1

) 

 

In the context of ecotoxicology, Cmax may be a function of a given maximum in control conditions 

(Cmax,0) and toxicant concentration:  
 

 
 

The kinetic factor to express feeding saturation is based on the fact that many animals adjust their 

feeding habits according to the food availability (Park, 1974; Park et al., 1980): 
 

 
 

 

 
 

 
 

 

 
 

with: 

Prefphytoplankton i = preference of given zooplankton for phytoplankton population i (-) 

Foodphytoplankton i = concentration of phytoplankton population i which is available for consumption 

by zooplankton (mg L
-1

) 

Helping variable = helping variable (mg L
-1

) 

FHalfSatphytoplankton i = half saturation constant for consumption of phytoplankton population i  

(mg L
-1

) 

Biophytoplankton i = biomass concentration of phytoplankton population i (mg L
-1

) 

MinBiophytoplankton i = minimum biomass concentration of phytoplankton i to begin feeding (mg L
-1

) 

PrefPOM = feeding preference of zooplankton for POM (-) 

FoodPOM = fraction of POM which is available for consumption by zooplankton (mg L
-1

) 

POM = particulate organic matter concentration (mg L
-1

) 

MinPOM = minimum POM concentration to begin feeding (mg L
-1

) 

 

Note that consumption is hampered below a minimum resource concentration, MinBiophytoplankton i, 

and / or MinPOM (e.g., Park, 1974). The presence of feeding preference factors in the model 

allows to choose which resources are preferred by the given zooplankton population. A preference 
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factor equal to zero for a resource means that the resource is not used by the given zooplankton 

population.  

 

III. 2. 3. 2. Defecation 

 

The fraction of the consumed resource lost as faeces or discarded during consumption is termed 

‘defecation’. Because in the current modelling framework zooplankton populations have two 

possible food resources (phytoplankton and POM), defecation consists of two terms: 
 

 
 

 
 

 

 
 

 

with: 

defecationphytoplankton = defecation of all p phytoplankton populations consumed by the given 

zooplankton population (mg L
-1

 d
-1

) 

defecationPOM = defecation of POM by the considered zooplankton population (mg L
-1

 d
-1

) 

EgestionCoeffphytoplankton i = fraction of consumed phytoplankton population i lost through egestion 

(-) 

consumptionphytoplankton i = consumption of phytoplankton population i (mg L
-1

 d
-1

) 

EgestCoeffPOM = fraction of consumed POM lost through egestion (-) 

consumptionPOM = consumption of POM (mg L
-1

 d
-1

) 

 

III. 2. 3. 3. Respiration 

 

Respiration is modelled as consisting of two components:  
 

 
 

 
 

 
 

 

with: 
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StandardRespiration = standard respiration, i.e. when the organisms in a population are in a resting 

state (mg L
-1

 d
-1

) 

DynamicAction = the additional cost for the processing of consumed resources (mg L
-1

 d
-1

) 

Resp0 = intrinsic respiration (d
-1

) 

Templimit = limitation due to suboptimal water temperature (-) see III. 2.5.5.1. 

Biozooplankton = zooplankton biomass concentration (mg L
-1

) 

Resp = fraction of energy lost to dynamic action (-) 

consumption = consumption by the considered zooplankton population (mg L
-1

 d
-1

) 

defecation = defecation by the considered zooplankton population (mg L
-1

 d
-1

) 

 

III. 2. 3. 4. Excretion 

 

Because excretion of dissolved organic matter occurs concurrently with respiration, a proportional 

relationship between both processes is used by the model (Scavia and Park, 1976): 
 

 
 

with: 

Excr = constant relationship between excretion and respiration (-) 

respiration = respiration (mg L
-1

 d
-1

) 

 

III. 2. 3. 5. Mortality 

 

If the water temperature is below a given maximum temperature for the considered zooplankton 

population, non-predatory mortality is only dependent on an intrinsic mortality rate:  
 

 
 

with: 

Mort = intrinsic mortality rate (d
-1

) 

Biozooplankton = zooplankton biomass concentration (mg L
-1

) 

 

If water temperature exceeds this maximum temperature, mortality is reflected by: 
 

 

 
 

with: 
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Mort = intrinsic mortality (d
-1

) 

Biozooplankton = zooplankton biomass concentration (mg L
-1

) 

Temperature = water temperature (°C) 

Tmax = maximum temperature which is tolerated by the considered zooplankton population (°C) 

When ecosystem models are applied in the context of ecotoxicology, i.e. to study effects of 

toxicants on ecosystems, the value of Mort depends on a given value at control conditions (i.e. 

without toxicant added, Mort0) and the toxicant concentration in the ecosystem. Which functions 

are to be used in such applications, will be discussed in chapter V: 
 

 

 

III. 2. 4. Planktivorous and piscivorous fish 

 

The object for planktivorous fish growth relies on equations which have the same structure as those 

for zooplankton. The food source for planktivorous fish is zooplankton. The ‘consumption’ term 

for planktivorous fish equals the ‘predation’ term in the equation for zooplankton. The equations 

for planktivorous fish are thus changed to model this different resource. Also, most parameter 

values of the planktivorous fish and zooplankton are different and reflect different growth kinetics 

of both groups. An extensive list of these equations is provided at the end of this chapter. The 

parameters and variables in the equations are identical to those for zooplankton.  

 

The object for piscivorous fish growth also relies on equations which have the same structure as 

those for zooplankton. The food source for piscivorous fish is planktivorous fish. Most parameter 

values are different between piscivorous fish and zooplankton, to model the different growth 

kinetics of both types of populations. An extensive list of these equations is provided at the end of 

this chapter. The parameters and variables in the equations should be understood in an analogous 

way as those for zooplankton and planktivorous fish.  

 

III. 2. 5. Organic matter and nutrient cycling 

 

All the different losses described in the previous equations end up in an organic matter (OM) pool. 

Three types of organic matter are defined: dissolved, particulate, and settled organic matter: DOM, 

POM, and SOM. This is a great simplification compared with the remineralisation compartment in 
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USEPA’s AQUATOX model, and hence a great reduction in the number of variables and 

parameters.  

 

III. 2. 5. 1. Dissolved organic matter (DOM) 

 

Because the excretions of all populations consist of dissolved material, they form the basis of the 

dissolved organic matter pool: 
 

 

  
 

  
 

 

  
 

with: 

excretionphytoplankton and macrophyte = excretion of all p phytoplankton and m macrophyte populations 

(mg L
-1

 d
-1

) 

excretionzooplankton and fish = excretion of all z zooplankton populations, all f planktivorous fish 

populations, and all c piscivorous fish populations (mg L
-1

 d
-1

) 

decompositionDOM = conversion of DOM to nutrients by micro-organisms (mg L
-1

 d
-1

) 

 

The conversion of DOM to nutrients is calculated without explicitly modelling the associated 

micro-organisms. Rather, a maximum decay rate is defined, which is corrected for suboptimal 

temperature, dissolved oxygen, and pH: 
 

 
 

with: 

DecayMaxDOM = maximum rate of DOM conversion to nutrients (d
-1

) 

DOlimit = limitation of DOM conversion to nutrients because of too low dissolved oxygen levels (-) 

see III. 2.5.5.3. 

Tempcorr = temperature correction of DOM conversion to nutrients (-) see III. 2.5.5.1. 

pHlimit = limitation of DOM conversion to nutrients because of suboptimal pH (-) see III. 2.5.5.2. 
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III. 2. 5. 2. Particulate organic matter (POM) 

 

When an organism dies, its organic matter is not instantly dissolved in the water column. Rather, it 

stays in suspension, where it is converted to nutrients, sinks to the sediment, or is ingested by 

zooplankton: 
 

 

 

 
 

 

 

 

 

 

 

with: 

mortalityphytoplankton and macrophyte = mortality of all p phytoplankton and m macrophyte populations 

(mg L
-1

 d
-1

) 

mortalityzooplankton and fish = mortality of all z zooplankton populations, all f planktivorous fish 

populations, and all p piscivorous fish populations (mg L
-1

 d
-1

) 

decompositionPOM = decomposition of POM (mg L
-1

 d
-1

) 

sedimentationPOM = sedimentation of POM (mg L
-1

 d
-1

) 

consumptionPOM = consumption of POM by all z zooplankton populations (mg L
-1

 d
-1

) 

 

The equation for POM-decomposition is completely analogous to that of DOM-decomposition: 
 

 
 

with: 

DecayMaxPOM = maximum rate of POM conversion to nutrients (d
-1

) 

DOlimit = limitation of POM conversion to nutrients because of too low dissolved oxygen levels (-) 

see III. 2.5.5.3. 

Tempcorr = temperature correction of POM conversion to nutrients (-) see III. 2.5.5.1. 

pHlimit = limitation of POM conversion to nutrients because of suboptimal pH (-) see III. 2.5.5.2. 
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The sedimentation rate of POM is calculated as follows: 
 

 
 

 

with: 

Sed = sedimentation velocity rate (m d
-1

) 

Depth = depth of the reservoir (m) 

 

The fraction of particulate organic matter that settles goes to a pool of settled organic matter 

(SOM). 

 

III. 2. 5. 3. Settled organic matter (SOM) 

 

Apart form settled particulate organic matter, SOM consists of fecal pellets originating from 

zooplankton and fish, and settled phytoplankton cells. Because fecal pellets sink rapidly (Smayda, 

1971), defecation is directly categorized as SOM, instead of POM: 
 

 
  

 

with: 

defecation = defecation of all zooplankton and fish (mg L
-1

 d
-1

) 

sedimentationPOM = sedimentation of particulate organic matter (mg L
-1

 d
-1

) 

decompositionSOM = decomposition of SOM (mg L
-1

 d
-1

) 

sinkingphytoplankton = sinking of phytoplankton (mg L
-1

 d
-1

) 

 

Again, the equation for SOM-decomposition is completely analogous to that of DOM and POM-

decomposition: 
 

 
 

with: 

DecayMaxSOM = maximum rate of SOM conversion to nutrients (d
-1

) 

DOlimit = limitation of SOM conversion to nutrients because of too low dissolved oxygen levels (-) 

see III. 2.5.5.3. 

Tempcorr = temperature correction of SOM conversion to nutrients (-) see III. 2.5.5.1. 

pHlimit = limitation of SOM conversion to nutrients because of suboptimal pH (-) see III. 2.5.5.2. 
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III. 2. 5. 4. Nutrients 

 

III. 2. 5. 4. 1. Nitrogen 

 

Nitrogen is modelled as inorganic NH3-N, or NO3-N. Nitrogen originating from converted organic 

matter is in the form of NH3-N. As respiration occurs, biomass is lost and NH3-N is excreted 

directly to the water (Horne and Goldman, 1994). In the model by USEPA (2002), respiration is 

not included in any detritus pool, thus allowing organic matter to be lost from the system. Since the 

model in this thesis will be used to make predictions in closed experimental systems, we included 

the respiration-term in the detritus pool. This also allows to follow a mass balance approach for 

verification of implementation of the model’s equations, as discussed further on. To produce new 

biomass, phytoplankton and macrophyte populations take up nitrogen: 

 

 

 

 

 

 

 

 

 

with: 

decompositionDOM = decomposition of dissolved organic matter (mg L
-1

 d
-1

) 

decompositionPOM = decomposition of particulate organic matter (mg L
-1

 d
-1

) 

decompositionSOM = decomposition of settled organic matter (mg L
-1

 d
-1

) 

respirationphytoplankton and macrophyte = respiration of the p phytoplankton, and m macrophyte 

populations (mg L
-1

 d
-1

) 

respirationzooplankton and fish = respiration of the z zooplankton populations, the f planktivorous fish 

populations, and c piscivorous fish populations (mg L
-1

 d
-1

) 

Org2Ammonia = a default conversion factor between organic matter and NH3-N (-) 

nitrification = conversion of NH3-N to NO3-N (mg L
-1

 d
-1

) 

NH3-N assimilationphytoplankton and macrophyte = assimilation of NH3-N by phytoplankton and 

macrophytes during photosynthesis (mg L
-1

 d
-1

) 
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Nitrification is calculated by multiplication of a maximum rate with limiting factors. Because 

nitrification primarily occurs at the sediment-water interface (Effler, 1996), it is also corrected for 

the area to volume ratio of the reservoir: 
 

 

with: 

Knitri = maximum rate of nitrification (m d
-1

) 

Area = surface area of reservoir (m
2
) 

Volume = volume of water in reservoir (m
3
) 

DOlimit = limitation of nitrification because of too low dissolved oxygen levels (-) see III. 2.5.5.3. 

Tempcorr = temperature correction of nitrification (-) see III. 2.5.5.1. 

pHlimit = limitation due to suboptimal pH (-) see III. 2.5.5.2. 

NH3-N = ammonia-nitrogen (mg L
-1

) 

 

Denitrification, i.e. the conversion of nitrate into nitrogen gas (N2), is modelled in a similar way. 

Because denitrification occurs at low dissolved oxygen levels, the complement of DOlimit is used: 
 

 
 

with:  

Kdenitri = maximum rate of nitrification (m d
-1

) 

Area = surface area of reservoir (m
2
) 

Volume = volume of water in reservoir (m
3
) 

DOlimit = limitation of denitrification because of too low dissolved oxygen levels (-) see III. 2.5.5.3. 

Tempcorr = temperature correction of denitrification (-) see III. 2.5.5.1. 

pHlimit = limitation due to suboptimal pH (-) see III. 2.5.5.2. 

NO3-N = nitrate-nitrogen (mg L
-1

) 

 

As such, the nitrate concentration is dependent on nitrification and denitrification: 
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III. 2. 5. 4. 2. Phosphorus 

 

Inorganic phosphorus originates from decomposition of organic matter and from respiration-

associated excretion (Horne and Goldman 1994). To produce new biomass, phytoplankton and 

macrophyte populations take up phosphorus: 

 

 

 

 

 

 

 

 

 

with: 

decompositionDOM = decomposition of dissolved organic matter (mg L
-1

 d
-1

) 

decompositionPOM = decomposition of particulate organic matter (mg L
-1

 d
-1

) 

decompositionSOM = decomposition of settled organic matter (mg L
-1

 d
-1

) 

respirationphytoplankton and macrophyte = respiration of the p phytoplankton, and m macrophytes 

populations (mg L
-1

 d
-1

) 

respirationzooplankton and fish = respiration of the z zooplankton populations, the f planktivorous fish 

populations, and c piscivorous fish populations (mg L
-1

 d
-1

) 

Org2Phos = a default conversion factor between organic matter and PO4-P (-) 

PO4-P assimilationphytoplankton and macrophyte = assimilation of PO4-P by phytoplankton and 

macrophytes during photosynthesis (mg L
-1

 d
-1

) 

 

III. 2. 5. 4. 3. Mass balance check 

 

In the AQUATOX model, some fluxes of organic matter are lost. An example of this is the loss of 

respiration terms, as described earlier in this chapter. This has been solved in the presented 

equations. Because of the closed nature of the modelling framework in this thesis, no nutrients are 

lost when denitrification is zero. This occurs when there is no dissolved oxygen limitation, i.e. in 

well-aerated systems where DOlimit approaches 1. The ecosystem models developed in this 

dissertation serve to predict ecological effects of chemicals in such well-aerated experimental 
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systems. Hence, the conservation of nutrients within the system can be assumed and the law of 

nutrient-mass conservation can be applied. This allows to construct two testing variables, Ntest and 

Ptest, representing the total concentration of nitrogen and phosphorus in the system, respectively. If 

the model equations are implemented and solved correctly, these variables should have a constant 

value throughout the complete simulation period: 
 

 

 

 

 

 

with: 

Biophytoplankton and macrophyte = biomass concentration of the p phytoplankton populations, and of the m 

macrophyte populations (mg L
-1

) 

Biozooplankton and fish = biomass concentration of the z zooplankton populations, the f planktivorous 

fish populations, and c piscivorous fish populations (mg L
-1

) 

DOM = dissolved organic matter (mg L
-1

) 

POM = particulate organic matter (mg L
-1

) 

SOM = settled organic matter (mg L
-1

) 

Org2Ammonia = a default conversion factor between organic matter and NH3-N (-) 

NH3-N = ammonia nitrogen (mg L
-1

) 

NO3-N = nitrate nitrogen (mg L
-1

) 

Org2Phos = a default conversion factor between organic matter and PO4-P (-) 

PO4-P = phosphate phosphorus (mg L
-1

) 

 

III. 2. 5. 5. Limitation and correction terms 

 

The rates of many different processes are limited by a number of water characteristics, such as 

water temperature, pH, and dissolved oxygen. Therefore, limitation terms are incorporated. A value 

of 1 for such a limitation term means that there is no limitation. A value of zero means total 

limitation. One exception is the temperature correction term used for microbial processes, which 

can also be >1 to reflect increasing activity. 
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III. 2. 5. 5. 1. Temperature limitation and correction 

 

Temperature limitation is modelled using a nonlinear adaptive response to temperature changes 

(Stroganov function, Park, 1974): 

 
 

 
 

with: 

VT = the ratio of (1) the difference between the maximum temperature at which a process will 

occur and the ambient temperature; and (2) the difference between the maximum temperature at 

which a process will occur and the optimal temperature (-) 

XT = an intermediate variable (-) 

 

If the quantity 'VT' < 0, Templimit is set to zero. If the water temperature is larger than a predefined 

reference temperature, acclimation is calculated as follows: 
 

 
 

with 

XM = the maximum acclimation (°C) 

KT = a coefficient for decreasing acclimation as water temperature approaches Tref (-) 

Temperature = water temperature (°C) 

Tref = reference temperature, below which there is no acclimation (°C) 

 

If the water temperature is lower than the reference temperature, acclimation is multiplied with (-

1). The quantities VT and XT are calculated as follows: 
 

 
 

 
 

 
 

 
 

with: 
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Tmax = maximum temperature for given population (°C) 

Acclimation = temperature acclimation (°C) 

Temperature = water temperature (°C) 

Topt = optimum temperature for given population (°C) 

Q10 = rate of change per 10°C temperature change (-) 

In Fig III.2, Templimit is calculated with XM = 10, KT = 5, Tref = 8, Tmax = 35, Topt = 22, and Q10 = 

2, and plotted as a function of temperature. 

 

Figure III.2: An example of Templimit (bold) and Tempcorr (dashed) as a function of temperature.  

 

A more straightforward approach is used to calculate the temperature correction for microbial 

processes (Thomann and Mueller, 1987). If water temperature exceeds a user-defined maximum, 

temperature limitation is total (i.e. equal to zero). Otherwise, it is calculated as: 
 

 
 

with: 

θ = an intermediate variable (-) 

Temperature = water temperature (°C) 

Tobs = the temperature at which the considered process rate was determined (°C) 

 

If the temperature > 19°C, θ is set to 1.047. Otherwise, the following formula is used: 
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An example of Tempcorr for microbial processes (with Tobs = 14°C) is given in Fig III.2. 

 

III. 2. 5. 5. 2. pH limitation 

 

A pH-correction is applied to a process if pH exceeds a predefined pH-range (Fig III.3). If pH is 

larger than the upper limit of this range (pHmax), pHlimit is calculated as follows: 
 

 
 

If pH is lower than the lower limit of the pH-range for the considered process (pHmin), the 

following equation is used: 
 

 
 

 

Figure III.3: pH correction as a function of pH, with pHmin and pHmax equal to 6 and 8, respectively. 

 

III. 2. 5. 5. 3. Dissolved oxygen limitation 

 

Although oxygen dynamics are not implemented in the current modelling framework, oxygen can 

be treated as a driver variable. This allows to calculate the limitation of certain processes due to too 

low oxygen levels: 
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with: 

Oxygen = oxygen concentration in the water columns (mg L
-1

) 

KO = Michaelis-Menten constant for oxygen limitation (mg L
-1

) 

 

III. 2. 5. 5. 4. Nutrient limitation 

 

Nutrient limitation (Nutrlimit) is calculated as the minimum of the limitation factors for nitrogen and 

phosphorus: 
 

 
 

 
 

 
 

with: 
 

Nlimit = limitation of photosynthesis due to insufficient nitrogen concentrations (-) 

Plimit = limitation of photosynthesis due to insufficient phosphorus concentrations (-) 

N = nitrogen concentration (mg N L
-1

)  

P = phosphorus concentration (mg P L
-1

) 

KN = Michaelis-Menten constant for nitrogen limitation (mg L
-1

) 

KP = Michaelis-Menten constant for phosphorus limitation (mg L
-1

) 

 

III. 3. Model parameterization 

 

The values assigned to the parameters of the demonstrated ecosystem model differ depending on 

its application and are listed in the appendix (XI.5 and XI.6).  

 

III. 4. Driver variables 

 

To simulate seasonal fluctuations of light and temperature, photoperiod and water temperature 

were calculated as a function of Julian date, using the equations proposed by USEPA (2002). The 
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resulting pattern of those two quantities is given in Fig III.4. Solar irradiance was set at a mean 

daily value of 200 cal m
-2

 d
-1

, a typical value for temperate regions (USEPA, 2002). 

 

Figure III. 4: Water temperature (bold) and photoperiod (dashed) as a function of day of the year. 

 

III. 5. Sensitivity of predictions for model parameters 

 

To give some insight into the influence that parameters may have on ecosystem model 

predictions, a sensitivity analysis was performed in WEST (®, MOSTforWATER NV, Kortrijk, 

Belgium; perturbation factor = 1E-6). The routine followed by WEST is as follows. Biomass 

dynamics are simulated with a given set of parameters. Next, the value of one parameter is 

changed and dynamics are simulated again. By comparing the latter dynamics with the former 

dynamics, the influence of the considered parameter on the biomass of the populations present 

can be quantified. The extent to which a parameter is changed in the second run is called the 

perturbation factor. The outcome of such an analysis can be used to check if model equations 

truly reproduce the mechanisms they represent.  

In the ecosystem described in chapter IX, phytoplankton biomass was stimulated most by 

increasing the parameters PSmax and Tmax, while increasing Topt, Q10, sedimentation parameters 

(Sed and ESed), and Lm resulted in the most pronounced decrease of phytoplankton biomass. 

The importance of temperature and light-related parameters reassures that driver variables are 

indeed causing seasonal changes. Among parameters from other objects, the increase of maximal 

ingestion rates of zooplankton (Cmax) proved to cause the highest decrease of phytoplankton. 

This confirms that zooplankton grazing is an important loss term for phytoplankton.  
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Zooplankton parameters of which an increase leaded to the highest decrease in zooplankton 

biomass are FHalfSatphytoplankton i, EgestionCoeffphytoplankton i and Resp. This makes sense, since the 

two first parameters are directly related with the consumption process, the only process in which 

biomass can be gained by zooplankton. Indeed, increasing Cmax also gives rise to an increase in 

zooplankton biomass. The importance of ecological interactions in the model structure is also 

reflected by the decrease of zooplankton biomass when sedimentation parameters of 

phytoplankton are increased. It is sensible that increased sinking of phytoplankton decreases the 

amount of available food for zooplankton populations which graze on phytoplankton. 

In conclusion, the performed sensitivity analysis shows that the main mechanisms seem well-

represented by the ecosystem model’s equations. However, one should take into account that the 

performed sensitivity analysis only has a local nature. This means that these results are only 

valid for the planktonic system from chapter IX and the parameter values used. If the model 

would be applied in other circumstances, a new sensitivity analysis should be performed.  

 

III. 6. Implementation and use of an ecosystem model 

 

Implementation of the described equations was done in WEST (®, MOSTforWATER NV, 

Kortrijk). Equations are written in MSL, the programming language of WEST, and grouped per 

object. Every object represents a population, or the nutrient and detritus pool. Note that the 

object for the nutrient and detritus pool also calculates the limitation and correction terms. To 

model an ecosystem, objects are linked. In Fig III.5, the configuration of an ecosystem model 

consisting of one phytoplankton population, one zooplankton population, and the nutrient and 

detritus pool is illustrated. The links between these objects are represented by arrows. Note that 

these links are not biomass transfers. Rather, they pass on information about the values of certain 

variables from one object to the other. Next to the arrows, the variables whose values are 

transferred from one object to the other are given. For example, the value of Biophytoplankton is 

necessary to calculate the consumption term in the zooplankton object. Therefore, the value of 

Biophytoplankton is passed on to the zooplankton object. Once this consumption term is calculated, it 

is passed on to the phytoplankton object, where it is used as a loss term in the general differential 

equation of phytoplankton. The values of all other loss terms (of zooplankton and 

phytoplankton) are passed on to the nutrient and detritus pool. The transfer of the values of 

Biozooplankton and Biophytoplankton to the nutrient and detritus pool is necessary to calculate the 

extinction of light in the water column, which is used for the derivation of Lightlimit.  
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Figure III.5: Configuration of an ecosystem model consisting of one phytoplankton population, one 

zooplankton population, and the nutrient and detritus pool in WEST(®, MOSTforWATER NV, Kortrijk, 

Belgium). Driver variables are light , photoperiod and temperature. 

 

In the following chapters, ecosystem models are constructed using the object oriented basis 

described here. Used parameter values can be found in the appendix of this thesis (XI). In 

chapters IV to VIII, ecological interactions between populations are set to default interactions 

(Sommer et al., 1986). Chapter IX involves a practical ecosystem study and ecological 

interactions are therefore adapted to reflect one particular ecosystem using calibration. In chapter 

IV, model parameterization and the use of preference factors is illustrated for the case of a 

simple planktonic ecosystem, consisting of two phytoplankton populations, three zooplankton 

populations, and one macrophyte. 
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III. 7. Equations for planktivorous fish
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III. 8. Equations for piscivorous fish
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Chapter IV 

 

An ecosystem modelling approach for deriving water quality criteria 

 

Abstract - Ecological effects of chemicals on ecosystems are the result of direct effects of the 

chemical, determined in single-species toxicity testing, and indirect effects due to ecological 

interactions between species. Current experimental methods to account for such interactions are 

expensive. Hence, mathematical models of ecosystems have been proposed as an alternative. The 

use of these models often requires extensive calibration, which hampers their use as a general tool 

in ecological effect assessments. Here we present a novel ecosystem modelling approach which 

assesses effects of chemicals on ecosystems by integrating single-species toxicity test results and 

ecological interactions, without the need for calibration on case-specific data. The methodology is 

validated by comparing predicted ecological effects of copper in a freshwater planktonic 

ecosystem with an experimental ecosystem data set. The two main effects reflected by this data 

set (a decrease of cladocerans and an increase of spring phytoplankton) which were unpredictable 

from single-species toxicity test results alone, were predicted accurately by the developed model. 

Effects on populations which don’t interact directly with other populations, were predicted 

equally well by single-species toxicity test results as by the ecosystem model. The small amount 

of required data and the high predictive capacity can make this ecosystem modelling approach an 

efficient tool in water quality criteria derivation for chemicals. 

 

 

 

 

 

 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Janssen, C.R., Vanrolleghem, P.A. An ecosystem 

modelling approach for deriving water quality criteria. Water Science and Technology (56) 6, in 

press. 

76



Chapter IV: An ecosystem modelling approach for deriving water quality criteria 

IV. 1. Introduction 

 

The development of water quality criteria for chemicals should entail the assessment of potential 

ecological effects at the ecosystem level. Ecological effects are determined by (1) the direct 

effects of the chemical on single-species; and (2) ecological interactions between species (e.g., 

Chapman et al., 2003). Relatively straightforward single-species tests are used to determine the 

former, while experimental ecosystems have been used to account for the latter. However, 

experimental ecosystems are very demanding in terms of required resources. Therefore, most 

ecological effect assessments of chemicals have been based exclusively on single-species toxicity 

test results, i.e. without accounting for ecological interactions between species. In those cases, 

single-species toxicity test results are extrapolated using statistical models or pragmatic 

assessment factors to estimate a safe environmental concentration (EU, 2003). Water quality 

criteria resulting from such effect assessments may be inaccurate (Forbes and Calow, 2002) 

because of the great importance of ecological interactions in determining ecological effects 

(Fleeger et al., 2003). For this reason, ecosystem models have been proposed to assess ecological 

effects (e.g., Traas et al., 1998). However, these models are mostly calibrated to represent a 

specific ecosystem (e.g., Bartell et al., 1999), hence limiting their applicability in other systems. 

Moreover, parameters from ecosystem models are difficult to estimate (Loehle, 1997). From a 

mathematical point of view this is logical, since an ecosystem model consists of coupled 

equations with numerous feedback processes. One way to resolve this problem of limited 

parameter identifiability is to change the way in which ecosystem models are calibrated, i.e. by 

not relying on specific time-series data. 

In this chapter, we present a novel ecosystem modelling approach to assess effects of chemicals 

on ecosystems based on (1) direct effects and (2) ecological interactions. The latter are 

represented by the ecosystem model equations in which single-species toxicity test results are 

incorporated to account for the former. The presented approach does not require calibration on 

specific time-series data. Instead, the model is parameterized using default values to qualitatively 

describe a number of very generic ecological concepts. This chapter consists of two parts. First, 

the modelling approach is presented emphasizing underlying concepts and innovations, rather 

than equations. A detailed overview of model equations is provided in chapter III. Second, 

predicted ecological effects of copper in a freshwater planktonic ecosystem are compared with 

observations from a unique experimental ecosystem data set (Schaeffers 2001). 
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IV. 2. Material and methods 

 

IV. 2. 1. General concept of the ecosystem model 

 

A dynamic ecosystem model was constructed in an object oriented framework. The model 

consists of a set of objects, where each object describes the growth of a population in terms of its 

total biomass using differential equations. By connecting different objects and defining the 

trophic links between them, a customized food web can be designed. The number of populations 

that can be modelled is unlimited and available objects are: phytoplankton, macrophytes, 

zooplankton, planktivorous and piscivorous fish. Additionally, the growth kinetics of these 

objects are differentiated by parameter tuning (slow growing populations vs. fast growing 

populations). A detailed overview of all model equations can be found in chapter III. A list of 

parameters, together with the values assigned to them in this chapter can be found in the appendix 

(XI.6.1).  

 

IV. 2. 2. Population dynamics in the control 

 

First, the model is used to simulate the population dynamics under control conditions, i.e. without 

toxicant addition. In contrast with other ecosystem modelling approaches (e.g., Traas et al., 

2004a), no actual time series data is used to calibrate this ecosystem model. Instead, the model is 

parameterized so that it simulates a realistic succession of seasonal events. A synthesis of realistic 

planktonic events reported by different researchers working on a plethora of lakes is described in 

Sommer et al. (1986). These events are, (1) bloom of spring phytoplankton, (2) bloom of small 

zooplankton, resulting in a ‘clear water phase’, (3) a bloom of summer phytoplankton, followed 

by (4) a bloom of larger zooplankton, and (5) a small peak of fish, if present. To obtain this series 

of events, species are lumped into hypothetical populations based on their growth kinetics. The 

ecological interactions within the ecosystem studied are also defined following Sommer et al. 

(1986): large-bodied zooplankton graze on both spring and summer phytoplankton, while small-

bodied zooplankton can only ingest spring phytoplankton. Phytoplankton blooming in spring is 

dominated by small-celled populations. In summer, large-celled phytoplankton tends to bloom, 

which can not be ingested by small zooplankton. Summer phytoplankton is often colony-forming 

or large-celled, which renders them unsuitable for ingestion by small zooplankton. Planktivorous 

fish are assumed to exclusively feed on large-bodied zooplankton (Sommer et al., 1986). 

Piscivorous fish feed on planktivorous fish. These interactions are implemented using preference 
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factors (III.2.3.1) which vary between 0 and 1 and indicate the fraction in the diet consisting of 

the given food source. Note that although all these populations can be implemented in the model, 

also simpler systems can be constructed (e.g. without fish). Given these ecological constraints, 

default parameter values provided by USEPA (2002) are changed within a 10% range until this 

succession of seasonal events is predicted. Note that this is a qualitative calibration procedure 

solely relying on the model equations and generic ecological concepts. 

 

IV. 2. 3. Population dynamics in different toxicant treatments 

 

The population dynamics at a given toxicant concentration are predicted by changing growth rate-

determining parameters of the populations in the ecosystem model, using logistic concentration-

effect functions as toxic effect sub-models. These parameters are the mortality rate (for fish, 

zooplankton and macrophyte) and the photosynthesis rate (for phytoplankton and macrophytes). 

Single-species toxicity test results on fish and zooplankton mortality and phytoplankton and 

macrophyte growth rate are parameters used in these concentration-effect functions: 

 

          (eq IV.1)             (eq IV.2) 

 

 

with: 

PSmax,0 = maximum photosynthetic rate of phytoplankton in control conditions (d
-1

) 

PSmax = maximum photosynthetic rate of phytoplankton at a toxicant concentration ‘tox’ (d
-1

) 

EC50,PSmax = concentration at which 50% effect on PSmax is observed in a single-species toxicity 

test (µg L
-1

) 

LC50 = concentration at which 50% mortality is observed in a single-species toxicity test (µg L
-1

) 

slope = slope of the considered concentration-effect data obtained in a single-species toxicity test 

(-) 

time = duration of the single-species toxicity test in which the LC50 was determined (d) 

Mort = mortality rate of given zooplankton or fish at a toxicant concentration ‘tox’ (d
-1

) 

 

If ‘Mort’ is smaller than the intrinsic mortality rate ‘Mort0’, ‘Mort0’ is used. As such, direct 

effects of a toxicant, characterized by single-species toxicity test results, are incorporated in the 

ecosystem model equations. The choice for logistic functions originates from the sigmoid pattern 

that single-species toxicity test results exhibit for most toxicants (Newman and Unger, 2003). The 
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use of other types of toxic effect sub-models is discussed in chapter V. Variability on single-

species toxicity test results is propagated in the simulation results with a Monte Carlo approach 

(Cullen and Frey, 1999). The variability reflects possible differences between the ‘true’ ECx and 

the value distilled from literature. Hence, this variability would include inter-laboratory 

differences, measurement errors, interspecies variability, and estimation uncertainty. Latin 

hypercube sampling was performed with the number of shots determined by the rule of 

stabilization of variances (Cullen and Frey, 1999; Melching, 1995). As such, population dynamics 

at a concentration c are simulated n times, with “n” the number of shots.  

 

IV. 2. 4. Modelling ecological effects 

 

Ecological effects are quantified by comparing population dynamics of the exposed system with 

population dynamics at control. For each population, the average biomass is calculated at the 

control, as well as at the different toxicant concentrations, and this over the whole simulation 

period. This allows to calculate relative differences (RDs) of the average biomass of the 

populations at each toxicant concentration c: 

 

(eq IV. 3) 

 

with:  

Xspring phytoplankton,c  = the average biomass in time of spring phytoplankton at concentration c (mg L
-1

) 

Xspring phytoplankton,control  = the average biomass in time of spring phytoplankton at control (mg L
-1

). 

 

RD-equations for other populations are analogous to equation IV. 3. 

 

IV. 2. 5. NOEC calculation 

 

Because 20% is the minimum detectable difference for most population characteristics in the field 

(Suter II, 1993), RD-values of -0.2 or lower are considered as detectable decreases of biomass. 

Similarly, RD-values of 0.2 or higher are considered as detectable increases of biomass. Given the 

variability propagation discussed in the previous paragraph, n RDs are calculated per population 

and per toxicant concentration. The no observed effect concentration (NOECα) for decrease of a 

population’s biomass is defined as the highest concentration at which less than 100 • (1- α ) % of 

the RD-values for this population were ≤ -0.2. This percentile is calculated by ranking the n RD-
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values using the mean plotting position (Davison and Hinkley, 1997). Similarly, the NOECα for 

increase of a population, is defined as the largest concentration at which less than 100 • (1 - α ) % 

of the RD-values for this population were ≥ 0.2. The ecosystem-NOECα is defined as the lowest 

NOECα of all populations. In this chapter, a default alpha value of 0.5 was taken. Note that this is 

equivalent with taking the median of the Monte-Carlo outputs. The effect of the chosen α-value 

on predictions is examined in chapters V and VI. 

 

IV. 2. 6. Copper effects in aquatic microcosms 

 

The developed methodology was used to predict population-NOECs for copper in a planktonic 

freshwater ecosystem (Fig VI.1A), for which a unique experimental ecosystem data set is 

available (Schaeffers, 2001). Indoor aquatic microcosms with a volume of about 1 m³, were 

permanently exposed to six levels of copper sulphate (5, 10, 20, 40, 80 and 160 µg Cu L
-1

) while 

measuring biomass dynamics of various species. The biomass concentration data were lumped 

into two populations of large zooplankton (cladocerans and copepods), small zooplankton 

(rotifers), spring phytoplankton, summer phytoplankton, and one macrophyte. Preference factors 

of copepods for spring phytoplankton and summer phytoplankton are set to 0.5 to model that both 

food types are equally preferred by copepods (Fig IV.1A). The same holds for cladocerans. In 

contrast, the preference factors of rotifers for spring phytoplankton and summer phytoplankton are 

set to 1 and 0, respectively. As such, no summer phytoplankton is consumed by rotifers.  

From the data set, RDs and NOECs were calculated using the same methodology as that used for 

the model predictions. In the remainder of this chapter, these are termed ‘experimental’ RDs and 

NOECs, because they are derived from the microcosm experiment. 

Values of RD and NOEC for the six populations in the considered ecosystem were predicted with 

the ecosystem model and compared with the experimental RDs and NOECs. Single-species 

toxicity test results describing the effects of copper on aquatic biota were collected from literature 

(Table IV.1). Because of the known influence of water characteristics (e.g., pH, water hardness 

and dissolved organic carbon, DOC) on copper toxicity (e.g., Erickson et al., 1996; De 

Schamphelaere and Janssen, 2002), all used single-species toxicity test results were normalized to 

the water characteristics of the microcosm study as further elaborated in chapter V. Because of the 

absence of adequate single-species toxicity test results, effects on the macrophyte mortality rate 

were taken from the calibration study in chapter IX. A slope value for concentration-effect curves 

of metals was taken from Smit et al. (2001). A 10% coefficient of variation on all single-species 
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toxicity test results were propagated by Monte-Carlo simulation. After 50-80 runs, variances on 

the output stabilized. 

 

Table IV.1: Collected single-species toxicity test results after normalization to the water characteristics of the 

microcosm study. In the case of EC50’s and LC50’s, numbers represent the means of the normal distributions 

expressed as µg L
-1

, characterizing their variability. Numbers between brackets represent the corresponding 

standard deviation, representing variability between BLM-predictions of the considered toxicity datum. 

Variability of Sm values was characterized by uniform distributions, the characteristics of which can be found 

in Smit et al. (2001). Test duration represents the reported duration of the acute mortality experiments. 

References of remaining toxicity data and of used models for normalization can be found in chapter V. 

*In absence of experimental data, effects on macrophyte mortality were taken from another study examining 

copper effects on the same macrophyte (chapter IX), i.e. using an EC50,mortality and EC10,mortality of 105(12) and 

58(4.2), respectively (standard deviations between brackets). 
 

  parameters of sub-models 

model population 

log(EC50, photosynthesis) 

(µg L
-1

) 
log(LC50) 

(µg L
-1

) 
log(EC50, grazing rate) 

(µg L
-1

) 
Sm 

(-) 

acute test 

duration 

(days) 
phytoplanktonspring  1.76 (0.20) - - 1 - 
phytoplanktonsummer  1.76 (0.20) - - 1 - 

macrophyte 1.76 (0.20) * - 1 * 
rotifers - 2.08 (0.30) 2.16 (0.30) 0.75 - 1.2 1 

copepods - 3.51 (0.30) 2.79 (0.30) 0.75 - 1.2 2 
cladocerans - 2.20 (0.30) 1.98 (0.30) 0.75 - 1.2 1 

 

 

IV. 3. Results and discussion  

 

IV. 3. 1. RD-predictions 

 

In general, experimental and predicted RD-values are in fair agreement (Fig IV.1B-F). The drastic 

biomass decrease of cladocerans and phytoplanktonsummer at copper concentrations > 20 µg L
-1

 is 

accurately predicted by the model. To illustrate the necessity of including ecological interactions 

to predict ecological effects in this system, the direct effect of copper, as predicted by single-

species toxicity test results alone, is also plotted (Fig IV.1B-F: triangular symbols). Clearly, at 40 

and 80 µg L
-1

, direct effects alone cannot explain the experimentally observed biomass decrease 

of cladocerans and phytoplanktonsummer. 

The predicted increase of phytoplanktonspring biomass at copper concentrations of 40 and 80 µg L
-1

 

is confirmed by the microcosm data, although the experimentally observed increase (up to 

1000%) is much higher than the predicted increase (100 to 200%). Nevertheless, both predicted 

and experimentally observed increases are > 20% and as such indicate an observable effect. The 

direct effect alone erroneously indicates a decrease of phytoplanktonspring biomass. Apparently, the 
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ecological interactions within this system result in an ecological effect which is opposite to the 

direct effect: the reduction of cladoceran biomass lowers the grazing pressure on phytoplankton in 

general, thus benefits the phytoplanktonspring. The same mechanism has also been observed by 

other authors in experimental ecosystems exposed to metal mixtures (Jak et al., 1996) and 

pesticides (Hanazato, 2001). The reason why phytoplanktonsummer does not benefit from this 

reduced grazing pressure, while phytoplanktonspring does, may result from the competitive 

advantage for nutrients of the latter at elevated nutrient levels (Sommer et al., 1986). Indeed, the 

loss of (living) biomass resulting from exposure to copper, increases (dead) organic matter and 

nutrient concentrations. 

At concentrations ≤ 10 µg L
-1

, RDs of copepods are predicted correctly. At 40 µg L
-1

, the 

ecosystem model predicts a large increase of copepods, while observations only indicate a small 

increase for this population at that concentration. Comparison of these ecosystem model 

predictions with the direct effects as predicted from single-species toxicity test results alone, 

indicates that the inclusion of ecological interactions did not improve the effect assessment for 

copepods. Yet, this inclusion did not impede the correct prediction of a biomass decrease at 160 

µg L
-1

. 

For the macrophyte biomass, the decrease of biomass is slightly overestimated by the ecosystem 

model, especially at concentrations ≤ 80 µg L
-1

. Direct effects did not differ too much from these 

ecosystem model predictions, indicating that ecological interactions had a limited influence on 

ecological effects on this population. This is logical since the macrophyte does not contribute to 

the feeding relationships within the food web (Fig IV.1A). The only ecological interaction in 

which the macrophyte takes part is the competition for nutrients with phytoplankton. 

Predictions of rotifer RDs were different from experimental RDs (results not shown). This poor 

prediction performance can be explained by the very low rotifer densities (< 0.5 µg L
-1

) in the 

microcosm experiment (Schaeffers 2001). Loss of a single organism thus has a serious impact on 

RD-values. It is therefore questionable whether the RD-values for rotifers, as derived from the 

microcosm data, give a reliable reflection of copper effects on this population. For the same 

reason, Schaeffers (2001) was not able either to calculate a reliable NOECrotifers. Hence, rotifer 

data and predictions were omitted for NOEC determination. 

 

IV. 3. 2. NOEC predictions 

 

Because predicted RDs were found to be fairly accurate for most populations, NOEC predictions 

showed good correspondence with experimental NOECs too. However, the low experimental RD 
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values at 5 and 10 µg L
-1

 result in an experimental NOECsummer phytoplankton < 5 µg L
-1

. Given that at 

20 µg L
-1

 biomass of that population returns to control levels, such a low NOEC can be 

questioned. The model suggests a NOECsummer phytoplankton of 20 µg L
-1

. 

 

 

Figure IV.1: A: Food web of the considered ecosystem in which only direct interactions are presented, i.e. 

grazing; ‘Rot’ stands for small zooplankton, rotifers. Numbers represent values of preference factors. 1B-F: 

Biomass changes, relative to control (RD), as a function of copper concentration for the populations in the 

ecosystem: spring phytoplankton, PhSp (B); summer phytoplankton, PhSu (C); large zooplankton1, copepods, 

Cop (D); the macrophyte, M (E); large zooplankton2, cladocerans, Clad (F). RD values experimentally derived 

from the microcosm experiment and associated standard errors are indicated by ♦ and error bars, 

respectively. Dashed lines give predicted values. Dotted lines indicate RD = -0.2 and/or +0.2. The arrows in (B) 

point to experimental RD values that are larger than 2. Direct effects, as given by single-species toxicity test 

results are indicated by ∆.  
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In this work, population-NOECs were derived from the experimental microcosm data - termed 

‘experimental NOECs’ - to allow comparison with predicted population-NOECs. Comparison of 

these experimental NOECs with those derived by Schaeffers (2001) shows a good agreement. 

Apparently, treating the microcosm data in two completely different ways results in the same 

NOEC, with the exception of the NOECmacrophyte decrease. The fact that Schaeffers (2001) only used 

the macrophyte biomass concentration measured on the last day of the experiment for NOEC 

calculation, may have influenced the result for this population. The biomass of all the other 

populations was measured throughout the complete period of the experiment and subsequently 

used for NOEC calculation. 

Generic ecological interactions were used to predict NOECs and RDs of the different populations. 

This was done to increase its robustness and applicability in other ecosystems for which less 

information is available (as in chapter VI). However, if the ecosystem model should be applied 

for a case-specific ecological effect assessment, ecological interactions should be more tailored to 

the specific ecosystem. An example of such a case-specific ecological effect assessment is the 

practical ecosystem study in chapter IX. 

 

IV. 4. Conclusions 

 

In this chapter, we developed a novel approach to predict ecological effects of chemicals in 

aquatic ecosystems. The approach is based on the ecosystem model presented in chapter III, 

generic ecological concepts, and single-species toxicity test results. As such, it can perform 

predictions, without the need for experimental ecosystem data. Ecosystem model predictions of 

ecological effects of copper in a freshwater ecosystem were remarkably accurate. For most 

populations, predictions of the difference of the average biomasses at different toxicant 

concentrations, relative to the control biomass (RD) were accurate, or at least indicated the same 

trend as the experimental microcosm data. The few inaccurate RD-predictions did not affect the 

accuracy of most population-NOEC predictions. These predictions were significantly better than 

predictions based on single-species toxicity test results alone. This again confirms the importance 

of accounting for ecological interactions when conducting ecological effect assessments. 

It is concluded that single-species toxicity test results and very generic ecological concepts are 

sufficient to accurately predict ecological effects of copper in the system studied. Because of the 

ubiquity of single-species toxicity test results it is suggested that the approach presented here may 

contribute to an improved procedure to derive water quality criteria. 
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Chapter V 

 

Comparison of different toxic effect sub-models in ecosystem modelling used 

for ecological effect assessments and water quality standard setting. 

 

Abstract - Ecosystem models, combining a food web model with a toxic effect sub-model, have 

been proposed to incorporate ecological interactions in ecological effect assessments. Toxic effect 

sub-models in different studies tend to differ in (1) the used single species toxicity data, (2) the 

effects they consider, (3) the concentration-effect function used. In this chapter, we constructed 

four ecosystem models, each with a different toxic effect sub-model, and tested their capacity to 

predict biomass changes, and No Observed Effect Concentrations (NOECs) established in an 

experimental microcosm. For most populations, these predictions depended heavily on the type of 

ecosystem model. The ecosystem model with a toxic effect sub-model incorporating mortality 

effects using a logistic concentration-effect function made accurate predictions for most 

populations. Additional incorporation of sub-lethal effects did not result in better predictions. 

Ecosystem models using linear concentration-effect functions predict biomass decreases at 

concentrations which are 4 times lower than the observed NOECs.  

 

 

 

 

 

 

 

 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Vanrolleghem, P.A., Janssen, C.R. Comparison of 

different toxic effect sub-models in ecosystem modelling used for ecological effect assessments 

and water quality standard setting. Ecotoxicology and Environmental Safety, in press. 
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V. 1. Introduction 

 

One of the major goals of ecotoxicology is the assessment of the effects of a chemical substance 

on the structure and function of ecosystems. Most of these assessments rely on the extrapolation 

of single-species effect data to higher level effects. These extrapolation methods are, however, 

based on largely unproven hypotheses (Versteeg et al., 1999; Forbes and Calow, 2002). One of 

the most salient assumptions is that the sensitivity of a community can be represented by a set of 

independent species sensitivities obtained in single-species toxicity tests (Wagner and Løkke, 

1991). This approach ignores ecological relationships between populations in communities (e.g., 

Sommer et al., 1986; Preston and Snell 2001; Arhonditsis et al., 2004). In experimental 

ecosystems and enclosures, toxic effects at the population- and community-level were found to be 

determined by (1) the inherent sensitivity of the species present, possibly altered by physical or 

chemical water characteristics; and (2) the ecological relationships between the species (Chapman 

et al., 2003; Fleeger et al., 2003). Hence, knowledge about these ecological interactions should be 

incorporated in ecological effect assessments in order to more accurately estimate ecosystem 

effects of chemicals.  

It is well known that large scale experimental studies, i.e. mesocosm and field enclosure studies, 

are capable of accounting for such ecological relationships in effect assessments (Joern and 

Hoagland, 1996; Clements and Kiffney, 1994; Drenner et al., 1993; Hoagland et al., 1993). For 

instance, Shaw and Kennedy (1996) advocated their use as a higher tier of ecological effect 

assessment in the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA, US). However, 

given that this type of studies is very resource-demanding, they cannot be used as a routine 

practice in lower tiers. Especially in view of REACH (Registration, Evaluation and Authorisation 

of Chemicals; http://ecb.jrc.it/REACH/), EU-legislation aimed at assessing the risks of 

approximately 30,000 substances to human health and the environment, there is a clear need for 

alternative, less resource-demanding methodologies to extrapolate single-species effect data to 

ecosystem level-responses.  

An obvious solution is the construction of ecosystem models. These models consist of (1) a food 

web structure to account for ecological interactions; (2) a structure for organic matter and nutrient 

cycling; and (3) toxic effect sub-models to account for toxicant effects. Although the food web 

structure of most existing ecosystem models is relatively similar (e.g. Bartell et al., 1999; Traas et 

al. 2004a), the design of their toxic effect sub-models exhibit more variation. In general, the latter 

can be grouped into two types: toxicokinetic and external concentration-effect functions. 

Toxicokinetic sub-models predict toxicity based on accumulated toxicant concentrations, which 
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are estimated with kinetic uptake and elimination parameters (Bartell et al., 1988; Traas et al., 

1996 and 2004b). Although this type of sub-models appears to be more realistic, their application 

in effect assessments may increase uncertainty instead of reducing it, as the parameter values used 

in these sub-models tend to be rather uncertain (Hendriks, 1995a, b; Sijm and van der Linde, 

1995). Other sub-models use external concentration-effect functions, established in single-species 

toxicity tests using organisms which are taxonomically and ecologically representative for the 

considered model populations. These external concentration-effect functions are used to define 

the change of (selected) growth rate-determining parameters of the populations at different 

exposure concentrations. The magnitude of these changes depends on the effect concentration 

(ECx) of the considered population. The most frequently-used type of single-species effect data 

for zooplankton and vertebrates is the lethal concentration for x percent of the tested organisms 

(LCx).  

Which growth rate-determining parameters are a function of the toxicant concentration depends 

on the chosen approach. Traas et al. (1996) choose to solely change the mortality rates of the 

considered populations, while others choose to make all growth rate-determining parameters 

dependent on the toxicant concentration. The latter approach is termed as the “general stress 

syndrome (GSS)” and assumes that each physiological process is equally impacted by the toxicant 

(e.g., O’Neill et al., 1982; Bartell et al., 1988; DeAngelis et al., 1989; Bartell et al., 1992; 

Hanratty and Liber, 1996; Bartell et al., 1999). As a result, all growth-rate determining parameters 

are a function of toxicant concentration. Typically used single-species toxicity data are LCxs. As 

such, only mortality effects are truly incorporated in the toxic effect sub-model. A toxic effect 

sub-model which explicitly accounts for both lethal and sublethal effects on zooplankton and 

vertebrates was used by Traas et al. (2004a). These authors make the mortality rates of 

zooplankton a function of their LC50 or immobility-EC50s, and make ingestion rates a function of 

immobility-EC50s. Thereby, the assumption is made that increased immobility implies a decreased 

ingestion rate.  

A further differentiation between the various toxic effect sub-models can be based on the type of 

concentration-effect function used. Reported functions include (1) probit (Bartell et al., 1999); (2) 

linear (Hanratty and Liber, 1996; Naito et al., 2003); or (3) logistic functions (Traas et al., 2004a). 

Since for most toxicants, lab-derived concentration-effect data exhibit a sigmoidal pattern 

(Newman and Unger, 2003), a linear function does not represent the actual concentration-effect 

data. Naito et al. (2003) argued that linear concentration-effect functions tend to overestimate 

single-species effects resulting in over-predictions of ecosystem effects. However, this argument 

may not hold, because populations within an ecosystem may not respond proportionally to 
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increasing toxicant concentrations (Landis, 2002). Moreover, since the shape of a concentration-

effect function may be indicative of the mode of action of a toxicant (van Wijk and Kraaij, 1994), 

the use of a linear function may also prohibit a correct estimation of population and ecosystem 

effects.  

Until now, no studies have examined the importance of the above discussed options when using 

ecosystem models in ecological effect assessments and water quality standard setting. In this 

chapter, we constructed four ecosystem models which have identical food web structures, but 

different toxic effect sub-models. Their toxic effect sub-models differ in the type of effect 

considered and in the type of concentration-effect function they use. The potential use for 

ecological effects assessment of each of these four ecosystem models was evaluated. To this end, 

the accuracy in predicting population-level no observed effect concentrations (population-

NOECs) of the four ecosystem models were tested through a comparison with population-NOECs 

experimentally derived in a previously conducted microcosm experiment with copper (Schaeffers, 

2001). Subsequently, ecosystem-NOECs were derived using the four ecosystem models and these 

values were compared to the ecosystem-NOEC experimentally observed in the microcosm 

experiment. Because the process of water quality criteria setting seeks to determine the maximum 

chemical concentration which is not likely to result in adverse effects at the ecosystem level, the 

use of NOECs in the present study was deemed appropriate. As such, the four ecosystem models 

were evaluated for their potential use in water quality standard setting and ecological effect 

assessments.  

 

V. 2. Material and methods 

 

V. 2. 1. Description of the studied microcosm 

 

All data used were obtained in a community level toxicity study with copper in aquatic 

oligotrophic microcosms (for details, see chapter IV or Schaeffers, 2001).  

 

V. 2. 2. Ecosystem model 

 

A dynamic ecosystem model was constructed in an object oriented framework. The model 

consists of a set of objects, and each object describes the growth of a model population in terms of 

its total biomass using differential equations. The differential equations on which these objects are 

based are described in detail in chapter III. The planktonic system used in the present study was 

composed of two phytoplankton objects (phytoplankton blooming in spring, and phytoplankton 

blooming in summer), one macrophyte object and three zooplankton objects (rotifers, 
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cladocerans, copepods). Fish were not present in the experimental system and were thus not 

included in the constructed models. The differentiation of phytoplankton based on their growth 

kinetics and the definition of their trophic links within the ecosystem model is supported by 

Sommer et al. (1986), as explained in chapter IV. The resulting customized food web was used 

for all four ecosystem models evaluated in this study (Fig IV.1A).  

 

V. 2. 3. Toxic effect sub-models: type of effects included and type of function used 

 

In the four ecosystem models, the toxic effect sub-models include toxicant effects on maximal 

photosynthesis rate of phytoplankton and macrophytes, and mortality effects on macrophytes. In 

the LOGC and LINC ecosystem models, mortality and sublethal toxicant effects are included for 

zooplankton. In the other two ecosystem models, LOG and LIN, only mortality effects are 

included for zooplankton. As sublethal effect criterion for zooplankton, the toxicant-induced 

effect on grazing rate is included as it is known to be affected by copper (e.g., Ferrando and 

Andreu, 1993). Next to the type of toxicant effect, also the type of function used to represent these 

effects, varies between the four ecosystem models. While LIN and LINC use linear concentration-

effect functions, LOG and LOGC rely on logistic concentration-effect functions. The 

incorporation of test duration and coupling with the growth equations of the ecosystem model 

allow for simulation of time-varying exposure scenarios (Ashauer et al., 2006). Characteristics of 

the toxic effect sub-models of the four ecosystem models are summarized in Table V.1.  

 

V. 2. 4. Parameters of the toxic effect sub-models 

 

Data on the effects of copper on aquatic biota were collected from literature (Table V.2). Because 

of the known influence of water characteristics (e.g., pH, water hardness and dissolved organic 

carbon) on copper toxicity (e.g., Erickson et al., 1996; De Schamphelaere and Janssen, 2002; De 

Schampelaere et al., 2002), all toxicity data were normalized to the water characteristics of the 

microcosm study. LC50s for cladocerans and rotifers were taken from Ferrando and Andreu 

(1993) and LC50s for copepods were taken from Heijerick et al. (2001). These LC50s were 

normalized to the water characteristics of the microcosm study using the acute Biotic Ligand 

Model (BLM) proposed by De Schampelaere et al. (2002). Normalization of ingestion rate -EC50s 

for cladocerans and rotifers (Ferrando and Andreu, 1993) was done using the chronic BLM 

proposed by De Schampelaere and Janssen (2004), and De Schampelaere et al. (2006). EC50s for 

copepod ingestion rate were estimated by applying the relation between acute and chronic toxicity 

data established by Brix et al. (2001) to the acute copper-LC50s retrieved for copepods (Heijerick 
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et al., 2001). These ingestion rate - EC50s were subsequently normalized to the water 

characteristics of the microcosm study using a chronic BLM (De Schampelaere and Janssen, 

2004). The EC50s for effects on photosynthesis rates of the phytoplankton and the macrophyte 

were calculated as the mean of three growth - EC50s, predicted by three algal bioavailability 

models (De Schamphelaere et al., 2003; 2006). In the absence of experimental data, effects on 

macrophyte mortality rate were taken from a calibration study examining copper effects on the 

same macrophyte (chapter IX). A slope value for concentration-effect curves of metals was taken 

from Smit et al. (2001) and assumed to be representative of the slope of concentration-effect 

functions for both mortality and sublethal effects. An overview of the used bioavailability-

normalized toxicity data is presented in Table V.2.  

Table V.1: Equations used in the toxic effect sub-models of the four ecosystem models, LIN, LINC, LOG, and 

LOGC, with parameter names as in appendix XI.4 and in abbreviation list. In the case of LOG and LOGC, 

Mort0 is used when Mort < Mort0. 
 

 
 

Table V.2: Collected single-species toxicity test results after normalization to the water characteristics of the 

microcosm study. In the case of logEC50’s and logLC50’s, numbers represent the means of the normal 

distributions expressed as µg L
-1

, characterizing their variability. Numbers between brackets represent the 

corresponding standard deviation, representing variability between BLM-predictions of the considered 

toxicity datum. Variability of Sm values was characterized by uniform distributions, the characteristics of 

which can be found in Smit et al. (2001). Test duration represents the reported duration of the acute mortality 

experiments. References of the remaining toxicity data and of used models for normalization can be found in 

the text. *In absence of experimental data, effects on macrophyte mortality were taken from another study 

examining copper effects on the same macrophyte (chapter IX), i.e. using an EC50,mortality, EC10,mortality of 

105(12), 58(4.2), respectively (standard deviations between brackets). 

   

model population 
log(EC50, photosynthesis) 

(µg L
-1

) 
log(LC50) 

(µg L
-1

) 
log(EC50, grazing rate) 

(µg L
-1

) 
Sm 

(-) 

acute 

test 

duration 

(days) 
phytoplanktonspring  1.76 (0.20) - - 1 - 
phytoplanktonsummer 1.76 (0.20) - - 1 - 

macrophyte 1.76 (0.20) * - 1 * 
rotifers - 2.08 (0.30) 2.16 (0.30) 0.75 - 1.2 1 

copepods - 3.51 (0.30) 2.79 (0.30) 0.75 - 1.2 2 
cladocerans - 2.20 (0.30) 1.98 (0.30) 0.75 - 1.2 1 
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V. 2. 5. Relative differences: control vs. treatments population biomass 

 

Initially, the dynamics of the unexposed customized ecosystem were simulated. All four 

ecosystem models were calibrated to obtain a plausible annual succession of seasonal events, as 

described in chapter IV and in Sommer et al. (1986). The ecosystem model was calibrated to 

obtain a realistic succession of seasonal events for this type of system. To obtain this succession 

of events, parameters of the different populations, e.g. mortality rate and ingestion rate of 

zooplankton, photosynthesis rate of phytoplankton and the macrophyte, and mortality rate of the 

macrophyte were calibrated. In a second phase, we simulated an exposure to copper of this 

customized ecosystem for a period identical to that used in the microcosm experiment (110 days). 

To compare a population’s biomass status in the control situation with that in the different copper 

treatments, its biomass under both scenario’s was averaged over the exposure period. Relative 

differences of a population’s biomass between the control and the treatments were calculated, as 

described in chapter IV.  

 

V. 2. 6. Comparison of experimental and predicted effects 

 

To account for variability of each of the used single-species toxicity test results, the four 

ecosystem models were run in a Monte-Carlo setting. Characteristics of the statistical 

distributions describing this variability are given in Table V.2. Using latin hypersquare sampling, 

100 simulations per concentration were run. The number of runs were determined using the 

stabilization of variances (Cullen and Frey, 1999). After 60 to 80 runs, standard deviations of all 

variables stabilized at all concentrations and the control. Each of these 100 simulations was 

compared with the control situation, yielding 100 RD values per model population and exposure 

concentration. For all four ecosystem models, predicted RD values for all populations as a 

function of copper were compared with experimental RD values obtained in the microcosm 

experiment. Derivation of experimental RD values was done using the raw microcosm data, 

applying the same methodology as that used for the model predictions. 

 

V. 2. 7. Derivation of experimental and predicted population-NOECs 

 

Because 20% is the minimum detectable difference in population characteristics in the field (Suter 

II, 1993), a RD-value of -0.2 or lower is considered as an observable decrease of a population and 

a value of 0.2 or higher as an observable increase of a population biomass. The NOECα for 
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decrease of a population’s biomass was defined as the largest concentration at which less than 100 

· (1 - α ) % of the RD values for this population were smaller than -0.2. This percentile was 

calculated by ranking RD values and using the mean plotting position (Davison and Hinkley, 

1997). Similarly, the NOECα for increase of a population, was defined as the largest concentration 

at which less than 100 · (1 - α ) % of the RD values for this population were larger than 0.2. The 

influence of the α - level on the predicted NOECs was investigated for α between 0.01 and 0.5. 

To allow a relevant model-data comparison, experimental population-NOECs were derived from 

the raw microcosm data using the same method as that used for the derivation of predicted 

population-NOECs, i.e. using the same 20% cut-off value for RD. The effect of the α - level on 

the experimental NOECs was investigated for α between 0.01 and 0.5. As such, also experimental 

population-NOECs will also change with changing α. 

Note that the as such derived NOECs differ from single-species NOECs or ECxs in that they 

incorporate ecological interactions, and as such take into account indirect chemical effects. 

Single-species toxicity test results alone can not account for such indirect effects. 

 

V. 2. 8. Derivation of predicted and experimental ecosystem-NOECs  

 

The ecosystem-NOEC was defined as the lowest population-NOEC. Exposure of the ecosystem to 

this NOEC will consequently not adversely affect the biomass of any of the populations of the 

modelled ecosystem: i.e. phytoplankton will not increase or decrease more than 20%, while 

zooplankton and the macrophyte will not decrease more than 20%. The predicted and 

experimental ecosystem-NOECs were derived based on predicted and experimental population-

NOECs. 

 

V. 2. 9. Comparison of the different toxic effect sub-models 

 

Predicted population-NOECs were compared with experimental population-NOECs at α - levels 

of 0.01 to 0.5. The degree of agreement between predicted and experimental RD values, as well as 

between predicted and experimental population-NOECs, was used to assess the “predictive” 

capacity of the four ecosystem models. Their “protective” capacity was examined by comparing 

predicted ecosystem-NOECs and experimental ecosystem-NOECs. If an ecosystem model 

estimates the NOEC of the most sensitive population correctly, while completely misjudging 

effects on the other populations, its protective capacity would be adequate, although its predictive 

capacity would be low. That is, NOECs calculated by that ecosystem model are protective for the 
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whole ecosystem, yet fail to correctly predict most population-level effects. The predictive 

capacity of an ecosystem model can thus be interpreted as a measure for its usability in ecological 

effect assessments, where the main interest is on how toxicants affect populations. The protective 

capacity of an ecosystem model can be used to measure its applicability in water quality standard 

setting which aims at determining a maximum toxicant concentration which does not adversely 

affect the ecosystem. 

 

V. 3. Results 

 

V. 3. 1. Control vs. treatments population biomass: phytoplankton and macrophyte 

 

The microcosm data show that the biomass of phytoplanktonspring increases with increasing copper 

concentrations (Fig V.1A and A’). Up to 80 µg L
-1

, all four ecosystem models predict an increase 

of phytoplanktonspring, although the experimentally observed increase (300 to 1000%) is larger 

than the predicted increase (100 to 200% for all four ecosystem models). At 160 µg L
-1

, a 

complete collapse of phytoplanktonspring is predicted, although observations indicate an increase of 

2000%.  

Experimental RD values for the phytoplanktonsummer decrease with increasing copper 

concentration, indicating a loss of biomass (Fig V.1B). Results from all four ecosystem models 

exhibit this decrease. Only at 20 µg L
-1

 the LOGC model predicts the RD values marginally better 

than the other three ecosystem models.  

Decline of the macrophyte biomass with increasing copper concentrations, as predicted by all four 

ecosystem models, is confirmed by the microcosm observations (Fig V.1C).  

 

V. 3. 2. Control vs. treatments population biomass: zooplankton 

 

The microcosm data indicate that cladoceran biomass decreases drastically at concentrations ≥ 40 

µg L
-1

 (Fig V.1D). At concentrations < 40 µg L
-1

, experimentally observed biomass 

concentrations are maintained at the control level. This is predicted by the LOG model only. The 

LIN and LINC models severely overestimate effects on cladocerans at low concentrations.  

The biphasic response of the copepods to the copper exposure (i.e. an increase followed by a 

decrease) is both reflected by the microcosm data and by the predictions of all four ecosystem 

models (Fig V.1E). Experimental RDs at 5 and 10 µg L
-1

 are more accurately predicted by LOG 

and LOGC than by LIN and LINC.  
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For rotifers, a disagreement between predicted and experimental RDs is observed (Fig V.1F). This 

can probably be explained by the very low rotifer densities (< 0.5 µg L
-1

) in the microcosm 

experiment (Schaeffers 2001). Loss of a single organism will have a serious impact on their RD 

values. It is therefore questionable whether the RD values for rotifers, as derived from the 

microcosm data, give a reliable reflection of copper effects on this group. Hence, rotifer data and 

predictions were omitted for further analyses. 

 

V. 3. 3. NOEC derivations 

 

The number of predicted population-NOECs exceeding the corresponding experimental 

population-NOECs as a function of α is shown in Fig V.2. This number can be interpreted as a 

measure for underestimation of effects on populations. At α ≠ 0.35, LOG and LOGC 

underestimate effects on two to three populations, while LIN and LINC underestimate effects on 

only one population. A value of 0.35 appears to result in conservative NOEC estimates for all 

ecosystem models and will, as an example, be used to compare NOECs predicted with the four 

ecosystem models.  

 

V. 3. 4. Population-NOECs: phytoplankton and macrophyte 

 

Both LIN and LINC estimate a NOECspring phytoplankton of 10 µg L
-1

, while LOG and LOGC predict 

the NOECspring phytoplankton of 20 µg L
-1

 accurately (experimental NOECspring phytoplankton is 20 µg L
-1

). 

Predicted values of NOECsummer phytoplankton (Fig V.3), differ most between LIN/LINC and 

LOG/LOGC models. The latter predict a NOECsummer phytoplankton of 20 µg L
-1

, while the former 

models result in NOECsummer phytoplankton of 10 µg L
-1

. The experimental NOECsummer phytoplankton is 

20 µg L
-1

 (Fig V.3).  

At 40 µg L
-1

, all ecosystem models predict a significant decline in macrophyte biomass, (Fig V.3). 

All ecosystem models result in a NOECmacrophyte of 20 µg L
-1

.  

 

V. 3. 5. Population-NOECs: Zooplankton 

 

The absence of effects on cladoceran biomass observed in the microcosms at concentrations of 5 

to 20 µg L
-1

, was only predicted by the LOG model (Fig V.3). The NOECcladocerans derived with 

the LOG model was thus equal to the experimental value: 20 µg L
-1

. LOGC already predicted an 
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effect at 20 µg L
-1

, while according to both LIN and LINC effects are expected at the lowest 

treatment concentration (5 µg L
-1

).  

 

Figure V.1: Biomass changes, relative to a control condition, as a function of copper for the six populations in 

the ecosystem: spring phytoplankton (A); summer phytoplankton (B); the macrophyte (C); cladocerans (D); 

copepods (E); rotifers (F). Experimental relative differences (RD) and associated standard errors are indicated 

by ♦ and error bars, respectively. A more detailed graph is added for the spring phytoplankton biomass 

change as a function of copper concentrations between 5 and 40 µg L-1 (A’). Line codes are given in the 

legend. 
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Figure V.2: The number of populations for which population-NOECs were predicted higher by the models 

than those observed in the microcosm study, for different alpha levels. 

 

The experimental NOECcopepods is 80 µg L
-1

 (Fig V.3). At 80 µg L
-1

, a decline of copepod biomass 

is estimated by LIN(C), resulting in a NOECcopepods prediction of 40 µg L
-1

. Application of the 

other two ecosystem models yields a NOECcopepods equal to the experimental value.  

 

V. 3. 6. Ecosystem-NOEC 

 

As stated earlier, the ecosystem-NOEC is defined as the lowest population-NOEC. From the 

microcosm data, an experimental ecosystem-NOEC of 20 µg L
-1

 is derived. Since the population-

NOECs vary depending on the ecosystem model applied, the ecosystem-NOEC also differs. 

Ecosystem-NOECs predicted by the different ecosystem models and that derived from the 

microcosm study are shown in Fig V.3. From this, it is clear that the LOG and LOGC models give 

better ecosystem-NOEC predictions, compared to the values derived with the LIN and LINC 

models. Yet, only the LOG model predicts the ecosystem-NOEC accurately (20 µg L
-1

), while 

LOGC is a factor 2 conservative (10 µg L
-1

).  

Application of LIN and LINC resulted in an ecosystem-NOEC of < 5 µg L
-1

, which is over 4 

times lower than the experimental ecosystem-NOEC. 

alpha 

number 
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Figure V.3: Population-NOECs for spring phytoplankton, summer phytoplankton, the macrophyte, copepods, 

and cladocerans as predicted by the four models (lin, linc, log, and logc), observed in the microcosm 

experiment (DATA). Ecosystem-NOECs are represented by the black bars. Values of < 5 µg L-1 are plotted as 

4 µg L-1 and indicated by *. 

 

V. 4. Discussion 

 

V. 4. 1. Control vs. treatments population biomass: phytoplankton and macrophyte 

 

The increase of phytoplanktonspring in experimental enclosures exposed to metals has also been 

observed by Jak et al. (1996). However, according to the concentration-effect functions (Table 

V.1), copper does not increase maximal photosynthesis rate (PSmax) of spring phytoplankton  at 

these concentrations. For example, at 40 µg copper L
-1

, the concentration-effect functions indicate 

a 30 to 40% decrease of PSmax, while at this concentration, a phytoplanktonspring  biomass increase 

of 150 to 250% is predicted. As such, a decline of zooplankton biomass and hence a reduced 

grazing pressure is proposed as an explanation for this phenomenon.  

In contrast with the increase of phytoplanktonspring, phytoplanktonsummer biomass is found to 

decrease with increasing copper concentration. Yet, both phytoplanktonsummer and 

phytoplanktonspring are grazed upon by zooplankton. Hence, they should both experience a 

reduction of grazing pressure. Moreover, PSmax-EC50s of both populations are the same (Table 

V.2), indicating equal direct copper effects on PSmax of phytoplanktonsummer and 
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phytoplanktonspring. A possible explanation for the decrease of phytoplanktonsummer biomass is 

therefore the superiority of phytoplanktonspring in competing for nutrients, as observed in other 

experimental studies (e.g., Havens et al., 1994a and b). 

 

V. 4. 2. Control vs. treatments population biomass: zooplankton 

 

The severe overestimation of effects on cladoceran biomass by the LIN and LINC models (at low 

concentrations) may be explained as follows. At low concentrations the direct effect of copper on 

the cladoceran mortality rate is overestimated by a linear concentration-effect function. However, 

this does not necessarily imply an overestimated effect on cladoceran biomass within a food web, 

since the latter effect also depends on ecological interactions. Here, the competition with 

copepods for food will limit the biomass of the cladoceran population. Given their lower 

sensitivity, copepods will have a competitive advantage over the cladocerans, when exposed to 

copper, limiting cladoceran biomass even more. The combination of this food web effect with the 

overestimated direct effects on cladoceran mortality rate, results in an overestimation of the 

copper effect on cladoceran biomass. 

 

V. 4. 3. NOEC derivations 

 

The large influence of α on the predictive capacity of the four models originates from the small 

variability of the microcosm data, compared to that of the ecosystem model predictions. In 

general, coefficients of variation (CV’s) of the ecosystem model predictions are a factor 5 to 7 

larger than CV’s of microcosm observations. The large variability of the ecosystem model 

predictions hampers the early detection of population effects at α = 0.05 to 0.25, leading to severe 

underestimations of effects. Yet, applying α-levels of 0.4 to 0.5 on the microcosm data - which 

has a smaller variability - would result in experimental population-NOECs below 5 µg L
-1

. 

The different predictions of the population-NOECs by LIN, LINC and LOG, LOGC is probably 

due to the overestimation of cladoceran decrease by LIN and LINC. This overestimation results in 

an extremely reduced grazing pressure, and hence in a NOEC for increase of phytoplanktonspring 

biomass which is too low.  

The difference between model predictions (predicted NOECmacrophyte = 20 µg L
-1

) and microcosm 

observations (experimental NOECmacrophyte = 40 µg L
-1

) may be due to the use of a phytoplankton 

EC50 in the toxic effect sub-models of this macrophyte.  
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V. 4. 4. Ecosystem-NOEC 

 

The rather conservative prediction of the ecosystem-NOEC by LIN and LINC is again due to the 

overestimation of effects on cladoceran biomass at lower concentrations (NOECcladocerans of < 5 µg 

L
-1

). Naito et al. (2003), who used the comprehensive aquatic systems model (CASM) equipped 

with a linear toxic effect sub-model (i.e. comparable with the LIN model in this chapter) predicted 

an ecosystem-NOEC approximately 20 times lower than the one measured in an artificial river 

system exposed to copper. However, if this factor 20 might be exclusively attributed to the use of 

a linear model is not sure. Naito et al. (2003) used the lake Suwa food web to predict copper 

effects in an artificial river system. As such, the ecosystem represented by their model was not 

representative for this artificial river system. 

 

V. 4. 5. NOECs derived using other cut-off values 

 

Although often cited, the 20% cut-off value used to derive NOECs in this dissertation is not 

definitive. Therefore, NOEC-derivations were a posteriori also performed using 10% and 30% 

cut-off values. Using a cut-off value of 30% resulted in the same experimental and predicted 

NOECs as when a 20% cut-off value was used. When a cut-off value of 10% is applied, only the 

experimental NOECs of the macrophyte and of phytoplanktonsummer are lower than those derived 

using 20% as a cut-off. The experimental NOEC for decrease of the macrophyte is 20 µg L
-1

 

using the 10% cut-off. The experimental NOEC for decrease of phytoplanktonsummer is 5 µg L
-1

 

using the 10% cut-off. This last NOEC is overpredicted by all four models. However, from Fig V. 

1B, it can be seen that at 20 µg L
-1

, experimentally observed biomass of phytoplanktonsummer 

returns to its control range. Hence, it can be questioned if the experimentally observed decrease at 

10 µg L
-1

 is a copper effect, or results from data variability. For all other populations, the use of a 

10% cut-off value resulted in the same conclusions regarding the predictive capacities of the four 

models as when a 20% cut-off value was used: the LIN and LINC models are conservative and 

the LOG model is most accurate in predicting NOECs. 
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V. 5. Conclusions  

 

Based on the comparison of experimental data with predictions given in previous paragraphs, the 

largest differences in the predictive capacity of the ecosystem models are attributable to the 

different types of concentration-effect function. LOG and LOGC models gave more accurate 

predictions of population-NOECs and ecosystem-NOECs than LIN and LINC models, when 

using an α-level of 0.35. Apparently, implementation of the correct shape of concentration-effect 

functions is more important than the inclusion of sub-lethal grazing effects. Indeed, the latter 

resulted in only minor changes in biomass RD predictions. The extent to which these findings can 

be extrapolated to other ecosystems and toxicants will depend on the considered food web 

structure. In the food web used here, overestimation of direct effects on cladocerans by the LIN 

and LINC models resulted in inaccurate predictions of connected phytoplankton populations. In a 

more complex food web, one could expect two contrasting mechanisms. On one hand, as 

observed in this chapter, erroneous estimations of direct effects on one population could 

propagate to connected or competing populations. On the other hand, the influence of trophic 

interactions on biomass dynamics of the populations is assumed to be lower in more diverse, and 

hence more complex food webs (MacArthur, 1955). Which of these two phenomena will 

dominate is difficult to predict based on only the number of trophic links or ‘connectance’ within 

the food web.  

This chapter has shown the high accuracy with which population- and ecosystem-NOECs for 

copper can be predicted by the LOG model. Moreover, this LOG model only requires a limited 

amount of standard single-species ecotoxicity data comparable to the type of information needed 

for ecosystem-NOEC determination using conventional extrapolation techniques. The quality of 

the toxicity data that are used is expected to influence the NOEC predictions, but this is also the 

case with conventional extrapolation techniques. In the LOG model, values for LC50 and PSmax-

EC50, photosynthesis were combined with a slope value for metals taken from literature (Smit et al., 

2001). In contrast, application of the LOG(C) model would require additional single-species 

toxicity data on toxicant effects on invertebrate ingestion rates, i.e. information which is not 

always available in open literature.  
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Chapter VI 

 

Validation of an ecosystem modelling approach as a tool for ecological effect 

assessments 

 

Abstract - In ecotoxicology, derivation of a “safe” environmental concentration is usually 

achieved by the use of extrapolation factors or by statistical extrapolation from a set of single-

species toxicity data. These approaches ignore ecological interactions between species in the field. 

An ecology-based alternative to this pragmatic approach can be ecosystem modelling, which can 

account for ecological interactions. However, it is largely unexplored how well the predictions of 

these models quantitatively agree with large-scale experimental studies. Therefore, we evaluated 

the capacity of a flexible ecosystem model to predict population and ecosystem-level no observed 

effect concentrations (NOECs) of 7 organic toxicants. These NOECs were compared with 

population and ecosystem -NOECs observed in 11 micro- and mesocosm studies. For each of the 

latter studies, the model was customized to account for the specific ecological interactions within 

these systems and combined with appropriate single-species toxicity data from literature. 

Population-NOEC predictions were accurate, or at least protective, for 60, and 86% of all 

considered model populations, respectively. For all 11 studies, a protective ecosystem-NOEC 

could be derived, being accurate in 7 cases, and conservative in 4 cases. In general, it can be 

stated that this type of models can serve as an ecology-based alternative to current extrapolation 

techniques in EEAs and water quality standard setting. 

 

 

 

 

 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Vanrolleghem, P.A., Janssen, C.R. Validation of an 

ecosystem modelling approach as a tool for ecological effect assessments. Chemosphere, 

accepted. 
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VI. 1. Introduction 

 

Ecological effect assessment aims at assessing or predicting potential effects of a chemical 

substance on the structure and function of ecosystems. These higher-level effects are usually 

estimated through extrapolation of single-species effect data. However, these approaches are 

based on largely unproven hypotheses and are therefore heavily criticized (Versteeg et al., 1999; 

Forbes and Calow, 2002). One of the most crucial hypotheses is the representation of the 

community sensitivity as a set of independent species sensitivities (Wagner and Lokke, 1991). 

Possible ecological interactions between populations in communities (e.g. Sommer et al., 1986; 

Preston and Snell, 2001) are thus ignored. Since effects on these ecological interactions combine 

with direct toxicant effects on populations to determine effects at the community- and ecosystem-

level (Chapman et al., 2003; Fleeger et al., 2003), knowledge about such interactions should be 

incorporated in ecological effect assessments to more accurately estimate higher level effects of 

chemicals. 

Large scale experimental studies, i.e. micro-, mesocosm and field enclosure studies, are capable 

of accounting for direct and indirect toxicant effects resulting from ecological interactions (e.g., 

Hoagland et al., 1993; Clements and  Kiffney, 1994; Joern and Hoagland, 1996). Unfortunately, 

these types of studies are very resource-demanding and can thus not be used for routine evaluation 

of chemical toxicity. Especially in view of REACH (Registration, Evaluation and Authorisation 

of Chemicals; http://ecb.jrc.it/REACH/), a EU-legislation aiming at environmental risk 

assessments for approximately 30,000 substances, there is a clear need for alternative, less 

resource-demanding  methodologies to predict the effects of chemicals on ecosystem structure 

and function.  

Mathematical models have been proposed as an alternative approach to incorporate ecological 

interactions in environmental effect assessments and water quality standard setting (e.g. Pastorok 

et al., 2003). These models integrate toxic effect sub-models in ecosystem models to simulate 

effects of toxicants on ecosystems. Toxic effect sub-models vary in complexity and range from 

highly realistic toxicokinetic models (Bartell et al., 1988; Traas et al., 2004b) to rather simple 

concentration-effect functions (Bartell et al., 1999; Traas et al., 2004a). In terms of feasibility, use 

of the latter is preferable, since these sub-models only require a limited set of single-species 

toxicity test results. In contrast, toxicokinetic sub-models are often characterized by a large 

number of uncertain parameters (Sijm and Vanderlinde, 1995). In chapter V, it was demonstrated 

that population- and ecosystem-level no observed effect concentrations (NOECs) of copper in 

microcosms could be predicted accurately using an ecosystem model with logistic external 
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concentration-effect functions as toxic effect sub-models. Because of its object-oriented 

framework, the ecosystem model could be customized to reflect the ecological interactions within 

these microcosms. The toxicity data used were: lethal concentrations (LC50) for invertebrates and 

fish, effect concentrations (EC50) for phytoplankton and macrophyte growth rates, and published 

default slope values of concentration-effect functions (Smit et al., 2001). Given these minimal 

data requirements, the idea of applying this type of model for assessing effects and setting water 

quality standards seems appealing. However, the use of this model as an ecology-based 

alternative to current statistical extrapolation approaches requires a validation of its predictive 

capacity for a wider range of toxicants and ecosystems. Naito et al. (2003) have performed such a 

validation by comparing model-predicted ecosystem-NOECs with those observed in different 

artificial ecosystems. However, these authors did not account for the specific ecological 

interactions in the considered ecosystems, but rather examined if one generic model-ecosystem 

could be used to predict effects in a range of large-scale experimental studies. Predicted 

population-level effects were only qualitatively compared with the observations. 

This chapter presents a validation study, based on the quantitative comparison of predicted 

population- and ecosystem-NOECs with those observed in 11 experimental community-level 

studies (micro-, mesocosms and enclosure studies). In these studies, the effects of 7 different 

organic toxicants were examined. The use of the object oriented modelling framework allows for 

customizing the model to better reflect ecological interactions within the different experimental 

ecosystems. We examined whether this approach resulted in an adequate agreement between 

predictions and observations, both at the population-, and ecosystem-level.  

 

VI. 2. Material and methods 

 

VI. 2. 1. Ecosystem model 

 

A dynamic ecosystem model was constructed consisting of a set of objects which describe the 

growth of model populations in terms of their biomass concentration using differential equations. 

The equations and conceptual framework of the model are given in Chapter III.  

 

VI. 2. 2. Large-scale experimental studies 

 

Pelagic, lentic community-level studies describing toxicant effects on the population’s biomass 

and/or abundance were taken from literature. To include as much information on the effects of the 
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toxicant on population dynamics as possible, only studies conducted over at least one typical 

seasonal event were considered (Sommer et al., 1986). As a compromise between data availability 

and experiment duration, a 40 day experiment duration was taken as a cut-off value for inclusion 

in this analysis. The selected studies represent a wide range of different ecosystems, i.e. from 

relatively simple planktonic systems to systems which include planktivorous and piscivorous fish 

(Table VI.1). Considered toxicants are: diflubenzuron, atrazine, linuron, esfenvalerate, 

metribuzin, azinphos-methyl, and fenthion. Considered studies are: Boyle et al. (1996; study 1), 

Hamilton et al. (1988; study 2), Webber et al. (1992; study 3), Fairchild et al. (1992; study 4), 

Brock et al. (2004; study 5), Sierszen and Lozano (1998; study 6), Hanazato and Kasai (1995; 

study 7), Tanner and Knuth (1995; study 8), Juttner et al. (1995; study 9), Denoyelles et al. (1982; 

study 10), Cuppen et al. (1997; study 11); van den Brink et al. (1997; study 11). 

 

VI. 2. 3. Toxic effect sub-model 

 

Given their high accuracy in predicting population- and ecosystem-NOECs in a previous exercise 

(chapter V), ecosystem models equipped with logistic concentration-effect functions as toxic 

effect sub-models were used. These sub-models describe direct effects on invertebrate and 

vertebrate mortality rate, and on the photosynthesis rate of phytoplankton and macrophytes. At 

every time step, the chemical concentration is read from the ecosystem model input file and used 

to calculate the values of those parameterts. 

Macrophyte mortality rates were assumed to remain unaffected because no proof of effects of the 

considered chemicals on macrophyte mortality could be found in literature. Parameters of these 

sub-models are thus LC50’s and photosynthesis-EC50’s. Appropriate values for those parameters 

were collected from literature (Table VI.2). Other parameters of these sub-models are the slope 

values for the different toxicants and model populations, all of which can be found in Smit et al. 

(2001). 

 

VI. 2. 4. Control and exposure simulations 

 

To account for the species present in the experimental ecosystems, a different ecosystem model 

was constructed for each of the considered studies. Species were grouped into model populations, 

based on their single-species sensitivity for the considered chemical and their growth kinetics. 

Details of the grouping of species into model populations are given in the appendix (XI.7). 

Planktivorous fish were assumed to exclusively feed on large-bodied zooplankton (Werner and 
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Table VI.1: Overview of the large-scale studies considered in this chapter. Column 1 gives the ID-numbers assigned to the considered studies. Column 2 gives the α-level

used to derive the NOEC-predictions. « n.a. » means that the quantity is not applicable. Columns 3 to 14 give the observed NOECs (µg L-1, upper pannel) for the 

populations present in the experimental studies, and for the complete ecosystem (column 14). In the lower panel, columns 3 to 14 give predictions of population- and 

ecosystem-level NOECs by the proposed ecosystem modelling approach (µg L-1). In these columns, ‘plank. fish’ stands for planktivorous fish, and ‘pisc. fish’ for 

piscivorous fish. ‘Zoo’ and ‘Phyto’ represent zooplankton and phytoplankton, respectively. An asterisk denotes that the observed NOEC of the considered population 

was statistically unreliable. Further details are given in the appendix (XI.7).

n° α spring phyto1 spring phyto2 summer phyto1 summer phyto2 macrophyte small zoo1 small zoo2 large zoo1 large zoo2 planc. fish pisc. fish ecosystem

data 1 n.a. ≥10 <10 <10 <10 <10 <10 ≥10 <10

2 n.a. <100 ≥100 <100 ≥100 ≥100 <100

3 n.a. 0.18 0.18 ≥0.69 0.18 ≥0.69 0.18

4 n.a. 0.25 0.25 ≥1.71 ≥1.71 0.67 0.25

5 n.a. * 56 18 ≥180 18 ≥180 ≥180 18

6 n.a. ≥20 ≥20 ≥20 ≥20 4 4

7 n.a. ≥200 <20 ≥200 20 <20 <20

8 n.a. ≥4 ≥4 ≥4 ≥4 ≥4 ≥4 ≥4

9 n.a. 68 68 68 182 68 182

10 n.a. 20 20 ≥500 20 ≥500 ≥500 20

11 n.a. 50 15 50 15 50 ≥150 ≥150 15

predictions 1 0.01-0.5 ≥10 <10 ≥10 ≥10 <10 ≥10 ≥10 <10

2 0.01-0.21 ≥100 <100 ≥100 ≥100 <100 <100

0.22-0.23 ≥100 <100 ≥100 <100 <100 <100

0.24-0.5 <100 <100 <100 <100 <100 <100

3 0.01-0.13 ≥0.69 ≥0.69 ≥0.69 ≥0.69 ≥0.69 ≥0.69

0.14-0.19 ≥0.69 ≥0.69 0.18 ≥0.69 ≥0.69 0.18

0.2-0.25 0.18 ≥0.69 0.18 ≥0.69 ≥0.69 0.18

0.26-0.39 0.18 0.18 0.18 ≥0.69 ≥0.69 0.18

0.4-0.47 0.18 0.18 0.18 ≥0.69 0.18 0.18

0.48-0.5 0.18 0.18 0.18 0.18 0.18 0.18

4 0.01-0.25 ≥1.71 ≥1.71 ≥1.71 ≥1.71 0.67 0.67

0.26-0.47 0.25 0.69 ≥1.71 ≥1.71 0.67 0.25

0.48-0.5 0.25 0.25 0.25 ≥1.71 0.67 0.25

5 0.01-0.5 5.6 1.8 1.8 ≥180 56 ≥180 ≥180 1.8

6 0.01-0.06 ≥20 ≥20 ≥20 ≥20 4 4

0.07-0.5 ≥20 ≥20 ≥20 ≥20 1 1

7 0.01-0.5 ≥200 ≥200 ≥200 ≥200 <20 <20

8 0.01-0.5 ≥4 ≥4 ≥4 ≥4 ≥4 ≥4 ≥4

9 0.01-0.3 ≥318 ≥318 22 22 ≥318 22

0.31-0.38 ≥318 68 22 22 ≥318 22

0.39-0.5 ≥318 22 5 22 ≥318 5

10 0.01-0.5 20 20 ≥500 20 ≥500 ≥500 20

11 0.01-0.14 15 50 5 15 ≥150 50 50 5

0.15-0.5 5 0.5 50 15 ≥150 15 15 0.5

plank



Table VI.2: Overview of the mean of the used, log transformed toxicity data (µg L-1) in the model to represent population sensitivities in the different studies.  ‘Phyto’, ‘zoo’, 

‘plank. fish’, and ‘pisc. fish’ stand for phytoplankton, zooplankton, planktivorous fish, and piscivorous fish, respectively. Phytoplankton and macrophyte values are growth-

EC50’s, the other values are LC50’s. (-) indicates that no proof of effects of the considered toxicant at the tested concentration range was found. Hence, these populations were 

assumed not to be directly affected by the toxicant. A default of 10% was chosen arbitrarily as the standard deviation on these means for uncertainty propagation. In the case 

of planktivorous fish in study 8, a uniform distribution was chosen to represent uncertainty, of which the upper and lower limits are given. Slope values were derived from: 

L(E)C50 · L(E)C5
-1 = exp(1.6449·Sm); and slope = ln(5 · 95-1) · (ln(L(E)C5) – ln(L(E)C50))

-1 (Smit et al., 2001). Sm was characterized by a uniform distribution between 0.75 and 

2, 0.45 and 0.7, 0.25 and 0.4 for phytoplankton, zooplankton, and fish, respectively (Smit et al., 2001). 

a a field-observed value was used. b the LC50 value of the small zooplankton was assumed equal to that of the large zooplankton, because of lack of toxicity data. c the value was reported in the original paper describing 

that study.

references

Miura and Takahashi (1974); Julin and Sanders (1978); 

Hansen and Garton (1982); Mayer and Ellersieck (1986);

Liber et al (1994); U.S.EPA (2000)

Kallqvist and Romstad (1994); Kotrikla et al (1997); 

Carrasco and Sabater (1997); Tang et al (1997); 

Berard et al (1999); Rojickova-Padrtova and Marsalek (1999); 

Benhr et al (1997); Okamura et al (2003)

Fairchild et al (1992)

Fairchild et al (1992)

Fairchild et al (1994 and 1998); U.S.EPA (2000)

Dortland (1980); Guzzella et al (1997); U.S.EPA (2000)

Roux et al (1995); Kaur and Ansal (1996)

Dortland (1980); Guzzella et al (1997); U.S.EPA (2000)

Kallqvist and Romstad (1994); Kotrikla et al (1997); 

Carrasco and Sabater (1997); Tang et al (1997); 

Berard et al (1999); Rojickova-Padrtova and Marsalek (1999); 

Benhr et al (1997); Okamura et al (2003)

Kallqvist and Romstad (1994); Kotrikla et al (1997); 

Carrasco and Sabater (1997); Tang et al (1997); 

Berard et al (1999); Rojickova-Padrtova and Marsalek (1999);

Benhr et al (1997); Okamura et al (2003)

U.S.EPA (2000)

n° phytospring1 phytospring2 phytosummer1 phytosummer2 macrophyte zoosmall1 zoosmall2 zoolarge1 zoolarge2 plank. fish pisc. fish toxicant

1 - - 1.48
a

4
a 0.71 4.95 4.95 diflubenzuron

2 2.52 2.13 2.41 - - atrazine

3 - - -0.05
b

-0.05
c

0.28
c esfenvalerate

4 - - -0.05
b

-0.05
c

0.28
c esfenvalerate

5 1.01 1.01 2.74 1.32 - - - metribuzin

6 - - 4.93
b 4.93 0.25 azinphos-methyl

7 - - 3.85 3.60 0.16 fenthion

8 - - 4.93
b 4.93 0.25 0.68-0.74 azinphos-methyl

9 2.52 2.13 2.41 - - atrazine

10 2.70 1.81 - - - - atrazine

11 1.14 1.59 1.59 0.40 - - - linuron

b);

b);

b);

(2000)

(2000)

(2000)a

a

a

a (2000)
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Hall, 1974; Chang et al., 2004). The other ecological interactions are as in chapter IV. The 

ecosystem models of every study were qualitatively calibrated to obtain a plausible succession of 

planktonic events as described above. To obtain this succession of events, growth related 

parameters of the different model populations were changed (appendix XI.6.2-XI.6.9). During this 

calibration, parameter values were constrained in several ways. Changes larger than 20% from 

default values proposed by USEPA (2000a) were not allowed. Maximum photosynthesis rates 

(i.e. PSmax) of spring phytoplankton were set higher than those of large phytoplankton (Knisely 

and Geller, 1986; Müller and Schlegel, 1999). Saturation constants KP and KN were set lower for 

summer phytoplankton species than for spring phytoplankton species to account for the 

competitive advantage summer phytoplankton species have to grow in low-nutrient conditions 

(Sommer et al., 1982). Large zooplankton populations and fish have slower growth kinetics than 

small zooplankton populations, i.e. lower ingestion and mortality rates (Collins and Wlosinski, 

1983; Leidy and Ploskey, 1980). The as such obtained dynamics are used as the control dynamics. 

We then simulated the exposure of the customized ecosystems to the same toxicant concentrations 

as those used in the respective experimental study. Starting date, exposure duration, and number 

of administrations in the simulations were identical to those reported in the respective large-scale 

experiments. Similarly, exposure concentrations were the same as those tested in the considered 

studies. To compare a model population’s biomass in a control treatment with that at different 

exposure concentrations, its biomass concentration in both treatments was averaged during the 

exposure period. Relative differences of a model population’s biomass between the control and 

other treatments were calculated as in chapter IV. As 20% has been suggested as the minimum 

detectable difference in population characteristics in the field (Suter II, 1993), a RD-value of -0.2 

or lower is considered as an observable decrease of a population. Similarly, a RD-value of 0.2 or 

higher can be considered as an observable increase of a population biomass. In the context of 

ecological effect assessment, both increases and decreases of phytoplankton biomass are 

considered undesirable. For macrophytes, invertebrates, and fish, only biomass decreases are 

considered as undesirable.  

 

VI. 2. 5. Derivation of predicted population-no observed effect concentrations (NOECs) 

 

To account for variability (as in IV.2.3) of the used toxicity data (Table VI.2), the customized 

ecosystem models were run in a Monte-Carlo setting (Cullen and Frey, 1999). Using latin 

hypersquare sampling, 100 simulations per concentration were run. The number of shots (100) 

was determined by the rule of convergence (Melching, 1995). Each of these 100 simulations was 
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compared with its control simulation, i.e. with the control treatment, yielding 100 values of RD 

per model population and exposure concentration. From these RD values, one NOEC was derived 

per considered population. The highest exposure concentration at which less than 100 (1- α ) % of 

the simulated RD values were smaller than -0.2 was defined as the NOECα for decrease. 

Similarly, the highest concentration at which less than 100 · (1- α ) % of the simulated RD values 

were larger than 0.2 was defined as the NOECα for increase. The influence of the α-level was 

investigated for α-values between 0.01 and 0.5. All NOECs on a population level are termed 

‘population-NOEC’ in the rest of this chapter. 

Predicted population-NOECs were compared with those observed in the 11 experimental studies. 

Only NOECs describing effects on populations biomass or abundance were considered. Other 

reported NOECs (e.g., number of offspring for fish) were not included. Because NOECs were not 

always provided as such in the 11 considered studies, they had to be derived based on the reported 

results. A rationalization of the as such derived NOECs is provided in the appendix (XI.7).  

In the “results and discussion”-section, predicted population-NOECs which are higher than, equal 

to, or lower than observed population-NOECs, will be termed ‘underprotective’, ‘accurate’, and 

‘conservative’, respectively.  

 

VI. 2. 6. Derivation of predicted ecosystem-NOECs  

 

The ecosystem-NOEC was defined as the lowest population-NOEC. As such, it is assured that 

when exposing an ecosystem to a concentration equal to its NOEC, no model populations will be 

adversely affected. The used terminology (i.e.. ‘accurate’, ‘conservative’, and ‘underprotective’) 

for the description of predictions, relative to observations is the same as in the case of population-

NOECs. 

 

VI. 3. Results and Discussion 

 

VI. 3. 1. Predicted population-NOECs 

 

Predicted and observed NOECs for the different model populations at 0.01 ≤ α ≤ 0.5 are 

summarized in Table VI.1. For studies 1, 5, 7, 8 and 10, predicted population-NOECs were 

independent of α and were equal to the observed ones for 57, 50, 67, 100, and 100% of the model 

populations, respectively.  
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Figure VI.1: (upper 6 panels) Model performance in predicting population-level No Observed Effect 

Concentrations in 6 different studies (2, 3, 4, 6, 9, 11) at alpha-levels ranging from 0.01 to 0.5. Performance is 

expressed as the fraction of model populations for which the NOEC was predicted accurately (A), 

conservatively (C), or underprotective (U). Population-NOECs in the other 5 studies were independent of 

alpha and are given in the text.  

(lower panel) Model performance in predicting ecosystem-level No Observed Effect Concentrations at alpha-

levels ranging from 0.01 to 0.5. Performance is expressed as the fraction of accurate, conservative, and 

underprotective ecosystem-NOECs amongst the 11 studies.  
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When a population-NOEC is independent of α, this means that for this population, at all 

concentrations, the upper simulated 50% confidence region of RD did not encompass -0.2, nor did 

the lower simulated 50% confidence region encompass 0.2. 

In the 6 remaining studies (2, 3, 4, 6, 9, and 11), predicted population-NOECs were up to a factor 

7 lower at α = 0.5 than at α = 0.01. As such, the agreement with observed population-NOECs also 

varied with changing α for these 6 studies (Fig VI.1). For 2 out of these 6 studies (study 9: Juttner 

et al., 1995; study 11: Cuppen et al., 1997 and Van den Brinck et al., 1997) the proportion of 

accurate population-NOEC predictions is never higher than 30%, regardless of α. Amongst the 

other 4 studies, the percentage of accurate predictions tends to increase with increasing α, while 

the percentage of underprotective predictions decreases. Study 6 is the only case in which 

applying a low α results in somewhat better population-NOEC predictions than applying a high α. 

At α = 0.01 and 0.1, model performance in predicting protective population-NOECs is low, as 

indicated by the high number of underprotective predictions for studies 3 and 9. At higher α-

values, the percentage of accurate population-NOECs in studies 2, 3, 4, 6, 9, and 11 was only 

marginally higher, and even slightly lower in the case of study 6. However, the percentage of 

underprotective population-NOECs decreased at increasing α, resulting in a higher proportion of 

conservative population-NOECs. This conservatism can be regarded as the consequence of 

reducing the number of underprotective population-NOECs.  

In Hanratty and Liber (1996), the use of an LC50 estimate for Daphnia magna of 4.5 µg L
-1

 to 

represent cladoceran sensitivity is claimed as the reason for the disagreement between predicted 

and observed population-level effects of diflubenzuron. In this chapter, the poor population-

NOEC predictions by the model in studies 9 (Juttner et al., 1995) and 11 (Cuppen et al., 1997; 

Vandenbrinck et al., 1997) did not seem to originate solely from the less representative toxicity 

data. For study 9, an EC50 of a green algae assemblage was used to represent the sensitivity of all 

phytoplankton not included in the diatom and Cryptophyceae model populations. In study 11, the 

sensitivity of the summer phytoplankton, was represented by a single EC50 of blue-green algae. 

However, a field-derived LC50 had to be used for small zooplankton in absence of laboratory-

derived LC50s in study 1, and in studies 3, 4, 6, and 8, the LC50 of small zooplankton was assumed 

equal to that of large zooplankton. Still, 57, 60, 80, 80, and 100% of population-NOECs were 

predicted accurately (at α = 0.5) in study 1, 3, 4, 6, and 8, respectively. 

Next to the used single-species toxicity data, the aggregation of species into model populations 

within the model is equally important. An example of this can be found in Traas et al (2004b), 

where cladocerans and copepods are modelled as one population, despite their different sensitivity 
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for chlorpyrifos, the chemical evaluated. These authors acknowledge that this aggregation results 

in poor predictions of the effects on this aggregated model population.  

Another possible source of disagreement between model predictions and observed NOECs may 

be type II errors, typically associated with observations from large-scale studies (Brett and 

Goldman, 1996). The apparent absence of observed effects on certain populations in an 

experimental setting may as such result from the high variability of the observations. Hamilton et 

al. (1988) report that in some large-scale experimental settings, reductions up to 50% are the 

smallest significant difference. This percentage will mostly depend on the used sampling 

techniques. For example, in study 3 (Webber et al., 1992), passive fish trapping techniques 

characterized by a large variability were used. Based on these measurements, no significant 

effects on fish biomass were observed, i.e., the NOECfish biomass ≥ 0.69 µg L
-1

 (≥ the highest 

treatment). Whether adverse effects were truly absent or whether this was an artefact of the 

trapping method, is difficult to establish. The predicted NOEC for fish biomass reduction (0.18 µg 

L
-1

) in study 3 should be considered in this context.  

The main advantage of an ecosystem model approach versus currently used (statistical) 

extrapolation (e.g., the species sensitivity distribution, SSD) approaches is that the former can 

account for ecological interactions. These interactions can give rise to indirect toxicant effects 

which can not be predicted from single-species toxicity data alone, but which may be assessed 

through ecosystem model simulations. Indeed, in 8 out of the 11 cases in which populations were 

observed to experience indirect effects in the original study, these indirect effects were correctly 

predicted by our ecosystem model. In studies 1, 3 and 4, phytoplankton biomass was found to be 

higher in ponds treated with an insecticide (study 1: diflubenzuron; study 2 and 3: esfenvalerate) 

than in the control ponds, although the available data did not suggest that phytoplankton is 

directly stimulated by these chemicals. Boyle et al. (1996), Webber et al. (1992), and Fairchild et 

al. (1992) attribute these increases to decreased grazing activity of directly affected zooplankton. 

These increases were predicted correctly by the ecosystem model in all three studies (Table VI.1).  

A reduction of small zooplankton (Chydorus sphaericus, Lecane sp., Mytilana ventralis, 

Polyarthra remata) in field enclosures treated with the photosynthesis-inhibiting herbicides 

metribuzin (study 5) was observed by Brock et al. (2004). Because metribuzin is a herbicide with 

a very specific mode of action, it is unlikely to have affected zooplankton in a direct way. Instead, 

an indirect effect, i.e. a reduction of its food source (spring phytoplankton), may explain this 

observation. The same mechanisms was suggested by Denoyelles et al. (1982; study 10), who 

observed a decrease of large zooplankton when exposed to the herbicide atrazine in experimental 

ponds. These authors demonstrated that this decrease was the result of a decrease in food 
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abundance, i.e. in phytoplankton density. These indirect effects were predicted by the ecosystem 

model in both study 5 and study 10.  

Although the indirect effects observed in studies 9 and 11 were governed by similar mechanisms 

as those described in the previous paragraph, they were not predicted by our ecosystem model. 

However, in both studies model accuracy was generally low (Fig VI.1) as not only indirect but 

also direct toxicant effects were predicted inaccurately.  

Of all population-NOEC predictions considered in this chapter, ≥ 55% were estimated accurately 

at all tested α-levels (0.01 to 0.5). Raising the α-level from 0.01 to 0.5 increased the proportion of 

accurate population-NOEC predictions to 60%. A concurrent increase of conservative predictions 

(from 15 to 26%) was observed and underprotective predictions were reduced from 29 to 14%. 

An increase in α can thus reduce the number of underprotective NOECs and increase the number 

of conservative NOECs bringing the percentage of protective population-NOECs on 86. Note that 

α = 0.5 corresponds to the median of the 100 RD values. This allows to rephrase our definition of 

NOEC for increase of a population to “the highest concentration at which the median of the RD 

values of that population is higher than -0.2.” Similarly, the highest concentration at which the 

median of the RD values of that population is smaller than 0.2 is the NOEC for increase of that 

population.  

The impact of the underprotective population-NOEC predictions on the resulting ecosystem-

NOEC will depend on how these NOECs relate to those of the other model populations in the 

ecosystem. If the NOEC of the most sensitive population is overestimated, i.e. the effect is 

underestimated, the resulting ecosystem-NOEC will also be too high. Hence, it can not be used as 

a “safe” concentration for the considered ecosystem. Overestimation of a population-NOEC 

which is not the lowest observed in the study, will not impede an accurate estimation of the 

ecosystems’ NOEC. Which of these two cases dominates in this validation exercise, will be 

discussed in the next paragraph. 

 

VI. 3. 2. Predicted ecosystem-NOECs 

 

The predicted ecosystem-NOECs of studies 1, 5, 7, 8, and 10 were independent of the α and were 

accurate for studies 1, 7, 8, and 10. For study 5, a conservative ecosystem-NOEC was predicted 

which was 10 times lower than the observed NOEC. Predictions of the other 6 ecosystem-NOECs 

varied with changing α-level. The percentage of accurate predictions increases with increasing α, 

and can reach 63% at α = 0.5. As for the predicted population-NOECs, the percentage of 

underprotective ecosystem-NOECs decreased with an increasing number of conservative 
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estimates at α = 0.5 (Fig VI.1). At α = 0.01, nearly 20% of the predicted ecosystem-NOECs were 

underprotective. At α = 0.5, the model predicted the same ecosystem-NOEC as the observed value 

for 7 of the 11 considered studies (i.e., in 63% of the studies). Predicted ecosystem-NOECs were 

never higher than the observed values at this α-level, i.e. they were never underprotective. This 

indicates that the 14% of underprotective population-NOEC predictions at α = 0.5, as derived in 

the previous paragraph, did not result in underprotective ecosystem-NOEC predictions. Hence, 

the model populations for which the predicted NOECs were too high were not the most sensitive 

populations in the considered studies. The NOECs of the most sensitive model populations were 

predicted accurately, or were conservative. This agrees with the finding that this type of 

ecosystem models predicts effects more accurately at low toxicant concentrations, i.e. the 

concentration range in which the most sensitive populations are affected, than at intermediate 

concentrations (Bartell et al., 1992). Based on our simulations, or on literature, it is impossible to 

explain this phenomenon with a true causal relationship.  

For studies 5, 6, 9 and 11, a conservative ecosystem-NOEC was predicted which was 4 to 30 

times lower than the observed value. In a similar validation study with the comprehensive aquatic 

systems model (CASM), Naito et al. (2003) found that most of the predicted ecosystem-NOECs 

were a factor 100 lower than the observed ones. The lower factor found in the present study (10-

20) may result from customizing the considered ecosystems, i.e. from the inclusion of the relevant 

model populations. The CASM model features one specific ecosystem, the Lake Suwa ecosystem. 

It was tested if this shallow lake ecosystem could be used as a model for other experimental 

systems. It is logical that the latter approach results in less accurate estimates than the 

methodology established in this thesis. Because of the importance of indirect effects, resulting 

from a combination of inherent sensitivities and ecological interactions, implementing the 

relevant populations is crucial, from an ecological point of view.  

The incorporation of ecological interactions by applying the presented ecosystem model resulted 

in rather accurate predictions of ecological effects of chemicals, both on a population- and 

ecosystem-level. It should be recognized though that the proposed modelling approach can only 

increase ecological realism to a certain extent. Morphological and behavioural changes in 

zooplankton, altering their vulnerability to fish predation, and reduction of stress tolerance of 

populations in time are examples of insecticide effects which are not included in this modelling 

approach (for examples, see references in Hanazato, 2001). It should be clear that such 

phenomena can not be accounted for by the proposed modelling technique.  

Although the current modelling technique does, technically spoken, allow incorporation of 

benthic populations, parameterization of such objects would be difficult. As demonstrated by 
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Vadeboncoeur and Vander Zanden (2002), the frequency of publication on primary producers, 

heterotrophic bacteria, and invertebrates was on average 10 times lower for benthic habitats than 

for pelagic habitats. As a consequence, the ecological relationships between benthic and pelagic 

populations are less well understood, let alone how human-induced stress may alter them (Lake et 

al., 2000).  

 

VI. 4. Conclusions 

 

No observed effect concentrations (NOECs) of 60% of all considered populations were predicted 

accurately in a total of 11 micro- and mesocosm studies by the developed ecosystem model. Only 

14% and 26% of all population-NOECs were predicted too high or too low (underprotective or 

conservative), respectively. The predictive capacity of the ecosystem model was influenced by the 

α-level used to derive NOECs from raw model outputs. From this validation study, it becomes 

apparent that an α-level of 0.5 benefits the NOEC-predictions. At lower α-levels (e.g., 0.01), the 

amount of conservative NOEC-predictions was lower (15%), but the proportion of 

underprotective NOEC-predictions was higher (29%) than at α = 0.5, which is equivalent with 

taking the median of the Monte-Carlo outputs. Compared to the use of α = 0.01, using α = 0.5 can 

reduce the amount of underprotective NOECs at the cost of a slightly higher amount of 

conservative NOECs. Predicted ecosystem-NOECs were never larger than the experimental 

NOECs at α = 0.5, i.e. they were never underprotective. Because only single-species toxicity data 

are needed to successfully apply this modelling technique, it can serve as an ecology-based 

alternative for extrapolation approaches without any additional data needs.  
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Chapter VII 

 

Do we have to incorporate ecological interactions in the sensitivity assessment 

of ecosystems? An examination of a theoretical assumption underlying species 

sensitivity distribution models. 

 

Abstract - Species sensitivity distributions (SSDs) are statistical distributions which extrapolate 

single-species effect data to ecosystem effects. This SSD approach assumes that ecological 

interactions between populations do not influence the sensitivity assessment of ecosystems. The 

validity of this assumption in a simple freshwater lentic pelagic ecosystem was tested. For each of 

a 1000 hypothetical toxicants, a lognormal SSD was fitted to chronic single-species EC10s of the 

species present. As such, these distributions did not account for ecological interactions and are 

therefore termed ‘conventional SSDs’ (cSSDs). Next, sensitivity distributions that did take into 

account ecological interactions were constructed (eco-SSD) for the same 1000 toxicants, using a 

validated ecosystem model. For 254 of the 1000 hypothetical toxicants, mean and/or variance of 

the cSSD were significantly higher than mean and/or variance of the eco-SSD, as such rejecting 

the general validity of the tested assumption. A classification tree approach indicated that 

especially toxicants which directly affect phytoplankton (i.e. herbicides) may have a higher mean 

for cSSD than for eco-SSD. Conversely, means of eco-SSD and cSSD are equal for toxicants 

directly affecting zooplankton and fish. For the 254 hypothetical toxicants for which the tested 

assumption was false, a predicted no effect concentration (PNEC) calculated with an application 

factor of 10 was on average a factor 10 lower than the corresponding ecosystem-NOEC calculated 

by the ecosystem model. If more assumptions underlying SSD models would be tested, the 

implications of applying the SSD approach for the protective capacity of resulting PNECs could 

be examined. 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Vanrolleghem, P.A., Janssen, C.R. Do we have to 

incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination 

of a theoretical assumption underlying species sensitivity distribution models. Environment 

International, accepted. 
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VII. 1. Introduction 

 

Ecological effect assessments aim at evaluating or predicting the effects of a chemical substance 

on the structure and function of ecosystems. In environmental risk assessments, these “higher-

level effects” are usually estimated by extrapolation of single-species effect data. Statistical 

models are used to perform such extrapolations and are known as ‘species sensitivity 

distributions’ (SSDs). A set of assumptions is associated with both the underlying theory and the 

application of SSDs (Table I.2). These assumptions can be divided into (1) T-assumptions, i.e. 

related to the theory underlying the SSD methodology, and (2) P-assumptions, i.e. related to the 

way the SSD methodology is applied in practice (Forbes and Calow, 2002). Several authors have 

examined these assumptions experimentally (e.g., Duboudin et al., 2004a; Hose and van den 

Brink, 2004, Versteeg et al., 1999). However, it has been more common to investigate the 

implications of a violation of an assumption for water quality standard derivation (e.g., Duboudin 

et al., 2004a; Forbes et al., 2001; Hose and van den Brink, 2004; Maltby et al., 2005) than to test 

the validity of the assumption itself (e.g. Newman et al., 2000; Selck et al., 2002). Also, most 

efforts are skewed towards the testing of ‘P-assumptions’ (e.g., Kefford et al., 2005; Maltby et al., 

2005; Duboudin et al., 2004a; Forbes et al., 2001; Hose and van den Brink, 2004). Studies on 

assumptions related to the theoretical background of SSDs, i.e. ‘T-assumptions’ are scarce. Until 

now only assumption T3, i.e. that ecosystem structure is equally or more sensitive than ecosystem 

function, has been tested (Selck et al., 2002; Balczon and Pratt, 1994). 

In this chapter, the assumption T1 will be tested, i.e. that ecological interactions between species 

do not influence the parameters of the sensitivity distribution. A conventional SSD is based on 

single-species toxicity test results (hereafter termed ‘cSSD’) and considers species as isolated 

entities without taking into account possible ecological interactions between populations. If 

ecological interactions between species do not influence the sensitivity distribution (i.e. if T1 is 

valid), a sensitivity distribution that does take into account ecological interactions should be the 

same as the cSSD, i.e. parameters describing both distributions should be the same.  

In the present study we constructed cSSDs for 1000 hypothetical toxicants. Each cSSD was based 

on single-species toxicity test results of phytoplankton, zooplankton, and fish. In parallel, 

sensitivity distributions taking into account ecological interactions between species, here termed 

“eco-species sensitivity distributions” (eco-SSDs) were constructed for the same 1000 toxicants. 

Eco-SSDs were based on no observed effect concentrations for the populations present in the 

ecosystem, as such taking into account ecological interactions. These population-NOECs were 

calculated by the ecosystem modelling approach which was validated in chapter VI. A 
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comparison between the parameters of eco-SSDs and cSSDs was performed to test assumption 

T1. Statistical analyses were used to examine the relationship between validity of T1 and toxicant 

type. 

 

VII. 2. Materials and Methods 

 

VII. 2. 1. Considered ecosystem  

 

The ecosystem for which hypothesis T1 was tested is a simple lentic pelagic system consisting of 

a population of one fish species, three zooplankton species (two are slow growing, one is fast 

growing) and two phytoplankton species (one is slow growing, one is fast growing). Slow 

growing populations tend to bloom in summer, while fast growing populations primarily bloom in 

spring and fall (Sommer et al., 1986).  

 

VII. 2. 2. Ecosystem model 

 

A mechanistic dynamic ecosystem model was constructed using the object oriented framework 

elaborated in chapter III. The ecosystem used in the present study included two phytoplankton 

objects (spring phytoplankton and summer phytoplankton), three zooplankton objects (rotifers: 

fast growing; large cladocerans: slow growing; large copepods: slow growing), and one 

planktivorous fish object. Ecological interactions within the planktonic part of the ecosystem 

model were defined following Sommer et al. (1986). These authors state that large-bodied 

zooplankton (most copepods and cladocerans) graze on both small and large phytoplankton, while 

small-bodied zooplankton can only ingest small phytoplankton. Planktivorous fish preferred 

large-bodied over small-bodied zooplankton as food source (Werner and Hall, 1974; Chang et al., 

2004). The resulting customized food web is shown in Fig VII.1.  

The ecosystem model was calibrated to obtain a realistic succession of seasonal events for this 

type of system, as described in chapter IV and in Sommer et al. (1986). Parameter values 

resulting in population dynamics representing those events are given in the appendix 

(XI.6.10).The toxic effect sub-models embedded in the ecosystem model, consist of logistic 

concentration-effect functions describing the effects of the toxicants on the parameters of the 

ecosystem model. Modelling the dynamics of an exposed ecosystem is performed by adjusting 

these parameters according to the concentration-effect functions and the exposure concentration. 

Parameters in the ecosystem model that vary as a function of toxicant concentration are (1) the 
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mortality rate of zooplankton and fish, and (2) the photosynthesis rate of phytoplankton. An 

overview of the equations and the values assigned to their parameters is given in Table VII.1.  

 

 

Figure VII.1: Food web diagram of the considered ecosystem. Nodes represent the populations present and 

lines represent trophic links between them. The preference of a population for feeding on a connected 

population is given by the preference factor alongside the connection. Zooplankton and phytoplankton are 

coded by “zoo” and “phyto”. “Small” and “large” indicate dimensions of zooplankton organisms. “Spring” 

and “summer” indicate when the considered phytoplankton population blooms. 

 

Table VII.1: Equations used in the toxic effect sub-models of the applied ecosystem model, with parameter 

names as in appendix XI.4 and in the list of abbreviations. time = duration of toxicity assay (d), set to two days 

for all zooplankton and fish. Values for LCR (6.1 for zooplankton and 9.5 for fish) were found in Lange et al. 

(1998). Values for slope (1.8 for all populations) were found in Smit et al. (2001). EC10 values were randomized 

(see methodology). 

Phytoplankton: effect on photosynthesis  Zooplankton and fish: effect on mortality  
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VII. 2. 3. cSSD vs. eco-SSD for one hypothetical toxicant 

 

Assume that for a toxicant tx1, all chronic EC10s of all possible aquatic species, are represented by 

a lognormal species sensitivity distribution SSD1 with a mean µ1 and a standard deviation σ1: 

SSD1 ~ (µ1, σ1) 

As for any toxicant, the parameters of SSD1 are not known, as it is impossible to subject each and 

every species to toxicity testing. Instead, these parameters have to be estimated experimentally by 

testing the sensitivity of only a small fraction of all possible species. It was thus assumed that for 

tx1, chronic EC10s had been experimentally derived for standard test species which are 

representative for the populations in the considered ecosystem. As too little is known about the 

sensitivity of standard test species relative to that of untested species, 6 EC10s were sampled 

randomly from SSD1. To estimate the parameters of the “true” SSD1, a conventional species 

sensitivity distribution (cSSD1) was fitted to this set of 6 EC10s:  

 

cSSD1 ~ )ˆ,ˆ( 11 σµ  with: 

E[ 1µ̂ ] = µ1 

E[ 1σ̂ ] = σ1 

 

Next, the same 6 EC10s were used in the toxic effect sub-models of the 6 populations in the 

ecosystem model (Table VII.1). With the as such parameterized ecosystem model, the dynamics 

of these populations at different exposure concentrations of tx1 were predicted. Exposure 

concentrations ranged from the 1
st
 to the 95

th
 percentile of SSD1. The exposure period was from 

late spring to late summer, i.e. comparable to many large-scale studies. To compare the biomass 

status of a population in the unexposed (control) situation with its status at the different exposure 

concentrations, relative differences (RDs) were calculated, as demonstrated in chapter IV. 

Because 20% is the minimum detectable difference for most population characteristics in the field 

(Suter II, 1993), RD-values of -0.2 or lower were considered as detectable decreases of biomass. 

Similarly, RD-values of 0.2 or higher were considered as detectable increases of biomass. In the 

context of ecological effect assessments, both increases and decreases of phytoplankton biomass 

were considered undesirable: the former because of an increased eutrophication risk, the latter 

because of a loss of primary production, a key process in pelagic aquatic ecosystems. For fish and 

zooplankton, biomass decreases were considered as undesirable. The no observed effect 

concentration (NOEC) of a population, hereafter termed ‘population-NOEC’, was defined as the 
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highest concentration at which no observable undesired effects was predicted for that population. 

Note that these population-NOECs were determined using an ecosystem model, as such 

incorporating ecological interactions in this NOEC. A cumulative plot of those 6 population-

NOECs was defined as the eco-species sensitivity distribution for tx1 (eco-SSD1): 

 

eco-SSD1~ (µ1,eco, σ1,eco)  

 

Using these definitions, the hypothesis T1 was rephrased as: 

 

1µ̂  = µ1,eco Λ 1σ̂  = σ1,eco  

 

Consequently, the validity of T1 was tested for tx1 using two-sided t and F-tests and a p-level of 

0.05. 

 

VII. 2. 4. Extension to 1000 hypothetical toxicants 

 

The methodology described in the previous paragraph was followed for toxicants txi from tx1 to 

tx1000. SSD1 to SSD1000 differed in mean but had the same standard deviation (σ1 = σ2 = …= σi = 

… = σ1000 = 1). A standard deviation of one order of magnitude is representative for SSDs of 

many chemicals (e.g. examples in Duboudin et al., 2004b). The means of the 1000 toxicants were 

sampled from a lognormal distribution with mean -0.43 and standard deviation 0.92. These 

variability settings were calculated from Gonzalez-Doncel et al. (2006) from means and standard 

deviations of NOEC values of fish (n = 343), crustaceans (n = 414), and algae (n = 186) for all 

toxicants included in different toxicity databases. 

 

VII. 2. 5. Comparing ‘safe concentrations’ derived from cSSD with ecosystem-NOECs 

derived from the ecosystem model. 

 

We tested if ‘safe concentrations’ derived from a cSSD, i.e. not accounting for ecological 

interactions, were different from their corresponding ecosystem-NOECs, i.e. accounting for 

ecological interactions. 

A predicted no effect concentration (PNEC) based on the cSSD was established by means of two 

frequently used methods: (1) using the lowest of the 6 chronic single-species EC10s (which 
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represent three trophic levels), divided by an application factor of 10 (AF-PNEC). and (2) the left 

side 50% confidence limit of the hazardous concentration for five percent of the species (HC5-

PNEC), as in Wagner and Lokke (1991). Note that the AF-PNEC was derived based on EC10 data, 

in absence of single-species NOEC data, as proposed by the TGD (EU, 2003). The ecosystem-

NOEC was defined as the lowest population-NOEC in the eco-SSD: when exposed to this 

ecosystem-NOEC, no population will experience an observable biomass decrease, according to 

ecosystem model predictions. 

 

VII. 2. 6. Relationship between toxicant type and validity of T1 

 

Here, we examined whether the validity of T1 is related to the type of toxicant. Toxicant type was 

arbitrarily defined here on the basis of the relative sensitivity of the considered species for the 

toxicant. In this context, the relative sensitivity is defined by the following two quantities: 

 

rPZ = log (EC10,phytoplankton) - log (EC10,zooplankton) 

rZF = log (EC10,zooplankton) - log(EC10,fish) 

 

with log(EC10,phytoplankton) and log(EC10,zooplankton) equal to the logarithm of the geometric mean of 

the EC10 values of the two phytoplankton and three zooplankton species, respectively. These 

quantities are an indication of which species are directly targeted by the toxicant. For example, a 

toxicant with a value of -2 for rPZ (EC10,phytoplankton is two orders of magnitude smaller than 

EC10,zooplankton) directly targets phytoplankton; e.g. a herbicide. We examined if the validity or 

violation of T1 was related to toxicant type, i.e. to rPZ and rZF. This was performed using two 

associated statistical approaches: discriminant analysis and classification trees. 

A stepwise discriminant function analyses (Jennrich, 1977) was used to determine which variable 

(rPZ and rZF) discriminates best between two or more naturally occurring groups. In a first 

analysis, these variables were rPZ and rZF and the two groups were toxicants txi for which the 

means of cSSD and eco-SSD are equal ( iµ̂  = µeco,i; group 0) and those for which the means of 

cSSD and eco-SSD differ ( iµ̂  ≠ µeco,i; group 1). In a second analysis, the variables were again rPZ 

and rZF, but now, the two groups were toxicants txi for which the standard deviations of cSSD and 

eco-SSD are equal ( iσ̂  = σi,eco; group 2) and those for which the standard deviations of cSSD and 

eco-SSD differ ( iσ̂  ≠ σi,eco; group 3). Table VII.2 lists these groups. Partial lambda values were 

calculated for rPZ and rZF to indicate the discriminating power of these two variables. A partial 

128



Chapter VII: Do ecological interactions change the sensitivity distribution? 

lambda value of 0 indicates a perfect discriminative power, and 1 indicates no discriminative 

power at all. 

Next, a classification tree based on rPZ and rZF was build in order to classify toxicants into groups 

0 and 1, using the CART-style (Breiman et al., 1984) exhaustive search for univariate splits 

(Statsoft, Tulsa OK). The same was done to classify toxicants into groups 2 and 3. These trees 

were constructed using two-third of the 1000 toxicants (training-set). Split conditions were 

calibrated to maximize the amount of correctly classified training-set toxicants. Afterwards, the 

remaining one-third (test-set) of the 1000 toxicants, i.e. not used in the tree development, was 

used as a cross validation of these split conditions. The results of this cross-validation reflect the 

predictive capacity of the constructed trees. Note that the ratio of group 0 toxicants vs. group 1 

toxicants was equal between training-set and test-set, as demanded by the classification tree-

methodology. This was also the case for the ratio of group 2 toxicants vs. group 3 toxicants. Prior 

probabilities were estimated from the simulated data, and misclassification costs were equal for 

all classes. As goodness-of-fit, a Gini measure was selected, as proposed by Breiman et al, 

(1984). The stopping rule was set as ‘pruning on misclassification error’ with parameters 

‘standard error’ and ‘n’ equal to 1 and 5, respectively. 

 

Table VII.2: The characteristics of the four groups used for statistical analysis of toxicant type vs. validity of 

T1. 

group characteristic 

0  

1  

2  

3  

 

 

VII. 3. Results and Discussion 

 

VII. 3. 1. Mean and variance of cSSD and eco-SSD 

 

For 254 of the 1000 toxicants, the mean and/or variance of the eco-SSD were significantly 

different from those of the corresponding cSSD. In 190 cases, the mean of the cSSD was 

significantly different from that of the eco-SSD. In 94 cases, the variance of the cSSD was found 

to be significantly different from that of the eco-SSD. In 30 cases, both mean and variance of the 

cSSD were found to be significantly different from those of the eco-SSD. In an a posteriori re-

analysis, one-sided t and F-testing revealed that all significant differences indicated higher means 
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and standard deviations for cSSD than for eco-SSD, i.e.: iµ̂  > µeco,i and iσ̂  > σi,eco . Therefore, in 

the results of the discriminant analysis and decision tree approach, groups 0 and 1 were redefined 

as toxicants for which iµ̂ = µeco,i and those for which iµ̂ > µeco,i, respectively. Similarly, groups 2 

and 3 were redefined as toxicants for which iσ̂ = σi,eco and those for which iσ̂ > σi,eco, respectively. 

The difference  between iµ̂  and µeco,i was on average 0.6 log-units and the difference between iσ̂  

and σi,eco was on average a factor of 3. Power analysis (Statistica software, Statsoft, Tulsa, Ok) of 

the t and F-tests with α = 0.05 and N=6 revealed that the statistical power of detecting such 

differences was about 0.8.  

The reason that for none of the 1000 toxicants iσ̂  was found to be lower than σi,eco has to be 

sought in the inclusion of ecological interactions in the eco-SSD. Indirect effects caused by 

ecological interactions make the sensitivity of the considered populations interdependent. Fleeger 

et al. (2003) cite 47 experimental large-scale studies in which effects on one or more pelagic 

populations indirectly affect other pelagic populations, and hence make sensitivities of the species 

present interdependent. For example, Hamilton et al. (1988) found that a reduction of the 

abundance of phytoplankton species by the herbicide atrazine resulted in a parallel decrease of 

ecologically related zooplankton species, although the latter were not directly affected by the 

toxicant at the tested concentrations. Van Donk et al. (1995) noticed an increase of phytoplankton 

because of reduced zooplankton grazing pressure after application of the insecticide chlorpyrifos. 

In the context of the present study, this should be interpreted as follows: in a cSSD for “a 

herbicide”, the EC10s of zooplankton species are located in the higher percentiles, as those are not 

directly targeted by the toxicant. In contrast, in an eco-SSD for a herbicide, the population-NOEC 

of the zooplankton is located close to the population-NOECs of their food (phytoplankton). The 

same reasoning can be followed in the case of an insecticide, where ecological interactions will 

bring the population-NOEC of phytoplankton populations close to the population-NOECs of the 

ecologically related zooplankton populations. These shifts in sensitivity explain the lower 

variance of eco-SSDs compared to the cSSDs.  

 

VII. 3. 2. Comparing ‘safe concentrations’ derived from cSSD with ecosystem-NOECs 

derived from the ecosystem model 

 

PNECs derived with an application factor (AF-PNECs) were, on average, 10 times lower than the 

corresponding ecosystem-NOECs. For 769 of the 1000 considered toxicants, HC5-PNECs were 

found to be, on average, a factor 3 lower than the corresponding ecosystem-NOECs. For 95 of the 
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190 toxicants for which only the iµ̂  > µeco,i, the HC5 was larger than the ecosystem-NOEC. For all 

toxicants for which only iσ̂ > σi,eco, the HC5 was found to be smaller than the ecosystem-NOEC. 

For 28 of the 30 toxicants for which both iµ̂  > µeco,i and iσ̂  > σi,eco, the HC5 was larger than the 

ecosystem-NOEC.  

In a comparison of HC5s derived from SSDs with experimentally derived ecosystem-NOECs, 

Versteeg et al. (1999) found the former to be consistently lower than the latter, a finding which is 

also observed by Hose et al. (2003) and Selck et al. (2002). However, in a comparison of HC5s 

with ecosystem-NOECs for 6 insecticides, Maltby et al. (2005) found the latter to be lower than 

the former for continuous exposure to lindane and fenvalerate.  

In summary, literature indicates that, although cases exist in which the HC5 is higher than an 

experimentally derived ecosystem-NOEC, these cases are scarce. The probability that this will 

occur is probably lower than what the results in this chapter suggest. A reason for this might be 

that in the cited studies, cSSDs were constructed using more species than those present in the 

experimental ecosystem study. For example, Selck et al. (2005) included single-species fish ECxs 

to construct cSSDs for LAS and TBT. A subsequent comparison with NOEC data obtained in 

ecosystem-level studies without fish revealed a highly protective HC5s. For that reason, Posthuma 

et al. (2002) have suggested to carefully consider the composition of the ecosystem to be 

protected when constructing a cSSD. In our work, EC10s in the cSSD were assumed to be 

representative for the sensitivity of the species in the considered ecosystem model. As such, it was 

possible to test T1, and exclude possible effects of species composition of the cSSD.  

 

VII. 3. 3. For which toxicants is T1 valid?- discriminant analysis approach 

 

When rPZ and rZF values of the 1000 considered toxicants are plotted (Fig VII.2), it appears that 

the power to discriminate between group 0 toxicants (i.e. for which iµ̂  = µeco,i) and group 1 

toxicants (i.e. for which iµ̂  > µeco,i) is larger for rPZ than for rZF. Group 1 toxicants are primarily 

located left from rPZ = 0, while group 0 toxicants are located slightly more to the right of rPZ = 0. 

Indeed, the partial lambda values of rZF (0.89) and rPZ (0.68 (< 0.89)) indicate that rPZ has more 

power to discriminate between both groups of toxicants than rZF. This means that one can a priori 

classify a toxicant in group 0 or 1, based on the rPZ value of that toxicant. Since the rPZ value is 

simply log (EC10,phytoplankton) - log (EC10,zooplankton), two toxicity test results (EC10,phytoplankton and 

EC10,zooplankton) are sufficient to classify a toxicant in group 0 or group 1.  
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Figure VII.2: A: Scatterplot of the 1000 considered toxicants based on their rPZ and rZF value. A black 

diamond indicates that iµ̂   > µeco,i for that toxicant. A white square indicates that iµ̂  = µeco,i for that toxicant. 

B: Scatterplot of the 1000 considered toxicants as a function of their rPZ and rZF value. A black diamond 

indicates that iσ̂  > σeco,i for that toxicant. A white square indicates that iσ̂  = σeco,i for that toxicant. A dashed 

line indicates rPZ = 0 in both plots. 

 

In contrast, rPZ and rZF have no power at all to discriminate between group 2 (i.e. for which iσ̂  = 

σi,eco) and group 3 toxicants (i.e. for which iσ̂  > σi,eco), as reflected by partial lambda values of 

0.99 (≈ 1) for both rPZ and rZF.  
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VII. 3. 4. For which toxicants is T1 valid?- classification tree approach 

 

The classifying capacity of rPZ and rZF using classification trees is reflected by the number of 

correctly classified toxicants within the training-set (Fig VII.3). The comparison of correctly and 

erroneously classified training-set toxicants within an end node, reflects the probability of a 

correct classification. As such, toxicants classified in end nodes marked with an asterisk (Fig 

VII.3), have a probability of ≥ 90% of being classified correctly. The importance of rPZ in 

distinguishing group 0 from group 1 toxicants, as suggested by the discriminant analysis, is 

confirmed by this classification tree, where rPZ determines the first split, and hence has the most 

influence on the resulting classification of a toxicant.  

 

Figure VII. 3: Classification tree predicting if iµ̂  > µeco,i (coded class “1”) or if iµ̂  = µeco,i (coded class “0”) 

based on combinations of rPZ and rZF. If a split condition (ellips) is fulfilled, this results in a continuation to the 

left branch. The tree is followed until an end node is reached (box). This end node gives the resulting 

classification (underlined). The number of training-set toxicants which were correctly and erroneously 

classified using these split conditions are also given in these end nodes. Toxicants classified in end nodes 

marked with an asterisk, have a probability of ≥ 90% of being classified correctly. The dashed line indicates 

the pathway for a toxicant for which rPZ = 2. The dotted line indicates the pathway for a toxicant for which rPZ 

= -2 and rZF = 0 . 

 

The subsequent cross-validation of this classification tree indicates that the tree also has some 

predictive power for the test-set toxicants. Within the test-set, 63% of the group 1 toxicants were 

classified correctly by the tree. Also, 93 % of the group 0 toxicants within the test-set were 
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classified correctly by the tree. Note that these test-set toxicants were not used in the construction 

of the classification tree.  

Van den Brink et al. (2006) found that the HC50s of chronic invertebrate-SSDs for herbicides are 

on average two orders of magnitude higher than those of chronic phytoplankton-SSDs for 

herbicides, i.e. that rPZ = -2 for many herbicides. In the same study, the difference between 

invertebrate and fish-HC50s was found to be < 1 order of magnitude, i.e. corresponding to rZF = 0. 

Hence, it can be safely hypothesised that toxicants primarily targeting phytoplankton have rPZ = -2 

(EC10s of zooplankton are two orders of magnitude higher than those of phytoplankton), and rZF = 

0 (EC10s of zooplankton and fish are equal). From the classification tree, it becomes apparent that 

those toxicants may have iµ̂  > µeco,i, as indicated by the dotted line in Fig VII.3. Thus, for these 

toxicants, T1 is not valid. The mean ecosystem sensitivity for herbicides, given by µeco,i, may not 

be reflected by the mean of the cSSD. Hence, the applications of the cSSD approach for 

herbicides may lead to inaccuracies caused by differences in distribution parameters. Conversely, 

toxicants primarily targeting zooplankton and fish (e.g. rPZ = 2 and rZF = 0), would have iµ̂ = µeco,i, 

as indicated by the dashed line in Fig VII.3. This suggests that, for these toxicants, the mean of 

eco-SSD and cSSD are comparable. An explanation for the different results obtained for both 

toxicant types may be found in the number of populations experiencing food web-mediated 

indirect effects. Toxicants primarily targeting phytoplankton, can give rise to a reduction of 

zooplankton resulting from a decrease in available phytoplankton biomass. A reduction in fish 

biomass can be observed as a second-order indirect effect. Because a cSSD approach would 

categorize the phytoplankton as the trophic level being mostly affected by the toxicant, it ignores 

possible (indirect) effects on two trophic levels. Conversely, in case of toxicants targeting 

zooplankton and fish, a cSSD approach categorizes both zooplankton and fish as being affected, 

thereby only ignoring possible (indirect) effects on one trophic level, i.e. on phytoplankton. These 

considerations seem to justify earlier suggestions to only incorporate organisms from sensitive 

trophic levels in the cSSD (e.g. Posthuma et al., 2002). However, while these earlier suggestions 

have mainly been based on statistical considerations (i.e. the violation of the assumption of 

(log)normality of SSDs that include both sensitive and insensitive species), our present simulation 

study seems to justify these suggestions from an ecological point of view. Indeed, incorporating 

species in an SSD which are not directly targeted by the toxicant (e.g. zooplankton in the case of 

herbicides), reflects the erroneous idea that those species are also not affected in an ecosystem 

context. Consequently, the mean of such a cSSD will be higher than a cSSD only consisting of 

sensitive species. Schmitt-Jansen and Altenburger (2005) have shown that the mean of a cSSD for 
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a herbicide containing only phytoplankton species (i.e. sensitive for the herbicide) agreed well 

with the mean sensitivity of those species within an ecosystem. 

A similar classification tree approach for σ did not result in any classifying nor predictive power, 

because of the limited fraction of toxicants in group 3. The difference between standard deviations 

of cSSD and eco-SSD does not necessarily make the eco-SSD more conservative than the cSSD. 

The lower percentiles of the cSSD will still be lower than the lower percentiles of the eco-SSD 

(Fig VII.4B). In contrast, the opposite may hold when the mean of the eco-SSD is lower than the 

mean of the cSSD (Fig VII.4A). However, this will depend on the chosen percentile of a cSSD 

(i.e. what “y” is in “HCy”) to derive a PNEC. When both mean and standard deviation are lower 

for eco-SSD than for cSSD (Fig 4C), it is difficult to a priori predict how this will influence the 

protective capacity of a cSSD. Yet, the different locations of cSSD and eco-SSD, as indicated by 

the difference between iµ̂  and µ i,eco should primarily be regarded as an indication of the violation 

of T1 for a substantial amount (25%) of toxicants. Although the possible implications of this 

violation for the protective capacity of a cSSD give valuable insights, underlying assumptions of 

the SSD approach are many (Table I.2). Hence, the protective capacity of this approach will 

depend on the validity of all of these assumptions, and not only on the validity of the assumption 

examined here.  

 

Figure VII.4: Visualisation of possible differences between parameters of cSSD (bold line) and eco-SSD 

(dashed line): A: iµ̂  > µeco,i; B: iσ̂   > σeco,i; C: iµ̂  > µeco,i Λ iσ̂  > σeco,i.  
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VII. 4. Conclusions 

 

For 254 of the 1000 toxicants, the mean and/or variance of the eco-SSD were significantly lower 

than those of the corresponding cSSD. In 190 cases, the mean of the cSSD was significantly lower 

than that of the eco-SSD. These 190 cases predominantly represented toxicants directly targeting 

phytoplankton (i.e. EC10,fish ≈ EC10,zooplankton >> EC10,phytoplankton). In contrast, for toxicants directly 

targeting zooplankton and fish (EC10,fish ≈ EC10,zooplankton << EC10,phytoplankton) the mean of the eco-

SSD tends to be equal to that of a cSSD. In 94 cases, the variance of the eco-SSD was found to be 

significantly lower than that of the cSSD. In 30 cases, both mean and variance of the eco-SSD 

were found to be significantly lower than those of the cSSD. Hence, it can be concluded that, 

depending on toxicant type, sensitivity distributions may have a lower mean when ecological 

interactions are accounted for than when they are constructed in a conventional way, i.e. without 

ecological interactions. The tested assumption T1 is thus not valid for all toxicants. 
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Chapter VIII 

 

Is ecosystem structure the target of concern in ecological effect assessments? 

An examination of a theoretical assumption underlying species sensitivity 

distributions. 

 

Abstract - Species sensitivity distributions are statistical distributions used to derive 

environmentally “safe” concentrations of chemicals. Associated with the underlying theory and 

the practical application are a set of inadequately tested assumptions. One of these assumptions is 

that ecosystem structure is as or more sensitive than ecosystem function, i.e. that structure is the 

target of concern. In this chapter, we tested this assumption for a simple freshwater ecosystem 

exposed to different toxicants. Using an ecosystem model we calculated no observed effect 

concentrations for ecosystem structure (ecosystem structure-NOECs) and function (ecosystem 

function-NOECs) for each of 1000 hypothetical toxicants. For 979 of these toxicants, the 

ecosystem structure-NOEC was lower than or equal to the ecosystem function-NOEC, indicating 

that the tested assumption can be considered valid. For 239 of these 979 toxicants, both NOECs 

were equal. For half of the 1000 toxicants, structure of lower trophic levels (i.e. phytoplankton) 

appears to be more sensitive than structure of higher trophic levels (i.e. fish). As such, ecosystem 

structure-NOECs are primarily determined by the sensitivity of the structure of lower trophic 

levels. In contrast, ecosystem functions associated with higher trophic levels (e.g., total ingestion 

by fish) are more sensitive than functions associated with lower trophic levels (e.g., total 

photosynthesis by phytoplankton) for 749 toxicants. Top-down regulation of ecosystem structure 

and cascading of effects from lower trophic level ecosystem functions to higher trophic level 

ecosystem functions are suggested as possible explanations for these two contrasting findings. 

 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Vanrolleghem, P.A., Janssen, C.R. Is ecosystem 

structure the target of concern in ecological effect assessments? An examination of a theoretical 

assumption underlying species sensitivity distributions. Environmental Science and Technology, 

submitted. 
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VIII. 1. Introduction 

 

In ecological effect assessments, higher-level effects are usually estimated by extrapolation of 

single-species toxicity test results. If sufficient single-species toxicity test results are available, 

statistical models, termed ‘species sensitivity distributions’ (SSDs) are used to perform this 

extrapolation. A set of assumptions is associated with both the underlying theory (‘T-

assumptions’) and the application of SSDs (‘P-assumptions’) (Table I.2), as discussed in detail by 

Forbes and Calow (2002). Several authors have examined these assumptions experimentally (e.g., 

Duboudin et al., 2004a; Hose and van den Brink, 2004, Versteeg et al., 1999). However, these 

efforts have been focused on testing the P-assumptions (e.g., Keffort et al., 2005; Maltby et al., 

2005; Duboudin et al., 2004a; Forbes et al., 2001; Hose and van den Brink 2004), rather than on 

testing the T-assumptions (Selck et al., 2002; Balczon and Pratt, 1994). Yet, the underlying theory 

is of fundamental importance for the SSD concept. While the way in which SSDs are applied can 

be customized according to the specific effect assessment, the underlying T-assumptions cannot 

as they are an inherent part of the SSD concept. Indeed, proper application of a methodology may 

still result in incorrect evaluation of ecological effects if the theory underlying the methodology is 

invalid.  

Crucial to the endurance of ecosystems is the maintenance of ecosystem functions, as reflected by 

the stability concept (e.g. Steiner et al., 2005). Ecological stability is referred to as the ability of a 

community to (1) maintain ecosystem functions (resistance) when exposed to a stressor, and (2) 

recover to control levels of functioning after disappearance of the stressor (resilience) (Mac 

Gillivray et al., 1995). As such, an effect on ecosystem functions may indicate a loss of stability, 

possibly threatening ecosystem endurance.  

Although ecosystem function is generally considered less sensitive than ecosystem structure, 

theoretical ecology indicates that the opposite may also hold. On the one hand, ecosystem 

functions may be less sensitive than ecosystem structure because species performing an 

ecosystem function may be replaced by less sensitive species capable of maintaining the same 

function (i.e., functional redundancy) (Pratt and Cairns, 1996; van Leeuwen et al., 1996). This 

was experimentally confirmed by Selck et al. (2002) for tributyltin (TBT) and linear alkylbenzene 

sulfonates (LAS). On the other hand, environmental contamination may act as a selective force 

against populations of sensitive species, resulting in the loss of these species and possible 

cascading effects on ecosystem function (Lawler et al., 2002). Although necessary (Chapman et 

al., 2003), an examination using a general hypothesis testing framework has not been performed.  
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In this chapter, the assumption that ecosystem structure is less sensitive than ecosystem function 

(T3, Table I.2) was tested in a simple freshwater ecosystem exposed to different toxicants. 

‘‘Ecosystem function’’ is defined sensu Duffy (2002) and Schlapfer and Schmid (1999), i.e. 

transfers of energy, quantified by biomass. Examples are total primary production, secondary 

production, aggregate consumption, community respiration, and nutrient uptake. In this chapter, 

we studied the sensitivity of the photosynthesis of phytoplankton, the ingestion by zooplankton, 

and the ingestion by fish. An ecosystem model was used to predict the no observed effect 

concentrations (NOECs) for those three functions in an ecosystem exposed to 1000 hypothetical 

toxicants. With the same model, also NOECs for changes in ecosystem structure, expressed as 

biomass, were calculated. This allowed to compare ecosystem function-NOECs with 

corresponding ecosystem structure-NOECs for each of the 1000 considered toxicants.  

 

VIII. 2. Materials and Methods 

 

VIII. 2. 1. Ecosystem type 

 

The ecosystem for which hypothesis T3 was tested, is the same as the one for which hypothesis 

T1 was tested, i.e. a lentic pelagic freshwater system, consisting of populations of one fish 

species, three zooplankton species and two phytoplankton species, as shown in Fig VII.1. The 

ecosystem functions studied were total photosynthesis of phytoplankton (PSphyto,tot; mg L
-1

 d
-1

), 

total ingestion by zooplankton (Izoo,tot; mg L
-1

 d
-1

) and ingestion by the one fish population (Ifish; 

mg L
-1

 d
-1

): 

 

PSphyto,tot = PSphyto,summer + PSphyto,spring                         (eqs 1) 

Izoo,tot = Izoo,large + Izoo,small  

 

with “large” and “small” indicating large, slow-growing and small, fast-growing populations, 

respectively, and “summer” and “spring” indicating populations blooming in summer and spring, 

respectively.  

The choice to express ecosystem functions as fluxes of biomass was made because these are 

intuitively sensible, practical measures of energy assimilation (Johnson et al., 1996). Also, field 

studies tend to use some measure of biomass fluxes as the ecosystem function response variable 

(Johnson et al., 1996). 
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VIII. 2. 2. Ecosystem model 

 

The ecosystem model used in this chapter, and its embedded toxic effect sub-models are identical 

to those used in chapter VII. Again, the ecosystem model was calibrated to obtain a succession of 

seasonal events for this type of system, as described in chapter IV and in Sommer et al. (1986).  

 

VIII. 2. 3. Structural vs. functional sensitivity for one hypothetical toxicant 

 

Assume that for a toxicant tx1, all chronic single-species EC10s of all possible aquatic species, are 

represented by a lognormal species sensitivity distribution SSD1: 

 

SSD1 ~ (µ1, σ1) 

 

From SSD1, six EC10s were randomly sampled to represent the single-species sensitivity of the 6 

considered populations. These 6 EC10s were used in the toxic effect sub-models of the 6 

populations in the ecosystem model. This allowed for the simulation of the dynamics of these 

populations at different exposure concentrations of tx1. Exposure concentrations ranged from the 

1
st
 to the 95

th
 percentile range of SSD1. The exposure period was taken from late spring to late 

summer, which is comparable to many large-scale studies. 

Changes in ecosystem structure were quantified by changes in biomass status of the populations. 

To compare the biomass status of a population in the unexposed (control) situation with its status 

at the different exposure concentrations, relative differences (RDs) were calculated, as in chapter 

IV. Again, a 20% cut-off value was used as the minimum detectable difference (Suter II, 1993). 

RD-values of -0.2 or lower were considered as detectable decreases of biomass. Similarly, RD-

values of 0.2 or higher were considered as detectable increases of biomass. In the context of 

ecological effect assessments, both increases and decreases of phytoplankton biomass were 

considered undesirable. For fish and zooplankton, biomass decreases were considered as 

undesirable. The NOEC of a population, hereafter termed ‘population-NOEC’, was defined as the 

highest concentration at which no observable undesired effect was predicted for that population. 

The NOEC of the ecosystem structure, hereafter termed ‘ecosystem structure-NOEC’, was 

defined as the lowest population-NOECs. Note that the ecosystem structure-NOEC bears exactly 

the same meaning as ‘ecosystem-NOEC’ in the previous chapters. 

Similarly, the rate of an ecosystem function “f” in the unexposed (control) situation was 

compared with its rate at the different exposure concentrations by calculating relative differences. 

141



Chapter VIII: Is ecosystem structure the target of concern? 

Also for these ecosystem functions, RD-values of -0.2 or lower were considered as detectable 

decreases of ecosystem function rate. The highest concentration at which no detectable decrease 

of 20% or more on a considered ecosystem function occurred was defined as the ecosystem 

function-NOEC, allowing to rephrase hypothesis T3 as: 

 

ecosystem structure-NOEC ≤ ecosystem function-NOEC 

 

VIII. 2. 4. Extension to 1000 hypothetical toxicants 

 

The methodology described in the previous paragraph was followed for toxicants tx1 to tx1000. 

SSD1 to SSD1000 differed in mean but, for reasons of feasibility, had the same default standard 

deviation (σ1 = σ2 = … = σ1000 = 1). A standard deviation of one order of magnitude is 

representative for SSDs of many chemicals (e.g. examples in Duboudin et al., 2004b). The means 

of the 1000 toxicants were sampled from a lognormal distribution with mean -0.43 and standard 

deviation 0.92. These variability settings were calculated from Gonzalez-Doncel et al. (2006) 

from means and standard deviations of NOEC values of fish (n = 343), crustaceans (n = 414), and 

algae (n = 186) for all toxicants included in different toxicity databases. 

In the next phase, we examined whether the type of toxicant could predict if ecosystem structure-

NOEC was smaller than, or equal to the ecosystem function-NOEC. Toxicant type was arbitrarily 

defined here on the basis of relative sensitivities of the considered species to the toxicant. Relative 

sensitivities were defined by the following two quantities: 

 

rPZ = log (EC10,phytoplankton) - log (EC10,zooplankton)                                                                      (eqs 2) 

rZF = log (EC10,zooplankton) - log(EC10,fish) 

 

with log(EC10,phytoplankton) and log(EC10,zooplankton) equal to the logarithm of the geometric mean of 

the EC10 values of the two phytoplankton and three zooplankton species, respectively (chapter 

VII). A stepwize discriminant function analyses (Jennrich, 1977) was used to determine which 

variable (rPZ and rZF) discriminates best between toxicants for which ecosystem structure-NOEC ≤ 

ecosystem function-NOEC and those for which ecosystem structure-NOEC > ecosystem function-

NOEC. Partial lambda values were calculated for rPZ and rZF, with a value of 0 indicating a perfect 

discriminative power, and 1 no discriminative power at all. 
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VIII. 3. Results and Discussion 

 

VIII. 3. 1. Structural vs. functional sensitivity for hypothetical toxicants 

 

For 979 of the 1000 toxicants, the ecosystem structure-NOEC was lower than or equal to the 

corresponding ecosystem function-NOEC (Fig VIII.1). As such, the tested assumption T3 appears 

to hold for the functions studied in this simple ecosystem. However, among these 979 toxicants, 

239 had an ecosystem structure-NOEC equal to the corresponding ecosystem function-NOEC. 

Thus, for the latter toxicants a protection of structure is not necessarily a more conservative 

approach for the protection of ecosystem functions, but rather an accurate one. Based on the 

relationship of ecosystem resistance and resilience with ecosystem functions (Mac Gillivray et al., 

1995), protection of structure seems crucial when this ecosystem is exposed to these 239 

toxicants. Unfortunately, toxicant type could hardly distinguish toxicants for which ecosystem 

function-NOEC equals ecosystem structure-NOEC. A discriminant analysis showed limited 

power for rZF, as indicated by a partial lambda value of 0.86. The partial lambda value of rPZ was 

1, indicating no discriminative power at all for this variable. As such, determining a priori if 

ecosystem structure and function NOEC are equal, based on toxicant type alone, was not possible. 

 

Figure VIII.1: Cumulative probability distribution of the difference (log(ecosystem structure-NOEC) – 

log(ecosystem function-NOEC)). Negative values indicate toxicants for which the ecosystem structure-NOEC 

was lower than the ecosystem function-NOEC. Values equal to “0” indicate toxicants for which the ecosystem 

structure-NOEC was equal to ecosystem function-NOEC. 
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VIII. 3. 2. Which populations determine the ecosystem structure-NOEC? 

 

For 467 of the 1000 toxicants, the most sensitive population, i.e. the one with the lowest 

population-NOEC, was a phytoplankton population. For 216 toxicants, this was a zooplankton 

population, while for only 64 toxicants this was the fish population. For the remaining 253 

toxicants, populations from different trophic levels had the lowest population-NOEC. These 

calculations suggest that in the system studied, population-NOECs increase with increasing 

trophic level, regardless of the toxicant considered. Because it is defined as the lowest population-

NOEC, the ecosystem structure-NOEC is determined by phytoplankton for 467 of the 1000 

toxicants. In contrast, fish seem to play a role in the determination of the ecosystem structure-

NOEC for only 64 of the 1000 toxicants. Because these findings are independent of the toxicant 

type considered, they only result from the ecological interactions included in the ecosystem 

model. As stated before, ecological interactions will lead to indirect effects on populations 

initially not targeted by the toxicant. A number of authors use the food web concept to explain 

how these indirect effects may occur (e.g. Relyea and Hoverman, 2006; Chapman et al., 2003; 

Fleeger et al., 2003; Preston and Snell, 2001). However, an extensive enumeration of possible 

indirect effects was not pursued here. Instead, the increase of population-NOECs with increasing 

trophic level was generally understood as an indication of dominant top-down regulation in this 

food web. Apparently, a change in a population’s biomass resulting from direct toxicant effects 

will affect the biomass of connected populations at lower trophic levels (i.e. indirect toxicant 

effect) more than it affects the biomass of connected populations at higher trophic levels. This 

finding agrees with indirect effects of toxicants observed in micro- and mesocosm studies (e.g., 

Releya and Hoverman, 2006, Kneib, 1991; Posey and Ambrose, 1994; Menge, 1995; Brett and 

Goldman, 1996; Hay, 1997; Havens, 1995). Indeed, these authors have found that top-down 

regulated indirect effects are more frequently observed than bottom-up regulated indirect effects 

in experimental ecosystems exposed to toxicant stress. 

 

VIII. 3. 3. Which functions determine the ecosystem function-NOEC? 

 

For 749 toxicants, the ecosystem function with the lowest NOEC was Ifish, as such determining 

the ecosystem function-NOEC. This is confirmed by cumulatively plotting the NOECs of the 

three studied ecosystem functions (Fig VIII.2). A mechanistic explanation for this is that Ifish is 

the only function maintained by one single population (fish). In contrast, Izoo,tot and PSphyto,tot can 

be maintained by three and two populations, respectively. As such, the functional roles of these 
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populations are redundant with respect to Izoo,tot and PSphyto,tot, making those two ecosystem 

functions less sensitive.  

 

Figure VIII.2: Cumulative probability distribution of: grey: log(ecosystem structure-NOECs); dashed: 

log(Ifish-NOEC); dotted: log(Izoo,tot-NOEC); dotted and dashed: log(IPSPhyto,tot-NOEC). 

 

However, the relative sensitivity of ecosystem functions is not entirely explained by the number 

of populations maintaining it. The NOECs of Izoo,tot, a function maintained by three populations 

(zoosmall and zoolarge,1 and zoolarge,2), appear to be lower than those of PStot, a function maintained 

by only two populations (phytoplanktonsmall and phytoplanktonlarge, Fig VIII.2). This suggests that 

ecosystem functions maintained by populations at higher trophic levels have a lower NOEC. At 

this point, we need to underline that ecosystem functions were defined as transfer rates of energy 

which are quantified by biomass, as is usually done (e.g., Duffy, 2002; Schläpfer and Schmid, 

1999). Transfer rates associated with higher trophic levels are lower because of metabolic energy 

losses (Odum, 1971). Use of this concept reformulates the ecosystem functions studied as 

follows: 

 

PSphyto,tot = ηLight→PSphyto,tot · Light                                     (eqs3) 

Izoo,tot = ηPSphyto,tot→Izoo,tot · PSphyto,tot = ηPSphyto,tot→Izoo,tot · ηLight→PSphyto,tot · Light 

Ifish = ηIzoo,tot →Ifish · Izoo,tot = ηIzoo,tot →Ifish · ηPSphyto,tot→Izoo,tot · ηLight→PSphyto,tot · Light 
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with η representing the efficiency coefficient (<1) indicating energy (biomass) transfer efficiency 

between two transfers (functions). Names of ecosystem functions are as in equations 1. Toxicant 

effects on these ecosystem functions can be represented as follows: 

 

PS’phyto,tot = (1 - EPSphyto,tot)· ηLight→PSphyto,tot · Light                        (eqs4) 

I’zoo,tot = (1 - EIzoo,tot) · ηPSphyto,tot→Izoo,tot · PS’phyto,tot = (1 - EPSphyto,tot) · (1 - EIzoo,tot) · ηLight→PSphyto,tot · 

ηPSphyto,tot→Izoo,tot · Light 

I’fish = (1 - EIfish) · ηIzoo,tot →Ifish · I’zoo,tot = (1 - EPSphyto,tot) · (1 - EIzoo,tot) ·  (1 - EIfish) · ηLight→PSphyto,tot ·  

ηPSphyto,tot→Izoo,tot · ηIzoo,tot →Ifish · Light 

 

with E representing the direct effect of a toxicant on the ecosystem function indicated in subscript, 

and affected ecosystem functions indicated by a quotation mark (‘). It can be readily calculated 

that exposing the considered ecosystem to a toxicant not directly affecting Ifish (i.e. EIfish ≈ 0) may 

still result in an observable effect on Ifish. Assume that when exposing the ecosystem to a 

concentration c of this toxicant, EPSphyto,tot and EIzoo,tot are both 0.2, and that EIfish ≈ 0. 

Consequently, (1 - EPSphyto,tot) · (1 - EIzoo,tot) ·  (1 - EIfish) will be 0.64, indicating a 36% effect on 

Ifish, even though Ifish was not directly affected (i.e. EIfish ≈ 0).  

As such, the trend of the relationship between NOEC and trophic level was found to be opposite 

for ecosystem structure (NOEC (fish) > NOEC (zooplankton) > NOEC (phytoplankton)) and 

ecosystem function (NOEC (PSphyto,tot) > NOEC (Izoo,tot) > NOEC (Ifish)). Since these trends are 

independent of toxicant type, explanations for these trends were sought in the ecological 

interactions within the system studied (see current and previous section). This confirms the 

importance of ecological interactions for the resulting ecological effects of toxicants. Apparently, 

these ecological interactions have resulted in the ecosystem structure to be almost consistently as 

or more sensitive than ecosystem function in the ecosystem studied. Whether this will be the case 

in other systems will depend on the food web’s configuration and its constituents. In particular, 

the results obtained here should not be extrapolated to ecosystems with a higher diversity than the 

system studied here. The possible presence of one or more keystone species (Mills et al., 1993; 

Menge et al., 1994), will likely make certain ecosystem functions more sensitive than suggested 

here. However, whether a higher diversity necessarily results in the presence of keystone species, 

i.e. in less functional redundancy, is still under debate in ecological literature (Hooper et al., 

2005). Once a better insight is gained in these issues, more complex experiments can be designed 

to elucidate the relation between the sensitivity of ecosystem structure and function in ecosystems 

with a higher diversity. 
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VIII. 4. Conclusions 

 

For 979 of 1000 hypothetical toxicants, the ecosystem structure-NOEC was lower than or equal to 

the ecosystem function-NOEC, indicating that ecosystem structure is as or more sensivite than 

ecosystem function for those toxicants. Hence, the tested assumption T3 was found to be valid for 

the tested ecosystem. For 239 of these 979 toxicants, both NOECs were equal. For half of the 

1000 toxicants, structure of lower trophic levels (i.e. phytoplankton) appears to be more sensitive 

than structure of higher trophic levels (i.e. fish). As such, ecosystem structure-NOECs are 

primarily determined by the sensitivity of the structure of lower trophic levels. In contrast, 

ecosystem functions associated with higher trophic levels (e.g., total ingestion by fish) are more 

sensitive than functions associated with lower trophic levels (e.g., total photosynthesis by 

phytoplankton) for 749 toxicants. Top-down regulation of ecosystem structure and cascading 

effects on lower trophic level functions to higher trophic level ecosystem functions are discussed 

as possible explanations for these two contrasting findings. 
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Chapter IX 

 

Ecological significance of different SSD percentiles for copper in a simple 

ecosystem 

 

Abstract - Species sensitivity distributions (SSDs) are statistical distributions of single-species 

toxicity test results. It is assumed that a percentile y of this SSD is hazardous for y% of the 

species within an ecosystem (hazardous concentration for y% of the species, ‘HCy’). To elucidate 

the ecological significance of such a percentile, we used an ecosystem model to estimate effects 

of different HCys of copper on ecosystem structure (biomass) and function (photosynthesis by 

phytoplankton, PSall phytoplankton; and ingestion by zooplankton, Iall zooplankton) in a planktonic 

ecosystem. Zooplankton biomass and the associated ecosystem function rate (Iall zooplankton) 

remained unaffected when exposed to concentrations ≤ HC30 of an SSD based on EC20s. 

Phytoplankton biomass and PSall phytoplankton increased at concentrations > HC5 or HC30 of an SSD 

based on EC20s or EC10s, respectively. Thus, exposing the ecosystem studied to a HCy does not 

necessarily result in ecological effects on y% of the species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

redrafted from  

De Laender F., De Schamphelaere, K.A.C., Vanrolleghem, P.A., Janssen, C.R. Ecological 

significance of different SSD percentiles for copper in a simple ecosystem. Ecotoxicology and 

Environmental Safety, submitted. 
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IX. 1. Introduction 

 

Ecological effect assessments aim at predicting the effects of a chemical substance on the 

structure and function of ecosystems. These ecological effects are usually estimated by 

extrapolation of single-species effect data. Such extrapolations can be done using statistical 

distributions of single-species toxicity test results, i.e. ‘species sensitivity distributions’ (SSDs). 

This approach assumes that exposing an ecosystem to a concentration corresponding with a 

chosen (low) percentile y of this SSD does not result in adverse effects to (100 - y) % of the 

species present. Hence, this concentration is termed the hazardous concentration for y % of the 

species (HCy), i.e. (100-y) % of the species present is assumed to remain unaffected.  

In most applications y equals 5, i.e. the fifth percentile is chosen as the low percentile (EU, 2003), 

hence assuming that 95 % of the species present will not be affected. However, the science-based 

reasons for selecting the fifth percentile instead of any other percentile are unclear. Indeed, in the 

peer-reviewed literature, no paper was found that demonstrates the superiority of the fifth 

percentile over another percentile in protecting ecosystems against adverse ecological effects. The 

choice for a certain percentile is often referred to as an ethical/philosophical choice, thereby 

classifying this as a regulatory issue (Posthuma et al., 2002; Forbes and Calow, 2002). This 

statement implies that exposing an ecosystem to a HCy will actually put y % of the species at risk 

in natural ecosystems, i.e. that y is a good measure of true ecological effects. It has been shown 

that this is almost never the case (Kefford et al., 2005; Versteeg et al., 1999). Therefore, the 

question remains which ecological effects actually occur when exposing an ecosystem to an HCy. 

Addressing this question may allow policy makers to choose a percentile (i.e. a value for y) based 

on the occurrence of real ecological phenomena.  

Although the experimental determination of the ecological effects of HC5s (i.e. y = 5) has been 

performed in the past (e.g., Maltby et al., 2005; Selck et al., 2002), estimation of ecological 

effects of other HCys (e.g. y = 10, 20, …) is rare. One exception is the work by Versteeg et al., 

(1999) who, for a plethora of chemicals, examined which percentile of an SSD corresponds with 

an experimentally derived ecosystem-no observed effect concentration (NOEC). For most 

chemicals, this comparison suggests that HCys other than the HC5 may still be lower than the 

ecosystem-NOEC, i.e. not resulting in adverse ecological effects.  

In this chapter, we modelled ecological effects of HCys of copper with y = 5, 10, 15, 20, 25, and 

30 in a specific planktonic ecosystem. Effects on ecosystem structure and on ecosystem function 

were simulated. These effects were calculated with a newly developed ecosystem model which 

was calibrated with data obtained from a microcosm experiment with copper (Schaeffers, 2001). 

151



Chapter IX: Ecological significance of SSD-percentiles 

Ecosystem structure was characterized by the biomass of phytoplankton and zooplankton (Bioall 

phytoplankton and Bioall zooplankton), while considered ecosystem functions were (1) overall ingestion by 

all zooplankton populations (Iall zooplankton), and (2) overall photosynthesis by all phytoplankton 

populations (PSall phytoplankton).  

 

IX. 2. Material and methods 

 

IX. 2. 1. Description of the microcosm study: experimental data 

 

In this study, data obtained in an aquatic oligotrophic microcosm exposed to copper (Schaeffers, 

2001) were used. This study included the following community elements: diatoms, green algae, 

cladocerans, copepods, and the macrophyte Elodea densa and is described further in chapter IV 

and in Schaeffers (2001).  

 

IX. 2. 2. Description of the constructed ecosystem model 

 

To model the behaviour of the model ecosystem discussed above, the dynamic ecosystem model 

described in chapters III and IV was used. Included objects were 2 phytoplankton populations 

(diatoms and green algae), 2 zooplankton populations (cladocerans and copepods), and one 

macrophyte. As this chapter focuses on the simulation of a case-specific ecosystem, a higher 

resolution of the ecological interactions was pursued. Because they are filter-feeders, the 

cladocerans present were modelled as having equal feeding preferences for both phytoplankton 

types and detritus. Copepods were modelled as feeding primarily on green algae and detritus, and 

less on diatoms. The reason for this is that 50% of the diatoms present are large pennales, which 

are too large to be ingested by the copepods, which primarily consist of naupliae (Schaeffers, 

2001). To simulate dynamics of the copper-exposed populations, differential equations are 

combined with logistic equations as toxic effect sub-models (Bruce and Versteeg, 1992; 

Leverberg, 1944; Marquardt, 1963) describing direct copper effects on traits of the separate 

populations. These traits are: maximum grazing and mortality rates of the two different 

zooplankton populations (Ferrando and Andreu 1993), mortality rate of the macrophyte (Mal et 

al., 2002) and maximum photosynthesis rates of the two phytoplankton populations (Fernandes 

and Henriques, 1991) and the macrophyte (Mal et al., 2002). Parameters of the logistic equations 

are the control value, the EC50 and EC10.  
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IX. 2. 3. Model calibration 

 

In the previous chapters, a methodology to predict ecological effects based on an ecosystem 

model was developed (chapters III to V), validated (chapter VI), and applied in theoretical 

exercises (chapters VII and VIII). A characteristic of this methodology was the absence of a 

formal calibration on experimental data. However, in this chapter, knowledge about the 

relationship between single-species toxicity and ecosystem effects in this particular ecosystem 

was pursued. Therefore, a more formal calibration was performed here.  

As stated by Loehle (1997), calibrating a model solely with a goodness-of-fit statistic to one time 

series is of limited use in ecosystem modelling. An observed outcome of an ecosystem is only 

partially the result of the processes incorporated in the model and is prone to randomness, a 

feature shared by all biological processes. Therefore, it is preferable to calibrate the ecosystem 

model to a range of possible system observations, i.e. to test whether we can distinguish the 

model predictions from real system observations. A test criterion described by Loehle (1997) was 

used. Replications of the time series at a given treatment concentration were used to calculate the 

upper and lower limit of possible observations of the system when exposed to a treatment 

concentration. These are defined as the mean of the data series plus and minus one standard 

deviation, respectively. If predictions fall within these limits, a testing variable (T) is said to be 1; 

i.e. biologically not distinguishable from the experimental observation. In the other case, T will 

have a value < 1, depending on the broadness of the region of the observations which is the region 

between their upper and lower limit. Predictions further away from this region and the narrowness 

of the region will both lower the T value. Parameters were thus altered until an optimal 

(maximum) T value was reached.  

The calibration criterion consists of two parts which compare the observed and simulated trends 

(IX.2.3.1) and observed and simulated temporal variability (IX.2.3.2) of the biomass dynamics, 

respectively. For a given simulation, the two criteria are evaluated and only if both are 

satisfactory, the simulation is approved. Otherwise, the simulation is rejected as are the 

corresponding parameter values. If T = 1, simulations are said to be undistinguishable from the 

observations and as such an adequate fit is obtained. In this chapter, T = 0.7 was set as a lower 

limit for simulation approval.  

 

IX. 2. 3. 1. Trend 

 

Ttrend = 1 / (tmax – tmin) . Σtmin
tmax

 exp((sBio,obs,i - |Bioobs,i-Biopred,i|)/sBio,obs,i)) . (∆ti) 
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with: 

tmax and tmin = last and first time instant of observations  

Bioobs,i = mean of observed biomass at time i 

Biopred,i = predicted biomass at time i 

sBio,obs,i = standard deviation of observed biomass at time i 

∆ti = time interval between two observations  

 

This is a straightforward implementation of the criterion as described by Loehle (1997) where 

simulated biomass of a model population is compared with their observed biomass at days ti. T is 

calculated for each model population and subsequently an average T value is calculated for the 

complete community.  

 

IX. 2. 3. 2. Variability 

 

Tvar = exp(ss,obs - |sobs-spred|)/ss,obs) 

with: 

sobs = observed standard deviation of biomass in time 

spred = predicted standard deviation of biomass in time 

ss,obs = standard deviation of observed standard deviation of biomass in time 

 

This is a customized implementation of the criterion as described by Loehle (1997) to compare 

simulated temporal variability with the observed one. Temporal variability is represented by the 

standard deviation in time. The standard deviation in time of the simulated biomass concentration 

of a model population is compared with their observed standard deviation in time. T is calculated 

for each model population and subsequently an average T value is calculated for the complete 

community.  

The parameters used for calibration are listed in the appendix (XI.6.11). Note that apart from this 

list, also the parameters of the logistic equations, describing the sensitivity of the different 

populations, were calibrated using the microcosm data.  

 

IX. 2. 4. Derivation of HCys 

 

The EC10s which were derived from calibration with the microcosm data (see previous paragraph) 

were used to construct an SSD of the model ecosystem for copper. A lognormal distribution was 
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fitted to the EC10s based on the most sensitive trait of each population (EU, 2003): maximum 

ingestion rates of copepods and cladocerans, maximum photosynthesis rates of all phytoplankton 

populations and the macrophyte. The same was done with the EC50s which were derived by 

calibration. Using the calibrated EC10s and EC50s and the logistic equations, also EC20s, EC30s, 

and EC40s of the most sensitive traits were calculated. As such, 5 different SSDs were 

constructed, based on EC10s, EC20s, EC30s, EC40s, and EC50s, respectively. For each of these 5 

distributions, the median of the y
th

 percentiles was derived with y = 5, 10, 15, 20, 25, 30, using the 

method of Wagner and Lokke (1991). This resulted in 30 percentiles, all representing a certain 

copper concentration. 

 

IX. 2. 5. Ecosystem structure and function 

 

The ecosystem structure and function were evaluated at these 30 copper concentrations and 

compared to the control values. Ecosystem structure was characterized here by the average overall 

biomass of phytoplankton (Bioall phytoplankton) and zooplankton (Bioall zooplankton) during the 

experiment (110 days), calculated as: 

 

 

 

 

 

 

with Biogreen algae,t, Biodiatoms,t, Biocladocerans,t, and Biocopepods,t the biomass on day t of green algae, 

diatoms, cladocerans, and copepods, respectively. The effect of a copper concentration c on these 

average biomasses was calculated using relative differences between control biomass and biomass 

at the different exposure concentrations. Because 20% is the minimum detectable difference for 

most population characteristics in the field (Suter II, 1993), RD-values of -0.2 or lower were 

considered as detectable biomass decreases. Similarly, RD-values of 0.2 or higher were 

considered as detectable biomass increases. 

Ecosystem function was defined sensu Duffy (2002) and Schlapfer and Schmid (1999), i.e. 

transfers of energy. Mean daily total invertebrate ingestion rate (Iall zooplankton) of all zooplankton 

populations and mean daily total photosynthesis rate (PSall phytoplankton) of all phytoplankton 

populations were selected as ecosystem functions and calculated as: 
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with PSgreen algae,t, PSdiatom,t the photosynthesis rate on day t of green algae and diatoms, 

respectively, and Icladoceran,t, and Icopepod,t the ingestion rate of cladocerans and copepods, 

respectively. As with ecosystem structure, the effect of a copper concentration c on these 

ecosystem function rates was calculated using relative differences (RD). RD-values of -0.2 or 

lower, and 0.2 or higher, were considered as detectable decreases and increases of ecosystem 

function rate, respectively (Suter II, 1993). 

Uncertainty in the estimated values of EC10s and EC50s was propagated through the ecosystem 

model using a Monte-Carlo approach (50 simulations per copper concentration c, and 50 

simulations for the control) as described in Cullen and Frey (1999). The number of simulations 

was determined using the convergence rule (Melching, 1995; Cullen and Frey, 1999). Per copper 

concentration c, all 50 simulations were compared with all 50 control simulations to calculate a 

total of 2500 RD-values (50 · 50) per function (Iall zooplankton and PSall phytoplankton) and structure 

characteristic (Bioall phytoplankton and Bioall zooplankton). From this range of RD values, the probability 

that RD is larger than 0.2, or smaller than -0.2 at a certain copper concentration c can be derived 

non-parametrically. These probabilities were derived for Bioall phytoplankton, PSall phytoplankton,        

Bioall zooplankton, Iall zooplankton at all 30 copper concentrations. 

 

IX. 3. Results and Discussion 

 

IX. 3. 1. Model Calibration 

 

After calibration, the model was capable of describing the main trends observed in the microcosm 

reasonably well. The main trends, both reflected in microcosm data and model predictions, are (1) 

the decrease of cladocerans at concentrations higher than 20 µg L
-1

; and (2) an increase of green 

algae at most exposure concentrations (Fig IX.1 and Schaeffers, 2001). Values of EC10 and EC50 

resulting from this calibration (Table IX.1) suggest that phytoplankton and cladocerans are the 

most sensitive populations in the considered system. The uncertainty of the calibrated ECxs was 

characterized by normal distributions (Table IX.1).  
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Figure IX.1: Biomass dynamics of green algae at control (A) and at 80 µg L
-1

 copper (B): upper and lower limit 

of microcosm data (dashed line) and simulation (bold line). Biomass dynamics of cladocerans at control (C) 

and at 40 µg L
-1

 copper (D). Upper and lower limit of microcosm data (dashed line) and simulation (bold line) 

 

IX. 3. 2. SSD construction 
 

Lower 50% confidence limits of the HCys (with y = 5 to 30) of SSDs based on ECxs (with x = 10 

to 50) ranged from 2 (for (x,y) = (10, 5)) to 80 µg L
-1

 (for (x,y) = (50, 30)) (Fig IX.2).  

 

Figure IX.2: Copper concentrations corresponding with y
th

 percentiles (with y = 5 to 30) of SSDs based on 

ECxs (with x = 10 to 50). 

157



Chapter IX: Ecological significance of SSD-percentiles 

Table IX.1: Values of toxic effect sub-model parameters, after calibration on microcosm data. ECx stands for 

the concentration of copper resulting in x % effect. Calibrated values of other parameters are given in 

appendix (XI.6.11). Numbers between brackets represent standard deviations of the calibrated values. 

 

 

 

IX. 3. 3. Ecological effects at different HCys 

 

At most (x,y) combinations, the probability that zooplankton biomass decreases differs from the 

probability that Iall zooplankton decreases (Fig IX.3A). These probabilities are only affected by the 

chosen percentile y at x ≥ 20, where a higher y value implies a higher probability of decrease, 

especially for Bioall zooplankton. At x = 10, the probabilities of a decrease in zooplankton biomass 

and function are < 5%, regardless of the value of y. At x = 20, the probability of a Bioall zooplankton 

decrease is about 10%, while for Iall zooplankton this probability is still < 5%. Within the zooplankton, 

the probability of a decrease of cladoceran biomass is 10% at x ≤ 20 (Fig IX.3C). Copepods, in 

contrast, have a limited or zero probability of decreasing at those x values. At x > 20, the decrease 

of zooplankton biomass becomes more probable than the decrease of Iall zooplankton (Fig IX.3A). At 

x > 30 and y > 20, the probabilities that zooplankton biomass and Iall zooplankton decreases are > 

80%. 

At all (x,y) combinations, an increase of phytoplankton biomass is equally probable as an increase 

of the phytoplankton function PSall phytoplankton (Fig IX.3B). Only at x = 10, this probability is 

influenced by the chosen percentile y, where a higher y value results in a higher probability. At x 

> 20, the probability of phytoplankton biomass and PSall phytoplankton increase are 100%, regardless 

of the value of y chosen. Within the phytoplankton, green algae are likely to increase (Fig IX.3D), 

parameter value µ(g L
-1

) description

EC10 clad_mort 120 (11) EC10 for cladoceran mortality rate

EC10 clad_Cmax 8.5 (0.29) EC10 for cladoceran ingestion rate

EC10 cop_mort 270 (15) EC10 for copepod mortality rate

EC10 cop_Cmax 10 (2.6) EC10 for copepod ingestion rate

EC10 mort_macro 58 (4.2) EC10 for macrophyte mortality rate

EC10 PSmax_macro 5.5 (0.45) EC10 for macrophyte photosynthesis rate

EC10 PSmax_dia 2.9 (0.45) EC10 for diatom photosynthesis rate

EC10 PSmax_greens 2.5 (0.2) EC10 for green algae photosynthesis rate

EC50 clad_mort 400 (11) EC50 for cladoceran mortality rate

EC50 clad_Cmax 53 (1.4) EC50 for cladoceran ingestion rate

EC50 cop_mort 400 (15) EC50 for copepod mortality rate

EC50 cop_Cmax 374 (54) EC50 for copepod ingestion rate

EC50 mort_macro 105 (12) EC50 for macrophyte mortality rate

EC50 PSmax_macro 48 (1.0) EC50 for macrophyte photosynthesis rate

EC50 PSmax_dia 26 (1.9) EC50 for diatom photosynthesis rate

EC50 PSmax_greens 104 (3.0) EC50 for green algae photosynthesis rate
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especially at x > 10 (probability > 80% ), while diatoms are not (probability < 10% in all except 

two cases). 

In summary, it is highly unlikely that the planktons structural characteristics (Bioall zooplankton and 

Bioall phytoplankton) or functions (Iall zooplankton and PSall phytoplankton) will experience significant effects 

when exposed to copper concentrations corresponding to the fifth percentile of an SSD based on 

EC10s, i.e. (x, y) = (10, 5).  

 

 
 

Figure IX.3: Probability of ecological effects of the copper concentrations corresponding with y
th

 percentiles 

(with y = 5 to 30) of SSDs based on ECxs (with x = 10 to 50) on structure and functions of a planktonic 

ecosystem. A: 20% decrease of zooplankton function (Iall zooplankton) and structure (Bioall zooplankton) . B: 20% 

increase of phytoplankton function (PSall phytoplankton) and structure (Bioall phytoplankton). C: 20% decrease of 

copepod (Biocopepods) and cladoceran (Biocladocerans) biomass. D: 20% increase of diatom (Biodiatoms) and green 

algae (Biogreen algae) biomass. 
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IX. 4. Discussion 

 

IX. 4. 1. Calibration 

 

The EC10s and EC50s which were derived from ecosystem model calibration are in fair agreement 

with laboratory-derived experimental ECxs reported in literature. The ECxs of cladocerans, as 

derived from ecosystem model calibration, were found to be lower than those of copepods, a 

finding supported by experimental data reviewed by Brix et al. (2001). The lower EC50 of 

diatoms, compared to the EC50 of green algae (Table IX.1), is less well documented in literature. 

Since different diatom species and strains are known to exhibit different sensitivities to metals in 

general (e.g., Sanders and Cibik, 1988), it is difficult to compare the diatom ECxs derived here 

with those obtained in other chapters. Moreover, most chapters deal with the sensitivity of marine 

diatoms, or freshwater diatoms from lotic systems. Nevertheless, the limited information available 

indicates that diatoms may be fairly sensitive to metals. For example, Burton et al. (1987) found 

that number of species and diatom population abundance were good indicators of metal impacts 

and concentrations in a Montana stream. More specifically, in metal-stressed periphyton-

communities, diatoms have been found to decrease drastically, or may even be absent, while 

green algae tend to dominate (Patrick, 1978; Rushforth et al., 1981; Genter and Lehman, 2000). 

 

IX. 4. 2. Ecological effects of different HCys 

 

When exposing the model ecosystem to copper concentrations corresponding to the y
th

 percentiles 

from SSDs, effects on phytoplankton structure (i.e. biomass) were found to be equal to effects on 

phytoplankton function (i.e. PSall phytoplankton). However, at some combinations of x an y, effects on 

zooplankton biomass were higher than effects on Iall zooplankton (Fig IX.3A). The fact that, for the 

same (x,y) combination, zooplankton biomass is more likely to be affected than zooplankton 

function (Iall zooplankton) is most probably related to the differential sensitivity of copepods and 

cladocerans to copper. Indeed, the ECxs of the copepods’ maximal ingestion rate and mortality 

rate are in general higher than those of the cladocerans (Table IX.1). As such, the function          

Iall zooplankton is maintained (by copepods) while zooplankton biomass is affected, which confirms 

findings by Yan et al. (2004). Also Slijkerman et al. (2004) found that effects on zooplankton 

structure occur at lower concentrations than effects on ingestion by zooplankton in the case of the 

fungicide carbendazim. 
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The increase in both phytoplankton biomass and PSall phytoplankton is due to the highly probable 

increase of green algae biomass (Fig IX.3D) at x > 10. Diatom biomass, in contrast, is unlikely to 

increase (Fig IX.3D) and does therefore not contribute to this increase of phytoplankton biomass 

or PSall phytoplankton. The similar probabilities of phytoplankton biomass decrease and PSall phytoplankton 

decrease (Fig IX.3B) originate from the dominance of green algae in the exposed system: the 

increase in PSall phytoplankton is a reflection of increasing green algae biomass.  

Probabilities of ecological effects of other substances in other ecosystems have been predicted by 

the same ecosystem model and compared with observed effects in micro- and mesocosms (chapter 

VI). The highest concentration at which the probability of an effect on the biomass of a 

population was less than 50% corresponded with that population’s experimentally observed no 

observed effect concentration (NOEC). Applying this 50% probability on the results obtained 

here reveals that zooplankton biomass (Bioall zooplankton) and function (Iall zooplankton) are unaffected 

when the system is exposed to the 10
th

 percentile of an SSD based on EC40s, to the 20
th

 percentile 

of an SSD based on EC30s, or to the 30
th

 percentile of an SSD based on EC10s or EC20s. However, 

if also phytoplankton biomass (Bioall phytoplankton) and function (PSall phytoplankton) is to be kept within 

their control range, the system can only be exposed to the fifth percentile of an SSD based on 

EC20s, or the 30
th

 percentile of an SSD based on EC10s. 

In this chapter, we did not want to make statements about whether a 95% protection of all species 

in an ecosystem is acceptable from a philosophical or regulatory point of view. Here, the HCy was 

purely regarded as a statistical characteristic of the SSD. The goal of this work was to relate this 

characteristic with the probability of ecological effects occurring in a planktonic ecosystem. In 

general, exposing this ecosystem to the fifth percentile of an SSD based on EC10s (i.e. x, y = 10, 

5) does not result in effects on ecosystem structure (Bioall zooplankton and Bioall phytoplankton), nor does 

it impede ecosystem function (Iall zooplankton and PSall phytoplankton). This agrees with previous efforts 

(Versteeg et al., 1999; Maltby et al., 2005; Selck et al., 2002; van den Brink et al., 2006), 

although in this study the species in the SSDs were the same as those in the considered system, 

which was not the case in those other cited studies.  

It is unclear if the relationships between x, y, and probability of ecological effects derived here 

(Figs IX.3A to 3D) can be extrapolated to other ecosystems and/or toxicants. As stated before, the 

use of the same species in the SSD construction as those present in the system studied, will 

influence the results obtained. For organics, it has been shown that species composition of the 

SSD determines its shape and capacity to protect ecosystem structure (e.g., Maltby et al., 2005, 

Versteeg et al. 1999). Hence, inclusion of other, less representative species, is likely to change 

HCy values. For example, the inclusion of ECxs of fish in these SSDs will enlarge their standard 
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deviations. Hence, the resulting HCys will shift to lower values, because of the symmetry of the 

lognormal distribution (Posthuma et al., 2002). As a result, there is good reason to presume that 

probabilities of effect on structure and function will be lower for the same HCys in that case. Also, 

the closed nature of the modelled ecosystem, hampers recolonization (Yount and Niemi, 1990), 

i.e. nearby populations can not replace affected populations to maintain ecosystem functions. 

Recovery of ecosystem function is therefore limited, hence potentially overestimating the 

ecological effects. This is not only related to the design of the microcosm experiment, but also to 

the nature of the mechanistic ecosystem model used here. Classic mechanistic models implicitly 

assume that ecosystem processes are entirely reversible. By doing this, they ignore the directional 

behaviour (known as succession) of ecosystems (Ulanowicz and Abarca Arenas, 1997). As such, 

it is impossible to predict longer-term behaviour of stressed systems using the presented 

ecosystem model.  

 

IX. 5. Conclusion 

 

In this chapter, ecological effects of exposing a specific planktonic ecosystem to different HCys 

were derived based on a calibrated ecosystem model. After calibration, the ecosystem model was 

capable of describing the main ecological effects observed in an experimental microcosm 

reasonably well. Where comparable, the resulting values of ecosystem model parameters, i.e. 

EC10s and EC50s, are in fair agreement with literature. 

Model predictions revealed that the main ecological effects can be explained by (1) the increase of 

green algae biomass and (2) the decrease of cladoceran biomass. The increase of green algae 

biomass was reflected in a proportional increase of phytoplankton photosynthesis. The decrease 

of cladoceran biomass (Fig IX.3C), did not result in a proportional decrease of Iall zooplankton (Fig 

IX.3.A). Apparently, the relative insensitive copepods were able to maintain this function at its 

control level at those concentrations.  

Based on the results of chapter VI (i.e. the use of a 50% probability), it was demonstrated that the 

system can be exposed to copper concentrations ≤ the fifth percentile of an SSD based on EC20s, 

or the 30
th

 percentile of an SSD based on EC10s, without causing adverse effects on the functional 

and structural characteristics of the system. However, if this result can be extrapolated to other 

ecosystems and/or toxicants is unclear, since species composition of the SSD and the spatial and 

temporal scale of the system studied may affect the outcome of this type of simulations.  
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Chapter X: General conclusions 

X. 1. Introduction 

 

In this chapter, the conclusions obtained in this work are summarized following the structure of 

this dissertation (cf. chapter I). Each paragraph reflects the conclusions drawn in one (or more) 

chapters and is preceded by the question it seeks to address. Suggestions for further research and, 

where possible, links between different chapters are highlighted. A short paragraph briefly 

outlining the general scope of this research is given hereunder. 

 

X. 2. Scope 

 

After entering the aquatic environment, micropollutants have the potential of being widely 

dispersed in space and time. Based on their chemical and toxicological properties, their presence 

may pose problems for organisms and ecosystems. Current knowledge indicates that such 

problems are complex, because they result from an interplay between various factors. Conducting 

studies with artificial ecosystems, so-called micro- and mesocosm studies, to examine ecological 

effects of toxicant stress is useful, but logistic and financial issues hamper the frequent use of 

these approaches. Facing the scarcity of ecosystem-level effect data, potential ecological effects 

are usually predicted based on results of single-species toxicity tests conducted in the laboratory. 

This is achieved through the use of extrapolation techniques, such as species sensitivity 

distributions (SSDs), which do not have a sound scientific basis and mainly rely on unproven 

assumptions. 
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X. 3. The relationship between single-species toxicity and ecosystem effects 

 

���� Chapter II: what is meant with ‘ecosystem effects’ and how has their relation with single-

species toxicity test results been examined until now? 

 

The majority of single-species toxicity test results available in the aquatic part of the USEPA 

database ECOTOX report acute effects of chemicals on the mobility or survival of animals, i.e. 

information related to the abundance of organisms. Roughly half of the micro- and mesocosm 

studies in open literature refer to ‘ecosystem effects’ as effects on abundance of one or more 

animal populations within an ecosystem. As they are mostly based on abundance or biomass, 

effects observed in ecosystems and in single-species toxicity assays are intrinsically highly 

comparable. Results from such comparisons indicate that for most species, the effect 

concentration (ECx) observed in a micro- or mesocosm study is within a factor 2 of the effect 

concentration (ECx) observed in a single-species toxicity test. However, this conclusion partly 

originates from the focus on effects on invertebrates in ecosystem studies with insecticides. If 

similar exercises would be performed with phytoplankton species and herbicides, this conclusion 

may change, depending on the relative sensitivities of the interacting populations. Although they 

are perfectly suited for such exercises, ecosystem models are only rarely used. 

 

X. 4. Ecosystem model development and validation 

 

���� Chapter III and IV: Can an ecosystem model accurately predict ecosystem effects if it is 

not calibrated on observed population dynamics? 

 

In this thesis, a novel approach to predict ecological effects of chemicals in aquatic ecosystems 

was developed. The approach is based on ecosystem modelling, generic ecological concepts, 

and single-species toxicity test results. The dynamic ecosystem models consist of (1) a 

bioenergetic foodweb model; (2) a model for nutrient and detritus cycling; and (3) toxic effect 

sub-models using single-species toxicity test results as input. As such, the developed ecosystem 

model can perform predictions without the need for calibration on experimental ecosystem data. 

In chapter IV, ecosystem model predictions of biomass changes of populations in an experimental 

microcosm exposed to copper proved to be accurate, or at least indicated the same trend as 

the experimental data. The fact that these model predictions were significantly better than those 
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based on single-species toxicity test results alone, indicates that ecological interactions have to be 

accounted for when conducting ecological effect assessments. 

 

���� Chapter V: Which toxic effect sub-model should be incorporated in the developed 

ecosystem model to increase the accuracy of the predictions? 

 

The predictions of population- and ecosystem-no observed effect concentrations (NOECs) 

performed in chapter V benefit from the use of logistic functions as toxic effect sub-models, 

compared to the use of linear functions. Effects on the following endpoints were included: (1) 

photosynthesis rates of phytoplankton and macrophytes, and (2) mortality rates of animals 

and the macrophyte. Ecosystem models equipped with this type of toxic effect sub-models 

predicted nearly all population- and ecosystem-NOECs accurately. The inclusion of sub-lethal 

effects to zooplankton in the toxic effect sub-models had little or no influence on the NOEC-

predictions of the ecosystem models. Apparently, the implementation of the logistic shape that 

most concentration-response data exhibit, is more important than including sub-lethal effects in 

toxic effect sub-models. Ecosystem models equipped with linear toxic effect sub-models 

resulted in lower predicted values of the NOECcladocerans (at least a factor 4 lower). This resulted in 

inaccurate predictions of connected population densities. Moreover, because cladocerans are 

amongst the most sensitive populations for copper in the microcosm studied, they determine the 

ecosystem-NOEC. An underestimation of NOECcladocerans results in an underestimation of the 

ecosystem-NOEC.  

 

���� Chapter VI: Can the developed ecosystem model be used in ecological effect assessments? 

 

Ecosystem models equipped with the logistic toxic effect sub-models made accurate predictions 

of the effects of toxicants other than copper on populations and other ecosystems. In the 

validation exercise performed in this thesis (chapter VI), a different model was constructed for 

each ecosystem considered to assure the inclusion of the relevant populations present in the 

experimental studies. By comparing the results from this validation with those obtained by other 

authors, the superior accuracy of the developed model predictions was demonstrated. No 

observed effect concentrations (NOECs) of 60% of all considered populations were 

predicted accurately in a total of 11 micro- and mesocosm studies. Only 14% and 26% of all 

population-NOEC predictions were too high or too low (underprotective or conservative), 

respectively. The predictive capacity of the ecosystem model was influenced by the α-level used 
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to derive NOECs from raw model outputs. From this validation study, it becomes apparent that an 

α-level of 0.5 benefits the accuracy of the NOEC-predictions. This corresponds to taking the 

median of the ecosystem model outputs. At lower α-levels (e.g., 0.01), the number of conservative 

NOEC-predictions was lower (15%), but the number of underprotective NOEC-predictions was 

higher (29%) than at α = 0.5. Compared to the use of α = 0.01, application of α = 0.5 can reduce 

the number of underprotective NOECs at the cost of a slightly higher amount of conservative 

NOECs. Predicted ecosystem-NOECs were never larger than the experimental NOECs at α = 

0.5, i.e. they were never underprotective. Because only single-species toxicity data are needed 

to successfully apply this modelling approach, it can serve as an ecology-based alternative for 

extrapolation approaches without any additional data needs.  

 

���� suggestion for further research 

 

The premise of including the relevant populations in an ecosystem model might pose 

problems from a practical point of view. Indeed, determining the configuration (i.e. 

species present and interactions between them) of a new (i.e. non-studied) ecosystem 

is a difficult task. In the validation study (chapter VI), the relevant populations were 

a priori known because they were given in the corresponding papers of on the 

considered micro- and mesocosm studies. However, in practice, this will rarely be 

the case. Therefore, it seems sensible to predict NOECs for a variety of ecosystems. 

Because of the feasibility of the modelling approach discussed here in terms of its 

limited data requirements, the number of simulations is only constrained by the time 

needed for interpretation of the results.  

 

X. 5. Theoretical model applications 

 

���� Chapters VII and VIII: Which assumptions associated with current approaches for 

ecological effect assessments are valid and for which chemicals? 

 

The theoretical ecosystem studies in this dissertation indeed suggest that the assumptions on 

which species sensitivity distributions (SSDs) are based can be valid for one toxicant type, while 

they are invalid for another toxicant type. This result was obtained by comparing SSDs consisting 

of single-species EC10s (i.e. not accounting for ecological interactions) with SSDs consisting of 

population-NOECs predicted by an ecosystem model (i.e accounting for ecological interactions). 
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In chapter VII, assumption T1 (Table I.2), i.e. that ecological interactions between populations do 

not influence the sensitivity distribution, has been found to be valid for toxicants directly 

targeting zooplankton and fish (EC10,fish ≈ EC10,zooplankton << EC10,phytoplankton). Sensitivity 

distributions of toxicants targeting phytoplankton (i.e. EC10,fish ≈ EC10,zooplankton >> EC10,phytoplankton) 

have a lower mean when ecological interactions are accounted for than when they are constructed 

in a conventional way, i.e. without ecological interactions. This makes assumption T1 invalid for 

this type of toxicants. Apparently, ecological interactions only have a limited influence on SSDs 

for toxicants targeting zooplankton and fish. This conclusion agrees with what was found in 

chapter II: effect concentrations (ECxs) for invertebrates exposed to insecticides (i.e. toxicants 

targeting zooplankton) were similar (Fig II.4) in experimental ecosystems (accounting for 

ecological interactions) and in single-species toxicity tests (not accounting for ecological 

interactions).  

 

���� suggestion for further research 

 

The disproportionate interest in the effects of insecticides on higher trophic levels 

reflected in literature may result in incorrect conclusions concerning the relationship 

between single-species toxicity test results and ecological effects. Therefore, it seems 

there is a need for more studies on the effect of herbicides on phytoplankton, not 

only on an ecosystem level, but also in single-species tests which are performed in 

parallel.  

 

A second theoretical ecosystem study (chapter VIII) tested the validity of assumption T3 (Table 

I.2), i.e. that ecosystem structure is as or more sensitive than ecosystem functions. Ecosystem 

structure, expressed as biomass of the considered populations, was as or more sensitive than 

the ecosystem functions total photosynthesis by phytoplankton, total ingestion by zooplankton, 

and total ingestion by fish for 979 of 1000 tested hypothetical toxicants. However, for 239 of 

these 979 toxicants, the considered ecosystem had an ecosystem structure-NOEC (=‘ecosystem-

NOEC’ in other chapters) equal to the ecosystem function-NOEC, suggesting that protecting 

ecosystem structure is not necessarily a conservative approach for ecosystem function, but rather 

an accurate one. For nearly half of the 1000 toxicants, the population with the lowest NOEC was 

a phytoplankton population. This means that in nearly 50% of the cases, the ecosystem-NOEC is 

determined by phytoplankton. In contrast, for only 7 % of the toxicants, the population-NOEC of 

fish determined the ecosystem structure-NOEC. This is a remarkable result, considering that the 
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1000 toxicants represent many different toxicant types (and not only toxicants targeting 

phytoplankton). The dominance of top-down control of biomass can be suggested as an 

explanation of these observations. In contrast, across toxicants, NOECs of ecosystem functions 

associated with higher trophic levels (e.g. ingestion by fish) tended to be lower than NOECs of 

functions associated with lower trophic levels (e.g., total photosynthesis): NOECphotosynthesis by 

phytoplankton > NOECingestion by zooplankton > NOECingestion by fish. As such, it was mostly the NOECingestion 

by fish which determined the ecosystem function-NOEC. The decreasing efficiency of energy 

transfer rates with increasing trophic level can be proposed as a possible explanation of these 

observations.  

 

���� suggestion for further research 

 

After having tested assumption T1 and T3 (Table I.2), it seems logical to also subject 

T2 to testing: “all species in an ecosystem are equally important in conserving its 

structure and function.” However, answering this question with the models 

developed in this thesis is difficult because of the limited number of distinct 

ecological roles covered within these models: photosynthesis by phytoplankton, 

ingestion by zooplankton, and ingestion by fish. This modest level of detail can be 

used for examining assumptions T1 and T3, and for predicting ecological effects in 

micro- and mesocosms, because these exercises are concerned with predicting 

aggregate measures (e.g., total ingestion by zooplankton, ecosystem-NOECs). In 

contrast, testing assumption T2 requires an ecosystem model reflecting a system with 

a higher functional diversity preferably containing one or more species with a unique 

trait. A possible drawback of such a task is the remaining uncertainty in the 

relationship between biodiversity and ecosystem functioning (BEF). More 

specifically, it is unclear if increased diversity implies (1) a higher occurrence of 

‘keystone species’, i.e. species with very specific and crucial roles; or (2) a higher 

functional redundancy. The former would indicate that T2 is invalid, while the latter 

would imply the opposite. Because of the increasing affinity of ecotoxicology with 

stress ecology, the collaboration of BEF-research with ecotoxicological studies (such 

as the testing of T2) seems a logical future perspective. In line with the evolvement 

of ecotoxicology towards stress ecology, efforts could be aimed at different sources 

of stress, rather than at toxicant exposure alone (e.g. eutrophication of aquatic 

ecosystems).  
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X. 6. Practical model application 

 

���� Chapter IX: What is the significance of different HCys in a planktonic ecosystem? 

 

After having tested the validity of some theoretical SSD-assumptions, the ecosystem model was 

used to reveal the significance of different SSD-percentiles for copper in a planktonic microcosm 

for which an experimental data set was available. Calibration of the model on this data set allowed 

to simulate ecological effects at concentrations which were initially not tested in the experimental 

microcosm study. Effects of HCys (y = 5, 10, 15, 20, 25, 30) for copper on ecosystem structure 

and function were simulated (Figs IX.3A-D). Results confirmed that the significance of the HCy 

is not “the hazardous concentration for y% of the species within an ecosystem”, as already 

suggested by other authors. Also, the reason why y is set at 5 in most applications is unclear: 

copper concentrations ≤ HC5 of an SSD based on EC20s, or HC30 of an SSD based on EC10s 

did not cause adverse effects on the functional and structural characteristics of the ecosystem. 

This indicates that choosing y = 5 to protect the considered ecosystem from copper toxicity is a 

rather conservative approach and is dependent on the single-species toxicity data used to 

construct the SSD 
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X. 7. OVERALL CONCLUSION: ecosystem models can predict “safe” environmental 

concentrations and can improve ecological effect assessments 

 

1. The type of ecosystem model constructed in this dissertation can serve as an ecology-

based method to accurately predict ecological effects, provided that (1) the relevant 

populations are included in the model; and (2) a logistic toxic effect sub-model is used to integrate 

mortality effects of animals. The use of ecosystem models in ecological effect assessments 

benefits from the limited data needs of such models. The amount of standard single-species 

toxicity test results needed to follow such an approach is comparable to the amount of data needed 

by conventional extrapolation techniques.  

2. Apart from a predictive role, the models developed here can also support current 

extrapolation approaches. The validity of the assumptions underlying these extrapolation 

techniques is related to the toxicant type. For toxicants directly targeting zooplankton and fish, 

these assumptions are likely to be valid, while the opposite holds for toxicants directly targeting 

phytoplankton. These findings, together with results from practical ecosystem studies aid in 

understanding the significance of applying current extrapolations techniques. Hence, they can 

assist effect assessors in applying current techniques so that more accurate predicted no effect 

concentrations for chemicals are obtained. 

 

171



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter XI 

Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter XI: Appendix 

XI. 1. Introduction 

 

This appendix lists the data used to perform the experiments described in the previous chapters. 

Section XI.2 gives the references to the studies with artificial ecosystems discussed in chapter II. 

Also the toxicity data considered in chapter II are listed in that section. In section XI.3, a description 

of the state and driver variables is given. In section XI.4, a description of all parameters is provided. 

The values assigned to them throughout this dissertation are listed in sections XI.5 and XI.6. In 

section XI.5, this is done for the parameters with a constant value throughout chapters III to VIII. 

Section XI.6 carefully lists those parameters which have received different values in the different 

chapters. It also lists the parameter values resulting from the quantitative calibration in chapter IX. 

In XI.7, a justification of the experimental NOEC-data used in chapter VI is provided.  

 

XI. 2. supporting data for chapter II 

 

XI. 2. 1. Considered ecosystem studies between 1990 and 2006 
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Barry, M. J. and Davies, W. 2004. Effects of invertebrate predators and a pesticide on temporary 

pond microcosms used for aquatic toxicity testing. Environmental Pollution, 131, pp. 25-34. 
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testing: direct and indirect effects of endosulfan on community structure. Aquatic Toxicology, 41, 

pp. 101-124. 

 

Beck, N. G., Bruland, K. W. and Rue, E. L. 2002. Short-term biogeochemical influence of a diatom 
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174



Chapter XI: Appendix 

Belanger, S. E., Bowling, J. W., LeBlanc, E. M., Price, B. B., Herzog, R. R. and Bozso, E. 2005. 

Comprehensive assessment of aquatic community responses to a new anionic surfactant, high-

solubility alkyl sulfate. Ecotoxicology and Environmental Safety, 62, pp. 75-92. 

 

Belanger, S. E., Bowling, J. W., Lee, D. M., LeBlanc, E. M., Kerr, K. M., McAvoy, D. C., 

Christman, S. C. and Davidson, D. H. 2002. Integration of aquatic fate and ecological responses to 

linear alkyl benzene sulfonate (LAS) in model stream ecosystems. Ecotoxicology and 

Environmental Safety, 52, pp. 150-171. 

 

Belanger, S. E., Guckert, J. B., Bowling, J. W., Begley, W. M., Davidson, D. H., LeBlanc, E. M. 

and Lee, D. M. 2000. Responses of aquatic communities to 25-6 alcohol ethoxylate in model stream 

ecosystems. Aquatic Toxicology, 48, pp. 135-150. 

 

Belanger, S. E., Lee, D. M., Bowling, J. W. and LeBlanc, E. M. 2004. Responses of periphyton and 

invertebrates to a tetradecyl-pentadecyl sulfate mixture in stream mesocosms. Environmental 

Toxicology and Chemistry, 23, pp. 2202-2213. 

 

Belanger, S. E., Meiers, E. M. and Bausch, R. G. 1995. Direct and Indirect Ecotoxicological Effects 

of Alkyl Sulfate and Alkyl Ethoxysulfate on Macroinvertebrates in Stream Mesocosms. Aquatic 

Toxicology, 33, pp. 65-87. 

 

Belanger, S. E., Rupe, K. L., Lowe, R. L., Johnson, D. and Pan, Y. 1996. A flow-through laboratory 

microcosm suitable for assessing effects of surfactants on natural periphyton. Environmental 

Toxicology and Water Quality, 11, pp. 65-76. 

 

Berard, A., Leboulanger, C. and Pelte, T. 1999. Tolerance of Oscillatoria limnetica Lemmermann to 

atrazine in natural phytoplankton populations and in pure culture: Influence of season and 

temperature. Archives of Environmental Contamination and Toxicology, 37, pp. 472-479. 

 

Berard, A., Pelte, T. and Druart, J. C. 1999. Seasonal variations in the sensitivity of Lake Geneva 

phytoplankton community structure to atrazine. Archiv Fur Hydrobiologie, 145, pp. 277-295. 

 

Berard, A., Pelte, T., Menthon, E., Druart, J. C. and Bourrain, X. 1998. Characterisation of 

phytoplankton from two limnic systems contaminated by a herbicidal photosynthetic inhibitor. The 

175



Chapter XI: Appendix 

PICT method (Pollution-Induced Community Tolerance): application and significance. Annales De 

Limnologie-International Journal of Limnology, 34, pp. 269-282. 

 

Berends, A. G., Boutonnet, J. C., de Rooij, C. G. and Thompson, R. S. 1999. Toxicity of 

trifluoroacetate to aquatic organisms. Environmental Toxicology and Chemistry, 18, pp. 1053-1059. 

 

Berenzen, N., Schulz, R. and Liess, M. 2001. Effects of chronic ammonium and nitrite 

contamination on the macroinvertebrate community in running water microcosms. Water Research, 

35, pp. 3478-3482. 

 

Blanck, H. and Dahl, B. 1996. Pollution-induced community tolerance (PICT) in marine periphyton 

in a gradient of tri-n-butyltin (TBT) contamination. Aquatic Toxicology, 35, pp. 59-77. 

 

Blanck, H. and Dahl, B. 1998. Recovery of marine periphyton communities around a Swedish 

marina after the ban of TBT use in antifouling paint. Marine Pollution Bulletin, 36, pp. 437-442. 

 

Boone, M. D. and Bridges-Britton, C. M. 2006. Examining multiple sublethal contaminants on the 

gray treefrog (Hyla versicolor): Effects of an insecticide, herbicide, and fertilizer. Environmental 

Toxicology and Chemistry, 25, pp. 3261-3265. 

 

Boone, M. D. and Semlitsch, R. D. 2003. Interactions of bullfrog tadpole predators and an 

insecticide: predation release and facilitation. Oecologia, 137, pp. 610-616. 

 

Boudreau, T. M., Wilson, C. J., Cheong, W. J., Sibley, P. K., Mabury, S. A., Muir, D. C. G. and 

Solomon, K. R. 2003. Response of the zooplankton community and environmental fate of 

perfluorooctane sulfonic acid in aquatic microcosms. Environmental Toxicology and Chemistry, 22, 

pp. 2739-2745. 

 

Boyle, T. P., Fairchild, J. F., RobinsonWilson, E. F., Haverland, P. S. and Lebo, J. A. 1996. 

Ecological restructuring in experimental aquatic mesocosms due to the application of diflubenzuron. 

Environmental Toxicology and Chemistry, 15, pp. 1806-1814. 

 

Brain, R. A., Johnson, D. J., Richards, S. M., Hanson, M. L., Sanderson, H., Lam, M. W., Young, 

C., Mabury, S. A., Sibley, P. K. and Solomon, K. R. 2004. Microcosm evaluation of the effects of 

176



Chapter XI: Appendix 

an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum 

sibiricum. Aquatic Toxicology, 70, pp. 23-40. 

 

Breitburg, D. L., Sanders, J. G., Gilmour, C. C., Hatfield, C. A., Osman, R. W., Riedel, G. F., 

Seitzinger, S. B. and Sellner, K. G. 1999. Variability in responses to nutrients and trace elements, 

and transmission of stressor effects through an estuarine food web. Limnology and Oceanography, 

44, pp. 837-863. 

 

Breneman, D. H. and Pontasch, K. W. 1994. Stream Microcosm Toxicity Tests - Predicting the 

Effects of Fenvalerate on Riffle Insect Communities. Environmental Toxicology and Chemistry, 13, 

pp. 381-387. 

 

Brock, T. C. M., Crum, S. J. H., Deneer, J. W., Heimbach, F., Roijackers, R. M. M. and Sinkeldam, 

J. A. 2004. Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides 

metribuzin and metamitron. Environmental Pollution, 130, pp. 403-426. 

 

Brock, T. C. M., Vandenbogaert, M., Bos, A. R., Vanbreukelen, S. W. F., Reiche, R., Terwoert, J., 

Suykerbuyk, R. E. M. and Roijackers, R. M. M. 1992. Fate and Effects of the Insecticide 

Dursban(R) 4e in Indoor Elodea-Dominated and Macrophyte-Free Fresh-Water Model-Ecosystems 

.2. Secondary Effects on Community Structure. Archives of Environmental Contamination and 

Toxicology, 23, pp. 391-409. 

 

Brooks, B. W., Stanley, J. K., White, J. C., Turner, P. K., Wu, K. B. and La Point, T. W. 2004. 

Laboratory and field responses to cadmium: An experimental study in effluent-dominated stream 

mesocosms. Environmental Toxicology and Chemistry, 23, pp. 1057-1064. 

 

Brust, K., Licht, O., Hultsch, V., Jungmann, D. and Nagel, R. 2001. Effects of terbutryn on 

aufwuchs and Lumbriculus variegatus in artificial indoor streams. Environmental Toxicology and 

Chemistry, 20, pp. 2000-2007. 

 

Cairns, J., McCormick, P. V. and Niederlehner, B. R. 1992. Estimating Ecotoxicological Risk and 

Impact Using Indigenous Aquatic Microbial Communities. Hydrobiologia, 237, pp. 131-145. 

 

177



Chapter XI: Appendix 

Caquet, T., Deydier-Stephan, L., Lacroix, G., Le Rouzic, B. and Lescher-Moutoue, F. 2005. Effects 

of fomesafen, alone and in combination with an adjuvant, on plankton communities in freshwater 

outdoor pond mesocosms. Environmental Toxicology and Chemistry, 24, pp. 1116-1124. 

 

Caquet, T., Thybaud, E., Lebras, S., Jonot, O. and Ramade, F. 1992. Fate and Biological Effects of 

Lindane and Deltamethrin in Fresh-Water Mesocosms. Aquatic Toxicology, 23, pp. 261-278. 

 

Christoffersen, K., Hansen, B. W., Johansson, L. S. and Krog, E. 2003. Influence of LAS on marine 

calanoid copepod population dynamics and potential reproduction. Aquatic Toxicology, 63, pp. 405-

416. 

 

Clark, J. L. and Clements, W. H. 2006. The use of in situ and stream microcosm experiments to 

assess population- and community-level responses to metals. Environmental Toxicology and 

Chemistry, 25, pp. 2306-2312. 

 

Coffinet, S., Cossu-Leguille, C., Basseres, A., Gonnet, J. F. and Vasseur, P. 2006. Artificial streams 

in the assessment of environmental hazard of chemicals. Environmental Toxicology, 21, pp. 450-

456. 

 

Coors, A., Kuckelkorn, J., Hammers-Wirtz, M. and Strauss, T. 2006. Application of in-situ 

bioassays with macrophytes in aquatic mesocosm studies. Ecotoxicology, 15, pp. 583-591. 

 

Coull, B. C. and Chandler, G. T. 1992. Pollution and Meiofauna - Field, Laboratory, and Mesocosm 

Studies. Oceanography and Marine Biology, 30, pp. 191-271. 

 

Crosa, G., Yamego, L., Calamari, D., Diop, M. E., Nabe, K. and Konde, F. 2001. Analysis of the 

effects of rotational larviciding on aquatic fauna of two Guinean rivers: the case of permethrin. 

Chemosphere, 44, pp. 501-510. 

 

Cuppen, J. G. M., Crum, S. J. H., Van den Heuvel, H. H., Smidt, R. A. and Van den Brink, P. J. 

2002. Effects of a mixture of two insecticides in freshwater microcosms: I. Fate of chlorpyrifos and 

lindane and responses of macroinvertebrates. Ecotoxicology, 11, pp. 165-180. 

 

178



Chapter XI: Appendix 

Cuppen, J. G. M., Van den Brink, P. J., Camps, E., Uil, K. F. and Brock, T. C. M. 2000. Impact of 

the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate 

organic matter and responses of macroinvertebrates. Aquatic Toxicology, 48, pp. 233-250. 

 

Cuppen, J. G. M., VandenBrink, P. J., VanderWoude, H., Zwaardemaker, N. and Brock, T. C. M. 

1997. Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide 

linuron .2. Community metabolism and invertebrates. Ecotoxicology and Environmental Safety, 38, 

pp. 25-35. 

 

Dahl, B. and Blanck, H. 1996. Pollution-induced community tolerance (PICT) in periphyton 

communities established under tri-n-butyltin (TBT) stress in marine microcosms. Aquatic 

Toxicology, 34, pp. 305-325. 

 

Devilla, R. A., Brown, M. T., Donkin, M. and Readman, J. W. 2005. The effects of a PSII inhibitor 

on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and 

flow cytometry. Aquatic Toxicology, 71, pp. 25-38. 

 

Dorigo, U., Bourrain, X., Berard, A. and Leboulanger, C. 2004. Seasonal changes in the sensitivity 

of river microalgae to atrazine and isoproturon along a contamination gradient. Science of the Total 

Environment, 318, pp. 101-114. 

 

Faber, M. J., Thompson, D. G., Stephenson, G. R. and Kreutzweiser, D. P. 1998. Impact of 

glufosinate-ammonium and bialaphos on the zooplankton community of a small eutrophic northern 

lake. Environmental Toxicology and Chemistry, 17, pp. 1291-1299. 

 

Fairchild, J. F., Lapoint, T. W. and Schwartz, T. R. 1994. Effects of an Herbicide and Insecticide 

Mixture in Aquatic Mesocosms. Archives of Environmental Contamination and Toxicology, 27, pp. 

527-533. 

 

Fairchild, J. F., Lapoint, T. W., Zajicek, J. L., Nelson, M. K., Dwyer, F. J. and Lovely, P. A. 1992. 

Population-Level, Community-Level and Ecosystem-Level Responses of Aquatic Mesocosms to 

Pulsed Doses of a Pyrethroid Insecticide. Environmental Toxicology and Chemistry, 11, pp. 115-

129. 

 

179



Chapter XI: Appendix 

Fliedner, A. and Klein, W. 1996. Effects of lindane on the planktonic community in freshwater 

microcosms. Ecotoxicology and Environmental Safety, 33, pp. 228-235. 

 

Foekema, E. M., Kaag, N., van Hussel, D. M., Jak, R. G., Scholten, M. C. T. and van der Guchte, C. 

1998. Mesocosm observations on the ecological response of an aquatic community to sediment 

contamination. Water Science and Technology, 37, pp. 249-256. 

 

Forrow, D. M. and Maltby, L. 2000. Toward a mechanistic understanding of contaminant-induced 

changes in detritus processing in streams: Direct and indirect effects on detritivore feeding. 

Environmental Toxicology and Chemistry, 19, pp. 2100-2106. 

 

Friberg-Jensen, U., Wendt-Rasch, L., Woin, P. and Christoffersen, K. 2003. Effects of the 

pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. 

Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquatic 

Toxicology, 63, pp. 357-371. 

 

Fuma, S., Ishii, N., Takeda, H., Miyamoto, K., Yanagisawa, K., Ichimasa, Y., Saito, M., Kawabata, 

Z. and Polikarpov, G. G. 2003. Ecological effects of various toxic agents on the aquatic microcosm 

in comparison with acute ionizing radiation. Journal of Environmental Radioactivity, 67, pp. 1-14. 

 

Gagneten, A. M. 2002. Response of a zooplanktonic freshwater community to chromium application 

in experimental enclosures. Interciencia, 27, pp. 563-570. 

 

Gagneten, A. M. and Vila, I. 2001. Effects of Cu+2 and pH on the fitness of Ceriodaphnia dubia 

(Richard 1894) (Crustacea, Cladocera) in microcosm experiments. Environmental Toxicology, 16, 

pp. 428-438. 

 

Genoni, G. P. 1992. Short-Term Effect of a Toxicant on Scope for Change in Ascendancy in a 

Microcosm Community. Ecotoxicology and Environmental Safety, 24, pp. 179-191. 

 

Giddings, J. M., Biever, R. C., Annunziato, M. F. and Hosmer, A. J. 1996. Effects of diazinon on 

large outdoor pond microcosms. Environmental Toxicology and Chemistry, 15, pp. 618-629. 

 

180



Chapter XI: Appendix 

Gustavson, K., Mohlenberg, F. and Schluter, L. 2003. Effects of exposure duration of herbicides on 

natural stream periphyton communities and recovery. Archives of Environmental Contamination 

and Toxicology, 45, pp. 48-58. 

 

Gustavson, K., Petersen, S., Pedersen, B., Stuer-Lauridsen, F., Pedersen, S. and Wangberg, S. A. 

1999. Pollution-Induced Community Tolerance (PICT) in coastal phytoplankton communities 

exposure to copper. Hydrobiologia, 416, pp. 125-138. 

 

Gustavson, K. and Wangberg, S. A. 1995. Tolerance Induction and Succession in Microalgae 

Communities Exposed to Copper and Atrazine. Aquatic Toxicology, 32, pp. 283-302. 

 

Hanazato, T. and Kasai, F. 1995. Effects of the Organophosphorus Insecticide Fenthion on 

Phytoplankton and Zooplankton Communities in Experimental Ponds. Environmental Pollution, 88, 

pp. 293-298. 

 

Hanson, M. L., Sibley, P. K., Brain, R. A., Mabury, S. A. and Solomon, K. R. 2005. Microcosm 

evaluation of the toxicity and risk to aquatic macrophytes from perfluorooctane sulfonic acid. 

Archives of Environmental Contamination and Toxicology, 48, pp. 329-337. 

 

Hanson, M. L., Sibley, P. K., Mabury, S. A., Solomon, K. R. and Muir, D. C. G. 2002. 

Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) mixture toxicity to the macrophytes 

Myriophyllum spicatum and Myriophyllum sibiricum in aquatic microcosms. Science of the Total 

Environment, 285, pp. 247-259. 

 

Hanson, M. L., Small, J., Sibley, P. K., Boudreau, T. M., Brain, R. A., Mabury, S. A. and Solomon, 

K. R. 2005. Microcosm evaluation of the fate, toxicity, and risk to aquatic macrophytes from 

perfluorooctanoic acid (PFOA). Archives of Environmental Contamination and Toxicology, 49, pp. 

307-316. 

 

Hart, B. T., Currey, N. A. and Jones, M. J. 1992. Biogeochemistry and Effects of Copper, 

Manganese and Zinc Added to Enclosures in Island Billabong, Magela Creek, Northern Australia. 

Hydrobiologia, 230, pp. 93-134. 

 

181



Chapter XI: Appendix 

Havens, K. E. 1994. An Experimental Comparison of the Effects of 2 Chemical Stressors on a 

Fresh-Water Zooplankton Assemblage. Environmental Pollution, 84, pp. 245-251. 

 

Havens, K. E. 1995. Insecticide (Carbaryl, 1-Napthyl-N-Methyl Carbamate) Effects on a Fresh-

Water Plankton Community - Zooplankton Size, Biomass, and Algal Abundance. Water Air and 

Soil Pollution, 84, pp. 1-10. 

 

Hense, B. A., Juttner, I., Welzl, G., Severin, G. F., Pfister, G., Behechti, A. and Schramm, K. W. 

2003. Effects of 4-nonylphenol on phytoplankton and periphyton in aquatic microcosms. 

Environmental Toxicology and Chemistry, 22, pp. 2727-2732. 

 

Hense, B. A., Severin, G. F., Welzl, G. and Schramm, K. W. 2004. Effects of 17 alpha-

ethinylestradiol on zoo- and phytoplankton in lentic microcosms. Analytical and Bioanalytical 

Chemistry, 378, pp. 716-724. 

 

Hense, B. A., Welzl, G., Severin, G. F. and Schramm, K. W. 2005. Nonylphenol induced changes in 

trophic web structure of plankton analysed by multivariate statistical approaches. Aquatic 

Toxicology, 73, pp. 190-209. 

 

Hickey, C. W. and Clements, W. H. 1998. Effects of heavy metals on benthic macroinvertebrate 

communities in New Zealand streams. Environmental Toxicology and Chemistry, 17, pp. 2338-

2346. 

 

Hickey, C. W. and Golding, L. A. 2002. Response of macroinvertebrates to copper and zinc in a 

stream mesocosm. Environmental Toxicology and Chemistry, 21, pp. 1854-1863. 

 

Hickey, C. W., Golding, L. A., Martin, M. L. and Croker, G. F. 1999. Chronic toxicity of ammonia 

to New Zealand freshwater invertebrates: A mesocosm study. Archives of Environmental 

Contamination and Toxicology, 37, pp. 338-351. 

 

Hjorth, M., Haller, R. and Dahllof, I. 2006. The use of C-14 tracer technique to assess the functional 

response of zooplankton community grazing to toxic impact. Marine Environmental Research, 61, 

pp. 339-351. 

 

182



Chapter XI: Appendix 

Hoagland, K. D., Drenner, R. W., Smith, J. D. and Cross, D. R. 1993. Fresh-Water Community 

Responses to Mixtures of Agricultural Pesticides - Effects of Atrazine and Bifenthrin. 

Environmental Toxicology and Chemistry, 12, pp. 627-637. 

 

Hose, G. C., Hyne, R. V. and Lim, R. P. 2003. Toxicity of endosulfan to Atalophlebia spp. 

(ephemeroptera) in the laboratory, mesocosm, and field. Environmental Toxicology and Chemistry, 

22, pp. 3062-3068. 

 

Hoss, S., Traunspurger, W., Severin, G. E., Juttner, I., Pfister, G. and Schramm, K. W. 2004. 

Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms. 

Environmental Toxicology and Chemistry, 23, pp. 1268-1275. 

 

Jak, R. G., Ceulemans, M., Scholten, M. C. T. and van Straalen, N. M. 1998. Effects of tributyltin 

on a coastal North Sea plankton community in enclosures. Environmental Toxicology and 

Chemistry, 17, pp. 1840-1847. 

 

Jak, R. G., Maas, J. L. and Scholten, M. C. T. 1996. Evaluation of laboratory derived toxic effect 

concentrations of a mixture of metals by testing fresh water plankton communities in enclosures. 

Water Research, 30, pp. 1215-1227. 

 

Jak, R. G., Maas, J. L. and Scholten, M. C. T. 1998. Ecotoxicity of 3,4-dichloroaniline in enclosed 

freshwater plankton communities at different nutrient levels. Ecotoxicology, 7, pp. 49-60. 

 

Jin, H. J., Zhang, Y. M. and Yang, R. 1991. Toxicity and Distribution of Copper in an Aquatic 

Microcosm under Different Alkalinity and Hardness. Chemosphere, 22, pp. 577-596. 

 

Juttner, I., Peither, A., Lay, J. P., Kettrup, A. and Ormerod, S. J. 1995. An Outdoor Mesocosm 

Study to Assess Ecotoxicological Effects of Atrazine on a Natural Plankton Community. Archives 

of Environmental Contamination and Toxicology, 29, pp. 435-441. 

 

Kasai, F. and Hanazato, T. 1995. Effects of the Triazine Herbicide, Simetryn, on Fresh-Water 

Plankton Communities in Experimental Ponds. Environmental Pollution, 89, pp. 197-202. 

 

183



Chapter XI: Appendix 

Kasai, F., Takamura, N. and Hatakeyama, S. 1993. Effects of Simetryne on Growth of Various 

Fresh-Water Algal Taxa. Environmental Pollution, 79, pp. 77-83. 

 

Kashian, D. R., Prusha, B. A. and Clements, W. H. 2004. Influence of total organic carbon and UV-

B radiation on zinc toxicity and bioaccumulation in aquatic communities. Environmental Science & 

Technology, 38, pp. 6371-6376. 

 

Kaviraj, A., Bhunia, F. and Saha, N. C. 2004. Toxicity of methanol to fish, crustacean, oligochaete 

worm, and aquatic ecosystem. International Journal of Toxicology, 23, pp. 55-63. 

 

Kersting, K. and Vanwijngaarden, R. 1992. Effects of Chlorpyrifos on a Microecosystem. 

Environmental Toxicology and Chemistry, 11, pp. 365-372. 

 

Kiffney, P. M. and Clements, W. H. 1994. Effects of Heavy-Metals on a Macroinvertebrate 

Assemblage from a Rocky-Mountain Stream in Experimental Microcosms. Journal of the North 

American Benthological Society, 13, pp. 511-523. 

 

Kiffney, P. M. and Clements, W. H. 1996. Size-dependent response of macroinvertebrates to metals 

in experimental streams. Environmental Toxicology and Chemistry, 15, pp. 1352-1356. 

 

Kiffney, P. M. and Clements, W. H. 1996. Effects of metals on stream macroinvertebrate 

assemblages from different altitudes. Ecological Applications, 6, pp. 472-481. 

 

Kobraei, M. E. and White, D. S. 1996. Effects of 2,4-dichlorophenoxyacetic acid on Kentucky 

algae: Simultaneous laboratory and field toxicity testings. Archives of Environmental 

Contamination and Toxicology, 31, pp. 571-580. 

 

Kreutzweiser, D. P., Back, R. C., Sutton, T. M., Pangle, K. L. and Thompson, D. G. 2004. Aquatic 

mesocosm assessments of a neem (azadirachtin) insecticide at environmentally realistic 

concentrations - 2: zooplankton community responses and recovery. Ecotoxicology and 

Environmental Safety, 59, pp. 194-204. 

 

184



Chapter XI: Appendix 

Kreutzweiser, D. P., Gringorten, J. L., Thomas, D. R. and Butcher, J. T. 1996. Functional effects of 

the bacterial insecticide Bacillus thuringiensis var kurstaki on aquatic microbial communities. 

Ecotoxicology and Environmental Safety, 33, pp. 271-280. 

 

Kreutzweiser, D. P., Sutton, T. M., Back, R. C., Pangle, K. L. and Thompson, D. G. 2004. Some 

ecological implications of a neem (azadirachtin) insecticide disturbance to zooplankton communities 

in forest pond enclosures. Aquatic Toxicology, 67, pp. 239-254. 

 

Landis, W. G., Markiewicz, A. J., Matthews, R. A. and Matthews, G. B. 2000. A test of the 

community conditioning hypothesis: Persistence of effects in model ecological structures dosed with 

the jet fuel JP-8. Environmental Toxicology and Chemistry, 19, pp. 327-336. 

 

Larsen, D. K., Wagner, I., Gustavson, K., Forbes, V. E. and Lund, T. 2003. Long-term effect of Sea-

Nine on natural coastal phytoplankton communities assessed by pollution induced community 

tolerance. Aquatic Toxicology, 62, pp. 35-44. 

 

Lauth, J. R., Scott, G. I., Cherry, D. S. and Buikema, A. L. 1996. A modular estuarine mesocosm. 

Environmental Toxicology and Chemistry, 15, pp. 630-637. 

 

Le Jeune, A. H., Charpin, M., Deluchat, V. and Briand, J. F. 2006. Effect of copper sulphate 

treatment on natural phytoplanktonic communities. Aquatic Toxicology, 80, pp. 267-280. 

 

Leboulanger, C., Rimet, F., de Lacotte, M. H. and Berard, A. 2001. Effects of atrazine and 

nicosulfuron on freshwater microalgae. Environment International, 26, pp. 131-135. 

 

Leeuwangh, P., Brock, T. C. M. and Kersting, K. 1994. An Evaluation of 4 Types of Fresh-Water 

Model Ecosystem for Assessing the Hazard of Pesticides. Human & Experimental Toxicology, 13, 

pp. 888-899. 

 

Liber, K., Kaushik, N. K., Solomon, K. R. and Carey, J. H. 1992. Experimental-Designs for Aquatic 

Mesocosm Studies - a Comparison of the Anova and Regression Design for Assessing the Impact of 

Tetrachlorophenol on Zooplankton Populations in Limnocorrals. Environmental Toxicology and 

Chemistry, 11, pp. 61-77. 

 

185



Chapter XI: Appendix 

Liber, K., Knuth, M. L. and Stay, F. S. 1999. An integrated evaluation of the persistence and effects 

of 4-nonylphenol in an experimental littoral ecosystem. Environmental Toxicology and Chemistry, 

18, pp. 357-362. 

 

Liess, M. and Schulz, R. 1999. Linking insecticide contamination and population response in an 

agricultural stream. Environmental Toxicology and Chemistry, 18, pp. 1948-1955. 

 

Lizotte, R. E., Dorn, P. B., Steinriede, R. W., Wong, D. C. L. and Rodgers, J. H. 2002. Ecological 

effects of an anionic C12-15 AE-3S alkylethoxysulfate surfactant in outdoor stream mesocosms. 

Environmental Toxicology and Chemistry, 21, pp. 2742-2751. 

 

Lozano, R. B. and Pratt, J. R. 1994. Interaction of Toxicants and Communities - the Role of 

Nutrients. Environmental Toxicology and Chemistry, 13, pp. 361-368. 

 

Lozano, S. J., Ohalloran, S. L., Sargent, K. W. and Brazner, J. C. 1992. Effects of Esfenvalerate on 

Aquatic Organisms in Littoral Enclosures. Environmental Toxicology and Chemistry, 11, pp. 35-47. 

 

Matthews, R. A., Landis, W. G. and Matthews, G. B. 1996. The community conditioning hypothesis 

and its application to environmental toxicology. Environmental Toxicology and Chemistry, 15, pp. 

597-603. 

 

McCormick, P. V., Cairns, J., Belanger, S. E. and Smith, E. P. 1991. Response of Protistan 

Assemblages to a Model Toxicant, the Surfactant C-12-Tmac (Dodecyl Trimethyl Ammonium-

Chloride), in Laboratory Streams. Aquatic Toxicology, 21, pp. 41-70. 

 

Meador, J. P., Taub, F. B. and Sibley, T. H. 1993. Copper Dynamics and the Mechanism of 

Ecosystem-Level Recovery in a Standardized Aquatic Microcosm. Ecological Applications, 3, pp. 

139-155. 

 

Medina, M., Barata, C., Telfer, T. and Baird, D. J. 2004. Effects of cypermethrin on marine plankton 

communities: a simulated field study using mesocosms. Ecotoxicology and Environmental Safety, 

58, pp. 236-245. 

 

186



Chapter XI: Appendix 

Melendez, A. L., Kepner, R. L., Balczon, J. M. and Pratt, J. R. 1993. Effects of Diquat on Fresh-

Water Microbial Communities. Archives of Environmental Contamination and Toxicology, 25, pp. 

95-101. 

 

Millward, R. N., Carman, K. R., Fleeger, J. W., Gambrell, R. P., Powell, R. T. and Rouse, M. A. M. 

2001. Linking ecological impact to metal concentrations and speciation: A microcosm experiment 

using a salt marsh meiofaunal community. Environmental Toxicology and Chemistry, 20, pp. 2029-

2037. 

 

Molander, S. and Blanck, H. 1992. Detection of Pollution-Induced Community Tolerance (Pict) in 

Marine Periphyton Communities Established under Diuron Exposure. Aquatic Toxicology, 22, pp. 

129-144. 

 

Molander, S., Blanck, H. and Soderstrom, M. 1990. Toxicity Assessment by Pollution-Induced 

Community Tolerance (Pict), and Identification of Metabolites in Periphyton Communities after 

Exposure to 4,5,6-Trichloroguaiacol. Aquatic Toxicology, 18, pp. 115-136. 

 

Munoz, I., Real, M., Guasch, H., Navarro, E. and Sabater, S. 2001. Effects of atrazine on periphyton 

under grazing pressure. Aquatic Toxicology, 55, pp. 239-249. 

 

Nayar, S., Goh, B. P. L. and Chou, L. M. 2004. The impact of petroleum hydrocarbons (diesel) on 

periphyton in an impacted tropical estuary based on in situ microcosms. Journal of Experimental 

Marine Biology and Ecology, 302, pp. 213-232. 

 

Nayar, S., Goh, B. P. L., Chou, L. M. and Reddy, S. 2003. In situ microcosms to study the impact of 

heavy metals resuspended by dredging on periphyton in a tropical estuary. Aquatic Toxicology, 64, 

pp. 293-306. 

 

Neugebaurbuchler, K. E., Zieris, F. J. and Huber, W. 1991. Reactions of an Experimental Outdoor 

Pond to Lindane Application. Zeitschrift Fur Wasser Und Abwasser Forschung-Journal for Water 

and Wastewater Research, 24, pp. 81-92. 

 

187



Chapter XI: Appendix 

Nystrom, B., Becker-van Slooten, K., Berard, A., Grandjean, D., Druart, J. C. and Leboulanger, C. 

2002. Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water 

Research, 36, pp. 2020-2028. 

 

O'Halloran, S. L., Liber, K., Gangl, J. A. and Knuth, M. L. 1999. Effects of repeated exposure to 4-

nonylphenol on the zooplankton community in littoral enclosures. Environmental Toxicology and 

Chemistry, 18, pp. 376-385. 

 

Pascoe, D., Wenzel, A., Janssen, C., Girling, A. E., Juttner, I., Fliedner, A., Blockwell, S. J., Maund, 

S. J., Taylor, E. J., Diedrich, M., Persoone, G., Verhelst, P., Stephenson, R. R., Crossland, N. O., 

Mitchell, G. C., Pearson, N., Tattersfield, L., Lay, J. P., Peither, A., Neumeier, B. and Velletti, A. R. 

2000. The development of toxicity tests for freshwater pollutants and their validation in stream and 

pond mesocosms. Water Research, 34, pp. 2323-2329. 

 

Paulsson, M., Nystrom, B. and Blanck, H. 2000. Long-term toxicity of zinc to bacteria and algae in 

periphyton communities from the river Gota Alv, based on a microcosm study. Aquatic Toxicology, 

47, pp. 243-257. 

 

Peither, A., Juttner, I., Kettrup, A. and Lay, J. P. 1996. A pond mesocosm study to determine direct 

and indirect effects of lindane on a natural zooplankton community. Environmental Pollution, 93, 

pp. 49-56. 

 

Peres, F., Florin, D., Grollier, T., FeurtetMazel, A., Coste, M., Ribeyre, F., Ricard, M. and Boudou, 

A. 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in 

freshwater indoor microcosms. Environmental Pollution, 94, pp. 141-152. 

 

Perez, K. T., Morrison, G. E., Davey, E. W., Lackie, N. F., Soper, A. E., Blasco, R. J., Winslow, D. 

L., Johnson, R. L., Murphy, P. G. and Heltshe, J. F. 1991. Influence of Size on Fate and Ecological 

Effects of Kepone in Physical Models. Ecological Applications, 1, pp. 237-248. 

 

Pesce, S., Fajon, C., Bardot, C., Bonnemoy, F., Portelli, C. and Bohatier, J. 2006. Effects of the 

phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. 

Aquatic Toxicology, 78, pp. 303-314. 

 

188



Chapter XI: Appendix 

Petersen, S. and Gustavson, K. 1998. Toxic effects of tri-butyl-tin (TBT) on autotrophic pico-, nano-

, and microplankton assessed by a size fractionated pollution-induced community tolerance (SF-

PICT) concept. Aquatic Toxicology, 40, pp. 253-264. 

 

Petersen, S. and Gustavson, K. 2000. Direct toxic effects of TBT on natural enclosed phytoplankton 

at ambient TBT concentrations of coastal waters. Ecotoxicology, 9, pp. 273-285. 

 

Plantecuny, M. R., Salenpicard, C., Grenz, C., Plante, R., Alliot, E. and Barranguet, C. 1993. 

Experimental Field-Study of the Effects of Crude-Oil, Drill Cuttings and Natural Biodeposits on 

Microphytozoobenthic and Macrozoobenthic Communities in a Mediterranean Area. Marine 

Biology, 117, pp. 355-366. 

 

Pont, D., Franquet, E. and Tourenq, J. N. 1999. Impact of different Bacillus thuringiensis variety 

israelensis treatments on a chironomid (Diptera Chironomidae) community in a temporary marsh. 

Journal of Economic Entomology, 92, pp. 266-272. 

 

Pontasch, K. W. and Cairns, J. 1991. Multispecies Toxicity Tests Using Indigenous Organisms - 

Predicting the Effects of Complex Effluents in Streams. Archives of Environmental Contamination 

and Toxicology, 20, pp. 103-112. 

 

Pratt, J. R. and Barreiro, R. 1998. Influence of trophic status on the toxic effects of a herbicide: A 

microcosm study. Archives of Environmental Contamination and Toxicology, 35, pp. 404-411. 

 

Rand, G. M., Clark, J. R. and Holmes, C. M. 2000. Use of outdoor freshwater pond microcosms: II. 

Responses of biota to pyridaben. Environmental Toxicology and Chemistry, 19, pp. 396-404. 

 

Richards, S. M., Wilson, C. J., Johnson, D. J., Castle, D. M., Lam, M., Mabury, S. A., Sibley, P. K. 

and Solomon, K. R. 2004. Effects of pharmaceutical mixtures in aquatic microcosms. 

Environmental Toxicology and Chemistry, 23, pp. 1035-1042. 

 

Richardson, J. S. and Kiffney, P. M. 2000. Responses of a macroinvertebrate community from a 

pristine, southern British Columbia, Canada, stream to metals in experimental mesocosms. 

Environmental Toxicology and Chemistry, 19, pp. 736-743. 

 

189



Chapter XI: Appendix 

Riedel, G. F., Sanders, J. G. and Breitburg, D. L. 2003. Seasonal variability in response of estuarine 

phytoplankton communities to stress: Linkages between toxic trace elements and nutrient 

enrichment. Estuaries, 26, pp. 323-338. 

 

Rimet, F., De Lacotte, M. H., Leboulanger, C., Druart, J. C. and Berard, A. 1999. Atrazine and 

Nicosulfuron effects on phytoplanktonic communities of Lake of Geneva. Archives Des Sciences, 

52, pp. 111-122. 

 

Roessink, I., Arts, G. H. P., Belgers, J. D. M., Bransen, F., Maund, S. J. and Brock, T. C. M. 2005. 

Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status. 

Environmental Toxicology and Chemistry, 24, pp. 1684-1696. 

 

Roessink, I., Belgers, J. D. M., Crum, S. J. H., van den Brink, P. J. and Brock, T. C. M. 2006. 

Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species 

sensitivity distributions between laboratory and semi-field. Ecotoxicology, 15, pp. 411-424. 

 

Rohr, J. R. and Crumrine, P. W. 2005. Effects of an herbicide and an insecticide on pond 

community structure and processes. Ecological Applications, 15, pp. 1135-1147. 

 

Roses, N., Poquet, M. and Munoz, I. 1999. Behavioural and histological effects of atrazine on 

freshwater molluscs (Physa acuta Drap. and Ancylus fluviatilis Mull. Gastropoda). Journal of 

Applied Toxicology, 19, pp. 351-356. 

 

Sanchez, P., Kubitza, J., Dohmen, G. P. and Tarazona, J. V. 2006. Aquatic risk assessment of the 

new rice herbicide profoxydim. Environmental Pollution, 142, pp. 181-189. 

 

Sanderson, H., Boudreau, T. M., Mabury, S. A., Cheong, W. J. and Solomon, K. R. 2002. 

Ecological impact and environmental fate of perfluorooctane sulfonate on the zooplankton 

community in indoor microcosms. Environmental Toxicology and Chemistry, 21, pp. 1490-1496. 

 

Sanderson, H., Boudreau, T. M., Mabury, S. A. and Solomon, K. R. 2003. Impact of 

perfluorooctanoic acid on the structure of the zooplankton community in indoor microcosms. 

Aquatic Toxicology, 62, pp. 227-234. 

 

190



Chapter XI: Appendix 

Sanderson, H., Boudreau, T. M., Mabury, S. A. and Solomon, K. R. 2004. Effects of 

perfluorooctane sulfonate and perfluorooctanoic acid on the zooplanktonic community. 

Ecotoxicology and Environmental Safety, 58, pp. 68-76. 

 

Schmitt-Jansen, M. and Altenburger, R. 2005. Toxic effects of isoproturon on periphyton 

communities - a microcosm study. Estuarine Coastal and Shelf Science, 62, pp. 539-545. 

 

Schmitt-Jansen, M. and Altenburger, R. 2005. Predicting and observing responses of algal 

communities to photosystem II-herbicide exposure using pollution-induced community tolerance 

and species-sensitivity distributions. Environmental Toxicology and Chemistry, 24, pp. 304-312. 

 

Schrader, K. K., Tucker, C. S., de Regt, M. Q. and Kingsbury, S. K. 2000. Evaluation of 

limnocorrals for studying the effects of phytotoxic compounds on plankton and water chemistry in 

aquaculture ponds. Journal of the World Aquaculture Society, 31, pp. 403-415. 

 

Schroer, A. F. W., Belgers, J. D. M., Brock, T. C. M., Matser, A. M., Maund, S. J. and Van den 

Brink, P. J. 2004. Comparison of laboratory single species and field population-level effects of the 

pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates. Archives of Environmental 

Contamination and Toxicology, 46, pp. 324-335. 

 

Schulz, R. and Liess, M. 2001. Runoff simulation with particle-bound fenvalerate in multispecies 

stream microcosms: Importance of biological interactions. Environmental Toxicology and 

Chemistry, 20, pp. 757-762. 

 

Schulz, R., Thiere, G. and Dabrowski, J. M. 2002. A combined microcosm and field approach to 

evaluate the aquatic toxicity of azinphosmethyl to stream communities. Environmental Toxicology 

and Chemistry, 21, pp. 2172-2178. 

 

Seguin, F., Le Bihan, F., Leboulanger, C. and Berard, A. 2002. A risk assessment of pollution: 

induction of atrazine tolerance in phytoplankton communities in freshwater outdoor mesocosms, 

using chlorophyll fluorescence as an endpoint. Water Research, 36, pp. 3227-3236. 

 

191



Chapter XI: Appendix 

Seguin, F., Leboulanger, C., Rimet, F., Druart, J. C. and Berard, A. 2001. Effects of atrazine and 

nicosulfuron on phytoplankton in systems of increasing complexity. Archives of Environmental 

Contamination and Toxicology, 40, pp. 198-208. 

 

Selck, H., Riemann, B., Christoffersen, K., Forbes, V. E., Gustavson, K., Hansen, B. W., Jacobsen, 

J. A., Kusk, O. K. and Petersen, S. 2002. Comparing sensitivity of ecotoxicological effect endpoints 

between laboratory and field. Ecotoxicology and Environmental Safety, 52, pp. 97-112. 

 

Shaw, J. L. and Manning, J. P. 1996. Evaluating macroinvertebrate population and community level 

effects in outdoor microcosms: Use of in situ bioassays and multivariate analysis. Environmental 

Toxicology and Chemistry, 15, pp. 608-617. 

 

Sibley, P. K., Harris, M. L., Bestari, K. T., Steele, T. A., Robinson, R. D., Gensemer, R. W., Day, K. 

E. and Solomon, K. R. 2001. Response of phytoplankton communities to liquid creosote in 

freshwater microcosms. Environmental Toxicology and Chemistry, 20, pp. 2785-2793. 

 

Sibley, P. K., Harris, M. L., Bestari, K. T., Steele, T. A., Robinson, R. D., Gensemer, R. W., Day, K. 

E. and Solomon, K. R. 2001. Response of zooplankton communities to liquid creosote in freshwater 

microcosms. Environmental Toxicology and Chemistry, 20, pp. 394-405. 

 

Sibley, P. K., Harris, M. L., Bestari, K. T., Steele, T. A., Robinson, R. D., Gensemer, R. W., Day, K. 

E. and Solomon, K. R. 2004. Response of zooplankton and phytoplankton communities to creosote-

impregnated Douglas fir pilings in freshwater microcosms. Archives of Environmental 

Contamination and Toxicology, 47, pp. 56-66. 

 

Slijkerman, D. M. E., Baird, D. J., Conrad, A., Jak, R. G. and van Straalen, N. M. 2004. Assessing 

structural and functional plankton responses to carbendazim toxicity. Environmental Toxicology 

and Chemistry, 23, pp. 455-462. 

 

Slijkerman, D. M. E., Moreira-Santos, M., Jak, R. G., Ribeiro, R., Soares, A. and Van Straalen, N. 

M. 2005. Functional and structural impact of linuron on a freshwater community of primary 

producers: The use of immobilized algae. Environmental Toxicology and Chemistry, 24, pp. 2477-

2485. 

 

192



Chapter XI: Appendix 

Spawn, R. L., Hoagland, K. D. and Siegfried, B. D. 1997. Effects of alachlor on an algal community 

from a midwestern agricultural stream. Environmental Toxicology and Chemistry, 16, pp. 785-793. 

 

Stay, F. S. and Jarvinen, A. W. 1995. Use of Microcosm and Fish Toxicity Data to Select Mesocosm 

Treatment Concentrations. Archives of Environmental Contamination and Toxicology, 28, pp. 451-

458. 

 

Sugiura, K. 1992. A Multispecies Laboratory Microcosm for Screening Ecotoxicological Impacts of 

Chemicals. Environmental Toxicology and Chemistry, 11, pp. 1217-1226. 

 

Takamatsu, Y., Inamori, Y., Nishimae, H., Ebisuno, T., Sudo, R. and Matsumura, M. 1997. 

Environmental assessment of LAS on the aquatic ecosystem using a scale-up system. Water Science 

and Technology, 36, pp. 207-214. 

 

Taub, F. B. 1997. Unique information contributed by multispecies systems: Examples from the 

standardized aquatic microcosm. Ecological Applications, 7, pp. 1103-1110. 

 

Temple, A. J., Murphy, B. R. and Cheslak, E. F. 1991. Effects of Tebuthiuron on Aquatic 

Productivity. Hydrobiologia, 224, pp. 117-127. 

 

Thiere, G. and Schulz, R. 2004. Runoff simulation with particle-associated azinphosmethyl in 

multispecies stream microcosms: Implications for the field. Environmental Toxicology and 

Chemistry, 23, pp. 1984-1990. 

 

Thompson, D. G., Holmes, S. B., Wainiokeizer, K., Macdonald, L. and Solomon, K. R. 1993. 

Impact of Hexazinone and Metsulfuron Methyl on the Zooplankton Community of a Boreal Forest 

Lake. Environmental Toxicology and Chemistry, 12, pp. 1709-1717. 

 

Tidou, A. S., Moreteau, J. C. and Ramade, F. 1992. Effects of Lindane and Deltamethrin on 

Zooplankton Communities of Experimental Ponds. Hydrobiologia, 232, pp. 157-168. 

 

Traas, T. P., Janse, J. H., Van den Brink, P. J., Brock, T. C. M. and Aldenberg, T. 2004. A 

freshwater food web model for the combined effects of nutrients and insecticide stress and 

subsequent recovery. Environmental Toxicology and Chemistry, 23, pp. 521-529. 

193



Chapter XI: Appendix 

 

Traunspurger, W., Schafer, H. and Remde, A. 1996. Comparative investigation on the effect of a 

herbicide on aquatic organisms in single species tests and aquatic microcosms. Chemosphere, 33, 

pp. 1129-1141. 

 

Van den Brink, P. J., Hartgers, E. M., Gylstra, R., Bransen, F. and Brock, T. C. M. 2002. Effects of 

a mixture of two insecticides in freshwater microcosms: II. Responses of plankton and ecological 

risk assessment. Ecotoxicology, 11, pp. 181-197. 

 

Van den Brink, P. J., Hattink, J., Bransen, F., Van Donk, E. and Brock, T. C. M. 2000. Impact of the 

fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final 

conclusions. Aquatic Toxicology, 48, pp. 251-264. 

 

Van den Brink, P. J. and Ter Braak, C. J. F. 1999. Principal response curves: Analysis of time-

dependent multivariate responses of biological community to stress. Environmental Toxicology and 

Chemistry, 18, pp. 138-148. 

 

van Wijngaarden, R. P. A., Brock, T. C. M. and Douglas, M. T. 2005. Effects of chlorpyrifos in 

freshwater model ecosystems: the influence of experimental conditions on ecotoxicological 

thresholds. Pest Management Science, 61, pp. 923-935. 

 

Van Wijngaarden, R. P. A., Brock, T. C. M., van den Brink, P. J., Gylstra, R. and Maund, S. J. 2006. 

Ecological effects of spring and late summer applications of lambda-cyhalothrin on freshwater 

microcosms. Archives of Environmental Contamination and Toxicology, 50, pp. 220-239. 

 

van Wijngaarden, R. P. A., Cuppen, J. G. M., Arts, G. H. P., Crum, S. J. H., van den Hoorn, M. W., 

van den Brink, P. J. and Brock, T. C. M. 2004. Aquatic risk assessment of a realistic exposure to 

pesticides used in bulb crops: A microcosm study. Environmental Toxicology and Chemistry, 23, 

pp. 1479-1498. 

 

Vandenbrink, P. J., Vandonk, E., Gylstra, R., Crum, S. J. H. and Brock, T. C. M. 1995. Effects of 

Chronic Low Concentrations of the Pesticides Chlorpyrifos and Atrazine in Indoor Fresh-Water 

Microcosms. Chemosphere, 31, pp. 3181-3200. 

 

194



Chapter XI: Appendix 

VanderHoeven, N. and Gerritsen, A. A. M. 1997. Effects of chlorpyrifos on individuals and 

populations of Daphnia pulex in the laboratory and field. Environmental Toxicology and Chemistry, 

16, pp. 2438-2447. 

 

Vandonk, E., Prins, H., Voogd, H. M., Crum, S. J. H. and Brock, T. C. M. 1995. Effects of Nutrient 

Loading and Insecticide Application on the Ecology of Elodea-Dominated Fresh-Water Microcosms 

.1. Responses of Plankton and Zooplanktivorous Insects. Archiv Fur Hydrobiologie, 133, pp. 417-

439. 

 

vanWijngaarden, R. P. A., vandenBrink, P. J., Crum, S. J. H., Voshaar, J. H. O., Brock, T. C. M. and 

Leeuwangh, P. 1996. Effects of the insecticide Dursban(R) 4E (active ingredient chlorpyrifos) in 

outdoor experimental ditches .1. Comparison of short-term toxicity between the laboratory and the 

field. Environmental Toxicology and Chemistry, 15, pp. 1133-1142. 

 

Verdonschot, P. F. M. and Braak, C. 1994. An Experimental Manipulation of Oligochaete 

Communities in Mesocosms Treated with Chlorpyrifos or Nutrient Additions - Multivariate 

Analyses with Monte-Carlo Permutation Tests. Hydrobiologia, 278, pp. 251-266. 

 

Vuorio, K., Lagus, A., Lehtimaki, J. M., Suomela, J. and Helminen, H. 2005. Phytoplankton 

community responses to nutrient and iron enrichment under different nitrogen to phosphorus ratios 

in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology, 322, pp. 39-52. 

 

Ward, S., Arthington, A. H. and Pusey, B. J. 1995. The Effects of a Chronic Application of 

Chlorpyrifos on the Macroinvertebrate Fauna in an Outdoor Artificial Stream System - Species 

Responses. Ecotoxicology and Environmental Safety, 30, pp. 2-23. 

 

Webber, E. C., Deutsch, W. G., Bayne, D. R. and Seesock, W. C. 1992. Ecosystem-Level Testing of 

a Synthetic Pyrethroid Insecticide in Aquatic Mesocosms. Environmental Toxicology and 

Chemistry, 11, pp. 87-105. 

 

Wendt-Rasch, L., Friberg-Jensen, U., Woin, P. and Christoffersen, K. 2003. Effects of the 

pyrethroid insecticide cypermethrin on a freshwater community studied under field conditions. II. 

Direct and indirect effects on the species composition. Aquatic Toxicology, 63, pp. 373-389. 

 

195



Chapter XI: Appendix 

Wendt-Rasch, L., Pirzadeh, P. and Woin, P. 2003. Effects of metsulfuron methyl and cypermethrin 

exposure on freshwater model ecosystems. Aquatic Toxicology, 63, pp. 243-256. 

 

Willis, K. J., Van den Brink, P. J. and Green, J. D. 2004. Seasonal variation in plankton community 

responses of mesocosms dosed with pentachlorophenol. Ecotoxicology, 13, pp. 707-720. 

 

Wilson, C. J., Brain, R. A., Sanderson, H., Johnson, D. J., Bestari, K. T., Sibley, P. K. and Solomon, 

K. R. 2004. Structural and functional responses of plankton to a mixture of four tetracyclines in 

aquatic microcosms. Environmental Science & Technology, 38, pp. 6430-6439. 

 

Woin, P. 1998. Short- and long-term effects of the pyrethroid insecticide fenvalerate on an 

invertebrate pond community. Ecotoxicology and Environmental Safety, 41, pp. 137-156. 

 

Wong, D. C. L., Toy, R. J. and Dorn, P. B. 2004. A stream mesocosm study on the ecological 

effects of a C12-15 linear alcohol ethoxylate surfactant. Ecotoxicology and Environmental Safety, 

58, pp. 173-186. 

 

Yasuno, M., Asaka, A. and Kono, Y. 1993. Effects of Pyraclofos (an Organophosphorous 

Insecticide) on Nutrient Enriched Ecosystems. Chemosphere, 27, pp. 1813-1824. 

 

Zrum, L. and Hann, B. J. 2002. Invertebrates associated with submersed macrophytes in a prairie 

wetland: Effects of organophosphorus insecticide and inorganic nutrients. Archiv Fur 

Hydrobiologie, 154, pp. 413-445. 

 

 

 

 

 

 

 

 

 

 

 

196



Chapter XI: Appendix 

XI. 2. 2. Considered toxicity data 

 

 

Table XI.2.2.1: Results of ecosystem studies addressing the first issue from Fig II.3: the relationship 

between ECx,ECO1 and ECx,single-species , i.e. between effect concentrations for the abundance of populations 

within an ecosystem study-setting and effect concentrations derived in a single-species test, performed 

alongside the ecosystem study. Endpoints of both ECxs are abundance-based. Data originate from 

Fairchild et al., 1992; Van Wijngaarden et al., 1996; Schroer et al., 2004; Vanderhoeven et al., 1997; and 

Hose et al., 2003.  
reference species single-species endpoint lower 95% CI upper 95% CI ECO1 endpoint lower 95% CI upper 95% CI

Fairchild et al bluegill 96hLC50 0.19 0.42 LC50-4 months 0.25 0.67

van Wijngaarden et al. Caenis horaria 96h-EC10 0.3 0.6 32d-EC10 0.13 0.54

96h-EC50 0.4 0.5 32d-EC50 0.25 0.5

Chaeborus obscuripes 96h-EC10 0.2 0.6 32d-EC10 0.4 0.4

96h-EC50 0.6 0.8 32d-EC50 0.4 0.4

Cloeon dipterum 96h-EC10 0.1 0.2 32d-EC10 0.07 0.74

96h-EC50 0.2 0.2 32d-EC50 0.17 0.5

Simocephalus vetulus 96h-EC10 0.2 0.4 32d-EC10 0 23.9

96h-EC50 0.3 0.5 32d-EC50 0.02 16.7

Schroer et al. Ceanis horaria 48h-EC10 0.0036 0.0114 weeks-EC10 0.0016 0.0148

96h-EC10 0.0012 0.0111 weeks-EC50 2.6 288

48h-EC50 0.0128 0.0251

96h-EC50 0.0077 0.024

Chaoborus obscuripes 48h-EC10 0.0003 0.0013 weeks-EC10 0.0008 0.0073

96h-EC10 0.0006 0.0022 weeks-EC50 3.5 22.7

48h-EC50 0.0018 0.0044

96h-EC50 0.002 0.0039

Cloeon dipterum 48h-EC10 0.0037 0.014 weeks-EC10 0.0021 0.034

96h-EC10 0.0746 0.0746 weeks-EC50 7.2 67.4

48h-EC50 0.0172 0.0358

96h-EC50 0.0883 0.0883

Gammarus pulex 48h-EC10 0.0074 0.027 weeks-EC10 0.0004 0.0144

96h-EC10 0.007 0.0247

48h-EC50 0.016 0.0349

96h-EC50 0.0159 0.0367

Vanderhoeven et al. Daphnia  pulex 48h-EC10 0.11 0.19 48h-EC10 0.03 0.18

Daphnia  pulex 7d-EC10 0.11 0.15 7d-EC10 0.006 0.05

Daphnia  pulex 48h-EC50 0.3 0.47 48h- EC50 0.2 0.46

Daphnia  pulex 7d-EC50 0.21 0.29 7d-EC50 0.13 0.85

Hose et al. Atalophlebia spp. 12h-LC50 20.3 33.9 12h-LC50 15.5 40.6

Atalophlebia spp. 48h-LC50 12.1 15.2 48h-LC50 13.5 17.1
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XI. 3. State and driver variables

state variables description

Biopopulation biomass concentration of given population(mg L
-1

)

N nitrogen concentration (mg N L
-1

)

P phosphorus concentration (mg P L
-1

)

POM particulate organic matter (mg L
-1

)

DOM dissolved organic matter  (mg L
-1

)

NH3-N ammonia-nitrogen (mg L
-1

)

NO3-N nitrate-nitrogen (mg L
-1

)

PO4-P phosphate phosphorus (mg L
-1

)

POM particulate organic matter  (mg L
-1

)

SOM settled organic matter  (mg L
-1

)

driver variables description

Photoperiod the fraction of day with sunlight (-)

Solar average daily incident solar radiation (cal m
-2

 day
−1

)

Temperature water temperature (°C)

Oxygen oxygen concentration in the water columns (mg L
-1

)
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*parameters receiving different values in the different chapters

XI. 4. Parameters - description

parameter description

Area surface area of reservoir (m
2
)

*Cmax0 maximum ingestion rate for given consumer at control (d
-1

)

DecayMaxDOM maximum rate of DOM conversion to nutrients (d
-1

)

DecayMaxPOM maximum rate of POM conversion to nutrients (d
-1

)

DecayMaxSOM maximum rate of SOM conversion to nutrients (d
-1

)

Depth depth of the reservoir (m)

EcoeffDOM extinction coefficient of DOM (m
-1

 mg
-1 

L)

Ecoeffmacrophytes extinction coefficient of macrophytes (m
-1

 mg
-1 

L)

Ecoeffphytoplankton extinction coefficient of phytoplankton (m
-1

 mg
-1 

L)

EcoeffPOM extinction coefficient of POM (m
-1

 mg
-1 

L)

Extinctionwater extinction by pure water (m
-1

)

*EgestionCoeffresource i fraction of consumed resource i lost through egestion (-)

Emort exponential coefficient for stress-related increased mortality (-)

ESed exponential factor for accelerated sinking (-)

*Exc excretion / photosynthesis ratio (-)

Excr constant relationship between excretion and respiration (-)

*FHalfSatresource i half saturation constant for consumption of resource i (mg L
-1

)

Kdenitri maximum rate of denitrification (m d
-1

)

*KN Michaelis-Menten constant for nitrogen limitation (mg L
-1

)

Knitri maximum rate of nitrification (m d
-1

)

KO Michaelis-Menten constant for oxygen limitation (mg L
-1

)

*KP Michaelis-Menten constant for phosphorus limitation (mg L
-1

)

KT a coefficient for decreasing acclimation 

as water temperature approaches Tref (-)

*Lm optimal light intensity for 

phytoplankton photosynthesis (cal m
-2

 day
?1

)

MinBioresource i minimum resource concentration at which 

given consumer begins consuming (mg L
-1

)

*Mort0 intrinsic mortality (d
-1

)

Org2Ammonia a default conversion factor between 

organic matter and NH3-N (-)

Org2Phos a default conversion factor between 

organic matter and PO4-P (-)

pHmax maximum pH for given process

pHmin minimum pH for given process

Prefresource i preference of given consumer for resource i (-)

*Psmax,0 maximum photosynthesis at control (d
-1

)

Q10 rate of change per 10°C temperature change (-)
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*parameters receiving different values in the different chapters

XI. 4. Parameters – description – continued

parameter description

Resp fraction of energy lost to dynamic action (-)

Resp0 intrinsic respiration (d
-1

)

Sed intrinsic sinking or sedimentation rate (m d
-1

)

TempResp exponential coefficient for increased respiration

because of increased water temperature (°C
-1

)

Tmax maximum temperature for given population or process (°C) 

Tobs the temperature at which

a given process rate was determined (°C)

Topt optimum temperature for given population (°C)

Tref reference temperature, below which there is no acclimation (°C)

Volume volume of water in reservoir (m
3
)

XM the maximum acclimation (°C)
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~the value of these parameters is mentioned in the text
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parameter zooplanktonsmall zooplanktonlarge planct.fish pisc.fish reference

Excr 0.17 0.17 0.05 0.05 Scavia and Park (1976)

KT 5 5 5 5 Kitchell et al. (1972)

MinBioresource i 0.05 0.05 0.1 0.25 USEPA (2002); Walz (1995)

Prefresource i ~ ~ ~ ~

Q10 2 2 2 2 DeNicola (1996)

Resp 0.25 0.18 0.172 0.172 Hewett & Johnson (1992); USEPA (2002)

Resp0 0.03 0.014 0.04 0.04 Collins and Wlosinski (1983); 

Hewett & Johnson (1992); USEPA (2002)

TempResp 0.065 0.065 0.065 0.065 USEPA (2002)

Tmax 34 34 36 36 Collins and Wlosinski (1983)

Topt 26 26 27 27 Collins and Wlosinski (1983)

Tref 5 5 2.5 2.5 Collins and Wlosinski (1983)

XM 5 5 5 5 Kitchell et al. (1972)
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*parameters receiving different values in the different chapters
#a fixed Area/Volume ratio of 1 was used in all chapters
~the value of these parameters is mentioned in the text

XI. 5. 2. Organic matter, nutrient cycling, and physicochemical quantities

parameter value reference

Area #

DecayMaxDOM 0.29 USEPA (2002)

DecayMaxPOM 0.29 USEPA (2002)

DecayMaxSOM 0.04 USEPA (2002)

Depth 1 micro- or mesocosm

EcoeffDOM 0.03 USEPA (2002)

Ecoeffmacrophytes 0.05 LeCren & Lowe-McConnell (1980)

Ecoeffphytoplankton 0.014 Collins and Wlosinski (1983)

EcoeffPOM 0.12 Verduin (1982)

Extinctionwater 0.016 Wetzel (1975)

Kdenitri 0.1 Di Toro (2001)

Knitri 0.135 Effler (1996)

KO 0.1 Bowie et al. (1985)

KT 5 Kitchell et al. (1972)

Org2Ammonia 0.079 Redfield (1958)

Org2Phos 0.018 Redfield (1958)

pHmax 8.5 Lyman et al., (1982)

pHmin 5 Lyman et al., (1982)

Q10 2 DeNicola (1996)

Sed 0.15 Collins and Wlosinski (1983)

Tmax 60 Collins and Wlosinski (1983)

Tobs 25 Collins and Wlosinski (1983)

Volume #

(2001)
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parameter phytoplanktonspring1 phytoplanktonsummer1 macrophyte reference

Emort 0.04 0.04 0.01 USEPA (2002)

ESed 1.1 1.1 Wetzel (2001)

KT 5 5 5 Kitchell et al. (1972)

Q10 2 2 2 DeNicola (1996)

Resp0 0.02 0.01 0.01 Collins and Wlosinski (1983); 

Hewett & Johnson (1992); USEPA (2002)

Sed 0.15 0.15 Collins and Wlosinski (1983)

TempResp 0.065 0.065 0.065 USEPA (2002)

Tmax 30 40 40 Collins and Wlosinski (1983)

Topt 8 20 20 Collins and Wlosinski (1983)

Tref 2 10 10 Collins and Wlosinski (1983)

XM 5 5 5 Kitchell et al. (1972)
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XI. 6. Parameters – specific values per chapter

XI. 6. 1. Chapters IV and V

XI. 6. 2. Chapter VI – study 1

XI. 6. 3. Chapter VI – studies 2 and 9

parameter phytoplanktonspring1 phytoplanktonsummer1 macrophyte zooplanktonsmall1 zooplanktonlarge1 zooplanktonlarge2

Cmax,0 4 1.8 1.8

EgestionCoeffresource i 0.15 0.3 0.3

Exc 0.03 0.02 0.3

FHalfSatresource i 0.5 1 1

KN 0.05 0.002 0.002

KP 0.01 0.002 0.002

Lm 48 100 100

Mort0 0.06 0.02 0.001 0.06 0.03 0.03

PSmax,0 3.8 1.8 0.2

parameter phytoplanktonspring1 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1 zooplanktonlarge2 planct.fish pisc.fish

Cmax,0 4 1.8 1.8 1.3 1.2

EgestionCoeffresource i 0.2 0.2 0.2 0.1 0.1

Exc 0.025 0.02

FHalfSatresource i 0.5 1 1 5 5

KN 0.05 0.002

KP 0.01 0.002

Lm 48 100

Mort0 0.06 0.02 0.06 0.03 0.03 0.0001 0.001

PSmax,0 3.8 1.8

parameter phytoplanktonspring1 phytoplanktonspring2 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1

Cmax,0 4 1.8

EgestionCoeffresource i 0.2 0.2

Exc 0.025 0.025 0.02

FHalfSatresource i 0.5 1

KN 0.05 0.05 0.002

KP 0.01 0.01 0.002

Lm 50 50 100

Mort0 0.06 0.06 0.02 0.06 0.03

PSmax,0 4 4 1.8

k
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XI. 6. 4. Chapter VI – studies 3 and 4

XI. 6. 5. Chapter VI – study 5

XI. 6. 6. Chapter VI – studies 6 and 7

parameter phytoplanktonspring1 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1 planct.fish

Cmax,0 4 1.8 1.2

EgestionCoeffresource i 0.2 0.2 0.1

Exc 0.025 0.02

FHalfSatresource i 0.5 1 5

KN 0.05 0.002

KP 0.01 0.002

Lm 50 100

Mort0 0.06 0.02 0.04 0.03 0.0001

PSmax,0 4 1.8

parameter phytoplanktonspring1 phytoplanktonsummer1 phytoplanktonsummer2 macrophyte zooplanktonsmall1 zooplanktonsmall2 zooplanktonlarge1

Cmax,0 4 4 1.8

EgestionCoeffresource i 0.2 0.2 0.2

Exc 0.025 0.02 0.02 0.4

FHalfSatresource i 0.5 0.5 1

KN 0.02 0.002 0.002 0.002

KP 0.005 0.002 0.002 0.002

Lm 48 100 100 100

Mort0 0.06 0.02 0.02 0.001 0.06 0.03 0.03

PSmax,0 3.8 1.8 1.8 0.2

parameter phytoplanktonspring1 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1 zooplanktonlarge2

Cmax,0 4 1.8 1.8

EgestionCoeffresource i 0.2 0.2 0.2

Exc 0.025 0.02

FHalfSatresource i 0.5 1 1

KN 0.05 0.002

KP 0.01 0.002

Lm 48 100

Mort0 0.06 0.02 0.04 0.03 0.03

PSmax,0 3.8 1.8

k
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XI. 6. 7. Chapter VI – study 8

XI. 6. 8. Chapter VI – study 10

XI. 6. 9. Chapter VI – study 11

parameter phytoplanktonspring1 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1 zooplanktonlarge2 planct.fish

Cmax,0 4 1.8 1.8 1.2

EgestionCoeffresource i 0.2 0.2 0.2 0.1

Exc 0.025 0.02

FHalfSatresource i 0.5 1 1 5

KN 0.05 0.002

KP 0.01 0.002

Lm 48 100

Mort0 0.06 0.02 0.04 0.03 0.03 0.0001

PSmax,0 3.8 1.8

parameter phytoplanktonspring1 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1 planct.fish pisc.fish

Cmax,0 4 1.8 1.1 0.1

EgestionCoeffresource i 0.2 0.2 0.1 0.1

Exc 0.025 0.02

FHalfSatresource i 0.5 1 0.25 0.25

KN 0.05 0.002

KP 0.01 0.002

Lm 48 100

Mort0 0.06 0.02 0.04 0.03 0.0001 0.008

PSmax,0 4.5 1.5

parameter phytoplanktonspring1 phytoplanktonsummer1 phytoplanktonsummer2 macrophyte zooplanktonsmall1 zooplanktonlarge1 zooplanktonlarge2

Cmax,0 4 1.8 1.8

EgestionCoeffresource i 0.2 0.2 0.2

Exc 0.025 0.02 0.02 0.3

FHalfSatresource i 0.5 1 1

KN 0.05 0.002 0.002 0.002

KP 0.01 0.002 0.002 0.002

Lm 48 100 100 100

Mort0 0.06 0.02 0.02 0.001 0.04 0.03 0.03

PSmax,0 4.5 1.5 1.5 0.2

k

k
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parameter O.M, nutrients, diatoms greens macrophyte copepods cladocerans

physicochemical

Area 1

Cmax,0 1.2 2

DecayMaxDOM 0.95

DecayMaxPOM 0.04

DecayMaxSOM 0.04

DecayMaxSiOM 0.006

Depth 1

EcoeffDOM 0.03

Ecoeffmacrophytes 0.05

Ecoeffphytoplankton 0.014

EcoeffPOM 0.12

Extinctionwater 0.016

EgestionCoeffresource i 0.6;0.4;0.4
a

0.5;0.3;0.3
a

Emort 0.04 0.06 0.01

ESed 1.1 1.1

Exc 0.026 0.03 0.53

Excr 

FHalfSatresource i 0.5 1.2

Kdenitri 0.1

KN 0.003 0.004 0.005

Knitri 0.135

KO 0.1

KP 0.0003 0.002 0.002

KT 5

Lm 64 95 200

MinBioresource i 0.05 0

Mort0 0.03 0.03 0.001 0.06 0.02

Org2Ammonia 0.079

Org2Phos 0.018

pHmax 8.5

pHmin 5

Prefresource i ~

PSmax,0 3 2.3 0.5

Q10 1.8 2 3.1 2.6 2.6

XI. 6. 10. Chapters VII and VIII

XI. 6. 11. Chapter IX – parameters resulting from quantitative calibration

aEgestion coefficients differ between food sources. 

The egestion coefficients are given in the order: particulate organic matter; green algae; diatoms 

parameter phytoplanktonspring1 phytoplanktonsummer1 zooplanktonsmall1 zooplanktonlarge1 zooplanktonlarge2 planct.fish

Cmax,0 4 1.8 1.8 1.3

EgestionCoeffresource i 0.2 0.2 0.2 0.158

Exc 0.025 0.02

FHalfSatresource i 0.5 1 1 5

KN 0.05 0.002

KP 0.01 0.002

Lm 45 105

Mort0 0.06 0.02 0.04 0.03 0.03 0.0001

PSmax,0 3.8 1.8
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parameter O.M, nutrients, diatoms greens macrophyte copepods cladocerans

physicochemical

Resp 0.2 0.18

Resp0 0.022 0.006 0.02 0.014 0.014

Sed 0.18 for POM 0.04 0.08

TempResp 0.065

Tmax 60 for process 30 42 44 34 36

Tobs 25

Topt 10 25 15 26 30

Tref 

Volume 1

XM 5
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XI. 7. Justification of the used NOEC data and grouping of species into model populations in 

chapter VI 

 

In chapter VI, a comparison is made between predicted no observed effect concentrations (NOECs) 

and experimentally derived NOECs reported in the literature. Per population, one NOEC is derived, 

and compared with an experimentally derived NOEC for that population. However, in most papers, 

multiple NOECs may be given per population, or NOECs have to be derived from the reported 

observations. To strengthen the results of this validation study, this has been done in one consistent 

way, which is described in what follows.  

 

XI. 7. 1. General grouping rules:  

 

XI. 7. 1. 1. zooplankton 

 

Large bodied cladocerans and copepods both belong to ‘large zooplankton’; rotifers and small 

cladocerans both belong to ‘small zooplankton’. In cases where the single-species sensitivity of 

cladocerans and copepods is different, they are modelled as two separate model populations. The 

cut-off value for body size of zooplankton was 0.7 mm. A useful website on zooplankton taxonomy 

is http://planktonweb.ifas.ufl.edu/taxonomy.htm. 

 

XI. 7. 1. 2. phytoplankton 

 

Phytoplankton species were modelled as spring or summer populations, depending on (1) the 

species given in Sommer et al. (1986) or (2) on the reported dynamics in the paper of the considered 

study. 

 

XI. 7. 2. Detailed overview of assigned NOECs (µg L
-1

) 

 

Study 1: Boyle et al. (1996) 

 

Spring phyto 1: NOEC ≥ 10 µg L
-1

 

Summer phyto 1: NOEC < 10 µg L
-1

 

Small zoo 1: rotifers: NOEC  < 10 µg L
-1

 

Large zoo 1: copepods: NOEC < 10 µg L
-1
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Large zoo 2: cladocerans: NOEC < 10 µg L
-1

 

Planct. fish: bluegill: NOEC < 10 µg L
-1

 

Pisc. fish: bass: NOEC ≥ 10 µg L
-1

 

 

In this paper, two different treatment regimes, both with the same exposure concentration (10 µg L
-1

), 

resulted in the same observed biological effects. Rotifers, copepods, and cladocerans were affected at 

10 µg L
-1

. The treatment had no significant effect on the chlorophyll concentration during spring. 

However, during summer, there was a significant effect of 10 µg L
-1 

on chlorophyll concentration. 

Biomass of bass was not significantly different between treatments and controls. In contrast, the 

biomass of its prey, bluegill, was significantly different between treatments and controls. 

 

Study 2: Hamilton et al. (1988) 

 

Spring phyto 1: diatoms: NOEC < 100 µg L
-1

 

Spring phyto 2: chryptophyta and chrysophyta excluding diatoms: NOEC≥ 100 µg L
-1

 

Summer phyto 1: dinoflagellates and chlorophyta: NOEC < 100 µg L
-1

 

Small zoo 1: rotifers: NOEC  ≥ 100 µg L
-1

 

Large zoo 1: copepods and cladocerans: NOEC ≥ 100 µg L
-1

 

 

Diatoms experienced a significant abundance decrease for 50 days. Abundance of chryptophyta and 

chrysophyta excluding diatoms did never exhibit a statistical difference, except on two sampling 

dates. Chlorophyta abundance was reduced at 60% of the sampling dates. Dinoflagellate abundance 

showed a significant decrease in 66% of the sampling dates after a second application. Out of the six 

rotifer species present, only one changed in abundance on three out of 7 sampling dates. Although 

the abundance of cladocerans and copepods was consistently 50% lower in the exposure 

concentrations, no significant effects could be detected. 

 

Study 3: Webber et al. (1992) 

 

Spring phyto 1: NOEC = 0.18 µg L
-1

 

Summer phyto 1: NOEC = 0.18 µg L
-1

 

Small zoo 1: copepod nauplii and rotifers: NOEC  ≥ 0.69 µg L
-1

 

Large zoo 1: cladocerans and copepods: NOEC = 0.18 µg L
-1

 

Planct. fish: bluegill: NOEC ≥ 0.69 µg L
-1
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Phytoplankton increased at the highest concentration (0.69 µg L
-1

). Nauplii were characterized by 

very low abundance compared to rotifer abundance. We thus considered the NOEC for rotifers to be 

representative for this model population. Cladocerans and copepods were absent at concentrations 

above 0.18 µg L
-1

. Population size (number and weight) of bluegill was similar for all treatments. 

 

Study 4: Fairchild et al. (1992) 

 

Spring phyto 1: NOEC = 0.25 µg L
-1

 

Summer phyto 1: NOEC = 0.25 µg L
-1

 

Small zoo 1: rotifers: NOEC  ≥ 1.71 µg L
-1

 

Large zoo 1: copepods and cladocerans: NOEC ≥ 1.71 µg L
-1

 

Planct. fish: bluegill: NOEC = 0.67 µg L
-1

 

 

A decrease of phytoplankton was appreciated at 0.67 µg L
-1

. Rotifers did not decrease at any 

concentration. During the exposure period, the zooplankton mainly consisted of copepods. No 

significant effects on abundance of copepods and cladocerans were observed. On 4 out of 6 

treatment days, there was an increased mortality of bluegill at 1.71 µg L
-1

. Because details on 

bluegill biomass were not provided, a NOEC of 0.67 µg L
-1

 was assumed. 

 

Study 5: Brock et al. (2004) 

 

(Spring phyto 1: Fragilaria ulna: NOEC < 1.8 µg L
-1

) 

Summer phyto 1: Gomphonema sp: NOEC = 56 µg L
-1

 

Summer phyto 2: Anabaena cylindrica: NOEC = 18 µg L
-1

 

Macrophyte: Myriophillum spicatum: NOEC ≥ 180 µg L
-1

 

Small zoo 1: Chydorus sphaericus, Lecane sp., Mytilana ventralis, Polyarthra remata: NOEC = 18 

µg L
-1

 

Small zoo 2: Polyarthra remata and Trichocerca: NOEC ≥ 180 µg L
-1

 

Large zoo 1: other species: NOEC ≥ 180 µg L
-1

 

 

In this study, NOECs were derived for every sampling date. The date-specific NOEC with the 

highest frequency of occurrence was taken. If the frequency of occurrence was equal for two or 

more NOEC-values, the lowest NOEC was chosen. The same strategy was followed if species 

belonging to the same model population had different NOECs. 
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The NOEC of < 1.8 µg L
-1

 for Fragilaria ulna was not accounted for due to the low abundance of 

this species. Moreover, this NOEC was reported as unreliable by Brock et al. (2004). Amongst the 

phytoplankton, only the more or less prolonged differences observed for Anabaena cf. cylindrica 

and Gomphonema pumilum were clearly treatment-related (Brock et al., 2004). No consistent 

treatment-related effects were observed for the macrophyte. Significant deviations from control for 

large zooplankton were only established on 1 sampling date. Brock et al. consider this effect to be 

only short-lived. 

 

Study 6: Sierzen and Lozano (1998) 

 

Spring phyto 1: NOEC ≥ 20 µg L
-1

 

Summer phyto 1: NOEC ≥ 20 µg L
-1

 

Small zoo 1: rotifers: NOEC ≥ 20 µg L
-1

 

Large zoo 1: copepods: NOEC ≥ 20 µg L
-1

 

Large zoo 2: cladocerans: NOEC = 4 µg L
-1

 

 

Based on the taxonomical determination of the cladoceran species, cladocerans consisted mainly out 

of large zooplankton. The total abundance of cladocerans was affected at nearly all sampling dates 

at 20 µg L
-1

, resulting in a NOEC of 4 µg L
-1

. There were no strong responses of total copepod or 

rotifer abundance to any pesticide application. No effects on phytoplankton were reported. 

 

Study 7: Hanazato and Kasai (1995) 

 

Spring phyto 1: cryptophyceae and centrales: NOEC ≥ 200 µg L
-1

 

Summer phyto 1: : chlorococcales and volvocales: NOEC < 20 µg L
-1

 

Small zoo 1: rotifers: NOEC ≥ 200 µg L
-1

 

Large zoo 1: copepods: NOEC = 20 µg L
-1

 

Large zoo 2: cladocerans: NOEC < 20 µg L
-1

 

 

Rotifers did not exhibit a decrease at the tested concentrations. Copepod abundance was reduced 

significantly by the high-dose (200 µg L
-1

) treatment. Cladocerans were mostly large-bodied and 

their abundance was depressed markedly at the lowest treatment concentration (20 µg L
-1

). Spring 

phytoplankton predominantly consisted of centrales, which were not affected at any concentration. 

Summer phytoplankton increased in all treatments concentrations.  
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Study 8: Tanner and Knuth (1995) 

 

Spring phyto 1: NOEC ≥ 4 µg L
-1

 

Summer phyto 1: NOEC ≥ 4 µg L
-1

 

Small zoo 1: rotifers: NOEC ≥ 4 µg L
-1

 

Large zoo 1: cladocerans: NOEC ≥ 4 µg L
-1

 

Large zoo 2: copepods: NOEC ≥ 4 µg L
-1

 

Planct. fish: bluegill: NOEC ≥ 4 µg L
-1

 

 

Cladocerans, copepods, and rotifers exhibited a succession of peaks and only copepodites were 

significantly reduced one week after the treatment, after which they returned to control levels. 

Azinphos-methyl did not affect biomass of bluegills at any concentration. No effects were reported 

on phytoplankton. 

 

Study 9: Juttner et al. (1995) 

 

Spring phyto 1: diatoms: NOEC = 68 µg L
-1

 

Spring phyto 2: cryptophyceae: NOEC = 68 µg L
-1

 

Summer phyto 1: other species: NOEC = 68 µg L
-1

 

Small zoo 1: copepod nauplii and rotifers: NOEC = 182 µg L
-1

 

Large zoo 1: cladocerans: NOEC = 68 µg L
-1

 

 

Cryptophyceae decreased at concentrations > 68 µg L
-1

. Diatoms increased at concentrations > 68 

µg L
-1

. Other phytoplankton species decreased at concentrations above 68 µg L
-1

. Copepod nauplii 

and rotifers had different NOECs, and following the general rule the NOEC was 182 µg L
-1

. 

Cladocerans were found to decrease in all enclosures, but no information is given on the 

significance of this trend. Since indirect effects (reduced food abundance) are given as an 

explanation for this phenomenon, the same NOEC as its food source was assumed. 

 

Study 10: Denoyelles et al. (1982) 

 

Spring phyto 1: Cryptomonas sp. and Mallomonas sp.: NOEC = 20 µg L
-1

 

Summer phyto 1: Peridinium sp.: NOEC = 20 µg L
-1

 

Small zoo 1: rotifers: NOEC  ≥ 500 µg L
-1
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Large zoo 1: 75% copepods and 25% cladocerans: NOEC = 20 µg L
-1

 

Planct. fish: bluegill: NOEC ≥ 500 µg L
-1

 

Pisc. fish: bass: NOEC  ≥ 500 µg L
-1

 

 

An increase in abundance of Cryptomonas sp. and Mallomonas sp, was observed. However, it is 

unclear at what concentration this trend became significant. At 20 µg L
-1

, the increase occurs in the 

first 10 days of the treatment period. After this 10-day period, the abundance of Cryptomonas sp. 

and Mallomonas sp returns to control levels. At 500 µg L
-1

, there is a decrease during the first 10 

days. However, after this 10-day period, there is an increase in abundance of these species during 40 

days. Peridinium sp. is absent at the 500 µg L
-1

 treatment. Rotifers do not decrease at any 

concentration. Copepods (75%) and cladocerans declined in the 500 µg L
-1

 treatment. Responses 

higher up the food chain than zooplankton were not reported. 

 

Study 11: Cuppen et al. (1997) and Vandenbrinck et al. (1997). 

 

Spring phyto 1: Cocconeis: NOEC =50 µg L
-1

 

Summer phyto 1: Chlamydomonas: NOEC = 15 µg L
-1

 

Summer phyto 2: Phormidium foveolarum: NOEC = 50 µg L
-1

 

Macrophyte: Elodea nuttallii: NOEC = 15 µg L
-1

 

Small zoo 1: rotifers: NOEC = 50 µg L
-1

 

Large zoo 1: cladocerans: NOEC ≥ 150 µg L
-1

 

Large zoo 2: copepods: NOEC ≥ 150 

 

The dominant species in the zooplankton samples belonged to the groups of cladocerans, copepods, 

and rotifers, while ostracods occurred in low numbers. For that reason, ostracods were not 

considered in this paper. The NOEC for decrease of rotifers in week 1-4 post treatment was 15. 

However, in week 5 to 11 post treatment, a NOEC of 50 was observed, suggesting recovery. Since 

predicted NOECs are based on changes in mean biomass, the NOEC was considered equal to 50. 

Cladocerans and copepods never declined in abundance because of chemical treatment, resulting in 

a NOEC ≥ 150. Compared to the control microcosms, a nonsignificant increase in biomass of E. 

nuttallii was observed in the microcosms treated with the lowest two doses. A significant decrease 

in those with the two highest doses led to a NOEC of 15 µg L
-1

. Phytoplankton NOECs are listed in 

Vandenbrinck et al. (1997). 
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Concurrently with the increasing human population and its associated activity, the number of 

chemical substances found in water bodies has augmented substantially during the last century. 

Because these different chemicals have a wide range of biological modes of action, it is not 

unlikely that their presence in water bodies results in adverse effects on aqueous ecosystems. 

Within the field of ecotoxicology, ecological effect assessment of chemicals aims at assessing and 

predicting these effects. It has become a routine practice to perform such assessments solely 

relying on single-species toxicity test results. Results from this type of tests reflect the direct 

effect of a chemical on one isolated species in a laboratory setting. These test results are mostly 

expressed as concentrations resulting in x% effect (ECx) on a given test population. Current 

approaches to extrapolate single-species toxicity test results to ecosystem-level effects are based 

on a set of largely untested assumptions which ignore ecological interactions between different 

populations. One such an approach is to use a statistical distribution of single-species toxicity test 

results of different species for a given chemical, termed species sensitivity distribution (SSD).  

 

It has been shown that ecological effects are determined by (1) ecological interactions and (2) 

direct effects. Hence, predictions of ecological effects by current extrapolation methods (e.g. the 

use of SSDs) will most likely be inaccurate. Therefore, ecological effect assessments relying on 

such inaccurate predictions result in accurate assessments of chemical risk to aquatic ecosystems.  

 

The use of dynamic ecosystem models has been proposed as an alternative to current approaches. 

These models may consist of (1) a food web model; (2) toxic effect sub-models; and (3) a model 

for nutrient and detritus cycling. The advantage of these models in comparison to current 

approaches is that they can account for ecological interactions between populations by 

incorporating feeding and competition relationships. Unfortunately, no information exists on 

which type of toxic effect sub-model results in the most accurate predictions of an ecosystem 

model. Also, quantitative validations of effects predicted by such ecosystem models are scarce. 

As a result, it is unknown if and how ecosystem models can contribute to ecological effects 

assessments. 

 

Because current approaches for ecological effect assessments rely on the relationship between 

single-species toxicity test results and effects on ecosystems, this dissertation starts with a review 

of studies which were designed to examine this relationship (chapter II). These studies can be 

divided in (1) experimental ecosystem studies and (2) studies using ecosystem models. For both 

study types, changes in abundances or biomasses of populations were most frequently studied. 
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Experimental ecosystem studies with insecticides report ECxs for invertebrate species (with 

biomass or abundance as endpoint) which differ less than a factor two of single-species ECxs for 

the same species based on the same endpoint. Results from the few modelling studies found 

indicate that ECxs within an ecosystem can be lower than corresponding single-species ECxs. The 

overestimated effects produced by the reviewed ecosystem models and the focus on toxicants for 

which prey are more sensitive than predators can explain the difference between results from 

experimental ecosystem studies and results from modelling studies. 

 

In chapter III and IV the development and application of a new ecosystem model is described. A 

dynamic ecosystem model is constructed in such a way that it can be customized to represent 

different lentic (i.e. non-running) aquatic ecosystems. Also the toxic effect sub-models can be 

customized. The ecosystem model aims at accurately predicting ecological effects, rather than 

pursuing the exact replication of observed population dynamics. Ecological effects of copper, 

which were observed in a previously conducted ecosystem study, were predicted accurately by the 

developed ecosystem model (chapter IV). In contrast, extrapolation based on single-species 

toxicity test results alone did not accurately predict ecosystem effect levels.  

 

While a default toxic effect sub-model was chosen in chapter IV, an effort was made in chapter 

V to determine which toxic effect sub-model is most suited for the developed ecosystem 

modelling approach. To this end, four ecosystem models were constructed, each with a different 

toxic effect sub-model. The capacity of each of these models to predict biomass changes and no 

observed effect concentrations (NOECs) established in an experimental microcosm was 

evaluated. The ecosystem model with a toxic effect sub-model incorporating effects on 

zooplankton mortality using a logistic concentration-effect function was superior to the other 

three models since it made accurate NOEC predictions for most populations. Additional 

incorporation of sub-lethal effects on zooplankton did not result in better predictions. Ecosystem 

models using linear concentration-effect functions predict biomass decreases already occurring at 

concentrations which are 4 times lower than the observed NOECs. 

 

In chapter VI the ecosystem model which gave the best predictions in chapter V was further 

validated using literature data. Predicted NOECs were compared with population and ecosystem -

NOECs observed in 11 experimental ecosystems. For each of those studies, the model was 

customized to account for the specific ecological interactions within the studied system. 

Population-NOEC predictions were accurate, or at least protective (i.e. smaller than the observed 
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one), for 60 and 86% of all considered populations, respectively. For all 11 studies, a protective 

ecosystem-NOEC could be derived, i.e. accurate and conservative predictions in 8 and 3 cases, 

respectively. It was concluded that the inclusion of the relevant populations and taking the median 

of model outputs can increase the accuracy of model predictions. 

 

In chapter VII the validity of a theoretical assumption underlying species sensitivity distributions 

(SSDs), used for deriving “safe concentrations” based on single-species toxicity test results, was 

examined in a simple freshwater lentic pelagic ecosystem. The tested assumption was that 

ecological interactions do not alter a sensitivity distribution. For each of 1000 hypothetical 

toxicants, a lognormal SSD was fitted to chronic single-species toxicity test results, i.e. without 

taking into account ecological interactions and therefore termed ‘conventional SSD’ (cSSD). 

Next, corresponding sensitivity distributions, which do take ecological interactions into account, 

were constructed (eco-SSDs) using the ecosystem modelling-approach described and validated in 

the previous chapters. For 254 of the 1000 hypothetical toxicants, mean and/or variance of the 

cSSD were significantly higher than mean and/or variance of the eco-SSD, as such rejecting the 

general validity of the tested assumption. A classification tree approach further indicated that 

especially for toxicants exerting direct effects on phytoplankton (e.g. herbicides), the cSSD may 

have a higher mean than the eco-SSD. Conversely, means of eco-SSD and cSSD are likely to be 

equal for toxicants targeting zooplankton and fish.  

 

A second theoretical assumption underlying SSDs was tested in chapter VIII. Here, the tested 

assumption was that ecosystem structure (i.e. species composition) is as or more sensitive than 

ecosystem function. This test was performed using the same ecosystem as that used in chapter 

VII. NOECs were calculated for ecosystem structure and function for each of the 1000 

hypothetical toxicants. For 979 of these toxicants, the ecosystem structure-NOEC was lower than 

or equal to the ecosystem function-NOEC, indicating that the tested assumption is valid. For 239 

of these 979 toxicants, both NOECs were equal. For half of the 1000 toxicants, structure of lower 

trophic levels (i.e. phytoplankton) appears to be more sensitive than structure of higher trophic 

levels (i.e. fish). As such, ecosystem structure-NOECs are primarily determined by the sensitivity 

of the structure of lower trophic levels. In contrast, ecosystem functions associated with higher 

trophic levels (e.g., total ingestion by fish) are more sensitive than functions associated with lower 

trophic levels (e.g., total photosynthesis by phytoplankton) for 749 toxicants. Top-down 

regulation of ecosystem structure and cascading effects from lower trophic level functions to 
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higher trophic level ecosystem functions are discussed as possible explanations for these two 

contrasting findings. 

 

When applying SSDs in ecological effect assessments, it is generally accepted that a 

concentration corresponding to a percentile y of this SSD is a hazardous concentration for y% of 

the species within an ecosystem (HCy). To elucidate the ecological significance of this concept, 

the ecosystem model developed and validated in the previous chapters was used in a practical 

ecosystem study (chapter IX). The ecological effects of different HCys of copper on ecosystem 

structure (biomass) and function (photosynthesis of phytoplankton, PSall phytoplankton; and ingestion 

by zooplankton, Iall zooplankton) were estimated with the developed ecosystem model. Zooplankton 

biomass and the associated ecosystem function rate (Iall zooplankton) remained unaffected when the 

system was exposed to concentrations ≤ HC30 of an SSD based on EC20s derived from single-

species tests. Phytoplankton biomass and PSall phytoplankton increased at concentrations > HC5 or 

HC30 of an SSD based on EC20s or EC10s, respectively. Thus, exposing the ecosystem studied to 

other percentiles than the commonly chosen HC5 does not necessarily result in ecological effects 

on 5% of the species. 

 

A summary of the conclusions drawn in the different chapters is provided in chapter X. In 

general, it is concluded that the type of ecosystem models constructed in this dissertation can 

serve as an ecology-based method to accurately predict ecological effects, provided that the 

relevant populations are included in the model and a logistic toxic effect sub-model is used to 

integrate direct effects on mortality of animals. The use of ecosystem models in ecological effect 

assessments benefits from the limited data needs of such models. The amount of standard single-

species toxicity test results needed to use such an approach is comparable to the amount of data 

needed to apply conventional extrapolation approaches. Moreover, the models developed here can 

also support current extrapolation approaches. The validity of the assumptions underlying these 

extrapolation approaches is related to the toxicant type. For toxicants directly targeting 

zooplankton and fish, these assumptions are likely to be valid, while the opposite holds for 

toxicants directly targeting phytoplankton. These findings, together with results from 

experimental ecosystem studies aid in understanding the significance of current extrapolations 

approaches. As such, they can assist risk assessors in applying approaches that more accurately 

predict no effect concentrations for chemicals. 

249



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samenvatting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



De stijgende bevolkingsdruk en de daarmee gepaard gaande menselijke activiteiten maakt dat het 

aantal chemische stoffen in oppervlaktewaters is toegenomen. Deze stoffen hebben een waaier 

aan chemische en toxicologische eigenschappen waardoor het niet onwaarschijnlijk is dat 

ongewenste effecten optreden in ecosystemen. In het vakgebied van de ecotoxicologie beoogt 

ecologische effectenevaluatie inzicht te krijgen in hoe deze effecten ontstaan teneinde ze beter te 

kunnen inschatten of voorspellen. Effectenevaluaties zijn meestal enkel gebaseerd op resultaten 

van “single-species” tests. Zulke single-species tests laten toe om directe effecten van 

chemicaliën op één geïsoleerd species te onderzoeken in gecontroleerde omstandigheden. 

Resultaten van deze tests worden meestal uitgedrukt als concentraties die x% effect hebben op 

een test populatie (ECx). Huidige methodes om meerdere single-species ECx-waarden te 

extrapoleren naar ecosysteemeffecten, bijvoorbeeld de soorten-gevoeligheidsdistributie (SGD), 

zijn gebaseerd op een aantal ongeteste veronderstellingen die ecologische interacties tussen 

populaties van species niet in rekening brengen. Nochtans is bekend dat ecologische effecten 

bepaald worden door (1) ecologische interacties en (2) directe effecten op populaties in het 

ecosysteem. Daarom is het onwaarschijnlijk dat voorspellingen van ecologische effecten door 

middel van huidige extrapolatietechnieken (bvb SGDs) accuraat zijn. Bijgevolg kunnen ook 

afgeleide ecologische risico’s in twijfel worden getrokken. 

 

Een alternatief voor deze momenteel toegepaste technieken kan het gebruik van dynamische 

ecosysteemmodellen zijn. Dergelijke ecosysteemmodellen bestaan uit (1) een voedselweb model; 

(2) een toxisch effect sub-model: en (3) een model voor de detritus- en nutriëntencyclus. Het 

voordeel van een dergelijke aanpak ten opzichte van huidige technieken is dat ecologische 

interacties tussen populaties in rekening kunnen worden gebracht door incorporatie van 

processen zoals consumptie en competitie. Helaas bestaat er geen informatie over welk type 

toxisch effect sub-model moet gebruikt worden opdat een ecosysteemmodel accurate 

voorspellingen oplevert. Ook kwantitatieve validatie-oefeningen zijn schaars in de beschikbare 

literatuur. Bijgevolg is het onvoldoende gekend of en hoe ecosysteemmodellen kunnen gebruikt 

worden in ecologische effectenevaluaties. 

 

Aangezien huidige extrapolatietechnieken gebaseerd zijn op de relatie tussen resultaten van 

single-species tests en ecosysteemeffecten, wordt in deze thesis een overzicht gegeven van de 

studies die deze relatie onderzoeken (hoofdstuk II). Deze studies kunnen onderverdeeld worden 

in (1) experimentele ecosysteemstudies en (2) studies met ecosysteemmodellen. Beide types 

studies behandelen meestal veranderingen in abundantie (of biomassa) van een soort als gevolg 
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van blootstelling aan chemicaliën. Resultaten van experimentele ecosysteemstudies duiden aan 

dat voor insecticiden, ECx-waarden van invertebraten binnen een ecosysteem (mét ecologische 

interacties) maximaal een factor twee verschillen van deze afgeleid in single-species tests met 

deze groep organismen (zonder ecologische interacties). Anderzijds leren de schaarse studies die 

gebruik maken van ecosysteemmodellen ons dat de ECx voor biomassa of abundantie binnen een 

ecosysteem ook lager kan zijn dan de ECx afgeleid uit een single-species test. De chemicaliën die 

in deze studies bestudeerd werden hadden grote indirecte effecten op predators, waardoor het 

verschil tussen (directe) effecten in een single-species test en (directe en indirecte) effecten in een 

ecosysteem vergroot wordt. 

 

In hoofdstukken III en IV wordt de ontwikkeling van een nieuw ecosysteemmodel beschreven. 

Een dynamisch ecosysteemmodel is zo opgebouwd dat het op eenvoudig wijze kan aangepast 

worden om het dynamisch gedrag van verschillende ecosystemen te simuleren. Ook sub-modellen 

voor effecten van toxicanten kunnen aangepast worden al naargelang de toepassing. Het 

ecosysteemmodel is bedoeld om op een accurate wijze ecologische effecten te voorspellen, eerder 

dan de geobserveerde populatiedynamiek exact te reproduceren. In een demonstratie van het 

ecosysteemmodel (hoofdstuk IV) werden ecologische effecten van koper in een experimentele 

ecosysteemstudie accuraat voorspeld. Resultaten van single-species tests alleen bleken daartoe 

niet in staat.  

 

Een standaard sub-model voor toxische effecten werd gekozen in hoofdstuk IV. In hoofdstuk V 

echter werd onderzocht welke sub-modellen het best geïncorporeerd worden in het 

ecosysteemmodel opdat accurate voorspellingen zouden bekomen worden. Daartoe werden vier 

ecosysteemmodellen geconstrueerd met elk een ander sub-model voor toxische effecten. De 

voorspellende kracht van elk van deze modellen werd geëvalueerd door voorspelde ‘no observed 

effect concentrations’ (NOECs) te vergelijken met NOECs waargenomen in een experimentele 

ecosysteemstudie. Het ecosysteemmodel met een sub-model voor toxische effecten dat effecten 

op mortaliteit van zooplankton beschrijft met een logistische functie bleek te resulteren in de beste 

predicties. Het additioneel incorporeren van subletale effecten op zooplankton in een sub-model 

voor toxische effecten verhoogde de predictieve capaciteit niet. Het gebruik van lineaire functies 

in sub-modellen voor toxische effecten resulteerde in NOEC voorspellingen die een factor 4 lager 

lagen dan de geobserveerde NOECs. 
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In hoofdstuk VI werd het ecosysteemmodel dat de beste predicties gaf in hoofdstuk V 

onderworpen aan een grootschalige validatie met data uit de literatuur. Voorspelde NOECs 

werden vergeleken met populatie- en ecosysteem-NOECs gerapporteerd in 11 experimentele 

ecosysteemstudies. Het ecosysteemmodel werd telkens aangepast opdat het rekening zou houden 

met de aanwezige populaties in de experimentele ecosystemen. Populatie-NOECs werden 

accuraat voorspeld in 60% van de gevallen en waren beschermend in 86% van de gevallen, i.e. 

lager dan de experimentele populatie-NOECs. Voor alle 11 studies kon een beschermende 

ecosysteem-NOEC voorspeld worden, bovendien was deze accuraat voorspeld in 8 van de 11 

gevallen.  

 

In hoofdstuk VII werd een theoretische veronderstelling die aan de basis ligt van de SGD 

techniek, gebuikt voor de extrapolatie van single-species ECx-waarden naar een veilige 

concentratie in het milieu, getoetst in een eenvoudig ecosysteem. De geteste veronderstelling was 

dat ecologische interacties de gevoeligheidsdistributie niet beïnvloeden. Voor 1000 hypothetische 

toxicanten werd een lognormale SGD gefit aan single-species EC10s. Merk op dat deze SGD geen 

ecologische interacties bevat en daarom de naam ‘conventionele SGD’ krijgt (cSGD). Vervolgens 

werden zogenaamde eco-SGDs geconstrueerd voor elk van de 1000 toxicanten. Deze eco-SGDs 

brengen ecologische interacties wél in rekening, gezien ze berekend werden met het 

ecosysteemmodel dat in vorige hoofdstukken ontwikkeld en gevalideerd werd. Voor 254 van de 

1000 toxicanten bleken het gemiddelde en/of de variantie van de cSGD hoger dan deze van de 

eco-SGD. Bijgevolg werd besloten dat de geteste veronderstelling niet algemeen geldig is, i.e. 

ecologische interacties beïnvloeden wel degelijk de SGD. Een additionele analyse met 

classificatieboom-technieken toonde aan dat dit vooral het geval is voor toxicanten die een direct 

effect uitoefenen op fytoplankton (bvb herbiciden). Voor toxicanten die een direct effect 

uitoefenen op zooplankton en vissen (bvb insecticiden) werd de geteste veronderstelling wel 

geldig bevonden. 

 

Een tweede theoretische veronderstelling die aan de basis ligt van de SGD techniek werd getoetst 

in hoofdstuk VIII. In hetzelfde ecosysteem als dat beschouwd in het vorige hoofdstuk werd de 

veronderstelling getest dat de structuur van een ecosysteem (i.e. zijn samenstelling) gevoeliger is 

dan de functies die het vervult. Deze studie werd opnieuw uitgevoerd door gebruik te maken van 

het voorheen ontwikkelde en gevalideerde ecosysteemmodel. NOECs werden voorspeld voor 

zowel de structuur als de functies van het beschouwde ecosysteem en dit voor 1000 hypothetische 

toxicanten. Voor 979 gevallen bleek de geteste veronderstelling correct, aangezien de NOEC voor 
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structuur lager lag dan de NOEC voor functie. Voor de helft van de 1000 toxicanten bleek de 

structuur van lagere trofische niveaus (bijvoorbeeld fytoplankton biomassa) gevoeliger dan de 

structuur van hogere trofische niveaus (bijvoorbeeld biomassa van vissen). Bijgevolg kan men 

stellen dat de gevoeligheid van de structuur van het gehele ecosysteem vaak bepaald wordt door 

de gevoeligheid van de structuur van de lagere trofische niveaus. Voor ecosysteemfuncties werd 

net het omgekeerde gevonden: ecosysteemfuncties geassocieerd met hogere trofische niveaus 

(bijvoorbeeld consumptie door vissen) waren gevoeliger dan functies geassocieerd met lagere 

trofische niveaus (bijvoorbeeld primaire productie) in 749 van de 1000 gevallen. Top-down 

regulatie en een cascadeproces van hogere naar lagere trofische niveaus worden gesuggereerd als 

mogelijke verklaringen voor de geobserveerde verschillen. 

 

Wanneer SGDs worden gebruikt voor ecologische effectenevaluatie neemt men meestal aan dat 

een percentiel y van deze SGD een gevaar inhoudt voor y% van de species in een ecosysteem. 

Daarom wordt deze concentratie de ‘hazardous concentration’ voor y% van de species genoemd 

(HCy). Om de ecologische betekenis van deze HCy te onderzoeken werd het voorheen 

ontwikkelde en gevalideerde ecosysteemmodel gebruikt in een praktische ecosysteemstudie 

(hoofdstuk IX). De effecten op ecosysteemstructuur (biomassa) en functie (fotosynthese door 

fytoplankton, PSalle fytoplankton en ingestie door zooplankton, Ialle zooplankton) die optreden wanneer een 

eenvoudig ecosysteem blootgesteld wordt aan verschillende HCys voor koper werden voorspeld. 

Biomassa van zooplankton en Ialle zooplankton vertoonden geen nadelige effecten wanneer het 

ecosysteem werd blootgesteld aan concentraties ≤ HC30 van een SGD gebaseerd op EC20s. 

Biomassa van fytoplankton en PSalle fytoplankton waren hoger bij concentraties > HC5 of HC30 van 

een SGD respectievelijk gebaseerd op EC20s en EC10s. Bijgevolg kan gesteld worden dat 

koperconcentraties verschillend van de HC5 niet noodzakelijkerwijs resulteren in ecologische 

effecten op 5% van de aanwezige species. 

 

In hoofdstuk X wordt een overzicht gegeven van de conclusies bekomen in de verschillende 

hoofdstukken en wordt een algemeen besluit geformuleerd. Er werd geconcludeerd dat de 

ecosysteemmodellen die in deze thesis werden geconstrueerd kunnen gebruikt worden voor het 

voorspellen van ecologische effecten van chemicaliën. Voorwaarden voor het slagen van 

dergelijke aanpak zijn dat de relevante populaties in het model opgenomen worden en een 

logistisch toxisch effect sub-model gebruikt wordt. De datavereisten van de ontwikkelde 

benadering zijn beperkt en vergelijkbaar met de hoeveelheid data die huidige technieken vereisen. 

Naast een voorspellende rol kunnen de ontwikkelde modellen ook een ondersteunende rol 
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spelen voor huidige statistische extrapolatietechnieken. Zo bleek de geldigheid van enkele 

theoretische veronderstellingen die aan de basis liggen van een huidige extrapolatietechniek 

afhankelijk te zijn van het type toxicant. Voor toxicanten die een direct effect uitoefenen op 

zooplankton en vis bleken de geteste veronderstellingen correct. Voor toxicanten die een direct 

effect uitoefenen op fytoplankton was dit niet het geval. Deze conclusies, samen met de resultaten 

van de praktische ecosysteemstudie, laten toe de beperkingen en toepassingen van de huidige 

extrapolatietechnieken te evalueren. Tenslotte kan gesteld worden dat de ontwikkelde modellen 

toelaten om ecologische effecten van chemicaliën op een meer accurate manier in te schatten. 
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(SWAD) and the soil/sediment database (S-SED) in risk assessment procedures. 14
th

 

Annual Meeting of SETAC-Europe, 18-22 April 2004, Prague, Czech republic. 

 

5. De Laender F., De Schamphelaere K.A.C., Verdonck F.A.M., Heijerick D.G., 

Vanrolleghem P.A., Janssen C.R. Geographical and temporal variability of zinc 

bioavailability: towards region-based water quality standards. Beltox meeting, 1 April 

2004, Liege, Belgium. 

 

6. De Laender F, De Schamphelaere K.A.C., Schaefers C., Vanrolleghem P.A., 

Janssen C.R. Do Species Sensitivity Distributions protect ecosystem function? A case 

study for copper. 15
th

 Annual Meeting of SETAC-Europe, 23-26 April 2005, Lille, 

France. 
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7. De Laender F, De Schamphelaere K.A.C., Vanrolleghem P.A., Janssen C.R. 

Influence of the slope of concentration response relationships on community effects. 

16
th

 Annual Meeting of SETAC-Europe, 7 -11 May 2006, The Hague, Netherlands. 

 

8. De Laender F, De Schamphelaere K.A.C., Vanrolleghem P.A., Janssen C.R. Does 

laboratory based probabilistic effect assessment correctly predict field community 

effects? A theoretical exercise. 16
th

 Annual Meeting of SETAC-Europe, 7 -11 May 

2006, The Hague, Netherlands. 

 

9. De Laender F, De Schamphelaere K.A.C., Vanrolleghem P.A., Janssen C.R. 

Foodweb-mediated effects of linuron in a freshwater ecosystem. 27
th

 Annual Meeting 

of SETAC-North America,  5-9 November 2006, Montreal, QC, Canada. 

 

Foreign study visits 

 

15 September 2005:  Sokoine State University of Agriculture in 

Morogoro, Tanzania.  

Goal: oral presentation of PhD research 

 

30 October - 5 December: University of Wisconsin, Madison, USA,  

Goal: Collaboration with Professor Anthony R. Ives at the Lab for theoretical 

ecology. Professor Ives is an internationally acclaimed scientist in the field of 

theoretical ecology. Multivariate Autoregressive (MAR) were used to extract feeding 

relationships out of ecosystem data. This study visit was funded by a travel grant from 

the Fund for Scientific Research - Flanders (FWO-Vlaanderen, Belgium). 
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Attended conferences and workshops 

 

1. 14th Annual Meeting of SETAC-Europe, 18-22 april 2004, Prague, Czech republic. 

 

2. BELTOX, Role of Bioavailability in Environmental Risk Assessment, 1 April 

2004, Liege, Belgium. 

 

3. 15th Annual Meeting of SETAC-Europe, 23 -26 April 2005, Lille, France. 

 

4. COST 626 meeting, 18 22 April 2005, Silkeborg, Denmark. 

 

5. 16th Annual Meeting of SETAC-Europe, 7-11 May 2006, The Hague, The 

Netherlands. 

 

6. 27th Annual Meeting of SETAC-North America, 5-9 November 2006, Montreal, 

QC, Canada. 

 

7. 17th Annual Meeting of SETAC-Europe, 20-24 May 2007, Porto, Portugal.  

 

Scientific Awards 

 

Second price in poster contest at the 7
th

 International Conference on the 

biogeochemistry of trace elements., Uppsala, Sweden. 15-17 June 2003 for  

“De Laender F., Verdonck F.A.M., De Schamphelaere K.A.C., Janssen C.R. and 

Vanrolleghem P.A. Geography- referenced bioavailability modelling in risk 

assessment: a case study of copper in Swedish surface waters. “ 

 

SETAC Travel Award for the 27
th

 annual meeting of SETAC North America. 

 

Membership of professional organisations 

 

2003-present:  Member of the Society of Environmental 

Toxicology and Chemistry (SETAC). 
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