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Woord vooraf

Een doctoraat schrijven gebeurt niet alleen. Een heel systeem van bureau- en laboratten was
hiervoor nodig. Vooreerst mijn promotor, let’s move to Canada Peter, die mij de kans gaf om
te doctoreren, en later nooit het vertrouwen verloor om de verschillende experimenten tot een
goed einde te brengen. Gunnar, his fine humor and subtle way of making scientific research
publishable. “De Prof” Erick Vandamme en laten we een watergevecht houden Wim, voor de

mooie bruggen tussen Limab en Biomath.

Het begon met de ingenieursthesis. Peter moest met een plan B op de proppen komen. Iets
dat zeker zou lukken. Metabolische modellering dan maar. De eerste artikels, waren niet
zo interessant, niet technisch genoeg. Maar dan kwamen die papers van Noorman en dat
ongepubliceerd werk... Ik was verkocht. En Peter blijkbaar ook, want ik mocht blijven en
mee aan de wieg staan van de metabolische groep binnen Biomath. En iets insturen naar een
conferentie. Maar ja, dat ongepubliceerd werk waar zoveel op gebaseerd was, hoe verwijs je
daarnaar? Gelukkig was Rene een goede vriend van Peter, en voila, mijn eerste internationale

samenwerking. Pas 4.5 jaar later hebben we elkaar in levende lijve ontmoet.

Samen met Sam als top van Biomath (dixit Peter) de metabolische modelleringsgroep uit de
grond proberen stampen. Allebei bevestigen we uiteindelijk de trend die we waarnamen onder
assistenten. . . Later kwam daar Jo bij —de fratsen die we samen uitgehaald hebben zijn niet
meer te tellen—, Aditya, de voorzienige en Brecht de wanhopige, maar zijn collegae zorgen
wel voor hem. For a short time we had Joel; without him, the rest of Biomath would never
know what we were doing. Gino, erbij gekomen anno 2007 en op het laatste nippertje nog
heel het doctoraat gelezen. Tinne, voor de duizenden stikstofanalyses. En dan de ontelbare
bureaugenoten en de rest van de vakgroep, voor de gezellige sfeer, de sappige roddels, de laten

we elkaar in de plassen duwen lentewandelingen (die traditioneel plaatsvinden na 21 juni)...

Natuurlijk geen modelleren zonder data. Daarvoor was de samenwerking met Limab onont-
beerlijk. Initieel het project schrijven met Marjan en Sofie Vandedrinck, later de kleurrijke
samenwerking met Marjan. Uiteindelijk is het ons toch gelukt om modellen en experimenten
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samen te brengen. De wij zijn beter dan Sartorius™ en gaan het lab ombouwen samenwerking

met Joeri, met het legendarische hoogtepunt toen we een bug vonden in het stuurprogramma

"Welliswaar dankzij de hulp van Ralf Bruene van Sartorius, Duitsland
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van de nieuwe reactor. Katja die zo graag de experimenten in vijfvoud herhaalde. Ellen, de
relativerende noot en RNA extractie experte waar iedereen om vecht. Laten we het chocolade
popje van mijn thesisbegeleider opeten Hendrik. Karl, we weten nu nog altijd niet waar je
hond begraven is. Evelien, hebben we het labo niet eens onder water gezet? De memorabele
memo-avonden. En natuurlijk de rest van de Limab, voor de gezellige sfeer en het gemak

waarmee jullie op de kasten te jagen zijn.

Dankzij Peter, een Zweedse excursie. The welcome feeling of some things you don’t want
to know and let’s celebrate the breakthrough result today because tomorrow we will find a
reason why it is not that revolutionary Louise and Thomas, their fantastic wedding party.
The Christmas eve modelling sessions with Andreas. Swedish tradition Tobias, sorry to
introduce you to Vim and the regular expression world; you probably lost much time with
those interesting toys. Anneli, present everywhere in Sweden and Denmark. Klaus, after
months we realised that we both enjoyed reading Russian literature (well, we used to, before
our phd-time). All the people working at the Chemical Engineering Department, for the nice
atmosphere, the much appreciated coffee breaks (well, for me, start-of-the-day event), the

legendary Christmas and Crayfish parties and so much more.
Walter van TUDelft, voor de elementenanalyse die je er tussendoor geduwd hebt.

David, voor de opvang tussen de twee Zweedse periodes, voor de leuke trektocht samen, de

goeie babbels (over wat zullen we maar in het midden laten :)).

Mijn ouders, zussen en broer, die ervoor zorgden dat ik mij nooit thuis voelde in Gent:
te gehecht aan het ouderlijke thuis. De wekelijkse voedselbedeling, de back-up wanneer de
treinen weer eens staakten, de geanimeerde reality-soap maaltijden: zal broer een motorfiets
kopen of niet? De geinteresseerde vragen over het doctoraat waarop het standaard antwoord

was: hmmm.

Veerle, dé stimulans om dit doctoraat op tijd af te werken (F. coli experimenten, computers
en zelfs Linux zijn onbelangrijk geworden; en MS Windows problemen werden plezant om op
te lossen, weliswaar ligt dat niet aan Microsoft). Een dag Gentse feesten werd systematisch
begonnen en beéindigd met het controleren van de FE. coli culturen. Elke morgen kwam je
mij op tijd halen (ik ben nooit zo regelmatig toegekomen op den bureau); op het einde had
je door dat ik volledig geen uren meer had en liet je mij de vrijheid om mijn 25 uren per
dag dagen te (over)leven. Je hebt me overgehaald om naar de voetbal te gaan kijken, embh,
mee te gaan als fotograaf. Je was de enige aan wie ik mijn problemen kwijt wou, tijdens de

legendarische wandelingen... Dank ook aan je ouders en zus voor het tweede thuis.

Gaspard Lequeux
Gent, 17 januari 2008



Samenvatting

Metabolische modellering werd gebruikt voor het onderzoeken van verschillende strategieén
ter optimalisatie van FEscherichia coli als productiestam. In het proefschrift wordt eerst een
overzicht gegeven van Metabolische Flux Analyse (MFA). Ten eerste worden verschillende
technieken uitgelegd om de kwaliteit van een metabolisch model te testen (elementaire samen-
stellingstest, zoeken naar doodlopende reactieroutes, parallelle reactieroutes detecteren). Ten
tweede wordt uitgelegd hoe een metabolisch model algemeen kan opgelost worden waarbij
de fluxen gebalanceerd worden. Verder wordt besproken hoe de oorzaak van inconsistente

meetingen gevonden kan worden via de vectorvergelijkingstest.

Een nadeel bij het gebruik van MFA is dat het alleen toepasbaar is op culturen in evenwicht-
stoestand terwijl vele interessante processen niet in evenwicht zijn. Daarom werd een nieuwe
techniek voorgesteld, dynamische MFA, waarin tijdreeksen van transiénte experimenten wor-
den omgezet naar een vorm bruikbaar voor MFA. In dynamische MFA wordt de afgeleide
genomen van de concentratieprofielen op elk tijdspunt onder studie. Deze afgeleide wordt
gebruikt voor het berekenen van de netto uitwisselingsfluxen die dan gebruikt worden in de
MFA analyse. Maar het berekenen van afgeleiden leidt tot een vergroting van de ruis aan-
wezig in de data. Daarom moeten geschikte vereffeningnsalgoritmes toegepast worden. De
voorgestelde polynoomvereffening vertoont enkele gebreken en vereist vele manuele afstellin-

gen. Desondanks werden uiteindelijk toch bruikbare resultaten verkregen.

De hierboven beschreven wiskundige technieken werden toegepast op een aantal interessante

biologische en industrieel relevante gevallenstudies.

Een E. coli stam, genetisch gemodificeerd om meer shikiminezuur te produceren (shikimine-
zuur is een basismolecule voor het maken van Tamiﬁu®, een antiviraal geneesmiddel), heeft
een hogere shikiminezuur opbrengst onder koolstofrijke condities dan onder koolstofgelimi-
teerde condities. Met behulp van MFA werd aangetoond dat dit niet veroorzaakt wordt door
een lagere koolstofflux naar de aromatische aminozuur syntheseroute (shikiminezuur is een
nevenproduct van die route), maar door een hogere excretie van andere nevenproducten in
die route. Door het gebruik van MFA kon de intracellulaire ATP hydrolyse flux berekend

worden voor verschillende groeisnelheden van koolstof- en fosforgelimiteerde culturen zodat
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de onderhoudscoéfficiénten voor beide soorten culturen konden bepaald worden. Er werd
aangetoond dat E. coli cellen onder koolstofrijke condities geen groeigeassocieerde onder-
houdsbehoeften hebben, maar dat ze wel de maximaal mogelijke hoeveelheid ATP verbruiken
zodat hun niet-groeigeassocieerde onderhoudsbehoefte ongeveer even hoog is als de totale on-
derhoudsbehoefte van koolstofgelimiteerde culturen gekweekt bij groeisnelheden bijna even

hoog als de uitspoelsnelheid.

Een typisch probleem bij E. coli culturen is het acetaat overloop metabolisme. Verschillende
genetische strategieén werden onderzocht om deze ongewenste acetaatproductie tegen te gaan.
Het uitschakelen van de acetaatproductieroute zorgde voor een lagere acetaatproductie, maar
er werd meer lactaat in de cultuurvloeistof teruggevonden. De strategie waarbij het funda-
mentele probleem dat er niet genoeg koolstof van de glycolyse naar de citroenzuurcyclus gaat,
werd verholpen door overexpressie van ppc, coderende voor PEP carboxylase, en gaf duidelijk

betere resultaten. Uiteraard gaf de combinatie van de twee methoden ook goede resultaten.

Vervolgens werd onderzocht of de ppc overexpressiemutant een betere stam was voor het
produceren van recombinant eiwit. Het voorbeeldeiwit dat hiervoor gebruikt werd, was -
galactosidase. Een plasmide met daarop LacZ (coderende voor[-galactosidase) tezamen met
een IPTG induceerbare promotor, werden ingebracht in wild-type cellen en in ppc overex-
presserende mutanten. Van beide stammen werden chemostaatculturen gekweekt. Bij het
bereiken van de evenwichtstoestand werd de productie van recombinant eiwit gestart door
het toevoegen van IPTG aan de cultuurvloeistof. Een twaalf keer hogere eiwitproductie werd

waargenomen in de ppc overexpresserende stam.

Het gedrag van koolstofgelimiteerde continue culturen die werden omgeschakeld naar NH,-
limitatie en vice versa, werd onderzocht met behulp van dynamische MFA. Wanneer omge-
schakeld werd van stikstoflimitatie naar stikstofovervloed (koolstoflimitatie), werd een lagfase
van meerdere uren waargenomen waarin de cellen bijna ophielden met groeien. Hiervoor kon
geen goede verklaring gegeven worden, maar de lengte van de lagfase (5 uren) suggereert
dat de oorzaak waarschijnlijk genetisch is. In de literatuur werd dergelijke lagfase totnogtoe
enkel waargenomen bij ginE knock-out mutanten. Het gen ginE encodeert ATase, het eiwit
verantwoordelijk voor de regulatie van glutamine synthetase. Wanneer onder stikstofrijke
condities ATase niet meer werkt, ontstaat er toxiciteit van NH; te wijten aan accumulatie
van glutamine/glutamaat. Deze lagfase werd niet waargenomen bij het omschakelen van

koolstofgelimiteerde culturen naar stikstoflimitatie.

Het concept van de chemostaat werd uitgebreid door aan continue culturen oscillerende omge-
vingscondities op te leggen. Deze oscillaties bleven in dit doctoraatsonderzoek beperkt tot
wisselingen tussen aerobiosis en anaerobiosis. Twee perioden van oscillatie werden uitgetest:

4 minuten en 30 minuten. In beide gevallen was de eerste helft van de periode aeroob en de
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tweede helft anaeroob. Met behulp van Affymetrix® microarrays werden genexpressieprofie-
len gegenereerd op verschillende tijdstippen in de oscillatie. Deze profielen werden vergeleken
met die van volledig aerobe en volledig anaerobe culturen. Uit de 30 minuten experimenten
bleek dat cellen zich sneller aanpasten aan aerobiosis dan aan anaerobiosis. In de experimenten
met een oscillatieperiode van 4 minuten, was het verschil tussen de genexpressieprofielen in
de aerobe en anaerobe fase minimaal en de expressieprofielen van beide fasen leken meer op

die van de volledig aerobe culturen dan op die van de volledig anaerobe culturen.

Dit werk geeft een overzicht van MFA en breidde er de toepasbaarheid van uit naar dyna-
mische experimenten. Het nut van de voorgestelde methodologieén werd geillustreerd aan de
hand van biologisch interessante en industrieel relevante voorbeelden. Daarnaast werd een
nieuwe experimentele opstelling uitgeprobeerd: het gecontroleerd laten oscilleren van omge-

vingscondities bij chemostaatculturen. Deze opstelling gaf veelbelovende resultaten.






Summary

Different strategies for the optimisation of Escherichia coli as production organism were in-
vestigated using metabolic modelling tools. An overview of the state of the art of metabolic
flux analysis (MFA) is given, starting with different metabolic model check methods (elemen-
tal composition check, dead-end detection, parallel pathway identification) and continuing
with the general technique for solving overdetermined metabolic models and balancing the
measured fluxes or eventually, in the case of flux data being inconsistent between each other,

finding the wrong measurement with the vector comparison test.

A drawback of MFA is that it is only applicable to cultures in pseudo steady state. Therefore
a novel technique, called dynamic MFA | is presented. Dynamic MFA transforms time series of
transient experimental data to a form suitable for MFA. Dynamic MFA is based on taking the
derivative of the concentration profile at each time instant of interest and using this derivative
to calculate net fluxes, that are subsequently used in the MFA framework. However, taking
the derivative increases the noise on the data, thus suitable data smoothing algorithms have
to be used. Polynomial smoothing is proposed, but it has some difficulties and much manual

tuning is needed. Still, acceptable results were obtained.

These mathematical techniques were then applied on different biologically interesting and

industrially relevant cases.

E. coli strains genetically engineered to produce more shikimate (an interesting starting
compound for a number of chemicals, e.g. oseltamivir phosphate, the active compound of
Tamiflu®, a drug against influenza), has a higher shikimate yield when grown under carbon-
abundant conditions (phosphor-limited cultivations) than under carbon-limiting conditions.
Using MFA, it is shown that this is not due to a lower flux towards the aromatic pathway
(shikimate is an intermediary compound of this pathway), but is caused by the increased
excretion of other metabolites involved in the aromatic pathway. Also, having access to in-
ternal flux values for ATP hydrolysis at different growth rates for cultures under carbon-
and phosphor-limitation, the maintenance parameters are calculated for both types of culti-
vations. It is suggested that E. coli cells under carbon-abundance have no growth-associated

maintenance but are utilising the maximal possible amount of ATP and the non-growth-
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associated maintenance is as high as the total maintenance requirements of cells grown under

carbon-limiting conditions near the wash-out rate.

A typical problem of E. coli cultivations is the acetate overflow metabolism. Different genetic
strategies were assessed to reduce this waste acetate production. When disabling the acetate
pathway, less acetate was indeed produced, but more lactate was found in the reaction broth.
The approach in which the more fundamental problem of insufficient carbon going from the
glycolysis to the Krebs cycle is remedied by overexpressing ppc, encoding PEP carboxylase,
gave better results. Obviously, the third approach in which both genetic strategies were

combined, also performed well.

Next, it was assessed whether a ppc overexpressing mutant had improved capabilities for
producing recombinant proteins. The model protein used was (3-galactosidase. A plasmid
containing LacZ (encoding (-galactosidase) with an IPTG inducible promoter, was introduced
in wild-type cells and ppc overexpressing strains. For both, chemostats were run, and when
steady state was attained, IPTG was added to the reactor broth, starting the recombinant
protein production. A twelve times higher protein production flux was observed in the ppc

mutant.

The intracellular flux distributions of carbon-limited continuous cultures switched to NH,-
limitation and vice versa, was investigated using dynamic MFA. When switching from nitrogen-
limitation to nitrogen-abundance (carbon-limitation), a lag phase of several hours in which
the growth of cells almost stopped, was observed. No clear reason could be given for this.
However, the extended period of the lag phase (5 hours) suggests that the cause is proba-
bly genetic. So far, such lag phase has only been described in literature for glnF knock-out
mutants. Gene glnFE encodes ATase, the protein responsible for the regulation of glutamine
synthetase. When, under nitrogen excess, ATase is not functioning anymore, the toxicity of
NHj; is due to accumulation of glutamine/glutamate. Such a lag phase was not observed in

the case of carbon-limited cultures switched to nitrogen-limitation.

Extending the concept of chemostats, continuous cultures with oscillating environmental con-
ditions were run. The oscillations were between aerobiosis and anaerobiosis. Two periods
were chosen for the oscillations: 4 minutes and 30 minutes and in each case half of the period
was aerobic, the other half being anaerobic. Gene expression profiles, using Affymetrix®
microarrays, were generated at different time points in the oscillations and compared to the
gene expression profiles of fully aerobic and anaerobic cultures. In the 30 minutes oscillating
experiment, it was observed that cells adapted faster to aerobiosis than to anaerobiosis. In
the experiment where the oscillation period was 4 minutes, the difference in gene expression
profile between the aerobic phase and the anaerobic phase was minimal and the expression
profile of both phases were more similar with the fully aerobic culture than the fully anaerobic

one.
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This work reviewed and extended the applicability of MFA to dynamic experiments. The use-
fulness of the methodologies presented were illustrated on different biologically interesting and
industrially relevant case studies. Furthermore a novel kind of experiments was conducted:
applying controlled environmental oscillation on chemostat cultures. This setup generated

promising results.
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Chapter 1

General introduction

Micro-organisms are more and more used for the production of chemicals, referred to as white
biotechnology. Indeed micro-organisms have many advantages compared to the classical oil-
based chemistry: they utilise renewable resources (thus are carbon neutral), do not produce
highly toxic waste products, are operated under gentle conditions (no high pressures or high
temperatures needed) and can produce many different compounds. For fine chemistry and

food chemistry they have the advantage that molecules with the right chirality are produced.

Although micro-organisms have the potential to produce almost every imaginable organic
chemical, a major disadvantage is the sometimes assiduous way in which strains have to be
engineered to make the production of the wanted chemical economically viable. However,
this is not much different from the classical chemistry 100 years ago, when the concept of
atoms was barely understood. The same now happens with biochemistry. Fifty years ago,
the basic structure of DNA was unveiled. Now the exponential growth phase of biochemistry
is happening: whole genomes are sequenced, production can be improved by direct mutations
instead of random mutations with selection pressure, and even completely synthetic biology

is emerging (Benner & Sismour, 2005).

To successfully use F. coli as a production host, knowledge of metabolism and genetics is
essential. The quest for knowledge can be directly motivated by a practical problem (e.g.
why is the shikimate yield different for different limiting conditions?), but can also be steered
by curiosity (e.g. what happens during transient conditions? How do the cells react to

oscillating environmental inputs?). Both types of questions are addressed in this work.

Cultivation experiments generate much data and it is not always easy to make sense of
them. Therefore, mathematical techniques are needed to analyse and interpret those data.
The mathematical tools should be able to integrate experimental data with (biochemical)
knowledge already available, generating additional insight in the functioning of the microbial

cell.



One such technique that combines experimentally measured extracellular fluxes with metabolic
knowledge, is metabolic flux analysis (MFA). MFA allows calculating intracellular fluxes when
only extracellular metabolite concentration measurements are available. Knowledge of intra-
cellular fluxes allows one to better understand where and how all the nutrients entering the

cell, are used.

A key drawback of metabolic flux analysis is that it can only be applied on pseudo steady
state cultures while interesting phenomena can be observed during transient environmental
conditions. Therefore, a mathematical transformation of the metabolite concentration mea-
surement time series was proposed that allows to use dynamic data in MFA calculations.
Dynamic MFA opens a whole new field of experimentation involving flux calculations. The
power of observing internal fluxes with only extracellular concentration measurements is not

limited anymore to chemostat cultures, but is now also available for dynamic cultivations.

With more and more laboratories having access to transcriptomics, proteomics and even
metabolomics, reproducible (microbial) cell cultures are increasingly used (Hoskisson & Hobbs,
2005). In the 1960s, chemostats were essentially used to characterise the kinetics of cellular
growth. However, it appears that no unique value for kinetic parameters can be obtained
experimentally and this is not due to experimental limitations, but is inherent to bacteria, as
they are experts at adapting to changing growth conditions (Ferenci, 1999). The inventors
of the chemostat (Novick & Szilard, 1950), were aware from the beginning that evolution-
ary pressure limited the number of generations that a strain could be cultivated and behave
similarly. In this work chemostats were used to elucidate a number of metabolic questions

regarding the production of interesting compounds.

Outline of the thesis

In the whole thesis it is tried to understand the inner workings of the cellular mechanisms,

mostly on metabolic level, but also on genetic level.

For the metabolic understanding, the powerful technique of metabolic flux analysis is used.
A key stone of metabolic flux analysis is the metabolic model. The correctness of this model
is crucial to be able to trust the results obtained in the metabolic flux analysis. To increase
the confidence one can have in the metabolic model and the subsequent results obtained
with it, and to facilitate the development of such a metabolic model, chapter 2 reviews
different tools and checks. The second part of this chapter reviews the methods for generating
intracellular flux data based on the extracellular measurement data. Different statistical tests
are discussed. The chapter ends with an overview of how all those methods were implemented
in order to automate the applications of those tools and checks as much as possible. The
software toolbox is versatile enough for use in a multitude of cases where metabolic modelling

can help in understanding the cultivation processes.
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Shikimate is an interesting starting compound for a number of chemicals (e.g. oseltamivir
phosphate, the active compound of Tamiflu®, a drug against influenza). When cultivating
E. coli strains, genetically engineered to produce shikimate, more shikimate is obtained un-
der carbon-abundant conditions (phosphorus limited) than under carbon-limited conditions.
To elucidate the biochemical reason for this, at first sight, strange behaviour, a number of
chemostats at different dilution rates and for the two different limitations were run. The data

were analysed with MFA and interesting observations were made (chapter 3).

One of the major drawbacks when using E. coli cultivations is the unwanted production of
acetate. In chapter 4 different genetic strategies for reducing acetate were proposed and
tested. The first strategy disabled the acetate production pathway, the second strategy chan-
neled more carbon to the citric acid cycle and the third mutant was a combination of both.
Metabolic flux analysis was used to access the possible differences in flux distributions for
those three mutants. A strain is proposed that excretes far less fermentative metabolites and

that is usable as generic production host.

This strain was tested for its suitability as protein production host in chapter 6. A LacZ
(encoding (3-galactosidase, chosen as model protein) plasmid with an IPTG inducible promoter
was introduced in the E. coli mutant. After the cells were in steady state, IPTG was added
and the reactor was intensively sampled. The experiment was performed with the mutated
strain and with the wild-type. Dynamic MFA was used to combine transient concentration

measurements with biological network topology.

Chapter 5 introduces dynamic MFA and applies it to study the intracellular effects of tran-
sients between two different steady states. Nitrogen-limited chemostats were switched to
carbon-limitation and wvice versa. Some interesting phenomena were observed and are dis-

cussed.

Succinate is an interesting industrial compound, with applications in food and pharmaceu-
tical products, surfactants and detergents, green solvents and biodegradable plastics (Zeikus
et al., 2004). Under anaerobic conditions, valuable amounts of succinate are produced, how-
ever, the process productivity is low (Lin et al., 2005). It was hypothesised that oscillating
between aerobic and anaerobic conditions, could increase the succinate yield. On a more
fundamental level, those oscillations should show some interesting phenomena going on in the
transcriptome. Transcriptome analysis during transition from aerobic to anaerobic conditions
and vice versa has been done (Partridge et al., 2006, 2007), but the effects of oscillations was
never investigated. Therefore, to study the expression profiles of different genes of central
carbon metabolism, microarrays were hybridised with cDNA made from RNA extracts from
broth samples taken at different time points in the period of the oscillation. Besides fully

aerobic and anaerobic continuous cultures, two periods for oscillations were selected. One



experiment was performed in which aerobiosis and anaerobiosis were alternated with a period

of 4 minutes and one experiment in which this period was 30 minutes (chapter 7).

This dissertation ends with an overview of the main conclusions drawn from the methodolog-
ical, modelling and experimental work. Perspectives for future research are proposed as well
(chapter 8).
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MFA






Chapter 2

Building and solving steady state

metabolic lux models!

Metabolic flux analysis (MFA) can be used to get more knowledge about the flux distribution
of intracellular reactions. MFA is frequently applied on underdetermined systems, i.e. the
solution of the model can only be calculated under certain assumptions e.g. maximal biomass
production (Savinell & Palsson, 1992). But metabolic models can also be used when the
system is overdetermined, i.e. when there are more measurements available than degrees
of freedom (van Gulik et al., 2000). The statistical methods discussed in this chapter were
initially developed for black box models (Wang & Stephanopoulos, 1983; van der Heijden
et al., 1994b; van der Heijden & Heijnen, 1995), but can easily be applied to metabolic

models as well (Romein, 2001).

After an introduction about the stoichiometric matrix and the nullspace, different model
checks are reviewed. Then the most general method for solving metabolic models is presented.
It will be clarified that one can still calculate some fluxes and perform statistical tests to check
whether the measurement dataset is consistent even if parts of the model are underdetermined
(Romein, 2001). The presented methodologies here are more general than what can be found
in Stephanopoulos et al. (1998) and Nielsen et al. (2003).

'Parts of this chapter were published as G. Lequeux, R. van der Heijden, S. Van Den Broeck & P. A.
Vanrolleghem (2004). Computational methods to determine conserved moieties and parallel pathways in
metabolic network models. In Proceedings 9th IFAC Conference on Computer Applications in Biotechnology
CAB9. Nancy, France, March 28-31 and in G. Lequeux, L. Johansson, J. Maertens, P. A. Vanrolleghem &
G. Lidén (2006). MFA for overdetermined systems reviewed and compared with RNA expression data to
elucidate the difference in shikimate yield between carbon- and phosphate-limited continuous cultures of F.
coli W3110.shikl. Biotechnology Progress, 22:1056-1070

7
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2.1 Mathematical representation of metabolic models

Different ways of summarising biochemical network information can be found in literature.
Two main tendencies can be discerned: the one with the stoichiometric matrix sensu stricto,
S (Stephanopoulos et al., 1998; Nielsen et al., 2003), and the more general representation
with the extended stoichiometric matrix, W (Noorman et al., 1991). Both representations are
useful: the S matrix is used for searching parallel pathways, while the W matrix is used for

solving the metabolic model.

2.1.1 The stoichiometric matrix S

A set of reaction equations can be described by the following matrix equation:

—=Sv—r 2.1

% (2.1)
Herein matrix S is the stoichiometric matrix (constructed as explained in equation 2.2), vector
v contains the reaction rates and vector r contains the exchange rates (i.e. the net produc-
tion or consumption rates) of the different metabolites. Vector ¢ represents the intracellular

concentrations of the metabolites.

When pseudo steady state is assumed, there is no difference between the net production and
consumption rates so the left side of equation 2.1 can be set to zero and be rewritten more

explicitly as:

S11 Stz .. Sim 1
5271 5272 e Sg7m 9
: V1
: : . : - :
Sui Spz e Spm | | L | = | (2.2)
Spr11 Spr1,2 oo Sprim ' Tpt1
. . . Um
| Sn,l 5172 e Sn,m | L T'n |

The m different columns of the stoichiometric matrix S represent the m different reactions
with corresponding rates v; to vy,. Of the n metabolites involved in the network, there are
p metabolites that are considered to be exchangeable with the environment (the first p rows
of the stoichiometric matrix). The other n — p metabolites occur only inside the cell and are
not exchanged with the environment. Hence, the last n — p exchange rates (1,41 to ry,) are

equal to zero.

Equation 2.2 can be split into two parts. One part that involves the metabolites that are

exchangeable with the environment and another part that involves the metabolites of which



Chapter 2. Building and solving steady state metabolic flux models 9

there is no net production or consumption (because of the pseudo steady state assumption):

{ Sace V = Tace

(2.3)
Spss U = Tpss = 0

Sace contains the rows of S that correspond to the exchangeable metabolites (i.e. the first
p rows of the stoichiometric matrix in equation 2.2). The corresponding exchange rates are
summarised in rgee. Thus rgee contains the p first r’s of equation 2.2, i.e. all exchange rates
that are not zero. Spss is constituted of those rows that agree with the non accumulating
metabolites (i.e. those that are in pseudo steady state). Hence, the corresponding rates,

summarised in rpgs are equal to zero.

2.1.2 The extended stoichiometric matrix W

A second way (compared to equation 2.1) of representing a biochemical reaction network is:
T W a(c) (2.4)
where ¢ is a vector containing the concentration of the different metabolites inside the cell,
matrix W is the extended stoichiometric matrix and vector a is the vector with all the reaction
rates. If steady state is assumed, the concentration of the metabolites inside the cell do not
change, the reaction rates are independent of the intracellular metabolite concentrations and
equation 2.4 can be simplified to

Wa=0 (2.5)

W is called the extended stoichiometric matrix because it contains more than pure enzymatic
conversions alone. The exchange of metabolites with the environment is added as reactions
taking from, or removing matter to a buffer (Schilling et al., 1999). Thus input and output

from the system is modelled as (e.g. glucose):
— GLC (2.6)

The corresponding rate in the flux vector a is the input rate for glucose.

2.1.3 Relationship between S and W

Equation 2.2 can be rewritten as (using the fact that: r,,1,...,r, are equal to zero):
[ S11 . Sim 1 0 ... 0] [
U1
So1 ... Sam 0O -1 ... O
Sp1 - Spm o o0 ... -1 =0 (2.7)
1
Sp+1,1 . Sp+1,m 0 0 0
: .
| Sh1 Sn,m 0 0 0] =7-
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Sace  —| v
[Spss O] Ho 23)

2.2 The pseudo inverse of a matrix

This equation can be summarised to
which matches equation 2.5.

The solution of a linear system:
Ax=b (2.9)

can be found by calculating the inverse of matrix A:
z=A"1b (2.10)

This can only be done if A is invertible, which means that the system of equations should be

neither overdetermined nor underdetermined. In MFA those conditions are rarely fulfilled.

In the case of an overdetermined system a ‘least square’ solution can be calculated by use of

the (left) pseudo inverse:
-1
x = (AT A) AT b (2.11)

The left pseudo inverse can thus be defined as (AT A)_1 AT and to be calculable, AT A must
be nonsingular. This means that the number of rows of A should be less or equal to the

number of columns. Furthermore, those rows should be linearly independent.

A more general method to calculate the pseudo inverse, applicable on every matrix, is based
on Singular Value Decomposition (Golub & Van Loan, 1996) (a good explanation of SVD,
the pseudo inverse and its application in MFA can be found in van der Heijden, 1991). Given

the matrix A with dimensions (m X n), there exist orthonormal matrices:
U(mxm) and V(nxn) (2.12)

so that
A=USVT (2.13)

where S is an (m x n) dimensional non square diagonal matrix. The elements on the diagonal
are the singular values of A. The number of singular values that are not zero is equal to the
rank of A. When A has full rank and m = n, the inverse of A is (the inverse of an orthonormal
matrix is equal to its transposed)

ATt=vstuT (2.14)

The inverse of a diagonal matrix is calculated by inverting the elements on the diagonal one

by one. If A is not fully ranked, or A is not square, a partial inverse can be calculated by
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inverting only singular values in S that are not zero. This way the pseudo inverse of every
matrix can be calculated:
A# =v s# uT (2.15)

This allows to calculate a solution not only when the system is fully- or overdetermined, but
also when parts of the system are underdetermined. The next section explains how one can
make a distinction, by use of the nullspace, between those underdetermined parts (whose

obtained solution is obviously not unique) and the determined ones.

2.3 Nullspace of a matrix

If the system as given in equation 2.9 is underdetermined, the solution given with the pseudo
inverse:
x=A"b (2.16)

is only one of the infinite solutions. To determine which elements of « have a single solution
and to determine a relationship between the infinity of solutions for the other elements of x,

the nullspace can be calculated.
The nullspace is defined as the set of linear independent vectors, x,,, that fulfil the equation:
Ax,=0 (2.17)

The number of independent nullspace vectors is equal to the number of columns in A minus
the rank of A. From the definition it is clear that each nullspace vector can be added an
arbitrary number of times to the base solution given in equation 2.16. Thus the complete
solution is:

x = A" b+ nullspace (A) f (2.18)

where f is a vector with as many elements as there are vectors (columns) in the nullspace of

A. For all possible values of f the solution remains valid.

Parallel pathways in the metabolic model typically yield nullspace vectors if there are no
fluxes measured from one of those pathways. Elements (rows) of « that have only zeros in the
nullspace of A are fully determined. Thus, a system of equations can have some unknowns

for which a unique solution can be found and some for which this is not possible.

2.4 Model check techniques

According to Edwards et al. (2002), biological discovery will not be limited by the availability
of data, but by the lack of available tools to analyse and interpret these data. One of these

tools is metabolic modelling. Information about reactions is put into a network model. Several
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mathematical tools can then be used to extract useful information from the model about the
micro-organism under study (Noorman et al., 1991; Schilling et al., 1999, 2000; Klamt et al.,
2002).

In this section three such techniques will be discussed. First, the simple but very useful
elemental consistency test will be explained. Secondly the detection of metabolic dead-ends
will be discussed, and finally the concept of null cycles will be explained. The first two
techniques are useful when collecting the set of relevant biochemical reactions and constructing
the metabolic model. They check whether the set of reactions makes sense. The last technique,
detection of parallel pathways by evaluating the presence of null cycles, allows to find parts
of the metabolic model that will be underdetermined if no intracellular fluxes are provided as
input data when solving the model. This knowledge can be used during the model building
phase, where it can be decided to not include some reactions (e.g. the salvage pathways for

nucleotides).

2.4.1 Elemental consistency check

Because the stoichiometric matrix S is the foundation of all techniques used in metabolic
modelling, it is important to make sure that this matrix is correct i.e. that each reaction obeys
the chemical law of conservation. Therefore a second matrix is constructed, the elemental

composition matrix E.

The atomic composition of each metabolite that occurs in the stoichiometric matrix is put in
a column of the elemental composition matrix. The order in which the metabolites occur in
the elemental composition matrix should be the same as in the stoichiometric matrix. So if a
metabolite occurs in row 7 of the stoichiometric matrix, it should also appear in column i of

the elemental composition matrix.

The different rows of the elemental composition matrix represent the different atoms that are
used to build up the metabolites. When electrical charge is also accounted for, an extra row

is added to the elemental composition matrix.

This gives an elemental composition matrix with dimensions (¢ x n), with ¢ the number of
atoms considered to be relevant for the used metabolites and n the number of metabolites

considered in the model, as seen in equation 2.2.
If the stoichiometric matrix is correct, the following equation should hold:
ES=0 (2.19)

This equation should give the zero matrix with dimension (g x m). If, for example, element

(,7) of that matrix is not zero, it can be concluded that the balance of atom 4 in reaction
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j is not correct. Before doing further work with the metabolic model, elemental consistency

errors should be corrected.

2.4.2 Dead-ends

Not every set of individual reactions forms an acceptable and meaningful metabolic reaction
system. Sometimes a set of reactions cannot function because one reaction is absent. For
example, if one forgets to include the first reaction of the glycolysis, the other reactions have
a steady state flux of zero. Those sets of reactions that surely have a flux equal to zero,
are called dead-ends. Dead-ends can also be caused by accumulation instead of depletion,
for example when a transport reaction for an intracellular metabolite to the environment is

omitted.

Furthermore, it is desirable to know whether the metabolites that are assumed to be ex-
changeable, are really exchangeable. If not, they will be detected with the same methodology

as the one with which dead-ends in reaction sets are detected.

To find dead-ends, the test proposed by van der Heijden & Heijnen (1995) can be used.
Initially the test was developed to detect dead-ends in reaction fluxes, but it can easily be
extended for the detection of metabolites that are initially set as exchangeable, but are not.

This test makes use of the extended stoichiometric matrix W.

The pseudo steady state assumption implies that the formation rate of each non-accumulating
metabolite (corresponding to the rows p + 1 to n in matrix W) must equal its consumption
rate. If a metabolite is produced by a certain reaction and not consumed (by some other
reactions), then that reaction will have a flux equal to zero. On the other hand, a reaction
that consumes a metabolite that is not produced in any other reaction, will also have a zero

flux.

For the exchangeable metabolites (rows 1 to p from matrix W) the same is true: there must be
a reaction that produces or consumes a net amount of the exchangeable metabolite. Otherwise
the exchange rate is zero. To detect the zero fluxes or exchange rates, equation 2.5 is solved
(Golub & Van Loan, 1996):

a = W# 0 + nullspace (W) F = nullspace (W) F (2.20)

W7 is the pseudo inverse of the matrix W and F' is a column vector with as many elements
as there are dimensions in the nullspace of W. Vector F' represents the freedom of the system
i.e. how much fluxes (v;’s) or exchange rates (r;’s) may be chosen before there is an unique
solution. If a reaction or exchange rate is part of a dead-end, the flux is zero, whatever the
elements of F' are. This means that the fluxes v; or exchange rates r; corresponding to rows of

the nullspace of W containing only zero’s, are dead-ends. Dead-ends do not contribute to the
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N,
/

Figure 2.1: Metabolic network with one nullcycle.

final solution and can be removed from the model. However it should be investigated whether
they are not caused by the omission of a reaction. In the latter case the model should be

corrected.

2.4.3 Nullcycles and parallel pathways

The number of parallel pathways in a metabolic network is a measure for its robustness. The
net production of two parallel routes should be strictly the same. Thus, futile cycles are not
parallel pathways as they have ATP consumption as a net effect. Under thermodynamic con-
siderations, each pair of parallel pathways should go in the same direction. To mathematically
detect them, they are considered to run in opposite direction such that the net production is
zero: the second parallel pathway of the pair consumes what the first pathway produces and

vice versa. This gives for equation 2.2:
Sv=0 (2.21)

It represents a homogeneous system of equations. To find the non-trivial solutions, the
nullspace of S has to be taken. By definition (Golub & Van Loan, 1996), each vector k

(column) of the nullspace of a matrix M obeys the equation: M k = 0.

The dimension (number of columns) of the nullspace of S is equal to the number of pairs
of parallel pathways. Each pair of parallel pathways defines a set of reactions that, if run
in the stoichiometric quantities dictated by the coefficients of the nullspace vector, produces

nothing. Therefore, those pairs of parallel pathways are called nullcycles.

In figure 2.1 an example of a metabolic network with one nullcycle is given: {2v1, —vg, —v3}.

Running v9 and vs in opposite direction cancels the effect of two times reaction v;.
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Figure 2.2: Network with two independent nullcycles but it seems as if there are three.

Several couples of parallel pathways can be extracted from a nullcycle, depending on where
the cycle is broken. In the nullcycle of figure 2.1 ({2v1, —va, —v3}), a first couple of parallel
pathways can be {—v2, 2v1 } and {vs} (breaking the nullcycle at metabolite B and C). Another
couple of parallel pathways can be constructed if the nullcycle is broken at metabolite A and

C: {2v1} and {v2, v3}.

It is desirable to choose parallel pathways that give insight into the metabolic model. One
property of the chosen parallel pathways should be that they are thermodynamically feasible.
But even then, there can be more than one possible couple of parallel pathways in a nullcycle
if some reactions are considered reversible. Therefore, the extra condition that all reactions
are irreversible, can be used to unequivocally extract the parallel pathways from a nullcycle.
Reactions with positive coefficients in the nullcycle make up the first parallel pathway and
reactions with negative coefficients form the second parallel pathway. In the example of figure

2.1, the first parallel pathway is {2v;} and the second is {va, vs}.

To know what the net reaction of the parallel pathways of a nullcycle is, the reactions of
one of the parallel pathways are multiplied with the absolute value of their coefficients of the
nullspace and the resulting net reaction is calculated. With the above example this can be

summarised in the following matrix:

[ ) vy Net reaction_
A -2 0 —2
B ! ! (2.22)
C 0 2 2
P -2 0 —2
Q 2 0 2

It can be seen that the net reaction is the same as the reaction of the first parallel pathway

{21)1}.

Finding nullcycles relies on finding a base for a nullspace. However, different bases can be
constructed for the same nullspace. This corresponds to the fact that different nullcycles can
be detected but not all are independent of each other. In figure 2.2 three nullcycles can be
seen: {VUzy1, Vay2}, {Vyz1, Uyz2} and {vey1, Vyz1, Vay2, Vyz2}. However, the last nullcycle is the

sum of the two first or the second is equal to the last minus the first. In fact, there really
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are only two nullcycles. All the others can be constructed from the two nullcycles that are

selected.

The question remains which nullcycle to choose. In the example of figure 2.2 it seems logical
to take the first two, {vgy1, Vay2} and {vy.1, vyz2}, as representation of the possible nullcycles.
But it may be that it is easier to recognise the process of nullcycle three ({vgy1, vyz1, Vay2,
Uy»2}) than that of nullcycle two. Furthermore, a nullcycle with few reactions can generate
a complicated net reaction of the corresponding pair of parallel pathways. Thus, even if all
possible nullcycles (all possible vectors of all possible bases) could be determined, finding

criteria to select the simplest nullcycles is not a trivial task.

Although the nullcycles cannot be determined unequivocally, the technique is useful to mea-
sure how much redundancy exists in the stoichiometric model. Redundancy is defined by
Edwards & Palsson (1998) as the capability of the cell to redistribute its metabolic fluxes
when faced with the loss of one or multiple enzymes; more nullcycles means more alternative
pathways when one pathway is blocked. The selected nullcycles can be used to determine
which internal reaction rates (the v;’s of equation 2.2) should be measured to solve equation
2.2, because net exchange rates (the p first r;’s of equation 2.2) do not give information about
the partition workload between the different parallel pathways. To solve equation 2.2, at least

one reaction rate of each nullcycle should be measured.

As can been seen from figure 2.2, if both a reaction and the reverse reaction are included in

the stoichiometric matrix, it will give an extra nullcycle.

2.5 Solving an overdetermined metabolic model

A metabolic network model is basically a system of linear equations. There are two methods
to solve such a system. The first one works directly with nullspace calculations (van der
Heijden & Heijnen, 1995). It is an elegant method but has a major drawback: it is not
possible to use internal flux measurements to reduce the number of degrees of freedom in the
system. Only exchange rates can be used. The second method (well described in Noorman

et al. (1996)) is more general and is the one that is used in this work.

2.5.1 Solution of the metabolic model

Equation 2.5 is split up in two parts: one for the rates that are measured and thus known

(subscript m), and one for the rates to be calculated (subscript c):

Wcae+Wn ap =0 (2.23)
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This equation can be solved to a:

a. = —W#¥ W, an, + nullspace (W) f (2.24)

2.5.2 Redundant measurements

The solution obtained in equation 2.24 can be substituted into equation 2.23:
Wi @ — We (wff‘ Woy @+ nullspace (We) £) =0 (2.25)
As a matrix multiplied with its nullspace is equal to zero, this equation can be rewritten as:
(Wm — W, W Wm> am = 0 (2.26)

When the system is overdetermined, i.e. when there are more measurements than degrees of
freedom (and assuming the measurements do not agree perfectly), the terms between brackets
in equation 2.26 form a non-zero matrix. All independent rows of that matrix can be combined

in the redundancy matrix R (van der Heijden et al., 1994a,b):
Ram=0 (2.27)

It should be noted that it is not because there is redundancy in the measurements that the
nullspace of the extended stoichiometric matrix will be void. It is perfectly possible (and
usual) to have parts of the system of equations that are overdetermined and parts that are

underdetermined.

Redundant measurements can be used to enhance the confidence in the measurements. This
is explained in Wang & Stephanopoulos (1983) for black box models, but the method also
applies to stoichiometric models (Romein, 2001). The real value of a measurement a,, is

equal to the measured value a,, minus some random noise §:
Qm = Gy — & (2.28)

Equation 2.27 gives the general formula. Applied in a statistical context, distinction should
be made between a real value of a variable (that can never be known), the measurement of
that variable (indicated with a tilde), and the estimate of that variable (indicated with a hat).
Combining equation 2.28 and 2.27 yields:

Ram=R (am+0)=Rd=c¢ (2.29)

€ being the vector of residuals. It was proven that to minimise the error d on the measure-

ments, the following objective function J has to be minimised (Madron et al., 1977):

J=6TP 15 (2.30)
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P, is the variance covariance matrix of the vector of residuals and equals:
P.=RPsRT (2.31)

The variance covariance matrix of § (Ps) is equal to the variance covariance matrix of the

measurements P5-.

The solution of the minimisation problem of equation 2.30 gives an estimate for §:
6=Ps;R"Ple (2.32)

which in turn gives an estimate for the measurements (I is the identity matrix):
~1
= <| ~P5 R™ (RP5 RT) R> am (2.33)

That these estimated values are better than the measured ones, is obvious from the variance

covariance matrix of the estimated values, since the second term of P4~ is always positive:
T !
Pr = (I — P~ R (RP;; R ) R> P (2.34)
Making an estimate of the measured fluxes thus reduces their uncertainty.

The estimated measurements should be used to calculate the unknown fluxes. Equation 2.24
becomes:
az = —W# Wy, @, + nullspace (W,) f (2.35)

and the variance covariance matrix of the unknown fluxes equals (van der Heijden, 1991):
Py = W# Wy, P W W (2.36)

Only the rows and columns of P4 corresponding to elements of a. that have no freedom left
in the nullspace of W, (i.e. for which the corresponding rows in the nullspace of W contain

only zeros), are relevant.

2.5.3 Statistical test of the quality of the measurements

In the previous section it was explained how to increase the reliability of the measured fluxes.
It is also possible to check whether the measurements are consistent. If so, the residual vector
e should be equal to zero. To investigate whether this is the case, the following test statistic
h is used (Reilly & Carpani, 1963):

h=elPle (2.37)

€

The Hy hypothesis of this statistic is that measurements are consistent and that h is equal

to zero.
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This test statistic is equivalent to the objective function J of equation 2.30 (Wang & Stephano-

poulos, 1983). Thus, if P(S_1 is a diagonal matrix, h can be rewritten as:

no§2
h=J=38TP;14= Z ; (2.38)
6

with n being the number of elements in the vector @,,, i.e. the number of measured fluxes.
As the error § on the measurement is assumed to be normally distributed, the terms of the
sum in the equation above are normally distributed with variance equal to one. Thus the test

statistic h follows, by definition, a x? distribution.

It was proven that the number of degrees of freedom of that y? distribution is equal to n
minus the rank of R (van der Heijden et al., 1994b).

2.5.4 Vector comparison test

If the quality of the measurements test rejects the Hy hypothesis (stating that the errors
are equal to zero), one can detect which measurement(s) is erroneous. A simple approach
would be to try to remove measurements one by one, and check if the statistical test passes
(the serial elimination method of Wang & Stephanopoulos (1983)). But statistically this is
not good practice, as there are some issues with independence of the tests (van der Heijden
et al., 1994b). A better approach is to use the vector comparison test (van der Heijden et al.,
1994b).

Equation 2.27 can be written more explicitly as:
Ry am, +Ra2am, + -+ Riam, + -+ Rnam, =€ (2.39)

with R; representing the different columns of R and a,,, the different measured fluxes. If one

of the measurements is really wrong by an amount 7, the expected value (E) of € is:

Ele] = E[Riam +Rramy,+... +R; (am, +7)+ -+ Ry am,]
= E[Riam +Ra2amy,+ -+ Riam, +--+Rpan,| + R T
= R;T

The same reasoning can be applied when more measured fluxes are wrong. Then the residual
vector € will be a linear combination of those erroneous measurements. For each combination
of subvectors R of the redundancy matrix R, a statistical test is run with Hy hypothesis that

the residual vector € is a linear combination of Rs. The statistic used for this test:

€ S €

-1
ha =€eT P Le— €T PLR, <RST p-1 RS) RIP-le (2.40)

follows a x? distribution with rank(R) — rank(Rs) degrees of freedom (van der Heijden et al.,

1994b). Running the test for each possible combination of vectors of R is time consuming.
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But it makes no sense to take combinations with more than rank(R) — 1 vectors, as the degree
of freedom of the corresponding statistic is then zero or less. This is also intuitive: a vector
of n elements is a linear combination of every independent set of n vectors of length n. As
such, the problem of too many combinations becomes worse the more fluxes are measured. A

luxury problem.

2.6 Implementation

Three main parts can be discerned in the generation of metabolic flux maps (figure 2.3).
First, the metabolic model has to be constructed. Then the data have to be collected and
preprocessed in a form suitable for metabolic modelling. And finally the data and the model

are combined.

2.6.1 Metabolic model generation and checks

Collecting the different reactions of the metabolic model together with the elemental com-
position matrix, is done in a spreadsheet program (OpenOffice.org). Each reaction and each
metabolite is named. This name is carried on in all subsequent calculations allowing easy

debugging and interpretation of the obtained results.

The list of reactions, exported as a text file, is converted by a Perl (www.perl.org) program
(mmm.pl in figure 2.3) to a stoichiometric matrix S. Besides that, other vectors are defined
containing the names of the exchangeable and measured metabolites. Also, the elemental

matrix is generated.

Those matrices and vectors are read by a Maple program (Heck, 1993) by which an elemental
composition check and dead-end test are performed. If both tests pass, another Maple routine
searches for parallel pathways (modelanalysis in figure 2.3). Based on those tests, the model
is adapted until errors are no longer encountered. The result is a mathematically correct

metabolic model.

2.6.2 Preprocessing the measurement data

When performing a cultivation, different measurement data are collected and have to be
combined in a format suitable for automatic post processing. The data obtained online via
the MFCS/win computer system (Sartorius BBI, Germany) are semi manually exported and
the relevant parts are selected and saved to the raw data file. The program written for
this in SciLab (www.scilab.org, fda.sci in figure 2.3) allows to easily visualise selected data
and extract time intervals for further processing. Furthermore a basic filter is available to

remove outliers (e.g. due to malfunctioning equipment). The lab analysis data obtained after
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modelanalysis

[Preprocessed data] Metabolic modeﬂ

[Human readable Inodelj

Measurements to remove

Metabolic fluxes and test results]

[Graph for each flux ]

ETEX+ xfig templates

Figure 2.3: Combining measurement data with metabolic models through the different programs,

finally gives flux maps.

the culture is finished (cell dry weight, HPLC, nitrogen and phosphorus analysis) must be
manually added to the raw data file.

Converting the different measurement data to units suitable for input in the metabolic model
(in this work mol/l/h was chosen) and generating the variance covariance matrix from the
different repeats of the measurements, is done in R (makecovar.R in figure 2.3; Thaka & Gen-
tleman, 1996; R Development Core Team, 2006). The covariance matrix is calculated from

the raw data and refined on theoretical bases. First, the residuals are calculated by subtract-
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ing the raw measurement from the mean value. This is done for each measurement in each
experiment. The residuals from all experiments are collected and on those residuals, the co-
variance matrix is calculated, using the Pearson method with pairwise complete observations,
as explained in the help pages of R. Then, all covariances of measurements that are assumed
to have no correlations, are set to zero. Actually, all measurements but the HPLC ones, were
assumed to be independent of each other. This covariance matrix is subsequently used when
transforming the raw measurement data expressed in grams/liter (products in the reactor
broth) or fractions (gas exhaust) to moles/liter /hour. The covariance matrix is transformed

accordingly using first order linearisation the details of which can be found in appendix A.

2.6.3 Combining the metabolic model with the data

Solving the metabolic model, balancing the measurements and performing the statistical tests
is done in SciLab (network.sci in figure 2.3). The fluxes for the different experiments, together
with their variances, are saved to a single file, to facilitate the generation of combined graphs

for the different experiments.

For each metabolite and each flux, a graph is automatically generated (makegraphs.R in figure
2.3). The different graphs are combined to a flux map of which the template was created in
Xfig (www.xfig.org). Xfig allows to embed I¥TEXcommands in the figures. In this case, the
commands for inclusion of the different graphs were given in those fluxmap skeletons and

when running the figure through IATEX (www.ctan.org), the actual graphs are shown.

The whole process was completely automated with make scripts (www.gnu.org/software/
make/).

The software was applied in the metabolic modelling studies presented in chapter 3, to eluci-
date the difference in shikimate yield between carbon- and phosphate-limited cultures and in
chapter 4, to compare the metabolic implications of different strategies for reducing acetate
formation. The methodology for metabolic modelling was extended to be applicable under
transient conditions also (chapter 5 and 6). For this, a program was written that extracts
fluxes from the data obtained from a transient experiment. The details of this can be found

in chapter 5.
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MFA compared with RNA
expression data to elucidate the
difference in shikimate yield
between carbon- and

phosphate-limited continuous
cultures of E. coli W3110.shik1!

Shikimic acid is an interesting starting material for production of many chemical compounds,
with as major example Tamiflu®, used for treatment of influenza (De Clercq, 2002). As
the extraction of shikimate from the plant [llicium is expensive, production strategies via
fermentation are developed. One of the strains that has been genetically modified to produce
more shikimate is £. coli W3110.shik1 (Johansson et al., 2005). Shikimate production however

is very low under carbon-limiting conditions.

In this chapter, the metabolic flux analysis for overdetermined systems, as explained in chap-
ter 2, is applied to a set of experiments aiming at finding differences in flux distribution be-
tween carbon-limited and carbon-abundant (phosphate-limited) cultures of the E. coli strain
W3110.shik1 (Johansson et al., 2005). This strain was genetically modified to produce more
shikimate (an intermediate of the aromatic amino acid pathway). Under carbon-limited con-

ditions, more byproducts, such as dehydroshikimate and dehydroquinate, and less shikimate

IPart of this chapter was published in G. Lequeux, L. Johansson, J. Maertens, P. A. Vanrolleghem &
G. Lidén (2006). MFA for overdetermined systems reviewed and compared with RNA expression data to
elucidate the difference in shikimate yield between carbon- and phosphate-limited continuous cultures of F.
coli W3110.shikl. Biotechnology Progress, 22:1056-1070
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can be found (Johansson et al., 2005; Knop et al., 2001) than under carbon-abundance. It is
shown that this lower shikimate yield under carbon-limited conditions is not due to a lower

flux going to the aromatic pathway, on the contrary, the flux is higher.

The second part compares fluxes obtained from flux balancing with RNA expression level
measurements. Although it is sometimes tried to solve the problem of parallel pathways with
the aid of RNA expression levels (Huang et al., 2003), it is not done here because it is expected
to be impossible (Akesson et al., 2004). A high expression level not necessarily correlates with
a high flux. There is still translational and metabolic regulation that has influence on the
metabolism. However it is interesting to see how for some fluxes the variations over different
culture conditions correlates with the RNA expression levels of the corresponding genes.
Some fluxes are negatively correlated with expression levels. But most of the fluxes are not
correlated with gene expression levels, suggesting that transcriptional regulation only happens

at metabolic nodes.

3.1 Materials and methods

3.1.1 Experimental setup
Strains and cultivations

W3110 was obtained from the American Type Culture Collection (ATCC 27325) and was
used as host for the shikimic acid producing strain (referred to as W3110.shikl in the text).
This strain had the following genetic modifications (Johansson et al., 2005):AaroL, tryp-
tophan and phenylalanine feedback resistant aroG, tryptophan feedback resistant ¢rpE and
tnaA. Furthermore, W3110.shikl was cloned with plasmid pSGs26 (derived from pBR322)
containing tyrosine and phenylalanine feedback resistant aroF and two antibiotic resistance

markers amp® (ampicillin) and tetc® (tetracycline).

In the first set of experiments W3110.shikl six phosphate-limited and four carbon-limited
continuous cultures with W3110.shikl were run at dilution rates ranging from 0.05h~! to
0.3h~L.

A second set of experiments consisted of phosphate and carbon-limited chemostats of the wild-
type W3110 and the shikimate producing strain W3110.shikl at a dilution rate of 0.2h~".
Each combination was performed in duplicate. Besides input and output fluxes, RNA expres-

sion levels were also determined.

Inoculum preparation

The medium used for inoculum preparation, 100ml, was the same for carbon-limited and

phosphate-limited experiments. For W3110 (wild-type), the medium contained per liter: 20 g
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glucose (VWR International, Stockholm, Sweden), 7.5g K,HPO,, 0.3 g NH,Fe(III)-citrate,
2.1 g citric acid monohydrate, 0.1 ml MgSO, - 7H,O (1 M), 0.0037g (NH,)s(Mo-,0O,,) -4 H,0,
0.0029 g ZnSO,, - 7H,0, 0.0247g H;BO,, 0.0025g CuSO, - 5 H,0, 0.0158 g MnCl, - 4 H,O and
0.055 mg thiamine (Sigma-Aldrich, Steinheim, Germany), 1.2ml H,SO, (96 %) (VWR Inter-
national). For W3110.shikl, the medium additionally contained: 0.010g p-hydroxybenzoic
acid, 0.010 gram potassium p-amino benzoate, 0.010 g 2,3- dihydroxybenzoic acid (vitamins),
and 0.015 g tetracycline hydrochloride (antibiotic) (Sigma-Aldrich). Inoculum cultures were
grown in baffled E-flasks of 250 ml at 37 °C at a shaker speed of 200 rpm up to an OD-value of
1.5-2.5, to allow exponential growth. The reactor was inoculated with 40 ml of the inoculum
W3110.shik1 or 20 ml of the W3110 culture.

Culture media

The glucose and mineral solutions were sterilised separately at 121 °C for 20 min and mixed
afterwards. Antibiotic solution, vitamins, trace metals and MgSO  -solution were added by
sterile filtration through a 0.2 mm Minisart cellulose acetate filter (Sartorius AG, Goettingen,
Germany). All solutions were prepared using deionised water. 1.51 of medium was prepared
for the batch cultivation. The working volume of the chemostat was around 1.31, and pH
was adjusted to 7.0 by addition of NH;OH (25 %) before and after sterilisation. Level control

kept the volume of the cultivation broth constant.

Carbon-limited cultivations

The composition of the C-limitation medium for the batch phase and the chemostat phase
of the W3110 was the same as for the preculture medium, except for some minor changes.
The medium contained 0.13g/1 antifoam 286 (Sigma- Aldrich). In addition, the glucose
concentration was 10 and 25 g/l in batch and chemostat phase, respectively. The composition
of the medium for growth of W3110.shikl was the same as that for W3110, except that it
also contained 0.015 g/1 tetracycline hydrochloride.

Phosphate-limited cultivations

The composition of the P-limited medium in batch phase was per liter: 20gram glucose,
92ml H;PO, (85%), 5.39g NH,SO,, 3.32g NaOH, 1.66 gram KOH, 0.52g MgSO, - 7H,0,
0.133 g antifoam 286, 3.73ml H,SO, (96 %); trace metals (1): 0.093g FeSO,-7H,0, 0.079¢g
citric acid monohydrate; trace metals (2): 0.0073 g CoCl, -6 H,0O, 0.00207 g MnCl, -4 H,0,
0.00103 g ZnCl (Sigma-Aldrich). The medium of W3110.shik1 also contained 0.015g/1 tetra-
cycline hydrochloride. In chemostat operation, the phosphate solution and the solution of
the remaining medium components were fed separately to the reactor. The phosphate feed
contained 0.9 ml/1 H;PO, (85 %), whereas the second feed solution contained all other compo-

nents. Since the phosphate solution contributed extra volume and thereby diluted the second
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feed solution the latter was up concentrated 1.3 times, e.g. the glucose concentration was

32 g/l giving a concentration of 25g/1 in the reactor.

Culture methods

All cultures were carried out using a Biostat CT culture vessel (Sartorius BBI Systems GmbH,
Melsungen, Germany) with a maximum working volume of 3.51. Temperature (37°C), pH
(7.0), stirring rate (750rpm) and airflow rate (0.75slpm) were controlled by the program
MFCS/win shell 2.0 (Sartorius BBI) via the control unit DCU Biostat C (Sartorius BBI).
pO, was measured with an InPro 6000 (Mettler Toledo Gmbh, Giessen, Germany). The
pH was measured with a pH-meter of type 405-DPAS-SC-K8S/120 (Mettler Toledo). For
maintaining the pH at 7.0, H,SO, (2M) and NH,OH (25 %) were used in the C-limited case
and H,SO, (1M) and NH,OH (12.5 %) in the P-limited case. O, and CO, content in the off
gas were measured by an Innova 1311 (INNOVA Air Tech Instruments, Ballerup, Denmark).
Two balances and pumps were also coupled to the equipment allowing precise measurement
of the feed rate during chemostat operation. Data from all equipment except for one of the

pumps were routinely logged by the data acquisition software.

In the C-limited case, chemostat operation was started when glucose was depleted (indicated
by a rapid reduction of the CO, in the off gas). In the P-limited case, the chemostat was
started when the phosphate was consumed (which coincided with a small peak in the pO,).
Establishment of steady state was confirmed from measurement of the off-gas composition.
At least five residence times were allowed to pass before each steady state. Sampling for
OD and for metabolite analyses were carried out at fermentation start, end of batch, and at
steady state during chemostat operation. Samples for dry weight were taken at the end of

the batch cultivation and at steady state during chemostat cultivation.

3.1.2 Analytical methods

The analytical methods for determining the amount of metabolites and cell dry weights are
described in Johansson et al. (2005). 3.5 % of the dry weight was considered as ash (Battley,
1995).

For the elemental composition of biomass, 50 ml of fermentation broth was taken and cen-
trifuged for 20 minutes at 2000g and 4°C. The pellet was washed once with 40 ml ice cold
0.9% NaCl and again centrifuged and decanted. The pellets were then frozen in liquid ni-
trogen, vacuum dried and analysed with a CHNS-O analyser (Model EA1108, Carlo Erba
Instruments, Italy) (van Gulik et al., 2000).

Sampling for transcriptome analysis was performed at steady state. To minimise mRNA

degradation, 50 ml falcon tubes containing about 25 ml of ice were filled with reactor broth
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as fast as possible. The tubes were centrifuged for 1 min at 2000 g and the pellet was frozen
in liquid nitrogen. This method was done according to the recommendations from Brigitte
Regenberg from DTU (Denmark Technical University). Those recommendations were fol-
lowed for the C-limited experiments, as they were performed first. But later, when it was
decided to do P-limited experiments, it was realised that DTU had only worked with yeast,
of which the RNA is more stable that that from F. coli. Therefore, in the phosphate limited
experiments, the mRNA sampling method was improved by adding 1.25 ml ‘stop-solution’,
containing about 95 % ethanol and 5% phenol, to the tubes prior to sampling. Even then
a stress response can not be excluded. It was observed that some heat-chock genes were

activated. They should however be activated in all cases.

Total RNA was extracted by using the Fastprep® system including the FastRNA®Pro Blue
kit (Qbiogene, Montréal, Canada). Present DNA was degraded by addition of DNAse (VWR
International) to a concentration of 0.2 Uu~'1"!. The samples were then held at 37°C for
20 min. The reaction was interrupted by addition of 0.5M EDTA (Sigma-Aldrich) to a final
concentration of 10 mM. The RNA samples were further cleaned by using a RNeasy microe-
lute Cleanup kit (Qiagen, Venlo, The Netherlands). The quality of RNA was checked by
running the samples on a 1% TBE gel. The RNA samples were then sent to SWEGENE
Microarray Resource Centre (Lund, Sweden) where the quality of RNA was further checked
by using Nanodrop ND1000 (Nanodrop Technologies. Wilmington. USA), which gives very
accurate concentration and 260/280 ratio figures. In addition quality testing of the RNA was
carried out using the Agilent Bioanalyser 2100 (Agilent Technologies, Palo Alto, USA). cDNA
synthesis, cDNA fragmentation and preparation of the hybridisation mixture was carried out
according to the recommendations of the manufacturer of the microarrays (Affymetrix, Santa
Clara, USA). Hybridisation, washing, staining and scanning of the microarrays (Affymetrix F.
coli antisense genome arrays AS v2) were performed by using GeneChip Hybridisation Oven
640, GeneChip Fluidic Station 450 and GeneChip Scanner 2500 (all from Affymetrix). Data
acquisition and gene expression data analysis was carried out using MAS 5.0 (Affymetrix).
A chip to chip normalisation was performed in this program by scaling to a median inten-
sity of 100. For statistic analysis the Bayesian test was carried out using a web-interface
version of Cyber-T found at http://cybert.microarray.ics.uci.edu/ (original url was:

http://visitor.ics.uci.edu/genex/cybert/ Long et al. (2001)).

The original data together with the analysis and discussion, can be found in Johansson &
Lidén (2006). For this study, only selected genes were used. For those genes, the expression
levels together with the associated variances were taken. Thus all genes shown here, are not

necessarily significantly different from each other.
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3.2 The metabolic model

3.2.1 Biomass composition

To investigate whether biomass composition varied for different dilution rates, the elemental
composition of the biomass was determined (the elements C, H, O, N and S were measured;
three repeats were performed). A significant difference was only found for oxygen and to a
lesser extent nitrogen (figure 3.1). The oxygen content increases with increasing growth rate,
which is the reason why the total molecular mass (expressed in C-moles) is rising slightly

with increasing growth rate (figure 3.2).

Measurements of the protein, DNA and RNA content were performed to see whether the
change in oxygen content was reflected in the biomass composition. However, no significant
differences were found. The data were highly variable with protein content varying from 50 %
to 80 % of the biomass and there was no correlation with the growth rate. Furthermore,
the influence of the biomass composition on the calculated fluxes was very low. Thus a
different biomass composition for each dilution rate would not be more correct than using
the same biomass composition for each dilution rate even when neglecting the varying oxygen
content of the actual biomass (figure 3.1). Therefore, a constant biomass composition was
used for every dilution rate (and for every strain): 70 % protein, 12% RNA, 3% DNA and
15% Other (expressed in g/gDW). Those values were mainly based on literature (Carlson &
Srienc, 2004b). When some freedom was left in the literature data (confidence values), it was
tried to strike a balance with the data shown in figure 3.1 and in a lesser extend, as there was

more noise on those, the protein, DNA and RNA measurements.

The latter fraction (the 15% Other of above) is subdivided into four other components:
lipopolysaccharide (LPS), lipids, peptidoglycan and glycogen. According to Pramanik &
Keasling (1997), the relative occurrence on weight basis of those four compounds for the
average biomass composition of E. coli at a growth rate of 1h~!, is 0.194 LPS, 0.520 lipids,
0.143 peptidoglycane and 0.143 glycogen.

The composition of the lipid fraction can be found for different E. coli strains at different
growth rates in Pramanik & Keasling (1997). The variation seems rather small, so constant
composition was taken: 75% phosphatidylethanolamine, 20 % phosphatidylglycerol and 5 %

cardiolipin.

For DNA each nucleotide was assumed to be equally represented in molar units (Pramanik
& Keasling, 1997). For RNA the distribution was 26.2 % ATP, 32.2% GTP, 20.0% CTP and
21.6 % UTP in molar units (Pramanik & Keasling, 1997).

The biomass used in the metabolic model had a molecular mass of 26.22 and the following el-

emental composition: CHi.9100.506N0.252P0.01550.007. The molecular mass is somewhat higher
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Figure 3.1:

MFA and RNA expression data on C- and P-limited cultures
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The elemental composition of biomass (expressed in C-moles) at different dilution rates.

H (upper left), O (upper right), N (lower left) and S (lower right). The triangles represent

the values for C-limited cultures and the squares those for the P-limited ones. Error bars

are for the standard deviation.

as what would be expected from figure 3.2, because the biomass composition was mainly based

on data from Carlson & Srienc (2004b), as it is difficult to extract the biomass composition

from the elemental composition data (figure 3.1).

3.2.2 The different reactions

The metabolic model included the glycolysis, with glucose transported by the PTS system

(Chen et al., 1997), the pentose phosphate pathway, the Krebs cycle, ethanol, acetate and

formate formation.
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Figure 3.2: The molar mass of the biomass (in C-moles) as function of the dilution rate. Notation

as in figure 3.1.

It is generally assumed that the glyoxylate pathway is not active in the F. coli K12 family
(from which the strain used in this study is a member) if glucose is provided as a carbon source
(Noronha et al., 2000; Phue & Shiloach, 2004; Cozzone, 1998). Instead PEP carboxylase was
used as regenerating reaction for the Krebs cycle metabolites (Sauer et al., 1999; Wick et al.,
2001). The difference between both pathways is that PEP carboxylase uses one more ATP
(Wick et al., 2001).

For each amino acid and nucleotide the anabolic reactions were included. In order to avoid
parallel pathways (and thus parts of the model that can not be solved), no ‘salvage’ pathways
were used. Biosynthesis of LPS, lipid A, peptidoglycane and the lipid bilayer were also added.

As explained above, a simple biomass composition was used for every growth rate.

Shikimic acid is an intermediate metabolite in the aromatic acid pathway. Not only shikimic
acid is excreted but also dehydroquinic acid (precursor of shikimic acid), quinic acid, dehy-
droshikimate, protocatechuate and gallic acid (Draths & Frost, 1991). Those last two were

not detected in the fermentation broth and thus were not included in the model.

Sources for the reactions were mainly the ecocyc database (http://www.ecocyc.org/)(Keseler
et al., 2005), the database provided by the university of California (http://systemsbiology.

ucsd.edu/organisms/ecoli.html)(Reed et al., 2003) and the KEGG database (http://

www.genome . ad. jp/kegg/)(Kanehisa & Goto, 2000). The P/O ratio was set to 1.33 (Varma
& Palsson, 1993).

Thus the constructed model contained 137 reactions (figure 3.3) and 151 metabolites of which
16 were exchangeable: Dhq, H,SO,, Ac, Cit, Shi, H,O, O,, PiOH, GLC, CO,,, Eth, Qa, Biom,
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Dhs, NH; and FA. All parallel pathways were removed. There were no dead ending reactions

and the elemental consistency test was passed (as described in section 2.4).

There are 143 independent equations in the model and 137 + 16 unknowns. Thus, at least 10
measurements must be performed. Twelve exchange fluxes were measured: O,, GLC, CO,,
Cit, FA, Shi, Dhs, Dhq, Qa, Ac, Eth and Biom. The consistency of the measurements could
thus be assessed and if the consistency test failed, the vector comparison test could be used

to search for the dissonant measurement.

3.3 Results and discussion

3.3.1 Flux analysis
The data

Ten chemostat experiments with the W3110.shikl strain, were performed in which 12 ex-
change rates were measured. As explained above two measurements were redundant. The
statistical test to evaluate whether the measurements agree could be run, and even when the
measurements did not agree the vector comparison test could point to the wrong measure-
ment. However, this is two extra measurements is rather low for the vector comparison test

and the results should be interpreted cautiously.

Although no significant difference between the carbon in and outflux could be detected (figure
3.4), in two out of 10 experiments, the measurements were not consistent. Running the vector
comparison test revealed in one case that the consumed amount of oxygen was too high.

Therefore, this measurement was removed.

In a second experiment, the ethanol measurement was detected as most probable cause for
inconsistency. But removing this measurement gave a high ethanol flux prediction, which was
never detected in reality for any of the dilution rates. However, in this dataset the oxygen
measurement was identified as another possible cause for the non-fit of the model. Removing
the oxygen measurement and keeping the ethanol measurement, yielded a consistent dataset

and realistic model predictions.

The different fluxes

Figure 3.5 shows the relative fluxes (in all the figures 3.5, 3.8 and 3.9 each molar flux is
divided by the biomass flux) for the glycolysis and the pentose phosphate pathway. Figure
3.10 gives the most important fluxes in C-moles/C-moles of biomass. It can be seen that for
the carbon-limited cultures, each mole of glucose gives two moles of biomass (the graph for
the PTS reaction shows that the relative flux of glucose going into the cell is 0.5, thus to

produce one mole of biomass, 0.5 mol of glucose is consumed), or put in another way, three
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ProSYLR:
SerLR:

SerTHM:
H2SSYLR:

PAPNAS:
CysSYLR:
PrppSY:

HisSYLR:

PheSYLR:
TyrSYLR:
TrpSYLR:

DhDoPHepAD:
DhgSY:
DhsSYLR:
ShiSY:

ShiKN:
DhgDH:
ChorSYLR:
ThrSYLR:
MDAPSYLR:

LysSY:
MetSYLR:

AspSASY:

HSerDH:
CarPSY:

OrnSYLR:
ArgSYLR:

ThioredRD:
H2020z:

Figure 3.3: List of reactions used in the model.

G6P «—— TF6P

ATP + F6P — ADP + FBP

FBP «— G3P + DHAP

DHAP «— G3P

PiOH + NAD + G3P «— NADH + H + BPG

ADP + BPG «— ATP + 3PG

3PG  «—— 2PG

2PG «— H20 + PEP

ADP + PEP — ATP + Pyr

NAD + Pyr + CoA — NADH + H + AcCoA + CO2
H20 + AcCoA + OAA  — CoA + Cit

Cit «— iCit

NAD +iCit «— NADH + H + CO2 + aKGA

NAD + CoA + aKGA — NADH + H + CO2 + SucCoA
ADP + PiOH 4+ SucCoA «— ATP + CoA + Suc

FAD + Suc  — FADH2 + Fum
H20 + Fum «— Mal
NAD + Mal «— NADH + H + OAA

H20 + PEP + CO2 — PiOH + OAA

Pyr + CoA — AcCoA + FA

2NADH + 2H + AcCoA «— 2NAD + CoA + Eth

ADP + PiOH + AcCoA «— ATP + CoA + Ac

1.33ADP + 1.33PiOH + NADH + H 4+ 0.502 — 1.33ATP +
NAD + 2.33H20

H20 + CO2 H2C03

NADP + G6P — NADPH + H + 6PGL

H20 + 6PGL — 6PG

NADP + 6PG — NADPH + H + CO2 + RI5P

RI5P  «— RSP

RI5P  —— Xu5P

R5P + XubP  «—— G3P + S7P

G3P + S7TP  «+— F6P + E4P

XubP + E4P  «— F6P + G3P

GLC + PEP  — GG6P + Pyr

PPiOH + H20 — 2PiOH

NADPH + H + aKGA + NH3 «— NADP + H20 + Glu
ATP + NH3 + Glu — ADP + PiOH + Gln

ATP + H20 + Asp + Gln — AMP + PPiOH + Asn + Glu
OAA + Glu  «— aKGA + Asp
Pyr + Glu «— aKGA + Ala
aKIV + Glu  +— aKGA + Val
NAD + H20 + AcCoA + aKIV + Glu
+ CO2 + aKGA + Leu

NADPH + H + 2Pyr — NADP + H20 + CO2 + aKIV
NADPH + H + Pyr + Glu + Thr  — NADP + H20 + CO2
+ aKGA + NH3 + Ile

ATP + 2NADPH + 2H + Glu
+ H20 + Pro

NAD + H20 + 3PG + Glu
+ Ser

Ser + THF — H20 + Gly + MeTHF

2ATP + 3NADPH + ThioredH2 + 3H + H2S04 — ADP +
PPiOH + 3NADP + Thiored + 3H20 + H2S + PAP

H20 + PAP — AMP + PiOH

H2S + AcCoA + Ser  — CoA + Cys + Ac

ATP + R5P  — AMP + PRPP

ATP + 2NAD + 3H20 + Gln + PRPP — 2PPiOH + PiOH
+ 2NADH + 2H + aKGA + His + AICAR

Glu 4+ Chor — H20 + CO2 + aKGA + Phe

NAD + Glu + Chor — NADH + H + CO2 + aKGA + Tyr
Gln + Ser + Chor + PRPP  — PPiOH + 2H20 + G3P + Pyr
+ CO2 + Glu + Trp

H20 + PEP + E4P — PiOH + Dahp

Dahp — PiOH + Dhq

Dhq «— H20 + Dhs

NADPH + H + Dhs «— NADP + Shi

ATP + Shi — ADP + Shi3P

NADPH + H + Dhq — NADP + Qa

PEP + Shi3P — 2PiOH + Chor

ATP + H20 + HSer — ADP + PiOH + Thr

NADPH + H + Pyr + SucCoA + Glu + AspSA  — NADP +
CoA + aKGA + Suc + MDAP

MDAP — CO2 + Lys

H20 + SucCoA + Cys + MTHF + HSer
+ NH3 + Met + THF

ATP + NADPH + H + Asp
AspSA

NADPH + H + AspSA  «— NADP + HSer

2ATP + H20 + H2CO3 + GIn  — 2ADP + PiOH + Glu +
CarP

ATP + NADPH + H + H20 + AcCoA + 2Glu — ADP +
PiOH + NADP + CoA + aKGA + Orn + Ac

ATP + Asp + Orn + CarP  — AMP + PPiOH + PiOH + Fum
+ Arg

NADPH + Thiored + H «— NADP + ThioredH2

2H202 — 2H20 + 02

—

— NADH + H 4 CoA

— ADP + PiOH + 2NADP

— PiOH + NADH + H + aKGA

—  Pyr + CoA + Suc

— ADP + PiOH + NADP +

appendix B.1.

FAD2NAD:
AICARSYLR:

IMPSYLR:
AMPSYLR:
AdKN:
ADPRD:
dADPKN:
IMPDH::
GMPSY:
GuKN:
GDPKN:
GDPRD:
dGDPKN:
UMPSYLR:

UrKN':
UDPKN:
CTPSY:
CDPKN:
CMPKN:
CDPRD:
dCDPKN:
UDPRD:
dUDPKN:
dUTPPPAS:
dTMPSY:
dTMPKN:
dTDPKN:
DHFRD:
FTHFSYLR:
GlyCA:
MeTHFRD:
AcCoACB:
MalCoATA:
AcACPSY:
C1208Y:

C140SY:
C160SY:
C181SY:

AcylTF:
Go3PDH:
DGoKN:
CDPDGoSY :
PSerSY:
PSerDC':
GInF6PTA:
GleAnMU:
NAGUrTF:
LipaSYLR:

A5PIR:
PGLCMT:

CMPKDOSYLR2H20 + PEP + Ar5P + CTP

ADPHEPSY:
UDPGIcSY:
EthANPT:
LpsSYLR:

PGSYLR:
CLSY:
PeptidoSYLR:

GlegSY:
ATPHY:
DNASYLR:
RNASYLR:

ProtnSYLR:

LipidSYLR:
BiomSYLR:

3.3. Results and discussion

NAD + FADH2 +— NADH + FAD + H

6ATP + 3H20 + CO2 + Asp + 2Gln + Gly + FA + PRPP
— 6ADP + PPiOH + 6 PiOH + Fum + 2Glu + AICAR

FTHF + AICAR — H20 + THF + IMP

Asp + GTP + IMP — AMP + PiOH + Fum + GDP

ATP + AMP +«— 2ADP

ADP + ThioredH2 — Thiored + H20 + dADP

ATP + dADP — ADP + dATP

NAD + H20 + IMP — NADH + H + XMP

ATP + H20 + Gln + XMP — AMP + PPiOH + Glu + GMP
ATP + GMP — ADP + GDP

ATP + GDP — ADP + GTP

ThioredH2 + GDP — Thiored + H20 + dGDP

ATP + dGDP — ADP + dGTP

02 + Asp + PRPP + CarP  — PPiOH + PiOH + H20 + CO2
+ UMP + H202

ATP + UMP — ADP + UDP

ATP + UDP — ADP + UTP

ATP + H20 + GIn + UTP  — ADP + PiOH + Glu + CTP
ATP + CDP «— ADP + CTP

ATP + CMP — ADP + CDP

ThioredH2 + CDP  — Thiored + H20 + dCDP

ATP + dCDP — ADP + dCTP

ThioredH2 + UDP  — Thiored + H20 + dUDP

ATP +dUDP — ADP + dUTP

H20 + dUTP — PPiOH 4 dUMP

MeTHF + dUMP — DHF + dTMP

ATP +dTMP — ADP + dTDP

ATP + dTDP — ADP + dTTP

NADPH + H + DHF — NADP + THF

NADP + H20 + MeTHF — NADPH + H + FTHF

NAD + Gly + THF «— NADH + H + CO2 + NH3 4+ MeTHF
NADH + H + MeTHF — NAD + MTHF

ATP + H20 + AcCoA + CO2 ADP + PiOH + MalCoA
MalCoA + ACP «— CoA + MalACP
MalACP  — CO2 + AcACP

10NADPH + 10H + AcACP + 5MalACP
5H20 + 5CO2 + C120ACP + 5ACP
12NADPH + 12H + AcACP + 6MalACP
6H20 + 6 CO2 + C140ACP + 6 ACP
14NADPH + 14H + AcACP + 7MalACP
7H20 + 7CO2 + C160ACP + 7TACP
15NADPH + 15H + AcACP + 8MalACP
8H20 + 8CO2 + C181ACP + 8 ACP
C160ACP + CI181ACP + Go3P — 2ACP + PA

NADPH + H + DHAP «— NADP + Go3P

ATP + DGo — ADP + PA

CTP + PA  «— PPiOH + CDPDGo

Ser + CDPDGo — CMP + PSer

PSer — (CO2 + PEthAn

F6P + Gln  — Glu + GA6P

GAG6P —— GAIP

AcCoA + UTP + GAIP — PPiOH + CoA + UDPNAG
ATP + 2CMPKDO + 2 UDPNAG + C120ACP + 5 C140ACP —
ADP + 2CMP + UMP + UDP + 6 ACP + Lipa + 2 Ac

RI5SP  «— Ar5P

G6P  —— GI1P

—

—

10NADP +

—

12NADP +

—

14NADP +

—

15NADP +

— PPiOH + 2PiOH +
CMPKDO

ATP + STP — PPiOH + ADPHEP

G1P + UTP — PPiOH + UDPGIc

CMP + PEthAn «— CDPEthAn + DGo

3ADPHEP + 3CMPKDO + 2UDPGlc + Lipa +
2CDPEthAn — 3ADP + 3CMP + 2CDP + 2UDP +
Lps

Go3P + CDPDGo — PiOH + CMP + PG

PG 4+ CDPDGo — CMP + CL

5ATP + NADPH + H + PEP + 3Ala + MDAP +
2UDPNAG — 5ADP + 7PiOH + NADP + UMP + UDP +
Peptido

ATP + GIP  — ADP + PPiOH + Glcg

ATP + H20 — ADP + PiOH

2H20 + 0.246dATP + 0.254dGTP + 0.254dCTP +
0.246dTTP — 2PiOH + DNA

0.262ATP + 2H20 + 0.322GTP + 0.2CTP + 0.216UTP —
2PiOH + RNA

2ATP + 4H20 + 0.0961Ala + 0.05506 Arg + 0.04505 Asn
+ 0.04505Asp + 0.01702Cys + 0.04905GIn + 0.04905Glu +
0.1151 Gly + 0.01802 His 4 0.05405Ile 4- 0.08408 Leu + 0.06406 Lys
+ 0.02903Met 4 0.03504 Phe + 0.04104Pro + 0.04004 Ser
+ 0.04705Thr + 0.01101Trp + 0.02603 Tyr + 0.07908 Val +
2GTP — 2ADP + 4PiOH + 2GDP + Protn

0.0266 CL + 0.202PG + 0.7714 PEthAn —  Lipid

0.003472 Gleg + 0.0002027 Lps + 0.0006801 Peptido
+ 0.002408DNA  + 0.009191RNA + 0.1454Protn  +
0.002774 Lipid — Biomn

A description of the metabolites can be found in
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Figure 3.4: Moles of carbon going in the reactor versus moles of carbon leaving the reactor. Open
symbols are for influxes, closed symbols for the carbon leaving the reactor. Triangles are
for C-limited cultures and bullets for P-limited ones. Error bars represent the standard

deviation.

of the six carbons of glucose are used for biomass construction (this can also nicely be seen
in figure 3.10 where three C-moles of per C-mole of biomass is taken into the cell). The same
graph also shows that under P-limited conditions, at low dilution rates, the biomass yield
is lower; but strangely at a dilution rate of 0.25h~! it tends to become better than under
carbon-limitation (less glucose is consumed per mole of biomass produced than under carbon-
limitation). Looking at the ATP hydrolysis (figure 3.6) and the respiration (figure 3.7) there
is no difference between the carbon-limited and phosphate-limited cultures at higher dilution
rates. Thus, the better biomass yield of P-limited cultures at high dilution rates is not due
to less COy production or less ATP hydrolysis. The reason for this should be found in the

aromatic pathway.

In the first reaction of the aromatic pathway, one can see that for high dilution rates the flux
through, the synthesis reaction of Dahp (figure 3.9), is higher for carbon-limited cultures than
for phosphate-limited ones. Considering that the fluxes through the chorismate synthesis
reaction are all equal (because a fixed biomass composition was used) the increased flux
through the Dahp formation reaction necessarily means an increased excretion of products
upstream of chorismate. Unfortunately, those byproducts were found not to be shikimic
acid, the target molecule, but dehydroquinate and dehydroshikimate. Thus, carbon-limited
cultures have a larger flux through the shikimate pathway but do not produce more shikimate
because the extra flux is wasted on other byproducts. If this byproduct excretion could be

eliminated, carbon-limited cultures would clearly be better for shikimate production.
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Figure 3.5: Relative fluxes (mol/mol Biom, each flux is normalized against the biomass flux) in the
glycolysis and pentose phosphate pathway for different growth rates. Squares are used for
the phosphate-limited cultures and triangles represent the data from the carbon-limited
cultures. Metabolites are typeset in upright font, names of reactions in italic. Abscissa:

growth rate, ordinate: relative fluxes. The error bars represent the standard deviation.

The larger flux through the shikimate route for carbon-limited cultures gives no significant
rise in the G6P fluxes that enter the pentose phosphate pathway. The differentiation can be
found in the amount of carbon that goes from the PPP to the glycolysis pathway via F6P
and G3P. A split occurs at RI5SP. More E4P is needed to sustain the production of Dahp
under carbon-limitation, therefore the reaction catalysed by TK2 is lower or even zero at
higher dilution rates for carbon-limited cultures This makes more Xu5P available, which in

turn allows the TK1 flux to increase. This allows the TA flux to increase, leading to a higher
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biomass per hour that is hydrolysed. From this data, the maintenance coefficients are

calculated, assuming a constant P/O ratio of 1.33. Notation as in figure 3.5.
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Figure 3.7: Moles of oxygen consumed (left) and moles of carbon dioxide produced (right) per mole

of biomass formed. Notation as in figure 3.5.

E4P production. As, under carbon-limitation, the flux through TK2 is lower, the one through
PPE can also be lower while the one through PPI is higher. This is in line with the studies

where an increased flux to the shikimate pathway was achieved by overexpression of Tkl. An

amplification of this enzyme in combination with an overexpressed DAHP-synthase has shown

to double the flow into the pathway in comparison to the case where only DAHP-synthase

was overexpressed (Draths et al., 1992).
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Figure 3.8: Fluxes in the Krebs cycle and the fermentative pathways. Notation as in figure 3.5.

The fluxes through glycolysis (figure 3.5) follow the same pattern as those from ATP hydrolysis
(figure 3.6) and respiration (figure 3.7). This pathway is mainly used to fuel the citric acid
cycle (figure 3.8) for generating ATP and biomass precursors. Interesting to note is the
negative flux in carbon-limited cultures going through AcKNLR (figure 3.8). Actually, no
acetate was supplied to the medium. The acetate consumed is provided by the cysteine,
ornithine and lipid A synthesis reactions. Acetate consumption in the presence of glucose,

although uncommon, was reported in literature (Varma & Palsson, 1994a).

The flux through PEP carboxylase (figure 3.8) is completely dependent on the biomass for-
mation reaction (as is the one through the chorismate synthesis reaction, figure 3.9). This
can nicely be seen as the constant flux for every phosphate-limited culture. For the carbon-
limited cultures this is not true, as there was some citric acid consumed in the experiment
with the lowest growth rate while it was produced in the other ones. The amounts of citric
acid consumed or produced were however very low: there is no significant difference between

the carbon-limited and phosphate-limited cultures in the flux through PEP carboxylase.

The calculated ATP hydrolysis flux allows to investigate the maintenance requirement for
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Figure 3.9: Fluxes in the shikimate pathway. Notation as in figure 3.5.

different growth rates and limiting conditions (figure 3.6). Phosphate-limited cultures have a
higher non-growth-associated maintenance compared to carbon-limited ones, as under carbon-
abundance there is no need for an efficient carbon utilisation. The non-growth-associated
maintenance for phosphate-limited cultures is 0.71 mole ATP per mole of biomass per hour.
For carbon-limited cultures it is 0.073 mol/mol BM/h. This is conform the values reported
in literature: 0.20 mol/molBM/h (Varma & Palsson, 1994a), 0.073 mol/mol BM/h (Kayser
et al., 2005) and 0.12mol/mol BM/h (Carlson & Srienc, 2004a).

The growth-associated maintenance for phosphate-limited cultures was around zero. For
carbon-limitation it was found to be 2.19mol/mol BM. In the literature both low values,
0.34 mol/mol BM (Varma & Palsson, 1994a), and high values, 2.6 mol/mol BM (Carlson &
Srienc, 2004a) can be found.

Apparently under carbon-abundant conditions, the cells, even at the lowest growth rate,
produce as much ATP as possible and this production does not significantly increase (can

not increase due to P-limitation?) with higher growth rates. Carbon-limited cultures want
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Figure 3.10: Summary of figures 3.5, 3.8 and 3.9 in which the relative fluxes (as compared to the

biomass flux) are expressed in C-moles. Broken lines are for lumped reactions. TCA:

Tricarboxylic acid cycle. Notations as in figure 3.5.

to optimise the utilisation of the available glucose and try to minimise the maintenance cost

resulting in a high growth dependent maintenance. But the total maintenance is always lower

than in carbon-abundant cultures (in the right part of figure 3.6, the curve of the P-limited

cultures, squares, lies above the curve of the C-limited ones, triangles). At a growth rate of

0.28h~! both curves meet each other. This is also around the point where the cells start to
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wash out. This suggests that the maintenance level of the phosphate-limited cultures is really

the maximum ATP production that the cell can sustain.

3.3.2 RNA expression compared with metabolic fluxes

To investigate whether there exists a correlation between RNA expression levels and metabolic
fluxes, four different kinds of cultures were performed, in which flux data and RNA expression
levels were determined. It should be noted that those experiments were completely different
from the experiments described above and are fully discussed in Johansson & Lidén (2006).
Two different experiments were done with the wild-type strain (E. coli W3110), one carbon-
limited and one phosphate-limited and two experiments were done with the modified strain
(E. coli W3110.shik1), also one carbon- and one phosphate-limited. Each experiment was

performed twice. The continuous cultures were all run at a dilution rate of 0.2h~!,

In general RNA expression levels are compared by taking the log, of the fraction of expression
levels under modified conditions against expression levels in a reference state. In this study,
the mean of the values found at the four different conditions was used as reference state and
not the wild-type fermentation under carbon- or phosphate-limited conditions. This because
as the RNA expression levels have to be compared with the fluxes, the same mathematical
treatment should be applied to the flux values (relative molar fluxes were used: each flux
expressed in moll~' h~! was divided by the biomass flux). However, for the wild-type, some
fluxes in the shikimate producing pathway are zero (more precisely, there is no quinic acid
production). For the modified strain, some other fluxes are zero (no formic acid formation).
Thus, for those fluxes, no good reference state exists. Therefore, the mean of the four values
was used as reference state, each value was divided by it and the log, was taken. This was
done for both the RNA expression levels and the fluxes that were not zero (figures 3.11, 3.12
and 3.13).

The flux through a reaction is not always controlled by the enzyme level, as metabolic control
analysis shows, but can also be limited by the availability of reactants. It is not expected
that there is a direct correlation between RNA expression levels and enzyme levels, even less
between RNA expression levels and metabolic fluxes. Only when RNA expression is absent,
one can say for sure that the corresponding flux is zero. And the absence of expression of a
gene can only be disproved, not proven (Akesson et al., 2004). However, in some cases there
can be qualitative correlations between RNA expression levels and metabolic fluxes (Oh &
Liao, 2000).

For some (key) reactions an increase in flux correlates with an increase or decrease in RNA
expression levels (figures 3.11, 3.12 and 3.13). Some correlations were detected in the glycol-
ysis and the aromatic pathway while in the PPP and the citric acid cycle the reactions seem

to be driven by supply and demand and not by RNA expression of their genes; the differences
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Figure 3.11: Fluxes compared with the RNA expression data for the central carbon metabolism.
Abscissa: growth rate, ordinate: relative fluxes. The error bars represent the standard
deviation. The dots represent the fluxes and the bars the gene expression levels. Both

are logs transformed. The gene names can be found in the lower part of each graph
while the upper part labels the different experiments: WtP for wild type strain, P-
limited culture, WtC for wild type strain, C-limited culture, MoP for modified strain,
P-limited culture and MoC for modified strain, C-limited culture. Reaction names are

typeset in italic, metabolite names in upright fonts.

smaller than log, (such as MalSY in figure 3.12) are not significant.

In the following paragraphs examples are given of these three cases: positive correlation,
negative correlation and no correlation.
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Figure 3.12: Fluxes compared with the RNA expression data for the Krebs cycle. Notation as in
figure 3.11.

Positive correlation

The modified strain has the feedback inhibition acting on aroF (from tyrosine and phenylala-

nine) and aroG (from trypthophane and phenylalanine) removed. This can be seen both in
the fluxes and in the RNA expression levels (figure 3.13).

The expression of ydiB does not seem to be correlated with the ShiSY reaction (figure 3.13),
but it does correlate with the production of quinate. Carbon-limitation in the modified strain
gives high intracellular shikimate concentrations (Johansson & Lidén, 2006) causing a higher
expression of ydiB which gives a high flux through DhqDH. No effect is seen on aroF. As,
ydiB, aroF codes for ShiSY but the gene product of ydiB also catalyses the conversion of
dehydroquinate to quinate. However, this upregulation of ydiB is only seen in the modified
strain, in which feedback inhibition of aroF and aroG is removed. Probably that in the wild-

type, no accumulation of shikimate occurs due to proper regulation of the initial reaction of
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Figure 3.13: Fluxes compared with the RNA expression data in the aromatic amino acid pathway.

Notation as in figure 3.11.
the aromatic pathway.

Negative correlation

Whereas in C-limited cultures ptsG is more expressed than in carbon-abundant ones, the
specific uptake of glucose is lower (figure 3.11). An explanation might be that under such
conditions the cell tries to optimise the uptake of carbon by expressing more ptsG (Hua et al.,
2004). It is known that glucokinase (coded by gik, figure 3.11) does not vary much under
different conditions, as the main entrance for glucose into the E. coli cell is via PTS (Meyer
et al., 1997). It can be seen that the glk expression is almost constant. However, the gene
product of ptsH, Hpr (heat stable, histidyl phosphorylatable protein) is also part of the PTS
system. Hpr is the subunit responsible for transferring the phosphate group to the sugar
imported in the cell while the gene product of ptsG is the subunit that imports the glucose
molecule and releases it phosphatated in the cell (Postma et al., 1993). Both have their own
operon and promoters. It makes sense that to scavenge glucose, only the part of the enzyme

responsible for attracting glucose is expressed.
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Negative correlation with the flux is also found for acs, converting acetate to acetyl-CoA
(figure 3.12): this gene codes for acetyl coenzyme A synthetase and is even expressed when no
acetate is available (Shin et al., 1997). This seems to fit the case here: under carbon-limiting
conditions, the expression of this gene is stronger: more need for carbon? Indeed poxB, ackA
and pta are not as influenced by the carbon needs of the cell: they code for enzymes involved

in acetate production, not consumption (even if some of them are reversible).

The data suggest that carbon-abundant cultures have a low expression of genes coding for
pyruvate dehydrogenase (PyrD in figure 3.12, acdFE, aceF and IpdA are all members of the same
operon and code for subunits of the pyruvate dehydrogenase complex) and a high flux through
that reaction, while carbon-limited cultures show the opposite behaviour. This confirms the
high non-growth and low growth-associated maintenance found for the phosphate-limited cul-
tures: the flux through the citric acid cycle (mainly used for generating ATP via respiration)
is saturated. This can also be observed in the Krebs cycle itself: the flux through it is higher
in P- than in C-limitation while the genes are downregulated. Furthermore, the flux in the

modified strain is generally higher than the one in the wild-type strain.

No correlation

In general the fluxes in the PPP pathway do not follow the RNA expression patterns (figure
3.11). Fluxes seem to be driven by the need to build blocks for the amino acid synthesis
reactions, in casu the aromatic pathway. The lack of correlation of the fluxes with the RNA

expression data could also be due to the high variance that all measurements have.

3.4 Conclusions

With the aid of MFA, it was shown that in the E. coli W3110.shikl strain, the difference
in shikimic acid yield between carbon-rich and carbon-limited cultures is not due to a lower
flux in the aromatic amino acid pathway, but due to a larger excretion of dehydroshikimic
acid and dehydroquinic acid. The flux entering the shikimate pathway was even higher in
carbon-limited cultures and this due to, or caused by less carbon going from the pentose

phosphate pathway to the glycolysis.

Under carbon abundance, the ATP production rate is maximal. It was shown that growth-
associated maintenance, under P-limitation, is almost zero, but non-growth-associated main-

tenance is as high as the total maintenance under carbon-limitation at the wash out point.

Flux data were compared with RNA expression data. Most of the fluxes were not driven by
the amount of expression of the corresponding gene. However, some fluxes were correlated,
especially those from the altered genes: aroF and aroG feedback inhibition, giving a higher flux

through the aromatic pathway, and ydiB overexpression, causing a high quinate production.
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Finally, a number of important fluxes are negatively correlated with the RNA expression level:

this to maximise the flux through that reaction, for example ptsG under carbon-limitation.



Chapter 4

Comparing different strategies to

reduce acetate formation in E. coli'

E. coli cells produce acetate as an extracellular byproduct of aerobic cultivations under excess-
glucose conditions. This phenomenon is referred to as overflow metabolism. Acetate is un-
desirable, because it retards growth even at concentrations as low as 0.5g/1 (Nakano et al.,
1997) and inhibits protein formation (Ko et al., 1994). Most process designs or genetic mod-
ifications to overcome acetate formation ultimately aim to balance growth rate and oxygen

consumption (Eiteman & Altman, 2006).

Process improvement approaches involve designing growth media or conditions that eliminate
or reduce acetate formation. In contrast, genetic approaches involve altering the genetic
profile of the strain itself, to restrict the biochemical synthesis of acetate. Process approaches
generally focus on reducing the carbon flux entering in the cells and thus diminish the specific

growth rate and efficiency of the production process.

For these reasons, this research focuses on genetic approaches to overcome acetate formation.
Several interrelated methods have been used to reduce acetate formation genetically. The
three partially overlapping strategies are (1) approaches that directly reduce glucose con-
sumption, (2) approaches that directly reduce carbon flow to acetate, and (3) approaches

that address underlying metabolic and regulatory mechanisms leading to acetate formation.

Because the first strategy is a genetic equivalent of bioprocess approaches, this research fo-
cuses on the two other strategies based on metabolic modelling and engineering. Three
different strains were constructed: one in which the acetate production pathway is disabled,

one in which more carbon is channeled to the citric acid cycle, and one that combines both

!This chapter was published in M. De Mey, G. J. Lequeux, J. J. Beauprez, J. Maertens, E. Van Horen,
W. K. Soetaert, P. A. Vanrolleghem & E. J. Vandamme (2007b). Comparison of different strategies to reduce
acetate formation in Escherichia coli. Biotechnology Progress, 23:1053-1063
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approaches. In the first part of the study, the strains were grown in batch cultures. In the
second part, steady state experiments were performed and metabolic flux analysis was applied

to calculate the intracellular fluxes.

4.1 Materials and methods

4.1.1 Bacterial strain

FEscherichia coli MG1655 (A=, F, rph-1, (fnr~ 267)del | (labeled WT in the figures) was
obtained from the Netherlands Culture Collection of Bacteria (NCCB, Utrecht, The Nether-
lands). E. coli MG1655 AackA-pta, ApoxB [A\~, F~, rph-1, (fnr~ 267)del, AackA-pta,
ApozB] (labeled 3KO in the figures), E. coli MG1655 Apppc ppc—p37 (A=, F~, rph-1, (fnr-
267)del, Apppc ppc—p37 ] (labeled PPC in the figures), and E. coli MG1655 AackA-pta,
Apox B, Apppc ppc—p37 [A\~, F~, rph-1, rfb-50, (fnr~ 267)del, AackA—pta, ApoxB, Apppc
ppc—p37 | (labeled 3KO-PPC in the figures) were constructed in the Laboratory of Genet-
ics and Microbiology (MICR, VUB, Belgium), using the method described by Datsenko &
Wanner (2000).

4.1.2 Culture conditions
Media

The Luria Broth (LB) medium consisted of 1% triptone peptone (Difco, Erembodegem,
Belgium), 0.5 % yeast extract (Difco) and 0.5 % sodium chloride (VWR, Leuven, Belgium).

The minimal medium consisted of 2g/1 NH,Cl, 5g/1 (NH,),S0,, 2g/l KH,PO,, 0.5g/1
NaCl, 0.5g/1 MgSO, - 7H,0, 16.33g/1 glucose-H,O, 1ml/l vitamin solution and 100 ul/1
molybdate solution. Vitamine solution consisted of 3.6 g/1 FeCl, -4H,0, 5g/1 CaCl, - 2H,0,
1.3g/1 MnCl, - 2H,0, 0.38 g/1 CuCl, -2H,0, 0.5g/1 CoCl, - 6 H,0, 0.94g/1 ZnCl,, 0.0311 g/1
H;BO,, 0.4g/1 Na,EDTA -2H,0 and 1.01 g/l thiamine- HCl. The molybdate solution con-
tained 0.967 g/1 Na,MoO, - 2 H,0.

For flask culture medium, glucose and MgSO, was separately autoclaved (121 °C, 20 minutes)
from the salts and combined after cooling down together with the filter-sterilised (pore size
0.2 um, Millipore bottletopfilter, Millipore, Antwerpen, Belgium) vitamine and molybdate
solutions. Before autoclaving, the pH of the salts solution was set at 7 with 1 M K,HPO,.

All components for the medium of the continuous culture were dissolved and filter-sterilised
(pore size 0.22 um, Sartobran, Sartorius, Belgium). The pH of the medium was left at ap-
proximately 5.4.
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Cultivations

A preculture from a single colony on a LB-plate was started in 5ml LB medium during
8 hours at 37°C on an orbital shaker at 200 rpm. From this culture, 2ml was transferred to
100 ml minimal medium in a 500 ml shake flask, and incubated for 16 hours at 37°C on an
orbital shaker at 200 rpm. Fifty milliliter of this culture was used to inoculate the reactor,
a 1.21 Biostat B culture vessel with 11 working volume (Sartorius-BBI systems, Melsungen,
Germany). The culture conditions were: 37°C, stirring at 800 rpm, airflow rate of 11/min.
The pH was maintained at 7 with 0.5 M H,50, and 4 M KOH. The exhaust gas was cooled
down to 4°C by an exhaust cooler (Frigomix 1000, Sartorius-BBI, Melsungen, Germany). A
continuous feed of 4ml/h 10 % solution of silicone antifoaming agent (BDH 331512K, VWR
Int Ltd., Poole, England) was added to the culture vessel. The volume of the cultivation

broth was kept constant with level control.

4.1.3 Measurements
Online measurements

Dissolved oxygen, pH, stirrer rate, temperature and airflow were continuously logged to the
computer running MFCS /win 2.1 (Sartorius-BBI, Melsungen, Germany). Two balances under
the influent and effluent barrel were coupled to the system to allow precise measurement of
the dilution rate. Oxygen and carbon dioxide content of the off gas were measured by an
URAS 10E off gas analyser (Hartmann & Braun, Germany), connected to the MFCS/win

software.

Sampling of the reactor

The bioreactor contains in its interior a harvest pipe (HPLC tubing, Bio-Rad, Eke, Belgium)
connected to a reactor port, linked outside to a Masterflex 14 tubing (Cole-Parmer, Antwer-
pen, Belgium) followed by a harvest port with a septum for sampling. The other side of this
Masterflex 16 tubing is connected back to the reactor vessel. This system is referred to as
the rapid sampling loop. During sampling, reactor broth is pumped around in the sampling
loop. It has been estimated that, at a flow rate of 150 ml/min, the reactor broth needs 0.04s
to reach the harvest port and 3.2s to re-enter the reactor. At a pO, level of 50 %, there
is around 3mg/1 of oxygen in the liquid. The pO, level should never go below 20 %. Thus
1.8 mg/1 of oxygen may be consumed during transit through the harvesting loop. Assuming
an oxygen uptake rate of 0.4 g oxygent /g biomass/h (the maximal oxygen uptake rate found in
the experiments), this gives for 5 g/1 biomass, an oxygen uptake rate of 2g/1/h or 0.56 mg/1/s,

which multiplied by 3.2s (residence time in the loop) gives 1.8 mg/1 oxygen consumption.

In order to stop the metabolism of cells during the sampling, reactor broth was sucked through

the harvest port in a syringe filled with 65g stainless steel beads cooled down to —20°C
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(Mashego et al., 2003), immediately followed by cold centrifugation (15000 g, 5min, 4°C).

In the batch experiments, a sample for ODggp and extracellular measurements was taken each
hour using the rapid sampling loop and the cold stainless bead sampling method. When

exponential growth was reached, the sampling frequency was increased to every 30 minutes.

Chemostat cultures were followed by measuring ODggg, extracellular metabolites and cell dry
weight. Samples for MFA were taken after the cells attained steady state, which required at
least five residence times, without significant perturbations. Six different samples were taken

for extracellular metabolites measurements and five for cell dry weight determination.

Cell density measurements

Cell density of the culture was frequently monitored by measuring optical density at 600 nm
(Uvikom 922 spectrophotometer, BRS, Brussel, Belgium). Cell dry weight was obtained
by centrifugation (15min, 5000g, GSA rotor, Sorwall RC-5B, Du Pont Instruments, Goffin
Meyvis, Kapellen, Belgium) of 20 g reactor broth in pre-dried and weighted falcons. The
pellets were subsequently washed once with 20ml physiological solution (9g/1 NaCl) and
dried at 70°C to a constant weight. To be able to convert OD measurements to biomass

concentrations, a correlation curve of the OD to the biomass concentration was made.

HPLC analysis of glucose and organic acids

The concentrations of glucose and organic acids were determined on a Varian Prostar HPLC
system (Varian, Sint-Katelijne-Waver, Belgium), using an Aminex HPX-87H column (Bio-
Rad, Eke, Belgium) heated at 65°C, equipped with a 1cm reversed phase precolumn, using
5mM H,SO, (0.6ml/min) as mobile phase. Detection was done by a dual-wave UV-VIS
(210 nm and 265 nm) detector (Varian Prostar 325) and a differential refractive index detector
(Merck LaChrom L-7490, Merck, Leuven, Belgium).

Phosphorous determination

The phosphate determination is based on the formation of a phosphomolybdate complex which
absorbs at 820 nm (Gawronski & Benson, 2004; Ames & Dubin, 1960; Lowry & Lopez, 1946).
First, the sample is deproteinised by adding 100 ul 0.6 N perchloric acid to 100 pl sample and
diluted by adding 800 ul 0.1 N sodium acetate. 150 ul diluted and deproteinised sample was
added to 350 ul acorbate/molybdate solution (one part 10 % ascorbate and 6 parts 0.42 %
ammonium molybdate in 1N H,SO,). The reaction mixture was incubated for 20 minutes at
60°C. To stop the reaction, 500 ul stop solution (2% sodiumcitrate tribasic dehydrate, 2%
acetic acid) was added to 500 ul reaction mixture. The absorbance at 820 nm was measured
in a microplate reader (680 XR microplate reader, Bio-Rad, Eke, Belgium). For each batch

of measurements, a calibration curve was made using a stock solution of 1M KH,PO,. This
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stock solution was diluted to a concentration of 0.002M KH,PO,, and standard series from
0M to 0.002M were made for calibration.

Nitrogen determination

Quantification of nitrogen in the culture medium was performed using the kit LCK238 from

Hach Lange Gmbh (Mechelen, Belgium) according to the manufacturers protocol.

4.1.4 Metabolic model

The theory of metabolic flux analysis as explained in chapter 2 was used. All fluxes were

expressed in mol/l/h and model calculations were performed in these units.

The model described in section 3.2 was used with some minor modifications (different metabo-

lites that are excreted) and corrections (in the biomass)(figure 4.1).

A constant biomass composition was used for every dilution rate: 55 % protein, 20.5 % RNA,
3.1% DNA, 11.1 % lipids, 4.2 % LPS, 3.1 % peptidoglycane and 3.1 % glycogene (Pramanik
& Keasling, 1997). This resulted in a biomass composition of CHj 6300.392N0.244P0.02150.006,

with molecular mass of 24.16 g/mol.

The model contains 137 reactions and 151 metabolites of which 11 were considered exchange-
able with the environment: NH,, PiOH, Biom, GLC, Lac, OAA, Suc, O,, CO,, HyO and
H,SO,. All parallel pathways were removed. There were no dead-end reactions, and the

elemental consistency test was successfully passed (see section 2.4).

Eight metabolites were analysed for: GLC, NH;, PiOH, Biom, O,, CO,, Lac, and Suc. The
model contains 143 independent equations and 148 (137 internal fluxes and 11 exchangeable
metabolites) unknown fluxes. Thus, at least five measurements should be performed to solve
the model. Hence, three extra measurements were available to run the vector comparison test

to detect and remove erroneous measurements (as described in section 2.5).

4.2 Results and discussion

Even under aerobic conditions, when glucose is excessively present, F. coli cells produce
acetate as an extracellular byproduct. Acetate is unwanted because it slows down growth
and it has a negative effect on recombinant protein production. Figure 4.2 depicts the central
metabolism of E. coli. A first genetic approach to minimise acetate formation is to cut off
the flow of carbon to acetate. To achieve this, an ackA-ptA, poxrB knock-out strain (3KO)

was created.
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Figure 4.1: List of reactions used in the model.

G6P «—— TF6P

ATP + F6P — ADP + FBP

FBP «— G3P + DHAP

DHAP +«— G3P

PiOH + NAD + G3P «— NADH + H + BPG

ADP + BPG «— ATP + 3PG

3PG  «— 2PG

2PG  «— H20 + PEP

ADP + PEP — ATP + Pyr

NAD + Pyr + CoA — NADH + H + AcCoA + CO2
H20 + AcCoA + OAA  — CoA + Cit

Cit iCit

NAD + iCit «— NADH + H + CO2 + aKGA

NAD + CoA + aKGA — NADH + H + CO2 + SucCoA
ADP + PiOH + SucCoA «— ATP + CoA + Suc

—

FAD + Suc  — FADH2 + Fum
H20 4+ Fum «— Mal
NAD + Mal «— NADH + H + OAA

H20 + PEP + CO2 — PiOH + OAA

NADH + H + Pyr  «— NAD + Lac

Pyr + CoA — AcCoA + FA

ADP + PiOH 4+ AcCoA «— ATP + CoA + Ac
1.33ADP + 1.33PiOH + NADH + H + 0.502 —
NAD + 2.33H20

H20 + CO2 +«—— H2CO03

NADP + G6P — NADPH + H + 6PGL

H20 + 6PGL — 6PG

NADP + 6PG — NADPH + H + CO2 + RI5P
RI5P  «— RSP

RI5P «—— Xu5P

R5P + XubP  «— G3P + S7P

G3P + S7TP «—— FG6P + E4P

Xu5P + E4P «+— F6P + G3P

GLC + PEP  — G6P + Pyr

PPiOH + H20 — 2PiOH

NADPH + H + aKGA + NH3 «— NADP + H20 + Glu
ATP + NH3 + Glu — ADP + PiOH + Gln

ATP + H20 + Asp + GlIn  — AMP + PPiOH + Asn + Glu
OAA + Glu  «— aKGA + Asp
Pyr + Glu  «— aKGA + Ala
aKIV + Glu  «— aKGA + Val
NAD + H20 + AcCoA + aKIV + Glu
+ CO2 + aKGA + Leu

NADPH + H + 2Pyr — NADP + H20 + CO2 + aKIV
NADPH + H + Pyr + Glu + Thr  — NADP + H20 + CO2
+ aKGA + NH3 + Ile

ATP + 2NADPH + 2H + Glu
+ H20 + Pro

NAD + H20 + 3PG + Glu
+ Ser

Ser + THF — H20 + Gly + MeTHF

2ATP + 3NADPH + ThioredH2 + 3H + H2S04 — ADP +
PPiOH + 3NADP + Thiored + 3H20 + H2S + PAP

H20 + PAP  — AMP + PiOH

H2S 4+ AcCoA + Ser  — CoA + Cys + Ac

ATP + R5P  — AMP + PRPP

ATP + 2NAD + 3H20 + GIn + PRPP  — 2PPiOH + PiOH
+ 2NADH + 2H + aKGA + His + AICAR

Glu 4+ Chor — H20 + CO2 + aKGA + Phe

NAD + Glu 4+ Chor — NADH + H + CO2 + aKGA + Tyr
Gln + Ser + Chor + PRPP — PPiOH + 2H20 + G3P + Pyr
+ CO2 + Glu + Trp

H20 + PEP + E4P — PiOH + Dahp

Dahp — PiOH + Dhq

Dhq H20 + Dhs

NADPH + H + Dhs «— NADP + Shi

ATP 4+ Shi — ADP + Shi3P

PEP + Shi3P — 2PiOH + Chor

ATP + H20 + HSer —— ADP + PiOH + Thr

NADPH + H + Pyr + SucCoA + Glu + AspSA  — NADP +
CoA + aKGA + Suc + MDAP

MDAP — CO2 + Lys

H20 + SucCoA + Cys + MTHF + HSer
+ NH3 + Met + THF

ATP + NADPH + H + Asp
AspSA

NADPH + H + AspSA  «—— NADP + HSer

2ATP + H20 + H2CO3 + GIn  — 2ADP + PiOH + Glu +
CarP

ATP + NADPH + H + H20 + AcCoA + 2Glu — ADP +
PiOH + NADP + CoA + aKGA + Orn + Ac

ATP + Asp + Orn + CarP  — AMP + PPiOH + PiOH + Fum
+ Arg

NADPH + Thiored + H +— NADP + ThioredH2

2H202 — 2H20 + 02

1.33ATP +

— NADH + H + CoA

— ADP + PiOH + 2NADP

— PiOH + NADH + H + aKGA

—

—  Pyr + CoA + Suc

— ADP + PiOH + NADP +

appendix B.1.
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dTMPSY:
dTMPKN:
dTDPKN:
DHFRD:
FTHFSYLR:
GlyCA:
MeTHFRD:
AcCoACB:
MalCoATA:
AcACPSY:
C120SY:

C140SY:
C160SY:
C1818Y:

AcylTF:
Go3PDH:
DGoKN:
CDPDGoSY:
PSerSY:
PSerDC':
GInF6PTA:
GleAnMU:
NAGUrTF:
LipaSYLR:

A5PIR:
PGLCMT:

CMPKDOSYLR2H20 + PEP + Ar5P + CTP

ADPHEPSY:
UDPGIcSY:
EthANPT:
LpsSYLR:

PGSYLR:
CLSY:
PeptidoSYLR:

GlegSY:
ATPHY:
DNASYLR:
RNASYLR:

ProtSYLR:

LipidSYLR:
BiomSYLR:
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NAD + FADH2 +— NADH + FAD + H

6ATP + 3H20 + CO2 + Asp + 2Gln + Gly + FA + PRPP
— 6ADP + PPiOH + 6 PiOH + Fum + 2Glu + AICAR

FTHF + AICAR — H20 + THF + IMP

Asp + GTP + IMP — AMP + PiOH + Fum + GDP

ATP + AMP +«— 2ADP

ADP + ThioredH2 — Thiored + H20 + dADP

ATP + dADP — ADP + dATP

NAD + H20 + IMP — NADH + H + XMP

ATP + H20 + Gln + XMP — AMP + PPiOH + Glu + GMP
ATP + GMP — ADP + GDP

ATP + GDP — ADP + GTP

ThioredH2 + GDP ~ —  Thiored + H20 + dGDP

ATP + dGDP — ADP + dGTP

02 + Asp + PRPP + CarP  — PPiOH + PiOH + H20 + CO2
+ UMP + H202

ATP + UMP — ADP + UDP

ATP + UDP — ADP + UTP

ATP + H20 + GIn + UTP  — ADP + PiOH + Glu + CTP
ATP + CDP «— ADP + CTP

ATP + CMP — ADP + CDP

ThioredH2 + CDP  —  Thiored + H20 + dCDP

ATP + dCDP — ADP + dCTP

ThioredH2 + UDP  — Thiored + H20 + dUDP

ATP + dUDP — ADP + dUTP

H20 + dUTP — PPiOH + dUMP

MeTHF 4+ dUMP — DHF + dTMP

ATP + dTMP — ADP + dTDP

ATP + dTDP — ADP + dTTP

NADPH + H + DHF — NADP + THF

NADP + H20 + MeTHF — NADPH + H + FTHF

NAD + Gly + THF «— NADH + H + CO2 + NH3 + MeTHF
NADH + H + MeTHF — NAD + MTHF

ATP + H20 + AcCoA + CO2 «— ADP + PiOH + MalCoA
MalCoA + ACP «— CoA + MalACP
MalACP  — CO2 + AcACP

10NADPH + 10H + AcACP + 5MalACP
5H20 + 5CO2 + C120ACP + 5ACP
12NADPH + 12H + AcACP + 6MalACP
6H20 + 6 CO2 + C140ACP + 6 ACP
14NADPH + 14H + AcACP + 7MalACP
7H20 + 7CO2 + C160ACP + 7ACP
15NADPH + 15H + AcACP + 8MalACP
8H20 + 8CO2 + CI81ACP + 8ACP
C160ACP + CI181ACP + Go3P — 2ACP + PA

NADPH + H + DHAP «— NADP + Go3P

ATP + DGo — ADP + PA

CTP + PA  «— PPiOH + CDPDGo

Ser + CDPDGo — CMP + PSer

PSer — CO2 + PEthAn

F6P + Gln  — Glu + GA6P

GAGP  «—— GAIP

AcCoA + UTP + GAIP — PPiOH + CoA + UDPNAG
ATP + 2 CMPKDO + 2 UDPNAG + C120ACP + 5 C140ACP —
ADP + 2CMP + UMP + UDP + 6 ACP + Lipa + 2 Ac

RI5SP  «— Ar5P

G6P  «— GIP

10NADP +

—

—

12NADP +

—

14NADP +

—

15NADP +

— PPiOH + 2PiOH +
CMPKDO

ATP + S7TP — PPiOH + ADPHEP

GIP + UTP — PPiOH + UDPGlc

CMP + PEthAn «— CDPEthAn + DGo
3ADPHEP + 3CMPKDO + 2UDPGlc +
2CDPEthAn — 3ADP + 3CMP
Lps

Go3P + CDPDGo — PiOH + CMP + PG

PG + CDPDGo — CMP + CL

5ATP 4+ NADPH + H 4+ PEP + 3Ala + MDAP +
2UDPNAG — 5ADP + 7PiOH + NADP + UMP + UDP +
Peptido

ATP + GIP  — ADP + PPiOH + Glcg

ATP + H20 — ADP + PiOH

2H20 + 0.246dATP 4 0.254dGTP 4+ 0.254dCTP +
0.246dTTP — 2PiOH + DNA

0.262ATP + 2H20 + 0.322GTP + 0.2CTP + 0.216UTP —
2PiOH + RNA

2ATP + 3H20 + 0.0961Ala + 0.05506 Arg + 0.04505 Asn
-+ 0.04505Asp + 0.01702Cys + 0.04905GIn + 0.04905Glu +
0.1151 Gly + 0.01802 His + 0.05405 Ile + 0.08408 Leu + 0.06406 Lys
+ 0.02903Met + 0.03504 Phe + 0.04104Pro + 0.04004 Ser
+ 0.04705Thr + 0.01101 Trp + 0.02603 Tyr + 0.07908 Val +
2GTP — 2ADP + 4PiOH + 2GDP + Prot

0.0266 CL + 0.202PG + 0.7714 PEthAn Lipid

0.004561 Gleg  +  0.0002663Lps +  0.0008933 Peptido ~ +
0.002291 DNA + 0.01446 RNA + 0.1227 Prot + 0.003642 Lipid
Biom

Lipa  +
+ 2CDP + 2UDP +

—

—

A description of the metabolites can be found in
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Glucose

Glycolysis

poxB
Pyruvate &—— > Acetate

ppc ackA

Acetyl-CoA ﬁ Acetylphosphate
pta

Oxalacetate Citrate

Malate TCA CyC|e Isocitrate

Fumarate oKetoglutarate

Succinate Succinyl-CoA

Figure 4.2: The central metabolism of E. coli. PEP, phosphoenolpyruvate; ackA, acetate kinase;
poxB, pyruvate oxidase; ppc, phosphoenolpyruvate carboxylase; pta, acetylphosphotrans-
ferase.

A second strategy to reduce acetate formation, involves addressing the underlying biochemi-
cal mechanisms that lead to acetate. Recent results have potentially elucidated the metabolic
and regulatory causes of acetate formation and the links between acetate formation and re-
combinant protein production. Of the amino acids that combine to form the protein product,
ten are biochemically derived from TCA cycle metabolites, eleven from glycolysis metabolites
and 4 are derived from the pentose phosphate pathway. An important fact is that when
E. coli is grown in a medium with glucose as the sole carbon source, nearly all the carbon

used to synthesise the ten amino acids derived from TCA metabolites must flow through the
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anaplerotic pathway mediated by the enzyme phosphoenolpyruvate carboxylase (Eiteman &
Altman, 2006). In addition, glycolysis and TCA cycle both generate the reduced cofactor
NADH +H™. In an aerobic environment, NADH + H" can be reoxidised to NAD™, which is
necessary to drive the glycolysis and the TCA cycle. The rate at which NADH + H™ is formed
proportionally increases with the rate of glucose consumption. However, the specific oxygen
uptake rate will reach a plateau when the maximum rate at which E. coli can consume oxygen
is achieved, despite its availability. At this point, cellular respiration is not able to regenerate
sufficient NAD™, resulting in the accumulation of NADH 4 H™, which plays an important role
in acetate formation. First, NADH + H™ is a strong allosteric inhibitor of the enzyme citrate
synthase, which mediates the first step of the TCA cycle. Thus, accumulation of NADH + H™
will inhibit the carbon flow to the TCA cycle and consequently decrease the formation of the
ten TCA cycle derived amino acids. Secondly, the redox ratio NADH + H* /NAD™ is involved
in the regulation of the ArcA regulatory system in E. coli, which represses the expression of
several genes in the TCA cycle. E. coli will respond to increased NADH + H™ levels by redi-
recting the carbon flow to acetate production that generates less NADH +H" (Eiteman &
Altman, 2006).

A strategy to divert the carbon flow from acetate to the TCA cycle and to produce less
NADH + H™ is to overexpress PEP carboxylase encoded by the gene ppc. Previous research
already indicated that overexpressing ppc reduces acetate formation (De Maeseneire et al.,
2006; Farmer & Liao, 1997). Therefore, a ppc overexpressing mutant of E. coli was created
in which the natural ppc promoter was replaced with a strong constitutive artificial promoter
(PPC) (De Mey et al., 2007c). Finally, the two approaches were combined by replacing the
natural ppc promoter with p37 in E. coli MG1655 AackA—pta, ApoxB (3KO-PPC).

4.2.1 Batch experiments

Different E. coli strains were studied, representing different approaches to minimise acetate
formation; initially, batch cultures were performed on glucose-limiting minimal medium un-
der aerobic conditions with the following strains: E. coli MG1655 (WT), E. coli MG1655
Apppc ppe—p37 (PPC), E. coli MG1655 AackA-pta, ApoxB (3KO), and E. coli MG1655
AackA—-pta, ApoxB, Apppc ppc—p37 (3KO-PPC).

During the culture, the growth progress (ODgoo) and extracellular metabolite concentrations

were determined. The results are depicted in figure 4.3.

From these data, the growth rate (x) and the relevant metabolite yields (Y metabolite) were
determined for the different strains. The growth rate was calculated by determining the
slope of the curve, obtained by plotting In(ODggg) in function of the time using the software
Sigma-plot 10.0. The metabolite yields were calculated by determining the slope of the curves,

obtained by plotting the metabolite concentration in function of the glucose consumption, also
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by use of Sigma-plot 10.0. The results are given in figures 4.4 and 4.5.

Cutting off the carbon flow towards acetate results in a decreased growth rate to 80 %, as
compared to the wild-type. This is caused by the decreased availability of energy as the ac-
etate pathway generates one ATP extra and consumes one more NADH + H* compared to the
lactate pathway (which is used when the acetate pathway is knocked out). The same effect is
observed in the ppc overexpressing strain. By diverting the carbon flow from phophoenolpyru-
vate (PEP) to oxaloacetate instead of pyruvate, less PEP is available for the PTS to transport
glucose into the cell. In addition, combination of cutting off the carbon flow towards acetate

and diverting the carbon flow from PEP toward oxaloacetate, has no additional effect.

However, a decrease of 20% in maximal growth rate (as compared to the wild-type) still
corresponds to a growth rate of 1.82h~! and a generation time of 0.38 h, which indicates that

these mutant strains remain fast growing and thus applicable for large industrial processes.

Figure 4.5 illustrates that the acetate yield in the wild-type is quite high. Cutting off the
carbon flow towards acetate reduces the acetate yield significantly (7.6 times). However, the
lactate yield increases substantially (13.5 times). This indicates that the genetic approach
of interrupting the carbon flow toward acetate results in minimising acetate. However, other
byproducts are formed, making this strategy unfavorable. This confirms data found in lit-
erature (Contiero et al., 2000; El-Mansi & Holms, 1989; Yang et al., 1999; Dittrich et al.,
2005). All of them report a strong reduction in acetate production when ackA and pta are
eliminated. This is at the expense of the growth rate and is accompanied by an increase in

the production of other fermentation products such as lactate and formate.

The genetic approach of redirecting the carbon flow from PEP towards oxaloacetate seems
more promising. The acetate yield decreases 11.5 times. The succinate yield on the other hand
increases significantly (1.8 times), whereas the lactate yield decreases 1.6 times, indicating
an increased flux towards the TCA cycle and thus towards the amino acid precursors. In the
literature, overexpression of ppc from a plasmid is described (Farmer & Liao, 1997) and a
reduced acetate production is obtained. In this contribution, in contrast to what is described
in Farmer & Liao (1997), ppc is constitutively overexpressed by replacing the natural promoter
in the E. coli genome. Therefore, this approach introduces minimal changes in the host,
is easily applicable to industrial strains, and there is no need for a selection marker (e.g.
antibiotic) and an inducer (e.g. IPTG) to maintain the plasmid and to express the gene,

respectively.

Combination of the two genetic approaches results in similar culture behaviour as replacing
the natural ppc promoter by a strong promoter, except for the succinate yield that increases

2.5 times, as compared to the wild-type.
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Figure 4.4: Growth rate (% to E. coli MG1655) in aerobic conditions on glucose-limiting minimal
medium for different strains. Error bars represent the standard deviation.

Considering the results of the batch experiments, it was decided to perform chemostat exper-
iments to elucidate the influence of these genetic manipulations on the central metabolism

under C-limitation in a chemostat.

4.2.2 Chemostat experiments and MFA

To collect data for the metabolic steady state model of E. coli MG1655, chemostat experi-
ments were performed with different mutant strains and at minimally three different dilution

rates per strain.

For each experiment, it was verified whether the culture was C-limited by measuring the

residual glucose concentration in the supernatant.

Metabolic flux analysis was performed for further characterisation of the different E. coli

strains.

Data quality assessment

To assess the quality of the data, the carbon balance of the different chemostat experiments
for the different strains was evaluated (figure 4.6). The carbon balance is calculated from
the measured fluxes. Figure 4.6 shows that five experiments (3KO-PPC at D = 0.113h~!,
WT at D = 0.143h~!, 3KO-PPC at D = 0.145h~!, PPC at D = 0.163h~! and 3KO-PPC

at D = 0.35h™!) have a carbon balance that significantly does not close. However, all the
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Figure 4.5: Metabolite yields (g/g) of acetate, lactate, succinate, and pyruvate for different E. coli
strains during a batch experiment in aerobic conditions on glucose-limiting minimal

medium. Error bars represent the standard deviation.

experiments but 3KO-PPC at D = 0.143h~! were kept in the data set, as the calculated
fluxes were in accordance with those at other dilution rates. Experiment 3KO-PPC at D
= 0.145h~! was not used in the subsequent calculations because the error on the carbon
balance is much larger and the statistical test performed on the model residuals rejected this

experiment.

The ratio between the carbon dioxide excretion rate and the oxygen uptake rate is called
respiratory quotient (RQ). From figure 4.7 it can be seen that the RQs do not significantly

differ from one.

For each chemostat, the metabolic model was solved and the statistical test to assess the
quality of fit of the model to the data was run. The Hy hypothesis of this test is that
the residuals (defined as the measured fluxes minus the model predicted fluxes) are zero
(see section 2.5.3 for a detailed discussion of this test). When this test was not passed
successfully, the vector comparison test was used to find (and ultimately remove) the wrong
measurement (see section 2.5.4). For four models, the residuals were significantly different
from zero: experiment WT at D = 0.227h~!, 3KO at D = 0.093h~!, PPC at D = 0.257h~!

and 3KO-PPC at D = 0.145h~!. Subsequently, erroneous measurements were removed.
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Figure 4.6: Ratio of carbon out over carbon in. Error bars represent the standard deviation. WT =
dot; 3KO = triangle; PPC = diamond; 3KO-PPC = square.

For experiment WT at D = 0.227h~!, the NH; measurement was removed as suggested by

the vector comparison test.

In the case of experiment 3KO at D = 0.093h~!, the vector comparison model was fully

accepted when the O, measurement was removed.

In the case of experiment PPC at D = 0.257h™!, it was not clear from the vector comparison
test which measurements were causing the misfitting of the model. Most suggested vectors

contained PiOH and when removing this measurement, the model was fully accepted.

For experiment 3KO-PPC at D = 0.145h~!, the model was not accepted and the vector
comparison test suggested to remove the NH; and the biomass measurements. However,
after removing those measurements, the P-value of the y-statistical test for acceptance of the
model was still only 0.06. Because of this low P-value and because of the ratio carbon out
over carbon in was equal to 0.6, it was decided not to take these measurements into account

for further analysis.
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Figure 4.7: Respiration coefficients. Open symbols stand for the measured values; solid symbols
stand for the corrected values by the model. Error bars represent the standard deviation.
WT = dot; 3KO = triangle; PPC = diamond; 3KO-PPC = square.

MPFA results

Figure 4.8 depicts the fluxes in the glycolysis, the pentose-phosphate pathway, the TCA cycle
and the fermentation pathways. The perfect linear relationship for the different dilution rates
in the pentose-phosphate pathway originates from the fact that this pathway is, under the

assumptions of this model, solely used for generating biomass precursors.

Although some slight changes in some fluxes appear, figure 4.8 shows that in general no
significant difference in the flux map for the different strains can be observed, indicating no
negative influence of the genetic modifications on primary metabolism at the dilution rates
studied.

The biomass yield on glucose is around 0.45 C-mol biomass per C-mol glucose. MFA can
quantitatively show where in the central carbon metabolism the carbon is taken out for
biomass precursors. At the G6P node, more than half of the carbon flows toward the pentose-
phosphate pathway and not to the glycolysis. However, most of this flows back into the
glycolysis as F6P and finally only 15% (taking into account the CO, production in the
beginning of the pentose phosphate pathway) of the glucose is channeled via the pentose-

phosphate cycle to biomass.
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The flux of PyrK, converting PEP to pyruvate, is essentially zero for all dilution rates. This is
in agreement with the results found in Carlson & Srienc (2004b). They generated potentially
efficient pathways for biomass production using elementary mode analysis. All those pathways
have a very low or zero PyrK flux, which means that all pyruvate originates from the PTS

reaction.

PyrD only consumes 75 % of the available pyruvate, the remaining amount is used for biomass
precursor synthesis. Thus, around 13 % of the glucose carbon is converted to biomass via

pyruvate.

For the fatty acid formation, AcCoA is used. This accounts for around 5% of the glucose
carbon going to biomass. Finally, around 10 % glucose carbon is going to biomass precursors

via citric acid cycle metabolites (replenished via the PEPCB reaction).

Maintenance

The calculated ATP hydrolysis flux allows to investigate the maintenance requirements for
the strains. Figure 4.9 shows the energy requirements for different dilution rates. As with the
other fluxes, the modified strains have really no different maintenance requirements, indicating
that there is no negative influence of the genetic modifications, on the energy metabolism at

the dilution rates studied.

The growth-associated maintenance is the slope of the line shown in figure 4.9, while the non-
growth-associated maintenance is found by taking the intercept of this line. For non-growth-
associated maintenance, a value of 0.088 mol/mol BM/h (BM = BioMass) was obtained. This
conforms with the values reported in the literature for the wild-type: 0.20mol/mol BM/h
(Varma & Palsson, 1994a) 0.073 mol/mol BM/h (Kayser et al., 2005), and 0.12 mol/mol BM/h
(Carlson & Srienc, 2004b). The growth-associated maintenance is 1.70 mol/molBM. In
literature, both low values, 0.34 mol/mol BM (Varma & Palsson, 1994a), and high values,
2.6 mol/mol BM (Carlson & Srienc, 2004b), can be found.

4.3 Conclusions

Three different approaches to minimise acetate formation were compared: (1) one approach
that directly reduces carbon flow to acetate (3KO); (2) one approach that addresses underlying
metabolic and regulatory mechanisms that lead to acetate formation (PPC); and (3) one

approach that combines the two strategies above (3KO-PPC).

Batch cultures under aerobic conditions were performed to compare these mutants to the

wild-type. All approaches resulted in a decrease of about 20 % of the growth rate. However,
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Figure 4.9: Moles of ATP per mol of biomass per hour that are hydrolysed for the different strains
at different growth rates. Error bars represent the standard deviation. WT = dot; 3KO
= triangle; PPC = diamond; 3KO-PPC = square.

these mutant strains remain fast growing and, thus, are suitable for application in large scale

bioreactor processes.

Cutting off the carbon flow towards acetate (3KO) reduces the acetate yield significantly.
On the other hand, the lactate yield increases substantially. The genetic approach of inter-
rupting the carbon flow towards acetate results in minimising acetate, but other byproducts
are formed, making this strategy unfavorable. This confirms data found in the literature
(Contiero et al., 2000; El-Mansi & Holms, 1989; Yang et al., 1999; Dittrich et al., 2005).
The genetic approach of redirecting the carbon flow from PEP towards oxaloacetate (PPC) is
more promising. The acetate and lactate yields decrease, whereas the succinate yield increases
significantly. A combination of the two genetic approaches results in a similar behaviour as
replacing the natural ppc promoter by a strong promoter, except for the succinate yield that

Increases more.

For further characterisation of the strains, chemostat experiments were conducted. Subse-
quently, the data of the chemostat experiments were used to perform metabolic flux analysis.
The flux maps for the different strains showed no significant difference, indicating no negative

influence of the genetic modifications on primary metabolism at the dilution rates studied.



62 4.3. Conclusions

Also for the cellular energy metabolism (i.e. maintenance), no significant differences could

be observed.

Taking into account the results of these batch cultures and MFA, the strain PPC can be
used as a possible host for recombinant protein production. The genetic alterations in this
strain show no unfavorable impact on primary metabolism and cellular energy metabolism. In
addition, during batch cultures more succinate production is observed, indicating an increased

flux toward the TCA cycle and thus towards the amino acid precursors.
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Chapter 5

Dynamic metabolic flux analysis:
what happens inside the cell when
changing the limiting substrate

from C to N and vice versa?

Metabolic flux analysis (MFA) permits to calculate intracellular fluxes by measuring only
exchange rates with the environment. The main requirement for this methodology is that the
cell is in a pseudo steady state, thus that there is no accumulation or depletion of intracellular

metabolites.

Flux balance analysis (FBA) uses linear optimisation for solving the metabolic model and does
not directly use measurements. The same requirements as for MFA are applicable to FBA: the
reactor should be in steady state. However, some examples of FBA applied in not stationary
cases can be found. In Varma & Palsson (1994b), flux balance analysis is used for describing
fed batches by iteratively solving the model for maximal biomass production. At each time
point, the available substrate is calculated from the results of the FBA in the previous step.
The time profiles of cell density, glucose and by-products were quantitatively predicted. This
concept of dynamic FBA (DFBA) is further developed by Mahadevan et al. (2002). They
formalise the methodology of Varma & Palsson (1994b) and name it static optimisation-
based DFBA. They also introduce a new methodology, called dynamic optimisation-based
DFBA, in which the optimisation is done over the entire time period of interest to obtain
time profiles of fluxes. The methodology of dynamic optimisation-based DFBA is combined
with the concept of minimisation of metabolic adjustment (MOMA) to model myocardial
energy metabolism (Luo et al., 2006). Minimisation of metabolic adjustment (MOMA), is
an alternative goal function to better fit FBA predictions to mutated strains (Segre et al.,

2002). These results show that the cellular metabolism does not always remain optimal during

65
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transient perturbations. In the comparative study of Schuetz et al. (2007) of different goal
functions, is was shown that only ATP or biomass maximisation has the best predicting power
compared to 13 C analysis. However, they only calculated one point for the whole batch and
did not use the methodology for batch modelling of Luo et al. (2006).

Traditionally many chemostats are performed with one limiting substrate (mostly carbon-
limitation). The use of two limiting substrates has been studied less extensively (Lee et al.,
1984; Egli, 1991; Zinn et al., 2004). Lee et al. (1984) experimentally showed that one can
change the limiting substrate (ammonium or carbon) by changing the dilution rate. This was
generalised by Egli (1991) who showed that the zone of dual substrate limitation is dependent

on the growth rate.

Outline of the work

The first part of this chapter extends MFA so that it can be applied to systems that are not
in steady state. The mathematical methodology needed to apply dynamic MFA is explained.

In the second part of this chapter, dynamic MFA is applied on experiments where steady state
cultures were switched from one limitation to another: from glucose limitation to ammonia
limitation and vice versa. The nitrogen-limiting medium contained 30 g/1 glucose and 0.65 g/1
ammonia, the carbon-limiting medium 15g/1 glucose and 1.3 g/l ammonia. The media were
designed as such that for both conditions the same biomass concentration was achieved in the
reactor broth. To assess the intracellular fluxes, dynamic metabolic flux analysis is applied.
At each time point, the exchange fluxes of metabolites are determined based on their con-
centration in the reactor broth. Those fluxes are used to solve an overdetermined metabolic

model, resulting in the determination of the intracellular flux values.

5.1 Materials and methods

5.1.1 Bacterial strain

Escherichia coli MG1655 [A\~, F~, rph-1, (fnr~ 267)del] was obtained from the Netherlands
Culture Collection of Bacteria (NCCB, Utrecht, The Netherlands).

5.1.2 Culture conditions
Media

Luria Broth (LB) medium and medium used for the shake flask cultivations is the same as

described in section 4.1.2.

The minimal medium consisted of 2.5g/1 (N-limited medium) or 5g/1 (C-limited medium)
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(NH,),S0,, 2g/1 KH,PO,, 0.5g/1 NaCl, 0.5g/1 MgSO, - 7H,0, 33g/1 (N-limited medium)
or 16.5 g/l (C-limited medium) Glucose - H,O, 1 ml/l vitamin solution and 100 pul/1 molybdate
solution (as described in section 4.1.2). All components for the medium of the continuous
culture were dissolved and filter-sterilised (pore size 0.22 um, Sartobran, Sartorius, Belgium).

The pH was left at approximately 5.4.

Cultivations

Culture conditions and inoculation are described in section 4.1.2.

The experiment in which the limiting substrate was changed from glucose to ammonia was
conducted at a dilution rate of 0.155h~!. The experiment in which the limitation was changed

from nitrogen to carbon, was conducted at a dilution rate of 0.142h~1.

For each experiment, steady state samples were taken: optical density (OD), cell dry weight
(CDW) and HPLC analysis. These samples were taken after waiting at least five residence
times after the batch phase. To ensure that the perturbations caused by sampling did not
influence steady state, another fiver residence times were waited before switching the limiting
nutrient. The transition between the two limitations was frequently sampled for OD and
metabolite data (HPLC). Subsequently again five residence times were waited before sampling

the second steady state condition.

5.1.3 Measurements

All measurement techniques are the same as those described in section 4.1.3.

5.1.4 Data Analysis

Due to the amount of data that had to be combined for each experiment, a custom program
was written in Python using the scipy scientific library (Jones et al., 2001-2007; Pérez &
Granger, 2007) to process the data and apply the algorithm as explained in section 5.2 (poly-
nomial fitting, extracting the derivatives and calculating the fluxes). Data were reorganised to
a format suitable for the programs written for metabolic flux analysis as explained in chapter

2 of this dissertation.

Each point in the time series of the transient experiments is only measured once. This is
deemed sufficient, as the error propagation in the calculations is not done when approxi-
mating the data with polynomes (as described in section 5.2.2). In the MFA calculations
afterwards however, a variance covariance matrix is needed. In this, it is not the absolute
values of the variances that are important, but the relative ones. They represent the cor-
rectness of a measurement and thus the weight it will have in balancing the measurements in

the overdetermined system. Therefore the variance covariance matrix calculated in chapter 4
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was used for the MFA part of this analysis, as the covariance matrix obtained in chapter 4,

is from samples processed the same way as those from this chapter.

The MFA modelling was performed as described in chapter I. The metabolic model used for
this study contains 136 reactions (figure 5.1) and 150 metabolites of which 12 are exchangeable
with the environment. There are 142 independent equations and 136 + 12 = 148 unknowns.
Thus at least 6 measurements have to be performed in order to fully solve the model. Actually
10 exchange metabolites were measured (CO,, O,, NHy, PiOH, acetate, lactate, pyruvate,

succinate, glucose and biomass) giving 4 redundant measurements for flux balancing.

5.2 Dynamic metabolic lux analysis

5.2.1 DMPFA: the concept

In classical metabolic flux analysis, the measured fluxes are obtained by quantification of
the metabolite concentrations in the reactor broth of a chemostat culture. But what should
be done under transient conditions? Measurements of external metabolites can not directly
be used for fluxes. In Provost & Bastin (2004) MFA is applied to the batch phase of the
culture of Chinese Hamster Ovary (CHO) cells. The time series of the measured metabolite
concentrations are approximated with a line. The slope of those lines is a direct measure of
the fluxes entering and leaving the cells and is used to calculate internal reaction rates via
MFA.

This approach of Provost & Bastin (2004) can be formalised and extended. Instead of limiting
oneself to cases where linear regression is sufficient to adequately capture the dynamics of the
measured metabolites during the transients, one can take the derivative in each point, which

is, by definition, a flux.

The differential equation that governs the change of a component in the reactor broth can be
written as: 4C
Where C' is the concentration of the component, Cj, the concentration of the component in

the influent, r, the production rate and D the dilution rate.

From equation 5.1 one may calculate the net reaction rate r,, using the following approxima-

tion for the derivative in a point n of the time series:

dC|  Cp—Chy

a _ 2
At |, tn—tn1 (5:2)

Eventually, more points around the point of interest could be used to perform linear regression.

However, because of the noisiness of the data, this way of working does not give satisfying
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Figure 5.1: List of reactions used in the model.

G6P «—— TF6P

ATP + F6P — ADP + FBP

FBP «— G3P + DHAP

DHAP +«— G3P

PiOH + NAD + G3P «— NADH + H + BPG

ADP + BPG «— ATP + 3PG

3PG  «— 2PG

2PG  «— H20 + PEP

ADP + PEP — ATP + Pyr

NAD + Pyr + CoA — NADH + H + AcCoA + CO2
H20 + AcCoA + OAA  — CoA + Cit

Cit iCit

NAD + iCit «— NADH + H + CO2 + aKGA

NAD + CoA + aKGA — NADH + H + CO2 + SucCoA
ADP + PiOH + SucCoA «— ATP + CoA + Suc

—

FAD + Suc  — FADH2 + Fum
H20 4+ Fum «— Mal
NAD + Mal «— NADH + H + OAA

H20 + PEP + CO2 — PiOH + OAA

NADH + H + Pyr  «— NAD + Lac

Pyr + CoA — AcCoA + FA

ADP + PiOH 4+ AcCoA «— ATP + CoA + Ac
1.33ADP + 1.33PiOH + NADH + H + 0.502 —
NAD + 2.33H20

H20 + CO2 +«—— H2CO03

NADP + G6P — NADPH + H + 6PGL

H20 + 6PGL — 6PG

NADP + 6PG — NADPH + H + CO2 + RI5P
RI5P  «— RSP

RI5P «—— Xu5P

R5P + XubP  «— G3P + S7P

G3P + S7TP «—— FG6P + E4P

Xu5P + E4P «+— F6P + G3P

GLC + PEP  — G6P + Pyr

PPiOH + H20 — 2PiOH

NADPH + H + aKGA + NH3 «— NADP + H20 + Glu
ATP + NH3 + Glu — ADP + PiOH + Gln

ATP + H20 + Asp + GlIn  — AMP + PPiOH + Asn + Glu
OAA + Glu  «— aKGA + Asp
Pyr + Glu  «— aKGA + Ala
aKIV + Glu  «— aKGA + Val
NAD + H20 + AcCoA + aKIV + Glu
+ CO2 + aKGA + Leu

NADPH + H + 2Pyr — NADP + H20 + CO2 + aKIV
NADPH + H + Pyr + Glu + Thr  — NADP + H20 + CO2
+ aKGA + NH3 + Ile

ATP + 2NADPH + 2H + Glu
+ H20 + Pro

NAD + H20 + 3PG + Glu
+ Ser

Ser + THF — H20 + Gly + MeTHF

2ATP + 3NADPH + ThioredH2 + 3H + H2S04 — ADP +
PPiOH + 3NADP + Thiored + 3H20 + H2S + PAP

H20 + PAP  — AMP + PiOH

H2S 4+ AcCoA + Ser  — CoA + Cys + Ac

ATP + R5P  — AMP + PRPP

ATP + 2NAD + 3H20 + GIn + PRPP  — 2PPiOH + PiOH
+ 2NADH + 2H + aKGA + His + AICAR

Glu 4+ Chor — H20 + CO2 + aKGA + Phe

NAD + Glu 4+ Chor — NADH + H + CO2 + aKGA + Tyr
Gln + Ser + Chor + PRPP — PPiOH + 2H20 + G3P + Pyr
+ CO2 + Glu + Trp

H20 + PEP + E4P — PiOH + Dahp

Dahp — PiOH + Dhq

Dhq H20 + Dhs

NADPH + H + Dhs «— NADP + Shi

ATP 4+ Shi — ADP + Shi3P

PEP + Shi3P — 2PiOH + Chor

ATP + H20 + HSer —— ADP + PiOH + Thr

NADPH + H + Pyr + SucCoA + Glu + AspSA  — NADP +
CoA + aKGA + Suc + MDAP

MDAP — CO2 + Lys

H20 + SucCoA + Cys + MTHF + HSer
+ NH3 + Met + THF

ATP + NADPH + H + Asp
AspSA

NADPH + H + AspSA  «—— NADP + HSer

2ATP + H20 + H2CO3 + GIn  — 2ADP + PiOH + Glu +
CarP

ATP + NADPH + H + H20 + AcCoA + 2Glu — ADP +
PiOH + NADP + CoA + aKGA + Orn + Ac

ATP + Asp + Orn + CarP  — AMP + PPiOH + PiOH + Fum
+ Arg

NADPH + Thiored + H +— NADP + ThioredH2

2H202 — 2H20 + 02

1.33ATP +

— NADH + H + CoA

— ADP + PiOH + 2NADP

— PiOH + NADH + H + aKGA

—

—  Pyr + CoA + Suc

— ADP + PiOH + NADP +
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FAD2NAD:
AICARSYLR:

IMPSYLR:
AMPSYLR:
AdKN:
ADPRD:
dADPKN:
IMPDH::
GMPSY:
GuKN:
GDPKN:
GDPRD:
dGDPKN:
UMPSYLR:

UrKN:
UDPKN:
CTPSY:
CDPKN:
CMPKN:
CDPRD:
dCDPKN:
UDPRD:
dUDPKN:
dUTPPPAS:
dTMPSY:
dTMPKN:
dTDPKN:
DHFRD:
FTHFSYLR:
GlyCA:
MeTHFRD:
AcCoACB:
MalCoATA:
AcACPSY:
C120SY:

C140SY:
C160SY:
C1818Y:

AcylTF:
Go3PDH:
DGoKN:
CDPDGoSY:
PSerSY:
PSerDC':
GInF6PTA:
GleAnMU:
NAGUrTF:
LipaSYLR:

A5PIR:
PGLCMT:

CMPKDOSYLR2H20 + PEP + Ar5P + CTP

ADPHEPSY:
UDPGIcSY:
EthANPT:
LpsSYLR:

PGSYLR:
CLSY:
PeptidoSYLR:

GlegSY:
ATPHY:
DNASYLR:
RNASYLR:

ProtSYLR:

LipidSYLR:
BiomSYLR:

69

NAD + FADH2 +— NADH + FAD + H

6ATP + 3H20 + CO2 + Asp + 2Gln + Gly + FA + PRPP
— 6ADP + PPiOH + 6 PiOH + Fum + 2Glu + AICAR

FTHF + AICAR — H20 + THF + IMP

Asp + GTP + IMP — AMP + PiOH + Fum + GDP

ATP + AMP +«— 2ADP

ADP + ThioredH2 — Thiored + H20 + dADP

ATP + dADP — ADP + dATP

NAD + H20 + IMP — NADH + H + XMP

ATP + H20 + Gln + XMP — AMP + PPiOH + Glu + GMP
ATP + GMP — ADP + GDP

ATP + GDP — ADP + GTP

ThioredH2 + GDP ~ —  Thiored + H20 + dGDP

ATP + dGDP — ADP + dGTP

02 + Asp + PRPP + CarP  — PPiOH + PiOH + H20 + CO2
+ UMP + H202

ATP + UMP — ADP + UDP

ATP + UDP — ADP + UTP

ATP + H20 + GIn + UTP  — ADP + PiOH + Glu + CTP
ATP + CDP «— ADP + CTP

ATP + CMP — ADP + CDP

ThioredH2 + CDP  —  Thiored + H20 + dCDP

ATP + dCDP — ADP + dCTP

ThioredH2 + UDP  — Thiored + H20 + dUDP

ATP + dUDP — ADP + dUTP

H20 + dUTP — PPiOH + dUMP

MeTHF 4+ dUMP — DHF + dTMP

ATP + dTMP — ADP + dTDP

ATP + dTDP — ADP + dTTP

NADPH + H + DHF — NADP + THF

NADP + H20 + MeTHF — NADPH + H + FTHF

NAD + Gly + THF «— NADH + H + CO2 + NH3 + MeTHF
NADH + H + MeTHF — NAD + MTHF

ATP + H20 + AcCoA + CO2 «— ADP + PiOH + MalCoA
MalCoA + ACP «— CoA + MalACP
MalACP  — CO2 + AcACP

10NADPH + 10H + AcACP + 5MalACP
5H20 + 5CO2 + C120ACP + 5ACP
12NADPH + 12H + AcACP + 6MalACP
6H20 + 6 CO2 + C140ACP + 6 ACP
14NADPH + 14H + AcACP + 7MalACP
7H20 + 7CO2 + C160ACP + 7ACP
15NADPH + 15H + AcACP + 8MalACP
8H20 + 8CO2 + CI81ACP + 8ACP
C160ACP + CI181ACP + Go3P — 2ACP + PA

NADPH + H + DHAP «— NADP + Go3P

ATP + DGo — ADP + PA

CTP + PA  «— PPiOH + CDPDGo

Ser + CDPDGo — CMP + PSer

PSer — CO2 + PEthAn

F6P + Gln  — Glu + GA6P

GAGP  «—— GAIP

AcCoA + UTP + GAIP — PPiOH + CoA + UDPNAG
ATP + 2 CMPKDO + 2 UDPNAG + C120ACP + 5 C140ACP —
ADP + 2CMP + UMP + UDP + 6 ACP + Lipa + 2 Ac

RI5SP  «— Ar5P

G6P  «— GIP

10NADP +

—

—

12NADP +

—

14NADP +

—

15NADP +

— PPiOH + 2PiOH +
CMPKDO

ATP + S7TP — PPiOH + ADPHEP

GIP + UTP — PPiOH + UDPGlc

CMP + PEthAn «— CDPEthAn + DGo
3ADPHEP + 3CMPKDO + 2UDPGlc +
2CDPEthAn — 3ADP + 3CMP
Lps

Go3P + CDPDGo — PiOH + CMP + PG

PG + CDPDGo — CMP + CL

5ATP 4+ NADPH + H 4+ PEP + 3Ala + MDAP +
2UDPNAG — 5ADP + 7PiOH + NADP + UMP + UDP +
Peptido

ATP + GIP  — ADP + PPiOH + Glcg

ATP + H20 — ADP + PiOH

2H20 + 0.246dATP 4 0.254dGTP 4+ 0.254dCTP +
0.246dTTP — 2PiOH + DNA

0.262ATP + 2H20 + 0.322GTP + 0.2CTP + 0.216UTP —
2PiOH + RNA

2ATP + 3H20 + 0.0961Ala + 0.05506 Arg + 0.04505 Asn
-+ 0.04505Asp + 0.01702Cys + 0.04905GIn + 0.04905Glu +
0.1151 Gly + 0.01802 His + 0.05405 Ile + 0.08408 Leu + 0.06406 Lys
+ 0.02903Met + 0.03504 Phe + 0.04104Pro + 0.04004 Ser
+ 0.04705Thr + 0.01101 Trp + 0.02603 Tyr + 0.07908 Val +
2GTP — 2ADP + 4PiOH + 2GDP + Prot

0.0266 CL + 0.202PG + 0.7714 PEthAn Lipid

0.004561 Gleg  +  0.0002663Lps +  0.0008933 Peptido ~ +
0.002291 DNA + 0.01446 RNA + 0.1227 Prot + 0.003642 Lipid
Biom

Lipa  +
+ 2CDP + 2UDP +

—

—

A description of the metabolites can be found in
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results. Therefore approximation techniques have to be used. In this work, polynomial

approximation was chosen.

5.2.2 Polynomial fitting

Savitzky & Golay (1964) developed a method to generate a smooth curve (with derivatives)
from data that have uniformly spaced abscissa: a polynomial through 2m 4+ 1 data points is
fitted and the central point of the set is approximated with the value given by that polynomial.
This is repeated for each point of the dataset. They prove that this equals to use a convolution
function, for which the values can be calculated once and then subsequently used in the data
smoothing algorithm, resulting in a substantial decrease of computation time. Steinier et al.

(1972) made some corrections to the initial paper and introduced matrix notations.

With use of the polynomial fitting algorithms found in Jones et al. (2001-2007) a software
tool was developed to approximate the data by using different polynomials. In this tool,
equally spaced abscissa were not needed. To cover the whole time series, a moving window
approach was used (figure 5.2). The points inside the outer window, W7, are used for fitting
the polynomial. The derivative of the polynomial in the points of interest falling in the inner
window Ws are used for dynamic MFA. Making the inner window smaller than the outer
window ensures a smooth transition between the different polynomials. However, if the inner
window is too small compared to the outer window, the noise on the data is not filtered
sufficiently, yielding non realistic fluctuations in the derivatives (the derivatives represent the

change in concentration).

The windows are moved appropriately to cover the whole data range. For each time series,
optimal values for W; and W have to be sought (i.e. the experimenter tries different values
and visually evaluates the quality of the fit). Sometimes one polynomial suffices to nicely
interpolate the whole data series, but for most metabolite time series, multiple polynomials

have to be chained together.

Some of the available data series were impossible to smooth with polynomials. They behaved
like a typical logistic curve. Hence, the logistic curve was added to the set of functions that

could be used to approximate the data:

1+ py ePst
L(t) =po ————— .
() =ro 1 (5.3)

The polynomial or logistic functions give a smoothed concentration time profile and enable
to calculate the derivative of the concentrations over time. This can subsequently be used in

equation 5.1 to calculate the cellular production (or consumption) fluxes:

dc
rp=— =D (Cin = C) (5.4)
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Figure 5.2: A moving window is run through a time series of data. W7 is the polynomial fitting

window, W5 is the interpolation window.

Having rp, classical MFA techniques (as explained in section 2.5) can be applied at each
time point. The results of those models, evaluated at the different time points, can then be

combined to obtain a time profile of internal fluxes.

5.2.3 Growth rate calculation

During the transient period, the assumption that the growth rate is equal to the dilution rate

does not hold anymore. However, equation 5.4 can explicitly be written for biomass:

dCp;
T'p,Biom = % + D CBiom (55)

from which the growth rate can be calculated as:

= T'p,Biom _ dCBiom 1

= + D 5.6
C Biom dt CBiom ( )

5.3 Results

5.3.1 Polynomial fitting

The polynomials fitted through the data (figure 5.3 and 5.4) are used to obtain the concen-
tration, C, and the derivative of the concentration to the time, dC/dt in each point. From
those values, the conversion rate can be calculated (equation 5.4). Biomass concentrations

were calculated from OD values, after performing a calibration curve with cell dry weight

(CDW).

Much tuning is needed of the parameters Wy, Wy (see figure 5.2 on page 71) and the maximal
order of the polynomials, to get adequate fits. Even then, taking the derivative will not always
yield satisfying results. To avoid the steep derivatives that polynomials sometimes give, the
derivative was calculated by taking the polynomial value of the previous point and calculating
the slope of this point to the point of interest. One can observe this in the figures 5.3 and
5.4 as the interpolated points are connected with straight lines and not with the original

polynomials.

At time zero, the media were simply switched. No cells were extracted and resuspended in the

other medium, as done in Atkinson et al. (2002). Thus at each switch of limiting compound,
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Figure 5.3: Polynomial fit of some metabolites (expressed in g/1) for the experiment where carbon-

limiting medium was replaced with nitrogen-limiting medium. The switch is made at

time zero, when the cells are in carbon-limited steady state. Steady state values of five

residence times before the switch and five residence times after the switch are not shown.

there is an abundance of both, as the medium limited in carbon is saturated with nitrogen

while the medium limited in nitrogen is saturated with glucose. In the N to C limitation case,

nitrogen abundance is reached before all the glucose is depleted (figure 5.4). For the C to N

limitation experiment it seems as if N limitation is reached not much later than when carbon

abundance starts (figure 5.3). However, it should be noted that the steady state concentration

of NH; in the C to N limitation experiment is around 0.2g/l (data not shown on figure 5.3,

as this value falls out the time frame shown) while it is 0.1 g/1 in the N to C limitation case.

Probably that even this is too high and that for low concentrations of nitrogen, the LCK238
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Figure 5.4: Polynomial fit of some metabolites (expressed in g/1) for the experiment where nitrogen-
limiting medium was replaced with carbon-limiting medium. The switch is made at time
zero, when the cells are in nitrogen-limited steady state. Steady state values of five

residence times before the switch and five residence times after the switch are not shown.

nitrogen measurement kit from Hach Lange is not suitable.

5.3.2 Carbon balance

As can be seen in figure 5.5, the carbon balances are in most cases not significantly different
from one. In the N to C substrate limitation experiment, the errors on the carbon balance
are larger. This could be due to some accumulation effects in the first hours after the switch,

where the biomass concentration decreases. The excess carbon out around 12 hours after the
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Figure 5.5: Carbon balance. Left: C-limitation to N-limitation; right: N-limitation to C-limitation.

Error bars represent the standard deviations.

switch coincides with the acetate peak and the start of the glucose limitation (right part of
figure 5.4). However, these data points are not eliminated and the analysis is continued with

these points included.

5.3.3 Metabolic flux analysis

A long lag phase was observed in the experiment in which the nitrogen-limited culture was
switched to carbon-limitation (figure 5.4). To try to find a possible explanation for this, the

nitrogen metabolism is briefly reviewed.

Nitrogen metabolism regulation

The central molecule in the signal transduction mechanisms responsible for the regulation of
nitrogen metabolism in E. coli is PII (Ninfa & Atkinson, 2000). To be active, PII must be
uridylylated by a bifunctional uridylyltransferase/uridylylremoving enzyme (UTase/UR, ginD
gene product). High glutamine concentrations in the cell (indicating ammonium sufficiency)
activate the UR activity: PII is not uridylylated and is inactive. Low glutamine concentrations
(indicating an ammonium limitation) result in UTase activity and PII is activated to PII-UMP.
It was shown in vitro (Jiang & Ninfa, 1999; Ninfa & Jiang, 2005) that very high concentrations
of alpha-ketoglutarate bind with PII. In this state, PII would not be able to bind with NtrB
which finally would result in NtrC being phosphorylated and thus activated (NtrB and NtrC
are nitrogen metabolism regulators). But this hypothesis could not be proven experimentally
(Maheswaran & Forchhammer, 2003).
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Figure 5.6: Metabolic regulation of GInSY (Glutamine synthetase). UTase: uridylyltransferase, UR:
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The three reactions for incorporation of ammonia in E. coli are:

GluDH : aKGA + NH; + NADPH — Glutamate + NADP™
GInSY : Glutamate + NH; + ATP — Glutamine + ADP
GluSY : Glutamine + aKGA + NADPH — 2 Glutamate + NADP™

Under nitrogen rich conditions, NHj; is incorporated into the cellular metabolism by glutamate
dehydrogenase (GluDH). At concentrations below 1 mM, the affinity of GluDH to NH, is too
low and the reaction tends to occur in reverse direction, liberating ammonia (Burkovski, 2003).
Then glutamine synthetase (GInSY, gene product of ginA) and glutamate synthase (GluSY)
take over. When growing under energy rich conditions, 15 % of the ATP requirement of the
cells is due to the GInSY/GluSY system (Reitzer, 2003), thus GInSY has to be down-regulated

under nitrogen rich conditions (figure 5.6).

The regulation of GInSY is achieved by adenylylation, catalysed by adenylyltransferase (ATase,
gene product of glnE). PII-UMP (nitrogen poor conditions) stimulates the deadenylylation
function of ATase and GInSY-AMP is converted to active GInSY, while PII (nitrogen rich
conditions) activates the adenylylation of GInSY (Bueno et al., 1985).
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Figure 5.7: Genetic regulation of glnALG by the NtrB/NtrC two component system.

The transcription of glnALG is regulated by the NtrB/NtrC two component system (figure
5.7). Phosphorylation of NtrC (gene product of ginG) is catalysed by NtrB (gene product
of ginL). But NtrB combined with PII (thus under nitrogen sufficient conditions) has phos-
phatase activity and dephosphorylates NtrC (Keener & Kustu, 1988). The ¢ginALG operon is
transcribed from tandem promoters. Expression from the weak promoter ginAp1 (using o°-
factor, Mao et al., 2007) is repressed by NtrC-P and activated by high cAMP levels (typically
found in carbon-limiting conditions) while expression from the strong promoter glnAp2 (using
o%4-factor, Mao et al., 2007) is activated by NtrC-P (Reitzer & Magasanik, 1985). Thus basal
levels of glutamine synthetase, and its gene expression regulators NtrB and NtrC are assured.
The genes ginB (PII), ginD (UTase) and ginE (ATase) are constitutively expressed and thus

not under influence of the nitrogen status of the cells (van Heeswijk et al., 1993).

Actually, E. coli contains two PII like proteins: the gene product from ¢inB, that is consti-
tutively expressed (Mao et al., 2007) and the gene product of glnK. The expression of glnK
depends on the presence of UTase, NtrC and the absence of ammonia (van Heeswijk et al.,
1996).

The operon containing ginK also has the genetic code for amtB. AmtB facilitates diffusion
of NH,; and is not an ammonium transporter (Soupene et al., 2002; Javelle et al., 2005).
However, NHI rather than NH; is present in the medium at neutral pH. Structural deter-
mination of AmtB showed that there is an extracellular high affinity ammonium ion binding
site for scavenging NHI at very low concentrations (also to discriminate against water, which
otherwise might compete too effectively with ammonia). As no functional group for splitting
the HT ion off is present near this site, small basic molecules (e.g. phosphates, carbonates)

must be present in the periplasmic region (Winkler, 2006).

Prokaryotes in which the gene pair glnK amtB is not present, are pathogenic bacteria, whose

genomes have undergone reductive evolution and who get their nitrogen from the host organ-
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Figure 5.8: Fluxes in mol/l/hof the biomass production. Open symbols are the values as derived
from the polynomials with formula 5.4, closed symbols are values obtained after flux
balancing. Left: C-limitation to N-limitation; right: N-limitation to C-limitation. The
first point left of each figure is the steady state value before the medium switch. The
last point right on each figure is the steady state value after at least 50 hours. Error
bars represent the standard deviations.

ism (Thomas et al., 2000). Interestingly it was shown that E. coli lacking amtB grows faster
on the poor nitrogen source arginine than the wild-type, leading to the hypothesis that NH,
may diffuse outward through AmtB when the internal concentration is much higher than the
external one (Soupene et al., 1998). Under ammonium abundance, GInK-UMP (signaling
nitrogen rich conditions) binds to AmtB and inactivates it (Couts et al., 2002; Javelle et al.,
2004).

Lag phase when switching from N-limitation to N-abundance

In the beginning of the switch from nitrogen-limiting medium to glucose-limiting medium, the
glucose-limiting medium adds nitrogen to the culture broth while there is still an abundance
of glucose. This can be seen in figure 5.4, in the glucose profile. The glucose concentration is
only zero after 12 hours while the nitrogen concentration already reaches steady state after
about 5 hours. At the medium switch, as there is extra nitrogen, the biomass growth could
increase, but apparently F. coli needs some time to adapt to the new conditions. The biomass
flux even decreases as there is nitrogen added and becomes almost zero (figure 5.8). Only
seven hours after the medium switch, the growth rate increases sharply to attain almost
0.6h~! (see the right part of figure 5.9). Actually this increased growth rate coincides with
the uptake of all glucose left in the broth (figure 5.4).

The ATP hydrolysis reaction (figure 5.10) lumps all the maintenance requirements and futile
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Figure 5.9: The growth rate of the cells during the transients. Left: C-limitation to N-limitation;
right: N-limitation to C-limitation. The first point left of each figure is the steady state
value before the medium switch. The last point right on each figure is the steady state
value after at least 50 hours. Error bars represent the standard deviations.

cycles (as including all the futile cycles in the metabolic model would yield parallel path-
ways and the system of equations would not be solvable without measuring intracellular
fluxes). It can be seen that during the lag phase of the experiment switching nitrogen to
carbon-limitation (right part of figure 5.10), the ATP maintenance requirement is around
1 molATP /molBiom/h, which is high compared to the values found in chapter 3, figure 3.6.
It seems even more unusually high because there is minimal growth during this period. This
high ATP requirement in the beginning of the lag phase correlates with a high uptake of
glucose (PTS reaction in figure 5.12) and an increased flux in the TCA cycle (5.12).

Normally bacterial cells are highly resistant to ammonium and the negative effects of high
NHI concentrations are due to an enhanced osmolarity or increased ionic strength of the
medium and not caused by ammonium itself (Miiller et al., 2006). But when changing
the medium from nitrogen-limitation to carbon-limitation, the environment of the bacte-
ria switches from low NHI concentrations to high ones, and it could be that E. coli needs
a certain time to adapt. The scavenging active during N-limitation could still be active in
the beginning of the transition, resulting in a high influx of ammonia. To counter this, active
efflux is needed, draining ATP and explaining the high energetic cost in the beginning of the
addition of ammonium (right part of figure 5.10).

Such a mechanism has been observed in plants, where NHI toxicity is due to the inability of
root cells to limit the influx of ammonium. The high cytosolic NHI concentration activates
high-capacity, energy demanding, ammonium efflux systems. This ammonium efflux can

constitute as much as 80 % of primary influx, resulting in a futile cycle of nitrogen across
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Figure 5.10: Fluxes through the ATP hydrolysis reaction (ATPHY reaction); it can be considered
as a measure for the maintenance requirement of the cells. Left: C-limitation to N-
limitation; right: N-limitation to C-limitation. The first point left of each figure is the
steady state value before the medium switch. The last point right on each figure is the
steady state value after at least 50 hours. Error bars represent the standard deviations.

the plasma membrane of root cells. This futile cycle carries a high energetic cost that is
independent of N metabolism and is accompanied by a decline in growth. Plants that are
resistant to high ammonium concentrations (e.g. Oriza sativa), limit the influx of ammonium
by lowering the polarisation of the cellular membrane. This lowering of membrane polarisation

is not observed in Hordeum wvulgare, sensitive to ammonium (Britto et al., 2001).

However, the lack of growth resulting from adding ammonium to cells adapted to ammonium
limitation has previously only be observed in cells lacking glnE (giving the gene product
ATase, responsible for activating/inactivating glutamine synthetase) while wild-type E. coli
did not show an impaired growth when shifted from ammonium limitation to excess (Kustu
et al., 1984; Atkinson & Ninfa, 1998). Furthermore, the lack of growth in glnE mutants
could be alleviated in cells constitutively expressing only low levels of glutamine synthetase
(Kustu et al., 1984), suggesting that the toxicity of ammonium in this case is not due to NH;
itself, but maybe to accumulation of glutamine and/or glutamate. Normally, when shifting
from ammonium limitation to carbon-limitation, the amount of active glutamine synthetase
decreases instantly (Friedrich & Magasanik, 1977). Possibly due to the lack of ATase, the
enzymatic glutamine synthetase regulation is lost, and only genetic regulation is present
(figure 5.6). If this would be the case in the strain used in this study, it could explain the
long lag phase after switching: the cells have to wait until enough glutamine synthetase is

denatured before being able to grow again.

Thus it seems like E. coli MG1655, the strain used in this study, has some anomalies in its
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before the medium switch. The last point right on each figure is the steady state value
after at least 50 hours. Error bars represent the standard deviations.
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after at least 50 hours. Error bars represent the standard deviations.
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nitrogen metabolism. It is known that multiple strains are denominated under this name
(Soupene et al., 2003). The strain used in this work originated from the Coli Genetic Stock
Center (CGSC) (personal communications from the Netherlands Culture Collection of Bac-
teria). The NCCB acquired this strain from CGSC prior to 1991. At that time, the strain
was sent out as being fnr~. Later it was found that the strain was actually a mixture of fnr*
and fnr strains (personal communication from Mary Berlyn). For the experiments in this
chapter, it turned out that the fnr- strain was used. More research is needed to find out why

this strain does not grow well when NH} is added to a nitrogen-limiting environment.

The lag phase found in the N-limitation to C-limitation experiment stands in sharp contrast
with the experiment in which the carbon-limiting medium is replaced with the nitrogen-
limiting one and thus carbon is added in the beginning of the switch while nitrogen is not yet
limiting. The growth rate increases instantly (figure 5.8). It is known that during carbon-
limitation, sugar regulons are upregulated, by internally synthesised sugars (Death & Ferenci,
1994). This was observed in chapter 3, where it can be seen in figure 3.11, that under glucose
limitation ptsG is upregulated. The results of the experiments described here show that this
upregulation permits the cells to almost instantly increase their growth rate when carbon is
added to a carbon-limited culture. The cells grow as fast as possible, until all nitrogen is
consumed and thus the glucose concentration in the reactor broth increases around the same

time as the nitrogen decreases (figure 5.3).

The peak of succinate (and the smaller peak of pyruvate) occurring around 5 hours after the
medium switch (figure 5.11) is probably due to the depletion of ammonium (figure 5.3). The
high flux through the glycolysis can not be stopped sufficiently quickly and the carbon is

excreted as pyruvate or diverted to PEPCB to be excreted as succinate.

Growth rates

Figure 5.9 depicts the different growth rates during the transient conditions occurring when
switching the limiting substrate. The same trends as in the biomass flux (figure 5.8) can
be observed. For the C- to N-limitation case, a sharp increase in growth rate is observed
in the beginning, while for the N- to C-limitation the growth rate decreases to almost zero
before increasing to 0.6 h~!, not far from the maximal growth rate of 0.7h~!. In the carbon
to nitrogen-limitation case, the maximal possible growth rate is never achieved and after a
sharp increase in the beginning to 0.35h~! the growth rate decreases. Acetate inhibition
(Luli & Strohl, 1990) could be a possible cause. Externally this is not observable in the first
hour (figure 5.3), but internally it can be seen that together with the growth rate, the acetate
flux increases dramatically (figure 5.11) suggesting an high intracellular acetate concentration

responsible for inhibition.

The sharp increase in growth rate of the cells at the beginning of the medium switch in the
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C- to N-limitation experiment (left part of figure 5.9), is not accompanied by an increased
flux through the Krebs cycle (figure 5.11, the first hour after the steady state point, labeled
with a triangle). An increase in biomass flux does not imply that intracellular fluxes relative
to the biomass flux should also increase. On the contrary, in the beginning the cells are more
energy-efficient than during the carbon-limited steady state (left subfigure of figure 5.10).

However, very quickly the flux through the glycolysis increases.

5.4 Conclusions and perspectives

The concept of dynamic metabolic flux analysis was introduced. It was shown how to trans-
form extracellular measurement data from dynamic experiments to flux values. It is not
always clear in transient experiments whether the decrease in extracellular metabolites is due
to the cells stopping production and the remaining product diluting out or whether the cells
are actively taking up the metabolites. Transforming the extracellular time series of concen-
trations to flux values can give the answer to that question. Furthermore, those flux values

can help to get insight into the intracellular reactions.

The transformation of time series of concentration measurements to flux values is based on
differentiation (in the mathematical sense: finding the derivative) of those time series. Differ-
entiation typically amplifies the noise on the data, therefore a noise-reducing step is needed
prior to the differentiation. In this work, this was done by polynomial filtering. Extensive
manual tuning of the parameters W; and Wy (windows of the polynomial interpolation, see
figure 5.2) was needed to get acceptable filtering. Manually drawing approximating (bezier)
curves to the measurement data would be a better approach because a researcher would be
able to incorporate his expert knowledge of the cellular processes and culture methods. For
example, in the beginning and at the end of the time series, the curves should have a first
derivative being zero, as the transient experiments start with cells in steady state and (an-
other) steady state is reached at the end. Also, the information seen in one metabolite could
be used in fitting the curve of other metabolites. For example, in figure 5.4, there is a small
dip at the beginning of the fitted curve of PiOH. This is probably just caused by random
noise, as at the same time the biomass goes down and one would expect an increase in phos-
phate concentration of the broth. When drawing the curves manually, it would also be easier

to ignore differences in variance in a time series (e.g. Suc in figure 5.4).

Of course, manually drawing curves is not very reproducible and there will be (small) dif-
ferences between different individuals. Automated methods that are able to cope with non-
uniform variance, that can do the fit for the whole dataset at once (and thus use the time
series from one metabolite for the fitting of other ones) and in which it is possible to define
beginning and ending conditions to the curves (derivatives being zero) are preferred, but they

will probably also require a lot of fine-tuning of the fitting parameters and may still not give
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satisfying results.

A lag phase was observed when cells adapted to a nitrogen-limiting environment, were supplied
with nitrogen. During this lag phase of several hours, ATP demand was high. No clear
physiological reason could be given. The only similar case described in literature for E. coli
is a glnE knock out, in which case the toxicity was not due to ammonium itself, but to the
accumulation of glutamine/glutamate because the downregulation of glutamine synthetase
is not operative (glutamine synthetase is downregulated by the gene product of glnE). A
possible explanation for the long lag phase observed in the N-to-C-limitation experiment
could be that sufficient glutamine synthetase has to denature before the accumulation of

glutamine/glutamate does not impair growth anymore.



Chapter 6

Protein overproduction strain:

influence on metabolism'

Escherichia coli is widely used for recombinant protein production, largely because it is well
characterised, fast and inexpensive to grow, and relatively easy to alter genetically. Dur-
ing the biochemical synthesis of proteins, production of nonessential metabolites can waste
carbon and energy that might otherwise be directed towards protein production. A promi-
nent example of a metabolite that accumulates during aerobic growth of F. coli on glucose
is acetate. Enzymatically synthesised from acetyl-coenzyme A (acetyl-CoA) in two steps
—phosphotransacetylase (encoded by pta) converts acetyl-CoA to the intermediate acetyl
phosphate, which is subsequently converted to acetate with the generation of ATP by acetate
kinase (ack)— acetate is also widely considered inhibitory to growth and protein production
(Aristidou et al., 1994; Chou et al., 1994; Jensen & Carlsen, 1990; Luli & Strohl, 1990).

Approaches for increasing cell density or protein yield in E. coli often focus on the reduction
of acetate formation, and a variety of methods has been studied (De Mey et al., 2007a). The
production of acetate can be blocked altogether, for example, by mutations in the pta and/or
ack genes (Dedhia et al., 1994; Diaz Ricci et al., 1991; LeVine et al., 1980; San et al., 1994).
Alternatively, acetate accumulation can be reduced by redirecting it or its precursors to other
biochemicals. For example, pyruvate can be converted to acetoin by acetolactate synthase
(Aristidou et al., 1994, 1995). Other strategies include various glucose feeding regimes (Kle-
man et al., 57, 1991, 1996; Kleman & Strohl, 1992, 1994; Lee, 1996; Riesenberg & Guthke,
1996), limiting growth rate by carbon-limited fed-batch schemes (Akesson et al., 2001; Kim
et al., 2004; Konstantinov et al., 1990; Lee et al., 1999; Lee, 1996; Lin et al., 2001) and utilisa-
tion of alternative feeds such as glycerol (Hahm et al., 1994; Lee, 1996), mannose (Andersen &

LParts of this chapter will shortly be submitted: M. De Mey, G. J. Lequeux, J. J. Beauprez, J. Maertens,
E. Van Horen, W. Soetaert, P. A. Vanrolleghem & E. J. Vandamme (2008). Transient metabolic modeling
of Escherichia coli MG1655 and MG1655 AackA — pta, pox B Apppc — p37 for recombinant 3-galactosidase

production. In preparation.
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von Meyenburg, 1980) or fructose (Aristidou et al., 1999). Also, supplementing the medium
(e.g. amino acids) has proven to be positive on reducing acetate (Han et al., 1992). Another
approach to keep the growth rate below the threshold for acetate production is the pH-stat,
where a nutrient feed is activated when the pH increases and variants, where the culture is
dosed with more nutrients than necessary. Unfortunately, many of these strategies reduce the

glucose uptake rate, which can simultaneously reduce the rate of protein production.

Recombinant protein production is believed to diminish the flow in the TCA cycle through
the withdrawal of the intermediates that serve as biochemical precursors. Ten amino acids
are biochemically derived from TCA cycle intermediates: aspartate, asparagine, methionine,
threonine, isoleucine, and lysine are derived from oxaloacetate, while glutamate, arginine,
proline, and glutamine are derived from a-ketoglutarate. The additional metabolic burden
resulting from recombinant protein production would likely further diminish the availabil-
ity of oxaloacetate, which could lead to additional acetate formation from acetyl-CoA. If
withdrawal of TCA cycle intermediates limits cell growth and protein production and conse-
quently increases acetate accumulation, then providing cells with improved metabolic means

to replenish these TCA cycle intermediates should increase protein production.

Anaplerotic biochemical pathways are the enzymatic reactions that replenish TCA cycle in-
termediates. In FE. coli, the principal anaplerotic pathway during growth on glucose is the
formation of oxaloacetate from phosphoenolpyruvate (PEP) by PEP carboxylase, and this
single pathway must supply carbon for the amino acids and other cellular building blocks
derived from TCA cycle intermediates. Previous research indicated that a combination of
directly reducing the carbon flow to acetate and anticipating on the underlying metabolic
and regulatory mechanism that lead to acetate, is the most promising approach to overcome
acetate formation and improve recombinant protein production (De Mey et al., 2007b). Also,
expressing the heterologous anaplerotic enzyme pyruvate carboxylase of Rhizobium etli in F.
coli allows replenishing the TCA cycle intermediates and seemed to have a positive influence

on recombinant protein production (March et al., 2002).

Aim of work

The aim of this work was to improve our understanding of recombinant protein synthesis
in E. coli. To achieve this, we analysed the production of a model recombinant protein,
(-galactosidase, in response to the constitutive overexpression of the anaplerotic PEP car-
boxylase pathway. Therefore, a ppc overexpressing mutant of E. coli MG1655 AackA—pta,
Apox B was created in which the natural ppc promoter was replaced with a strong constitutive
artificial promoter (De Mey et al., 2007c).

Metabolic flux analysis permits to calculate intracellular reaction fluxes by measuring only

exchange rates of the cell with the environment. Thus with concentration measurements of
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the metabolites in the reactor broth, MFA permits to know the fluxes in the cells. But this
requires that the reactor is in steady state. However, in this work, (-galactosidase production
is started after the cultures reach steady state. Therefore, dynamic MFA (from which the
principles are explained in section 5.2) is utilised and MFA is applied to an overdetermined
system that is not in steady state. At each time point, the fluxes are calculated and used as
input for the metabolic flux model. In this way the intracellular fluxes of the transient phase

during which recombinant protein production is induced, can be revealed.

6.1 Material and methods

6.1.1 Bacterial strain and plasmids

Escherichia coli MG1655 [\, F~, rph-1, (fnr~ 267)del | (labeled WT in the figures) was
obtained from the Netherlands Culture Collection of Bacteria (NCCB, Utrecht, The Nether-
lands). E. coli MG1655 AackA—pta, ApoxB, Apppc ppc—p37 [A\~, F, rph-1, rfo-50, (fnr-
267)del, AackA-pta, ApoxB, Apppc ppc—p37 | was constructed in the Laboratory of Genet-
ics and Microbiology (MICR) using the method of Datsenko & Wanner (2000). Plasmid
pTrcHisTopoLacZ was obtained from Invitrogen (Merelbeke, Belgium). This expression plas-

mid contains the model recombinant protein (-galactosidase coded by the gene LacZ.

The expression plasmid pTrcTopoHisLacZ was transformed in competent cells of E. coli
MG1655 and E. coli MG1655 AackA—pta, ApoxB, Apppc ppc—p37 using the simplified pro-
cedure of Hanahan et al. (1991).

6.1.2 Culture conditions, sampling and sample analysis

Carbon-limited chemostat experiments of F. coli were performed in two liter Biostat B culture
vessels (Sartorius-BBH Systems, Melsungen, Germany) with 1.5 | working volume as described
in section 4.1.2. Sampling for CDW, extracellular measurements and metabolites analysis was

done as described in section 4.1.3.

6.1.3 Step experiment

Step experiments were performed after the cells attained steady state. Then, during 7 hours
a 1 mM IPTG solution (isopropyl-g8-D-thiogalactopyranoside) was supplied to the vessel to
induce the ptrc promoter on the pTrcHisTopoLacZ plasmid.

During the step experiment, every 15 min samples for ODggg, extracellular metabolite mea-
surements and [-galactosidase activity were taken using the rapid sampling loop and the cold

stainless bead sampling method, immediately followed by centrifugation (section 4.1.3).
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6.1.4 Data analysis

Glucose and organic acids were determined by High Performance Liquid Chromatography
(HPLC) on a Varian Prostar HPLC system (Varian, Sint-Katelijne-Waver, Belgium). Phos-
phate determination was done as described in section 4.1.3. Quantification of total nitrogen in
the culture medium was performed using the LCK238 kit from HACH Lange GmbH (Meche-

len, Belgium) according to the manufacturers protocol.

6.1.5 [-galactosidase assay

Cell lysis using the EasyLyse-kit (Epicentre Biotechnologies, BIOzymTC, Landgraaf, The
Netherlands) was done as recommended by the manufacturer in the EasyLyse Bacterial Pro-
tein Extraction Solution manual. -galactosidase activity was assayed as described by Miller
(1972) with some modifications: 50 ul sample was added to 200 ul 16 mM ortho-nitrophenyl-
galactopyranoside (ONPG, in phosphate buffer: 100 mM phosphate, 1 mM MgCl,, pH 7.4).
The absorbance at 415 nm was measured in a microplate reader (680 XR microplate reader,
Bio-Rad, Eke, Belgium) during 10 minutes. For each batch of measurements, a calibration
curve was made using a stock solution of 1 unit/pul commercial -galactosidase of Escherichia
coli (Fluka, Bornem, Belgium). This stock solution was used to make a standard series from
0 units/pl to 0.003 units/pl.

6.1.6 Dynamic metabolic flux analysis

Dynamic MFA was done as described in section 5.2.

6.2 Results and discussion

The capacity for recombinant protein production was compared for two strains: MG1655 and
MG1655 AackA—pta, ApoxB, Apppc ppc—p37. Therefore, the commercially available expres-
sion plasmid pTrcHisTopoLacZ was transformed in competent cells of MG1655 and MG1655
AackA—-pta, ApoxB, Apppc ppc—p37, respectively. Insertion of the plasmid was checked by
antibiotic resistance and control restriction digest on purified plasmids with restriction en-
zymes Ncol and Alwnl (New England Biolabs, The Netherlands) in NEB Buffer 4 (New
England Biolabs) at 37°C. The resulting DNA fragment pattern was checked on a 1.2%
agarosegel in TAE-buffer (50x stock solution, Invitrogen, Merelbeke, Belgium)

6.2.1 Step experiment

To compare the production of recombinant (G-galactosidase of E. coli MG1655 with and
without constitutive phosphoenolpyruvate carboxylase activity and cutting off the acetate

pathway, a chemostat experiment at a dilution rate of 0.1 h~! was done for both strains. When
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Figure 6.1: Time series for the biomass concentration (based on the OD measurements), % CO,

in the exhaust gas, S-galactosidase concentration (based on activity measurements) and
residual glucose for seven hours during the induction of pTrcHisTopoLacZ in MG1655
(open symbols) and MG1655 AackA—pta, Apox B, Apppc ppc—p37 (closed symbols). The
lines through the points represent the polynomial fits.

adding IPTG in the feed, to obtain continuous induction, excessive foaming was observed.

This was caused by a too high protein production. For this reason, no IPTG was added

in the feed and a step experiment was conducted when the steady state phase was reached.

During seven hours, the ptrc promoter of the pTrcHisTopoLacZ plasmid was induced with

IPTG and every 15min, a sample was taken. In figure 6.1 the evolution of the biomass,
% CO,, intracellular (-galactosidase activity and residual glucose for MG1655 and MG1655
AackA—-pta, ApoxB, Apppc ppc—p37 during the pulse experiment is shown. The extracellular
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(-galactosidase activity was also measured in the supernatant of the broth, but no activity

was detected.

During the step experiment, the biomass (figure 6.1) follows the same pattern for the two
different strains. First, there is a slight increase in biomass concentration followed by a
stagnation. Subsequently, there is a second increase followed by a decrease around 4 h after
the start of induction. Both strains have a sharp increase in CO, production during the first
30 minutes of the induction followed by a gradual increase. After 3.5h, a difference between
the two strains can be noticed in the CO, data. While for MG1655 the CO, keeps increasing
until 5h followed by an exponential drop to 0.65 %, the CO, of MG1655 AackA-pta, ApozxB,
Apppc ppc—p37 drops immediately but not as low as for MG1655 and then fluctuates around
0.9%

During the first two hours of the step experiment, the cells produce more [-galactosidase
reflected by more enzyme activity (figure 6.1). The increase in (-galactosidase is faster and
higher in MG1655 AackA-pta, ApoxB, Apppc ppc—p37 which indicates that this strain is
a better recombinant protein producer. Next there is a slight decline and stagnation in
the [-galactosidase production. After 3.5 hours, the S-galactosidase production in MG1655
improves somewhat and finally stagnates. (-galactosidase production in MG1655 AackA—pta,
ApoxB, Apppc ppc—p87, on the other hand, keeps increasing. At the end, after 7 hours of
induction, the (-galactosidase production in MG1655 AackA-pta, ApoxB, Apppc ppc—p37
is approximately 5 times higher compared to the (-galactosidase production in MG1655.
Also a difference in glucose consumption (figure 6.1) for the two different strains can be
observed. After 4 h of induction, the glucose consumption of MG1655 AackA—pta, ApoxB,
Apppc ppc—p37 slows down whereas the glucose consumption of MG1655 decreases only after
5 h.

The difference in recombinant protein production between the two strains may have the
following explanation. At the start of the step experiment the cells are in optimal condition
for recombinant protein production and the production increases. This increase is higher
in MG1655 AackA—pta, ApoxrB, Apppc ppc—p37, suggesting that the recombinant protein
production in this strain is more efficient (higher pool of precursors in the Krebs cycle due to
the constitutive ppc expression) compared to MG1655. After 2 hours, the optimum production
capacity of the cells is reached; the production capacity thereafter declines somewhat and
then stagnates. Because MG1655 AackA—pta, ApoxB, Apppc ppc—p37 grows slower than
MG1655 (likely due to the ppc overexpression redirecting PEP to oxaloacetate instead of to
pyruvate necessary for the PTS) and is more efficient in protein production, this strain more
easily adapts to the stress situation of IPTG induction, resulting in a steady increase in -
galactosidase production whereas the -galactosidase production of MG1655 stagnates. This

evolution was confirmed by the Western blot of the intracellular crude cell extract (data not
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shown).

6.2.2 Dynamic metabolic flux analysis

To assess if and how metabolic fluxes are affected by the constitutive overexpression of ppc and
by cutting off the acetate pathway, metabolic modelling can be used. However, MFA is nor-
mally only usable in chemostat experiments, i.e. when intracellular fluxes do not change over
time. In order to compare the dynamics of the fluxes over time during the step experiment,

dynamic metabolic flux analysis was used.

The metabolic model used was the same as depicted in figure 4.1 with the [-galactosidase

synthesis reaction added (a description of the metabolites can be found in appendix B.1):

BGalAseSYLR: 1.994 ATP + 2.992 H20 + 0.0507 Ala + 0.06197 Arg + 0.05352 Asn + 0.07042 Asp
+ 0.0169Cys + 0.04225GIn + 0.06197Glu + 0.09296 Gly + 0.04507 His
4+ 0.036621le + 0.09296 Leu + 0.01972Lys + 0.0338 Met + 0.04225Phe +
0.04507Pro + 0.05634Ser + 0.05352Thr + 0.02254Trp + 0.03099 Tyr +
0.07042Val + 1.994GTP — 1.994ADP + 3.989PiOH + 1.994GDP +
BGalAse

The model contains 138 reactions and 152 metabolites of which 12 were considered exchange-
able with the environment: NH,, PiOH, Biom, GLC, Lac, OAA, Suc, O,, CO,, H,O, H,SO,
and BGalAse. Seven metabolites were measured: Biom, GLC, Lac, Suc, O,, CO, and
BGalAse. There are 144 independent equations in the model and 138 4+ 12 = 150 unknowns.
Thus at least 6 measurements should be performed to solve the model. In this case there were
7, thus measurements could be balanced (see section 2.5). Only one polynomial through the
whole range of data points was fitted, since this was sufficient to capture the dynamics in the

measurements. Figure 6.1 shows the polynomials fitted to some of the data.

Figure 6.2 draws the dynamics in the relative fluxes of the central metabolism, the fermen-
tation pathways and the recombinant production pathway during the step experiment. As
expected, the initial flux through PTS was smaller in E. coli MG1655 AackA—pta, ApoxB,
Apppc ppc—p37. However, one hour after induction, the PTS flux was higher in E. coli
MG1655 AackA—pta, ApoxB, Apppc ppc—p37, except for two hours between 4 — 6 h.

The flux towards fermentation products (acetate and lactate) was initially smaller in E.
coli MG1655 AackA-pta, ApoxB, Apppc ppc—p37, but followed roughly the same dynamics
in both strains until 4h of induction. From that point on, the flux towards fermentation
products was maintained in F. coli MG1655 AackA-pta, ApoxB, Apppc ppc—p37 whereas it

first increased drastically in the wild-type E. coli and then seemed to decrease again.
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Figure 6.2: The dynamics in relative fluxes (each flux is divided by the biomass flux) of the central
carbon metabolism, the fermentative pathways and the recombinant protein production
pathway. The fluxes for MG1655 are represented by open symbols) and those for MG1655
AackA-pta, ApoxB, Apppc ppc—p37 by closed symbols.
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Figure 6.3: Relative flux map of the central carbon metabolism, fermentative pathways and the
recombinant protein production pathway for E. coli MG1655 (right/top fluxes) and E.
coli MG1655 AackA-pta, Apox B, Apppc ppc—p37 (left /bottom ) fluxes at the beginning
of the step experiment (left figure) and at the end of the 7 hours induction (right figure).

Overall, the flux through PEP carboxylase is higher in E. coli MG1655 AackA—pta, ApoxB,
Apppc ppc—p37 than in the wild-type. The flux towards the 8-galactosidase followed the same
dynamics for both strains during the first four hours of induction. From that point on, the
flux towards (-galactosidase was maintained in the wild-type, whereas it increased quickly in
E. coli MG1655 AackA—pta, ApoxB, Apppc ppc—p37. This indicates that the overexpression
of an anaplerotic pathway (PEP carboxylase) has a positive effect on recombinant protein

production.

Figure 6.3 depicts the relative fluxes in the central metabolism at the start of the step exper-
iment and at the end of induction. The relative flux towards fermentation products is higher
(3.6 times) in the wild-type E. coli than in MG1655 AackA-pta, ApoxB, Apppc ppc—p37
after circa 7 hours of induction. In MG1655 AackA-pta, ApoxB, Apppc ppc—p37, on the
other hand, the flux through PEP carboxylase towards the Krebs cycle is significantly higher,
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supplying the precursor pools for protein production. Consequently, the flux towards -
galactosidase is 12 times larger in the MG1655 AackA—pta, Apox B, Apppc ppc—p37 mutant
than in the wild-type.

6.3 Conclusions

To improve our understanding of recombinant protein synthesis in E. coli, we analysed the
production of a model recombinant protein, g-galactosidase, in response to the constitutive
overexpression of an anaplerotic reaction (PEP carboxylase). To compare the production
of recombinant (-galactosidase of E. coli MG1655 with and without constitutive phospho-
enolpyruvate carboxylase activity and cutting off the acetate pathway, a chemostat experiment
at D = 0.1h~! was performed for both strains prior to a step experiment. During 7 hours,
the ptrc promoter of the pTrcHisTopoLacZ plasmid was induced with IPTG. In order to com-
pare the dynamics of the fluxes over time during the step experiment, dynamic metabolic
flux analysis was applied. This revealed that the relative flux towards fermentation products
was higher in the wild-type E. coli than in the MG1655 AackA-pta, ApoxB, Apppc ppc—p37
mutant. Furthermore, in the latter one, the flux towards (3-galactosidase was significantly

higher, resulting in five times more protein activity.

These results confirm our premise that by improving the metabolic capacity to replenish
the TCA intermediates, recombinant protein production could be improved. Similar results
were obtained by March et al. (2002): to replenish the TCA cycle intermediates, the authors

expressed the anaplerotic enzyme pyruvate carboxylase of Rhizobium etli.
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Chapter 7

Oscillating environmental oxygen

conditions

7.1 Influence of oxygen on metabolism

The advent of oxygen is relatively recent in the evolution of life (Webster, 2003). The first
2 billion years of evolution happened in an anaerobic environment. Then, two billion years
ago, the increase of photosynthesis by the cyanobacteria gradually changed the atmosphere
with methane, nitrogen and ammonia as major components, to what we have now. Thus
oxygen utilisation enzymes were relatively recently introduced in bacteria, hence their ability
to grow, or at least survive, in anoxic environments. Eukaryotes originated when oxygen was
present in the atmosphere and for them oxygen became an essential molecule to survive. Even
yeast needs some essential nutrients (e.g. methionine) when grown anaerobically, because of

oxygen-dependent steps in the biosynthesis of those metabolites.

Procaryotes conserved the ability to function without oxygen. They have a complex regulation
mechanism on the genetic and metabolic level that switches on aerobic metabolism whenever
O, is present and goes back to the ancestral pathways of anaerobic growth when oxygen is
absent. In this work, the effect of oscillating between aerobic and anaerobic conditions was
investigated at the level of the transcriptome and the metabolome. The model organism was
E. coli. Two different periods for the oscillations were chosen: one of 4 minutes and one of 30
minutes. Half of the time, air was blown in the culture, the other half a mixture of nitrogen
and carbon dioxide. The fluctuations of the concentrations of external metabolites (fermen-
tation products) over one such aerobic/anaerobic sequence, was measured. The changes in

transcription levels were investigated using Affymetrix microarrays.

97
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7.1.1 Electron acceptors in E. coli

E. coli, being a procaryote, can use several electron acceptors (reviewed in Bunn & Poyton,
1996). When growing under fully aerobic conditions, cytochrome o oxidase (encoded by
cydABCDE) is active. When oxygen starts to be limiting, cytochrome d oxidase (encoded by
cyoAB) is used. Cytochrome o has a high V;,,4., but a low affinity for oxygen while cytochrome
d has a low V4, but a high affinity for oxygen, a classic specialisation in E. coli. Aerobically
grown cells contain around 300 molecules cytochrome o and 200 molecules cytochrome d.
During anaerobic or microaerobic growth, a 140-fold repression of expression of cytochrome o
is observed, while the expression of cytochrome d increases 3-fold (Cotter et al., 1990). Thus,
in the presence of oxygen both cytochromes are available in the cells. However, cytochrome
d does not contribute to the H gradient (actually, high oxygen content inhibits cytochrome
d), but is probably involved in the protections of the cells against reactive oxygen species
(Bunn & Poyton, 1996).

In the absence of oxygen, E. coli can produce up to five alternative oxidoreductases (Bunn
& Poyton, 1996): fumarate reductase (encoded by frdABCD), two nitrate reductases (en-
coded by narGHJI and narZYWYV), dimethyl sulfoxide (DMSO) and trimethylamine-N-oxide

(TMAO) reductase (encoded by dmsABC) and TMAO reductase (encoded by torA). TMAO
reductase has a much more narrow substrate specificity than DMSO/TMAO reductase.

Only cyoABCDE is fully expressed in the presence of oxygen. Operon cydAB is fully ex-
pressed under microaerobic conditions while the expression of narGHJI, frdBCD and dmsABC
increases under anaerobic conditions even in the absence of an alternative electron accep-
tor. Nitrate increases the expression of narGHJI even more and decreases the expression of
frdABCD and dmsABC (Bunn & Poyton, 1996). Three regulatory networks are responsible
for the transcriptional regulation of those electron acceptors (Gunsalus, 1992). The NarX,
NarL, and NarQ regulator network controls respiratory gene expressions in response to nitrate
availability. Aerobic-anaerobic control is done by the Fnr and the ArcAB regulatory system,

which will be discussed in more detail below.

7.1.2 Regulation of the respiration metabolism

The main regulators in the oxygen response in the E. coli metabolism are the two component
anoxic redox control (Arc) system, and the fumarate and nitrate reduction (Fnr) protein
(figure 7.1). The two components of the Arc system are the membrane-bound redox sensor
ArcB, whose activity is inhibited by oxidised quinones (Georgellis et al., 2001), and ArcA,
responsible for the signal transduction to the genetic regulation (Green & Paget, 2004). When
oxygen starts to be scarce and thus also oxidised quinones, ArcB autophosphorylates and
then transphosphorylates ArcA (Matsubara & Mizuno, 2000). Phosphorylated ArcA represses

expression of many genes involved in the respiratory metabolism. For example, the Krebs cycle
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Figure 7.1: The influence of ArcA and Fnr on the transcription of different genes from the central
carbon pathways. Q.4 reduced quinone; Q. : oxidised quinone; fumpB: fumarate hy-
dratase; frd fumarate reductase; pfl: pyruvate formate lyase; cyo: cytochrome o; cyd:
cytochrome d; F'P: genes from the fermentative pathways; TCA: genes from the Krebs

cycle.

is interrupted (Shalel-Levanon et al., 2005b), the glyoxylate shunt is inactivated (Georgellis
et al., 2001) and cyoABCDE (coding for cytochrome o) is not expressed anymore (Bunn &
Poyton, 1996). At the same time, ArcA also activates expression of other genes: fermentative
pathways (Georgellis et al., 2001), cydAB coding for cytochrome d and pfi coding for pyruvate

formate lyase. ArcA is also involved in conjugal fertility functions (Spiro & Guest, 1991).

Unlike ArcB, Fnr is a direct O, sensor (Khoroshilova et al., 1997). It is similar to the cyclic
AMP receptor protein (CRP) but has no cAMP binding domain (Spiro, 1994). Fnr consists
of two domains, a carboxy-terminal DNA-binding region for binding to specific targets and
an amino-terminal sensory domain containing four cysteines binding the Fe-S clusters that
function as direct oxygen sensors (Green & Paget, 2004). The active form of the Fnr regulator
is a homodimer with each Fnr molecule containing a [4Fe—4S] cluster. In the presence of
oxygen, the [4Fe—4S] cluster is converted to a [2Fe—2§S] cluster (probably via a [3Fe—4S]
cluster, releasing H,O,, Green et al., 1996; Crack et al., 2004), resulting in inactivation of
Fnr (Khoroshilova et al., 1997). Further incubation with oxygen results in the conversion of
[2Fe—2S].Fnr to apoFnr (Achebach et al., 2005; Sutton et al., 2004b). The total amount
of Fur in a cell does not vary much (Sutton et al., 2004a). Under aerobic conditions, Fnr
occurs in the cell as a monomer in the apo form, with cysteine disulfide bridges. When O,
is removed, the apoFnr is converted to a [4 Fe—4S].Fnr dimer (Popescu et al., 1998; Bates
et al., 1995). However, there is a lag phase due to the cysteine disulfides that have to be
reduced for incorporation of the [4 Fe—4S] cluster. This lag phase varies from less than 100
minutes (Tran et al., 2000) to more than 200 minutes (Achebach et al., 2004). Addition of
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glutaredoxins greatly decreases the lag phase to less than one hour (Achebach et al., 2004).

Many kinetic studies exist that track the time needed for inactivation of [4 Fe—4 S].Fnr. An
overview of the different values reported in literature can be found in Achebach et al. (2005)
who demonstrated that in vitro conversion of [4Fe—4S].Fnr to apoFNR requires around 5
minutes. This is rather similar to the 4.5 minutes needed for inactivation of [4 Fe—4 S].Fnr
found by Sutton et al. (2004a) for in vivo conditions while In vitro, 3.4 minutes were needed
to convert [4 Fe—4S].Fnr to [2Fe—2S].Fur.

The expression of one third of the genes of E. coli are altered when changing from aerobic to
anaerobic conditions. The expression levels of most of those genes are directly or indirectly
influenced by ArcA and 50 % of those genes are regulated by Fnr (Salmon et al., 2005, 2003).
There seems to be common functions between Fnr and Lrp (leucine responsive regulatory
protein): 25% of the genes regulated by Fnr are also regulated by Lrp. Furthermore, Irp

expression increases five-fold in fnr~ strains (Salmon et al., 2003; Hung et al., 2002).

When switching an aerobic culture to microaerobic conditions, a peak in Fnr is observed after
five minutes, after which ArcA starts to increase and reaches steady state 10 minutes later
(Partridge et al., 2007). This is consistent with the fact that Fnr activates the transcription
of arcA (Compan & Touati, 1994) and that ArcA represses fnr expression under microaerobic
conditions (Shalel-Levanon et al., 2005a). At the same time, Pdhc (pyruvate dehydrogenase
complex) is partially replaced by Pfl (pyruvate phosphate lyase). Pfl is inactivated by O,,
therefore the expression of yfiD also increases. YfiD repairs oxygen inactivated Pfl under mi-
croaerobic conditions (Zhu et al., 2007). Furthermore, the increased expression of cytochrome
d (the cytochrome having a high affinity for O,) scavenges oxygen that would otherwise dam-
age Pfl (Alexeeva et al., 2002). Simultaneous activity of Pfl and Pdhc was also observed by
Alexeeva et al. (2000).

To split the Krebs cycle, sucCD is repressed so that succinyl-CoA is no longer converted to
succinate. Hence, two branches are created. One branch uses fumarate as electron acceptor
and produces succinate, while the other branch is just active enough to produce alfaketoglu-
taric acid, needed as precursor for amino acid production (Cox et al., 2006). Indeed, ArcA
represses gltA (citrate synthase), icd (isocitrate dehydrogenase), and sdhC (converting succi-
nate to fumarate) (Shalel-Levanon et al., 2005b). Transcription of fumarate reductase (frd)

is activated, hence fumarate can function as electron acceptor and succinate is produced.

Adding oxygen to anaerobically cultivated cells, results within 5 minutes in decreased tran-
scription of genes associated with anaerobic metabolism and increases transcription of genes
related to aerobic metabolism (Partridge et al., 2006). Genes for the pyruvate dehydrogenase
complex were transcribed 5 minutes after the switch, while expression of sucCD only occurs

after 10 minutes. Also expressed within 5 minutes after the switch, is dctA, coding for an acid



Chapter 7. Oscillating environmental oxygen conditions 101

symporter, lctPRD, coding for a lactate transporter, and kdgT, coding for an oxoglutarate
transporter. This is probably meant for use in the Krebs cycle the first ten minutes, as this

cycle is not yet completely functional then.

Until recently, it was believed that ArcA did not have an influence on fully aerobic and fully
anaerobic cultures; ArcA was the regulator of microaerobic conditions, while Fnr played its
role under more anaerobic conditions (Shalel-Levanon et al., 2005¢c; Alexeeva et al., 2003,
2000). This is however in contrast with the results of Partridge et al. (2007) who showed
an Fnr peak activity before an increase in ArcA, when switching an aerobic culture to mi-
croaerobic conditions. Furthermore, Perrenoud & Sauer (2005) demonstrated that ArcA also
influences fully aerobic and fully anaerobic cultures: arcA knock-out mutants had a 60 %

increased TCA flux, compared to the wild-type.

7.2 Experimental setup

To investigate the effects of oscillating oxygen input concentrations on the cells, four kinds of
experiments were run: two steady state experiments, one aerobic and one anaerobic, and two
experiments in which the gas flow oscillated between a nitrogen oxygen mixture (air) and a
nitrogen/carbon dioxide mixture (nitrogen with 3% CO,). One oscillation was run with a
period of 4 minutes and one with a period of 30 minutes. For each, the period was divided
in two equal parts. In the first part, the reactor was aerated with air, and in the second part
the nitrogen CO, mixture was blown through it. The experiments were run at a dilution rate
of 0.13h~! (with a standard deviation of 0.02h~1).

Sampling for mRNA, extracellular metabolites and OD was done at least five residence times
after the reactor was set in steady state operation or oscillating mode. For the experiments
with oscillating gas concentrations, the reactor was sampled at different moments in the same
period, during two consecutive periods. Table 7.1 contains the detailed mRNA sampling

times.

7.3 Materials and methods

7.3.1 Bacterial strain

Escherichia coli MG1655 [A~, F~, rph-1] was obtained from the Coli Genetic Stock Center
(CGSC). It was explicitly checked to not have the fnr deletion, as some strains with this name
have it (Soupene et al., 2003).
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Table 7.1: Properties of the different mRNA samples. The Ss stands for steady state; P04, P30:
oscillation experiment with a period of 4 respectively 30 minutes; Ae: aerobic phase;
An: anaerboib phase; the number at the end of the SamplelD indicates when in the
aerobic/anaerobic phase the sample was taken; The ArrayID is the same as the SamplelD,

except that the replicate number is added.

ArraylD SampleID ExpID! Period STiP? Phase Replicate
SsAe_1 SsAe SsAe Ss - Aerobic 1
SsAe_2 SsAe SsAe Ss - Aerobic 2
SsAn_1 SsAn SsAn Ss - Anaerobic 1
SsAn_2 SsAn SsAn Ss - Anaerobic 2
P04Ae02_.1 P04Ae02 P04 4 2 Aerobic 1
P04An02.1 P04An02 P04 4 4 Anaerobic 1
P04Ae02_2 P04Ae02 P04 4 2 Aerobic 2
P04An02_2 P04An02 P04 4 4 Anaerobic 2
P30Ae02.1 P30Ae02 P30 30 2 Aerobic 1
P30Ae04.1 P30Ae04 P30 30 4 Aerobic 1
P30Ae08_1 P30Ae08 P30 30 8 Aerobic 1
P30Ael5.1 P30Ael5 P30 30 15  Aerobic 1
P30An02_.1 P30An02 P30 30 17 Anaerobic 1
P30An04.1 P30An04 P30 30 19  Anaerobic 1
P30An08.1 P30An08 P30 30 23 Anaerobic 1
P30An15.1 P30Anl5 P30 30 30 Anaerobic 1
P30Ae022 P30Ae02 P30 30 2 Aerobic 2
P30Ae042 P30Ae04 P30 30 4 Aerobic 2
P30Ae082 P30Ae08 P30 30 8 Aerobic 2
P30Ael52 P30Ael5 P30 30 15  Aerobic 2
P30An02_2 P30An02 P30 30 17 Anaerobic 2
P30An042 P30An04 P30 30 19  Anaerobic 2
P30An08_2 P30An08 P30 30 23 Anaerobic 2
P30An152 P30Anl5 P30 30 30 Anaerobic 2

D of the experiment.

2Sampling time in the period. Expressed in minutes.

7.3.2 Culture conditions
Media

The Luria Broth (LB) medium consisted of 1% triptone peptone (Difco, Erembodegem,
Belgium), 0.5 % yeast extract (Difco) and 0.5 % sodium chloride (VWR, Leuven, Belgium).
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The minimal medium contained 6.75g/1 NH,Cl, 1.25¢/1 (NH,),S0,, 1.15g/1 KH,PO,, 0.5g/1

NaCl, 0.5g/1 MgSO, - 7H,0, 16.33 g/1 glucose - H,O, 1 ml/] vitamin solution, 100 ul/1 molyb-

date solution and 100 pl/1 selenium solution. Vitamine solution contained 3.6 g/1 FeCl, - 4 H, O,
5g/1 CaCl,-2H,0, 1.3g/1 MnCl, - 2H,0, 0.38 g/1 CuCl, - 2H,0, 0.5 g/1 CoCl, - 6 H,0O, 0.94 g/1
ZnCl,, 0.0311g/1 H3BO,, 0.4g/l Na,EDTA - 2H,0 and 1.01 g/1 thiamine - HCl. The molyb-

date solution contained 0.967 g/l Na,MoO, -2H,0. The selenium solution contained 42 g/1

SeO,. Anaerobically E. coli did not grow without selenium in the medium. Selenium is needed

for anaerobic growth, probably as cofactor for pyruvate formate lyase (Enoch & Lester, 1972;

Lester & Demoss, 1971).

For flask culture medium, glucose and MgSO, was separately autoclaved (121 °C, 20 minutes)
from the salts and combined with the filter-sterilised (pore size 0.2 pm, Millipore bottletopfil-
ter, Millipore, Antwerpen, Belgium) vitamine, molybdate and selenium solutions, after cooling

down. Before autoclaving, the pH of the salts solution was set at 7 with 1 M K,HPO,.

All components for the medium of the continuous culture were dissolved and filter-sterilised

(pore size 0.22 um, Sartobran, Sartorius, Belgium). The pH was left at approximately 5.4.

Cultivations

A preculture from a single colony on a LB-plate was started in 5ml LB medium during
8 hours at 37°C on an orbital shaker at 200 rpm. From this culture, 2ml was transferred to
100 ml minimal medium in a 500 ml shake flask, and incubated for 16 hours at 37°C on an
orbital shaker at 200 rpm. Sixty milliliter of this culture was used to inoculate the reactor,
a 21 Biostat B culture vessel with 1.51 working volume (Sartorius-BBI systems, Melsungen,
Germany). The culture conditions were: 37 °C, stirring at 800 rpm, gas flow rate of 1.51/min.
The pH was maintained at 7 with 0.5 M H,SO, and 4 M KOH. The exhaust gas was cooled
down to 4°C by an exhaust cooler (Frigomix 1000, Sartorius-BBI, Melsungen, Germany). A
continuous feed of 4ml/h 10 % solution of silicone antifoaming agent (BDH 331512K, VWR
Int Ltd., Poole, England) was added to the culture vessel.

Gas composition during the experiments in which the culture conditions were oscillated be-
tween anaerobic and aerobic conditions, was controlled by the MFCS /win software (Sartorius-
BBI systems, Melsungen, Germany). To maintain the same mixing conditions between the
two phases of the oscillation, the gas flow had to be constant. Therefore during the anaerobic
phase, a mixture of nitrogen gas (97.7 %) and CO, (2.3 %), to counter the stripping action of
the flushing gas, was blown through the reactor. During the aerobic phase, air was used as

aeration gas.

From figure 7.2 it can be seen that some time is needed (around 10 seconds) to get the

reactor broth to aerobic or anaerobic conditions when the gas mixture is changed. Two
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Figure 7.2: Illustration of the responsiveness of the pO, probe to changes in the gas composition
blown through the reactor. At 0, 4 and 8 minutes, the MFCS/win controller switches
to air. At 2, 6 and 10 minutes, the anaerobic phase is started by blowing a mixture of

nitrogen and CO, through the vessel.

minutes is probably the shortest time that can be taken between each switch. Already now,
the cells are less time in fully anaerobic conditions than in aerobic and micro-aerobic ones.
As biomass continues to consume oxygen when stopping the oxygen supply, one would expect
that anaerobiosis is faster attained that aerobiosis when starting the oxygen flow after the
anaerobic phase. However, figure 7.2 shows that the 20 % level is a little bit faster attained
when going from anaerobiosis to aerobiosis than the other way around. But getting the high
oxygen concentration levels when entering the aerobic phase, takes more time than loosing

them when going into the anaerobic phase.

7.3.3 Analytical methods

Online measurements, the sampling method of the reactor, the cell density measurement

method and HPLC analysis, were done as described in section 4.1.3.

RNA samples were taken with the stainless steel cold beads method as discribed before (sec-
tion 4.1.3). These samples were centrifuged in a Heraeus biofuge stratos (Thermo Electron
LED GmbH, Langenselbold, Germany) at 15.000 rpm in eppendorf tubes at 4 °C. The super-
natant was discarded and the pellet was washed with PBS buffer (Merck, Overijse, Belgium)
and centrifuged at the same conditions as the first time. Finally the pellets were resuspended
in 100 ul of PBS buffer and 500 ul RN Alater reagent (Qiagen, Venlo, The Netherlands).

An RNeasy midi kit (Qiagen) was used for RNA extraction. Purity was then confirmed with a
Nanodrop (Nanodrop technologies, France). The ratio of absorbance at 260/230 and 260/280

nm was measured to ensure the absence of contaminating DNA, proteins and salts. The
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extraction can be assumed successful when both ratios lay between 1.8 and 2. The purity of

the RNA was further controlled on a FA-agarose gel, as advised by Qiagen.

Microarray analyses were performed by the VIB MicroArrays Facility (www.microarrays.be).
Affymetrix GeneChip E. coli Genome 2.0 arrays were used. Total RNA was checked for its
integrity and purity using Agilent Bioanalyzer and Nanodrop spectrophotometer, respectively.
Probes were prepared from 10 ug total RNA, showing no signs of degradation or impurities
(260,/230 and 260/280 absorbance ratios > 1.8), according to Affymetrix’s guidelines. Briefly,
total RNA was supplemented with Poly-A RNA controls (P/N 900433, Affymetrix, UK) and
reverse transcribed to cDNA using a random primer. After RNA degradation with NaOH,
c¢DNA was purified (MinElute PCR Purification Kit, Qiagen, P/N 28004), and analysed again
for yield (30 — 120 pg) and purity (260/230 and 260/280 absorbance ratio > 1.8). The cDNA
was then fragmented using Dnase-1 (P/N 27-0514-01, Amersham Biosciences) and terminally
labeled with biotinylated GeneChip DNA Labeling Reagent (P/N 900542, Affymetrix, UK).
A minimum of 1 pug fragmented probe was resuspended in 80 ul hybridisation buffer containing
3nM control oligo B2 (P/N 900301, Affymetrix, UK) and hybridised in a rotisseri oven at
45°C for 16 hours at 60 rpm. The genechips were washed and stained in the GeneChip Fluidics
Station 400 (Affymetrix, UK) using Mini_prok2v1 protocol, and subsequently scanned with
the GeneChip Scanner 3000 (Affymetrix, UK). Image analysis was performed in GCOS.

The data analysis of the microarray results was done in R (R Development Core Team,
2006) using toolboxes of the bioconductor project (Gentleman et al., 2004). The affy package
(Irizarry et al., 2003a; Gautier et al., 2004) was used to import the CEL files into R. CEL
files are the result of the conversion of the raw images obtained from the array scanner, to

probe intensity values (Bolstad et al., 2005).

7.4 mRNA arrays: Methods and results

Affymetrix GeneChips are photochemically synthesised (Fodor et al., 1991) arrays of short
nucleotide probes of around 20 bases (Lockhart et al., 1996). Each gene is represented by 10
to 20 probe pairs per gene (Nguyen et al., 2002). A probe pair consists of one oligonucleotide
that matches perfectly (PM) and one that has a single mismatch for the central base in the
oligonucleotide (MM). Different arrays for different organisms exist. In this study, the E.
coli array v2 from Affymetrix was used. Biotin labeled cRNAs are hybridised to the array.
The degree of matching is assessed using laser confocal fluorescence scanning (Fodor et al.,
1993). The obtained image is then converted to intensity values for each PM and MM probe.
Different steps are needed for converting those probe intensity values to expression values for

the different genes. These steps are explained in the next section.
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7.4.1 Extracting expression levels from probe intensities

Each GeneChip array has only one sample hybridised to it. Thus, to compare different
experimental setups, the intensities of the different arrays have to be scaled and normalised
before (relative) gene expressions can be computed. Four steps can be discerned in turning

probe intensity data into expression measures (Gautier et al., 2004):

1. Background correction. This is done for each chip separately and corrects for the gradi-
ents and differences of hybridisation that can occur in the different chips. In the MAS
software (provided by Affymetrix), the array is split in a number of rectangular zones
(typically 16). In each zone, the lowest 2% of the probes is chosen as the background
for that zone. Some smoothing is done with the background in the other zones. This
corrected value is subtracted from each probe intensity value if the remaining is still
not smaller than zero (Affymetrix, 2002). The Robust Multiarray Average algorithm
(RMA, Irizarry et al., 2003b) subtracts a background value based on modelling of the

PM signal intensities.

As the sequence of the probes has influence on the hybridisation, background modelling
techniques that incorporate those probe sequences were developed (Wu et al., 2004;
Zhang et al., 2003).

2. Normalisation. To be able to compare different GeneChips, normalisation between
chips is needed. It is one of the most important steps to get meaningful results from the
GeneChips (Schadt et al., 2000). Normalisation is done for all probes on an array. PM
and MM probes are not treated separately. Different methods for normalisation can be

used.

Initially, the method used by Affymetrix for scaling different arrays, assumes that the
difference between two arrays is linear and has an intercept of zero (Schadt et al.,
2000). This assumption is not always valid. The distribution in the low-intensity
signals behaves differently than the distribution of the high-intensity signals (Schadt
et al., 2000). As dividing the arrays into two intensity blocks, where a linear regression
can be performed in each block, does not keep the normalisation curve smooth, Schadt
et al. (2000) propose smoothing splines. However, Li & Wong (2001b) had no problem

running piecewise median lines for normalisation.

Cyclic loess and contrast based methods make use of the M versus A plots (Bolstad
et al., 2003). In two colour channel experiments, M is the difference in log expression
values and A is the average of the log expression values (Dudoit et al., 2002). For one
channel arrays, instead of the two colours, two arrays can be used. For normalisation

of multiple arrays, all pairwise combinations are looked at.
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Quantile normalisation transforms the data such that the distribution of probe intensi-
ties for each array are the same (Bolstad et al., 2003). This is the method used by the
RMA algorithm (Irizarry et al., 2003b).

The vsn methodology combines background correction and normalisation in one single
step (Huber et al., 2002, 2003). Typically the (log-)ratio, is used to access the difference
in expression between two experimental setups. However, weakly expressed genes can
have high fold changes that are actually not significant because the variance for the
expression values for lowly expressed genes is much higher than for highly expressed
genes. The vsn methodology makes use of the generalised log-ratio which coincides
with the usual log-ratio when the expression values are large, but shrinks towards zero
when both expression values are small. This transformation is used for normalisation,
and normalised expression values are obtained with a constant variance across the whole

range of expression levels (hence Variance Stabilising normalisation, Huber et al., 2003).

Bolstad et al. (2003) demonstrated that the quantile normalisation is the preferred
method as it gives the best results in terms of speed and for variance and bias criteria.
They also concluded that methods using a baseline array should be avoided. However,

that study focused on normalisation and did not include the vsn methodology.

3. PM correction with MM. Mismatch probes are included on Affymetrix arrays to quantify
non-specific and cross-hybridisation. In the first version of the Affymetrix software,
MM signals were simply subtracted from the PM values. However, sometimes the MM
signals are higher than the PM ones giving complications when taking the logarithm.
MM signals being higher than PM signals occurs mostly in lowly expressed genes, the
reason being that MM probes only lower the binding affinity for PM and not for random
sequences. Hence, in lower expressed genes most of the signal in PM probes is due to
background noise, making not much difference with the MM probes (Zhang et al.,
2003). Therefore, in the new version of the Affymetrix software, idealised MM values
are used (Gautier et al., 2004). Anyway, the usefulness of background subtraction is
questioned (Li & Wong, 2001b) and in many cases this step is omitted (Gautier et al.,
2004) as background subtraction indeed increases accuracy but comes with a high cost

in precision (Huber et al., 2005).

4. Computation of expression values from probe intensities. Each gene on the Affymetrix
array is represented by 11-20 probes. Many methods exist to summarise probe intensities
to gene expression values. Simply taking the mean value of the different probes does not
give satisfying results (Li & Wong, 2001a; Irizarry et al., 2003b). MAS5 (the software
from Affymetrix to analyse microarrays), is based on Tukey’s biweight (Gautier et al.,
2004). The RMA algorithm (Irizarry et al., 2003b) fits a linear model to each probe set
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using a robust procedure, typically median polish (Holder et al., 2001). Other model-
based approaches are described in Li & Wong (2001a) and Sésik et al. (2002).

The RMA methodology (Robust Multiarray Average, Irizarry et al., 2003b) is the most used
combination of techniques to generate expression values out of probe intensities. It consists
of the following steps: background correction based on the modelling of the PM signals,
normalisation of the arrays using quantile normalisation (introduced by Bolstad et al., 2003),
no PM correction, and the so-called median polish summarisation method. However, in a
comparative study using qRT-PCR (reverse-transcription polymerase chain reaction), Qin
et al. (2006) concluded that RMA was not the most optimal methodology. They advise to
use gcRMA (which uses sequence-based background adjustment, Wu et al., 2004) or if that
is not available, MAS5 (the algorithm used by Affymetrix software) or the dChip mismatch
model (Li & Wong, 2001a). This concords with the findings of Choe et al. (2005): MAS5
for background correction and PM adjustment, RMA (median polish) as expression summary
method and the choice of the normalisation algorithm does not matter. Note that Choe et al.
(2005) did not include the gcRMA methodology in the set of algorithms they compared.

MA plots are used to summarise responses. In two colour channels M is the difference in log

expression values while A is the average of those values (Dudoit et al., 2002):

M = log,(R) — logy(G) A = - (logy(R) + logy(G)) (7.1)

N

where R and G stand for the red and green colour in the two colour arrays. Note that
logarithms base 2 are used, as intensities are typically stored as 16 bit values. For single
channel arrays, the G values of the equation above are replaced by a synthetic mean value
of the array set. However, in this study the mean value of the arrays of the two aerobic
cultures, SsAe_1 and SsAe_2, was used. Each MA plot (for example figures 7.3 and 7.4) is
also accompanied by its median M value and the interquartile range (the range around the
median in which 50 % of the values are found) of the M values. The median should be around
zero and the IQR as small as possible. In each MA plot, a smooth line (local polynomial
fitting) is fitted to the data (white line in figures 7.3 and 7.4). This line should be as close
as possible to the M = 0 horizontal axis. Ideal experiments have MA plots where most of
the dots are uniformly distributed over the A range and close around the M = 0 line. The
dots outside this region should be clearly outside, so that the M values being different from
zero are clearly due to differential expression and not some random noise. A more in-depth

description of MA plots can be found in Colantuoni et al. (2003).

Different methodologies for extracting expression levels from probe intensities were tried. The
quality of those was accessed with MA plots. All calculations were performed starting from

the affy package (Irizarry et al., 2003a; Gautier et al., 2004) of the bioconductor framework
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Figure 7.3: MA plots of the raw data. Plot names are explained in table 7.1. The x-axis contains

the sum of log, expression values of the individual arrays and the synthetic array made

of the combination of SsAe_1 and SsAe_2 while the y-axis contains the log, differences.
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Figure 7.4: MA plots of the RMA normalised data after removing genes that were not differentially
expressed in the two repeats of at least one experimental condition. Notation as in figure
7.3.
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(Gentleman et al., 2004). The most straight-forward method for transforming the raw data
obtained from the CEL files (figure 7.3) is the RMA method (figure 7.4, Irizarry et al.,
2003b). One can see that indeed, RMA normalisation lowers the variance (the IQR’s in figure
7.4 are lower than those in figure 7.3). The vsn normalisation algorithm looks attractive as
it explicitly aims at stabilising the variance (Huber et al., 2003). However, using vsn for
normalisation and keeping the other steps as in RMA, did not give satisfying results (data
not shown). They were worse than the results obtained with RMA normalisation (figure 7.4),

something also observed by Qin et al. (2006) in a comparative study of different methodologies.

Using a background correction method based on the sequence of the probes is given as the
best performing method in Qin et al. (2006). However, in this case, when using gcRMA (a
background correction method based on probe sequences, Wu et al., 2004) for background
correction, and keeping the other steps as in RMA, the resulting MA plots were worse than

when using RMA normalisation (data not shown).
Thus, the best methodology for summarising the probe intensities seems to be RMA.

In the subsequent analysis genes that were not expressed, were removed from the normalisa-
tion. Presence/Absence was calculated with the MAS5 method. From the 10206 genes, 7776

remained present.

7.4.2 Statistical tests

Once gene expression data are obtained from the raw arrays, differences in expression levels
have to be searched for. To do this, the R library limma was used (Smyth, 2005). Limma
makes use of linear models to analyse array data. The estimation of the variance on the
expression data is done using an empirical Bayes method. An excellent introduction of linear
models for analysing microarray experiments, using the Bayesian approach, can be found in
Smyth (2004).

Linear models for microarrays

Assuming n different conditions for which microarrays were analysed, the expression of a

certain gene y over the different microarrays can be summarised in a vector y:

T
y= [y1 Y2 e yn] (7.2)
The expected values of the gene expressions in the different conditions is:
Ey] =X« (7.3)

In this equation, X is the design matrix and « is the coefficient vector.
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In the simple case of only analysing the data for experiment SsAe (aerobic conditions), SsAn

(anaerobic conditions), a possible design matrix is (each experiment is repeated 2 times):

SsAe_1 1 0
SsAe_2 1 0

A
SsAn_1 0 1 (7 )
SsAn_2 0 1

Substituting this design matrix in equation 7.3, yields:

[‘)‘“1] (7.5)
Qm 2

where a1 and oy, 2 are elements of the vector av. The first element of ay,, represents the mean

YSsAe _
YSsAn

S O = =
_ = O O

expression value for SsAe while a2 is the expression value for the anaerobic experiment.
The difference in expression between the two experimental conditions is then a1 —am 2. As
expression levels of the different treatments can easily be extracted, this arrangement of the

design matrix is called the group-means parameterisation (Smyth, 2005).

Another possible arrangement of the design matrix is:

SsAe_1 1
SsAe2 | 1
SsAn_1 | 1
SsAn2 | 1

_ -0 O

Which yields, after substitution in equation 7.3:

YSsAe _
YSsAn

[O‘CJ] (7.7)
Qe 2

The first element of a. again represents the expression value of SsAe, but the second element,

—_ = =
_= = O O

a2 stands for the difference in expression between SsAe and SsAn. Thus, for this arrangement
of the design matrix X, contrasts between different treatments can easily be extracted. Hence

it is called the treatment-contrasts parameterisation (Smyth, 2005).

Major requirements of the design matrix are that there are just as many columns as there
are factors in the experiment (in the example above, this is 2, in the experimental setup of
this chapter, it is 12) and that all columns are linearly independent. However, the contrasts
that ones want to analyse are not always linearly independent and the number of interesting

contrasts is not always equal to the number of different experimental conditions. One can
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manually search how to combine the different elements of o, as in equation 7.7, but a more
systematical way consists of by defining a contrast matrix C. A contrast matrix transforms

a to a new vector 3, the elements of which have a biological meaning;:
B=C"a (7.8)

In the first examples above (the design matrix given in equation 7.4), assuming only the
difference in expression is of interest, the contrast vector 3,, has only one column and a

possible contrast matrix is:

T
Cm - [_11] - ’Bm = [_1] [amJ] = E[ySsAn] - E[ySsAe] (79)

1 Om,2

A possible contrast matrix for the second design matrix (equation 7.6) is (again assuming

only the difference in expression is of interest):

T
C.— [0] e B.— [0] [ac,ll = E[yssan] — E[yssae] (7.10)

1 1 Qe2

For each gene, the linear model of equation 7.3 is fitted and the coefficients, a, and contrasts,

3, are estimated. Associated with each estimate is a variance. For a certain gene y, the

variance on the expression value, is 02, estimated as s:

var(y) = s (7.11)
A positive definite matrix V is estimated with each a such that:
var (@) =V s? (7.12)
resulting in the covariance matrix of the contrast vector, 3, being:
var (B) =CTVvC(Cs? (7.13)

The square roots of the diagonals of the matrix CT V C, \/u, are called the unscaled standard
deviations. Assuming each element of 3 is normally distributed as N ((), U; 32), the ordinary
t-statistics for a contrast §; can be calculated:

B

S \/Uj

ti =

(7.14)

which tests the assumption that 3; is zero. However, as the number of genes tested is very large
and the number of repeats for microarrays are typically very low, there will always be some 3;
with very small variance, giving a high t-value even if 3; is small, resulting in the rejection of
the null hypothesis. Different ad hoc solutions have been proposed. They all increase s. The

difference lies in the justification of the argument added to the standard deviation (Lonnstedt
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& Speed, 2002). In limma, a Bayesian approach is used for this justification. Information
on the variance of the other genes is included in the estimation of the variance of the gene
expression values, resulting in an improved standard deviation, 5. Based on this new s, a
modified t-statistic can be calculated (Lonnstedt & Speed, 2002; Smyth, 2004).

In this work, the group-means parameterisation was used. Selected contrasts are assessed and
the expression over the different experiments for genes from the central carbon metabolism
are discussed. To assess differences in expression, a p-value of 0.01 was used. If not stated

otherwise, plots of gene expressions are relative to the continuous aerobic cultures.

7.5 Results and discussion

7.5.1 Aerobic versus anaerobic conditions

The difference in expression profile between the aerobic and anaerobic phase for the three
different setups (being continuous cultures sensu stricto, oscillating aeration with a period
of 4 minutes and oscillating aeration with a period of 30 minutes) was assessed. The sam-
ples compared were those for which the cells were as long as possible in the aerobic or in
the anaerobic phase. Thus, the following contrasts were generated: SsAe-SsAn (the differ-
ences in expression between aerobic cultures and anaerobic cultures), P04Ae02-P04An02 and
P30Ael5-P30Anl15 (difference in expression at the end of the aerobic phase and the end of

the anaerobic phase for the 4 minutes and the 30 minutes period experiments, respectively).

When selecting genes that are differentially expressed, two parameters are important. The
p-value, which was kept at 0.01, and the minimal fold change (the amount with which a
gene is upregulated compared to the reference condition). The correlation between p-values
and fold changes can be visualised in so-called volcano plots (figure 7.5), where the — log,
of the p-values are plotted against the log, fold changes. Ideally, genes with a low p-value
should have a large fold change. However, for this data set this was not the case. Figure
7.5 shows that many of the p-values lower than 0.01 are for log fold changes less than one.
The significance of those differential expressions is questionable, as in the MA plots of the
replicates of the experiments (figure 7.6) it is observed that the differences in log expression
values in replicated experiments are commonly larger than two. Thus, log fold changes of 2

or less can be due to experimental variation and are not necessarily biologically significant.

Figure 7.7 shows the Venn diagrams for the three contrasts described above for different
minimal fold changes. When setting no minimal fold change (figure 7.7a), the number of
differentially expressed genes between SsAe and SsAn and between P30Ael5 and P30Anlb
roughly corresponds to the number of differentially expressed genes reported by Salmon et al.
(2003).
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Figure 7.5: Volcano plots. The horizontal line stands for the p-value of 0.01.

SsAe_1vs SsAe_2 SsAn_1 vs SsAn_2 P04Ae02_1 vs PO4Ae02_2 P04An02_1 vs PO4An02_2
2 A Median: 0.00731 2 Median: 0.0232 Median: 0.00469 2 Median: -0.0168
IQR: 0.403 IQR: 0.283 14 IQR: 0.51 14 IQR: 0.4
1 - - 14 . -
0 __.”w__“-..___. e I e~ -—,,f"‘-‘r—""‘-r-—
L o f‘ L
P -2 19 4
-3 =1 -2 - -3
T T T T T T —4 T T T T T T T T T T T T T T T T T T
4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14
P30Ae02_1 vs P30Ae02_2 P30Ae04_1 vs P30Ae04 2 P30Ae08_1 vs P30Ae08_2 P30Ael5_1 vs P30Ael5 2
3 A Median: 0.0184 3 4 Median: -0.0228 Median: 0.0139 3 Median: -0.00357
5 IQR: 0.342 IQR: 0.345 21 IQR: 0.306 2 IQR: 0.295
14 ] 17
] T rR— N
S e R
0 b —— 0 e e |
-1 4 S a4 T
4 -1 L -1
-3 -2 4 -2
3
Bl T T T T T Rl T T T T T T T T T T T -3 T T T T T T
4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14
P30ANn02_1 vs P30An02_2 P30ANn04_1 vs P30An04_2 P30AN08_1 vs P30An08_2 P30ANn15_1 vs P30An15_2
24 Median: -0.0152 2 Median: 0.0146 Median: 0.0156 4 Median: -0.0711
IQR: 0.341 IQR: 0.487 1 IQR: 0.414 IQR: 0.972

Figure 7.6: MA plots of repeats of the RMA normalised data. The x-axis contains the log sum of

the expression values of the two repeats and the y-axis the log difference.

Figure 7.7 further shows that many genes differentially expressed between fully aerobic cul-

tures and fully anaerobic cultures are not the same as those differentially expressed in the

different phases of the oscillating experiment with a period of 30 minutes and to a lesser

extent, that of 4 minutes.

As already observed in the volcano plots (figure 7.5), the number of differentially expressed
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SsAe—-SsAn P04Ae02-P04An02 SsAe-SsAn P04Ae02-P04An02 SsAe-SsAn P04Ae02-P04An02
51 138 9 63 1 4
942 577 167
P30Ae15-P30An15 4027 P30Ae15-P30An15 5177 P30Ae15-P30An15 6141
(a) Log fold change > 0 (b) Log fold change > 1 (¢) Log fold change > 2
Figure 7.7: Venn diagrams of the genes differently expressed between aerobic and anaerobic con-
ditions. The 3 diagrams compare the same contrasts, but the minimal fold change for
selecting genes as differentially expressed, is increased.
SsAe-P04Ae02 SsAe-P04An02 SsAn-P04Ae02 SsAn-P04An02 SsAe-P04AeAn SsAn-P04AeAn
2 2 5 20 0 17
291 129 93
SsAe-SsAn 6308 SsAe-SsAn 6279 SsAe-SsAn 6294
(a) (b) (<)
Figure 7.8: (a) Comparison of the P04 phases with the aerobic continuous culture. (b) Comparison

of P04 phases with the anaerobic continuous culture. (c) Experiments P04Ae02 and
P04An02 are treated as replicates of one experiment, PO4AeAn, and are compared with
the aerobic and anaerobic cultures. The selected genes all have a log fold change of

minimally two.

genes lowers drastically when increasing the minimal fold change (figure 7.7). The decrease is

spectacular for the P04 experiment: most of the genes differentially expressed have a log fold

change of less than 2. Thus it seems that there is not much difference in genetic expression

between the aerobic and anaerobic phase when oscillating the oxygen supply with a period of

4 minutes. Furthermore, the P04 experiments have more genes differentially expressed with

anaerobically grown cells (figure 7.8b) than with aerobic cultures (figure 7.8a), suggesting
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SsAe-P30Ael5 SsAe-P30An15 SsAn-P30Ael5 SsAn-P30An15
0 173 4 135
174 90
SsAe-SsAn 6140 SsAe-SsAn 6155
(a) (b)

Figure 7.9: Comparison of the 30 minutes oscillation experiment at the end of the aerobic and
anaerobic phase with (a) aerobic and (b) anaerobic continuous cultures. The selected

genes all have a log fold change of minimally two.

that the 4 minutes oscillating cultures have more in common with aerobically grown cells

than with anaerobic cultures.

Most of the genes from P04 that are differentially expressed between the continuous cultures,
are common to the aerobic phase of P04 and the anaerobic phase of P04 (54 and 174, figures
7.8a and 7.8b), suggesting again that there is not much difference between the two phases.
Therefore the arrays for experiments P04Ae02 and P04An02 were combined in PO4AeAn and
compared with the continuous cultures (figure 7.8¢c). It can be seen that most of the genes
differentially expressed between PO4AeAn and SsAe or SsAn are also differentially expressed
between SsAe and SsAn.

regulated as if under anaerobic conditions, but a large part of the genes playing a role in the

Thus in the P04 cultures, some genes (62, in figure 7.8c) are

anaerobic versus aerobic metabolism, are expressed as under aerobic conditions (215 of the
268 genes differentially regulated between SsAe and SsAn are also up or down regulated when
comparing SsAn with PO4AeAn, figure 7.8c).

The picture for the experiment in which the oxygen input was alternated with a period of
30 minutes, is completely different (figure 7.9). At the end of the aerobic phase, the gene
expression profile is almost the same as under fully aerobic conditions (SsAe-P30Ael5, figure
7.9a) while at the end of the anaerobic phase, many genes are still differentially expressed
compared to the anaerobic continuous culture (SsAn-P30An15, figure 7.9b). Thus it seems as
if adaptation to aerobiosis is much faster than to anaerobiosis, at least at the gene level. Also
many genes differentially expressed between SsAn and P30S15 are not differentially expressed
between SsAe and SsAn (figure 7.9b).
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Figure 7.10: Relative gene expressions of the global regulators arcAB (a,b) and fnr (c). The y-axis
contains the relative log, gene expressions relative to the aerobic continuous culture

(SsAe). Error bars are for the Bayesian corrected standard deviation.

7.5.2 The oxygen regulators ArcAB and Fnr

The expression profile of arcA is rather constant during the experiments (figure 7.10a). How-
ever, the one from arcB and fnr does change over the course of the P30 oscillating experiments
(figure 7.10b,c). Normally, it is expected that the total content of Fnr (active and inactive)
in the cells is constant (Sutton et al., 2004a). In the experiments described in this work, fnr
expression is systematically lower under anaerobic conditions. The difference in expression of
fnr between the aerobic and the anaerobic phase of the P04 experiments is less pronounced

than between the aerobic and anaerobic continuous cultures.

Apparently some time is needed to lower the fnr expression when switching to anaerobic con-
ditions. This can be observed from the gradual decrease in fnr expression in the anaerobic
phase of the P30 experiments (figure 7.10c). However, when switching back to aerobic con-
ditions, the increase in fnr gene expression is immediate and overshoots during the first 10
minutes of the aerobic phase (P30Ae02 and P30Ae04 in figure 7.10c). A possible explanation
could be that under aerobic conditions Fnr is more easily degraded and that to keep the

protein concentration constant, more fnr has to be expressed.

Fnr normally has a positive effect on the expression of arcA (Compan & Touati, 1994). This
seems not to be the case in these experiments: there is not really a correlation between the
expression profile of fnr and arcA (figure 7.10). However, fnr gene expression seems to be

negatively correlated with arcB in the P30 experiments.

7.5.3 Central carbon metabolism

The effect of oxygen on central carbon metabolism is mostly sensed on the pyruvate node and
the Krebs cycle. Under anaerobic conditions, the pyruvate dehydrogenase complex is substi-

tuted by pyruvate formate lyase and the citric acid cycle is branched at the alfaketoglutarate—
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Figure 7.11: Relative gene expressions for genes involved in the functioning of the pyruvate dehy-

drogenase complex: (a) pdhR, encoding a regulator of PDHe, (b) aceE and (c) IpdA.
Notation as in figure 7.10.

succinate node. This is discussed below.

Pyruvate node

The pyruvate dehydrogenase complex (PDHc), is the gene product of the pdhR-aceEF-Ipd
operon (figure 7.11). However, Ipd also provides subunits for the alfaketoglutarate dehydro-
genase complex, catalysing the conversion of alfaketoglutarate to succinyl-CoA in the Krebs
cycle. Therefore, the pdhR-aceEF-Ipd operon contains different promoters to produce at least
three different transcripts: ace EF-lpd, aceEF and Ipd. PdhR negatively regulates the synthesis
of PDHc (Quail et al., 1994). The slower response of Ipd correlates with the expression profile
of sucABCD (figure 7.5.3) encoding the other subunits of alfaketoglutarate dehydrogenase
(sucAB) and succinate dehydrogenase (sucCD).

The genes involved in pyruvate formate lyase, converting pyruvate to acetyl-CoA and formate
under anaerobic conditions, are immediately upregulated when entering anaerobiosis (figure
7.12). The pfl operon is upregulated by Fnr (Cox et al., 2005) and Fnr reacts fast to changing
environmental oxygen conditions (Partridge et al., 2007). The differential expression of pfiB,
coding for Pfl, is less pronounced than pfiA, an activator of Pfl and yfiD, a protein involved in
the reparation of Pfl, when damaged by oxygen (Zhu et al., 2007). Pfl is rapidly inactivated

in the presence of small amounts of oxygen.

Krebs cycle

Under anaerobic conditions, the Krebs cycle is split in an oxidative and a reductive branch.
This is

reflected in the gene expression profiles of gltA, acnB and icd coding for citrate synthase,

The oxidative branch is only used for biomass precursors and is not very active.

aconitase B and isocitrate dehydrogenase (figure 7.13). The oxidative part of the Krebs cycle

ends at alfaketoglutarate, hence the stronger downregulation of sucABCD coding for the
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Figure 7.12

for an activator of Pfl, and (c¢) yfiD, whose gene product reactivates Pfl after oxygen

damage. Notation as in figure 7.10.

STUv0ed
80Uv0ed
Y0Uv0ed —
20uvoed
STav0ed
809V0ed
709v0ed —
209v0ed —
20uUvy0d
203VvY0d

uyss —

~ Vpa!
I~ Vpa!
- VP2
I~ Vpa!
I~ Vpa!
I~ Vpa!
- VP2
I~ VP2
I~ Vpa!
I~ Vpa!
I~ VP2

STuUv0ed
80Uv0ed
Y0uvoed H
20uUvoed —|
ST8v0ed
803V0ed —
¥03v0ed
203v0ed —
20uUvy0d
203Vv¥0d

uyss

-15—

I guoe
I guoe
I guoe
I guoe
I guoe
I guoe
I guoe
I guoe
I guoe

L guoe

|- guoe

STUY0ed —
80Uv0ed
Youvoed +
20uvoed H
ST8V0ed
803v0ed —
¥03v0ed
203v0ed
20uUvy0d —|
203Vv¥0d —

uyss

- b
- vib
- vib
- vib
- vib
- vib
- vib
- wub
- wib
- wib
- vib

(c)

(b)

(a)

(a) gltA (citrate

synthase) (b) acnB (aconitase B) and (c¢) icd (isocitrate dehydrogenase). Notation as

Figure 7.13: Expression profiles of the first three genes from the Krebs cycle:

in figure 7.10.
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Figure 7.14: Relative gene expressions of the transcripts for alfaketoglutarate dehydrogenase

(sucAB) and succinyl-CoA synthetase (sucCD). Notation as in figure 7.10.

enzymes transforming alfaketoglutarate to succinate: unlike the first three reactions of the

Krebs cycle (figure 7.13), alfaketoglutarate dehydrogenase has to be completely inactivated

However, the genetic down- or upregulation of

under anaerobic conditions (figure 7.14).

sucABCD is not fast: only after 8 minutes the expression was lowered/increased, something
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Figure 7.15: Relative gene expressions of succinate dehydrogenase (sdhABCD) and fumarate reduc-
tase (frdABCD). Notation as in figure 7.10.
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Figure 7.16: Expression profile of the genes involved in the conversion of fumarate to malate. (a)
FumA is active under microaerobic conditions, (b) FumB converts malate to fumarate
and is important in the anaerobic respiration, and (c) FumC is highly active under

aerobic conditions. Notation as in figure 7.10.

also observed when switching cell cultures from aerobic to anaerobic conditions and vice versa
Partridge et al. (2007, 2006).

The adaptation to changing oxygen levels is faster for the expression of the genes encoding the
enzymes of the reductive branch of the Krebs cycle (figures 7.15 and 7.16). Indeed sdhABCD,
encoding succinate dehydrogenase is downregulated by Fnr, while frdABCD, the fumarate
reductase operon, reducing fumarate to succinate, and fumB, whose gene product converts
malate to fumarate, are both upregulated by Fnr. The peak activity of Fnr occurs around 5

minutes after the oxygen switch (Partridge et al., 2007). The operon for malate dehydrogenase
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Figure 7.17: Relative expression profiles for mdh, encoding malate dehydrogenase, ppc, encoding
PEP carboxylase and aceA B, encoding the enzymes of the glyoxylate pathway. Notation
as in figure 7.10.

(mdh, figure 7.17a) is regulated by ArcA (Cox et al., 2005). Activation of ArcA is slower than
that of Fnr (Partridge et al., 2007), hence the slow response of mdh to changing oxygen
concentrations. The carbon needed for reducing fumarate to succinate should come from
PEP, via PEP carboxylase (encoded by ppc), the enzyme that combines CO, with PEP to
form oxaloacetate. However, compared to the fully anaerobic cultures, not much upregulation
is observed for ppc during the anaerobic phases of the oscillating experiments (figure 7.17b).
The glyoxylate pathway, downregulated by ArcA (Cox et al., 2005), is clearly downregulated
during anaerobic conditions (figure 7.17¢). Note how mdh and aceAB, both regulated by
ArcA, are still downregulated during the two first minutes of aerobiosis in the 30 minutes

oscillation experiments.

Fermentative pathways

The expression of poxB is not altered during the oscillations (figure 7.18c) while the other
pathway for producing acetate, via phosphate acyltransferase (encoded by pta) and acetate
kinase (encoded by ackA), is upregulated in the anaerobic and P30 cultures. Acetyl-CoA
synthetase, encoded by acs, serves to metabolise acetate by converting it to acetyl-CoA. The
reaction is completely irreversible in vivo because ATP is hydrolysed to AMP and pyrophos-
phate and the pyrophosphate is quickly removed by the pyrophosphatases present in the cells
(Kumari et al., 2000). Regulation of this gene is complex and involves the cyclic AMP recep-
tor protein (CRP), Fur, the glyoxylate shunt repressor IclR and its activator FadR (Kumari
et al., 2000). In the P30 experiment, the downregulation of acs nicely correlates with the up-
regulation of ackA-pta (figure 7.18a and 7.18b) suggesting that the acetate produced during
the anaerobic phase is again assimilated in the aerobic phase. Indeed, no significant amounts

of acetate were observed in the oscillating cultures.
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Figure 7.18

ptaA (conversion of acetyl-CoA to acetate via acetylphosphate), and (c¢) pozB (coding

for pyruvate oxydase which transforms pyruvate to acetate). Notation as in figure 7.10.
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tochrome d (cyd, bottom). Notation as in figure 7.10.

Electron acceptors

Expression of cyd, encoding cytochrome d, active under microaerobic conditions, is activated

by ArcA and repressed by Fnr while cyo, encoding cytochrome o, active under oxygen abun-

dant conditions, is repressed by both ArcA and Fnr (Cox et al., 2005).

This explains the

strong repression of the cyo operon and the not as strong repression of cyd (figure 7.19).

Effects of the oscillations

The amount of fermentative products excreted during oscillating operations, was significantly

lower than during anaerobic cultivations. Indeed, using the classical methods for calculating
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Figure 7.20: Fluxes for (a) acetate and (b) succinate. In the P30 experiment, extra samples were
taken for HPLC analysis as compared to the mRNA samples, at 3, 10 and 13 minutes
of the aerobic and anaerobic phase. Data for the anaerobic experiments are not shown
and were for acetate 0.39 +0.01 g/gBM/hand for succinate 0.280 4 0.007 g/g BM/h.
Error bars represent the standard deviation.

mean and standard deviation, the values found were not significantly different from zero.
However, the metabolite data are mathematically not different from gene expression data
and the same Bayesian corrections can be applied, resulting in much smaller variances (figure
7.20). It can be seen how, in the P30 experiments, the acetate concentrations (figure 7.20a)
increases when the acs expression is low (figure 7.18a) and the expression of ackA-pta is
high (figure 7.18b). The pattern for succinate was different. The concentration gradually
increased during the anaerobic phase of the P30 experiment but when the aerobic phase
started, succinate quickly reentered the cellular metabolism (figure 7.20b). Correlation with

the gene expression patterns is less clear (figure 7.15).

The biomass production rate of the P04 experiment was reduced by 25 % compared to the
aerobic cultures and that of P30 by 34 %. Thus, the increase in succinate production that
was hoped for, did not occur. A possible cause for this is the introduction of futile cycles by

activating aerobic and anaerobic pathways at the same time.

There is not much difference in expression of the Krebs cycle genes for the two phases of the
P04 experiment. The gene expression levels are rather similar to those of the fully aerobic
cultures (the reference in all the figures) with the exception of frd and cyd. On can thus
reasonably assume that the Krebs cycle remains active, even in the anaerobic phase, but that
fumarate reductase and cytochrome d are added to the metabolic system, resulting in an

extra inefficiency: cytochrome d does not contribute to the H" gradient (Puustinen et al.,
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1991), needed for ATP generation. Furthermore, acs is not downregulated, thus, all acetate
that could be produced during the anaerobic phase is quickly re-assimilated by acetyl-CoA
synthetase, at the cost of 2 ATPs. And succinate dehydrogenase and fumarate reductase are
countering each other. This could explain the lower biomass yields and the lack of succinate

excretion.

The same can be said for the P30 experiment. However, the duration of both phases is
long enough so that the metabolism can partially adapt. Probably more acetate is produced
during the anaerobic phase than in the P04 experiments (acs is also downregulated during
the anaerobic phase, figure 7.18a) but it is reasimilated in the aerobic phase. This oscillating
behaviour of acetate was observed in the HPLC measurements (figure 7.20a). Probably this
futile cycle over acetate is responsible for the extra 9 % of decrease in biomass yield compared

to the decrease found for the P04 experiment.

7.6 Conclusions

The influence of controlled oscillations in the oxygen supply on the gene expression levels
was investigated. Four types of experiments were performed: (a) fully aerobic continuous
cultures, (b) fully anaerobic continuous cultures, (c) cultures in which the oxygen input was
oscillated with a period of 4 minutes and (d) cultures in which the period of oscillation was

30 minutes.

The gene expression levels of the 4 minutes oscillation experiments were more similar with
those of the fully aerobic continuous cultures than with the anaerobic ones (figure 7.8). In the
P30 experiments, the similarity between the expression profile after 15 minutes of aerobiosis
and the fully aerobic cultures, was larger than the similarity between the gene expression
profile after 15 minutes of anaerobiosis and the fully anaerobic experiments (figure 7.9). This
suggests that the adaptation to aerobiosis is faster than to anaerobiosis, i.e. during the
anaerobic phase many aerobic pathways are still active, while the anaerobic pathways are

disabled as soon as oxygen is blown through the reactor.

In the P04 experiment, this overlapping is complete: frd, cyd are both active at the same
time. Frd (fumarate reductase) and cytochrome d are normally active only under anaerobic
and microaerobic conditions. Cytochrome d oxidises NADH but does not contribute to the
H* gradient needed for ATP generation and the action of fumarate reductase is countered by
succinate dehydrogenase. In the P30 experiment, an extra futile cycle is added: acs, encoding
acetyl-CoA synthetase, responsible under aerobic conditions for the uptake of acetate, is
upregulated in the aerobic phase of the oscillation. This way, the acetate produced during

the anaerobic phase is remetabolised, at the cost of two ATPs.
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One can conclude that short interruptions of oxygen supply do not trigger much acetate
production and the loss of productivity is then caused by cytochrome d, wasting NADH.
Longer interruptions of oxygen supply trigger acetate formation. When reentering aerobic

conditions, this acetate triggers the expression of acs, creating a futile cycle.

The expected increase in succinate was not obtained. On the other hand, the increase in ppc
was not as large as expected to produce more succinate. Combined with the downregulation
of the glyoxylate pathway during the anaerobic phase, not much more carbon is entering the

Krebs cycle under oscillating conditions than when grown fully aerobically.



Chapter 8

General conclusions and

perspectives

Different experimental conditions, genetic and environmental, were combined with different
mathematical approaches to understand the metabolism of Fscherichia coli with the goal of

its optimisation for the production of interesting compounds.

8.1 Mathematical techniques

The central piece in the mathematical techniques used in this work, is the metabolic model.
Conceptually, this is not a very complex model: a matrix in which the rows represent the
metabolites and the columns refer to the reactions. However, due to the size of this matrix,
errors very easily leap in. This was countered in two ways. First, software was written to
convert a list of reactions to a stoichiometric matrix. A list of reactions is simpler to manage
and also clearer to the user’s thinking than a large matrix of mostly zeros. Secondly, different
model checking techniques were implemented: the elemental consistency test checks whether
the stoichiometry of the metabolic model is correct. The dead-end test checks whether the set
of reactions makes sense. Parallel pathways are reported so that potential underdetermined
parts of the model can be found. Care was taken to make the software modular and the
results easily interpretable: reaction names and metabolite names are reported instead of
row or column numbers so that the use of coding schemes for reaction and metabolites is

unnecessary.

Metabolic flux analysis (MFA) allows calculating intracellular fluxes when only exchange
fluxes are measured. Furthermore, with MFA it is possible to balance a priori contradicting
measurements and with the vector comparison test it can be investigated which measurements
are really wrong. Again in the software implementation, reaction and metabolite names are

reported and not matrix row or column numbers, making interpretation of the results easier.

127
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MFA was successfully applied (1) to elucidate the difference in shikimate fluxes between
carbon and phosphorus limited cultures and (2) to investigate any negative effect of mutation

introduced into F. coli strains to reduce acetate production.

A major limitation of MFA is that it is only applicable on chemostat cultures. However, inter-
esting phenomena can be observed under transient conditions. Therefore, MFA was extended
to dynamic MFA. Fluxes were calculated based on the derivative of time series of concentra-
tion measurements. Those fluxes could subsequently be used for MFA, again generating time
series of intracellular fluxes. The technique was successfully applied to transient experiments
where the limiting substrate was changed from glucose to ammonia and vice versa and on step
experiments where the comparison was made in recombinant protein production capabilities
between a wild-type strain and a ppc overexpressing one. However, it had to be concluded
that the explaining power of (dynamic) MFA on secondary metabolism is not as high as on
primary metabolites. The fluxes to secondary metabolites are very small compared to the

ones in primary metabolism and thus do not influence the primary metabolic routes much.

One bottleneck of dynamic MFA is that time series of measurements are noisy and should
be filtered before taking the derivative for calculating fluxes. This filtering was found to be
very tricky: not much data is available (each measurement is very expensive in both money
and time), and thus the classical filtering techniques are not really suitable. In this work,
polynomial filtering was used, using a moving window approach. However, the fine tuning
of the parameters (degree of polynomial, size of moving window) was time consuming and
the results were not always satisfying. More research is needed to find a suitable method
for smoothing the time series of metabolite concentration measurements. Probably the best

approach will be to manually draw bezier curves.

Another extension of the smoothing that should be pursued is the error propagation from the
raw measurement data to the MFA calculated fluxes. This error propagation was rigorously
implemented for pure MFA but was abandoned in the polynomial smoothing because of its
complexity. MFA and especially flux reconciliation is heavily based on the covariance matrix.
In the transient experiments performed in this work, the covariance matrix of steady state
experiments whose fluxes were measured with the same equipment, was used as an approxima-
tion. However it would be better to derive this matrix from the polynomial smoothing itself.
Confidence intervals could then be calculated from which the variance of an interpolated point

could be derived.

8.2 E. colr as production host

Different cultivation techniques were used to increase understanding of E. coli metabolism

and find routes for increased production. In a first set of experiments chemostats were used
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to assess the difference in metabolism between (1) different environmental conditions and (2)
different mutations. The second set of experiments consisted of switching the environmental
conditions from one state to another state and looking at their effect on metabolism. In the
third cultivation technique, the switching was periodic and E. coli cell cultures were subjected

to oscillations in oxygen supply.

8.2.1 Steady state experiments

E. coli can be used to produce many different compounds. In this work, different conditions,
genetic and environmental, were used to try to influence its metabolism. In chapter 3 it
was shown, by using MFA, that the lower shikimate yield in carbon-limited cultures com-
pared to carbon-abundant ones was not due to a lower carbon flux going into the aromatic
amino acid production route but because more excretion of shikimate precursors. The flux in
carbon-limited cultures, to the aromatic pathway was even higher than in phosphate-limited
ones. Furthermore, with the aid of metabolic flux analysis, it was possible to determine
the maintenance requirements under the different conditions. It was concluded that E. coli,
when cultivated under carbon-abundant conditions, utilises the maximally possible amount of
ATP. The non-growth-associated maintenance of P-limited cultures was as large as the total

maintenance requirements of C-limited cells at their maximal growth rate.

When using E. coli as production host, acetate is an unwanted by-product. Different genetic
strategies to reduce acetate production, were investigated (chapter 4). Three strains were
assessed: one in which the acetate pathway was knocked out, one in which the ppc gene
(encoding PEP carboxylase, that converts PEP and CO, to oxaloacetate) was overexpressed
and one in which both mutations were combined. Simply blocking the acetate pathway did
nothing to the fundamental cause of the overflow metabolism but increased lactate produc-
tion. More carbon had to be diverted to the citric acid cycle. Indeed the PPC strain was
found to be a favorable production strain: less overflow metabolites were excreted. Further
characterisation of the strains in chemostat experiments showed no difference in flux distribu-
tion between the different mutants, indicating that the mutations caused no negative impact

on primary metabolism.

8.2.2 Transient experiments

Production of acetate could be reduced by overexpressing ppe, increasing the flux towards the
Krebs cycle. In a second experiment, it was demonstrated that this increased flux towards
the Krebs cycle is also advantageous for protein production. Two strains were compared: one
wild-type and one in which ppc was overexpressed. (-galactosidase was used as model protein
and in both strains a LacZ plasmid was introduced. After attaining steady state, expression

of LacZ was induced by supplying IPTG to the cultures. The resulting production profile was
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monitored and the experimental data were analysed with dynamic MFA. It was shown that

the ppc overexpression mutant, had a significant increase in protein production capabilities.

The influence of switching NHj-limited cultures to glucose limitation and vice versa was
investigated using dynamic MFA (chapter 5). When switching a N-limited culture to N-
abundant conditions, a lag phase was observed in which the growth almost completely stopped
and ATP demand was high. No clear reason could be given for this. Such a lag phase
was only observed before in knock-outs of glnF, whose gene product, ATAse, regulates the
activity of glutamine synthetase. Toxicity in that case was not due to ammonia itself, but
to the accumulation of glutamine/glutamate as glutamine synthetase was not downregulated

anymore.

The extended period of the lag phase (5 hours) suggests that the cause is probably genetic.
With microarrays, the possible genes involved could be tracked in future studies. However, it
is quite certain that many genes will be influenced by the switch from nitrogen-limiting con-
ditions to nitrogen-abundant ones. It will thus still be difficult to find the mechanism behind
this lag phase. Another possibility would be to create mutants and asses their behaviour.
However, it is not clear at this stage which mutations would possibly reveal the cause of this
lag phase. Furthermore, the strain is behaving normally under other conditions, and thus the
only way of knowing the influence of a mutation on the lag phase is redoing that transient

experiment. Not really a fast screening method...

8.2.3 Oscillating environmental conditions

The influence of oscillating FE. coli cultures between aerobiosis and anaerobiosis was inves-
tigated using microarrays. It was found that cells adapt faster to aerobic conditions than
to anaerobic ones: the experiment in which the period of oscillation was four minutes, had
a gene expression profile more similar to fully aerobic cultures than to fully anaerobic ones.
However, cytochrome d, responsible for NADH oxidation under microaerobic conditions, and
fumarate reductase were found to be more expressed. Cytochrome d oxidises NADH but does
not contribute to the H™ gradient needed for ATP production. This could explain the lower

biomass yield for the P04 experiments compared to fully aerobic cultures.

In the experiment with a 30 minutes period, the similarity of the gene expression profile
between cells after 15 minutes aerobiosis and a fully aerobic culture was higher than between
cells after 15 minutes of anaerobiosis and a fully anaerobic culture. However, unlike in the P04
experiments, different genes were expressed in the aerobic and anaerobic phase. Furthermore,
besides the upregulation of cytochrome d, a second inefficiency was detected: acetate produced
in the anaerobic phase activates the expression of acs, whose gene product is responsible for
the uptake of acetate at the cost of two ATPs. This could explain the even lower biomass

yield obtained in the P30 experiments compared to the P04 ones.
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The expected increase in succinate production combined with a relatively fast growth was not
observed when oscillating the E. coli cells between aerobic and anaerobic conditions. Different

strategies could be tried to try to increase the succinate production:

e As adaptation to aerobic conditions is faster than to anaerobic conditions, the aerobic

phase could be shortened.

¢ A major futile cycle is introduced by the reasimilation of acetate via acetyl-coA synthase.
Knocking out acs will only increase acetate production. If succinate has to be produced,
more carbon should be diverted from acetate towards the Krebs cycle, and the same
strategy as for enhancing recombinant protein production can be used. Hence the F.
coli MG1655 AackA—pta, ApoxB, Apppc ppc—p37 strain of chapter 4 would be an ideal

candidate to redo this oxygen oscillating experiment with.

e The acs geneproduct typically scavenges carbon. It could be expected that it is not
as highly expressed under carbon-abundant conditions as under carbon-limiting ones,
like ptsG in phosphate-limited cultures is not as highly expressed as in carbon-limited
cultures. Hence, instead of working with carbon-limited cultures, P- or N-limited ones

could be envisaged.






Appendix A

Variance covariance calculations

All the variance covariance calculations are done based on linearisation of the functions. Given

the variables z7 ...z, with their variance covariance matrix:

O‘%,l “e 0'17,’7/
Se = . (A1)
2
O-TL71 O’n}n

and the transformation to other variables y;, with the functions y; = fi(z1...2,) for i =

1...m, the jacobian matrix is defined as:

ox1 oxy,
J=1 i (A.2)

fm Afm

Oxy, Oxy,

and the new variance covariance matrix is then equal to:
Sy=JS; J" (A.3)

This general formula is illustrated in the examples below.

A.1 Sum

Given a with 02 and b with o7 and assuming there is no correlation between a and b, the

variance of a + b is calculated as:

o2 0|1
o, = [1 1} [ 0 02] [1] =02+ o0} (A.4)
b
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134 A.2. Substraction

A.2 Substraction

Given a with 02 and b with o7 and assuming there is no correlation between a and b, the

variance of a — b is calculated as:
0 1
ag_b = [1 —1} [Ua 2] [ ] =02 —i—og (A.5)

A.3 Multiplication

Given a with 02 and b with o7 and assuming there is no correlation between a and b, the

variance of a * b is calculated as:

2
2 _ g 01 |0] _ 90 oo
oLy = {b a] [0 02] L] =o0,b" + oja (A.6)

A.4 Division

Given a with 02 and b with o7 and assuming there is no correlation between a and b, the

variance of a/b is calculated as:

2 1 2 2
5 .1 %4 0 5 | oa 9
Ua/b - |:% 71)72} [ 0 2] [ a] - b72 + O-bb74 (A7)



Appendix B

List of abbreviations

B.1 List of metabolites

2PG
3PG
6PG
6PGL
Ac
AcACP
AcCoA

ACP
ADP

ADPHEP

AICAR

aKGA
aKIV
Ala
AMP
Ar5P
Arg
Asn
Asp
AspSA
ATP

BGalAse

Biom

Biomn

BPG
C120ACP
C140ACP
C160ACP
C181ACP
CarP
CDP
CDPDGo

CDPEthAn

Chor
Cit

C3H707P
C3H707P
CeH13010P
CgH1109P
C2H402
CoH3OPept
C23H34017N7
P3S

HPept
C10H15010N5
Po
C17H27016N5
Po
CoH1505N4P

C5HgOs
C5HgO3
C3H702N
C10H1407N5P
C5H1108P
CeH1402Ny
C4HgO3N2
C4H704N
C4H703N
C10H16013N5
P3
C4.98H7.5801.5
N1.41S0.0507
CH1.6300.392
No.244P0.021
50.00565
CH1.9100.506
No.252P0.0149
S0.0067
C3HgO10P2
C12Ho30Pept
C14Ho70Pept
C16Hz31OPept
C18H330Pept
CH4O5NP
CoH15011 N3Py
C46Hg3015N3
Po
C11H20011Nyg
P2

C10H1006
CgHgO7

2-phophoglycerate
3-phophoglycerate
6-phosphogluconate
6-phosphogluconolacton
Acetate

Acetyl ACP

Acetyl CoA

Acyl carier protein
Adenosine diphosphate

ADP-Mannoheptose

Amino imidazole carboxamide ribonu-
cleotide

Alpha keto glutaric acid
Alpha-keto-isovalerate
Alanine

Adenosine monophosphate
Arabinose-5-phosphate
Arginine

Asparagine

Aspartate

Aspartate semialdehyde
Adenosine triphosphate

Beta-galactosidase

Biomass

Biomass

1-3-biphosphoglycerate

Carbamoyl phosphate
Citidine diphosphate
CDP-diacylglycerol

CDP-ethanolamine

Chorismate
cisaconitate

CL

CMP
CMPKDO
CcO2

CoA

CTP
Cys
dADP
Dahp
dATP

dCDP
dCTP
dGDP

DGo
dGTP

DHAP
DHF
Dhq
Dhs
DNA

dTDP

dTMP
dTTP

dUDP
dUMP
dUuTP
E4P
Eth
F6P
FA
FAD

FADH2

FBP
FTHF

G1P
G3P
G6P
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Cr77H144016P2
CoH1405N3P
C17H26015N3P
CO2
C21H32016N7
P3S
CoH16014N3P3
C3H7O2NS
C10H1509N5P2
C7H13010P
C10H16012N5
P3
CoH15010N3P2
CoH16013N3P3
C10H15010N5
Py

C37H7005
C10H16013N5
P3

C3H706P
C19H2106N7
C7H1006
C7HgOs
Co.75H14.207
N3.75P
C10H16011N2
Po
C10H1508N2P
C10H17014N2
P3
CgH14011N2P2
CgH1308N2P
CgH15014N2P3
C4H9O7P
CoHgO
CeHy309P

CH, 04
C27H33015Ng
P2
C27H35015Ng
P2

CeH14012P2
C20H2307N7
C4H404
CgHy309P
C3H706P
CgH1309P

Cardiolipin

Citidine monophosphate
CMP-2-keto-3-deoxyoctanoate
Carbondioxide

Coenzyme A

Citidine triphosphate
Cysteine

deoxy ADP

Deoxy arabino heptulosonate
deoxy ATP

deoxy CDP
deoxy CTP
deoxy GDP

Diacyl glycerol
deoxy GTP

Dihydroxyaceton phosphate
Dihydrofolate
Dehydroquinate
Dehydroshikimate

DNA composition

deoxy TDP

deoxy TMP
deoxy TTP

deoxy UDP

deoxy UMP

deoxy UTP
Erythrose-4-phosphate
Ethanol
Fructose-6-phosphate
Formic Acid

Flavine adeninen dinucleotide

Fructose-1-6-biphosphate
Formyl tetrahydrofolate
Fumarate
Glucose-1-phosphate
Glyceraldehyde-3-phosphate
Glucose-6-phosphate



136 B.2.  Full name of the reactions

GA1P CgH140gNP D-glucosamine-6-phosphate 02 Oso Oxygen
GA6P CeH14O08NP D-glucosamine-6-phosphate OAA C4H405 Oxaloacetate
GDP C10H15011 N5  Guanosine diphosphate Orn C5H1205N3 Ornithine
Py PA C37H71 08P Phosphatidyl acid
GLC CgH120¢ Glucose PAP C10H15010N5 Phospho adenosine phosphate
Glcg CgH1005 Glycogen P2
Gln CsH19O3N2 Glutamine PEP C3H506P Phosphoenolpyruvate
Glu CsHgOyN Glutamate Peptido C35H53016N7  Peptidoglycane
Gly CoH502N Glycine PEthAn C39H76OgNP  Phosphatidyl ethanolamine
GMP C10H1408N5P Guanosine monophosphate PG Cy40H7509P Phosphatidyl glycerol
Go3P C3HgOgP Glycerol-3-phosphate Phe CgH11 02N Phenylalanine
GTP C10H16014N5  Guanosine triphosphate PiOH H3zO4P Phosphate
P3 PPiOH H407P2 Pyrophosphate
H2CO3 CH203 Bicarbonate Pro CsHgO2N Proline
H20 H>0O ‘Water Prot Cy.8H7.6701.4 Protein composition
H202 H202 N1.37S0.046
H2S HaS Hydrogene sulfide Protn C4.8Hg 6702.4 Protein composition
H2S04 H204S Sulfuric acid N1.37S0.046
His CeHoO2N3 Histidine PRPP C5H13014P5  5-phospho-alpha-D-ribosyl-1-
H Ht Hydrogene pyrophosphate
HSer C4HoO3N Homoserine PSer C40H76019NP  Phosphatidyl Serine
iCit CgHgO7 isocitraat Pyr C3H4O3 Pyruvate
Ile CgH1302N Isoleucine Qa Cr7H120g Quinate
IMP C10H1308N4P Inosine monophosphate R5P C5Hp108P Ribose-5-phosphate
Lac C3HgO3 Lactate RI5P CsH110sP Ribulose-5-phosphate
Leu CeH1302N Leucine RNA Co.58H13.807.95 RNA composition
Lipa C110H196032N3 Lipid A N3.g5P
P2 S7TP C7H15010P Sedoheptulose-7-phosphate
Lipid Cy40.2H77.608.41 Lipid composition Ser C3H7;03N Serine
No.771P1.03 Shi C7H100s5 Shikimate
Lps C171H298081 Ny Lipo Poly sacharide Shi3P C7Hp1 08P Shikimate-3-phosphate
P2 Suc C4HgO4 Succinate
Lys CeH1402N2 Lysine SucCoA Ca5H36019N7  Succinyl CoA
Mal C4HgOs5 Malate P3S
MalACP C3H3OgPept Malonyl ACP THF C19H2306N7  Tetrahydrofolate
MalCoA C24H34019N7  Malonyl CoA Thiored Pept Thioredoxin
P3S ThioredH2 HaPept Reduced thioredoxin
MDAP C7H1404No Meso-diaminopimelate Thr C4HgO3N Threonine
Met CsH1102NS Methionine Trp C11H1202Ny Tryptophan
MeTHF CooH2306N7 Methyleen tetrahydro folate Tyr CgH1103N Tyrosine
MTHF C20H2506N7  Methyl tetrahydrofolate UDP CgH14012N2P> Uridine diphosphate
NAD Co1H38014N7 Nicotinamide adenine dinucleotide UDPGIlc C15H4017Ny  UDP glucose
Pyt Py
NADH C21H29014N7 UDPNAG  Cj17H27017N3 UDP N-acetyl glucosamine
Py Pa
NADP C21H28017N7 Nicotinamide adenine dinucleotide ypMPpP CoH1309NoP  Uridine monophosphate
Pyt phosphate UTP CoH15015N2P3 Uridine triphosphate
NADPH Cg1Ha9017N7 Val CsH1105N Valine
P3 XMP C10H1309N4P Xanthosine-5-phosphate
NH3 H3N Ammonia Xu5P C5H11 08P Xylulose-5-phosphate

B.2 Full name of the reactions

A5PIR Arabinose 5 phosphate isomerase ArgSYLR Arginine synthesis (lumped reaction)
AcACPSY beta-ketoacyl-ACP synthase AspLI Aspartate Amonia ligase

AcCoACB AcCoA carboxylase AspSASY Aspartate Semi aldehyde synthese (lumped reaction)
AcCoATA AcCoA-ACP transacetylase AspSY Asparagine synthetase

AcdhDH Acetaldehyde dehydrogenase AspTA Aspartate transaminase

AcKNLR Phosphate acetyl transferase + acetate kinase ATPHY ATP hydrolysis

ACO Aconitase BGalAseSYLR BGalAse synthesis (lumped reaction)

ActSY Acetoin synthesis BiomSYLR Biomass synthesis

AcylTF Acyltransferase BkaSYLR Beta ketoadipate synthesis (lumped reaction)
AdKN Adenylaat kinase C1208Y C12.0-ACP synthesis

ADPHEPSY ADP-L-glycero-D-mannoheptose-6-epimerase C1408Y C14.0-ACP synthesis

ADPRD ADP reductase C1418Y C14.1-ACP synthesis

AICARSYLR  AICAR synthesis (lumped reaction) C160SY C16.0-ACP synthesis

AKGDH alfa-ketoglutate dehydrogenase C161SY C16.1-ACP synthesis

aKIVSYLR alfa-ketoIsoValerate synthesis (lumped reaction) C181SY C18.1-ACP synthesis

AlaTA Alanine transaminase CarPSY Carbamoyl phosphate synthase

ALD Aldolase CDPDGoSY CDP-Diacylglycerol synthetase

AMPSYLR AMP synthesis (lumped reaction) CDPKN CDP kinase
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CDPPT CDP phosphatase

CDPRD CDP reductase

ChorSYLR Chorismate synthesis (lumped reaction)
CitDH Isocitrate dehydrogenase

CitSY Citrate synthase

CLSY Cardiolipin synthase
CMPKDOSYLRCMPKDO synthesis (lumped reaction)
CMPKN CMP kinase

CoQ2NAD Quinone reductase

CTPSY CTP synthase

CysSYLR Cysteine synthesis (lumped reaction)
dADPKN dADP kinase

dADPPT dADP phosphatase

dCDPKN dCDP kinase

dCDPPT dCDP phosphatase

dCTPDA dCTP deaminase

dGDPKN dGDP kinase

dGDPPT dGDP phosphatase

DGoKN Diacylglycerol kinase

DhDoPHepAD Dehydro deoxyphosphoheptonate aldolase
DHFRD DHF reductase

DhqDH Dehydro quinate dehydrogenase
DhqgSY Dhq synthase

DhsDH Dhs dehydratase

DhsSYLR Dhs synthesis

DNASYLR DNA formation (lumped reaction)
dTDPKN dTDP kinase

dTDPPT dTDP phosphatase

dTMPKN dTMP kinase

dTMPSY Thymidilate synthase

dUDPKN dUDP kinase

dUTPPPAS dUTP pyrophosphatase

ENO Enolase

EthANPT Ethanolamine phosphotransferase
EthDH Ethanol dehydrogenase

EthDHLR Ethanol dehydrogenase (lumped reaction)
FAD2NAD FAD2NAD

FBPAS Fructose-1,6-bisphosphatase

FTHFDF FTHF deformylase

FTHFLY Formate THF ligase

FTHFSYLR FTHF synthesis (lumped reaction)
FumHY Fumarate hydratase

G3PDH Glyceraldehyde-3-phosphate dehydrogenase
G6PDH Glucose-6-phosphate dehydrogenase
GallicSY Gallic acid formation

GDPKN GDP kinase

GDPRD GDP reductase

GlcAnMU Phosphoglucosamine mutase

GlcgSY Glycogen synthase

GInF6PTA Glutamine fructose-6-phosphate transaminase
GluDH Glutamate dehydrogenase

GluLI Glutamate-ammonia ligase

GluSY Glutamate synthase

GlyCA gev system

GMPSY GMP Synthase

Go3PDH Glycerol-3-phosphate dehydrogenase
GuKN Guanilate kinase

H2CO3SY CO2 - HCO3 equilibration reaction
H2020x hydroperoxidase

H2SSYLR H2S synthesis (lumped reaction)
HisSYLR Histidine biosynthesis (lumped reaction)
HK Hexokinase

HSerDH Homoserine dehydrogenase

iCitL Isocitrate lyase

IleSYLR Isoleucine synthesis (lumped reaction)
IMPDH IMP dehydrogenase

IMPSYLR IMP synthesis (lumped reaction)

LacDH
LAS
LeuSYLR
LipaSYLR
LipidSYLR
LysSY
MalCoATA
MalDH
MalSY
MDAPSYLR
MeTHFRD
MetSYLR
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Lactate dehydrogenase

Lactonase

Leucine synthesis (lumped reaction)
Lipid A synthesis (lumped reaction)
Lipid formation (lumped reaction)
Diaminopimelate decarboxylase
MalCoA ACP transacetylase
Malate dehydrogenase

Malate synthase

MDAP synthesis (lumped reaction)
MeTHF reductase

Methionine synthesis (lumped reaction)

NADH2NADPH NADH2NADPH

NAGUrTF
OrnSYLR
PAPNAS
PEPCB
PEPCBKN
PFK
PFLY
PGDH
PGI

PGK
PGLCMT
PGM
PGSYLR
PheSYLR
PPE

PPI
PPiOHHY
ProSYLR
ProtoCatDC
ProtSYLR
PrppSY
PSerDC
PSerSY
PTS

PyrD
PyrK
PyrMalCB
R5P2R1P

Resp
RestSYLR
RNASYLR
SerLR
SerTHM
ShiKN
ShiSY
SucCoASY
SucDH

TA
ThioredRD
ThrSYLR
TK1

TK2

TPI
TrpSYLR
TyrSYLR
UDPGIcSY
UDPKN
UDPRD
UMPSYLR
UrKN
ValAT
ValPyrAT

N-Acetylglucosamine-1-phosphate-uridyltransferase
Ornithine synthesis (lumped reaction)
3’ - 5’ Bisphosphate nucleotidase (PAP degradation)
PEP-carboxylase

PEP-carboxykinase
Phosphofructokinase

Pyruvate formate lyase
6-phosphogluconaat dehydrogenase
Phophoglucoisomerase
Phosphoglycerate kinase
Phosphoglucomutase

Phosphoglycerate mutase

PG synthesis (lumped reaction)
Phenylalanine biosynthesis (lumped reaction)
Phospho pentose epimerase

Phospho pentose isomerase

PPiOH hydrolase

Prolyne biosynthesis (lumped reaction)
ProtoCat decarboxylase

Protein formation (lumped reaction)
Phosphoribosyl pyrophosphate synthase
Phosphatidylserine decarboxylase
Phosphatidylserine synthase
Phosphoenoltransferase

Pyruvate dehydrogenase

Pyruvate kinase

Pyruvic-malic carboxylase
Ribose-5-phosphate conversion to ribose-1-
phosphate

Respiration

Rest

RNA formation (lumped reaction)
Serine biosynthesis

Serine transhydroxy methylase
Shikimate kinase

Shikimate synthesis

SuccinylCoA synthetase

Succinate dehydrogenase

Transaldolase

Thioredoxine reductase

Threonine synthesis (lumped reaction)
Transketolasel

Transketolase2

Triose phosphate isomerase

Tryptophan biosynthesis

Tyrosine biosynthesis (lumped reaction)
UDP glucose-1-phosphate uridylyltransferase
UDP kinase

UDP reductase

UMP synthesis (lumped reaction)
Uridilate kinase

Branched chain AA aminotransferase
Valine Pyruvate aminotransferase
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B.3. List of genes

Gene functions were taken from the EcoCyc database (Keseler et al., 2005).

aceA
aceB

aceF

ackA

acs
adhCEP
adhE
aldH
amtB
arcA
arcB

aroF

aroG

arol
cyd
cyo
dctA
dms
eno
fba
fnr
frd
fumA
fumB
fumC
gapA
glk
glnA
glnB
glnD
glnE
glnG
glnK

Isocitratelyase

Malate synthase

Lipoate acetyltransferase / dihydrolipoamide acetyl-
transferase, subunit of pyruvate dehydrogenase mul-
tienzyme complex

Acetate kinase

Aconitase

AcetylCo synthase

Ethanol dehydrogenase

Acetyldehydrogenase

Aldehyde dehydrogenase

AmtB ammonium Amt transporter

ArcA transcriptional dual regulator

ArcB sensory histidine kinase

Subunit of 2-dehydro-3-deoxyphosphoheptonate al-
dolase

Subunit of 2-dehydro-3-deoxyphosphoheptonate al-
dolase

shikimate kinase II

Cytochrome bd terminal oxidase

Cytochrome bo terminal oxidase

DctA dicarboxylate DAACS transporter

Dimethyl sulfoxide reductase

Enolase

Fructosebisphosphate aldolase

FNR transcriptional dual regulator

Fumarate reductase

Fumarase

Fumarase B

Fumarase C

Glyceraldehyde-3-phosphate dehydrogenase
Glucokinase

Adenylyl-glutamine synthetase

PII

Uridylyltransferase / uridylyl-removing enzyme
Glutamine synthetase adenylyltransferase

Nitrogen regulatory protein NtrC

Nitrogen regulatory protein GInK

glnL
gltA
icd
kdgT
lacZ
let
ldhA
Ipd

lrp
maeAB
mdh

mgsA
narGHJI
narZYWV
pck

pdh

pdhR
pfkAB

pfl

pgi

pgk

poxB

ppc

pta

ptsG

ptsH

pyk

rph
sdhABCD
sucAB,lpd
sucCD
tnaA

torA

trpE

ydiB

yfiD

Nitrogen regulatory protein NtrB

Citrate synthase

Isocitrate dehydrogenase
2-dehydro-3-deoxy-D-gluconate transporter
Betagalactosidase

L1dP lactate transporter

Lactate dehydrogenase

Subunit of lipoamide dehydrogenase, 2-oxoglutarate
dehydrogenase complex, gcv system and pyruvate de-
hydrogenase multienzyme complex

Lrp transcriptional dual regulator

Malic enzyme

Malate dehydrogenase

Methylglyoxal synthase

Nitrate reductase A

Nitrate reductase Z
Phosphoenolpyruvatecarboxykinase

Pyruvate dehydrogenase

PdhR transcriptional dual regulator
6-phophofructokinase

Pyruvateformatelyase

Phosphogluco-isomerase

Phophoglyceratekinase

Pyruvate oxidase

Phosphoenolpyruvatecarboxylase
Acetylphosphotransferase

PTS Enzyme IIB and IIC domains

HPr (heat stable, histidyl phosphorylatable protein)
Pyruvate kinase

RNase PH monomer

Succinate dehydrogenase

Alfaketoglutarate dehydrogenase

Succinate thiokinase

L-cysteine desulfhydrase / tryptophanase

Subunit of trimethylamine N-oxide reductase I
Anthranilate synthase component I

Shikimate dehydrogenase / quinate dehydrogenase
Stress-induced alternate pyruvate formate-lyase sub-
unit
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