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'Nu heb ik, a
h, de �loso�e, voor 't laatst a
hter mijn lessenaar,geneeskunde en re
hten en, o spijt, waar ik je vaak om midderna
htdaarnaast nog de theologie met pijn in 't hart heb opgewa
ht,lang bestudeerd, met noeste vlijt. dan, boven boeken en papier,Hier sta ik nu, ik arme dwaas, mijn bleke vriend, vers
heen je hier!niets wijzer dan 'k al was, helaas. Kon ik maar door 't gebergte dwalen'k ben do
tor, ben professor bovendien, in 't za
hte s
hijnsel van je stralen,en houd nu al zo'n jaar of tien geesten opzoeken in hun holenbij hoog en laag, van vroeg tot laat langs s
hemerende weitjes dolenal mijn studenten aan de praat, en niet geplaagd door muizenissenbese�end niets te kunnen weten; me heilzaam in je dauw verfrissendat heeft zi
h in mijn hart gevreten.Wel ben ik wijzer dan al die apen God weet hoelang ik mij al kwelvan hooggeleerden, s
hrijvers en papen, in mijn vervloekte, mu�e 
el'k word niet gekweld door vrome twijfel, waar 't hemelli
ht niet langer straaltben ook niet bang voor duivel of hel- maar in het glas-in-loot vers
haalt!maar to
h, mijn vreugde is gevlogen: met boekenzerk als struikelblok,geen kennis waar ik op kan bogen, leesstof voor made, luis en spint;geen mens die ik iets heb te leren een steil gewelf, tot in de nokof tot iets hoger kan bekeren. met kladpapiertjes volgepind;Ook heb ik nergens geld of goed, een lorrenboedel, eeuwenoud,niemand die mij met eerbied groet. met kolven, vaten, waar ik kijk,Geen hond die zo zou willen leven! en instrumenten volgestouwd:Dat heeft mij tot de magie gedreven: dat is je wereld, dat is je rijk!wie weet, als ik naar geesten luisterkomt eindelijk meer li
ht in 't duister. En vraag jij nog wat het kan zijnDan moet ik niet meer, klam van 't zweet, dat jou vanbinnen zo beklemt,verkondigen wat ik niet weet, door welke mysterieuze pijnmaar krijg te zien welk kra
htenspel je levenslust zo gestremd?ten grondslag ligt aan dit bestel, Terwijl het rondom klopt en bruist'k doorgrond de zaden en het rijpen in Gods natuur, grijnzen je hier,en hoef niet steeds naar 't woord te grijpen. in walm en keldergeur behuisd,de s
hedels toe van mens en dier.O volle maan, zag jij me maar Vlu
ht! Zoek de oneindige natuur!' [65℄v
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Chapter 1
General introdu
tion
1.1 Introdu
tionThe growing environmental 
on
erns and the awareness that the world's oil supplies arelimited, are fa
tors prompting the 
hemi
al and biote
hnologi
al industries to explorenature's ri
hness in sear
h of methods to repla
e petroleum-based syntheti
s for the de-velopment of a biobased e
onomy [58℄.An entire bran
h of biote
hnology, known as industrial biote
hnology, is devoted to this.It uses living 
ells and enzymes to synthesise a wide range of produ
ts (Table 1.1) thatare easily degradable, require less energy and 
reate less waste during their produ
tion[58℄. However, obliging su
h living 
ells to produ
e the 
ompound of interest generallyrequires some modi�
ation of their metabolism. To more e�e
tively adjust metabolismboth experimental and mathemati
al tools have been developed to gather data and toextra
t information from these data with a view to modifying the 
ell's geneti
s. Su
h anoptimisation is an iterative pro
ess of strain evaluation and modi�
ation that typi
allytakes pla
e under highly reprodu
ible laboratory 
onditions, i.e., in ideally pH, temper-ature, and dissolved oxygen 
ontrolled and ideally mixed fermentors with a hydrauli
volume of a few litres.However to produ
e the 
ompound of interest in su�
ient quantities to meet the 
om-mer
ial demand, the developed pro
ess has to be s
aled-up. Then additional problemsarise, i.e., 1



Table 1.1: Mi
robially produ
ed produ
ts and the produ
ing organism [32℄Produ
ing organism Produ
tKlebsiella pneumoniae 1,3-propanediolAspergillus niger 
itri
 a
idAspergillus terreus ita
oni
 a
idGlu
onoba
ter oxydans glu
oni
 a
idA
tinoba
illus su

inogenes su

ini
 a
idSa

haromy
es 
erevisiae la
ti
 a
idA
etoba
ter suboxydans a
orbi
 a
idXanthomonas 
ampestris xanthanSa

haromy
es 
erevisiae ethanolCoryneba
terium glutami
um glutami
 a
idCandida �areri ribo�avin (vitamin B2)Pseudomonas denitri�
ans 
yano
obalamin (vitamin B12)Peni
illium 
hrysogenum peni
illin GStreptomy
es orientalis van
omy
inStreptomy
es aureofa
iens tetra
y
lineBa
illus li
heniformes α-amylase
• biologi
al fa
tors, e.g., the number of generations asso
iated with the ino
ulumdevelopment and produ
tion phases, mutation probability, 
ontamination vulnera-bility, pellet formation, 
ell-density, and sele
tion pressure,
• 
hemi
al fa
tors, e.g., pH 
ontrol agents, medium quality and water quality, andsubstrate 
on
entrations, and
• physi
al fa
tors, e.g., mixing, aeration, agitation, and hydrostati
 pressure,are a�e
ted when s
aling-up, all signi�
antly in�uen
ing the overall pro
ess yield andprodu
tivity, most often in a negative way [70, 79, 183℄.1.2 AimsTo gain insight in the fa
tors leading to the suboptimally performing large-s
ale 
ul-tures in 
omparison with laboratory-s
ale 
ultures, a study of biologi
al, 
hemi
al, andphysi
al pro
esses is mandatory. Un
oupling the underlying pro
esses of di�erent natureis di�
ult as some of the time 
onstants are of the same order of magnitude. Indeed,transport phenomena in�uen
e the lo
al 
onditions, whi
h in turn in�uen
e mi
robial2



metabolism, whi
h in turn in�uen
e lo
al pro
ess 
onditions.Thus far, the attempts to really ta
kle this problem, though of major interest for theoptimisation of a mi
robial produ
tion pro
ess sensu largo, have been little. Amongstothers the tools to ta
kle this problem are not readily available. Hen
e, the aim of thisdissertation was to develop and apply some of the tools that will be useful to investigatethe widely observed redu
tion in pro
ess performan
e of large-s
ale 
ultures.Therefore, this dissertation fo
usses on tools to des
ribe/model the mi
robial metabolismin detail. The 
ellular response to the rapidly 
hanging environmental 
onditions en-
ountered in su
h large-s
ale biorea
tors is indeed thought to be the main 
ause of theobserved redu
tion in pro
ess performan
e. The models to be developed should 
onsiderthe internal 
omposition and stru
ture of the mi
ro-organisms, enzymati
 kineti
s, andthe regulatory network.For su
h models the gathering of experimental data to identify the model stru
ture andits parameters and, equally important, to validate the model is a prerequisite. Hen
e,experimental set-ups need to be developed that mimi
 the large-s
ale 
onditions. Theseset-ups 
an then be used to 
olle
t the ne
essary intra
ellular metaboli
 data.Finally, tools need to be developed that render the des
ription of both biologi
al, 
hemi-
al, and physi
al pro
esses that take pla
e in large-s
ale biorea
tors, using 
omputational�uid dynami
s models, feasible.1.3 OutlineThis dissertation 
onsists of three parts:In the �rst part tools to des
ribe metabolism are dis
ussed. To gain insight in the mi-
robial metabolism, modelling 
an be a useful tool. Metaboli
 models sensu largo arealready widely used for metaboli
 engineering purposes. Therefore in Chapter 2, a 
on-
ise overview is given of the state of the art. Though perhaps not dire
tly useful for thestudy of large-s
ale biorea
tors, some of the reviewed methods have been applied as well:partial least squares regression has been used to identify geneti
 targets for the metaboli
3



engineering of su

inate biosynthesis in E. 
oli (Chapter 3) and a method is presented toassess the un
ertainty on the 
al
ulated �ux 
ontrol 
oe�
ients of a bio
hemi
al pathway,des
ribed by approximative metaboli
 models (Chapter 5).In large-s
ale biorea
tors zones exist with ample substrate, in general in the surroundingsof the inlet of the 
on
entrated in�uent, with substrate depletion and with oxygen de-pletion or ex
ess in other zones. When an individual mi
ro-organism 
ir
ulates througha large-s
ale rea
tor it is sequentially exposed to these di�erent lo
al 
onditions [139, 221℄.To study su
h phenomena, a detailed des
ription of the biophase is mandatory. As the
ellular response to the en
ountered rapidly 
hanging environmental 
onditions in large-s
ale biorea
tors is thought to be the main 
ause of the observed yield redu
tion. Asa 
onsequen
e of these variations in pro
ess 
onditions, a mi
ro-organism will developa 
hara
teristi
 metabolomi
 and proteomi
 make-up [44, 53, 76, 131℄, whi
h will allowmaximisation of its growth under those 
onditions, e.g., mixed a
id fermentation andover�ow metabolism. In view of the latter, attention is devoted to the 
yberneti
 frame-work in Chapter 4, espe
ially with a view to a more detailed des
ription of the biophase.Several rival 
ontrol laws for enzyme a
tivity have been proposed and evaluated. Therationale of the 
yberneti
 s
hool of thought is that a mi
ro-organism tries to optimiseits behaviour, e.g., with respe
t to growth or substrate uptake. This is a
hieved by al-lo
ating the limited resour
es a mi
ro-organism disposes of to these 
ompeting enzymesyielding the optimal performan
e, by means of a 
ontroller [138, 205, 206℄.A model-based approa
h has thus been 
hosen sin
e models 
an be useful tools as theyare a spe
ial kind of ontology. To build models three sour
es of information are used:experimental data, prior knowledge gathered from the literature and databases, and itsintended purpose. Modelling is however approximating and 
onsequently the 
hoi
e ofthe proper model stru
ture is in general subje
t to individual judgement and preferen
e.Finding the proper balan
e between the intended aim, prior knowledge, and the availabledata is however an assiduous task.In view of a model's intended purpose, over-abstra
ting or oversimplifying reality 
anresult in a model that is hard to interpret or a model that does not take into a

ountpro
esses of prime importan
e with a view to the model's intended purpose. For instan
e,this is probably the 
ase for the model-based optimisation presented by Sin et al. (2004)4



[165℄ whi
h led to erroneous model predi
tions [166℄. In 
ontrast, 
ompli
ating the model
an result in a model that is poorly identi�able, i.e., many di�erent parameter sets willgive almost identi
al �ts to the 
alibration data (the equi�nality problem) as 'they often
an dan
e to the tune of the 
alibration data' [19℄, and one may run into the same dan-ger. This may again be perni
ious for its predi
tive validity [19℄ as these parameter sets
an yield dramati
ally di�erent predi
tions of how the system will behave as 
onditions
hange.The need for reliable and informative data is then obvious. Therefore, tools are devel-oped in the se
ond part of this dissertation whi
h may help to gather the ne
essary datato experimentally study mi
robial metabolism and to gather the ne
essary data with aview to parameter identi�
ation and model stru
ture identi�
ation. To this end, a modusoperandi of the Bios
ope is proposed in Chapter 6 to study mi
robial os
illating systems.A strategy to design a s
aled-down rea
tor is outlined in Chapter 8. S
aled-down re-a
tors allow to mimi
 on a laboratory-s
ale, the large-s
ale 
onditions in an attempt toanti
ipate the out
ome on a large-s
ale. However, whereas the state of the art s
aled-down rea
tors typi
ally fo
us on ma
ros
opi
 variables, su
h as 
ir
ulation time andmixing time, the presented approa
h attempts, using 
omputational �uid dynami
s sim-ulations, to more a

urately mimi
 the substrate 
on
entration dynami
s observed bymi
ro-organisms in large-s
ale biorea
tors, as those ma
ros
opi
 variables are far fromideal to be 
orrelated with degrees of 
onversion.In the last and third part of this dissertation attention is devoted to 
omputational �uiddynami
s. Computational �uid dynami
s models �nd a

eptan
e both in industry anda
ademia to study the impa
t of spatiotemporal heterogeneity, i.e., imperfe
t mixing,on overall pro
ess performan
e. The des
ription of the biophase in a Lagrangian way,i.e., following the 
ell's path through the rea
tor, is obvious sin
e the behaviour of ami
ro-organism is determined by both the reigning environmental 
onditions and its in-tra
ellular make-up. All this is determined by what it has observed over time. Due tothe sto
hasti
 nature of parti
le transport and the spatial heterogeneity in large-s
alebiorea
tors, this intra
ellular make-up will not be identi
al for all mi
ro-organisms whi
hmakes that a large number of 
ells must be followed to generate a view on the overallbiorea
tor behaviour. A method to render su
h 
al
ulations more feasible is thereforeproposed in Chapter 7. 5



This dissertation ends with an overview of the main 
on
lusions and perspe
tives forfurther resear
h.
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Chapter 2
Modelling with a view to targetidenti�
ation in metaboli
engineering
2.1 Introdu
tionThe well-established 
hemi
al synthesis routes fa
e, although the era of the oil-basedso
iety has not 
ome to an end yet, more and more 
ompetition from industrial biote
h-nologi
al alternatives for the produ
tion of an in
reasing number of 
ompounds, dueto, e.g., environmental 
on
erns and the in
reasing s
ar
ity of oil. Whereas in the pastmi
ro-organisms were typi
ally used for the produ
tion of stereo
hemi
al [191℄ and 
om-plex mole
ules, e.g., antibioti
s [25, 177℄, nowadays they even be
ome an interestingalternative for many bulk 
hemi
als. In order to develop an industrial biote
hnologi
alpro
ess that 
an 
ompete with the more mature 
hemi
al synthesis routes, there are 4
riti
al development phases:1. The 
hoi
e of the favourite mi
ro-organism2. Metaboli
 engineering3. S
aling-up4. Downstream pro
essing 7



The se
ond phase in the development of an e
onomi
ally viable industrial biote
hnolog-i
al pro
ess is the optimisation of the mi
ro-organism itself using a wide range of bothexperimental and mathemati
al te
hniques.To this end, due to the 
omplexity of mi
robial metabolism, more and more metabolomi
,proteomi
, trans
riptomi
, and genomi
 data are 
olle
ted [38, 78, 87, 132℄, whi
h appearto be valuable to steer the pro
ess of geneti
 engineering with a view to the overprodu
-tion of a target 
ompound. Indeed, these data help to elu
idate the �ux distribution,determine the �ux 
ontrolling rea
tions, and yield insight in the regulation of metabolism.In addition to these experimental te
hniques, mathemati
al methods are developed and
ommonly applied to interpret and to extra
t information from this pile of data and toidentify geneti
 targets for the overprodu
tion of a target 
ompound (Table 2.1). In this
ontext steady-state [198℄ and dynami
 metaboli
 modelling [149℄, multivariate statisti
s[39, 84, 197℄, graph theory [136℄, and neural networks are used to unravel the mi
robialbehaviour.Finally, the development of geneti
 toolboxes 
onsisting of promoter libraries [39, 69, 84℄and strategies for gene kno
k-outs, kno
k-ins, kno
k-downs, and kno
k-ups [36℄, and theadvent of fun
tional genomi
s [61, 77℄ have allowed the dire
ted improvement of 
ellu-lar properties based on these �ndings in view of optimising the produ
tion host. Thishot
hpot
h of te
hniques results after some iterative rounds of geneti
 modi�
ation andhost evaluation into the development of a host with improved performan
e.Su
h a systemati
 approa
h is obvious as the vast variety of bio
hemi
al pathways mi
ro-organisms dispose of, in order to ful�l their growth and reprodu
tion requirements undera wide range of environmental 
onditions, renders them hard to fathom. A thoroughunderstanding of the regulation of mi
robial pro
esses is however a 
onditio sine quanon for the rational design of biopro
esses, as a disturban
e in one part of metabolism
an trigger a series of rea
tions on all levels of regulatory 
ontrol and in all parts ofmetabolism. Indeed, in 
omplex metaboli
 networks it is often a futile avo
ation to adho
 predi
t the impa
t, both qualitatively and quantitatively, of a geneti
 intervention[12℄. Hen
e, the popularity of models for metaboli
 engineering purposes. A 
on
iseoverview of the use of models in this development phase will be given below (Figure 2.1).8



Figure 2.1: Modelling with a view to target identi�
ation in metaboli
 engineering. Blueblo
ks represent the methods, yellow blo
ks represent inputs.9



Table 2.1: Target identi�
ation relying on metaboli
 modellingmodel-based optimisation method Produ
tion host Target 
ompoundelementary �ux modes E. 
oli L-methionine [93℄C. glutami
um L-methonine [93℄E. 
oli su

ini
 a
id [this study℄optimal �ux distribution E. 
oli su

ini
 a
id [99℄�ux balan
e analysis M. tuber
ulosis my
oli
 a
id [144℄S. 
erevisiae su

ini
 a
id [137℄S. 
erevisiae gly
erol [137℄S. 
erevisiae vanillin [137℄E. 
oli ly
opene [5℄E. 
oli L-threonine [98℄E. 
oli L-valine [135℄E. 
oli su

ini
 a
id [34℄partial least squares E. 
oli phenylalanine [200℄Tri
hoderma sp. 
ellulase [196℄dynami
 metaboli
 modelling E. 
oli 
arnitine [27, 163℄2.2 Stoi
hiometri
 network analysisAb initio, stoi
hiometri
 network models have been used to fa
ilitate the 
hoi
e of whereto intervene geneti
ally. The metaboli
 network 
omprises the metabolites and the re-a
tions they are involved in, in
luding formation, degradation, transport, and 
ellularutilisation gathered from databases [88, 128, 158℄ and the literature [148℄. For everymetabolite a mass balan
e 
an be derived:
dxi

dt
=
∑

j

sijrj − bi (2.1)where sij is the stoi
hiometri
 
oe�
ient asso
iated with �ux rj and bi the net transport�ux of metabolite xi. Under pseudo steady-state 
onditions Eq. 2.1 will redu
e to:
0 ∼=

∑

j

sijrj − bi (2.2)Eq. 2.2 
an be rewritten in matrix notation:
[

0

b

]

∼= S ×R (2.3)10



where S is the stoi
hiometri
 matrix, R is the ve
tor of metaboli
 �uxes, and b is theve
tor representing m transport �uxes.Despite su

ess stories of metaboli
 model use to identify targets for modi�
ation, therehave also been many false positive targets identi�ed by these models. It is still un
learwhether the well-established te
hnique of stoi
hiometri
 modelling is fully apt to steerthe pro
ess of metaboli
 engineering, sin
e the kineti
s and the regulation of the enzy-mati
 rea
tions are not a

ounted for [5, 171℄.Espe
ially for the optimisation of the produ
tion of metabolites in primary metabolismthat are subje
t to severe (redox) 
onstraints, stoi
hiometri
 modelling is useful. It isless so for the optimisation of minor routes [195℄.On
e the metaboli
 network model is built one 
an resort to stoi
hiometri
 network anal-ysis, in the absen
e of data. Network analysis provides for the identi�
ation of elementary�ux modes, extreme pathways, and the optimal �ux distribution as will be dis
ussed be-low.2.2.1 Elementary �ux modes and extreme pathwaysNetwork-based pathway analysis, e.g., identi�
ation of elementary �ux modes (EFMs)and extreme pathways (EPs) fa
ilitates the assessment of network properties. Both ofthese methods use 
onvex analysis, a bran
h of mathemati
s that enables the analysis ofinequalities and systems of linear equations to generate a 
onvex set of ve
tors that 
anbe used to 
hara
terise all of the steady-state �ux distributions of a bio
hemi
al network[134℄. Both have the following properties [134℄:1. There is a unique set of elementary modes/extreme pathways for a given network.2. Ea
h elementary mode/extreme pathway 
onsists of the minimum number of rea
-tions that is required to exist as a fun
tional unit. If any rea
tion in an elementarymode/extreme pathway would be removed, the whole elementary mode/extremepathway 
ould not operate anymore as a fun
tional unit. This property has been
alled geneti
 independen
e and non-de
omposability.11



However, whereas elementary modes are the set of all routes through a metaboli
 network
onsistent with the latter property, extreme pathways are the systemi
ally independentsubset of elementary modes (Figure 2.2); that is, no extreme pathway 
an be representedas a non-negative linear 
ombination of any other extreme pathways [134℄.Both have been used to 
al
ulate produ
t yields, to evaluate pathway redundan
y, to de-termine 
orrelated rea
tion sets, and to assess the e�e
t of gene deletions [134℄. Carlsonet al. (2002) [28℄ and Kromer et al. (2006) [93℄ used elementary �ux modes for rationaldesign purposes and Carlson and S
rien
 (2003) [29℄, Nookaew et al. (2007) [126℄, andS
hwarts et al. (2007) [160℄ used the 
on
ept of elementary �ux modes in 
ombinationwith experimental data for network analysis.The physiologi
al interpretation of the results, see also Figure 2.3, and their 
omputationfor genome s
ale models remain however 
hallenging [216℄.2.2.2 Optimal �ux distributionThe 
al
ulation of the optimal �ux distribution, e.g., [99℄, is another popular informationsour
e to steer the pro
ess of metaboli
 engineering. The linear programming problem
an be written as:
max J = bi (2.4)subje
t to:

0 ∼= S ×R− b (2.5)
bi = αi (2.6)where J is the obje
tive fun
tion, typi
ally the net transport �ux of the 
ompound ofinterest, and αi the 
onstraint on the net transport �ux values of 
ertain substrates i.By solving Eqs. 2.4-2.6, the maximal theoreti
al yield 
an be 
al
ulated.Pros and 
ons 12



Figure 2.2: The 3 extreme pathways (white ba
kground) and 4 elementary �ux modes(grey ba
kground) of the stoi
hiometri
 network. Note that the EFM (top, right) is anon-negative linear 
ombination of 2 extreme pathways (down, right) and (down, left)
13



Figure 2.3: The 17528 elementary �ux modes of the stoi
hiometri
 E. 
oli model ofLequeux et al. (2006) [100℄ represented as ▽s, 
al
ulated by using Metatool 5.0 [214℄,and presented in the YX,S, Ysuccinate,S spa
e, with YX,S and Ysuccinate,S the biomass
[

c−mole
mole

] and su

inate [mole
mole

] yield on glu
ose, respe
tively. The EFMs 
hara
terised bythe optimal �ux distribution, here with respe
t to maximal Ysuccinate,S 
an readily beidenti�ed (←).
14



Obviously, the optimal �ux distribution 
an be 
al
ulated, but how to a
hieve this optimal�ux distribution in vivo remains unresolved sin
e it depends 
onsiderably on the kineti
sand the regulation of the enzymati
 rea
tions, whi
h are not a

ounted for [5, 171℄. Inaddition, it fo
usses 
ompletely on yields whereas in reality produ
tivity, i.e., the rate atwhi
h the produ
t is produ
ed, is equally important.
2.3 Steady-state modellingIn the presen
e of data, one 
an resort to steady-state modelling, e.g., metaboli
 �uxanalysis and �ux balan
e analysis. Eq. 2.3 
an then be rewritten as:

0 ∼=






Sin 0 0

Sc
ex −Ic

ex 0

Sm
ex 0 −Im

ex











rin

bcex

bmex




 (2.7)where rin represents the intra
ellular �uxes, bcex and bmex the net transport �uxes to be
al
ulated and measured, respe
tively. Sin, Sc

ex, and Sm
ex are the 
orresponding stoi
hio-metri
 matri
es and I represents a unity matrix. This equation 
an be rewritten as:

0 ∼=






Sin 0

Sc
ex −Ic

ex

Sm
ex 0






︸ ︷︷ ︸

Wc

[

rin

bcex

]

︸ ︷︷ ︸

ac

+






0

0

−Im
ex






︸ ︷︷ ︸

Wm

[bmex]
︸︷︷︸

am

(2.8)
the solution of whi
h is:

ac
∼= −W#

c Wmam + null space (Wc) f (2.9)with W#
c the pseudo inverse of matrix Wc, with the null spa
e de�ned as the set of linearindependent basis ve
tors Rn that ful�l the equation:

WcRn = 0 (2.10)and f a ve
tor with as many elements as there are 
olumns in the null spa
e of Wc. The15



number of independent null spa
e ve
tors is equal to:
n− rank (Wc) (2.11)with n the number of �uxes to be 
al
ulated.2.3.1 Metaboli
 �ux analysisIf Eq. 2.11 = 0 the system is determined and has one unique solution:

ac
∼= −W#

c Wmam (2.12)Substituting Eq. 2.9 in Eq. 2.8 now yields:
Wmam +Wc

(

−W#
c Wmam

)

= 0 (2.13)Or rewritten, sin
e Eq. 2.10:
(

Wm −W
#
c WcWm

)

am = 0 (2.14)When the system is (partially) overdetermined, the extra measurements, whi
h are spe
-i�ed by the so-
alled redundan
y matrix: Wm −W
#
c WcWm in Eq. 2.14, 
an be usedfor statisti
al testing and error analysis. van der Heijden et al. (1994) [194℄ introdu
eda method for error dete
tion and analysis. If the error is statisti
ally zero, the modelis 
onsistent. If this is not the 
ase, this error analysis method 
an be used to identifyerroneous measurements. Removing these erroneous measurements from the data set im-proves the 
han
e of a 
onsistent result. An overview is given by Lequeux et al. (2006)[100℄.Pros and 
onsThough metaboli
 �ux analysis (MFA) merely yields a snapshot of the metaboli
 state ina parti
ular 
ondition, it might be of some signi�
an
e to steer the pro
ess of metaboli
engineering as prin
ipal nodes 
an be identi�ed. These prin
ipal nodes, whi
h are 
har-a
terised by signi�
ant 
hanges in �ux partitioning under di�erent 
onditions, should be16



regarded as potential bottlene
ks [198℄.It should be 
lear that due to the large variety of metaboli
 pathways, e.g., parallelpathways, reversible rea
tions, and 
y
les the system is in general underdetermined. Forexample, genome s
ale models have been 
onstru
ted, typi
ally useful for the design ofminimal media, e.g., for Es
heri
hia 
oli (931 rea
tions) [148℄, Sa

haromy
es 
erevisiae(1175 rea
tions) [57℄, Heli
oba
ter pylori (388 rea
tions) [157℄, and Neisseria meningitidis(496 rea
tions) [10℄. Su
h genome s
ale models 
ontain all known rea
tions, formation,degradation, transport, and 
ellular utilisation gathered from databases and the litera-ture.However, then the modeller 
an opt/has to redu
e the metaboli
 network in order to geta system of feasible size, using for example an obje
tive fun
tion or by in
orporating asmu
h knowledge, e.g., prior knowledge about the �ux size, and data as possible. Forinstan
e, unlabelled metabolomi
 data, as these data yield thermodynami
 information
∆rG

′o and 
onsequently information about the reversibility and irreversibility of 
ertainrea
tions [75, 95℄, labelled metabolomi
 data as these data yield information on splitratios [37, 201, 217℄, and trans
riptomi
 data [4, 24, 100, 164℄, through the in
orporationof additional 
onstraints for the metaboli
 network, e.g., presen
e of an enzymati
 
on-version, to redu
e the un
ertainty about the obtained �ux distribution.2.3.2 Flux balan
e analysisIf Eq. 2.11 > 0 the system is underdetermined. Then no unique solution exists. Thequestion then is whi
h of the feasible metaboli
 states is manifested under that 
ondi-tion. Flux balan
e analysis (FBA) [51, 142℄ postulates that a metaboli
 system exhibitsa metaboli
 state that is optimal under some 
riteria. This obje
tive is expressed as alinear 
ombination of the �uxes 
ontained in R. The model 
an then be formulated as alinear programming problem as follows:
maxJ =

∑

j

cjrj (2.15)subje
t to:
0 ∼= S ×R− b (2.16)17



αi ≤ ri ≤ βi (2.17)where J is the obje
tive fun
tion, c is a ve
tor of weights, 
osts or bene�ts, linked to the�uxes, and the boundaries αi and βi represent known 
onstraints on the minimum andmaximum �ux values.Pros and 
onsThough many obje
tive fun
tions have been used, the optimisation of ATP produ
tionand the optimisation of growth 
omply best with experimental observations [159℄ in manymi
ro-organisms. The appli
ations of FBA have been many and the in sili
o metaboli

onstraints predi
tions 
an be used to optimise the behaviour of interesting mutants.However, it is not be
ause a mi
ro-organism has the geneti
 potential that it will ad ho
perform optimally, i.e., mutants 
reated arti�
ially are generally not subje
t to the sameevolutionary pressure that shaped the wild type [5, 56, 162℄. The method of minimi-sation of metaboli
 adjustment (MOMA) attempts to deal with this issue. Instead ofmaximising biomass produ
tion the mutant, KO, is believed to remain initially as 
loseas possible to the wild type optimum, WT , in terms of �ux values [162℄. The obje
tivefun
tion then be
omes:
minD (RWT , RKO) (2.18)with

D (RWT , RKO) =

√
√
√
√
√

n∑

i

(rWT − rKO)2 (2.19)This method heavily relies on prior knowledge (through the 
onstraints introdu
ed inEq. 2.17), but at present the knowledge on the regulatory me
hanisms is still la
kingand fragmentary [66, 89℄. In addition, in some 
ases no unique optimum exists and 
on-sequently many metaboli
 states may result in the same optimal behaviour [56℄.18



2.4 Dynami
 metaboli
 modelling2.4.1 Me
hanisti
 - approximative modelsDue to the above-mentioned limitations of stoi
hiometri
 modelling, kineti
 equationshave been introdu
ed in metaboli
 models. The general form of the mass balan
es ofextra
ellular and intra
ellular metabolites is now given by Eq. 2.20 and Eq. 2.21, re-spe
tively:
dxSi

dt
= D

(
x0

Si
− xSi

)
−
xX

ρX

∑

j

sSijrj
(2.20)

dxMi

dt
=

∑

j

sMijrj − µxMi
(2.21)with xMi

and xSi
the 
on
entration of an intra
ellular metabolite Mi and an extra
ellu-lar metabolite Si, respe
tively, sMij is the stoi
hiometri
 
oe�
ient of metabolite Mi inrea
tion j, rj the rate of rea
tion j, ρX the spe
i�
 weight of biomass, xX the biomass
on
entration, D the dilution rate, x0S the 
on
entration of an extra
ellular metabolite Sin the feed, and µ the spe
i�
 growth rate. Note that xS is expressed per rea
tor volumewhereas xM is expressed per 
ell volume. The term µxM in the mass balan
es of theintra
ellular metabolites represents the dilution e�e
t due to growth.In me
hanisti
 dynami
 metaboli
 modelling, one 
an resort to 
omplex in vitro de-termined me
hanisti
 equations to des
ribe the rate equations rj in Eqs. 2.20-2.21[30, 42, 149, 207℄.In approximative modelling, one 
an resort to linear non-me
hanisti
 kineti
s to des
ribethe rate equations rj in Eqs. 2.20-2.21, e.g., the loglinear approximation [72, 73℄, theGMA type power law approximation Eq. 2.22 [154℄, the thermokineti
 approximationEq. 2.23 [215℄, and the linlog approximation Eq. 2.24 [74, 209℄.

ln
( rj
J0

)

= ln

(
xE

x0
E

)

+
n∑

i=1

ε0Mi
ln

(

xMi

x0
Mi

) (2.22)19



rj
J0
− 1 = ln

(
xE

x0
E

)

+

n∑

i=1

ε0Mi
ln

(

xMi

x0
Mi

) (2.23)
rj
J0

=

[
xE

x0
E

](

1 +

n∑

i=1

ε0Mi
ln

(

xMi

x0
Mi

)) (2.24)where the supers
ript 0 stands for the steady-state 
ondition and with xE the enzyme
on
entration, ε0Mi
an elasti
ity 
oe�
ient, and J0 the steady-state �ux. The appliedequations are not as 
omplex as me
hanisti
 rate equations and 
ontain less parametersto approximate the true kineti
s. The rationale behind this is that metaboli
 redesigndoes not require detailed me
hanisti
 models be
ause of the 
on
ept of homeostasis, whi
himplies that the mi
ro-organism keeps its intra
ellular metabolite levels approximately
onstant [54, 170, 184℄. In other words, the extrapolation range of the kineti
 metaboli
model does not need to be very large, as far as metabolite levels are 
on
erned. Thisreasoning suggests that one 
an safely apply approximative kineti
 equations instead ofthe detailed me
hanisti
 ones that are valid over a wide range of 
on
entration levels.Pros and 
onsThe enormous variety of well regulated metaboli
 pathways impedes a thorough under-standing of the regulation of mi
robial pro
esses on the metabolomi
, proteomi
, tran-s
riptomi
, and genomi
 level in a qualitative and quantitative way. Su
h understandingwould be bene�
ial for the rational design of biopro
esses, as a geneti
 or environmentaldisturban
e in one part of metabolism 
an trigger a series of rea
tions on all levels ofregulatory 
ontrol and in all parts of metabolism [12℄. Hen
e, in many appli
ations, e.g.,metaboli
 engineering, 'whole 
ell modelling' is probably the way to go [186, 187℄.However, sin
e the knowledge about the trans
riptional and translational regulation isstill fragmentary, the state of the art dynami
 metaboli
 models typi
ally fo
us on themetabolome, assuming 
onstant proteomi
 levels. In view of the extrapolation 
apa
ity ofthese models this is a drawba
k. Hen
e, in order not to violate this assumption of steady-state proteome, data for parameter identi�
ation have to be 
olle
ted during a relativelyshort period after perturbation, this is typi
ally within 0.2-180 s [181, 182, 207, 211℄.In addition, dynami
 metaboli
 models typi
ally zoom in on a limited part of the mi
ro-20



bial metabolism. The resulting model typi
ally 
ontains a number of �uxes towards partsof the metabolism whi
h one is not primarily interested in. When the model 
ontainstwo or more of those �uxes this will 
reate some un
ertainty about the dynami
 �uxdistribution (a steady-state model yields the steady-state �ux distribution, but there isonly indire
t, se
ondary information about the dynami
 evolution of the �ux distributionafter a perturbation of the metabolism). Only having the information of the evolution ofmetabolite 
on
entrations is insu�
ient for these aims. Thus, in 
ontrast to steady-statemodelling, where mass balan
es are essential to verify the a

ura
y of the 
al
ulated�uxes, this 
he
k is not performed in most dynami
 metaboli
 models [30, 60, 149, 207℄,as the size of the out �ux of the model is not known. It should however be 
lear thatmodelling the whole metabolism would be a daunting task as well: when a perturbationpasses through the metaboli
 network it broadens and dampens out and the information
ontent of su
h data 
olle
ted further on in the network is limited.In order to redu
e this un
ertainty the 
ofa
tors might be used as '
losure terms', e.g.,the generation of NADPH, might be a good indi
ator for the �ux through the pentosephosphate 
y
le. However, it should be 
lear that these 
losure terms are weak as 
ofa
-tors intervene in many rea
tions, whi
h are also perturbed during a pulse experiment. Inaddition, modelling these 
ofa
tors dynami
ally is not easy at all be
ause this approa
his hampered, for instan
e, by the inability to explain the short-term redu
tion in the poolsize of the adenine nu
leotides (AXP) after a glu
ose pulse [30, 207℄. At present, it is stillun
lear what is/are the 
ause(s) of this redu
tion (adaptation would only be responsiblefor 15% of this gap [91℄, formation of adenylated 
ompounds, e.g., ADP-glu
ose, ex
re-tion of 
AMP, ...).Therefore, some resear
hers opt to des
ribe the evolution of the 
ofa
tors as time depen-dent fun
tions [30℄, whi
h results in a model that is no longer useful for extrapolation.Not taking these 
ofa
tors into a

ount 'me
hanisti
ally' thus results in a limited useful-ness of the resulting model. Then, also assumptions have to be made about the evolutionof the �ux distributions during the transient but it is questionable whether these hold.In order to redu
e the un
ertainty, one 
ould gather a lot of data both under steady-stateand dynami
 
onditions, e.g., by perturbing the mi
robial 
ells with di�erent substrates.However, su
h e�orts have thus far been limited [114, 211℄.21



The use of dynami
 labelling data [213℄ allows as well to redu
e the degrees of freedomrelated to the metaboli
 �uxes, also under dynami
 
onditions. However the huge vari-ety of bio
hemi
al pathways will render su
h an exer
ise tri
ky, as the 
hosen metaboli
network will in�uen
e the 
al
ulated �ux distribution [111℄.In addition, one should be aware that a lot of 
hallenges still remain in the �eld of analyti-
al methods, sin
e the a

urate determination of the intra
ellular metabolites is a 
onsid-erable task as well, due to, e.g., leakage and their low 
on
entrations [49, 113, 130, 208℄.For example, whereas the expe
ted (equilibrium) ratio of the 
on
entrations of glu
ose-6-phosphate [G6P ] and fru
tose-6-phosphate [F6P ], i.e., [F6P ]
[G6P ]

∼= 0.25 [18, 30, 114, 180℄,Bu
holz et al. (2001) [21℄ �nd for this ratio [F6P ]
[G6P ]

∼= 0.88.Another issue is that the state of the art dynami
 metaboli
 models either rely on in vitrodetermined kineti
 equations or are based on approximative kineti
s [30, 180, 209℄ andthe 
onsequen
es of a potentially erroneous model stru
ture are not well known. Withrespe
t to the in vitro determined kineti
 equations it is doubtful whether the kineti
sare valid under in vivo 
onditions, as these kineti
s are obtained using puri�ed enzymesstudied out of 
ontext [156, 180℄.The variety of well regulated metaboli
 pathways also impedes a thorough understand-ing of the regulation of mi
robial pro
esses, e.g., the relative importan
e of the �uxthrough pyruvate oxidase 
ompared to the �ux through pyruvate dehydrogenase is notthat 
lear [2, 103℄. Another example is the jumble of rea
tions around the PEP-pyruvate-oxaloa
etate node. Their regulation and importan
e under one or the other 
onditionis still not that well studied [26, 101, 153℄. The inability to properly des
ribe the dy-nami
s of phosphoenolpyruvate (PEP) during the observation window of a perturbationexperiment [30, 149℄, though a key metabolite in the primary metabolism, is the perfe
tillustration that setting up a metaboli
 model in a proper way will be demanding bothfor modellers and for experimentalists.Models, whether they are approximative or me
hanisti
, 
an be useful to identify bot-tlene
ks [54, 72, 85, 115℄ in metabolism and 
onsequently 
ould steer the pro
ess ofmetaboli
 engineering. However, sin
e enzyme levels are not taken into a

ount nor thein�uen
e of a geneti
 intervention on the metabolism, it should be 
lear that the extrap-olation power of su
h models remains limited.22



2.4.2 Cyberneti
 modelsAt present, one 
an not see the wood for the trees as the knowledge on the regulatoryme
hanisms is la
king and fragmentary [66, 89℄. To partially 
ir
umvent this knowledgegap, the 
yberneti
 framework 
an be used, sin
e mi
robial spe
ies, that is, those thathave undergone the pro
ess of evolution, strive to regulate their metabolism in an optimalmanner [56, 112℄. This reasoning is the rationale of the 
yberneti
 s
hool of thought: ami
ro-organism tries to optimise its behaviour, e.g., with respe
t to growth or substrateuptake. This is a
hieved by allo
ating the limited resour
es a mi
ro-organism disposesof to these 
ompeting enzymes yielding the optimal performan
e [138, 205, 206℄. To thisend, the 
yberneti
 variables u and v are introdu
ed into a kineti
 model Eqs. 2.20-2.21with the aim of substituting the unknown me
hanisti
 details of the 
ell's regulatory ar-
hite
ture by an obje
tive fun
tion by supposing that the metabolism of a mi
ro-organismoperates with a spe
i�
 overall goal, su
h as the optimisation of growth.Initially, the value of the 
yberneti
 approa
h was demonstrated using relatively simpleexamples, typi
ally situated in the domain of biopro
ess 
ontrol. In these 
ases, somelumped pathways 
ompeted with ea
h other for the available resour
es, e.g., simultane-ous and sequential substrate utilisation [90℄ and single-substrate growth [13, 14, 190℄.Then the 
yberneti
s units 
ould readily be identi�ed. Enzymes belonging to the same
luster 
ompete with ea
h other for the same pool of resour
es.Over time more 
hallenging 'proofs of prin
iple' were 
hosen, e.g., in view of metaboli
engineering of a produ
tion host [204, 206, 223℄, and the model's 
omplexity in
reased.More 
omplex networks, without lumping were 
onsidered [143, 172℄, but then a jumbleof 
yberneti
 units 
ould be identi�ed and the 
orresponding 
yberneti
 variables had tobe derived from the 
ontrol laws. As a result, the 
hoi
e of the 
yberneti
 units be
ameless straightforward, even quite arbitrary, and the library of 
yberneti
 units had to beextended (
onvergent, divergent, linear, and 
y
les) [205, 206℄.To over
ome this, a more general framework was developed, based on the prin
iples ofoptimal 
ontrol theory [223℄. Optimal 
ontrol theory is a mathemati
al optimisationmethod for deriving 
ontrol poli
ies. It aims to �nd a 
ontrol law for a given systemsu
h that a 
ertain optimality 
riterion is a
hieved. In general, su
h a 
ontrol problem23



in
ludes a gain fun
tion and a 
ost fun
tion relating state and 
ontrol variables. Anoptimal 
ontroller is a set of di�erential equations des
ribing the paths of the 
ontrolvariables that maximise the performan
e fun
tion. Rephrasing this in the 
ontext of ami
ro-organism, the 
ost be
omes, e.g., the pool of amino a
ids a mi
ro-organism needsto invest for the produ
tion of a parti
ular enzyme, and the 
ell's gain 
ould be merelygrowth. Young (2005) [223℄ opted for EFMs as 
yberneti
 units. As elementary modesappear to be useful to understand 
ellular obje
tives for the overall metaboli
 network[169℄, the 
hoi
e for the EFMs as lo
al 
ontrol level seems quite obvious. However, the
hoi
e of the asso
iated obje
tive fun
tion is less so. Young (2005) [223℄ opted for theoptimisation of a harmoni
 mean �ux J :
J =

∑n
i=1 ξi

∑n
i=1

ξi

rivi

(2.25)with n the number of rea
tions involved in the elementary �ux mode, ri the rate of re-a
tion i, vi the 
yberneti
 variable 
ontrolling enzyme a
tivity, and ξi the �ux throughrea
tion i in the elementary �ux mode. This obje
tive fun
tion aims at a steady through-put through the EFM, and 
onsequently a

umulation or depletion of 
ertain metabolitesis avoided. However, its biologi
al foundation seems di�
ult to grasp.Pros and 
onsCyberneti
 models 
onsider both metabolome and proteome. They apply prin
iples of
ontrol theory with the aim of substituting the unknown me
hanisti
 details of the 
ell'sregulatory ar
hite
ture by an obje
tive fun
tion by supposing that the metabolism of ami
ro-organism operates with a spe
i�
 overall goal. Su
h models are therefore thought tohave more extrapolation power. Although the approa
h thus seems appealing, given thepresent la
k of knowledge and detailed experimental omi
s data and the aforementionedproblems linked to me
hanisti
 modelling, there still remain some issues unresolved: i) itis still un
lear to what extent unknown regulatory me
hanisms 
an be 
aptured by theframework, ii) the robustness of the approa
h is un
lear, e.g., although 
yberneti
 modelsare said to be able to properly des
ribe steady-state multipli
ity [122, 123℄, real experi-mental eviden
e to support su
h a 
laim is la
king, iii) though the 
yberneti
 approa
his a minimalisti
 approa
h, 
ontrary to me
hanisti
 models 
ontaining 
omplex kineti
swith a large number of (unidenti�able) parameters [42℄, the in
orporation of enzymesand the parameters for enzyme synthesis and degradation results in many parameters24



that are di�
ult to estimate, and iv) for even relatively small networks the numberof EFMs is huge, e.g., for the metaboli
 network of [100℄ 17528 EFMs are found, whi
huse glu
ose as 
arbon sour
e. Whi
h EFMs to 
hoose, remains a question hard to answer.2.5 Multivariate statisti
sFinally, multivariate statisti
s, prin
ipal 
omponent analysis (PCA) and partial leastsquares (PLS) [219, 220℄, are more and more used in the �eld of metabolism studies[39, 84, 105, 197℄ to interpret and to extra
t information from the pile of metabolomi
,trans
riptomi
, and genomi
 data. By applying these methods, targets 
an be identi�edin view of further improving produ
tion hosts. Espe
ially the use of partial least squaresseems promising. The obje
tive in PLS modelling is to �nd a few 'new' variables, X-s
ores, in su
h a way that the information in the dependent variables Y 
an be predi
tedas well as possible.In fa
t, this proje
tion method de
omposes variables of high 
ollinearity into one-dimen-sional variables, i.e., an input s
ore ve
tor t and an output s
ore ve
tor u, whi
h allowsPLS to handle many and 
orrelated predi
tor variables [220℄. The ve
tors t1 and u1 arede�ned as [104℄:
t1 = E0w1 (2.26)
u1 = F0c1 (2.27)where E0 is the standardised data matrix from X and F0 is the standardised data matrixfrom Y [193℄. The aim of this data pretreatment is to fo
us on the (relevant) biologi
alinformation by emphasising di�erent aspe
ts in the data, for instan
e, the value of avariable relative to its average value and to redu
e the in�uen
e of disturbing fa
tors,e.g., measurement noise [193℄. Hen
e, the regression formulae for 
omponents t1 and u1are given by:

E0 = t1p
T
1 + E1 (2.28)

F0 = u1q
T
1 + F1 (2.29)25



where p1 and q1 are the loading ve
tors, and E1 and F1 are residual matri
es. The linearrelationship between t1 and u1 is 
al
ulated by:
u1 = b1t1 + r1 (2.30)where b1 is the regression 
oe�
ient and r1 is the residual ve
tor. If t1 and u1 
annotexplain the model within a spe
i�ed pre
ision or do not 
ontain enough information, E0and F0 will be repla
ed by the residual matri
es E1 and F1. Consequently, the nextlatent variable ve
tors t2 and u2 are 
al
ulated by:
t2 = E1w2 (2.31)
u2 = F1c2 (2.32)The regressions for 
omponents t2 and u2 are therefore 
al
ulated by:

E1 = t2p
T
2 + E2 (2.33)

F1 = u2q
T
2 + F2 (2.34)This iterative pro
edure is repeated by using the regression residual terms obtained atthe previous iteration on both the inputs and outputs at ea
h step. The de
ompositionof E0 and F0 by s
ore ve
tors is de�ned by:

E0 =

m∑

h=1

thp
T
h + E (2.35)

F0 =

m∑

h=1

uhq
T
h + F (2.36)Where p and q are loading ve
tors, E and F are residuals. For the m 
hoi
e, a 
ross-validation method 
an be applied or the threshold varian
e of E 
an be used as stopping
riterion [219℄.In PLS one 
an 
al
ulate a similar kind of regression 
oe�
ients as one does in multiplelinear regression. These regression 
oe�
ients relate matrix X dire
tly to Y :26



Y = XB + ε (2.37)Both regression 
oe�
ients and loading weights 
an be used to study the system. Notethat these regression 
oe�
ients are not independent unless the number of partial leastsquares regression 
omponents equals the number of X-variables. By studying the load-ing weights, one 
an see how important the variable is in ea
h latent variable. A largepositive or negative weight value indi
ates that the 
orresponding X variable is highly
orrelated with the values in the s
ore matrix U and hen
e with matrix Y . Correlationbetween variables 
an be veri�ed by looking at the loading weights [179, 219℄.van der Werf et al. (2005) [197℄ applied PLS regression to link metabolite levels to themi
robial phenotype, i.e., by ordering the importan
e of the metabolites by virtue of theweight fa
tors, metabolites that 
ontributed most to the phenotype of interest 
ould beidenti�ed.Pros and 
onsvan der Werf et al. (2005) [195, 197℄ su

essfully applied this method to sele
t targets inview of optimisation. Su
h models are however 
ompletely data driven and 
onsequentlydo not use the state of the art knowledge. In addition, relationships 
an be found be-tween, for instan
e, metabolite pool sizes and a pro
ess parameter, but how to modifythe 
ell with a view to improving the pro
ess performan
e remains un
lear.2.6 Con
lusionsIt should be 
lear that despite the vast la
k of knowledge about the 
ell's regulatory ar-
hite
ture, the appli
ation of both experimental te
hniques and mathemati
al methodssteadily yields valuable information about mi
robial metabolism [30, 39, 84, 136, 197,198℄. In the future, this may unambiguously guide the pro
ess of metaboli
 engineering.The 
ontemporary la
k of knowledge about the fun
tioning of the 
ell is however limitingthe use and usefulness of many of those te
hniques to steer the pro
ess of metaboli
 en-gineering, e.g., at present a lot of mathemati
ally relevant questions remain unanswered,e.g., whi
h network and obje
tive fun
tion to 
hoose? Consequently, the era of typi-27




al data mining te
hniques whi
h are useful to help unravel the 
omplex regulation ofmi
robial metabolism has not 
ome to an end yet.
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Chapter 3
Model-based optimisation ofsu

inate produ
tion by E. 
oli
3.1 Introdu
tionMi
ro-organisms are already widely used for produ
ing antibioti
s, therapeuti
 proteins,food and feed ingredients, fuels, and vitamins. Nowadays, due to the environmental 
on-
erns and the in
reasing s
ar
ity of oil, industrial biote
hnologi
al pro
esses be
ome analternative for the produ
tion of an in
reasing number of 
ompounds, that are typi
allyprodu
ed using well-established 
hemi
al synthesis routes [58℄. Speeding up and redu
-ing the 
ost of the development of su
h pro
esses is 
ru
ial to be 
ompetitive againstthe petroleum-based alternatives. A systemati
 approa
h, using metaboli
 modelling, isthought to 
ontribute to speed up and redu
e the 
ost of the development of 
ommer-
ially viable industrial biote
hnologi
al pro
esses.Nevertheless, expert knowledge, edu
ated guesses, and gut feeling are still often dire
tingthe pro
ess of metaboli
 engineering in view of enhan
ing the mi
robial produ
tion ofthe target 
ompound [152, 197℄, despite numerous examples where the 
onstru
tion ofa produ
er strain did not turn out to be as straightforward as was initially presumed.Indeed, in 
omplex metaboli
 networks, it is often a di�
ult task to predi
t the impa
t,both qualitatively and quantitatively, of a geneti
 intervention [12℄. This 
omplexity isalso re�e
ted in the metaboli
 models (Table 3.1). The state of the art models, genomes
ale models, typi
ally 
onsider all known rea
tions, formation, degradation, transport,and 
ellular utilisation gathered from databases and the literature.29



Table 3.1: Genome-s
ale modelsMi
ro-organism number of rea
tions 
onsideredEs
heri
hia 
oli 931 [148℄Sa

haromy
es 
erevisiae 1175 [57℄Heli
oba
ter pylori 388 [157℄Neisseria meningitidis 496 [10℄
Metaboli
 models 
an help to identify geneti
 targets for metaboli
 engineering. Forinstan
e, elementary �ux modes have been used for the optimisation of L-methioninebiosynthesis by E. 
oli and C. glutami
um [93℄. Flux balan
e analysis has been appliedfor the optimisation of ly
opene [5℄, L-threonine [98℄, L-valine [135℄, and su

ini
 a
id[34℄ biosynthesis by E. 
oli and of gly
erol and vanillin biosynthesis by S. 
erevisiae[137℄. Partial least squares has su

essfully been used for the optimisation of phenylala-nine biosynthesis by E. 
oli [200℄ and of 
ellulase biosynthesis by Tri
hoderma sp. [196℄.Finally, dynami
 metaboli
 modelling has been used for the optimisation of 
arnitinebiosynthesis by E. 
oli [27℄.In addition, to gain insight into the mi
robial metabolism, metabolomi
, trans
riptomi
,and genomi
 data are typi
ally gathered. To interpret and to extra
t information from thevast amount of metabolomi
, trans
riptomi
, and genomi
 data, multivariate statisti
s,prin
ipal 
omponent analysis (PCA) and partial least squares regression (PLS) [219, 220℄,are more and more used in the �eld of metabolism related studies [39, 84, 105, 197℄, sin
ethese methods 
an handle numerous and highly 
orrelated data. Also the elementary�ux mode (see Chapter 2) data, gathered during stoi
hiometri
 network analysis 
an beanalysed with these te
hniques.Hen
e, the aim of this study was to develop a model-based approa
h for dire
tingmetaboli
 engineering, of whi
h the appli
ation should result in speeding up and re-du
ing the 
ost of the development of a viable industrial biote
hnologi
al pro
ess. Thisapproa
h uses partial least squares regression to analyse elementary �ux mode data,whi
h are hard to interpret physiologi
ally, and it allows to rapidly identify potentialtargets for metaboli
 engineering. This approa
h was illustrated by applying it to opti-mise su

inate biosynthesis by E. 
oli. 30



3.2 Materials and methods3.2.1 Metaboli
 modelThe metaboli
 network model of Lequeux et al. (2006) [100℄ was used in this study. Thismetaboli
 model 
onsiders the gly
olysis, with glu
ose transport by the PTS system, thepentose phosphate pathway, the Krebs 
y
le, and over�ow metabolism. For ea
h aminoa
id and nu
leotide the anaboli
 rea
tions were in
luded. Biosynthesis of LPS, lipid A,peptidogly
ane, and the lipid bilayer are in
orporated as well. The P/O ratio was set to1.33 [108, 203℄. The rea
tions and metabolites 
onsidered in the model are depi
ted inFigures 3.1 and 3.2, respe
tively.3.2.2 Partial least squaresPartial least squares (PLS) regression has been performed in the software pa
kage R [140℄.For a 
on
ise des
ription of PLS the reader is referred to Chapter 2. This generalisationof multiple linear regression is able to analyse data with strongly 
ollinear and numerousindependent variables as is the 
ase for the elementary �ux modes under study. Partialleast squares regression is a statisti
al method that links a matrix of independent variables
X with a matrix of dependent variables Y . Therefore, the multivariate spa
es of X and
Y are transformed to new matri
es of lower dimensionality that are 
orrelated to ea
hother. This redu
tion of dimensionality is a

omplished by prin
ipal 
omponent analysislike de
ompositions that are slightly tilted to a
hieve maximum 
orrelation between thelatent variables of X and Y [219℄.3.2.3 Elementary �ux modesThe elementary �ux modes of the stoi
hiometri
 E. 
oli model of Lequeux et al. (2006)[100℄ were 
al
ulated by using Metatool 5.0 [214℄. For a 
on
ise des
ription of elementary�ux modes the reader is referred to Chapter 2.3.3 Results and dis
ussionIn this work, PLS regression was used to i) analyse the results of the elementary modeanalysis and ii) to establish a relationship between the ratio of the �ux through a rea
-31



tion to the glu
ose in�ux of an EFM and its su

inate yield. To this end, for ea
h ofthe 17528 EFMs of the E. 
oli model of Lequeux et al. (2006) [100℄ (Figure 3.3) this�ux ratio was en
oded in the matrix X (Table 3.2). The 
orresponding Y -variable is thesu

inate yield of that EFM.Table 3.2: Constru
tion of the matrix X, with ξi,j the ratio of the �ux through rea
tion
i in EFM j to the glu
ose in�ux in EFM jRea
tion PTS PGM ENO ...EFM1 ξ1,PTS ξ1,PGM ξ1,ENOEFM2 ξ2,PTS ξ2,PGM ξ1,ENOEFM3 ξ3,PTS ξ3,PGM ξ1,ENOEFM4 ξ4,PTS ξ4,PGM ξ1,ENOPrior to data analysis, the data were appropriately pretreated. Several pretreatmentmethods, i.e., mean 
entering (x− µx) and auto-s
aling (x−µx)

σx
, have been used [193℄.Auto-s
aling was �nally retained as pretreatment method (Figure 3.4), sin
e it relatesbest the di�eren
es in �ux ratio's with su

inate yield.A PLS model was then built. First, to avoid over�tting, as this would result in a modelnot able to generalise to new data, 
ross-validation was applied to determine the appro-priate number of latent variables. In 
ross-validation the data are split into k blo
ksand a one latent variable model is built from (k-1 ) blo
ks of data. Based on this model,the ex
luded blo
k is used for testing and an individual predi
tive residual error sum ofsquares, PRESS, is 
al
ulated. This pro
edure is repeated ex
luding ea
h blo
k on
e, andthe total PRESS is 
al
ulated for the model. This pro
edure is then repeated for 2, 3, ...,min(m,n) latent variables, with n the sample size and m the number of variables. A seriesof PRESS values is obtained [102℄. Wold's R 
riterion, given as R = PRESS(i+1)

PRESS(i) ≤ 1.1,is then applied to determine the number of latent variables to be used in the �nal model.An additional latent variable is retained only when R is smaller than 1.1 [218℄. Usingthis pro
edure 9 latent variables were retained in the PLS model.The results, loadings and s
ores, are depi
ted in Figures 3.4-3.5. Both regression 
o-e�
ients and loading weights have been used to study the system. By studying theloading weights (Figure 3.5), one 
an see how important the variable is in ea
h latentvariable. A large positive or negative weight value indi
ates that the 
orresponding X32



variable is highly 
orrelated with the values in the s
ore matrix U and hen
e with ma-trix Y [179, 219℄. As 
ellular metabolism is strongly interlinked [128, 193℄ it is obviousthat many rea
tions are simultaneously a�e
ted by the di�erent elementary �ux modes.Therefore, the loadings are expe
ted to show 
ontributions of many di�erent rea
tions(Figure 3.5).Some of the most important rea
tions for su

inate produ
tion are listed in Table 3.3.The targets identi�ed by the PLS model for the geneti
 modi�
ation of Es
heri
hia
oli for su

inate overprodu
tion are in agreement with data reported in the literature[34, 81, 106, 116, 151℄. This illustrates the value of this model-based approa
h for theidenti�
ation of geneti
 targets. Modi�
ation of the expression of the identi�ed geneti
targets, by overexpressing or kno
king out the identi�ed genes, resulted in an enhan
edprodu
tion of su

inate.The proposed method yields many targets for modi�
ation. The �ux through theserea
tions is linked in a positive or a negative way with su

inate produ
tion, throughmass and energy 
onservation laws. Further evaluation of the identi�ed targets using,for instan
e, �ux balan
e analysis and/or prior knowledge of mi
robial metabolism, willbe useful to determine their importan
e under a spe
i�
 
ondition, e.g., aerobi
 versusanaerobi
 environments.The proposed method helps to signi�
antly redu
e the 
omputational e�ort to optimisemi
robial metabolism. For instan
e, sin
e the number of possible 
ombinations of 5rea
tion-deletions in a model of 250 rea
tions is more than 7.8 109, and existing genomes
ale stoi
hiometri
 models 
ontain a signi�
antly higher number of rea
tions, geneti
algorithms were applied to sear
h for bene�
ial kno
k-out 
ombinations [137℄. A �rsts
reening of the rea
tions in a metaboli
 network, by the proposed method, is useful torender su
h optimisation problems more feasible.Contrary to many other methods that are typi
ally fo
ussing on the identi�
ation ofgene kno
k-out targets [5, 137℄, the proposed method yields the 
orrelation (negativeand positive) of the �ux through ea
h rea
tion with the yield of the target 
ompound.The question of how to a
hieve this in
reased �ux remains however unanswered, sin
e the�ux distribution depends 
onsiderably on the kineti
s and the regulation of the enzymati
rea
tions, whi
h are not a

ounted for [5, 171℄. Still, sin
e su

inate is a primary metabo-33



Table 3.3: Some of the most important rea
tions, identi�ed by PLSRea
tion Rea
tion Coe�
ient sign155 FAD + Suc←→ FADH2 + Fum -55 iCit −→ Suc+Glyox +105 N.N. +71 PEP +CO2 +H2O −→ OAA+ PiOH +87 Mal +NAD −→ Pyr + CO2 +NADH +H -128 Fum+H2O −→Mal -136 Pyr +NADH +H −→ Lac+NAD -127 FADH2 +NAD −→ FAD +NADH +H -86 PEP +ADP −→ Pyr +ATP -126 AcCoA+ 2NADH +H −→ EtOH + 2NAD + CoA -lite, whose produ
tion is subje
t to severe (redox) 
onstraints, stoi
hiometri
 modellingis useful.3.4 Con
lusionsA model-based geneti
 target identi�
ation strategy for designing a mi
robial strain forthe produ
tion of a target 
ompound, has been outlined. By applying partial least squaresregression to the elementary �ux mode data, potential targets for metaboli
 engineeringof su

inate biosynthesis in E. 
oli were identi�ed. The targets identi�ed by the PLSmodel for geneti
 modi�
ation of E. 
oli for su

inate overprodu
tion are in agreementwith data reported in the literature.
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Figure 3.1: Metaboli
 network of Lequeux et al. (2006) [100℄: Rea
tions35



Figure 3.2: Metaboli
 network of Lequeux et al. (2006) [100℄: Metabolites36



Figure 3.3: The 17528 elementary �ux modes of the stoi
hiometri
 E. 
oli model ofLequeux et al. (2006) [100℄, represented as ▽s, 
al
ulated by using Metatool 5.0 [214℄,presented in the YX,S , Ysuccinate,S spa
e, with YX,S and Ysuccinate,S the biomass [ c−mole
mole

]and su

inate [mole
mole

] yield on glu
ose, respe
tively. The EFMs 
hara
terised by the opti-mal �ux distribution, here with respe
t to maximal Ysuccinate,S, 
an readily be identi�ed
(←).
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Figure 3.4: The auto-s
aled data represented in a s
ore plot. ▽ represent EFMs 
hara
-terised by Ysuccinate,S ≥ 1, ▽ represent EFMs 
hara
terised by 0.6 ≥ Y succinate,S ≥ 0.5,and ▽ represent EFMs 
hara
terised by Ysuccinate,S ≤ 0.1.
38



Figure 3.5: The loadings of s
ores 1 and 2 and the 
umulative loadings of s
ores 1, 2,and 3. This 
umulative 
ontribution is a measure for the importan
e of the rea
tion.Positive values re�e
t a positive 
orrelation between the �ux and the su

inate yield,negative values represent for irreversible rea
tions a negative 
orrelation, for reversiblerea
tions (R) that the dire
tion of the �ux should be the opposite as the one indi
atedin the model. 39





Chapter 4
Cyberneti
s: some issues on themethod
4.1 Introdu
tionThe la
k of knowledge about the me
hanisms mi
ro-organisms dispose of to regulate theirmetabolism severely hampers the use and limits the usefulness of me
hanisti
 modelling,espe
ially when a detailed des
ription of the mi
robial behaviour is ne
essary [66, 89℄. Inan attempt to partially 
ir
umvent this problem, 
yberneti
 modelling introdu
es 
yber-neti
 variables [90℄ in order to a

ommodate for the mi
robial 
ontrol of enzyme synthesisand a
tivity. These variables, whose value is determined by a 
ontroller, embody the al-lo
ation of the limited resour
es a 
ell disposes of to these 
ompeting enzymes, yieldingthe optimal performan
e [138, 205, 206℄. This reasoning seems a

eptable as in general,it is believed that a mi
ro-organism tries to optimise its behaviour, e.g., with respe
t togrowth or substrate uptake.Re
ently, Young (2005) [223℄ rethought the framework and more tangibly introdu
ed theprin
iples of optimal 
ontrol theory. Optimal 
ontrol theory is a mathemati
al optimisa-tion method for deriving 
ontrol poli
ies. It aims to �nd a 
ontrol law for a given systemsu
h that a 
ertain optimality 
riterion is a
hieved. In general, su
h a 
ontrol problemin
ludes a gain fun
tion and a 
ost fun
tion, relating state and 
ontrol variables. Anoptimal 
ontroller is a set of di�erential equations des
ribing the paths of the 
ontrolvariables that maximise the performan
e fun
tion. Rephrasing this in the 
ontext of a41



mi
ro-organism, the 
ost be
omes, e.g., the pool of amino a
ids a mi
ro-organism needsto invest for the produ
tion of a parti
ular enzyme, and the 
ell's gain 
ould be merelygrowth. This framework will be dis
ussed in Se
tion 4.2.A key 
on
ept in 
yberneti
 modelling is the 
yberneti
 unit. This is a 
luster of enzymesthat 
ompete with ea
h other for the same pool of limited resour
es. For simple 
yber-neti
 models these 
yberneti
 units 
ould readily be distinguished, as they 
oin
ide withthe 
yberneti
 basi
 
omponents (Figure 4.1) [13, 14, 90, 190℄. The in
reasing model
omplexity, i.e., over time more 
omplex networks with less lumping were 
onsidered[143, 172℄, rendered the identi�
ation of these 
yberneti
 units less straightforward andeven quite arbitrary [204, 206, 223℄ (Figure 4.1).To rationalise the framework, Young (2005) [223℄ opted for elementary �ux modes (EFMs)as 
yberneti
 units. However, whereas the 
hoi
e for the EFMs as lo
al 
ontrol unit seemsquite obvious, the 
hoi
e of the asso
iated obje
tive fun
tion is not. Young (2005) [223℄opted for the optimisation of a harmoni
 mean �ux, J :
J =

∑n
i=1 ξi

∑n
i=1

ξi

rivi

(4.1)with n the number of rea
tions, ri the rate of rea
tion i, vi the 
yberneti
 variable 
on-trolling enzyme a
tivity, and ξi the �ux through rea
tion i in the elementary �ux mode.This obje
tive fun
tion aims amongst others at a steady throughput through the EFMin an attempt to avoid a

umulation or depletion of 
ertain metabolites [223℄. However,its biologi
al foundation is un
lear.The appli
ation of the approa
h in the domain of metaboli
 engineering requires a robustand generi
 framework. The 
yberneti
 
ontrol law for enzyme a
tivity 
an also 
ause
ontroversy. As enzyme synthesis, enzyme a
tivity is meti
ulously 
ontrolled through, forinstan
e, allosteri
 
ontrol, regulation by phosphorylation/dephosphorylation and othertypes of 
ovalent modi�
ations [55, 161℄. The knowledge on these regulatory me
hanismsto fully model these pro
esses me
hanisti
ally is still insu�
ient. Therefore, in 
yber-neti
 modelling, 
yberneti
 variables are introdu
ed into a kineti
 model with the aim ofsubstituting the unknown me
hanisti
 details of the 
ell's regulatory ar
hite
ture. How-ever, whereas the pool of limited resour
es ne
essary for enzyme synthesis is a 
on
ept42



Figure 4.1: Cyberneti
 models and their in
reasing 
omplexity, from A) the model ofKompala et al. (1984) [90℄ to B) the model of Guardia et al. (2000) [82℄ and the basi

omponents of the 
yberneti
 units (
onvergent and divergent bran
h points, linear and
y
li
 pro
esses)
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easy to grasp (as this pool 
ould be the amino a
ids/ATP, ne
essary for the synthesis ofenzymes), the 
on
ept of su
h a pool of limited resour
es for enzyme a
tivity is far moreabstra
t.Thus, deriving a 
ontrol law for enzyme a
tivity seems less obvious than the derivation ofthe 
ontrol law ruling enzyme synthesis. Kompala et al. (1984) [90℄ derived the mat
hinglaw to 
ontrol enzyme a
tivity. With a view to the appli
ation of 
yberneti
 modellingfor metaboli
 engineering purposes, as suggested by, e.g., Varner and Ramkrishna (1999)[205, 206℄ and Young (2005) [223℄ the need for a generi
 
ontrol law for enzyme synthesisbe
omes apparent. However, 
omprehensive arguments why the mat
hing law would begenerally valid, were not found. A typi
al example seemingly not 
oin
iding with thelatter, would be the regulation of glutamine synthase [8℄, sin
e both the a
tivation andina
tivation of this enzyme seem to have a 
ost. Switzer (1977) [175℄ reports me
hanismsfor in vivo enzyme ina
tivation whi
h also seem to have a 
ost.Consequently, one may wonder what is that 
ost? What is the no-
ost a
tivity, i.e.,
vno−cost = χ? Is there a 
ost for up- or down-regulation of enzyme a
tivity? Therefore,some alternatives for this 
ontrol law were derived and evaluated.4.2 Materials and methods4.2.1 Cyberneti
 frameworkThe derivation of the 
yberneti
 framework is taken from Young (2005) [223℄. A mi
ro-bial system 
an be represented by a set of di�erential equations:

ẋ = f (x) (4.2)This system is subje
t to regulatory 
ontrol both at the level of enzyme synthesis andenzyme a
tivity. These inputs are a

ounted for by introdu
ing the 
ontrol ve
tors u forenzyme synthesis and v for enzyme a
tivity, whi
h spe
ify how the resour
es are allo
atedamong the various alternatives:
ẋ = f (x, u, v) (4.3)44



For 
larity, the 
yberneti
 variable 
ontrolling enzyme a
tivity, v, will be dis
arded fornow. It is assumed that the 
ell allo
ates its resour
es in su
h a way that the performan
efun
tion J is maximised. This 
an be des
ribed by optimal 
ontrol theory:
max J

subject to : ẋ = f (x, u)
(4.4)Computing the optimal 
ontrol is numeri
ally quite demanding. Assuming however thatregulatory de
isions are made at ea
h instant based on the proje
ted system responseover a short time interval ∆t, the system 
an be approximated by linearisation:

∆ẋ = A∆x+Bu∆u+ f
(
x (t) , u0

) (4.5)
A =

∂f (x, u)

∂x

∣
∣
∣
∣
x,u0

(4.6)
Bu =

∂f (x, u)

∂u

∣
∣
∣
∣
x,u0

(4.7)The 
hange in model performan
e ∆J over the system's planning window ∆t then be-
omes:
∆J = q∆x(t+ ∆t)−

1

2

∫ t+∆t

t

(
uTσuu

)
dτ (4.8)

q =
∂φ (x (t))

∂x
∆J = J (t+ ∆t)− J (t) (4.9)in whi
h the fun
tion φ (x (t)) represents the metaboli
 obje
tive fun
tion of the systemand σu a parameter that s
ales the 
ost asso
iated with resour
e investment. The solu-tion of this optimal 
ontrol problem 
an be derived. The Hamiltonian now be
omes [224℄:

H1 (x, u, λ) = −
σu

2
u2 + λT

[
A∆x+Bu∆u+ f

(
x (t) , u0

)] (4.10)with λ the 
ostate ve
tor. 45



The state equation is given by:
ẋ =

∂H1

∂λ
= A∆x+Bu∆u+ f

(
x (t) , u0

) (4.11)The stationary 
ondition is given by:
0 =

∂H1

∂u
= −σuu+BT

u λ (4.12)So, one �nds for u:
u =

BT
u λ

σu
(4.13)in whi
h the 
ostate is given by:

−λ̇ =
∂H1

∂x
= ATλ (4.14)The boundary 
ondition for this equation is:

λ (t+ ∆t) = q (4.15)Applying the boundary 
onditions and solving this equation gives:
−

∫ t+△t

t

1

λ
dλ =

∫ t+△t

t

ATdt (4.16)
λ (t)

λ (t+ ∆t)
= e(AT (∆t)) (4.17)So, one �nds for λ:

λ (t) = e(A
T (∆t))q (4.18)46



Substituting Eq. 4.18 in Eq. 4.13, yields:
u (t) =

1

σu
BT

u e
(AT (∆t))q (4.19)

pi (t) = qT e(A(∆t))bui (4.20)Sin
e the resour
es are limited however, this is a 
onstrained optimisation problem. Theappropriate 
onstraints have to be added to the Hamiltonian (Eq. 4.10), yielding Eq.4.21. The Karash-Kuhn-Tu
ker 
onditions 
an be derived both for the 
yberneti
 vari-able 
ontrolling enzyme a
tivity and synthesis.
H2 (x, u, λ, η, νi) = H1 (x, u, λ) + η

(

1−

n∑

i=1

ui − ω
2

)

+

n∑

i=1

νi

(
ui − κ

2
i

) (4.21)where νi, η are Lagrangian multipliers asso
iated with the ith non-negativity 
onstraint
ui ≥ 0 and with the total resour
e 
onstraint ∑n

i=1 ui ≤ 1, respe
tively, and n is thenumber of 
ompeting rea
tions. The stationary 
ondition now be
omes:
∂H2

∂ui
= 0⇒ −σui + buiλ = η − νi (4.22)and the Karash-Kuhn-Tu
ker 
onditions are given by:
∂H2

∂κi
= 0⇒ 2νiκi = 0 (4.23)

∂H2

∂νi
= 0⇒ ui − κ

2
i = 0 (4.24)

∂H2

∂ω
= 0⇒ 2ηω = 0 (4.25)

∂H2

∂η
= 0⇒

(

1−

n∑

i=1

ui − ω
2

)

= 0 (4.26)
ui =

buiλ+ η − νi

σu
(4.27)47



The solution that simultaneously satis�es these 
onstraints is:
ui = max

(
pi + η

σu
, 0

) (4.28)Sin
e now ui ≥ 0. Choosing σu =
∑n

i=1 max (pi, 0) and taking into a

ount Eq. 4.25:
η = 0 ∨ ω = 0 (4.29)one �nally �nds:

ui =
max (pi, 0)

∑n
i=1 max (pi, 0)

(4.30)Akin to the derivation of the 
ontrol law ruling enzyme synthesis, u, the 
ontrol lawruling enzyme a
tivity 
an be derived, with σv = max
n

(pn), yielding:
vi =

max (pi, 0)

max
n

(pn)
(4.31)

4.2.2 Cyberneti
 modelAll simulations have been performed with the model of Kompala et al. (1984) [90℄, whi
hdes
ribes the ba
terial growth on mixtures of substitutable substrates, espe
ially under
onditions that give rise to diauxi
 growth. Two substitutable substrates are 
onsidered
S1 and S2, whi
h are 
onverted by the enzymes E1 and E2, respe
tively, to form biomass(see also Figure 4.1). The stoi
hiometri
 and kineti
 parameters used, are given in Table4.1. The obje
tive fun
tion is given by:

J =
r1v1
Y1

+
r2v2
Y2

(4.32)48



with ri =
xEi

x
E0

i

ki
xSi

xSi
+KxSi

, i = {1, 2}. Only the 
ontrol law for enzyme a
tivity wasmodi�ed during this simulation study.Table 4.1: Stoi
hiometri
 and kineti
 parameters used to simulate diauxi
 growth [90℄Sugar i ki

(
h−1

)
Ki (g/L) Yi (gB/gSi) αi

(
h−1

)
βi

(
h−1

)Glu
ose 1 1.08 0.01 0.52 1.13 0.05xylose 2 0.82 0.2 0.5 0.87 0.054.3 Results and dis
ussion4.3.1 Derivation of the 
ontrol law for enzyme a
tivityWith respe
t to the derivation of the 
ontrol law for enzyme synthesis no alternativeexists. This is not the 
ase for the 
ontrol law ruling enzyme a
tivity. Indeed, one maywonder what the no-
ost a
tivity is. Is there a 
ost for up- or down-regulation of enzymea
tivity? Therefore, some alternatives for this 
ontrol law were derived and evaluated.We repla
ed the 
ost term for enzyme a
tivity, σv

2 (v)2, in the model performan
e fun
-tion as presented by Young (2005) [223℄, with σv

2 (v − χ)2. Analogously to Se
tion 4.2,the solution for the optimal 
ontrol problem has been derived:
vi = χ+

pi + ηi − νi

σv
(4.33)The solution that simultaneously satis�es the Karash-Kuhn-Tu
ker 
onstraints, for χ = 0is:

vi =
max (pi, 0)

max
n

(|pi|)
(4.34)The 
ontrol law will here be derived for the 
ase χ 6= 0. One �nds for χ = 0.5, and
hoosing σv =

max
n

(|p|)
χ

, 49



vi = max

(

1

2

(

1 +
pi

max
n

(|pi|)

)

, 0

) (4.35)and for χ = 1, and 
hoosing σv = max
n

(|p|),
vi = min

(

1 +
pi

max
n

(|pi|)
, 1

) (4.36)The enzymati
 
onversion 
apa
ity will be fully used, unless the return is negative. Inthis 
ase down-regulation has a 
ost.
4.3.2 Case studyTo stress the importan
e of the 
hoi
e of the 
ontrol law ruling enzyme a
tivity, the per-forman
e of the derived 
ontrol laws was evaluated for the 
ase of sequential substrateutilisation.The evolution of the substrates S1 and S2 and of the biomass X is depi
ted in Figure4.2 and the 
yberneti
 variables are depi
ted in Figure 4.3. Obviously, as is depi
ted inFigure 4.3, both enzymes will be more a
tive using Eqs. 4.35 and 4.36, in 
omparisonwith the mat
hing law, sin
e the return pi for both lumped pathways is always posi-tive in this 
ase. Hen
e, the 
yberneti
 variables v1 and v2 given by Eq. 4.36 will be1 throughout the simulation (Figure 4.3). Consequently, the enzymes are fully a
tive,sin
e down-regulation of enzyme a
tivity would 
ost. Akin reasonings 
an be elaboratedfor χ = 0.5.The aim of the resear
h presented here was not to 
ome up with the 'true' 
ontrol law,be
ause this is impossible at this stage due to, e.g., the limited knowledge, the la
k ofappropriate data, and the potential dependen
y on the model stru
ture. Rather, the aimwas to emphasise its importan
e for the model itself, as the 
hosen 
yberneti
 
ontrollaw will have an impa
t on the optimal values of the parameters to be estimated and50



Figure 4.2: E�e
t of the 
ontrol law derived for enzyme a
tivity (Eqs. 4.34-4.36) onthe evolution of the 
on
entration [g/L] of glu
ose (S1), xylose (S2), and biomass (X)simulated with the model of Kompala et al. (1984) [90℄
51



Figure 4.3: E�e
t of the 
ontrol law derived for enzyme a
tivity (Eqs. 4.34-4.36) onthe evolution of the 
yberneti
 variables v1, v2, u1, and u2 simulated with the model ofKompala et al. (1984) [90℄
52



may have an in�uen
e on the model predi
tions.Based on the experimental data of Monod (1947) [117℄, Kompala et al. (1984) [90℄derived the mat
hing law (Eq. 4.34), predominantly based on the fa
t that no lag phase
ould be observed for a pregrown 
ulture. Indeed, in this situation none of the proposedalternatives (Eqs. 4.35 and 4.36) would perform as well as the mat
hing law. However,what was the 
ause for the observed behaviour? Was it indeed resour
e investment linkedto enzyme a
tivity? Or did the metaboli
 regulation of enzymes of the lumped pathwaysplay a determining role? Indeed, substrate (use) might have a 
ost, whi
h would be moreor less in agreement with the mat
hing law, but what would be the 
ost of an abundantlypresent (extra
ellular) substrate of an enzymati
 
onversion and do all enzymes 
ompetethen for the same substrate (sin
e only one pool of limited resour
es to 
ontrol enzymea
tivity is 
onsidered in the framework presented by Young (2005) [223℄)?
4.4 Con
lusionsAb initio, 
yberneti
 models have typi
ally been used in the domain of biopro
ess 
on-trol. Re
ently, the original framework was reworked by Young (2005) [223℄ with a viewto applying this method in the domain of metaboli
 engineering, in order to 
ope withproblems related to the in
reased model 
omplexity. Sin
e the appli
ation of the 
yber-neti
 approa
h in this domain requires a generi
 framework.In view of the latter, di�erent alternatives for the mat
hing law have been derived andevaluated. Obviously, the 
hoi
e of the 
ontrol law for enzyme a
tivity is important.However, due to the limited knowledge, issues linked to the model stru
ture, and thela
k of appropriate data it was not possible to distinguish between the rival 
ontrol laws.Although the approa
h seems appealing, given the present la
k of knowledge, detailedexperimental omi
s data, and some of the problems linked to '
onventional' dynami
metaboli
 modelling, there still remain some issues unresolved.
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Chapter 5
Identi�
ation and evaluation ofapproximative kineti
 modelstru
tures 1
5.1 Introdu
tionIn the past, the geneti
 potential sensu largo of a mi
robial strain was improved by theiterative pro
ess of random mutagenesis and s
reening. The advent of re
ombinant DNAte
hniques and fun
tional genomi
s made it possible to apply a goal-oriented approa
hfor geneti
 modi�
ation (metaboli
 engineering).However, in most 
ases the 
onstru
tion of a produ
er strain did not turn out to be asstraightforward as was initially presumed [12, 89, 195℄. Indeed, in 
omplex metaboli
networks it is often a futile pursuit to ad ho
 predi
t the impa
t, both qualitatively andquantitatively, of a geneti
 intervention [12℄. Moreover, as the fo
us in metaboli
 en-gineering is shifting from the massive overexpression and ina
tivation of genes towards�ne tuning of gene expression [39, 69, 84℄, the need for a reliable, quantitative predi
tor,i.e., a model, that in
orporates enzyme kineti
s, regulatory me
hanisms (whi
h are ingeneral designed to prevent overprodu
tion), 
ompartmentalisation, and the intera
tions1Parts of this 
hapter have been submitted as: J. Maertens and P. A. Vanrolleghem. Identi�
ation andevaluation of approximative kineti
 model stru
tures. BMC Bioinformati
s, submitted for publi
ation,2008. 55



between distin
t parts of the 
ellular metaboli
 network is growing rapidly.Initially, stoi
hiometri
 models were applied to fa
ilitate the 
hoi
e of where to inter-vene geneti
ally. However, it is still un
lear whether the well established te
hniques ofmetaboli
 �ux analysis [3, 100, 198℄ and �ux balan
e analysis [5, 34, 142℄ are fully aptfor su
h aims sin
e the predi
tion of the optimal �ux distribution depends 
onsiderablyon the kineti
s and the regulation of the enzymati
 rea
tions whi
h are not a

ountedfor [171℄.The quest for a quantitative approa
h also led to the development of metaboli
 
ontrolanalysis, MCA [85℄. MCA aims at eli
iting the sensitivity of the metaboli
 �ux distri-bution to 
hanges of enzyme levels and thus identi�es the rate 
ontrolling enzyme(s)in the pathway. The appli
ability of MCA is however limited due to, e.g., its limitedextrapolation range around the referen
e point, whi
h is in general mu
h smaller thanthe �ux shift one aims at in metaboli
 engineering. It is further based on a steady-stateassumption [64℄ and depends on (unknown) enzyme levels [54℄.Although a me
hanisti
 dynami
 metaboli
 model is not su�ering from the aforemen-tioned short
omings, it is no deus ex ma
hina either be
ause su
h a model is 
omplex,overparameterised [42℄, and the parameter identi�
ation is not evident either, be
ause ofthe highly nonlinear rate equations and the large number of parameters to be estimated.To deal with the latter problem di�erent approximative, linear non-me
hanisti
 kineti
swere suggested. The most popular approximative kineti
s are i) the 'log-linear in metabo-lite and enzyme levels kineti
s' [72, 73℄, ii) the so-
alled 'linlog kineti
s' Eq. 5.1 [74, 209℄,iii) 'the linear in metabolite and enzyme levels kineti
s', iv) the 'linear in metabolitelevels kineti
s' Eq. 5.2, and v) the 'GMA type power law kineti
s' Eq. 5.3 [154℄.
rk
J0

= 1 +
n∑

l=1

ε0xMl
,k ln

(

xMl

x0
Ml

) (5.1)
rk
J0

= 1 +
n∑

l=1

ε0xMl
,k

(

xMl

x0
Ml

− 1

) (5.2)56



rk
J0

=

n∏

l=1

(

xMl

x0
Ml

)ε0

xMl
,k (5.3)with rk the rea
tion rate of rea
tion k, J0 the steady-state �ux, xMl

and x0
Ml

the 
on
en-tration of metabolite l under dynami
 
onditions and at steady-state, respe
tively, and
ε0 an elasti
ity 
oe�
ient.The �nal aim of su
h a model-based approa
h is thus target identi�
ation for optimisinga produ
tion host. These targets are those rea
tions that 
ontrol the �ux through area
tion network, whi
h 
an be assessed by 
al
ulating the �ux 
ontrol 
oe�
ients.Due to the 
omplexity of metaboli
 networks and the limited available data for identifyingthe parameters of a metaboli
 network model, su
h models are in general overparame-terised [42℄. The resulting poorly identi�able parameters 
an lead to un
ertain modelpredi
tions. Several approa
hes have thus far been presented in the �eld of metaboli
engineering in order to deal with or assess the latter:Nikerel et al. (2006) [125℄ simply removed the terms that 
ontained unidenti�able modelparameters. However, amongst others Degenring et al. (2004) [42℄ have observed thepotential detrimental impa
t on the model's performan
e of su
h a
tion. These authorsredu
ed their overparameterised model by eliminating parameters based on a (lo
al) sen-sitivity analysis. However, the importan
e of a parameter 
annot merely be assessedusing a lo
al sensitivity analysis. Indeed, the model output 
an be insensitive to a pa-rameter, but due to strong intera
tion e�e
ts with other parameters it 
an be
ome overallimportant [150℄. This e�e
t 
an be determined by the extended FAST method [150℄ orthe method proposed by Sobol (1993) [167℄.Kresnowati et al. (2005) [92℄ made use of multiple in sili
o generated data sets to as-sess this un
ertainty; 
onsidering the typi
al la
k of experimental data su
h an approa
hseems far from realisti
.Hen
e, the aim of this study was to properly assess the un
ertainty on the 
al
ulated �ux
ontrol 
oe�
ients with a view to target identi�
ation in metaboli
 engineering. This57



un
ertainty may be the result of both an un
ertain model stru
ture and of un
ertain pa-rameter estimates. To this end, several rival approximative kineti
s were used to des
ribean illustrative pathway. Sin
e, the enzyme levels will be assumed 
onstant in this study,the log-linear in metabolite and enzyme levels kineti
s (i) and the linlog kineti
s (ii),and the linear in metabolite and enzyme levels kineti
s (iii) and the linear in metabolitelevels kineti
s (iv), two by two 
oin
ide, as they only di�er with 
hanging enzyme levels.For this reason, only three approximative kineti
 stru
tures (the linlog kineti
s, the GMAtype power law kineti
s, and the linear in metabolite levels kineti
s) were retained forfurther analysis. In order to properly assess the un
ertainty on the 
al
ulated �ux 
ontrol
oe�
ients the linear kineti
 parameters for ea
h of these rival approximative kineti
swere identi�ed using a two step parameter identi�
ation pro
edure and the adequa
y ofthe approximative kineti
s to des
ribe the system was evaluated.5.2 Materials and Methods5.2.1 Linear pathwayThe pathway 
onsidered in this study was taken from Delgado and Liao (1992) [43℄,slightly modi�ed by Kresnowati et al. (2005) [92℄, and is presented below. The pathway
onsists of four metabolites c1, x1, x2, and c2 and three rea
tions v1, v2, and v3.
c1

v1→ x1
v2→ x2

v3→ c2The 
omplete nonlinear kineti
 equations are given in Eqs. 5.4-5.6:
v1 =

0.2

1 + x1
(5.4)

v2 =
1.5x1

0.5 + x1
(1 + L)−1 , L =

(
1 + x2

0.1

)4

(
1 + x2

0.5

)4 (5.5)
v3 =

x2

1 + x2

2 + x1

40

(5.6)58



The steady-state �ux and steady-state 
on
entrations in Table 5.1 were obtained by solv-ing the mass balan
e equations for the steady-state 
ondition.Table 5.1: The Steady-state �ux and the steady-state metabolite 
on
entrations and theinitial 
onditions of the perturbation (in arbitrary units)
c1 x1 x2 c2 J0Steady-state 
onditions 2.0 0.411 0.154 0.0 0.142Initial 
onditions of the perturbation 2.0 1.0 1.0 0.0Transient data were obtained by perturbing the steady-state (Figure 5.1). To re�e
ttypi
al measurement data, normally independently distributed noise ǫ(0,σ2) was super-imposed on these simulated metabolite 
on
entrations. 11 sample points were uniformlydistributed over the time interval [0, 5]. This is realisti
 as sampling frequen
ies up to4-5 s-1 are reported in the literature [129℄.5.2.2 Derivation of the 
ontrol 
oe�
ientsThe derivation of the �ux 
ontrol 
oe�
ients is taken from Mau
h et al. (1997) [115℄. Ami
robial system 
an be represented by a set of di�erential equations:

ẋ = f (x, p) (5.7)with x a ve
tor that 
ontains the state variables and p a ve
tor that 
ontains the param-eters. CM
ij is de�ned as the 
on
entration 
ontrol 
oe�
ient:

CM
ij =

∂xi

∂pj

pj

xi
=
∂ lnxi

∂ ln pj
(5.8)and CF

ij is de�ned as the �ux 
ontrol 
oe�
ient:
CF

ij =
∂vi

∂pj

pj

vi
=
∂ ln vi

∂ ln pj
(5.9)59



Figure 5.1: Evolution of metabolite 
on
entrations (in arbitrary units) of c1, x1, x2, and
c2 after the perturbation
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with vi the rate of rea
tion i. The time-derivative of the �rst-order sensitivity of 
on
en-tration xi with respe
t to parameter pj is given a

ording to [188℄ by:
d

dt

(
dxi

dpj

)

=
m∑

k=1

∂fi

∂xk

∂xk

∂pj
+
∂fi

∂pj
(5.10)Eq. 5.10 
an be written as:

dCM⋆

i,j

dt
=

m∑

k=1

JikC
M⋆

kj + ψij (5.11)where CM⋆

i,j denotes the non-normalised sensitivity of 
on
entration xi with respe
t toparameter pj. Ji,k des
ribes the derivative of the i th element of ve
tor f with respe
tto the k th element of state ve
tor x. ψij is the derivative of f with regard to the j thparameter of ps. In matrix notation Eq. 5.11 be
omes:
dCM⋆

dt
= JCM⋆

+ ψ (5.12)where CM⋆

[m, s] is the non-normalised 
on
entration 
ontrol matrix. J [m,n] is the well-known Ja
obian matrix, whilst ψ [m, s] denotes the matrix 
ontaining the sensitivitiesof the right-hand side of Eq. 5.7 with respe
t to parameter ve
tor Ps. For steady-state
onditions one �nds:
dCM⋆

0

dt
= 0 (5.13)If J is invertible, one 
an write:

CM⋆

0 = −J−1
0 ψ0 (5.14)Eq. 5.14 
an be transformed into the normalised 
on
entration 
ontrol matrix at steady-state, CM

0 , with the diagonal matri
es X0 [m,m] and PS [s, s], whi
h 
ontain the steady-61



state 
on
entrations and parameter values, respe
tively:
CM

0 = −X−1
0 J−1

0 ψ0Ps (5.15)Time dependent 
on
entration 
ontrol 
oe�
ients 
an be obtained through integrationof Eq. 5.12 using Eq. 5.14 with subsequent normalisation:
CM (t) = X−1

(∫ t

0

(

JCM⋆

+ ψ
)

dt+ CM⋆

0

)

Ps (5.16)In Eq. 5.16, X [m,m] represents a matrix whose 
omponents are the time-dependent
on
entrations on the diagonal, and zero otherwise. Note that the time tra
es of stateve
tor x 
an be obtained by solving Eq. 5.7.Analogously time-dependent �ux 
ontrol 
oe�
ients 
an be derived. The di�erentiationof rate ri with respe
t to pj leads to:
dvi

dpj
=

m∑

k=1

∂vi

∂xk

∂xk

∂pj
+
∂vi

∂pj
(5.17)and rewritten in a dimensionless form:

CF
ij =

m∑

k=1

εikC
M
kj + πij (5.18)in whi
h the elasti
ity 
oe�
ient, εik, is de�ned as:

εik =
∂vi

∂xk

xk

vi
(5.19)This elasti
ity 
oe�
ient des
ribes the fra
tional 
hange of the lo
al rea
tion rate ri toan in�nitesimal small perturbation of 
on
entration xk. In other words, εi,k is a measure62



of the order of the lo
al rea
tion rate with respe
t to 
on
entration xk. The π-elasti
ity
oe�
ient, πi,j, introdu
ed in Eq. 5.18, is de�ned as:
πij =

∂vi

∂pj

pj

vi
(5.20)and is used to represent the relative 
hange of the lo
al rea
tion rate ri to a relative,in�nitesimal small 
hange of parameter pj . In matrix notation, Eq. 5.18 be
omes:

CF = εCM + π (5.21)
CM is provided by Eq. 5.16. For steady-state 
onditions Eq. 5.21 be
omes:

CF
0 = ε0C

M
0 + π0 (5.22)

CF
0 = −ε0X

−1
0 J−1

0 ψ0Ps + π0 (5.23)Knowing the time tra
es of the 
on
entration 
ontrol 
oe�
ients, the 
ourse of the �ux
ontrol 
oe�
ients 
an be des
ribed as:
CF (t) = εX−1

(∫ t

0

(

JCM⋆

+ ψ
)

dt+ CM⋆

0

)

Ps + π (5.24)A �ux 
ontrol 
oe�
ient is a measure of how a 
hange in the 
on
entration of an enzymea�e
ts the steady-state �ux through that parti
ular pathway. Hen
e, it is a measure ofthe degree of 
ontrol exerted by this enzyme on the steady-state �ux [222℄.5.2.3 Identi�
ation pro
edureA two step identi�
ation pro
edure has been applied. In a �rst step the parameters areestimated using an element-wise weighted total least squares estimator (EW-TLS). In a63



se
ond step a Bayesian approa
h is followed to determine the posterior distribution ofthe parameter estimates, using the prior distribution obtained in the �rst step.Cal
ulation of the derivativesTo obtain the parameters of the set of ordinary di�erential equations in a linear form thetime derivatives of the metabolite 
on
entrations have to be determined:
dc

dt
︸︷︷︸

b1+∆b1+ǫ

=

m∑

j=1

sc,j

rj
︷ ︸︸ ︷

J0
j









1 +

n∑

l=1

(

cMl

c0Ml

− 1

)

︸ ︷︷ ︸

(A1+∆A1)

ε0cMl
,j

︸ ︷︷ ︸

x









(5.25)with m the number of rea
tions involved in the formation and utilisation of metabolite
. With b1 the dependent variables, ∆b1 the errors in the dependent variables, A1 theindependent variables, ∆A1 the errors in the independent variables, and x the linearparameters. To 
al
ulate the derivative of the 
on
entration data with respe
t to time,a smoother is needed sin
e the derivation of noisy data is an ill-posed problem. A widevariety of smoothers exist [35, 52, 155℄, in this work a penalised least squares smoother[52℄ has been used.Element-wise weighted total least squaresA wide variety of linear estimators exists to solve Eq. 5.26:
(A1 + ∆A1) x = b1 + ∆b1 + ǫ (5.26)Only when the errors in the independent variables, ∆b1, are negligible 
ompared to thosein the dependent variables, ∆A1, [46℄, i.e., ∆A1

∼= 0, the ordinary least squares estimatorEq. 5.27 yields an unbiased estimate. 64



x̂OLS = min
x∈Rm

‖A1x− (b1 + ∆b1)‖2 (5.27)Unfortunately this 
ondition does not hold here as the metabolite 
on
entration data areina

urately known. An estimator whi
h does yield unbiased estimates asymptoti
allyis known as element-wise weighted total least squares [94, 199℄, as it takes the errors onboth dependent and independent variables into a

ount. Firstly, the parameters wereestimated with an element-wise weighted total least squares estimator, using as initial
onditions the parameters obtained using an ordinary least squares estimator. Subse-quently, a lo
al nonlinear parameter estimation (simplex algorithm) was performed toobtain more a

urate estimates of the parameters, whi
h typi
ally 
onsists of minimisingthe weighted sum of squared error fun
tional J (assuming independently and normallydistributed noise), by optimally sele
ting the parameter values:
J =

n∑

i=1

m∑

j=1

(
bj,E(i)− bj,IS(i)

σj

)2 (5.28)with bj,E (i) and bj,IS (i) the experimentally determined and in sili
o 
al
ulated value ofstate variable j at time i, respe
tively.
Cal
ulation of the varian
e-
ovarian
e matrixThe obtained parameter values are then used to 
al
ulate the Fisher information matrix,
FIM , Eq. 5.29:

FIM =

n∑

i=1

[(
∂bi (t, x)

∂x

)T

Q−1
k

(
∂bi(t, x)

∂x

)] (5.29)with n the number of sampled time points and Qk the measurement error varian
e 
o-varian
e matrix given by, assuming independently and normally distributed noise:65



Qk =












σ2
1 0 0 0 0

0
. . . 0 0 0

0 0 σ2
j 0 0

0 0 0
. . . 0

0 0 0 0 σ2
m












(5.30)
with m the number of measured variables and σj the 
orresponding measurement errorstandard deviation.For ea
h (state variable, parameter) 
ombination the optimal perturbation fa
tor θ hasbeen determined to numeri
ally 
al
ulate the sensitivity fun
tions in Eq. 5.29, ∂b

∂x
, usinga �nite di�eren
e method, b(t,x+θx)−b(t,x)

x+θx−x
. To this end, the perturbation fa
tor out of

{
10−12, 10−11, ..., 10−6, ..., 10−2

} yielding the minimum sum of absolute relative errors(SRE) was retained, Eq. 5.31 [40, 41℄:
SRE =

∣
∣
∣
∣
∣
1−

∂b
∂x−
∂b
∂x+

∣
∣
∣
∣
∣

(5.31)where the subs
ripts, − and +, in Eq. 5.31 stand for the sign of the perturbation fa
tor.A

ording to the Cramer-Rao inequality [107℄ the Fisher information matrix is relatedto the lower bound of the parameter estimation error 
ovarian
e matrix C, under some
onditions, i.e., the noise should be un
orrelated and normally distributed (0,σ2
j ) [107℄:

C ≥ FIM−1 (5.32)
Sampling the prior distribution of the parametersThe parameter spa
e will then be sampled n times a

ording to the parameter estima-tion varian
e 
ovarian
e matrix, C. Then, the prior probability P (xi) for ea
h of thesesampled dis
rete parameter sets xi is 1

n
. For every set of sampled parameter values the66



model is solved. The likelihood of this set, i.e., the probability of observing the data bgiven the parameter set xi 
an then easily be 
al
ulated, assuming independently andnormally distributed measurement noise [118℄:
P (b | xi) =

n∏

i=1

1
√

2π
m
Q

j=1

σj

exp

(
m∑

j=1
−

(bj,E(i)−bj,IS(i))
2

2σ2

j

) (5.33)with bj,E (i) and bj,IS (i) the experimentally determined and in sili
o 
al
ulated value ofstate variable j at time i, respe
tively.Cal
ulation of the posterior distribution of the parametersThe se
ond step of this 2 step Bayesian parameter identi�
ation pro
edure 
onsists of
al
ulating the posterior distribution on the basis of the prior distribution P (xi) [17℄.The posterior distribution is given by [118℄:
P (xi | b) =

P (b | xi)P (xi)

P (b) =
∫
P (b | xi)P (xi) dx ∼=

n∑

i=1
P (b | xi)P (xi)

(5.34)with P (b) the probability of observing the data and P (b | xi) the probability of observingthe data b given the parameter set xi, Eq. 5.33.5.3 Results and dis
ussionFor the linear in metabolite levels, the GMA type power law, and the linlog approxi-mative kineti
 formats the parameters were estimated using sequentially the EW-TLSand a nonlinear parameter estimator. The results are depi
ted in Figure 5.2. A modeladequa
y test, χ2-test as des
ribed by [31℄, has been used to evaluate the adequa
y of thedi�erent approximative kineti
s to des
ribe the 
olle
ted data. All studied approximativekineti
 formats performed adequate for the 
ase presented here.67



This is somewhat 
ontradi
tory to Heijnen (2005) [74℄ who pinpoints out the advantagesof the linlog kineti
 format. A

ording to Heijnen (2005) [74℄, allows the 
urvature ofthe linlog kineti
 format to 
apture the true kineti
s over a mu
h larger metabolite rangein 
omparison with the linear in metabolite levels format. Note that the original kineti
equations used in this study are highly nonlinear and one 
an not pretend the metaboliterange observed during the transient is small.To properly assess the un
ertainty on the 
al
ulated elasti
ity 
oe�
ients and the �ux
ontrol 
oe�
ients a Bayesian method has been applied. A �rst step in this Bayesianapproa
h is the determination of the prior distribution. To this end, the by the inverseof the Fisher information matrix linearly approximated parameter estimation error 
o-varian
e matrix was used. This requires the sensitivity fun
tions of the state variablesto the elasti
ity 
oe�
ients, whi
h are depi
ted in Figure 5.3. Based on these results theparameter estimation error 
ovarian
e matrix has been 
al
ulated.The in�uen
e of the 
hosen prior distribution on the posterior distribution has been ex-amined for the linlog kineti
 format. Both a non-informative and an informative priorwere evaluated. As non-informative prior a uniform distribution has been 
hosen. Itis non-informative as all possible values (here) in the 95 % 
on�den
e interval (from afrequentist point of view) of the parameter estimates are a priori equally likely. As infor-mative prior the distribution obtained through the parameter estimation error 
ovarian
ematrix has been used.From the resulting informative and non-informative prior distributions 105 parameter setshave been sampled (Figure 5.4). For ea
h set the �ux 
ontrol 
oe�
ients and its likeli-hood have been 
al
ulated. Finally, the posterior probability distribution was 
al
ulated.In
reasing the number of samples even more, did not alter the posterior distribution (re-sults not shown). The resulting distribution on the �ux 
ontrol 
oe�
ients is given inFigure 5.5. The posterior distribution did not seem to be in�uen
ed by the used prior(data not shown).The approa
h presented in this study thus attempts to take the un
ertainty on the �ux
ontrol 
oe�
ients into a

ount for the purpose of identifying potential bottlene
ks in themetaboli
 network. Even for large models [109, 147℄ su
h an approa
h be
omes feasible,e.g., by means of distributing 
omputing [9℄ .68



Figure 5.2: Evolution of metabolite 
on
entrations of c1, x1, x2 , and c2 after the per-turbation, measured (▽) and simulated by the linlog model (-o), the GMA type powerlaw model (-), and the linear in metabolite levels model (-x).
69



Figure 5.3: Sensitivity fun
tions of the state variables, c1, x1, x2, and c2, to the elasti
ity
oe�
ients ε0x1,1, ε0x1,2, ε0x2,2, ε0x1,3, and ε0x2,3 of the linlog model after the perturbation70



Figure 5.4: Sampling from the informative prior distribution for the linlog model, repre-sented in the parameter spa
e 71



Figure 5.5: The informative prior (-x) and the posterior probability density fun
tions (-)of the �ux 
ontrol 
oe�
ients of the linlog model
72



Figure 5.6: The informative prior (-x) and the posterior probability density fun
tions (-)of the �ux 
ontrol 
oe�
ients of the GMA type power law model
73



Figure 5.7: The informative prior (-x) and the posterior probability density fun
tions (-)of the �ux 
ontrol 
oe�
ients of the linear in metabolite levels model
74



Though the order of magnitude of the 
al
ulated �ux 
ontrol 
oe�
ients seems in reason-able agreement with the true values (Figures 5.5-5.7), the true �ux 
ontrol 
oe�
ients
(
CF

1 = 0.69 , CF
2 = 0.1, and CF

3 = 0.21
) do not always seem to lay in the 95 % 
red-ible intervals, whi
h 
ould potentially be due to 
han
e or to the model stru
ture ofthe approximative kineti
s. However, the applied method 
an be 
onsidered a more reli-able way to assess the un
ertainty on the 
al
ulated values of the �ux 
ontrol 
oe�
ients.All approximative kineti
s were judged (equally) adequate. Hen
e, none of the threemodel stru
tures 
ould be dis
arded from this analysis and all approximative kineti
swere 
onsidered simultaneously in an attempt to take the un
ertainty of the model stru
-ture on the 
al
ulated �ux 
ontrol 
oe�
ients into a

ount. As des
ribed above, the priorand posterior distributions have been 
al
ulated, whi
h are depi
ted in Figure 5.8. Note,that the obtained prior is nothing more than the res
aled superposition of the prior prob-ability density fun
tions of the individual approximative kineti
s, as all model stru
tureswere 
onsidered equally likely. The resulting posterior distribution is however weighted,with the likelihood of ea
h observation. As 
an be seen in Figures 5.5-5.8 espe
ially theGMA type power law model is determining the resulting posterior distribution for allapproximative kineti
 formats.Only a small network has been investigated and issues linked to the in
reased model
omplexity of larger models have thus not been en
ountered, e.g., error a

umulation.Whereas in the 
ase presented here approximative kineti
s appear to give fair estimates ofthe �ux 
ontrol 
oe�
ients, this approa
h seems to perform less well for larger networks.For example, Visser et al. (2004) [210℄ su

essfully re-designed primary metabolism inE. 
oli using the theoreti
ally derived linlog elasti
ity 
oe�
ients and the linlog kineti
format on the basis of the model of Chassagnole et al. (2002) [30℄. However, when oneattempts to simulate the glu
ose perturbation experiment, that originally was used toidentify the me
hanisti
 parameters of the model, using the theoreti
ally derived linlogelasti
ity 
oe�
ients and the linlog kineti
 format, the predi
ted evolution of the metabo-lite 
on
entrations did not make sense at all (data not shown).It seems that the usefulness of su
h approximative kineti
 formats de
reases with in
reas-ing model size and 
omplexity [92, 125, 210℄. In order to 
olle
t informative data fromone or more perturbation experiments for parameter identi�
ation purposes, it might be75



Figure 5.8: The informative prior (-x) and the posterior probability density fun
tions (-)of the �ux 
ontrol 
oe�
ients of the the linlog model, the GMA type power law model,and the linear in metabolite levels model
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ne
essary to radi
ally perturb the 
ell. Probably, way beyond the envisaged metabolites'pool sizes shifts as a result of metaboli
 redesign and likely way beyond the metaboliterange for whi
h approximative kineti
 formats yield an adequate des
ription of the truekineti
s, be
ause a perturbation broadens and dampens out when it passes through anetwork [6, 7℄.5.4 Con
lusionsDue to the 
omplexity of metaboli
 networks and the limited available data for the iden-ti�
ation of the parameters of a metaboli
 network model, su
h models are in generaloverparameterised [42℄. This leads to poorly identi�able parameters resulting in un
er-tain model predi
tions.A Bayesian method is proposed to properly assess the un
ertainty on the 
al
ulated �ux
ontrol 
oe�
ients in view of in
reasing the trustworthiness of the identi�ed metaboli
engineering targets. Though the order of magnitude of the 
al
ulated �ux 
ontrol 
oe�-
ients seems in reasonable agreement with the true values, the true �ux 
ontrol 
oe�
ientsdid not always seem to lay in the 95 % 
redible intervals.All of the state of the art approximative kineti
 formats: the linlog kineti
s, the GMAtype power law kineti
s, and the linear in metabolite levels kineti
s adequately des
ribedthe data, even though the original kineti
 equations used here are highly nonlinear andthe metabolite range observed during the transient is not small.It is shown that to a large extent the un
ertainty on the 
al
ulated �ux 
ontrol 
oe�-
ients is due to an un
ertain model stru
ture and 
onsequently it is worth the e�ort toin
rease the trustworthiness of the identi�ed metaboli
 engineering targets by means ofexperimental design for model dis
rimination.
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Chapter 6
A modus operandi of the Bios
opeto study os
illating mi
robialsystems
6.1 Introdu
tionWhether mi
robial fermentation pro
esses 
an be an attra
tive alternative for the pro-du
tion of many 
hemi
als for the well-established 
hemi
al synthesis routes dependspredominantly on the overall pro
ess performan
e. Consequently, the optimisation ofmi
robial pro
esses is a must, 
ertainly 
ompared to those more mature 
hemi
al syn-thesis routes. This is espe
ially true, as in general the 
ell's obje
tive fun
tion [159℄, e.g.,optimisation of growth, 
onsiderably di�ers from that by whi
h the fermentation pro
essis judged.A systemati
 approa
h for this optimisation, by means of a geneti
 intervention (metaboli
engineering) or by optimising the external 
onditions, �nds more and more a

eptan
eas it is quite di�
ult to predi
t ad ho
 the global impa
t of a geneti
 intervention andof varying environmental 
onditions, respe
tively [12℄.A systemati
 approa
h may use metaboli
 modelling as tool to fully understand theme
hanisms, e.g., allosteri
 
ontrol (feed-ba
k, feed-forward 
ontrol), 
ontrol of proteinindu
tion, ..., whi
h yield these altered pro
ess performan
es. Su
h metaboli
 models,79



both steady-state [124, 198℄ and dynami
 [30, 149℄ ones, are in
reasingly applied for thepurpose of identifying the bottlene
ks in the metaboli
 network and the elu
idation ofregulatory me
hanisms.However, also metaboli
 network models are subje
t to the an
ient saying 'garbage in isgarbage out' and 
onsequently a properly validated model is a 
onditio sine qua non torely on the model's out
ome for pro
ess optimisation [166℄. In this respe
t the design ofexperiments dedi
ated to model building 
an be
ome an additional bottlene
k. Indeed,whilst striving for a proper identi�
ation of the parameters of the metaboli
 networkmodel many resear
hers have thus far been 
onfronted by the limits of the available ex-perimental data they have gathered [42℄.This is due to the limited information ri
hness of a single perturbation experiment aimedat identifying the metaboli
 network model's parameters and stru
ture and de
ipheringregulatory me
hanisms in mi
robial organisms. Thus, multiple experiments have to beperformed starting with a 
ulture 
hara
terised by a well de�ned metabolomi
 and pro-teomi
 state [114, 211℄. Obtaining su
h a well de�ned state typi
ally takes a lot of timeand, 
onsequently, being able to eliminate the perturbation of this state would be verywel
ome.Re
ently, experimental set-ups have been designed in order not to perturb this wellde�ned state and still being able to perform multiple perturbation experiments, e.g., aBios
ope 
onne
ted in series with a 
hemostat [212℄ (Figure 6.1, s
enario I). The mostimportant feature of a 
hemostat is that all 
ulture 
onditions, e.g., dissolved oxygen
on
entration, pH, 
ell density, ... remain 
onstant. The e�uent of the 
hemostat isthe in�uent of the Bios
ope. Hen
e, the properties of the in
oming �ow in the Bios
opeare 
onstant. A Bios
ope is a plug �ow rea
tor whi
h is 
ontinuously fed by brothfrom the biorea
tor [212℄. Instead of perturbing the biorea
tor itself and 
onsequentlyall its biomass, the 
ontinuous �ow from the biorea
tor into the Bios
ope is perturbedjust after entering the Bios
ope. Importantly, the 
hemostat itself is not a�e
ted bythese perturbations [212℄. Perturbing the rea
tor itself to 
olle
t a data set des
ribingthe response of the 
ells to the perturbation would lead to a long waiting time beforeanother perturbation experiment 
an be performed be
ause the 
ulture must be allowedto regain its steady-state [212℄. Distributed over its length the Bios
ope has a numberof sample ports. Be
ause of the plug �ow 
hara
teristi
s of the Bios
ope every sample80



port is linked to a sample time after perturbation. Obviously, these sample times afterperturbation are determined both by the distan
e from the inlet of the Bios
ope andthe �ow of broth and perturbing agent through the Bios
ope. In the traditional steady-state operation of the biorea
tor the sample ports of the Bios
ope are opened one by onefor a given amount of time in order to 
olle
t su�
ient sample for the analyses to beperformed.Although the emphasis of pro
ess optimisation is nowadays shifting towards the geneti
modi�
ation of mi
robial strains, dynami
ally operated 
ultures 
an be industrially in-teresting as well, as, for instan
e, the interplay of the �u
tuating metabolome, e.g., theATP-paradox [168, 182℄, and eventually even the proteome 
an result in an altered pro-
ess performan
e. In many fermentation pro
esses, su
h dynami
ally operated 
ulturesresult in an altered yield, as the interplay of the �u
tuating extra
ellular 
onditions andthe altered metabolite levels (and enzymati
 armamentum) results in an adapted 
ellwith a superior [185, 189℄ or a deteriorated performan
e [16, 23, 202℄.Metaboli
 models 
an also be useful tools for the optimisation of su
h dynami
ally op-erated 
ultures. Hen
e, the obje
tive of this 
ontribution is to propose a new modusoperandi of the Bios
ope so that this equipment 
an also be used to perform multipleperturbation experiments with mi
robial systems that are subje
t to a periodi
 operation(Figure 6.1, s
enario II). This will allow to rapidly 
olle
t the ne
essary data in view ofidentifying the model's parameters and stru
ture.
6.2 ModelThe dynami
 model of Chassagnole et al. (2002)[30℄ was used as data generating model.This metaboli
 network model des
ribes the dynami
 behaviour of the 
entral 
arbonmetabolism of Es
heri
hia 
oli, i.e., of 25 metabolites that are involved in 30 rea
tions ofthe gly
olysis and the pentose phosphate pathway, after perturbation of a 
arbon limited
ontinuous 
ulture by a glu
ose pulse. The general form of the mass balan
es of theextra
ellular and intra
ellular metabolites is given by Eq. 6.1 and Eq. 6.2, respe
tively:81



Figure 6.1: S
hemati
 representation of the rea
tor 
on�guration. S
enario I: the Bio-s
ope is 
onne
ted in series with a 
hemostat. S
enario II : the Bios
ope is 
onne
tedin series with a periodi
ally operated rea
tor (period T). In order to 
olle
t 
ells withthe same initial intra
ellular make-up prior to the perturbation a sample port should beopened at [t+ nT + t2] s (with n = 0,1,...). Then, 
ells are 
olle
ted that entered theBios
ope at [t+ nT ] s, with t the time instant in the period, and that have spent t2 s inthe Bios
ope.
dxS

dt
= D

(
x0

S − xS

)
+ fpulse −

xX

ρX
rk (6.1)

1

xx

dxXxM

dt
=
dxM

dt
+
xM

xX

dxX

dt
=

∑

k

sjkrk (6.2)with xM and xS the 
on
entration of an intra
ellular metabolite M and an extra
ellularmetabolite S, respe
tively, sjk the stoi
hiometri
 
oe�
ient of metabolite j in rea
tionk, rk the rate of rea
tion k, ρX the spe
i�
 weight of biomass and xX the biomass
on
entration, D the dilution rate, x0S the 
on
entration of an extra
ellular metabolite Sin the feed, fpulse a pulse of an extra
ellular metabolite S in the rea
tor, and µ the spe
i�
growth rate. Note that xS is expressed in rea
tor volume whereas xM is expressed in 
ellvolume. The term µxM in the mass balan
es of the intra
ellular metabolites representsthe dilution e�e
t due to growth. 82



6.3 Results6.3.1 Experimental set-upThe proposed rea
tor 
on�guration 
onsists of a Bios
ope 
onne
ted in series with aperiodi
ally operated 
ompletely mixed biorea
tor, with period T (Figure 6.1, s
enarioII). Su
h a periodi
 operation mode leads to a mi
robial system that shows limit 
y-
le behaviour, whi
h means that the 
ell's internal state periodi
ally returns to be thesame state. The new modus operandi of the Bios
ope allows to sele
tively evaluatethe perturbation behaviour of 
ells, that possess a parti
ular internal state prior to theperturbation, whi
h permits the sequential perturbation of 
ells with the same initial
ondition taken from a dynami
ally operated 
ulture. Again the Bios
ope prin
iple isapplied, i.e., the 
ulture from whi
h the 
ells are taken is not perturbed.In the proposed periodi
 operation of the biorea
tor the varying 
onditions in the biorea
-tor generate a non-
onstant broth 
omposition with respe
t to the 
on
entrations of bothextra
ellular and intra
ellular metabolites. If the sample ports would now sequentially,
ontinuously be opened one by one, 
ells would be 
olle
ted with a di�erent intra
ellularmake-up prior to the perturbation. Hen
e, the proposed modus operandi of the Bios
opemust aim at 
olle
ting only those 
ells that are 
hara
terised by the same intra
ellularmake-up prior to the perturbation. For this a 
ontrol s
heme to open and 
lose the sampleports has to be applied. This has been developed below on the basis of a simulation study.6.3.2 Simulation studyTo illustrate the prin
iple and possibilities of the proposed rea
tor 
on�guration a sim-ulation study has been performed. As mentioned above, during the periodi
 operationof the biorea
tor, i.e., when the transient behaviour has faded out, the metabolite tra-je
tories enter a limit 
y
le, as illustrated in Figure 6.2 for the metabolites G6P, PEPand GL
e in a 3D spa
e. After every period the traje
tory ends up in the same point,
hara
terised by its intra
ellular metabolomi
 and enzymati
 make-up.The proposed method is thus able to yield, every period, the same well de�ned metabo-lomi
 and proteomi
 state. However, given the dynami
 operation of the biorea
tor, thisstate is di�erent from the steady-state mode operation. This periodi
 'initial 
ondition'83



Figure 6.2: the limit 
y
le during the periodi
 operation in the rea
tor represented in thephase spa
e of phosphoenolpyruvate (PEP), glu
ose-6-phosphate (G6P), and extra
ellu-lar glu
ose (Gl
e).at the inlet of the Bios
ope, together with the 
onstant perturbation applied to it, leadsto a periodi
 variation of the extra
ellular and intra
ellular metabolite 
on
entrationsas the broth moves along the Bios
ope's plug �ow (Figure 6.3). Figure 6.3 depi
ts as
hemati
 overview of the behaviour of the intra
ellular and extra
ellular metabolitesboth in the periodi
ally operated biorea
tor and in the Bios
ope. In the perfe
tly mixedrea
tor, a substrate pulse is given every 60 s resulting in a periodi
 system.The sample ports of the Bios
ope should be 
ontrolled in su
h a way that only 
ellsthat had the same intra
ellular make-up prior to the perturbation, are 
olle
ted, i.e., thesample port should instantaneously open and 
lose at [t + nT + t2℄ s with n=0,1,... untilenough sample is 
olle
ted for the analyses to be performed. Then, 
ells are 
olle
tedthat entered the Bios
ope at [t+ nT ] s, with t the time instant in the period, and thathave spent t2 s in the Bios
ope. 84



Figure 6.4 qualitatively depi
ts the traje
tories in the phase spa
e when the initial 
ultureis perturbed at di�erent instants during the period of the limit 
y
le in the biorea
tor.Thus, by performing perturbation experiments at several time instants of the limit 
y
le,di�erent responses 
an be gathered. The sample time in the Bios
ope and the perturbingagent are additional degrees of freedom for this experimental set-up.
6.4 Dis
ussionThe proposed 
on�guration allows the exe
ution of multiple perturbation experiments,even when the initial 
ulture is subje
t to periodi
 
onditions, via the 
ontrolled 
olle
-tion of samples. This operation implies that the initial reason to be of the Bios
ope ispreserved. Su
h an equipment is thus pra
ti
al to study, through perturbation exper-iments, the 
omplex metabolomi
 and proteomi
 intera
tions in periodi
ally operated
ultures for elu
idating the me
hanisms underlying the altered yields. In addition, onlysmall quantities of the perturbing agent have to be used, whi
h is a major advantageespe
ially when the use of labelled substrates is imperative [212℄.Both the sampling time in the Bios
ope and the initial state of the 
ells to be 
olle
tedprior to the perturbation are additional experimental degrees of freedom for the proposed
on�guration. Colle
ting samples in the Bios
ope, with the same initial state prior tothe perturbation, at distin
t points in time thus allows the preservation of the 
ultureand, 
onsequently, should allow performing multiple experiments in a relatively shorttime, e.g., perturbing a 
ulture 
hara
terised by the same initial intra
ellular make-up,with di�erent perturbing agents or perturbing a 
ulture with the same perturbing agentstarting with the same initial state.6.5 Con
lusionsAn experimental set-up has been proposed with a view to gathering data to build andvalidate a dynami
 metaboli
 model of periodi
ally operated 
ultures. Su
h models 
anbe useful for the optimisation of periodi
ally operated 
ultures as they help to gain furtherinsight in the 
omplex metaboli
 intera
tion and they 
an predi
t the e�e
t of altered
onditions. This set-up allows performing multiple perturbation experiments without85



perturbing the periodi
ally operated 
ulture itself. The perturbing agent, the sampletime and the initial state, prior to the perturbation, are powerful degrees of freedom.
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Figure 6.3: Evolution of the intra
ellular and extra
ellular metabolite 
on
entrations ofa par
el of broth in the periodi
ally operated rea
tor and in the Bios
ope for a par
el ofbroth that enters the Bios
ope after 120 s (upper �gure), 180 s, 240 s, and 300 s (lower�gure) in fun
tion of time. 87



Figure 6.4: Response of the 
ells monitored in the Bios
ope after perturbing 
ells origi-nating from 2 (red and bla
k) di�erent instants in the limit 
y
le of the rea
tor
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Chapter 7
Eulerian-Lagrangian des
ription of alarge-s
ale biorea
tor: an averagingout approa
h
7.1 Introdu
tionThe well-established 
hemi
al synthesis routes fa
e for the produ
tion of many bulk and�ne 
hemi
al more and more 
ompetition from industrial biote
hnologi
al alternatives.The development of su
h an industrially viable mi
robial pro
ess typi
ally 
onsists of 3phases.In a �rst phase a mi
ro-organism is optimised itself, under laboratory 
onditions. Su
h anoptimisation typi
ally makes use of re
ombinant DNA te
hniques, fun
tional genomi
s,as well as analyti
al [38, 181, 212℄ and mathemati
al te
hniques [30, 197, 198℄. Thismishmash of te
hniques has allowed a goal-oriented approa
h for geneti
 modi�
ation[11℄. However, on
e the optimal produ
er has been 
onstru
ted it has to be put to thetest under large-s
ale 
onditions. This is due to the importan
e of mixing on both 
hem-i
al and biologi
al 
onversions [67, 173℄. As a rule, s
aling-up of fermentation pro
essesfrom laboratory-s
ale to large-s
ale results in a signi�
ant redu
tion of biomass and prod-u
t yields [16, 23, 202℄. Finally, the produ
t has to be puri�ed and re
overed from thefermentation broth (Downstream pro
essing), using a wide range of physi
o-
hemi
alte
hniques, e.g., �ltration, 
entrifugation, pre
ipitation, ... [68℄89



The redu
tion of produ
t yields in su
h a large-s
ale biorea
tor has been attributed toimperfe
t mixing [139, 221℄: zones exist in su
h large-s
ale biorea
tors with ample sub-strate, in general in the surround of the inlet of the 
on
entrated in�uent, with substratedepletion and with oxygen depletion or ex
ess (laboratory-s
ale rea
tors of several litreson the 
ontrary are typi
ally 
onsidered as perfe
tly mixed). When an individual mi
ro-organism 
ir
ulates through a large-s
ale rea
tor of various m3 it is sequentially exposedto these di�erent lo
al 
onditions. The 
ellular response to these fast 
hanging environ-mental 
onditions is thought to be an important 
ause of the observed yield redu
tion.In the past, many resear
hers have attempted to 
ome up with a plausible explanationfor the mi
robial response to these fast 
hanging external 
onditions:1. Hewitt et al. (2000) [76℄ postulate that the alternating produ
tion and reassimila-tion of organi
 a
ids like a
etate, la
tate, and formate due to over�ow metabolismand mixed a
id fermentation results in an ATP �ux from biomass produ
tion to-wards the repetitive synthesis and degradation of 
ertain organi
 a
ids,2. Enfors et al. (2001) [53℄ put forward the intermittent trans
riptional indu
tion ofgenes, as a 
onsequen
e of the rapidly 
hanging environment in large-s
ale biorea
-tors. However as the synthesis of proteins, in
luding folding, takes up to one hour,the rapidly 
hanging indu
tion and relaxation does not result in a net synthesis ofproteins, and3. Onyeaka et al. (2003) [131℄ point out pH �u
tuations as a possible 
ause, as thiswill in�uen
e the proton motive for
e and 
onsequently the generation of ATP.Hen
e, a thorough understanding of the mi
robial response to the large-s
ale 
onditionswould be useful for the optimisation of su
h pro
esses [174℄. Consequently, methods tomore detailedly des
ribe both the biophase and the physi
o-
hemi
al pro
esses in su
hlarge-s
ale biorea
tors have been developed, e.g., 
omputational �uid dynami
s models�nd a

eptan
e both in industry and a
ademia [15, 20, 62, 127℄ to study in many ap-pli
ation domains the impa
t of spatiotemporal heterogeneity, i.e., imperfe
t mixing, onthe overall pro
ess performan
e. 90



In 
omparison with 
hemi
al appli
ations, the system under study gets even more 
om-plex for biologi
al appli
ations sin
e the behaviour of an individual mi
ro-organism is alsodetermined by its intra
ellular make-up, whi
h is determined by what the mi
ro-organismhas observed over time [67, 96, 97℄. Hen
e, a Lagrangian des
ription, i.e., following the
ell's path through the rea
tor, is essential to take this history e�e
t, a key element inunravelling the 
auses of the observed yield redu
tion, into a

ount.
However, des
ribing the biophase in a Lagrangian way is 
omputationally demandingsin
e a set of di�erential equations is linked to every mi
ro-organism [96℄. Solving thishighly nonlinear system, a result of the set of intra
ellular balan
e equations and theex
hange terms a

ounting for the transport of metabolites in and out of the mi
robial
ell, is not trivial. To deal with the latter, Lapin et al. (2006) [97℄ opted to des
ribe thesystem using an Euler-Lagrange formulation 
ombined with a fra
tional-step method toallow for a stable, a

urate, and numeri
ally e�
ient solution of the underlying equa-tions. This method requires however that for their three-dimensional simulation of astirred-tank biorea
tor 105 
ells had to be tra
ked. Sin
e, ea
h of the �nite volumeshad to be populated with a su�
ient number of mi
robial 
ells to minimise the e�e
t ofstatisti
al error on the a

ura
y of the solution.
Considering however that the overall pi
ture is merely the result of all individual mi
ro-organisms, it may thus be 
on
eivable that only a limited number of parti
les has to betra
ked in order to obtain a good idea of the 
onsumption and produ
tion of substratesand produ
ts throughout the large-s
ale biorea
tor. Then the dynami
s of the overallsystem 
an be 
aptured by lo
ally averaging out the behaviour of this limited number ofparti
les over the whole population. The present 
ontribution therefore fo
usses on themethods to implement su
h an approa
h taking into a

ount the spatiotemporal hetero-geneity whi
h is 
hara
teristi
 for su
h large-s
ale biorea
tors. Spe
ial attention will bedevoted to the pitfalls using su
h a te
hnique and how these were dealt with.
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7.2 Materials and methods7.2.1 Computational �uid dynami
sRea
tor spe
i�
ations and numeri
al te
hniquesSimulations of the �ow of �uids and of the mi
robial 
onversions in a 30 m3 fermentor,stirred by four impellers, have been performed. The 
on�guration of the fermentor isgiven in Table 7.1 and it is s
hemati
ally depi
ted in Figure 7.1.Governing �ow equationsThe derivation of the governing �ow equations is taken from Fluent (2003) [1℄ and Tan-nehil and Anderson (1997) [178℄ . The �ow of �uids 
an be des
ribed by the Navier-Stokes equations. Applying the 
onservation law for mass to a �uid passing through anin�nitesimal 
ontrol volume, yields following partial di�erential equation:
∂

∂t
(ρ) +

∂

∂xi
(ρvi) = 0 (7.1)with ρ the physi
al density of the �uid and xi and vi the position and velo
ity ve
tor,respe
tively. The �rst term on the LHS of this equation represents the rate of in
reasein density in the 
ontrol volume and the se
ond term represents the rate of mass �uxpassing through the 
ontrol surfa
e per unit volume.Applying the 
onservation law for momentum to an arbitrary 
ontrol volume, yieldsfollowing partial di�erential equation:

∂

∂t

(
ρvj

)
+

∂

∂xi
(ρvivj) = ρg +

∂

∂xi
(σij) (7.2)The two terms on the LHS of Eq. 7.2 represent the rate of in
rease of momentum perunit volume in the 
ontrol volume and the net momentum �ux in the 
ontrol volume,respe
tively. The two terms on the RHS of Eq. 7.2 represent the gravitational for
e perunit of volume and the surfa
e for
e per unit of volume, respe
tively. The 
omponents ofthe total stress tensor σij are external stresses and shear stresses, whi
h are representedby: 92



Figure 7.1: Top view and side view of the studied fermentor
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Table 7.1: Fermentor 
on�gurationRelative size [D℄ Size [m℄Fermentor diameter 1 2.09Fermentor height 4.59 9.60Liquid height 2.99 6.25Ba�e width 0.08 0.17Spa
ing ba�e-wall 0.02 0.03Ba�e height 3.54 7.40Sparger diameter 0.43 0.90Shaft diameter 0.06 0.125Impeller diameter 0.33 0.70Impeller blade height 0.08 0.17Impeller spa
ing 0.70 1.46Lower impeller spa
ing 0.53 1.12Distan
e sparger - impeller 0.82 0.58
σij = −pδij + τij (7.3)where the pressure for
e, the �rst term on the RHS of Eq. 7.3, a
ts only normal to thesurfa
e of the 
ontrol volume. The Krone
ker-delta is de�ned as:
δij =

{

1 : i = j

0 : i 6= j
(7.4)whi
h gives the pressure power a normal 
omponent. The vis
ous stress tensor is givenby:

τij = µ







(
∂vi

∂xj
+
∂vj

∂xi

)

−
2

3
δij
∂vk

∂xk
︸︷︷︸

=0







(7.5)with µ the mole
ular vis
osity. The �rst two terms on the RHS of Eq. 7.5 representthe strain rate and the third represents dilatation. For in
ompressible �uids this term isequal to zero. This equation only holds for Newtonian �uids, 
hara
terised by a 
onstantvis
osity. 94



To resolve a turbulent �ow by dire
t numeri
al simulation it is required that all relevantlength s
ales are resolved from the smallest eddies to s
ales of the order of physi
aldimension of the problem domain, that three-dimensional 
omputations are performed,and that the time steps must be small enough so that the small-s
ale motion 
an beresolved in a time-a

urate manner. Su
h 
omputations are infeasible nowadays for mostappli
ations. Time-averaged Navier-Stokes equations are used instead.The Reynolds-averaged Navier-Stokes (RANS) equations are obtained by de
omposingthe dependent variables f in the 
onservation equations into a time-mean f̄ and a time-�u
tuating 
omponent f ′:
f̄ =

1

∆t

∫ t0+∆t

t0

fdt (7.6)The time interval ∆t should be 
hosen in su
h a way that its large with respe
t to the time
onstant of random �u
tuations, asso
iated with turbulen
e, and small in 
omparisonwith slow variations in the �ow �eld asso
iated with ordinary unsteady �ows. The statevariables in the Navier-Stokes equations are now de
omposed in:
vi = v̄i + v′i
ui = ūi + u′i

(7.7)Substitution in the Navier-Stokes equations and time-averaging the entire equationsyields the RANS equations (note that f ′i = 0). For a 
on
ise overview of the deriva-tion, we refer to [178℄. The RANS equations for mass, momentum, and 
hemi
al spe
iesfor multiphase �ows are given by [178℄:
∂

∂t
(αqρq) +

∂

∂xi
(αqρqvi,q) = 0 (7.8)

∂

∂t
(αqρqvj,q) +

∂

∂xi
(αqρqvi,qvj,q) = −αq

∂p

∂xj
+

∂

∂xi
(αqτij,q) + αqρqg (7.9)

∂

∂t

(
αqρqϕ

m
q

)
+

∂

∂xi

(

αqρqvi,qϕ
m
q − αqΓ

m
q

∂ϕm
q

∂xi

)

= +Sm
q (7.10)For 
onvenien
e, the bars indi
ating the time-averaged values were and will be omitted.With αq the volume fra
tion, ρq the physi
al density, ϕm

q the 
on
entration of s
alar m,95



vi,q the velo
ity and v′i,q the �u
tuations about the average velo
ity of phase q. Thesubs
ript q refers to the phase, i.e., gas (g) or liquid (l), and the supers
ript m refers tothe 
hemi
al spe
ies under 
onsideration, e.g., glu
ose. τq is the stress tensor of phaseq, p is the total pressure, and g is the gravitational a

eleration. Γm
q and Sm

q are thedi�usion 
oe�
ient and the sour
e term of 
hemi
al spe
ies m in phase q, respe
tively:
Γm

q = −

(

µ+
µt

σϕ

) (7.11)
Sm

q = f
(
ϕm

q

) (7.12)with µt the turbulent vis
osity and σϕ the S
hmidt number for 
hemi
al spe
ies in waterassumed to be 
onstant and equal to 0.7 [1, 59℄. The formulae to 
al
ulate Sm
q will bedis
ussed in Se
tion 7.3. The global mass 
onservation is given by:

n∑

q=1

αq = 1 (7.13)The vis
ous stress tensor τij,q is now given by:
τij,q = µ








(
∂vi,q

∂xj
+
∂vj,q

∂xi

)

−
2

3
δij
∂vk,q

∂xk,q
︸ ︷︷ ︸

=0







− ρqv′i,qv′j,q (7.14)The additional term is 
alled the Reynolds tension and represents the apparent surfa
egradients that are a 
onsequen
e of turbulent motion. Boussinesq proposed to relate theaverage velo
ity gradient with the Reynolds tension using the average turbulent vis
osityor eddy vis
osity µt:

ρqv′i,qv′j,q = µt

((
∂vi,q

∂xj
+
∂vj,q

∂xi

))

−
2

3
δijρqk (7.15)with k the turbulent kineti
 energy. 96



Turbulen
e modelTo determine µt, the standard k− ǫ turbulen
e model was used for simulating turbulent�ows in the present study. The governing equations for the turbulent kineti
 energy kand the turbulent kineti
 energy dissipation rate ǫ were solved for both phases. Standardvalues for the parameters of the k − ǫ model were used in the present study (Table 7.2).
∂

∂t

(

αqρq
kq

)

+
∂

∂xi
(αqρqvi,qkq) =

∂

∂xj

(

αq

(

µ+
µt

σk

)
∂kq

∂xj

)

− αqρqv′i,qv′j,q
∂vj,q

∂xi
︸ ︷︷ ︸

Gk,q

+ αqβg
µt

σs

∂φ

∂xi
︸ ︷︷ ︸

Gb,q

− αqρqǫq (7.16)
∂

∂t

(

αqρqǫq

)

+
∂

∂xi
(αqρqvi,qǫq) =

∂

∂xj

(

αq

(

µ+
µt

σǫq

)
∂ǫq
∂xj

)

+ αq
ǫ

kq

(
C1ǫqGk,q − C2ǫqρqǫq

)
− ρkc2ǫ

ǫ2q
kq

(7.17)in these equations Gk represents the generation of turbulen
e kineti
 energy due to themean velo
ity gradients and Gb is the generation of turbulen
e kineti
 energy due tobuoyan
y, with φ the solid mass fra
tion. The turbulent vis
osity µt is 
omputed by
ombining kq and ǫq as follows [178℄:
µt = ρCµ

k2
q

ǫq
(7.18)where σε and σk express the turbulent di�usive transport of the s
alars k and ε.GridThe resulting set of nonlinear partial di�erential equations that des
ribes the system 
an,in general, not be solved analyti
ally. Numeri
al solution, using the �nite volume method,Table 7.2: Parameter values of the k − ǫ turbulen
e model [1℄

cµ c1ε c2ε c3ε σε σk0.09 1.14 1.93 0.80 1.30 1.0097



requires the dis
retisation of this set of nonlinear partial di�erential equations in spa
eand time. For this reason, the solution domain is subdivided into a �nite number of small
ontrol volumes (
ells) by a grid. This dis
retisation results in a set of 
oupled algebrai
equations. The governing equations to be solved are strongly 
oupled and nonlinear andtherefore they must be solved by an iterative method. The used 
omputational grid
onsisted of 138144 
ontrol volumes. The solution independen
e on the grid size hasbeen veri�ed. To this end, the grid was re�ned with a gradient adaptation approa
h,whi
h re�ned the grid in regions with high gradients, to 236982 
ontrol volumes.Traje
toryMi
ro-organisms were modelled using a Lagrangian approa
h. The traje
tories of theparti
les are determined based on a for
e balan
e [1℄:
ρp
dup

dt
= FD (ui − up) + g (ρ− ρp) (7.19)with ui and up the �uid and parti
le velo
ity, respe
tively, ρ and ρp the �uid and par-ti
le density, respe
tively. FD = 18µCDRe

24d2
p

is the drag for
e, dp is the parti
le diameter,
Re = ρdp

|ui−up|
µ

is the parti
le's Reynolds number. CD = a1 + a2

Re
+ a3

Re2 is the drag
oe�
ient is 
al
ulated a

ording to [119℄, with a1, a2, and a3 numeri
al 
onstants forsmooth spheri
al parti
les.In the applied sto
hasti
 tra
king approa
h, the turbulent dispersion is taken into a

ountby integrating the traje
tories using the instantaneous �uid velo
ity: u = u + u′, with
u′ = ζ

√

2k/3 and ζ a normally distributed random number [1℄. The dis
rete random walkmodel assumes that a parti
le intera
ts with a su

ession of dis
rete �uid phase turbulenteddies, whi
h are 
hara
terised by velo
ity �u
tuations [1℄. The approa
h presented byLapin et al. (2004) [96℄ is however preferable, sin
e the dis
rete random walk modelshows a tenden
y for parti
les to 
on
entrate in low-turbulen
e regions [1, 96℄.ImpellerThe earliest attempts to numeri
ally simulate the �ow �eld in me
hani
ally agitatedrea
tors applied impeller boundary 
onditions to model the impeller [71, 145, 146℄. Inthis approa
h, the impeller is not physi
ally modelled but represented either in terms of98



boundary 
onditions at the surfa
e of the volume swept by it or in terms of sour
e termsdistributed throughout its volume.Over time several general approa
hes have been reported in the literature on expli
itsimulation of the �ow �eld in agitated rea
tors. The main generalised approa
hes arethe multiple referen
e frame (MRF) approa
h [22℄ and the sliding mesh (SM) approa
h[120, 176℄. The �rst approa
h involves steady-state 
omputations and produ
es a time-averaged �ow �eld. The se
ond approa
h involves transient 
omputations to produ
ea time-a

urate �ow �eld. Both these approa
hes subdivide the 
omputational domaininto two non-overlapping regions, one region surrounding the impeller and the other rep-resenting the rest of the vessel (Figure 7.2).The MRF approa
h �rst simulates the �ow �eld for the inner domain surrounding theimpeller in a referen
e frame rotating with the impeller. The resulting �ow �eld on theinterfa
e separating the inner and outer regions then serves as boundary 
ondition tosimulate the �ow �eld in the outer domain in an inertial frame of referen
e (laboratoryframe of referen
e). This results in improved boundary 
onditions, whi
h are sequentiallyto be applied for the simulation of the �ow �eld in the inner domain. The pro
edureis repeated until a suitable numeri
al 
onvergen
e 
riterion is a
hieved. The pro
edureinvolves steady-state approximation of essential periodi
 �ow, 
orre
tion for the relativemotion and azimuthal averaging are required before using the �ow �eld at the interfa
eas boundary 
ondition for solution of the �ow �eld in the outer domain [22℄.The SM approa
h involves transient 
omputations to produ
e a time-a

urate �ow �eld.The �ow equations in the inner domain are now written in a laboratory referen
e framewhilst it is the grid in this domain that is allowed to rotate. The rotation of the gridresults however in a

eleration terms whi
h are 
ompletely equivalent to the body for
esarising in non-inertial frames. The grid in the outer domain is stationary. The two regionsare impli
itly 
oupled at the interfa
e via a SM algorithm whi
h takes the relative mo-tion between the two domains and performs the required interpolation into a

ount [120℄.However, whereas the MRF approa
h has as undesirable feature that spe
ies in the innerdomain are transported relative to the impeller motion, the sliding mesh approa
h is,due its transient 
omputation, 
omputationally demanding. Therefore, it was opted toapply boundary 
onditions to model the impeller. The momentum sour
e distributed99



Figure 7.2: Side view and top view of an inner (left �gure) and outer region (right �gure)100



throughout the impeller is given by:
MX = ρ

X

R

(

1−

(
Y − Y0

D

)2
)

VR (7.20)with R the impeller radius, X the x-distan
e from the 
enter of the rotation ax , Y − Y0the y-distan
e from the 
enter of the impeller, VR the impeller tip speed, D the impellerblade thi
kness, and ρ the physi
al density. The impeller rotational speed was 115 RPM.7.3 Results and dis
ussion7.3.1 FrameworkThe developed approa
h to stru
turedly and segregatedly des
ribe the biophase is de-pi
ted in Figure 7.3. Herein represent the blue blo
ks operations that are performedby FluentR© (ANSYSR©, USA) typi
ally linked to pro
esses related to the hydrodynam-i
s and the transport of parti
les and 
hemi
al spe
ies in the large-s
ale biorea
tor andthe yellow blo
ks represent operations that are performed by MatlabR© (The Mathworks,USA) related to the 
al
ulation of the mi
robial systems and the 
al
ulation of the sub-strate and or spa
e dependent fun
tions for the 
hemi
al spe
ies' sour
e term, Sm
q .The rationale of the method presented here is that information on the transport ofmetabolites in and out the mi
robial 
ells of mi
robial 
ells in the neighbourhood of ea
hother, both in terms substrate 
on
entration data and position data may be used to
al
ulate the average/overall transport of metabolites in and out of the mi
robial 
ellsat a position, in this way only a limited number of parti
les has to be tra
ked in orderto obtain a good idea of the transport of metabolites in and out of the mi
robial 
ellsthroughout the large-s
ale biorea
tor, sin
e the dynami
s of the overall system 
an be
aptured by lo
ally averaging out the behaviour of this limited number of parti
les overthe population.In this way it is possible to separate the solving of pro
esses of 
ompletely di�erent na-ture, i.e., pro
esses related to the biologi
al system and those related to transport of�uids, parti
les, and substrates, whi
h typi
ally require a di�erent solver. Operationsrelated to the hydrodynami
s and the transport of parti
les and 
hemi
al spe
ies in the101



Figure 7.3: S
hemati
 overview of the applied approa
h in order to stru
turedly andsegregatedly des
ribe the biophase. The blue blo
ks represent operations that are per-formed by FluentR© (ANSYSR©, USA) and the yellow blo
ks represent operations thatare performed by MatlabR© (The Mathworks, USA).
102



large-s
ale biorea
tor were 
al
ulated by FluentR© (ANSYSR©, USA) and operations re-lated to the 
al
ulation of the mi
robial systems and the 
al
ulation of the substrateand/or spa
e dependent fun
tions for the 
hemi
al spe
ies' sour
e term Sm
q , were per-formed by MatlabR© (The Mathworks).Another advantage of the proposed method is that the number of parti
les that has tobe tra
ked 
an be signi�
antly redu
ed, sin
e every �nite volume in the 
al
ulation griddoes not have to be populated with a number of parti
les in order to avoid statisti
alerror on the solution. Even for a three-dimensional simulation of a stirred biorea
tor,instead of the two-dimensional simulation presented here, the to be tra
ked number ofparti
les is expe
ted to be mu
h smaller than the 105 parti
les tra
ked by Lapin et al.(2006) [97℄.Every time step of the unsteady simulation, the position of all parti
les, 
al
ulated by Eq.7.19, and the there reigning environmental 
onditions, 
al
ulated by the s
alar transportequation Eq. 7.10, were re
orded. Every n time steps these data were used to 
al
ulatethe mi
robial 
onversions in the biorea
tor and to establish a 
orrelation between these
onversion rates and the substrate 
on
entrations. A 
on
ise overview of the individualsteps will be given below.Mi
robial modelFor every mi
ro-organism i in the large-s
ale biorea
tor the produ
tion and 
onsumptionrates of metabolite m, qm

i , have been 
al
ulated by the 
yberneti
 model of Sa

ha-romy
es 
erevisiae of Jones and Kompala (1999) [83℄ (Eq. 7.21, Figure 7.4), using theextra
ellular 
on
entration data ϕmq,i (t) 
olle
ted along this parti
le's traje
tory in thelarge-s
ale biorea
tor, see also Figure 7.3:
ẋi = f

(
xi, p, ϕ

m
q,i (t) , ui, vi

)
→ qm

i (7.21)With u and v the 
yberneti
 variables that 
ontrol enzyme synthesis and a
tivity, respe
-tively, p the model's parameters, and xi the intra
ellular state variables linked to thisparti
le, e.g., the intra
ellular metabolites and enzymes. In order not to unne
essarily
ompli
ate things, only the pro
esses glu
ose fermentation and glu
ose oxidation were103



.Figure 7.4: S
hemati
 overview of the 
yberneti
 model
onsidered, the rates of these pro
ess are given by r1v1 and r2v2.Additional 
he
ks have been implemented to verify whether the parti
les are still presentin the 
al
ulation grid and to verify whether the integration of the mi
robial system hasbeen su

essful, if this is not the 
ase the data from this parti
le were dis
arded.7.3.2 Approximate modelSubsequently, a 
orrelation was established between the spe
i�
 produ
tion and 
on-sumption rates q of mi
ro-organisms and the substrate 
on
entrations observed by mi
ro-organisms:
q = f1

(
ϕmq )+ ε (7.22)First, due to the typi
al nature of produ
tion and 
onsumption rates in fun
tion ofsubstrate 
on
entration 
on
entration data, e.g., saturation for substrate 
on
entrationvalues ϕmq ≫ Kϕmq , with Kϕmq the a�nity 
onstant, and the rapid 
hanges in produ
tionand 
onsumption rates in fun
tion of substrate 
on
entration data for substrate 
on
en-tration values ϕmq ≪ Kϕmq the substrate 
on
entration data were transformed using Eq.7.23: 104



xi = log10

(
ϕmq,i + 1e− 4

)
+ 4 (7.23)The substrate 
on
entration range was then subdivided into a number of regions. Forea
h of these regions the parameters b1, b2, x0, and a of the nonlinear fun
tion in Eq. 7.24were identi�ed, using a lo
al nonlinear optimisation algorithm. As initial estimates forthis nonlinear optimisation the parameter values that were 
al
ulated during the previousiteration were used or when no parameter values were available, these initial values wereimmediately identi�ed from the data.

q = b1 −
b2

1 + exp
(
−x−x0

a

) (7.24)7.3.3 Quality 
he
kThe ability of these nonlinear fun
tions to des
ribe the 
onversion data as a fun
tionof substrate 
on
entration has been veri�ed. Spe
ial attention has been devoted to thepitfalls using the proposed te
hnique. Therefore, it was veri�ed whether lo
al la
k-of-�to

urred or distin
t spatial behaviour was averaged out.Lo
al la
k-of-�tIn an attempt to avoid lo
al la
k-of-�t, i.e., substrate region for whi
h the nonlinearapproximation does not yield an adequate des
ription of the data, the substrate spa
ewas subdivided into a number of subspa
es. For ea
h of these subspa
es i, it was veri�edwhether the mean and the varian
e of the residuals ε, with ε the di�eren
e between the
al
ulated 
onversion rate, Eq. 7.21, and the 
onversion rate 
al
ulated by the approx-imate model, Eq. 7.24, were signi�
antly di�erent than the residuals of the rest of thepopulation of parti
les j, Eqs. 7.25 and 7.26, respe
tively.
t =

εi + εj
√

σ2

i

ni
+

σ2

j

nj

≤ tα
2

,dfi,dfj
(7.25)

fα
2

,dfi,dfj
≤ f =

σ2
εi

σ2
εj

≤ f1−α
2

,dfi,dfj
(7.26)105



If so, this data set was treated separately, i.e., separate fun
tions were established to linkthe 
onsumption and produ
tion rates to the environmental 
onditions.
q = f2

(
ϕmq )+ ε if ϕmq ∈ SSi

ϕ (7.27)
Undesired averaging out distin
t spatial behaviourIn an attempt to avoid averaging out distin
t behaviour in fun
tion of spa
e 
oordinates,for ea
h of the substrate subspa
es the data were 
lustered a

ording to spa
e 
oordi-nates, using a k-means 
lustering method [86℄. It was veri�ed whether the mean and thevarian
e of the residuals of these 
lusters were signi�
antly di�erent than the residualsof the rest of the population of parti
les. If so, this data set was treated separately.The appropriate approximate model is then used as sour
e term, Sm

q , in the s
alar trans-port equation Eq. 7.10, to 
al
ulate the substrate �eld in the large-s
ale biorea
tor.7.3.4 Case studyTo illustrate the approa
h presented above a large-s
ale biorea
tor was simulated two-dimensionally, where the biophase was des
ribed by the 
yberneti
 model of Jones andKompala (1999) [83℄. Only glu
ose was 
onsidered as 
arbon-sour
e and oxygen wasassumed to be abundantly present. Glu
ose was 
ontinuously and 
onstantly added nearthe air-liquid interfa
e of the large-s
ale biorea
tor. The initial biomass 
on
entrationwas about 15 g/L. The resulting substrate �eld of glu
ose in the large-s
ale biorea
torsis depi
ted in Figure 7.5, when the �nal biomass 
on
entration was about 22 g/L.About 700 parti
le were introdu
ed in the biorea
tor. In
reasing this number further didnot 
ontribute to a more adequate des
ription of the system. For ea
h of these parti
lesthe transport of metabolites in and out of the mi
robial 
ell was 
al
ulated, and multiplenonlinear fun
tions were used to relate the substrate 
on
entration data to the mi
robial
onversion data. Typi
al results of this pro
edure are depi
ted in Figure 7.6. Due tothe mu
h slower dynami
s of enzyme synthesis and degradation in 
omparison with the106



observed environmental variations, the 
ellular enzyme levels are approximately 
onstantin the population of tra
ked mi
ro-organisms, whi
h explains the very similar behaviourof the individual mi
robial 
ells when exposed to the same substrate 
on
entration.Additional attention has to be devoted to 
on
entration data that were not representedduring the averaging out pro
edure when 
al
ulating the average/overall transport ofmetabolites in and out of the mi
robial 
ells. Su
h problems are however typi
ally ex-pe
ted to o

ur near the 
on
entrated in�uent inlet lo
ation, where due to the largesubstrate gradients an underrepresentation of mi
ro-organisms is found. However, 
on-sidering the typi
al nature of produ
tion and 
onsumption rates in fun
tion of substrate
on
entration data, e.g., saturation for substrate 
on
entrations ϕmq,i ≫ Kϕmq this prob-lem 
an partially be avoided by using approximate fun
tions whi
h typi
ally re�e
t su
hsaturation phenomena.The mi
robial model used in this study is not that 
omplex, 
ertainly not 
ompared tothe mi
robial model Lapin et al. (2006) [97℄ used in their study. However, based on anextensive literature sear
h for dynami
 metaboli
 models, none of them appeared to bereally suitable to properly des
ribe the biophase in large-s
ale biorea
tors. Next to theuse of a mi
robial model that adequately des
ribes the biophase in large-s
ale biorea
tors,the in
orporation of the third dimension would be bene�
ial to obtain a more realisti
des
ription of the studied large-s
ale biorea
tor.It should be 
lear that even the proposed method to des
ribe the biophase in a La-grangian way is 
omputationally demanding. Therefore, to speed up 
al
ulations twostrategies have been followed. Firstly, the simulation jobs were distributed over a 
om-puter 
luster, 
onsisting of Intel Pentium 4s (CPU 3GHz, 1GB ram), i.e., the tra
kedpopulation was subdivided into 6 groups 
ontaining nearly an equal number of parti
les.These 6 sub-experiments, solving the mi
robial model for every parti
le of that group,were allo
ated to nodes in the 
al
ulation grid. Se
ondly, to minimise the time for thenonlinear optimisations the parameter values, 
al
ulated during the previous iteration,were used as initial estimates or if no su
h values were available these initial values wereestimated immediately from the data. Both measures redu
ed the 
al
ulation time. Itis expe
ted that further subdividing of the tasks to be performed 
an further redu
e thetime needed for the 
al
ulations. 107



Figure 7.5: Substrate �eld in the large-s
ale biorea
tor (g glu
ose/L)
108



Figure 7.6: The 
al
ulated rate for r1v1 by the 
yberneti
 model for all tra
ked parti
les(x) in fun
tion of transformed S1 
on
entration (g glu
ose/L) and the approximate model
109



7.4 Con
lusionsAn averaging out approa
h has been developed to des
ribe a large-s
ale biorea
tor in anEulerian-Lagrangian way. A ne
essity, as the sto
hasti
 nature of parti
le transport in
ombination with the fast metaboli
 response to the observed fast 
hanging environmen-tal 
onditions will result in a heterogeneous population of 
ells.However, solving the resulting highly nonlinear system, a result of the set of intra
ellularbalan
e equations and the ex
hange terms a

ounting for the transport of metabolitesin and out of the 
ell, is not trivial. To deal with the latter problem an averaging outapproa
h has been developed. By averaging out the behaviour of a limited number of
ells over the whole population it is already possible to get a good idea of 
onversionsthroughout the large-s
ale biorea
tor.
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Chapter 8
Design of a s
aled-down rea
torusing 
omputational �uid dynami
s
8.1 Introdu
tionIn view of optimising the performan
e of a large-s
ale 
ulture, i.e., s
aling-up, a thor-ough understanding of the me
hanisms responsible for the deteriorated performan
e oflarge-s
ale 
ultures in 
omparison with laboratory-s
ale 
ultures and of their relativeimportan
e is useful. Therefore s
aling-down is a useful approa
h [174℄: by mimi
kingon a laboratory-s
ale the large-s
ale 
onditions, this approa
h attempts to anti
ipatethe out
ome on a large-s
ale. For instan
e, in su
h laboratory-s
ale simulation the spa-tiotemporal heterogeneity, whi
h is 
hara
teristi
 for large-s
ale rea
tors [139, 221℄, ismimi
ked. This 
an be done in a single rea
tor [33, 121℄ or by 
onstru
ting a loop oftwo 
ompletely mixed rea
tors or of a 
ompletely mixed rea
tor and a plug �ow rea
tor[63, 76, 131℄ or by means of a tubular loop rea
tor [133℄. Mann et al. (1995) [110℄ intro-du
ed the network of zones rea
tor, whi
h 
omprises a large number of inter
onne
ted
ompartments. Whether su
h a set-up will be popular in pra
tise is doubtful, due toits relative 
omplexity. Finally, Delvigne et al. (2005, 2006) [44, 45℄ 
ame up with astill di�erent approa
h, using mixing models and 
ir
ulation models, but though theirset-up is able to mimi
 ma
ros
opi
 variables as mixing time and 
ir
ulation time, theenvironmental 
onditions en
ountered by mi
ro-organisms in their s
aled-down rea
torsigni�
antly di�erred from those found in the studied large-s
ale biorea
tor.It is thus still un
lear how representative the 
urrently available s
aled-down rea
tors are111



for the large-s
ale rea
tors. Therefore, this study aims at designing a more representatives
aled-down rea
tor, whi
h better mimi
s the 
hara
teristi
 
onditions in a large-s
alebiorea
tor, by making use of substrate 
on
entration data observed by mi
ro-organismsduring their journey through a large-s
ale biorea
tor. These data were obtained duringa 
omputational �uid dynami
s simulation of a large-s
ale biorea
tor.In addition, the proposed s
aled-down rea
tor attempts to 
ompromise between min-imising the s
aled-down rea
tor's 
omplexity and obtaining a realisti
 imitation of thelarge-s
ale 
onditions. Therefore, it was opted to study a 
ontrolled system 
onsisting oftwo 
ontinuous stirred-tank rea
tors in a loop, as su
h a set-up still allows to exploit thenaturally o

urring phenomenon of blending distin
t streams in large-s
ale biorea
tors.The approa
h is s
hemati
ally depi
ted in Figure 8.1 and 
onsists of 3 steps:1. An in sili
o large-s
ale fermentation is performed using a 
omputational �uid dy-nami
s model. For ea
h parti
le, whilst it 
ir
ulates throughout the large-s
alerea
tor, its position [r, z, θ] and the substrate 
on
entration reigning at that posi-tion ϕm
q are re
orded.2. These time series data [ϕm

q , r, z, θ
] of sto
hasti
 nature, are subsequently used forthe identi�
ation of a hidden Markov model (HMM) that 
aptures the typi
alsubstrate 
on
entration dynami
s. This model will be used to steer the s
aled-down rea
tor, 
omposed of a dynami
ally operated rea
tor system 
onsisting oftwo 
ontinuous stirred-tank rea
tors.3. A proper 
ontroller is designed to impose the substrate 
on
entration time series
al
ulated by the HMM on the two-rea
tor system. Finally, the 
on
entration timeseries data observed by a parti
le in the s
aled-down rea
tor are 
ompared withthese 
olle
ted in the large-s
ale rea
tor.

A 
on
ise overview of these 3 steps will be given below.112



Figure 8.1: S
hemati
 overview of the proposed approa
h to design a s
aled-down rea
tor8.2 Materials and methods8.2.1 Computational �uid dynami
sThe reader is referred to Subse
tion 7.2.1 for a des
ription of the studied large-s
alebiorea
tor and for details on the 
omputational �uid dynami
s model.8.2.2 Hidden Markov modelThe se
ond step is the identi�
ation of a hidden Markov model (HMM) (Figure 8.1) that
aptures the typi
al 
on
entration dynami
s observed by mi
ro-organisms in the large-s
ale biorea
tor. HMMs are espe
ially known for their appli
ation in temporal patternre
ognition. Su
h as spee
h, musi
al s
ore following, and bioinformati
s [50, 141℄ be
auseof their ability to 
apture information from series of data. For this reason a HMM willalso be used in this study.A hidden Markov model is s
hemati
ally depi
ted in Figure 8.2. Su
h a model typi
ally
onsists of a �nite set of states {A,B}. Transitions between these states are governed bya set of probabilities 
alled transition probabilities (Eq. 8.1). With tij the probability ofgoing to state j from state i, here with i, j ∈ {A,B}. In a parti
ular state an out
ome or113



observation is generated a

ording to the asso
iated probability distribution (Eq. 8.2).With eij the probability of emitting observation j from state i with i ∈ {A,B} and
j ∈ {1, 2, 3, 4}. If only the out
omes are visible to an observer, the states are 'hidden' tothe outside. Hen
e, the name hidden Markov model.

T =

(

tAA tAB

tBA tBB

) (8.1)
E =

(

eA1 eA2 eA3 eA4

eB1 eB2 eB3 eB4

) (8.2)When state i is visited, an observation token is emitted from the state's emission prob-ability density distribution. Then a

ording to the state's transition probability densitydistribution one goes to the next state. The model thus generates two series of infor-mation. For example, the following series have been generated by the HMM depi
ted inFigure 8.2:
B → A → B → B → A → A → A → A → A → A

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

2 3 4 2 1 2 2 1 1 3One series, BABBAAAAAA, is the underlying state path, as transiting from one stateto another. The other, 2342122113, is the observed sequen
e, ea
h observation beingemitted from one state in the state path [192℄.8.2.3 Controller s
hemeThis HMM will then be used to steer the 
onditions in the s
aled-down rea
tor to mimi
those of a large-s
ale rea
tor (Figure 8.1). To impose the dynami
 behaviour of the re-sponse variables, as determined by the hidden Markov model, to the s
aled-down rea
torsystem (s
hemati
ally depi
ted in Figure 8.3) a 
ontrol s
heme has been applied to thesystem. To this end, a PID 
ontroller in 
ombination with an adaptive state feedba
k
ontroller was used. 114



Figure 8.2: A s
hemati
 view of a HMM with states A and B and observations 1, 2, 3,and 4. The transition probabilities are represented by arrows between the states, e.g.,
tAB , and the emission probabilities are represented by arrows between the states and theobservations, e.g., eB4.
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The values of the response variables αij (the fra
tion of broth to be transferred fromrea
tor i to rea
tor j), Si (the 
on
entration of the substrate S in rea
tor i), and VTOT(the 
umulative volume of rea
tor 1 and 2) will be 
ontrolled by adjusting the values ofthe manipulated variables Qij (the �ow from rea
tor i to rea
tor j), QW (the total waste�ow, whi
h is the sum of QW1
= QW

V1

V1+V2
and QW2

= QW
V1

V1+V2
), QDi

(a �ow withoutany substrate to dilute rea
tor i), and pulsei (a substrate pulse in rea
tor i).PID 
ontrollers attempt to 
orre
t the error ε between the value of a (measured) responsevariable x and its desired set point xSP :
ε =
















max
(
S1−S

SP
1 , 0

)

max
(
S2−S

SP
2 , 0

)

max
(
SSP

1 −S1, 0
)

max
(
SSP

2 −S2, 0
)

V SP
TOT − VTOT

αSP
12 − α12

αSP
21 −α21
















(8.3)
by taking the appropriate 
ontrol a
tions, v:

v =
















vQD1

vQD2

vpulse1

vpulse2

vQw

vQ12

vQ21
















(8.4)
with,

vi (t) = Kp






εi (t)
︸ ︷︷ ︸

P

+

∫
εi (t)

τI
dt

︸ ︷︷ ︸

I

+ τD
dεi (t)

dt
︸ ︷︷ ︸

D







(8.5)with αSP
ij in Eq. 8.3 given by: 116



αij =
tkl

tkl + tkm

(8.6)with k the state at the previous time step in rea
tor i, and l and m the states at thepresent time step in rea
tor j and i, respe
tively.A Proportional-Integral-Derivative (PID) 
ontroller is a generi
 
lassi
al feedba
k 
on-troller widely used in industrial 
ontrol systems. The PID 
ontroller 
al
ulation (algo-rithm) involves three tuning parameters: the proportional, the integral, and derivativevalues (Eq. 8.5) [47, 48℄. However, due to the general nature of PID 
ontrol, it does notguarantee optimal 
ontrol of the system.A full state feedba
k 
ontroller is on the 
ontrary a modern 
ontroller. This 
ontrolleris, e.g., employed in feedba
k 
ontrol system theory to pla
e the 
losed-loop poles of asystem in predetermined lo
ations in the s-plane [48℄. Pla
ing poles is desirable be
ausethe lo
ation of the poles 
orresponds dire
tly to the eigenvalues of the system, whi
h
ontrol the 
hara
teristi
s of the response of the system. Under 
ertain 
onditions (if the
losed-loop input-output transfer fun
tion 
an be represented by a state spa
e equation)it is possible to assign a value to the system's eigenvalues, whi
h allows to design thedynami
s of the system. To this end the nonlinear system was linearised around thework point. A full state feedba
k 
ontroller is a typi
al optimal 
ontroller in whi
h boththe deviation from the set point x− xSP and the 
ontrol a
tion u, ne
essary to a
hievethis set point, 
an be penalised in the obje
tive fun
tion J through the matri
es W1 and
W2, respe
tively:

J =

∫ ((
x− xSP

)T
W1

(
x− xSP

)
+ uTW2u

)

dt (8.7)The 
ontrol a
tion is then given by Eq. 8.8. The 
ontroller s
heme is depi
ted in Figure8.4.
u = v +K

(
x− xSP

) (8.8)117



Figure 8.3: Overview of the s
aled-down rea
tor set-up

Figure 8.4: Overview of the overall 
ontrol s
heme, 
onsisting of a PID 
ontroller and astate feedba
k 
ontrol system 118



8.3 Results and dis
ussion8.3.1 Parti
le's traje
toryIn order to get an idea about the environmental 
onditions mi
ro-organisms are exposedto when travelling through a large-s
ale biorea
tor, the substrate 
on
entration data were
olle
ted for multiple mi
ro-organisms along their path through the large-s
ale biorea
tordes
ribed in Chapter 7. A mi
ro-organism's path during its journey in the rea
tor isdepi
ted in Figure 8.5. The substrate 
on
entration data the parti
le en
ounters as afun
tion of time are depi
ted as well.8.3.2 Identi�
ation of a HMMA typi
al 
on
entration sequen
e en
ountered by a mi
ro-organism in a non-ideally mixedbiorea
tor is depi
ted in Figure 8.5. Due to the sto
hasti
 nature of this sequen
e of 
on-
entration data, HMMs are typi
ally suitable to des
ribe su
h data [141℄. Applying theterminology of HMMs to the 
ase presented here, the observations are the substrate 
on-
entration data and the 'hidden' states are linked to zones in the large-s
ale biorea
tor(Subse
tion 8.2.2).As mentioned before, the s
aling-down set-up presented here is a 
ontrolled system 
on-sisting of two 
ontinuous stirred-tank rea
tors in a loop. Su
h a set-up allows to exploitthe naturally o

urring phenomenon of blending distin
t streams in large-s
ale biorea
-tors.In the 
ontext of the s
aled-down rea
tor presented here, these 'streams' are the brothremaining in rea
tor i and the broth to be transferred from rea
tor j to rea
tor i, whenpro
eeding to the next time step. △t is the time between two transitions. A dire
t 
on-sequen
e of the use of two 
ompletely mixed rea
tors is that no distin
tion 
an be madeanymore between the mi
ro-organisms 
ontained in those 'streams' from the moment onthose 'streams' have been blended, thus between mi
ro-organisms 
oming from rea
tor jand mi
ro-organisms that were already present in rea
tor i. Consequently the memory ofthe mi
ro-organisms stays restri
ted to the pre
eding state. The 
hoi
e for a �rst orderhidden Markov model is then obvious, as for su
h a model the probability of a 
ertain119



Figure 8.5: A mi
ro-organism's traje
tory in the large-s
ale biorea
tor. Upper �gure:traje
tory of a mi
ro-organism through the rea
tor. Lower �gure: substrate 
on
entrationdata the mi
ro-organism en
ountered as a fun
tion of time.
120



state at time step n + 1 should only depend on the state of the previous time step n.However, then one has to be 
areful that all assumptions are satis�ed,
P (zone i | zone j | zone k) = P (zone i | zone j | zone l) (8.9)i.e., the probability of transiting from zone k to zone j, and subsequently from zone jto zone i should be equal to the probability of transiting from zone l to zone j, andsubsequently from zone j to zone i.The determination of the states and observations of this �rst order hidden Markov modelwill be dis
ussed below. The rea
tor spa
e has to be subdivided into a number of zones,e.g., Figure 8.7. These zones have been obtained by k-means 
lustering [86℄ a

ordingto both spa
e 
oordinates and substrate 
on
entrations, i.e., lo
ations in the neighbour-hood of ea
h other with similar substrate 
on
entrations belong to a parti
ular zone ofthe large-s
ale rea
tor.Subsequently, for every mi
ro-organism, the two data series (one series with positionaland one with substrate 
on
entration data), 
olle
ted during the 
omputational �uiddynami
s simulation of the large-s
ale biorea
tor (Figure 8.5) were transformed to the
orresponding sequen
es in terms of states and observations. For instan
e, if a mi
ro-organism is lo
ated in zone j at time n△t, then position n in the state sequen
e be
omes

j; if this mi
ro-organism is lo
ated in zone k at time (n+ 1)△t, then position n+1 in thestate sequen
e be
omes k. Akin, the observation sequen
e was built. For ea
h zone 10dis
rete substrate 
on
entrations have been 
hosen, uniformly distributed over the zone'ssubstrate range. Subsequently, ea
h of the observed 
on
entrations in the observationsequen
e was repla
ed by the number representing the most representative of these 10substrate 
on
entrations.Based on the data 
olle
ted along the mi
ro-organism's traje
tory through the large-s
alebiorea
tor, i.e., states/zones and observations/dis
rete 
on
entrations, the transition andemission probability density distributions were determined.The 
hoi
e of the number of zones and the time between two transitions is nontrivial.Therefore, for every {Ci,△tj} 
ombination, with Ci the number of zones ∈ {10, 20, ..., 100}and△t the time step in s between two transitions ∈ {1, 5, 10, 20}, a hidden Markov model121



has been identi�ed and the traje
tories generated by these HMMs have been 
omparedwith the traje
tories 
olle
ted in the large-s
ale biorea
tor.The HMM that has been used to steer the s
aled-down rea
tor was sele
ted using follow-ing 
riteria: the average time of exposure to identi�ed 
on
entration ranges expressed interms of per
entage of total time (these 
on
entration ranges were quite arbitrarily 
ho-sen to be [0 g
L
, 1 g

L

[, [1 g
L
, 2 g

L

[, ... ), the average number of time steps a mi
ro-organismis sequentially exposed to that 
on
entration range, and for some of the 
andidate HMMsthe traje
tories themselves. The higher the similarity in terms of these 
riteria the moreadequate the HMM is judged to mimi
 the substrate 
on
entration data observed bymi
ro-organisms in the large-s
ale biorea
tor.Finally, 70 zones were sele
ted, whi
h are depi
ted in Figure 8.7, and a time step of10 s was retained. The results for the sele
ted HMM are depi
ted in Figure 8.6. This�gure shows that there is a reasonable agreement between the traje
tory generated bythis HMM and the traje
tories truly observed in the large-s
ale biorea
tor in terms ofthe aforementioned 
riteria. The sele
ted HMM is thus 
onsidered to be able to des
ribethe substrate 
on
entration dynami
s observed by mi
ro-organisms in the large-s
alebiorea
tor and 
an 
onsequently be used to steer the s
aled-down rea
tor.8.3.3 A HMM driven s
aled-down rea
torThe sele
ted HMM was used to steer the s
aled-down rea
tor. Every △t s the HMMgenerates for ea
h biorea
tor a new state and a new observation. The new elements of thestate sequen
e and observation sequen
e, have to be transformed in terms of the responsevariables. For example, the fra
tion of broth to be transferred between the rea
tors isgiven by Eq. 8.6 and the substrate 
on
entration set point in rea
tor i is given by:
SSP

i = (e− 1)

(

Smax,state l − Smin,state l

)

9
+ Smin,state l (8.10)with e the observation e ∈ {1, 2, ..., 10} generated by the HMM and Smax,state l and

Smin,state l the maximal and minimal substrate 
on
entration in zone/state l.This hidden Markov model sets the desired set points for the response variables αij , Si,and VTOT . The evolution of the response variables S1, S2, α12, and α21 and their set122



Figure 8.6: Comparison of the series of dis
rete substrate 
on
entration data 'observed'by mi
ro-organisms in the large-s
ale biorea
tor and generated by the sele
ted HMM:A1 to A5: Series of dis
rete substrate 
on
entration data (×) observed by 5 mi
ro-organisms in the large-s
ale biorea
tor; A6: Series of dis
rete substrate 
on
entration data (×) generated by the sele
ted HMM;B1 and B6: the time of exposure (in terms of per
entage total time) of an organism to the identi�edsubstrate 
on
entration ranges for the traje
tory in sub�gure A1 and for the traje
tory in sub�gureA6, respe
tively; B3 and B4: the average time of exposure (in terms of per
entage total time) of anorganism to the identi�ed 
on
entration ranges for series of dis
rete substrate 
on
entration data in thelarge-s
ale biorea
tor and generated by the sele
ted HMM, respe
tively; B2 and B5: the average numberof time steps -1 a mi
ro-organism is sequentially exposed to the identi�ed 
on
entration ranges for seriesof dis
rete substrate 
on
entration data in the large-s
ale biorea
tor and generated by the HMM123



Figure 8.7: The identi�ed zones in the large-s
ale biorea
torpoints is given in Figure 8.8. To re�e
t more or less realisti
 
onditions, 
onstraints on themanipulated variables have been in
orporated as well (maximal �ow rate QD 200 mL
s
).As shown, the response variables and their set points agree reasonably well. However,to properly assess the representativeness of the developed s
aled-down rea
tor, it seemsmore 
orre
t to 
ompare the traje
tory from a mi
ro-organism in the large-s
ale biore-a
tor (Figure 8.6) with one from a mi
ro-organism in the s
aled-down rea
tor (Figure8.9). From these �gures, one 
an 
on
lude that the substrate 
on
entrations observed bya mi
ro-organism in the s
aled-down rea
tor resemble those of a mi
ro-organism in thein sili
o large-s
ale biorea
tor. This is 
ertainly the 
ase when one 
ompares the perfor-man
e to other s
aled-down rea
tors, e.g., [45℄. A more quantitative evaluation of thisresemblan
e would be desirable. However, sin
e a mi
ro-organism is a highly nonlinearsystem it will be ne
essary to evaluate the response of this highly nonlinear system tothe substrate 
on
entration traje
tories observed by mi
ro-organisms in the large-s
alebiorea
tor with those observed by mi
ro-organisms in the s
aled-down rea
tor. Othermeasures seem not �t for this aim.The main advantage of the developed s
aled-down rea
tor is thus that it tries to 
ompro-124



Figure 8.8: The s
aled-down rea
tor: evolution of response variables (-) and their setpoints (- -).

Figure 8.9: A sequen
e of 
on
entration data observed by a mi
ro-organism in the s
aled-down rea
tor and its lo
ation in the s
aled-down rea
tor, 
onsisting of two 
ontinuousstirred-tank rea
tors 125



mise between the s
aled-down rea
tor's 
omplexity and obtaining a realisti
 imitation ofthe 
onditions met in large-s
ale biorea
tors and does not fo
us on ma
ros
opi
 variablesas mixing time whi
h in general yield an in
orre
t assessment of 
onversion e�
ien
ies.To impose the dynami
 behaviour of the response variables, the manipulated variableswere stringently 
ontrolled. The use of a maximal value for the substrate 
on
entrationset points is re
ommendable, sin
e the spe
i�
 
onversion rates typi
ally rea
h a plateauat substrate 
on
entrations that are mu
h larger than the a�nity 
onstant. This hasnot been done. Obviously, su
h a modi�
ation would signi�
antly redu
e the 
ontrole�orts, both in terms of the waste �ow QW , of the �ows to dilute the broth in boththe rea
tors QD1
and QD2

, and of the substrate pulses pulse1 and pulse2. Sin
e thenno surplus substrate would have to be added or removed. Partly due to these surplus
ontrol a
tions, the biomass �ushes out from the present set-up and biomass retentionwould be needed, e.g., by means of a membrane.8.4 Con
lusionsA method has been proposed to design a s
aled-down rea
tor system on the basis of
on
entration data 
olle
ted along a mi
ro-organism's path in a large-s
ale biorea
tor,rather than on the basis of ma
ros
opi
 variables as mixing time and 
ir
ulation time,whi
h are far from ideal to des
ribe improper mixing and 
onversion e�
ien
ies. Thesedata were obtained during a 
omputational �uid dynami
s simulation of a large-s
alebiorea
tor.The proposed set-up allows to imitate similar 
onditions in terms of substrate 
on
en-trations as those o

urring in the large-s
ale biorea
tor. However, due to the stringent
ontrol a
tions, it will be ne
essary to ensure biomass retention in the s
aled-down rea
-tor in order to avoid the �ushing out of biomass.The pursuit to rigorously mimi
 the large-s
ale 
onditions is a Molo
h. Sin
e for examplea 
ut-o� value for the substrate 
on
entration set points 
ould be used, sin
e the spe
i�

onversion rates typi
ally rea
h a plateau at substrate 
on
entrations that are mu
hlarger than the a�nity 
onstant. Su
h a modi�
ation would signi�
antly redu
e the
ontrol e�orts. 126



Chapter 9
Con
lusions and perspe
tives
Meti
ulously optimised mi
ro-organisms for the produ
tion of a variety of target 
om-pounds, optimised under highly reprodu
ible and perfe
tly 
ontrolled laboratory-s
ale
onditions, perform suboptimally when the pro
ess is s
aled-up. This is due to biologi-
al, 
hemi
al, and physi
al pro
esses whi
h all are a�e
ted when s
aling-up. The 
loseintera
tion of these pro
esses of various nature renders the study of large-s
ale biorea
tors
omplex, as it is impossible to really un
ouple these pro
esses, sin
e the time 
onstantsof those diverse pro
esses are of the same order of magnitude: transport phenomenain�uen
e the lo
al 
onditions whi
h in turn in�uen
e mi
robial metabolism, whi
h inturn in�uen
e lo
al pro
ess 
onditions. In view of the latter, methods have been devel-oped and applied in this study to investigate the biologi
ally, 
hemi
ally, and physi
allyrelevant pro
esses that take pla
e in large-s
ale biorea
tors with a view to in
reasinginsight in those pro
esses and evaluating their importan
e for the widely observed yieldredu
tion.A detailed des
ription of the biophase in su
h large-s
ale biorea
tors seems essential.To this end the state of the art tools for modelling metabolism, typi
ally used in thedomain of metaboli
 engineering, were reviewed in Chapter 2, i.e., stoi
hiometri
 net-work analysis (elementary �ux modes, extreme pathways, and optimal �ux distribution),steady-state metaboli
 modelling (metaboli
 �ux analysis and �ux balan
e analysis),dynami
 metaboli
 modelling, and multivariate statisti
s. In the 
ontext of metaboli
engineering, one should be aware that the usefulness of those tools to optimise mi
ro-bial metabolism for overprodu
ing a target 
ompound depends predominantly on the
hara
teristi
 properties of that 
ompound. Due to their short
omings not all meth-127



ods are suitable for every kind of optimisation; issues like the dependen
e of the target
ompound's synthesis on severe (redox) 
onstraints, the 
hara
teristi
s of its formationpathway, and the a
hievable/desired �ux towards the target 
ompound should play a rolewhen 
hoosing the optimisation strategy.The vast variety of bio
hemi
al pathways mi
ro-organisms dispose of, in order to ful�ltheir growth and reprodu
tion requirements under a wide range of environmental 
ondi-tions, renders them hard to fathom. Next to this tremendous amount of pathways, thela
k of extensive (a

urate) metabolomi
, proteomi
, and trans
riptomi
 data sets alsohampers the use and limits the usefulness of those mathemati
al methods.For example, dynami
 metaboli
 models might be useful tools to optimise mi
robialmetabolism, as these models do in
orporate kineti
s and the regulation of enzymati
rea
tions. However, the drawba
ks of this approa
h are still numerous. Models relyingon in vitro derived me
hanisti
 equations are overparameterised for the available data,nowadays typi
ally 
olle
ted during only one perturbation experiment. The alternative,approximative modelling is no deus ex ma
hina either as in order to 
olle
t informativedata for parameter identi�
ation it might be ne
essary to radi
ally perturb the 
ell, prob-ably way beyond the metabolite range for whi
h approximative kineti
 formats yield anadequate des
ription of the true kineti
s. In addition, these dynami
 metaboli
 models,both me
hanisti
 and approximative ones, zoom in on a limited part of the metabolism,whi
h impedes mass balan
e 
he
ks during transient 
onditions. Moreover, the behaviourof 
ofa
tors is not yet modelled in a me
hanisti
 manner, sin
e, for instan
e, the poolsize of the adenine nu
leotides inexpli
ably 
hanges during the transition from a glu
ose-limited to a glu
ose-abundant 
ulture. Despite the rise of ex
hange tools like the systemsbiology markup language (SBML) [80℄, one thus should be aware that the 'plug and play'
hara
ter of su
h model(s) (stru
tures) remains limited.The �nal aim of a dynami
 model-based approa
h is thus target identi�
ation for opti-mising a produ
tion host. These targets are those rea
tions that 
ontrol the �ux througha rea
tion network, whi
h 
an be assessed by 
al
ulating the �ux 
ontrol 
oe�
ients.Hen
e, assessing the un
ertainty of the 
al
ulated �ux 
ontrol 
oe�
ients for the pur-pose of de
ision making/target identi�
ation in metaboli
 engineering is useful. Thisun
ertainty may be the result of both an un
ertain model stru
ture and of un
ertainparameter estimates. A Bayesian approa
h has been applied to properly assess this un-128




ertainty (Chapter 5).Multiple approximative kineti
 formats have been used to identify the �ux 
ontrol 
oef-�
ients of the studied small network model. The tested approximative kineti
 formats,the linlog kineti
s, the linear in metabolite and enzyme levels kineti
s, and the GMAtype power law kineti
s adequately des
ribed the data, whi
h is somewhat 
ontradi
toryto Heijnen (2005) [74℄ who points out the 
lear advantages of the linlog kineti
s over theother ones. As shown, the model stru
ture has a non negligible e�e
t on the probabilitydensity fun
tion of the �ux 
ontrol 
oe�
ients and 
onsequently it is worth the e�ort tosear
h for the true model stru
ture, e.g., by means of geneti
 programming and optimalexperimental design for model dis
rimination.The usefulness of partial least squares regression as a tool to optimise mi
robial metabolismhas been demonstrated using elementary �ux mode data in Chapter 3. This approa
h al-lowed to rapidly pinpoint, without the need for experimental data, potential gene targetsfor su

inate biosynthesis in Es
heri
hia 
oli. The identi�ed targets are in agreementwith literature data, where modi�
ation of the expression of these genes proved to bebene�
ial to in
rease su

inate yield. This approa
h has therefore passed a �rst valida-tion round. Further evaluation of the method is however needed.Cyberneti
 models were �nally retained in this study, sin
e it seemed the best method todes
ribe the biophase in large-s
ale biorea
tors. Indeed, a mi
ro-organism in a large-s
alebiorea
tor will develop a 
hara
teristi
 metabolomi
 and proteomi
 make-up, whi
h willallow maximisation of its growth under those 
onditions, e.g., mixed a
id fermentationand over�ow metabolism. This agrees well with the whole idea of 
yberneti
 modelsthat assume that a mi
ro-organism tries to optimise its behaviour, e.g., with respe
t togrowth or substrate uptake. By allo
ating the resour
es a mi
ro-organism disposes of tothese enzymes yielding the optimal performan
e. Spe
ial attention has been devoted tothe 
yberneti
 
ontrol law ruling enzyme a
tivity (Chapter 4). Several alternatives havebeen derived and evaluated for the 
onventionally used mat
hing law. However, due tothe limited knowledge, issues linked to the model stru
ture, and the la
k of appropriatedata it was not possible to distinguish between the rival 
ontrol laws.Although the approa
h seems appealing, given the present la
k of knowledge, detailedexperimental omi
s data, and some of the aforementioned problems linked to '
onven-129



tional' dynami
 metaboli
 modelling, there still remain some issues unresolved, whi
hwill require further resear
h.Tools have been developed in this Ph.D. study whi
h fa
ilitate the gathering of data. Amodus operandi of the Bios
ope has been proposed in Chapter 6 for gathering data tobuild and validate a dynami
 metaboli
 model of periodi
ally operated 
ultures. Su
hmodels 
an be useful for the optimisation of periodi
ally operated 
ultures as they help togain further insight in the 
omplex metaboli
 intera
tions and they 
an predi
t the e�e
tof altered 
onditions. This set-up allows performing multiple perturbation experimentswithout perturbing the periodi
ally operated 
ulture itself, by 
ontrolling the openingand 
losing of the sample ports of the Bios
ope. The perturbing agent, the sample timeand the initial state prior to the perturbation are powerful degrees of freedom to max-imise the information 
ontent of the 
olle
ted data.A method has been proposed in Chapter 8 to design a s
aled-down rea
tor on the basis ofsimulated 
on
entration data 
olle
ted along a parti
le's path in a large-s
ale biorea
tor,rather than using ma
ros
opi
 variables as mixing time and 
ir
ulation time, whi
h arefar from ideal to be linked with degrees of 
onversion. The proposed 
ontrolled set-up
onsisting of two 
ontinuous stirred-tank rea
tors allows to imitate similar 
onditionsas those that o

ur in large-s
ale biorea
tors. It will however be ne
essary to ensurebiomass retention, e.g., by a membrane, in the s
aled-down rea
tor in order to avoid the�ushing out of the biomass. The pursuit to rigorously mimi
 the large-s
ale 
onditions isa Molo
h, sin
e for example a maximal value for the substrate 
on
entration set points
ould be used, as the 
ellular response to substrate 
on
entrations mu
h larger than thea�nity 
onstant rea
hes a plateau. The appli
ation of su
h a maximal value for thesubstrate 
on
entration set points would also signi�
antly redu
e the 
ontrol e�orts.Finally, a method has been proposed in Chapter 7 to des
ribe the biophase in large-s
alebiorea
tors by means of 
omputational �uid dynami
s using segregated models, in whi
hmi
ro-organisms are not 
onsidered identi
al and in whi
h the 
ell is 
onsidered stru
-tured, i.e., the internal 
omposition and stru
ture of the mi
ro-organisms is 
onsidered.Due to the sto
hasti
 nature of parti
le transport and the fast metaboli
 response to theobserved fast 
hanging environmental 
onditions, this intra
ellular make-up is expe
tednot to be identi
al for all mi
ro-organisms. Des
ribing the biophase in a Lagrangian way,i.e., following the 
ell's path through the rea
tor, is 
omputationally quite demanding130



be
ause a set of di�erential equations is linked to every mi
ro-organism. However, by
onsidering that the overall pi
ture is merely the result of all individual mi
ro-organismsit is only needed to tra
k a limited number of parti
les in order to obtain a good ideaof the �uxes in and out of the 
ells throughout the large-s
ale biorea
tor. Indeed, thedynami
s of the overall system 
an be 
aptured by lo
ally averaging out the behaviour ofthis limited number of parti
les over the whole population. Two-dimensional simulationshave been performed of the large-s
ale biorea
tor under study by means of 
omputational�uid dynami
s. Obviously, the in
orporation of the third dimension would be bene�
ialto obtain a more realisti
 des
ription of the large-s
ale biorea
tor. However, this simpli-�
ation does not derogate from the proposed method.With respe
t to the elu
idation of the me
hanisms underlying the observed yield redu
-tion in large-s
ale biorea
tors the gathering of intra
ellular data seems essential. Thegathering of (13C, 32P , and/or 2H) dynami
 labelling data under large-s
ale fermenta-tion 
onditions, possibly mimi
ked by a s
aled-down rea
tor will be useful to study the
ellular response to the observed fast 
hanging environmental 
onditions. these data willalso help to further investigate the hypotheses that attempt to explain the me
hanismsresponsible for the widely observed yield redu
tion in large-s
ale biorea
tors. Some ofthe methods presented in this work will be useful in su
h investigations.
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Summary
S
aling-up fermentation pro
esses from laboratory-s
ale 
onditions to large-s
ale 
ondi-tions generally results in a redu
tion of the overall pro
ess yield and produ
tivity. Thisdue to the interplay of biologi
al, 
hemi
al, and physi
al fa
tors. In this work, di�er-ent tools have been developed and applied whi
h may help to elu
idate the me
hanisms
ausing this generally observed yield redu
tion.Then, tools to des
ribe mi
ro-organisms in detail are ne
essary. Hen
e, the state of theart approa
hes for metaboli
 modelling, typi
ally used in the domain of metaboli
 en-gineering, were reviewed. The strategy to be followed for optimising a produ
tion hostfor overprodu
ing a target 
ompound should predominantly depend on its 
hara
teristi
properties. In this respe
t, issues like the dependen
e of the target 
ompound's synthe-sis on severe (redox) 
onstraints, the 
hara
teristi
s of its formation pathway, and thea
hievable/desired �ux towards the target 
ompound should play a role when 
hoosingthe optimisation strategy. Still, due to the vast variety of bio
hemi
al pathways andthe la
k of extensive data sets the usefulness of these mathemati
al te
hniques remainslimited. In this Ph.D. study some of the reviewed methods have been applied, su
h aspartial least squares, approximative metaboli
 modelling, and 
yberneti
 modelling.The usefulness of partial least squares regression has been demonstrated using elementary�ux mode data. It was possible to rapidly pinpoint potential targets for modi�
ation ofthe mi
robial produ
tion of su

inate by Es
heri
hia 
oli, without the need for experimen-tal data. The identi�ed targets are in agreement with the literature data (modi�
ationof the expression of these genes proved to be bene�
ial to in
rease su

inate yield). Thisapproa
h has therefore passed a �rst validation round. Further evaluation is howeverneeded. 155



Conversely, a dynami
 model-based approa
h fo
usses on the identi�
ation of the �ux
ontrolling rea
tions, whi
h are targets for geneti
 modi�
ations. In view of de
ision-making in metaboli
 engineering, it is important to assess the un
ertainty on the 
al
u-lated �ux 
ontrol 
oe�
ients. Both an un
ertain model stru
ture and un
ertain param-eter estimates 
an be the 
ause for the overall predi
tion un
ertainty. For an illustrativepathway this un
ertainty has been properly assessed. Multiple approximative kineti
 for-mats have been used to identify the �ux 
ontrol 
oe�
ients of the small network modelstudied. It has been shown that the applied model stru
ture signi�
antly in�uen
es thedistribution of the �ux 
ontrol 
oe�
ients.Mi
ro-organisms in large-s
ale biorea
tors are 
hara
terised by a parti
ular metabolomi
and proteomi
 make-up, whi
h allows maximisation of their growth under those 
ondi-tions, e.g., mixed a
id fermentation and over�ow metabolism. Sin
e this 
omplies wellwith the idea behind 
yberneti
 modelling, 
yberneti
 models were �nally retained todes
ribe the biophase in large-s
ale biorea
tors. The rationale of the 
yberneti
 s
hoolof thought is that mi
ro-organisms are believed to optimise their behaviour, e.g., withrespe
t to growth or substrate uptake. This is a
hieved by allo
ating, by means of a
ontroller, the limited resour
es a mi
ro-organism disposes of to these enzymes yieldingthe optimal performan
e. In spite of re
ent e�orts to in
rease the robustness of the ap-proa
h, e.g., by introdu
ing elementary �ux modes as intermediate level of 
ontrol, therestill remain some issues unresolved. For instan
e, several rival 
ontrol laws for enzymea
tivity have been derived. These rival 
ontrol laws had a di�erent no-
ost a
tivity andare based on the fa
t that me
hanisms have been reported in the literature for boththe a
tivation and ina
tivation of enzymes, whi
h may have a 
ost. However, due thela
k of appropriate data it was not possible to distinguish between those rival 
ontrol laws.Subsequently, set-ups are dis
ussed whi
h may help to gather the ne
essary data to ex-perimentally study mi
robial metabolism and to gather the ne
essary data with a viewto parameter identi�
ation and model stru
ture identi�
ation. To this end, a modusoperandi of the Bios
ope is proposed to study mi
robial os
illating systems. A strat-egy has been proposed to 
ontrol the opening and 
losing of the sample ports, so thatthis equipment 
an also be used to 
olle
t the samples from multiple perturbation experi-ments, without perturbing the mi
robial os
illating 
ulture from whi
h the 
ells are taken.A strategy to design a s
aled-down rea
tor is outlined as well. The innovative aspe
t156



of the presented approa
h is that it attempts to mimi
 the environmental 
onditionsobserved by the mi
ro-organisms, by making use of 
omputational �uid dynami
s sim-ulation results, rather than to fo
us on ma
ros
opi
 variables, su
h as 
ir
ulation timeand mixing time, as those ma
ros
opi
 variables are far from ideal to be 
orrelated withdegrees of 
onversion. Su
h s
aled-down rea
tors allow to mimi
 on a laboratory-s
ale,the large-s
ale 
onditions in an attempt to anti
ipate the out
ome on a large-s
ale. Theproposed 
ontrolled set-up, a 
ontrolled system 
onsisting of two 
ontinuous stirred-tankrea
tors in a loop, allows to imitate similar 
onditions as those that o

ur in large-s
ale biorea
tors. To redu
e the 
ontrol e�orts one 
ould use a maximal value for thesubstrate 
on
entration set points, sin
e the 
ellular response to environmental 
on
en-trations mu
h larger than the a�nity 
onstant be
omes saturated.Finally, a method has been proposed to use segregated models, in whi
h mi
ro-organismsare not 
onsidered identi
al, and in whi
h the 
ells are stru
tured, i.e., the internal 
om-position and stru
ture of the mi
ro-organisms is 
onsidered, to des
ribe the biophasein large-s
ale biorea
tors using 
omputational �uid dynami
s. The des
ription of thebiophase in a Lagrangian way, i.e., following the 
ell's path through the rea
tor, is anobvious 
hoi
e sin
e the behaviour of a mi
ro-organism is determined both by the reign-ing environmental 
onditions and its intra
ellular make-up. This intra
ellular make-upis expe
ted not to be identi
al for all mi
ro-organisms, due to the sto
hasti
 nature ofparti
le transport and the fast metaboli
 response to the observed fast 
hanging envi-ronmental 
onditions. Su
h an approa
h is 
omputationally quite demanding be
auseevery mi
ro-organism is linked to a set of di�erential equations. However, by 
onsideringthat the overall pi
ture is merely the result of all individual mi
ro-organisms it is onlyneeded to tra
k a limited number of parti
les in order to obtain a good idea of the 
on-sumption and produ
tion of metabolites throughout the large-s
ale biorea
tor. Indeed,the dynami
s of the overall system 
an be 
aptured by averaging out the behaviour ofthis limited number of parti
les over the whole population, hereby making use of priorknowledge about the mi
robial behaviour.
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Samenvatting
Het ops
halen van mi
robiële 
ulturen van laboratoriums
haal naar produ
ties
haal leidtin de regel tot een redu
tie van de pro
esopbrengst. Dit is te wijten aan een samenspelvan biologis
he, 
hemis
he en fysis
he fa
toren. In dit werk werden vers
hillende me-thodes ontwikkeld die kunnen helpen bij het ontrafelen van de me
hanismen die aan deoorsprong liggen van deze redu
tie.Voor zo'n studie zijn methodes die toelaten het mi
robieel metabolisme in detail te be-s
hrijven, belangrijk. Daarom werd een stand van zaken opgemaakt van het metabolis
hmodelleren. Metabolis
he modellen worden typis
h toegepast in het domein van me-tabolis
he engineering voor de optimalisatie van produ
tiestammen met het oog op deoverprodu
tie van een doelmole
ule. De afhankelijkheid van zijn synthese van redoxbe-perkingen, de karakteristieke eigens
happen van zijn syntheseroute en de bereikbare �uxri
hting de doelmole
ule zouden een rol moeten spelen bij de keuze van de optimalisatie-strategie.Het nut van partiële kleinste-kwadraten regressie werd geïllustreerd met behulp van ele-mentaire �ux mode data. Zo konden mogelijke doelwitten voor genetis
he modi�
atiegeïdenti�
eerd worden met het oog op de mi
robiële produ
tie van su

inaat door E. 
o-li. De geïdenti�
eerde doelwitten zijn in overeenstemming met de literatuur; in dewelkeaangetoond werd dat modi�
atie van de expressie van deze genen leidt tot een verhoog-de su

inaatopbrengst. Deze aanpak heeft daarom een eerste validatieronde doorstaan.Verdere evaluatie is evenwel nodig.Een dynamis
h metabolis
h model fo
ust op het identi�
eren van de snelheidsbepalendestappen in een rea
tienetwerk, wat typis
h doelwitten zijn voor genetis
he modi�
atie.Met het oog op het nemen van beslissingen in metabolis
he engineering is het belangrijk159



om de onzekerheid omtrent de berekende snelheidsbepalende stappen adequaat te kunnenins
hatten. Deze onzekerheid kan zowel het gevolg zijn van een onzekere modelstru
tuurals van onnauwkeurig gekende parameterwaarden. Voor een illustratief rea
tienetwerkwerd deze onzekerheid nagegaan. Meerdere approximatieve kinetieken werden gebruiktom de snelheidsbepalende stappen van het bestudeerde rea
tienetwerk te identi�
eren.Hieruit bleek dat de modelstru
tuur een signi�
ante invloed heeft op de distributies vande snelheidsbepalende stappen.Mi
ro-organismen in een produ
ties
haalrea
tor worden gekenmerkt door spe
i�eke me-tabolis
he en proteomis
he niveaus die onder die 
ondities toelaten groei te maximalise-ren, bijvoorbeeld door over�ow metabolisme. Aangezien dit gedrag overeenstemt met het
on
ept dat aan de basis ligt van het 
ybernetis
h modelleren, werd dit type modellengebruikt om de biofase in dergelijke rea
toren te bes
hrijven. De rationale a
hter het 
y-bernetis
h modelleren is dat mi
ro-organismen hun gedrag optimaliseren met betrekkingtot groei door de beperkte middelen waar de 
el over bes
hikt te investeren in die enzy-men die een optimaal gedrag verzekeren. Ondanks re
ente pogingen om de robuustheidvan de methode te vergroten, bijvoorbeeld door het introdu
eren van elementaire �uxmodes als intermediair regelniveau, blijven to
h nog een aantal zaken onopgelost. Eenaantal 
ontrolewetten voor enzyma
tiveit werden afgeleid en geëvalueerd. Deze rivalise-rende wetten worden gekenmerkt door een vers
hillende 'geen kost' a
tiviteit en steunenop het feit dat in de literatuur vers
hillende me
hanismen voor a
tivatie en ina
tivatievan enzymen werden bes
hreven, die een kost hebben. Door het gebrek aan ges
hiktedata was het evenwel niet mogelijk om tussen deze wetten een onders
heid te maken.Vervolgens werden experimentele opstellingen ontworpen die kunnen helpen bij het ver-garen van de nodige data om het mi
robieel metabolisme te bestuderen en om de beno-digde data te verzamelen met het oog op het s
hatten van parameters en het identi�
erenvan een ges
hikte modelstru
tuur. Hiertoe werd een modus operandi voor de Bios
opevoorgesteld, zodat dit apparaat ook kan worden aangewend om os
illerende mi
robiëlesystemen te bestuderen. Door het openen en sluiten van de staalnamepoorten zo teregelen dat enkel 
ellen worden ge
olle
teerd met een zelfde ges
hiedenis, kunnen in deBios
ope meerdere perturbatie experimenten worden uitgevoerd, zonder de os
illerendemi
robiële 
ultuur waarvan de biomassa afkomstig is, te verstoren. Dit versnelt uiteraardhet vergaren van data voor metabolis
he modellering.160



Een strategie werd voorgesteld om een s
aled-down rea
tor te ontwerpen. Het innova-tieve aspe
t van de voorgestelde aanpak is dat deze poogt de door mi
ro-organismenwaargenomen omgevingsomstandigheden in produ
ties
haalrea
toren na te bootsen, eer-der dan te fo
ussen op ma
ros
opis
he variabelen als mengtijd en 
ir
ulatietijd. Dezema
ros
opis
he variabelen zijn immers verre van ideaal om ge
orreleerd te worden aanomzettingsgraden, waar het uiteindelijk om gaat. Een dergelijke s
aled-down rea
torlaat toe om op laboratoriums
haal de omstandigheden na te bootsen in een produ
tie-s
haal rea
tor, zodat reeds geanti
ipeerd kan worden op het resultaat op produ
ties
haal.De voorgestelde experimentele opstelling, die uit twee geregelde rea
toren in een kringbestaat, laat toe om gelijkaardige omstandigheden na te bootsen als die in produ
tie-s
haalrea
toren. Om de regela
ties te redu
eren zou men een maximale waarde voor desubstraat
on
entratie wenswaarde kunnen gebruiken, aangezien de 
ellulaire respons opsubstraat
on
entraties veel groter dan de a�niteits
onstante een plateu bereikt.Tot slot werd een methode voorgesteld die toelaat om zowel de interne stru
tuur ensamenstelling van mi
ro-organismen als de heterogeniteit van de mi
robiële populatiein een produ
ties
haalrea
tor via stromingsdynami
a modellen te bes
hrijven. Bij deLagrangiaanse aanpak wordt het pad van een mi
ro-organisme doorheen de rea
tor ge-volgd. Daar het gedrag van een mi
ro-organisme zowel wordt bepaald door de heersendeomgevingsomstandigheden als door zijn intra
ellulaire toestand, ligt het voor de handom deze aanpak te gebruiken voor het bes
hrijven van de biofase in zo'n rea
tor. Doorde sto
hastis
he aard van partikeltransport en de snelle metabolis
he respons op de snelvariërende omgevingsomstandigheden, wordt deze toestand niet gea
ht identiek te zijnvoor alle mi
ro-organismen. Een dergelijke aanpak is evenwel 
omputationeel veeleisend,aangezien elk mi
ro-organisme gelinkt is met een stelsel di�erentiaalvergelijkingen. Doorte bes
houwen dat het gedrag van de totale populatie niet meer is dan de resultantevan de individuele mi
ro-organismen is het enkel nodig om een beperkt aantal 
ellen tevolgen om een goed idee te krijgen van de 
onsumptie- en produ
tiesnelheden doorheende rea
tor. De dynamiek van het systeem kan immers gevat worden door het gedrag vandit beperkt aantal 
ellen lokaal uit te middelen over de gehele populatie. Hierbij werdgebruik gemaakt van voorkennis omtrent het mi
robiële gedrag, bijvoorbeeld het feit datsaturatie van de substraatopnamesnelheid optreedt bij substraat
on
entraties die velemalen groter zijn dan de a�niteits
onstante.
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