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'Nu heb ik, ach, de filosofie,
geneeskunde en rechten en, o spijt,
daarnaast nog de theologie

lang bestudeerd, met noeste vlijt.

Hier sta ik nu, ik arme dwaas,

niets wijzer dan ’k al was, helaas.

'k ben doctor, ben professor bovendien,
en houd nu al zo'n jaar of tien

bij hoog en laag, van vroeg tot laat

al mijn studenten aan de praat,
beseffend niets te kunnen weten;

dat heeft zich in mijn hart gevreten.
Wel ben ik wijzer dan al die apen

van hooggeleerden, schrijvers en papen,
'k word niet gekweld door vrome twijfel,
ben ook niet bang voor duivel of hel-
maar toch, mijn vreugde is gevlogen:
geen kennis waar ik op kan bogen,
geen mens die ik iets heb te leren

of tot iets hoger kan bekeren.

Ook heb ik nergens geld of goed,
niemand die mij met eerbied groet.
Geen hond die zo zou willen leven!

Dat heeft mij tot de magie gedreven:
wie weet, als ik naar geesten luister
komt eindelijk meer licht in 't duister.
Dan moet ik niet meer, klam van 't zweet,
verkondigen wat ik niet weet,

maar krijg te zien welk krachtenspel
ten grondslag ligt aan dit bestel,

'k doorgrond de zaden en het rijpen

en hoef niet steeds naar 't woord te grijpen.

O volle maan, zag jij me maar

voor 't laatst achter mijn lessenaar,
waar ik je vaak om middernacht

met pijn in 't hart heb opgewacht,
dan, boven boeken en papier,

mijn bleke vriend, verscheen je hier!
Kon ik maar door 't gebergte dwalen
in 't zachte schijnsel van je stralen,
geesten opzoeken in hun holen

langs schemerende weitjes dolen

en niet geplaagd door muizenissen

me heilzaam in je dauw verfrissen

God weet hoelang ik mij al kwel
in mijn vervloekte, muffe cel

waar 't hemellicht niet langer straalt
maar in het glas-in-loot verschaalt!
met boekenzerk als struikelblok,
leesstof voor made, luis en spint;
een steil gewelf, tot in de nok

met kladpapiertjes volgepind;

een lorrenboedel, eeuwenoud,

met kolven, vaten, waar ik kijk,

en instrumenten volgestouwd:

dat is je wereld, dat is je rijk!

En vraag jij nog wat het kan zijn

dat jou vanbinnen zo beklemt,

door welke mysterieuze pijn

je levenslust zo gestremd?

Terwijl het rondom klopt en bruist

in Gods natuur, grijnzen je hier,

in walm en keldergeur behuisd,

de schedels toe van mens en dier.
Vlucht! Zoek de oneindige natuur!” [65]
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Chapter 1

(zeneral introduction

1.1 Introduction

The growing environmental concerns and the awareness that the world’s oil supplies are
limited, are factors prompting the chemical and biotechnological industries to explore
nature’s richness in search of methods to replace petroleum-based synthetics for the de-

velopment of a biobased economy [58].

An entire branch of biotechnology, known as industrial biotechnology, is devoted to this.
It uses living cells and enzymes to synthesise a wide range of products (Table 1.1) that
are easily degradable, require less energy and create less waste during their production
[58]. However, obliging such living cells to produce the compound of interest generally
requires some modification of their metabolism. To more effectively adjust metabolism
both experimental and mathematical tools have been developed to gather data and to
extract information from these data with a view to modifying the cell’s genetics. Such an
optimisation is an iterative process of strain evaluation and modification that typically
takes place under highly reproducible laboratory conditions, i.e., in ideally pH, temper-
ature, and dissolved oxygen controlled and ideally mixed fermentors with a hydraulic

volume of a few litres.

However to produce the compound of interest in sufficient quantities to meet the com-
mercial demand, the developed process has to be scaled-up. Then additional problems

arise, i.e.,



Table 1.1: Microbially produced products and the producing organism |32]

Producing organism

Product

Klebsiella pneumoniae
Aspergillus niger
Aspergillus terreus
Gluconobacter oxydans
Actinobacillus succinogenes
Saccharomyces cerevisiae
Acetobacter suborydans
Xanthomonas campestris
Saccharomyces cerevisiae
Corynebacterium glutamicum
Candida flareri
Pseudomonas denitrificans
Penicillium chrysogenum
Streptomyces orientalis
Streptomyces aureofaciens
Bacillus licheniformes

1,3-propanediol

citric acid

itaconic acid

gluconic acid

succinic acid

lactic acid

acorbic acid

xanthan

ethanol

glutamic acid
riboflavin (vitamin By)
cyanocobalamin (vitamin Byg)
penicillin G
vancomycin
tetracycline

a-amylase

e biological factors, e.g., the number of generations associated with the inoculum
development and production phases, mutation probability, contamination vulnera-

bility, pellet formation, cell-density, and selection pressure,

e chemical factors, e.g., pH control agents, medium quality and water quality, and

substrate concentrations, and

e physical factors, e.g., mixing, aeration, agitation, and hydrostatic pressure,

are affected when scaling-up, all significantly influencing the overall process yield and

productivity, most often in a negative way [70, 79, 183].

1.2 Aims

To gain insight in the factors leading to the suboptimally performing large-scale cul-
tures in comparison with laboratory-scale cultures, a study of biological, chemical, and
physical processes is mandatory. Uncoupling the underlying processes of different nature
is difficult as some of the time constants are of the same order of magnitude. Indeed,

transport phenomena influence the local conditions, which in turn influence microbial



metabolism, which in turn influence local process conditions.

Thus far, the attempts to really tackle this problem, though of major interest for the
optimisation of a microbial production process sensu largo, have been little. Amongst
others the tools to tackle this problem are not readily available. Hence, the aim of this
dissertation was to develop and apply some of the tools that will be useful to investigate

the widely observed reduction in process performance of large-scale cultures.

Therefore, this dissertation focusses on tools to describe/model the microbial metabolism
in detail. The cellular response to the rapidly changing environmental conditions en-
countered in such large-scale bioreactors is indeed thought to be the main cause of the
observed reduction in process performance. The models to be developed should consider
the internal composition and structure of the micro-organisms, enzymatic kinetics, and

the regulatory network.

For such models the gathering of experimental data to identify the model structure and
its parameters and, equally important, to validate the model is a prerequisite. Hence,
experimental set-ups need to be developed that mimic the large-scale conditions. These

set-ups can then be used to collect the necessary intracellular metabolic data.

Finally, tools need to be developed that render the description of both biological, chemi-
cal, and physical processes that take place in large-scale bioreactors, using computational

fluid dynamics models, feasible.

1.3 Outline

This dissertation consists of three parts:

In the first part tools to describe metabolism are discussed. To gain insight in the mi-
crobial metabolism, modelling can be a useful tool. Metabolic models sensu largo are
already widely used for metabolic engineering purposes. Therefore in Chapter 2, a con-
cise overview is given of the state of the art. Though perhaps not directly useful for the
study of large-scale bioreactors, some of the reviewed methods have been applied as well:

partial least squares regression has been used to identify genetic targets for the metabolic



engineering of succinate biosynthesis in E. coli (Chapter 3) and a method is presented to
assess the uncertainty on the calculated flux control coefficients of a biochemical pathway,

described by approximative metabolic models (Chapter 5).

In large-scale bioreactors zones exist with ample substrate, in general in the surroundings
of the inlet of the concentrated influent, with substrate depletion and with oxygen de-
pletion or excess in other zones. When an individual micro-organism circulates through

a large-scale reactor it is sequentially exposed to these different local conditions [139, 221].

To study such phenomena, a detailed description of the biophase is mandatory. As the
cellular response to the encountered rapidly changing environmental conditions in large-
scale bioreactors is thought to be the main cause of the observed yield reduction. As
a consequence of these variations in process conditions, a micro-organism will develop
a characteristic metabolomic and proteomic make-up [44, 53, 76, 131|, which will allow
maximisation of its growth under those conditions, e.g., mixed acid fermentation and
overflow metabolism. In view of the latter, attention is devoted to the cybernetic frame-
work in Chapter 4, especially with a view to a more detailed description of the biophase.
Several rival control laws for enzyme activity have been proposed and evaluated. The
rationale of the cybernetic school of thought is that a micro-organism tries to optimise
its behaviour, e.g., with respect to growth or substrate uptake. This is achieved by al-
locating the limited resources a micro-organism disposes of to these competing enzymes

yielding the optimal performance, by means of a controller [138, 205, 206].

A model-based approach has thus been chosen since models can be useful tools as they
are a special kind of ontology. To build models three sources of information are used:
experimental data, prior knowledge gathered from the literature and databases, and its
intended purpose. Modelling is however approximating and consequently the choice of
the proper model structure is in general subject to individual judgement and preference.
Finding the proper balance between the intended aim, prior knowledge, and the available

data is however an assiduous task.

In view of a model’s intended purpose, over-abstracting or oversimplifying reality can
result in a model that is hard to interpret or a model that does not take into account
processes of prime importance with a view to the model’s intended purpose. For instance,

this is probably the case for the model-based optimisation presented by Sin et al. (2004)
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[165] which led to erroneous model predictions [166]. In contrast, complicating the model
can result in a model that is poorly identifiable, 7.e., many different parameter sets will
give almost identical fits to the calibration data (the equifinality problem) as 'they often
can dance to the tune of the calibration data’ [19], and one may run into the same dan-
ger. This may again be pernicious for its predictive validity [19] as these parameter sets
can yield dramatically different predictions of how the system will behave as conditions

change.

The need for reliable and informative data is then obvious. Therefore, tools are devel-
oped in the second part of this dissertation which may help to gather the necessary data
to experimentally study microbial metabolism and to gather the necessary data with a
view to parameter identification and model structure identification. To this end, a modus

operandi of the Bioscope is proposed in Chapter 6 to study microbial oscillating systems.

A strategy to design a scaled-down reactor is outlined in Chapter 8. Scaled-down re-
actors allow to mimic on a laboratory-scale, the large-scale conditions in an attempt to
anticipate the outcome on a large-scale. However, whereas the state of the art scaled-
down reactors typically focus on macroscopic variables, such as circulation time and
mixing time, the presented approach attempts, using computational fluid dynamics sim-
ulations, to more accurately mimic the substrate concentration dynamics observed by
micro-organisms in large-scale bioreactors, as those macroscopic variables are far from

ideal to be correlated with degrees of conversion.

In the last and third part of this dissertation attention is devoted to computational fluid
dynamics. Computational fluid dynamics models find acceptance both in industry and
academia to study the impact of spatiotemporal heterogeneity, i.e., imperfect mixing,
on overall process performance. The description of the biophase in a Lagrangian way,
i.e., following the cell’s path through the reactor, is obvious since the behaviour of a
micro-organism is determined by both the reigning environmental conditions and its in-
tracellular make-up. All this is determined by what it has observed over time. Due to
the stochastic nature of particle transport and the spatial heterogeneity in large-scale
bioreactors, this intracellular make-up will not be identical for all micro-organisms which
makes that a large number of cells must be followed to generate a view on the overall
bioreactor behaviour. A method to render such calculations more feasible is therefore

proposed in Chapter 7.



This dissertation ends with an overview of the main conclusions and perspectives for

further research.



Chapter 2

Modelling with a view to target
identification in metabolic

engineering

2.1 Introduction

The well-established chemical synthesis routes face, although the era of the oil-based
society has not come to an end yet, more and more competition from industrial biotech-
nological alternatives for the production of an increasing number of compounds, due
to, e.g., environmental concerns and the increasing scarcity of oil. Whereas in the past
micro-organisms were typically used for the production of stereochemical [191] and com-
plex molecules, e.g., antibiotics |25, 177]|, nowadays they even become an interesting
alternative for many bulk chemicals. In order to develop an industrial biotechnological
process that can compete with the more mature chemical synthesis routes, there are 4

critical development phases:

1. The choice of the favourite micro-organism
2. Metabolic engineering
3. Scaling-up

4. Downstream processing



The second phase in the development of an economically viable industrial biotechnolog-
ical process is the optimisation of the micro-organism itself using a wide range of both

experimental and mathematical techniques.

To this end, due to the complexity of microbial metabolism, more and more metabolomic,
proteomic, transcriptomic, and genomic data are collected [38, 78, 87, 132, which appear
to be valuable to steer the process of genetic engineering with a view to the overproduc-
tion of a target compound. Indeed, these data help to elucidate the flux distribution,

determine the flux controlling reactions, and yield insight in the regulation of metabolism.

In addition to these experimental techniques, mathematical methods are developed and
commonly applied to interpret and to extract information from this pile of data and to
identify genetic targets for the overproduction of a target compound (Table 2.1). In this
context steady-state [198] and dynamic metabolic modelling [149], multivariate statistics
[39, 84, 197], graph theory [136], and neural networks are used to unravel the microbial

behaviour.

Finally, the development of genetic toolboxes consisting of promoter libraries |39, 69, 84|
and strategies for gene knock-outs, knock-ins, knock-downs, and knock-ups [36], and the
advent of functional genomics |61, 77| have allowed the directed improvement of cellu-
lar properties based on these findings in view of optimising the production host. This
hotchpotch of techniques results after some iterative rounds of genetic modification and

host evaluation into the development of a host with improved performance.

Such a systematic approach is obvious as the vast variety of biochemical pathways micro-
organisms dispose of, in order to fulfil their growth and reproduction requirements under
a wide range of environmental conditions, renders them hard to fathom. A thorough
understanding of the regulation of microbial processes is however a conditio sine qua
non for the rational design of bioprocesses, as a disturbance in one part of metabolism
can trigger a series of reactions on all levels of regulatory control and in all parts of
metabolism. Indeed, in complex metabolic networks it is often a futile avocation to ad
hoc predict the impact, both qualitatively and quantitatively, of a genetic intervention
[12]. Hence, the popularity of models for metabolic engineering purposes. A concise

overview of the use of models in this development phase will be given below (Figure 2.1).
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Figure 2.1: Modelling with a view to target identification in metabolic engineering. Blue
blocks represent the methods, yellow blocks represent inputs.



Table 2.1: Target identification relying on metabolic modelling

model-based optimisation method  Production host = Target compound

elementary flux modes E. coli L-methionine [93]
C. glutamicum L-methonine [93]
E. coli succinic acid [this study]
optimal flux distribution E. coli succinic acid [99]
flux balance analysis M. tuberculosis mycolic acid [144]
S. cerevisiae succinic acid [137]
S. cerevisiae glycerol [137]
S. cerevisiae vanillin [137]
E. coli lycopene [5]
E. coli L-threonine [98]
E. coli L-valine [135]
E. coli succinic acid [34]
partial least squares E. coli phenylalanine [200)]
Trichoderma sp.  cellulase [196]
dynamic metabolic modelling E. coli carnitine |27, 163|

2.2 Stoichiometric network analysis

Ab initio, stoichiometric network models have been used to facilitate the choice of where
to intervene genetically. The metabolic network comprises the metabolites and the re-
actions they are involved in, including formation, degradation, transport, and cellular
utilisation gathered from databases [88, 128, 158] and the literature [148]. For every

metabolite a mass balance can be derived:

dl‘i
dt = ZsijT‘j — bz (2.1)
J

where s;; is the stoichiometric coefficient associated with flux r; and b; the net transport

flux of metabolite x;. Under pseudo steady-state conditions Eq. 2.1 will reduce to:

0= Zsijrj — bz (2.2)
J

Eq. 2.2 can be rewritten in matrix notation:

lglgsuz (2.3)
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where S is the stoichiometric matrix, R is the vector of metabolic fluxes, and b is the

vector representing m transport fluxes.

Despite success stories of metabolic model use to identify targets for modification, there
have also been many false positive targets identified by these models. It is still unclear
whether the well-established technique of stoichiometric modelling is fully apt to steer
the process of metabolic engineering, since the kinetics and the regulation of the enzy-

matic reactions are not accounted for [5, 171].

Especially for the optimisation of the production of metabolites in primary metabolism
that are subject to severe (redox) constraints, stoichiometric modelling is useful. It is

less so for the optimisation of minor routes [195].

Once the metabolic network model is built one can resort to stoichiometric network anal-
ysis, in the absence of data. Network analysis provides for the identification of elementary
flux modes, extreme pathways, and the optimal flux distribution as will be discussed be-

low.

2.2.1 Elementary flux modes and extreme pathways

Network-based pathway analysis, e.g., identification of elementary flux modes (EFMs)
and extreme pathways (EPs) facilitates the assessment of network properties. Both of
these methods use convex analysis, a branch of mathematics that enables the analysis of
inequalities and systems of linear equations to generate a convex set of vectors that can
be used to characterise all of the steady-state flux distributions of a biochemical network
[134]. Both have the following properties [134]:

1. There is a unique set of elementary modes/extreme pathways for a given network.

2. Each elementary mode/extreme pathway consists of the minimum number of reac-
tions that is required to exist as a functional unit. If any reaction in an elementary
mode/extreme pathway would be removed, the whole elementary mode/extreme
pathway could not operate anymore as a functional unit. This property has been

called genetic independence and non-decomposability.

11



However, whereas elementary modes are the set of all routes through a metabolic network
consistent with the latter property, extreme pathways are the systemically independent
subset of elementary modes (Figure 2.2); that is, no extreme pathway can be represented

as a non-negative linear combination of any other extreme pathways [134].

Both have been used to calculate product yields, to evaluate pathway redundancy, to de-
termine correlated reaction sets, and to assess the effect of gene deletions [134]. Carlson
et al. (2002) [28] and Kromer et al. (2006) [93] used elementary flux modes for rational
design purposes and Carlson and Scrienc (2003) |29, Nookaew et al. (2007) [126], and
Schwarts et al. (2007) [160] used the concept of elementary flux modes in combination

with experimental data for network analysis.

The physiological interpretation of the results, see also Figure 2.3, and their computation

for genome scale models remain however challenging [216].

2.2.2 Optimal flux distribution

The calculation of the optimal flux distribution, e.g., [99], is another popular information
source to steer the process of metabolic engineering. The linear programming problem

can be written as:

max J = b; (2.4)

subject to:
0=SxR-b (2.5)
bi = Oy (2.6)

where J is the objective function, typically the net transport flux of the compound of
interest, and «; the constraint on the net transport flux values of certain substrates i.

By solving Egs. 2.4-2.6, the maximal theoretical yield can be calculated.

Pros and cons

12



X —> X3

Figure 2.2: The 3 extreme pathways (white background) and 4 elementary flux modes
(grey background) of the stoichiometric network. Note that the EFM (top, right) is a

non-negative linear combination of 2 extreme pathways (down, right) and (down, left)
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Figure 2.3: The 17528 elementary flux modes of the stoichiometric E. coli model of
Lequeux et al. (2006) [100] represented as v/s, calculated by using Metatool 5.0 |214],
and presented in the Yx g, Ysuccinate,s space, with Yx ¢ and Ysuccinate,s the biomass
[c—mole

S ] and succinate [ggéf] yield on glucose, respectively. The EFMs characterised by

the optimal flux distribution, here with respect to maximal Yyyccinate,s can readily be
identified («).
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Obviously, the optimal flux distribution can be calculated, but how to achieve this optimal
flux distribution #n vivo remains unresolved since it depends considerably on the kinetics
and the regulation of the enzymatic reactions, which are not accounted for [5, 171]|. In
addition, it focusses completely on yields whereas in reality productivity, i.e., the rate at

which the product is produced, is equally important.

2.3 Steady-state modelling

In the presence of data, one can resort to steady-state modelling, e.g., metabolic flux

analysis and flux balance analysis. Eq. 2.3 can then be rewritten as:

S; 0 0 Tin
0= Sg:c _Ig:c 0 ng (27)
sy 0 =17 b

where r;, represents the intracellular fluxes, b¢, and b} the net transport fluxes to be
calculated and measured, respectively. S;,, S¢,, and S7% are the corresponding stoichio-

metric matrices and I represents a unity matrix. This equation can be rewritten as:

S; 0 0
re
0= | §¢ —I¢, [ bZ” +1 0o | 2] (2.8)
sn 0 o I | am
— Qe —
We W
the solution of which is:
ae = —WHWyam + null space (W) f (2.9)

with Wc# the pseudo inverse of matrix W, with the null space defined as the set of linear

independent basis vectors R, that fulfil the equation:

W.R, =0 (2.10)

and f a vector with as many elements as there are columns in the null space of W,.. The

15



number of independent null space vectors is equal to:

n —rank (W,) (2.11)

with n the number of fluxes to be calculated.

2.3.1 Metabolic flux analysis

If Eq. 2.11 = 0 the system is determined and has one unique solution:

ae = —WHWoam (2.12)

Substituting Eq. 2.9 in Eq. 2.8 now yields:

Winam + W, (—WC#Wmam) ~0 (2.13)

Or rewritten, since Eq. 2.10:

<Wm - WchWm) - (2.14)

When the system is (partially) overdetermined, the extra measurements, which are spec-
ified by the so-called redundancy matrix: W,, — WC#WCWm in Eq. 2.14, can be used
for statistical testing and error analysis. van der Heijden et al. (1994) [194] introduced
a method for error detection and analysis. If the error is statistically zero, the model
is consistent. If this is not the case, this error analysis method can be used to identify
erroneous measurements. Removing these erroneous measurements from the data set im-

proves the chance of a consistent result. An overview is given by Lequeux et al. (2006)

[100].
Pros and cons

Though metabolic flux analysis (MFA) merely yields a snapshot of the metabolic state in
a particular condition, it might be of some significance to steer the process of metabolic
engineering as principal nodes can be identified. These principal nodes, which are char-

acterised by significant changes in flux partitioning under different conditions, should be

16



regarded as potential bottlenecks [198].

It should be clear that due to the large variety of metabolic pathways, e.g., parallel
pathways, reversible reactions, and cycles the system is in general underdetermined. For
example, genome scale models have been constructed, typically useful for the design of
minimal media, e.g., for Escherichia coli (931 reactions) [148|, Saccharomyces cerevisiae
(1175 reactions) |57|, Helicobacter pylori (388 reactions) [157], and Neisseria meningitidis
(496 reactions) [10]. Such genome scale models contain all known reactions, formation,
degradation, transport, and cellular utilisation gathered from databases and the litera-

ture.

However, then the modeller can opt/has to reduce the metabolic network in order to get
a system of feasible size, using for example an objective function or by incorporating as
much knowledge, e.g., prior knowledge about the flux size, and data as possible. For
instance, unlabelled metabolomic data, as these data yield thermodynamic information
A,G'° and consequently information about the reversibility and irreversibility of certain
reactions [75, 95|, labelled metabolomic data as these data yield information on split
ratios [37, 201, 217], and transcriptomic data [4, 24, 100, 164], through the incorporation
of additional constraints for the metabolic network, e.g., presence of an enzymatic con-

version, to reduce the uncertainty about the obtained flux distribution.

2.3.2 Flux balance analysis

If Eq. 2.11 > 0 the system is underdetermined. Then no unique solution exists. The
question then is which of the feasible metabolic states is manifested under that condi-
tion. Flux balance analysis (FBA) |51, 142] postulates that a metabolic system exhibits
a metabolic state that is optimal under some criteria. This objective is expressed as a
linear combination of the fluxes contained in R. The model can then be formulated as a

linear programming problem as follows:
max J = chrj (2.15)
J
subject to:

0=SxR—b (2.16)
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a; <1 < G (2.17)

where J is the objective function, ¢ is a vector of weights, costs or benefits, linked to the
fluxes, and the boundaries «; and §; represent known constraints on the minimum and

maximum fux values.

Pros and cons

Though many objective functions have been used, the optimisation of ATP production
and the optimisation of growth comply best with experimental observations [159] in many
micro-organisms. The applications of FBA have been many and the in silico metabolic
constraints predictions can be used to optimise the behaviour of interesting mutants.
However, it is not because a micro-organism has the genetic potential that it will ad hoc
perform optimally, i.e., mutants created artificially are generally not subject to the same
evolutionary pressure that shaped the wild type [5, 56, 162]. The method of minimi-
sation of metabolic adjustment (MOMA) attempts to deal with this issue. Instead of
maximising biomass production the mutant, KO, is believed to remain initially as close
as possible to the wild type optimum, WT, in terms of flux values [162]. The objective

function then becomes:

min D (Rwr, Rxo) (2.18)

with

n

D (Rwr,Rgo) = |>_ (rwr —rk0)” (2.19)

i

This method heavily relies on prior knowledge (through the constraints introduced in
Eq. 2.17), but at present the knowledge on the regulatory mechanisms is still lacking
and fragmentary |66, 89]. In addition, in some cases no unique optimum exists and con-

sequently many metabolic states may result in the same optimal behaviour [56].
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2.4 Dynamic metabolic modelling

2.4.1 Mechanistic - approximative models

Due to the above-mentioned limitations of stoichiometric modelling, kinetic equations
have been introduced in metabolic models. The general form of the mass balances of
extracellular and intracellular metabolites is now given by Eq. 2.20 and Eq. 2.21, re-

spectively:

dzr g T

dx ;.

with 7, and zg, the concentration of an intracellular metabolite M; and an extracellu-
lar metabolite S;, respectively, sy, is the stoichiometric coefficient of metabolite M; in
reaction j, r; the rate of reaction j, px the specific weight of biomass, xx the biomass
concentration, D the dilution rate, xg the concentration of an extracellular metabolite S
in the feed, and p the specific growth rate. Note that xg is expressed per reactor volume
whereas xp; is expressed per cell volume. The term pxjys in the mass balances of the

intracellular metabolites represents the dilution effect due to growth.

In mechanistic dynamic metabolic modelling, one can resort to complex in wvitro de-
termined mechanistic equations to describe the rate equations r; in Eqgs. 2.20-2.21
[30, 42, 149, 207].

In approximative modelling, one can resort to linear non-mechanistic kinetics to describe
the rate equations r; in Eqgs. 2.20-2.21, e.g., the loglinear approximation [72, 73|, the
GMA type power law approximation Eq. 2.22 [154], the thermokinetic approximation
Eq. 2.23 [215], and the linlog approximation Eq. 2.24 [74, 209].

T4 TE " 0 X M;
In (J_JO> =In <g> +3 e In (xo ) (2.22)

i=1 M;
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where the superscript © stands for the steady-state condition and with zg the enzyme

concentration, 63/[1_ an elasticity coefficient, and J° the steady-state flux. The applied

n
T |:$E:| 0 T,
Lo 22 (143,

equations are not as complex as mechanistic rate equations and contain less parameters
to approximate the true kinetics. The rationale behind this is that metabolic redesign
does not require detailed mechanistic models because of the concept of homeostasis, which
implies that the micro-organism keeps its intracellular metabolite levels approximately
constant [54, 170, 184|. In other words, the extrapolation range of the kinetic metabolic
model does not need to be very large, as far as metabolite levels are concerned. This
reasoning suggests that one can safely apply approximative kinetic equations instead of

the detailed mechanistic ones that are valid over a wide range of concentration levels.
Pros and cons

The enormous variety of well regulated metabolic pathways impedes a thorough under-
standing of the regulation of microbial processes on the metabolomic, proteomic, tran-
scriptomic, and genomic level in a qualitative and quantitative way. Such understanding
would be beneficial for the rational design of bioprocesses, as a genetic or environmental
disturbance in one part of metabolism can trigger a series of reactions on all levels of
regulatory control and in all parts of metabolism [12]. Hence, in many applications, e.g.,

metabolic engineering, 'whole cell modelling’ is probably the way to go [186, 187].

However, since the knowledge about the transcriptional and translational regulation is
still fragmentary, the state of the art dynamic metabolic models typically focus on the
metabolome, assuming constant proteomic levels. In view of the extrapolation capacity of
these models this is a drawback. Hence, in order not to violate this assumption of steady-
state proteome, data for parameter identification have to be collected during a relatively
short period after perturbation, this is typically within 0.2-180 s [181, 182, 207, 211].

In addition, dynamic metabolic models typically zoom in on a limited part of the micro-
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bial metabolism. The resulting model typically contains a number of fluxes towards parts
of the metabolism which one is not primarily interested in. When the model contains
two or more of those fluxes this will create some uncertainty about the dynamic flux
distribution (a steady-state model yields the steady-state flux distribution, but there is
only indirect, secondary information about the dynamic evolution of the flux distribution
after a perturbation of the metabolism). Only having the information of the evolution of
metabolite concentrations is insufficient for these aims. Thus, in contrast to steady-state
modelling, where mass balances are essential to verify the accuracy of the calculated
fluxes, this check is not performed in most dynamic metabolic models [30, 60, 149, 207|,
as the size of the out flux of the model is not known. It should however be clear that
modelling the whole metabolism would be a daunting task as well: when a perturbation
passes through the metabolic network it broadens and dampens out and the information

content of such data collected further on in the network is limited.

In order to reduce this uncertainty the cofactors might be used as 'closure terms’, e.g.,
the generation of NADPH, might be a good indicator for the flux through the pentose
phosphate cycle. However, it should be clear that these closure terms are weak as cofac-
tors intervene in many reactions, which are also perturbed during a pulse experiment. In
addition, modelling these cofactors dynamically is not easy at all because this approach
is hampered, for instance, by the inability to explain the short-term reduction in the pool
size of the adenine nucleotides (AXP) after a glucose pulse |30, 207|. At present, it is still
unclear what is/are the cause(s) of this reduction (adaptation would only be responsible
for 15% of this gap |91], formation of adenylated compounds, e.g., ADP-glucose, excre-
tion of cAMP, ...).

Therefore, some researchers opt to describe the evolution of the cofactors as time depen-
dent functions [30], which results in a model that is no longer useful for extrapolation.
Not taking these cofactors into account 'mechanistically’ thus results in a limited useful-
ness of the resulting model. Then, also assumptions have to be made about the evolution

of the flux distributions during the transient but it is questionable whether these hold.

In order to reduce the uncertainty, one could gather a lot of data both under steady-state
and dynamic conditions, e.g., by perturbing the microbial cells with different substrates.
However, such efforts have thus far been limited [114, 211].
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The use of dynamic labelling data [213] allows as well to reduce the degrees of freedom
related to the metabolic fluxes, also under dynamic conditions. However the huge vari-
ety of biochemical pathways will render such an exercise tricky, as the chosen metabolic

network will influence the calculated flux distribution [111].

In addition, one should be aware that a lot of challenges still remain in the field of analyti-
cal methods, since the accurate determination of the intracellular metabolites is a consid-
erable task as well, due to, e.g., leakage and their low concentrations [49, 113, 130, 208].
For example, whereas the expected (equilibrium) ratio of the concentrations of glucose-
6-phosphate [G6P] and fructose-6-phosphate [F6P], i.e., % =~ (.25 [18, 30, 114, 180|,

Bucholz et al. (2001) [21] find for this ratio [op| = 0.88.

Another issue is that the state of the art dynamic metabolic models either rely on in vitro
determined kinetic equations or are based on approximative kinetics |30, 180, 209| and
the consequences of a potentially erroneous model structure are not well known. With
respect to the in wvitro determined kinetic equations it is doubtful whether the kinetics
are valid under in vivo conditions, as these kinetics are obtained using purified enzymes
studied out of context [156, 180].

The variety of well regulated metabolic pathways also impedes a thorough understand-
ing of the regulation of microbial processes, e.g., the relative importance of the flux
through pyruvate oxidase compared to the flux through pyruvate dehydrogenase is not
that clear |2, 103]. Another example is the jumble of reactions around the PEP-pyruvate-
oxaloacetate node. Their regulation and importance under one or the other condition
is still not that well studied [26, 101, 153]. The inability to properly describe the dy-
namics of phosphoenolpyruvate (PEP) during the observation window of a perturbation
experiment [30, 149], though a key metabolite in the primary metabolism, is the perfect
illustration that setting up a metabolic model in a proper way will be demanding both

for modellers and for experimentalists.

Models, whether they are approximative or mechanistic, can be useful to identify bot-
tlenecks [54, 72, 85, 115] in metabolism and consequently could steer the process of
metabolic engineering. However, since enzyme levels are not taken into account nor the
influence of a genetic intervention on the metabolism, it should be clear that the extrap-

olation power of such models remains limited.
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2.4.2 Cybernetic models

At present, one can not see the wood for the trees as the knowledge on the regulatory
mechanisms is lacking and fragmentary [66, 89]. To partially circumvent this knowledge
gap, the cybernetic framework can be used, since microbial species, that is, those that
have undergone the process of evolution, strive to regulate their metabolism in an optimal
manner [56, 112]. This reasoning is the rationale of the cybernetic school of thought: a
micro-organism tries to optimise its behaviour, e.g., with respect to growth or substrate
uptake. This is achieved by allocating the limited resources a micro-organism disposes
of to these competing enzymes yielding the optimal performance [138, 205, 206]. To this
end, the cybernetic variables u and v are introduced into a kinetic model Eqgs. 2.20-2.21
with the aim of substituting the unknown mechanistic details of the cell’s regulatory ar-
chitecture by an objective function by supposing that the metabolism of a micro-organism

operates with a specific overall goal, such as the optimisation of growth.

Initially, the value of the cybernetic approach was demonstrated using relatively simple
examples, typically situated in the domain of bioprocess control. In these cases, some
lumped pathways competed with each other for the available resources, e.g., simultane-
ous and sequential substrate utilisation [90]| and single-substrate growth [13, 14, 190].
Then the cybernetics units could readily be identified. Enzymes belonging to the same

cluster compete with each other for the same pool of resources.

Over time more challenging 'proofs of principle’ were chosen, e.g., in view of metabolic
engineering of a production host [204, 206, 223|, and the model’s complexity increased.
More complex networks, without lumping were considered [143, 172, but then a jumble
of cybernetic units could be identified and the corresponding cybernetic variables had to
be derived from the control laws. As a result, the choice of the cybernetic units became
less straightforward, even quite arbitrary, and the library of cybernetic units had to be

extended (convergent, divergent, linear, and cycles) [205, 206].

To overcome this, a more general framework was developed, based on the principles of
optimal control theory [223]. Optimal control theory is a mathematical optimisation
method for deriving control policies. It aims to find a control law for a given system

such that a certain optimality criterion is achieved. In general, such a control problem
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includes a gain function and a cost function relating state and control variables. An
optimal controller is a set of differential equations describing the paths of the control
variables that maximise the performance function. Rephrasing this in the context of a
micro-organism, the cost becomes, e.g., the pool of amino acids a micro-organism needs
to invest for the production of a particular enzyme, and the cell’s gain could be merely
growth. Young (2005) [223] opted for EFMs as cybernetic units. As elementary modes
appear to be useful to understand cellular objectives for the overall metabolic network
[169], the choice for the EFMs as local control level seems quite obvious. However, the
choice of the associated objective function is less so. Young (2005) [223] opted for the

optimisation of a harmonic mean flux J:

J = 72%‘:1 ?’ (2.25)
=1 r;v;

with n the number of reactions involved in the elementary flux mode, r; the rate of re-

action ¢, v; the cybernetic variable controlling enzyme activity, and &; the flux through
reaction ¢ in the elementary flux mode. This objective function aims at a steady through-
put through the EFM, and consequently accumulation or depletion of certain metabolites

is avoided. However, its biological foundation seems difficult to grasp.

Pros and cons

Cybernetic models consider both metabolome and proteome. They apply principles of
control theory with the aim of substituting the unknown mechanistic details of the cell’s
regulatory architecture by an objective function by supposing that the metabolism of a
micro-organism operates with a specific overall goal. Such models are therefore thought to
have more extrapolation power. Although the approach thus seems appealing, given the
present lack of knowledge and detailed experimental omics data and the aforementioned
problems linked to mechanistic modelling, there still remain some issues unresolved: i) it
is still unclear to what extent unknown regulatory mechanisms can be captured by the
framework, ii) the robustness of the approach is unclear, e.g., although cybernetic models
are said to be able to properly describe steady-state multiplicity [122, 123], real experi-
mental evidence to support such a claim is lacking, iii) though the cybernetic approach
is a minimalistic approach, contrary to mechanistic models containing complex kinetics
with a large number of (unidentifiable) parameters [42], the incorporation of enzymes

and the parameters for enzyme synthesis and degradation results in many parameters
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that are difficult to estimate, and iv) for even relatively small networks the number
of EFMs is huge, e.g., for the metabolic network of [100] 17528 EFMs are found, which

use glucose as carbon source. Which EFMs to choose, remains a question hard to answer.

2.5 Multivariate statistics

Finally, multivariate statistics, principal component analysis (PCA) and partial least
squares (PLS) 219, 220|, are more and more used in the field of metabolism studies
[39, 84, 105, 197] to interpret and to extract information from the pile of metabolomic,
transcriptomic, and genomic data. By applying these methods, targets can be identified
in view of further improving production hosts. Especially the use of partial least squares
seems promising. The objective in PLS modelling is to find a few 'mew’ variables, X-
scores, in such a way that the information in the dependent variables Y can be predicted

as well as possible.

In fact, this projection method decomposes variables of high collinearity into one-dimen-
sional variables, i.e., an input score vector ¢t and an output score vector u, which allows
PLS to handle many and correlated predictor variables [220]. The vectors ¢; and wu; are
defined as [104]:

t1 = Eow (2.26)
Uy = F()Cl (2.27)

where Ej is the standardised data matrix from X and Fj is the standardised data matrix
from Y [193]. The aim of this data pretreatment is to focus on the (relevant) biological
information by emphasising different aspects in the data, for instance, the value of a
variable relative to its average value and to reduce the influence of disturbing factors,
e.g., measurement noise |[193]|. Hence, the regression formulae for components ¢; and u;

are given by:

Ey = tlp{ + F4 (228)

Fy=wgqf +F (2.29)

25



where p; and ¢; are the loading vectors, and F; and F} are residual matrices. The linear

relationship between ¢; and wu; is calculated by:

uy = bty +7r (2.30)

where b1 is the regression coefficient and 7 is the residual vector. If ¢; and w; cannot
explain the model within a specified precision or do not contain enough information, Ey
and Fy will be replaced by the residual matrices Fqy and Fj. Consequently, the next

latent variable vectors 5 and wuo are calculated by:

to = E1w2 (2.31)
ug = F102 (2.32)

The regressions for components to and us are therefore calculated by:

Ey = topy + Es (2.33)
Fy = Uqu + Fy (234)

This iterative procedure is repeated by using the regression residual terms obtained at
the previous iteration on both the inputs and outputs at each step. The decomposition

of Ey and Fy by score vectors is defined by:

m
Ey=> twph +E (2.35)
h=1
m
Fy= unqgy +F (2.36)
h=1

Where p and ¢ are loading vectors, F£ and F' are residuals. For the m choice, a cross-
validation method can be applied or the threshold variance of E can be used as stopping
criterion [219].

In PLS one can calculate a similar kind of regression coefficients as one does in multiple

linear regression. These regression coefficients relate matrix X directly to Y:
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Y=XB+¢ (2.37)

Both regression coefficients and loading weights can be used to study the system. Note
that these regression coefficients are not independent unless the number of partial least
squares regression components equals the number of X-variables. By studying the load-
ing weights, one can see how important the variable is in each latent variable. A large
positive or negative weight value indicates that the corresponding X variable is highly
correlated with the values in the score matrix U and hence with matrix Y. Correlation

between variables can be verified by looking at the loading weights [179, 219].

van der Werf et al. (2005) [197] applied PLS regression to link metabolite levels to the
microbial phenotype, i.e., by ordering the importance of the metabolites by virtue of the

weight factors, metabolites that contributed most to the phenotype of interest could be
identified.

Pros and cons

van der Werf et al. (2005) [195, 197] successfully applied this method to select targets in
view of optimisation. Such models are however completely data driven and consequently
do not use the state of the art knowledge. In addition, relationships can be found be-
tween, for instance, metabolite pool sizes and a process parameter, but how to modify

the cell with a view to improving the process performance remains unclear.

2.6 Conclusions

It should be clear that despite the vast lack of knowledge about the cell’s regulatory ar-
chitecture, the application of both experimental techniques and mathematical methods
steadily yields valuable information about microbial metabolism [30, 39, 84, 136, 197,

198]. In the future, this may unambiguously guide the process of metabolic engineering.

The contemporary lack of knowledge about the functioning of the cell is however limiting
the use and usefulness of many of those techniques to steer the process of metabolic en-
gineering, e.g., at present a lot of mathematically relevant questions remain unanswered,

e.g., which network and objective function to choose? Consequently, the era of typi-
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cal data mining techniques which are useful to help unravel the complex regulation of

microbial metabolism has not come to an end yet.
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Chapter 3

Model-based optimisation of

succinate production by E. colz

3.1 Introduction

Micro-organisms are already widely used for producing antibiotics, therapeutic proteins,
food and feed ingredients, fuels, and vitamins. Nowadays, due to the environmental con-
cerns and the increasing scarcity of oil, industrial biotechnological processes become an
alternative for the production of an increasing number of compounds, that are typically
produced using well-established chemical synthesis routes [58|. Speeding up and reduc-
ing the cost of the development of such processes is crucial to be competitive against
the petroleum-based alternatives. A systematic approach, using metabolic modelling, is
thought to contribute to speed up and reduce the cost of the development of commer-

cially viable industrial biotechnological processes.

Nevertheless, expert knowledge, educated guesses, and gut feeling are still often directing
the process of metabolic engineering in view of enhancing the microbial production of
the target compound [152, 197|, despite numerous examples where the construction of
a producer strain did not turn out to be as straightforward as was initially presumed.
Indeed, in complex metabolic networks, it is often a difficult task to predict the impact,
both qualitatively and quantitatively, of a genetic intervention [12]. This complexity is
also reflected in the metabolic models (Table 3.1). The state of the art models, genome
scale models, typically consider all known reactions, formation, degradation, transport,

and cellular utilisation gathered from databases and the literature.
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Table 3.1: Genome-scale models

Micro-organism number of reactions considered
Escherichia coli 931 [148]
Saccharomyces cerevisiae 1175 [57]
Helicobacter pylori 388 [157]
Neisseria meningitidis 496 [10]

Metabolic models can help to identify genetic targets for metabolic engineering. For
instance, elementary flux modes have been used for the optimisation of L-methionine
biosynthesis by E. coli and C. glutamicum [93]. Flux balance analysis has been applied
for the optimisation of lycopene [5]|, L-threonine [98], L-valine [135], and succinic acid
[34] biosynthesis by E. coli and of glycerol and vanillin biosynthesis by S. cerevisiae
[137]. Partial least squares has successfully been used for the optimisation of phenylala-
nine biosynthesis by E. coli [200]| and of cellulase biosynthesis by Trichoderma sp. [196].
Finally, dynamic metabolic modelling has been used for the optimisation of carnitine
biosynthesis by E. coli [27].

In addition, to gain insight into the microbial metabolism, metabolomic, transcriptomic,
and genomic data are typically gathered. To interpret and to extract information from the
vast amount of metabolomic, transcriptomic, and genomic data, multivariate statistics,
principal component analysis (PCA) and partial least squares regression (PLS) [219, 220,
are more and more used in the field of metabolism related studies [39, 84, 105, 197], since
these methods can handle numerous and highly correlated data. Also the elementary
flux mode (see Chapter 2) data, gathered during stoichiometric network analysis can be

analysed with these techniques.

Hence, the aim of this study was to develop a model-based approach for directing
metabolic engineering, of which the application should result in speeding up and re-
ducing the cost of the development of a viable industrial biotechnological process. This
approach uses partial least squares regression to analyse elementary flux mode data,
which are hard to interpret physiologically, and it allows to rapidly identify potential
targets for metabolic engineering. This approach was illustrated by applying it to opti-

mise succinate biosynthesis by FE. coli.
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3.2 Materials and methods

3.2.1 Metabolic model

The metabolic network model of Lequeux et al. (2006) [100] was used in this study. This
metabolic model considers the glycolysis, with glucose transport by the PTS system, the
pentose phosphate pathway, the Krebs cycle, and overflow metabolism. For each amino
acid and nucleotide the anabolic reactions were included. Biosynthesis of LPS, lipid A,
peptidoglycane, and the lipid bilayer are incorporated as well. The P/O ratio was set to
1.33 [108, 203]. The reactions and metabolites considered in the model are depicted in
Figures 3.1 and 3.2, respectively.

3.2.2 Partial least squares

Partial least squares (PLS) regression has been performed in the software package R [140].
For a concise description of PLS the reader is referred to Chapter 2. This generalisation
of multiple linear regression is able to analyse data with strongly collinear and numerous
independent variables as is the case for the elementary flux modes under study. Partial
least squares regression is a statistical method that links a matrix of independent variables
X with a matrix of dependent variables Y. Therefore, the multivariate spaces of X and
Y are transformed to new matrices of lower dimensionality that are correlated to each
other. This reduction of dimensionality is accomplished by principal component analysis
like decompositions that are slightly tilted to achieve maximum correlation between the
latent variables of X and Y [219].

3.2.3 Elementary flux modes

The elementary flux modes of the stoichiometric E. coli model of Lequeux et al. (2006)
[100] were calculated by using Metatool 5.0 [214]. For a concise description of elementary

flux modes the reader is referred to Chapter 2.

3.3 Results and discussion

In this work, PLS regression was used to i) analyse the results of the elementary mode

analysis and ii) to establish a relationship between the ratio of the flux through a reac-
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tion to the glucose influx of an EFM and its succinate yield. To this end, for each of
the 17528 EFMs of the E. coli model of Lequeux et al. (2006) [100] (Figure 3.3) this
flux ratio was encoded in the matrix X (Table 3.2). The corresponding Y-variable is the
succinate yield of that EFM.

Table 3.2: Construction of the matrix X, with §; ; the ratio of the flux through reaction
7 in EFM j to the glucose influx in EFM j

Reaction PTS PGM ENO

EFM, Siuers  &,pam E1L,ENO
EFM, S.rrs  So.pam &1L,ENO
EFMs3 &,prs  &.pam E1L,ENO
EFMy Saprs  Sapom E1,ENO

Prior to data analysis, the data were appropriately pretreated. Several pretreatment
methods, i.e., mean centering (z — ) and auto-scaling %, have been used [193].
Auto-scaling was finally retained as pretreatment method (Figure 3.4), since it relates

best the differences in flux ratio’s with succinate yield.

A PLS model was then built. First, to avoid overfitting, as this would result in a model
not able to generalise to new data, cross-validation was applied to determine the appro-
priate number of latent variables. In cross-validation the data are split into & blocks
and a one latent variable model is built from (£-1) blocks of data. Based on this model,
the excluded block is used for testing and an individual predictive residual error sum of
squares, PRESS; is calculated. This procedure is repeated excluding each block once, and
the total PRESS is calculated for the model. This procedure is then repeated for 2, 3, ...,
min(m,n) latent variables, with n the sample size and m the number of variables. A series
of PRESS values is obtained [102]. Wold’s R criterion, given as R = % < 1.1,
is then applied to determine the number of latent variables to be used in the final model.
An additional latent variable is retained only when R is smaller than 1.1 [218]|. Using

this procedure 9 latent variables were retained in the PLS model.

The results, loadings and scores, are depicted in Figures 3.4-3.5. Both regression co-
efficients and loading weights have been used to study the system. By studying the
loading weights (Figure 3.5), one can see how important the variable is in each latent

variable. A large positive or negative weight value indicates that the corresponding X
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variable is highly correlated with the values in the score matrix U and hence with ma-
trix Y [179, 219]. As cellular metabolism is strongly interlinked [128, 193] it is obvious
that many reactions are simultaneously affected by the different elementary flux modes.
Therefore, the loadings are expected to show contributions of many different reactions
(Figure 3.5).

Some of the most important reactions for succinate production are listed in Table 3.3.
The targets identified by the PLS model for the genetic modification of Escherichia
coli for succinate overproduction are in agreement with data reported in the literature
[34, 81, 106, 116, 151|. This illustrates the value of this model-based approach for the
identification of genetic targets. Modification of the expression of the identified genetic
targets, by overexpressing or knocking out the identified genes, resulted in an enhanced

production of succinate.

The proposed method yields many targets for modification. The flux through these
reactions is linked in a positive or a negative way with succinate production, through
mass and energy conservation laws. Further evaluation of the identified targets using,
for instance, flux balance analysis and/or prior knowledge of microbial metabolism, will
be useful to determine their importance under a specific condition, e.g., aerobic versus

anaerobic environments.

The proposed method helps to significantly reduce the computational effort to optimise
microbial metabolism. For instance, since the number of possible combinations of 5
reaction-deletions in a model of 250 reactions is more than 7.8 10%, and existing genome
scale stoichiometric models contain a significantly higher number of reactions, genetic
algorithms were applied to search for beneficial knock-out combinations [137]. A first
screening of the reactions in a metabolic network, by the proposed method, is useful to

render such optimisation problems more feasible.

Contrary to many other methods that are typically focussing on the identification of
gene knock-out targets |5, 137|, the proposed method yields the correlation (negative
and positive) of the flux through each reaction with the yield of the target compound.
The question of how to achieve this increased flux remains however unanswered, since the
flux distribution depends considerably on the kinetics and the regulation of the enzymatic

reactions, which are not accounted for |5, 171]. Still, since succinate is a primary metabo-
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Table 3.3: Some of the most important reactions, identified by PLS

Reaction Reaction Coefficient sign
155 FAD + Suc +—— FADH, + Fum -
55 iCit — Suc + Glyox +
105 N.N. +
71 PEP + COy+ HyO — OAA + PiOH +
87 Mal+ NAD — Pyr+ COy+ NADH + H -
128 Fum + HyO — Mal -
136 Pyr+ NADH + H — Lac+ NAD -
127 FADHy + NAD — FAD+ NADH + H -
86 PEP+ ADP — Pyr + ATP -
126 AcCoA+2NADH + H — EtOH +2NAD + CoA -

lite, whose production is subject to severe (redox) constraints, stoichiometric modelling

is useful.

3.4 Conclusions

A model-based genetic target identification strategy for designing a microbial strain for
the production of a target compound, has been outlined. By applying partial least squares
regression to the elementary flux mode data, potential targets for metabolic engineering
of succinate biosynthesis in E. coli were identified. The targets identified by the PLS
model for genetic modification of E. coli for succinate overproduction are in agreement

with data reported in the literature.
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HK:

PGI:
PFK:
ALD:
TPI:
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Figure 3.1: Metabolic network of Lequeux et al. (2006) [100]: Reactions
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Figure 3.3: The 17528 elementary flux modes of the stoichiometric E. coli model of
Lequeux et al. (2006) [100], represented as /s, calculated by using Metatool 5.0 [214],
presented in the Yx g, Ysuccinate,s space, with Yx ¢ and Ysyccinate,s the biomass [%{’;ﬁe]
and succinate [ggéf] yield on glucose, respectively. The EFMs characterised by the opti-

mal flux distribution, here with respect to maximal Yyyccinate,s, can readily be identified
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Figure 3.4: The auto-scaled data represented in a score plot. 1/ represent EFMs charac-

terised by Ysuccinate,s = 1, V7 represent EFMs characterised by 0.6 > Y gyccinate,s = 0.9,
and 1/ represent EFMs characterised by Ysuccinate,s < 0.1.

38
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Figure 3.5: The loadings of scores 1 and 2 and the cumulative loadings of scores 1, 2,
and 3. This cumulative contribution is a measure for the importance of the reaction.
Positive values reflect a positive correlation between the flux and the succinate yield,
negative values represent for irreversible reactions a negative correlation, for reversible
reactions (R) that the direction of the flux should be the opposite as the one indicated

in the model.
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Chapter 4

Cybernetics: some issues on the
method

4.1 Introduction

The lack of knowledge about the mechanisms micro-organisms dispose of to regulate their
metabolism severely hampers the use and limits the usefulness of mechanistic modelling,
especially when a detailed description of the microbial behaviour is necessary [66, 89]. In
an attempt to partially circumvent this problem, cybernetic modelling introduces cyber-
netic variables [90] in order to accommodate for the microbial control of enzyme synthesis
and activity. These variables, whose value is determined by a controller, embody the al-
location of the limited resources a cell disposes of to these competing enzymes, yielding
the optimal performance [138, 205, 206]. This reasoning seems acceptable as in general,
it is believed that a micro-organism tries to optimise its behaviour, e.g., with respect to

growth or substrate uptake.

Recently, Young (2005) [223] rethought the framework and more tangibly introduced the
principles of optimal control theory. Optimal control theory is a mathematical optimisa-
tion method for deriving control policies. It aims to find a control law for a given system
such that a certain optimality criterion is achieved. In general, such a control problem
includes a gain function and a cost function, relating state and control variables. An
optimal controller is a set of differential equations describing the paths of the control

variables that maximise the performance function. Rephrasing this in the context of a
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micro-organism, the cost becomes, e.g., the pool of amino acids a micro-organism needs
to invest for the production of a particular enzyme, and the cell’s gain could be merely

growth. This framework will be discussed in Section 4.2.

A key concept in cybernetic modelling is the cybernetic unit. This is a cluster of enzymes
that compete with each other for the same pool of limited resources. For simple cyber-
netic models these cybernetic units could readily be distinguished, as they coincide with
the cybernetic basic components (Figure 4.1) [13, 14, 90, 190]. The increasing model
complexity, 7.e., over time more complex networks with less lumping were considered
[143, 172|, rendered the identification of these cybernetic units less straightforward and
even quite arbitrary [204, 206, 223| (Figure 4.1).

To rationalise the framework, Young (2005) [223] opted for elementary flux modes (EFMs)
as cybernetic units. However, whereas the choice for the EFMs as local control unit seems
quite obvious, the choice of the associated objective function is not. Young (2005) [223]

opted for the optimisation of a harmonic mean flux, J:

J— g;lg (4.1)
=1 rv;

with n the number of reactions, r; the rate of reaction ¢, v; the cybernetic variable con-

trolling enzyme activity, and &; the flux through reaction ¢ in the elementary flux mode.
This objective function aims amongst others at a steady throughput through the EFM
in an attempt to avoid accumulation or depletion of certain metabolites [223]. However,

its biological foundation is unclear.

The application of the approach in the domain of metabolic engineering requires a robust
and generic framework. The cybernetic control law for enzyme activity can also cause
controversy. As enzyme synthesis, enzyme activity is meticulously controlled through, for
instance, allosteric control, regulation by phosphorylation/dephosphorylation and other
types of covalent modifications |55, 161]. The knowledge on these regulatory mechanisms
to fully model these processes mechanistically is still insufficient. Therefore, in cyber-
netic modelling, cybernetic variables are introduced into a kinetic model with the aim of
substituting the unknown mechanistic details of the cell’s regulatory architecture. How-

ever, whereas the pool of limited resources necessary for enzyme synthesis is a concept
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Figure 4.1: Cybernetic models and their increasing complexity, from A) the model of
Kompala et al. (1984) [90] to B) the model of Guardia et al. (2000) [82] and the basic
components of the cybernetic units (convergent and divergent branch points, linear and
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easy to grasp (as this pool could be the amino acids/ATP, necessary for the synthesis of
enzymes), the concept of such a pool of limited resources for enzyme activity is far more

abstract.

Thus, deriving a control law for enzyme activity seems less obvious than the derivation of
the control law ruling enzyme synthesis. Kompala et al. (1984) [90] derived the matching
law to control enzyme activity. With a view to the application of cybernetic modelling
for metabolic engineering purposes, as suggested by, e.g., Varner and Ramkrishna (1999)
[205, 206] and Young (2005) [223| the need for a generic control law for enzyme synthesis
becomes apparent. However, comprehensive arguments why the matching law would be
generally valid, were not found. A typical example seemingly not coinciding with the
latter, would be the regulation of glutamine synthase [8], since both the activation and
inactivation of this enzyme seem to have a cost. Switzer (1977) [175] reports mechanisms

for in vivo enzyme inactivation which also seem to have a cost.

Consequently, one may wonder what is that cost? What is the no-cost activity, i.e.,
Uno—cost = X! Is there a cost for up- or down-regulation of enzyme activity? Therefore,

some alternatives for this control law were derived and evaluated.

4.2 Materials and methods

4.2.1 Cybernetic framework

The derivation of the cybernetic framework is taken from Young (2005) [223]. A micro-

bial system can be represented by a set of differential equations:

i=f() (4.2)

This system is subject to regulatory control both at the level of enzyme synthesis and
enzyme activity. These inputs are accounted for by introducing the control vectors u for
enzyme synthesis and v for enzyme activity, which specify how the resources are allocated

among the various alternatives:

&= f(z,u,v) (4.3)
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For clarity, the cybernetic variable controlling enzyme activity, v, will be discarded for
now. It is assumed that the cell allocates its resources in such a way that the performance

function J is maximised. This can be described by optimal control theory:

max J (4.4)
subjectto: & = f(x,u)

Computing the optimal control is numerically quite demanding. Assuming however that
regulatory decisions are made at each instant based on the projected system response

over a short time interval At, the system can be approximated by linearisation:

Az = AAz + B,Au+ f (z () ,u°) (4.5)
_ Of (z,u)
A== » (4.6)
_ Of (z,u)
By= =5 » (4.7)

The change in model performance A.J over the system’s planning window At then be-

comes:

AJ = qAz(t + At) — %/HM (uTauu) dr (4.8)
q:w AJ =J(t+ At) — J(t) (4.9)

in which the function ¢ (z (t)) represents the metabolic objective function of the system
and o, a parameter that scales the cost associated with resource investment. The solu-

tion of this optimal control problem can be derived. The Hamiltonian now becomes [224]:

Hy (z,u,\) = —%uz + AT [AAz + B,Au+ f (z(t),u0)] (4.10)

with A\ the costate vector.
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The state equation is given by:

i:%:%xwumw(az(ww

The stationary condition is given by:

0H
0= 8—ul = —ouu+ B
So, one finds for u:
Y BIX
Oy

in which the costate is given by:

. OH

“A=2L=4T)
ox

The boundary condition for this equation is:

At+ At) =q

Applying the boundary conditions and solving this equation gives:

t+ At 1 t+ A\t
— / —d\ = / AT at
t )‘ t

A (aT(an)
N+ At)

So, one finds for A:

At) = e(AT(At))q
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Substituting Eq. 4.18 in Eq. 4.13, yields:

u(t) = iBuTe(AT(M))q (4.19)

u

pi (t) = qTe(A(At))bui (4.20)

Since the resources are limited however, this is a constrained optimisation problem. The
appropriate constraints have to be added to the Hamiltonian (Eq. 4.10), yielding Eq.
4.21. The Karash-Kuhn-Tucker conditions can be derived both for the cybernetic vari-

able controlling enzyme activity and synthesis.

Hy (z,u, A\, n,v;) = Hy (x,u,\) + 1 (1 - Zul — w2> + ZW (uZ — /422) (4.21)
i=1

i=1

where v;, 7 are Lagrangian multipliers associated with the ith non-negativity constraint
u; > 0 and with the total resource constraint Y ., u; < 1, respectively, and n is the

number of competing reactions. The stationary condition now becomes:

0Hs
8’[%

=0= —ou; + byA=n—v; (4.22)

and the Karash-Kuhn-Tucker conditions are given by:

0H,

or, =0=2yK; =0 (4.23)

%‘ZQ =0=u— K =0 (4.24)

% =0= 2w =0 (4.25)
88_?:0:><1—§;ui—w2):0 (4.26)
" — bu“;# (4.27)

47



The solution that simultaneously satisfies these constraints is:

U; = max <pi i n,O) (4.28)

Oy

Since now u; > 0. Choosing o, = Y ;- ; max (p;,0) and taking into account Eq. 4.25:

n=0Vw=0 (4.29)

one finally finds:

max (p;, 0)
Z?:l max (pi7 0)

(4.30)

Ui =

Akin to the derivation of the control law ruling enzyme synthesis, u, the control law

ruling enzyme activity can be derived, with o, = max (p,,), yielding:
n

v = max (p;, 0) (4.31)
max (py,)

4.2.2 Cybernetic model

All simulations have been performed with the model of Kompala et al. (1984) [90], which
describes the bacterial growth on mixtures of substitutable substrates, especially under
conditions that give rise to diauxic growth. Two substitutable substrates are considered
S1 and S5, which are converted by the enzymes 4 and Es, respectively, to form biomass
(see also Figure 4.1). The stoichiometric and kinetic parameters used, are given in Table

4.1. The objective function is given by:

rIUL | T2V
_ 4.32
J Y + Y, (4.32)
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. TE. zg.
with r;, = —k .

vy Fizg g, i = {1,2}. Only the control law for enzyme activity was

modified durirllg this simulation study.

Table 4.1: Stoichiometric and kinetic parameters used to simulate diauxic growth [90]

Sugar i ki (h7') K; (g/L) Yi(9B/gSi) «oi (h7') B (h7)
Glucose 1 1.08 0.01 0.52 1.13 0.05
xylose 2 0.82 0.2 0.5 0.87 0.05

4.3 Results and discussion

4.3.1 Derivation of the control law for enzyme activity

With respect to the derivation of the control law for enzyme synthesis no alternative
exists. This is not the case for the control law ruling enzyme activity. Indeed, one may
wonder what the no-cost activity is. Is there a cost for up- or down-regulation of enzyme

activity? Therefore, some alternatives for this control law were derived and evaluated.

We replaced the cost term for enzyme activity, % (v)2, in the model performance func-
tion as presented by Young (2005) [223|, with % (v — x)%. Analogously to Section 4.2,

the solution for the optimal control problem has been derived:

Ui:X+pi+ni_Vi (4.33)

Oy

The solution that simultaneously satisfies the Karash-Kuhn-Tucker constraints, for y = 0

is:

oy = X (pi0) (4.34)
max (Ipsl)

The control law will here be derived for the case xy # 0. One finds for y = 0.5, and
max(|p|)

X

choosing o, =
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max [ X _ P
e (3 (10 2 ) 059

and for xy = 1, and choosing o, = max (|p|),
n

v; = min (1 TR - 1) (4.36)

max (|pi|)’
n

The enzymatic conversion capacity will be fully used, unless the return is negative. In

this case down-regulation has a cost.

4.3.2 Case study

To stress the importance of the choice of the control law ruling enzyme activity, the per-
formance of the derived control laws was evaluated for the case of sequential substrate

utilisation.

The evolution of the substrates S; and S5 and of the biomass X is depicted in Figure
4.2 and the cybernetic variables are depicted in Figure 4.3. Obviously, as is depicted in
Figure 4.3, both enzymes will be more active using Egs. 4.35 and 4.36, in comparison
with the matching law, since the return p; for both lumped pathways is always posi-
tive in this case. Hence, the cybernetic variables v; and vy given by Eq. 4.36 will be
1 throughout the simulation (Figure 4.3). Consequently, the enzymes are fully active,
since down-regulation of enzyme activity would cost. Akin reasonings can be elaborated
for x = 0.5.

The aim of the research presented here was not to come up with the ’true’ control law,
because this is impossible at this stage due to, e.g., the limited knowledge, the lack of
appropriate data, and the potential dependency on the model structure. Rather, the aim
was to emphasise its importance for the model itself, as the chosen cybernetic control

law will have an impact on the optimal values of the parameters to be estimated and
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Figure 4.2: Effect of the control law derived for enzyme activity (Eqgs. 4.34-4.36) on
the evolution of the concentration [g/L] of glucose (S1), xylose (S2), and biomass (X)
simulated with the model of Kompala et al. (1984) [90]
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Figure 4.3: Effect of the control law derived for enzyme activity (Eqs. 4.34-4.36) on
the evolution of the cybernetic variables vy, v9, u1, and ug simulated with the model of
Kompala et al. (1984) [90]
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may have an influence on the model predictions.

Based on the experimental data of Monod (1947) [117|, Kompala et al. (1984) [90]
derived the matching law (Eq. 4.34), predominantly based on the fact that no lag phase
could be observed for a pregrown culture. Indeed, in this situation none of the proposed
alternatives (Eqs. 4.35 and 4.36) would perform as well as the matching law. However,
what was the cause for the observed behaviour? Was it indeed resource investment linked
to enzyme activity? Or did the metabolic regulation of enzymes of the lumped pathways
play a determining role? Indeed, substrate (use) might have a cost, which would be more
or less in agreement with the matching law, but what would be the cost of an abundantly
present (extracellular) substrate of an enzymatic conversion and do all enzymes compete
then for the same substrate (since only one pool of limited resources to control enzyme

activity is considered in the framework presented by Young (2005) [223])?

4.4 Conclusions

Ab initio, cybernetic models have typically been used in the domain of bioprocess con-
trol. Recently, the original framework was reworked by Young (2005) [223| with a view
to applying this method in the domain of metabolic engineering, in order to cope with
problems related to the increased model complexity. Since the application of the cyber-

netic approach in this domain requires a generic framework.

In view of the latter, different alternatives for the matching law have been derived and
evaluated. Obviously, the choice of the control law for enzyme activity is important.
However, due to the limited knowledge, issues linked to the model structure, and the

lack of appropriate data it was not possible to distinguish between the rival control laws.

Although the approach seems appealing, given the present lack of knowledge, detailed
experimental omics data, and some of the problems linked to ’conventional’ dynamic

metabolic modelling, there still remain some issues unresolved.
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Chapter 5

Identification and evaluation of

approximative kinetic model

structures 1

5.1 Introduction

In the past, the genetic potential sensu largo of a microbial strain was improved by the
iterative process of random mutagenesis and screening. The advent of recombinant DNA
techniques and functional genomics made it possible to apply a goal-oriented approach

for genetic modification (metabolic engineering).

However, in most cases the construction of a producer strain did not turn out to be as
straightforward as was initially presumed [12, 89, 195]. Indeed, in complex metabolic
networks it is often a futile pursuit to ad hoc predict the impact, both qualitatively and
quantitatively, of a genetic intervention [12]. Moreover, as the focus in metabolic en-
gineering is shifting from the massive overexpression and inactivation of genes towards
fine tuning of gene expression [39, 69, 84|, the need for a reliable, quantitative predictor,
i.e., a model, that incorporates enzyme kinetics, regulatory mechanisms (which are in

general designed to prevent overproduction), compartmentalisation, and the interactions

'Parts of this chapter have been submitted as: J. Maertens and P. A. Vanrolleghem. Identification and
evaluation of approximative kinetic model structures. BMC Bioinformatics, submitted for publication,
2008.
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between distinct parts of the cellular metabolic network is growing rapidly.

Initially, stoichiometric models were applied to facilitate the choice of where to inter-
vene genetically. However, it is still unclear whether the well established techniques of
metabolic flux analysis |3, 100, 198] and flux balance analysis |5, 34, 142| are fully apt
for such aims since the prediction of the optimal flux distribution depends considerably
on the kinetics and the regulation of the enzymatic reactions which are not accounted
for [171].

The quest for a quantitative approach also led to the development of metabolic control
analysis, MCA [85]. MCA aims at eliciting the sensitivity of the metabolic flux distri-
bution to changes of enzyme levels and thus identifies the rate controlling enzyme(s)
in the pathway. The applicability of MCA is however limited due to, e.g., its limited
extrapolation range around the reference point, which is in general much smaller than
the flux shift one aims at in metabolic engineering. It is further based on a steady-state

assumption [64] and depends on (unknown) enzyme levels [54].

Although a mechanistic dynamic metabolic model is not suffering from the aforemen-
tioned shortcomings, it is no deus ex machina either because such a model is complex,
overparameterised |42|, and the parameter identification is not evident either, because of

the highly nonlinear rate equations and the large number of parameters to be estimated.

To deal with the latter problem different approximative, linear non-mechanistic kinetics
were suggested. The most popular approximative kinetics are i) the ’log-linear in metabo-
lite and enzyme levels kinetics’ [72, 73], ii) the so-called ’linlog kinetics’ Eq. 5.1 [74, 209],
iii) 'the linear in metabolite and enzyme levels kinetics’, iv) the 'linear in metabolite
levels kinetics” Eq. 5.2, and v) the '"GMA type power law kinetics’ Eq. 5.3 [154].

Tk - T M,
Zo =1+ &kl (#) (5.1)

n
Tk 0 T M,



n €k
Tk XM My
=11 (Tl> (5:3)

with 7, the reaction rate of reaction k, J° the steady-state flux, 2, and :E(])\/[l the concen-
tration of metabolite [ under dynamic conditions and at steady-state, respectively, and

0 an elasticity coefficient.

The final aim of such a model-based approach is thus target identification for optimising
a production host. These targets are those reactions that control the flux through a

reaction network, which can be assessed by calculating the flux control coefficients.

Due to the complexity of metabolic networks and the limited available data for identifying
the parameters of a metabolic network model, such models are in general overparame-
terised [42]. The resulting poorly identifiable parameters can lead to uncertain model
predictions. Several approaches have thus far been presented in the field of metabolic

engineering in order to deal with or assess the latter:

Nikerel et al. (2006) |125] simply removed the terms that contained unidentifiable model
parameters. However, amongst others Degenring et al. (2004) [42] have observed the
potential detrimental impact on the model’s performance of such action. These authors
reduced their overparameterised model by eliminating parameters based on a (local) sen-
sitivity analysis. However, the importance of a parameter cannot merely be assessed
using a local sensitivity analysis. Indeed, the model output can be insensitive to a pa-
rameter, but due to strong interaction effects with other parameters it can become overall
important [150]. This effect can be determined by the extended FAST method [150] or
the method proposed by Sobol (1993) [167].

Kresnowati et al. (2005) [92] made use of multiple in silico generated data sets to as-
sess this uncertainty; considering the typical lack of experimental data such an approach

seems far from realistic.

Hence, the aim of this study was to properly assess the uncertainty on the calculated flux

control coefficients with a view to target identification in metabolic engineering. This
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uncertainty may be the result of both an uncertain model structure and of uncertain pa-
rameter estimates. To this end, several rival approximative kinetics were used to describe
an illustrative pathway. Since, the enzyme levels will be assumed constant in this study,
the log-linear in metabolite and enzyme levels kinetics (i) and the linlog kinetics (ii),
and the linear in metabolite and enzyme levels kinetics (iii) and the linear in metabolite

levels kinetics (iv), two by two coincide, as they only differ with changing enzyme levels.

For this reason, only three approximative kinetic structures (the linlog kinetics, the GMA
type power law kinetics, and the linear in metabolite levels kinetics) were retained for
further analysis. In order to properly assess the uncertainty on the calculated flux control
coefficients the linear kinetic parameters for each of these rival approximative kinetics
were identified using a two step parameter identification procedure and the adequacy of

the approximative kinetics to describe the system was evaluated.

5.2 Materials and Methods

5.2.1 Linear pathway

The pathway considered in this study was taken from Delgado and Liao (1992) [43],
slightly modified by Kresnowati et al. (2005) |92], and is presented below. The pathway

consists of four metabolites ¢1, x1, T2, and ¢y and three reactions vy, vo, and vs.

U1 v v3
Cl — X1— T2— C39

The complete nonlinear kinetic equations are given in Egs. 5.4-5.6:

0.2
— 5.4
vl 1+ 2 ( )
1.521 . (1+ 22!
vy = 14+L)", L= 0L~ (5.5)
0.5+ (1 4 g_%)
v3 2 (5.6)

1+ 2+ %
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The steady-state flux and steady-state concentrations in Table 5.1 were obtained by solv-

ing the mass balance equations for the steady-state condition.

Table 5.1: The Steady-state flux and the steady-state metabolite concentrations and the

initial conditions of the perturbation (in arbitrary units)

g r vy e J°
Steady-state conditions 2.0 0411 0.154 0.0 0.142
Initial conditions of the perturbation 2.0 1.0 1.0 0.0

Transient data were obtained by perturbing the steady-state (Figure 5.1). To reflect
typical measurement data, normally independently distributed noise €(0,0%) was super-
imposed on these simulated metabolite concentrations. 11 sample points were uniformly
distributed over the time interval [0,5]. This is realistic as sampling frequencies up to

4-5 571 are reported in the literature [129)].

5.2.2 Derivation of the control coefficients

The derivation of the flux control coefficients is taken from Mauch et al. (1997) [115]. A

microbial system can be represented by a set of differential equations:

&= f(z,p) (5.7)

with x a vector that contains the state variables and p a vector that contains the param-

eters. C’gl is defined as the concentration control coefficient:

ox; pj Oln z;

cM = = 5.8
K 8])]‘ €T; alnpj ( )

and Cf; is defined as the flux control coefficient:
CZI; _ 82}2& . 8lnvi (5.9)

8pj (% N alnpj
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Figure 5.1: Evolution of metabolite concentrations (in arbitrary units) of ¢1, x1, 2, and

co after the perturbation
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with v; the rate of reaction ¢. The time-derivative of the first-order sensitivity of concen-

tration x; with respect to parameter p; is given according to [188] by:

el = —F 1
dt ( > kzzlaxk Ip; " Ipj 210

Eq. 5.10 can be written as:

dc%* e .
d—i; = ZJikaj + ij (5.11)
k=1

where C%* denotes the non-normalised sensitivity of concentration x; with respect to
parameter p;. J;j describes the derivative of the ith element of vector f with respect
to the k™" element of state vector x. 1;; is the derivative of f with regard to the jth

parameter of ps. In matrix notation Eq. 5.11 becomes:

dcM” X
—— =JcM 4y (5.12)
dt
where C™" [m, s] is the non-normalised concentration control matrix. .J [m, n] is the well-
known Jacobian matrix, whilst ¢ [m, s] denotes the matrix containing the sensitivities
of the right-hand side of Eq. 5.7 with respect to parameter vector P;. For steady-state

conditions one finds:

dcir
dt

=0 (5.13)

If J is invertible, one can write:

Cy" = —J5 "o (5.14)

Eq. 5.14 can be transformed into the normalised concentration control matrix at steady-

state, O}, with the diagonal matrices X [m,m] and Ps [s, s], which contain the steady-
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state concentrations and parameter values, respectively:

O = — Xy Iy o Ps (5.15)

Time dependent concentration control coefficients can be obtained through integration

of Eq. 5.12 using Eq. 5.14 with subsequent normalisation:

cMt)y=x""1 (/t (JCM* + ¢) dt + Cé‘”) P, (5.16)
0

In Eq. 5.16, X [m,m] represents a matrix whose components are the time-dependent
concentrations on the diagonal, and zero otherwise. Note that the time traces of state

vector z can be obtained by solving Eq. 5.7.

Analogously time-dependent flux control coefficients can be derived. The differentiation

of rate r; with respect to p; leads to:

dv; Em: ov; % ov;

5.17
dp; Oxy, Op;  Opj ( )
and rewritten in a dimensionless form:
m
05 = ZEZkC]i\;[ + Tij (5.18)
k=1
in which the elasticity coefficient, g;1, is defined as:
ov; xy,
Eik = — 5.19
ik &Tk (v ( )

This elasticity coefficient describes the fractional change of the local reaction rate r; to

an infinitesimal small perturbation of concentration xj. In other words, €; . is a measure
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of the order of the local reaction rate with respect to concentration xy. The m-elasticity

coefficient, 7; ;, introduced in Eq. 5.18, is defined as:

= (5.20)

and is used to represent the relative change of the local reaction rate r; to a relative,

infinitesimal small change of parameter p;. In matrix notation, Eq. 5.18 becomes:

CF=eCM 41 (5.21)

CM is provided by Eq. 5.16. For steady-state conditions Eq. 5.21 becomes:

CF = eoCM + g (5.22)

CF = —eo Xy Jy Mo Ps + mo (5.23)

Knowing the time traces of the concentration control coefficients, the course of the flux

control coefficients can be described as:

C (t) =ecX 1</t (JC'M*—|—¢) dt—i—Clj*)P + 7 (5 24)
0 S °
0

A flux control coefficient is a measure of how a change in the concentration of an enzyme
affects the steady-state flux through that particular pathway. Hence, it is a measure of

the degree of control exerted by this enzyme on the steady-state flux [222].

5.2.3 Identification procedure

A two step identification procedure has been applied. In a first step the parameters are

estimated using an element-wise weighted total least squares estimator (EW-TLS). In a
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second step a Bayesian approach is followed to determine the posterior distribution of

the parameter estimates, using the prior distribution obtained in the first step.

Calculation of the derivatives

To obtain the parameters of the set of ordinary differential equations in a linear form the

time derivatives of the metabolite concentrations have to be determined:

rj

de " 0 E CM, 0
PR S RS 5 CTRR EN 529
~— =1 =1 \ M N~——
b1+Abi+e€ — x
(A1+AA1)

with m the number of reactions involved in the formation and utilisation of metabolite
c. With b; the dependent variables, Ab; the errors in the dependent variables, A; the
independent variables, AA; the errors in the independent variables, and x the linear
parameters. To calculate the derivative of the concentration data with respect to time,
a smoother is needed since the derivation of noisy data is an ill-posed problem. A wide

variety of smoothers exist [35, 52, 155], in this work a penalised least squares smoother
[52] has been used.

Element-wise weighted total least squares

A wide variety of linear estimators exists to solve Eq. 5.26:

(Al + AAl) r=>b +Aby +¢ (5.26)
Only when the errors in the independent variables, Aby, are negligible compared to those

in the dependent variables, AAj, |46], i.e., AA; = 0, the ordinary least squares estimator
Eq. 5.27 yields an unbiased estimate.
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ors = min [|A1z — (b1 + Aby)ll (5.27)

Unfortunately this condition does not hold here as the metabolite concentration data are
inaccurately known. An estimator which does yield unbiased estimates asymptotically
is known as element-wise weighted total least squares [94, 199], as it takes the errors on
both dependent and independent variables into account. Firstly, the parameters were
estimated with an element-wise weighted total least squares estimator, using as initial
conditions the parameters obtained using an ordinary least squares estimator. Subse-
quently, a local nonlinear parameter estimation (simplex algorithm) was performed to
obtain more accurate estimates of the parameters, which typically consists of minimising
the weighted sum of squared error functional J (assuming independently and normally

distributed noise), by optimally selecting the parameter values:

J = if: (bj,E(i) ;jbj,ls(i)>2 (5.28)

i=1j=1

with b; g (i) and bj 15 (i) the experimentally determined and in silico calculated value of

state variable j at time ¢, respectively.

Calculation of the variance-covariance matrix

The obtained parameter values are then used to calculate the Fisher information matrix,

FIM, Eq. 5.29:

FIM = 2:; [(%ZSC))T Q' <%>] (5.29)

with n the number of sampled time points and () the measurement error variance co-

variance matrix given by, assuming independently and normally distributed noise:
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o2 0 0 0 0
0 0 0 0
Qi=| 0 0 o? 0 (5.30)
0 0 0 0
0 0 0 0 o2

with m the number of measured variables and o; the corresponding measurement error

standard deviation.

For each (state variable, parameter) combination the optimal perturbation factor 6 has
been determined to numerically calculate the sensitivity functions in Eq. 5.29, %, using
a finite difference method, W
{10_12, 107, ..., 1076, ..., 10_2} yielding the minimum sum of absolute relative errors

(SRE) was retained, Eq. 5.31 [40, 41]:

To this end, the perturbation factor out of

b
Oor —
Ob
Ox +

SRE = |1 — (5.31)

where the subscripts, — and +, in Eq. 5.31 stand for the sign of the perturbation factor.

According to the Cramer-Rao inequality [107]| the Fisher information matrix is related
to the lower bound of the parameter estimation error covariance matrix C, under some

conditions, i.e., the noise should be uncorrelated and normally distributed (0,0]2-) [107]:

C>FIM™! (5.32)

Sampling the prior distribution of the parameters

The parameter space will then be sampled n times according to the parameter estima-
tion variance covariance matrix, C. Then, the prior probability P (x;) for each of these

sampled discrete parameter sets x; is % For every set of sampled parameter values the
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model is solved. The likelihood of this set, i.e., the probability of observing the data b
given the parameter set z; can then easily be calculated, assuming independently and

normally distributed measurement noise [118]:

n m 5(0)-b;15(1)
P zg) = [[—Lr—exp | 3 — Loz s 5.33
(blz) 2‘1;[1@ o <]§1 207 ( )

1

=3

J

with b; g (i) and bj 15 (i) the experimentally determined and in silico calculated value of

state variable j at time ¢, respectively.

Calculation of the posterior distribution of the parameters

The second step of this 2 step Bayesian parameter identification procedure consists of
calculating the posterior distribution on the basis of the prior distribution P (x;) [17].
The posterior distribution is given by [118]:

P(b]| ;) P ()
P(b)= [P (b]| )P (x;)dx = ;P(b | 2;) P (z;)

with P (b) the probability of observing the data and P (b | z;) the probability of observing
the data b given the parameter set x;, Eq. 5.33.

5.3 Results and discussion

For the linear in metabolite levels, the GMA type power law, and the linlog approxi-
mative kinetic formats the parameters were estimated using sequentially the EW-TLS
and a nonlinear parameter estimator. The results are depicted in Figure 5.2. A model
adequacy test, x2-test as described by [31], has been used to evaluate the adequacy of the
different approximative kinetics to describe the collected data. All studied approximative

kinetic formats performed adequate for the case presented here.
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This is somewhat contradictory to Heijnen (2005) |74| who pinpoints out the advantages
of the linlog kinetic format. According to Heijnen (2005) [74], allows the curvature of
the linlog kinetic format to capture the true kinetics over a much larger metabolite range
in comparison with the linear in metabolite levels format. Note that the original kinetic
equations used in this study are highly nonlinear and one can not pretend the metabolite

range observed during the transient is small.

To properly assess the uncertainty on the calculated elasticity coefficients and the flux
control coefficients a Bayesian method has been applied. A first step in this Bayesian
approach is the determination of the prior distribution. To this end, the by the inverse
of the Fisher information matrix linearly approximated parameter estimation error co-
variance matrix was used. This requires the sensitivity functions of the state variables
to the elasticity coefficients, which are depicted in Figure 5.3. Based on these results the

parameter estimation error covariance matrix has been calculated.

The influence of the chosen prior distribution on the posterior distribution has been ex-
amined for the linlog kinetic format. Both a non-informative and an informative prior
were evaluated. As non-informative prior a uniform distribution has been chosen. It
is non-informative as all possible values (here) in the 95 % confidence interval (from a
frequentist point of view) of the parameter estimates are a priori equally likely. As infor-
mative prior the distribution obtained through the parameter estimation error covariance

matrix has been used.

From the resulting informative and non-informative prior distributions 10° parameter sets
have been sampled (Figure 5.4). For each set the flux control coefficients and its likeli-
hood have been calculated. Finally, the posterior probability distribution was calculated.
Increasing the number of samples even more, did not alter the posterior distribution (re-
sults not shown). The resulting distribution on the flux control coefficients is given in
Figure 5.5. The posterior distribution did not seem to be influenced by the used prior

(data not shown).

The approach presented in this study thus attempts to take the uncertainty on the flux
control coefficients into account for the purpose of identifying potential bottlenecks in the
metabolic network. Even for large models [109, 147] such an approach becomes feasible,

e.g., by means of distributing computing [9] .
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Figure 5.2: Evolution of metabolite concentrations of ¢, x1, x2 , and ¢y after the per-
turbation, measured (57) and simulated by the linlog model (-0), the GMA type power

law model (-), and the linear in metabolite levels model (-x).
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Though the order of magnitude of the calculated flux control coefficients seems in reason-
able agreement with the true values (Figures 5.5-5.7), the true flux control coefficients
(Cf =0.69, C{ = 0.1, and C§ =0.21) do not always seem to lay in the 95 % cred-
ible intervals, which could potentially be due to chance or to the model structure of
the approximative kinetics. However, the applied method can be considered a more reli-

able way to assess the uncertainty on the calculated values of the flux control coefficients.

All approximative kinetics were judged (equally) adequate. Hence, none of the three
model structures could be discarded from this analysis and all approximative kinetics
were considered simultaneously in an attempt to take the uncertainty of the model struc-
ture on the calculated flux control coefficients into account. As described above, the prior
and posterior distributions have been calculated, which are depicted in Figure 5.8. Note,
that the obtained prior is nothing more than the rescaled superposition of the prior prob-
ability density functions of the individual approximative kinetics, as all model structures
were considered equally likely. The resulting posterior distribution is however weighted,
with the likelihood of each observation. As can be seen in Figures 5.5-5.8 especially the
GMA type power law model is determining the resulting posterior distribution for all

approximative kinetic formats.

Only a small network has been investigated and issues linked to the increased model
complexity of larger models have thus not been encountered, e.g., error accumulation.
Whereas in the case presented here approximative kinetics appear to give fair estimates of
the flux control coefficients, this approach seems to perform less well for larger networks.
For example, Visser et al. (2004) [210] successfully re-designed primary metabolism in
E. coli using the theoretically derived linlog elasticity coefficients and the linlog kinetic
format on the basis of the model of Chassagnole et al. (2002) [30]. However, when one
attempts to simulate the glucose perturbation experiment, that originally was used to
identify the mechanistic parameters of the model, using the theoretically derived linlog
elasticity coefficients and the linlog kinetic format, the predicted evolution of the metabo-

lite concentrations did not make sense at all (data not shown).

It seems that the usefulness of such approximative kinetic formats decreases with increas-
ing model size and complexity [92, 125, 210]. In order to collect informative data from

one or more perturbation experiments for parameter identification purposes, it might be
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necessary to radically perturb the cell. Probably, way beyond the envisaged metabolites’
pool sizes shifts as a result of metabolic redesign and likely way beyond the metabolite
range for which approximative kinetic formats yield an adequate description of the true
kinetics, because a perturbation broadens and dampens out when it passes through a
network |6, 7|.

5.4 Conclusions

Due to the complexity of metabolic networks and the limited available data for the iden-
tification of the parameters of a metabolic network model, such models are in general
overparameterised [42]. This leads to poorly identifiable parameters resulting in uncer-

tain model predictions.

A Bayesian method is proposed to properly assess the uncertainty on the calculated flux
control coefficients in view of increasing the trustworthiness of the identified metabolic
engineering targets. Though the order of magnitude of the calculated flux control coeffi-
cients seems in reasonable agreement with the true values, the true flux control coefficients

did not always seem to lay in the 95 % credible intervals.

All of the state of the art approximative kinetic formats: the linlog kinetics, the GMA
type power law kinetics, and the linear in metabolite levels kinetics adequately described
the data, even though the original kinetic equations used here are highly nonlinear and

the metabolite range observed during the transient is not small.

It is shown that to a large extent the uncertainty on the calculated flux control coeffi-
cients is due to an uncertain model structure and consequently it is worth the effort to
increase the trustworthiness of the identified metabolic engineering targets by means of

experimental design for model discrimination.
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Chapter 6

A modus operandi of the Bioscope
to study oscillating microbial

systems

6.1 Introduction

Whether microbial fermentation processes can be an attractive alternative for the pro-
duction of many chemicals for the well-established chemical synthesis routes depends
predominantly on the overall process performance. Consequently, the optimisation of
microbial processes is a must, certainly compared to those more mature chemical syn-
thesis routes. This is especially true, as in general the cell’s objective function [159], e.g.,
optimisation of growth, considerably differs from that by which the fermentation process

is judged.

A systematic approach for this optimisation, by means of a genetic intervention (metabolic
engineering) or by optimising the external conditions, finds more and more acceptance
as it is quite difficult to predict ad hoc the global impact of a genetic intervention and

of varying environmental conditions, respectively [12].

A systematic approach may use metabolic modelling as tool to fully understand the
mechanisms, e.g., allosteric control (feed-back, feed-forward control), control of protein

Y

induction, ..., which yield these altered process performances. Such metabolic models,
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both steady-state [124, 198] and dynamic [30, 149] ones, are increasingly applied for the
purpose of identifying the bottlenecks in the metabolic network and the elucidation of

regulatory mechanisms.

However, also metabolic network models are subject to the ancient saying 'garbage in is
garbage out’ and consequently a properly validated model is a conditio sine qua non to
rely on the model’s outcome for process optimisation [166]. In this respect the design of
experiments dedicated to model building can become an additional bottleneck. Indeed,
whilst striving for a proper identification of the parameters of the metabolic network
model many researchers have thus far been confronted by the limits of the available ex-

perimental data they have gathered [42].

This is due to the limited information richness of a single perturbation experiment aimed
at identifying the metabolic network model’s parameters and structure and deciphering
regulatory mechanisms in microbial organisms. Thus, multiple experiments have to be
performed starting with a culture characterised by a well defined metabolomic and pro-
teomic state |114, 211]. Obtaining such a well defined state typically takes a lot of time
and, consequently, being able to eliminate the perturbation of this state would be very

welcome.

Recently, experimental set-ups have been designed in order not to perturb this well
defined state and still being able to perform multiple perturbation experiments, e.g., a
Bioscope connected in series with a chemostat [212| (Figure 6.1, scenario I). The most
important feature of a chemostat is that all culture conditions, e.g., dissolved oxygen
concentration, pH, cell density, ... remain constant. The efluent of the chemostat is
the influent of the Bioscope. Hence, the properties of the incoming flow in the Bioscope
are constant. A Bioscope is a plug flow reactor which is continuously fed by broth
from the bioreactor [212]. Instead of perturbing the bioreactor itself and consequently
all its biomass, the continuous flow from the bioreactor into the Bioscope is perturbed
just after entering the Bioscope. Importantly, the chemostat itself is not affected by
these perturbations [212]. Perturbing the reactor itself to collect a data set describing
the response of the cells to the perturbation would lead to a long waiting time before
another perturbation experiment can be performed because the culture must be allowed
to regain its steady-state [212]. Distributed over its length the Bioscope has a number

of sample ports. Because of the plug flow characteristics of the Bioscope every sample
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port is linked to a sample time after perturbation. Obviously, these sample times after
perturbation are determined both by the distance from the inlet of the Bioscope and
the flow of broth and perturbing agent through the Bioscope. In the traditional steady-
state operation of the bioreactor the sample ports of the Bioscope are opened one by one
for a given amount of time in order to collect sufficient sample for the analyses to be

performed.

Although the emphasis of process optimisation is nowadays shifting towards the genetic
modification of microbial strains, dynamically operated cultures can be industrially in-
teresting as well, as, for instance, the interplay of the fluctuating metabolome, e.g., the
ATP-paradox [168, 182, and eventually even the proteome can result in an altered pro-
cess performance. In many fermentation processes, such dynamically operated cultures
result in an altered yield, as the interplay of the fluctuating extracellular conditions and
the altered metabolite levels (and enzymatic armamentum) results in an adapted cell

with a superior [185, 189| or a deteriorated performance [16, 23, 202].

Metabolic models can also be useful tools for the optimisation of such dynamically op-
erated cultures. Hence, the objective of this contribution is to propose a new modus
operandi of the Bioscope so that this equipment can also be used to perform multiple
perturbation experiments with microbial systems that are subject to a periodic operation
(Figure 6.1, scenario IT). This will allow to rapidly collect the necessary data in view of

identifying the model’s parameters and structure.

6.2 Model

The dynamic model of Chassagnole et al. (2002)[30] was used as data generating model.
This metabolic network model describes the dynamic behaviour of the central carbon
metabolism of Escherichia coli, i.e., of 25 metabolites that are involved in 30 reactions of
the glycolysis and the pentose phosphate pathway, after perturbation of a carbon limited
continuous culture by a glucose pulse. The general form of the mass balances of the

extracellular and intracellular metabolites is given by Eq. 6.1 and Eq. 6.2, respectively:
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Figure 6.1: Schematic representation of the reactor configuration. Scenario I: the Bio-
scope is connected in series with a chemostat. Scenario II : the Bioscope is connected
in series with a periodically operated reactor (period T). In order to collect cells with
the same initial intracellular make-up prior to the perturbation a sample port should be
opened at [t +nT + t3] s (with n = 0,1,...). Then, cells are collected that entered the
Bioscope at [t + nT] s, with ¢ the time instant in the period, and that have spent t9 s in
the Bioscope.

drg rx
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T, dt dt |z dt Zk: SIkT (62)

with zps and xg the concentration of an intracellular metabolite M and an extracellular
metabolite S, respectively, sj;, the stoichiometric coefficient of metabolite j in reaction
k, rp the rate of reaction k, px the specific weight of biomass and xx the biomass
concentration, D the dilution rate, xOS the concentration of an extracellular metabolite S

in the feed, fp

growth rate. Note that xg is expressed in reactor volume whereas x s is expressed in cell

uise @ pulse of an extracellular metabolite S in the reactor, and u the specific

volume. The term pxj,s in the mass balances of the intracellular metabolites represents

the dilution effect due to growth.
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6.3 Results

6.3.1 Experimental set-up

The proposed reactor configuration consists of a Bioscope connected in series with a
periodically operated completely mixed bioreactor, with period T (Figure 6.1, scenario
IT). Such a periodic operation mode leads to a microbial system that shows limit cy-
cle behaviour, which means that the cell’s internal state periodically returns to be the
same state. The new modus operandi of the Bioscope allows to selectively evaluate
the perturbation behaviour of cells, that possess a particular internal state prior to the
perturbation, which permits the sequential perturbation of cells with the same initial
condition taken from a dynamically operated culture. Again the Bioscope principle is

applied, i.e., the culture from which the cells are taken is not perturbed.

In the proposed periodic operation of the bioreactor the varying conditions in the bioreac-
tor generate a non-constant broth composition with respect to the concentrations of both
extracellular and intracellular metabolites. If the sample ports would now sequentially,
continuously be opened one by one, cells would be collected with a different intracellular
make-up prior to the perturbation. Hence, the proposed modus operandi of the Bioscope
must aim at collecting only those cells that are characterised by the same intracellular
make-up prior to the perturbation. For this a control scheme to open and close the sample

ports has to be applied. This has been developed below on the basis of a simulation study.

6.3.2 Simulation study

To illustrate the principle and possibilities of the proposed reactor configuration a sim-
ulation study has been performed. As mentioned above, during the periodic operation
of the bioreactor, i.e., when the transient behaviour has faded out, the metabolite tra-
jectories enter a limit cycle, as illustrated in Figure 6.2 for the metabolites G6P, PEP
and GLcg in a 3D space. After every period the trajectory ends up in the same point,

characterised by its intracellular metabolomic and enzymatic make-up.

The proposed method is thus able to yield, every period, the same well defined metabo-
lomic and proteomic state. However, given the dynamic operation of the bioreactor, this

state is different from the steady-state mode operation. This periodic ‘initial condition’
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Figure 6.2: the limit cycle during the periodic operation in the reactor represented in the
phase space of phosphoenolpyruvate (PEP), glucose-6-phosphate (G6P), and extracellu-
lar glucose (Glce).

at the inlet of the Bioscope, together with the constant perturbation applied to it, leads
to a periodic variation of the extracellular and intracellular metabolite concentrations
as the broth moves along the Bioscope’s plug flow (Figure 6.3). Figure 6.3 depicts a
schematic overview of the behaviour of the intracellular and extracellular metabolites
both in the periodically operated bioreactor and in the Bioscope. In the perfectly mixed

reactor, a substrate pulse is given every 60 s resulting in a periodic system.

The sample ports of the Bioscope should be controlled in such a way that only cells
that had the same intracellular make-up prior to the perturbation, are collected, i.e., the
sample port should instantaneously open and close at [t + nT + to] s with n=0,1,... until
enough sample is collected for the analyses to be performed. Then, cells are collected
that entered the Bioscope at [t + nT| s, with ¢ the time instant in the period, and that

have spent ¢ s in the Bioscope.
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Figure 6.4 qualitatively depicts the trajectories in the phase space when the initial culture
is perturbed at different instants during the period of the limit cycle in the bioreactor.
Thus, by performing perturbation experiments at several time instants of the limit cycle,
different responses can be gathered. The sample time in the Bioscope and the perturbing

agent are additional degrees of freedom for this experimental set-up.

6.4 Discussion

The proposed configuration allows the execution of multiple perturbation experiments,
even when the initial culture is subject to periodic conditions, via the controlled collec-
tion of samples. This operation implies that the initial reason to be of the Bioscope is
preserved. Such an equipment is thus practical to study, through perturbation exper-
iments, the complex metabolomic and proteomic interactions in periodically operated
cultures for elucidating the mechanisms underlying the altered yields. In addition, only
small quantities of the perturbing agent have to be used, which is a major advantage

especially when the use of labelled substrates is imperative [212].

Both the sampling time in the Bioscope and the initial state of the cells to be collected
prior to the perturbation are additional experimental degrees of freedom for the proposed
configuration. Collecting samples in the Bioscope, with the same initial state prior to
the perturbation, at distinct points in time thus allows the preservation of the culture
and, consequently, should allow performing multiple experiments in a relatively short
time, e.g., perturbing a culture characterised by the same initial intracellular make-up,
with different perturbing agents or perturbing a culture with the same perturbing agent

starting with the same initial state.

6.5 Conclusions

An experimental set-up has been proposed with a view to gathering data to build and
validate a dynamic metabolic model of periodically operated cultures. Such models can
be useful for the optimisation of periodically operated cultures as they help to gain further
insight in the complex metabolic interaction and they can predict the effect of altered

conditions. This set-up allows performing multiple perturbation experiments without
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perturbing the periodically operated culture itself. The perturbing agent, the sample

time and the initial state, prior to the perturbation, are powerful degrees of freedom.
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Chapter 7

Fulerian-Lagrangian description of a
large-scale bioreactor: an averaging

out approach

7.1 Introduction

The well-established chemical synthesis routes face for the production of many bulk and
fine chemical more and more competition from industrial biotechnological alternatives.
The development of such an industrially viable microbial process typically consists of 3

phases.

In a first phase a micro-organism is optimised itself, under laboratory conditions. Such an
optimisation typically makes use of recombinant DNA techniques, functional genomics,
as well as analytical |38, 181, 212| and mathematical techniques [30, 197, 198|. This
mishmash of techniques has allowed a goal-oriented approach for genetic modification
[11]. However, once the optimal producer has been constructed it has to be put to the
test under large-scale conditions. This is due to the importance of mixing on both chem-
ical and biological conversions [67, 173]. As a rule, scaling-up of fermentation processes
from laboratory-scale to large-scale results in a significant reduction of biomass and prod-
uct yields |16, 23, 202|. Finally, the product has to be purified and recovered from the
fermentation broth (Downstream processing), using a wide range of physico-chemical

techniques, e.g., filtration, centrifugation, precipitation, ... |68|
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The reduction of product yields in such a large-scale bioreactor has been attributed to
imperfect mixing [139, 221]: zones exist in such large-scale bioreactors with ample sub-
strate, in general in the surround of the inlet of the concentrated influent, with substrate
depletion and with oxygen depletion or excess (laboratory-scale reactors of several litres
on the contrary are typically considered as perfectly mixed). When an individual micro-
organism circulates through a large-scale reactor of various m? it is sequentially exposed
to these different local conditions. The cellular response to these fast changing environ-
mental conditions is thought to be an important cause of the observed yield reduction.
In the past, many researchers have attempted to come up with a plausible explanation

for the microbial response to these fast changing external conditions:

1. Hewitt et al. (2000) [76] postulate that the alternating production and reassimila-
tion of organic acids like acetate, lactate, and formate due to overflow metabolism
and mixed acid fermentation results in an ATP flux from biomass production to-

wards the repetitive synthesis and degradation of certain organic acids,

2. Enfors et al. (2001) [53] put forward the intermittent transcriptional induction of
genes, as a consequence of the rapidly changing environment in large-scale bioreac-
tors. However as the synthesis of proteins, including folding, takes up to one hour,
the rapidly changing induction and relaxation does not result in a net synthesis of

proteins, and

3. Onyeaka et al. (2003) [131] point out pH fluctuations as a possible cause, as this

will influence the proton motive force and consequently the generation of ATP.

Hence, a thorough understanding of the microbial response to the large-scale conditions
would be useful for the optimisation of such processes [174]. Consequently, methods to
more detailedly describe both the biophase and the physico-chemical processes in such
large-scale bioreactors have been developed, e.g., computational fluid dynamics models
find acceptance both in industry and academia [15, 20, 62, 127] to study in many ap-
plication domains the impact of spatiotemporal heterogeneity, i.e., imperfect mixing, on

the overall process performance.
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In comparison with chemical applications, the system under study gets even more com-
plex for biological applications since the behaviour of an individual micro-organism is also
determined by its intracellular make-up, which is determined by what the micro-organism
has observed over time [67, 96, 97|. Hence, a Lagrangian description, i.e., following the
cell’s path through the reactor, is essential to take this history effect, a key element in

unravelling the causes of the observed yield reduction, into account.

However, describing the biophase in a Lagrangian way is computationally demanding
since a set of differential equations is linked to every micro-organism [96]. Solving this
highly nonlinear system, a result of the set of intracellular balance equations and the
exchange terms accounting for the transport of metabolites in and out of the microbial
cell, is not trivial. To deal with the latter, Lapin et al. (2006) [97] opted to describe the
system using an Euler-Lagrange formulation combined with a fractional-step method to
allow for a stable, accurate, and numerically efficient solution of the underlying equa-
tions. This method requires however that for their three-dimensional simulation of a
stirred-tank bioreactor 10° cells had to be tracked. Since, each of the finite volumes
had to be populated with a sufficient number of microbial cells to minimise the effect of

statistical error on the accuracy of the solution.

Considering however that the overall picture is merely the result of all individual micro-
organisms, it may thus be conceivable that only a limited number of particles has to be
tracked in order to obtain a good idea of the consumption and production of substrates
and products throughout the large-scale bioreactor. Then the dynamics of the overall
system can be captured by locally averaging out the behaviour of this limited number of
particles over the whole population. The present contribution therefore focusses on the
methods to implement such an approach taking into account the spatiotemporal hetero-
geneity which is characteristic for such large-scale bioreactors. Special attention will be

devoted to the pitfalls using such a technique and how these were dealt with.
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7.2 Materials and methods

7.2.1 Computational fluid dynamics
Reactor specifications and numerical techniques

Simulations of the flow of fluids and of the microbial conversions in a 30 m? fermentor,
stirred by four impellers, have been performed. The configuration of the fermentor is

given in Table 7.1 and it is schematically depicted in Figure 7.1.

Governing flow equations

The derivation of the governing flow equations is taken from Fluent (2003) 1] and Tan-
nehil and Anderson (1997) [178] . The flow of fluids can be described by the Navier-
Stokes equations. Applying the conservation law for mass to a fluid passing through an

infinitesimal control volume, yields following partial differential equation:

O () + o (i) = 0 (7.1

Ly

with p the physical density of the fluid and z; and v; the position and velocity vector,
respectively. The first term on the LHS of this equation represents the rate of increase
in density in the control volume and the second term represents the rate of mass flux

passing through the control surface per unit volume.
Applying the conservation law for momentum to an arbitrary control volume, yields
following partial differential equation:

0 0 0
g (pv;) + e (pvivi) = pg + I (0ij) (7.2)

7 7

The two terms on the LHS of Eq. 7.2 represent the rate of increase of momentum per
unit volume in the control volume and the net momentum flux in the control volume,
respectively. The two terms on the RHS of Eq. 7.2 represent the gravitational force per
unit of volume and the surface force per unit of volume, respectively. The components of
the total stress tensor o;; are external stresses and shear stresses, which are represented
by:
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Figure 7.1: Top view and side view of the studied fermentor
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Table 7.1: Fermentor configuration

Relative size [D]  Size |m]

Fermentor diameter 1 2.09
Fermentor height 4.59 9.60
Liquid height 2.99 6.25
Baffle width 0.08 0.17
Spacing baffle-wall 0.02 0.03
Baffle height 3.54 7.40
Sparger diameter 0.43 0.90
Shaft diameter 0.06 0.125
Impeller diameter 0.33 0.70
Impeller blade height 0.08 0.17
Impeller spacing 0.70 1.46
Lower impeller spacing 0.53 1.12
Distance sparger - impeller 0.82 0.58
oij = —pbij + Tij (7.3)

where the pressure force, the first term on the RHS of Eq. 7.3, acts only normal to the

surface of the control volume. The Kronecker-delta is defined as:
1:i=3j
0ii = 7.4
“ { 0: i (7.4)

which gives the pressure power a normal component. The viscous stress tensor is given
by:

B ov;  Ovj 2. Ou
T <8$j " 0%) 35” Oy, =
=0

with p the molecular viscosity. The first two terms on the RHS of Eq. 7.5 represent
the strain rate and the third represents dilatation. For incompressible fluids this term is
equal to zero. This equation only holds for Newtonian fluids, characterised by a constant

viscosity.
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To resolve a turbulent flow by direct numerical simulation it is required that all relevant
length scales are resolved from the smallest eddies to scales of the order of physical
dimension of the problem domain, that three-dimensional computations are performed,
and that the time steps must be small enough so that the small-scale motion can be
resolved in a time-accurate manner. Such computations are infeasible nowadays for most

applications. Time-averaged Navier-Stokes equations are used instead.

The Reynolds-averaged Navier-Stokes (RANS) equations are obtained by decomposing
the dependent variables f in the conservation equations into a time-mean f and a time-

fluctuating component f’:

B to+At
F= Ait /t fdt (7.6)

The time interval At should be chosen in such a way that its large with respect to the time
constant of random fluctuations, associated with turbulence, and small in comparison
with slow variations in the flow field associated with ordinary unsteady flows. The state

variables in the Navier-Stokes equations are now decomposed in:

v = U; + U,
e (7.7)
Ui = Uj + U
Substitution in the Navier-Stokes equations and time-averaging the entire equations
yields the RANS equations (note that TZ’ = 0). For a concise overview of the deriva-
tion, we refer to [178]. The RANS equations for mass, momentum, and chemical species

for multiphase flows are given by [178§]:

0 0
ot (agpq) + Oy (agpqvig) =0 (7.8)
0 0 op 0
9t (Qqpqvjq) + 8—332 (QgpqUigVjq) = _aq%j + 8—:171 (QqTijq) + Qqpqeg (7.9)
5 (ozq,oqgoq ) + P <oquqv2-,q<,0q —agTy 8; ) = +5; (7.10)

For convenience, the bars indicating the time-averaged values were and will be omitted.

With «, the volume fraction, p, the physical density, pg* the concentration of scalar m,
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v; 4 the velocity and v; ; the fluctuations about the average velocity of phase q. The
subscript ¢ refers to the phase, i.e., gas (g) or liquid (1), and the superscript m refers to
the chemical species under consideration, e.g., glucose. 7, is the stress tensor of phase
q, p is the total pressure, and g is the gravitational acceleration. I'j" and S7* are the

diffusion coefficient and the source term of chemical species m in phase q, respectively:

= — (u + ﬁ) (7.11)
Sgt = f (") (7.12)

with g the turbulent viscosity and o, the Schmidt number for chemical species in water
assumed to be constant and equal to 0.7 [1, 59]. The formulae to calculate Si* will be

discussed in Section 7.3. The global mass conservation is given by:

dag=1 (7.13)
q=1

The viscous stress tensor 7;; 4 is now given by:

ov; ov; 2 Ou -
Tijq = i (szq + ﬁ) — 3% ark; — PqV"iqV"jq (7.14)
——
=0

The additional term is called the Reynolds tension and represents the apparent surface
gradients that are a consequence of turbulent motion. Boussinesq proposed to relate the
average velocity gradient with the Reynolds tension using the average turbulent viscosity

or eddy viscosity pu:

S Qvig | OV 2
PaViqV'q = Mt << axf * a;f)) — 30ijPqk (7.15)

with k the turbulent kinetic energy.
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Turbulence model

To determine p;, the standard k — e turbulence model was used for simulating turbulent
flows in the present study. The governing equations for the turbulent kinetic energy k
and the turbulent kinetic energy dissipation rate € were solved for both phases. Standard

values for the parameters of the & — ¢ model were used in the present study (Table 7.2).

0 O o 0 ) Oy
ot <aqpq/<:q> + ox; (Q9Pgighy) = Ox; <aq <,u * O'k> 8:17j>
99

- O‘qr"qv/i,qv/j,qa—xjiq + O‘qﬁga_sa—xi —agpeeq  (7.16)

Gk,q Gb»q

9 9 N9 Bt ) Ogq
ot <aqpqeq> + oz; (gpqviace) = ox; <aq <N + aEq> c‘h:j)

2
€

€
+ O4qk_ (Clquk,q - C26qpq€q) - kaQek_q (7-17)
q q

in these equations G} represents the generation of turbulence kinetic energy due to the
mean velocity gradients and G is the generation of turbulence kinetic energy due to
buoyancy, with ¢ the solid mass fraction. The turbulent viscosity p; is computed by

combining k, and ¢, as follows [178]:
2

= pCut (7.18)
q

where 0. and oy express the turbulent diffusive transport of the scalars k and e.

Grid

The resulting set of nonlinear partial differential equations that describes the system can,

in general, not be solved analytically. Numerical solution, using the finite volume method,

Table 7.2: Parameter values of the k — e turbulence model [1]

Cu Cle Coe C3e O¢ Of
0.09 1.14 193 080 1.30 1.00
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requires the discretisation of this set of nonlinear partial differential equations in space
and time. For this reason, the solution domain is subdivided into a finite number of small
control volumes (cells) by a grid. This discretisation results in a set of coupled algebraic
equations. The governing equations to be solved are strongly coupled and nonlinear and
therefore they must be solved by an iterative method. The used computational grid
consisted of 138144 control volumes. The solution independence on the grid size has
been verified. To this end, the grid was refined with a gradient adaptation approach,
which refined the grid in regions with high gradients, to 236982 control volumes.

Trajectory

Micro-organisms were modelled using a Lagrangian approach. The trajectories of the

particles are determined based on a force balance [1]:

du
ppd—tp = Fp (ui —up) + 9 (p— pp) (7.19)

with u; and w, the fluid and particle velocity, respectively, p and p, the fluid and par-

ticle density, respectively. Fp = % is the drag force, d, is the particle diameter,
P
Re = pdpw is the particle’s Reynolds number. Cp = a1 + £ + 3% is the drag

coefficient is calculated according to [119], with a1, a2, and a3 numerical constants for

smooth spherical particles.

In the applied stochastic tracking approach, the turbulent dispersion is taken into account
by integrating the trajectories using the instantaneous fluid velocity: u = u + v/, with
u = C\/m and ¢ a normally distributed random number |1]. The discrete random walk
model assumes that a particle interacts with a succession of discrete fluid phase turbulent
eddies, which are characterised by velocity fluctuations [1]. The approach presented by
Lapin et al. (2004) |96] is however preferable, since the discrete random walk model

shows a tendency for particles to concentrate in low-turbulence regions |1, 96].

Impeller

The earliest attempts to numerically simulate the flow field in mechanically agitated
reactors applied impeller boundary conditions to model the impeller [71, 145, 146]. In

this approach, the impeller is not physically modelled but represented either in terms of

98



boundary conditions at the surface of the volume swept by it or in terms of source terms

distributed throughout its volume.

Over time several general approaches have been reported in the literature on explicit
simulation of the flow field in agitated reactors. The main generalised approaches are
the multiple reference frame (MRF) approach [22] and the sliding mesh (SM) approach
[120, 176]. The first approach involves steady-state computations and produces a time-
averaged flow field. The second approach involves transient computations to produce
a time-accurate flow field. Both these approaches subdivide the computational domain
into two non-overlapping regions, one region surrounding the impeller and the other rep-

resenting the rest of the vessel (Figure 7.2).

The MRF approach first simulates the flow field for the inner domain surrounding the
impeller in a reference frame rotating with the impeller. The resulting flow field on the
interface separating the inner and outer regions then serves as boundary condition to
simulate the flow field in the outer domain in an inertial frame of reference (laboratory
frame of reference). This results in improved boundary conditions, which are sequentially
to be applied for the simulation of the flow field in the inner domain. The procedure
is repeated until a suitable numerical convergence criterion is achieved. The procedure
involves steady-state approximation of essential periodic flow, correction for the relative
motion and azimuthal averaging are required before using the flow field at the interface

as boundary condition for solution of the flow field in the outer domain |22].

The SM approach involves transient computations to produce a time-accurate flow field.
The flow equations in the inner domain are now written in a laboratory reference frame
whilst it is the grid in this domain that is allowed to rotate. The rotation of the grid
results however in acceleration terms which are completely equivalent to the body forces
arising in non-inertial frames. The grid in the outer domain is stationary. The two regions
are implicitly coupled at the interface via a SM algorithm which takes the relative mo-

tion between the two domains and performs the required interpolation into account [120].

However, whereas the MRF approach has as undesirable feature that species in the inner
domain are transported relative to the impeller motion, the sliding mesh approach is,
due its transient computation, computationally demanding. Therefore, it was opted to

apply boundary conditions to model the impeller. The momentum source distributed
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Figure 7.2: Side view and top view of an inner (left figure) and outer region (right figure)
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throughout the impeller is given by:

2
My = p% (1 — <Y_DY°> ) Vi (7.20)

with R the impeller radius, X the x-distance from the center of the rotation ax , Y — Yy

the y-distance from the center of the impeller, Vi the impeller tip speed, D the impeller
blade thickness, and p the physical density. The impeller rotational speed was 115 RPM.

7.3 Results and discussion

7.3.1 Framework

The developed approach to structuredly and segregatedly describe the biophase is de-
picted in Figure 7.3. Herein represent the blue blocks operations that are performed
by Fluent® (ANSYS®, USA) typically linked to processes related to the hydrodynam-
ics and the transport of particles and chemical species in the large-scale bioreactor and
the yellow blocks represent operations that are performed by Matlab® (The Mathworks,
USA) related to the calculation of the microbial systems and the calculation of the sub-

strate and or space dependent functions for the chemical species’ source term, Sg".

The rationale of the method presented here is that information on the transport of
metabolites in and out the microbial cells of microbial cells in the neighbourhood of each
other, both in terms substrate concentration data and position data may be used to
calculate the average/overall transport of metabolites in and out of the microbial cells
at a position, in this way only a limited number of particles has to be tracked in order
to obtain a good idea of the transport of metabolites in and out of the microbial cells
throughout the large-scale bioreactor, since the dynamics of the overall system can be
captured by locally averaging out the behaviour of this limited number of particles over

the population.

In this way it is possible to separate the solving of processes of completely different na-
ture, i.e., processes related to the biological system and those related to transport of
fluids, particles, and substrates, which typically require a different solver. Operations

related to the hydrodynamics and the transport of particles and chemical species in the
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CFD simulation of a large-scale fermentation:
frozen flow field
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Figure 7.3: Schematic overview of the applied approach in order to structuredly and
segregatedly describe the biophase. The blue blocks represent operations that are per-
formed by Fluent® (ANSYS®, USA) and the yellow blocks represent operations that
are performed by Matlab® (The Mathworks, USA).
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large-scale bioreactor were calculated by Fluent® (ANSYS®, USA) and operations re-
lated to the calculation of the microbial systems and the calculation of the substrate
and/or space dependent functions for the chemical species’ source term Sy", were per-
formed by Matlab® (The Mathworks).

Another advantage of the proposed method is that the number of particles that has to
be tracked can be significantly reduced, since every finite volume in the calculation grid
does not have to be populated with a number of particles in order to avoid statistical
error on the solution. Even for a three-dimensional simulation of a stirred bioreactor,
instead of the two-dimensional simulation presented here, the to be tracked number of
particles is expected to be much smaller than the 10° particles tracked by Lapin et al.
(2006) |97].

Every time step of the unsteady simulation, the position of all particles, calculated by Eq.
7.19, and the there reigning environmental conditions, calculated by the scalar transport
equation Eq. 7.10, were recorded. Every n time steps these data were used to calculate
the microbial conversions in the bioreactor and to establish a correlation between these
conversion rates and the substrate concentrations. A concise overview of the individual

steps will be given below.

Microbial model

For every micro-organism ¢ in the large-scale bioreactor the production and consumption
rates of metabolite m, ¢}*, have been calculated by the cybernetic model of Saccha-
romyces cerevisiae of Jones and Kompala (1999) [83] (Eq. 7.21, Figure 7.4), using the
extracellular concentration data ¢p’; (t) collected along this particle’s trajectory in the

large-scale bioreactor, see also Figure 7.3:

i = f (zi,p, 005 (), ui, vi) — qf (7.21)

With v and v the cybernetic variables that control enzyme synthesis and activity, respec-
tively, p the model’s parameters, and z; the intracellular state variables linked to this
particle, e.g., the intracellular metabolites and enzymes. In order not to unnecessarily

complicate things, only the processes glucose fermentation and glucose oxidation were
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Figure 7.4: Schematic overview of the cybernetic model

considered, the rates of these process are given by r1v; and rous.

Additional checks have been implemented to verify whether the particles are still present
in the calculation grid and to verify whether the integration of the microbial system has

been successful, if this is not the case the data from this particle were discarded.

7.3.2 Approximate model

Subsequently, a correlation was established between the specific production and con-
sumption rates q of micro-organisms and the substrate concentrations observed by micro-

organisms:

q=fi(ey) +e (7.22)

First, due to the typical nature of production and consumption rates in function of
substrate concentration concentration data, e.g., saturation for substrate concentration
values @' > K%n, with K%n the affinity constant, and the rapid changes in production
and consumption rates in function of substrate concentration data for substrate concen-
tration values ¢g' < Kym the substrate concentration data were transformed using Eq.
7.23:
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x; = logqo (gof;'i +le — 4) +4 (7.23)

The substrate concentration range was then subdivided into a number of regions. For
each of these regions the parameters by, b, g, and a of the nonlinear function in Eq. 7.24
were identified, using a local nonlinear optimisation algorithm. As initial estimates for
this nonlinear optimisation the parameter values that were calculated during the previous
iteration were used or when no parameter values were available, these initial values were

immediately identified from the data.

— b2
P T 4 exp (— )

a

g=> (7.24)

7.3.3 Quality check

The ability of these nonlinear functions to describe the conversion data as a function
of substrate concentration has been verified. Special attention has been devoted to the
pitfalls using the proposed technique. Therefore, it was verified whether local lack-of-fit

occurred or distinct spatial behaviour was averaged out.

Local lack-of-fit

In an attempt to avoid local lack-of-fit, i.e., substrate region for which the nonlinear
approximation does not yield an adequate description of the data, the substrate space
was subdivided into a number of subspaces. For each of these subspaces i, it was verified
whether the mean and the variance of the residuals e, with € the difference between the
calculated conversion rate, Eq. 7.21, and the conversion rate calculated by the approx-
imate model, Eq. 7.24, were significantly different than the residuals of the rest of the
population of particles j, Eqs. 7.25 and 7.26, respectively.

€ +¢j

= < ta gp gr. 2
t 02 0_? — tgvdfzydfj (7 5)
ni T ny
2
oz,
fedfar; < = po < fi—g df.df, (7.26)
£
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If so, this data set was treated separately, i.e., separate functions were established to link

the consumption and production rates to the environmental conditions.

4= f2(¢y) +eif g5 €S8, (7.27)

Undesired averaging out distinct spatial behaviour

In an attempt to avoid averaging out distinct behaviour in function of space coordinates,
for each of the substrate subspaces the data were clustered according to space coordi-
nates, using a k-means clustering method [86]. It was verified whether the mean and the
variance of the residuals of these clusters were significantly different than the residuals

of the rest of the population of particles. If so, this data set was treated separately.

The appropriate approximate model is then used as source term, Sg", in the scalar trans-

port equation Eq. 7.10, to calculate the substrate field in the large-scale bioreactor.

7.3.4 Case study

To illustrate the approach presented above a large-scale bioreactor was simulated two-
dimensionally, where the biophase was described by the cybernetic model of Jones and
Kompala (1999) [83]. Only glucose was considered as carbon-source and oxygen was
assumed to be abundantly present. Glucose was continuously and constantly added near
the air-liquid interface of the large-scale bioreactor. The initial biomass concentration
was about 15 g/L. The resulting substrate field of glucose in the large-scale bioreactors

is depicted in Figure 7.5, when the final biomass concentration was about 22 g/L.

About 700 particle were introduced in the bioreactor. Increasing this number further did
not contribute to a more adequate description of the system. For each of these particles
the transport of metabolites in and out of the microbial cell was calculated, and multiple
nonlinear functions were used to relate the substrate concentration data to the microbial
conversion data. Typical results of this procedure are depicted in Figure 7.6. Due to

the much slower dynamics of enzyme synthesis and degradation in comparison with the
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observed environmental variations, the cellular enzyme levels are approximately constant
in the population of tracked micro-organisms, which explains the very similar behaviour

of the individual microbial cells when exposed to the same substrate concentration.

Additional attention has to be devoted to concentration data that were not represented
during the averaging out procedure when calculating the average/overall transport of
metabolites in and out of the microbial cells. Such problems are however typically ex-
pected to occur near the concentrated influent inlet location, where due to the large
substrate gradients an underrepresentation of micro-organisms is found. However, con-
sidering the typical nature of production and consumption rates in function of substrate
concentration data, e.g., saturation for substrate concentrations <pf1rji > K%m this prob-
lem can partially be avoided by using approximate functions which typically reflect such

saturation phenomena.

The microbial model used in this study is not that complex, certainly not compared to
the microbial model Lapin et al. (2006) [97] used in their study. However, based on an
extensive literature search for dynamic metabolic models, none of them appeared to be
really suitable to properly describe the biophase in large-scale bioreactors. Next to the
use of a microbial model that adequately describes the biophase in large-scale bioreactors,
the incorporation of the third dimension would be beneficial to obtain a more realistic

description of the studied large-scale bioreactor.

It should be clear that even the proposed method to describe the biophase in a La-
grangian way is computationally demanding. Therefore, to speed up calculations two
strategies have been followed. Firstly, the simulation jobs were distributed over a com-
puter cluster, consisting of Intel Pentium 4s (CPU 3GHz, 1GB ram), i.e., the tracked
population was subdivided into 6 groups containing nearly an equal number of particles.
These 6 sub-experiments, solving the microbial model for every particle of that group,
were allocated to nodes in the calculation grid. Secondly, to minimise the time for the
nonlinear optimisations the parameter values, calculated during the previous iteration,
were used as initial estimates or if no such values were available these initial values were
estimated immediately from the data. Both measures reduced the calculation time. It
is expected that further subdividing of the tasks to be performed can further reduce the

time needed for the calculations.
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Figure 7.5: Substrate field in the large-scale bioreactor (g glucose/L)
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Figure 7.6: The calculated rate for ryv; by the cybernetic model for all tracked particles
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7.4 Conclusions

An averaging out approach has been developed to describe a large-scale bioreactor in an
Eulerian-Lagrangian way. A necessity, as the stochastic nature of particle transport in
combination with the fast metabolic response to the observed fast changing environmen-

tal conditions will result in a heterogeneous population of cells.

However, solving the resulting highly nonlinear system, a result of the set of intracellular
balance equations and the exchange terms accounting for the transport of metabolites
in and out of the cell, is not trivial. To deal with the latter problem an averaging out
approach has been developed. By averaging out the behaviour of a limited number of
cells over the whole population it is already possible to get a good idea of conversions

throughout the large-scale bioreactor.
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Chapter 8

Design of a scaled-down reactor

using computational fluid dynamics

8.1 Introduction

In view of optimising the performance of a large-scale culture, i.e., scaling-up, a thor-
ough understanding of the mechanisms responsible for the deteriorated performance of
large-scale cultures in comparison with laboratory-scale cultures and of their relative
importance is useful. Therefore scaling-down is a useful approach [174]: by mimicking
on a laboratory-scale the large-scale conditions, this approach attempts to anticipate
the outcome on a large-scale. For instance, in such laboratory-scale simulation the spa-
tiotemporal heterogeneity, which is characteristic for large-scale reactors [139, 221], is
mimicked. This can be done in a single reactor [33, 121] or by constructing a loop of
two completely mixed reactors or of a completely mixed reactor and a plug flow reactor
[63, 76, 131]| or by means of a tubular loop reactor [133|. Mann et al. (1995) [110] intro-
duced the network of zones reactor, which comprises a large number of interconnected
compartments. Whether such a set-up will be popular in practise is doubtful, due to
its relative complexity. Finally, Delvigne et al. (2005, 2006) [44, 45| came up with a
still different approach, using mixing models and circulation models, but though their
set-up is able to mimic macroscopic variables as mixing time and circulation time, the
environmental conditions encountered by micro-organisms in their scaled-down reactor

significantly differred from those found in the studied large-scale bioreactor.

It is thus still unclear how representative the currently available scaled-down reactors are

111



for the large-scale reactors. Therefore, this study aims at designing a more representative
scaled-down reactor, which better mimics the characteristic conditions in a large-scale
bioreactor, by making use of substrate concentration data observed by micro-organisms
during their journey through a large-scale bioreactor. These data were obtained during

a computational fluid dynamics simulation of a large-scale bioreactor.

In addition, the proposed scaled-down reactor attempts to compromise between min-
imising the scaled-down reactor’s complexity and obtaining a realistic imitation of the
large-scale conditions. Therefore, it was opted to study a controlled system consisting of
two continuous stirred-tank reactors in a loop, as such a set-up still allows to exploit the
naturally occurring phenomenon of blending distinct streams in large-scale bioreactors.

The approach is schematically depicted in Figure 8.1 and consists of 3 steps:

1. An in silico large-scale fermentation is performed using a computational fluid dy-
namics model. For each particle, whilst it circulates throughout the large-scale
reactor, its position [r, z, 6] and the substrate concentration reigning at that posi-

tion ¢g" are recorded.

2. These time series data [cpgl,r, z, 0] of stochastic nature, are subsequently used for
the identification of a hidden Markov model (HMM) that captures the typical
substrate concentration dynamics. This model will be used to steer the scaled-
down reactor, composed of a dynamically operated reactor system consisting of

two continuous stirred-tank reactors.

3. A proper controller is designed to impose the substrate concentration time series
calculated by the HMM on the two-reactor system. Finally, the concentration time
series data observed by a particle in the scaled-down reactor are compared with

these collected in the large-scale reactor.

A concise overview of these 3 steps will be given below.
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1. CFD simulation of a large-scale fermentation:
Frozen flow and substrate field

l

1. Collection of a particle’s trajectory:
[og (1) i (1), 2 (1), 0; (1))

l

2. Identification of the HMM:
Determination of the transition [T'] and emission [E] probabilities

l

3. A HMM steered scaled-down reactor

Figure 8.1: Schematic overview of the proposed approach to design a scaled-down reactor
8.2 Materials and methods

8.2.1 Computational fluid dynamics

The reader is referred to Subsection 7.2.1 for a description of the studied large-scale

bioreactor and for details on the computational fluid dynamics model.

8.2.2 Hidden Markov model

The second step is the identification of a hidden Markov model (HMM) (Figure 8.1) that
captures the typical concentration dynamics observed by micro-organisms in the large-
scale bioreactor. HMMs are especially known for their application in temporal pattern
recognition. Such as speech, musical score following, and bioinformatics |50, 141| because
of their ability to capture information from series of data. For this reason a HMM will

also be used in this study.

A hidden Markov model is schematically depicted in Figure 8.2. Such a model typically
consists of a finite set of states {A, B}. Transitions between these states are governed by
a set of probabilities called transition probabilities (Eq. 8.1). With t;; the probability of

going to state j from state 4, here with 7, j € {A, B}. In a particular state an outcome or
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observation is generated according to the associated probability distribution (Eq. 8.2).
With e;; the probability of emitting observation j from state i with i € {4, B} and
Jj €{1,2,3,4}. If only the outcomes are visible to an observer, the states are "hidden’ to

the outside. Hence, the name hidden Markov model.

t t
T AA taB (8.1)
tpa tBB
E— €A1 €42 €43 €A4 (8.2)
€B1 €B2 €B3 €p4

When state ¢ is visited, an observation token is emitted from the state’s emission prob-
ability density distribution. Then according to the state’s transition probability density
distribution one goes to the next state. The model thus generates two series of infor-
mation. For example, the following series have been generated by the HMM depicted in
Figure 8.2:

One series, BABBAAAAAA, is the underlying state path, as transiting from one state
to another. The other, 2342122113, is the observed sequence, each observation being
emitted from one state in the state path [192].

8.2.3 Controller scheme

This HMM will then be used to steer the conditions in the scaled-down reactor to mimic
those of a large-scale reactor (Figure 8.1). To impose the dynamic behaviour of the re-
sponse variables, as determined by the hidden Markov model, to the scaled-down reactor
system (schematically depicted in Figure 8.3) a control scheme has been applied to the
system. To this end, a PID controller in combination with an adaptive state feedback

controller was used.
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tap = 0.5

Figure 8.2: A schematic view of a HMM with states A and B and observations 1, 2, 3,
and 4. The transition probabilities are represented by arrows between the states, e.g.,
tap, and the emission probabilities are represented by arrows between the states and the

observations, e.g., epy.
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The values of the response variables c; (the fraction of broth to be transferred from

reactor ¢ to reactor j), S; (the concentration of the substrate S in reactor i), and Vror

(the cumulative volume of reactor 1 and 2) will be controlled by adjusting the values of

the manipulated variables Q;; (the flow from reactor i to reactor j), Qw (the total waste

flow, which is the sum of Qw, = Qw lefvg and Qw, = Qwﬁ), Qp, (a flow without

any substrate to dilute reactor i), and pulse; (a substrate pulse in reactor 7).

PID controllers attempt to correct the error € between the value of a (measured) response

variable z and its desired set point 5%

by taking the appropriate control actions, v:

YQp,
YQp,
Upulse,
U= Upulses
VQu
VQ12

VQa1

with,

&; (t) dt + - dEi (t)

’L)i(t):Kp €i(t)+/ - dt
Y I[ D

(8.5)

with oz;gjp in Eq. 8.3 given by:
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73]

Qg = —————— 8.6
1] tkl +tkm ( )

with k the state at the previous time step in reactor ¢, and [ and m the states at the

present time step in reactor j and ¢, respectively.

A Proportional-Integral-Derivative (PID) controller is a generic classical feedback con-
troller widely used in industrial control systems. The PID controller calculation (algo-
rithm) involves three tuning parameters: the proportional, the integral, and derivative
values (Eq. 8.5) [47, 48]. However, due to the general nature of PID control, it does not

guarantee optimal control of the system.

A full state feedback controller is on the contrary a modern controller. This controller
is, e.g., employed in feedback control system theory to place the closed-loop poles of a
system in predetermined locations in the s-plane [48|. Placing poles is desirable because
the location of the poles corresponds directly to the eigenvalues of the system, which
control the characteristics of the response of the system. Under certain conditions (if the
closed-loop input-output transfer function can be represented by a state space equation)
it is possible to assign a value to the system’s eigenvalues, which allows to design the
dynamics of the system. To this end the nonlinear system was linearised around the
work point. A full state feedback controller is a typical optimal controller in which both

S

the deviation from the set point & — 2”7 and the control action u, necessary to achieve

this set point, can be penalised in the objective function J through the matrices W; and

Ws, respectively:

J = / ((:17 —a:SP)TW1 (z —a:SP) +uTW2u) dt (8.7)

The control action is then given by Eq. 8.8. The controller scheme is depicted in Figure
8.4.

u:v—i—K(x—a:SP) (8.8)
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Figure 8.3: Overview of the scaled-down reactor set-up

HMM
XSP
v u
e I . —
>
State feedback
Kx
K
X

Figure 8.4: Overview of the overall control scheme, consisting of a PID controller and a
state feedback control system
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8.3 Results and discussion

8.3.1 Particle’s trajectory

In order to get an idea about the environmental conditions micro-organisms are exposed
to when travelling through a large-scale bioreactor, the substrate concentration data were
collected for multiple micro-organisms along their path through the large-scale bioreactor
described in Chapter 7. A micro-organism’s path during its journey in the reactor is
depicted in Figure 8.5. The substrate concentration data the particle encounters as a

function of time are depicted as well.

8.3.2 Identification of a HMM

A typical concentration sequence encountered by a micro-organism in a non-ideally mixed
bioreactor is depicted in Figure 8.5. Due to the stochastic nature of this sequence of con-
centration data, HMMs are typically suitable to describe such data [141]. Applying the
terminology of HMMs to the case presented here, the observations are the substrate con-
centration data and the "hidden’ states are linked to zones in the large-scale bioreactor
(Subsection 8.2.2).

As mentioned before, the scaling-down set-up presented here is a controlled system con-
sisting of two continuous stirred-tank reactors in a loop. Such a set-up allows to exploit
the naturally occurring phenomenon of blending distinct streams in large-scale bioreac-

tors.

In the context of the scaled-down reactor presented here, these 'streams’ are the broth
remaining in reactor ¢ and the broth to be transferred from reactor j to reactor ¢, when
proceeding to the next time step. At is the time between two transitions. A direct con-
sequence of the use of two completely mixed reactors is that no distinction can be made
anymore between the micro-organisms contained in those 'streams’ from the moment on
those ’streams’ have been blended, thus between micro-organisms coming from reactor j
and micro-organisms that were already present in reactor ¢. Consequently the memory of
the micro-organisms stays restricted to the preceding state. The choice for a first order

hidden Markov model is then obvious, as for such a model the probability of a certain
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Figure 8.5: A micro-organism’s trajectory in the large-scale bioreactor. Upper figure:
trajectory of a micro-organism through the reactor. Lower figure: substrate concentration

data the micro-organism encountered as a function of time.
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state at time step n + 1 should only depend on the state of the previous time step n.

However, then one has to be careful that all assumptions are satisfied,

P(zonei | zone j | zone k) = P(zonei | zone j | zonel) (8.9)

1.e., the probability of transiting from zone k to zone j, and subsequently from zone j
to zone ¢ should be equal to the probability of transiting from zone [ to zone j, and

subsequently from zone j to zone .

The determination of the states and observations of this first order hidden Markov model
will be discussed below. The reactor space has to be subdivided into a number of zones,
e.g., Figure 8.7. These zones have been obtained by k-means clustering [86] according
to both space coordinates and substrate concentrations, i.e., locations in the neighbour-
hood of each other with similar substrate concentrations belong to a particular zone of

the large-scale reactor.

Subsequently, for every micro-organism, the two data series (one series with positional
and one with substrate concentration data), collected during the computational fluid
dynamics simulation of the large-scale bioreactor (Figure 8.5) were transformed to the
corresponding sequences in terms of states and observations. For instance, if a micro-
organism is located in zone j at time n/\t, then position n in the state sequence becomes
J; if this micro-organism is located in zone k at time (n + 1) At, then position n+1 in the
state sequence becomes k. Akin, the observation sequence was built. For each zone 10
discrete substrate concentrations have been chosen, uniformly distributed over the zone’s
substrate range. Subsequently, each of the observed concentrations in the observation
sequence was replaced by the number representing the most representative of these 10

substrate concentrations.

Based on the data collected along the micro-organism’s trajectory through the large-scale
bioreactor, i.e., states/zones and observations/discrete concentrations, the transition and

emission probability density distributions were determined.

The choice of the number of zones and the time between two transitions is nontrivial.
Therefore, for every {C;, At;} combination, with C; the number of zones € {10, 20, ...,100}
and At the time step in s between two transitions € {1,5, 10,20}, a hidden Markov model
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has been identified and the trajectories generated by these HMMs have been compared

with the trajectories collected in the large-scale bioreactor.

The HMM that has been used to steer the scaled-down reactor was selected using follow-
ing criteria: the average time of exposure to identified concentration ranges expressed in
terms of percentage of total time (these concentration ranges were quite arbitrarily cho-
sen to be [04,14[, [1£,24], ... ), the average number of time steps a micro-organism
is sequentially exposed to that concentration range, and for some of the candidate HMMs
the trajectories themselves. The higher the similarity in terms of these criteria the more
adequate the HMM is judged to mimic the substrate concentration data observed by

micro-organisms in the large-scale bioreactor.

Finally, 70 zones were selected, which are depicted in Figure 8.7, and a time step of
10 s was retained. The results for the selected HMM are depicted in Figure 8.6. This
figure shows that there is a reasonable agreement between the trajectory generated by
this HMM and the trajectories truly observed in the large-scale bioreactor in terms of
the aforementioned criteria. The selected HMM is thus considered to be able to describe
the substrate concentration dynamics observed by micro-organisms in the large-scale

bioreactor and can consequently be used to steer the scaled-down reactor.

8.3.3 A HMM driven scaled-down reactor

The selected HMM was used to steer the scaled-down reactor. Every At s the HMM
generates for each bioreactor a new state and a new observation. The new elements of the
state sequence and observation sequence, have to be transformed in terms of the response
variables. For example, the fraction of broth to be transferred between the reactors is

given by Eq. 8.6 and the substrate concentration set point in reactor ¢ is given by:

(Smax,statel -8 . tat l)
S;-SP = (6 — 1) 9 e + Smimstatel (810)

with e the observation e € {1,2,...,10} generated by the HMM and Sp,ax state; and
Shin,statel the maximal and minimal substrate concentration in zone/state [.
This hidden Markov model sets the desired set points for the response variables a;;, S;

and Vpop. The evolution of the response variables Sp, S, a2, and «ao; and their set
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Figure 8.6: Comparison of the series of discrete substrate concentration data 'observed’
by micro-organisms in the large-scale bioreactor and generated by the selected HMM:

Ay to As: Series of discrete substrate concentration data (X) observed by 5 micro-organisms in the large-
scale bioreactor; Ag: Series of discrete substrate concentration data (x) generated by the selected HMM;
B1 and Bg: the time of exposure (in terms of percentage total time) of an organism to the identified
substrate concentration ranges for the trajectory in subfigure A; and for the trajectory in subfigure
Ag, respectively; Bz and Bys: the average time of exposure (in terms of percentage total time) of an
organism to the identified concentration ranges for series of discrete substrate concentration data in the
large-scale bioreactor and generated by the selected HMM, respectively; B> and Bs: the average number
of time steps -1 a micro-organism is sequentially exposed to the identified concentration ranges for series

of discrete substrate concentration data in the large-scale bioreactor and generated by the HMM
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Figure 8.7: The identified zones in the large-scale bioreactor

points is given in Figure 8.8. To reflect more or less realistic conditions, constraints on the
manipulated variables have been incorporated as well (maximal flow rate Qp 200 mTL)
As shown, the response variables and their set points agree reasonably well. However,
to properly assess the representativeness of the developed scaled-down reactor, it seems
more correct to compare the trajectory from a micro-organism in the large-scale biore-
actor (Figure 8.6) with one from a micro-organism in the scaled-down reactor (Figure
8.9). From these figures, one can conclude that the substrate concentrations observed by
a micro-organism in the scaled-down reactor resemble those of a micro-organism in the
in silico large-scale bioreactor. This is certainly the case when one compares the perfor-
mance to other scaled-down reactors, e.g., [45]. A more quantitative evaluation of this
resemblance would be desirable. However, since a micro-organism is a highly nonlinear
system it will be necessary to evaluate the response of this highly nonlinear system to
the substrate concentration trajectories observed by micro-organisms in the large-scale
bioreactor with those observed by micro-organisms in the scaled-down reactor. Other

measures seem not fit for this aim.

The main advantage of the developed scaled-down reactor is thus that it tries to compro-

124



20 20
“
10 i 10
Sy [9/L) S2 [g/L]
0 0
1 | 1
| nr
I | I o I
0.5 \ Iy | o
’ r I - L
Wil . N N
a2 [-] | l I i N ‘“‘
l ‘ I i
0 s ‘ ‘
0 500 1000 1500

Figure 8.8: The scaled-down reactor: evolution of response variables (-) and their set

points (- -).

Sle/L] 10

Reactor

0 200 400 600 800 1000 1200 1400 1600 1800

time [s]

Figure 8.9: A sequence of concentration data observed by a micro-organism in the scaled-
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mise between the scaled-down reactor’s complexity and obtaining a realistic imitation of
the conditions met in large-scale bioreactors and does not focus on macroscopic variables

as mixing time which in general yield an incorrect assessment of conversion efficiencies.

To impose the dynamic behaviour of the response variables, the manipulated variables
were stringently controlled. The use of a maximal value for the substrate concentration
set points is recommendable, since the specific conversion rates typically reach a plateau
at substrate concentrations that are much larger than the affinity constant. This has
not been done. Obviously, such a modification would significantly reduce the control
efforts, both in terms of the waste flow Qy, of the flows to dilute the broth in both
the reactors Qp, and @Qp,, and of the substrate pulses pulse; and pulsey. Since then
no surplus substrate would have to be added or removed. Partly due to these surplus
control actions, the biomass flushes out from the present set-up and biomass retention

would be needed, e.g., by means of a membrane.

8.4 Conclusions

A method has been proposed to design a scaled-down reactor system on the basis of
concentration data collected along a micro-organism’s path in a large-scale bioreactor,
rather than on the basis of macroscopic variables as mixing time and circulation time,
which are far from ideal to describe improper mixing and conversion efficiencies. These
data were obtained during a computational fluid dynamics simulation of a large-scale

bioreactor.

The proposed set-up allows to imitate similar conditions in terms of substrate concen-
trations as those occurring in the large-scale bioreactor. However, due to the stringent
control actions, it will be necessary to ensure biomass retention in the scaled-down reac-

tor in order to avoid the flushing out of biomass.

The pursuit to rigorously mimic the large-scale conditions is a Moloch. Since for example
a cut-off value for the substrate concentration set points could be used, since the specific
conversion rates typically reach a plateau at substrate concentrations that are much
larger than the affinity constant. Such a modification would significantly reduce the

control efforts.
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Chapter 9

Conclusions and perspectives

Meticulously optimised micro-organisms for the production of a variety of target com-
pounds, optimised under highly reproducible and perfectly controlled laboratory-scale
conditions, perform suboptimally when the process is scaled-up. This is due to biologi-
cal, chemical, and physical processes which all are affected when scaling-up. The close
interaction of these processes of various nature renders the study of large-scale bioreactors
complex, as it is impossible to really uncouple these processes, since the time constants
of those diverse processes are of the same order of magnitude: transport phenomena
influence the local conditions which in turn influence microbial metabolism, which in
turn influence local process conditions. In view of the latter, methods have been devel-
oped and applied in this study to investigate the biologically, chemically, and physically
relevant processes that take place in large-scale bioreactors with a view to increasing
insight in those processes and evaluating their importance for the widely observed yield

reduction.

A detailed description of the biophase in such large-scale bioreactors seems essential.
To this end the state of the art tools for modelling metabolism, typically used in the
domain of metabolic engineering, were reviewed in Chapter 2, i.e., stoichiometric net-
work analysis (elementary flux modes, extreme pathways, and optimal flux distribution),
steady-state metabolic modelling (metabolic flux analysis and flux balance analysis),
dynamic metabolic modelling, and multivariate statistics. In the context of metabolic
engineering, one should be aware that the usefulness of those tools to optimise micro-
bial metabolism for overproducing a target compound depends predominantly on the

characteristic properties of that compound. Due to their shortcomings not all meth-
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ods are suitable for every kind of optimisation; issues like the dependence of the target
compound’s synthesis on severe (redox) constraints, the characteristics of its formation
pathway, and the achievable/desired flux towards the target compound should play a role

when choosing the optimisation strategy.

The vast variety of biochemical pathways micro-organisms dispose of, in order to fulfil
their growth and reproduction requirements under a wide range of environmental condi-
tions, renders them hard to fathom. Next to this tremendous amount of pathways, the
lack of extensive (accurate) metabolomic, proteomic, and transcriptomic data sets also

hampers the use and limits the usefulness of those mathematical methods.

For example, dynamic metabolic models might be useful tools to optimise microbial
metabolism, as these models do incorporate kinetics and the regulation of enzymatic
reactions. However, the drawbacks of this approach are still numerous. Models relying
on in wvitro derived mechanistic equations are overparameterised for the available data,
nowadays typically collected during only one perturbation experiment. The alternative,
approximative modelling is no deus ez machina either as in order to collect informative
data for parameter identification it might be necessary to radically perturb the cell, prob-
ably way beyond the metabolite range for which approximative kinetic formats yield an
adequate description of the true kinetics. In addition, these dynamic metabolic models,
both mechanistic and approximative ones, zoom in on a limited part of the metabolism,
which impedes mass balance checks during transient conditions. Moreover, the behaviour
of cofactors is not yet modelled in a mechanistic manner, since, for instance, the pool
size of the adenine nucleotides inexplicably changes during the transition from a glucose-
limited to a glucose-abundant culture. Despite the rise of exchange tools like the systems
biology markup language (SBML) [80], one thus should be aware that the 'plug and play’

character of such model(s) (structures) remains limited.

The final aim of a dynamic model-based approach is thus target identification for opti-
mising a production host. These targets are those reactions that control the flux through
a reaction network, which can be assessed by calculating the flux control coefficients.
Hence, assessing the uncertainty of the calculated flux control coefficients for the pur-
pose of decision making/target identification in metabolic engineering is useful. This
uncertainty may be the result of both an uncertain model structure and of uncertain

parameter estimates. A Bayesian approach has been applied to properly assess this un-
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certainty (Chapter 5).

Multiple approximative kinetic formats have been used to identify the flux control coef-
ficients of the studied small network model. The tested approximative kinetic formats,
the linlog kinetics, the linear in metabolite and enzyme levels kinetics, and the GMA
type power law kinetics adequately described the data, which is somewhat contradictory
to Heijnen (2005) [74] who points out the clear advantages of the linlog kinetics over the
other ones. As shown, the model structure has a non negligible effect on the probability
density function of the flux control coefficients and consequently it is worth the effort to
search for the true model structure, e.g., by means of genetic programming and optimal

experimental design for model discrimination.

The usefulness of partial least squares regression as a tool to optimise microbial metabolism
has been demonstrated using elementary flux mode data in Chapter 3. This approach al-
lowed to rapidly pinpoint, without the need for experimental data, potential gene targets
for succinate biosynthesis in Escherichia coli. The identified targets are in agreement
with literature data, where modification of the expression of these genes proved to be
beneficial to increase succinate yield. This approach has therefore passed a first valida-

tion round. Further evaluation of the method is however needed.

Cybernetic models were finally retained in this study, since it seemed the best method to
describe the biophase in large-scale bioreactors. Indeed, a micro-organism in a large-scale
bioreactor will develop a characteristic metabolomic and proteomic make-up, which will
allow maximisation of its growth under those conditions, e.g., mixed acid fermentation
and overflow metabolism. This agrees well with the whole idea of cybernetic models
that assume that a micro-organism tries to optimise its behaviour, e.g., with respect to
growth or substrate uptake. By allocating the resources a micro-organism disposes of to
these enzymes yielding the optimal performance. Special attention has been devoted to
the cybernetic control law ruling enzyme activity (Chapter 4). Several alternatives have
been derived and evaluated for the conventionally used matching law. However, due to
the limited knowledge, issues linked to the model structure, and the lack of appropriate

data it was not possible to distinguish between the rival control laws.

Although the approach seems appealing, given the present lack of knowledge, detailed

experimental omics data, and some of the aforementioned problems linked to ’conven-
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tional’” dynamic metabolic modelling, there still remain some issues unresolved, which

will require further research.

Tools have been developed in this Ph.D. study which facilitate the gathering of data. A
modus operandi of the Bioscope has been proposed in Chapter 6 for gathering data to
build and validate a dynamic metabolic model of periodically operated cultures. Such
models can be useful for the optimisation of periodically operated cultures as they help to
gain further insight in the complex metabolic interactions and they can predict the effect
of altered conditions. This set-up allows performing multiple perturbation experiments
without perturbing the periodically operated culture itself, by controlling the opening
and closing of the sample ports of the Bioscope. The perturbing agent, the sample time
and the initial state prior to the perturbation are powerful degrees of freedom to max-

imise the information content of the collected data.

A method has been proposed in Chapter 8 to design a scaled-down reactor on the basis of
simulated concentration data collected along a particle’s path in a large-scale bioreactor,
rather than using macroscopic variables as mixing time and circulation time, which are
far from ideal to be linked with degrees of conversion. The proposed controlled set-up
consisting of two continuous stirred-tank reactors allows to imitate similar conditions
as those that occur in large-scale bioreactors. It will however be necessary to ensure
biomass retention, e.g., by a membrane, in the scaled-down reactor in order to avoid the
flushing out of the biomass. The pursuit to rigorously mimic the large-scale conditions is
a Moloch, since for example a maximal value for the substrate concentration set points
could be used, as the cellular response to substrate concentrations much larger than the
affinity constant reaches a plateau. The application of such a maximal value for the

substrate concentration set points would also significantly reduce the control efforts.

Finally, a method has been proposed in Chapter 7 to describe the biophase in large-scale
bioreactors by means of computational fluid dynamics using segregated models, in which
micro-organisms are not considered identical and in which the cell is considered struc-
tured, i.e., the internal composition and structure of the micro-organisms is considered.
Due to the stochastic nature of particle transport and the fast metabolic response to the
observed fast changing environmental conditions, this intracellular make-up is expected
not to be identical for all micro-organisms. Describing the biophase in a Lagrangian way,

1.e., following the cell’s path through the reactor, is computationally quite demanding
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because a set of differential equations is linked to every micro-organism. However, by
considering that the overall picture is merely the result of all individual micro-organisms
it is only needed to track a limited number of particles in order to obtain a good idea
of the fluxes in and out of the cells throughout the large-scale bioreactor. Indeed, the
dynamics of the overall system can be captured by locally averaging out the behaviour of
this limited number of particles over the whole population. Two-dimensional simulations
have been performed of the large-scale bioreactor under study by means of computational
fluid dynamics. Obviously, the incorporation of the third dimension would be beneficial
to obtain a more realistic description of the large-scale bioreactor. However, this simpli-

fication does not derogate from the proposed method.

With respect to the elucidation of the mechanisms underlying the observed yield reduc-
tion in large-scale bioreactors the gathering of intracellular data seems essential. The
gathering of (13C, 32P, and/or 2H) dynamic labelling data under large-scale fermenta-
tion conditions, possibly mimicked by a scaled-down reactor will be useful to study the
cellular response to the observed fast changing environmental conditions. these data will
also help to further investigate the hypotheses that attempt to explain the mechanisms
responsible for the widely observed yield reduction in large-scale bioreactors. Some of

the methods presented in this work will be useful in such investigations.
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Summary

Scaling-up fermentation processes from laboratory-scale conditions to large-scale condi-
tions generally results in a reduction of the overall process yield and productivity. This
due to the interplay of biological, chemical, and physical factors. In this work, differ-
ent tools have been developed and applied which may help to elucidate the mechanisms

causing this generally observed yield reduction.

Then, tools to describe micro-organisms in detail are necessary. Hence, the state of the
art approaches for metabolic modelling, typically used in the domain of metabolic en-
gineering, were reviewed. The strategy to be followed for optimising a production host
for overproducing a target compound should predominantly depend on its characteristic
properties. In this respect, issues like the dependence of the target compound’s synthe-
sis on severe (redox) constraints, the characteristics of its formation pathway, and the
achievable/desired flux towards the target compound should play a role when choosing
the optimisation strategy. Still, due to the vast variety of biochemical pathways and
the lack of extensive data sets the usefulness of these mathematical techniques remains
limited. In this Ph.D. study some of the reviewed methods have been applied, such as

partial least squares, approximative metabolic modelling, and cybernetic modelling.

The usefulness of partial least squares regression has been demonstrated using elementary
flux mode data. It was possible to rapidly pinpoint potential targets for modification of
the microbial production of succinate by Escherichia coli, without the need for experimen-
tal data. The identified targets are in agreement with the literature data (modification
of the expression of these genes proved to be beneficial to increase succinate yield). This
approach has therefore passed a first validation round. Further evaluation is however

needed.
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Conversely, a dynamic model-based approach focusses on the identification of the flux
controlling reactions, which are targets for genetic modifications. In view of decision-
making in metabolic engineering, it is important to assess the uncertainty on the calcu-
lated flux control coefficients. Both an uncertain model structure and uncertain param-
eter estimates can be the cause for the overall prediction uncertainty. For an illustrative
pathway this uncertainty has been properly assessed. Multiple approximative kinetic for-
mats have been used to identify the flux control coefficients of the small network model
studied. It has been shown that the applied model structure significantly influences the

distribution of the flux control coefficients.

Micro-organisms in large-scale bioreactors are characterised by a particular metabolomic
and proteomic make-up, which allows maximisation of their growth under those condi-
tions, e.g., mixed acid fermentation and overflow metabolism. Since this complies well
with the idea behind cybernetic modelling, cybernetic models were finally retained to
describe the biophase in large-scale bioreactors. The rationale of the cybernetic school
of thought is that micro-organisms are believed to optimise their behaviour, e.g., with
respect to growth or substrate uptake. This is achieved by allocating, by means of a
controller; the limited resources a micro-organism disposes of to these enzymes yielding
the optimal performance. In spite of recent efforts to increase the robustness of the ap-
proach, e.g., by introducing elementary flux modes as intermediate level of control, there
still remain some issues unresolved. For instance, several rival control laws for enzyme
activity have been derived. These rival control laws had a different no-cost activity and
are based on the fact that mechanisms have been reported in the literature for both
the activation and inactivation of enzymes, which may have a cost. However, due the

lack of appropriate data it was not possible to distinguish between those rival control laws.

Subsequently, set-ups are discussed which may help to gather the necessary data to ex-
perimentally study microbial metabolism and to gather the necessary data with a view
to parameter identification and model structure identification. To this end, a modus
operandi of the Bioscope is proposed to study microbial oscillating systems. A strat-
egy has been proposed to control the opening and closing of the sample ports, so that
this equipment can also be used to collect the samples from multiple perturbation experi-

ments, without perturbing the microbial oscillating culture from which the cells are taken.

A strategy to design a scaled-down reactor is outlined as well. The innovative aspect
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of the presented approach is that it attempts to mimic the environmental conditions
observed by the micro-organisms, by making use of computational fluid dynamics sim-
ulation results, rather than to focus on macroscopic variables, such as circulation time
and mixing time, as those macroscopic variables are far from ideal to be correlated with
degrees of conversion. Such scaled-down reactors allow to mimic on a laboratory-scale,
the large-scale conditions in an attempt to anticipate the outcome on a large-scale. The
proposed controlled set-up, a controlled system consisting of two continuous stirred-tank
reactors in a loop, allows to imitate similar conditions as those that occur in large-
scale bioreactors. To reduce the control efforts one could use a maximal value for the
substrate concentration set points, since the cellular response to environmental concen-

trations much larger than the affinity constant becomes saturated.

Finally, a method has been proposed to use segregated models, in which micro-organisms
are not considered identical, and in which the cells are structured, 7.e., the internal com-
position and structure of the micro-organisms is considered, to describe the biophase
in large-scale bioreactors using computational fluid dynamics. The description of the
biophase in a Lagrangian way, i.e., following the cell’s path through the reactor, is an
obvious choice since the behaviour of a micro-organism is determined both by the reign-
ing environmental conditions and its intracellular make-up. This intracellular make-up
is expected not to be identical for all micro-organisms, due to the stochastic nature of
particle transport and the fast metabolic response to the observed fast changing envi-
ronmental conditions. Such an approach is computationally quite demanding because
every micro-organism is linked to a set of differential equations. However, by considering
that the overall picture is merely the result of all individual micro-organisms it is only
needed to track a limited number of particles in order to obtain a good idea of the con-
sumption and production of metabolites throughout the large-scale bioreactor. Indeed,
the dynamics of the overall system can be captured by averaging out the behaviour of
this limited number of particles over the whole population, hereby making use of prior

knowledge about the microbial behaviour.
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Samenvatting

Het opschalen van microbiéle culturen van laboratoriumschaal naar productieschaal leidt
in de regel tot een reductie van de procesopbrengst. Dit is te wijten aan een samenspel
van biologische, chemische en fysische factoren. In dit werk werden verschillende me-
thodes ontwikkeld die kunnen helpen bij het ontrafelen van de mechanismen die aan de

oorsprong liggen van deze reductie.

Voor zo'n studie zijn methodes die toelaten het microbieel metabolisme in detail te be-
schrijven, belangrijk. Daarom werd een stand van zaken opgemaakt van het metabolisch
modelleren. Metabolische modellen worden typisch toegepast in het domein van me-
tabolische engineering voor de optimalisatie van productiestammen met het oog op de
overproductie van een doelmolecule. De afhankelijkheid van zijn synthese van redoxbe-
perkingen, de karakteristieke eigenschappen van zijn syntheseroute en de bereikbare flux
richting de doelmolecule zouden een rol moeten spelen bij de keuze van de optimalisatie-

strategie.

Het nut van partiéle kleinste-kwadraten regressie werd geillustreerd met behulp van ele-
mentaire flux mode data. Zo konden mogelijke doelwitten voor genetische modificatie
geidentificeerd worden met het oog op de microbiéle productie van succinaat door K. co-
li. De geidentificeerde doelwitten zijn in overeenstemming met de literatuur; in dewelke
aangetoond werd dat modificatie van de expressie van deze genen leidt tot een verhoog-
de succinaatopbrengst. Deze aanpak heeft daarom een eerste validatieronde doorstaan.

Verdere evaluatie is evenwel nodig.

Een dynamisch metabolisch model focust op het identificeren van de snelheidsbepalende
stappen in een reactienetwerk, wat typisch doelwitten zijn voor genetische modificatie.

Met het oog op het nemen van beslissingen in metabolische engineering is het belangrijk
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om de onzekerheid omtrent de berekende snelheidsbepalende stappen adequaat te kunnen
inschatten. Deze onzekerheid kan zowel het gevolg zijn van een onzekere modelstructuur
als van onnauwkeurig gekende parameterwaarden. Voor een illustratief reactienetwerk
werd deze onzekerheid nagegaan. Meerdere approximatieve kinetieken werden gebruikt
om de snelheidsbepalende stappen van het bestudeerde reactienetwerk te identificeren.
Hieruit bleek dat de modelstructuur een significante invloed heeft op de distributies van

de snelheidsbepalende stappen.

Micro-organismen in een productieschaalreactor worden gekenmerkt door specifieke me-
tabolische en proteomische niveaus die onder die condities toelaten groei te maximalise-
ren, bijvoorbeeld door overflow metabolisme. Aangezien dit gedrag overeenstemt met het
concept dat aan de basis ligt van het cybernetisch modelleren, werd dit type modellen
gebruikt om de biofase in dergelijke reactoren te beschrijven. De rationale achter het cy-
bernetisch modelleren is dat micro-organismen hun gedrag optimaliseren met betrekking
tot groei door de beperkte middelen waar de cel over beschikt te investeren in die enzy-
men die een optimaal gedrag verzekeren. Ondanks recente pogingen om de robuustheid
van de methode te vergroten, bijvoorbeeld door het introduceren van elementaire flux
modes als intermediair regelniveau, blijven toch nog een aantal zaken onopgelost. Een
aantal controlewetten voor enzymactiveit werden afgeleid en geévalueerd. Deze rivalise-
rende wetten worden gekenmerkt door een verschillende 'geen kost’ activiteit en steunen
op het feit dat in de literatuur verschillende mechanismen voor activatie en inactivatie
van enzymen werden beschreven, die een kost hebben. Door het gebrek aan geschikte

data was het evenwel niet mogelijk om tussen deze wetten een onderscheid te maken.

Vervolgens werden experimentele opstellingen ontworpen die kunnen helpen bij het ver-
garen van de nodige data om het microbieel metabolisme te bestuderen en om de beno-
digde data te verzamelen met het oog op het schatten van parameters en het identificeren
van een geschikte modelstructuur. Hiertoe werd een modus operandi voor de Bioscope
voorgesteld, zodat dit apparaat ook kan worden aangewend om oscillerende microbiéle
systemen te bestuderen. Door het openen en sluiten van de staalnamepoorten zo te
regelen dat enkel cellen worden gecollecteerd met een zelfde geschiedenis, kunnen in de
Bioscope meerdere perturbatie experimenten worden uitgevoerd, zonder de oscillerende
microbiéle cultuur waarvan de biomassa afkomstig is, te verstoren. Dit versnelt uiteraard

het vergaren van data voor metabolische modellering.
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Een strategie werd voorgesteld om een scaled-down reactor te ontwerpen. Het innova-
tieve aspect van de voorgestelde aanpak is dat deze poogt de door micro-organismen
waargenomen omgevingsomstandigheden in productieschaalreactoren na te bootsen, eer-
der dan te focussen op macroscopische variabelen als mengtijd en circulatietijd. Deze
macroscopische variabelen zijn immers verre van ideaal om gecorreleerd te worden aan
omzettingsgraden, waar het uiteindelijk om gaat. Een dergelijke scaled-down reactor
laat toe om op laboratoriumschaal de omstandigheden na te bootsen in een productie-
schaal reactor, zodat reeds geanticipeerd kan worden op het resultaat op productieschaal.
De voorgestelde experimentele opstelling, die uit twee geregelde reactoren in een kring
bestaat, laat toe om gelijkaardige omstandigheden na te bootsen als die in productie-
schaalreactoren. Om de regelacties te reduceren zou men een maximale waarde voor de
substraatconcentratie wenswaarde kunnen gebruiken, aangezien de cellulaire respons op

substraatconcentraties veel groter dan de affiniteitsconstante een plateu bereikt.

Tot slot werd een methode voorgesteld die toelaat om zowel de interne structuur en
samenstelling van micro-organismen als de heterogeniteit van de microbiéle populatie
in een productieschaalreactor via stromingsdynamica modellen te beschrijven. Bij de
Lagrangiaanse aanpak wordt het pad van een micro-organisme doorheen de reactor ge-
volgd. Daar het gedrag van een micro-organisme zowel wordt bepaald door de heersende
omgevingsomstandigheden als door zijn intracellulaire toestand, ligt het voor de hand
om deze aanpak te gebruiken voor het beschrijven van de biofase in zo’n reactor. Door
de stochastische aard van partikeltransport en de snelle metabolische respons op de snel
variérende omgevingsomstandigheden, wordt deze toestand niet geacht identiek te zijn
voor alle micro-organismen. Een dergelijke aanpak is evenwel computationeel veeleisend,
aangezien elk micro-organisme gelinkt is met een stelsel differentiaalvergelijkingen. Door
te beschouwen dat het gedrag van de totale populatie niet meer is dan de resultante
van de individuele micro-organismen is het enkel nodig om een beperkt aantal cellen te
volgen om een goed idee te krijgen van de consumptie- en productiesnelheden doorheen
de reactor. De dynamiek van het systeem kan immers gevat worden door het gedrag van
dit beperkt aantal cellen lokaal uit te middelen over de gehele populatie. Hierbij werd
gebruik gemaakt van voorkennis omtrent het microbiéle gedrag, bijvoorbeeld het feit dat
saturatie van de substraatopnamesnelheid optreedt bij substraatconcentraties die vele

malen groter zijn dan de affiniteitsconstante.
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