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CHAPTER 1

Introduction and objectives

To date, over1.2 billion people have no access to safe drinking water and over2.4 billion lack basic
sanitation. The need to focus on this issue has been strongly affirmed by the World Summit on Sustain-
able Development that fixed clear targets for halving this dramatic situation by 2015. As a consequence,
also the UN Commission on Sustainable Development has put Water Supply and Sanitation as two of the
three priorities of work for 2004-2005.

The protection of our clean water resources, and the sustainability of our water systems as such, is one
of the biggest challenges of the 21st century. Water is essential for most living organisms on this planet.
However, the growth of the earth’s population and industrialisation has increased the need for clean water
enormously, putting a large pressure on our water resources. Apart from this, the environment is also
exposed to a growing amount of (untreated) wastewater.

The European Union recognised this problem for the first time in the seventies and has, since then, intro-
duced several water directives in its environmental policy. The most recent is theEU Water Framework
Directive(Directive 2000/60/EC), which has among its goals ’water management based on river basins’
and ’getting the citizens more involved’ (EU, 2004). On the other side of the ocean, the US Environmen-
tal Protection Agency (EPA) adopted the National Pollution Discharge Elimination System (NPDES)
as part of the clean water act (CWA) in the early seventies (EPA, 2004). In their latest regulation, the
EPA requires states to develop prioritised lists of polluted or threatened water bodies and to establish the
maximum amount of pollutant that a water body can receive while still meeting water quality standards,
the so-called total maximum daily load (TMDL).

Today’s municipal wastewater treatment is commonly achieved through the activated sludge process.
This process consists of

1. mineralisation and conversion of the biodegradable components by a broad variety of microorgan-
isms

2. separation of the grown activated sludge from the purified water

1



2 Introduction and objectives

The efficiency of the entire process depends on the efficiency of both processes. The first, biological step
has found considerable attention in research, which resulted in a sufficient understanding of the various
biological processes and conversions that take place. This knowledge was translated into models which
are able to describe this degradation process adequately (Henze et al., 1987, 1995; Gujer et al., 2000).

In the second step, the separation of the purified water from the activated sludge, biological degradation
processes are less important even though they can not be fully neglected. More important for the final
clarification are physical processes, mainly the floc formation (i.e. flocculation and deflocculation) and
the gravitational settling of the flocs. The latter two processes are highly influenced by hydrodynam-
ics and further by the shape and density of the flocs themselves. In practice the effectiveness of the
clarification process suffers repeatedly from a poor settling ability of small particles which remain in
the supernatant and deteriorate the effluent quality. Even though various studies of the activated sludge
flocculation and settling characteristics have been performed during the last decades, a thorough under-
standing of the process and the external influencing factors is still missing.

In their study, Ekama et al. (1997) give an overview of the state-of-the-art of theory, modelling, design
and operation of secondary settling tanks. They also provide a list of research needs. Many of these
listed items were tackled in a large research project conducted at the Department of Applied Mathemat-
ics, Biometrics and Process Control (BIOMATH, Ghent University). This so-called SEDIFLOC project
(acronym for Sedimentation and Flocculation) tried to gain better insight into activated sludge floccula-
tion and its external influences (Govoreanu, 2004) and compile this knowledge into a flocculation model
(using a population balance framework, i.e. the subject of this work) that can be incorporated into a 2D
CFD-model describing the fluid dynamics and particle transport in a secondary settling tank (De Clercq,
2003). The final step of the project is to investigate how predictions of this calibrated model can be
used to calibrate 1D sedimentation models (De Clercq, ’Modelling of batch and continuous settling’, in
preparation) on the basis of CFD simulation results obtained under process conditions specified by using
the optimal experimental design technique in a virtual fashion (De Pauw, ’Optimal experimental design
for calibration of bioprocess models: a validated software toolbox’). The project resulted in 5 PhD’s
(including this one). A summary of the project can be found in Fig. 1.1 where the black boxes represent
the separate PhD studies.

Mathematical modelling can serve as a tool for improving process insight, process optimisation and
process control. In this work, the problem of activated sludge flocculation is tackled by means of a
population balance framework. This modelling framework allows to balance one or more properties of
a population’s individuals. It has been widely used in chemical engineering applications and to some
extent in environmental applications (e.g. flocculation in drinking water production). However, very few
researchers have tried to apply it to the activated sludge flocculation problem, mainly due to the difficulty
of measuring the dynamics of the particle size distribution in an on-line way. Recent developments in
measurement technology have opened a new research track that should enable us to explore at least some
of the mysteries of the activated sludge flocculation process. The latter is needed to be able to optimise
and control the separation and clarification process.

In this particular work, it will be investigated whether a population balance framework is appropriate for
the description of the activated sludge flocculation process. This problem statement involves the analysis
of several issues that will be treated in this dissertation. They are organised in a number of logical steps,
which are summarised in Fig. 1.2 and briefly introduced below.

First, a thorough analysis and comprehension of the population balance framework is needed, which is
the main subject of the literature review (Chapter 2).
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Figure 1.1: Overview of the Sedifloc project

Following this, the methods used throughout this work are described in Chapter 3. Among these methods,
a fast, accurate and software compatible numerical solution method will be looked for. This is treated
in Chapter 4 by means of a detailed simulation study of several specific solution methods selected from
literature applied to simple model structures. It is tried to identify the pros and cons of each solution
method and to spot possible pitfalls. One of the latter is studied in more detail in Chapter 5. It was the
first time that such a detailed simulation study using a comprehensive set of degrees of freedom was
conducted.

Once a numerical solution technique is available to work efficiently with the population balance model,
the model should be confronted with reality, i.e. its parameters should be selected such that the model
describes the experimental data well. For that, a calibration procedure is needed to fit the model to the
experimental data that are produced from flocculation experiments. Such data are discussed in Chapter 6,
where, for the first time in activated sludge flocculation modelling, focus lies on the distribution dynamics
rather than summarising parameters such as the average floc size. The development of a comprehensive
calibration methodology is focused on in Chapter 7, which treats several aspects related to calibration
such as how to deal with experimental errors, possible data conversions that are needed for enabling
compatibility between the experimental data and the model and the choice of the variable to which the
model is fitted. Another novelty is introduced here, i.e. fitting on number distributions rather than on
volume distributions.

Up to now, the model structure received little attention since it is not really important in the investigation
of solution methods nor to develop a calibration strategy. However, at this stage of the research, it
becomes of utmost importance. In the ’quest’ for the correct model structure that can describe activated
sludge flocculation, two different approaches were investigated. A first approach is treated in Chapter 8
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Figure 1.2: Schematic overview of the different steps for investigating the appropriateness of a population
balance framework for describing the activated sludge flocculation process
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and checks the applicability of several existing model structures that are available in literature. A second
approach aims at recovering the model structure from the experimental data by means of a mathematical
technique called inversion. As part of this second approach, a similarity analysis is recommended as
it might reduce the complexity of the inverse problem solution. Therefore, this second approach starts
with a similarity analysis which is the subject of Chapter 9. Finally, the inverse problem solution for
both the aggregation and breakage case are treated in Chapter 11. The application of the inverse problem
to experimental data is another new aspect of this dissertation, since this exercise has so far remained
limited to a few cases in literature.

The most important findings of the dissertation and the perspectives for further research are synthesised
in Chapter 12.
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CHAPTER 2

Literature review

2.1 Introduction

This chapter gives an overview of the state-of-the-art literature concerning secondary settling in wastewa-
ter treatment and activated sludge flocculation. It starts with a brief introduction to biological wastewater
treatment, thereby focusing on the secondary settling step. Next, the state-of-the-art findings with regard
to activated sludge flocculation are discussed. The major part of this chapter deals with population bal-
ance models (PBMs), discussing the general framework, solution methods (in particular the discretisation
techniques used in this work) and kernel structures. Also, two useful techniques for kernel structure de-
termination are discussed: self-similarity and the inverse problem. Finally, some state-of-the-art sizing
techniques that are available for on-line particle characterisation are briefly discussed.

2.2 Wastewater treatment

Wastewater collected from municipalities and communities must ultimately be returned to receiving
waters, to the land or reused. Unit operations (physical treatment methods) and unit processes (chemical
and biological methods) can be combined to reach a certain level of treatment. An overview of these
levels is given in Table 2.1. Whereas conventional secondary treatment was the most common method of
treatment up until the late 1980s, nutrient removal has become the standard nowadays (Tchobanoglous
et al., 2003).

The secondary treatment, also called activated sludge process, was first introduced by Ardern and Lockett
(1914). The wastewater is mixed with a consortium of microorganisms, which is responsible for the
degradation of organic compounds and/or nutrients (depending on the process configuration) from the
wastewater. Removal of Biochemical Oxygen Demand (BOD) and ammonium (nitrification) requires
an aerobic tank. When nitrate removal (denitrification) is required, an anoxic tank or zone is required.

7
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Table 2.1: Levels of wastewater treatment (from Tchobanoglous et al. (2003))

Treatment level Description

Preliminary Removal of wastewater constituents such as rags, sticks, floatables, grit, and
grease that might cause maintenance or operational problems with the treat-
ment operations, processes, and ancillary systems

Primary Removal of a portion of the suspended solids and organic matter from the
wastewater

Advanced primary Enhanced removal of suspended solids and organic matter from the wastewa-
ter. Typically accomplished by chemical addition or filtration

Secondary Removal of biodegradable organic matter (in solution or suspension) and sus-
pended solids. Disinfection is also typically included in the definition of con-
ventional secondary treatment

Secondary with nu-
trient removal

Removal of biodegradable organics, suspended solids and nutrients (nitrogen,
phosphorus, or both)

Tertiary Removal of residual suspended solids (after secondary treatment)

Advanced Removal of dissolved and suspended materials remaining after normal biolog-
ical treatment when required for various water reuse applications

Enhanced biological phosphorus removal also requires an anaerobic tank or zone.

The suspended solids (SS) can be removed gravitationally by means of a secondary settling tank (SST).
The thickened sludge is partly recirculated to the secondary treatment (in order to retain biomass in the
system) and partly wasted. Alternatively, membranes can be used to perform this separation. It has the
advantage of yielding higher levels of removal, but produces more sludge and still is expensive.

The excess sludge that is produced and separated should then be disposed. This is typically done by
incineration, disposal into landfills or reuse in e.g. agriculture. Due to higher constraints on these disposal
methods, sludge treatment has become a new challenge in wastewater treatment. Therefore, prior to
disposal, some steps might be incorporated into the process to reduce the sludge volume: thickening,
dewatering, anaerobic digestion.

A schematic overview of the biological treatment process is given in Fig. 2.1.

2.3 The secondary settling tank

As mentioned before, the separation of the cleaned water from the biosolids is often obtained by grav-
itational settling in a SST. In this section, some aspects of SSTs and their relation to activated sludge
flocculation are briefly discussed. For a more detailed and complete overview about theory, modelling,
design and operation of SSTs, the reader is referred to Ekama et al. (1997).
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Figure 2.1: Overview of a biological wastewater treatment facility

2.3.1 Layout and working principle of the secondary settling tank

A schematic of a circular secondary clarifier is given in Fig. 2.2. The sludge, coming from the biological
reactor, enters the SST through the centre feed inlet, after which it enters the flocculation or energy dis-
sipation well, where baffles might be present to avoid short circuits. The hydrodynamics of the system
forces the sludge to move downwards in order to exit the flocculation well and peripherally to reach the
peripheral launder or weir. On its way to the launder, the sludge gets the opportunity to settle gravitation-
ally and a sludge blanket is formed. The bottom of the tank is slightly tilted to guide the thickened sludge
toward the sludge hopper, where it is removed. Often, this flow is also governed by means of a scraper
attached to the bridge, which is moving around tangentially. If the SST works well, the sludge has settled
by the time the fluid reaches the effluent launder and effluent with a small amount of suspended solids
(effluent suspended solids - ESS) is removed from the system.

2.3.2 Functions of the secondary settling tank

The SST is a vital component of the activated sludge system. It combines the function of (1) a thickener
to produce a continuous underflow of thickened sludge for return to the biological reactor, (2) a clarifier
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Figure 2.2: Schematic of a circular secondary clarifier

to produce a clarified final effluent and (3) a storage tank to store sludge during peak flows. Should the
settling tank fail one of these three functions, SS will be carried over the effluent weirs and escape with
the effluent. Besides delivering an effluent of poor quality, excessive loss of SS could affect the behaviour
of the biological process by uncontrolled decrease in mixed liquor suspended solids (MLSS), and hence
the sludge age, to values below that required for proper plant performance.

Whether or not the SST will successfully perform the aforementioned functions depends on its design
features and its operation. The factors affecting these aspects can be grouped in: (1) hydraulic features,
(2) physical features, (3) site conditions and (4) sludge characteristics. The latter factor, including set-
tling, flocculation and thickening characteristics, is of great importance in the design phase and is directly
affected by the conditions and configuration of the biological reactor(s). For example, under-aeration that
might be wanted to create anaerobic or anoxic zones for nutrient removal, might lead to excessive growth
of filamentous organisms deteriorating the settleability and the thickenability. Over-aeration, on the other
hand, can lead to poor flocculation and pin-point floc formation. High shear zones (e.g. due to aeration
or inlet design) might cause floc breakup and, therefore, poor clarification characteristics.

The thickening function is governed by the settleability and thickenability of the sludge and the solids
concentration. It requires the majority of the sludge mass (over 98%) that enters the SST to be stored
and eventually returned to the biological reactor. The extent of thickening determines the plant treatment
capacity. The clarification extent determines theperformanceof the SST in terms of ESS. It is governed
by the flocculation and settling characteristics of the sludge. Since both settleability and thickenability
are dependent on sludge flocculation, the latter is very important for the SST to achieve good thickening
and clarifying performances. Therefore, flocculation wells have been incorporated in the design of SSTs.
The activated sludge flocculation will be more extensively discussed in section 2.4. First, some more
details concerning sludge settling behaviour and SST modelling will be discussed.
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Figure 2.3: The SVI plotted against concentration for five sets of data from different WWTP (from Dick
and Vesilind (1969))

2.3.3 Practical determination of the sludge settling behaviour

A widely used measure for sludge settleability (due to its simplicity) is the sludge volume index (SVI),
which is defined as the volume in ml occupied by 1 g of activated sludge after settling for 30 min. Dick
and Vesilind (1969) questioned the physical meaning and the validity of the SVI as settleability mea-
sure since two sludges with the same SVI can have completely different settling properties (SVI only
presents 1 point on the settling curve). In search for its true meaning the same authors could not find a
consistent relationship between the SVI and SS concentration (see Fig. 2.3), rheological characteristics
and interface velocity. The increase in SVI-value at low sludge concentrations in Fig. 2.3 is due to failure
of agglomeration, whereas the decrease is induced by the increasing sludge concentration. Moreover, the
test is influenced by the cylinder diameter, initial depth, temperature and stirring, making it a doubtful
measure for design. Several alternatives have been proposed throughout the past decades: diluted SVI
(DSVI) (Stobbe, 1964), stirred SVI (SSVI) (White, 1975) and stirred specific volume index at fixed SS
concentrations (e.g.SSVI3.5) (White, 1975). The first one was introduced to avoid the dependency on
SS at high concentrations, whereas the second was introduced to better mimic reality since settling in a
SST does not occur in a quiescent liquid and, moreover, to avoid wall effects in the (small) measuring
cylinder. The third alternative aimed to avoid SS concentration dependency. Lee et al. (1983) found the
diluted SVI to be the best index, when correlating with sludge filament content. However, more than 2
decades later, the SVI is still being used in practice, probably due to its simplicity.

An alternative approach for practical determination of the sludge settling behaviour is the solid flux
theory, which is often used in the design and operation of SSTs. It involves setting up a solid flux
curve, in which the solids flux (product of SS concentration and zone settling velocity [VZS]) is plotted
versus the SS concentration.VZS determination as function of SS concentration requires measurement
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Figure 2.4: Solid-liquid interface height plotted against time. The slope of the straight line section gives
the zone settling velocity (VZS), which decreases as concentration (X) increases (Vanrolleghem et al.,
1996; Ekama et al., 1997).

of hindered settling curves at different SS concentrations (see Fig. 2.4), which can be automated using a
Settlometer (Vanrolleghem et al., 1996).

Typically, theVZS(X) curve is then fitted using the Vesilind equation

VZS = V0 exp (−nX) (2.1)

yielding values for parametersV0 and n, which reflect the settling characteristics of the sludge. On the
one hand, these values can be used for SST design. On the other hand, the flux curve can be used in
a state point analysis (SPA) to determine whether the SST is either underloaded, critically loaded or
overloaded (Ekama et al., 1997).

The major drawback of this method is its labour intensiveness compared to the SVI measurement (which
is one point on one of the hindered settling curves of Fig. 2.4). Another drawback is the fact that hindered
settling tests at high SS concentration have a long duration and might cause problems due to denitrifi-
cation or flotation (Lee et al., 1983; Ekama et al., 1997). This is another reason why the simpler sludge
settleability parameters SVI, DSVI or SSVI are preferred.

In literature, authors have tried to merge the benefits of flux theory analysis and the simplicity of SVI-type
measurements by proposing relationships between SVI, DSVI and SSVI and the flux theory parameters
V0 and n. An extensive overview of such relationships can be found in Ekama et al. (1997). These
relationships should, however, be used with caution since uncritical and ill-disciplined use of these kind
of relationships can lead to serious errors (Ekama et al., 1997; Bye and Dold, 1998).
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2.3.4 Practical determination of the sludge flocculation behaviour

The clarification function performed by activated sludge SSTs ensures a relatively solids-free effluent.
In an SST where hydraulic flow currents do not impact effluent quality, the success of the clarification
function depends on the extent to which the mixed liquor has been flocculated before settling and any
additional flocculation that occurs during settling. Flocculation is necessary not only to produce flocs
of sufficient mass to settle in the SST, but also to decrease the concentration of small, dispersed solids
that do not have sufficient mass to settle in the SST. Ekama et al. (1997) give 3 mechanisms why these
dispersed solids may exist: (1) they have not been incorporated into a floc particle owing to a surface
chemistry reaction that prevents flocculation, (2) they have not been incorporated into a floc particle
owing to insufficient time for flocculation to occur, or (3) they have been sheared from a floc particle
owing to excessive turbulence in the mixed liquor transport system between the aeration system and the
SST. The first mechanism can be caused by toxicants and/or chemical dispersants in the influent stream
or by excessive chemical dosing to control bulking. The fact that flocculation takes time was shown by
several authors (Wahlberg et al., 1994). It was proposed that at least 20 min of retention time are required
in a flocculator to ensure completion of the flocculation. Das et al. (1993) reported that floc breakup is
inversely related to the distance from surface aerators and that certain structures in mixed liquor transfer
systems had deleterious effects on floc integrity.

Wahlberg et al. (1995) proposed a procedure for making the distinction between clarifier failing due to
hydraulics or flocculation, the so-called DSS-FSS test. Dispersed suspended solids (DSS) are defined
as those SS remaining in the supernatant after 30 min of settling, whereas flocculated suspended solids
(FSS) are defined as those SS remaining in the supernatant after 30 min of settling preceded by 30 min
of flocculation. Samples for DSS are taken near the inlet of the SST and the biological reactor outflow
by using a Kemmerer sampler. The settling test is performed within the same apparatus to avoid changes
in flocculation state due to sample transfer and, hence, measures the state of flocculation at the moment
and location at which it was taken. Samples for FSS can be collected everywhere between the aeration
basin and the SST and are taken by using a square flocculation jar equipped with a six-paddle stirrer.
This test attempts to simulate the optimal degree to which the sample can be flocculated. The duration of
30 min was inspired by Wahlberg et al. (1994). The stirrer speed was chosen to be 50 rpm. In addition,
the effluent is also analysed for SS (ESS). It is important that all three analysis (DSS, FSS an ESS) are
performed at approximately the same time.

As to interpret the results, 4 scenarios are possible when a high ESS is measured:

1. High DSS, low FSS— This situation indicates either insufficient flocculation time or breakup due
to some conveyor structure. In both cases, a flocculator should be incorporated (either before or in
the SST).

2. Low DSS, low FSS— This situation indicates a hydraulic or a sludge blanket management prob-
lem. A means of handling this problem is to model the hydraulics with computational fluid dy-
namics (CFD).

3. High DSS, high FSS— This situation also indicates a flocculation problem, but not one that can
be solved by additional flocculation. Most likely, it is of biological nature or the consequence of a
chemical dispersant or toxicant in the plant influent.

4. Low DSS, high FSS— This situation is very unlikely to occur. If it does, repetition of the tests is
recommended.
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Table 2.2: Classification of separation problems (Wanner, 1994)

Type Description

dispersed growth no floc formation

pinpoint flocs lots of small unsettleable flocs present

filamentous bulking abundance of filamentous organisms

rising sludge N2-gas produced by denitrification causes sludge to rise

viscous bulking overproduction of exocellular polymers (slime)

foam and scum accumulation of biomass at the surface caused by non-degradable detergents or
by specific filamentous organisms

2.3.5 Factors influencing the capacity and performance of the secondary set-
tling tanks

The previous sections described how the capacity (settleability/thickening) and the performance (floccu-
lation) of the SST can be determined for an existing plant or applied for the design of a new plant. In
this section, the different influences on both capacity and performance are briefly highlighted. They can
be categorised as biological, hydraulic or physical-chemical.

Biological influences

Activated sludge is grown in flocs of microorganisms, which interact with their environment. The pres-
ence of certain types of organisms is related to the operation and configuration of the treatment plant
and the external environmental conditions. Changes in the latter (wanted or unwanted) can cause shifts
in microbial community. In some cases, these shifts can affect the floc size and shape and, hence, their
settleability. Some reported separation problems related to biological influences are summarised in Table
2.2.

Although some cause-effect relations exist, not all cases are completely understood. Dispersed growth
and pinpoint flocs might be caused by low solids residence time (SRT), not allowing the flocs to form
properly. Barbusinski and Koscielniak (1995) concluded that the organic loading rate (i.e. the amount of
BOD5 or chemical oxygen demand (COD) available per unit solids mass and time) and the availability
of dissolved oxygen per unit of organic loading rate were the two most significant factors influencing the
size distribution. Low organic loading resulted in smaller floc sizes. Filamentous bacteria grow faster
than floc forming bacteria at low substrate concentrations, due to their higher surface-to-volume ratio.
This is better known as the kinetic selection theory (Chudoba et al., 1973). Low oxygen concentration has
also been shown to enhance growth of filamentous organisms (Wilén and Balḿer, 1999). When the mixed
liquor entering the SST contains appreciable amounts ofNO3, N2-gas can be produced by denitrification
(Henze et al., 1993), causing the sludge to rise due to increased buoyancy. Viscous bulking is caused by
an overproduction of EPS. As to foaming, two species have been associated with foaming (Nocardiaand
Microthrix Parvicella). These organisms have hydrophobic cell surfaces and attach to air bubbles.
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Figure 2.5: Illustration of a sludge concentration profile (top) and a fluid velocity profile (bottom) in a
half cross-section of a circular secondary clarifier (from STOWa (2002))

Physical-chemical influences

Physical-chemical influences are mainly related to flocculation and will be thoroughly addressed in sec-
tion 2.4.

Hydraulic influences

It is quite obvious that the flow field will influence both the (orthokinetic) flocculation and settling pro-
cesses. The flow field in a SST is far from uniform due to the density stratification. The solids-loaded
influent has a higher density than the ambient water and, hence, plunges as a density jet to the bottom
of the tank. This is called the density current. This will induce a secondary countercurrent at the sur-
face of the tank or even a multi-layer flow. This density current is characterised by high velocities and
appears in the vicinity of the sludge blanket. Therefore, settled solids may be resuspended and can be
transported to the effluent weirs, deteriorating the effluent quality. On the other hand, the density current
might reduce short circuiting, which is beneficial. Temperature is another factor that might induce cur-
rents since it brings about changes in density. In order to improve the insight in the hydraulic behaviour,
SSTs have been modelled using computational fluid dynamics (CFD). In the latter, the Navier-Stokes
equations (continuity and momentum) are combined with a solids transport model and a settling model
and are solved numerically in either 2 or 3 dimensions. This results in fluid velocity field and solids
concentration profiles as shown in Fig. 2.5. These can be compared with experimental data (De Clercq,
2003).
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2.4 Activated sludge flocculation

2.4.1 Activated sludge characteristics

In aquatic systems microorganisms commonly occur as flocs or biofilms (Marshall, 1981). This ’organi-
sation’ seems to bring advantages to the microorganisms such as enhanced nutrient supply or protection
from shear forces (Fowler, 1988). Besides the microorganisms themselves, extracellular polymeric sub-
stances (EPS) have been found of great importance for the formation of dense flocs and biofilms, since
they act as ion exchange compounds and attract ions and molecules. By use of EPS, microorganisms in
flocs or biofilms can also establish close interactions with each other protecting them from dehydration
(Liu and Fang, 2003).

Activated sludge flocs consist of a complex mixture of microorganisms, dead cells, particulate organic
and inorganic material and EPS. The structure of the flocs is very heterogeneous and porous. The size
ranges from a few to approximately 1000µm (Li and Ganczarczyk, 1990, 1991). The organic matter
within the floc varies from 60 % to 70 %. About half of the organic fraction is composed of EPS. The total
chemical composition of the activated sludge flocs changes with wastewater composition and applied
treatment. Floc formation and flocculation of activated sludge flocs is very complex and cannot be
described by a single mechanism. The vast variety of organisms involved in activated sludge is one
factor that contributes to the complexity of flocculation.

Microorganisms in activated sludge

Activated sludge is composed of a large variety of microorganisms. The major reason for this is the
diversity of substrates in the wastewater it is exposed to. Over time, particular microbial species adapt
to particular kinds of substrates. The microorganisms are in continuous competition for the substrate
under given environmental conditions (pH, temperature, substrate concentration, oxygen supply,. . . ).
Moreover, phenomena like commensalism, parasitism and predation exist, leading to further diversity of
the community.

Microorganisms in activated sludge can roughly be divided into two categories: floc forming species and
filamentous species. The presence of filamentous microorganisms is closely related to the flocculation
behaviour since they are believed to provide a network to which floc formers and microcolonies (small
clusters of microorganisms) can attach. In this regard Parker et al. (1970) observed that activated sludge
flocs containing filaments are stronger when they are subjected to shear and that the diameter is closely
related to the size of the filaments. In contrast to this positive effect, it has been shown that excessive
occurrence of filamentous bacteria results in poor settling flocs (filamentous bulking) (Wanner, 1994).

Exocellular polymeric substances (EPS)

EPS are extracellular biopolymers typically consisting of proteins, polysaccharides, humic compounds,
nucleic acids, and lipids. The biopolymers form a matrix which encapsulates the microorganisms and
aids in their aggregation and the floc formation (Wilén et al., 2003). Furthermore, EPS retains exo-
enzymes near the cell surface to bind organic matter. EPS is produced by the bacterial metabolism and
lysis of microorganisms (Urbain et al., 1993). Andreadakis (1993) suggested that, in the case of low
sludge age, EPS originates from substrate absorption and storage, whereas for high sludge ages this
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would be due to decay of biomass. The total mass of EPS in a floc has been found to represent up to
80 % of the total floc mass. Wilén et al. (2003) investigated the relationship between activated sludge
flocculation and the composition of the EPS and found a negative correlation between flocculation ability
and amount of EPS. EPS contain hydrophobic sections and differently charged functional groups with
high binding capacity for metals, particles and microorganisms (Urbain et al., 1993). This feature is
certainly the main reason for the significant role of EPS in activated sludge flocculation although the
distinct mechanisms are not yet fully understood.

Regarding the poor SVI values observed when high amounts of EPS are present, Mikkelsen and Keiding
(2002) showed that an increase of EPS was related to an increased negative charge of the sludge flocs.
The expected high electrostatic repulsion of highly negatively charged flocs would therefore deteriorate
the settling behaviour of the flocs, which is also described by the DLVO theory (see section 2.4.2).
Similar observations were made by other researchers (Wilén et al., 2003; Liao et al., 2001).

An in-depth discussion about EPS is beyond the scope of this literature review. A critical review about
many aspects of EPS can be found in Liu and Fang (2003).

Bound water

Bound water (BW) in activated sludge flocs consists of three components based on different binding
forces (Liao et al., 2000):interstitial water (water entrapped in the floc matrix),vicinal water (water
held by surface forces), andwater of hydration(water held by chemical bonds). It has been shown that
poorer settling and dewatering properties of sludge are related to a larger BW content. Liao et al. (2000)
found larger amounts of BW for smaller flocs. The total amount of EPS was positively correlated to the
BW content on bench-scale, but no conclusive correlation was found in full-scale. The same authors also
found a positive correlation between BW content and SVI. The BW is likely associated with EPS that
form a complex matrix and large surface area that retains water (Liss et al., 1996). No correlation existed
between BW and SRT nor surface charge.

Floc size and strength

Andreadakis (1993) reports a typical range of floc sizes between 10µm and 70µm for well mixed acti-
vated sludge systems. Other authors report a bimodal floc size distribution (Parker et al., 1970; Li and
Ganczarczyk, 1991): flocs within the size range of 25µm – 300µm and primary particles (or bacte-
rial cells) of about 0.5µm - 5µm (Li and Ganczarczyk, 1991; Jorand et al., 1995). Mikkelsen (2001)
suggests the upper boundary for flocs to be around 1000µm. Primary particles are regarded as colloids
exhibiting different physical properties than flocs. Flocculation in these bimodal distributed systems is
explained by adhesion of primary particles to floc surfaces whereas breakage is governed by erosion of
primary particles from the floc surface due to shear (Parker et al., 1970). It is generally accepted that the
average final floc size is due to a dynamic equilibrium between breakage and aggregation mechanisms
(Lu and Spielman, 1984; Spicer and Pratsinis, 1996b; Mikkelsen, 2001). Both mechanisms depend on
floc properties as well as external factors. They will be discussed in a later stage (sections 2.5.4 and
2.5.5).

With regard to floc strength, a maximum stable floc diameter(dmax) has been suggested (Parker et al.,
1970; Kusters, 1991; Dobias, 1993)

dmax =
C

Gn
(2.2)
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where C is the floc strength constant, n is the stable floc size exponent and G is the average velocity
gradient given by

Ḡ =

√
ε̄

ν
(2.3)

with ε the energy dissipation rate andν the kinematic viscosity. Parker et al. (1970) suggests that floc
strength is governed by filamentous bacteria (functioning as floc backbone) due to their tensile strength.
Kusters (1991) states that floc strength is proportional to the amount of particles and to different types
of bonds between the particles within the activated sludge floc. Wilén et al. (2003) found a lower shear
sensitivity (or higher floc strength) for sludges containing lower amounts of EPS.

Floc structure and density

Microphotographs of activated sludge flocs showed that microorganisms, water and EPS are irregularly
dispersed within the floc (Li and Ganczarczyk, 1990; Jorand et al., 1995; Liss et al., 1996). The random
occurrence of water channels and reservoirs of variable sizes in the floc clearly indicated that a uniform
distribution of microorganisms did not exist. In their examinations of activated sludge flocs, Li and
Ganczarczyk (1990) noted a general resemblance, in a statistical sense, under different magnifications.
This self-similar property, as well as the lack of a characteristic size for water gaps, implies that the
sections may be characterized by the fractal concept within a certain size range. The concept of the
fractal dimension is based on the relation between the aggregate size and the aggregate mass (M). If the
aggregate size is expressed by the radius of gyrationrG, the fractal relationship is generally expressed
by (Mandelbrot, 1987)

M ∝ r
Df

G (2.4)

whereDf is the fractal dimension. The radius of gyration is the root-mean-square distance of the primary
particles (that build up the floc) from their centre of mass or

rG =
√
〈d2〉 =

√√√√ 1
N

N∑
i=1

d2
i (2.5)

with di the distance of a particle to the centre of mass. Note that this expression only holds for monodis-
persed primary particles.

For linear, planar, and three dimensionally compact objects, the exponentDf in eq. 2.4 will have values
of 1, 2 and 3 respectively, whereas for porous aggregatesDf may take a fractal value. In such cases, the
exponent is known as the mass fractal dimension. More porous or open structures will have a smaller
fractal dimension. If the relationship between mass and length is independent of the scale of observation
the structure of the aggregate is described as being self-similar. This is illustrated in Fig.2.6.

The assumption of the fractal nature brings about two important practical consequences. First, the ef-
fective density of aggregates decreases as their size increases (Gregory, 1997) leading to a faster growth
of aggregates and, hence, an increased collision probability, which is governed by an effectively larger
volume fraction. This is beneficial for orthokinetic flocculation (flocculation mechanism based on ve-
locity gradients, see section 2.4.4). Second, large and low density fractal aggregates settle slower than
compact dense spheres due to their lower density and, moreover, are more susceptible for breakup. The
former is also influenced by the permeability of the floc. Indeed, if water is able to penetrate the floc, the
settling velocity will again increase due to a lower drag compared to an impermeable floc. Floc size and
density are, therefore, very important factors with regard to the performance (large and less dense flocs
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Figure 2.6: Two dimensional model of self similar aggregate structure (after Gregory (1997))

are beneficial) and the capacity of the SST (compact and dense flocs are beneficial) as was discussed
before. It is clear that a compromise between these two factors should be found. It is difficult, however,
to control the floc density in practice.

Several techniques are available to measure fractal dimension. An overview is given by Bushell et al.
(2002). Guan et al. (1998) used small angle light scattering and predicted the fractal dimension for acti-
vated sludge to be in the range of 2.0 - 2.2, which is similar to the values reported by Li and Ganczarczyk
(1989) who used image analysis. Gregory (1997) suggested that the fractal dimension of formed flocs
also depends on the mechanism that leads to aggregation. When a single particle is added to a cluster,
a more compact structure may be expected since a single particle is able to penetrate somewhat into
the cluster before making contact. When two clusters encounter, a more open structure is likely, due
to sterical hindrance. This is illustrated in Fig. 2.7. Furthermore, it has been observed that the fractal
dimension of flocs increases with time. As a possible reason Clark and Flora (1991) suggest that breakup
and reformation of the flocs in sheared suspensions lead to more compact structures. This has also been
observed in latex particle systems (Selomulya et al., 2001).

2.4.2 Conceptual activated sludge flocculation models

Four conceptual models describing the activated sludge flocculation, i.e. the alginate theory, the poly-
mer bridging model, the colloidal interaction model and the model of three structural levels are briefly
introduced.
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Figure 2.7: Illustration of aggregation mechanism dependency of the fractal dimension (from Gregory
(1997))

The alginate theory

The alginate theory for the role of cations in the bioflocculation of activated sludge was first proposed
by Bruus et al. (1992). Alginate is a polysaccharide produced by bacteria and is typically made up of
repeating mannuronic and glucuronic acids. Its unique composition results in the formation of alginate
gels in the presence of calcium ions. Sobeck and Higgins (2002) argued that this could not be the only
mechanism present, since they found improved bioflocculation as well when adding magnesium ions,
which is not supported by the alginate theory since the affinity of alginate toward magnesium ions is
lower.

Polymer bridging model

The polymer bridging or divalent cation bridging (DCB) model, which is widely supported (Busch and
Stumm, 1968; Sobeck and Higgins, 2002), stresses the role of divalent cations (e.g.Ca2+,Mg2+) in
activated sludge flocculation. According to this theory, divalent cations bridge negatively charged func-
tional groups present in the EPS matrix, thereby promoting the aggregation process and stabilising the
matrix of polymer and microorganisms. The latter enhances bioflocculation. The DCB theory suggests
a non specific binding of divalent cations rather than specific interactions (e.g. alginate theory) and also
supports findings of deflocculation by addition of monovalent cations likeNa+ (Sobeck and Higgins,
2002). Higgins and Novak (1997) proposed a monovalent to divalent cation ratio lower than 2 in order
to avoid floc property deterioration. The conceptual model is illustrated in Fig.2.8.
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Figure 2.8: Illustration of the cation bridging concept (after Sobeck and Higgins (2002))

Colloidal interaction model

Zita and Hermansson (1994) suggested that bioflocculation can be explained by the colloidal interaction
model, which assumes that interactions between particles can be described through the DLVO theory for
colloidal stability, which has been used to explain interactions between colloids in general (Hiemenz and
Rajagopalan, 1997; Verwey and Overbeek, 1948). Colloidal particles are in the size range of 1 nm to
1µm. Colloids are non-settleable and are affected by Brownian motion.

The DLVO theory describes the interactions between particles according to their surface potential and
the thickness of their electrical double layer. Based on the fact that most natural surfaces are negatively
charged in aquatic systems, these surfaces are surrounded by oppositely charged ions. Some of these
ions are bound to the surface, the stern layer, but most of them are located in a diffuse layer (Fig. 2.9).
Therefore, if two equally charged objects approach one another, they experiencerepulsive electrostatic
forces. The electrostatic repulsion is a function of the thickness of the double layer, which is inversely
proportional to the ionic strength. Therefore, the electrostatic repulsion is reduced if the electrolyte
concentration is high. Large amounts of divalent and trivalent ions also lead to an increase of the ion
strength and a reduction of the particles surface potential.

A second short range interaction between colloids is thevan der Waals attraction. The van der Waals
force is a function of the separation distance, the geometry of the system and the Hamaker constant,
which depends on the hydrophobicity of the concerned particles.

The DLVO theory defines a total so-calledGibbs interaction energy, summing the van der Waals at-
traction and electrostatic repulsion forces. This total interaction energy is a function of the separation
distance of two particles (Fig. 2.10). When repulsion exceeds attraction, there is a potential energy bar-
rier, which hinders contact between particles. For two particles to aggregate, this energy barrier must
be overcome (e.g. through kinetic energy obtained by the flow) or lowered (e.g. by adding coagulant).
Once the barrier has been overcome, the particles are strongly held in the deep primary minimum. It is
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Figure 2.9: Illustration of the formation of an electrical double-layer

assumed that flocculation of activated sludge is due to attraction forces of the secondary minimum since
sludge aggregates tend to deflocculate under turbulent conditions and at relatively low shear rates.

Sobeck and Higgins (2002) argue the validity of this theory since it suggests an improvement of the floc-
culation when monovalent cations are added (since this increases the ionic strength and, hence, decreases
the thickness of the double layer). The latter is, however, not always observed in practice. The same au-
thors state that the discrepancy between experimental studies to investigate the influence of cations on
bioflocculation is governed by the different experimental set-ups that have been used to study the influ-
ence of cations on bioflocculation (i.e. batch versus continuous).

Model with three structural levels

This model, suggested by Jorand et al. (1995) on the basis of sonication experiments, describes an acti-
vated sludge floc population as being composed of three different structural levels: microflocs, which are
primary particles, 2.5µm in size (single bacteria); secondary particles of about 13µm (microcolonies)
which link together through exopolymers to, finally, form tertiary structures having a mean diameter of
about 125µm. Examining activated sludge from a wastewater treatment plant by transmission electron
microscopy the authors predicted a fractal dimension for the primary particles of about 3, whereas that
of the third level was found to be in the range 2.4 - 2.6. An illustration of a simplified activated sludge
floc is given in Fig.2.11.

2.4.3 Influencing factors on floc size and structure

As mentioned before the average final floc size and in particular the particle size distribution (PSD) is
determined by a dynamic steady state between aggregation and breakup processes. These processes are
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Figure 2.10: Interaction energy between two particles as a function of separation distance according to
the DLVO theory

dependent on the actual shear force, induced by mixing, various properties of the fluid and properties of
the activated sludge. Often diverse influencing factors of floc size and structure are closely related and
hard to distinguish.

Mixing

Mixing is important for the formation and breakup of activated sludge flocs. A certain degree of shear rate
is necessary to provoke collisions between particles and, hence, to provide kinetic energy to overcome
repulsive forces between approaching flocs allowing them to aggregate. With regard to the floc breakup,
mixing imposes shear stresses on the floc surface which are larger than the floc’s resistance to stress
(floc strength). Breakup of flocs can be of two kinds: erosion of small primary particles from the floc
surface and floc rupture in two or more smaller flocs (Parker et al., 1970). Erosion is likely to happen
when the shear forces exceed the strength of the bond between the primary particles and the floc. At
higher shear forces, floc rupture is more likely. Mikkelsen and Keiding (2002) argued that floc erosion
is more common in wastewater treatment plants than floc rupture because the EPS within the flocs is
very much cross-linked requiring high forces to break the flocs. Eq. 2.2 has been proposed to express
a maximum stable floc diameter as a function of experienced surface shear stress and shear strength
or simply the shear stress only (Parker et al., 1970; Tambo and Watanabe, 1979; Tambo and Hozumi,
1979). A more detailed description of aggregation and breakage and how they are translated into models
will be given later (sections 2.5.4 and 2.5.5). A study by Clark and Flora (1991) revealed that different
mixing strategies lead to differences in the final floc structure and density. The authors included a period
of high mixing during a flocculation experiment at low mixing intensity and observed higher densities
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Figure 2.11: Simplified activated sludge floc (from Jorand et al. (1995))

and fractal dimensions compared to the standard (low) mixing conditions. A clear correlation between
mixing intensity and floc size was found by Biggs and Lant (2000) and Govoreanu (2004). Both studies
used on-line laser diffraction to follow the floc size distribution in time and used the mass mean average
diameter at steady state to obtain the correlation. Govoreanu (2004) concluded from a Response Surface
Model (RSM), summarising her extensive experimental data set that the mixing intensity should be
lower than 15s−1, i.e. the lowest mixing intensity used in the study, in order to maximise the mass mean
average floc size and to minimise the SVI.

Sludge age

It has been observed by various researchers that the floc size increases with higher sludge ages (Knocke
and Zentkovitch, 1986; Jiwani et al., 1997; Andreadakis, 1993). The latter authors studied the mor-
phology of activated sludge flocs for different operation modes of an activated sludge pilot plant. They
observed that relatively small flocs were obtained at short HRTs (hydraulic retention times) (less than 10
hours) and for sludge ages less than 8 days; larger flocs were obtained when increasing both parameters.
Moreover, lower levels of turbidity were measured in the effluent. A possible explanation could be a
higher accumulation of EPS in the flocs with higher sludge age (Keiding and Nielsen, 1997) or a more
firm linkage between older flocs, which makes them less susceptible to shear (Eriksson et al., 1992).
Samimi et al. (2003), however, did not find a strong correlation between total EPS and sludge age. They
suggest that the change in ESS (or supernatant turbidity) is related to the surface properties of the flocs
(i.e. hydrophobicity and surface charge), which is governed by the EPS composition and not by the level
of EPS.
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Organic loading rate

While investigating variations in the operation of the activated sludge process, Li and Ganczarczyk
(1993) found that at high organic loading rates the number of primary particles (< 2µm) increased
significantly. A possible explanation for this might be a stimulated growth of dispersed bacteria in the
bulk water. Barbusinski and Koscielniak (1995) performed a detailed study on the influence of organic
loading rate on the size of activated sludge flocs. They observed a direct proportionality between floc
size and changes of organic loading rate in the range of 0.17 - 1.8kg COD.kg MLSS−1.d−1: average
floc size increased with increasing loadings and floc size distributions shifted to larger size ranges. When
the organic loading rate exceeded 0.5kg COD.kg MLSS−1.d−1, a rapid increase of filamentous bacteria
appeared. This might be due to a reduction of the DO concentration at high organic loading rates which
favours filamentous bacteria (Sezgin et al., 1978). In all experiments it was found that the floc size curves
for increasing and decreasing organic loading rate were not the same but revealed a significant hysteresis
effect. The final floc size was larger than the initial floc size at equal low organic loading rates. However,
this effect became smaller when the gradual change in organic loading rate was performed faster.

Ionic strength

As explained by the DLVO theory, low ionic strength can cause deflocculation, since it weakens the
floc strength. Zita and Hermansson (1994) studied the influence of ionic strength on the overall floc
strength. As evidenced by a lower turbidity, they observed an increasing floc strength with increasing
electrolyte concentration. The researchers explained this through the DLVO theory. If the ionic strength
was increased beyond 0.1 M, the floc stability diminished again. A proper explanation for the latter
has not been given yet. Govoreanu (2004) also found a relationship between increased ionic strength
(in terms ofCa2+) and floc strength by proving that the mass mean average floc diameter could still be
increased at high mixing intensities whenCa2+ was added. Cousin and Ganczarczyk (1998) showed that,
as a result of physicochemical effects, increased sodium ion concentrations significantly affected both
floc size and their internal structure. Mean floc size was found to increase linearly withNaCl addition. In
some experiments, increasedNaCl concentrations resulted in an increase of the floc porosity, indicating
a change in physical structure of individual flocs. This is in disagreement with the findings of others
(Higgins and Novak, 1997; Sobeck and Higgins, 2002) who found different effects for the addition of
monovalent (e.g.Na+,K+) and divalent (e.g.Ca2+,Mg2+) cations. They state that the monovalent to
divalent ratio is more important than the total ionic strength. This ratio should be lower than 2 to avoid
deterioration of the floc structure and, hence, deflocculation. Biggs and Lant (2000) observed an increase
in mass mean average diameter with increasing concentrations ofCa2+. Govoreanu (2004) confirmed
these findings and found that the optimalCa2+-addition is in the range of 14-18meq.l−1. However, it
was postulated that this is highly dependent on the initialCa2+-content of the sludge.

Temperature

Temperature affects the physical properties (e.g. viscosity, structure of EPS) and the biological properties
(nature and rate of metabolism) of activated sludge. Higher temperatures lead to increased deflocculation
(Sürücü and Cetin, 1989; Morgan-Sagastume and Allen, 2003; Govoreanu, 2004). Increased amounts of
suspended solids in the effluent were observed when the temperature was increased from 15 to 25 °C.
Further increase of the temperature up to 35 °C led to an even higher concentration of suspended solids.
Govoreanu (2004) observed larger mass mean average floc sizes at lower temperatures and proposed an
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optimal temperature of 7-8 °C based on an optimisation using a response surface model (RSM).

Dissolved oxygen concentration

Li and Ganczarczyk (1993) concluded from their studies that the DO-concentration and the organic
loading, as very closely related parameters, are the two most significant factors determining the size
distribution of activated sludge flocs. Sürücü and Cetin (1989) found that, on average, activated sludge
flocs were larger at DO concentrations of 2 - 5mg.l−1 than they were at DO concentrations of 0.5 -
1.5mg.l−1. Starkey and Karr (1984) found deterioration in effluent turbidity when DO levels were
decreased. They reported two causes: decrease in EPS production reducing the adsorptive capacity of
the sludge and washout of protozoa, which are believed to graze bacteria and other colloids. Wilén and
Balmér (1999) investigated the influence of DO on the structure, size and size distribution. At high DO
concentrations, more compact flocs were found. No clear correlation between DO concentration and floc
size was found. 80% of the particles in the supernatant were found to be smaller than 2µm. With regard
to supernatant turbidity, similar results were found by Starkey and Karr (1984). Wilén et al. (2000) found
that deflocculation due to anaerobic conditions is irreversible to a certain extent, which is most likely due
to changes in microbial activity. All mentioned studies focused on long-term effects (order of magnitude
of days). Govoreanu (2004) studied short-term DO-effects and concluded that they were absent.

Combined effect of influencing factors

Govoreanu (2004) was the first to investigate the combined effect of 5 influencing factors on activated
sludge flocculation simultaneously: mixing intensity (G), dissolved oxygen concentration (DO), tem-
perature (T), calcium addition (Ca2+) and sludge concentration (X). Seven so-called response variables
(R) were evaluated: floc size (D[4,3]), SVI, zeta potential (zeta), turbidity (turb), supernatant suspended
solids (TSS), conductivity (cond) and pH. In a first approach the functionality between separate response
variables (one by one) and all factors were investigated separately using a quadratic response surface
model (RSM). The latter is defined as a pure statistical model (not knowledge based) that is obtained
through multivariate (more than one measured variable) non-linear regression. Such a model considers
both linear, quadratic and interaction terms. Since all responses were measured before and after the
different factor values were applied, two criteria were used for the response variables:

1. the difference between the initial and steady state response variable,∆ R = Rss − Rinit

2. the steady state response variable,Rss

From the derived models optimal factorial points were derived by optimising the respective response
variable. The findings are summarised in Table 2.3. Here, the different criteria that were tested are listed,
along with their target, which is either minimisation (min), or maximisation (max) (taking into account
the physical boundaries), and whether the influencing factors either have a positive (+), negative (-) or
negligible (0) effect.

In a second approach the model was optimised using a combination of target values for the different
responses. Since a conductivity target is hard to define and pH had little influence, only 5 response
variables were retained. D[4,3] was targeted at 1800µm and SVI at 40ml.g−1. Zeta potential, turbidity
and TSS were all targeted at 0. The optimisation resulted in the following optimal conditions: T=
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Table 2.3: Summarising results from the optimisations using response surface models (from Govoreanu
(2004)). +,- and 0 means that the factor has a positive, negative or negligible effect respectively.

criterion goal G DO X Ca2+ T

∆ D[4, 3] max - 0 + 0 -

D[4, 3]ss max - 0 + + -

∆ SVI min - 0 + 0 -

SVIss min - 0 + + -

∆ zeta max not reliable

zetass min not reliable

∆ turb min - + 0 0 0

turbss min - + 0 0 0

∆ TSS min +/- 0 0 -/+ 0

TSSss min not reliable

∆ cond max 0 0 - + +

condss max 0 0 - + +

∆ pH 0 no effect observed

pHss 0 no effect observed

17.6 °C G = 15s−1 (i.e. the minimum value tested),Ca2+ = 14.09meq.l−1, DO = 0.99mg.l−1 and X =
3.29g.l−1. Some of the experimental results are discussed in more detail in chapter 6.

2.4.4 Mathematical modelling of activated sludge flocculation

The mathematical representation of flocculation, i.e. the process whereby destabilised suspended par-
ticles are aggregated, has conventionally been based on considering the process as two discrete steps:
transport and attachment (Thomas et al., 1999). The transport step, leading to the collision of two parti-
cles, is achieved by virtue of local variations in fluid/particle velocities arising through

• the random thermal ’Brownian’ motion of particles (perikinetic flocculation)

• imposed velocity gradients from mixing (orthokinetic flocculation)

• differences in settling velocities of individual particles (differential sedimentation)

This is illustrated in Fig. 2.12. Attachment is dependent upon a number of short range forces largely
pertaining to the nature of the surfaces themselves. These two concepts can be expressed mathematically
as a rate of successful collision:

rate of flocculation = αβ(i, j)ninj (2.6)
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Figure 2.12: Illustration of the different flocculation mechanisms that induce particle collisions

whereα is the the collision efficiency,β(i, j) is the collision frequency between particles of size i and j
andni andnj are the particle concentrations for particles of size i and j. This approach leads to the first
major attempt at modelling the flocculation process by Smoluchowski (1917), which formed the basis
for almost all subsequent research into flocculation:

dnk

dt
=

1
2

∑
i+j=k

β(i, j)ninj −
∞∑
i=1

β(i, k)nink (2.7)

The first term on the right hand side of eq. 2.7 defines the increase in number of particles of size k,
whereas the second term on the right hand side of eq. 2.7 describes the loss of particles of size k due
to aggregation with other particle sizes. The one half factor in the first term ensures for not counting
collisions twice. The overall equation defines the rate of change in the number concentration of particles
of size k. Hence, a set of k equations like eq. 2.7 needs to be solved simultaneously. Smoluchowski
(1917) made a number of simplifying assumptions:

• the collision efficiency factorα is unity for all collisions

• fluid motion undergoes laminar shear

• particles are monodisperse

• no breakage occurs

• all particles are spherical in shape and remain so after aggregation (coalescing assumption)

• collisions involve only two particles
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Later on, the more general framework of population balances was developed and some of the assumptions
of Smoluchowski (1917) were discarded by developing new expressions forα andβ and adding models
for breakage of particles. This will be the subject of section 2.5.4 and 2.5.5.

2.5 Population Balance Modelling

When modelling a population of individuals, one can choose 2 different approaches:

• continuum approach— The population is considered as one lumped entity. All properties of the
population are either homogeneously distributed, or a mean value of a heterogeneous distribution.
In both cases the properties are represented by one number. For example, a population of particles
would have one average settling velocity, independent of the particle size and/or density.

• segregated approach— The population is considered as a population of individual objects. All
properties of the population are distributions. In this case the aforementioned population of par-
ticles would have a distribution of settling velocities depending on size and/or density, which is
more realistic.

The continuum approach is easier in use, but leads to a loss of realism. In some cases the continuum
approach can be derived from the segregated approach by making some assumptions. Hence, the seg-
regated approach leads to a better understanding of the limitations of the continuum approach and will
answer the question whether the continuum approach can be used without introducing a severe error.
The continuum model has been widely used because of a lack of measurement techniques to collect the
required data to feed the segregated models.

Recently, however, improved particle sizing techniques have been developed (e.g. flow cytometry, im-
age analysis, laser scattering, coulter counter,. . . ) which are further described in section 2.6. This has
enhanced the capacity to identify a population balance model from experimental data. Therefore, the
interest in population balance modeling has risen steeply in recent times (Ramkrishna and Mahoney,
2002).

The first appearance in literature of the general framework of population balances was by Hulburt and
Katz (1964). An excellent review of the state-of-the-art in population balances was due to Ramkrishna
(2000) and formed the basis of this literature review on population balances.

2.5.1 General framework

In this section, the population balance equation will be introduced. However, before doing so, some
notation and terminology needs to be addressed.

The particle state and continuous phase vectors

As mentioned before, a segregated model considers individual objects. In what follows, these objects
shall be denotes as ’particles’, which should be regarded as any individual object in a segregated sys-
tem (i.e. a floc, a crystal, a bubble,. . . ) and not solely solid particles. Every object is considered to
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be in a certain state, which can be defined by a number of (heterogeneous) properties of these objects.
These properties are specified and summarized in theparticle state vector. It is convenient to distinguish
between external coordinatesr ≡ (r1, r2, r3), which may be used to denote the position vector of the
particle, and internal coordinatesx ≡ (x1, x2, . . . , xd), representing different quantities/properties asso-
ciated with the particle. The choice of the particle state vector is determined by the variables considered
important to specify (1) the rate of change of those variables of direct interest in the application, and (2)
the birth and death processes. The domains of internal and external coordinates will further be denoted
asΩx andΩr respectively.

The phase in which the particles are dispersed will be referred to as the continuous phase. This continuous
phase can also be heterogeneous and is therefore also summarized in the c-dimensionalcontinuous phase
vector, which is clearly a function of the external coordinates and time:

Y (r, t) ≡ [Y1 (r, t) , Y2 (r, t) , . . . , Yc (r, t)] (2.8)

The evolution of this field in space and time is governed by the laws of transport and interaction with the
particles. The actual governing equations must involve the number density of particles in the particulate
phase, which must first be identified.

In some situations, a continuous phase balance may not be necessary because interaction between the
population and the continuous phase may not bring about any (or a substantial enough) change in the con-
tinuous phase. In such cases, analysis of the population involves only the population balance equation.
The latter will be the case in this work.

The number and volume (or mass) density function

The number of objects that have a given state vector (x,r) is expressed by thenumber density function
f1 (x, r, t). This implies that the number of particles in the infinitesimal volumedVx dVr (in particle
state space) about the particle state (x,r) isf1 (x, r, t) dVx dVr. The number density function allows one
to calculate the number of particles in any region of particle state space. The total number of particles in
the entire system is given by: ∫

Ωx

dVx

∫
Ωr

dVr f1 (x, r, t) (2.9)

The total number of particles per unit of physical space, denoted as N(r,t) is then given by:

N (r, t) =
∫

Ωx

dVx f1 (x, r, t) (2.10)

Other densities such as volume or mass may also be defined for the particle population. Thus, if v(x) is
the volume of the particle of internal state x, then the volume density may be defined asv(x) f1(x, r, t).
When using only volume as an internal state, the volume fractionφ (x, r, t) of particles of volume v(x)
becomes:

φ (x, r, t) =
1

φ (r, t)
v (x) f1 (x, r, t) (2.11)

where

φ (r, t) ≡
∫

Ωx

dVx v (x) f1 (x, r, t) (2.12)
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represents the total volume fraction of all particles. In contrast with the number density, the volume
and mass densities are concerned with the amount of dispersed material, and consequently are often
physically more relevant. Of course, this depends on the application.

The rate of change of particle state vector

Particle states can vary in time. A change of external coordinates refers to motion through physical space,
whereas that of internal coordinates refers to motion through an abstract property space. The velocities
for external and internal coordinates, if the process is viewed as a deterministic one, are defined as:

Ṙ (x, r, Y, t) , Ẋ (x, r, Y, t) (2.13)

This allows to identify particle (number) fluxes, i.e. the number of particles flowing per unit of time per
unit of area normal to the direction of the velocity:

f1 (x, r, t) Ṙ (x, r, Y, t) , f1 (x, r, t) Ẋ (x, r, Y, t) (2.14)

Both fluxes are evaluated at time t and at the point (x,r) in particle state space.

The population balance equation

Having introduced this terminology, one can write down the general multi-dimensional population bal-
ance equation. For the complete derivation, the reader is referred to Ramkrishna (2000).

∂

∂t
f1 +∇x · Ẋf1 +∇r · Ṙf1 = h (2.15)

where h is the net rate of generation of particles due to birth and death processes. The structure of h will
be discussed in the next section.

In order to be solvable, eq. 2.15 needs to be supplemented withinitial andboundaryconditions. The
initial condition f1 (x, r, 0) must clearly stipulate the distribution of particles in the particle state space,
including internal and external coordinates. The boundary condition is basically a specification of the
component of the particle flux normal to the boundary or the number density at each point on ”‘appro-
priate”’ parts of the boundary. These parts are the origins of the characteristic curves along which the
solution of eq. 2.15 evolves. For examples of initial and boundary conditions, the reader is referred to
Ramkrishna (2000). The initial and boundary conditions are also dependent on the application.

Birth and death functions

Changes in the number of particles can be driven by the boundary condition. The focus of this section,
however, will be the modelling of processes in which particles may appear or disappear at any point
in the particle state space. Birth and death events are generally a consequence of nucleation, particle
breakage and/or aggregation processes. Since nucleation is not of interest in this work, it will not be
further discussed. If birth takes place through one of the other processes, or at the expense of existing
particles, then the right-hand side of the population balance equation must include a corresponding sink
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Figure 2.13: Illustration of the birth and death concept for aggregation and breakage

term besides a possible boundary condition term. Hence, the net birth rate consists of source and sink
terms:

h (x, r, Y, t) = h+ (x, r, Y, t) + h− (x, r, Y, t) (2.16)

where the first term on the right hand side (source term) represents the number of particles of state (x,r)
that are formed due to aggregation and/or breakage, whereas the second term on the right hand side
(sink term) represents the number of particles of state (x,r) that is disappearing due to aggregation and/or
breakage. The structure of these terms is further discussed, hereby differentiating between aggregation
and breakage processes.

Breakage processesin the broad sense not only include mechanical fracture of particles, but also other
mechanisms where new particles arise from existing particles like e.g. asexual cell division. The un-
derlying theme stresses independent behaviour of individual particles with respect to breakage. This
limitation would imply that breakage of particles due to collision with other particles cannot be modelled
using the strategy outlined below. However, those operations where particles are in intimate contact with
one another have been traditionally modelled using the same methodology assuming independency of
breakage towards other particles. The justification of this may come from viewing the environment of
each particle as an average medium of particles transmitting forces (stress) leading to particle breakup.

If breakup of particles occurs independently of each other, thespecific breakage rateof particles of state
(x,r) at time t in an environment Y can be represented by b(x,r,Y,t). It represents the fraction of particles
of state (x,r) breaking per unit of time. The sink term from breakage simply becomes:

h−break (x, r, Y, t) = b (x, r, Y, t) f1 (x, r, t) (2.17)

The function b(x,r,Y,t) has the dimension of reciprocal time and is often called thebreakage frequency.
This sink termh−break (x, r,Y, t) can be viewed as the death of particles with size x due to breakage and
is therefore also calledbreakage death. This is illustrated in Fig. 2.13.

In order to characterise the source term from breakage, some additional quantities have to be introduced:

υ (x′, r′,Y, t) The average numberof particles formed from the breakup of a single particle of
state (x’,r’) in an environment of state Y at time t ;

P (x, r|x′, r′,Y, t) The probability density functionor daughter distribution functionfor particles of
state (x’,r’) in an environment of state Y at time t that break into particles of state
(x,r). This is a continuously distributed fraction over particle state space

.



2.5 Population Balance Modelling 33

The former quantity is often (but not always) known. It has a minimum value of 2 but, being an average
number, is not restricted to being an integer. In a multiple-splitting process, detailed modelling of the
breakage process is essential to arrive at the value of v. Alternatively, its value could be determined
from experiments. The latter quantity also needs to be determined either by experimental observation
or by detailed modelling of the breakage process. This function, however, inherits certain properties
from conservation laws which must constrain the breakage process. It must satisfy the normalisation
condition: ∫

Ωx

P
(
x, r|x′, r′, Y, t

)
dVx = 1 (2.18)

Conservation of mass is required too. If m(x) is assumed to be the mass of a particle of internal state x,
this yields the restriction:

P
(
x, r|x′, r′, Y, t

)
= 0 m (x) ≥ m

(
x′
)

(2.19)

Eq. 2.19 expresses the fact that breakage into larger particles is impossible. The following restriction
expresses the fact that no mass can be ”created”, in other words, the mass of all the fragments from
breakage formed within the system should be no more than the mass of the parent particle:

m
(
x′
)
≥ v

(
x′, r′, Y, t

) ∫
Ωx

m (x) P
(
x, r|x′, r′, Y, t

)
dVx (2.20)

If the equality in this equation holds, this means that no mass is lost during the breakage process.

Now these functions have been characterised, the source term from breakage can be calculated as:

h+
break (x, r, Y, t) =

∫
Ωr

dVr′

∫
Ωx

dVx′υ
(
x′, r′, Y, t

)
b
(
x′, r′, Y, t

)
P
(
x, r|x′, r′, Y, t

)
f1

(
x′, r′, t

)
(2.21)

This source term can be viewed as the birth of particles of size x due to breakage of larger particles and is
therefore also calledbreakage birthand is illustrated in Fig. 2.13. The structure of the different breakage
functions will be dealt with in section 2.5.5.

Aggregation processesinclude all particulate events in which two or more particles collide and remain
together as one entity. The amount of particles involved is application-specific and depends on the degree
of dilution. In crowded systems, it is conceivable that several adjacent particles could simultaneously
aggregate. Aggregation can lead to complete merging of two particles along with their interiors, but
also covers processes in which flocs of particles are formed that are loosely held together by surface
forces and are thus not involving physical contact. The former is also known as coalescence, the latter as
coagulation. Of course, intermediate situations also exist. In the framework described here, it is assumed
that the dilution is sufficient to only allow binary aggregation. It is also insensitive to the degree of
physical contact.

The main phenomenological instrument of the population balance model meant to describe an aggrega-
tion process is theaggregation frequency. The latter represents the probability of aggregation per unit
of time of a pair of particles of specified states. As mentioned before, it is assumed that the population
density is so small that the probability of more than two particles colliding is negligible. The fraction of
particle pairs of states (x,r) and (x’,r’) aggregating per unit of time is represented by:

β
(
x, r;x′, r′;Y, t

)
(2.22)

which is a symmetric function with regard to x and r. Since the time dependency is not a desirable feature
in models, it is eliminated in the remainder of the framework development.
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It is assumed that if the states of one of the aggregating particles and of the new particle are known,
the state of the other aggregating particle can be calculated. Thus, given the state of the newly formed
particle (x,r) and the state (x’,r’) of one of the two aggregating particles, the state of the other aggregating
particles is denoted by: [

x̃
(
x, r|x′, r′

)
r̃
(
x, r|x′, r′

)]
(2.23)

It is also necessary to define the average number of particle pairs that are present at each time instant
with specified states. Therefore, a functionf2 (x, r; x′, r′, t) is defined that represents the average number
of particle pairs at time t per unit volumes in state space located about (x,r) and (x’,r’) respectively.

The sink term from aggregation is readily found to be

h−agg (x, r, Y, t) =
∫

Ωx

dVx′

∫
Ωr

dVr′β
(
x, r;x′, r′;Y

)
f2

(
x, r;x′, r′, t

)
(2.24)

This sink term can be viewed as the death of particles with size x due to aggregation and is therefore also
calledaggregation death. The concept is illustrated in Fig. 2.13.

The source term from aggregation, representing the rate of production of particles of state (x,r) must
account for the fact that the density with respect to coordinates[x̃ (x, r|x′, r′) r̃ (x, r|x′, r′)] must be
transformed into one in terms of (x,r) by using the appropriate Jacobian of the transformation and hence
may be written as

h+
agg (x, r, Y, t) =

∫
Ωx

dVx′

∫
Ωr

1
δ
dVr′β

(
x̃, r̃;x′, r′;Y

)
f2

(
x̃, r̃;x′, r′, t

) ∂ (x̃, r̃)
∂ (x, r)

(2.25)

whereδ represents the number of times identical pairs have been considered. The term∂(x̃,̃r)
∂(x,r) represents

the determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(2.26)

This source term can be viewed as the birth of particles of size x due to aggregation of smaller particles
and is therefore also calledaggregation birth. The concept is illustrated in Fig. 2.13.

The population balance equation obtained is not closed because the right-hand side involves a fresh
unknown in the pair density functionf2, introduced via eq. 2.24-2.25. To close the population balance,
it can be approximated that:

f2

(
x, r;x′, r′, t

)
= f1 (x, r, t) f1

(
x′, r′, t

)
(2.27)

presenting the coarsest form of closure hypothesis. This assumption implies that there is no statistical
correlation between particles of states (x’,r’) and (x,r) at any instant time or in other words, they are
independent.
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2.5.2 Existence of solution and solution methods

Before being able to judge whether a solution for the PBE exists, one should have a closer look at
the population balance equation. For reasons of simplicity both internal and external coordinates are
combined in a vector z, turning eq. 2.15 into

∂

∂t
f1 +∇z · Żf1 = h (z, t) (2.28)

The existence of a solution is very much dependent on the characteristics of the right-hand side of
eq. 2.28. Three cases can occur for h(z,t):

1. Independent off1, i.e. a specified function of z and t. This occurs obviously in systems in which
the particles may appear or disappear because of events occurring in the continuous phase;

2. A linear function off1, which occurs in systems where particles are lost spontaneously;

3. A non-linear function off1 which requires the specification of the number density over a range of
particles states.

Cases 1 and 2 can be considered together, since case 2 can be easily transposed into case 1. The obtained
equation is afirst-order partial differential equationin f1 for which the existence of solution is well
known. It is generally solved analytically (when initial and boundary conditions are known) by using the
method of characteristics.

In case 3, the non-linearity often involves integrals of the population density (e.g. when aggregation and
breakage are considered). Also integral boundary conditions can lead to a case 3 PBE. The equation
now becomes anintegro-partial differential equationin f1. When pretending thatf1 is known, again the
method of characteristics can be applied, however, yielding an integral equation inf1. The existence of
a solution of this integral equation can be guaranteed by the convergence of the method of successive
approximations (also known as Picard’s iteration method). The convergence of the iteration is guaranteed
when the criteria for existence of a unique solution are satisfied. The latter is done by using fixed-point
methods to analyse the integral equation (also generating criteria for existence of the solution) or the
contraction mapping theorem (also assuring the uniqueness of the solution).

From the previous discussion, it can be clearly seen that the format of the right-hand side of the PBE
will determine to a certain extent the solution method to be used. A number of possible solution methods
are available: the method of successive approximations (Ramkrishna, 2000), the method of successive
generations (Liou et al., 1997), the method of Laplace transformation (Ramkrishna, 2000), the method
of moments and weighted residuals (Ramkrishna, 2000), the quadrature method of moments (Marchisio
et al., 2003), discretisation (Hounslow et al., 1988; Litster et al., 1995; Hill and Ng, 1995; Kumar and
Ramkrishna, 1996a,b, 1997; Lee et al., 2001), wavelet-based method (Liu and Cameron, 2001). An in
depth discussion of solution methods is beyond the scope of this literature review. Only the methods that
were used in this work (discretisation) will be addressed in some more detail in what follows.

2.5.3 Discretisation techniques

A direct solution of the population balance equation by finite difference methods would require a natural
discretisation of particle state space to represent derivatives and integrals that appear in the equation. The
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fineness of discretisation of particle state space would necessarily be dictated by numerical considerations
in approximating the derivative or the integral. However, much coarser discretisation grids will be used,
implying that the population balance becomes a macroscopic balance. The method (applying these coarse
discretisation grids) has been used successfully in that they greatly reduce the computation effort, making
it an attractive attribute with regard to repetitive calculations in optimisation and control of particulate
systems. When using this method, the calculations should be designed for selected properties of the
system rather than for an estimate of the number density accurate enough for estimating all properties
of the population. Several methods have been presented in literature (Batterham et al., 1981; Hounslow
et al., 1988; Kumar and Ramkrishna, 1996a,b; Litster et al., 1995; Hill and Ng, 1995; Vanni, 2000). The
ones that will be used in this work are discussed in more detail.

Batterham et al. (1981) were the first to propose a set of discretised equations describing the process of
aggregation. They considered a discretised size domain in which volumes were in a geometric series
such thatvi+1/vi = 2. They deduced equations that allowed interaction of particles at the appropriate
rate and split the so formed particles into the permissible sizes in such a way as to conserve volume.
However, the rate of change of particle numbers using their equations is not predicted correctly, which
was not surprising given the arbitrary allocation of particle numbers used in the generation of the equa-
tions. Hounslow et al. (1988) proposed a set of discretised equations for aggregation that did conserve 2
moments, mass and numbers. They adopted the same geometric grid from Batterham et al. (1981) and
considered 4 mechanisms: particle birth in size class i from one particle in size class i-1 and any other
particle up to size class i-2; particle birth in size class i from two particles in size class i-1; particle death
in size class i by collision with a smaller particle; particle death in size class i by collision with a larger
particle. After calculating the occurrence of each of these mechanisms and forcing the moments to be
conserved, the following set of equations is found:

dNi

dt
= Ni−1

i−2∑
j=1

2j−i+1β (i− 1, j) Nj +
1
2
β (i− 1, i− 1) N2

i−1

−Ni

i−1)∑
j=1

2j−iβ (i, j) Nj −Ni

∞∑
j=i

β (i, j) Nj (2.29)

whereNi is the number concentration of class i andβ (i, j) = β (vi, vj). The drawback of this method is
that it is not flexible towards the choice of grid, the moments to be conserved and that it is restricted to
pure aggregation processes. The grid flexibility was extended by Litster et al. (1995) allowing grids with
vi+1/vi = r wherer = 1/q and q is an integer. Hill and Ng (1995) derived similar equations for pure
breakage events.

Kumar and Ramkrishna (1996a) used another approach to derive a set of discretised equations. They
assumed a one-dimensional continuous population balance equation in particle size x (represented by
particle volume v) for both breakage and aggregation, integrated over subintervals in an arbitrary partition

PM ≡ {0 = v0, v1, . . . , vM , vM+1} (2.30)

The population balance equation for aggregation and breakage (no growth) is given by:

∂f1 (v, t)
∂t

= H [{f1} ; v, t] (2.31)
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whereH [{f1} ; v, t] is given by

H [{f1} ; v, t] ≡ 1
2

∫ v

0
β
(
v − v′, v′

)
f1

(
v − v′, t

)
f1

(
v′, t
)
dv′ − f1 (v, t)

∫ ∞

0
β
(
v, v′

)
f1

(
v′, t
)
dv′

+
∫ ∞

v
υ
(
v′
)
b
(
v′
)
P
(
v|v′
)
f1

(
v′, t
)
dv′ − b (v) f1 (v, t) (2.32)

and consists respectively of an aggregation birth, aggregation death, breakage birth and breakage death
term that were introduced and defined before.

By integrating over the intervalIi = [vi, vi+1] of the arbitrary partition, themacroscopic balanceof the
particles in the interval is obtained

d

dt

∫ vi+1

vi

f1 (v, t) dv =
∫ vi+1

vi

H [{f1} ; v, t] dv i = 0, 1, 2, . . . ,M (2.33)

Defining the total number of particles inIi as

Ni (t) ≡
∫ vi+1

vi

f1 (v, t) dv (2.34)

and expressing the integral with respect to v’ (from eq. 2.32) as the sum of integrals over subintervals,
eq. 2.33 becomes

dNi

dt
=
∫ vi+1

vi

dv

1
2

i−1∑
j=0

∫ vj+1

vj

β
(
v − v′, v′

)
f1

(
v − v′, t

)
f1

(
v′, t
)
dv′

− f1 (v, t)
M∑

j=0

∫ vj+1

vj

β
(
v, v′

)
f1

(
v′, t
)
dv′

+
M∑
j=i

∫ vj+1

vj

υ
(
v′
)
b
(
v′
)
P
(
v|v′
)
f1

(
v′, t
)
dv′ − b (v) f1 (v, t)

 (2.35)

These M+1 equations areunclosedin the variablesNi (bothNi andf1 are unknown), reflecting a lack of
autonomy. Restoration of autonomy can be brought about by expressing the double integrals involved in
the right hand side of eq. 2.35 entirely in terms of the dependent variables{Ni}. This can be done by

• using the mean value theorem on the aggregation frequencyβ (xi, xj) The mean value theorem
expresses the following. Let f(x) be a function which is differentiable in an open interval (a,b) and
continuous in the closed interval (a,b). Then there is at least one point c in the interval (a,b) such
that

f ′(c) =
f(b)− f(a)

b− a
(2.36)

Applying this theorem to e.g. the second term of eq. 2.35 yields

β (xi, xj)
∫ vi+1

vi

dv

∫ vj+1

vj

dv′f1 (v, t) f1

(
v′, t
)

= β (xi, xj) NiNj (2.37)
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wherexi andxj may be described aspivotal pointsor simplypivotsin Ii andIj respectively. The
pivot concentrates the particles in the interval at a single representative point. This allows to write
the number densityf1(v, t) as being given by

f1(v, t) =
M∑
i=0

Niδ(v − xi) (2.38)

Using eq. 2.38 in eq. 2.35 (illustrated here for the second term) will yield the right-hand side of
eq. 2.37. The pivotsxi and xj must depend on the frequency functiona(v, v′) as well as the
number densities in the two intervals so that they must strictly be regarded as time dependent in a
dynamic problem. The pivots would also not remain the same for all terms in eq. 2.35. Hence, this
again illustrates that an exact calculation of all the properties of the population by such a method
is not a reasonable expectation.

• using the mean value theorem on number densityf1(v, t) turning for example the second term on
the right hand side of eq. 2.35 into

NiNj
1

(vi+1 − vi) (vj+1 − vj)

∫ vi+1

vi

dv

∫ vj+1

vj

dv′β
(
v, v′

)
(2.39)

This requires calculation of the integral of the aggregation frequency at each step.

In either of the preceding categories, since the integrand contains the unknown number density, the
mathematically rigorous choice of the pivot, which is consistent with the mean value theorem is of
course not accessible. The finer the interval, the less crucial would be the location of the pivot inIi. The
fineness required would depend on the extent to which the phenomenological functions of the population
balance model such as the aggregation and breakage functions vary in the interval.

Using the former to restore the autonomy of eq. 2.35 yields

dNi

dt
=

1
2

i−1∑
j=0

Nj

∑
(xj+xk)∈Ii

Nkβ (xk, xj)−Ni

M∑
j=0

Njβ (xi, xj)

+
M∑
j=i

Njυ (xj) b (xj)
∫ vi+1

vi

P (v|xj) dv − b (xiNi) (2.40)

where it is understood that terms involving indices other than i=0.1,. . . ,M are automatically set to zero.
Both birth terms on the right-hand side of eq. 2.40 contribute particles to the size intervalIi so that the
number balance in each subinterval of the partition is exactly upheld. This also implies that the total
number balance in the entire interval (i.e. the zeroth moment) is satisfied.

When deriving therth integral moment from this equation (r being an integer value)

µr (t) =
M∑
i=0

µ(i)
r (t) r = 0, 1, 2, . . . (2.41)

where therth sectional moment is given by

µ(i)
r (t) ≡

∫ vi+1

vi

vrf1 (v, t) dv = xr
i Ni r = 0, 1, 2, . . . (2.42)
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Figure 2.14: Illustration of the two different approaches that can be followed in order to obtain the
discretised PBE in terms of a chosen integral moment

one obtains

dµr

dt
=

1
2

M∑
i=0

M∑
j=0

Nj

∑
(xj+xk)∈Ii

Nka (xk, xj) (xj + xk)
r − µr

M∑
j=0

Nja (xi, xj)

+
M∑
i=0

M∑
j=i

v (xj) b (xj) Nj

∫ vi+1

vi

vrP (v|xj) dv −
M∑
i=0

b (xi) µ(i)
r (2.43)

The evolution of therth integral moment can also be derived in another way. Instead of first discretising
eq. 2.31 and then calculating the integral moment, one can also first express the continuous PBE in terms
of the integral moment and subsequently discretise the obtained equation. The difference between both
approaches is illustrated in Fig. 2.14. When doing so, this turns out to beinternally inconsistentwith the
same integral moment derived directly from the original continuous PBE (eq. 2.31), which is given by

dµr

dt
=

1
2

M∑
i=0

M∑
j=0

Nj

∑
(xj+xk)∈Ii

Nka (xk, xj) (xi)
r − µr

M∑
j=0

Nja (xi, xj)

+
M∑
i=0

M∑
j=i

v (xj) b (xj) Njx
r
i

∫ vi+1

vi

P (v|xj) dv −
M∑
i=0

b (xi) µ(i)
r (2.44)

Restoring this inconsistency requires

1. xj + xk = xi, which will eliminate the inconsistency due to the source term for aggregation (in an
exact way)
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2.
∫ vi+1

vi
vrP (v|xj) dv = xr

i

∫ vi+1

vi
P (v|xj) dv, which can only be satisfied exactly for r=0 and ap-

proximately for lower order moments for sufficiently fine grids.

It should be stressed though that internal consistency does not guarantee a number density sufficiently
accurate for the calculation of all associated properties of the population unless the partition of the size
interval is suitably fine. Hence, fineness of the partition of the size interval is indeed an underwriting
requirement for accurate calculations of the number density.

The fixed pivot

Kumar and Ramkrishna (1996a) used the rationale of internal consistency of the moment equations for
the redistribution of particles that have sizes different from the pivotal sizes and, hence, to derive a dis-
crete set of equations. A newly formed particle in the size rangexi, xi+1 due to breakup or aggregation
is represented by assigning fractionsa(v, xi) andb(v, xi+1) to particle populations atxi andxi+1, re-
spectively. In order to conserve two propertiesf1(v) andf2(v), the following set of equations needs to
be satisfied:

a (v, xi) f1 (xi) + b (v, xi+1) f1 (xi+1) = f1 (v)
a (v, xi) f2 (xi) + b (v, xi+1) f2 (xi+1) = f2 (v)

(2.45)

It is clear from these equations that for preservation of two properties, the particle population atxi gets
net particles assigned to it for every new particle that is born in the size range{xi−1, xi+1}. By using this
simple technique, a set of discretised equations for aggregation and breakage, conserving both numbers
and mass, can be derived (Kumar and Ramkrishna, 1996a; Ramkrishna, 2000)

dNi

dt
=

j≥k∑
j, k

xi−1 ≤ (xj + xk) ≤ xi+1

[
1− 1

2
δj,k

]
ηiaxj ,xk

NjNk −Ni

∑
k

axi,xk
Nk

+
∑
k

j ≥ i

ni,kb (xj) Nj − b (xi) Ni (2.46)

where

ηi =

{
xi+1−(xj+xk)

xi+1−xi
when xi ≤ (xj + xk) ≤ xi+1

(xj+xk)−xi−1

xi−xi−1
when xi−1 ≤ (xj + xk) ≤ xi

(2.47)

and

ni,k =
∫ xi+1

xi

xi+1 − v

xi+1 − xi
P (v|xk) dv +

∫ xi

xi−1

v − xi−1

xi − xi−1
P (v|xk) dv (2.48)

The technique, which was given the namefixed pivot, is illustrated in Fig. 2.15. These equations are
flexible in the sense that they are independent of the functional forms for the breakage frequency, daugh-
ter particle size distribution and the aggregation kernel. Moreover, the moments to be conserved can
be freely chosen as well as the grid, which is an advantage over the previously described technique by
Hounslow et al. (1988). For a geometric grid with factor 2, eq. 2.46 reduces to eq. 2.29.

Kumar and Ramkrishna (1996a) tested the performance of the fixed pivot technique by comparing he
simulation results with analytical solutions of a simple PBE for pure breakage (Ziff and McGrady,
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Figure 2.15: Schematic representation of how the fixed pivot deals with newly formed particles that do
not coincide with an existing pivot

1985), pure aggregation (Scott, 1968) and simultaneous aggregation-breakup (Blatz and Tobolsky, 1945)
preserving the zeroth and first moment on a volume basis, for different coarse geometric grids and a
monodispersed initial condition.

For pure, uniform, binary breakage, the numerical results were in good agreement with the analytical
results throughout the simulation, getting more accurate as the grid is further refined. Similar results
were found for pure, multiple breakage. In this case even a coarse grid yielded accurate results. Similar
numerical-analytical comparisons were performed for pure, uniform aggregation for different aggrega-
tion kernels (constant, i.e. independent of particle size; sum of particle sizes; product of particle sizes), a
kernel being another name frequently used to address aggregation or breakage functions as defined ear-
lier in section 2.5.1. Results show excellent agreement for small to moderate particles (even for coarse
grids), but reveal overprediction in the large particle region, where the number density gets smaller and
steep changes occur (Fig. 2.16). This steep part of the number density in an aggregating system will be
further referred to as a front‘ moving to the higher size ranges as the aggregation proceeds. The over-
prediction gets worse (1) when time progresses in the simulation, (2) when the degree of homogeneity
of the aggregation kernel increases (from a constant over a sum to a product kernel). Results evidently
improve when using finer grids. For simultaneous aggregation-breakup good results were obtained too,
although the overprediction-problem observed with the pure aggregation exercise persists.

The same authors tried to give an explanation for the overpredictions and illustrated this with a straight-
forward example in which they look at the aggregation of particles in a size range{vi, 2vi} starting from
different initial number densities in the size range, i.e. uniform and exponentially decreasing. The num-
ber density of new particles in{2vi, 4vi} can be calculated analytically using a certain aggregation kernel.
The discretised solution of the same problem assumesNi particles atxi representative for{vi, 2vi} and
will form Ni/2 particles atxi+1 representative for{2vi, 4vi}. It is shown that this results holds for the
initial uniform number distribution (Fig. 2.17), but not at all for the exponential one (Fig. 2.18). In the
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Figure 2.16: Comparison of the number density calculations of Kumar and Ramkrishna (1996a) using
the discretisation algorithm (eq. 2.46) with the analytical solution of Blatz and Tobolsky (1945) for a
polymerisation-depolymerisation process (i.c. = initial condition)

latter case the newly formed particles are situated at the lower end of the particle range{2vi, 4vi}, clearly
showing that the discretised solution results in an overprediction of the evolution of the number density.
The front mentioned earlier is an example of such a non-uniform number density and moves towards the
higher size ranges. In the discretised case, the front moves at a faster rate than its actual rate explaining
the increase of overprediction as the aggregation proceeds. For size dependent kernels, the kernel would
be calculated only at the frequency atxi instead of at a more relevant frequency corresponding to the
most populated size in{vi, vi+1}. Obviously, the stronger the size-dependency, the larger the degree of
overprediction will be as was observed when comparing constant, sum and product kernels (not shown).
It is also clear that a refinement of the grid will reduce this source of error. For every aggregating system,
the discretised solution will always suffer from these problems. The problem is on the other hand not
fixed at a certain size range, but moves through the particle size space as the front is moving towards the
larger particle size region.

To overcome this problem, two strategies can be followed: (1) use a variable grid instead of a fixed geo-
metric grid or (2) allow the pivot to change at each time-step taking into account the particle distribution
within the size class at that time instant. The former approach was briefly introduced by Kumar and
Ramkrishna (1996a), but has been fully developed by Lee et al. (2001). The idea is to avoid large vari-
ations in the number density across a section by choosing the section widths appropriately. Replacing
the geometric grid with a non-regular grid that is fine in steeply varying size ranges and coarse else-
where, resulted in a better estimate in the higher particle size range even if the total number of sections
or classes remains the same. A similar improvement with a geometric grid would require the double
number of sections and, hence, imply a significantly higher computation time. As the front moves, size
regions exist that initially contain large variations and evolve to regions with much less variation and
vice versa. A locally fine grid that no longer contains the front can then be changed to a coarse grid. The
computational effort can, therefore, be further decreased by allowing the grid to vary in time.
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Figure 2.17: Distribution of particles before and after aggregation (constant kernel) when particles are
initially uniformly distributed (i.c. = initial condition) (from Kumar and Ramkrishna (1996a))

Figure 2.18: Distribution of particles before and after aggregation (constant kernel) when particles are
initially exponentially distributed (i.c. = initial condition) (from Kumar and Ramkrishna (1996a))
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Figure 2.19: Schematic representation of how the moving pivot deals with newly formed particles that
do not coincide with an existing pivot

The moving pivot

The second approach has been presented by Kumar and Ramkrishna (1996b) and is referred to as the
moving pivot technique. The approach consists of an incorporation of details of the variation of the
number density within a size range without loosing the properties of the fixed pivot technique. This
technique accounts for the evolving non-uniformity of the distribution in each interval by allowing a
varying pivot location within the interval (Fig. 2.19). The other features (arbitrary choice of grid and
integral properties to be conserved) were maintained.

Next to the equations forNi, equations describing the changes in location of the pivots (xi) are needed
too. For the derivation of the equations, the reader is referred to the literature (Kumar and Ramkrishna,
1996b). The equations conserving numbers and mass are given below:

dNi

dt
=

j≥k∑
j, k

vi ≤ (xj + xk) ≤ vi+1

[
1− 1

2
δj,k

]
βxj ,xk

NjNk −Ni

M∑
k=1

βxi,xk
Nk

+
∑
j≥i

b (xi) NjB̄
(1)
i,j − b (xi) Ni (2.49)
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dxi

dt
=

1
Ni

j≥k∑
j, k

vi ≤ (xj + xk) ≤ vi+1

[
1− 1

2
δj,k

]
[(xj + xk)− xi]βxj ,xk

NjNk

− 1
Ni

∑
j≥i

S (xj) Nj

[
B̄

(v)
i,j − xiB̄

(1)
i,j

]
(2.50)

where

B̄
(1)
i,j =

∫ vi+1

vi

P (v|xj) dv and B̄
(v)
i,j =

∫ vi+1

vi

vP (v|xj) dv (2.51)

Eq. 2.49 describes the time variation ofNi and looks similar to the one of the fixed pivot method. It
also contains 4 terms (aggregation birth/death and breakage birth/death). However, the first and the third
term are different compared to eq. 2.46. An important difference in the first term is the fact that the
summation now involves aggregated particles that are formed between the class boundariesvi andvi+1

(and not between the pivots as was the case in the fixed pivot approach). A similar difference occurs in
the third term where the integrals (eq. 2.51) have different integration limits as the ones forni,k (eq. 2.48).
A closer look at eq. 2.50 reveals that only 2 terms are responsible for changes of the pivotsxi, one for
aggregation birth and one for breakage birth. In fact, the equation is nothing but a determination of the
average diameter (in this case volume) of every size class when new particles are born into them (also
taking into account the ones that were already present). In this way, the pivots are allowed to move inside
the class boundaries depending on the number and the volume of particles that are born into the class
through either aggregation or breakage.

The technique was compared with the fixed pivot technique, but only for its additional features (Kumar
and Ramkrishna, 1996b). It was found that the moving pivot technique did not overpredict the analytical
solution (Scott, 1968) in the large particle size range, but instead a small underprediction was observed
(Fig. 2.20). However, more importantly, the results for the moving pivot technique were much closer
to the analytical solution compared to the fixed pivot technique with exactly the same grid. Further
refinement of the grid improved the accuracy of the solution. It was concluded that the moving pivot is
more accurate.

2.5.4 Kernel structures for aggregation

In this section, an overview will be given of the different kernel structures for aggregation that have been
suggested in literature to describe flocculation processes and that can be adopted to describe the aggre-
gation part of the activated sludge flocculation process. As mentioned before, aggregation is considered
to be based on two distinct steps: transport and attachment. The former is described by the collision
frequency, the latter by the collision efficiency (Thomas et al., 1999).

Collision frequency

As mentioned before, the transport of particles to one another can be brought about by three mecha-
nisms: Brownian motion (perikinetic flocculation), imposed velocity gradients by mixing (orthokinetic
flocculation) and differences in settling velocities (differential sedimentation).
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Figure 2.20: Comparison of the fixed and moving pivot techniques on the solution of the pure aggregation
problem for the sum kernel (for different geometric grid factors r) with its analytical solution

The collision frequency of particles of sizes i and j for transport by Brownian motion is given by (Smolu-
chowski, 1917):

β(i, j)perikinetic =
(

2kT

3µ

)(
1
di

+
1
dj

)
(di + dj) (2.52)

where k is Boltzmann’s constant (1.38.10−23 J.K−1), T the absolute temperature of the fluid andµ the
dynamic fluid viscosity. This type of flocculation is important for relatively small particles (< 1 µm)
and is, therefore, often not considered to be important in activated sludge flocculation compared to the
order of magnitude of the other transport mechanisms.

Smoluchowski (1917) proposed the following expression for the orthokinetic transport of particles of
sizes i and j induced bylaminar shear

β(i, j)orthokinetic =
1
6

du

dy
(di + dj)

3 (2.53)

wheredu/dy is the velocity gradient of the fluid perpendicular to the flow direction. Before describing
expressions forturbulent shear, a brief introduction to turbulent flow is necessary. For more detailed
information concerning turbulence, the reader is referred to the literature (e.g. Bradshaw (1978)).

Turbulent flow consists of a ’continuum of eddies’ (i.e. turbulent length scales) ranging in size from the
dimensions of the turbulence generating device (e.g. the impeller blade) to the Kolmogorov microscale
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Figure 2.21: Idealized visualization of turbulent length scales (after Stanley and Smith (1995))

(will be defined later). An eddy can be considered as a component of the fluid motion which is charac-
terised by different velocities∆u(l) and by the distance l over which these velocities change significantly
(scale of eddy motion). Eddies of a scale approximating the size of the particles control the aggregation
process. The eddy sizes in a turbulent flow can be separated into three groups:

• energy containing eddies

• inertial subrange

• viscous subrange

Energy containing eddies(also called the macro scale of turbulence) in a stirred vessel are generated by
the impeller, and their length scale (l=L) is expected to be roughly the same order as the size L of the
impeller blade. The impeller provides these large scale eddies with a certain amount of kinetic energy
per unit mass. The large scale eddies do not loose energy to viscous dissipation since the Reynolds
numbers are large for the fluid motion with these length scales. However, they produce smaller eddies
for which the Reynolds number rapidly decreases with decreasing length scale l. At a certain value of
l=η (Kolmogorov microscale of length), the Reynolds number becomes approximately unity, meaning
that in these regions viscous forces begin to have a noticeable effect on the fluid motion. Kolmogorov
scale eddy motion is accompanied by dissipation of energy, which is continuously withdrawn from the
large scale motion. Hence, there is a continuous transfer of energy from large scale eddies to small scale
eddies until Kolmogorov microscale eddies, where energy is converted into heat. This is illustrated in
Fig. 2.21. The parameters determining the smallest scale of motion (or Kolmogorov microscale) are the
energy dissipation rate per unit massε and the kinematic viscosityν. The Kolmogorov microscale of
length is given by

η =
(

ν3

ε

)1/4

(2.54)
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Table 2.4: Conversions between G,ε andη (using eq. 2.54 and 2.3) forν = 1.005 m2s−1

G (s−1) η(µm) ε(m2.s−3)

1 1002 1.005E-6

10 317 1.005E-4

50 142 2.513E-3

100 100 1.005E-2

200 71 4.020E-2

500 45 2.513E-1

Table 2.5: Eddy subranges with corresponding expressions for the differential velocity fluctuations (from
Kusters (1991))

subrange eddy size l ∆ u(l)

viscous l < 10η (
1
15

)1/2 ( ε
ν

)1/2
l

inertial 10η ≤ l < L/2 1.37 (ε l)1/3

macro L/2 ≤ l ≈ L
√

2 (ε L)1/3

Table 2.4 gives examples of the conversions between G,ε andη (by means of eq. 2.54 and 2.3).

The inertial subrangeis the range of eddies intermediate between the large scale eddies and the Kol-
mogorov microscale. They merely transfer energy between large and small scale eddies and are, there-
fore, only governed by the energy transfer rateε.

Because of their importance in the transport of aggregating particles, Kusters (1991) derived expressions
for the differential velocity fluctuations∆u(l) (i.e.the velocity difference over a distance l) for the three
regions and also defined a range of length scales in which they are valid. These expressions are sum-
marised in Table 2.5 Saffman and Turner (1956) derived the collision rate of particles of sizes i and j
from the flux of particles j into the collision envelope (or collision sphere or collision radius, i.e. the sum
of the radii of the colliding particles) multiplied by the number concentration of particles i. Assuming
homogeneousandisotropicturbulent flow, they found

β(i, j)orthokinetic = (8π)1/2 (ai + aj)
2 ∆ u(ai + aj) (2.55)

whereai andaj are the respective particle radii. This expression reveals that the orthokinetic floccu-
lation rate is function of the collision radius (ai + aj) and the velocity difference over the latter (∆u).
The differential velocity fluctuation expressions from Table 2.5 can be substituted in eq. 2.55 to obtain
expressions for the particle transport in the different turbulent subranges. Only the expression for the
viscous subrange is given here since the sludge floc size range is in this length scale for typical energy
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Figure 2.22: Pure normal-strain motion of a fluid element (from Kramer and Clark (1997))

dissipation rates:

β(i, j)orthokinetic = 1.29
( ε

ν

)1/2
(ai + aj)

3 (2.56)

This expression was adopted to model various aggregating systems (Flesch et al., 1999; Kusters et al.,
1997).

Camp and Stein (1943) obtained a similar result for the viscous subrange to the above mentioned more
rigorous equation derived by Saffman and Turner (1956) by substitution of(ε/ν)1/2 for the velocity
gradient (du

dy ) in Smoluchowski’s equation for laminar shear (eq. 2.53). They defined theabsolute velocity
gradient Gas

G = (ε/ν)1/2 (2.57)

and obtained a similar expression as Saffman and Turner (1956), but with a different coefficient (1.33
versus 1.29)

β(i, j)orthokinetic =
4
3

G (ai + aj)
3 (2.58)

This expression has been widely used for modelling a variety of aggregating systems (both biological
and inorganic) in turbulent environments (Koh et al., 1987; Serra et al., 1997; Serra and Casamitjana,
1998; Biggs and Lant, 2001).

Eq. 2.58 was questioned by several authors (Cleasby, 1984; Clark, 1985; Kramer and Clark, 1997).
Cleasby (1984) concluded that G is only a valid parameter for the flocculation of particles smaller than
the Kolmogorov microscale, which is not common in water and wastewater treatment. Kramer and Clark
(1997) argued that the global or average velocity gradient should not be used to calculate collision rates.
Instead, a new concept called the maximum principal strain ratea′max was introduced (see also Ap-
pendix A). The motion of a fluid element and the forces acting on it generate velocity gradients across
the surfaces of the element. This can be expressed by the velocity gradient tensor, which includes the
9 partial derivatives of the velocity components to the spatial coordinates (for a 3D system). This ten-
sor can be separated into symmetric and antisymmetric components, respectively corresponding to the
strain-rate tensor and the rotational tensor. The former results in distortion of the fluid element, changing
the relative position of particles present in the fluid element. The distortion can either be due to

• normal strain motion (Fig. 2.22), where the fluid element is compressed in directionx2 and elon-
gated in directionx1 caused by the normal strain rate componentsa11 − a22



50 Literature review

Figure 2.23: Pure shear-strain motion of a fluid element (from Kramer and Clark (1997))

Figure 2.24: Rotating motion of a fluid element (from Kramer and Clark (1997))

• shear strain motion (Fig. 2.23), where the fluid element is distorted by the shear strain rate compo-
nentsa12 − a21

• a combination of both

The rotational tensor should not be considered since it does not change the relative position of two
particles comprised in the fluid element as illustrated by Fig. 2.24. Derivation of the collision rate resulted
in

β(i, j)orthokinetic =
4π

3
alm (ai + aj)

3 (2.59)

wherealm represents the elements of the strain-rate tensor, resulting in 9 equations (one for each com-
bination of l and m, which can both take values 1, 2 and 3; see Appendix A). In order to decrease
the number of equations and to correct for the fact that only strain-rates causing movement of particles
toward each other should be considered, some extra steps are required. Since the strain-rate tensor is
symmetric, it can be diagonalised resulting in the principal strain-rates that act in the principal directions
(using principal component analysis (PCA)). The absolute value of the largest component (of the largest
and smallest principal component) allows for computation of the equivalent value of mass entering the
collision sphere. This is called themaximum principal strain rateand results in the following collision
rate (see Appendix A)

β(i, j)orthokinetic =
4π

3

∣∣a′max

∣∣ (ai + aj)
3 (2.60)
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Lee et al. (2000) introduced fractal theory in their conceptual framework called the coalesced fractal
sphere assumption (CFS) and suggested the following expression for orthokinetic flocculation of fractal
aggregates

β(i, j) =
Ḡ

π
v

1− 3
Df

0

(
v

1
Df

i + v
1

Df

j

)3

(2.61)

This expression was successfully used by Ducoste (2002) for modelling aggregation in a water treatment
process.

Finally, based on Stokes’ law, Camp and Stein (1943) proposed the collision frequency for differential
sedimentation to be

β(i, j)differential =
gπ

72µ
(ρp − ρl) (di + dj)

3 |di − dj | (2.62)

where g is the gravity constant andρp andρl are the particle and fluid densities. Note that this assumes
both particles to have the same density, which is not true for fractal particles.

It is commonly assumed that the three mechanisms for interparticle collisions are independent and that
their collision frequency functions are additive (Han and Lawler, 1992)

β(i, j) = β(i, j)perikinetic + β(i, j)orthokinetic + β(i, j)differential (2.63)

Collision efficiency

The collision frequencies described in the previous section were based on arectilinear view of colli-
sions, i.e. one that ignores the short-range forces and changes in fluid motion as particles approach one
another. This means that all collisions are successful, being one of the assumptions made by Smolu-
chowski (1917), which is clearly unrealistic. In order to account for short-range forces acurvilinear
approach, taking into account hydrodynamic effects and attractive/repulsive forces of charged particles,
is needed. Possible particle trajectories for both approaches are given in Fig. 2.25. The collision ef-
ficiency describes the probability of successful collisions and, therefore, has a value between 0 and 1
(Thomas et al., 1999). In the rectilinear approach, all particles whose centers penetrate the collision
envelope (sum of the particle radii) are captured. In the curvilinear case, this collision envelope becomes
a lot smaller. The latter has consequences for the relative importance of the three transport mechanisms
that were described above. Han and Lawler (1992) concluded that orthokinetic flocculation became far
less important. The combined effect of electrostatic repulsion and van der Waals attraction between par-
ticles is described by the DLVO theory, which has been discussed earlier (section 2.4.2). This theory
describes the attraction/repulsion forces as function of the interparticle distance (Fig. 2.10).

Adler (1981a) was the first to apply the theory of hydrodynamic interactions to heterodispersed systems.
The author showed, using equations based on laminar flow, that in the presence of a combination of
hydrodynamic, electrostatic and van der Waals forces, collision frequencies were highest when colliding
particles were of the same size. The same author concluded that this had led to an overestimation of
flocculation collision frequencies.

Over the past decades, the modelling of the hydrodynamic forces between colliding particles has tried to
pertain to a more realistic definition of aggregate structures. Rogak and Flagan (1990) represented the
flow around self-similar clusters of spheres by the superposition of single-sphere velocity fields in order
to calculate the Stokes drag. Veerapaneni and Wiesner (1996) calculated the flow and associated drag on
a sphere with nonuniform porosity and, hence, permeability. They concluded that the resistance to the
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Figure 2.25: Possible particle trajectories for rectilinear and curvilinear approaches (from Han and
Lawler (1992))

fluid flow through the aggregate increases with increasing fractal dimension, while the fluid collection
efficiency decreased. Hsu and Hsieh (2003) concluded that for the same volume-averaged permeability,
the drag coefficient of a spherical floc with a non-homogeneous structure is much larger than that of a floc
with a homogeneous structure. Chung et al. (2003) developed a technique to measure the hydrodynamic
drag force exerted on an activated sludge floc.

Li and Logan (1997b) measured permeabilities and collision frequencies of fractal aggregates with small
particles by differential sedimentation. Their calculated aggregate permeabilities from measured settling
velocities were 3 orders of magnitude larger than predicted by a permeability model based on homo-
geneous distribution of primary particles within the aggregates. They developed a permeability model
based on the Brinkman equation to describe permeability as a function of aggregate size. Collision fre-
quencies were 1 order of magnitude higher than predicted by a curvilinear model and about 2 orders of
magnitude lower than predicted by a rectilinear model. In a similar study for microbial aggregates Li and
Yuan (2002) found lower fluid collection efficiencies, but higher removal efficiencies compared to non-
microbial systems. The former was argued to be caused by EPS material clogging the pores, whereas
the latter might be addressed to the more narrow nature of the internal flow passages. Similar studies
were conducted in turbulent shear conditions (Li and Logan, 1997a; Serra and Logan, 1999). Collision
frequencies were found to be as much as 2 orders of magnitude smaller than values predicted by a recti-
linear model and as much as 5 orders of magnitude higher than predicted by a curvilinear model. These
results demonstrate that fractal aggregates of particles collide much more frequently than expected based
on spherical-particle flocculation and based on impermeable spheres.

Others have focused on fluid mechanics of porous, fractal aggregates (Adler, 1981b,a; Chellam and
Wiesner, 1993). Adler (1981b) calculated streamlines in and around porous particles, whereas Adler
(1981a) calculated capture cross sections and collision frequencies numerically. Chellam and Wiesner
(1993) suggested to use a rectilinear model for fractal dimensions up to 2 and a curvilinear model forDf

larger than 2.3. Kusters et al. (1997) used the results of Adler (1981a) in terms of the flow number, being
the ratio of hydrodynamic shear forces to van der Waals forces between colliding particles, and the ratio
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Figure 2.26: The concept of the shell-core model (from Kusters et al. (1997))

of particle sizes to propose an expression for the collision efficiency of impermeable porous flocs

αi,j = α0

(3πµ (di + dj)
3 G

32Aham

) 1

d0

(
1
di

+ 1
dj

)
−0.18

(2.64)

whereAham is the Hamaker constant (3.10−17 J) anddi is the floc diameter. However, when the flocs
are considered to be permeable, implying that liquid can flow through the flocs, the forces for the large
particles will be considerably smaller. Kusters et al. (1997) tackled this problem by introducing the
shell-core model (SCM) concept, which approximates the floc as a spherical body with an impermeable
core and a completely homogeneous, permeable shell (Fig. 2.26). The outer collision radius r of the
floc represents the distance within which another floc must approach for collision to occur, whereas the
smaller core radius describes the drag the floc experiences in the flow field. The latter corresponds to the
hydrodynamic radiusrH which is approximated by

rH

r
=

1− ξ−1tanh(ξ)
1 + 3

2 ξ−2 − 3
2 ξ−3tanh(ξ)

(2.65)

whereξ represents the dimensionless normalised diameter or Debye’s shielding ratio

ξ =
r√
κ

(2.66)

whereκ is the permeability of the porous floc. The latter is function of porosity and the structure of
the medium, which is normally represented by a packing factor (Veerapaneni and Wiesner, 1996). A
frequently used model is the model of Happel (1958)

κ =
3− 9

2 ϕ1/3 + 9
2 ϕ5/3 − 3 ϕ2

9 ϕ
(
3 + 2 ϕ5/3

)
Cs

2a2 (2.67)

where a is the primary particle radius,Cs a constant accounting for the short-range interactions andϕ
represents the floc density which, for a fractal aggregate, is given by

ϕ = ϕ0 (r/a0)
Df−3 (2.68)
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whereϕ0 represents the packing density anda0 the primary particle radius. A similar expression as the
one proposed by Adler (1981a) can be written for the collision efficiency by using the hydrodynamic
radius:

α = α0

[(
6πµr3

H,i(λH + 1)G
8A

)(
2λHrH,i

a0(λH + 1)

)]−0.18

(2.69)

whereλH = rH,j/rH,i andα0 a constant. The model was successfully used to model the aggregation of
a polystyrene system. Ducoste (2002) used a similar expression for modelling flocculation in a water
treatment process.

2.5.5 Kernel structures for breakage

Breakup of particles is expected to be brought about by hydrodynamic stresses acting on the particles.
Breakup through collisions between particles is questionable since no concentration dependencies on
the breakage rate have been observed (Kusters, 1991). Two distinct breakage mechanisms have been
proposed (Parker et al., 1972; Pandya and Spielman, 1983; Thomas et al., 1999):

• Floc splitting – due to bulk stresses induced within the aggregate structure by instantaneous turbu-
lent velocity differences across the aggregate;

• Surface erosion – due to surface shearing stresses arising from the turbulent fluid drag

To propose criteria for floc breakup Kusters (1991) determined the magnitude of both types of stresses
in the different turbulent regimes and compared them with the floc strength. Parker et al. (1970) only
considered surface erosion in the viscous and inertial subrange of turbulence when writing down a bal-
ance for primary particles. The same authors used the concept of maximum stable floc size to determine
which flocs are susceptible to surface shear (see section 2.4.1).

Breakage frequency

Parker et al. (1970) stated that the frequency of primary particle erosion from metastable flocs (i.e. flocs
larger than the maximum stable floc size) is related to the frequency of the disturbance. The disturbance
is closely related to the action of the eddy producing maximum shear, and, therefore, the disturbance
frequency b is close to the eddy frequency. In the inertial subrange, this frequency was determined to be

berosion,inertial =
β

1
2 ε

1
3[

2
kf

] 2
3
d

2
3
m

(2.70)

whereβ is a constant,kf the turbulent drag friction anddm the metastable floc diameter. For the viscous
subrange, Parker et al. (1970) found

berosion,viscous = δ
1
2

( ε

ν

) 1
2

(2.71)

whereδ is a constant combining several constants, see Parker et al. (1970). The same authors did not
determine a breakage frequency due to floc splitting. Pandya and Spielman (1983) described the instan-
taneous rate of change of the volume of a parent floc of size v due to erosion by

berosion(v) = −kG

(
vp

v̄e

)
(2.72)
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where k is the erosion rate coefficient,vp is the mean of all erosion product particles andv̄e is the mean
erosion product particle size over the entire size range. The latter 2 are determined by the daughter size
distribution of erosion product particles (see next section).

The breakage frequency for splitting has been described by a power law function of the particle size v
for various systems (Pandya and Spielman, 1983; Ramkrishna, 2000; Spicer and Pratsinis, 1996a; Biggs
and Lant, 2001)

bsplitting = Ava (2.73)

where A and a are coefficients to be determined experimentally. The first coefficient is found to be
positively correlated with the velocity gradient G (Spicer and Pratsinis, 1996a; Biggs and Lant, 2001;
Pandya and Spielman, 1983). Spicer and Pratsinis (1996a) and Biggs and Lant (2001) took a to have a
value of 1/3, assuming the breakage rate to be proportional to the floc diameter. Pandya and Spielman
(1983) estimated this parameter using experimental data and found a similar value.

As mentioned before, Kusters (1991) determined values of fluid velocity differences across a certain
length scale l (∆u(l)). When the velocity difference across the diameter d of a particle exceeds a certain
critical value (∆ub(d)), the particle will break up. Assuming the probability density function for oc-
currence of velocity differences to be Gaussian, the breakage frequency (i.e. the probability that∆u(l)
exceeds∆ub) is given by

bsplitting =
(

2
π

) 1
2 ∆ u

d
exp

(
−∆ u2

b

2∆ u2

)
(2.74)

Expressions for the different turbulent subranges can be derived by using the velocity differences in
Table 2.5. For the viscous subrange, this yields the following expression for particles smaller than the
Kolmogorov microscale and used by several authors (Ducoste, 2002; Flesch et al., 1999)

bsplitting (x) =
(

4
15π

)1/2(Kiε̄

ν

)1/2

exp

(
−C1

dKiε̄

)
(2.75)

whereKi is the ratio between the local energy dissipation rateε and the average energy dissipation rate
ε̄ andC1 is a constant.

Ducoste (2002) used another expression for the large-scale breakup frequency borrowed from Ducoste
and Clark (1998b). In this approach, which was derived from turbulence measurements in the impeller
discharge region, the magnitude of the root mean square velocity difference across the particle diameter
was approximated by the product of the tip speed andN0.5

p (with Np the dimensionless impeller power
number which can be derived from power curves).

Daughter size distribution

Since Parker et al. (1970) only included surface erosion, the daughter size distribution was developed
from the peeling-off of the outer unstable layers of the metastable floc. They assumed sphericity and
determined the number of primary particles liberated by erosion as the total volume of primary particles
in the outer layer divided by the volume of a primary particle, multiplied by an erosion success factor

N1 = 3σ
2
3 kπ 1

3

(
dmax

2a0

)2

ζ (2.76)

whereσ is the fraction of floc volume that is primary particles, k is a particle arrangement factor andrm

andr1 are the metastable and primary particle radii, respectively. Pandya and Spielman (1983) used a
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log-normal probability distribution for the erosion product

pe(v) =
1

v
√

2πlnσge

exp

[
− (ln v − ln v̄ge)

2

2ln2σge

]
(2.77)

wherev̄ge andσge are the geometric mean and the geometric standard deviation of the erosion product,
respectively, taken to be independent of parent floc size v. The same authors showed that a Gaussian
probability distribution for the erosion proved to be worse on the basis of experimental data. Another
interesting finding of Pandya and Spielman (1983) was that the mean erosion product size was 5-10
times that of the primary particles, suggesting that the erosion product consists of small clusters rather
than primary particles.

For floc splitting, several expressions have been used. Binary fragmentation into equal fragments can,
for a geometric grid with factor 2, be described as (Flesch et al., 1999; Biggs and Lant, 2001)

P (v|v′) = vj

vi
j = i + 1

P (v|v′) = 0 j 6= i + 1
(2.78)

This approach is easy to use, but probably not close to reality.

Others (Pandya and Spielman, 1983; Flesch et al., 1999) have successfully used a normal distribution for
the daughter size distribution resulting from a splitting event

P (v|v′) =
1√

2πσs(v′)
exp

[
− (v − v̄s(v′))

2

2σ2
s(v′)

]
(2.79)

Other possible daughter size distributions have been proposed

• Power law —v(v′)P (v|v′) = (η + 2) vη

v′η+1 (η is a constant)

• Equal size kernel —v(v′)P (v|v′) = η δ
(
v − v′

η

)
(η is a constant)

• Uniform kernel —v(v′)P (v|v′) = 2
v′

• Sum kernel —v(v′)P (v|v′) = (m+1)
v′

[(
v
v′

)m +
(
1− v

v′

)m]
(m is a constant)

2.5.6 Self-similarity and the inverse problem

The determination of quantitative scientific information from experimental observations can be obtained
by solving the so-calledinverse problem. In the case of population balances, the inverse problem allows
the extraction of the aggregation frequency, the breakage frequency and the daughter size distribution
from measurements of transient size distributions in either aggregation or breakage experiments. The
approaches discussed here take advantage of the self-preserving orself-similardistributions. The latter
will be discussed first before elaborating further on the solution of the inverse problem.
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Similarity behaviour of population balance equations

The self-similar solution of a PBE identifies invariant domains in the space of the independent variables
along which the solution remains the same or contains a part that is the same (Ramkrishna, 2000). When
f1(x, t) satisfies (i.e. is a solution of) a population balance equation such as eq. 2.15, a self-similar
solution would be of the form:

f1(x, t) = g(t)Ψ(η) η ≡ x

h(t)
(2.80)

whereη is the similarity variable and the scaling functionsg(t), h(t) as well asΨ(η) are as yet unknown
but assumed to be nonnegative, smooth and bounded functions. Hence, the time-dependent solution
f1(x, t) is written as a product of a time-variant function (g(t)) and a time-invariant function, which is
function of the similarity variable (i.e. scaled x) only.Ψ(η) remains constant along the invariant curve
η = c in the (x, t)-plane. In other words, the rescaling off1(x, t) at different time instants causes all
distributions to collapse into one single distribution.

For the cumulative mass fractionF1(x, t) defined as

F1(x, t) =

∫ x
0 x′f1(x′, t)dx′∫∞
0 x′f1(x′, t)dx′

(2.81)

the self-similar form will lead to (see appendix B.2)

F1(x, t) =

∫ η
0 η′Ψ(η′)dη′∫∞
0 η′Ψ(η′)dη′

≡ Φ(η) (2.82)

This reveals that the cumulative distribution is itself time-invariant alongη = c (g(t)=1) and, hence, is a
direct candidate for the self-similar solution of the population balance equation.

The functionsg(t), h(t) andΨ(η) must clearly depend upon the structure of the PBE. Depending on
the singularity behaviour of the self-similar form (Ψ(η)) near the origin (sincef1(x, t) usually vanishes
for large x), expressions for the aforementioned functionsg(t) andh(t) can be written down in terms of
higher integral moments (see appendix B.1)

h(t) =
µk+1(t)
µk(t)

g(t) =
[µk(t)]k+2

[µk+1(t)]k+1
(2.83)

provided that ∫ ∞

0
ηkΨ(η)dη =

∫ ∞

0
ηk+1Ψ(η)dη = 1 (2.84)

The value of k depends on the order of singularity ofΨ(η), which determines the existence of the
integrals in eq. 2.84. The determination of k must proceed through trial and error. When k is found
to be 0, the scaling functionh(t) turns out to be theaverage particle mass. A more in depth discussion
about this can be found in Wright and Ramkrishna (1992).

The question whether a population balance equation has a self-similar solution can be answered through
what is known assimilarity analysis. These analyses are somewhat different for pure aggregation, pure
breakage and combined cases. They will be shortly discussed.

Pure breakage— The population balance equation for pure breakage in terms of cumulative volume
fraction can be written as (Ramkrishna, 2000)

∂F1(x, t)
∂t

=
∫ ∞

x
b(x′)G(x|x′)∂x′F1(x′, t) (2.85)
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whereF1(x, t) is given by eq. 2.81 andG(x|x′) is the cumulative volume fraction of particles of size less
than or equal tox formed from the breakage of a particle of sizex′:

G(x|x′) ≡ v(x′)
x′

∫ x

0
ξP (ξ|x′)dξ (2.86)

It can be shown that under the conditions of a power law breakage rate, i.e.b(x) = kxn, and similar
breakage, i.e.G(x|x′) = g(x/x′), eq. 2.85 admits a similarity transformation (F1(x, t) → Φ(η), the latter
being the self-similar form of the former) of the formη = xnt (Ramkrishna, 2000). This form of self-
similarity can be generalised somewhat to accommodate more general breakage frequencies (i.e. not
only the power law) by assuming

G(x|x′) = g

(
b(x)
b(x′)

)
(2.87)

In this case, the similarity transformation is of the formη = b(x)t giving rise to the following PBE in
terms of the similarity variableη (see appendix B.3)

ηΦ′(η) =
∫ ∞

η
g

(
η

η′

)
η′Φ′(η′)dη′ (2.88)

which is not restricted to power law breakage only.

Narsimhan et al. (1980) developed a procedure to test experimental data for this type of similarity. If the
similarity transformationη = b(x)t is valid, for a fixed value ofF1(x, t), x andt would be related by
b(x)t = constant, since the similarity variable would be constant at constantF1. Differentiating with
respect tox yields

t
db(x)
dx

+
(

∂t

∂x

)
F1

b(x) = 0 (2.89)

where the subscriptF1 in the second term on the left-hand side stresses that this derivative should be
taken at a fixed value ofF1, and hence is function ofF1. Multiplying by x and rearranging yields

d ln b(x)
d ln x

= −
(

∂ ln t

∂ ln x

)
F1

(2.90)

Eq. 2.90 provides the test of the similarity hypothesis. Since the left hand side of the equation is inde-
pedent ofF1, so should be the right hand side. This means that for a plot ofln t versusln x for various
values ofF1(x, t) from the experimental data, the slopes of these various curves at any value ofx should
be independent ofF1. This implies that a translation along theln t axis must result in one single col-
lapsed curve (Narsimhan et al., 1980). This translation requires the choice of a reference curve into
which all other curves would be translated and the choice of a reference particle volume for the transla-
tion. Sathyagal et al. (1995) proposed an alternative method based on the arc length and the curvature
after fitting quadratic curves to the data to smooth out experimental error.

In addition, if the experimental data show this similarity behaviour, the collapsed curve gives additional
information on the rate of breakage. Integrating eq. 2.90 yields

b(x) = b(x0)exp

[
−
∫ ln x

ln x0

(
∂ ln t

∂ ln x

)
F1

d ln x

]
(2.91)

whereb(x0) is the unknown breakage rate of a particle of volumex0. The breakage rate is now deter-
mined up to a multiplicative constant. An example of a similarity distribution calculated from experi-
mental data taken from Sathyagal et al. (1995) is shown in Fig. 2.27.
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Figure 2.27: Example of a similarity distribution derived from experimental data (from Sathyagal et al.
(1995))

Through this self-similar behaviour and collapse, the experimental noise can be reduced by fitting a curve
to the collapsed self-similar data. Eq. 2.88 can now be used along with the collapsed curve to solve the
inverse problem (instead of the original PBE and the dynamic ’noisy’ data), which is a clear advantage.

Pure aggregation— The population balance equation for pure aggregation in terms of cumulative volume
fraction can be written as (Ramkrishna, 2000)

∂F1(x, t)
∂t

= −
∫ x

0
∂ξF1(ξ, t)

∫ ∞

x−ξ

a(ξ, u)
u

∂uF1(u, t) (2.92)

SubstitutingF1(x, t) by the self-similar formΦ(η) and insisting on time-independency yields the fol-
lowing condition necessary for self-similarity (Ramkrishna, 2000)

∂

∂t

[
a(η′h(t), η′′h(t))

h′(t)

]
= 0 (2.93)

Hence, we may impose the general requirements that

a(η′h(t), η′′h(t)) = α(η′, η′′)H(h(t)) h′(t) = cH(h(t)) (2.94)

where c is a positive constant and H is any positive-valued function that remains to be specified. The
positivity requirement on c and H is imposed so that the scaling size is increasing with time, since it is
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presumably related to increasing the average particle size in an aggregating population. A homogeneous
aggregation frequency

a(λx, λy) = λma(x, y) m ≥ 0 (2.95)

with m being the degree of homogeneity, clearly satisfies eq. 2.94 withH(h) = hm anda(η, η′) = α(η, η′).
The self-similar cumulative distribution satisfies the following integral equation (see Appendix B.4)

cηΦ′(η) =
∫ η

0
dΦ(η′)

∫ ∞

η−η′

dΦ(η′′)
η′′

α(η′, η′′) (2.96)

which leads to the corresponding equation in the self-similar solutionΨ(η)

cη2Ψ(η) =
∫ η

0
η′Ψ(η′)dη′

∫ ∞

η−η′
Ψ(η′′)α(η′, η′′)dη′′ (2.97)

which has been solved for different types of aggregation kernels in literature (Ramkrishna, 2000).

The self-similarity study for the combined aggregation and breakage case will not be discussed here, but
can be found in Ramkrishna (2000).

Inverse problems in Population Balances

Let us now return to the solution of the inverse problem. For the pure breakage case, eq. 2.91 still
contains the not exactly known functionb(x0) and, therefore, the similarity variableη = b(x)t is also
not explicitly known. However, a redefinition of the similarity variable as (through rewriting eq. 2.91)

ẑ =
b(x)t
b(x0)

= exp

[
−
∫ ln x

ln x0

(
∂ ln t

∂ ln x

)
F1

d ln x

]
(2.98)

results in an explicitly known similarity variable since the right hand side of eq. 2.98 can be obtained
from the experimental data. The transformed cumulative PBE in the new similarity variableẑ becomes
(see appendix B.3)

ẑΦ̂′(ẑ) = b(x0)
∫ ∞

z
g

(
ẑ

ẑ′

)
ẑ′Φ̂′(ẑ′)dẑ′ (2.99)

which can be rewritten as (see appendix B.3)

ẑΦ̂′(ẑ) = β

∫ 1

0

ẑ2

u3
Φ̂′
(

ẑ

u

)
g(u)du (2.100)

where u represents the ratio of the breakage rate of the fragment to that of the parent particle. Solving the
inverse problem requires calculating the unknown functiong(u) over the unit interval and the constantβ
given the self-similar curve in the form of̂Φ′ versuŝz. Sinceg(u) is a cumulative distribution function
over the interval0 ≤ u ≤ 1, the solution of eq. 2.100 for the functionβg(u) at u=1 automatically yields
the value ofβ asg(1) = 1.

The solution of eq. 2.100 was accomplished by Sathyagal et al. (1995) by expanding the functionβg(u)
in terms of an appropriate set of basis functions as

βg(u) =
nb∑

j=1

ajGj(u) (2.101)
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wherenb is the number of basis functions anda = {a1, a2, . . . , anb
} are the coefficients of expansion.

The similarity coordinatêz is discretised into several (m) discrete intervalsẑi to get a corresponding
discrete version of the self-similar distributionẑiΦ̂′(ẑi) denoted by the vectorΦ. The discrete version of
the inverse problem becomes

Φ = Xa (2.102)

whereX is a matrix which components are given by

Xij =
∫ 1

0

ξ2
i

u3
Φ′
(

ξi

u

)
Gj(u)du (2.103)

The solution of the discrete inverse problem is to seek a vector a by minimising the magnitude of the
residual vector

min [‖Xa− Φ‖+ λreg ‖a‖] (2.104)

whereλreg is a regularisation parameter introduced to cure the ill-posedness of the problem. The latter
means that small errors inΦ will induce large errors in the vector a. The choice of the basis functions
is strongly dependent on the behaviour of the similarity distribution. However, this is beyond the scope
of this review but a discussion can be found in Sathyagal et al. (1995). The same authors successfully
applied the techniques described above for the pure breakage case. They were able to recover different
breakage kernels from dynamic experimental data produced by simulating models with chosen breakage
kernels. Also, they determined the breakage functions for a real experimental data set.

Wright and Ramkrishna (1992) state the inverse aggregation problem starting from the following trans-
formed PBE (see Appendix B.4)

ηΦ′(η) =
∫ η

0
dη′Φ′(η′)

∫ ∞

η−η′
dη′′

Φ′(η′′)
η′′

α(η′, η′′)
〈α〉

(2.105)

where 〈α〉 is the average value of the scaled aggregation frequency (Ramkrishna, 2000) and where
α(η′, η′′)/ 〈α〉 is the unknown function to be extracted. The solution of eq. 2.105 can be achieved by
using the same methods that were used for solving the inverse problem for pure breakage. The unknown
functionα(η′, η′′)/ 〈α〉 is expanded in a set ofnb basis functions

α(η′, η′′)
〈α〉

=
nb∑

j=1

ajAj(η′, η′′) (2.106)

The similarity variableη is discretised intond discrete intervals and a matrix X is defined as

Xij ≡
∫ ηi

0
dηΦ(η)

∫ ∞

ηi−η
dη′

Φ(η′)
η′

Aj(η, η′) (2.107)

The discretised version of the inverse problem can again be written as

Φ = Xa (2.108)

and eq. 2.104 can be used to solve the inverse problem. For examples, the reader is referred to Wright
and Ramkrishna (1992).
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2.6 Floc sizing

In order to model the dynamics of activated sludge flocculation, one needs to be able to collect quanti-
tative information concerning the floc size distribution. This has long been (and to a certain extent still
is) the bottleneck in the attempt to understand the activated sludge flocculation process. To date, several
tools have been developed to monitor populations of particles and their behaviour.

Early efforts were based on the analysis of sludge samples by microscopy (Parker et al., 1970; Barbusin-
ski and Koscielniak, 1995). Later on, other techniques like image analysis (Li and Ganczarczyk, 1991),
electron microscopy (Jorand et al., 1995) and Coulter counting (Li and Ganczarczyk, 1991; Andreadakis,
1993) were used. All aforementioned techniques (except Coulter counter) have the disadvantage of being
time consuming and, hence, they are not suitable for on-line monitoring of activated sludge flocculation.
Moreover, they require sample handling, which might affect floc properties. The Coulter counting tech-
nique exhibits the disadvantage of being limited to relatively small sizes, being prone to clogging when
using activated sludge and requiring a sample treatment that affects the sample’s ionic strength (which
makes the measurement unreliable).

Recently, however, small angle laser light scattering (SALLS) has been extensively used to monitor floc
size and structure (Jorand et al., 1995; Guan et al., 1998; Waite, 1999b; Bushell and Amal, 2000; Biggs
and Lant, 2001; Selomulya et al., 2001; Wu et al., 2002; Wilén et al., 2003; Govoreanu et al., 2004). Gov-
oreanu et al. (2004) also used a ’time of transition’ method to monitor activated sludge flocculation. De
Clercq et al. (2004) measured floc size distributions in-situ by means of the ’Focused Beam Reflectance
Method’ (FBRM) using a Lasentec (Mettler Toledo, Switzerland). These three techniques will be briefly
discussed below.

2.6.1 Laser light scattering

Laser light scattering techniques involve measurement of light intensity I as a function of the wave vector
Q. This vector is defined as the difference between the incident and scattered wave vectors of the radiation
beam in the medium. The magnitude of the wave vector can be approximated by (Wu et al., 2002):∣∣∣ ~Q∣∣∣ = Q =

4πnsin (θ/2)
λ

(2.109)

where n,θ andλ respectively represent the refractive index of the medium, the scattered angle, and the
wavelength of radiation in vacuum. A typical plot of log I versus log Q is shown in Fig. 2.28.

Three regimes can be observed. In the regimeQRp >> 1, whereRp is the primary particle size, Porod’s
law is applicable:

I (Q) ∝ Q−4 (2.110)

This region reflects scattering from the primary particle surfaces. The region whereQR << 1 is called
the Guinier regime. Here, the scattering intensity is free from the effects of aggregate structure and is
only function of the linear measure of the cluster size in the form of its radius of gyrationrG (Selomulya
et al., 2001), which is the root-mean-square distance of the mass elements from their centre of mass. In
this regimeI (Q) is a constant given by:

I (Q)
I (0)

=
(

1− 1
3

(QRG)
)

(2.111)
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Figure 2.28: A typical I(Q) plot showing the different scattering regimes (after Wu et al. (2002))

For polydisperse cluster size distribution, the radius of gyration that can be obtained in the Guinier
region is the root-mean-square of the mass squared-weighted radius of gyration of each aggregate in the
distribution(rGi) (Bushell and Amal, 2000):

rG =

√∑
i m

2
i r

2
Gi∑

i m
2
i

(2.112)

If the inequality1/R << Q << 1/Rp holds and individual particles scatter light independently such
that the total scattered wave is the sum of the scattered waves from all individual particles (Rayleigh-
Gans-Debye approximation), then I and Q are related via a power law:

I (Q) ∝ Q−DF (2.113)

This region is called the fractal regime, where the mass fractal dimension(DF) reflects the internal
structure of the fractal clusters. The mass fractal dimension describes the space-filling ability of an
aggregate and can vary between 1 (linear aggregate) and 3 (a compact aggregate). When the length
scale corresponding to the Q-value approaches the length scale of the aggregate (Q=1/R), the fractal
relationship (eq. 2.113) starts to be influenced by the edge of the aggregate and, hence, the structure
cannot be determined in such regions. High polydispersity, as might be expected from activated sludge
flocs, would be expected to limit the length scale over which fractal behaviour is observed (Bushell and
Amal, 2000).

In order to fulfill the aforementioned Rayleigh-Gans-Debye approximation, certain conditions need to
be fulfilled:

|m− 1| << 1 (2.114)

(2πn/λ) R |m− 1| << 1 (2.115)
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Figure 2.29: Illustration of a volume distribution of an activated sludge sample produced by a Malvern
Mastersizer (Malvern, UK)

where m is the relative refractive index of the scatterers and R is the length of the scattering body.
Selomulya et al. (2001) noted that the range of validity of the Rayleigh-Gans-Debye approximation can
be extended beyond the range specified above. For aggregates constructed from primary particles with
low refractive index (which is the case for bacterial aggregates), the assumption is valid for much larger
assemblages than indicated by eq. 2.115.

In summary, the scattering pattern as shown in Fig. 2.28 yields the mean radius of gyration, the scattering
intensity at Q=0 and the mass fractal dimension.

Commercial devices (e.g. Malvern Mastersizer, Malvern, UK) derive particle size distributions from
these scattering patterns by using light diffraction theories (e.g. Fraunhofer, Mie). The procedure is as
follows. A possible distribution is proposed and converted into a scattering pattern by using an optical
model (which can be chosen by the user). Subsequently, this scaterring pattern is compared with the
measured one and a discrepancy measure is calculated. This procedure is repeated iteratively until the
discrepancy measure is minimised by proposing different possible distributions. The obtained distribu-
tion should be interpreted with caution since the diffraction theories are all based on the assumption of
particle sphericity. Moreover, several possible distributions can result in a similar scattering pattern, so
that the obtained solution is probably not unique.

The distributions given by these devices are typically volume-based. An example of a Malvern distribu-
tion is shown in Fig. 2.29.

2.6.2 Time of transition

Some 15 years ago, a technique known as time of transition (TOT) was introduced (Weiner et al., 1998).
It is a direct measurement made on individual particles by means of a rotating laser beam. A photodiode
placed directly behind the particles measures the difference in signal. When a particle is hit by the beam,
the signal is lower. A size measure is calculated from the timeτ during which the signal is lowered (=



2.6 Floc sizing 65

Figure 2.30: Illustration of the TOT-principle

pulse width) and the tangential velocity of the rotating laser. An illustration of the principle is given
in Fig. 2.30. The technique is easily adaptable to different size ranges by changing the focal length,
the deflection angle and the rotational frequency. This technique measures number concentrations and
is actually a counting method. Comparison of this method with the earlier mentioned light diffraction
method for the same sludge sample yielded different results (Govoreanu et al., 2004). The same authors
state that knowledge of the measurement principle is important when interpreting size distributions from
different sizing devices.

Commercial devices exist that apply the TOT-method (e.g. Ankersmid NV, Belgium). In these devices
some corrections are performed by the software in order to deal with non-ideal interactions like off-center
interactions, out of focus particles, small and large particle limitations, particle motion and non-sphericity
of particles. The latter is quite important since the device might ignore particles that are non-spherical. A
combination with a shape analysis method (e.g. image analysis) is recommended (Weiner et al., 1998).
An example of a CIS-100 distribution is shown in Fig. 2.31.

2.6.3 Focused Beam Reflectance Method

The FBRM technique is based on laser light reflection and is very similar to the time-of-transition method
described earlier. Its major advantage is, however, its operating range for solids concentration which goes
as far as 50g.l−1. In order to obtain a statistically acceptable particle size distribution, more than 2000
particles need to be sampled, expressing the need for sample mixing. Intense mixing of the suspension
increases the frequency of particle detection and decreases the measurement duration. On the other hand,
mixing might disturb the sample to be analysed.

The FBRM probe consists of a laser that is focused in some focal plane outside the probe and rotates
at a high fixed speed, i.e. 2m.s−1, making particle motion insignificant to the measurement. As par-
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Figure 2.31: Illustration of a number distribution of an activated sludge sample produced by the CIS-100
(Ankersmid NV, Belgium)(from Govoreanu et al. (2004))

Figure 2.32: Illustration of a chord length distribution in a full-scale secondary clarifier produced by the
Lasentec (Mettler Toledo, Switzerland)(from De Clercq et al. (2004))
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ticles pass the focal plane, the focused beam intersects the edge of a particle, forcing the laser light
to be backscattered. Backscattering continues until the opposite edge of the particle is reached. The
backscatter is collected by the FBRM and converted into an electronic signal. From the time period of
backscatter and the speed of the rotating laser, the so-called chord-length is calculated. The final result
of such a measurement is a ’chord length distribution’ (see Fig. 2.32), which is not straightforward to
interpret. However, first steps have been taken to convert these chord length distributions into particle
size distributions (Wynn, 2003).

Recently, De Clercq et al. (2004) successfully used the FBRM to measure particle size distributions in a
full-scale clarifier.
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CHAPTER 3

Materials & Methods

3.1 Introduction

This section consists of 4 parts. In a first part the lab-scalesequencing batch reactorthat was used
for breeding the sludge used in the flocculation experiments is shortly described. A second part deals
with the flocculation unitthat was used to perform the flocculation experiments. A third part deals
with the determination ofsludge densities. Finally, a short part describing themodelling and simulation
platform WEST(Hemmis NV, Kortrijk, Belgium) that was used for modelling, simulation and parameter
estimation throughout this dissertation is briefly introduced.

3.2 Sequencing Batch Reactor

3.2.1 Set-up and operation

In order to minimise sources of sludge variability, it was decided to build a lab-scale sequencing batch
reactor (SBR). Sludge from a full-scale plant suffers from influent-variability and modifications in op-
eration. These types of variability can be minimised in a lab-scale reactor. A SBR was preferred over a
continuous system since it is more stable and practically easier to handle (no separate clarifier necessary).

The SBR has a total volume of 80 L and is designed and operated to remove COD as well as nitrogen and
phosphorous (Capalozza, 2001). A synthetic sewage, syntho (Boeije et al., 1998), was used as influent.
The C:N:P ratio of the influent is 100:13.7:2.1. Weekly 75 L of concentrated influent is prepared. The
concentrated influent is kept at pH 3 to prevent bacterial growth and to keep the influent properties as
stable as possible. Before the SBR is fed, the concentrated influent is diluted with tap water (softened) in
a ratio of 1:19. To achieve purification each cycle of 6 hours consist of 6 phases, as shown in Table 3.1.
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Table 3.1: SBR reaction sequences for nutrient removal used in the lab-scale SBR

# Phase Purpose Duration (min)

1 fill (anaerobic+mixed) P-release, COD removal 60

2 aerobic 1
P-uptake, nitrification, COD re-
moval

150

3 anoxic denitrification 60

4 aerobic 2 excess COD removal,N2-stripping 30

5 settling settling 60

6 decant decant 15

During each cycle 2 L of activated sludge is wasted from the system at the end of phase 4. Consequently,
the approximate solids residence time (SRT) is 10 days. At the end of the final phase, 38 L of effluent is
withdrawn, resulting in a hydraulic residence time (HRT) of 12 h.

The set-up is automated by means of a LabView-VI (National Instruments, USA) and is operated contin-
uously. On-line monitoring of dissolved oxygen (DO), pH, ORP, temperature, weight and conductivity
is performed for system evaluation. A schematic overview of the set-up is given in Fig. 3.1.

3.2.2 Monitoring of activated sludge and effluent

On-line monitoring

During operation pH, DO, oxidation-reduction potential (ORP), temperature, conductivity and the weight
of the SBR are continuously monitored and logged to a text file on the computer. Measurements of DO
are used for on/off-control of DO during the aerobic phases. The other on-line measurements can be used
to evaluate operational stability and performance of the system with regard to removal of COD, nitrogen
and phosphorus. It is beyond the scope of this work to further elaborate on this. Results of the application
of data analysis tools using these on-line experimental data can be found in Lee and Vanrolleghem (2002,
2004); Yoo et al. (2004).

Off-line monitoring of effluent

Daily effluent samples (200 ml) are taken from the supernatant after decantation (end of phase 6) and
stored in a fridge at 4C to minimise any conversion of the components prior to analysis. Most of the
dissolved components (COD, Total-N,NH4-N, NO3-N, PO4-P) are evaluated using analysing kits (Dr.
Lange, Germany) combined with spectrophotometry (Xion 500, Dr. Lange , Germany). The BOD of the
effluent is measured during 20 days by means of respirometry (OxiTop, WTW GmbH, Germany). This
measurement principle is based on the decrease in pressure in the headspace of a closed bottle due to the
consumption of oxygen. Effluent suspended solids are measured according to standard methods.
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Figure 3.1: Schematic overview of the lab-scale SBR (IV – influent valve; IP – influent pump; EP –
effluent pump; EV – effluent valve; M – mixer)

Off-line monitoring of activated sludge

Total suspended solids and settling characteristics are determined daily. For the latter 1 L of sludge is put
into a 2 L plastic measuring cylinder and the sludge blanket height is monitored over time (30”, 1’, 3’,
5’, 10’, 20’, 30’ and 45’). The SVI is calculated. Weekly, the microbiological community is monitored
usingdenaturing gradient gel electrophoresis(DGGE) to evaluate microbial stability. It was tried to
keep a stable microbial community since the goal of the research was to investigate physico-chemical
influences on flocculation. By monitoring microbial stability, one can rule out biological causes for
experimental observations during the flocculation tests. The results of this microbial monitoring can be
found elsewhere (Govoreanu et al., 2003; Govoreanu, 2004).

3.3 Flocunit

The influence of physical and chemical parameters on the (de)flocculation process was investigated in a
specially designed flocculation set-up, further referred to as Flocunit. This set-up permits long-term floc-
culation experiments and allows to control conditions such as pH, conductivity, temperature, dissolved
oxygen (DO) concentration and mixing intensity. An on-line evaluation of the dynamics of floc size and
structural properties was enhanced by connecting the Flocunit to three sizing devices coupled in series:

• MastersizerS (Malvern Instruments, UK)

• CIS-100 (Ankersmid, Belgium)

• a ICD-46E CCD camera (Ikegami Electronics Inc., USA)) mounted on a CX40 optical microscope
(Olympus, Japan) with image analysis software (LabView, NI, USA)

Table 3.2 summarises the settings of the sizing devices.
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Table 3.2: Summary of sizing devices used by the Flocunit

device principle detection range meas. frequency

MastersizerS laser diffraction 4 - 3500µm 1/30s

CIS-100 Time of transition 10 - 3600µm 1/30s

IMAN image analysis 15 - 4000µm 1/30s

Figure 3.2: The FlocUNIT experimental set-up

A general overview of the set-up is shown in Fig. 3.2. The set-up consists of a 5 L glass vessel (TRGN
7227, KGW Isotherm, Germany) which is built into a mobile unit. The dimensions and configuration
of the vessel are given in Fig. 3.3. The vessel has a thermal jacket, allowing temperature control. A
plug at the bottom of the vessel allows easy sludge removal for post-experiment analysis. Near the
vessel wall four PVC-baffles are introduced to enhance homogeneous mixing. A PVC-cover is used to
create a headspace (its gas composition can be controlled) and to avoid heat exchanges. Silicone tubing
(9/11 mm), attached to the baffles, is used for controlled oxygen/nitrogen diffusion into the system in
order to obtain the desired DO level in the vessel. Bubble-less aeration is preferred since bubbles would
induce additional, uncontrolled shear. The PVC mixing blade is designed in a way to approximate
uniform mixing in the vessel, and still allowing the use of the aforementioned on-line sensors in the
vessel in between the rotating mixer blades. The mixing blade is connected to a viscometer (VT550,
Haake GmbH, Germany) allowing to measure and control shear intensity through torque (assuming a
constant and known viscosity). Sensors for dissolved oxygen (InPro 6000, Mettler Toledo, Belgium), pH
(Xerolyt HA-405 DXK S8 225, Mettler Toledo, Belgium) and conductivity (Kemotron 9222, Kemotron,
Denmark) are inserted for on-line measurement. Finally, a PVC-tube is inserted for sludge withdrawal.
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Figure 3.3: The flocculation vessel and its dimensions

The sludge withdrawal tube is connected to the sizing devices and a steady flow is created by suction
using a progressive cavity dosing pump (Group D, Seepex Gmbh, Germany), which allows a small flow
rate with high accuracy, low fluctuations (<1%) and low shear. The pump is placed after the sizing
devices (sequentially) to avoid interference with size and structure measurements and the flow rate is
chosen to be 3 ml/s. A second, identical progressive cavity dosing pump is used for dilution (required by
the sizing devices) with filtered effluent (0.45µm).

The whole system is connected to a notebook containing a PCMCIA data-acquisition card (DAQ-1200,
National Instruments, USA) and controlled using LabView (National Instruments, USA). The data-
acquisition system consists of

• on-line measurement of the analog signals (DO, pH, conductivity and temperature)

• control of both progressive cavity dosing pumps

• feedback control of mixing intensity — This is necessary since the liquid level in the vessel is con-
stantly decreasing (no recirculation). The aim is to keep the average shear rate (G) approximately
constant. This is done by controlling the power dissipation P which is given by

P = 2πNaTa (3.1)

whereNa is the agitation speed andTa is the torque. By measuring the latter with the viscometer,
the former can be adjusted to keep P constant. The viscosity is assumed to be known and to remain
constant.

• PID DO-control — In order to obtain the desired DO-level in the system, pure oxygen (larger
driving force than compressed air) and pure nitrogen are used. The gas flows are connected to a
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3-way air valve (TYP 0330 E, Brkert GmbH, Germany), which state is determined by the value of
the difference between the DO-setpoint and the actual measured value. Before entering the vessel
the gas line is connected to a flow-controller (Mass Flow Controller 5850S, Brooks Instruments,
The Netherlands) to control the gas flow and the pressure in the silicone tube. To speed up the
process, the headspace is filled with either pure oxygen or pure nitrogen. The control action is of
the PID-type (Proportional, Integral and Derivative) where the control action S is given by

S = Pε + I

∫
εdt + D

dε

dt
(3.2)

whereε is the difference between the DO-setpoint and the measured DO-value and P, I, D are the
proportional, integral and derivative control constants. The latter constants need to be tuned for the
desired response to occur . Basically, the controller will change the state of the air valve depending
on the value ofε.

The operating procedure consists of filling the reaction vessel with activated sludge from the SBR, diluted
to the level of the experiment. The Flocunit is then operated at the environmental conditions chosen for
the particular experiment. Sludge is continuously withdrawn from the vessel and the particle size is
analysed on-line after which the sludge is wasted. At the end of the experiment, the remainder of the
sludge (approximately 1 L) is collected from the bottom valve of the vessel and the settling characteristics
are measured. The experimental design and the results are further discussed in chapter 6.

3.4 Sludge density

3.4.1 Introduction

Three different types of density can be defined for activated sludge:

1. bulk density– This is the density of the dispersion of activated sludge flocs in water. It is often
assumed to be equal to the density of water at the same temperature (e.g. in modelling exercises).
It is determined by dividing the mass of a known volume through that volume. This density will
not be further discussed.

2. dry sludge density– This represents the average density of the different solid materials building
up the sludge flocs. Since a variety of values has been reported in literature (Ekama et al., 1997;
Kinnear, 2002), this type of density was shortly investigated.

3. sludge floc density– This is the density of the floc in the sludge dispersion and, hence, takes into
account the bound water (i.e. water that is ’part’ of the floc). A technique that can be used to
determine this density will also be discussed.

3.4.2 Dry sludge density ρs

The method for the determination of the dry sludge density is taken from the soil science field. The
measurement is based on pyknometry, which uses a recipient with an accurate, certified volume, i.e.
a pyknometer (Figure 3.4). The procedure is based on four gravimetric measurements: two of them
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Figure 3.4: Illustration of a pyknometer

determine the mass of the sample, whereas the other two are needed to determine its volume (Blake and
Hartge, 1986). Here are the steps to be taken to determine the dry sludge density using pyknometry:

1. A certain amount of activated sludge should be dried at 105°Cin order to obtain about 2 g (depend-
ing on the biomass concentration). Sludge thickening prior to drying will significantly decrease
the duration of this step.

2. The dried solids are pulverised and passed through a 2 mm sieve. They should always be stored in
a dessicator to avoid rehydration.

3. The mass of a dry, closed pyknometer (50 or 100 ml) is determined accurately. Let this be the dry,
empty mass (md,e).

4. The dried sludge sample is added to the dry pyknometer. The mass is again determined accurately.
Let this be the dry, filled mass (md,f ).

5. The pyknometer is partly (1/3) filled with distilled water (free of air) and placed in a vacuum for
three times 20 minutes in order to entirely wet the solids.

6. The pyknometer is then filled completely (up to the measure line). After closing the pyknometer,
its mass is determined again. Let this be the wet, solid filled mass (mw,sf ). Also, the temperature
of the distilled water is determined.

7. After thoroughly cleaning the pyknometer and filling it with distilled air-free water, the mass is
again determined. Let this be the wet, water filled mass (mw,wf ).
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The dry sludge density can then be determined as follows:

ρs = ms
1
Vs

= (md,f −md,e)
ρw

(md,f −md,e)
− (mw,sf −mw,wf ) (3.3)

whereρw is the density of water at the temperature measured in step 6 andVs is the volume of the dry
solids. Hence, the mass of the solids is determined gravimetrically, whereas the volume is calculated
based on the buoyancy principle, or in other words by the volume of water that is displaced by the solids.

The method was used to determine the dry sludge density of different sludges (taken from both lab-scale
and full-scale). The results are summarised in Table 3.3.

The observed values are significantly larger than those reported in literature, i.e. 1.45g.ml−1 (Ekama
et al., 1997) and can be significantly different for different sludges. The latter is probably caused by
a difference in composition. A higher dry sludge density will, however, have a significant influence
on calculated settling velocities that are used when modelling sludge settling and predicting the sludge
blanket height.

It should be stressed, though, that these measurements were not completely conducted in compliance with
the earlier described procedure due to absence of a vacuum bottle and a sieve. The results should, there-
fore, be viewed as preliminary and interpreted with care. Before applying this fast and cheap method, it
should be thoroughly tested and validated, for example by using Helium-pyknometry that uses Helium
gas instead of water and measures the change in Helium pressure with and without the sample. This
validation is, however, beyond the scope of this work. It should be mentioned that the procedure was
reproducible as a standard deviation in repetitive measurements was 0.01g.ml−1.

3.4.3 Floc density ρf

Floc density is an interesting property of activated sludge. Indeed, the deviation of the latter from the
density of water is regarded as the driving force for settling (e.g. Stokes’ law).

Floc density was measured according to a technique based on a discontinuous linear gradient of Percoll
solutions with densities ranging from 1.01 to 1.05g.ml−1 or higher (Dammel and Schroeder, 1991;
Kinnear, 2002). This can be done by gently layering appropriate Percoll dilutions of 2 mm thickness
(turbulence should be avoided) in a CELLSTAR PP-test tube (15 ml). Dilutions should be prepared
using sludge supernatant to avoid disturbances due to differences in osmotic pressure. In a next step, a
small amount of thickened sludge is then introduced on the top layer (i.e. lowest density) and allowed to

Table 3.3: Dry sludge densities of different sludges determined by pyknometry
Sludge origin ρs (g.ml−1)
SBR 22-04-03 lab 1.60
SBR 09-05-03 lab 1.61
SBR 25-05-03 lab 1.52
SBR 26-06-03 lab 1.61
WWTP Ossemeersen 05-03 full-scale 1.59
WWTP Heist 05-03 full-scale 1.62
WWTP Halen 09-03 full-scale 1.78
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Figure 3.5: Schematic illustration of the floc density measurement based on a Percoll density gradient
ranging from 1.01 to 1.05g.ml−1

settle. The latter will continue until the layer of equal density has been reached. The process might be
stimulated by applying centrifugation. The measurement principle is schematically illustrated in Fig. 3.5.
A real sample is shown in Fig. 3.6.

On the left the sludge sample is introduced on the top layer. After settling, the sludge has settled up to
the interface between 1.01 and 1.02g.ml−1, further denoted as interface density. This means that the
sludge exhibits a density smaller than 1.02g.ml−1, but larger than 1.01g.ml−1. Hence, the resolution of
the density gradient determines the accuracy of the measurement. Here, a resolution of 0.01g.ml−1 was
used.

Preliminary results have led to the following conclusions:

• Floc densities similar to those reported in literature were found, i.e. 1.02-1.06g.ml−1 (Dammel
and Schroeder, 1991).

• Sludge storage resulted in a decrease in floc density, which might be caused by phosphorus release
in anaerobic conditions.

• No density changes were observed between sludge samples taken during different phases of an
SBR-cycle. Differences would be expected due to the sequential release and uptake of phosphorus.
However, the measurement accuracy might have been too low.

• Floc densities before and after flocculation in the Flocunit increased from 1.02 to 1.03g.ml−1.
This might either be caused by the Calcium that was added, or due to restructuring and decrease
of the bound water content.

Although the results look promising, a higher resolution is required to investigate small density differ-
ences that might have significant effects on settling behaviour. This might be accomplished by using
continuous linear gradients, which are, however, rather expensive to make with dedicated lab equipment.
Hence, this was not further investigated.
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Figure 3.6: Real sample of a floc density measurement based on a Percoll density gradient ranging from
1.01 to 1.05g.ml−1

3.5 Modelling and simulation platform WEST r

For modelling, simulation and optimisation the modelling and simulation platform WEST (Hemmis NV,
Kortrijk, Belgium) is used. WEST is the acronym forWastewater treatment plant Engine for Simulation
and Training. It is designed to solve algebraic and differential equations and has mainly been used to
simulate wastewater treatment processes.

WEST consists of 2 environments: a modelling environment and an experimentation environment. The
former enables the user to create new models from scratch or by using existing models from a modelbase.
The different models and process units (depicted as icons) can be linked and configured in a hierarchical
graphical editor (HGE). These models are written in the model specification language (MSL), a high-
level-object-oriented declarative language. To create new models, the user can write these models in the
same language. In either case, the MSL-file is then parsed into low level C-code, which is in its turn
compiled to an executable WEST model library (WML-file), which can be loaded into the experimen-
tation environment (Vanhooren et al., 2003). The models used in this dissertation, include summation
terms which could not be properly handled by the parser. Therefore, these were written in an external
C-file and compiled along using an include statement. A schematic overview of the model creation in
WEST is given in Fig. 3.7.

The experimentation environment allows to define and run different experiments with the model like
simulation, optimisation, sensitivity analysis, scenario analysis and optimal experimental design (OED).
The model created in the modelling environment is loaded and an experiment can be designed by creating
plot windows and setting initial parameter values. By default, the experimentation environment is in
simulation mode. Here, the model can be simulated for a defined time duration and the behaviour can
be followed on the graphs. Different simulation algorithms (solvers) are available. In this study, the
Runge-Kutta 4th order with adaptive step size (Gerald and Wheatley, 1994) and the CVODE stiff-solver
(Cohen and Hindmarsh, 1994) were used for solving the discretised set of population balance equations.

The user can manually change tooptimisation mode. Here, the model parameters can be estimated using
an experimental data set. Optimisations are performed using a least squares or a weighted least squares
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Figure 3.7: Process of creating a WEST model

objective function in order to minimise the difference between data and model predictions (Dochain and
Vanrolleghem, 2001). The simplex optimisation algorithm is used to perform the minimisation of the
objective function and obtain the best parameter estimates (Nelder and Mead, 1965).

The other tools available in WEST are not discussed since they have not been applied in this work. A
screenshot of the experimentation environment is shown in Fig. 3.8.

For this work, the three discretisation algorithms discussed in chapter 2 were implemented in WEST.
It would be too exhaustive to include all the code here or in an appendix. Instead, an overview of the
structure of the files is given.

In general, three files are needed to compile a model:

• MSL-file

• header-file

• external C-file

3.5.1 MSL-file

This file in which the basis of the model is specified, consists of

• object definitions – An object can be any kind of variable of a predefined type or a user-defined
type or class

• class definitions – A class is a generalisation of an object, a user-defined type which can be com-
pletely customised in terms of initial value, unit,. . . They are used to group objects that have the
same nature.

Prior to defining the model-class, separate classes for vectors and matrices need to be defined. Intervals
and units can be defined separately for every class. In the actual model class, different parts are present:
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Figure 3.8: Screenshot of the WEST experimentation environment

• comments – The programmer can write some explanation about the model.

• interface – This part contains input and output variables to other submodels.

• parameters – Definition of all model parameters. This definition typically consists of the name of
the variable, a description, a default value, an interval of realistic values and the units.

• independent – Contains the independent variables. Typically, this is time.

• state – Definition of all state variables of the model (both derived and algebraic state variables).

• initial – This section allows to assign initial (calculated) values to certain state variables. In this
particular application, this section was used to define the grid of the size distribution. The grid
definition was implemented in two different ways. Either the grid values (boundary and pivotal
volumes) were calculated from a given lower boundary value, or the values were computed else-
where and read in through a vector of parameters.

• equation – In this section all model equations are defined. Due to some limitations of the MSL lan-
guage, not all model equations could be implemented here. A first limitation is the poor handling
of vectors and matrices as all elements of vectors or matrices are treated as separate variables.
This becomes a limiting factor when the number of classes of the model is increased since a lot of
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vectors and matrices increase exponentially in size. This results in very large C++ files that can no
longer be handled by the C++ compiler. A second limitation is that indices of control loops cannot
be used in nested control structures (e.g. a SUMOVER statement within a FOR-loop). These are
necessary given the model structure and the solution algorithms. Therefore, it was decided to use
an external C-file for computation of certain matrices (to limit the size of the C++ file created from
MSL) and for the implementation of the solution methods, and then use function calls in MSL to
use them.

3.5.2 header-file

This file is needed to declare the functions that are called from MSL and that are defined in the external
C-file. It consists of the function name followed by the arguments it needs when it is called.

3.5.3 external C-file

This file contains all external function definitions. It can be divided into two main parts:

• function definitions of solution algorithms – Here, the different solution algorithms are imple-
mented. They typically consist of 4 functions: aggregation birth/death and breakage birth/death.
The functions need arguments concerning the grid and the kernels that are used. For the latter,
several options are available. The kernels can be calculated in the MSL-file and the values passed
on with the argument list of the function call. Alternatively, they can be calculated in separate
functions in this file, which is computed every time it is called or which is dynamically allocated
(calculated once per time step). When calculating kernel values in the external file, all states and
parameter values required need to be passed on as arguments in the function call.

• function definitions of kernels – These can be used when kernels are not computed in the MSL-
code (e.g. when larger numbers of grid classes are used). To easily use and swap between different
kernel structures within a model without having to recompile it over and over, kernels can be
implemented as a master function that receives a parameter as argument that can be used in a case-
structure. Every case then calls a different kernel function. This can be done for all kernels that
need to be computed.
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CHAPTER 4

Comparison of different discretised solution
methods of PBMs

4.1 Abstract

In order to solve the population balance equation (PBE), a solution method needs to be chosen1. In this
PhD-study, it was decided to use discretisation techniques for solving the PBE. There were 2 reasons for
this:

• It was proven elsewhere that discretisation techniques give rise to acceptable calculation times,
which is important when the model is to be used in parameter estimation or process control studies
or in combination with Computational Fluid Dynamics (CFD).

• The algorithms are quite straightforward to implement and were compatible with the modelling
and simulation environment WEST that was used in this study.

Once this decision is made, one needs to decide which of the discretisation algorithm from literature will
be used. In this chapter it was investigated which discretisation algorithm is most suitable for solving a
PBM including aggregation and/or breakage using different initial conditions as an additional degree of
freedom. Important properties of a method are:

• ease of implementation
• flexibility
• accuracy
• computational performance
• stability and pittfalls

Three discretisation techniques were taken from literature and investigated:

1Published at Nopens, I., Beheydt, D., Vanrolleghem, P.A., 2005. Comparison and pitfalls of different discretised solution
methods for population balance models: a simulation study. Comp. Chem. Eng., 29(2), 367-377.
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• method of Hounslow (Hounslow et al., 1988)
• the fixed pivot technique (Kumar and Ramkrishna, 1996a)
• the moving pivot technique (Kumar and Ramkrishna, 1996b)

The three methods have already been described in section 2.5.3 and this will not be repeated here. This
chapter is structured as follows. First the model structure (aggregation and breakage kernels) that was
used is shortly introduced. Next, practical details of the simulation study are given and, finally, the
simulation results are discussed followed by some conclusions.

4.2 The population balance model

4.2.1 Applied model equation

Instead of approaching the biomass as a lumped biophase, which is common practice in wastewater
modelling, sludge can also be viewed as a segregated population of individual flocs. This approach
implies that floc properties, in our case floc size, are no longer average values but distributions. Models
that allow the description of dynamical changes in property distributions are better known as Population
Balance Models (PBMs). The general format of a one-dimensional PBM (describing just 1 distributed
property) looks like (Hulburt and Katz, 1964; Ramkrishna, 2000):

∂n (x, t)
∂t

+
∂

∂X

(
Ẋ (x, t) n (x, t)

)
= h (x, t) (4.1)

wherex is the floc size expressed as volume,n(x, t) is the number-based floc size distribution (FSD),
Ẋ(x,t) is the time derivative of the floc size andh(x, t) the net generation rate of x-sized flocs. Hence,
eq. 4.1 describes the time evolution of the number-based FSD.Ẋ(x, t) can be interpreted as the biomass
growth rate. Since the model will be used to describe rather short flocculation experiments (max. 2h), it
can be assumed that no significant growth occurs, allowing to omit the second term on the left-hand side
of eq. 4.1. This simplification is justified since no substrate is available in the settler and, hence, growth
can only occur using lysed cell material which is determined by the decay ratebh. In activated sludge
systems, this first order rate is approx. 0.05d−1 (Gujer et al., 2000), resulting in a biomass reduction of
less than 0.5% during a 2 hour experiment, which is considered to be negligible.

Hence, for this type of process eq. 4.1 is reduced to

∂n (x, t)
∂t

= h (x, t) (4.2)

h(x, t) accounts for discontinuous aggregation/breakage processes. It describes the creation or birth and
the disappearance or death of flocs of a certain sizex during an infinitesimal time intervaldt. Since
both aggregation and breakage can give rise to birth and death of flocs, h(x,t) consists of 4 processes:
aggregation birth (AB), aggregation death (AD), breakage birth (BB) and breakage death (BD). This is
illustrated in eq. 4.3:

h (x, t) = h (x, t)agg + h (x, t)break

= h (x, t)AB − h (x, t)AD + h (x, t)BB − h (x, t)BD (4.3)
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A Smoluchowski typeaggregation modelwas used (Thomas et al., 1999; Ramkrishna, 2000):

h (x, t)agg =
1
2

∫ x

0
αβ
(
x− x′, x′

)
n
(
x− x′, t

)
n
(
x′, t

)
dx′

− n (x, t)
∫ ∞

0
αβ
(
x, x′

)
n
(
x′, t

)
dx′ (4.4)

whereβ(x, x′)(L3.T−1) is the collision frequency for particles of volumex and x’ and α (-) is the
collision efficiency. The former describes the transport of particles toward one another, whereas the
latter describes the probability that these collisions lead to aggregation taking into account short-range
forces like van der Waals attraction, charge repulsion and hydrodynamic interaction.

Breakage modelstypically look like (Ramkrishna, 2000):

h (x, t)break =
∫ ∞

x
n
(
x′, t

)
S
(
x′
)
v(x′)Γ

(
x, x′

)
dx′ − n (x, t) S (x) (4.5)

whereS (x) is the breakage rate of particles of sizex
(
s−1
)
, v(x′) the average number of particles

resulting from a breakage event andΓ(x, x′) the breakage distribution function.

4.2.2 Model structure - aggregation/breakage kernel definitions

Throughout this work, several aggregation and breakage functions, also referred to as ’kernels’ will be
used. For the simulation studies of chapters 4, 5 and 7 basic kernels were used, which will be described
here shortly. Only chapter 8 also uses other kernels. These will be explicitly defined there.

An orthokinetic kernelβ(x− x′, x) was borrowed from Spicer and Pratsinis (1996a):

β
(
x− x′, x

)
= 0.31 Ḡ

[(
x− x′

) 1
3 + x

1
3

]3
(4.6)

in which

Ḡ =
( ε̄

ν

) 1
2

(4.7)

is the average velocity gradient which can be measured and, hence, is explicitly known.

α was chosen to be a constant between 0 and 1. In the latter case (α = 1), all collisions are considered
to be successful. The collision efficiency is often used as a fitting parameter in calibration studies. Other
aggregation efficiency expressions are available in literature (Adler, 1981a; Kusters et al., 1997; Ducoste,
2002) but are not considered here since this was not the goal of the work in this chapter. Some of them
will be used in chapter 8.

S (x) was assumed to be a power law (Spicer and Pratsinis, 1996b):

S (x) = Axa (4.8)

wherea is a constant chosen to be equal to1/3 andA is the breakage rate coefficient
(
L−1.T−1

)
. It

is fixed in simulation studies, but is typically used as fitting parameter in calibration studies. Binary
breakage into equally sized daughters is assumed

v(x′)Γ
(
x, x′

)
= 2δ

(
x− x′

2

)
(4.9)
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Figure 4.1: Illustration of the importance of correctly chosen boundary conditions of the Hounslow
equations

Other, more complex breakage functions can be found in literature (Konno et al., 1983; Kramer and
Clark, 1999; Vanni, 2000; Ducoste, 2002) but were not considered in this particular study focusing on
solution methods. Some of them will be used in chapter 8.

4.3 Practical details of the simulation study

The three different discretisation algorithms that were described in section 2.5.3, all conserving both
numbers and mass, were implemented in the modelling and simulation platform WEST (Hemmis NV,
Belgium).

The Hounslow algorithm is quite straightforward to implement. However, one should be cautious to set
the boundary conditions properly to avoid mass leaks. At the breakage end, the breakage rate S for the
lower boundary class should be explicitly set to 0. The same goes for the aggregation death term of
the upper boundary class. An important consequence is that the summation in the final term of eq. 2.29
should only take into account j-values up to the one but last class (and not the upper boundary class) in
order to avoid a mass leak. This is illustrated in Fig. 4.1 for a simple grid of 3 classes. In order to avoid a
mass leak from the upper boundary class (i.e. class 3) the 3 negative terms should be set to 0 since they
cannot be born elsewhere as the resulting particle is larger than the largest possible size. However, the
circled terms in the top 2 equations are the complementary terms of the collisions that result in particles
outside the particle range, and, hence, these should also be put to 0 to avoid mass loss. It concerns all
collisions with particles from the upper boundary class.

The implementation of the fixed pivot algorithm is a more tedious task and, here too, one should be
cautious to set the boundary conditions properly. Particles should always be born (through either aggre-
gation or breakage) between the smallest and largest pivot, pivots being representative points of a class
where the particles in the interval are concentrated at. This means that some aggregation and breakage
events must be ignored even though they would result in particles within the particle range.

The moving pivot is relatively easy to implement. There is, however, a subtle difference in boundary
conditions since all particles born within the complete particle range can be taken into account. Hence,
the covered range is betweenv0 andvM rather than betweenx0 andxM−1 as illustrated in Fig. 4.2.
This might best be illustrated using a simple numerical example. Say, the lower boundaryv0 equals
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v0 v1 v2 v3 vm-2 vm-1 vmx0 x1 x2 xm-2 xm-1

fixed pivot range

moving pivot range

Figure 4.2: Illustration of the subtle difference in grid range between the fixed and moving pivot tech-
nique

1µm3. When using a geometric grid with factor 2 and 5 classes, this means that the class bounds
are respectively 1,2,4,8,16 and 32. If the arithmetic mean is used to determine the pivots, these will
respectively be 1.5;3;6;12 and 24. When the fixed pivot (or the Hounslow algorithm) is used, flocs can
have values between the lower and upper pivot, i.e. in the interval1.5− 24. All mechanisms that form
flocs outside this interval will be prohibited by the algorithm. When using the moving pivot, the entire
size range1− 32 is allowed for flocs to be formed, which allows more aggregation or breakage events
to occur. Note that the part of the range that is lost becomes larger in the case of a geometric grid when
more classes are added at the large size end of the grid.

Another practical, numerical, issue is the fact that none of the classes should be or become 0 since
this would imply a division by 0 in eq. 2.50. Therefore, a lower limit of 1E-13 was adopted in initial
conditions (also for the other algorithms). The value was chosen in order to not add significant mass to
the system.

With regard to an appropriate choice of grid, 2 things have to be born in mind: the type of grid and its
coarseness. Several types of grids exist like linear grids, where a fixed amount of volume is added to
define a class sequence, and geometric grids, where volumes are multiplied by a constant factor to define
the class sequence. The choice of type must be inspired by the span of the particle size range. If a broad
range is needed, linear grids become less attractive as the number of classes needed to describe the entire
range will blow up, making the model computationally inefficient. Since the model will be used for a
pretty large range, it was therefore decided to focus on geometric grids. A second aspect, next to the grid
type, is its coarseness. The latter brings us back to the discussion on restoration of inconsistency (see
section 2.5.3) that was induced by discretisation and, hence, reflects on the accuracy of the method. A
factor of 2 is frequently being used in practice, merely inspired by physical reasoning. Indeed, when 2
particles of the same volume aggregate, they will form a particle that has double the volume.

For the application at hand the lower boundary of the entire size range was chosen to be0.6µm. The
class boundary values were calculated based on volume and using a geometric factor of either 1.6, 2.0
or 2.4. The pivotal volumes were calculated as the arithmetic mean of the class boundary volumes. The
pivotal diameters were calculated from the pivotal volumes assuming sphericity. The final class of which
the pivotal diameter is smaller than800µm is chosen to be the upper boundary class. This resulted in
respectively 25, 31 and 46 classes for the different geometric factors.

A fixed total particle volume density of 1.82E-8m3m−3 was chosen arbitrarily (= 100 particles in the
upper boundary class in the case of a geometric factor of 2.0). The different initial conditions for the
geometric case with factor 2 are summarised in Table 4.1.

All initial conditions were defined for the case of a geometric factor of 2.0 and then recalculated for the
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Table 4.1: Overview of different initial conditions that were used

initial condition type of dispersion size range (µm3)
1 monodisperion 8.89E-14
2 monodispersion 8.69E-17
3 uniform polydisperion 1.70E-19 – 1.82E-10
4 uniform polydisperion 1.70E-19 – 8.69E-17
5 uniform polydisperion 3.56E-13 – 1.82E-10
6 uniform polydisperion 1.74E-16 – 1.78E-13

other cases (geometric factors of 1.6 and 2.4) conserving both numbers and mass. This transformation
is not always possible and depends on the relative location of the initial pivots of the boundary classes
of both grids (problems only occur when particles are present in boundary classes, i.e. init3, init4 and
init5). This can be illustrated by a simple example. Say a number of particles is present in the lower
boundary class of a grid with geometric factor 2. If one wants to use a grid with geometric factor 2.4,
one cannot redistribute these particles among the adjoining pivots since there is only one adjoining pivot
(the volume of the particles to be redistributed is smaller than the volume of the smallest pivot of the
2.4 grid). In that case one cannot conserve 2 properties. These problems only occur with conversions to
grids with geometric factor 2.4 (init3, 4 and 5).

The simulations were performed for three cases: (1) pure aggregation, (2) pure breakage and (3) com-
bined aggregation/breakage. In the pure aggregation case, arbitrary parameter values were chosen to be
α = 1, Ḡ = 100 s−1, A = 0 cm−1s−1. For the pure breakage case, parameter values were chosen to be
α = 0, Ḡ = 100 s−1, A = 1E4 cm−1s−1. Finally, for the combined aggregation/breakage case, param-
eter values were chosen to beα = 0.2, Ḡ = 100 s−1, A = 1E4 cm−1s−1. Note that these values are not
based on real-life values, but were chosen in order to obtain relatively fast simulations to reach steady
state. All simulations were performed on a Pentium IV-2.8GHz machine using the CVODE stiff solver
(Cohen and Hindmarsh, 1994), unless otherwise stated. As default settings, the absolute tolerance was
chosen to be 0 and the relative tolerance to be 0.005. The Adams linear multistep method and functional
iteration method were used.

The simulation results are presented either as cumulative oversize number density (CON), cumulative
undersize number density (CUN), cumulative oversize volume density (COV) or cumulative undersize
volume density (CUV):

CON (v, t) =
∫ ∞
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n
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)
dv′ (4.10)
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4.4 Simulation study results

4.4.1 The pure aggregation case

For a pure aggregation process, one expects all particles to move into the upper boundary class atsteady
state (SS). SS is defined to be reached when 99.99% of the particle volume is present in the upper
boundary class and the number of particles in all other classes has dropped below 1. The simulation times
(sim. time) for the different cases were chosen in order to make sure the SS was reached. Results of the
pure aggregation case for the Hounslow method, the fixed pivot and the moving pivot are summarised in
respectively Table 4.2, 4.3 and 4.4. Here, the computation time (comp. time) is the physical time needed
by the computer to finish the simulation. The simulation time needed to reach SS (sim. time to SS) is
that part of the simulation time which is needed to reach SS. In all cases the Hounslow method reaches
SS without mass losses. However, the simulation time needed to reach SS is different for the different
initial conditions. They seem to be dependent on the initial degree of aggregation of the system. The
computation time is very low and seems to be independent of the initial condition. It should be noted
that these results were obtained by using the correct boundary conditions. When the last summation in
eq. 2.29 is performed up to the upper boundary class, mass losses between 40 and 60% were observed.

The fixed pivot reaches SS for all cases using 31 classes. The simulation times required to reach steady
state are the same as the ones observed using the Hounslow method and, hence, again depend on the
initial condition. The computation times needed to perform the simulations are, however, significantly
larger, but still acceptable. Unlike the Hounslow algorithm, the computation time seems to be dependent
on the initial condition. The difference is probably due to the fact that quite some if-clauses are present
in the fixed pivot algorithm whereas these are directly integrated in the Hounslow equations.

In the cases using 25 classes the simulation time to reach SS is somewhat larger (but in the same order of
magnitude), which might be explained by the fact that the pivotal volume of the upper boundary class is
somewhat larger compared to the 31 classes grid. The computation time is somewhat smaller compared
to the cases using 31 classes (lower amount of equations to solve) and seems to be independent of the
simulation time.

The cases with 46 classes did not reach the SS as defined above. However, after a certain simulation time,
the system reaches another SS, with some particles being trapped in the one but last class. In order to
distinguish this state from a normal SS, it was called apseudo steady state(PSS), meaning that a steady
state has been reached, but not all particles have reached the theoretically expected upper boundary class.
This situation occurs when the system evolves into a state where no longer valid collisions are possible

Table 4.2: Overview of results for the pure aggregation case using the Hounslow algorithm

init classes sim. time (s) comp. time (s) SS/PSS sim. time to SS (s)
1 31 1.0E+4 1 SS 8.0E+3
2 31 3.0E+6 1 SS 2.7E+6
3 31 1.0E+5 1 SS 8.1E+4
4 31 1.0E+9 2 SS 3.0E+8
5 31 1.1E+3 1 SS 1.1E+3
6 31 1.0E+6 1 SS 8.4E+5
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Table 4.3: Overview of results for the pure aggregation case using the fixed pivot algorithm

init classes sim. time (s) comp. time (s) SS/PSS sim. time to SS (s)
1 25 1.0E+4 4 SS 8.2E+3

31 1.0E+4 6 SS 8.0E+3
46 3.0E+3 174 PSS 3.0E+3

2 25 3.0E+6 4 SS 2.9E+6
31 3.0E+6 13 SS 2.7E+6
46 3.0E+3 61 PSS 3.0E+3

3 31 1.0E+5 7 SS 8.1E+4
46 1.0E+3 174 PSS 1.0E+3

4 31 1.0E+9 20 SS 3.0E+8
46 1.0E+4 182 PSS 1.0E+4

5 31 1.1E+3 1 SS 1.1E+3
46 1.0E+3 138 PSS 1.0E+3

6 25 1.0E+6 3 SS 9.0E+5
31 1.0E+6 6 SS 8.4E+5
46 4.0E+3 169 PSS 4.0E+3

between particles of the one but last class and any other particle in the system. This invalidity is due to
the fact that the sum of volumes of the colliding particles exceeds the volume of the upper boundary class
pivot. Since aggregation is the only working mechanism here, there is no possibility for these particles
to escape from their state and, hence, they are trapped in the one but last class. This phenomenon is
illustrated in Fig. 4.3. The PSS can only occur when geometric grids with factors smaller than 2 are
used. Indeed, in the case of a geometric grid with factor 2, the particles of the one but last class can
always aggregate with themselves, still producing particles that have a valid volume. This is illustrated
in Fig. 4.4.

The simulation times needed to reach the PSS are substantially shorter compared to the cases using 25
and 31 classes and, therefore, the total simulation times were adjusted accordingly. The PSS’s were
somewhat different for the different initial conditions, i.e. the number of particles that are trapped are
different. Especially when particles are initially present in the last but one class (init3 and init5), a
considerably larger amount of particles is trapped. Although simulation times were substantially shorter,
calculation times were larger for the cases using 46 classes due to the increased number of equations that
needs to be solved.

The moving pivot reaches SS for all cases using 31 classes. The simulation times to reach SS are,
however, substantially smaller compared to the ones that were needed in the Hounslow and fixed pivot
cases. For example, to reach a state where 99.99% of the volume is present in the upper class takes
8200 s for init1 using either the Hounslow and fixed pivot algorithms, whereas for the moving pivot SS
is reached in 1000s. This is caused by the subtle difference in valid size range for particle formation
between the different methods, i.e. the range between the smallest and largest pivot for Hounslow and
the fixed pivot versus the entire size range from the lower boundary up to the upper boundary of the
system for the moving pivot. In the moving pivot case, a lot of aggregations are allowed that have to be
ignored in the other two cases. For example, collisions with particles from the upper class are not ignored
as long as the resulting particle’s volume does not exceed the upper system boundary. Evidence of this
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Figure 4.3: Illustration of the pseudo steady state that occurs with the fixed/moving pivot using a geo-
metric factor of 1.6

can also be found in the fact that the pivot of the upper boundary class moves towards the upper system
boundary in all simulated cases. The fact that the fixed pivot (and the Hounslow algorithm) slows down
the simulation seems to be in disagreement with the findings of Kumar and Ramkrishna (1996b), who
found a slower moving front when using the moving pivot. However, they only compared the methods
when the front had not yet reached the upper classes of the system. Indeed, in some cases where the
upper classes are initially empty, the front indeed moves faster for the fixed and Hounslow algorithm.
Once the upper classes get filled with particles, however, the abovementioned findings are observed, and
the moving pivot will reach SS faster. Although simulation times to reach SS are substantially smaller,
increased calculation times are required. This is most probably caused by the fact that twice as many
equations need to be solved. The calculation time dependency on the initial condition is also much more
pronounced. This is caused by the extremely small values of the pivots combined with extreme initial
conditions, forcing the solver to take very small steps to avoid numerical errors. Especially when empty
classes are initially present and get filled by a number of particles, one needs to force the solver to take
small steps to force the pivots to stay within the class bounds. These small steps also cause the calculation
time to increase, which is definitely a drawback of the method.

Similar results were found for the cases using 25 classes. The calculation times are substantially smaller
due to the smaller set of equations that needs to be solved. No clear dependency on the initial condition
was observed.

The cases using 46 classes again showed PSS, which can be explained in the same way as for the fixed
pivot case. Again, the number of particles trapped in the one but last class was different for the different
initial conditions. It is very much governed by the movement of the pivots of the 2 upper classes. One
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Figure 4.4: Illustration that a pseudo steady state can never occur for a fixed/moving pivot using a
geometric factor of 2.0

Table 4.4: Overview of results for the pure aggregation case using the moving pivot algorithm for a
simulation time of 1000s

init classes comp. time (s) SS/PSS sim. time to SS (s)
1 25 14 SS 1000

31 20 SS 1000
46 52 PSS 1000

2 25 781 SS 1000
31 1745 SS 1000
46 4293 PSS 1000

3 31 14 SS 1000
46 44 PSS 90

4 31 279933 SS 1000
46 706719 PSS 1000

5 31 15 SS 1000
46 44 PSS 230

6 25 20 SS 1000
31 18 SS 1000
46 49 PSS 1000
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way for the particles of the one but last class to escape is when the value of the pivot would drop below
half of that of the upper boundary. However, this did not happen in any of the cases. The number of
particles that eventually gets trapped will be determined by the number of particles present in the classes
just below the one but last class. Also, the decrease of particles in these classes is highly influenced by the
movement of the pivot of the upper boundary class. When the latter remains rather small, collisions with
these particles will still be valid and will result in a fast depletion of the class, making them unavailable
for collisions with particles from the one but last class, causing these to get trapped. The calculation
times are again higher compared to the fixed pivot and really blow up in extreme cases.

Figure 4.5: CON(v,t) for init1 for the pure aggregation case: Hounslow (�), fixed 25 (�), fixed 31 (N),
fixed 46 (•), moving 25 (�), moving 31 (4) and moving 46 (◦)

Fig. 4.5 shows the CON(v,t) for the different grid densities and solution techniques for init1 at SS/PSS.
Due to the difference in pivotal volume of the upper boundary class for the different grids, the total
number of particles (Ntot) is of course different. Adopting the case with geometric factor 2 (31 classes)
as reference,Ntot will be smaller than 100 for upper boundary pivotal volumes that are larger than the
reference pivotal volume.

The Hounslow and the fixed pivot methods using 31 classes exhibit exactly the same behaviour (coin-
ciding CON-curves). At the time of assumed SS, there are still some particles that have not reached the
upper boundary class, which is also the case for the fixed pivot using 25 classes (indicated by the arrows).
In all other cases the particles have reached the upper boundary class, except for the fixed pivot, where
one can clearly observe the PSS, and the moving pivot using 46 classes (less clear). Fig. 4.6 shows
that the total volume is conserved for all cases. Here too, for the cases using 46 classes the PSS can be
observed. All other initial conditions yield similar results (not shown).

To conclude, pure aggregation processes are best simulated using a moving pivot technique in combi-
nation with a grid using a geometric factor of 2 or higher. Hounslow and the fixed pivot slow down
the aggregation rate due to the smaller allowed particle range. Hence, the numerical solution signifi-
cantly affects the model outcome. Moreover, when using a finer grid (46 classes), particle entrapment
in the one but last class occurs resulting in a PSS for these two methods. A coarser grid (25 classes)
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Figure 4.6: COV(v,t) for init1 for the pure aggregation case: Hounslow (�), fixed 25 (�), fixed 31 (N),
fixed 46 (•), moving 25 (�), moving 31 (4) and moving 46 (◦)

sometimes results in a significantly faster calculation time, but is, on the other hand, less accurate. The
choice is, therefore, governed by the initial condition and the goal of the simulation work (i.e. parameter
estimation, control, combination with CFD,. . . ).

4.4.2 The pure breakage case

For a pure breakage process (in this work binary into equally sized daughters), one would expect all
particles to move into the lower boundary class at SS. Hence, SS is defined to be reached when all
particles are present in the lower boundary class and the number of particles in the second class has
dropped below 0.1. As above, the total simulation times for the different cases were chosen larger then
the time needed to reach the defined SS. Results of the pure breakage case for the fixed pivot and the
moving pivot are summarised in respectively Table 4.5 and 4.6. The Hounslow case was not considered
since the equations were only developed for pure aggregation.

The fixed pivot method using 31 classes reaches SS in all cases without mass losses. However, the
simulation time needed to reach SS is slightly different for the different initial conditions. They seem to
be dependent on the initial degree of aggregation of the system. Calculation speed is rather low compared
to the pure aggregation case and seems also to be dependent on the initial condition.

Using a coarser grid (25 classes) increases the required time to reach SS. The reason for this is quite
obvious and is related to the type of breakage that was used (binary into equally sized daughters). When
a particle of class i breaks, it will produce 2 particles of class i-1 when a geometric grid with factor 2
is used. No reallocation of particles is needed since the particles that are born always coincide with an
existing pivot. However, this is not the case when a coarser grid is used. A particle of class i that breaks
up will produce particles somewhere in between the pivots of class i and i-1, implying that they will be
partly reallocated to class i, which slows down the breakage process. Again, the model output is sensitive
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Table 4.5: Overview of results for the pure breakage case using the fixed pivot algorithm and a simulaton
time of 6000s

init classes comp. time (s) SS/PSS sim. time to SS (s)
1 25 577 SS 6000

31 1217 SS 4900
46 17184 PSS 4800

2 25 589 SS 6000
31 1222 SS 4800
46 19725 PSS 4700

3 31 1544 SS 4900
46 4339 PSS 4800

4 31 1214 SS 4700
46 3692 PSS 4700

5 31 8693 SS 4800
46 4377 PSS 4800

6 25 575 SS 6000
31 1216 SS 4800
46 3847 PSS 4800

to the numerical method which is unacceptable. The calculation times are again lower due to the lower
number of equations. Here too, they are dependent on the initial condition.

When using a finer grid (46 classes) the phenomenon of particle entrapment again occurs, resulting in a
PSS. The reasoning is exactly the same as in the aggregation case, but now occurs at the lower end of the
particle range. The PSS was defined to be reached when the number of particles in the third class drops
below 0.1. Simulation times required for reaching PSS are in the same order of magnitude as the ones
for 31 classes. Calculation times are again higher due to the increased number of equations to be solved
simultaneously. They are dependent on the initial condition.

The moving pivot using 31 classes yields exactly the same result as the fixed pivot for 31 classes. This is
caused by the specific type of breakage that is used (i.e. binary breakage). Hence, the simulation times
to SS are the same. However, the calculation speed is faster compared to the fixed pivot, which seems
odd since twice as many equations need to be solved. The reason for this is unclear. A dependency on
the initial condition is also observed.

When coarsening the grid for the moving pivot technique, the CVODE-solver experiences problems
due to the fact that it attempts to reduce the step size to levels where convergence is no longer found.
Other solvers with adaptive step size failed too. In the end the simulation was performed using a Runge
Kutta 4th order solver (RK4) using a small step size (1E-4), resulting in long calculation times (several
days), which is not the intention of the discretised methods under study. Therefore, the simulations were
not completed and it is recommended not to use the moving pivot with a coarse grid for this breakage
problem.

Using finer grids combined with the moving pivot also resulted in problems with the CVODE-solver in
some cases. Changing solver settings nor using a different solver allowed to solve the numerical prob-
lems. For the same reason mentioned before, the simulations with the RK4 solver were not completed.
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Table 4.6: Overview of results for the pure breakage case using the moving pivot algorithm and a simu-
lation time of 6000s (empty lines indicate slow calculations or numerical problems)

init classes comp. time (s) SS/PSS sim. time to SS (s)
1 25 – – –

31 350 SS 4800
46 – – –

2 25 – – –
31 204 SS 4800
46 – – –

3 31 256 SS 4900
46 778 PSS 4800

4 31 201 SS 4700
46 615 PSS 4500

5 31 257 SS 4900
46 – – –

6 25 – – –
31 202 SS 4800
46 – – –

In the cases where it did work, PSS’s were observed and calculation times were larger compared to the
fixed pivot using 31 classes, due to the increased number of equations.

Fig. 4.7 shows the CUN(v,t) for the different grids and solution techniques for init1 at SS (note that no
results are shown for the moving pivot using 25 and 46 classes due to the numerical problems). The
difference in pivotal volume of the lower boundary class for the different cases causes the total number
of particles (Ntot) to be different. However, the fixed and moving pivot with 31 classes yield exactly the
same result, obviously caused by the binary breakage into equally sized daughters in combination with a
geometric factor of 2. The fixed pivot with a fine grid exhibits particle entrapment.

Fig. 4.8 shows that volume is conserved and is exactly the same for all cases. Again, one can observe
the fixed pivot with 46 classes suffering from particle entrapment.

All other initial conditions yielded similar results (not shown).

In conclusion, the pure binary breakage process into equally sized daughters is best solved using a ge-
ometric grid with factor 2. The solution method does not really matter since all result in exactly the
same solution in exactly the same simulated time. However, the moving pivot algorithm needs the least
calculation time.

4.4.3 The combined aggregation/breakage case

The steady state that develops in combined aggregation/breakage cases is solely dependent on the model
parameters and was shown to be independent of the initial condition when the total volume in the system
is constant (Chen et al., 1990). For this case the Hounslow equations were accompanied with breakage
equations, similar to those used by the fixed pivot, but less general. Results of the combined case for the
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Figure 4.7: CUN(v,t) for init1 for the pure breakage case: fixed 25 (�), fixed 31 (N), fixed 46 (•) and
moving 31 (4)

Hounslow method, the fixed pivot and the moving pivot are summarised in respectively Table 4.7, 4.8
and 4.9.

The Hounslow method results in exactly the same SS for all cases. The simulation time to SS is slightly
variable, but the calculation times are similar and very fast.

The fixed pivot using 31 classes yields the same results as the Hounslow method in terms of SS and sim-
ulation time needed to reach SS. The calculation time is, however, significantly larger and depends on
the initial conditions. This larger calculation time is partly caused by the difference in aggregation equa-
tions, but also by the more general implementation of the breakage equations compared to the Hounslow
method.

Coarsening the grid results in a slightly different SS, especially in the tail accuracy (Fig. 4.9 and Fig.
4.10). Simulated number concentrations in both the upper and lower tail are higher. The simulation time

Table 4.7: Overview of results for the combined case using the Hounslow algorithm and a simulation
time of 50s

init classes comp. time (s) sim. time to SS (s)
1 31 11 220
2 31 11 290
3 31 11 240
4 31 12 280
5 31 11 250
6 31 11 250
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Figure 4.8: CUV(v,t) for init1 for the pure breakage case: fixed 25 (�), fixed 31 (N), fixed 46 (•) and
moving 31 (4)

Table 4.8: Overview of results for the combined case using the fixed pivot algorithm and a simulation
time of 50s (all reach a normal SS)

init classes comp. time (s) sim. time to SS (s)
1 25 60 220

31 753 220
46 519 220

2 25 62 290
31 148 290
46 579 290

3 31 143 240
46 523 240

4 31 146 280
46 534 280

5 31 145 250
46 541 250

6 25 60 250
31 142 250
46 533 250
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Table 4.9: Overview of results for the combined case using the moving pivot algorithm and a simulation
time of 50s (all reach a normal SS)

init classes comp. time (s) sim. time to SS (s)
1 25 – –

31 96 220
46 2159 220

2 25 2969 290
31 129 290
46 35820 290

3 31 96 240
46 1389 240

4 31 205 280
46 – –

5 31 87 250
46 868 250

6 25 2955 250
31 92 250
46 2133 250

to reach SS is similar. Calculation times are smaller due to the smaller number of equations. Refinement
of the grid also results in a slightly different SS in the tails. Simulated number concentrations are now
lower in the upper tail, whereas they are still higher in the lower tail. Simulation times are similar and
calculation times larger.

The moving pivot using 31 classes yields similar results in the lower tail as the Hounslow and fixed pivot
with 31 classes, but predicts smaller number concentrations in the upper tail (Fig. 4.9 and Fig. 4.10).
These findings were also reported by Kumar and Ramkrishna (1996b), who concluded that the moving
pivot algorithm is more accurate even for coarse grids. Indeed, one observes that using the fixed pivot
with finer grids results in solutions that move towards the moving pivot solution. This difference in
accuracy was proved to become important when performing parameter estimations, since the different
methods resulted in significantly different parameter estimates for exactly the same model (see chapter 7).
The simulation times needed to reach SS are similar, whereas calculation speed is higher compared to the
fixed pivot but lower compared to the Hounslow algorithm. Hence, the question to the user is whether
the increased accuracy justifies the increased calculation time. For a single simulation the answer is yes,
but for an optimisation requiring 300 runs, the answer might not be so straightforward.

Coarsening the grid resulted in problems with the CVODE solver for init1. In the cases where it was
possible to perform the simulation, no significant difference in solution was observed. However, the
calculation time increased significantly, which is rather contradictory since the number of equations to
be solved is smaller. An explanation for this was not found.

Refining the grid resulted in similar SS and required the same simulation times. However, the accuracy is
not significantly improved by refining the grid and the calculation time increases significantly. Moreover,
empty classes appear in the distribution due to the specific pivot movement as is indicated by the arrows
in Fig. 4.10 and will be more thoroughly discussed in chapter 5. When pivotxi becomes smaller than
twice the value of the boundary of the underlying classvi−1, particles break into classi − 2 instead of
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Figure 4.9: COV(v,t) for init1 for the combined case: Hounslow (�), fixed 25 (�), fixed 31 (N), fixed 46
(•), moving 31 (4) and moving 46 (◦)

classi − 1. For as yet unclear reasons, init4 resulted in very long calculation times and could not be
completed.

When comparing the different initial conditions, it was observed that the fixed pivot with 31 classes
yields exactly the same steady state distribution, independent of the initial distribution. Moreover, the
movement of the pivots and the steady state distributions when using the moving pivot with 31 classes
are also independent of the investigated initial conditions.

In conclusion, the moving pivot with a geometric factor of 2 seems to be the most accurate solution
method for the combined aggregation/breakage case. However, the goal of the study will determine
whether the increased accuracy justifies the increased calculation time.

4.5 Conclusions

Three different solution methods for solving a PBE based on discretisation (the Hounslow method, the
fixed pivot and the moving pivot) were compared for three different processes (pure aggregation, pure
breakage and combined aggregation/breakage) using 6 different initial conditions with a fixed total sys-
tem volume.

For pure aggregation, the moving pivot with a geometric factor of 2 turned out to be the best solution
method. The Hounslow method and the fixed pivot slowed down the aggregation rate due to the fact that
some aggregations are (mathematically) not allowed. In other words, the numerical technique influences
the model output, which is unacceptable. When using a finer grid, both the fixed and moving pivot suf-
fered from particle entrapment in the one but last class. A coarser grid (25 classes) sometimes resulted in
a significantly faster calculation time, but was, on the other hand, less accurate. The choice is, therefore,
governed by the initial condition and the goal of the simulation work (i.e. parameter estimation, control,
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Figure 4.10: CUV(v,t) for init1 for the combined case: Hounslow (�), fixed 25 (�), fixed 31 (N), fixed
46 (•), moving 31 (4) and moving 46 (◦)

combined with CFD,. . . ).

The pure binary breakage process into equally sized daughters is best solved using a geometric grid with
factor 2. Coarser grids resulted in slower breakage for the fixed pivot case and in numerical difficulties in
the moving pivot case, whereas finer grids gave rise to particle entrapment. The fixed and moving pivot
resulted in exactly the same solution in exactly the same simulation time. However, the moving pivot
algorithm needs the least calculation time and might, therefore, be preferred.

The moving pivot with a geometric factor of 2 is the most accurate solution method for the combined ag-
gregation/breakage case. The Hounslow and fixed pivot method resulted in a less accurate approximation
of the steady state solution, although Hounslow’s algorithm performed the simulation faster. Refining
the grid using the fixed pivot resulted in an improvement of the accuracy, but it still is worse compared
to the moving pivot’s accuracy. In the end, the goal of the study (including the desired accuracy) will
determine whether the increased accuracy justifies the increased calculation time.
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CHAPTER 5

Discretising a population balance model with
equally sized breakage using the moving
pivot technique

5.1 Abstract

This chapter deals with a problem that was first observed when the moving pivot technique was applied
with a geometric grid (with factors smaller than 2) to solve a PBM with binary breakage into equally
sized daughters (see chapter 4). It demonstrates, explains and provides a solution to this general problem
of equally sized breakage that surfaced when this (too) simple kernel was applied to activated sludge
flocculation.

5.2 The population balance model

The applied model equation and kernel structure for aggregation and breakage are the same as those
defined in section 4.2 and will not be repeated here. Attention is drawn to the special type of breakage
distribution function that was used: binary breakage into equally sized daughters. This can be expressed
as:

v(x′)Γ
(
x, x′

)
= 2δ

(
x− x′

2

)
(5.1)

The specific problem arises when this model is solved using the moving pivot technique and a geometric
grid with a factor s smaller than 2.
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Figure 5.1: Initial and final number distribution after solving the PBM with 32 classes using the moving
pivot discretisation technique (geometric grid with factor s=1.8)

5.3 Results and discussion

The discretisation grid used here was taken from the default output of one of the sizing devices used in
this work, i.e. a Malvern Mastersizer E (Malvern, UK). The instrument-defined grid of the raw data was
geometric with a factor s=1.8 (volume-based) and contained 32 classes. A PBM with 32 classes using the
same grid as the instrument was implemented in the modelling and simulation platform WEST (Hemmis
NV, Belgium) and solved using the moving pivot technique. The initial pivots were chosen to be the
geometric mean of the size class boundariesxbi (similar to the grid definition of the Mastersizer). It
should be noted that the first class did not meet the geometric grid as defined earlier. This was, however,
not within our power since the raw data of the experiment were not available. It does not harm the
conclusions of this chapter though.

The initial condition was taken from the experiment of Biggs (2000) performed atḠ = 19.4 s−1. Param-
eter values were chosen to be A=226m−1s−1 andα = 0.0152. Again, these have no real-life meaning
and were chosen to demonstrate the behaviour.

When performing simulations, discontinuities in the size distribution were observed, as illustrated in
Fig. 5.1 (classes 4, 11 and 18) even though no discontinuities were present in the initial distribution.
After 5700s, clearly the pivots in all size classes have moved from their initial position and 3 classes (4,
11 and 18) contain a lower number of flocs than the neighbouring classes. Noteworthy is the fact that the
pivots in the upper adjoining classes (5, 12 and 19) have all moved to and almost collapse with the lower
boundary of the class (xb5, xb12 andxb19). In the quest for an explanation of the irregularities, focus will
be on class 11 (findings for classes 4 and 18 are similar and will not be discussed in depth).
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Figure 5.2: Simulated time evolutions ofN10−12

The time evolution of the number of flocs in classes 10, 11 and 12 (N10−12) and their pivots (x10−12)
are shown in Fig. 5.2 and Fig. 5.3 respectively. It can be observed that around t=1418 s the slope of
N10 suddenly becomes less steep, whereas the slope ofN11 becomes steeper. At the same time instant,
the pivot of class 10 (x10) suddenly increases and the pivot of class 11 (x11) stops decreasing. Also
noteworthy, the pivot of class 12 (x12) decreases and ends up close to its lower class boundary (xb12). At
t=1418 s, the value ofx12 is 4.92e-16m3, exactly the double of the lower boundary of class 11 (xb11).
After t=1418 s,x12 further decreases which leads to the particular behaviour that particles that break up
from class 12 will no longer end up in the adjoining class 11, but in class 10 since a geometric grid with a
factor 1.8 was used. This explains the sudden decrease in slope ofN11 and the increase in slope ofN10. It
also explains why the pivot valuesx10 andx11 change the way they do. Since flocs are no longer formed
in the lower part of class 11, the pivotx11 is no longer forced to reduce its value. On the contrary, it now
starts increasing because only particles larger than the pivot are formed through aggregation. Pivotx10

increases as well since suddenly particles are formed with a size close to the upper boundary of its size
class (xb11). To confirm this behaviour leading to the observed irregularities in the size distribution, the
time evolution of the breakage birth terms of classes 10-12 (BB10−12) was investigated too (Fig. 5.4).
At t=1418 sBB11 was found to drop from 142 to 0, whereasBB10 increased from 140 to 282, exactly
recovering all the particles breaking from class 12.

In summary, simulating an aggregation-breakage system in which breakage is binary into equally sized
daughters combined with the moving pivot technique and a geometric factor s smaller than 2 leads
to discontinuities. Indeed, when lowering the number of classes of the PBM from 32 to 28, which
corresponds to s=2 (volume-based), the irregularities no longer occur (Fig. 5.5). Even if a pivot drops
to the value of the lower boundary of the class, flocs will still break up into the lower adjoining class.
From the above it is concluded that it is essential to use a geometric grid with s at least equal to 2 when
using the moving pivot technique to solve a PBM with binary breakage into equally sized daughters.
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Figure 5.3: Simulated time evolutions ofx10−12

Figure 5.4: Simulated time evolution of breakage birth terms of classes 10-12
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Figure 5.5: Initial and final number distribution after solving the PBM with 28 classes using the moving
pivot discretisation technique (geometric grid with factor s=2)

This severely limits the freedom of grid choice and forces one to adapt the sizing device output grid by
changing the software settings prior to the measurement (if possible).

This reasoning can be extended to any equally sized breakage kernel given by

v(x′)Γ
(
x, x′

)
= ηδ

(
x− x′

η

)
(5.2)

whereη is a constant andδ(x) is the Dirac function. To avoid the aforementioned problem, the following
general rule can be adopted

s ≥ η (5.3)

For increasing values ofη this means that increasingly coarser grids are required for the moving pivot
technique, substantially deteriorating the accuracy of the method. Alternatively, one could give up using
geometric grids and use linear grids instead, but this is not trivial when large size ranges must be covered
since it will severely increase the number of size classes and, hence, equations, thus, increasing the
computational load.

5.4 Conclusions

It was shown that a PBM with equally sized breakage intoη daughters that is solved using the moving
pivot technique using a geometric grid with a factors < η introduces discontinuities in the distribution.
The reason for this is that certain pivots decrease below a certain value (but still within the size class)
resulting in the phenomenon that particles that break up no longer appear in the lower adjoining class,
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but one class below. This causes discontinuous changes in both the number concentration and the pivots
of these classes. It is, therefore, essential to use a geometric grid withs ≥ η when using the moving pivot
technique to solve a PBM with breakage into equally sized daughters. This severely limits the freedom
of grid choice and, consequently, the output of the sizing device should be adapted. For large values ofη
the accuracy of the method might be affected by the coarseness of the grid.



CHAPTER 6

Experimental data analysis of flocculation
experiments

In this work, two sets of data are considered. A first data set was borrowed from Biggs (2000) whereas
a second one was obtained using the experimental set-up that was described in section 3.3. The focus
of this chapter will be on the evolution of the distributions rather than a summarising parameter such as
e.g. D[4,3] on which Biggs (2000) and Govoreanu (2004) focused in their respective work. It will be
investigated whether useful information is lost when discarding the distributions by summarising them
in one variable. Especially the connection with the Kolmogorov scale will be investigated.

6.1 Experimental data set from Biggs (2000)

Biggs (2000) was the first to obtain on-line experimental data of activated sludge flocculation. The
experimental set-up and procedures that were used are briefly described here.

A 1 L vessel was filled with a diluted activated sludge sample, which was operated under certain con-
trolled conditions (shear rate and Ca-addition). Prior to the experiments, the sludge flocs were sonicated
in order to deflocculate them into single cells (1 10−6 m) and microcolonies of about1 10−5 m. The
sonication time was chosen in a way not to cause significant cell lysis. The sludge was then allowed to
reflocculate under certain specific conditions of mixing intensity and calcium addition and was circulated
through the sample dispersion unit of a Malvern Mastersizer E (Malvern, UK) in order to obtain on-line
quantitative information about floc structure, floc size distribution (FSD) and their derived equivalent
diameters. The measurement technique is based on forward laser light diffraction and has been used
by other researchers (Wilén and Balḿer, 1999; Guan et al., 1998; Waite, 1999a; Biggs and Lant, 2000;
Spicer and Pratsinis, 1996b; Govoreanu et al., 2003). The sludge flocs are brought in a laser beam where
they cause forward scattering of the incoming light. Small particles will scatter the light in the large angle
range, whereas large particles scatter the light in the small angle range. Hence, a heterogeneous particle
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population, as is the case for activated sludge, will result in a diffraction pattern. This light intensity
pattern is measured by a number of detectors located at different angles from the incident laser beam. An
optical model (i.e. Fraunhofer model) is then used to transform the diffraction pattern into a FSD. The
latter is presented as a volume percentage (vol%) distribution (i.e. the percentage of total solids volume
in every size class), but other descriptive parameters can be derived from it such as different moments and
weighted diameters. An often used weighted diameter is the mass mean diameter (also termed D[4,3])
defined as the ratio of the fourth and third moment of the distribution:

D[4, 3] =

∫∞
0 fN (x)x4∫∞
0 fN (x)x3

≈
∑N

i=1 ∆fN (xi)x4
i∑N

i=1 ∆fN (xi)x3
i

(6.1)

wherex andxi represent the floc size and the floc size in classi respectively.∆fN(xi) represents the
number fraction in size class i (=Ni/

∑
Ni).

The main advantage of this technique is its on-line applicability. Drawbacks of the laser diffraction
method are: (1) the assumption of sphericity of particles in the optical model, and (2) the required
dilution step (< 0.2kg.m−3) to avoid multiple scattering since this is not accounted for by the optical
model. The latter is checked by means of the obscuration level, which should be inside a certain range
for the measurement to be reliable. In order not to disturb the sample to be measured by, for instance, a
change in ionic strength, filtered effluent (4.5 10−7 m) should be used for dilution purposes (Mikkelsen
et al., 1996; Govoreanu et al., 2001). The flow rate to the flow-through cell was determined in a way to
minimise shear effects and pump pulsation influences and to avoid settling in the tubes (to approximate
isokinetic sampling). A flow rate of3 10−3 kg.s−1 was selected (Biggs and Lant, 2000).

6.1.1 Experiments using different shear rates

A first experimental data set that was borrowed consists of 4 distinct experiments applying different
shear intensities, reported as average velocity gradientḠ (for definition, see Eq. 2.57). The values that
were applied are 19.4, 37, 113 and 346s−1. The available data sets consist of time evolutions of vol%
distributions. The latter express the percentage of total floc volume that is present in the different size
classes. The grid is the default Malvern grid and is geometric with a volume-based factor s of 1.8 (i.e.
vi+1 = 1.8 vi).

The D[4,3] or mass mean diameter (i.e. the fourth moment of the distribution divided by the third
moment) is often used as a summarising variable of the distribution. The time evolution of the D[4,3]
of the experiments conducted at different shear rates are shown in Fig. 6.1. It is revealed that the mass
mean diameter initially increases quite fast, obviously due to the fact that aggregation is dominant over
breakage (flocs were broken by sonication). Eventually, a steady state is reached (although a small
positive slope still persists). Lower shear rates result in higher steady state mass mean diameters.

However, based on the mass mean diameter as a summarising parameter, it is difficult to judge which
particle classes are most affected by the changes in mixing intensity. In that respect, it is better to
investigate the entire distribution as such, i.e. the time evolutions of the vol% in the different size classes.
The latter are depicted in Fig. 6.2 for the case ofḠ = 19.4 s−1.

The size classes are indicated in terms of the size class diameter (inµm). The Kolmogorov microscale
near the impeller was determined to be 127µm, assuming that the local energy dissipation is 10 times
that of the average energy dissipation (Dr. Nandishkor Nere, personal communication). For this deter-
mination, the reader is referred to Table 2.4. This seems to be a good estimate, since the largest volume
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Figure 6.1: Time evolutions of D[4,3] for the experiments at different shear intensities

fractions are found for floc size classes in that neighbourhood (112-136µm). Concerning the shape of
the time evolutions, 3 cases can be distinguished:

1. size classes larger than the Kolmogorov microscale are continuously increasing and tend to reach
an equilibrium (this is similar to the D[4,3] evolution confirming its dependence on large particle
size classes)

2. size classes smaller than the Kolmogorov microscale tend to grow and reach a maximum after
which they drop again to an equilibrium

3. the smallest classes don’t exhibit peak behaviour and just drop to reach an equilibrium

From case 1 it could be argued that breakup does not occur to a large extent. If it would, a significant
volume decrease of the particles larger than the Kolmogorov scale would be expected, which is definitely
not the case. The leveling off to an equilibrium can either be explained by aggregation becoming slower
or breakage gaining more importance. Most probably the latter is true, since it is unlikely that aggregation
would stop as a lot of small particles are still present in the system (small in volume but large in numbers).
Steady state is, however, not yet completely reached as was also observed from the D[4,3] analysis.

The peaks appearing in case 2 (size classes smaller than the Kolmogorov microscale) are caused by
large amounts of aggregation of flocs smaller than these size classes, whereas flocs from these classes
aggregate at a slower rate (i.e. aggregation birth outnumbers aggregation death). In other words more
flocs are formed than the number that disappears through aggregation. Breakage does not need to be
considered here since it can be argued that hardly any breakage of larger flocs is occurring (i.e. no
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Figure 6.2: Time evolutions of vol% in the different size classes for the experiment at an average shear
rate of 19.4s−1

breakage birth). Moreover, flocs smaller than the Kolmogorov microscale do not break since they are
smaller than the smallest eddy scale. This supports the hypothesis. The decrease after the peak can be
explained by a similar, but opposite reasoning: more flocs aggregate out of the size class than flocs are
formed through aggregation of smaller flocs. Hence, the observed evolution can be regarded as a ’front’
of flocs moving through the size space, which is also confirmed by the fact that the peaks appear at a
later time instant for larger size classes.

The really small classes (case 3) do not exhibit the peak behaviour meaning that they are solely aggre-
gating into larger flocs and are only formed to a lesser extent from smaller size classes (i.e. aggregation
death outnumbers aggregation birth). The peak behaviour is absent for floc size classes smaller than
19µm.

Similar observations were found for the other average shear rates. Results are given in Appendix C.

6.1.2 Experiment with step changes in shear rate

A second data set that is borrowed from Biggs (2000) consists of one experiment in which, after initial
sonication, several step changes in shear rateḠ were applied (19.4 s−1→ 113 s−1→ 19.4 s−1→ 113 s−1).
D[4,3]-evolution versus time for this experiment is shown in Fig. 6.3. In the first part (-4000 – 0 s) the
sonicated sludge is allowed to reflocculate at an average shear rate of 19.4s−1 (similar to section 6.1.1).
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Figure 6.3: Time evolutions of D[4,3] for the experiment with step changes in average shear rate

At time 0, the shear rate is increased to 113s−1, forcing the D[4,3] to decrease from 130 to 70µm. Note,
however, that the initial value was 40µm, and, hence, that increased shear does not have the same effect
as sonication. The latter questions the use of sonication at lab-scale to study the activated sludge floc-
culation mechanism. Around t=2000 s, the average shear rate is again decreased to 19.4s−1, allowing
reflocculation. A lower steady state value is observed (120 instead of 130µm, which is most probably re-
lated to the difference in initial condition of the 2 different flocculation experiments (break-up via either
sonication or shear). Around t=4000, the shear rate is again increased to 113s−1. The D[4,3] decreases
and reaches approximately the same value as before (i.e. 70µm). Note that it takes somewhat longer
to reach steady state, which might be caused by a difference in floc strength. Finally, the shear rate is
decreased again to 19.4s−1. An even lower steady state D[4,3]-value is observed, which is claimed to be
caused by irreversible flocculation dynamics (Biggs, 2000).

The evolutions of the vol% are depicted in Fig. 6.4. The first part (-4000 – 0 s) exhibits the same be-
haviour as in the previous experiment at shear rate 19.4s−1 (see section 6.1.1) and will not be discussed
again. For the second part (0 – 2000 s,Ḡ increased to 113s−1), the following observations can be made:

1. Small floc size classes (up to 9µm) first increase (some noise occurs) after which a slight decrease
(by 0.01-0.05%) is observed. The increase is due to breakage of larger particles, whereas the
decrease can only be due to increased aggregation (i.e. higher number of collisions).

2. Floc sizes between 10 – 60µm exhibit an increase reaching a steady state. The increase is most
probably caused by breakup of larger flocs.

3. Floc size classes between 75 – 90µm show a pronounced maximum. This means that for these
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Figure 6.4: Time evolutions of vol% in different size classes for the experiment with step changes in
shear rate

classes the rate of formation due to breakage of larger flocs is the initial driving force, resulting
in an increase. The decrease is, however, due to their own breakup exceeding the amount of flocs
formed from breakup of larger flocs and cannot be due to aggregation (since all larger classes keep
decreasing in volume). Also these classes have the highest vol%. This means that the Kolmogorov-
scale has clearly decreased to a value around 60 – 75µm, which is about the same as was found in
the aggregation experiment using the same mixing intensity.

4. All floc size classes larger than 90µm exhibit a decrease due to breakage.

In the third part (2000 – 4000 s,̄G decreased to 19.4s−1), the following observations can be made:

1. The initial vol% of the smallest classes (0.81 – 10µm) is substantially lower (ca. 5 times) com-
pared to the first part, which is clearly caused by the difference in approach for breakage (sonica-
tion versus increased shear). A decrease to similar end values is observed for these size classes,
meaning that they are aggregating out of these classes to the same extent, clearly depending on the
shear intensity.

2. For classes between 12 – 60µm, no maximum peaks were observed as was the case in part 1.
Instead, an immediate decrease is observed to end values which are comparable to the first part.
This is probably due to the smaller amount of particles available in the smallest classes and, hence,
the lower aggregation rate. The system is initially in a higher state of flocculation (i.e. the front is
located at a higher floc size).

3. Flocs of 75 – 91µm do exhibit a peak as observed in the first part, but end up at steady state values
that are substantially higher compared to the first part. In part 1, this decrease was governed by a
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higher amount of flocs aggregating out of the class compared to the amount of flocs aggregating
into the class. The smaller decrease observed here would mean that either more particles are aggre-
gating into the class or less particles are aggregating out of the class compared to what happened
in the first part. The former is unlikely since less small particles are available.

4. Flocs of about 111µm now have the largest vol%, also substantially higher than in the first part.
This suggestes that the flocs are more compact.

5. All larger classes exhibit an increase to a steady state, which values are, however, smaller compared
to the first part.

The differences in observed steady states explain why the D[4,3] reaches a lower steady state value.
Although the boundary classes of the distribution reach similar steady state values, the classes around
the Kolmogorov microscale show substantial shifts. Probably, the initial lower amount of small particles
is the reason for this.

Despite the fact that the initial condition was different compared to the second part, part 4 (4000 –
6000 s,Ḡ increased to 113s−1) exhibits almost exactly the same steady state values. Size classes smaller
than the Kolmogorov scale increased to a new steady state, whereas larger classes decreased to the new
steady state. No maxima occur in the transient part for any of the classes. All changes can be addressed
to increased breakage.

Finally, in part 5 (6000 – 8000 s,̄G decreased to 19.4s−1), similar trends are observed as in part 3. The
classes just above the Kolmogorov scale exhibit some lower steady state values, whereas the opposite is
true for classes smaller than the microscale of turbulence. Again, no maxima occur in the transient part
for any of the classes.

An important thing to note is that all these quantitative observations from the vol-% evolutions are lost
when only considering the D[4,3]-evolution. With regard to finding the right kernels for the PBM, this
additional information is very useful.
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6.2 Experimental results from Flocunit

In order to quantify the influence of different physico-chemical parameters on (de)flocculation dynamics,
an experimental design was developed for the Flocunit which was described earlier (section 3.3). Five
relevant factors were retained from a list of potential influencing factors via pre-screening experiments:

1. temperature (5 - 10 - 15 - 20 - 25 °C)

2. shear rate (15 - 28 - 55 - 105 - 200s−1)

3. dissolved oxygen (0 - 1 - 2 - 3 - 4mg.L−1)

4. sludge concentration (0.1 - 0.25 - 0.63 - 1.59 - 4g.L−1)

5. calcium addition (0 - 6 - 12 - 18 - 24meq.L−1)

The design resulted in a total of 36 experiments (one-half fractional factorial design, augmented with an
axial design and 10 central points), which are shown in Table 6.1. More details concerning the design
can be found in Govoreanu (2004). The values that are indicated along with the factors are those that
were used in the experimental design.

The temperature values that were chosen are typical values for regions with a moderate climate (e.g.
western Europe). Shear rate values were chosen logarithmically between the minimum value needed to
keep the sludge in suspension and the maximum value allowed by the mixing device (torque meter).These
values are in accordance with typical values encountered in wastewater treatment plants (Tchobanoglous
et al., 2003). Dissolved oxygen values were chosen to mimic a variety of environments ranging from
anaerobic, over oxygen limiting environments, up to normal values found in wastewater treatment plants.
Sludge concentration values were chosen from very dilute up to normal values encountered in treatment
plants. Since the sludge-producing SBR was fed with rather lowCa2+-concentrations, rather high values
were chosen in order to obtain a variety of monovalent to divalent cation ratios.

In what follows a brief overview of effects of the individual factors on the sludge flocculation process
is given. The main difference with the discussion in Govoreanu (2004) is that, next to the mass mean
diameter, the underlying distributions are discussed too. For every factor 3 levels are compared: the
minimum and maximum axial design points and the central design point. The latter is characterised
by the following values: T= 15°C, G= 55s−1, DO= 2mg.L−1, X= 0.63g.L−1 andCa2+ = 12meq.L−1.
Prior to each experiment, the sludge sample was subjected to identical’standard’conditions for a period
of 10 minutes. These conditions were chosen to be those at the center point except that noCa2+ was
added. Then, the factor values for the experiment are imposed and measurements are collected for
another 10 minutes. Finally, the Ca is added. This approach is different from the one used by Biggs
(2000) where sonication was applied prior to all experiments. The expected transients are, therefore,
expected to be less pronounced, since experiments do not start from a sludge in a deflocculated state.

In this study, in the Flocunit set-up described in section 3.3 a second sizing device was used next to the
Malvern, i.e. the CIS-100 (Ankersmid, Belgium). Unlike the Malvern, the CIS-100 measures number
concentrations by counting particles of certain size (time of transition method). Note that a small dif-
ference in particle count might have a larger effect on volume-based variables when these few particles
happen to be large in size. Similarly, the total number of particles will hardly be affected by a small shift
in the large size classes as only few particles are typically found in these classes. This should be taken
into account when interpreting the results.
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Table 6.1: Overview of the experimental conditions imposed in the Flocunit according to the fractional
factorial design (Govoreanu, 2004)

# T (°C) G (s−1) DO (mg.L−1) X (g.L−1) Ca (meq.L−1)
1 15 55 2 0.63 12
2 15 200 2 0.63 12
3 10 28 1 0.25 18
4 10 105 3 1.59 6
5 10 28 3 0.25 6
6 15 55 2 0.63 12
7 10 105 1 1.59 18
8 25 55 2 0.63 12
9 15 55 2 0.63 12
10 15 55 2 0.63 12
11 15 55 2 0.63 12
12 15 55 2 0.1 12
13 15 55 2 4 12
14 15 55 4 0.63 12
15 20 28 1 0.25 6
16 20 28 1 1.59 18
17 20 28 3 0.25 18
18 15 55 2 0.63 12
19 20 105 3 1.59 18
20 10 28 1 1.59 6
21 15 55 2 0.63 12
22 15 55 2 0.63 0
23 20 105 3 0.25 6
24 15 15 2 0.63 12
25 10 105 3 0.25 18
26 15 55 2 0.63 12
27 15 55 2 0.63 24
28 15 55 2 0.63 12
29 20 105 1 1.59 6
30 20 28 3 1.59 6
31 15 55 2 0.63 12
32 5 55 2 0.63 12
33 10 28 3 1.59 18
34 15 55 2 0.63 12
35 20 105 1 0.25 18
36 10 105 1 0.25 6
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Figure 6.5: Temperature influence on the mass mean diameter measured by the Malvern Mastersizer

The following sections have a common structure. First, the time evolution of the D[4,3] is given and
discussed. Then, the underlying distributions produced by the Malvern Mastersizer (Malvern, UK) are
analysed. Finally, the time evolution of the total number of flocs (Ntot) given by the CIS-100 (Ankersmid,
Belgium) is investigated.

6.2.1 Temperature

D[4,3]

To investigate the influence of temperature, experiments were analysed for the design axial points (5 and
25 °C) and the center point (15 °C). The other operational conditions were kept constant at the center
point values, which have been described earlier. Results of the mass mean diameter (D[4,3]) versus time
for different temperatures recorded by the Malvern Mastersizer are given in Fig. 6.5.

Compared to the data of section 6.1, the results are in general more noisy. The reason for this could be
(1) the difference in flocculation reactor volume (5 L instead of 1 L) which might enhance the inhomo-
geneity and (2) the sampling procedure (no recirculation was used here). However, when discarding this
noise, the same general trends can be observed. Note that the differences in reactor configuration were
necessary for enabling the additional measurements of temperature, DO, turbidity, conductivity and pH.
In what follows, only the general trends will be discussed, i.e. the noise will be ignored.

During the first 20 minutes of the experiments (i.e. prior to Ca-addition) no significant variations in mass
mean diameter were observed. When, after 10 minutes, temperature was lowered to 5 °C, the mass mean
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Figure 6.6: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
T=5 °C

diameter was not affected. On the other hand, increasing the temperature to 25 °C resulted in an increase
of mass mean diameter (though it should be noted that approximately 1 hour was needed to change the
temperature setpoint). As expected, not changing the temperature did not enhance any changes either.
WhenCa2+ was added, different behaviour was observed at different temperatures. At low temperature
(5 °C), the time needed to reach steady state is rather large (about 40 minutes) despite the fast initial
response toCa2+-addition. A steady state mass mean diameter of 650µm was reached. At high temper-
ature (25 °C), a fast increase is observed, followed by a small decrease reaching a steady state value of
about 525µm, significantly lower than at low temperature. A separate experiment withoutCa2+-addition
confirmed the flocculating behaviour at low temperature and the deflocculating behaviour at higher tem-
perature (Govoreanu, 2004). The reason for these rather short-term effects is either the viscosity changes
that are imposed by the temperature difference or the physico-chemical properties of the flocs, especially
the production and physico-chemical properties of exopolymeric substances (EPS). The biological activ-
ity will be influenced too, which might have an indirect effect on the aforementioned physico-chemical
floc properties. At intermediate temperature (T=15 °C), the mass mean diameter remains constant during
the first 20 minutes and increases to a value of about 575µm, intermediate between the low and high
temperature steady state values, whenCa2+ is added.

Volume percentage distributions

The evolutions of the vol% measured by the Malvern Mastersizer forT = 5°C are depicted in Fig. 6.6.
In the first part of the experiment (0-20 min, prior toCa2+-addition), the different size classes are rather
stable (apart from some measurement noise), although some small shifts toward higher floc sizes can be
observed when the temperature is decreased after 10 minutes. Flocs of about 350µm are most abundant
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during this stage of the experiment, suggesting that this would be the Kolmogorov scale. However, when
applying the same rule as in section 6.1 for the relation between the Kolmogorov scale and the average
shear rate (i.e. calculate the scale of turbulence at 10 times the average energy dissipation), it would
mean that the average shear rate would be 2.6s−1, clearly different from the one used in the experiment,
i.e. 55s−1. This might have several causes. A first possibility is that different shear distributions (or
flow patterns) are present in both vessels. This might be caused by the presence of other obstacles in the
reactor (i.e. probes and sampling tube), different mixing blade designs and different volumes (1 versus
5L) as was shown by Ducoste and Clark (1998a). Relating the most abundant floc size to the average
shear intensity would mean that the local shear intensity was 45 times smaller than the average value.
The relationship between average and local shear intensities is mainly depending on the ratio of the
volumes that are exposed to certain shear intensities (or in other words the flocs residence times in each
of the ’compartments’) and the absolute difference between the maximal and minimal shear intensity
throughout the reactor. The larger volume of the reactor and the different flow pattern could, therefore,
justify the aforementioned relationship (i.e. factor 45). The second possible cause is that in the conducted
experiments flocs larger than the Kolmogorov scale are strong enough to withstand the forces that work
upon them and can persist. However, floc strength is difficult to quantify. Further research is required to
further study this potential cause.

After Ca2+-addition, many classes need a long time (up to 1 hour) to reach their new equilibrium. Three
different types of behaviour can be distinguished:

1. Size classes up to 400µm tend to decrease, which can be explained by the increased aggregation
rate.

2. Size classes from 450 up to 650µm exhibit an increase to a maximum followed by a decrease to
a steady state value. The maximum is attained by an increased formation of these flocs, which
is governed by the increased aggregation rate of smaller flocs. The decrease is caused by the
increased aggregation rate of flocs in the class under consideration. It can again be seen as a front
of flocs moving along the size axis.

3. Size classes ranging from 650 up to 1400µm significantly increase. Here, an increased formation
is again followed by an increased aggregation out of the class, but this effect is balanced out by an
increased breakage of larger flocs.

Flocs of about 750µm become most abundant. Since the average shear intensity was controlled at
the same value, it is clear that the size of the most abundant floc size is not necessarily related to the
Kolmogorov scale. The Ca-addition clearly increases the strength of the flocs, allowing them to withstand
the forces they are exposed to. One should, therefore, be careful when calculating Kolmogorov-scales
from distributions.

The evolutions of the vol% measured by the Malvern Mastersizer forT = 25°C are depicted in Fig. 6.7.
The different size classes are noisy in the first part of the experiment, but no trends can be observed.

Most abundant flocs appear around 300µm, which is different from the experiment at T=5 °C , despite
the ’standard’ conditions that were applied. A possible explanation might be the history of the flocs in
terms of strength (or resistance to stress) and compactness. AfterCa2+-addition, a new equilibrium sets
in much faster compared to the low temperature experiment. Only 2 different types of behaviour are
observed: flocs smaller than 400µm decrease to a new equilibrium, whereas flocs larger than 400µm
increase to a new equilibrium. The absence of maxima in certain classes can be explained by the much
faster aggregation rate that is observed. Classes simply don’t have the time to build up large numbers as
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Figure 6.7: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
T=25 °C

Figure 6.8: Time evolutions of vol% in different size classes measured by the Malvern mastersizer for
T=15 °C
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Figure 6.9: Shear rate influence on the mass mean diameter measured by the Malvern Mastersizer

they immediately aggregate out of that class again. Most abundant flocs are now about 600µm, which is
significantly lower compared to the low temperature case. As explained before, one possible explanation
could be a difference in floc strength governed by changes in viscosity or EPS-properties due to different
temperature. Hence, one could conclude that stronger flocs are formed at lower temperature.

The evolutions of the vol% measured by the Malvern Mastersizer for T=15 °C are depicted in Fig. 6.8.
The first 20 minutes of the experiment are less prone to noise. No significant changes are taking place.
300µm sized flocs are most abundant. Note again the difference compared to the experiments at T=5 °C
and T=25 °C respectively. WhenCa2+ is added, size classes smaller than 400µm decrease, whereas
those ranging from 400 up to 1400µm increase significantly. No maxima occur, probably because of the
same reasons as in the previous case. The most abundant size class is 650µm.

6.2.2 Shear rate

D[4,3]

To investigate the influence of shear rate, the shear intensity was set to the nominal experimental value
for 10 minutes prior toCa2+-addition. Results of the mass mean diameter (D[4,3]) for different shear
rates recorded by the Malvern Mastersizer are given in Fig.6.9.

At G=200s−1, an immediate (<30s, i.e. the sampling rate) drop in mass mean diameter is observed,
which is partly restored whenCa2+ is added. However, the fast response and the time needed for 1
measurement does not allow to capture the dynamics. From a dynamic modeller’s point of view, this
type of experimental data is not very useful.
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Volume percentage distributions

The evolutions of the vol% measured by the Malvern Mastersizer are depicted in Fig. 6.10. In the first 10
minutes of the experiment (Ḡ = 55 s−1), a rather constant size distribution is observed with dominating
particle sizes of around 350µm. The Kolmogorov scale calculated for this G (based on 10 times the
average energy dissipation rate rule) is 76µm, which is clearly lower. Apparently, the relation between
maximum diameter and Kolmogorov scale that was found for the data sets in section 6.1 is not valid
here. As argued before, this could be due to the different configuration and volume of the vessel and the
differences in floc strength or a combination of those factors.

When the average velocity gradient is increased to 200s−1, the most abundant floc size is observed at
190µm. At this average velocity gradient, the Kolmogorov scale was calculated to be in the neighbour-
hood of 40µm, which is again much smaller for the same reasoning as mentioned earlier. All flocs larger
than 260µm show a decrease in vol%, whereas these of flocs between roughly 40 and 200µm increased
significantly. This clearly proves that large flocs are broken into smaller ones. The changes in the differ-
ent size classes are as abrupt as the change in D[4,3]. However, initially some noise occurs without any
clear pattern.

When 12 meqCa2+ is added, the most abundant floc size again increases rapidly to 260-300µm. The
only explanation for this can be an increase in floc strength, since the configuration is not changed
throughout the experiment (assuming that the shear rate control to correct for the decrease in volume
does not significantly change the velocity gradient distribution). Using a similar reasoning as in the
previous paragraph, one can prove that aggregation occurs (smaller particles leave the system, larger
ones are born).

At G=15s−1, a linear increase in mass mean diameter is observed. However, this increase is much
slower compared to the decrease observed at G=200s−1. After the Ca2+-addition, a further, much
steeper increase is observed, finally reaching a new equilibrium. The evolutions of the vol% measured
by the Malvern Mastersizer are depicted in Fig. 6.11. In the first part, a rather constant size distribution
can be observed (apart from some noise). As expected, a larger dominating particle size compared to the
previous experiment (at G=200s−1) sets in, i.e. 470µm. This suggests that the floc strength is different,
because all operational parameters are exactly the same except for the sludge sample, which was taken
on 2 different days and might have been slightly different in terms of filament content and ionic strength,
two factors affecting the floc strength.

When the average velocity gradient is decreased to 15s−1, volume fractions of floc sizes ranging from
roughly 200 to 600µm decrease, whereas these of particles between 650 and 1400µm increase. This
clearly proves that aggregation occurred. The changes in the different size classes are not discontinuous,
but have a smoother nature compared to the G=200s−1 case.

When adding 12 meqCa2+, the most abundant floc size increases to around 1500µm. The trend that was
observed in the previous paragraph persists, i.e. aggregation continues until a new dynamic equilibrium
is reached. Apart from one class, none exhibit a peak. This is due to the ’gentle’ aggregation making the
front move very slow, not causing any overshoots. This is in contrast with the sonication experiments
discussed before, where a large driving force is available due to the large amount of small particles
present.

The intermediate case (G=55s−1) was discussed earlier (this case is the same as the intermediate T-case).
The evolutions of the vol% measured by the Malvern Mastersizer are depicted in Fig. 6.8. Intermediate
results are found with regard to response rate and most abundant floc size afterCa2+-addition.
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Figure 6.10: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
G=200s−1

Figure 6.11: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
G=15s−1
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Figure 6.12: Shear rate influence on the total number of flocs measured by the CIS-100

Number distributions

Results of the total number of flocs (Ntot) for different shear rates recorded by the CIS-100 (time of
transition method) are given in Fig.6.12.

At G=200s−1, a significant increase inNtot is observed. Obviously, this is caused by breakage since the
total floc mass did not change.Ca2+-addition causedNtot to decrease again, governed by aggregation,
although the equilibrium sets in at a different level compared to the initial level. These qualitative findings
are similar to the ones obtained by the laser diffraction device.

For the G=15s−1 experiment, one notices thatNtot is initially lower, again suggesting that stronger flocs
are present in the system. Indeed, a lowerNtot implies larger flocs in the system (the mass is distributed
over a lower number of flocs), and these are subjected to the same shear stress as in the previous ex-
periment (i.e. G=55s−1). Hence, they need to be structurally stronger to withstand these forces. When
decreasing the average velocity gradient,Ntot decreases linearly suggesting that aggregation is occur-
ring, again similar to the observations made with the laser diffraction device. AddingCa2+ results in a
further decrease inNtot.

At G=55s−1, a higher initialNtot is observed, confirming the weaker nature of the flocs, which was
observed in the Malvern measurements as well. This level remains constant untilCa2+ was added, the
latter causingNtot to decrease. This implies that aggregation takes place.

The evolution of the number of flocs per class versus time are extremely noisy, not allowing any trend to
be deduced from them (not shown). These data can, therefore, not be used for model calibration.
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Figure 6.13: Dissolved oxygen concentration influence on the mass mean diameter measured by the
Malvern Mastersizer

6.2.3 Dissolved oxygen

D[4,3]

To investigate the influence of the dissolved oxygen concentration, experiments were performed for the
design axial points (0 and 4mg.L−1) and the center point (2mg.L−1). Noteworthy is that it took almost
an hour to change the DO-setpoint to 0mg.L−1. The other operational conditions were kept constant at
the center point values, which have been described earlier. Results of the mass mean diameter (D[4,3])
for different sludge concentrations recorded by the Malvern Mastersizer are given in Fig. 6.13. Note that
all observations cannot be due to additional shear, as bubbleless aeration was applied.

Again, differences in mass mean diameter during the first 10 minutes between the three experiments were
observed. Changing the DO to the respective nominal set-points resulted in no changes for increasing
DO, whereas an increase was observed when imposing anaerobic conditions. This is not in accordance
with Wil én and Balḿer (1999), who did not observe any short-term effect of DO, and observed a floc de-
terioration after long-term anaerobic conditions. AfterCa2+-addition, flocculation occurred in all cases.
However, responses are faster and the steady state is somewhat higher for higher DO-concentrations.

Volume percentage distributions

The evolutions of the vol% measured by the Malvern Mastersizer forDO = 4mg.L−1 are depicted in
Fig. 6.14.

The distribution is quite stable during the first 20 minutes. Apparently, the rise in DO did not alter the



6.2 Experimental results from Flocunit 127

Figure 6.14: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
DO=4mg.L−1

Figure 6.15: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
DO=0mg.L−1
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distribution in the short-term. The most abudant flocs have a size of 350µm. Ca2+-addition caused
fast changes in several size classes. Flocs smaller than 480µm decrease, whereas the ones ranging from
500-1200µm increase. Most abundant flocs now have a size of 700µm. No overshoots occur, again
suggesting that ’gentle’ aggregation is taking place.

The evolutions of the vol% measured by the Malvern Mastersizer forDO = 0 mg.L−1 are depicted
in Fig. 6.15. During the first 10 minutes, a quite stable distribution is observed. Most abundant flocs
have a diameter of 300µm. After imposing anaerobic conditions, some shifts in the distribution toward
larger flocs can be noticed (the discontinuity is due to the fact that it about one hour to impose anaerobic
conditions; during this period no measurements were performed). After addingCa2+, a flocculating
trend is observed. However, the response is slower compared to the high DO case. Flocs smaller than
450µm decrease, whereas those ranging from 450 up to 1400µm increase without any peaks occurring.
Most abundant flocs are about 600µm in size.

The evolutions of the vol% measured by the Malvern Mastersizer forDO = 2 mg.L−1 were already
shown in Fig. 6.8. Results are intermediate compared to the ones at other DO-concentrations.

6.2.4 Sludge concentration

D[4,3]

To investigate the influence of the sludge concentration, experiments were performed for the design axial
points (0.1 and 4g.L−1) and the center point (0.63g.L−1). The other operational conditions were kept
constant at the center point values, which have been described earlier. Results of the mass mean diameter
(D[4,3]) for different sludge concentrations recorded by the Malvern Mastersizer are given in Fig. 6.16.

Prior to theCa2+-addition, the mass mean diameter is slightly different for the different sludge concen-
trations. Here, one would expect a larger mean diameter for higher concentrations because the collision
rate is higher and, hence, the possibility to form larger flocs is larger. On the other hand, differences in
floc strength might also be partly responsible as was discussed in 6.2.2. This explains why the mass mean
diameter forX = 4 g.L−1 is larger than that forX = 0.63 g.L−1. At the lowest sludge concentration a
decreasing trend is observed, which might be explained by an irreversible breakup of flocs due to the low
probability of collisions. It should be noted that at this concentration the sludge was recirculated instead
of diluted in-line.

When addingCa2+, the effect of the different collision probabilities (caused by sludge concentration)
can clearly be observed. Higher sludge concentrations reach higher equilibrium mass mean diameters.

Volume percentage distributions

The evolutions of the vol% measured by the Malvern Mastersizer forX = 4 g.L−1 are depicted in
Fig. 6.17. Apart from some noise, the distribution is rather stable in the first 20 minutes. The most abun-
dant particle size is observed around 400µm, which is again significantly larger than the Kolmogorov
scale. AfterCa2+-addition, the volume of flocs ranging from roughly 550 to 1600µm significantly in-
creases, whereas those of flocs roughly between 90 and 480µm significantly decreased and no peaks are
observed. Obviously, this is due to aggregation caused by theCa2+-addition. Flocs of around 700µm
now become the most abundant.
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Figure 6.16: Sludge concentration influence on the mass mean diameter measured by the Malvern Mas-
tersizer

The evolutions of the vol% measured by the Malvern Mastersizer forX = 0.1 g.L−1 are depicted in
Fig. 6.18. The distribution is not very stable during the first 20 minutes. It is more noisy, probably
caused by the low concentration (less flocs are analysed). The most abundant size class is again roughly
400µm. Size classes between 220 and 550µm show decreasing vol%, whereas classes smaller than
220µm increase. Some slow breakage seems to be taking place. Interesting to note is that size classes
larger than 550µm do not decrease (but are very noisy). The impose dilution might be an explanation
for the increased noise levels due to lower particle counts. When addingCa2+, size classes smaller than
400µm decrease, whereas those ranging from 400 up to 1200µm increase. Flocs of around 600µm now
become the most abundant. Despite the increase in size, it is smaller compared to the increase found at
higher sludge concentrations.

The evolutions of the vol% measured by the Malvern Mastersizer forX = 0.63 g.L−1 was already
shown in Fig. 6.8. Results are intermediate compared to the ones at other sludge concentrations.

Number distributions

Results of the total number of flocs (Ntot) for different sludge concentrations recorded by the CIS-100
(time of transition method) are given in Fig. 6.19. Note thatNtot has a similar order of magnitude for
the different cases during the initial 20 minutes, which is caused by the same sample dilution prior to
the measurement. Differences here can be either caused by slight differences in effective concentration
at measurement or stem from a different aggregation state. The former is unlikely since the dilution step
was standardised.

For X = 0.1 g.L−1, Ntot increases during the first 20 minutes, confirming the decrease in vol% and,
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Figure 6.17: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
X=4g.L−1

Figure 6.18: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
X=0.1g.L−1
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Figure 6.19: Sludge concentration influence on the total number of flocs measured by the CIS-100

thus, the slow breakage that was observed earlier with the Malvern. After addingCa2+, Ntot decreased
to reach a steady state.

In caseX = 4 g.L−1, a constant, but smallerNtot was observed during the first 20 minutes, again
suggesting that the floc strength is slightly different in both experiments, although the lower sludge
dilution might also have an effect here.Ca2+-addition resulted in a decrease ofNtot. The steady state that
was reached, however, is smaller compared to the low concentration case. This confirms the qualitative
conclusion that a higher degree of flocculation has been reached in this more concentrated suspension.

The intermediate case (X = 0.61 g.L−1) was already discussed before (section 6.2.1). The steady state
Ntot is, however, not very different from the high concentration case. This is caused by the fact that
number concentrations rather than volumes are used. A difference of a few hundred flocs might not
show a large difference in a number-based graph, whereas this is more emphasised in a volume-based
plot (see Fig. 6.16).

6.2.5 Calcium addition

D[4,3]

To investigate the influence ofCa2+, experiments were performed for the design axial points (0 and
24meq.L−1) and the center point (12meq.L−1). The other operational conditions were kept constant at
the center point values, which have been described earlier. Results of the mass mean diameter (D[4,3])
for different Ca2+-additions recorded by the Malvern Mastersizer are given in Fig. 6.20. It should be
noted that the sludge from the SBR was low onCa2+ due to the use of softened water for influent
make-up. This might have emphasised the observedCa2+-effects (Govoreanu, 2004).
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Figure 6.20: Calcium addition influence on the mass mean diameter measured by the Malvern Master-
sizer

Again, it can be observed that the mass mean diameter is different during the first 20 minutes of the
different experiments, suggesting a difference in floc strength between the different sludge samples. The
Ca2+-addition resulted in an increase in mass mean diameter, reaching steady state values. The latter
were larger for higher amounts ofCa2+ added, although the observed difference was not very large
taking into account that theCa2+-dosage was doubled. Also, the response was significantly faster for
higher concentrations added. Still, however, a slight background increase is observed in both cases at
steady state. The blank case (noCa2+-addition) showed this slightly increasing trend of the mass mean
diameter throughout the entire duration of the experiment. This trend is, therefore, most probably not
related to Ca-addition.

Volume percentage distributions

The evolutions of the vol% measured by the Malvern Mastersizer for aCa2+-addition of24 meq.L−1

are depicted in Fig. 6.21. During the first 20 minutes of the experiment, flocs of around 350-400µm
are the most abundant.Ca2+-addition caused a sudden jump in the different size classes. Size classes
smaller than 500µm show a decrease, whereas the ones ranging from 500-1400µm exhibit a significant
increase. The most abundant flocs have a size of about 700µm.

The evolutions of the vol% measured by the Malvern Mastersizer for aCa2+-addition of0 meq.L−1 are
depicted in Fig. 6.22. Although the conditions during the experiment do not alter, some evolution of the
different size classes can be observed. Size classes smaller than, say, 450µm tend to slightly decrease,
whereas those ranging from 450 up to 1000µm slightly increase. A possible explanation could be that
flocs are reorganised and tend to get stronger, enabling them to withstand the same shear forces imposed
by the mixing.
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Figure 6.21: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
aCa2+-addition of24 meq.L−1

Figure 6.22: Time evolutions of vol% in different size classes measured by the Malvern Mastersizer for
aCa2+-addition of0 meq.L−1
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Figure 6.23:Ca2+-addition influence on the total number of flocs measured by the CIS-100

The intermediate case (Ca2+-addition of12 meq.L−1) was already discussed before (section 6.2.1). The
response rate of the changes in the different size classes is smaller compared to the higher dosage case.
The most abundant floc size is also somewhat smaller.

Number distributions

Results of the total number of flocs (Ntot) for differentCa2+-additions recorded by the CIS-100 (time of
transition method) are given in Fig. 6.23.

Similar observations as in the sludge concentration case were made.Ntot is different during the first
20 minutes for the three experiments. The trends observed in the Malvern results are again confirmed.
Ca2+-addition causedNtot to decrease. The rate at which this happened is higher for the larger dosage
of Ca2+. Also,Ntot at steady state is not very much different for different dosages.

6.3 Concluding remarks

Distributions contain a lot of information which is lost when a summarising parameter like e.g. D[4,3]
is used. From the experiments using different shear rates, it can be concluded that different size classes
exhibit different behaviour depending on how their size relates to the Kolmogorov microscale of turbu-
lence. Larger size classes increase toward an equilibrium, smaller classes reach a maximum and decrease
to reach a steady state, whereas the smallest classes do not exhibit a peak behaviour. The peak behaviour
was, however, not observed in the cases where ’gentle’ aggregation occurred (i.e. aggregation from a
non-sonicated sludge). It was reasoned that no breakage occurred prior to the onset of steady state. Fur-



6.3 Concluding remarks 135

Table 6.2: Kolmogorov-scales and most abundant floc sizes for all Flocunit experiments (prior to Ca-
addition)

experiment Ḡ s−1 η (µm) 10-fold rule η (µm) from Ḡ most abundant floc size (µm)
center point 55 76 135 300
Low T 55 76 135 350
High T 55 76 135 300
Low G 15 146 259 350
High G 200 40 70 190
Low DO 55 76 135 300
High DO 55 76 135 350
Low X 55 76 135 400
High X 55 76 135 400
Low Ca 55 76 135 450
High Ca 55 76 135 350-400

thermore, the estimate of the Kolmogorov scale by using the 10-fold of the average energy dissipation
seemed to be a good assumption for the experimental data of Biggs (2000), whereas this assumption was
not found to hold for in the experiments using the Flocunit. This is illustrated in Table 6.2 that presents
the calculated Kolmogorov-scalesη (based on the 10-fold average energy dissipation rule of thumb) and
the most abundant floc sizes for all Flocunit experiments prior to Ca-addition. The fact that the rule is not
applicable in the Flocunit experiments is possibly caused by the different reactor configuration (probes
are obstacles and have a ’baffle’ function). The only way to verify this would be to build a CFD-model
of both reactors and calculate the differences in energy dissipation rate distributions.

The experiment with the step changes in average shear rate showed similar results when solely looking
at a summarising parameter. However, (de)flocculation behaviour is clearly different when looking at
the complete distributions. A comparison of the reflocculation after sonication and increased shear rate,
showed that the initial number of small particles is much larger in the former case. Whereas all classes
smaller than the Kolmogorov scale exhibited a peak in the sonication pre-treatment case, this was not
true for the increased shear rate case. Also, the size class exhibiting the largest vol% was somewhat
smaller, suggesting more compact flocs. This leads to an important conclusion: sonication prior to the
experiment seems to induce a different kind of flocculation compared to break-up through shear as a
pre-treatment. Moreover, sonication is not happening in practice (whereas shear rate changes do) and
is thus not representative for the flocculation occurring in a full-scale treatment plant. Lab-scale studies
should, therefore, not apply sonication in order to elucidate the activated sludge flocculation behaviour.

Experiments performed in the Flocunit showed more measurement noise than the experiments performed
by Biggs (2000). This may be related to the reactor configuration (different volume and many obstacles),
reactor volume and the sampling procedure, which was not based on recirculation. However, when
discarding the noise, the main trends could still be evaluated.

The ’standard’ initial part of all experiments in the design could not prevent that distributions were dif-
ferent. This is probably caused by a different flocculation history which induced sludges of different
strengths. Also, the previously used empirical relationship between average shear intensity and Kol-
mogorov scale appeared not to be valid here. This was reasoned to be caused by differences in reactor
configuration and differences in floc strength (resistance to stress). Another empirical relationship may
be valid for this reactor configuration.
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The conclusions drawn from the CIS-100 measurements in terms of total number of flocs are the same as
those obtained from the Malvern measurements. However, the CIS-100 number distributions were found
to be too noisy to be used for model calibration.

Basically, the conclusions that are drawn based on the evolution of the mass mean diameter or from the
complete distributions are the same. However, many details, e.g. moving of fronts, most abundant floc
size and floc size classes that are affected by changes in operational conditions, are lost when summaris-
ing parameters such as D[4,3] are used. Distributional data are very useful when investigating model
structure and calibrating a model (see chapter 7). Indeed, many distributions can exhibit a similar mass
mean diameter, and, hence, many models can describe these data without capturing what is really hap-
pening. This doesn’t mean that summarising parameters are useless. On the contrary, they are very useful
for getting a first impression of the dynamics of a process.

The effects of the different factors that were investigated in the experimental design can be summarised
as follows:

• Flocs are not disturbed when temperature is lowered. However, some immediate flocculation
occurs when temperature is increased. Addition of calcium results in stronger flocs at lower tem-
peratures.

• Shear has an important effect on the activated sludge flocculation. High shear destroys flocs and
shifts distributions toward smaller sizes. Low shear allows larger flocs to be present in the system
and exhibits slower dynamics. The addition of calcium confirms the hypothesis of floc strength
playing an important role. Even at high shear a partial reflocculation was observed after Ca-
addition. From a modeller’s point of view, the dynamics at high shear cannot be investigated since
the measurement frequency with the available set-up was too low to capture the fast flocculation
dynamics.

• Changes in DO did not have an immediate effect (even though it took some time to change set-
points). Though no short-term changes were observed for an increase in DO, imposing anaerobic
conditions resulted in a shift toward larger floc sizes. This is in disagreement with Wilén and
Balmér (1999), who did not observe short-term effects and found floc deterioration in the long-
term. Ca-addition leads to stronger flocs when the DO-concentration is higher. DO-effects could
be determined independent of shear since bubbleless aeration was used.

• At low sludge concentration, a slow deflocculation can be observed, caused by the smaller collision
probability. This can also be observed when Ca is added. The largest sludge concentration results
in the largest floc size.

• Ca-addition results in extensive flocculation (partly caused by the Ca-deficient sludge that was
used). However, the results clearly show that the degree of flocculation is not proportional to the
amount of Ca added. A slow background flocculation was observed when no Calcium was added.



CHAPTER 7

From experimental flocculation data to a
calibrated population balance model

7.1 Abstract

Fitting a model to an experimental data set is often referred to asmodel calibration. In this procedure,
optimal values of the model parameters are determined that result in the best description of the experi-
mental data.1

In the case of combining a population balance model with the experimental data sets shown in chapter 6,
some additional issues need to be addressed/solved like

• influence of solution technique

• grid transformation

• measurement errors

• fitting variable

In this chapter, a new comprehensive calibration methodology is developed allowing to calibrate a popu-
lation balance model using experimental data. The chapter is organised as follows. First the nature of the
experimental data is discussed along with the numerical methods that were used. Then, the methodology
is proposed and discussed, ending with some concluding remarks.

1Nopens, I., Vanrolleghem, P.A., 2005. PBM and activated sludge flocculation: from experimental data to calibrated model.
AIChE Journal, in press.
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7.2 The population balance model

Details of the model equation and the kernel structures that were used in this chapter for developing the
calibration methodology are the same as those described in section 4.2 and will not be explicitly repeated
here.

7.3 Experimental set-up and numerical methods

The experimental data used in this part of the study were obtained from Biggs and Lant (2000) who
were the first researchers to study the influence of mixing intensity and calcium addition on flocculation
kinetics on-line. The experimental data that were used in this chapter are described in section 6.1.1 and
appendix C.

In order to solve the PBM, two different discretisation techniques were used: the fixed pivot (Kumar
and Ramkrishna, 1996a) and the moving pivot technique (Kumar and Ramkrishna, 1996b). Both allow
a free choice of grid. In this discretised size range only particles of these pivotal sizes exist. However,
aggregation and/or breakage processes give rise to particles of other, non-existing sizes. The fixed pivot
technique redistributes these particles to the adjoining pivots. The number of pivots to which the particles
are redistributed determines the number of properties that can be conserved by the algorithm. Typically,
it is chosen to redistribute mass and numbers to the 2 adjoining pivots, and, hence, both these can be
conserved. In the moving pivot algorithm, the pivot is allowed to move within the boundaries of the
class it represents. This is a more accurate algorithm, but it requires additional equations to describe
the movement of the pivots. For a more detailed explanation, the reader is referred to section 2.5.3 or to
literature (Kumar and Ramkrishna, 1996a,b). Both algorithms were implemented in the modelling and
simulation software platform WEST (Hemmis NV, Belgium).

Optimisations were conducted using either a least squares (LS) or a weighted least squares (WLS)
method for a simultaneous fit of several variables (Dochain and Vanrolleghem, 2001):

LS : J (θ) =
m∑

j=1

Nj∑
i=1

(yi,j − ŷi,j (θ))2 (7.1)

WLS : J (θ) =
m∑

j=1

Nj∑
i=1

1
σ2

i

(yi,j − ŷi,j (θ))2 (7.2)

whereJ (θ) is the sum of squared errors (SSE) or objective function,yi,j is the measured variable,
ŷi,j (θ) is the model prediction using parameter setθ, m is the number of experimental data sets,Nj is
the number of experimental data points of experiment j andσi is the measurement error (which inverse
is often used as a weight to express the accuracy of the measurement).

The simplex optimisation algorithm (Nelder and Mead, 1965) was used to minimiseJ(θ).

7.4 Calibration methodology

Parameter estimation is a difficult task as it is highly dependent on the model structure, the number of
parameters to be estimated and both the quality and quantity of the experimental data. It was decided
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to estimate two parameters in total: one parameter in the aggregation part of the model (α) and another
one in the breakage part of the model (A). This choice was justified for the D[4,3] by means of a sen-
sitivity analysis that showed that both parameters were sensitive in a different part of the experiment.
For the volume and number concentrations, justification can be found in the qualitative discussion of the
experimental data in chapter 6, where it was concluded that in the dynamic part of the experiment, pure
aggregation or breakage could be assumed. Hence, this dynamic part can be used to fit one parameter,
whereas the dynamic equilibrium (i.e. steady state) will then fix the remaining parameter.

The goal of this chapter is to introduce a new comprehensive calibration methodology for PBM using
experimentally collected flocculation data. It discusses problems that arise during a calibration procedure
and will influence the results, such as (1) the choice of solution method (in this case discretisation meth-
ods were used), (2) data transformations that are necessary in order to be able to solve the discretised set
of equations (3) measurement errors and (4) the choice of fitting variable.

7.4.1 Solution method

When calibrating a model using experimental data, it is important to use a relatively fast solution method
(e.g. discretisation techniques) since many simulations might be needed before the optimum model
parameters are found. In their work, Thill et al. (2001) used the discretisation technique of Hounslow
et al. (1988), which is exactly the same as the fixed pivot technique when using a geometric grid with
factor 2 (e.g.1, 2, 4, 8, 10−18 m3) and conserving both numbers (0th moment) and mass (3rd moment)
during the discretisation procedure. Kumar and Ramkrishna (1996b), however, compared this fixed pivot
technique with an analytical solution for a simple PBM and found that it suffers from overpredictions
of numbers when large gradients are present in the distribution. To deal with this, they introduced an
alternative technique, the moving pivot, and showed that this technique gave a much better prediction of
the analytical solution, even for a coarse grid. To confirm this improved accuracy in this study, the PBM
was solved with both techniques, fixed and moving pivot, using the same parameter set (α = 6.5 10−3

andA = 201.5 m−1s−1). The simulation results are represented as cumulative oversize number density
(CON)

CON (x, t) =
∫ ∞

x
fN

(
x′, t

)
dx′ (7.3)

in order to emphasise the predictions of the large floc size tail and the 0th moment (= total number of
particles in the system) of the distribution in one single plot. It can be seen that the predictions of the
fixed pivot starting from the same initial distribution (Fig. 7.1) indeed yield a lower 0th moment (= total
number of flocs) and a larger number of flocs in bigger size classes (Fig. 7.2) at t=2000s, suggesting that
the aggregation has occurred faster compared to the moving pivot.

Also, the model as solved with the different solution techniques, was fitted to one of the experimental
D[4,3] data sets of Biggs and Lant (2000) using the LS objective function (eq. 7.2). The resulting pa-
rameter values along with the ones found by Biggs and Lant (2000) are given in Table 7.1. It can be
observed that the estimate of parameterα is much lower when the fixed pivot is used since the technique
inherently speeds up the aggregation as was observed in chapter 4. In order to fit the same data set, the
aggregation parameterα must be decreased (by 50%), leading to erroneous parameter estimates. The
difference in A is less pronounced. The results are also somewhat different compared to the ones found
by Biggs and Lant (2000). The latter is due to a different data transformation (see next section).

Corroborating the conclusions of chapter 4 on discretised solution techniques and those of Kumar and
Ramkrishna (1996b), it is therefore advisable to use the moving pivot to solve the PBM in order to obtain
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Figure 7.1: Comparison of fixed and moving pivot initial conditions (t=0 s)

Figure 7.2: Comparison of fixed and moving pivot solutions at t=2000s of a PBM with the same param-
eters (α = 0.0065, A=202m−1s−1)
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Table 7.1: Parameter estimates of fit on D[4,3] using fixed and moving pivot on the same data set
(G = 19.4 s−1, see section 6.1.1). The parameters found by Biggs and Lant (2000) for the same data
set (but different transformation) are given as well.

method α(−) A(m−1s−1)
fixed 6.48E-3 202

moving 1.36E-2 195
Biggs and Lant (2000) 4.95E-4 230

accurate estimates ofα and A. As was proven here, the accuracy of the solution technique can have a
significant impact on the parameter estimates. Since these model parameters express physical quantities,
these biases can lead to unrealistic interpretations when comparing them to values obtained in other
studies, which significantly decreases the power of the model.

7.4.2 Data transformation

Every transformation of experimentally collected data will unavoidably introduce some error and should
be minimised. In some cases, however, transformations cannot be avoided due to incompatibility of the
model and the experimental data. This is the case here: The raw output of the Mastersizer is a vol%
distribution for a given grid, based on which the number distribution and some summarising parameters
can be calculated. On the other hand, the model is formulated on a number basis and uses a different
grid. This gives rise to 2 incompatabilities that need to be sorted out:

• recalculation of the experimental Malvern data is required to make them compatible with the model
grid (geometric with factor 2)

• a volume-to-number conversion is needed to obtain an initial distribution to feed the model

Biggs and Lant (2000) fitted log-normal distributions to the original raw vol% distributions, inspired
by findings in literature (Li and Ganczarczyk, 1991). The fits were claimed to be good based on high
correlation coefficients (R2 of about 0.92), although clear deviations could be observed near the tails of
the distribution. This is illustrated in Fig. 7.3 by comparing the raw cumulative vol% distribution and the
one calculated from the number distribution of Biggs and Lant (2000). Subsequently, these log-normal
fits were used to interpolate volume fractions along the entire floc size range. After this interpolation
step, the volume distribution was transformed into a number distribution assuming the particles to be
spherical.

Hence, fitting the log-normal distributions as intermediate step introduced large errors in the number
distributions, even though high values ofR2 were obtained. Indeed, small deviations between the log-
normal distribution and the experimental data blow up when number distributions are calculated. Biggs
(2000) reported this as a shift in D[4,3] between that calculated from the raw data and the one calculated
from the transformed number distribution (Fig. 7.4). Such differences are unacceptable and therefore
an alternative method is required. Parameter estimates found by Biggs and Lant (2000) after fitting the
model to this transformed D[4,3] data set are reported in Table 7.1 and clearly reflect the introduced
transformation errors.
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Figure 7.3: Comparison of original and recalculated cumulative volume percentage

Figure 7.4: Difference between D[4,3] evolution based on (1) raw Mastersizer, (2) the recalculated num-
ber distribution of Biggs (2000) and (3) the new approach
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As an alternative approach to deal with the difference in discretisation grid, a cumulative vol% distri-
bution is first calculated from the raw distribution. The latter is then interpolated at the pivots of the
new grid resulting in a cumulative distribution in the new grid, allowing the recalculation of the volume
percentage distribution. Fig. 7.3 and 7.4 show that this transformation does not alter the raw data.

Second, the incompatibility between the experimental vol% distributions and the number-based model
needs to be solved. One could argue the need for this transformation and use a volume-based model.
However, this has two disadvantages: (1) it was illustrated before that fitting on volumes is dangerous
because the tails often are under- or overpredicted, introducing severe errors; (2) the interpretation of the
model is less clear when using a volume-based model. Instead of a number of particlesNi colliding with
a number of particlesNj, a volume of particlesvi will collide with a volume of particlesvj, which is
clearly more abstract and no longer compatible with Smoluchowski’s law for aggregation.

The experimental data are expressed as vol%, i.e. the ratio between the floc volume in class i (Vi) and
the total floc volume of all classes (Vf ), Vi/Vf . The model, on the other hand, is expressed in number
concentrations or the ratio between the number of particles of class i (Ni) and the total sample volume
(VT), Ni/VT. To convertVi into Ni, the total floc volume fractionVf/VT is needed.

Kinnear (2002) derived a ratio (C) between the liquid and solid mass (ml,ms) within a sludge floc, based
on the heterogeneous floc model and the densities of liquid (ρl), flocs (ρf ) and dry solids (ρs):

C =
ml

ms
=

ρl(ρs − ρl)
ρs(ρf − ρl)

(7.4)

Assuming that a floc consists of solids and interstitial bound water, a mass balance can be written as:

mf = ms + ml (7.5)

Combining eq. 7.4 and 7.5 yields:
mf = ms(1 + C) (7.6)

Assuming constant densities for flocs and solids and dividing by the total sample volumeVT, one can
rewrite eq. 7.6:

ρf Vf

VT
=

ρs Vs

VT
(1 + C) (7.7)

The factor outside the parenthesis on the right hand side of eq. 7.7 is in fact the Mixed Liquor Suspended
Solids (MLSS) referred to as X. This yields the following expression for the total volume of flocs:

Vf

VT
=

(1 + C)
ρf

X (7.8)

where X is the MLSS (kg.m−3). Eq. 7.8 allows the calculation of the total floc volume fraction by
using the measurements of MLSS and the floc, liquid and dry solids densities. The former is a routine
measurement in wastewater treatment, whereas the latter can be obtained by means of density-gradient
pycnometry (Kinnear, 2002; Dammel and Schroeder, 1991). Literature values forρf range from 1010-
1090kg.m−3, whereasρs ranges from 1200-1800kg.m−3. As an example, the total floc volume fraction
for a sludge withX = 3 kg.m−3 andρf , ρl, andρs respectively equal to 1040, 1000 and 1400kg.m−3

was found to be 2.14%. An overview of total floc volume fractions in different ranges ofρf andρs and
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Figure 7.5: Total floc volume fractions as function of floc and dry solids densities (X = 3 g.L−1)

for X = 3kg.m−3 is given in Fig. 7.5. For a fixedρf , the total floc volume increases whenρs increases.
Heavier particles will cause the floc to contain more water in order to conserve the floc density, causing
the floc to be more voluminous. For a fixedρs, the total floc volume increases whenρf decreases. The
latter could be expected since a floc with a smaller density (but equal solid density) needs to contain
more water and, hence, will be more voluminous.

At this stage, the volume concentration and, hence, the number concentration can be calculated assuming
the flocs to be spherical:

Ni

VT
=
(

6
πd3

i

)
Vi

Vf

Vf

VT
(7.9)

wheredi is the diameter of a particle in size class i.

The D[4,3] based on this new distribution exactly matches the one reported by the Mastersizer based
on the raw volume percentage distribution (Fig. 7.4). The parameter estimates reported in Table 7.1 for
the fixed and moving pivot were obtained using this new conversion. Comparing them with the values
found by Biggs and Lant (2000), it can be concluded that the new data conversion results in different
parameters. Especially the value ofα is significantly higher and seems to be more realistic than the low
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value reported by Biggs and Lant (2000). This lower value can be explained by the fact that the system
is, initially, in a more flocculated state and apparently does not require the same degree of flocculation to
reach steady state (i.e. smallerα).

7.4.3 Measurement error

As mentioned before, measurement errors can be used in the WLS optimisation procedure to account
for the uncertainty of experimental data. Practically, this means that the discrepancies between model
calculations and data with a high degree of uncertainty are less accounted for in the calculation of the
WLS compared to data that have a lower degree of uncertainty.

In their work, Biggs and Lant (2000) only used the mass mean diameter (D[4,3]) as fitting variable.
The measurement error was determined by repeated measurement of D[4,3] at steady state. However, a
background slope had to be subtracted since no real steady state could be reached. Since the error was
assumed to be the same throughout the entire experiment, there was no need for a WLS and a normal
LS was used. However, the measurement error value was used to calculate uncertainty intervals for the
measurements in order to check whether the model prediction was inside these intervals.

In this work, also number distributions were used as fitting variables. Since the measurement error
is not the same for different size classes (which can be understood from the procedure used to derive
the distribution from the raw scattering data, see section 2.6) it is of interest to determine measurement
errors for each size class. A similar approach as was used for the D[4,3], i.e. using a repetition of
measurements during a pseudo steady state, cannot be applied here since the background flocculation
cannot be quantified for each single size classNi. However, since every FSD produced by the Mastersizer
is determined by using a large number of measurements (or sweeps), one can assume every Mastersizer
measurement to be acountingof particles in each size classNi. Based on this assumption, every single
measurement ofNi can be assumed to be multinomial distributed (Agresti, 1990). The variance of such
a multinomial distribution represents the measurement error and can be calculated as follows (Agresti,
1990):

σ2(Ni) = Ni

(
1− Ni

N

)
(7.10)

where N is the total number of particles measured. This approach allows determination of the measure-
ment errors for all size classes Ni from one single measurement.

7.4.4 Choice of fitting variable

Two data sets were adopted from Biggs and Lant (2000) and used to calibrate the PBM. They contain data
of flocculation experiments at different mixing intensities represented by the average velocity gradient
Ḡ (19.4 and 37.0s−1). The new approach based on the constant volume concentration was used for the
conversion of raw vol% distributions to number distributions (usingX = 3 kg.m−3, ρl = 1000kg.m−3,
ρf = 1040kg.m−3, ρs = 1700kg.m−3). The PBM was fitted to 4 different sets of fitting variables us-
ing the entire range of experimental data: (1) volume percentage distributions, (2) D[4,3], (3) number
distributions and (4) weighted number distributions. The parameter estimates of all optimisations are
summarised in Table 7.2. Results of the predictions (forḠ = 19.4s−1) of both the volume percentage
distribution and the number distribution after a simulated time of 1920s are given in Fig. 7.6 and 7.8 for
the four cases. Similar results were found forḠ = 37.0s−1 (not shown). From the parameter estimates
and the predictions of both the volume percentage and number distribution, it can be seen that the choice
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Table 7.2: Optimisation results of fits on vol%, D[4,3],Ni and weightedNi

Ḡ(s−1) fitting variable α(−) A(m−1s−1) J(θ)
19.4 vol% 1.21E-2 166 1336

D[4,3] 1.36E-2 195 2712
Ni 7.30E-3 12 1.6E+19

weightedNi 7.80E-3 12 2.64E+10
37.0 vol% 8.30E-3 260 1926

D[4,3] 8.10E-3 260 1958
Ni 9.80E-3 32 1.47E+19

weightedNi 7.80E-3 18 3.76E+10

of fitting variable is critical. Both fits show on the other hand that the model is not flexible enough and
that the structure of the kernels needs to be investigated. This will be the focus of the next chapter.

Fit on vol%/D[4,3]

At first sight, fitting on the volume percentage distribution yields a fairly good result for the volume
percentage distribution (Fig. 7.6). However, when zooming in on the tails of the distribution, it seems
that both the lower and upper tail are underpredicted (Fig. 7.7). The reason for this is merely the fact
that the frequencies in these classes are low and will have a smaller contribution to the objective function
(J(θ)) in the LS optimisation. For the application under study, the lower tail is of primary interest since
flocs with these diameters will usually end up in the effluent of the treatment plant. When looking at the
vol%-fitted model prediction of the number distribution (Fig. 7.8), similar conclusions can be drawn, but
they are much more pronounced. The model tries to predict the middle classes better compared to the
lower and larger size classes. Here, underpredictions by a factor 10-15 occur in the classes with sizes
up to1 10−5 m. Parameter estimates are such that both aggregation and breakage rates are high. In that
case, all particles end up in the middle of the size range.

Since the D[4,3] is calculated based on the third and fourth moment of the distribution, it is volume-
related. When fitting the model to D[4,3], it can therefore be expected to give similar results as the ones
found when fitting on the volume percentage distribution. This expectation was confirmed (Fig. 7.6 and
7.8). However, the underprediction of the lower end classes is even more severe (15-30 times) (Fig. 7.7).
Parameter estimates are somewhat higher than the ones found when fitting on volume percentages (Ta-
ble 7.2). Another noteworthy observation is that the discretised solution technique that was used here and
by Biggs and Lant (2000) only conserves numbers (0th moment) and mass (3rd moment). To calculate
the D[4,3], the prediction of the 4th moment is needed, which is not at all guaranteed to be conserved.
This is another argument why D[4,3] should not be used as a fitting variable (unless the 4th moment is
explicitly conserved by the solution algorithm.

Fit on Ni / weighted Ni

When fitting onNi, the prediction of the volume percentage distribution is bad. However, when looking
at Fig. 7.8, one can see that the predictions of the lower size tail are better compared to fitting on either the
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Figure 7.6: Comparison of model predictions of the volume percentage distribution at t=1920s after the
model was fitted to different fitting variables

Figure 7.7: Zooming in on the small particle tail model predictions at 1920s after the model was fitted to
different fitting variables



148 From experimental flocculation data to a calibrated population balance model

Figure 7.8: Comparison of model predictions of the number distribution at t=1920s after the model was
fitted to different fitting variables

volume percentage distribution or D[4,3]. Looking at the prediction of the number distribution, similar
observations can be made. Underprediction factors of the lower tail now range between 1.5 and 2.5,
which is still rather high, but already much better compared to fits on the volume percentage distribution
or D[4,3]. The reason for this is the fact that when fitting to numbers, the absolute number of flocs
in every class will determine which classes will contribute most to theJ(θ). Since a lot of flocs are
present at the lower end of the size range, these classes will be focused upon during the calibration. In
order to do so, the parameter estimates are decreased by the optimisation algorithm. This means that
both aggregation and breakage occur at slower rates. In the application at hand, gravitational solid-
liquid separation, one is mainly interested in the small flocs that will not settle. This means that a better
prediction of the small size classes is needed. In this regard, it is better to fit the current model to the
number distribution instead of the volume distribution since it gives a better prediction of the classes of
interest. It should, however, be noted that this can be different for other applications with different targets.
The prediction of the number distribution is, however, still not good, due to a lack of model flexibility.
The model needs improvement by using more appropriate aggregation and breakage kernels. However,
the strategy that one would follow (i.e. altering the different kernels for aggregation and breakage) might
be quite different depending on the fitting variable that was used.

Finally, when fitting on weightedNi using the multinomial approach to calculate the weights, similar
results as the fits onNi were found. However, since the calculated measurement errors are positively
correlated with the absolute numbers in the size classes, they will be larger for classes containing large
numbers of particles and, hence, their weights will be smaller. This results in lower predictions of
both volume percentages and numbers in the lower and middle range. Underpredictions of the lower
end size classes range between 2-3.3. Only the parameter estimate forα is somewhat higher, resulting
in somewhat faster aggregation. This is due to the fact that the contribution of the lower end class
prediction to theJ(θ) is reduced since these measurements are less certain, whereas the contribution of
larger classes to theJ(θ) has increased.
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7.5 Conclusions

A new comprehensive methodology was presented that deals with problems that arise when calibrating
a PBM using experimental data collected on-line during flocculation. Four issues were discussed: (1)
choice of solution method, (2) data transformation, (3) measurement errors and (4) choice of fitting
variable(s).

It was shown that the fixed pivot solution method overpredicts both the 0th moment and the number of
flocs in the large size class range in agreement with findings by Kumar and Ramkrishna (1996b), leading
to a severe underprediction of the aggregation parameter a (50%). Therefore, it is advised to use the
moving pivot technique to solve the PBM.

Data transformation is needed to ensure compatibility between experimental data and the model. The
calculation of the volume percentage distribution in the model grid was accomplished by means of cal-
culating the cumulative volume percentage distribution and interpolating at the pivots of the model grid.
A new approach for volume to number conversion based on a fixed total floc volume was presented. The
total floc volume could be calculated from the sludge concentration (X) and the densities of liquid (ρl),
solids (ρs) and flocs (ρf ). The technique conserved the D[4,3] of the original distribution.

Unlike the measurement error of the D[4,3], which could be derived from a repetitive measurement
at pseudo steady state (correcting for the background slope), the measurement errors for different size
classes of the measured distributions were determined by assuming the distribution to be multinomial.
In this case the observed variance can be used as a measure of the error.

Finally, the PBM was fitted to 4 different fitting variables: (1) volume percentage distribution, (2) D[4,3],
(3) number distribution and (4) weighted number distribution. Fitting on volume based variables (vol%,
D[4,3]) resulted in good predictions of the volume percentage distribution. However, both tails of the
distribution are severely underpredicted. The predictions of the number distribution showed a similar
result, but more pronounced with underpredictions in the lower end up to a factor 10-30. Parameter
estimates correspond with quite high rates, forcing the particles to move to the middle part of the size
range. Moreover, it should also be noted that the 4th moment which is used to calculate the D[4,3] is
not conserved by the discretised solution technique. Fitting on number related variables (Ni, weighted
Ni) resulted in bad overall predictions of the volume percentage distribution, but the underpredictions
at the lower end tail were found to be smaller. Again, more pronounced results were found for the
predictions of the number distribution. Underpredictions of the lower end size classes ranged between
1.5-3.3. Parameter estimates correspond to lower aggregation/breakage rates. For the application at
hand, gravitational solid-liquid separation, it is advised to optimise the model by means of the number
distribution and not volume distribution, noting that this might be different for other applications.
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CHAPTER 8

The ”‘quest”’ for kernel structures for floc
breakage/aggregation

An early effort to model the activated sludge flocculation process was performed by Parker et al. (1972)
with the aim to describe changes in settling characteristics. The proposed model describes the changes in
supernatant primary particles (turbidity measurements) after settling and was validated by Wahlberg et al.
(1994). Floc aggregation and break-up appeared to be key processes that occur simultaneously. However,
the Parker model does not allow overall modelling of the settler, since it only provides information
concerning primary particles in the supernatant, determining effluent suspended solids. A population
balance model is capable of tracking substantially more size classes and can, therefore, be used for
predicting settling behaviour too. Before this step can be taken though, the model structure needs to be
identified. This will be the goal of this and the next chapter.1

8.1 The population balance model

The model equation that was used in this chapter is the same as that defined in section 4.2 and will not
be repeated here.

8.2 Aggregation and breakage kernels

In order to make the described PBM operational, expressions for the collision efficiencyα (x, x′), the
collision frequencyβ(x, x′), the breakage rateS (x) and the breakage distribution functionΓ (x, x′) are

1Nopens, I., Koegst, T., Vanrolleghem, P.A., 2004. Comparison of different aggregation and breakage kernels for PBMs
of the activated sludge flocculation process. In: Proceedings 2nd International Conference on Population Balance Modelling.
Valencia, Spain, May 5-7, 2004.
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Figure 8.1: Shape of the collision frequency kernel forDf = 3 (lower surface) andDf = 2 (upper
surface) (left) and the collision efficiency for the size-dependent expression of Adler (1981a) (right)

required.

8.2.1 Aggregation

Camp and Stein (1943) assumed simple shear flow within the smallest eddies of turbulence and proposed
the following expression forβ (x, x′):

β
(
x, x′

)
=

4
3
Ḡ (Rx + Rx′)

3 (8.1)

whereḠ is the average velocity gradient (defined earlier in section 4.2,ν the kinematic viscosity and̄ε
the average turbulent energy dissipation rate.Rx andRx′ represent the collision radii of the colliding
particles. When assuming the flocs to be impermeable solid spheres, the collision radius equals the floc
radius and eq. 8.1 can be rewritten as (Spicer and Pratsinis, 1996b):

β
(
x, x′

)
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Ḡ

π

(
x

1
3 + x′

1
3

)3
(8.2)

However, when the flocs are assumed to have a fractal structure, eq. 8.1 can be rewritten as (Lee et al.,
2000):

β
(
x, x′

)
=

Ḡ

π
x

1− 3
Df

0

(
x

1
Df + x

′ 1
Df

)3
(8.3)

where Df represents the fractal dimension andx0 the size of the ‘primary floc’ expressed as volume,
which is assumed to be one bacterial cell and corresponds to the smallest size measurable by the sizing
device (2.8 10−13 cm3). Note that eq. 8.3 reduces to eq. 8.2 forDf = 3. Fractal particles (Df < 3)
will collide more frequently than solid particles (Df = 3) because the collision radius of fractal aggregates
increases faster than for aggregates of constant density (Kusters et al., 1997). This is illustrated in Fig. 8.1
(left) for Ḡ = 19.4 s−1. In this study, both eq. 8.2 and eq. 8.3 were used.

The collision efficiencyα (x, x′) can be chosen as a constant in the interval{0, 1} expressing the fraction
of collisions that are successful. In this way, the collision efficiency actually corrects for factors that are
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not considered in the collision frequency, like electrostatic repulsion, hydrodynamic interaction and van
Der Waals attraction, which modify the trajectories of the colliding flocs. Hydrodynamic interaction
arises from distortion of the fluid flow and tends to inhibit collisions. In literature, expressions forα are
present which take into account the aforementioned forces. Adler (1981a) suggested an expression based
on the flow number (term between square brackets), representing the ratio of hydrodynamic shear forces
to van Der Waals forces between colliding impermeable porous flocs:

αx,x′ = α0

(18µ
(
x1/3 + x′1/3

)3
G

32Aham

) 1

x0

(
1

x1/3 + 1
x′1/3

)
−0.18

(8.4)

whereµ represents the dynamic viscosity andAham the Hamaker constant (Aham = 3.10−17 J). An
example of the shape of the surface is given in Fig. 8.1 (right) for G = 19.4s−1 andα0 = 1. It can
be observed that collisions between larger particles are less efficient since larger flow distortion will be
induced. Also, homogeneous collisions (between similar-sized particles) have a higher probability to be
successful.

However, when the flocs are considered to be permeable, implying that liquid can flow through the flocs,
the hydrodynamic forces will be far less pronounced than the ones predicted in eq. 2.64 resulting in
enhanced collision efficiencies. Kusters et al. (1997) tackled this problem by introducing the shell-core
model (SCM) concept, which approximates the floc as a spherical body with an impermeable core and
a completely permeable shell. The resulting expression ofα (x, x′) is similar to eq. 2.64, but uses the
hydrodynamic radius(RH,x), which is based on the floc permeability, instead of the floc size(x). For
details, the reader is referred to Kusters et al. (1997). In this study, similar to the studies of Kusters et al.
(1997) and Ducoste (2002), the SCM concept was only used for similar-sized flocs (withx

x′ > 0.2).
Dissimilar sized collisions were described by eq. 8.4.

8.2.2 Breakage

The breakage kernel is often considered to be a power law (Ramkrishna, 2000):

S (x) = Axa (8.5)

where a and A are constants. Spicer and Pratsinis (1996b) successfully used an a-value of 1/3 to describe
the breakup of inorganic flocs at different levels of shear. Therefore, this value was used throughout this
study, unless otherwise mentioned. The shape of the breakage kernel for different values of A and a is
shown in Fig. 8.2.

Ducoste (2002) used a modified version of the breakage frequency expression proposed by Kusters
(1991), which incorporates the level of shear turbulence:

S (x) =
(

4
15π

)1/2(Kiε̄

ν

)
exp

(
−C1

xKiε̄

)
(8.6)

whereKi represents the ratio of the average energy dissipation rateε̄ and the local energy dissipation rate
ε, andC1 is a constant. The exponential function expresses the probability that a critical velocity gradient
occurs that will cause the floc to break. The shape of this breakage kernel is also shown in Fig. 8.2.

For simplicity, binary breakage into equally sized daughter particles was assumed, which was described
in section 4.2.
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Figure 8.2: Shape of the breakage frequency for eq. 4.8 and eq. 8.6 (model parameters are given in the
legend)

8.3 Materials and methods

The experimental data that were used in this chapter are described in section 6.1.1 and appendix C.

Unfortunately, the raw scattering data of the experiments were no longer available. This forced us to
use a similar methodology as Biggs and Lant (2000) based on the vol% distributions. This is bound
to introduce some error, since the optical model assumes sphericity of the flocs. Since the mass mean
diameter is based on higher moments (3rd and 4th), it is considered to be biased towards more accurate
prediction of larger flocs. In the application at hand, however, we are mostly interested in the number
of small flocs, since these are not settling well and finally end up in the effluent of the treatment plant.
Therefore, D[4,3] is not considered a good summarising parameter for our goal. What should be used
instead? Govoreanu et al. (2004) suggested to minimise the manipulation of data from particle size
analysers. The Malvern device outputs vol% distributions. However, one needs to be careful when
fitting on vol% distributions using a non-weighted least squares algorithm. The algorithm will try to
predict the classes with the largest absolute volumes best since their squared errors will be large. Since
small particles have small volumes, they typically represent small absolute values in vol% distributions.
Hence, relatively larger discrepancies will be allowed by the fitting algorithm and, therefore, large errors
can occur when calculating these predicted volumes back to number concentrations.

It was, therefore, opted to use number distributions as fitting variable for the PBM. The method for data-
conversion from the Malvern vol% distribution into the number distribution was somewhat different from
the one used by Biggs and Lant (2000) and is described in 7. Summarized, this method first calculates
the total floc volume of the system using 3 densities (liquid, solid and floc) and the biomass concentration
(which was approx. 3 g/L) using the heterogeneous floc model concept, which assumes the floc to consist
of solids and interstitial water. With this total floc volume, the volume per size class and, therefore, the
number of particles in that class can be calculated.
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Table 8.1: Overview of different models used in this study
# agg. efficiency agg. frequency break. frequency
1 constant eq. 8.2 eq. 8.5
2 constant eq. 8.3 eq. 8.5
3 eq. 8.4 eq. 8.2 eq. 8.5
4 eq. 2.64 eq. 8.3 eq. 8.6

Eq. 4.1 was discretised into i classes producing a set of differential equations inNi. These represent the
number concentration of size classi and were solved in the modelling and simulation software platform
WEST (Hemmis NV, Belgium) using the fixed pivot discretisation algorithm conserving numbers and
mass (Kumar and Ramkrishna, 1996a) in combination with the grid provided by the Malvern device
(geometric with factor 1.8 resulting in 32 classes). Note that the number and mass conservation (which
is typically chosen for discretised solution methods) puts another constraint on the choice of fitting
variable. Using D[4,3], as was done by Biggs and Lant (2000), can not be justified since the 4th moment
is not conserved by the solution method. As discussed earlier, number distributions were chosen as fitting
variable in this study, and this approach is therefore not suffering from a potential bias.

Optimisations were conducted using a least squares (LS) method (Dochain and Vanrolleghem, 2001):

LS : J (θ) =
m∑

j=1

Pj∑
i=1

(yi,j − ŷi,j (θ))2 (8.7)

whereJ (θ) is the objective function, here the sum of squared errors (SSE) or objective function,yi,j

is the measured variable,̂yi,j (θ) is the model prediction using parameter setθ, m is the number of
experimental data sets,Pj is the number of experimental data points of experiment j.

Four different models were investigated in this study by combining different aggregation and breakage
kernels that were discussed earlier. They are summarised in Table 8.1. For each model two parameters
were estimated, one for aggregation and one for breakage. Therefore, models can be evaluated directly
on this fitting performance, since their complexity (expressed by the number of estimated parameters,
Dochain and Vanrolleghem (2001)) is identical.

8.4 Simulation results of model 1

Model 1 was fitted to two data sets of Biggs and Lant (2000) (Ḡ = 19.4 and37.0 s−1 respectively)
using the LS method. The experimental data forḠ = 19.4 are shown in Fig. 8.3 at 8 of the 87 measured
moments in time (data for37.0 s−1 looks similar and is not shown). It can be clearly seen that the
number concentration of flocs smaller than 1E-7cm3 decreases, whereas larger flocs increase in number.
Most of the dynamics occur during the first 1000 s of the experiment, although one cannot claim that a
steady-state has set in yet at the end of the experiment.

The optimal simulation results for model 1 (a=1/3) andḠ = 19.4 are given in Fig. 8.4 for 4 time instants
(to not overload the figure). The best fit results are summarised in Table 8.2 together with the 95%
confidence intervals of the parameter estimates (i.e. the probability that the true parameter values are
contained by this interval is 95%). Similar results were obtained for the37.0 s−1 case (not shown).
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Figure 8.3: Experimental data for̄G = 19.4 s−1

Figure 8.4: Best fit simulation results for̄G = 19.4 s−1 using model 1 (a=1/3). Note that most dynamics
occur in the first 2000s, resulting in collapsing distributions after that time instant.

Table 8.2: Summary of fitting results and 95% confidence intervals for model 1
Ḡ=19.4 Ḡ=37.0

a (-) α (-) A
(
m−3as−1

)
J (θ) α (-) A

(
m−3as−1

)
J (θ)

1/3 0.0181± 0.0004 3736± 95 5.02.1018 0.0121± 0.0004 5245± 189 8.27.1018

1/6 0.0245± 0.0004 8.98± 0.15 2.31.1018 0.0164± 0.0004 12.43± 0.30 3.58.1018

1/9 0.0291± 0.0004 1.37± 0.02 2.12.1018 0.0200± 0.0004 1.91± 0.04 2.96.1018
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Figure 8.5: Best fit simulation results for̄G = 19.4 s−1 using model 1 and a=1/9

From Fig. 8.4, it can be observed that (1) the primary particles are underpredicted, (2) flocs up to
1.10−8 cm3 are overpredicted and (3) larger flocs are again underpredicted. This behaviour sets in dur-
ing the first 500 s and remains like that for the rest of the simulation. It should be noted that errors
in the small size classes are relatively larger than in larger particle classes, caused by the focus on the
number concentration. This makes the optimisation procedure questionable since focus will be on trying
to decrease errors of classes with high number concentrations, thereby neglecting classes with smaller
number concentrations. This weakness of the optimisation approach may be solved by using a weighted
least squares method, but this was not further investigated at this stage.

Since too much breakup appears to occur for large particles, it was tried to alter this behaviour by chang-
ing exponenta in eq. 8.5 to smaller values (1/6 and 1/9 respectively, see Fig. 8.2). Optimal parameter
estimates are given in Table 8.2 and show, next to a smaller objective function value, a higher estimate
of α and a lower estimate of A. The optimal simulation is shown in Fig. 8.5 revealing that the model pre-
diction improved significantly. Decreasing the exponent of the breakage frequency had a positive effect.
However, similar, but less pronounced effects as in the a=1/3 case can still be observed. Estimating both
parameters in the breakage frequency kernel (A and a) showed to be highly dependent on the intitial pa-
rameter values and resulted in highly correlated parameter estimates, suggesting identifiability problems
(Dochain and Vanrolleghem, 2001).

An interesting aspect to note here is the fact that the model is not able to predict the bump that builds up
(aroundx = 1.10−7 cm3) in the experimental data after the initial stages of aggregation. The model al-
ways predicts a monotonous decrease of the number distribution for increasing particle volume, whereas
the experimental data show a decrease for the smaller particle classes, followed by a kind of plateau for
the middle-large sized particles and ending with a decrease of large sized particles.
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Table 8.3: Summary of fitting results and 95% confidence intervals for model 2 (n.a. means low param-
eter confidence due to ill-conditioned covariance matrix)

Ḡ s−1 Df (-) α (-) A
(
m−1s−1

)
J (θ)

19.4 2.2 0.0004± n.a. 1669± n.a. 7.90.1018

37.0 2.3 0.00065± 0.00008 2681± 314 9.09.1018

8.5 Simulation results of model 2

Model 2 differs from model 1 (a=1/3) only with respect to the aggregation frequency kernel which is
now dependent on the fractal dimension (Df). Df values were heuristically chosen to be 2.2 and 2.3 since
they could not be derived directly from the experimental data (raw scattering data were not available).
The larger Df-value for the experiment at higher shear is inspired by observations in literature (Gregory,
1997). Best fit results for model 2 are summarised in Table 8.3. The confidence of some parameter
estimates is poor due to an ill-conditioned covariance matrix (confidence interval indicated as n.a.). The
simulation result for the best fit parameter set is given in Fig. 8.6. Similar results were obtained for the
37.0 s−1 case (not shown).

Results show that no severe underprediction of the large size classes occurs (as was the case for model
1 with a=1/3). This is due to the increased formation of larger flocs governed by the Df-dependence
of β(x, x′). Also the optimal breakage rate A is lower. The lower value ofα compared to model 1 is
necessary to limit the extent of aggregation. Still, model 2 is not capable of predicting the plateau that
occurs in the experimental data and severely underpredicts the small size classes, suggesting that the
aggregation rate is too high for these flocs. It is not unthinkable that small flocs are more compact (thus,
higher Df) leading to slower aggregation rates. It would be interesting to repeat the optimisation for
size-dependent Df.

Lowering the exponenta of the breakage function was not considered here since it has a similar effect as
the introduction of Df on the aggregation side. If one would do the exercise, the optimal a-value would
be largely determined by the choice of Df. On the other hand, it is thought that model 2 is intrinsically
more correct since it has been shown that sludge flocs have a fractal nature (Gregory, 1997) and this is
not considered in model 1. However, model 2 performs worse than model 1 (with a=1/9), mainly caused
by the underestimation of small size classes.

8.6 Simulation results of model 3

Model 3 differs from model 1 in terms of a size-dependent aggregation efficiency rather than a constant
efficiency, which should allow to more realistically account for hydrodynamic and van Der Waals forces.
Optimisation results for model 3 are summarised in Table 8.4. Simulation results for the best fit parameter
set are shown in Fig. 8.7. Similar results were obtained for the37.0 s−1 case (not shown).

Qualitatively, the results are similar to the ones found for model 1. Severe underprediction of the large
size classes is caused by the fact that the modified size-dependent aggregation efficiency makes it even
more difficult for large flocs to form (due to larger hydrodynamic forces acting upon them). The optimi-
sation algorithm, therefore, lowers the breakage rate A, causing a large decrease (and underestimation)
of flocs in the small size ranges. The latter needs to be limited since the errors on the small size classes
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Figure 8.6: Best fit simulation results for̄G=19.4s−1 using model 2

Figure 8.7: Best fit simulation results for̄G = 19.4 s−1 using model 3
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contribute strongly to the LS objective function (eq. 8.7). Even when the introduction of the external
forces in the expression of the aggregation efficiency may seem acceptable, it seems to have an opposite
effect on the simulation result. Note that the estimate ofα0 is quite large and will result inα-values
larger than unity in some cases. This suggests thatβ(x, x′) is too low andα needs to compensate for this
(Thomas et al., 1999). A combination with the Df-based aggregation frequency could correct for this,
but was not investigated at this stage.

8.7 Simulation results of model 4

Model 4 differs from model 1 with respect to 3 expressions. It uses the permeable porous floc aggregation
efficiency instead of a constant, it incorporates Df in the aggregation frequency and it uses the breakage
frequency expression based on turbulent shear. Best fit results for model 4 are summarised in Table
8.5. The parameter estimates themselves are not reliable due to an ill-conditioned covariance matrix
(indicated as n.a.). The simulation results for the best fit parameter set are shown in Fig. 8.8. Similar
results were obtained for the37.0 s−1 case (not shown).

A severe underprediction of the large particle size classes can be observed as well as an overprediction of
the middle size classes. An immediate drop of the lower size classes occurs, which might be explained
by the low amount of breakage events producing these flocs and highα-values. Since many new ex-
pressions have been inserted in the different kernels, it is difficult to extract from the model prediction
which kernel feature is responsible for this rather strange behaviour. To extract this, a more step-wise
approach of kernel implementation should be followed starting from an easy structure that is relatively
well understood.

8.8 Conclusions

This study tried to fit a PBM with different literature-reported kernels for aggregation and breakage
reported in literature to on-line experimental activated sludge flocculation data. Model 1 resulted in
severe underpredictions of large size classes, overpredictions of middle size classes and underprediction
of primary particles when using a least squares model fitting procedure. The model performance could be
improved significantly by lowering the power (a) of the breakage frequency. Unfortunately, the optimal
value of a is difficult to obtain due to practical identifiability problems. Model 2 showed that introducing
the fractal dimension Df has an effect similar to the lowering of the power (a) of the breakage frequency.
It is, in principle, thought to be a better approach since activated sludge flocs are known to have a fractal
structure. However, in terms of fitting performance, model 1 with a=1/9 performed better. Probably,
Df is not a fixed value over the entire size range. Model 3 also severely underpredicted the large size
classes, overpredicted the middle size classes and underpredicted primary particles. Despite the fact that
the knowledge introduced with model 3 seems logical, it seems to have a contradictory effect on the

Table 8.4: Summary of fitting results and 95% confidence intervals for model 3
Ḡ s−1 α0 (-) A

(
m−1s−1

)
J (θ)

19.4 8.53± 0.21 1842± 119 7.73.1018

37.0 6.17± 0.25 2922± 178 9.09.1018
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Table 8.5: Summary of fitting results and 95% confidence intervals for model 4 (n.a. means low param-
eter confidence due to ill-conditioned covariance matrix)

Ḡ s−1 α0 (-) C1 (-) J (θ)
19.4 0.74± n.a. 3.7E − 8± n.a. 8.44.1018

37.0 0.85± n.a. 1.35E − 7± n.a. 1.53.1019

Figure 8.8: Best fit simulation results for̄G = 19.4 s−1using model 4
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simulation results and requires higher collision frequencies. These might be obtained by introducing Df
to replace the exponent in the aggregation kernel. Model 4 resulted in poor predictions. The exact reason
for this should be further investigated.

To conclude, none of the tested models using existing kernels from literature was able to predict the
evolution of the number distribution accurately. However, the performed study allows to track the weak-
nesses of the kernels with regard to the experimental data and improve them with this knowledge. Con-
sequently, further work is needed and in the next chapter an alternative approach to find better kernel
structures is adopted in which the inverse problem is solved and possible self-similarity behaviour of
the experimental data is exploited (Wright and Ramkrishna, 1992; Sathyagal et al., 1995). Another path
to be investigated is to step down from the approach with binary breakage into equally sized daughter
particles and use a more realistic daughter size distribution.



CHAPTER 9

Similarity analysis of experimental
flocculation data

An alternative way to get a grip on the different kernel structures for aggregation and breakage is through
solving the inverse problem, which is schematically given in Fig. 9.1. The first step checks whether the
experimental data exhibit self-similar behaviour, as this simplifies the solution of the inverse problem
considerably and will be investigated in this chapter. All other steps will be dealt with in the chapter 11.

9.1 Investigation of self-similarity of experimental data

This section is organised as follows. First self-similar behaviour was sought for the experiments where
the activated sludge was sonicated and then allowed to flocculate at different shear intensities. Then,
self-similar behaviour of the experimental data set where alternating shear intensities were applied is
investigated.

9.1.1 Sonicated sludge flocculated at different shear intensities

In order to investigate self-similar behaviour of an experimental data set, a similarity analysis needs to
be conducted. Different similarity analysis procedures exist for pure aggregation, pure breakage and the
combined case. The thorough analysis of the distribution data set in section 6.1.1 allows to conclude that
pure aggregation is a valid assumption and, hence, the similarity analysis for pure aggregation can be
investigated. This again proves the usefulness of the thorough analysis of the distributions performed in
chapter 6. The idea behind the similarity analysis is to look for a collapsing solution in the dynamic part
of the experimental data as explained below.

Practically, this means that a scaling functionh(t) given by the ratio of two successive integral moments

163
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Figure 9.1: Schematic overview of the steps related to the inverse problem solution

µ of the number density functionf1(x, t)

h(t) =
µk+1(t)
µk(t)

=

∫∞
0 xk+1f1(x, t)dx∫∞
0 xkf1(x, t)dx

(9.1)

is computed and used to rescale the particle volume into the similarity variable

η ≡ x

h(t)
(9.2)

Since the cumulative distribution F(x,t) is itself a candidate for the self-similar solution, this distribution
is rescaled and a k-value is looked for that makes all distributions collapse onto one single distribution,
the self-similar distribution. The process of determining k proceeds through trial and error.

The initial evolution of the cumulative distribution is given in Fig. 9.2 (note that the first measurements
have been omitted). From Fig. 9.2, it can be clearly observed that the floc size distribution is evolving
in time toward a larger size range. Fig. 9.3 is directly derived from Fig. 9.2 by determining the values
of x as a function of time for different fixed values of F. Through rescaling x to the similarity variable
η, it is tried to obtain lines that are parallel to the time axis. This means that every fixed value of
F corresponds to a value of the similarity variableη. When choosing a k-value of 0 in Eq. 9.1, the
similarity variable versus time plot at fixed F values becomes like Fig. 9.4. From Fig. 9.4, it can be
seen that the evolutions are not parallel with the time axis. Hence, this k-value will also not give rise
to a collapsed cumulative distribution as is confirmed in Fig. 9.5, which shows the rescaled cumulative
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Figure 9.2: Time evolution of the cumulative distribution for the flocculation experiment at a shear
intensity ofḠ = 19.4 s−1

Figure 9.3: Volume x versus time for different fixed values of F
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Figure 9.4: Similarity variableη versus time for different fixed values of F for k=0

Figure 9.5: Cumulative distributions versus the similarity variableη for k=0
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Figure 9.6: Similarity variableη versus time for different fixed values of F for k=0.534

distributions. However, when comparing Fig. 9.2 and 9.5, one can observe a decrease in variance between
the cumulative distributions in time, obviously caused by the rescaling that was performed. So, it might
be that a value of k exists that will make all distributions collapse.

In order to find this k-value for which the cumulative distributions collapse (if it exists), a trial and
error procedure is required. Alternatively, it can be tried to solve this problem mathematically through
minimisation of the variance of all similarity variables (one for each fixed value of F) at the different
fixed values of F. In order to do so, one could sum all similarity variable variances and minimise this
sum. However, since the absolute values of the similarity variables vary quite a lot, it is better to rescale
all similarity variable distributions to not favour any of the variances to be minimised. This can be done
by subtracting the mean and dividing through the mean. Let Y be the similarity variable at a given fixed
value of F. This can be rescaled to Y’ as follows

Y ′ =
Y − µ(Y )

µ(Y )
(9.3)

Y’ will now be distributed about a mean of 0 and exhibit a certain varianceσ2(Y′). One can now
minimise the sum of these variances by allowing k to alter.

Doing so results in anoptimalk-value of 0.534. It was confirmed by trial and error that this is indeed the
optimal value. The similarity variable versus time plot and the cumaltive distributions as function of the
similarity variable are depicted in Fig. 9.6 and 9.7 respectively. From Fig. 9.6 and 9.7, it can be observed
that still quite a lot of variance in the similarity variables at fixed F-values is left and, hence, that no true
collapse of the cumulative distributions occurs. This means that the data set does not exhibit this kind of
similarity.

Similar observations were found for the data sets obtained at other shear intensities.
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Figure 9.7: Cumulative distributions versus the similarity variableη for k=0.534

9.1.2 Non-sonicated sludge at alternating shear intensities

Analogous similarity analyses were performed for the experiment where alternating shear intensities
were applied. It should be noted that the main difference with the previously investigated experiments is
the fact that the sludge does not flocculate from an initially sonicated sludge, but rather from a sludge that
was deflocculated through increased shear intensity. Also, the alternating nature of the experiment allows
to investigate the flocculation or purely aggregation part, as well the deflocculation or the purely breakage
part. Again, the thorough analysis of section 6.1.2 supports the assumption of both pure aggregation and
pure breakage, which is a necessary requirement. For reasons of clarity, first aggregation is investigated.

Flocculation by means of decreased shear intensity

The experimental data set that is investigated here is taken from the experiment where the sludge was
alternatingly exposed to different shear intensities. Moreover, the subset was taken when the sludge was
exposed to a lowered shear intensity (Ḡ = 19.4 s−1) for the second time, meaning it flocculated from a
non-sonicated state, which is more realistic.

The initial evolution of the cumulative distribution is given in Fig. 9.8 (note that the first measurements
have been omitted).

From Fig. 9.8 it can be observed that the initial distribution is situated at larger sizes compared to the one
obtained after sonication (Fig. 9.2). Again, only the initial dynamic distributions are taken into account
since only for these pure aggregation can be assumed, and, hence, a pure aggregation similarity analysis
applied. The optimal k-value was found to be -0.35 and the rescaled cumulative distributions are given
in Fig. 9.9, showing a nice collapse of all distributions. Hence, for this particular case, a similarity
distribution is found, which is shown in Fig. 9.10.
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Figure 9.8: Time evolution of the cumulative distribution for the flocculation experiment at a shear
intensity ofḠ = 19.4 s−1 starting from a deflocculated sludge through increased shear intensity

Figure 9.9: Cumulative distributions versus the similarity variableη for k=-0.35
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Figure 9.10: Floc size distributions versus the similarity variableη for k=-0.35

In the same experiment, another increase and decrease of shear intensity was performed. For the subset
where the shear intensity was decreased again, a similarity distribution was found too (k=-0.3).

The fact that this similarity did not exist for the case where sonication was applied prior to flocculation
suggests that a different kind of aggregation is taking place. Since sonication does not occur in the real
activated sludge process, it can be concluded that lab experiments studying flocculation starting from a
sonicated sludge will not lead to the extraction of the correct flocculation behaviour (i.e. aggregation
kernel), and the results obtained cannot be extrapolated to the full-scale case.

Deflocculation by means of increased shear intensity

In this subsection, the parts of the experiment where the shear intensity was increased, are studied. In
these cases, the initial evolution of the distribution can be assumed to be caused by pure breakage. Here,
a somewhat different similarity analysis, the one for pure breakage, is performed.

Fig. 9.11 shows the initial evolution of the cumulative distributions. It can be observed that a shift towards
smaller floc size takes place. The idea is now to look for a proper transformation that makes these curves
collapse onto 1 single distribution, the self-similar distribution.

Unlike the aggregation counterpart, the similarity variable cannot be calculated directly from x like in
eq. 9.2. Instead, it was shown in literature (Sathyagal et al., 1995) that the transformationη = b(x)t
leads to the similarity curve for a variety of functionsb(x) (which are not restricted to power laws only).
Although this transformation seems to be impossible due to the fact thatb(x) is unknown, an alternative
test has been developed that allows to check for this type of similarity. The latter was described in section
2.5.6. For convenience, the equation that provides the test of the similarity hypothesis is repeated here

d ln b(x)
d ln x

= −
(

∂ ln t

∂ ln x

)
F

(9.4)
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Figure 9.11: Time evolution of the cumulative distribution for the flocculation experiment at a shear
intensity ofḠ = 113 s−1 starting from a flocculated sludge through decreased shear intensity

The test lies in checking that the right-hand-side is independent of F.

The plot of ln(x) versus ln(t) at fixed values of F for the experimental data set is given in Fig. 9.12.
In order to confirm the hypothesis, these curves should exhibit the same slopes for the same x-values
and different values of F. Several methods have been mentioned in literature that investigate this ’same
slope’ behaviour. Since the ranges ofln(x) do not significantly overlap for different fixed values of F,
a translation parallel to theln(t)-axis would not result in a clear conclusion. Instead, curves were fitted
to the different data sets (for fixed F-values) and the slopes were plotted as function ofln(x) (Fig. 9.13).
The latter reveals that the slope remains rather constant at a value of about -3.7 over a quite large range of
ln(x). The deviations might be due to measurement errors. This result confirms the similarity hypothesis
and, hence, the expression of the breakage rate can be determined up to a constant (b(x0)) using the
following equation

b(x) = b(x0)exp

[
−
∫ ln x

ln x0

(
∂ ln t

∂ ln x

)
F1

d ln x

]
(9.5)

and substituting the partial derivative in the right-hand-side by the value of -3.7 that was extracted from
the experimental data. Sinceb(x0) is unknown, the similarity variable is calculated asb(x) t/b(x0) and
used to transform the cumulative distributions. Results of this transformation are shown in Fig. 9.14 for
the cumulative distributions and in Fig. 9.15 for the distributions as such.

It can be observed that all distributions collapse onto one single curve, the similarity distribution. The
remaining constant in the breakage rate expression and the daughter size distribution now have to be
found by solving the inverse problem.

For the second breakage case in this experiment, similar observations were made and a similar value of
the power law exponent resulted.



172 Similarity analysis of experimental flocculation data

Figure 9.12: Ln(x) versus ln(t) for different fixed values of F

Figure 9.13: Slopes versus ln(x) for different fixed values of F
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Figure 9.14: Cumulative distributions versus similarity variableb(x) t/b(x0)

Figure 9.15: Floc size distributions versus similarity variableb(x) t/b(x0)
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Figure 9.16: Similarity regions that were identified for aggregation and breakage

9.2 Conclusions

In this chapter, experimental data of pure aggregation and pure breakage were checked for self-similar
behaviour using techniques reported in literature. The necessary requirements for applicability of these
techniques, i.e. that indeed pure aggregation and pure breakage are occurring, could be recovered from
the thorough distribution analysis performed in chapter 6.

Experimental aggregation data obtained from a sonicated sludge did not exhibit self-similar behaviour.
However, experimental aggregation data from a sludge that was exposed to increased shear did exhibit
self-similar behaviour. This confirms the conclusion drawn in chapter 6 stating that the aggregation
dynamics induced by sonication are different from those induced by increased shear. The goal of this
work was to develop a model that is able to describe activated sludge flocculation as it is occurring in
a full-scale treatment plant. Since sonication is not applied there, the dynamics induced by applying it
are not of interest to us. Hence, the experimental data used in chapter 8 will no longer be used. Instead,
focus should be on the aggregation data obtained without sonication. Therefore, the literature models
that were applied in chapter 8, and that were not designed for this type of flocculation, need to be tested
using the experimental data without sonication. This will be the subject of the next chapter.

The self-similarity for aggregation was obtained by scaling the particle volume by a function h(t) repre-
senting the ratio of two consecutive integral moments, i.e. -0.35 and 0.65. The solution of the inverse
problem using the observed self-similarity will be treated in chapter 11.

Although the slopes of ln(t)/ln(v) did not overlap for all fixed values of F, the dynamic experimental
breakage distrbutions collapsed when assuming a fixed value for the slope (i.e. -3.7). In the breakage
case, a collapse means that the breakage rate can be determined up to a constant. Hence, power law
behaviour was found with an exponent of 3.7. Also for this case the solution of the inverse problem
using the observed self-similarity will be treated in chapter 11.
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For convenience, Fig. 9.16 indicates the regions where similarity was observed for aggregation and break-
age respectively. These will be used in chapter refinverse.
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CHAPTER 10

Model calibration of non-sonicated
reflocculation data

10.1 Introduction

In chapter 8, several models taken from literature were fitted to experimental aggregation datasets of
Biggs and Lant (2000). In the previous chapter, in which the similarity of these experimental data
was investigated, it was found that the flocculation behaviour in the ’sonication’ experiments studied in
chapter 8 is different from the flocculation which is observed when a sludge is exposed to a lower degree
of shear after a period of high shear. It was concluded that the sonication experiments do not contain the
flocculation dynamics that is looked for in this dissertation, i.e. flocculation representative for full-scale
treatment plants where zones with different shear rates exist. Therefore, the sonication experiments are
discarded and the remainder of the work will focus on the experimental data where flocculation was
brought about by a decrease in shear. In this chapter, it will be investigated whether the literature models
from chapter 8, that failed for the sonicated experimental data, could possibly describe the data where no
sonication was applied.

10.2 Model calibration using non-sonicated experimental data

The model equation and kernel structures are the same as those defined in section 4.2 and will not be
explicitly repeated here.

The experimental data set used here combines an aggregation and breakage event, brought about by vary-
ing the average velocity gradient as19.4 s−1 → 113 s−1 → 19.4 s−1. This experiment was described in
section 6.1.2. It was opted to use an experiment that sequentially induces aggregation and breakage as it
should contain more information about both the aggregation and breakage mechanisms and, hence, allow

177
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Figure 10.1: Time evolutions of D[4,3] for the experiment with step changes in average shear rate

more accurate parameter predictions. The part from 0 to 4000 s (i.e. one breakage and one aggregation
event) was used for parameter estimation. The changes in the average velocity gradient can easily be
included in the MSL-code (WEST, Hemmis NV, Kortrijk) by means of a simple if-clause.

First, it was tried to optimise the model by varying one aggregation parameter, i.e.α, and one breakage
parameter, i.e. A. However, no acceptable results were found, as the optimal values proposed by the
optimisation algorithm changed every time other initial parameter values were adopted. This points to
major identifiability problems. Moreover, very large or even negative parameter variances were observed,
making the estimation results very doubtful. Before proceeding with other, more complicated models, it
was, therefore, decided to investigate the whereabouts of this behaviour. For this, another tool in WEST
(Hemmis NV, Kortrijk) proved to be useful, i.e. scenario analysis.

10.3 Scenario analysis for investigation of the parameter space

Scenario analysis is a tool available in WEST that is usually applied to investigate different scenario’s of a
system, described by a calibrated model, and determine the most optimal one. Every scenario is different
in some parameter values and/or initial states. All simulations are performed sequentially without any
need for user interaction.

In our case, the tool will be applied with a somewhat different goal. Every ’scenario’ represents a com-
bination of parametersα and A, and, hence, one point in the parameter space. In this way, simulations
can be performed in all regions of the parameter space. By calculating the sum of squared errors (SSE)



10.3 Scenario analysis for investigation of the parameter space 179

Figure 10.2: Contour plot of the SSE for a wide scan of the parameter space

between simulated data and experimental data, a contour plot can be created that shows where the mini-
mum is located. In order to proceed with the scenario analysis, the parameter space should be discretised
in a grid. The coarseness of the grid will determine the number of simulations to be performed. In a first
run, a rough discretisation of both parameters was chosen:

• α: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

• A: 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000

This results in 121 combinations and, hence, an equal number of simulations. The SSE for all param-
eter combinations were calculated and resulted in a contour plot of the objective function as shown in
Fig. 10.2.

It can be observed that most of the parameter space has similar SSE values, which explains why the
optimisation algorithm

1. failed to find the global minimum value of the objective function

2. ended up at different ’optimum’ parameter combinations for different initial conditions

The worst parameter combinations are those of smallα (0-0.1) and moderate to large A (1000-10000).
The smallest SSE of the 121 simulations that were performed by the scenario analysis is located in
(0,0). Therefore, the region around the origin was investigated with a second scenario analysis using the
following, much finer grid in the region of interest:

• α: 0, 0.02, 0.04, 0.06, 0.08

• A: 0, 200, 400, 600, 800
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Figure 10.3: Contour plot of the SSE for a focused scan of the parameter space around the origin

Figure 10.4: Contour plot of the simulation times for parameter combinations around the origin
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The resulting contour plot is shown in Fig. 10.3.

Fig. 10.3 reveals the same result as was found in the first scenario analysis run. The minimum is found in
the origin. At first sight, this does not make much sense since it means that the best model prediction for
the dynamic experimental data is one in which no dynamics occur. This result confirms the conclusion
of chapter 8 saying that the model structure (either the aggregation part, the breakage part, or both) is
wrong. Only, the method does not tell us where the structural error is located. Since the approach to
find an adequate model structure as illustrated here is rather time-consuming and it does not allow us
to pin-point the exact problem, it was not further pursued for the other models investigated in chapter 8.
They were expected to yield similar results and conclusions.

An interesting observation during the scenario analysis was that the necessary calculation time also varies
in the parameter space. One would expect larger simulation times when more dynamics are present in
the model or, in other words, when the parametersα and A are large. These large dynamics force the
simulation algorithm to decrease its step size substantially, resulting in larger calculation times. This was
confirmed by the scenario analysis as shown in Fig. 10.4.

10.4 Conclusions

It was investigated whether the literature models could be calibrated using the experimental data without
sonication. However, optimisation resulted in very poor parameter estimates in terms of estimation error.
Moreover, the results were not unique since choosing other initial conditions resulted in different optimal
parameter estimates. Hence, a clear identifiability problem occurs, even for such simple model structure
as evaluated here, i.e. model 1 of chapter 8.

The problem was further investigated by means of scenario analysis, in which simulations at different
points in the discretised parameter space were conducted. This revealed that the parameter space does not
exhibit a clear minimum, except from that in the origin. However, this minimum suggests that dynamic
data would be best described without dynamics in the model, which does not make much sense. This
confirms that something is wrong in the model structure, although it cannot be pinpointed in which part
of the model the structural error is situated (aggregation, breakage or both). Since the method is rather
time consuming, the fitting of the other literature models was not pursued as they were expected to yield
similar results.
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CHAPTER 11

Solving the inverse problem for aggregation
and breakage in activated sludge flocculation

An alternative way to get a grip on the different kernel structures for aggregation and breakage is through
solving the inverse problem. The theoretical background to this approach was introduced in 2.5.6 and will
not be repeated here. In chapter 9, it was shown that some of the experimental data exhibits self-similar
behaviour, which simplifies the solution of the inverse problem considerably. First the pure aggregation
case will be investigated, followed by the pure breakage case.

11.1 Solving the inverse aggregation problem

In chapter 9, it was demonstrated that a transformation of the dynamic experimental data into a similarity
distribution was possible for the case in which aggregation was initiated from a sludge broken up by
increased shear. This presence of similarity can now be used to recover the aggregation kernel from the
experimental data. The cumulative vol% versus the similarity variableη for the experimental case that
will be used here is given in Fig. 9.9. The region for which similarity was found is indicated in Fig. 9.16.
Before actually performing the inversion, the procedure will be elaborated in a bit more detail.

11.1.1 Procedure for inversion of pure aggregation data with self-similar be-
haviour

The PBE expressed as function of the similarity variableη forms the basis of this exercise. It is repro-
duced below for convenience.

ηΦ′(η) =
∫ η

0
dη′Φ′(η′)

∫ ∞

η−η′
dη′′

Φ′(η′′)
η′′

α(η′, η′′)
〈α〉

(11.1)
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Here,α(η′,η′′)
〈α〉 is the unknown function that needs to be reconstructed. It represents the scaled aggregation

frequency divided by the mean scaled aggregation frequency.

A first issue that should be raised is the fact that eq. 11.1 may be ill-posed, i.e. small uncertainties inΦ′(η)
may induce large differences in the extractedα(η′, η′′). This can be overcome by using a technique called
Thikonov regularisationduring the inversion process. This can be best understood as follows. Let

g = Kb (11.2)

be the operator notation of eq. 11.1, where g is the vector representing the left-hand side, b is the unknown
vector representing the scaled aggregation frequencyα(η′, η′′) and K is an integral operator which acts
on b. Regularisation is used in the objective function that determines b from this equation, i.e.

min ‖Kb− g‖2 + λreg ‖b‖2 (11.3)

The physical interpretation of regularisation can be explained as follows. As the error in the estimates of
g and K increases, the regularisation parameterλreg must increase. Asλreg increases, the minimisation
technique effectively finds solutions b that have smaller norms and, hence, possess smaller fluctuations
and are smoother functions.

At this moment, the constrained quadratic minimisation problem can be formulated. The similarity
coordinate is discretised into a set of{ηi} andα(η′, η′′) is expanded in terms of basis functions

α(η′, η′′)
〈α〉

=
nb∑

j=1

ajAj(η′, η′′) (11.4)

A matrix Xi,j is formulated

Xij =
∫ ηi

0
dη′Φ′(η′)

∫ ∞

ηi−η′
dη′′

Φ′(η′′)
η′′

Aj(η′, η′′) (11.5)

and eq. 11.3 can be rewritten as

aT XT Xa− 2aT XT g − gT g + aT λregDa (11.6)

which results in the following quadratic minimisation

min
(
aT
(
XT X + λregD

)
a− 2aT XT g

)
(11.7)

to obtain the unknown vector a.

The constraints that are used are physical constraints derived from the definition of the aggregation
frequency:

1. the aggregation frequency is a symmetric function of its arguments

2. the aggregation frequency is positive everywhere

With regard to the choice of the discretisation points{ηi}, Wright and Ramkrishna (1992) showed that
known similarity distributions (of different aggregation frequencies) exhibit the largest variance at small
values of the similarity variableη. Hence, a good choice of the discretisation points might be a logarith-
mic grid fromηmin to ηmax.
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Table 11.1: Structure of the first four Laguerre polynomials
n Ln(x)
0 1
1 -x+1
2 1

2

(
x2 − 4x + 2

)
3 1

6

(
−x3 + 9x2 − 18x + 6

)

An interesting set of basis functions that can be used for this kind of inversion problem are so-called
Laguerre polynomials. The polynomials are orthonormal in the inner product space∫ ∞

0
dx e−x

∫ ∞

0
dy e−yf(x, y)g(x, y) (11.8)

which means that the matrix D in eq. 11.7 does not need to be calculated. Laguerre polynomials are
given by:

Ln(x) =
n∑

m=0

(−1)m n!
(n−m)!m!2

xm (11.9)

The first four Laguerre polynomials are given in Table 11.1. Orthogonal functions of these polynomials
are given by

ln(x, y) = Li(x)Lj(x) (11.10)

wheren = (i− 1)nb + j andnb is the number of basis function along one axis.

In order to simplify the matrix equations for the determination of a, as introduced above, a straightforward
method is needed for the representation of the similarity distributionΦ′(η) (note that this is the derivative
of the cumulative similarity distributionΦ(η)). Other advantages of the fitting of the similarity curve lie
in the limitation of experimental error and the guarantee that the similarity distribution is continuous.
The mathematical expression that is fitted to the distribution should exhibit analogous qualitative and
quantitative behaviour of the self similar distributions. A linear combination ofγ-distributions exhibits
that behaviour, sinceγ-distributions have the ability to be singular at the origin, but also can show small
η-behaviour falling back toward the origin (two different types of behaviour that have been observed
in similarity distributions of known aggregation kernels in practice). The expansion of the similarity
distribution in terms ofγ-distributions is:

Φ′(η) =
nterm∑
k=1

Akη
αk−1exp(−βkη) (11.11)

wherenterm is the number ofγ-distributions used in the expansion andAk, αk andβk are parameters of
thekthγ-distribution.

Since an analytical form is available forΦ′(η), certain simplifications of the matrix equations can be
accomplished. Eq. 11.5 can be rewritten as

X̄ij(m) =
∫ ηm

0
dη′Φ′(η′)Li(η′)Ȳj(ηm − η′) (11.12)

whereηm is a point of discretisation and̄Yj(ηm − η′) is defined by

Ȳj(ηm − η′) =
∫ ∞

ηi−η′
dη′′

Φ′(η′′)
η′′

Lj(η′′) (11.13)
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Figure 11.1: Fitting of the similarity distributionΦ′(η) by means of expandedγ-distributions for different
values ofnterm

The analytical form ofΦ′(η) and the known form of the Laguerre polynomials can now be exploited to
calculateȲj(ηm − η′) semi-analytically (see Appendix B.5)

Ȳj(ηm − η′) =
nterm∑
k=1

Ak

j−1∑
m=0

(−1)m j!
m!2(j −m)!

γc(αk + m− 1, βk(ηm − η′)
βαk+m−1

(11.14)

whereγc is the complementary incompleteγ-function.

A comprehensive, stepwise method was developed to solve this inverse problem using a spreadsheet (e.g.
MS Excel, Open Office,. . . ) and Matlab (Mathworks Inc., USA). It is included in Appendix D.1.

11.1.2 Results of inversion for pure aggregation

The method presented in Appendix D.1 was used to solve the inverse problem. First, the range of
the similarity variable was discretised. A geometric grid with factor 1.223 was used starting from
ηmin = 7.91E− 7 and covering the entire range up toηmax = 352 with exactly 100 classes.

The continuous function describing/approximating the similarity distribution was obtained using an ex-
pansion ofγ-functions. In order to perform the fit, the cumulative similarity distributionΦ(η) as shown
in Fig. 9.9 was converted into the plain similarity distributionΦ′(η). Also, volume fractions were used
instead of vol%. The fit was performed fornterm-values of 1, 2 and 3 and the results are shown in
Fig. 11.1. The parameter estimates and the sum of squared errors (SSE) are given in Table 11.2. Based
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Table 11.2: Fitting results ofgamma-expansion of the similarity distributionΦ′(η)
nterm SSE A1 α1 β1 A2 α2 β2 A3 α3 β3

1 9.9E-3 0.15 1.64 0.21 - - - - - -
2 2.5E-3 0.16 1.75 0.32 6.2E-3 2.25 0.10 - - -
3 1.6E-3 0.12 2.06 0.46 0.05 1.43 0.08 2.67E-9 0.0082 0.11

Figure 11.2: Calculated left-hand side of eq. 11.1

on the SSE and the visual inspection, it can be concluded that the expansion using two and threeγ-
distributions yields the best result. However, adding a thirdγ-function did not induce significant im-
provement. Hence, the fitting results from the case using twoγ-functions were used in the remainder of
the inversion.

At this stage, the left-hand side of eq. 11.1 can be calculated at the discretisedη-values. The result is
shown in Fig. 11.2.

The goal of inversion is to reproduce this left-hand side with a linear combination of double integrals rep-
resented by eq. 11.12. These integrals are evaluated for different combinations of Laguerre polynomials
(i.e. inner productsli,j) at all discretisedη-values. The number of inner products used in the inversion
depends on the number of basis functionsnb used per axis. Here,nb was chosen to be 2,3 or 4, result-
ing in respectively 4, 9 and 16 inner products. The double integrals for the different inner products are
depicted in Fig. 11.3.

A constrained quadratic optimisation procedure is then used to find the coefficients of the linear combina-
tion. In other words, the optimal set of coefficients is looked for that, when multiplied with the respective
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Figure 11.3: Double integrals (eq. 11.12) for different inner products when using a maximum of 4 basis
functions (Ii,j represents the inner product of theith andjth Laguerre polynomial)
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Table 11.3: Results of constrained quadratic optimisation for different values ofnb without regularisation
Coefficient inner product nb = 2 nb = 3 nb = 4

c1 I0,0 0.1162 0.1216 0.1256
c2 I0,1 -0.0125 -0.0022 -0.0011
c3 I0,2 - 0.0010 0.0017
c4 I0,3 - - 0.00005
c5 I1,0 -0.0125 -0.0022 -0.0011
c6 I1,1 0.0116 0.0194 -0.00006
c7 I1,2 - 0.0005 -0.0018
c8 I1,3 - - -0.00006
c9 I2,0 - 0.0010 0.0017
c10 I2,1 - 0.0005 -0.0018
c11 I2,2 - 0.00001 -0.0003
c12 I2,3 - - -0.000008
c13 I3,0 - - 0.00005
c14 I3,1 - - -0.00006
c15 I3,2 - - -0.000008
c16 I3,3 - - -0.0000002
SSE 0.018 0.012 0.006

inner product (Fig. 11.3) and summed, results in best prediction of the distribution in Fig. 11.2. The re-
sults for different values ofnb and without regularisation are summarised in Table 11.3. The coefficients
are somewhat different when using a different number of basis functions. It can be seen that both the
symmetry requirements (symmetric off-diagonal elements should be equal) and the positivity require-
ments were respected. The fits of the right-hand side for differentλreg are shown in Fig. 11.4-11.6 for
nb-values of 2,3 and 4 respectively. The fits seem to be similar. However, when calculating the SSE, it is
observed that a highernb yields better accuracy (Table 11.3) which could be expected since the number
of degrees of freedom increases whennb is increased.

Based on this, it can be concluded thatnb = 4 would be the best choice (note that this was the highest
investigated number of basis functions in this study and that further increasing this might even yield
better results). However, the forward simulation of the resulting model should confirm this conclusion.
It might not be necessary to pursue such high accuracy. The danger of using SSE as only criterion for
this choice might be that one starts to fit experimental noise, which is not in our interest.

Regularisation did not affect coefficients values forλreg < 1. For higher values, the fits were found to be
worse. The regularisation issue will be further discussed when looking at the kernel structure in the next
section.

11.1.3 Kernel structure from inversion

The scaled aggregation kernelα(η′, η′′)/ 〈α〉 can be reconstructed using the coefficients found in the
previous section (Table 11.3) and the corresponding inner products of the Laguerre polynomials (Ta-
ble 11.1). They are depicted forλreg = 0 in Fig. 11.7, 11.8 and 11.9 fornb equal to 2, 3 and 4 respec-
tively.
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Figure 11.4: Fit of right-hand side to left-hand side fornb = 2 and differentλreg

Figure 11.5: Fit of right-hand side to left-hand side fornb = 3 and differentλreg
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Figure 11.6: Fit of right-hand side to left-hand side fornb = 4 and differentλreg

When using 2 basis functions (nb = 2), a monotonic increase in scaled aggregation frequencyα(η′, η′′)/ 〈α〉
can be observed for increasing (scaled) size of both colliding flocs. The increase is, however, most pro-
nounced for homogeneous collisions. It can also be observed that the requirement of symmetry was
fulfilled in the quadratic optimisation. Values ofα(η′, η′′)/ < α > vary between 0.1 and 105. When
increasingλreg to one, the shape was not affected. However, the range of values changed to 0.08-83.

When using 3 basis functions (nb = 3), the scaled aggregation frequencyα(η′, η′′)/ 〈α〉 exhibits com-
pletely different behaviour, i.e. a saddle surface is obtained. Increasing the (scaled) size now shows a
maximum for intermediate sizes. It was tried to cure this by increasing the regularisation parameterλreg

up to a value of 10 but this was not successful in getting a similar shape as with 2 basis functions (see
Fig. 11.10). The reason for this different behaviour is not clear.

When using 4 basis functions (nb = 4) similar behaviour as in thenb = 2 case is obtained, i.e. monotonic
rising frequencies for increasing (scaled) floc size. However, the frequency values now vary from 0.12-
1230, which is a lot higher, and the increase to these large values only starts from intermediate scaled
floc sizes, whereas this happened immediately in thenb = 2 case. The plane obtained in thenb = 2 case
can be regarded as the best approximation of the kernel found here. Increasingλreg to one does not affect
the shape, but again decreases the frequency range (0.08-320).

Unfortunately, no clear conclusion can be drawn from this investigation. The forward simulation, that
will be treated in the next section, should enable us to solve the selection issue.

11.1.4 Recovering the unscaled aggregation kernel a(v,v’) from the scaled ag-
gregation kernel α(η′, η′′)/ < α >

Before being able to perform the forward simulation, the unscaled aggregation kernel (i.e. the kernel in
terms of volumes instead of similarity variable) needs to be identified. Upon doing this, the equation
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Figure 11.7: Scaled aggregation frequency fornb = 2 for λreg = 0

Figure 11.8: Scaled aggregation frequency fornb = 3 for λreg = 0
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Figure 11.9: Scaled aggregation frequency fornb = 4 for λreg = 0

Figure 11.10: Scaled aggregation frequency fornb = 3 for λreg = 10
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describing the relationship between both functions is recalled

a(η′h(t), η′′h(t)) = α(η′, η′′)H(h(t)) (11.15)

which was a requirement for self-similarity together with

h′(t) = cH(h(t)) (11.16)

where c turns out to be nothing but< α >. In literature, it is often assumed that the aggregation kernel
is homogeneous requiring the following

a(τx, τy) = τλa(x, y) λ ≥ 0 (11.17)

and, hence H(t) would be related to h(t) by a simple power law

H(h(t)) = h(t)λ (11.18)

Eq. 11.15 can be rewritten as
a(v, v′) = α(η′, η′′)h(t)λ (11.19)

From the inversion the expressionα(η′, η′′)/ < α > is obtained. Hence,< α > andλ need to be de-
termined from the dynamic behaviour of the scaling function h(t) before the unscaled kernel can be
obtained.

< α > andλ can be obtained from eq. 11.16 which can be rewritten as

h′(t) =< α > h(t)λ (11.20)

A logarithmic transform of this equation yields

log(h′(t)) = log(< α >) + λlog(h(t)) (11.21)

which allows us to recover< α > andλ from the slope and intercept from a graph plotting log(h’(t))
versus log(h(t)). The dynamic behaviour of h(t) is given in Fig. 11.11. A second order polynomial was
fitted to the data in order to enable simple calculation of h’(t) and was found to be

h(t) = −2.89E − 19t2 + 5.12E − 16t + 1.34E − 13 (11.22)

The plot of log(h’(t)) versus log(h(t)) is given in Fig. 11.12. This learns that the behaviour is not linear at
all. Moreover, a linear fit results in a negative slope, which violates the constraint put onλ in eq. 11.17.
This means that the kernel does not meet the criterion of homogeneity and that this approach cannot be
used for extracting the unscaled aggregation kernel a(v,v’).

Hence, another approach was looked for that does not use the constraint of homogeneity. Combining
eq. 11.15 and 11.16 yields

a(v, v′) = α(η′, η′′)H(h(t)) =
α(η′, η′′)
< α >

h′(t) (11.23)

The first factor is the scaled frequency function that was extracted through inversion. The derivative was
determined earlier from the dynamic behaviour of h(t). A simple multiplication should allow to recover
the unscaled aggregation kernel to be used in the forward simulation.

Noteworthy is that the recovered unscaled aggregation kernel is time-dependent (through h’(t)) which is
not very common, but has already been reported in literature (Wang and Friedlander, 1967).
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Figure 11.11: Dynamic behaviour of the scaling function h(t)

Figure 11.12: Relationship between log(h’(t)) and log(h(t))
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Figure 11.13: Forward simulation using the unscaled aggregation frequency recovered through inversion
using 2 basis functions per axis

11.1.5 Forward simulation of volume percentage for pure aggregation

At this stage, the inversion is completed. The correctness of the recovered unscaled aggregation fre-
quency can now be verified by performing the forward simulation using the unscaled aggregation kernel
found through inversion. The model should be able to follow the experimental data from which it was
extracted. Since the similarity was observed for a certain number of time instances during the refloc-
culation process and only this dynamic behaviour was used for the extraction of the kernel, the forward
simulation is performed for these experimental data. The initial distribution is taken to be the one at the
time instant where similarity was first observed.

Two basis functions ( nb = 2) per axis

The forward simulation using the approach outlined in the previous section was performed and the result
for nb = 2 is shown in Fig. 11.13. As can be observed from Fig. 11.13, no (or negligible) aggregation
is simulated. It was tried to multiply all aggregation frequencies with a constant factorκ, as this may
be lost in the conversion from the scaled to the unscaled frequency (Dr. Nandkishor Nere, personal
communication). This improved the results considerably. An optimisation to determine the factorκ was
performed and resulted in a value of 502 (SSE=40.52). The resulting forward simulation is given in
Fig. 11.14. From Fig. 11.14 it can be seen that the dynamics of the distribution are captured quite well
by the model. However, an underestimation of the lower tail and an overestimation of the upper tail is
occurring. This might be due to the low number of basis functions that was used, resulting in a kernel
that is not accurate enough to capture all details.
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Figure 11.14: Forward simulation using the unscaled aggregation frequency recovered through inversion
using 2 basis functions per axis,λreg = 0 and multiplied by a factor 502

Three basis functions ( nb = 3) per axis

When performing the forward simulation fornb = 3, the same problem that was encountered in the case
wherenb = 2, i.e. negligible aggregation was observed. Again, multiplying by a factorκ resulted in a
good description of the data. The optimalκ-value was found to be 532 (SSE=75). The results are shown
in Fig. 11.15. The peak is somewhat overestimated and the lower tail is underestimated, resulting in
somewhat inferior predictions compared to the case where two basis functions were used per axis. This
can be seen from the twice as large SSE-value that was calculated for the optimalκ-value. The reason
for this probably lies in the different shape of the kernel (see Fig. 11.8).

Therefore, the same procedure was used for the kernel found using a higher regularisation parameter
(λreg = 1). These results are shown in Fig. 11.16. The optimal multiplication factor turned out be 477
and an SSE of 35 was found, which is significantly lower than the case whereλreg = 0 and even lower
than the optimal results found in the case where only two basis functions per axis were used. The
main improvements are observed in the prediction of the lower tail. Compared to theλreg = 0 case, the
increase of the peak is now underestimated.

Four basis functions ( nb = 4) per axis

When performing the forward simulation fornb = 4, the same problem surfaced again, i.e. negligible
aggregation is taking place. Again, multiplying by a factorκ resulted in a good description of the data.
In this case, the optimalκ-value was found to be 395 (SSE=62). The results are shown in Fig. 11.17.
The SSE suggests that the prediction is not very good. However, Fig. 11.17 reveals that the upper part of
the distributions is captured much better compared to all previous cases. On the other hand, the peak is
overestimated and the lower tail is underestimated, explaining why the overall result is not the best.
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Figure 11.15: Forward simulation using the unscaled aggregation frequency recovered through inversion
using 3 basis functions per axis,λreg = 0 and multiplied by a factor 532

Figure 11.16: Forward simulation using the unscaled aggregation frequency recovered through inversion
using 3 basis functions per axis,λreg = 1 and multiplied by a factor 477
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Figure 11.17: Forward simulation using the unscaled aggregation frequency recovered through inversion
using 4 basis functions per axis,λreg = 0 and multiplied by a factor 395

Next, the same procedure was followed for the case whereλreg = 1. These results are shown in Fig. 11.18.
The optimal multiplication factor, that is needed to induce the aggregation behaviour, turned out to be
455 and an SSE of 24.85 was found, which is significantly lower than the case whereλreg = 0 and even
lower than the optimal results found in all studied cases that used a smaller number of basis functions
per axis. The main improvements are observed in the prediction of the upper tail and the peak, which is
captured very well. The lower tail is, however, still underestimated.

11.1.6 Forward simulation of the number distribution for pure aggregation

Since the main interest of this work is a good prediction of the small flocs that eventually end up in the
effluent, the predicted number distribution was compared with the measured number distribution (using
the same transformation procedure described in chapter 8). The results for different numbers of basis
functions are shown in Fig. 11.19 (nb = 2), Fig. 11.20 (nb = 3) and Fig. 11.21 (nb = 4). A first thing to
note is the fact that the dynamics are almost invisible in the number distributions. The model predictions
capture the upper tail extremely well. Moreover, the predictions get better in case more basis functions
are used. However, the very obvious failure to capture the lower tail in the volume distributions results in
severe underestimations of the lower tail of the number distributions. However, a slight improvement can
be noticed when more basis functions are used. Hence, further increasing the number of basis functions
might be an option to further improve the prediction of the number distributions. More research is clearly
warranted.
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Figure 11.18: Forward simulation using the unscaled aggregation frequency recovered through inversion
using 4 basis functions per axis,λreg = 1 and multiplied by a factor 455

Figure 11.19: Forward simulation of the number distributions using the unscaled aggregation frequency
recovered through inversion using 2 basis functions per axis,λreg = 0 and multiplied by a factor 502
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Figure 11.20: Forward simulation of the number distributions using the unscaled aggregation frequency
recovered through inversion using 3 basis functions per axis,λreg = 1 and multiplied by a factor 477

Figure 11.21: Forward simulation of the number distributions using the unscaled aggregation frequency
recovered through inversion using 4 basis functions per axis,λreg = 1 and multiplied by a factor 455
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11.2 Solving the inverse breakage problem

In chapter 9, it was demonstrated that a transformation of the dynamic experimental data into a similarity
distribution was possible for the breakage of a sludge by increased shear. Moreover, the breakage rate
expression could be recovered up to a constant. The presence of similarity can now be used to recover
the missing constant and the daughter size distribution from the experimental data. Fig. 9.14 shows the
cumulative vol% versus the similarity variableη for the experimental case that will be used here. The
region for which similarity was found is indicated in Fig. 9.16. Before actually performing the inversion,
the procedure will be elaborated in a bit more detail.

11.2.1 Procedure for inversion of pure breakage data with self-similar behaviour

The PBE expressed in function of the similarity variableη forms the basis of this exercise. It is repro-
duced below for convenience (note that z is used as similarity variable instead ofẑ for ease of notation).

zΦ′(z) = β

∫ 1

0

z2

u3
Φ′
( z

u

)
g(u)du (11.24)

This equation may also be ill-posed, meaning that small changes inzΦ′(z) can cause large differences in
the extractedβg(u) function. This can be overcome by using a technique calledThikonov regularisation
during the inversion process which was discussed earlier (section 11.1.1) and will not be repeated here.

At this moment, the constrained quadratic minimisation problem can be formulated. The similarity
coordinate is discretised into a set of{ηi} andβg(u) is expanded in terms of basis functions

βg(u) =
nb∑

j=1

ajGj(u) (11.25)

wherenb is the number of basis functions anda = {a1, a2, . . . , anb
} are the coefficients of expansion.

Hence, the discrete version of the inverse problem becomes

Φ = Xa (11.26)

whereX is a matrix whose components are given by

Xij =
∫ 1

0

ξ2
i

u3
Φ′
(

ξi

u

)
Gj(u)du (11.27)

The quadratic minimisation becomes

min
(
aT XT Xa− 2aT XT Φ

)
(11.28)

the solution of which will yield the unknown vector a.

A few constraints need to be taken into account when determining the unknown cumulative daughter
distribution function:

1. the function is always positive
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vol

F

Figure 11.22: Grid determination for obtaining equal areas under the curve

Table 11.4: Structure of the first six Legendre polynomials
n Gn(u)
0 1
1 u
2 0.5(3u2 − 1)
3 0.5(5u3 − 3u)
4 0.125(35u4 − 30u2 + 3)
5 0.125(63u5 − 70u3 + 15u)

2. the function is monotonic in its argument

3. at u=1, g(u)=1 and g’(u)=0

The latter constraint allows us to determine the unknown constantβ.

According to Sathyagal et al. (1995), the region under the peak of the similarity distribution f’(z) contains
the most information. In order to get more points of the discretisation in that region, it is advised to
choose intervals such that there are equal areas under the f’(z) curve in each interval (Fig. 11.22).

Problem-specific basis functions that can be used here are modified Jacobi polynomials or Legendre
polynomials. The first few functions of the latter are given in Table 11.4.

In order to simplify the matrix equations for the determination of a (eq. 11.28), a straightforward method
is needed for the representation of the (cumulative) similarity distributionΦ′(η) or Φ(η)). Other ad-
vantages of this fitting lie in the elimitation of measurement noise and the guarantee that the similarity
distribution is continuous. In the aggregation case, the similarity distribution was expanded in terms of
γ-functions. The same procedure was used here.

A comprehensive, stepwise method was developed to solve this inverse problem using a spreadsheet (e.g.
MS Excel, Open Office,. . . ) and Matlab (Mathworks Inc., USA). It is included in Appendix D.2.
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Figure 11.23: Fitting of the similarity distributionΦ(η) by means ofγ-functions

11.2.2 Results of inversion for pure breakage

The method presented in Appendix D.2 was used to solve the inverse problem. First, the range of the
similarity variable was discretised. A geometric grid with factor 1.171 was used starting fromηmin = 1
and covering the entire range up toηmax = 1.62E + 34 with exactly 500 classes.

Next, it was tried to obtain a continuous function for the similarity distribution (Φ′(z)). Sathyagal et al.
(1995) used an expansion ofγ-functions to do this. However, due to the wide range, a solution for an
expansion withγ-functions could not be obtained by thefminsearch-function in Matlab (Mathworks Inc,
USA). To reduce the range, it was tried to fit to the logarithmic transform of the similarity variable. Here,
a solution was found by the search algorithm, but the result clearly showed thatγ-functions are not able
to capture the similarity distribution. The results are illustrated in Fig. 11.23 for different numbers of
γ-functions used in the expansion.

As a relatively easy alternative the cumulative similarity distribution (Φ(z)) was fitted using a Weibul-
type sigmoidal curve

Φ(z) = a

{
1− exp

[
−

(
log(z)− x0 + b(ln2)1/c

b

)c]}
(11.29)

This yielded a much better fit, as shown in Fig. 11.24. The SSE was 0.053. The parameter estimates are
given in Table 11.5.

The availability of a continuous expression for the cumulative similarity distributionΦ(z) allows to
calculate the left-hand side of eq. 11.24. The derivative ofΦ(z) can be explicitly calculated and the
previously introduced discretisation (500 classes) was used. The result ofzΦ′(z) is given in Fig. 11.25.

The goal of inversion is to reproduce this left-hand side with a linear combination of integrals represented
by eq. 11.27. These integrals are evaluated for different Legendre polynomials at all discretised z-values
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Figure 11.24: Fitting of the cumulative similarity distributionΦ′(η) by means of a Weibul sigmoidal
function

Table 11.5: Parameter estimates from the Weibul fit to the cumulative similarity distributionΦ(z)
parameter value

a 0.9968
b 1.29E+8
c 4.55E+7
x0 23.21
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Figure 11.25: Calculated left-hand side of eq. 11.24 using the Weibul fit on the cumulative similarity
distributionΦ(z)

using the Weibul fit obtained earlier. The results of the integrals for one, two and three basis functions
(i.e. j=0, 1 and 2) are given in Fig. 11.26. From Fig. 11.26, it can be seen that the values of the integrals
are very large compared to the values observed in Fig. 11.25. Moreover, the peaks of the integrals occur at
different values of the similarity variable. A possible reason for these observations might be the fact that
the integrals could not be calculated entirely from lower to upper limit because near the lower boundary,
i.e. the origin, the integrand is singular (1/u3), causing the integral to blow up. The calculations were,
therefore performed for a somewhat larger lower limit, i.e. 0.05. This was the lowest value that was
accepted by the Matlab-functionquadlthat was used to perform the numerical integration. However, the
large absolute values are also induced by thez2-factor that is present in the integrand. These integrals
produced meaningless results for the coefficients of expansion and, hence, did not allow for a good fit of
the left-hand side (not shown).

In order to cure the singularity near the origin (i.e. small z), the basis functions need to be modified. The
modification is done as follows:

βg(u) = u

nb∑
j=1

ajGj(u) (11.30)

The integrals to be calculated now become

Xij =
∫ 1

0

ξ2
i

u3
Φ′
(

ξi

u

)
uGj(u)du (11.31)

which can be further simplified by taking the derivative f’(z/u) with respect to u instead of z/u to solve
the problem of singularity

Xij =
∫ 1

0

ξi

u

dΦ
(

ξi

u

)
du

Gj(u)du (11.32)

where the negative sign is assumed to be absorbed in the expansion.
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Figure 11.26: Integrals (eq. 11.27) when using 1, 2 and 3 basis functions

When using these integrals, a reasonable fit of the similarity distribution could be obtained (Fig. 11.27).
However, the quality of the fit deteriorated when the number of basis functions was increased. Therefore,
the remainder of the inversion will be based solely on the fit using two basis functions.

11.2.3 Kernel structure from inversion

The fit with two basis functions resulted in the coefficients of the expansion, beinga0 = 3 anda1 = −1.5.
From these results, the value of the missing constantβ in the breakage frequency can be determined
immediately. The expansion becomes:

βg(u) = u(3− 1.5u) (11.33)

Since g(u)=1 for u=1, this results in a value ofβ = 1.5. The breakage rate expression therefore becomes:

b(x) = 1.5
(

x

x0

)3.7

(11.34)

wherex0 represents the volume of the primary particle. The breakage rate is plotted on a log-log scale in
Fig. 11.28. Due to the large ratio’s between the particles and the primary particle and the large exponent
(i.e. 3.7), breakage rates become very large for large particles.

Finally, the daughter distribution can be reconstructed from the basis function expansion as (note that the
coefficients have been divided byβ):

g(u) = u(2− u) (11.35)

Since u was defined as the ratio of the breakage rate of a particle with volume x and the breakage rate of
a particle with volume x’, the cumulative daughter distribution can be written as:

G(x|x′) = g(
b(x)
b(x′)

) =
b(x)
b(x′)

(2− b(x)
b(x′)

) = 2
( x

x′

)3.7
−
( x

x′

)7.4
(11.36)
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Figure 11.27: Fit of the similarity distribution by using the modified basis functions (nb = 2, 3, 4)

Figure 11.28: Breakage rate found through inversion (log-log scale)



11.3 Conclusions 209

In order to be able to perform the forward simulation, the daughter distribution functionP(x|x′) that
describes the probability that a particle with mass x is formed from a breakage of a particle with mass
x’, needs to be determined from the obtained cumulative daughter distribution g(u) (orG(x|x′)). The
relationship between the cumulative and the plain daughter distributions is given by

v(x′)P (x|x′) =
d(x′G(x|x′))

dx
(11.37)

which was derived from the definition of the (cumulative) volume fraction of broken fragments from
breakage of a parent of mass x’ that have mass less than x, i.e.G(x|x′)

G(x|x′) =
v(x′)
x′

∫ x

0
dξξP (ξ|x′) (11.38)

which leads to the expression

v(x′)P (x|x′) =
7.4
x′2.7

(
x1.7 − x5.4

x′3.7

)
(11.39)

which can be plugged in the PBE for pure breakage.

Mass conservation can be checked by calculating the total sum of the volumes of particles that are formed
by the breakage event. This quantity is expressed by the following integral∫ x′

0
xv(x′)P (x|x′) (11.40)

and should be equal to the volume of the breaking particle, i.e. x’. This was the case for the daughter
distribution expression that was found (eq. 11.39).

11.2.4 Forward simulation

Finally, the breakage functions were implemented in the PBE and the forward simulation was performed.
A first problem that occurred was caused by the high breakage rates that were present at large particle
sizes. These induce large derivatives and force the numerical integration algorithm to reduce its step size
drastically, which results in very slow calculations. When the breakage functions were implemented as
such, the algorithm even did not converge to a solution. Therefore, an extra factor was implemented
to reduce the large breakage rates. In this way, it could be checked whether the daughter distribution
yields good results. The results of a forward simulation using an additional factor of 1E-30 are shown
in Fig. 11.29. The results from the forward simulation do not describe the experimental data that were
used to obtain the breakage functions. The difference in breakage rates between small and large particles
is too large. From Fig. 11.29 it can be observed that particles in the upper tail have all been broken and
resulted in particles of intermediate size. Further study is required to trace the possible cause of this
discrepancy. One possibility for future work is to adopt the model structure that was obtained by the
inversion and estimate the parameters.

11.3 Conclusions

In this chapter, the inverse problem was solved for both the pure aggregation and the pure breakage
experimental data that exhibited self-similar behaviour.
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Figure 11.29: Forward simulation of the pure breakage case using the breakage functions obtained
through inversion (nb=2)

In the pure aggregation case, a good fit of the left-hand and the right hand side of the similarity-PBE
was obtained. The scaled kernel was recovered using 2, 3 and 4 basis functions per axis respectively.
Regularisation only had an influence on the kernel shape when using 3 basis functions. When using 2
basis functions, the frequencies were monotonically rising with scaled volume (i.e. similarity variable),
most pronounced for homogeneous particle encounters. Using three basis functions resulted in a saddle
surface, which disappeared partly when regularisation was increased. Four basis functions showed simi-
lar behaviour as two basis functions, but the increase is steeper for large values of the similarity variable.
Also, the aggregation frequencies were found to be higher in absolute value.

When recovering the unscaled kernel, it was found that the kernel was not homogeneous (a negative
power was found) and, hence, the recovery was based on the mere multiplication of the scaled kernel
by h’(t) which was derived from the dynamics of the scaling variable h(t). This implies that all derived
kernels are time-dependent. Once the unscaled kernel was found, it was used in a forward simulation
to check the quality of inversion. Most cases captured the dynamic behaviour of the volume percentage
distributions quite well, but the kernel values had to be multiplied by a constant factor in order to work.
Increasing the regularisation parameterλreg always improved the prediction. The highest number of
basis functions (4) combined with the highest tested regularisation (λreg = 1) was found to give the best
prediction, only underestimating the lower tail of the distribution.

Finally, predictions of number distributions were generated with the model and compared with the exper-
imental number distributions. Here, it was noticed that little dynamics occur in the number distribution.
The underestimation of the lower tail in the volume percentage distribution causes a severe underestima-
tion of the small floc size classes. Moderate and large floc sizes were predicted very accurately when a
large number of basis functions was used. The prediction of the number distribution seems to improve
as the number of basis functions increases. Investigating higher values ofnb is, therefore, recommended
for future research.
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In the pure breakage case, the similarity distribution could not be fitted by means ofγ-functions due to the
large range of the absolute value of the similarity variable. Even a logarithmic conversion did not result
in a good fit. Therefore, the cumulative similarity distribution was fitted using a Weibul expression. This
fit was then used to fit the left-hand side and the right-hand side of the similarity-PBE. Unfortunately,
problems occurred due to the singularity near the origin and the blow up of the integrand caused by the
large values of the similarity variable.

It was tried to cure the latter problem by using modified basis functions which could handle the singular-
ity. Using this approach, a good fit could be obtained. However, increasing the number of basis function
resulted in a deterioration of the fit. The constant value of the breakage rate (β) was determined to be
1.5 and, hence, the breakage rate as function of volume was established. However, the breakage rates are
very large for larger particles. An expression for the daughter distribution was recovered.

The forward simulation was only conducted for the case with two basis functions because increasing
the number of basis functions deteriorated the fit obtained by the expansion. However, the model using
the breakage rate and the daughter distribution function recovered from data inversion was not able to
describe the experimental data. This is probably caused by the fact that a multiplication factor was
necessary to avoid numerical problems (i.e. large derivatives). Future work might comprise of adopting
the model structure from inversion and estimate its parameters.
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CHAPTER 12

Conclusions and perspectives

The separation step between purified water and the activated sludge flocs still remains a delicate is-
sue in wastewater treatment. Nowadays, the popularity of membrane bioreactors is increasing, despite
their higher investment and operational cost. In future it is believed that this more recent technology
will outcompete the conventional secondary settling tanks. However, this technology has its operational
problems too (e.g. fouling), which should be thoroughly investigated when future application on a wider
scale is pursued. On the other hand, some people argue that this membrane technology is partly ’missing
its goal’ from an engineering point of view since it was designed for high-level separation which is not
really the aim in wastewater treatment. During the last decades, a lot of research money was invested in
gaining knowledge concerning secondary settling tanks, bringing it to a level where one can guarantee
good performance and identify future optimisation paths (a lot of systems are operated in a very conser-
vative way). Stepping away from this conservatism and using the gained knowledge might open doors for
alternative uses of the available volume in the secondary settling tank (e.g. biological processes, buffer
tank during rain events,. . . ). This would make the technology a lot more attractive and competitive and
finally there would be a payback for the years of financial investment in this area.

This illustrates that the evolution of the ’separation market’ in wastewater treatment could be signif-
icantly influenced by improvements in either technology. The work performed in this dissertation is
closely related to this important issue since, as was stated in the introduction and literature review, a
better comprehension of secondary settling tank failure and membrane fouling are closely related to
the mechanisms of activated sludge flocculation. An improved understanding of the latter would allow
its optimisation and, hence, give rise to a significant improvement of the separation step in wastewater
treatment technology, either conventional activated sludge systems or membrane bioreactors.

As outlined in the introduction, the focus of this work was to investigate the applicability of a population
balance framework for modelling the activated sludge flocculation process and influencing factors. This
analysis consists of several separate issues which should be treated in a logical order.

• Investigation of numerical solution methods for solving the population balance equation

213
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• Development of a comprehensive calibration procedure based on typical experimental flocculation
data sets

• Model structure identification

• Perform flocculation experiments that investigate different physico-chemical influences on the ac-
tivated sludge flocculation process

• Calibrate the flocculation model based on these experimental data

This sequence of major steps was reflected in the organisation of this dissertation. In the remainder of
this chapter, the main conclusions and perspectives for further research are addressed.

12.1 Numerical solution methods for population balance models

Due to their potential for acceptable calculation times and their compatibility with the simulation envi-
ronment WEST (Hemmis NV, Belgium)) that was adopted in this work, the search for a suitable solution
method was constrained to discretisation techniques only. A simulation study was set up that aimed at
evaluating several important issues of a solution method, i.e. ease of implementation, flexibility, accu-
racy, computational performance and stability and pitfalls. The study investigated three methods from
literature: the Hounslow algorithm, the fixed pivot and the moving pivot method. They were applied
to solve population balance models for pure aggregation, pure breakage and the combined aggrega-
tion/breakage case. Other degrees of freedom in the evaluation were the coarseness of the discretisation
grid and the effect of the initial distribution. To the author’s knowledge, it was the first time that such a
detailed study of a (limited) number of discretisation methods was performed.

It was found that the Hounslow method can be implemented quite easily, although one should be cautious
to avoid mass leakages when implementing the boundary conditions. The fixed pivot and the moving
pivot are somewhat more tedious to implement and here too the correct implementation of the boundary
conditions is important. A subtle difference between the two methods is present in the fact that the
mathematical grid range is different.

For the pure aggregation case, it was found that the moving pivot with a geometric factor of 2 yielded
the best results. Both the Hounslow and fixed pivot technique suffered from a slowdown in aggregation
due to the difference in grid range. Moreover, the observed slowdown was dependent on the initial state
of aggregation. This influence of the numerical technique on the simulation results is unacceptable.
When using a finer grid, a symptom which was called ’particle entrapment’ was detected. It leads to
the phenomenon that particles cannot move out of the one but last class, since their volume exceeds
the maximum allowed particle size. This behaviour can also be present when using the moving pivot.
However, the larger range of allowable particles that is intrinsic to this method makes it less probable.
Coarser grids decrease the calculation times, but are found to be less accurate. Hence, the choice of
solution method will be a trade-off between accuracy and speed of simulation.

The pure breakage case that was studied involved breakage into equally sized daughter particles. It was
found that all grids using a geometric grid using a factor s=2 are superior to tackle this problem. All
solution methods performed equally well. Using coarser grids resulted in numerical problems, necessi-
tating the use of less efficient solvers that increase the calculation time substantially. Consequently, since
a fast method is looked for, coarse grids should not be used for this particular type of breakage. Refining
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the grid again induced the phenomenon of particle entrapment and is not recommended either. Another
pitfall was addressed for the specific case where the moving pivot with a geometric grid with factors < 2
was used in combination with binary breakage into equally sized daughters, i.e. the appearance of gaps
in the distribution. This is caused by a specific movement of the pivots in some particle size classes. This
causes particles not to be formed in the lower adjacent size class, but one class lower. This forces partial
depletion of particles in this lower adjacent class, resulting in gaps in the distribution. Hence, it can be
concluded that binary breakage into equally sized daughters should always be used in combination with
a geometric grid with factors ≥ 2. This severely limits the grid choice and might induce an adaptation
of the grid of the sizing device by changing the software settings prior to the measurement (if possible).
It was shown that the reasoning can be extrapolated to specific breakage cases whereη equal particles
are formed from one breakage event in combination with the moving pivot method. The geometric grid
factor s must then meet the constraints ≥ η. This constraint might affect the accuracy of the solution
method.

The combined aggregation/breakage case gave rise to differences in accuracy and calculation times. In
terms of accuracy, the moving pivot was found to be superior even for coarse grids. Indeed, refining the
grid in the fixed pivot case forces the solution to approach that of the moving pivot as was reported in
literature too. However, the calculation time needed by the moving pivot was significantly larger, which
is definitely a drawback of the method. Hence, the decision on what solution method to use will be
case dependent and a trade-off between accuracy and speed of simulation. In the cases studied here, the
moving pivot was found to be superior since only a relatively small number of classes was needed to
reach an acceptable degree of accuracy.

This investigation of the best solution method was clearly limited by a lot of constraints, an important
one being the type of solution methods that were studied. Hence, it should be clearly stated that this
work does not claim that discretisation methods are the best solution methods for studying the activated
sludge flocculation process using a population balance framework. Rather, feasibility studies in terms of
calculation speed and accuracy of other solution methods should be performed when one is to choose a
solution method for a problem at hand. This might be a perspective for future research that would support
the choice of solution method. The development of a methodology might be appropriate here, since this
choice is not evident for people that want to merely apply a population balance model, but do not have
the background to judge different solution techniques. The overview given by Ramkrishna (2000) would
definitely be a good starting point, but it is already outdated due to the fast developments in the field of
population balances.

12.2 Development of a comprehensive calibration procedure based
on typical experimental flocculation data sets

When calibrating a population balance model by means of typical dynamic experimental flocculation
data, one comes across several issues that call for a solution. Before elaborating on the issue of model
structure, it is therefore of interest to properly address the calibration issues. Hence, a comprehensive
calibration methodology was developed in this work.

The issues that were dealt with were: data transformation for compatibility between model and experi-
mental data, treating experimental errors and choice of variable to fit the model to.
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12.2.1 Data transformation

Data transformation should be avoided as much as possible. However, in some cases it might be needed
(i.e. to calculate the initial distribution for the model). It was found that the approach adopted by
Biggs (2000) that fitted the dynamic distributions using a log-normal distribution, is not recommended
as it introduces large errors in the number distributions. This is caused by the fact that the log-normal
distribution cannot capture the tails of the distributions. Hence, an alternative method based on the
heterogeneous floc model was presented. This enables the conversion from relative to absolute volumes
by means of the sludge concentration, and the water, floc and solids densities.

In order to apply this new approach, the experimental determination of the densities of flocs and solids
within the flocs is needed. Therefore, this was also briefly investigated in this work. The solids density
can be determined by a method called pyknometry which was adopted from the field of soil science. The
method resulted in larger values (1.60g.ml−1) than those reported in literature (1.45g.ml−1). However,
further testing of the method is needed and was beyond the scope of this work. The floc density was
determined by using a method based on a linear density gradient of Percoll. The results that were found
were comparable to values reported in literature (1.02-1.06g.ml−1). However, the method did not allow
accurate measurements due to the low resolution of the density gradient. Hence, further development of
the method is recommended.

Preliminary testing of the new approach for determination of the number distribution showed that pa-
rameter estimates of the aggregation efficiency were indeed more realistic.

12.2.2 Experimental errors

Measurement errors on a summarising variable such as D[4,3] can be easily determined from a repetition
of measurements during steady state. However, it should be noted that it might be dangerous to conclude
the onset of steady state based on a summarising variable as changes might still be occurring which are
not captured by this variable (e.g. changes in small size classes will not be detectable by the volume-
based D[4,3]). Another difficulty that has been observed is the ’background’ flocculation resulting in a
continuous increase in D[4,3]. Determining the errors of the separate classes of a number distribution
is, however, a more difficult task. A similar approach as used with the D[4,3] is not applicable since the
background flocculation can not be quantified for single particle classes. The method that is proposed
here to obtain an estimate of the measurement error is based on the fact that the measurement is a counting
of particles. In that respect, the measurement error can be regarded as the variance of a multinomial
distribution.

12.2.3 Choice of the variable to which the model is fitted

A final important issue that should be dealt with during calibration is the choice of variable to which
the model will be fitted. Four possibilities were compared, i.e. D[4,3], volume percentage, number
distributions and weighted number distributions. Fitting to either D[4,3] or volume distribution resulted
in good predictions of the volume distributions, although it should be noted that prediction of the tails
were rather poor. Predictions of the number distributions using volume-based fitting variables were poor
too. Fitting to number distributions resulted in poor predictions of the volume distribution. However, an
increased prediction quality of the number distributions was observed.
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It was concluded that the choice of fitting variable is, therefore, highly dependent on the goal of the
calibration exercise. If one is satisfied with good predictions of the volume distribution, a volume-based
variable is recommended. However, since interest here lies in prediction of the number concentration of
small particles (that end up in the treatment plant’s effluent), fitting on number distributions is more ap-
propriate in this work. At this stage, the discrepancy between the model predictions and the experimental
data is blamed on the inadequate model structure. Therefore, this was the next issue that was addressed
in this work.

12.3 Model structure identification

The identification of the model structure is considered to be another important step in the process of de-
termining the feasibility of applying a population balance framework to the activated sludge flocculation.
Two different approaches can be followed. A first one is to use existing models that were formulated
and applied in literature. An alternative approach is to extract the model structure from experimental
aggregation and breakage data through a mathematical method called inversion. Both alternatives were
investigated in this work.

12.3.1 Approach 1: model structures from literature

According the first approach, a selection of literature models for aggregation and breakage that had been
applied to similar inorganic flocculating systems was made. Four models were chosen by combining
different kernels for aggregation and breakage incorporating different degrees of complexity and were
fitted to the dynamic number distributions of shear-induced flocculation experiments (starting from a
sonicated sludge) by means of a least squares method.

The first and most simple model used a constant aggregation efficiency, a shear-based, orthokinetic ag-
gregation frequency and a power law breakage. The model was not able to capture the dynamics of the
number distributions. Lowering the exponent of the power law breakage function to 1/9 resulted in a
substantial improvement.

The second model applied the concept of fractal dimension in the aggregation frequency. When using a
decreased exponent, a similar predictive power was observed as model 1. However, the fractal dimension
concept is thought to be more transparent since the concept has been described before for activated
sludge. The remaining discrepancy might be decreased by using a size-dependent fractal dimension,
which was not studied in this work but is suggested for further research.

Model 3 incorporated a size-dependent aggregation efficiency accounting for hydrodynamic forces and
Van der Waals interaction. However, this injection of knowledge did not improve the predictions of the
dynamic number distributions. On the contrary, it even seems to have an opposite effect. A suggestion
for further research here is to combine this model with the fractal dimension concept introduced in model
2.

Model 4 introduces the porous floc aggregation efficiency, the fractal dimension concept and a break-
age rate based on turbulent shear. This model was also unable to capture the dynamics of the number
distributions.

Overall, from this ’quest’ for an appropriate model structure, it was concluded that it is a time consuming
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approach and it did not result in any model that was able to capture the dynamics of the number distri-
butions adequately. A lot of different combinations of model structures for aggregation and breakage are
possible, but this would result in a search for a needle in a haystack. Therefore, this approach was put
aside after this preliminary run. However, in future research, other model combinations might be further
investigated.

12.3.2 Approach 2: solving the inverse problem for aggregation and breakage

The second approach is based on extracting the unknown aggregation and breakage functions directly
from the experimental data of aggregation and breakage experiments respectively. This is accomplished
by solving the inverse problem. This approach has never been applied to activated sludge flocculation and
only a few applications based on experimental data are so far available in literature. The inverse problem
is simplified when self-similar behaviour is present in the experimental data. Therefore, a similarity
analysis was performed first.

Pure aggregation

In search for similarity for aggregation, a similarity analysis was conducted on the aggregation data set
where reflocculation was allowed from a sonicated sludge. The necessary requirements for the appli-
cability of the similarity analysis for pure aggregation, i.e. that breakage can be neglected, could be
recovered from a thorough distribution analysis. However, no similarity was found for any scaling based
on subsequent integral moments of the distribution. However, other data sets of experiments that initiated
reflocculation from a sludge previously exposed to high shear did exhibit self-similar behaviour. Hence,
it was concluded that flocculation behaviour is different in both cases. Since sonication is not applied in
full-scale treatment plants, it can be concluded that flocculation dynamics from a sonicated sludge are
not representative for the dynamic behaviour that is looked for in this research. Hence, the experiments
using sonication for destruction of flocs were discarded from this moment on. This is also suggested for
any future experimental investigation of activated sludge flocculation.

As a result of this conclusion, the first approach for determination of model structure had to be repeated
by using the data of the experiments where shear instead of sonication was used for floc destruction.
Investigating model 1, however, showed that the optimisation algorithm was very sensitive to the initial
parameter values and, moreover, the variance of the parameter estimates was very large or could not
be calculated due to identifiability problems. This makes these predictions very doubtful. In order to
track the reason for this failure, a screening of the objective function in the entire parameter space was
conducted by means of a scenario analysis. The analysis of the parameter space resulted in the finding
that a large part of the parameter space is a plateau exhibiting similar objective values, which explains the
sensitivity of the parameter estimates to the initial parameter values. Moreover, the best fit was found for
parameters in the origin, meaning that no dynamics would be required for predicting a dynamic dataset,
which is clearly a contradictory result. Since these problems were already encountered for the most
simple model (model 1), the more complex models were not further investigated as they are expected to
yield similar results. However, this might be the subject of further efforts.

The presence of similarity allows for a simplified solution of the inverse problem. In this work, a step-
wise procedure for solving the inverse problem for aggregation using a combination of a worksheet and
some simple scripting in Matlab (Mathworks Inc., USA) was developed. The similarity distribution was
successfully fitted by means of an expansion of 2γ-functions. The inverse problem was then solved for
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different numbers of basis functions per axis and different values of the regularisation. Good fits of the
right-hand side to the left-hand side of the population balance equation were obtained, although no major
influence of the number of basis functions and the regularisation were observed.

In the next step, the unscaled aggregation frequency was determined. It was found from the behaviour
of the scaling function h(t) that the kernel was not homogeneous and, hence, that the normal procedure
presented in Ramkrishna (2000) could not be followed. Instead, a more general approach had to be
adopted to calculate the unscaled kernel. It was based on the product of the scaled aggregation kernel
found through inversion and the dynamic behaviour of the derivative of the scaling function, i.e. h’(t).
The shape of the unscaled aggregation kernel changed for different numbers of basis functions used.
When using two basis functions per axis, a monotonic increasing kernel (i.e. aggregation frequencies)
was found for increasing particle sizes. Using three basis functions per axis resulted in a saddle surface.
However, the shape changed when regularisation was increased. When using four basis functions a
similar shape as in the case with two basis functions was obtained, although larger collision frequencies
were found and the increase in frequency started only at intermediate floc sizes.

Finally, the quality of the inversion was checked by performing a forward simulation using the obtained
kernel structures. This resulted in good results for all cases, taken into account that an additional factor
had to be used. Still, when four basis functions were used the best results were obtained. Apart from
the lower tail (at small floc sizes), the dynamics of the volume distributions were described accurately.
However, the prediction of the number distributions suffered from severe underpredictions in the lower
size range, which corresponds to the rather poor prediction of the lower tail in the volume distribution.
Again, the prediction improved when the number of basis functions was increased. Not more than four
basis functions were investigated at this point, but this is recommended for further research.

Pure breakage

The necessary requirements for the applicability of the similarity analysis for pure breakage, i.e. that
breakage can be neglected, could be recovered from a thorough distribution analysis. Similarity analysis
showed that the experimental breakage data sets exhibited self-similar behaviour too. The scaling func-
tion was found to be dependent on a constant slope of the ln(x) versus ln(t) plot which was found to be
-3.7. This means that the breakage rate can be determined up to a constant and by a power law of the floc
size using an exponent of 3.7.

Due to the large range of the similarity variable, the expansion withγ-functions was not successful.
Alternatively, a Weibul function was fitted to the cumulative similarity distribution. However, due to
singular behaviour in the origin (division by zero) the fit of the right-hand side to the left-hand side of
the population balance equation was very poor. Therefore, the Legendre polynomials that were used in
the expansion of the cumulative daughter distribution, was modified to cure this problem. This resulted
in a reasonable fit of the right-hand side to the left-hand side. However, the result deteriorated when
the number of basis functions was increased. Therefore, only the case with two basis functions was
considered in the remainder.

For this case the remaining unknown constant in the breakage rateβ was determined to be 1.5. This
resulted in rather large breakage rates for large particles. Furthermore, the plain daughter distribution
P(x|x′) could be extracted from the cumulative daughter distribution g(u).

In order to check the quality of the inversion, the forward simulation was performed. However, due to
the large breakage rates, numerical problems occurred since large dynamics are present which forced
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the solver to substantially reduce its step size or even caused failure of convergence. In order to cure
this, an additional factor was introduced to artificially decrease the breakage rates. However, the forward
simulation did not yield good results as the absolute breakage rates of large particle still seem to be too
large compared to those of small particles. Further research is needed here to identify the exact cause of
this behaviour and obtain a good description of breakage.

Combined aggregation and breakage

Once the problem with the inverse problem for breakage is solved, the kernels obtained from both inverse
problems can be combined and the forward simulation be evaluated. This should be subject of further
research.

12.4 Experimental data collection

In a next step, experimental data are needed to study the physico-chemical influences of activated sludge
flocculation. Obtaining suitable experimental data has long been the bottleneck in studying and model-
ling the activated sludge flocculation process. Recent developments have resulted in an on-line measure-
ment technique that allows to follow the floc size distribution in time. However, most researchers attempt
to model a summarising parameter of the distribution, e.g. D[4,3], even though distributions contain a
lot more information about the proces being studied. The distributions at hand are suitable for modelling
by means of population balances. Therefore, some existing data from literature were analysed focusing
on the distribution behaviour. New data were collected with the Flocunit and were analysed in a similar
fashion.

The different shear rate experiments exhibited different behaviour for different size classes depending
on the floc size to Kolmogorov microscale relationship. Flocs smaller than this scale will aggregate,
whereas larger flocs will be broken. Hence, the most abundant floc size should have a similar size as this
scale. In aggregation experiments size classes larger than the Kolmogorov scale increase monotonously
toward an equilibrium, smaller classes reach a maximum and subsequently decrease to reach a steady
state, whereas the smallest classes do not exhibit such a peak behaviour. Furthermore, the estimate of
the Kolmogorov scale by using the 10-fold of the average energy dissipation seemed to be a reasonable
assumption for the literature data studied. This was, however, not found for the Flocunit experiments.
Possibly the different reactor configuration is causing this, which could be verified by means of a CFD
model.

The literature experiment with the sequence of step changes in average shear rate showed similar results
when solely looking at a summarising parameter. However, (de)flocculation behaviour is clearly different
when looking at the complete distributions. Comparing the reflocculation after sonication and increased
shear rate respectively, showed that the initial number of small particles is much larger in the former
case. Whereas all classes smaller than the Kolmogorov scale exhibited a peak in the former case, this
was not true for the increased shear rate case. Also, the size class exhibiting the largest vol% was
somewhat smaller, suggesting more compact flocs. This leads to an important conclusion: sonication
prior to the experiment seems to induce a different kind of flocculation compared to break-up through
shear. Hence, sonication is not representative for the flocculation occurring in a real full-scale treatment
plant. Lab-scale studies should, therefore, not apply sonication in order to understand the activated
sludge flocculation behaviour.
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Experiments performed in the Flocunit showed more measurement noise, which might be related to the
reactor configuration (different volume and many obstacles), reactor volume and the sampling procedure,
which was not based on recirculation. However, when discarding the noise, the main trends could still
be distinguished.

The ’standard’ initial part of all experiments in the design could not prevent that initial distributions
were different. The previously used relationship between average shear intensity and Kolmogorov scale
appeared not to be a good assumption here. This was reasoned to be caused by differences in reactor
configuration and differences in floc strength (resistance to stress).

The conclusions drawn from the CIS-100 measurements in terms of total number of flocs are the same
as those obtained from the Malvern measurements. However, the number distributions are too noisy and
cannot be used for model calibration on the basis of particle size distributions. This is merely caused by
the fact that this technique is based on counting and is hence more sensitive to noise.

Basically, the conclusions that are drawn based on the evolution of the mass mean diameter or from the
complete distributions are the same. However, many details, e.g. moving of fronts (i.e. size distributions
moving along the size axis), most abundant floc size, floc size classes that are affected by changes in
operational conditions,. . . are lost when using summarising parameters. Many distributions can exhibit a
similar mass mean diameter, and, hence, many models can describe these data without capturing what
really is happening. This doesn’t mean that summarising parameters are useless. On the contrary, they
are very useful for getting a first impression of the dynamics of a process.

To summarise the effects of the different factors that were investigated in the design:

• Shear has an important effect on the activated sludge flocculation. High shear destroys flocs and
shifts distributions toward smaller sizes. Low shear allows larger flocs to be present in the system.
The addition of calcium confirms the hypothesis of floc strength playing an important role. Even
at high shear a partial reflocculation was observed after Ca-addition. From a modeller’s point of
view, the dynamics at high shear cannot be investigated since the measurement frequency with the
available set-up was too low to capture the very fast flocculation dynamics.

• Flocs are not disturbed when temperature is lowered. However, some immediate flocculation
occurs when temperature is increased. Addition of calcium results in stronger flocs at lower tem-
peratures.

• Applying anaerobic conditions showed an immediate increase in floc size. However, Ca-addition
leads to stronger flocs when the DO-concentration is higher.

• At low sludge concentration, a slow deflocculation can be observed, caused by the smaller collision
probability. This can also be observed when Ca is added. The largest concentration results in the
largest floc size.

• Ca-addition results in flocculation. However, the results clearly show that the degree of flocculation
is not proportional to the amount of Ca added. A slow background flocculation was observed when
no Calcium was added.

In order to capture the very fast dynamics that were observed in some cases (and could not be captured
by the measuring devices), two strategies can be followed in future work. The measurement frequency
could be increased, but this might decrease the statistical soundness of the data and is not recommended.
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Alternatively, the design could be adapted in the sense that different factor values are used that limit the
speed of the dynamics.

Furthermore, the existing (rich) data set could be further analysed to extract more useful information
on the flocculation that could be used in the modelling exercise (e.g. fractal dimension from the image
analysis data).

Additional information on the hydrodynamic flow patterns within the Flocunit which are closely related
to the flocculation behaviour could be obtained by building a CFD-model.

12.5 Model calibration based on the gathered experimental data

This forms the ultimate step in completing the evaluation of the appropriateness of the population bal-
ance framework for the modelling of activated sludge flocculation. Moreover, it should be possible to
include descriptions for the effect of the different investigated physico-chemical conditions into the de-
rived kernels. Therefore, the experimental data obtained by the Flocunit that show analogous dynamic
behaviour (e.g. in case of Ca-addition) can also be analysed for similarity and if similarity would be
found, the inverse problem can also be solved for these experiments, leading to model structures that can
capture the behaviour in these very different conditions. The necessary requirements for applicability
of the respective similarity analysis for pure aggregation/pure breakage have already been proven in the
thorough distribution analysis. This should lead to a model that can be used to optimise the activated
sludge flocculation and, hence, the separation step of the wastewater treatment process. However, the
time scope of this thesis did not permit to investigate this step. Hence, this is suggested as a perspective
for further research.

12.6 Overall conclusion

This work provides a significant step forward in the evaluation of the appropriateness of the population
balance framework to describe the activated sludge flocculation process. The moving pivot is suggested
to be used as discretised solution method, yielding the best compromise between accuracy and simula-
tion speed. It can be used with a relatively coarse grid, avoiding possible pitfalls that were addressed.
A comprehensive calibration methodology was presented that provides specific solutions for data trans-
formation, determination of measurement errors and choice of fitting variable in the case of activated
sludge flocculation. The data transformation can be done on the basis of relatively easy to measure
sludge properties, i.e. sludge concentration and floc/solid densities. Measurement errors of number dis-
tributions can be determined on the basis of a multinomial distribution. Number distributions were found
to be more relevant as fitting variable. However, applying this calibration methodology to experimental
data for existing literature models revealed that none of them was able to capture the dynamics of the
number distribution. An alternative approach based on the solution of the inverse problem and the ex-
ploitation of self-similarity was tested. The similarity analysis revealed that sonication induces different
flocculation dynamics and is not recommended since it is not representative for flocculation occurring in
full-scale. Similarity was found for both aggregation and breakage and was used to extract the respec-
tive kernels. The latter was successful for the aggregation case where a forward simulation was able to
predict the dynamic behaviour of the experimental data. The forward simulation in the breakage case
failed and more work is needed. Finally, additional experimental data were collected that will allow



12.6 Overall conclusion 223

for future investigation of several physico-chemical factors using the tools that were developed through-
out this work. This will eventually lead to a model that is able to capture the flocculation behaviour in
these very different conditions that might be present in a real wastewater treatment plant. Such a model
would allow for the optimisation of the separation step, either the traditional gravitational or the more
recent membrane-based technology and, hence, have a significant impact on the further evolution of this
’separation market’.
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APPENDIX A

Turbulence

A.1 The velocity-gradient tensor

A discrete volume element of viscous fluid that is in motion and contains a homogeneous distribution
of spherical particles is considered. The volume element is sufficiently small within the fluid domain so
that linear velocity-gradients act on the element. The particles are assumed to have neutral buoyancy so
that any inertial effects can be ignored. It is also assumed that the fluid element is a continuum and any
movement imparted on the fluid also affects the particles. The motion of the fluid element and the forces
acting on it generate velocity gradients across the surfaces of the element. This can be described by the
velocity-gradient tensore, given by (Kramer and Clark, 1997):
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where l and m represent either of the 3 orthogonal directions in the 3-dimensional space. This tensor
can be separated into symmetric and anti-symmetric components. The anti-symmetric componentblm

corresponds to rotation
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while the symmetric componentalm is the strain-rate tensor
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which causes physical distortion of the fluid element. For a constante, the strain rates are constant within
the boundaries of the fluid element. An example of such an element is shown in Fig. A.1. The origin
moves with the component velocitiesu1, u2 andu3. Due to the velocity gradients, the velocities at a
distance away from the xy, yz and xz-planes will be changed by an amountelmdxm in the componentl
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Figure A.1: Fluid element and graphical representation of the velocity-gradient components

direction. Summation on the common index is implied anddxm is the distance from the datum in them
direction.

While the velocity gradients cause distortion of the fluid element, the gradients also generate rotations.
This occurs whene12 6= e21, e13 6= e31 ande32 6= e23. In collision modelling, the main concern is the
relative velocity between points in the element. The strain-rate tensor is established by the velocity
gradient tensor, but only the strain-rate tensor results in the physical distortion of the fluid element. This
distortion causes points within the fluid element to move towards (or away from) each other. This fluid
element distortion and, hence, relative movement of particles within the fluid element was illustrated for
pure normal strain motion (l = m) in Fig.2.22 and pure shear strain motion in Fig.2.23. Fig.2.24 showed
that rotation does not contribute to the relative movement of particles.

An important point to consider is the effect of including the rotational component of the velocity gradient
on a collision model. When it is accounted for, it will introduce an error in the true relative velocity, which
can be large in flows with a large rotational component. Hence, the rotational component should not be
taken into account when calculating collisions. The computation of the collision rate should, therefore,
only involve the aforementioned normal and shear components.

A.2 Absolute maximum principal strain rate

Incorporating all nine components of the strain-rate tensor in the calculation of the collision rate will
result in incorrect estimates and, hence in an inaccurate population balance. The improper counting
results from a failure to consider the direction of the strain-rate induced velocities. Negative values will
result in velocities toward each other, whereas positive values will have the opposite effect. This error
will always occur, since positive and negative strain-rates need to occur to satisfy continuity. Therefore,
only the strain rates that induce velocities toward one another must be considered and those resulting in
velocities causing movement away from each other must be eliminated.
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In order to simplify the calculations, the number of collision equations should be reduced. Since the
strain-rate tensor is symmetric, it can be diagonaliseda11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a′11 0 0
0 a′22 0
0 0 a′33

 (A.4)

where the primed values (a′lm) are the principal strain-rates that act in the principal directions. Also it
can be shown that

a′11 ≥ a′22 ≥ a′33 (A.5)

a′11 + a′22 + a′33 = 0 (A.6)

This induces thata′11 is always positive,a′33 is always negative anda′22 is either positive or negative. It
can be concluded that the maximum of|a′11| and|a′33| should be used to compute the collision rate. This
value is called theabsolute maximum strain-rate.
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APPENDIX B

Self-similarity and the inverse problem

This appendix contains some explicit mathematical developments that were mentioned in Section 2.5.6
and should allow better comprehension.

B.1 Self-similar cumulative mass fraction

The equation for the cumulative mass fraction is given by

F1(x, t) =

∫ x
0 x′f1(x′, t)dx′∫∞
0 x′f1(x′, t)dx′

(B.1)

Taking into account the definition of similarity being

f1(x, t) = g(t)Ψ(η) η ≡ x

h(t)
(B.2)

we obtain

F1(x, t) =

∫ x
0 η′h(t)2g(t)Ψ(η′)dη′∫∞
0 η′h(t)2g(t)Ψ(η′)dη′

(B.3)

resulting in

F1(x, t) =

∫ η
0 η′Ψ(η′)dη′∫∞
0 η′Ψ(η′)dη′

≡ Φ(η) (B.4)
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B.2 g(t) and h(t) in terms of higher integral moments

Thekth integral moment off1(x, t) is expressed as

µk(t) =
∫ ∞

0
xkf1(x, t)dx (B.5)

Transforming this into the similarity variable yields

µk(t) =
∫ ∞

0
ηkh(t)kg(t)Ψ(η)h(t)dη = h(t)k+1g(t)

∫ ∞

0
ηkΨ(η)dη = h(t)k+1g(t)µk(η) (B.6)

In a similar fashionµk+1(t) can be calculated

µk+1(t) = h(t)k+2g(t)µk+1(η) (B.7)

Imposing the constraint
µk(η) = µk+1(η) = 1 (B.8)

leads to the following set of equations

µk+1(t) = h(t)k+2g(t) µk(t) = h(t)k+1g(t) (B.9)

which can be solved to yield

h(t) =
µk+1(t)
µk(t)

g(t) =
µk(t)2

µk+1(t)
(B.10)

B.3 Derivation of the PBE in terms of the similarity variable for
pure breakage

The equation of pure breakage in terms of the cumulative number densityF1(x, t)is given by

∂F1(x, t)
∂t

=
∫ ∞

x
b(x′)G(x|x′)∂x′F1(x′, t) (B.11)

We denote the self-similar cumulative number density asΦ(η) and assume power law breakage

b(x) = Kxα (B.12)

and assume that the cumulative daughter distribution is function of the ratio of the breaking particle x’
and the particle x, i.e.G(x|x′) = g

(
x
x′

)
. The following transformations can be performed

∂F1(x, t)
∂t

=
dΦ(η)

dη

dη

dt
= −Φ(η)η

h′(t)
h(t)

(B.13)

b(x′) = Kx′α = K(η′h(t))α (B.14)

G(x|x′) = g
( x

x′

)
= g

(
η

η′

)
(B.15)

resulting in

−ηΦ′(η)
h′(t)

h(t)α+1
= K

∫ ∞

η
η′αg

(
η

η′

)
dΦ(η′) (B.16)
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The right-hand side is independent of time. Therefore, we should impose the following constraint on the
left-hand side to also make it time-independent

h′(t) = −ch(t)α+1 (B.17)

The latter can ultimately be solved to yield a possible similarity variableη = b(x)t for c=K. The PBE
then becomes

ηΦ′(η) =
∫ ∞

η
g

(
η

η′

)
η′Φ′(η′)dη′ (B.18)

In practice, however, the similarity variable (η) is unknown. Redefining it as

ẑ =
η

b(x0)
(B.19)

allows the transformation to be completely known using the experimental data and eq. 2.91. In order to
obtain the PBE in the new similarity variableẑ, the following transformations need to be used

Φ′(η) =
Φ(η)
dη

=
dΦ(ẑb(x0))

dẑb(x0)
=

Φ(ẑ)
dẑ

(B.20)

g

(
η

η′

)
= g

(
ẑ

ẑ′

)
(B.21)

Φ′(η′)dη′ =
dΦ(ẑ′b(x0))

dẑ′b(x0)
dẑ′b(x0) = b(x0)Φ′(ẑ′)dẑ′ (B.22)

This results in

ẑΦ′(ẑ) = b(x0)
∫ ∞

z
g

(
ẑ

ẑ′

)
ẑ′Φ̂′(ẑ′)dẑ′ (B.23)

Defining

u =
ẑ

ẑ′
(B.24)

and

du =
1

ẑ′
dẑ − ẑ

ẑ′
2 dẑ′ = − ẑ

ẑ′
2 dẑ′ (B.25)

the PBE can be rewritten as

ẑΦ̂′(ẑ) = b(x0)
∫ 0

1

ẑ

u
g(u)Φ̂′

(
ẑ

u

)(
− ẑ′

2

ẑ

)
du (B.26)

Rearranging yields

ẑΦ̂′(ẑ) = β

∫ 1

0

ẑ2

u3
Φ̂′
(

ẑ

u

)
g(u)du (B.27)

which serves as the starting point for the inverse problem solution.
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B.4 Derivation of the PBE in terms of the similarity variable for
pure aggregation

The equation of pure aggregation in terms of the cumulative number densityF1(x, t)is given by

∂F1(x, t)
∂t

= −
∫ x

0
∂ξF1(ξ, t)

∫ ∞

x−ξ

a(ξ, u)
u

∂uF1(u, t) (B.28)

We denote the self-similar cumulative number density asΦ(η) and find for the left hand side of eq. B.28

∂F1(x, t)
∂t

=
∂Φ(η)

∂t
=

dΦ(η)
dη

dη

dt
= Φ′(η)

dη

dt
(B.29)

Derivation of eq. B.2 yields

dη

dt
=
−xh′(t)
h(t)2

=
−ηh′(t)

h(t)
(B.30)

yielding

∂F1(x, t)
∂t

= Φ′(η)
−ηh′(t)

h(t)
(B.31)

The right hand side of eq. B.28 can be transformed to

−
∫ η

0
Φ′(η′)dη′

∫ ∞

η′−η′′

a(η′h(t), η′′h(t))
η′′h(t)

Φ′(η′′)dη′′ (B.32)

Eq. B.28 then becomes

Φ′(η)
−ηh′(t)

h(t)
= −

∫ η

0
Φ′(η′)dη′

∫ ∞

η′−η′′

a(η′h(t), η′′h(t))
η′′h(t)

Φ′(η′′)dη′′ (B.33)

or

Φ′(η)η =
1

h′(t)

∫ η

0
Φ′(η′)dη′

∫ ∞

η′−η′′

a(η′h(t), η′′h(t))
η′′

Φ′(η′′)dη′′ (B.34)

To impose time-independency, we need to assure

∂

∂t

[
a(η′h(t), η′′h(t))

h′(t)

]
= 0 (B.35)

or

a(η′h(t), η′′h(t)) = α(η′, η′′)H(h(t)) h′(t) = cH(h(t)) (B.36)

which yields the PBE for pure aggregation in terms of the similarity variableη

cηΦ′(η) =
∫ η

0
dη′Φ′(η′)

∫ ∞

η−η′
dη′′

Φ′(η′′)
η′′

α(η′, η′′) (B.37)
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B.5 Derivation of the semi-analytical equation for solving the ma-
trix equations for the pure aggregation case

In order to solve the PBE as function of the similarity variableη, it was rewritten in matrix notation.
Taking into account the constrained quadratic minimisation, the problem to be solved was reformulated
as

min aT
(
XT X + λregD

)
a− 2aT XT g (B.38)

where matrixXi,j is formulated as

Xij =
∫ ηi

0
dη′Φ′(η′)

∫ ∞

ηi−η′
dη′′

Φ′(η′′)
η′′

lj(η′, η′′) (B.39)

By taking advantage of the analytical representation of the similarity distributionΦ′(η) by means of an
expansion inγ-functions

Φ′(η) =
nterm∑
k=1

Akη
αk−1exp(−βkη) (B.40)

and the expansion of the scaled aggregation rate in terms of inner products of Laguerre polynomials

ln(x, y) = Li(x)Lj(x) (B.41)

whereLi(x) is given by
i∑

m=0

(−1)m j!
(j −m)!m!2

xm (B.42)

Eq. B.39 can be simplified into a semi-analytical expression which can be solved quite easily.

First, eq. B.39 is rewritten as

X̄ij(m) =
∫ ηm

0
dη′Φ′(η′)Li(η′)Ȳj(ηm − η′) (B.43)

whereηm is a point of the discretised similarity range andȲj(ηm − η′) is defined by

Ȳj(ηm − η′) =
∫ ∞

ηi−η′
dη′′

Φ′(η′′)
η′′

Lj(η′′) (B.44)

Substitution of the Laguerre polynomial by its explicit form yields

Ȳj(ηm − η′) =
∫ ∞

ηi−η′
dη′′

Φ′(η′′)
η′′

j∑
m=0

(−1)m j!
(j −m)!m!2

η′′m (B.45)

Including theγ-expansion yields

Ȳj(ηm − η′) =
∫ ∞

ηi−η′
dη′′

nterm∑
k=1

Ak

j∑
m=0

(−1)m j!
(j −m)!m!2

η′′m−1
(
η′′αk−1exp(−βkη′′)

)
(B.46)

which can be rewritten as

Ȳj(ηm − η′) =
nterm∑
k=1

Ak

j∑
m=0

(−1)m j!
(j −m)!m!2

∫ ∞

ηi−η′

(
η′′αk+m−2exp(−βkη′′)

)
dη′′ (B.47)
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The integral to the extreme right can be rewritten in the integration variableβkη′′∫∞
βk(ηi−η′)

(
(βkη

′′)(αk+m−1)−1exp(−βkη′′)
)
d(βkη

′′)

βαk+m−1
k

(B.48)

where the integral in the numerator represents the incomplete complementaryγ-functionγc given in its
general form by

γc(x, a) =
∫ ∞

x
(t)a−1exp(−t)dt (B.49)

and is available as pre-programmed function in most mathematical software packages (e.g. Matlab,. . . ),
which avoids the need for its numerical integration. Finally, the semi-analytical expression forȲj be-
comes

Ȳj(ηm − η′) =
nterm∑
k=1

Ak

j∑
m=0

(−1)m j!
(j −m)!m!2

γc(αk + m− 1, βk(ηi − η′))
βαk+m−1

k

(B.50)



APPENDIX C

Experimental data

C.1 Experimental data set from Biggs (2000)

This appendix contains the discussion of the experimental data that were not discussed explicitly in
Chapter 6.

Time evolutions of the vol% in the different size classes for the experiments with shear rates G equal to
37, 113 and 346s−1 are given in respectively Fig. C.1, C.2 and C.3.

For the case of G equal to 37s−1, the Kolmogorov microscale was calculated to be 93µm. This scale
coincides with the classes containing the largest volumes (92 and 112µm). It can again be concluded
that breakup is not occurring to a large extent throughout the complete experiment since no decrease
in the large size classes is observed. The leveling off appears faster compared to the 19.4s−1 case
(see section 6.1.1, suggesting smaller aggregation and breakage time-scales. Size classes larger than the
Kolmogorov microscale exhibit an increasing behaviour, eventually reaching an equilibrium. Smaller
size classes show a maximum before reaching the equilibrium (same reasoning as in the G equal to
19.4s−1 case). However, the peaks for the different size classes are reached sooner than in the 19.4s−1

case, indicating smaller time-scales of aggregation. The drop in volume after the peak is less pronounced,
which is either caused by (1) a smaller rate of aggregation of these particles out of the size class (unlikely,
since the number of collisions should be higher at higher mixing intensities) or (2) by a larger number of
particles aggregating into the size class from smaller particles or (3) due to particles born due to breakage
from larger sizes. The observed peak maxima for the same classes are also higher here, which supports
the second hypothesis. The smallest size classes don’t show a peak. The peak disappears for classes
below 23µm.

For the case of G equal to 113s−1 similar observations are found. The calculated Kolmogorov microscale
is 53µm. The maximum vol% is indeed observed for particles with sizes between 50 and 75µm. Level-
ing off starts faster, indicating smaller aggregation and breakage time-scales. Again peaks reach higher
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Figure C.1: Time evolutions of vol% in the different size classes for the experiment at a shear rate of
37s−1

Figure C.2: Time evolutions of vol% in the different size classes for the experiment at a shear rate of
113s−1
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Figure C.3: Time evolutions of vol% in the different size classes for the experiment at a shear rate of
346s−1

maximum values for the same particle classes and the decrease after the peak is less pronounced, prob-
ably due to higher aggregation rates as was argued in the previous case. The peak disappears for classes
below 23µm.

For the case of G equal to 346s−1 similar observations are found. The calculated Kolmogorov microscale
is 30µm. The maximum is indeed observed between 23 and 34µm. Leveling off starts faster, indicating
smaller aggregation and breakage time-scales. All particle size classes larger than 90µm exhibit an
initial decrease. In this case it would not be sound to neglect breakage and claim that pure aggregation
is occurring. Again peaks reach higher maximum values for the same particle classes and the decrease
after the peak is less pronounced, probably due to higher aggregation rates as was argued in previous
cases in combination with particles being formed from breakage of larger particles. The peak disappears
for classes below 11µm. Note the small measurement error that occurred in the early stages of the
experiment (indicated by the oval). Such artefacts can never be noticed in a summarising parameter such
as D[4,3], especially when they appear in the small size range as is the case here.
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APPENDIX D

Comprehensive procedures for solving the
inverse problem

D.1 Pure aggregation

Wright and Ramkrishna (1992) used a Fortran-code to analyse the self-similarity and to solve the inverse
problem. For this dissertation, a procedure was developed based on simple manipulations in a spread-
sheet (MS Excel was used here) and some coding/scripting in m-files in Matlab (Mathworks Inc., USA).
It uses the following steps:

1. Left-hand side of eq. 11.1: A continuous analytical expression for the similarity distributionΦ′(η)
was found by means of aγ-function expansion. Two steps are required which can be performed
entirely in the spreadsheet:

(a) Discretisation of the similarity variable range – As mentioned earlier, the behaviour of simi-
larity distributions for different known kernels exhibit differences at low values ofη. There-
fore, a logarithmic grid for covering the range betweenηmin and ηmax is recommended.
The number of binsne will determine the accuracy of the inversion. Values of 80-100 have
proven to be sufficient (Wright and Ramkrishna, 1992). In our case, a geometric grid with
a factor 1.223 was used resulting in 100 bins to cover the range betweenηmin = 7.91E− 7
andηmax = 352.

(b) ηΦ′η should be evaluated at all discretisedη-values. This will result in a vectorL with
dimensionnex1

2. Right-hand side of eq. 11.1: This will be computed based on eq. 11.12 and eq. 11.14. The following
steps are to be taken:

(a) Choose the number of basis functions per axis. Let this benb. The number ofγ-functions
used for fitting the similarity distribution is denotednterm.
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(b) Vectors representing the result of the numerical integration for all elements of the discretised
grid for a combination of basis functionsLi(x) andLj(y) need to be calculated. Let these
be Ii,j (dimension:nex1) and store them as columns in a matrixAR (dimension:nexn2

b).
This is implemented in a number of m-files in Matlab (Mathworks Inc., USA). The core
file used for this calculationcalculation I.m is given at the end of this section (for reasons
of transparency of the procedure). It contains some parameter declarations and callsquadl,
which is a matlab-routine for numerical integration, working on the functionintegrandum.

The integrandum-function is described in a separate m-fileintegrandum.m, which is also
given further in this section. It accepts 8 arguments, calculates the product of three function
(f prime,L and II) and returns a vector. It calls three functions, which are given in separate
m-files,f prime.m, L.m and II.m, respectively. The files are also given further on this section.

The function fprime takes 5 arguments, calculates theΦ′(ηi)-values based on theγ-expansion
calculated before and returns a vector. In order to return a vector with the correct dimension,
the storage of elements needs to be based on the storage and size of the x-vector that is
received.

The function L takes 2 arguments among which the order of the Laguerre polynomial to be
evaluated. Note that this order is a value in the set0, 1, . . . ,nb − 1. It evaluates theith-order
Laguerre polynomial and returns a vector.

Finally, the function II takes 6 arguments, evaluatesȲ for different values of the similarity
variable and returns a vector. The evaluation includes two summations: one for the parts of
the Laguerre polynomial and one for the number ofγ-functions used.

3. Constrained quadratic optimisation – Matlab (Mathworks Inc., USA) contains a function called
quadprogthat performs a constrained quadratic optimisation problem given by

minx
1
2
xT Hx + F T x (D.1)

with the following constraints

A · x ≤ b Aeq · x = beq (D.2)

In the next steps, the matrices H and F, together with the constraint matrices for our specific
problem are prepared for use in the quadprog function. The m-file (inverseproblemsolver.m) is
given later in this section for reasons of transparency of the method.

(a) The matrix H can be calculated based on the previously determined matrix AR as follows:

H = 2 ∗
(
ART ∗AR + λtId

)
(D.3)

Compared to the original equation, a factor of 2 needs to be added in order to be compatible
with the quadprog-function in Matlab.λt represents the regularisation parameter andId is
the identity matrix of dimensionn2

bxn2
b. The dimension ofH is alson2

bxn2
b.

(b) The matrix F is calculated based on the previously determined matrices AR and L as follows

F = (−1) ∗ 2 ∗ART ∗ L (D.4)

The dimension ofF is n2
bx1.



D.1 Pure aggregation 241

(c) The first constraint expresses the positivity of the aggregation rate. The scaled version of the
latter was expanded in inner products of Laguerre polynomialslj(x, y). Hence, the constraint
becomes (note that quadprog checks for negativity)

(−1)
b(x, y)
〈b〉

= (−1)
n2

b∑
j=1

ajlj(x, y) ≤ 0 (D.5)

In order to evaluate this constraint, we need to calculate the proper matrix A. For this, we
need to discretise both x and y into a number of bins, saynd. For all possible combinations
of x and y (i.e.n2

d), all inner productslj(x, y) should be evaluated. Thesen2
dx1 vectors are

then stored as columns to form the A matrix with dimensionn2
dxn2

b. Note that the order of
storage should be similar as in AR. A null-vectorb, representing the right-hand side, with
dimensionn2

dx1 needs to be defined. The mentioned discretisation should not be the same as
the one used for the inversion.nd = 20 should be sufficient.

(d) The second constraint stems from the symmetric nature of the aggregation rate. Collisions
between particles i and j should have the same probability as those between j and i. This
means that coefficients for the inner productsLi(x)Lj(y) andLj(x)Li(y) should be equal.
The number of mixed inner products (withi 6= j) depends on the number of basis functions
along each axis and is equal to

n2
b − nb

2
(D.6)

Whennb = 3, the constraint reads

0.a1 + 1.a2 + 0.a3 − 1.a4 + 0.a5 + 0.a6 + 0.a7 + 0.a8 + 0.a9 = 0 (D.7)

0.a1 + 0.a2 + 1.a3 + 0.a4 + 0.a5 + 0.a6 − 1.a7 + 0.a8 + 0.a9 = 0 (D.8)

0.a1 + 0.a2 + 0.a3 + 0.a4 + 0.a5 + 1.a6 + 0.a7 − 1.a8 + 0.a9 = 0 (D.9)

where eq. D.7, eq. D.8 and eq. D.9 respectively express the equality ofa2 = a4, a3 = a7 and
a6 = a8, respectively representing the inner products (0,1-1,0), (0,2-2,0) and (1,2-2,1). A

null-vectorbeq with dimension
n2
b−nb

2 x1 needs to be defined.

(e) At this stage all necessary matrices and vectors are defined to solve the inverse problem using
the quadprog-function in Matlab (Mathworks Inc., USA). The default number of iterations
of 200 might be too low in some cases. This can be increased by using the options argument.

(f) Finally, the right-hand side of eq. 11.1 can be calculated from the product of AR and C. The
resulting vector has dimensionnex1 and can be compared with the vector L that represents
the left-hand side of eq. 11.1 to evaluate the quality of inversion.

The different pieces of Matlab-code that were mentioned in the above elaboration of the stepwise inver-
sion procedure are given here in order of appearance.

• CalculationI.m

% C a l c u l a t i o n I .m −− r o u t i n e t o c a l c u l a t e v e c t o r s I
z=dlmread ( ’Z . t x t ’ , ’ \ t ’ ) ;
[ rows z , c o l s z ]= s i z e( z ) ; % d e t e r m i n e number o f b i n s ne
n te rm =2; % number o f gamma f u n c t i o n s
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nb =4; % number o f b a s i s f u n c t i o n s per a x i s
% r e s u l t s f rom gamma f i t d imens ion : 1 xnte rm
A= [ 0 . 1 6 3 1 , 0 . 0 0 6 2 ] ;
a l f a = [ 1 . 7 4 8 7 , 2 . 2 4 8 3 ] ;
beta = [ 0 . 3 2 0 1 , 0 . 1 0 1 5 ] ;
% numer i ca l i n t e g r a t i o n p rocedure
f o r i =0 : nb−1, % loop f o r b a s i s f u n c t i o n a long x−a x i s

f o r j =0 : nb−1, % loop f o r b a s i s f u n c t i o n a long y−a x i s
f o r m=1: rows z ,

I (m, j +nb* i +1)= quad l ( @integrandum , 0 , z (m) , [ ] , [ ] , z (m) , nterm ,
i , j ,A, a l f a , beta ) ;
m % check p r o g r e s s i o n o f c a l c u l a t i o n
j
i

end
end

end
dlmwri te ( ’AR. t x t ’ , I , ’ \ t ’ ) ; % w r i t e AR t o f i l e

• integrandum.m

% integrandum .m−− r o u t i n e t o c a l c u l a t e t h e in tegrandum
% x i s a v e c t o r passed on by t h e quad l f u n c t i o n i n c a l c u l a t i o nI .m
f un c t i o n y= in teg randum ( x , zm , n term , i , j ,A, a l f a ,beta )
y= f p r i m e ( x ,A, a l f a ,beta , n te rm ) .* L ( x , i )

. * I I ( z m−x , n term , j ,A, a l f a ,beta ) ;
end

• f prime.m

% f p r i m e .m−− r o u t i n e t o e v a l u a t e t h e s i m i l a r i t y d i s t r i b u t i o n
f un c t i o n y= f p r i m e ( x ,A, a l f a ,beta , n te rm )
[ x rows , x c o l s ]=s i z e( x ) ;

f o r i =1 : n term ,
temp ( i , 1 : x c o l s )=A( i ) .* x . ˆ ( a l f a ( i )−1) .* exp(−beta ( i ) . * x ) ;

end
y=sum( temp ) ;

end

• L.m

% L .m−− r o u t i n e t o c a l c u l a t e Laguer re p o l y n o m i a l s e v a l u a t i o n s
f un c t i o n y=L( x , i )
[ x rows , x c o l s ]=s i z e( x ) ;

f o r m=0: i ,



D.1 Pure aggregation 243

temp (m+1 ,1 : x c o l s )= (−1 ) . ˆm.* f a c t o r i a l ( i ) . / f a c t o r i a l ( i−m)
. / f a c t o r i a l (m) . ˆ 2 .* x . ˆm;

end
y=sum( temp ) ;

end

• II.m

% I I .m −− r o u t i n e t h a t e v a l u a t e s\bar{Y} a t d i f f e r e n t v a l u e s o f s imvar
f un c t i o n y= I I ( x , n term , j ,A, a l f a ,beta )
[ x rows , x c o l s ]=s i z e( x ) ;

f o r k =1: n term ,
f o r m=0: j ,

temp (m+1 ,1 : x c o l s )=A( k ) .* ( −1 ) . ˆm.* f a c t o r i a l ( j )
. / f a c t o r i a l (m ) . ˆ 2 . / f a c t o r i a l ( j−m) .* gammainc( beta ( k )
. * x , a l f a ( k )+m−1, ’ upper ’ ) .* gamma( a l f a ( k )+m−1)
. / beta ( k ) . ˆ ( a l f a ( k )+m−1);

end
gam ( k , 1 : x c o l s )=sum( temp ) ;

end
y=sum( gam ) ;

end

• inverseproblemsolver.m

% s o l v e r f o r i n v e r s e problem f o r pure a g g r e g a t i o n
nb =4; % number o f b a s i s f u n c t i o n s
% l e f t−hand s i d e o f PBE( s imvar ) was c a l c u l a t e d i n
% e x c e l and s t o r e d i n L . t x t , d imens ion , ne x 1
L=dlmread ( ’L . t x t ’ , ’ \ t ’ ) ;
% AR was c a l c u l a t e s e p a r a t e l y and s t o r e d i n AR . t x t
AR=dlmread ( ’AR. t x t ’ , ’ \ t ’ ) ;
% c o n s t r a i n e d q u a d r a t i c m i n i m i s a t i o n
% f i r s t term , H=AR’* AR+lambda* Id
% r e g u l a r i s a t i o n parameter and nb ˆ2 i d e n t i t y m a t r i x
lambda =1E−3
Id =ones ( nb* nb , nb* nb ) ;
H=2* (AR’ * AR+lambda* Id ) ;
% second term , F=(−1)* 2* AR’* L
F=(−1)* 2* AR’ * L ;
% c o n s t r a i n t s
% 1 . P o s i t i v i t y a t each x and y
nd =20; %number o f d i s c r e t i s a t i o n p o i n t s f o r x , y
A=−c o n s t r a i n t 1 ( nb , nd ) ;%c o n s t r a i n t i n quadprog e v a l u a t e s n e g a t i v i t y
b=ze ros( nd* nd , 1 ) ;
% 2 . Symmetry
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Aeq=dlmread ( ’Aeq . t x t ’ , ’ \ t ’ ) ;
beq=ze ros( 6 , 1 ) ;
[C , FVAL, EXITFLAG ,OUTPUT]= quadprog (H, F ,A, b , Aeq , beq , [ ] , [ ] , [ ] , o p t i o n s )
dlmwri te ( ’C . t x t ’ ,C , ’ \ t ’ ) ;
RHS=AR*C;
dlmwri te ( ’RHS . t x t ’ ,RHS, ’\ t ’ ) ;

D.2 Pure breakage

Sathyagal et al. (1995) used a Fortran-code to analyse the self-similarity and to solve the inverse prob-
lem. However, here, a procedure was developed based on simple manipulations in a spreadsheet (MS
Excel was used here) and some coding/scripting in m-files in Matlab (Mathworks Inc., USA). It uses the
following steps:

1. Left-hand side of eq. 2.100: A continuous analytical expression for the cumulative similarity dis-
tributionΦ(z) is needed and was found by means of a Weibul function given by (note that this is a
simpler alternative for the expansion inγ-functions)

Φ(z) = a

{
1− exp

[
−

(
log(z)− x0 + b(ln2)1/c

b

)c]}
(D.10)

The logarithmic transform is needed due to the wide range of the similarity variable caused by the
similarity transformation.

Two further steps are required here which can be performed entirely in a spreadsheet:

(a) Discretisation of the similarity variable range – In contrast to the aggregation case, a much
larger number of discretisation binsne is necessary and their location should be chosen such
that plenty of bins are present in the regions where steep changes in the volume fraction
occur. This can be done by choosing the bin location such that equal areas under the curve
are obtained, resulting in a denser grid in steep regions (see Fig. D.1). Alternatively, this
choice can be done visually by choosing most of the elements (say 80%) in the steep varying
regions. The latter has the advantage of being less time consuming. A number of at least 500
elements is recommended and was used in this work.

(b) zΦ′z should be evaluated at all discretisedη-values. This will result in a vectorL with
dimensionnex1.

2. Right-hand side of eq. 2.100: The computation of the right-hand side is somewhat less compli-
cated compared to the aggregation case. The unknown functionγg(u) was expanded according to
eq. 2.101.

(a) Choose the number of basis functions in the expansion. Let this benb.

(b) Calculate the numerical integralIi,j for every basis function j and for all elements of the
discretisation gridzi. This will result innb vectors of dimensionnex1, which are then stored
column-wise in a matrixAR that has dimensionnexnb. The m-file (RHScalc.m) is given
later in this section for reasons of transparency of the method.
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vol

F

Figure D.1: Grid determination for obtaining equal areas under the curve

3. Constrained quadratic optimisation – Matlab (Mathworks Inc., USA) contains a function called
quadprogthat performs a constrained quadratic optimisation problem given by

minx
1
2
xT Hx + F T x (D.11)

with the following constraints
A · x ≤ b Aeq · x = beq (D.12)

In the next steps, the matrices H and F, together with the constraint matrices for the specific prob-
lem at hand are prepared for use in the quadprog function. The m-file (inverseproblemsolver.m)
is given later in this section for reasons of transparency of the method.

(a) The matrix H can be calculated based on the previously determined matrix AR as follows

H = 2 ∗
(
ART ∗AR

)
(D.13)

Compared to the original equation, a factor of 2 needs to be added in order to be compatible
with the quadprog-function in Matlab. The dimension ofH is nbxnb.

(b) The matrix F is calculated based on the previously determined matrices AR and L as follows:

F = (−1) ∗ 2 ∗ART ∗ L (D.14)

The dimension ofF is nbx1.

(c) The first constraint requires the extracted function to always be positive. To build up the
constraint matrixA, the interval{0− 1} needs to be discretised innx classes (around 20
should be sufficient). At each of these points, the basis functions are evaluated resulting in
nb vectors of dimensionnxx1. These are then stored column-wise to form a matrixA1. Since
quadprog checks for the negativity constraint, all elements of the matrix should be multiplied
by -1.

(d) The second constraint requires the extracted function to be a monotonic rising function. A
similar procedure should be followed as was done for constraint 1, except that the differen-
tiated basis functions should now be evaluated at all points in the discretisation. This again
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results innb vectors of dimensionnxx1, which are stored column-wise to form a matrixA2.
Again, multiplication of all matrix elements by -1 is needed.

Matrices A1 and A2 are then stacked to form matrix A, which has dimension2nxxnb. A
null vectorb of dimension2nxx1 should be defined to represent the right-hand side of the
constraint.

(e) The third constraint requires the derivative at z=1 to be equal to zero. For this, the differenti-
ated basis functions are evaluated at z=1 and the results are stored in a1xnb vector which is
calledAeq. A null-vectorbeq of size 1x1 should be defined to represent the right-hand side
of the constraint.

(f) At this stage all necessary matrices and vectors are defined to solve the inverse problem using
the quadprog-function in Matlab (Mathworks Inc., USA). The default number of iterations
of 200 might be too low in some cases. This can be increased by using the options argument.

(g) Finally, the right-hand side of eq. 11.1 can be calculated from the product of AR and C. The
resulting vector has dimensionnex1 and can be compared with the vector L that represents
the left-hand side of eq. 11.1 to evaluate the quality of inversion.

The different pieces of Matlab-code that were mentioned in the above elaboration of the stepwise inver-
sion procedure are given here in order of appearance.

• RHS calc.m

% r h s c a l c .m−− r o u t i n e t o c a l c u l a t e r i g h t−hand s i d e
x=dlmread ( ’Z . t x t ’ , ’ \ t ’ ) ;
a =0.996894654295881
b =129431677.326099
c =45586368.9234719
d= l og ( 2 )
x0 =23.21092937
f o r i =1 :500 ,
f p r i m e x u = i n l i n e ( ’ x . ˆ 2 . / u . ˆ 3 .* 0 . 0 9 1 3 .* u .* (2−u ) .* a
. * ( ( x . / u−x0+b .* d . ˆ ( 1 . / c ) ) . / b ) . ˆ c .* c . / ( x . / u−x0+b .* d
. ˆ ( 1 . / c ) ) .* exp (− ( ( x . / u−x0+b .* d . ˆ ( 1 . / c ) ) . / b ) . ˆ c ) ’ ,
’ u ’ , ’ x ’ , ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ x0 ’ ) ;
r h s ( i )= quad l ( f p r ime xu , 0 . 0 5 , 1 , [ ] , [ ] , x ( i ) , a , b , c , d , x0 ) ;
end
%x ( 1 : 1 0 )
%I 0
DLMWRITE( ’ r h s . t x t ’ , t r a n s p o s e ( r h s ) , ’\ t ’ ) ;

• inverseproblemsolver.m

% I n v e r s e p r o b l e m s o l v e r .m
% D e f i n i n g t h e l e f t hand s i d e v e c t o r L t h a t was c a l c u l a t e d i n Exce l
% d imens ion ne x 1
L=dlmread ( ’L . t x t ’ , ’ \ t ’ ) ;
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% D e f i n i n g t h e r i g h t hand s i d e v e c t o r AR t h a t was c a l c u l a t e d i n Exce l
% number o f b a s i s f u n c t i o n s
nb =3;
% d e f i n e v e c t o r s c o n t a i n i n g t h e i n t e g r a l over t h e u n i t i n t e r v a l a t t h e
% d i s c r e t i s e d v a l u e s o f s imvar , f o r a l l b a s i s f u n c t i o n s , d imens ion ne x 1
I 0 =dlmread ( ’ I 0 . t x t ’ , ’ \ t ’ ) ;
I 1 =dlmread ( ’ I 1 . t x t ’ , ’ \ t ’ ) ;
I 2 =dlmread ( ’ I 2 . t x t ’ , ’ \ t ’ ) ;
% put t h e s e v e c t o r s i n a mat r i x , d imens ion ne x nb
AR=[ I 0 , I 1 , I 2 ] ;
% t r a n s p o s e t h i s mat r i x , d imens ion nb x ne
AR t rans = t r a n s p o s e (AR) ;
% Prepar ing t h e m a t r i c e s f o r t h e q u a d r a t i c o p t i m i s a t i o n
% te rms f o r o p t i m i s a t i o n ( S a t h y a g a l eq . 1 7 )
% term 1 , d imens ion nb x nb
H= AR t rans*AR;
%term 2 , d imens ion nb x 1
F=(−1)* 2* AR t rans* L ;
% c o n s t r a i n t s
% g ( u )>0 ,g ’ ( u)>0
% d i s c r e t i s i n g t h e u i n t e r v a l [ 0 , 1 ] i n t o nx c l a s s e s
nx =50;
s t e p = 1 / ( nx−1);
Nx= t r a n s p o s e ( 0 : s t e p : 1 ) ;
% d e f i n e v e c t o r s c o n t a i n i n g v a l u e s o f Gnb a t t h e d i f f e r e n t d i s c r e t e p o i n t s
% nx , d imens ion nx x 1
% d e f i n e m a t r i x based on t h e s e v e c t o r s , d imens ion nx x nb
A1=dlmread ( ’G. t x t ’ , ’ \ t ’ ) ;
A2=dlmread ( ’ G prime . t x t ’ , ’\ t ’ ) ;
% s t a c k ma t r i ces , d imens ion 2nx x nb , and m u l t i p l y by−1
A=−1* [A1 ; A2 ] ;
% rhs o f c o n s t r a i n t
b=ze ros(2* nx , 1 ) ;
% g ’ (1 )=0
% vec to r , d imens ion 1 x nb
Aeq=dlmread ( ’ G pr ime 1 . t x t ’ , ’ \ t ’ ) ;
beq=ze ros( 1 , 1 ) ;
% q u a d r a t i c o p t i m i s a t i o n
C=quadprog (H, F ,A, b , Aeq , beq ) ;
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List of abbreviations and symbols

Abbreviations

BOD biochemical oxygen demand [M.L−3]
BW bound water
CFD computational fluid dynamics
CFS coalesced fractal sphere
COD chemical oxygen demand [M.L−3]
CWA clean water act
DCB divalent cation bridging
DGGE denaturing gradient gel electrophoresis
DO dissolved oxygen concentration [M.L−3]
DSS dispersed suspended solids [M.L−3]
DSVI diluted sludge volume index [L3.L−3]
EPA environmental protection agency
EPS exocellular polymeric substances
ESS effluent suspended solids [M.L−3]
FSS flocculated suspended solids [M.L−3]
HGE hierarchical graphical editor
HRT hydraulic residence time [T]
MLSS mixed liquor suspended solids [M.L−3]
MSL model specification language
NPDES National Pollution Discharge Elimination System
ORP oxidation-reduction potential [V]
PBE population balance equation
PBM population balance model
PCA principal component analysis
PSD particle size distribution
SBR sequencing batch reactor
SCM shell core model
SPA state point analysis
SRT sludge residence time [T]
SS suspended solids [M.L−3]
SST secondary settling tank
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Abbreviations - continued

SSVI stirred sludge volume index [L3.L−3]
SSVI3.5 stirred sludge volume index at a SS concentration of 3.5g.l−1 [L3.L−3]
SVI sludge volume index [L3.L−3]
TMDL total maximum daily load
WML WEST model library
z vector of internal and external coordinates

English letters

a0 primary particle radius [L]
a′max maximum principal strain rate [T−1]
Aham Hamaker constant [M.L2.T−2]
b(x,r,Y,t) specific breakage rate [T−1]
dm metastable floc diameter [L]
dmax maximum stable floc diameter [L]
Df fractal dimension [-]
r ≡ (r1, r2, r3) vector of external coordinates
f1 (x, r, t) number density function [L−3]
f2 (x, r; x′, r′, t) particle pair density function [L−6]
F1 (x, r, t) cummulative number density function [L−3]
g gravity constant [L.T−2]
G absolute velocity gradient [T−1]
h (x, r,Y, t) net birth rate [T−1.L−3]
h+ (x, r,Y, t) source term of net birth rate [T−1.L−3]
h+

agg (x, r,Y, t) source term from aggregation [T−1.L−3]
h+

break (x, r,Y, t) source term from breakage [T−1.L−3]
h− (x, r,Y, t) sink term of net birth rate [T−1.L−3]
h−agg (x, r,Y, t) sink term from aggregation [T−1.L−3]
h−break (x, r,Y, t) sink term from breakage [T−1.L−3]
I light intensity
l turbulent length scale [L]
L length of a scattering body [L]
m relative refractive index [-]
n refractive index [-]
nb number of basis functions (to solve inverse problem [-]
Na agitation speed [T−1]
Ni number concentration in class i [L−3]
Np dimensionless impeller power number [L−3]
P (x, r|x′, r′,Y, t) probability density function or daughter size distribution
Q wave vector
r particle radius [L]
rG radius of gyration [L]
rGi radius of gyration of aggregate i [L]
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English letters - continued

rH hydraulic radius [L]
Ṙ (x, r,Y, t) rate of change of external coordinates [T−1]
Rp primary particle size [L]
t time T
T absolute temperature K
Ta torque F.L
∆u(l) differential velocity [L.T−1]
v̄e mean volume of all erosion product particles [L3]
vp mean volume of all erosion product particles< parent floc [L3]
VZS zone settling velocity [L.T−1]
x ≡ (x1, x2, . . . , xd) d-dimensional vector of internal coordinates
Ẋ (x, r,Y, t) rate of change of internal coordinates [T−1]
Y (r, t) continuous phase vector

Greek symbols

αi,j collision efficiency of particles of sizes i and j [-]
βi,j collision frequency of particles of sizes i and j [L3.T−1]
ε energy dissipation rate [L2.T−3]
η Kolmogorov length scale [L]
η similarity variable (only in section 2.5.6) [L]
φ (x, r, t) volume fraction [-]
ϕ) floc density [-]
ϕ0) packing density [-]
κ permeability [L2]
λ wavelength of radiation in vacuum [L]
λH ratio of hydraulic particle radii [−]
λreg regularisation parameter [−]
µ dynamic viscosity [M.L−1.T−1]
µr (t) rth integral moment
µ

(i)
r (t) rth sectional moment

ν kinematic viscosity [L2.T−1]
Ωr domain of external coordinates
Ωx domain of internal coordinates
ρl fluid density [M.L−3]
ρp particle density [M.L−3]
τ pulse width [T]
θ scattering angle [−]
υ (x′, r′,Y, t) average number of particles formed through breakage
ξ Debye’s shielding ratio [-]
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Summary

The separation of activated sludge and purified wastewater still remains a delicate issue in wastewater
treatment. In both the traditional separation by means of gravitation in a secondary settling tank and
the more recent membrane technology, it has been accepted that floc size and, hence, activated sludge
flocculation plays an important role.

This dissertation deals with the investigation of the applicability of a population balance framework for
modelling the activated sludge flocculation process. This analysis consists of several separate issues
which should be treated in a logical order.

A first issue is related to thenumerical solution methods for population balance models. To this end,
three discretisation methods (Hounslow algorithm, fixed pivot and moving pivot) were taken from liter-
ature and subjected to a detailed simulation study in which several aspects like ease of implementation,
accuracy, stability, . . . were investigated for three distinct mechanisms (pure aggregation, pure breakage
and the combined case) when using different initial conditions and grid densities. It was concluded that
the moving pivot was superior in most cases. However, the choice is often a trade-off between accuracy
and simulation speed.

In a second stage, acomprehensive calibration methodologywas developed which deals with several
issues related to the fitting of a population balance model to an experimental data set, i.e. the selection
of the solution method, data transformation, determination of measurement errors and choice of fitting
variable. The former was already investigated in the first part. Data transformations should be avoided,
but are sometimes necessary, e.g. to determine the initial particle size distribution for the model. A
new method based on the sludge concentration and the densities of water, flocs and solids was presented.
Preliminary experiments for the measurement of the floc and solids densities were also conducted, where
the former is based on pyknometry and the latter on a linear Percoll gradient. Initial results showed
floc densities of 1.02-1.06g.ml−1, whereas solids densities were found in the range of 1.60g.ml−1. A
method to determine measurement errors in the different size classes of a distribution was presented based
on the variance of a multinomial distribution. Finally, the choice of fitting variable was investigated.
Volume-based variables were able to capture the dynamics of the volume percentage distribution rather
well. However, they completely failed at predicting the dynamics of the number distribution. Fitting
on number-based variables resulted in poor predictions of the volume distribution dynamics, whereas a
better prediction of the dynamic number distribution was found. The choice should be determined by the
goal of the research. In this case, the number of small particles is of interest as it are the small particles
that end up in the effluent and determine its quality.
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In the previous steps, no attention was paid to finding an adequatestructure of the model. Two different
approaches were used to find one: evaluate existing kernels from literature and extracting the kernel
structures from the experimental data.

In the first approach, different relevant kernels for aggregation and breakage were selected from literature.
These were combined into four models that were subsequently fitted to the dynamic number distribution
using a least squares method. The knowledge-based models incorporated mechanisms like shear-based
orthokinetic aggregation, fractal dimension, hydrodynamic and Van der Waals interactions, turbulent
breakage. However, none of the investigated models was able to describe the evolution of the number
distributions. The best model was found to be composed of a constant collision efficiency, a shear-based
orthokinetic aggregation frequency and power law breakage with an exponent of 1/9.

The second approach aims at solving the inverse problem to reconstruct the unknown aggregation and
breakage kernels from the experimental data. Prior to applying this technique, a similarity analysis is
performed since this can simplify the inversion problem.

In the pure aggregation case, the aggregation data obtained from a sonicated sludge did not exhibit self-
similar behaviour. However, aggregation from a sludge that was previously exposed to a high shear
environment did exhibit self-similar behaviour. This leads to the important conclusion that sonication is
apparently not representative for the dynamic flocculation behaviour of an activated sludge in a full-scale
plant. It should, therefore, be avoided in lab-scale studies on activated sludge flocculation.

Since flocculation behaviour was found to be different for the non-sonicated sludge, the previous ap-
proach using models from literature was repeated first. However, the optimisation algorithm was found
to be sensitive to initial parameter values and also resulted in very high parameter variances. An inves-
tigation based on a scenario analysis showed that the objective function consisted of a large plateau and
only exhibited a minumum around the origin. This would imply that the dynamic data could best be de-
scribed by a static model (i.e. no aggregation or breakage) which is not consistent with the observations.

Continuing the second approach, the inverse problem was solved. In the scope of reconstructing the
unscaled aggregation frequency, it was found that the kernel was not homogeneous and that an alternative
method based on the derivative of the scaling function h(t) was to be used. The reconstructed unscaled
aggregation kernels exhibited a different shape depending on the number of basis function that was used
in the inversion. The regularisation parameter did not influence the results a lot, except in the case where
three basis functions were used.

The quality of the inversion was checked by performing a so-called forward simulation. The case using
four basis functions in the inversion yielded the best results and was able to capture the evolution of
the complete volume distribution, except for the lower tail. However, in order to obtain this result, an
additional factor had to be introduced. The origin of this factor is unclear. It causes the small size classes
of the number distribution to be underestimated, whereas the remainder of the distribution is captured
quite well.

The inversion was also investigated for the pure breakage case. Self-similar behaviour was found and
resulted in a breakage rate described by a power law with exponent 3.7. The constant and the daughter
distribution have to be recovered from the inverse problem. However, the basis functions had to be mod-
ified due to a singularity near the origin. This resulted in a solution of the inverse problem that was best
for the lowest number of basis functions. The remaining constant of the breakage rate was determined to
be 1.5. The daughter distribution could be extracted from the cumulative daughter distribution.

Unfortunately, the forward simulation was impossible to complete due to the high breakage rates that
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prohibited the solver to converge to a solution. Multiplying by a small factor allowed to perform the
simulation, but resulted in poor predictions of the dynamic volume distribution.

Finally, existingexperimental dataand new experimental data from the newly built Flocunit were anal-
ysed with focus on the dynamic behaviour of the distributions instead of a summarising parameter such
as the weighted average diameter. No universal relationship between the most abundant floc size and the
Kolmogorov microscale was found for the different experiments. For the literature data, the Kolmogorov
scale, calculated based on the assumption that the maximum energy dissipation rate near the impeller is
tenfold of the average energy dissipation rate, was in good agreement with the most abundant floc size.
The latter was not found for the Flocunit experiments. This is possibly due to differences in reactor con-
figuration (larger volume, different impeller) and floc strength. On the other hand, the analysis revealed
that in the dynamic part of aggregation/breakage experiments the assumption of neglecting the other
mechanism (breakage/aggregation respectively) was valid. This assumption is an important requirement
for conducting the similarity analysis.

The new experimental data investigated the influence of 5 possible influencing physico-chemical factors
by means of a fractional factorial design, i.e. temperature, shear rate, dissolved oxygen, sludge concen-
tration and Ca-addition. Shear has an important effect on the activated sludge flocculation. High shear
destroys flocs and shifts distributions toward smaller sizes. Low shear allows larger flocs to be present in
the system. Flocs are not disturbed when temperature is lowered. However, some immediate flocculation
occurs when temperature is increased. Applying anaerobic conditions showed an immediate increase in
floc size. At low sludge concentration, a slow deflocculation can be observed, caused by the smaller
collision probability. Ca-addition results in flocculation.
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Samenvatting

De scheidingsstap van het actief slib en het gezuiverde water blijft nog steeds een delicate kwestie binnen
de afvalwaterzuivering. Zowel in de traditionele gravitaire bezinking in een secundaire nabezinktank als
bij de meer recente membraantechnologie wordt algemeen aangenomen dat de vlokgrootte en dus de
actief slib flocculatie een belangrijke rol speelt.

Dit werk onderzoekt de toepasbaarheid van een populatiebalansmodel voor het modelleren van het actief
slib flocculatieproces. De analyse behelst verscheidene zaken die in een logische volgorde dienen te
worden behandeld.

Een eerste zaak is gerelateerd met denumerieke oplossingsmethoden voor populatiebalmansmodellen.
Met dit doel voor ogen werden drie discretisatiemethoden (het Hounsloalgortime, de fixed pivot en de
moving pivot) uit de literatuur onderworpen aan een gedetailleerde simulatiestudie waarin verschillende
aspecten zoals moeilijkheidsgraad van implementatie, accuraatheid, stabiliteit,... werden belicht voor
drie mechanismen (zuivere aggreggatie, zuivere breking en het gecombineerde geval) en voor verschil-
lende initïele condities en griddichtheden. Het moving pivot algoritme bleek in de meeste gevallen
superieur te zijn. De keuze blijft echter steeds een afweging tussen accuraatheid en rekensnelheid.

In een tweede luik werd eenuitgebreide calibratiemethodologieontwikkeld die verschillende punten
aanraakt die belangrijk zijn bij de calibratie van een populatiebalansmodel met experimentele meet-
gegevens zoals de selectie van een oplossingsmethode, datatransformatie, het bepalen van meetfouten
en schattingsvariabele. Het eerste punt werd reeds voorheen uitvoerig behandeld. Datatransformaties
worden best vermeden maar zijn soms onafwendbaar om vb. een initiële partikelgroottedistributie voor
het model te genereren. Een nieuwe methode gebaseerd op de slibconcentratie en de densiteiten van
water, vlokken en vaste stof werd ontwikkeld. Ook werden preliminaire experimenten voor de bepaling
van de vlok- en vaste stof densiteiten uitgevoerd, waarbij de eerste steunt op pyknometrie en de laatste
op een lineaire Percoll-gradiënt. Initiële resultaten toonden vlokdensiteiten van 1.02-1.06g.ml−1, terwijl
vaste stof densiteiten in de buurt van 1.60g.ml−1 lagen. Een methode ter bepaling van meetfouten in
de verschillende klassen gebaseerd op op de variantie van een multinomiale verdeling werd voorgesteld.
Tenslotte werd de keuze van de schattingsvariabele onderzocht. Volumegebaseerde variabelen konden
de dynamica van de volume distributies behoorlijk goed beschrijven. Anderzijds faalden zij volledig
bij het voorspellen van de dynamica van de aantallen-verdelingen. Aantalgebaseerde variabelen konden
de dynamica van de volumedistributies niet beschrijven, maar konden de dynamica van de aantallendis-
tributies dan weer beter voorspellen. De keuze wordt dan ook in grote mate bepaald door het doel van
het onderzoek. In dit geval is het aantal kleine partikels van primordiaal belang aangezien het net deze
kleine partikels zijn die in het effluent zullen terechtkomen en de kwaliteit ervan bepalen.

267



268 Samenvatting

In wat vooraf ging werd nog geen aandacht besteed aan het vinden van een adequatemodelstructuur.
Twee verschillende aanpakken werden gebruikt om deze te vinden: evaluatie van bestaande functies uit
de literatuur en het extraheren van de functiestructuren uit de experimentele data.

Voor de eerste benadering werden verschillende aggregatie- en brekingsfuncties uit de literatuur gese-
lecteerd. Deze werden gecombineerd in vier modellen die vervolgens werden gefit aan de dynamische
aantallendistributies met behulp van een kleinste kwadratenmethode. Deze kennisgebaseerde modellen
incorporeerden concepten zoals orthokinetische aggregatie, fractale dimensie, hydrodynamische en Van
der Waals interacties en turbulente breking. Geen van de modellen was echter in staat om een goede
beschrijving te geven van de dynamische evolutie van de aantallendistributie. Het beste model bestond
uit een constante botsingsefficiëntie, een orthokinetische aggregatiefrequentie en een machtsfunctie voor
breking met een exponent gelijk aan 1/9.

De tweede benadering trachtte het invers probleem op te lossen om zo de onbekende aggregatie- en
brekingsfuncties te reconstrueren uitgaande van de experimentele data. Alvorens deze techniek toe te
passen werd een similariteitsanalyse uitgevoerd aangezien deze de oplossing van het invers probleem
aanzienlijk kan vergemakkelijken.

In het geval van zuivere aggregatie werd geen similariteit gevonden voor de gesoniceerde data. In tegen-
stelling hiermee werd wel similariteit gevonden bij slib dat aggregeerde uitgaande van een slib dat vo-
ordien aan een hogere mengintensiteit werd blootgesteld. Dit leidt tot de belangrijke conclusie dat het
toepassen van sonicatie niet representatief is voor het bestuderen van slibflocculatiedynamica in een
volschalige installatie. Het wordt dan ook afgeraden om sonicatie in laboschaalexperimenten voor het
bestuderen van actief slib flocculatie te gebruiken.

Aangezien het flocculatiegedrag met of zonder sonicatie verschillende bleek te zijn, werd de vorige
aanpak met de modellen uit de literatuur herhaald. Er werd gevonden dat het optimalisatie-algoritme
gevoelig was voor de initiële parameterwaarden en de resulterende parametervarianties waren zeer groot.
Een diepgaandere studie van de parameterruimte met behulp van een scenario-analyse toonde aan dat de
objectieffunctie bestond uit een groot plateau dat enkel bij de oorspong een minimum vertoonde. Dit
impliceert dat de dynamische data het best beschreven worden door een statisch model (maw. geen
aggregatie of breking) wat duidelijk niet consistent is met de observaties.

Verderbouwend op de tweede benadering werd het invers probleem opgelost. Vervolgens diende de
ongeschaalde aggregatiefrequentie worden gereconstrueerd. Hierbij bleek dat deze niet homogeen bleek
te zijn en dat een alternatieve methode steunend op de afgeleide van de schalingsfunctie h(t) diende ge-
bruikt te worden. De gereconstrueerde, ongeschaalde aggregatiefrequentie vertoonde een verschillende
vorm afhankelijk van het aantal basisfuncties dat werd gebruikt bij de inversie. De regularisatieperameter
bëınvloedde de resultaten nauwelijks behalve in het geval waar drie basisfuncties werden gebruikt.

De kwaliteit van de inversie werd gecontroleerd door het uitvoeren van een zogenaamde voorwaartse
simulatie gebruik makende van de gevonden aggregatiefrequentie in het model. Het geval waarbij vier
basisfuncties in de inversie werden gebruikt leverde het beste resultaat en was in staat om de evolutie
van de gehele volumedistributie te beschrijven met uitzondering van de staart bij de kleine partikels.
Om dit resultaat te bekomen diende echter een additionele factor te worden ingevoerd in het model. De
reden hiervoor is vooralsnog onduidelijk. De kleine partikels van de aantallendistributie worden opnieuw
onderschat, maar de rest van de distributie wordt goed beschreven.

De mogelijkheid voor inversie werd ook onderzocht voor zuivere breking. Ook hier werd similariteit
gevonden, wat in dit geval reeds de exponent van de machtsfunctie oplevert, nl. 3.7. Zowel de tweede
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constante van de machtsfunctie als de dochterdistributie dienen vervolgens bepaald te worden uit het
invers probleem. In dit geval dienden andere basisfuncties te worden gebruikt wegens het optreden
van een singulariteit in de buurt van de oorsprong. Dit resulteerde in een oplossing voor het invers
probleem dat het beste bleek te zijn voor het kleinste aantal basisfuncties. De overblijvende constante
in de machtsfunctie werd bepaald op 1.5. De dochterdistributie kon worden afgeleid van de cumulatieve
dochterdistributie.

De voorwaartse simulatie bleek echter niet uitvoerbaar wegens de te hoge brekingssnelheden wat de
solver niet toeliet om naar een oplossing te convergeren. Vermenigvuldigen met een kleine factor liet wel
toe om de simulatie uit te voeren, maar dit resulteerde niet in goede voorspellingen van de dynamische
volumedistributies.

Tenslotte werden ook bestaandeexperimentele dataen nieuwe data van de Flocunit geanalyseerd waar-
bij de aandacht vooral werd toegespitst op het dynamisch gedrag van de distributies in plaats van op
een samenvattende parameter zoals de gewogen gemiddelde diameter. Er werd geen eenduidige relatie
gevonden tussen de meest voorkomende vlokgrootte en de Kolmogorov microschaal van turbulentie
voor de verschillende experimenten. Voor de data uit de literatuur was de Kolmogorovschaal, berekend
op basis van de assumptie dat de energiedissipatiesnelheid in de buurt van het roerblad tien keer hoger
is dan de gemiddelde energiedissipatiesnelheid, vergelijkbaar met de meest voorkomende vlokgroottes.
Dit laatste werd echter niet teruggevonden voor de Flocunit-experimenten. Dit is waarschijnlijk toe te
schrijven aan het verschil in reactorconfiguratie (ander volume en mengblad) en vloksterkte. Anderzijds
onthulde de analyse dat zuivere aggregatie/breking kan worden verondersteld in de dynamische fase van
de experimenten. Dit laatste is een belangrijke voorwaarde voor het toepassen van similariteitsanalyses
op de experimentele data.

De nieuwe experimentele data onderzocht de invloed van 5 mogelijke fysico-chemische invloeden door
middel van een fractioneel factorieel ontwerp. Deze invloeden waren temperatuur, mengintensiteit,
opgeloste zuurstofconcentratie, slibconcentratie en Ca-additie. Mengintensiteit had een belangrijke im-
pact op actief-slib flocculatie. Hoge mengintensiteiten vernietigen de vlokken en verschuift de distributie
naar kleinere vlokgroottes. Lage mengintensiteiten laten toe dat de vlokken groter worden. Vlokken bli-
jken niet gevoelig te zijn voor temperatuursverlagingen. Anderzijds, werd een onmiddellijke flocculatie
vastgesteld bij een toename van de temperatuur. Hetzelfde werd gevonden bij het aanleggen van anaërobe
omstandigheden. Bij lage slibconcentraties werd een trage deflocculatie vastgesteld, te wijten aan lagere
botsingsprobabiliteiten. Ca-toevoeging resulteerde in flocculatie.
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