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Chapter 1 
 
Introduction and problem statement  

1. Introduction 

The activated sludge process is one of the most widespread biological wastewater purification 

technologies. In this process, wastewater is mixed with a concentrated bacterial biomass suspension (the 

activated sludge) which degrades the pollutants. Originally, the concern was mainly to remove the organic 

carbon substances from the wastewater, which could be obtained rather easily by simple process designs. 

However, during the last two decades more stringent effluent standards for nutrients (nitrogen and 

phosphorus) have been imposed by legislation. As a consequence, the design and operation of activated 

sludge plants had to be modified to more advanced levels to make the treatment plants suited for biological 

nitrogen and phosphorus removal. 

Implementation of biological nutrient removal on wastewater treatment plants (WWTP’s) resulted in an 

increased knowledge on the biological degradation processes. This resulted in the development and use of 

more advanced dynamic mathematical models that may be able to describe the biological nutrient removal 

processes. These activated sludge models allow to study and to further increase the understanding of the 

influence of process modifications on treatment process efficiency. The dynamic models are for example 

increasingly used for scenario evaluations aiming at the optimisation of activated sludge processes (Stokes 

et al., 1993; de la Sota et al., 1994; Coen et al., 1997 among many others). The Activated Sludge Model 

No.1 (ASM1) presented by the IAWQ Task Group on Mathematical Modelling for Design and Operation 

of Biological Wastewater Treatment Processes (Henze et al., 1987) is generally accepted as state-of-the-

art. ASM1 was primarily developed for municipal activated sludge wastewater treatment plants to describe 

the removal of organic carbon substances and nitrogen with simultaneous consumption of oxygen and 

nitrate as electron acceptors, and to yield a good description of the sludge production. ASM1 has been 

extended to include a description of biological phosphorus removal, resulting in ASM2 and ASM2d 

(Henze et al., 1995, 1998). Recently, some of the model concepts behind ASM1 have been altered in 

ASM3 (Gujer et al., 1999), a model that also focuses on the degradation of carbon and nitrogen but 

allows the introduction of processes describing the storage of bio-polymers under transient conditions. 
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2. Problem statement 

Problems arise in the model calibration of the Activate Sludge Models. In this context a model calibration is 

understood as the adaptation of the model to fit a certain data set obtained for a full-scale WWTP with the 

purpose of describing the biological processes that take place in the WWTP. This task is often rather time-

consuming and very often the time and resources needed for a reliable model calibration is under-

estimated. Although ASM1 was published more than ten years ago a consistent model calibration 

procedure has not been defined. One important reason for this is probably that the purpose of the model 

calibration will to a large extent decide how to approach the calibration, and how accurate the model must 

describe the full-scale observations. However, also of importance is the fact that the high complexity of the 

ASM with its numerous processes and parameters often gives rise to parameter identifiability problems 

resulting in more than one parameter set that can describe the observations equally well. 

Identifiability is defined here as the ability to obtain a unique parameter set that is able to describe the 

behaviour of a system. One should distinguish between theoretical and practical identifiability. Theoretical 

identifiability is based on the model structure and deals with the question whether it is possible to obtain 

unique parameter values from a certain selected set of ideal noise-free measurements. On the other hand, 

practical identifiability includes the quality of the data. For instance, it has been shown that parameters may 

be unidentifiable in practice because of noise corrupted data, although these parameters are theoretically 

identifiable (Holmberg, 1982; Jeppsson, 1996). 

The identifiability problems (either of theoretical or practical origin) of ASM mean that in most cases it will 

be too complicated to apply automatic mathematical calibration techniques. A model calibration is therefore 

most often done via a step-wise procedure, and only one or a few parameters are changed at a time. 

However, a model calibration procedure based on a trial and error approach, i.e. by manual modification 

of the parameters until a good description of the data is obtained, is obviously not very advisable due to the 

identifiability problems. As mentioned above, more than one parameter set may be able to describe the 

data equally well (Dupont and Sinkjær, 1994, Kristensen et al., 1998). However, if the model is to be 

applied for more than a description of the data, e.g. for scenario analyses with the aim of process 

optimisation, it is important that the parameter set resulting from the model calibration procedure consists of 

realistic values, in order to obtain reliable model predictions. It therefore becomes important to gather 

information from different sources that can help in framing the model calibration procedure, e.g. to choose 

realistic parameter values.  

Data from the full-scale WWTP alone are most often not sufficient for a model calibration since e.g. the 

sludge kinetics can not be readily obtained from such data, except for specific designs like sequencing 

batch reactors and alternating systems (Vanrolleghem and Coen, 1995). Therefore, for a model calibration 

of a full-scale WWTP the modeller is typically aiming at combining the more information rich results derived 
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from lab-scale experiments (carried out with activated sludge and wastewater from the full-scale 

installation), with data obtained from measuring campaigns on the treatment plant under study (e.g. Dupont 

and Sinkjær, 1994; Xu and Hultman, 1996; Coen et al., 1997; Kristensen et al., 1998).  

In this thesis the main focus will be turned to the derivation of information from lab-scale experiments. 

Typically, such experiments will aim at the identification of a few model parameters or components of the 

full ASM and the data analysis is therefore often carried out via reduced sub-models based on ASM. 

However, before any model-based data interpretation takes place it is of utmost importance to address the 

identifiability properties of the model that is used for the data analysis, together with the conditions under 

which the experiments should be carried out. 

The problems of parameter identifiability and experimental conditions are illustrated in Fig. 1 and will be 

explained below. 

Theoretical identifiability

Practical identifiability

Experimental constraints

A
B C

D

E

 

 Figure 1. Conceptual idea of parameter identifiability and optimal experimental design 

The space in Fig. 1 consists of ranges of different kinds of experimental conditions, i.e. each point in the 

figure represents a specific set of experimental conditions. The experimental conditions can both be 

measured and environmental variables. Examples of measured variables are oxygen concentration (SO), 

oxygen uptake rate (rO), pH etc. Environmental variables may, for instance, be origin and concentration of 

the activated sludge that is used in the experiment, initial substrate to biomass ratio (S(0)/X(0)), availability 

of nutrients etc. 

Basically, the environmental variables will determine the response of the system, whereas the measured 

variables and the frequency of the measurements will determine what kind of information is obtained on the 

experimental response. Some examples of possible experimental responses can be nitrification, significant 

or neglectable biomass growth, storage of substrate etc. 

It should be stressed that the experimental conditions are all user-defined and will depend on the purpose 
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of the actual experiment, i.e. what kind of experimental response and information content are sought to 

allow estimation of certain model parameters with a certain accuracy. A point located at a certain position 

in Fig. 1 is defined by a certain set of experimental conditions, and will thus result in a certain experimental 

response and related information content. If these experimental conditions comply with the purpose of the 

study, the experimental conditions will define a point that will lay within one of the “interesting” regions A - 

D. The precise location will depend on the experimental conditions and information content, as will be 

explained in detail below. However, if a set of experimental conditions do not comply with the purpose of 

the experimental study, then the experimental conditions will define a point that will lay somewhere in region 

E. 

The outer circle in Fig.1 contains all the experimental conditions that will theoretically allow identification of 

the parameters that one wants to obtain from the experiment. The determination of this region is based on a 

theoretical identifiability analysis of the model for which parameters are sought. Thus, the region of 

theoretical identifiability (regions A - D in Fig. 1) will frame the experimental conditions where unique 

parameter values can theoretically be estimated from the available data set. This region is considered to be 

a hard, ultimate bound on the experimental conditions, since only the model structure and the available 

measurements determine the theoretical identifiability. 

On the contrary, the region that frames the sets of experimental conditions that allow practical identifiability 

of the parameters one wants to obtain (the area within the inner circle in Fig.1 or the regions A and B) is 

determined by the quality of the experimental data and thereby their information content. As stated above, 

the available data may not be of sufficient quality to allow for a determination of all the theoretically 

identifiable parameters. The latter explains why this region is a sub-set of the set of experimental conditions 

that result from the theoretical identifiability study. In addition, it should be noted that, contrary to the 

theoretical identifiability region, the practical identifiability region is not fixed at a certain position in the 

experimental condition space. The set of experimental conditions that allow practical identifiability can be 

located elsewhere, for instance when the actual model parameter values are different or the collected data 

and their properties, e.g. noise level, change. 

Finally, the half-region (A, C) is important and indicates that certain constraints can be imposed on the 

experimental conditions to fulfil a certain experimental purpose. The purpose could for example be to 

obtain kinetic parameters that can be applied in a model to describe the full-scale observations. Thus, the 

parameters derived from the lab-scale experiments must be representative for, and thereby transferable to, 

a full-scale system. In such case the experiments should be carried out under conditions that are as close as 

possible to the full-scale system, e.g. with respect to pH, temperature, substrate load etc. At first sight such 

constraints may not seem very severe. However, the transferability of results from a lab-scale to a full-scale 

system may not be straightforward. Note that the model may still be able to describe data that are collected 

under experimental conditions that are outside the region defined by these constraints. However, the 
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information obtained from the experiment will not be in accordance with the purpose of obtaining 

parameter values that are representative for the full-scale system. 

The optimal experiments (region A in Fig. 1) can now be defined as the experiments for which the 

conditions belong to the intersection of the three regions (theoretically identifiable, practically identifiable, 

constraints), and within this set of possible experiments the best one has to be selected. Consequently, it is 

aimed to maximise the information content of the experimental data imposed by these given constraints. 

Such a maximisation can be obtained by applying optimal experimental design theory (OED). The Fisher 

Information Matrix (FIM) is central in the theory of Optimal Experimental Design for parameter estimation. 

The inverse of the FIM is, under certain conditions, equal to the parameter estimation error covariance 

matrix (COV) which is the rationale behind the central role of FIM. The core of OED is basically to reduce 

the COV. Different optimal experimental design criteria have been defined based on different scalar 

functions of the FIM (e.g. Walter and Pronzato, 1990; Munack, 1989, 1991). 

The problem of achieving sufficiently informative data from the full-scale WWTP can now be illustrated by 

the same concept (see Fig. 2). Imagine that the purpose is to obtain information for a model calibration of 

e.g. ASM1 on the basis of full-scale observations. Obviously, the experimental conditions are equal to the 

full-scale conditions and the imposed constraints are related to obtaining parameters that are representative 

for the full-scale system. It is clear that a much larger range of experiments is allowed and may be able to 

describe the full-scale behaviour. However, most experimental data will not contain sufficient information to 

allow for a practical identification of the desired parameters. Thus, the region of practical identifiability is 

very small and may not even overlap the region of experimental constraints.  

Theoretical identifiability

Practical identifiability

Experimental constraints

A

B

C

D

E
B

 

Figure 2. Conceptual idea of parameter identifiability and optimal experimental design in case information 

is retrieved from full-scale experiments 

On the contrary, lab-scale experimental conditions may allow for a larger region of practical identifiability, 
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but problems may arise whether the obtained parameters are transferable to full-scale application. Thus, in 

this case, the region of experimental constraints, that may frame the experimental conditions for which the 

lab-scale results are transferable to full-scale behaviour, is very small, and one can imagine that there may 

be no overlap between this region and the one of the practical identifiability (see Fig. 3). 

Theoretical identifiability

Practical identifiability

Experimental constraints

B C

D

E

A

C

 

Figure 3. Conceptual idea of parameter identifiability and optimal experimental design in case information 

is retrieved from lab-scale experiments 

3. Objective 

The objectives of this thesis were to set-up a more methodological approach for model calibration with 

special focus to the investigation, illustration and solution of the problems encountered when deriving 

information from lab-scale experiments, as outlined in Fig. 1 – 3 above. The study will thus focus on the 

development of a general methodology to apply optimal experimental design on lab-scale experiments with 

activated sludge. The thesis will include a thorough study on the theoretical and practical identifiability 

properties of the models that are applied to interpret the experimental data obtained from lab-scale 

experiments, with the aim of obtaining the maximum amount of information from each experiment. The main 

aim of the pursued optimal experimental designs will be to obtain accurate parameter estimates. However, 

the transferability of the experimental results to full-scale behaviour will also be addressed and discussed.  

The methodology is to be evaluated and it was chosen to do this on combined respirometric-titrimetric 

experiments for the characterisation of wastewater and reaction kinetics of activated sludge, in particular in 

the frame of a model calibration of a full-scale wastewater treatment plant model. 

4. Outline of the thesis 

The thesis is written such that the different chapters can be read independently. Thus, some repetitions may 

appear of e.g. theory or methodology. It is however aimed at minimising such repetitions as much as 
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possible. 

First, an extensive literature review is given in chapter 2. The first part of this review focuses on how model 

calibration of ASM1 has been approached in other studies. It was subsequently attempted to gather and 

summarise the information needed to achieve a successful model calibration, and based on this a general 

model calibration procedure is proposed. The main part of the literature review is devoted to reviewing the 

different methods that have been developed and applied for the characterisation of wastewater and 

reaction kinetics in relation to ASM1. The methodologies are critically discussed, and it is attempted to 

illustrate the power of the different methods for characterisation, all within the frame of ASM1 model 

calibration. Finally, it is discussed which wastewater components and parameters are most relevant to be 

characterised via lab-scale experiments. This discussion includes the problem of transferability between 

lab-scale and full-scale observations, and also touches the problems related to the use of potentially 

different model concepts. One of the most discussed experimental factors determining the experimental 

response is the ratio between initial substrate and biomass concentration (S(0)/X(0)). A separate section is 

focusing upon this factor. 

From the literature review (chapter 2) it becomes apparent that respirometric (and in recent years also 

titrimetric) methods are very popular in model calibration studies. Therefore, a short review of different 

respirometric methods is presented first in chapter 3, and advantages and disadvantages of different 

measurement principles are discussed. Based on this a new experimental lab-scale methodology of 

combined respirometric – titrimetric measurements is developed and evaluated. A model-based data 

interpretation is applied and compared to a more basic calculation method. Finally, confidence intervals of 

parameter estimates are calculated and the estimation accuracy based on respirometric and titrimetric alone 

or based on combined measurements is evaluated. 

Chapter 4 focuses on the theoretical identifiability region (see Fig. 1 – 3). A thorough theoretical 

identifiability analysis was carried out focusing on the two-step nitrification Monod model with titrimetric 

(cumulative proton production) and respirometric measurements (dissolved oxygen or oxygen uptake rates) 

from two types of respirometer. Two model structures were considered including either presence or 

absence of significant biomass growth. The theoretical identifiability was studied via the Taylor series 

expansion and generating series methods. Finally, it is shown how the results of the theoretical identifiability 

study can be generalised. 

The issue of practical parameter identifiability is addressed in chapter 5. Here the practical identifiability of 

a two step nitrification process, already introduced in chapter 3, was further investigated based on the 

theoretical results of chapter 4. This study was carried out via evaluation of the output sensitivity functions 

and the corresponding Fisher Information Matrix (FIM). In the second part of this chapter the accuracy of 

parameter estimates based on separate respirometric or titrimetric data as well as the combination of both 
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data sets is investigated thoroughly. 

The focus is finally turned towards optimal experimental design in chapter 6 and 7. In chapter 6 some 

specific problems related to parameter rescaling and the resulting effects of parameter scaling on the 

optimal experimental design criteria are investigated. Parameter scaling was investigated because it showed 

to be an essential step to obtain a mathematically stable inversion of the matrices that are to be used in the 

optimal experimental design procedure. 

Based on Fig. 1 above a complete procedure for optimal experimental design is proposed in chapter 7. 

The procedure is illustrated for two case studies. The first case study deals with a well-known example, the 

two step nitrification process where the aim is more specifically to identify the kinetic parameters of the 

second nitrification step. Secondly, a combined municipal-industrial wastewater treatment process is 

studied with the purpose of simultaneously determining the kinetics of heterotrophic substrate degradation 

and nitrification. 

Finally, the ASM1 model calibration procedure defined earlier in chapter 2 is applied for a full-scale 

combined municipal – industrial WWTP in chapter 8. It will be illustrated how additional information from 

different information sources helps in framing the parameters applied in the model calibration exercise. The 

calibrated model is evaluated via a sensitivity analysis that helps to quantify the influence of changes of 

model parameters and influent component concentrations on the model output. 

Chapter 9 summarises the results of this thesis. Future perspectives, research and applications of the 

developed methodologies are discussed. 
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Chapter 2 
 - 

Literature review 

Parts of this chapter were published as: 

Vanrolleghem P.A., Spanjers H., Petersen B., Ginestet P. and Takacs I. (1999) Estimating (combinations 

of) activated sludge model No. 1 parameters and components by respirometry. Water Science and 

Technology, 39(1), 195 – 214. 

The main part of this chapter is in press as: 

Petersen B., Gernaey K., Henze M. and Vanrolleghem P.A. (2000) Calibration of activated sludge 

models: A critical review of experimental designs. In: Agathos S. and Reineke W. (Eds.), Biotechnology 

for the Environment. Focus on Biotechnology, Vol. 3, Kluwer Academic Publishers BV. 
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Chapter 2 
 
Literature review 

Abstract - This review begins with an overview of literature data on methodologies that have been applied 

in other studies to calibrate Activated Sludge Model No. 1 (ASM1). An attempt was made to gather and 

summarise the information needed to achieve a successful model calibration, and based on this a general 

model calibration procedure is proposed. The main part of the literature review is devoted to reviewing the 

different methods that have been developed and applied for the characterisation of wastewater and 

reaction kinetics in relation to ASM1. The methodologies are critically discussed and it is attempted to 

illustrate the power of the different methods for characterisation, all within the frame of ASM1 calibration. 

Finally, it is discussed which wastewater components and parameters are most relevant to be characterised 

via lab-scale experiments. This discussion also includes the problem of transferability between lab-scale 

and full-scale observations and potentially different model concepts. One of the most discussed 

experimental factors determining the experimental response is the ratio between initial substrate and 

biomass concentration (S(0)/X(0)). A separate section is focusing upon this factor. 

1. Introduction 

One of the most widespread biological wastewater treatment techniques is the activated sludge process. In 

this process, a bacterial biomass suspension is responsible for the removal of pollutants. Depending on the 

design and the specific application, an activated sludge wastewater treatment plant can achieve biological 

nitrogen removal and biological phosphorus removal, besides removal or organic carbon substances. The 

increased knowledge about the mechanisms of different biological processes taking place in an activated 

sludge plant was translated into dynamic models that were developed to describe the degradation 

processes in the activated sludge plant. This review will focus on the Activated Sludge Model No. 1 

(ASM1) (Henze et al., 1987), which through the years has been the state-of-the-art model for activated 

sludge plants with biological nitrogen removal. 

2. Description of the State-of-the-Art Activated Sludge Models 

In the following the model concepts of ASM1 (Henze et al., 1987) and the recent modifications leading to 

ASM3 (Gujer et al., 1999) are described. A description of ASM2/ASM2d (Henze et al., 1995, 1999) is, 

however, not included since phosphorus removal is not dealt with in this study. 
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2.1. Activated Sludge Model No.1 (ASM1) 

ASM1 is presented in a matrix format in Table 1 according to Henze et al. (1987). Many of the basic 

concepts of ASM1 were adapted from the activated sludge model defined by Dold (1980). Some of the 

central concepts (the different model components and processes) of ASM1 are summarised below. For 

further details the reader is referred to the IAWQ Task group reports. 

2.1.1. COD components in ASM1 

COD is selected as the most suitable parameter for defining the carbon substrates as it provides a link 

between electron equivalents in the organic substrate, the biomass and oxygen utilised. In ASM1 the COD 

is subdivided based on (i) solubility, (ii) biodegradability (iii) biodegradation rate and (iv) viability (biomass): 

(i) The total COD is divided into soluble (S) and particulate (X) components. 

(ii) The COD is further subdivided into non-biodegradable organic matter and biodegradable matter. 

The non-biodegradable matter is biologically inert and passes through an activated sludge system in 

unchanged form. The inert soluble organic matter (SI) leaves the system at the same concentration as 

it enters. Inert suspended organic matter in the wastewater influent (XI) or produced via decay (XP) 

becomes enmeshed in the activated sludge and is removed from the system via the sludge wastage. 

(iii) The biodegradable matter is divided into soluble readily biodegradable (SS) and slowly 

biodegradable (XS) substrate. Already here it should be stressed that some slowly biodegradable 

matter may actually be soluble. The readily biodegradable substrate is assumed to consist of 

relatively simple molecules that may be taken in directly by heterotrophic organisms and used for 

growth of new biomass. On the contrary, the slowly biodegradable substrate consists of relatively 

complex molecules that require enzymatic breakdown prior to utilisation. 

(iv) Finally, heterotrophic biomass (XBH) and autotrophic biomass (XBA) are generated by growth on the 

readily biodegradable substrate (SS) or by growth on ammonia nitrogen (SNH). The biomass is lost 

via the decay process where is it converted to XP and XS (death regeneration, see below). 

Summarising, the total COD balance of ASM1 is defined by Eq. 1 and further illustrated in Fig. 1. 

PBABHSISI XXXXXSSCODtot ++++++=    (1)  
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Storage XSTO

 

Figure 1. COD components in ASM1 and ASM3 (figure modified from Jeppsson, 1996), components 

specifically related to ASM3 are given in bold and the ones only related to ASM1 are given in italics 

2.1.2. Nitrogen components in ASM1 

Similar to the organic matter, total nitrogen can be subdivided based on (i) solubility, (ii) biodegradability 

and (iii) biodegradation rate: 

(i) The total nitrogen can be subdivided into soluble (S) and particulate (X) components. 

(ii) The nitrogen is divided into non-biodegradable matter and biodegradable matter. The non-

biodegradable particulate organic nitrogen (XNI) is associated with the non-biodegradable particulate 

COD (XI or XP), whereas the soluble non-biodegradable organic nitrogen (SNI) is assumed to be 

negligible and therefore not incorporated into the model. 

(iii) The biodegradable nitrogen is subdivided into ammonia nitrogen (SNH), nitrate + nitrite nitrogen 

(SNO), soluble organic nitrogen (SND) and particulate organic nitrogen (XND). The particulate organic 

nitrogen is hydrolysed to soluble organic nitrogen in parallel with hydrolysis of the slowly 

biodegradable organic matter (XS) (either present in the wastewater or produced via the decay 

process). The soluble organic nitrogen is converted to ammonia nitrogen via ammonification. 

Ammonia nitrogen serves as the nitrogen source for biomass growth (the parameter iXB indicates the 

amount of nitrogen incorporated per COD unit). Finally, the autotrophic conversion of ammonia 

results in nitrate nitrogen (SNO) which is considered to be a single step process in ASM1. 

Summarising, the total nitrogen balance for the components in ASM1 is defined by Eq. 2 and further 

illustrated in Fig. 2. 

PXPBABHXBNINDNONDNH Xi)XX(iXXSSSNtot ⋅++⋅+++++=   (2)  
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Figure 2. Nitrogen components in ASM1 (modified from Jeppsson, 1996), components specifically 

related to ASM3 are given in bold and the ones only related to ASM1 in italics 

2.1.3. Processes in ASM1 

Basically there are four different main processes defined in ASM1 (Henze et al., 1987): 

1) Growth of biomass 

2) Decay of biomass 

3) Ammonification of organic nitrogen 

4) Hydrolysis of particulate organic matter 

The substrate flows in ASM1 are illustrated in Fig. 3. 

Aerobic growth of heterotrophic biomass 

Growth takes place by degradation of soluble readily biodegradable substrate (SS) under the consumption 

of oxygen (SO). Ammonia nitrogen (SNH) is incorporated into cell mass, as described above. Both the 

concentrations of SS and SO may be rate limiting for the growth process. The Monod relationship is used to 

describe the growth of heterotrophic and autotrophic organisms. 
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Anoxic growth of heterotrophic biomass (denitrification) 

In the absence of oxygen the heterotrophic organisms are capable of using nitrate as the terminal electron 

acceptor with SS as substrate resulting in biomass growth and nitrogen gas. The same Monod kinetics as 

used for aerobic growth is applied except that the kinetic rate expression is multiplied by a correction factor 

ηg (<1). This factor is accounting for the fact that the anoxic substrate removal rate is slower compared to 

aerobic conditions. This can either be caused by a lower maximum growth rate or because only a fraction 

of the heterotrophic biomass is able to denitrify. Furthermore, anoxic growth is inhibited when oxygen is 

present which is described by the switching function KOH/(KOH+SO). The coefficient KOH has the same 

value as in the expression for aerobic growth. Thus, as aerobic growth declines, the capacity for anoxic 

growth increases. 

Hydrolysis

Growth

Decay

Decay

Growth

SNO

XS

SOSO

SS XSTO

Hydrolysis Storage Growth Endogenous
respiration

XIXH

SO

SO

SNH

Growth Endogenous
respiration

XIXA

SOASM3SNHSO

XA

XI

XS

SS XH

SO

ASM1

 

Figure 3. Substrate flows in ASM1 and ASM3 (modified from Gujer et al., 1999) 

Aerobic growth of autotrophic biomass (nitrification) 

Ammonia nitrogen (SNH) is oxidised to nitrate resulting in production of autotrophic biomass. Furthermore, 

a part of the SNH is also incorporated in the autotrophic cell mass. As for heterotrophic growth the 

concentrations of SNH and SO can be rate limiting for the process. Nitrification has a considerable effect on 

the alkalinity (SALK). 

Decay of heterotrophic biomass 

The death regeneration concept of Dold (1980) is applied to describe the different reactions that take place 

when organisms die. The traditional endogenous respiration concept describes how a fraction of the 

organism mass disappears to provide energy for maintenance. However, in the death regeneration concept 

oxygen is not directly associated with microbial decay. Decay is assumed to result in the release of slowly 

biodegradable substrate that is recycled back to soluble substrate and used for more cell growth. Thus, the 

oxygen utilisation normally associated directly with decay is calculated as if it occurs indirectly from growth 
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of new biomass on released substrate. A parallel conversion of organic nitrogen to ammonia nitrogen 

occurs. It should be noted that the magnitude of the decay coefficient used in this approach is different from 

that of the endogenous respiration. In endogenous respiration the loss of one unit of biomass COD leads to 

the utilisation of one unit of oxygen minus the COD of the inert particulate products that are formed. 

However, in the death regeneration model the loss of one biomass COD unit results in the ultimate 

formation of one unit of COD due to the formed readily biodegradable substrate minus the formed inert 

particulate products. When the readily biodegradable COD is used for cell synthesis, only a fraction of a 

unit of oxygen (determined by the yield) will be required because of the energy incorporated into the cell 

mass. That cell mass undergoes in turn decay etc. before the unit of oxygen is finally removed. 

Summarising, to give the same amount of oxygen utilisation per time due to the decay process, the decay 

rate coefficient must be larger for the death regeneration concept than if a more traditional endogenous 

decay process was adopted. This has the effect that the cell mass turnover rate increases, resulting in a 

higher microbial growth rate in the death regeneration model. 

Decay of autotrophic biomass 

The decay of autotrophs is described similar to the heterotrophic decay process. 

Ammonification of soluble organic nitrogen (SND) 

Biodegradable soluble organic nitrogen (SND) is converted to ammonia nitrogen (SNH) in a first order 

process. Hydrogen ions consumed in this conversion process result in an alkalinity change. 

Hydrolysis 

Slowly biodegradable substrate (XS) enmeshed in the sludge is broken down producing readily 

biodegradable substrate (SS). The degradation of slowly biodegradable matter has appeared rather 

important to realistic modelling of activated sludge systems because it is primarily responsible for realistic 

electron acceptor profiles (Dold, 1980). This process is modelled on the basis of surface reaction kinetics 

and occurs only under aerobic and anoxic conditions. The hydrolysis rate is reduced under anoxic 

conditions in the same way as anoxic growth, by applying a correction factor ηh (<1). The rate is also first 

order with respect to the heterotrophic biomass concentration present but saturates as the amount of 

entrapped substrate becomes large in proportion to the biomass. 

2.1.4. Restrictions of ASM1 

A number of restrictions concerning ASM1 are summarised below (Henze et al., 1987): 

1) The system must operate at constant temperature.  

2) The pH is constant and near neutrality. It is known that the pH has an influence on many of the 
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parameters, however only limited knowledge is available to be able to express these possible 

influences. Consequently, a constant pH has been assumed. The inclusion of alkalinity in the model, 

however, does allow for detection of pH problems. 

3) No considerations have been given to changes in the nature of the organic matter within any given 

wastewater fractions (e.g. the readily biodegradable substrate). Therefore, the parameters in the 

rate expressions have been assumed to have constant values. This means that only concentration 

changes of the wastewater components can be handled whereas changes in the wastewater 

character can not. 

4) The effects of nutrient limitations (e.g. N and P) on the cell growth have not been considered. It is, 

however, easy to add limitation terms in the model if needed. 

5) The correction factors for denitrification (ηg and ηh) are fixed and constant for a given wastewater, 

even though it is possible that their values are depending on the system configuration. 

6) The parameters for nitrification are assumed to be constant and to incorporate any inhibitory effects 

that wastewater constituents may have on them. 

7) The heterotrophic biomass is homogeneous and does not undergo changes in species diversity with 

time. This assumption is inherent to the assumption of constant kinetic parameters. This means that 

any changes in substrate concentration gradients, reactor configuration, etc. on sludge settleability 

are not considered. 

8) The entrapment of particulate organic matter in the biomass is assumed to be instantaneous. 

9) The hydrolysis of organic matter and organic nitrogen are coupled and occur simultaneously with 

equal rates. 

10) The type of electron acceptor present does not affect the loss of biomass by decay. 

11) The type of electron acceptor does not affect the heterotrophic yield coefficient. 

12) ASM1 is developed for simulation of treatment of municipal wastewater, and it is therefore not 

advised to apply the model to systems where industrial contributions dominate the characteristics of 

the wastewater. 

13) ASM1 does not include processes that describe behaviours under anaerobic conditions. 

Simulations of systems with large fractions of anaerobic reactor volume may therefore lead to 

errors. 

14) ASM1 can not deal with elevated nitrite concentrations. 

15) ASM1 is not designed to deal with activated sludge systems with very high load or small sludge 
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retention time (SRT) (<1 day). 

2.2. Activated Sludge Model No. 3 (ASM3) 

The ASM3 process rates are presented in matrix form in Table 2. For a complete description of the 

ASM3 stoichiometric matrix the reader is referred to Gujer et al. (1999).  

Table 2. Process rate expressions of ASM3 (Gujer et al., 1999) 
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In the development of ASM3 some limitations of ASM1 were evaluated, and combined with the 

experiences gained with the application of ASM1 the following list of “defects” of ASM1 was defined 

(Gujer et al., 1999): 

1) ASM1 does not include expressions to deal with nitrogen and alkalinity limitations. 

2) ASM1 considers biodegradable soluble and particulate organic nitrogen as model components. 

These can, however, not easily be measured and may in most cases unnecessarily complicate the 

use of ASM1. 

3) The ammonification kinetics can not be easily quantified, and moreover this process is typically 

rather fast and does therefore not affect model predictions significantly. 

4) ASM1 differentiates between inert suspended organic matter present in the influent wastewater and 

produced within the activated sludge process. In reality, however, it is impossible to distinguish 

between these two components. 

5) Hydrolysis has a rather dominating effect upon the predictions of the oxygen consumption and 

denitrification by heterotrophic organisms. In reality this process includes different coupled 

processes such as hydrolysis, lysis and storage of substrates. Therefore, the identification of the 

kinetic parameters of this combined process is difficult. 

6) The death regeneration concept is covering lysis combined with hydrolysis of released substrate 

and subsequently growth on this substrate. In reality it is difficult to determine the decay coefficient 

related to the death regeneration concept. 

7) Elevated concentrations of readily biodegradable organic substrates can lead to storage of poly-

hydroxy-alkanoates, lipids or glycogen. This process is not included in ASM1. 

8) ASM1 does not include the possibility to differentiate between decay rates of nitrifiers under 

aerobic and anoxic conditions. This may lead to problems with the predictions of the maximum 

nitrification rates in cases of high SRT and high fractions of anoxic reactor volumes. 

The main difference between ASM1 and ASM3 is the recognition of the importance of storage polymers in 

the heterotrophic conversions in the activated sludge processes (point 7 above). The aerobic storage 

process in ASM3 describes the storage of the readily biodegradable substrate (SS) into a cell internal 

component (XSTO). This approach requires that the biomass is modelled with cell internal structure similar 

to ASM2. The energy required for this process is obtained via aerobic respiration. This internal component 

is then subsequently used for growth. In ASM3 it is assumed that all SS is first taken up and stored prior to 

growth. Thus, a division of the storage and growth process, allowing growth to take place on external 
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substrate directly, is not considered. 

Furthermore, the death regeneration concept is replaced by endogenous respiration, which is closer to the 

phenomena observed in reality (point 6 above, endogenous respiration can readily be obtained from a 

simple batch test, see below under section 4.3.1.2.). Also, ASM3 allows a differentiation between aerobic 

and anoxic decay. 

Fig. 3 illustrates the difference in COD flows between ASM1 and ASM3. The first thing to notice is that 

conversion processes of the two groups of organisms (autotrophs and heterotrophs) are clearly separated 

in ASM3, whereas the decay regeneration cycles of the autotrophs and heterotrophs are strongly 

interrelated in ASM1. This change of decay concept (and introduction of the storage step) means that there 

are more “entry” points for oxygen utilisation resulting in, at some points, easier separation and 

characterisation of the processes (see also discussion under 4.3.4.). Second, there is a shift of emphasis 

from hydrolysis to storage of organic matters. This gives a change in how wastewater characterisation 

should be defined since the separation between SS and XS now should be based on the storage process 

rather than on the growth process (see also discussion in paragraph 4.1.3.). Still, the separation remains 

somewhat based on biodegradation rates. In ASM3 hydrolysis is obviously of a less dominating 

importance for the rates of oxygen consumption since only hydrolysis of XS in the influent is considered 

(see point 5 above).  

Below the components and processes of AMS3 are summarised focusing on the differences between 

ASM1 and ASM3. 

2.2.1. COD components in ASM3 

The COD components in ASM3 are basically defined in the same way as in ASM1. Only the separation 

between inert suspended organic matter in the wastewater influent (XI) and produced via the decay 

process (XP) is no longer maintained (see point 4 above), and, second, the component XSTO is introduced, 

as described above. The substrate SS goes through the storage process but is basically still biodegradable. 

Thus, the total COD balance is defined by Eq. 3 and further illustrated in Fig. 1, where the components 

specifically related to ASM3 are given in bold and the ones only related to ASM1 are given in italics. 

STOAHSISI XXXXXSSCODtot ++++++=    (3)  

2.2.2. Nitrogen components in ASM3 

The nitrogen balance in ASM3 is simplified compared to ASM1, since the soluble and particulate organic 

nitrogen components are no longer considered (point 2 and 3 above). Furthermore, a nitrogen gas 

component (SN2) is included allowing for a closed nitrogen mass balance. The nitrogen incorporated in SI, 

SS, XI,  XS, and the biomass is defined in ASM3 as a fraction of these components. This fraction is 



 

 28

consumed or produced when the corresponding COD fraction is formed or degraded respectively. 

Summarising, the total nitrogen balance for the components in ASM3 is defined by Eq. 4, and further 

illustrated in Fig. 2. Again, the components specifically related to ASM3 are shown in bold and the ones 

related to ASM1 in italics. 

INXIABNBMSNXSSNSSINSI2NNONH Xi)XX(iXiSiSiSSSNtot ⋅++⋅+⋅+⋅+⋅+++=          (4) 

2.2.3. Processes in ASM3 

In ASM3 there are also four basic processes, however, slightly different from ASM1 (Gujer et al., 1999): 

1) Storage of readily biodegradable substrate  

2) Growth of biomass 

3) Decay of biomass 

4) Hydrolysis of particulate organic matter 

Aerobic storage of readily biodegradable substrate 

This process describes the storage of readily biodegradable substrate (SS) in the form of XSTO with the 

consumption of oxygen. As stated above, it is assumed that all SS first becomes stored material before use 

for cell growth. It is realised that this is not in accordance with reality. However, no model is currently 

available to predict the separation of SS into direct growth and storage. Gujer et al. (1999) therefore 

suggested to apply a low storage yield (YSTO) and a higher growth yield (YH) to approximate direct 

growth. 

Anoxic storage of readily biodegradable substrate 

This process is identical to the aerobic storage, only is nitrate used as terminal electron acceptor instead of 

oxygen. Furthermore, a correction factor (ηNO) is applied to indicate that only a fraction of the 

heterotrophic biomass may be capable of denitrifying. 

Aerobic growth of heterotrophs 

Aerobic heterotrophic growth takes place by degradation of XSTO with the consumption of oxygen (SO). 

Ammonia nitrogen (SNH) is incorporated into cell mass, as described above for ASM1.  

Anoxic growth of heterotrophs (denitrification) 

Anoxic growth is similar to aerobic growth but respiration is based on denitrification. Again, a correction 

factor (ηNO) is applied to account for the observation of reduced anoxic respiration rates compared to 

aerobic respiration. 
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Aerobic growth of autotrophs (nitrification) 

This process is described similar to ASM1. 

Aerobic decay of heterotrophs 

The energy requirements not associated with growth but including maintenance, lysis, etc. are described by 

endogenous respiration in ASM3 according to a simple first order reaction kinetics.  

Anoxic decay of heterotrophs 

ASM3 allows for a description of anoxic decay in a similar way as the aerobic decay process. 

Aerobic and anoxic decay of autotrophs 

The decay of autotrophs is described in the same way as the heterotrophic decay process. 

Aerobic and anoxic respiration of storage products 

These processes are analogous to endogenous respiration and ensure that the storage product XSTO decays 

together with the biomass. 

Hydrolysis 

Just as in ASM1 hydrolysis is responsible for the breakdown of slowly biodegradable substrate (XS) to 

readily biodegradable substrate (SS). However, in ASM3 hydrolysis is assumed to be electron donor 

independent, and as stressed above the hydrolysis does not play the same dominating role as in ASM1. 

2.2.4. Restrictions of ASM3 

The number of restrictions listed for ASM1 above basically still holds for ASM3, except for restriction 10 

stating that the type of electron acceptor does not affect the biomass decay. 

3. Model calibration 

In this study model calibration is understood as the adaptation of the model to fit a certain set of information 

obtained from the full-scale WWTP under study. This task is often rather time-consuming, and typically the 

time needed for a model calibration is underestimated. Even though more than a decade has passed since 

the publication of ASM1, a fully developed model calibration procedure has not been defined yet. We 

have not been able to find a complete model calibration report in literature. There may be many reasons for 

this. Important to realise is that the purpose of a model being built is very much determining on how to 

approach the calibration, making it difficult to generalise (Henze et al., 1995). Still, considering the wide 

application of the activated sludge models there are surprisingly few references that contain details on the 
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applied model calibration procedure. Most often it is not specified in detail how the model was calibrated 

but the focus is more on the applications, e.g. for process scenarios and optimisations etc. Thus, to obtain 

information on model calibration procedures one often has to collect bits and pieces from various sources 

to obtain an overview. 

Before going on with a discussion on how to approach a model calibration of ASM1, it is relevant to define 

how parameter estimation is understood in this study and what the difference is between parameter 

estimation and model calibration. Furthermore, the term identifiability will be defined and the problem of 

identifiability with respect to ASM in general will be addressed. 

Parameter estimation consists of determining the “optimal” values of the parameters of a given model with 

the aid of measured data. Here, the numerical techniques for estimation will not be discussed, but reference 

is made to the literature (Robinson, 1985; Vanrolleghem and Dochain, 1998). Only the basic idea behind 

parameter estimation is schematised in Fig. 4. Initially, the model structures, of which certain selected 

parameters need to be estimated, and the experimental data need to be defined. Moreover, first guesses of 

the initial conditions, i.e. concentrations, and parameters, have to be given. The parameter estimation 

routine then basically consists of minimising an objective function, which for example can be defined as the 

weighted sum of squared errors between the model output and the data. When the objective function 

reaches a minimum with a certain given accuracy the optimal parameter values are obtained. 

First guess of parameters 
and initial concentrations

Integration of model equations

Calculation of objective function

Minimum of 
objective function 
reached?

Minimum of 
objective function 
reached?

New estimate of parameters 
and initial concentrations

Best estimate of parameters 
and initial concentrations

Experimental data

Definition of model structure

YES

NO

 

Figure 4. Illustration of parameter estimation routine (modified from Wanner et al., 1992) 
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Thus, parameter estimation is carried out via specific mathematical search algorithms. However, due to the 

high complexity caused by the numerous parameters and the unidentifiable nature of the ASM models, it 

will be rather cumbersome to apply mathematical calibration techniques. 

Indeed, a major problem encountered in calibration of ASM is the (lack of) identifiability of the model 

parameters. Identifiability is the ability to obtain a unique combination of parameters describing a system 

behaviour. A distinction should be made between theoretical and practical identifiability. Theoretical 

identifiability is a property of the model structure, and relates to the question whether it is at all possible to 

obtain unique parameter values for a given model structure considering certain selected outputs, and 

assuming ideal measurements. Practical identifiability, on the other hand, includes the quality of the data. 

Thus, theoretically identifiable parameters may be practically unidentifiable if the data are too noise 

corrupted (Holmberg, 1982; Jeppsson, 1996). This subject will be dealt with in much more detail in 

chapter 4 and 5.  

For now, it should be stressed that a typical problem related to the model calibration of ASM is that more 

than one combination of influent characteristics and model parameters can give the same good description 

of the collected data (Dupont and Sinkjær, 1994; Kristensen et al., 1998). Indeed, this indicates 

identifiability problems of either theoretical or practical origin. 

The model calibration of ASM is typically based on a step-wise procedure, and by changing just a few of 

the many parameters instead of applying an automatic mathematical optimisation routine. Based on the 

above statements concerning identifiability problems it is, however, obvious that a calibration procedure 

where the model parameters are changed by trial and error until a good description of the measured data is 

reached is not advisable (Dupont and Sinkjær, 1994; Kristensen et al., 1998). Thus, it becomes important 

to gather as much information as possible that can help the framing of realistic parameter combinations. In 

this review it was attempted to gather and summarise the type of information needed for successful model 

calibration. 

3.1. Information set for model calibration 

The set of information that should be collected for successful model calibration was extracted and 

combined from different sources (Henze et al., 1987; Henze, 1992; Lesouef et al., 1992; Pedersen and 

Sinkjær, 1992; Siegrist and Tschui, 1992; Stokes et al., 1993; de la Sota et al., 1994; Dupont and 

Sinkjær, 1994; Funamizu and Takakuwa, 1994; Weijers et al., 1996; Xu and Hultman, 1996; Coen et al., 

1997; Mino et al., 1997; Kristensen et al., 1998) and is summarised below:  

1. Design data: reactor volumes, pump flows and aeration capacities. 

2. Operational data:  

2.1. Flow rates, as averages or dynamic trajectories, of influent, effluent, recycle and waste flows. 
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2.2. pH, aeration and temperatures. 

3. Characterisation for the hydraulic model, e.g. the results of tracer tests. 

4. Characterisation for the settler model, e.g. zone settling velocities at different mixed liquor suspended 

solids concentrations. 

5. Characterisation for the biological model, ASM, of: 

5.1. Wastewater concentrations of full-scale WWTP influent and effluent (as well as some intermediate 

streams between the WWTP’s unit processes), as averages or as dynamic trajectories: e.g. SS, 

COD, TKN, NH4-N, NO3-N, PO4-P etc.  

5.2. Sludge composition: e.g. SS, VSS, COD, N and/or P content.  

5.3. Reaction kinetics: e.g. growth and decay rates.  

5.4. Reaction stoichiometry : e.g. biomass yields 

The list does not discuss on how the particular information can be collected in practice, since this will be 

discussed more in detail in the following sections. 

As mentioned above, the required quality and quantity of the information will depend very much on the 

purpose of the modelling. In case the model is to be used for educational purposes (e.g. to increase basic 

understanding of the processes), for comparison of design alternatives for non-existing plants or in other 

situations where qualitative comparisons are sufficient, the default parameter values defined by Henze et al. 

(1987) can be applied. A reasonably good description can most often be obtained with this default 

parameter set for typical municipal cases without significant industrial influences (Henze et al., 1997). 

However, if the calibrated model is going to be used for process performance evaluation and optimisation, 

it may be necessary to have a more accurate description of the actual processes under study. Some 

processes may need a more adequate description than others depending on the purpose of the model 

calibration. This may especially apply for models that are supposed to describe the processes in an 

industrial or combined municipal and industrial treatment plant (Coen et al., 1997, 1998). In such cases the 

wastewater characterisation, and thereby the activated sludge, may differ significantly from standard 

municipal wastewater. In addition, special attention often has to be paid to the characterisation of 

nitrification kinetics (e.g. Dupont and Sinkjær, 1994), since nitrification typically is the determining process 

for the process designs. Also, the availability of readily biodegradable carbon substances is important for 

the successful achievement of both denitrification and biological P removal, and may need to be 

characterised in more detail (Coen et al., 1997). 

In this study the focus will mainly be on the information described in point 5 above. Although not 

considered in detail, it should be stressed that the information listed in point 1 - 4 is also very essential and 
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should not be neglected for a successful model calibration. Major calibration problems can, for example, 

be related to rather simple errors in the recording of operational data (point 2), e.g. erroneous data of the 

waste sludge measurements might result in an incorrect sludge balance (Melcer, 1999). Moreover good 

characterisation of hydraulics and settling can be of great importance since e.g. poor or erroneous hydraulic 

modelling may result in hydraulic effects being lumped into the biological parameters of ASM1. 

The information needed for the characterisation of the biological model, listed in point 5 above, can 

basically be gathered from three sources: 

1. Default values from literature (e.g. Henze et al., 1987). 

2. Full-scale plant data  

2.1. Average or dynamic data from grab or time/flow proportional samples. 

2.2. Conventional mass balances of the full-scale data. 

2.3. On-line data. 

2.4. Measurements in reactors to characterise process dynamics (mainly relevant for SBR’s and 

alternating systems). 

3. Information obtained from different kinds of lab-scale experiments with wastewater and activated 

sludge from the full-scale plant under study. 



 

 34

PURPOSE

Decision on information needed 
(1-5) and calibration levels (6-10)

6. Calibration of 
hydraulic model

8. Simple steady state      
calibration of ASM

3. Hydraulic 
characterisation

1. Design  data     
2. Operational data

5. Biological  
characterisation

10. Dynamic calibration of ASM

4. Settling  
characterisation

7. Calibration of 
settler model

9. Steady state 
calibration of ASM

PURPOSE

Decision on information needed 
(1-5) and calibration levels (6-10)

6. Calibration of 
hydraulic model

8. Simple steady state      
calibration of ASM

3. Hydraulic 
characterisation

1. Design  data     
2. Operational data

5. Biological  
characterisation

10. Dynamic calibration of ASM

4. Settling  
characterisation

7. Calibration of 
settler model

9. Steady state 
calibration of ASM

 

Figure 5. Schematic overview of the different general steps in an activated sludge model calibration 

procedure 

Again, the intended use of the model will determine which information source to choose for the 

characterisation of the different biological processes in the model. In addition, the purpose will decide to 

which level the model has to be calibrated, since the quality of the desired model predictions will depend 

strongly on the quality of the model calibration. Fig. 5 illustrates the different general steps in a model 

calibration procedure. It should be stressed that not all steps may have to be taken depending on the 

purpose. This will be discussed further with examples below, and will be concretised for one case study 

carried out in the frame of this study (see chapter 8). 

3.2. Model calibration levels. 

Steps 1-5 in Fig. 5 indicate the collection of information. Design (1) and operational (2) data are in general 

always needed for a model calibration. E.g. the flow and load variations are important in the design of 

measuring campaigns for hydraulic, sludge settling and biological characterisation of the full-scale WWTP. 

The hydraulics (3) are typically characterised via tracer tests at the full-scale installation (De Clercq et al., 

1999). The settling properties (4) can be characterised via on-line or lab-scale settling tests (Vanderhasselt 
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et al., 1999a, 1999b). Finally, the biology can be characterised via different information sources (see 

below). 

In Fig. 5 steps 6-10 illustrate different calibration levels. The calibration of the hydraulic model via tracer 

test results, and the settler model calibration via results from sludge settling tests are indicated in steps 6 and 

7 respectively. A first ASM calibration level is typically a simple steady state model calibration (8).  

3.2.1. Steady state model calibration 

In this step data obtained from the full-scale WWTP are averaged, thereby assuming that this average 

represents a steady state, and a simple model not including hydraulic detail is calibrated to average effluent 

and sludge waste data. Typically, the calibrations of the ASM and the settler are linked together, since the 

aim is most often to describe the final effluent quality. Moreover, the recycle from the settler has an 

influence on the activated sludge system. Thus, at this stage, there may be an interaction between the steady 

state calibration and the settler model calibration, indicated in Fig. 5 with the double arrow. Finally, the 

characterisation of wastewater components may be adjusted according to the calibration of the full-scale 

model, indicated with the double arrow between (8) and (5) in Fig. 5. 

The next step in the calibration procedure is a steady state model calibration that includes the hydraulic 

model (9). In general, with a steady state model calibration, only parameters responsible for long-term 

behaviour of the WWTP can be determined, i.e. YH, fp, bH and XI in the influent (Henze et al., 1998; 

Nowak et al., 1999). These parameters are correlated to a certain degree, meaning that a modification of 

one parameter value can be compensated by a modification of another parameter value. In the study of 

Nowak et al. (1999) on mass balances of full-scale data, it was therefore chosen to fix YH and fp, leaving 

XI in the influent and bH to be determined from the steady state data. In the study of Lesouef et al. (1992), 

two WWTP models were calibrated via steady state calibration only, and this calibrated model was 

applied to simulate dynamic process scenarios. However, if one relies entirely on a steady state calibration 

some problems may be encountered since the real input variations are usually faster than the slow process 

dynamics that were focused upon during the steady state calibration. In other words, the process does not 

operate in steady state but one still attempts to fit a steady state simplification of the model to an unsteady 

situation. A steady state calibration is, however, very useful for the determination of initial conditions prior 

to a dynamic model calibration and for the initiation of first parameter iteration (e.g. Pedersen and Sinkjær, 

1992; Stokes et al., 1993; Dupont and Sinkjær, 1994; Xu and Hultman, 1996; Kristensen et al., 1998). 

3.2.2. Dynamic model calibration 

If it is the aim to describe and predict more short-term and dynamic situations, a model calibration to 

dynamic data will be needed since such data contain more information than steady state data, especially on 

fast dynamic behaviour. The important point in model calibration based on dynamic data is to obtain a 



 

 36

more reliable estimation of the maximum specific growth rates µmaxH and µmaxA (Henze et al., 1998), which 

are the most important parameters in predicting dynamic situations. 

At the WWTP data are most often collected routinely with a daily or weekly sampling frequency. This 

sampling frequency may, however, not be high enough, and for more accurate modelling it may therefore 

be required to run special measuring campaigns (e.g. Pedersen and Sinkjær 1992; Dupont and Sinkjær, 

1994; de la Sota et al., 1994; Xu and Hultman, 1996). The sampling frequencies should be chosen in 

relation to the time constants of the process and influent variations. One of the important time constants of 

the process is the hydraulic retention time (HRT). Ideally, one should choose to sample about five times 

faster than the hydraulic retention time and have a test duration of 3-4 times this key time constant (Ljung, 

1987). However, since measurements on full-scale WWTP’s are relatively expensive these 

recommendations may not always be completely fulfilled. 

Furthermore, data from the full-scale installation alone may be insufficient for a dynamic model calibration 

since the reaction kinetics can not be readily obtained from such data, except for specific designs like 

SBR's and alternating systems (Vanrolleghem and Coen, 1995). For a dynamic model calibration on a full-

scale WWTP the modeller is therefore typically aiming at combining more information rich results derived 

from lab-scale experiments (carried out with sludge and wastewater from the full-scale installation) with 

data obtained from measuring campaigns on the WWTP under study (Dupont and Sinkjær, 1994; Xu and 

Hultman, 1996; Kristensen et al., 1998).  

In Table 3 an attempt is made to gather and summarise the available literature examples on model 

calibrations where detailed information is given on the model calibration procedures. The table should not 

be regarded as a complete list of possibilities but can serve as a starting point. The purpose of the different 

model calibrations is given together with the applied calibration strategy. Furthermore, the information 

sources for the characterisation of (1) wastewater, (2) sludge, (3) kinetics and (4) stoichiometry, are listed. 

Table 3 does not indicate the kind of experiments that may have been carried out to gather the information, 

since this will be discussed in one of the next sections of this review. The model parameters that are not 

mentioned in Table 3 have either been taken from literature or their origin may not have been clearly 

indicated in the references. Considering wastewater characterisation it is not always specified how the 

wastewater information was converted into the wastewater components according to ASM1. In these 

cases only the type of measurement (e.g. COD, TKN etc.) is listed in the Table.  

Based on Table 3, it is obvious that the choice of information needed for the model calibration is governed 

by the purpose. E.g. in the studies of Pedersen and Sinkjær (1992) and Dupont and Sinkjær (1994) the 

emphasis was to have a description of the nitrification and denitrification, and the model calibrations 

therefore focused on adjustment of the parameters related to these processes. In contrast, other studies 

aimed at a description of both COD and N removal, and as a result more parameters had to be considered 
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for adjustment in the model calibration (Siegrist and Tschui, 1992; de la Sota et al., 1994; Xu and 

Hultman, 1996; Kristensen et al., 1998). 

The wastewater characterisation has both been carried out via full-scale data combined with mass balances 

and via lab-scale experiments, e.g. for the inert components SI and XI (Lesouef et al., 1992) and the SS 

component (Xu and Hultman, 1996; Kristensen et al., 1998). In one study all wastewater components 

were determined via model calibration on the full-scale data (de la Sota et al., 1994). The determination of 

the stoichiometric and kinetic parameters is often carried out via calibration of the model to the full-scale 

data only. However, some studies have also included the effort of characterising some parameters in lab-

scale experiments, e.g. for the determination of the specific growth rate of the autotrophic biomass (e.g. 

Lesouef et al., 1992; Dupont and Sinkjær, 1994) or to collect further information on the half-saturation 

coefficients (Kristensen et al., 1998). 

In addition, Table 3 indicates that if the purpose of the model calibration was more than “just” a description 

of the processes, more emphasis was put on the characterisation of the relevant parameters via lab-scale 

experiments. For example in the study of Dupont and Sinkjær (1994) the aim was to apply the model for 

optimisation of nitrogen removal.  

Finally, Table 4 aims at summarising the most relevant parameters to adjust in the steady state and dynamic 

model calibration. The parameters related to the hydrolysis process are not included in Table 4. This was 

done on purpose since it was not clear from the literature whether the parameters of this process are most 

influential to short- or long-term treatment plant behaviour. 
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Table 4. Most relevant parameters in steady state and dynamic model calibration. 

 Steady state calibration Dynamic calibration 

Predictions Long-term Short-term 

Main relevant parameters YH, fP, bH, XI,influent µmaxH, µmaxA, ηg, ηh, KS, KNH, KOH, KOA 

 

4. Characterisation of wastewater and sludge kinetics 

Different methods may be proposed to structure the wealth of methods that have been developed and 

applied for the characterisation of wastewater and reaction kinetics in relation to ASM1. At this point it is 

assumed that the reader is familiar with the ASM1 terminology. In this review it has been chosen to focus 

on the methodologies, i.e. what can be achieved with different methods, their advantages and 

disadvantages, rather than focus on the different wastewater components and processes separately. This 

choice was motivated by the fact that some methods typically can yield information on more than one 

component or process. In the end of the review it is attempted to illustrate the power of the different 

methods for wastewater and sludge kinetics characterisation in the frame of ASM1. Finally, the relevance 

of characterising the different components and processes in the frame of ASM1 model calibration is 

critically evaluated. 

4.1. Wastewater characterisation 

Wastewater can be characterised either with physical-chemical methods or with biological methods. In 

practice one typically ends up with a combined approach to obtain an estimate of the concentrations of all 

components. In the following physical-chemical and biological methods will first be described separately to 

obtain an overview of what can be achieved with the different methods. Finally, an overview of what can 

be achieved by combining both approaches is illustrated and discussed. In ASM1 the CODtot of the 

wastewater is considered to consist of inert soluble organic matter (SI), readily and slowly biodegradable 

substrate (SS and XS respectively) and inert suspended organic matter (XI), whereas biomass in the 

wastewater is considered to be insignificant: 

SISI XXSSCODtot +++=      (5)  

4.1.1. Physical-chemical characterisation 

A wastewater can be separated into different components in a relatively simple manner via physical-

chemical separation methods. 

The difference in molecular size can give an indication on biodegradability because small molecules can be 

taken up directly over the cell membranes whereas bigger molecules need to be broken down prior to 
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uptake. Enzymatic hydrolysis is primarily a surface phenomenon, which means that the hydrolysis rate is 

directly related to the surface area. Thus, smaller molecules are readily degraded whereas degradation of 

larger material can be kinetically limited. 

In early studies the wastewater components were separated physically into four size-depending fractions by 

successive sedimentation, centrifugation, and filtration. The fractions were classified as settleable, 

supracolloidal, colloidal, and soluble (Rickert and Hunter, 1971), and were analysed for Chemical Oxygen 

Demand (COD). An important conclusion from these early studies was that particles smaller than 1.0 µm 

were approximated to be the true soluble fraction. Moreover, the particles smaller than 1.0 µm were 

observed to be more rapidly degradable than particles larger than 1.0 µm. In a more recent study Levine et 

al. (1985) studied the size distribution of the organic matter in wastewater and the relationship to different 

wastewater treatment processes. In this study it was concluded that a separation over a membrane with a 

pore size of 0.1 µm was valid for a differentiation between the true soluble and particulate organic 

fractions. The organic particles smaller than 0.1 µm are typically cell fragments, viruses, macromolecules 

and miscellaneous debris. The major groups of macromolecules in wastewater are polysaccharides, 

proteins, lipids and nucleic acids. The fraction measured by the standard test for suspended solids (1.2 µm) 

includes protozoa, algae, bacterial flocs and single cells. However some bacterial cells, cell fragments, 

viruses and inorganic particles have a size from 0.1 to 1.2 µm and will thus also pass through the more 

typically applied filter size of 0.45 µm for separation between soluble and particulate matter (Levine et al., 

1985). The size of colloidal matter is typically in the range 0.1-50 µm whereas material with a size larger 

than 50 µm usually settles (Levine et al., 1985). 

The ASM models do not differentiate between filtered, colloidal and settleable wastewater fractions. It is 

therefore necessary to convert the fractions resulting from a physical-chemical characterisation to the ASM 

components. The possibilities and limitations of physical-chemical methods to accomplish this task are 

summarised and discussed below. 

Inert soluble organic matter SI 

Soluble inert organic matter SI is present in the influent, but, importantly, is also produced during the 

activated sludge process (Chudoba, 1985; Orhon et al., 1989; Boero et al., 1991; Germirli et al., 1991; 

Sollfrank et al., 1992). Most of the evidence for the production of soluble organics by micro-organisms is 

collected from experiments with simple known substrates, e.g. glucose (Chudoba, 1985; Boero et al., 

1991). However, the production has also been proven to take place with wastewater (Orhon et al., 1989; 

Germirli et al., 1991; Sollfrank et al., 1992). The SI production seems to depend on the initial substrate 

concentration and on cultivation conditions (Chudoba, 1985). A model has been proposed relating the SI 

formation to the hydrolysis of non-viable cellular materials in the system, thereby linking the SI production 

to the initial substrate concentration and the decay of the produced biomass (Orhon et al., 1989). This 
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model was verified in a study with different industrial wastewaters and, although the data were not of very 

high quality, some evidence was given that the SI production depends very much on the wastewater type 

(Germirli et al., 1991). The hyphotesis that the SI production originates from the decay process was, 

however, contradicted in a study on municipal wastewater (Sollfrank et al., 1992) where it was concluded 

that the SI production was related to the hydrolysis of slowly biodegradable COD of the incoming 

wastewater. 

Thus, although the origin of the SI production may remain unexplained, it seems clear that it does take place 

to various extents depending on different factors as mentioned above, resulting in a SI concentration in the 

effluent that may be higher than the influent. Such SI production is, however, not included in the ASM 

models, where SI is considered a conservative component. To deal with this discrepancy between model 

concept and reality a simplified approach is typically applied by the definition of a fictive model influent 

concentration SI which includes the produced SI together with the real SI influent concentration (Henze, 

1992).  

It is not possible to measure SI directly and different approximations are therefore usually applied. Most 

often SI is determined by the soluble effluent COD, which has appeared to be a good estimate for SI in 

case of a low loaded activated sludge process (Ekama et al., 1986). On the other hand Siegrist and Tschui 

(1992) suggested that the influent SI could be estimated as 90% of the effluent COD. These 

approximations may hold in most cases, but a more correct approach would be to consider it as the soluble 

effluent COD minus the soluble effluent Biochemical Oxygen Demand (BOD) multiplied with a BOD/COD 

conversion factor (Henze, 1992). Furthermore, SI can be determined as the soluble COD remaining after a 

long-term BOD test with the influent (Henze et al., 1987; Lesouef et al., 1992). The latter approach is in 

fact a combination of physical-chemical and biological methods. However, in case of significant SI 

production during the test the influent SI may be overestimated (Sollfrank et al., 1992), which may lead to 

an underestimation of influent SS eventually. Finally, a procedure was developed to distinguish between SI 

of the influent wastewater and SI produced during degradation (Germirli et al., 1991). However, in order 

to achieve significant response glucose was added in these tests assuming that the wastewater under study 

resembled glucose, an assumption that may not hold in practice. 

Summarising, it will be case depending whether it is needed to characterise the produced SI or whether the 

model component can be approximated as described above. 

Readily biodegradable substrate SS 

The soluble COD fraction excluding the soluble inert organic matter (SI) is mostly considered to represent 

the readily biodegradable substrate SS. The correctness of this approach does however evidently depend 

on the pore size of the filters used for the separation. As described above the “true” soluble fraction passes 

through a 0.1 µm filtration step according to Levine et al. (1985). However, in practice larger filter sizes 
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are most often used, which may result in an overestimation of the soluble readily biodegradable substrate 

concentration, assuming that the definition of Levine et al. (1985) holds. 

Another study confirmed that the fraction passing a 0.1 µm filter gave a good representation of the soluble 

readily biodegradable substrate (Torrijos et al., 1994). It was confirmed biologically (via respirometry, see 

below for a detailed description) that the studied wastewater did not contain any particulate readily 

biodegradable matter. In contrast with this, Spanjers and Vanrolleghem (1995) found, also via 

respirometry, that filtered wastewater (0.45 µm) had a lower biological response than unfiltered 

wastewater, indicating that parts of the readily biodegradable wastewater fraction was retained on the filter. 

Similarly, for an industrial wastewater it was found that the filtrate fraction produced via ultrafiltration (pore 

size < 0.001 µm) had a lower biodegradability (13% of CODtot) than the fraction determined with a 

respirometric characterisation method (20% of CODtot) (Bortone et al., 1994). Further it was also found 

that part of the soluble COD can be slowly biodegradable (Sollfrank and Gujer, 1991). 

Finally, a method based on flocculation with Zn(OH)2 has been developed to remove colloidal matter of 

0.1-10 µm that normally passes through 0.45 µm filter membranes, and was successfully applied to a 

phosphorus removal activated sludge system (Mamais et al., 1993). However, the flocculation has 

appeared to be rather sensitive to interference and appears highly depending on the pH value during the 

flocculation (Haider, 2000). 

Inert suspended organic matter XI 

The test proposed for the determination of SI, as the residual soluble COD remaining after a long-term 

BOD test, by Lesouef et al. (1992) can also be applied to determine XI. The XI concentration is then 

determined as the residual particulate COD, assuming that XI is not produced during the test. This 

assumption may, however, be questionable since XI will be produced due to decay during the long-term 

BOD test and corrections for this will have to be considered. 

Slowly biodegradable substrate XS 

As mentioned earlier, a physical characterisation based on different molecular sizes can be used to 

distinguish between readily biodegradable substrate SS and slowly biodegradable substrate XS. In one 

study it has been proposed that XS may be determined as the colloidal fraction defined by 0.1 – 50 µm 

(Torrijos et al., 1994). However, this hypothesis could not be supported since the results indicated that the 

colloidals mainly disappeared according to a physical removal mechanism without any related biological 

oxidation. In another study of contact stabilisation, a multiple filtration procedure was used to isolate and 

monitor the variation in concentration of the colloidal fraction between 0.03 – 1.5 µm (Bunch and Griffin, 

1987). Here it was further confirmed that colloidal matter was removed physically, probably by adsorption. 

However, the subsequent increase in soluble organic matter, and corresponding oxygen uptake resulting 
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from breakdown of colloidal substrate, were not observed. Thus, based on these two studies it is not clear 

whether colloidals can be considered equal to XS. Part of the colloidal substrate may be inert, as was 

probably the case in the example of Bunch and Griffin (1987), but this was not considered in these studies.  

In addition, parts of the soluble substrate (Sollfrank and Gujer, 1991) and the settleable matters may 

belong to the XS fraction making it rather problematic to characterise XS entirely by a physical-chemical 

method.  

Finally, if the components SS, SI and XI are known and if it is assumed that the biomass concentration is 

negligible, XS can be determined via a simple mass COD balance. 

Biomass XBH and XBA 

It is not possible to distinguish biomass concentrations via a physical-chemical method.  

Nitrogen components SNH, SND, SNO, XND 

The nitrogen components can rather easily be detected by physical–chemical analysis via a combination of 

standard analyses of ammonium, nitrite and nitrate and Kjeldahl nitrogen (TKN) on filtered and non-filtered 

samples (Henze et al., 1987). 

 

Summary and discussion of physical-chemical wastewater characterisation 

Based on the descriptions and discussions above it can be concluded that a wastewater characterisation 

entirely based on physical-chemical characterisation alone will not be sufficient to obtain an accurate 

distribution of the organic substrate over the different ASM1 components (Fig. 6A). However, physical-

chemical methods alone may be adequate for the estimation of the nitrogen components (Fig. 6B). In Fig. 6 

the dashed line indicates the range of uncertainty with respect to the determination of the organic 

components. 

Summarising, the two main problems with respect to determination of the organic components entirely by 

physical-chemical means are: 

4. The reliability of SS determination based on soluble COD depends very much on the applied filter size 

but, even more, on the kind of wastewater under study since it is possible that part of the particulate 

substrate is also readily biodegradable.  

5. Defining XS as being the colloidals can induce errors because the colloidal fraction may also contain 

inert matter. Moreover, parts of the soluble and settleable fractions may belong to XS. Thus, it is not 

possible to separate the particulate XS, XI and XBH components adequately. 
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Table 5 summarises the characterisation of wastewater components via physical-chemical methods, and the 

assumptions needed, as described in the literature review above. According to this table it can be seen that 

with some assumptions and a combination of a physical-chemical and a biological method for assessment 

of XI (long-term BOD test) (Lesouef et al., 1992), it is possible to determine all COD components (SS, SI, 

XS and XI). Knowledge of XI allows a determination of XS via a mass balance of particulate COD, 

assuming that XBH is zero. However, it should be kept in mind that the determination of XI via a long-term 

BOD test may not be accurate, as discussed above. Moreover the assumption that particular COD is not 

readily biodegradable may be incorrect. 
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Figure 6. Characterisation of ASM1 wastewater components by physical-chemical methods (A: modified 

from STOWA (1996), and B: modified from Henze et al. (1995)) 
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Table 5. Overview of physical-chemical methods for determination of wastewater components (Fields 

with grey background indicate that a physical-chemical method is not applicable) 

Component Method Additional information. Assumptions References 

0.45 µm filtration of 

effluent 

low loaded system (no 

biodegradable substrate 

in effluent) 

E86 

 

90% of effluent COD  ST92 

7-8 µm filtration after 

long-term aeration test 

no SI production during 

degradation 

L92; S92 

SI 

COD profiles in batch 

tests  

 

wastewater similar to 

glucose 

G91 

0.1 µm filtration SI L85; T94 

7-8 µm filtration SI L92 

SS 

Zn(OH)2 flocculation  SI 

Particulates do not 

contain readily 

biodegradable matters 
M93 

XI 7-8 µm filtration after 

long-term aeration test 

 no XI production during 

degradation 

L92 

XS mass balance SS, SI, XI XBH, XBA negligible H87 

XBH     

XBA     

XP     

SO Standard analysis of 

oxygen concentration 

   

SNO Standard analysis    H87 

SNH Standard analysis    H87 

SND Standard analysis of 

soluble TKN 

SNH  H87 

XND Standard analysis of 

particulate TKN  

  H87 

SALK Standard analysis of 

alkalinity 

   

References: 

E86 Ekama et al., 1986  G91 Germirli et al., 1991  H87 Henze et al., 1987 

L92 Lesouef et al., 1992  L85 Levine et al., 1985  M93 Mamais et al., 1993 

ST92 Siegrist and Tschui, 1992  S92 Sollfrank et al., 1992  T94 Torrijos et al., 1994 
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4.1.2. Biological characterisation 

The ASM models are in general biologically defined models. Thus, it is not surprising that biological 

wastewater characterisation methods have found wider application and acceptance than physical-chemical 

characterisation tests. In the biological methods the fractionation of organic matter is based on its rate of 

degradation (Henze, 1992) which makes the relation to the ASM concepts more direct. It is obvious that 

mainly the biodegradable components and the microbial biomass in the wastewater (SS, XS, SNH, SND, XND 

and XBH) can be characterised directly by these methods, whereas the inert components SI and XI may be 

determined by a combination of physical-chemical and biological tests, as already mentioned above 

(Lesouef et al., 1992). Typically, a biological characterisation is based on measurements of the biomass 

response during substrate degradation in either a continuous flow-through system or batch type experiment. 

This means that the concentration determination of the biodegradable components is indirect, since the 

biomass activity has to be interpreted in terms of a substrate concentration. In principle the consumption of 

substrate can be measured directly by measurements of e.g. COD. However, this is typically not very 

practical due to problems of sampling and filtration of sludge samples etc. Instead, the biomass response 

during substrate degradation can be monitored by recording the utilisation of electron acceptors, such as 

oxygen or nitrate, or the formation of products, such as protons, nitrate or carbon dioxide.  

A main part of the review on biological characterisation will deal with respirometry. Respirometry is defined 

as the measurement and interpretation of the oxygen uptake rate of activated sludge (Spanjers et al., 

1998). In fact the main goal of a WWTP is to reduce the biochemical oxygen demand of the wastewater, 

and ASM1 was primarily developed to yield a good description of the sludge production and consumption 

patterns of electron acceptors, as described above. Thus, it is not surprisingly that respirometry has turned 

into one of the most popular biological characterisation methods, since the total respiration rate is affected 

by the concentration of all aerobically biodegradable components, to which the majority of wastewater 

components usually belong. However, nitrate utilisation rates can also be applied for characterisation of the 

denitrification potential of a wastewater. Finally, a titrimetric technique, especially applicable for 

determination of the ammonium concentration available for nitrification, will be reviewed.  

Before the description and discussion on the application of respirometry, nitrate utilisation rates and 

titrimetry for wastewater characterisation, the methodology of each method is described in more detail. 

Thus, the readers already familiar with these methodologies can skip these intermediate sections and 

directly continue reading about their applications for wastewater characterisation. 
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4.1.2.1. Respirometry 

Historically, the determination of the Biochemical Oxygen Demand (BOD) during an incubation period of 5 

to 7 days (BOD5 or BOD7) has been widely applied to quantify the effects of pollutants on the oxygen 

demand of receiving waters, and was further applied for the characterisation of wastewater. However, due 

to the rather arbitrary choice of 5 or 7 days the test result represents a varying part of the ultimate BOD of 

different wastewaters, depending on the wastewater composition. For a more complete analysis of the 

ultimate oxygen demand of a wastewater the BOD test can be expanded to 20-30 days, typically 28 days. 

In the BOD tests the oxygen content is most often only recorded at the start and end of the test without 

information on the evolution of the oxygen consumption over time. This means that the test can not give any 

information on the different biodegradable fractions. 

The test length of 5-7 days or even longer is not very suitable in the frame of wastewater treatment plant 

operation. As a consequence the concept of short-term biochemical oxygen demand (BODst) was 

introduced (Vernimmen et al., 1967). The concentration of BODst can be determined via respirometry. As 

defined above, respirometry deals with the measurement and interpretation of the oxygen uptake rate, rO, 

of activated sludge. In general, the rO may be considered to consist of two components (Spanjers, 1993): 

The exogenous oxygen uptake rate (rO,ex), which is the immediate oxygen uptake needed to degrade a 

substrate, and the endogenous oxygen uptake rate (rO,end). Different definitions of rO,end appear in literature. 

The definition applied by Spanjers (1993) is that the rO,end is the oxygen uptake rate in absence of readily 

biodegradable substrate. In the context of ASM1 it is assumed that rO,end is associated with the oxidation of 

readily biodegradable matter produced by (1) hydrolysis of the slowly biodegradable matter that results 

from lysis of decayed biomass and, (2) the use of substrate for maintenance. The integral of the rO,ex profile 

is a measure of BODst (Spanjers et al., 1998).  

Contrary to the BOD5 method, the BODst test is carried out with the same biomass as in the activated 

sludge plant under study and may therefore be a more representative measure of the effect of the 

wastewater on the particular activated sludge plant under study. Several attempts have been made to 

correlate BOD5 to BODst (Vernimmen et al., 1967; Farkas, 1981; Suschka and Ferreira, 1986; 

Vandebroek, 1986; Ciaccio, 1992; Vanrolleghem and Spanjers, 1994). However, the success of such a 

correlation seems to depend strongly on the type of wastewater, since the wastewater may contain varying 

proportions of readily and slowly biodegradable fractions.  

Fig. 7 illustrates the conceptual idea of respirometry. The degradation of substrate S1 and S2 (Fig. 7A) 

results in a total exogenous uptake rate rO,ex (Fig. 7B). Fig. 7B illustrates a rather typical respirogram (i.e. a 

time course of respiration rates) with an initial peak in rO,ex caused by oxidation of the most readily 

biodegradable matter, here S1, followed by, in this case, one “shoulder” in the rO,ex profile where 

component S2 continues to be degraded. Thus, in this example the contribution of S1 and S2 to the total 
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rO,ex, and related total BODst, can easily be distinguished. 

However, it will become clear from the “wheel-work” described in Table 6 (Vanrolleghem et al., 1999) 

that most of the processes in ASM1 eventually act on the oxygen mass balance and may result in more 

complicated rO,ex profiles. The total rO,ex of the activated sludge in contact with wastewater is given in Eq. 6 

according to ASM1.  
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Figure 7. Conceptual respirogram resulting from degradation of substrate S1 and S2 

The concentration of SS and SNH depend on the influent wastewater and also on the rates at which XS, SND 

and XND are degraded. As an example we will follow the arrows from XBH to SO (Table 6): in the mass 

balance of the heterotrophic biomass XBH (column, c., 5) the production of XBH by aerobic growth (row, 

r., 1) is counteracted by the loss of XBH by heterotrophic decay (r. 4). In this decay process component 

XBH (c. 5) is converted to component XS (c. 4). This production of XS is counteracted by the loss of XS by 

hydrolysis (r. 7), leading to production of component SS (c. 2). SS is subsequently used for heterotrophic 

growth (r. 1) where it is converted to component XBH (c. 5) with concomitant consumption of oxygen SO 

(c. 8), i.e. respiration. A similar reasoning can be made for the processes involving the nitrogen components 

(SNH, SND and XND) and autotrophic (nitrifying) organisms (XBA).  

Fig. 8 shows different examples of respirograms collected in a batch experiment where synthetic 

wastewaters were added to endogenous sludge. Note that in Fig. 8 C-D only the exogenous oxygen 

consumption due to substrate oxidation is given, rO,ex, whereas the total rO is given in Fig. 8 A-B. It now 

becomes clear that the respirograms can differ significantly in shape depending on the substrate added and 

may not be as straightforward to interpret as the conceptual example given in Fig. 7. Thus, the challenge is 

to interpret and perhaps divide the respirogram according to the contribution of rO,ex by different 

wastewater components. 
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Figure 8. A: Typical acetate profile (reference; see also chapter 3) B: Municipal wastewater (Kappeler 

and Gujer, 1992), C: Municipal wastewater (Spanjers and Vanrolleghem, 1995), D: Industrial wastewater 

(Coen et al., 1998) 

There are two approaches for the determination of model parameters and components: direct methods 

focus on specific parameters and components which can directly be evaluated from the measured 

respiration rates (Ekama et al., 1986; Spanjers et al., 1999), whereas optimisation methods use a (more 

or less simplified) model that is fitted to the measured data (Kappeler and Gujer, 1992; Larrea et al., 

1992; Wanner et al., 1992; Spanjers and Vanrolleghem, 1995; Brouwer et al., 1998; Coen et al., 1998). 

In the latter, numerical techniques are used to estimate parameter values that lead to the smallest deviation 

between model predicted and measured respiration rates (see Fig. 4).  

Below, examples of respirometric experiments to assess the different wastewater components will be 

reviewed and important experimental factors with respect to wastewater characterisation will be discussed. 

The overview does not attempt to review and evaluate different respirometric principles, since a review of 

these is included in the introduction to chapter 3. Different methods may only be included here to illustrate 

points that are specifically related to wastewater characterisation. 

Readily biodegradable substrate Ss 

The readily biodegradable substrate is presumably composed of simple and low molecular soluble 
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compounds, such as volatile fatty acids, alcohols, etc. (Henze, 1992). The characteristic of these 

compounds is that they are degraded rapidly and hence result in a fast respirometric response, e.g. as in 

Fig. 8A.  

The most typical batch test for determination of SS involves the addition of a wastewater sample to 

endogenous sludge, and the monitoring of the respiration rate until it returns back to the endogenous level 

(Ekama et al., 1986, among others). The examples shown in Fig. 8 are all obtained with such an approach. 

The respirometric methods may vary (see review in Chapter 3) from a very simple lab-scale batch test to 

more complex methods that may even be applied on-line. The concentration of readily biodegradable 

substrate initially present in the mixture of biomass and wastewater in the experiment is generally calculated 

according to Eq. 7. 
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The concentration of SS in the wastewater is then easily calculated by taking the dilution into account. The 

end point tfin of the integration interval is the time instant where SS is completely oxidised and where the 

exogenous respiration rate for SS becomes zero. The integral can directly and easily be obtained by 

determining the area under the rO,ex profile, e.g. by using a spreadsheet program. An alternative consists of 

solving the mass balance equations with a numerical integrator to predict the exogenous respiration rates for 

SS and a given initial value SS(0). It may be a bit overdone to apply numerical integration for the profile 

illustrated in Fig. 8A, however for more complex profiles (Fig. 8 B-D), the approach may become 

necessary and more straightforward than direct calculation, as will be discussed further below. 

Notice that knowledge of the heterotrophic yield coefficient YH is needed for the calculation of SS from 

respiration rates (Eq. 7). The yield indicates the COD fraction that is converted to cell mass. The rest of the 

COD is used to provide the energy that is required to drive different synthesis reactions. This energy is 

made available by oxidative phosphorylation, which requires a terminal electron acceptor, in this case 

oxygen. The produced energy is proportional to the mass of electron acceptor utilised, which in turn is 

proportional to the COD consumed. As a consequence (1-YH)⋅COD is equal to the integral under the rO,ex 

curve. Evidently, the parameter YH is always involved when oxygen consumption is converted to substrate 

equivalents.  

The batch test described above is also used to assess other ASM1 components and, likewise, kinetic and 

stoichiometric parameters. This will be explained further in the next section on characterisation of sludge 

kinetics, but this indicates already the popularity of this test in assessing wastewater components and 

reaction kinetics. 

Apart from the typical batch test as described above, other experimental designs have also been tried out 
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for the determination of SS. One example consists of monitoring the respiration rate of unsettled sewage 

without inoculum for a relatively long period, approximately 20 hours (Wentzel et al., 1995). A respirogram 

similar to the one depicted in Fig. 9 is obtained. The SS concentration is calculated from the respiration 

rates observed between the start of the test up to the time with the precipitous drop (due to depletion of 

SS), with correction for the increasing endogenous respiration due to the increase of biomass during the 

test. In addition to YH, knowledge of the maximum specific growth rate is required, information that can be 

obtained from the same test (see below). 
r O
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g/l
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Figure 9. Respiration rates measured in a batch experiment for estimation of µmaxH and KS (after Kappeler 

and Gujer, 1992) 

An often-referred continuous flow-through method was developed by Ekama et al. (1986), see Fig. 10.  
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Figure 10. Respiration rates obtained with the experimental set-up of Ekama et al. (1986) 

This method involves the monitoring of respiration rate in a completely mixed reactor operated under a 

daily cyclic square-wave feeding pattern. The experiment is designed in such a way that the supply of SS 

from hydrolysis of XS remains constant for a period after the feed is stopped and gives rise to a second rO 

plateau. It is hypothesised that the difference in rO plateau values corresponds uniquely to the SS that has 
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entered via the influent. Hence, the concentration of readily biodegradable substrate in the wastewater can 

be calculated as given in Eq. 8. 
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⋅=

     (8)  

An obvious disadvantage of this method is the experimental length (24 h, which is not including the 

stabilisation of the continuous reactor used for the test), and the fact that sufficient XS is needed in the feed 

to achieve a constant hydrolysis rate and to create as such the step change in rO. In addition, the method is 

rather difficult to carry out in practice (Sollfrank and Gujer, 1991; Wentzel et al., 1995). 

A final method for the evaluation of SS was based on the evolution of the respiration rates obtained in a 

continuously fed respirometer during transients between two modes of operation; a mode of endogenous 

respiration and wastewater addition respectively (Spanjers et al., 1994). In the work of Lukasse et al. 

(1997) the estimation technique developed for the determination of SS in the respirometer of Spanjers et 

al. (1994) was further evaluated and improved. In the work of Witteborg et al. (1996) the same 

continuously fed respirometer was used but a different estimation of SS was proposed as now the 

measurement of respiration rate was performed under three different wastewater loading conditions. The 

wastewater SS was calculated by numerically solving a set of mass balances pertaining to different loading 

conditions of the respirometer. 

Slowly biodegradable substrate XS 

It is assumed that slowly biodegradable substrate XS is composed of (high-molecular) compounds ranging 

from soluble to colloidal and particulate (Henze, 1992). The common feature of these compounds is that 

they cannot pass the cell membrane as such, but have to undergo hydrolysis to low-molecular compounds 

(SS) which are subsequently assimilated and oxidised. The respirometric response on XS is slower because 

the hydrolysis rate is lower than the oxidation rate of SS.  

In a batch test an exponentially decreasing “tail” can frequently be observed in respirograms (Fig. 8 B-C). 

In Fig. 8B, this tailing starts after approximately 0.75 hours. The wastewater concentration of XS can be 

assessed in a similar way as above, Eq. 7 (Sollfrank and Gujer, 1991; Kappeler and Gujer, 1992). 

Simultaneously occurring oxidation processes such as nitrification might interfere and complicate the 

separation of the respiration rate due to hydrolysis in the total respiration rate. In that case a nitrification 

inhibitor may be used to facilitate the assessment of XS (Spanjers and Vanrolleghem, 1995). Alternatively, 

if the data of such respirometric batch tests are used in combination with mathematical curve fitting 

techniques to match the response of the model to the data, the nitrification part can rather easily be 

extracted from the respirogram (Spanjers and Vanrolleghem, 1995). 

It has also been proposed to estimate XS based on a long-term BOD test where XS is obtained by 
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subtracting SS from BOD/(1-YH) (STOWA, 1996). Note that the value of YH here should be lower than 

the one applied in Eq. 7, due to internal turnover of substrate from decayed biomass in long-term tests. 

Heterotrophic biomass XBH 

In the ASM1 report the influent concentration of heterotrophic biomass, XBH, is assumed to be negligible, 

as earlier mentioned. However, some wastewaters can contain a significant concentration of heterotrophic 

biomass (Henze, 1992), and there may therefore be a need to quantify this component. A batch test has 

been proposed where XBH is assessed from the respirometric response of raw wastewater without 

inoculum (Kappeler and Gujer, 1992; Wentzel et al., 1995). The calculation requires knowledge of YH 

together with two parameters (µmaxH and bH) that can be obtained from the same data. Respirograms look 

similar to the one presented in Fig. 9. The procedure basically backtracks the amount of heterotrophic 

biomass originally present in the wastewater by comparing the original respiration rate with the respiration 

rate after significant (hence, well quantifiable) growth of XBH. 

Autotrophic biomass XBA 

So far, no procedures were found by which the autotrophic biomass concentration in wastewater is 

determined. However, it could be imagined that a similar procedure as the one developed for XBH is 

applicable. Thus, by evaluation of the respiration rate for nitrification, N
ex,Or , of the autotrophs present in the 

wastewater and by comparison to the respiration rate of a culture with known autotrophic biomass 

concentration XBA, e.g. after significant growth, the originally present XBA could be determined. 

Ammonium SNH 

The concentration of ammonium in wastewater can be determined by using conventional analytical 

techniques, as mentioned earlier. However, respirometry also offers the possibility to deduce SNH from 

batch measurements in a similar way as SS and XS, provided the test is done with nitrifying activated sludge 

and the oxygen consumption for nitrification can be separated from the other oxygen consuming processes. 

As follows from Table 6, the autotrophic yield coefficient YA is needed to convert the oxygen consumption 

for nitrification to a nitrogen concentration by division by (4.57-YA), where 4.57 indicates the amount of 

oxygen needed to oxidise one unit of ammonium nitrogen. The value of YA is typically 0.24 g 

COD(biomass)/g N, which means that the determination of SNH is not very sensitivity to YA since its value 

is small compared to 4.57. 

Notice that part of the available ammonium may be assimilated into new heterotrophic biomass, which may 

be a considerable fraction of the nitrogen in case a large amount of COD is biodegraded (CODDegraded) 

simultaneously with the nitrification. The actual nitrified ammonium nitrogen, denoted NNitr, can be 

approximated by Eq. 9 in which iXB is the nitrogen content of newly formed biomass: 
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Degraded
HXBNH

Nitr CODYiSN ⋅⋅−=     (9)  

From this equation one can easily deduce the original nitrogen concentration when CODDegraded, and the 

stoichiometric parameters iXB and YH are given. Note, however that fitting a model in which carbon and 

nitrogen oxidation are included to the respirometric data will automatically take this correction into account 

(Vanrolleghem and Verstraete, 1993; Spanjers and Vanrolleghem, 1995; Brouwer et al., 1998).  

Organic nitrogen SND and slowly biodegradable organic nitrogen XND 

Probably because the ammonification and hydrolysis rates of organic nitrogen compounds are relatively 

fast, little attention has been devoted so far to the establishment of respirometric techniques for SND and 

XND quantification. In batch tests these compounds are typically converted to SNH before the SNH that was 

originally present in the wastewater is removed by nitrification. Therefore, SND and XND are not directly 

observable in such tests but may be lumped into the fraction of nitrified ammonium. Still, for some industrial 

wastewaters the ammonification and hydrolysis steps may be considerably slower and quantification of 

these component concentrations may be required. In such cases, one can imagine a procedure in which the 

nitrification respiration rate N
ex,Or  is monitored and interpreted in terms of ammonification and hydrolysis, 

similar to the way the respiration resulting from COD degradation is interpreted in terms of the 

biodegradation of readily biodegradable substrate and the hydrolysis process. Subsequently, the amounts 

of nitrogen containing substrates could be assessed by taking the integral of N
ex,Or  for the corresponding 

fractions and dividing these by (4.57-YA). In case simultaneous COD removal is taking place, correction 

should again be made for nitrogen assimilated into new heterotrophic biomass (see above). 

4.1.2.2. Nitrate utilisation rates 

Readily or slowly biodegradable substrate SS and XS 

The basis for wastewater characterisation via monitoring of nitrate utilisation rates (rNO3) to determine the 

denitrification potential is rather similar to that of respirometry (Nichols et al., 1985; Ekama et al., 1986; 

Kristensen et al., 1992; Naidoo et al., 1998; Spérandio, 1998; Urbain et al., 1998; Kujawa and 

Klapwijk, 1999). The application of nitrate utilisation rates for wastewater characterisation within the frame 

of ASM1 is however not as widespread as respirometry. 

The readily biodegradable component SS (or XS) is determined by Eq. 10 (similar to Eq. 7). A typical rNO3 

profile is given in Fig. 11, indicating two biodegradable wastewater fractions. 
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Figure 11. Typical profile of rNO3 as function of time for determination of SS and XS (Urbain et al., 1998) 

The factor 2.86 g O2/g NO3-N originates from the fact that the theoretical electron acceptor capacity of 

nitrate (as N) is 2.86 times that of oxygen (as O), assuming that NO3-N is converted completely to 

nitrogen gas N2 (Payne, 1981; van Haandel et al., 1981). The factor has been verified experimentally by 

Copp and Dold (1998).  

In Eq. 10 it is assumed that the YH of aerobic and anoxic substrate degradation is equal, as also assumed in 

ASM1. In a study on a pure denitrifying culture it has however been reported since long that aerobic yields 

are larger than anoxic yields (Koike and Hattori, 1975). It has been theoretically proven, based on the 

energetics of the metabolic processes, that anoxic yields indeed are consistently lower than aerobic ones 

(Orhon et al., 1996). Indeed similar differences between aerobic and anoxic yield were obtained 

experimentally with activated sludge (McClintock et al., 1998; Spérandio et al., 1999). Thus, to apply 

nitrate utilisation rates for wastewater characterisation it is important to correct for this difference in aerobic 

and anoxic yield since application of aerobic yield values in Eq. 10 will lead to overestimation of the readily 

biodegradable wastewater components. 

4.1.2.3. Titrimetry 

The buffer capacity of water samples can be measured accurately by advanced titration techniques (Van 

Vooren et al., 1995), and has recently been successfully applied for the determination of ammonium and 

phosphorus in low concentrations (0 – 100 mg/l) in effluents, surface waters and manure (Van Vooren, 

2000).  

Some efforts have been done to characterise VFA concentrations related to anaerobic processes based on 

titration procedures and pH measurements (e.g. Münch and Greenfield, 1998). These techniques may also 
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be applicable for wastewater characterisation in the frame of ASM2 where one component is defined as 

the concentration of fermentation products. This will however not be dealt with any further in this 

presentation. 

Alternative to the classical titration methods (up and down titrations) Ramadori et al. (1980) proposed to 

monitor the acid and/or base consumption rate that was needed to keep the pH constant in an activated 

sludge sample where pH-affecting biological reactions occur. This titrimetric method has been successfully 

applied for the monitoring of nitrification, which has a clearly defined effect on the pH, and concentrations 

of SNH (Massone et al., 1995; Gernaey et al., 1997a). Recently, it has also been attempted to apply the 

method for the determination of the total nitrifiable nitrogen concentration of a wastewater (Yuan et al., 

1999).  

Ammonium, SNH 

A typical cumulative base addition curve and a pH profile collected during a titration experiment with 

nitrifying sludge sampled on-line from a pilot plant are shown in Fig. 12 (Gernaey et al., 1998). In a first 

phase, the pH of the nitrifying activated sludge sample is increased to the pH setpoint, and base is added at 

a maximum rate. This phase took about 2 minutes for the example of Fig. 12 For the experiments 

described here, a pH setpoint ± ∆pH interval value of 8.2 ± 0.03 was used. Every time the pH of the 

sludge sample becomes lower than 8.17 (= pH setpoint minus ∆pH interval), base is added to the sludge. 

Dosage of base is repeated until the pH has returned within the pH setpoint ± ∆pH interval range.  

The analyses of the data can either be via a simple manual interpretation or model-based (Gernaey et al., 

1998). The simple procedure is based on the detection of the two slopes (S1 and S2) in the cumulative 

base addition curve, followed by an extrapolation of the different lines to the Y-axis (Fig. 13). The SNH 

concentration (mg N/l) and the nitrification rate rN (mg N/l.min) can be calculated according to Eq. 11 and 

12, where the intercepts B1 and B2 are expressed in meq/l units. The factor 0.143 meq/mg N (i.e., 2 mole 

H+ per mole N), is the stoichiometric coefficient relating the amount of acid (meq) produced per mg of 

nitrogen nitrified. The slopes S1 and S2 are expressed in meq/l.min units. 

143.0
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In the application of Gernaey et al. (1998) the sludge was sampled at the last compartment of an activated 

sludge pilot plant thereby reducing the likelihood of presence of organic substrates. In case ammonification 

is slower than nitrification it may be relevant to determine SND, as described above in the section on 

respirometry. Thus, the titrimetric method may also be applicable for SND determination. It is obvious, 
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however, that degradation of organic substrates may cause acid or base consumption effects that may 

interfere with the determination of SNH according to the described methodology. 
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Figure 12. Typical cumulative base addition curve (expressed as amount of base dosed per liter of 

activated sludge sample) and pH profile obtained during an on-line titration experiment with a mixed liquor 

sample. For this example, the nitrification phase is finished after about 25 minutes (Gernaey et al., 1998) 
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Figure 13. Simple manual interpretation of a typical cumulative base addition curve (Gernaey et al., 1998) 

Readily biodegradable substrate SS 

The titrimetric methodology has also been applied for the determination of readily biodegradable COD 

available for denitrification, and within control strategies for additional carbon dosage (Bogaert et al., 
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1997). A complicating factor is that depending on the carbon source denitrification will either produce or 

consume acid (Bogaert et al., 1997). However, preliminary results (Dhaene, 1996; Rozzi et al., 1997) 

have indicated that the method may be used to evaluate the readily biodegradable substrate in concentrated 

wastewaters. 

4.1.2.4. Summary and discussion of biological wastewater characterisation 

The capabilities of the different biological methods presented above to directly determine the ASM1 

wastewater components are illustrated in Fig. 14 (the dashed lines indicate areas of uncertainties) and 

summarised in Table 7. According to Fig. 14 it is obvious that the readily biodegradable organic 

wastewater components, i.e. SS and parts of XS (Fig. 14A), and the nitrogen components SNH and parts of 

SND and XND (Fig. 14B), can be determined directly via the biological methods. The determination of the 

slower biodegradable component XS can be carried out indirectly via a long-term BOD test and 

knowledge of SS (STOWA, 1996). However, uncertainties may be introduced by long-term BOD tests 

since significant interference from product formation may occur during the lengthy test. 

For the determination of SNH it should be remembered that it is in fact the nitrifiable nitrogen that is 

determined via the biological methods (as indicated with dashed lines into the regions of organic nitrogen, 

since parts of the organic nitrogen may be hydrolysed making it readily available for nitrification). This is in 

contrast to the physical-chemical method where the SNH component is determined via a chemical analysis 

of ammonia. 
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Figure 14. Characterisation of ASM1 wastewater components by different biological methods (the dashed 

lines indicate areas of uncertainties). A: COD components; B: Nitrogen components 
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Table 7. Overview of biological methods for estimation of wastewater component concentrations. (Fields 

with grey background indicate that a respirometric method is not applicable or relevant) 

Component Method Type of  

experiment 

Additional  
Information 

Assumptions References 

SI R BOD∞, WW YH  H87; L92 

R B, WW add. 

B, WW 

C 

C (on/off) 

YH 

YH, µmaxH, KS 

YH 

YH 

 E86 

We95 

Wi96 

E86; SG91; We95 

N B, WW add. 

 

YH 

 

 E86; K92; N98; U98; 

KK99 

SS 

T B, WW, S C/N C/N constant B97; R97; D96 

XI      

R B, WW 

BOD∞, WW 

YH  SG91;KG92; SV95 

S96 

XS 

 B, WW add. YH  N98; U98; KK99 

XBH R B, WW YH  KG92; We95; B95 

XBA R B, WW YA  This review 

XP  

SO  

    

SNO T B, S C/N C/N constant B97 

R B, WW YA, iXB, YH, CODDeg  VV93, SV95; B98 SNH 

T B, WW   M95, G97; G98 

SND R B, WW YA, iXB, YH , CODDeg  This review 

XND R B, WW YA, iXB, YH  CODDeg  This review 

SALK      

Explanation to Table 7 

Method: 
R: Respirometry N: Nitrate respiration test T: Titrimetry 
Type of experiment: 
Ac: acetate  B: batch reactor  add.: addition  adds.: additions   
C: continuous system WW: wastewater S: synthetic substrate 
References 
B95: Bjerre et al., 1995 B97 Bogaert et al., 1997 B94 Brands et al., 1994 
B98 Brouwer et al., 1998 D96 Dhaene, 1996  E86 Ekama et al., 1986 
G97 Gernaey et al., 1997a G98 Gernaey et al., 1998 H87 Henze et al., 1987 
KG92 Kappeler and Gujer, 1992 K92 Kristensen et al., 1992 KK99 Kujawa and Klapwijk 1999 
L92 Lesouef et al., 1992 M95 Massone et al., 1995 N98 Naidoo et al., 1998 
R97 Rozzi et al., 1997 SG91 Sollfrank and Gujer, 1991 SV95  Spanjers and Vanrolleghem, 1995 
S96 STOWA, 1996  U98 Urbain et al., 1998 VV93 Vanrolleghem and Verstraete, 1993 
We95 Wentzel et al., 1995 Wi96 Witteborg et al., 1996 
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4.1.3. Discussion on physical-chemical versus biological wastewater 
characterisation 

By definition the total COD in ASM1 is subdivided based on (i) solubility, (ii) biodegradability, (iii) 

biodegradation rate and (iv) viability (biomass), as earlier described. Summarising, the COD components 

to consider in a wastewater are: 

)X(XXSSCODtot BHSISI ++++=     (13)  

In previous sections it has been thoroughly reviewed how to determine these components by either 

physical-chemical or biological methods, and different limitations of the methodologies have been 

underlined and discussed. Furthermore, it is obvious that the division of the wastewater into model 

components is to some extent artificial. For example, a division is made between soluble and readily 

biodegradable substrate (SS) and particulate slowly biodegradable matter (XS), although it is for example 

known that some slowly biodegradable substrate may be soluble etc. 

It became clear that an application of physical-chemical methods alone is not sufficient for characterisation 

of the wastewater into model COD components. These methods basically only allow to distinguish 

between soluble and particulate COD and do not differentiate with respect to biodegradability (non-

biodegradable versus biodegradable matters) and biodegradation rate (readily versus slowly biodegradable 

substrates). However, by application of biological characterisation methods it is possible to obtain 

knowledge of the biodegradability and biodegradation rate of the wastewater. Thus, it is obvious that a 

combination of physical-chemical and biological characterisation methods is advantageous for the 

translation of the wastewater characteristics into the ASM1 model components. A suggestion for such a 

combined approach, based on the literature review above, is presented in Fig. 15. Here it is suggested to 

determine the readily biodegradable substrate (SS) directly via respiration tests (respirometry or nitrate 

utilisation rates). The presence of biomass in the wastewater may also be determined by respiration tests. 

The slowly biodegradable matter (XS) can be determined via the results of a long-term BOD test. The 

same kind of test may provide information on the soluble and particulate inert (SI and XI) matters. Here, 

however, the reservation should be repeated that long-term BOD tests may not be very accurate due to 

possible product formation (SI) and decay which results in XI. Therefore, the determination of XI via a 

long-term BOD test may be questionable. Indeed, it is proposed by Henze et al. (1987) to determine the 

influent XI via the complete model during the calibration of the sludge balance. Subsequently, XS may be 

determined via a COD mass balance as the difference between total COD and the other components. If it 

is chosen to determine SI by a long-term BOD test, it may be advisable to combine it with analyses of the 

effluent, as proposed in the section about physical-chemical methods. It is again clear from Fig. 15 that the 

borderline especially between particulate and soluble COD, the differentiation between model components 

(SS and XS) and the results from short-term respiration and long-term BOD tests may not be completely 
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consistent. 

SS

SI

XS

XI

XBH
XBA

ASM1Total COD

Analytically 
soluble COD

Respiration tests

Effluent analyses 
Long-term BOD test

Long-term BOD test

Mass balance

Respiration tests

Long-term BOD test?

SS

SI

XS

XI

XBH
XBA

ASM1Total COD

Analytically 
soluble COD

Respiration tests

Effluent analyses 
Long-term BOD test

Long-term BOD test

Mass balance

Respiration tests

Long-term BOD test?

 

Figure 15. Suggested wastewater characterisation by combined physical-chemical and biological methods 

The nitrogen ASM1 components are somewhat easier to determine since they can basically all be 

determined via mass balances based on standard chemical analyses of total nitrogen, Kjeldahl nitrogen, 

ammonium nitrogen and nitrate nitrogen (see Fig. 6). It can, however, be advantageous to combine these 

chemical analyses with biological methods (respirometry or titrimetry) to obtain the nitrifiable nitrogen as a 

measure of SNH (see Fig. 14) for studies where the focus is specifically on nitrification capacities. 

In a study of STOWA (STOWA, 1996) a similar, but less extensive, study of physical-chemical versus 

biological (only respirometric) influent wastewater characterisation was carried out. In this study guidelines 

for the COD components were finally defined based on a more traditional choice of physical-chemical 

methods combined with long-term BOD measurements to allow for an easy implementation in already 

existing routine analysis programs. It was concluded that respirometry is not yet at a state where it can 

easily be applied for routine wastewater characterisation. The STOWA guidelines for determination of the 

COD components are summarised in Fig. 16. Here the concentration of inert soluble matters (SI) is 

determined as 90% of the effluent COD for low loaded systems, according to Siegrist and Tschui (1992). 
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For high loaded systems SI is also determined as 90% of the effluent COD but the effluent BOD (multiplied 

by a COD/BOD factor) is subtracted. SS is determined as the difference between soluble COD and SI. 

Furthermore, the concentration of XS is based on a long-term BOD test as the difference between 

BOD/(1-YH) and SS, as described above. The yield coefficient in this long-term test is set to 0.20. Finally, 

XI is defined as the difference between particulate COD and the determined XS. Obviously, in this 

approach the division of the wastewater into ASM1 components is based on solubility and to some extent 

on biodegradability according to physical-chemical methods supplemented by measurements of the ultimate 

BOD∞ or BOD5. The problem with this approach is that the biodegradation rate of the wastewater is not 

really considered. This means that the division of the biodegradable substrate into readily and slowly 

biodegradable substrates may not be correct. It should be stressed though that the approach chosen by 

STOWA is simple to implement into existing standard measuring routines at full-scale WWTP’s, which is a 

factor not to be underestimated. 
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Figure 16. The STOWA guidelines for determination of COD components (STOWA, 1996) 

The STOWA guidelines for nitrogen components are also rather simple and based on physical-chemical 

analyses. The SNH component is obtained based on standard analyses of soluble ammonium nitrogen, and 

the determination of the organic nitrogen fractions (SND and XND) is based on certain fixed fractions of N in 
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organic components. It is advised that these organic nitrogen fractions are checked regularly based on 

measurements of total nitrogen, Kjeldahl nitrogen etc. according to Fig. 6B. 

In this literature review the focus has been on characterisation of the ASM1 wastewater components. 

However, with the introduction of ASM3 (see Table 2), that also focuses on a description of oxygen 

consumption, sludge production and N removal, it is interesting to discuss whether the approaches for 

wastewater characterisation applied for ASM1 can hold for ASM3 as well. 

As described above, there is a shift of emphasis from hydrolysis to storage of organic matter in ASM3. 

Furthermore, all SS is supposed to go through the storage process (conversion to XSTO) before being used 

for growth. This means a change in how wastewater characterisation should be viewed, since the 

separation between SS and XS should now be based on the storage process rather than on the growth 

process. In ASM3 (Gujer et al., 1999) it is supposed that the soluble (SS) and particulate (XS) 

biodegradable components can be differentiated with filtration over 0.45 µm membrane filters, whereas a 

significant fraction of XS in ASM1 may be contained in the filtrate of the influent wastewater. In ASM3 the 

latter is assumed to be due to the conversion of soluble biodegradable COD to storage polymers in the 

respiration tests. Whether this may hold in any case seems yet rather unclear. In Gujer et al. (1999) it was 

recognised that the model concept of converting all SS into a storage component is not in accordance with 

reality. Indeed, Krishna and van Loosdrecht (1999) illustrated that the difference between feast and famine 

phases could not be described accurately. This was caused by the fact that ASM3 does not allow growth 

on the substrate SS alone. Therefore, a new model structure was proposed where growth on external 

substrate is allowed in parallel with the storage process. It remains however uncertain how to differentiate 

between the amount of SS that is directed to storage and growth respectively. Furthermore, the yield 

coefficient (which is needed to convert respirometric responses to COD components) in ASM3 is 

composed of two factors: Ynet=YSTO⋅YH, where YSTO is the storage yield and YH the heterotrophic yield 

for the growth process. Also, here it does not seem clear how to differentiate between the two yields. 

Basically, concerning the characterisation of COD wastewater components, more experience will be 

needed before a wastewater characterisation of the COD components related to the new storage concept 

of ASM3 can be proposed. 

The characterisation of the nitrogen components in ASM3 is however simplified by the fact that organic 

nitrogen components are included in the model as a fraction of the corresponding COD components. 

Degradation of the corresponding COD component results in immediate release of the organic nitrogen as 

ammonium. The latter was based on the assumption that the ammonification is fast and the conversion of 

organic nitrogen into ammonium therefore hardly affects the model predictions (Gujer et al., 1999). Thus, 

the nitrogen balance includes on the one hand ammonium nitrogen (SNH) and nitrate nitrogen (SNO), which 

both can be measured easily via standard chemical analyses, and on the other hand organic nitrogen 

components. However, typically the fractions of organic nitrogen in the COD components can be 
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considered to be constant. 

4.2. Characterisation of sludge composition 

In this section special attention is only paid to the assessment of the slower varying sludge characteristics. 

Knowing the initial value of the concentrations of soluble components (e.g. ammonia) is not really essential 

because it has little impact on typical simulation results with a calibrated model. Hence, the concentrations 

of the following particulate, slowly varying components must be assessed: XBH, XBA and XI (+XP), 

assuming that the system is in balance with no accumulation of XS. Only two concentrations must be 

assessed since the sum of the concentrations is equal to the particulate COD (X) of the sludge that can 

easily be measured by using traditional COD analysis (Eq. 14) 

( ) BABHPI XXXXX +++=      (14)  

Below some fast and direct methods for assessing sludge components are summarised. Notice that the 

particulate nitrogen components are not considered here as their concentrations are assumed to be low. 

Heterotrophic biomass XBH 

One can show that the concentration of heterotrophs in a continuous system in steady state is equal to: 

XH
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YX
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    (15)  

where θX is the sludge age, θH is the hydraulic retention time, CODDegraded the total amount of COD 

removed (taken over a sufficiently long period, e.g. one sludge age), bH the decay rate coefficient and YH 

the yield coefficient. Respirometric methods to determine the parameters bH and YH are discussed below, 

while a respirometric evaluation of CODDegraded can be performed with the respirometric measurements of 

biodegradable COD fractions (SS, XS) that was already presented above.  

As an alternative, Bjerre et al. (1995) used the method of Kappeler and Gujer (1992) to determine the 

concentration of heterotrophs in the mixed liquor. Recently, this method was thoroughly evaluated by Ubisi 

et al. (1997). 

Autotrophic organisms XBA 

In much the same way, the concentration of nitrifying organisms in the activated sludge can be evaluated by 

means of a mass balance for the autotrophs (over a sufficiently long time) (Dupont and Sinkjær, 1994): 
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where fAerobic is the aerobic fraction of the reactor; NNitr the amount of nitrified nitrogen ; bA the autotrophic 

decay rate coefficient and YA the autotrophic yield coefficient. The methods to determine the parameter bA 

and YA are discussed in the next paragraph, while Nnitr can be quantified using the respirometry-based 

nitrifiable nitrogen evaluation methods that were given above. 

Produced inert suspended organic matter XP 

To determine the produced inert matters, XP, an evaluation of the mass balance of XP in steady state can 

be made. Assuming that the autotrophic biomass can be neglected, Eq. 17 is obtained: 

XBHHPP XbfX θ⋅⋅⋅=      (17)  

The total concentration of inert matters, including the often significant contribution of suspended inert 

material from the influent, is given in Eq. 18.  

XHHPi
H

X
P XbfXX θ

θ
θ

⋅⋅⋅+=     (18)  

Respirometry can be involved in calculating this fraction via fP and bH (see below). 

4.3. Characterisation of stoichiometric and kinetic parameters 

Similar to the overview of wastewater characterisation the overview on characterisation of stoichiometric 

and kinetic parameters will be clarified according to the applied methodology. The focus will, however, 

only be on different biological methods since physical-chemical characterisation is not very relevant when it 

comes to characterisation of reactions. As highlighted in the previous section the majority of the processes 

involve oxygen consumption, which means that respirometry will again be the dominating method in the 

review. However, also other methods such as nitrate utilisation rates, titrimetry and ammonium uptake rate 

are powerful to assess some of the kinetic and stoichiometric parameters. 

4.3.1. Respirometry 

4.3.1.1. Stoichiometric parameters 

By definition, determination of stoichiometric parameters requires the measurement of two factors that are 

related to the substrate uptake. One of these factors may be the respiration rate. Theoretically, for ASM1 

the following stoichiometric parameters can be evaluated using respirometry: YH,  YA, iXB and fp, though 

attempts are reported only for the first two. 

Heterotrophic yield coefficient YH 

This parameter not only influences the estimation of sludge production and oxygen demand but also has an 
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impact on the value of other parameters whose determination requires a value for YH (see Table 6) An 

example is the determination of SS from respirometric data as described above (Eq. 7). Hence, an accurate 

value for YH is of great importance. YH can be determined using respirometry by addition of an amount of 

wastewater COD and measurements of the substrate oxidation rO,ex (Sollfrank and Gujer, 1991; Brands et 

al., 1994). Eq. 19 is then applied to evaluate YH. 

radabledeg
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Y
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=     (19)  

The amount of degradable COD (CODdegradable) is given by the concentration of COD in the filtered 

wastewater minus the inert portion (SI). In the study of Sollfrank and Gujer (1992) SI was determined as 

the soluble COD concentration in the effluent.  

Brands et al. (1994) and Liebeskind et al. (1996) circumvent the problem of determining SI by using a 

completely biodegradable substrate (acetate) instead of wastewater. Hence, CODdegradable is known 

exactly. This approach is, however, doubtful. First, the choice of acetate is rather arbitrary and there is 

quite some evidence that the yield coefficient for acetate differs from influent wastewater (Dircks et al., 

1999). Hence, acetate is not really representative for wastewater COD. Moreover, due to the 

experimental conditions in the batch reactor, it can be expected that part of the acetate is stored in the cell 

(Majone et al., 1999). In this case the observed oxygen demand only represents the needs for transport of 

the substrate and incorporation in storage material of the cell, and not for the complete conversion into new 

biomass. Conclusively, these procedures for estimation of the heterotrophic yield do not seem without 

problems. 

Autotrophic yield coefficient YA 

A value of 0.24 g biomass COD per g nitrified nitrogen is generally assumed to be a good theoretical value 

for YA. If required it is possible however to determine the actual YA from a respirometric batch experiment 

in which a known pulse of ammonium (SNH(0)) is added to a nitrifying activated sludge sample (Eq. 20).  
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In this approach care has to be taken that no significant net growth of heterotrophs take place as they 

would incorporate part of the added ammonium. In the model-based data interpretation applied by 

Spanjers and Vanrolleghem (1995) correction for incorporation of SNH into biomass is taken into account 

directly via the model. 
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Nitrogen content of the biomass iXB 

Obviously, the most likely method for evaluation of iXB would consist of a nitrogen analysis of the biomass. 

However, one can imagine (albeit maybe not very realistically) that nitrogen incorporation into biomass can 

be assessed using two respirometric experiments with nitrifying sludge in which different amounts of COD 

are degraded, the difference being denoted as ∆CODDegraded. The reduction in the oxygen consumption for 

nitrification ∫∆ dt)t(r N
ex,O  that can be observed for the higher COD loading then allows a calculation of iXB 

(development of Eq. 9). 
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Inert particulate fraction of the biomass fP 

Decay of biomass results in a fraction being transformed into inert particulate products. Typically 20 % of 

the biomass consists of inert material (Henze et al., 1987). This inert biological fraction is called f’P. The 

model fP can be calculated starting from the biological f’P with the following implicit equation: 

( )PH
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P f1Y1

f
f

−⋅−
=

     (22)  

If the studied activated sludge has a yield coefficient (estimated for instance by using respirometry) 

deviating from the one reported in literature, the fP-value must be adapted for this. Keesman et al. (1998) 

showed theoretically that the value of fP can be estimated directly from a batch test in which only the 

evolution of the respiration rate and sludge concentration are monitored over sufficiently long time. 

4.3.1.2. Kinetic parameters 

Basically the kinetic parameters that can be determined via respirometry are related to aerobic growth, 

decay and nitrification. 

Heterotrophic decay coefficient bH 

The classical respirometric method for determination of bH
’ described by Henze et al. (1987) is the 

protocol proposed by Marais and Ekama (1976), and is the most typical method applied for the 

determination of the decay coefficient (e.g. Sollfrank and Gujer, 1991; Kappeler and Gujer, 1992). Sludge 

is inhibited for nitrification and is aerated in a non-fed batch reactor. The (endogenous) respiration rate is 

measured at certain time instants over a period of several days. Since the endogenous respiration is 

proportional with the active biomass concentration, a plot of the logarithm of the endogenous respiration 

rate rO,end as function of time describes the exponential biomass decrease as a straight line with slope b’H.  
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The death regeneration concept implies that the classical methods for determination of the decay of 

biomass based on endogenous decay can not be applied directly. The parameter based on the endogenous 

decay concept has to be translated to the death regeneration concept, similarly to fP (Eq. 22), leading to the 

ASM1 decay coefficient bH (Eq. 23). 

( )PH

'
H

H f1Y1
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b
−⋅−

=
      (23)  

Hence, the stoichiometric parameters YH and fP are necessary for calculation of bH. 

Vanrolleghem et al. (1992) described a fast method for the estimation of b’H using only one measurement 

of the endogenous respiration (in absence of nitrification) in a batch reactor. By means of Eq. 24 describing 

endogenous respiration, bH can be calculated on condition that fp and XBH are known.  

BH
'
H

'
Pend,O Xb)f1(r ⋅⋅−=      (24)  

The estimation of b’H can also be based on the fact that the respiration rate for substrate oxidation is 

proportional to the heterotrophic biomass concentration (Spanjers and Vanrolleghem, 1995). If a 

sufficiently high amount of oxygen SO and substrate SS are present, rO,ex is not substrate limited and will only 

be proportional to XBH. Consequently, the decay of the heterotrophic biomass can be determined by (i) 

taking a sludge sample from the aerated and non-fed batch reactor at certain time instants (tk), (ii) adding a 

sufficient amount of substrate and (iii) measuring the maximum respiration rate. Assuming that YH and µmaxH 

remain constant during incubation, plotting the logarithm of rO,ex(tk) as function of time again allows to 

determine b’H as the slope of the curve obtained via linear regression. In the study of Spanjers and 

Vanrolleghem (1995) a model-based interpretation was applied to obtain accurate values of the maximum 

respiration rates. However, only two data points were used for the semilog regression, which does not 

make the estimated decay coefficients in this study very reliable.  

In the study of Avcioglu et al. (1998) a similar procedure was developed, where the decay rate b’H´ was 

assessed by monitoring the decrease in maximum respiration rate. Avcioglu et al. (1998) included more 

data points compared to the study of Spanjers and Vanrolleghem (1995). It was proposed that this method 

of determining the decay rate should be more reliable, since interference of slowly biodegradable substrate, 

especially in the initial phase of the traditional test of Marais and Ekama (1976), and inaccuracy of low 

endogenous respiration rate measurements were avoided. The latter will, however, evidently depend on the 

sensitivity of the applied respirometric method.  
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Figure 17. Respirograms obtained after injection of a C/N mixture for the simultaneous determination of 

bH and bA according to the procedure of Spanjers and Vanrolleghem (1995). Left: after 1 day incubation, 

Right: after 7 days 

Furthermore, in the work of Avcioglu et al. (1998) it was experimentally verified that the anoxic 

heterotrophic decay rate was reduced with about 40-50% compared to aerobic conditions. Other studies 

confirm the observation that the heterotrophic decay is slower under anoxic conditions (McClintock et al., 

1988; Siegrist et al., 1999). 

Autotrophic decay rate coefficient bA 

The death regeneration concept is not applied for the autotrophic biomass in ASM1. However, the 

approach of monitoring the decrease in rO,end as function of time can not be applied for the determination of 

bA since that would require for instance an inhibition of the heterotrophic biomass. Instead, the method 

based on the maximum substrate (here SNH) degradation rate as function of time can be applied similar to 

the procedure for the heterotrophic decay coefficient. In fact, in the procedure described by Spanjers and 

Vanrolleghem (1995) the heterotrophic and autotrophic decay rate coefficients were determined 

simultaneously by addition of a mixture of acetate and ammonium. Fig. 17 shows the rO,ex data for the two 

respirometric tests performed after one and seven days of sludge incubation, clearly illustrating the 

decreasing activity. 

Nowak et al. (1994) pointed to the fact that the release of nitrogen due to decay of heterotrophic biomass 

may result in some growth of nitrifying organisms. Hence, an underestimation of bA would result. To correct 

this, they proposed the incubation of the sludge under anoxic conditions to prevent the growth of nitrifiers. 

Daily a sludge sample was removed from the anoxic reactor and (after aeration) the maximum respiration 

rate was determined. It was however observed that the reduction in maximum respiration rate was 

significantly smaller (about 50%) under anoxic than aerobic conditions. This was further confirmed by work 

on immobilised Nitrosomonas (Leenen et al., 1997) and by the findings of Siegrist et al. (1999). 
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Maximum specific heterotrophic growth rate µmaxH and half-saturation 
concentrationt KS 

The maximum heterotrophic growth rate µmaxH can easily be determined from the maximum rO,ex (Eq. 25) 

(Ekama et al., 1986), assuming that the substrate concentration is in excess and the yield coefficient and 

heterotrophic biomass concentration (see previous section) are known. 
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Hmax X)Y1(
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⋅−
⋅

=µ      (25)  

However, the methodology proposed by Ekama et al. (1986) does not provide information on KS.  

The increase of the substrate uptake rate with increasing SS concentration is depicted in Fig. 18. From such 

Monod type evolution the maximum specific growth rate µmaxH and the half-saturation constant KS can be 

determined. In Cech et al. (1984) a respirometric method is described in which a number of measurements 

are performed, each of which add one point to Fig. 18. In this procedure experiments are carried out with 

addition of different amounts of wastewater (substrate) to endogenous sludge, allowing to achieve various 

substrate uptake rates, i.e. exogenous respiration rates (rO,ex), up to a maximum rate. The parameters µmaxH 

and KS can, for instance, be found by Lineweaver-Burk linearisation of Eq. 26 that describes the curve in 

Fig. 18 (Cech et al., 1984), although the statistical quality of this procedure is not optimal (Robinson, 

1985). 
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Figure 18. A plot of substrate uptake rate versus substrate concentration for estimation of the parameters 

for growth, example with valeric acid (Cech et al., 1984) 

The method of Cech et al. (1984), which was also applied by e.g. Volskay and Grady (1990), is rather 
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time consuming and the experimental effort is high. As an alternative a more efficient approach was 

presented, using a continuously aerated respirometer to which a single substrate pulse is added 

(Vanrolleghem et al., 1990; Kong et al., 1994). In this method rO,ex is recorded frequently as the 

experiment progresses and one experiment is sufficient for the determination of both µmaxH and KS 

provided that the concentration of added substrate is sufficiently high. In this approach a model (Eq. 27 - 

28) is fitted to the rO,ex profile for the determination of µmaxH and KS. An example of an acetate addition is 

illustrated in Fig. 19 (obtained from Kong et al., 1994) where rO,ex is illustrated together with the 

corresponding cumulative oxygen consumption and substrate concentrations as function of time.  
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Figure 19. rO,ex (symbols), cumulative oxygen uptake (increasing line) and substrate concentration 

(decreasing line) in batch experiment (Kong et al., 1994) 

The heterotrophic kinetic parameters can also be determined based on the cumulative oxygen uptake 

profiles rather than oxygen uptake rate data. In the methodology described by Ellis et al. (1996) and 

Smets et al. (1996) the kinetics are determined for specific organic chemicals. However, the procedure is 

directly applicable for wastewaters as well. 

A batch experiment with high initial substrate (wastewater) to sludge ratio (called the S(0)/X(0) ratio) was 

proposed by Kappeler and Gujer (1992). This procedure also enables estimation of µmaxH and KS from a 

single experiment. An alternative to Kappeler and Gujer (1992) is to plot the oxygen uptake rate versus the 

cumulative oxygen uptake rate (Smets et al., 1996). Fig. 9 shows a respirogram obtained with such an 

experiment (Kappeler and Gujer, 1992). Contrary to the procedures of e.g. Vanrolleghem and Verstraete 
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(1993) biomass growth is significant and µmaxH can be assessed directly without knowledge of YH. A plot 

of the logarithm of the rO measurements versus time has the slope (µmaxH - bH). If bH is known, a calculation 

of µmaxH  is possible (in the work presented by Kappeler and Gujer (1992), it is assumed that the decay 

rate is 5% of the growth rate). Attention has to be paid to the fact that the high S(0)/X(0) ratio in this 

experimental set-up (about 4/1) gives rise to significant growth of the biomass during the experiment. This 

means that the observed kinetic characteristics may no longer be representative for the original sludge, due 

to the risk that the experimental conditions may have favoured fast growing organisms that become 

dominant during the experiment. Novák et al. (1994) gave practical evidence for this hypothesis by 

evaluating results from experiments with different S(0)/X(0) ratios. A 2.5 times higher specific growth rate 

was obtained at high S(0)/X(0) ratio, compared to an experiment with a low S(0)/X(0) ratio. 

In the work of Grady et al. (1996) the terminology of intrinsic and extant kinetics was introduced. Intrinsic 

kinetics refers to the ultimate capacity of the biomass activity whereas extant kinetics refers to the biomass 

activity prior to the lab-scale experiments, e.g. in the full-scale plant. This will be discussed further in 

section 4.4 and 5. 

Maximum specific autotrophic growth rate µmaxA and half-saturation concentration 
KNH 

In the studies by Drtil et al. (1993) and Nowak et al. (1994) the above mentioned methodology of Cech 

et al. (1984) was applied to evaluate the maximum specific autotrophic growth rate and half-saturation 

concentration KNH. To assess the rO for autotrophic activity only, the heterotrophic endogenous respiration 

was determined by a separate experiment, where ATU was added, and was subtracted from the total rO 

obtained from an ammonium addition. Here too knowledge of YA and XBA is needed for the calculation of 

µmaxA. In the work by Nowak et al. (1994) the concentration of XBA was determined based on full-scale 

data. 
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Figure 20. Respirogram obtained after injection of 3.31 mg NH4-N in 1.4 l of activated sludge (Spanjers 

and Vanrolleghem, 1995) 
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Alternatively, µmaxA and KNH can be obtained directly from experimental data of a simple ammonium 

addition as presented in Fig. 20. In a study by Spanjers and Vanrolleghem (1995) a model-based 

interpretation was applied for the determination of the nitrification kinetic parameters (Eq. 29), similar to the 

approach described above for the kinetic parameters of heterotrophic growth. 

NHNH

NH

A

BAAmax
Aex,O SK

S

Y

X
)Y57.4(r

+
⋅

⋅
−=

µ
   (29)  

Hydrolysis constants kh,, KX 

As far as known the only experimental protocol that enables a determination of both parameters of the 

hydrolysis process is the “cyclic square wave feed” experiment proposed by Ekama et al. (1986). This 

method has already been described earlier for the determination of SS with a typically obtained profile 

shown in Fig. 10. To determine the hydrolysis parameters the data obtained after the drop in respiration 

rate are important. If rO remains constant on a plateau value (as is noticed in Fig. 10 between t = 12 and t = 

15 h), this is related to the hydrolysis that proceeds at maximum rate and biomass is saturated with 

hydrolysable products (XS /XBH  >> KX). As such, these data contain the information to assess the value of 

kh on condition that the heterotrophic biomass concentration XBH and the yield coefficient YH are known. 

With decreasing XS also the rate of hydrolysis decreases and the respiration rate is depending on the value 

for KX, allowing its estimation. Estimation of the parameters is best by means of model optimisation (Henze 

et al., 1987). 

In many cases the dependency of the rate of hydrolysis on the heterotrophic biomass concentration may be 

neglected and first order hydrolysis process dynamics are then obtained (Sollfrank and Gujer, 1991). This 

assumes that XS/XBH << KX. Sollfrank and Gujer (1991) proposed a method to determine the first order 

hydrolysis constant, i.e. kh/KX, using respiration rates measured by dosage of wastewater to a continuous 

flow pilot reactor. To simplify the estimation, they suggested plotting the respiration rate as function of the 

residual amount of substrate. In this plot one is able to isolate a linear part from which the hydrolysis 

constant kh/KX is deduced (provided YH is known). 

For estimation of the first order hydrolysis constant kh/KX Kappeler and Gujer (1992) performed a batch 

experiment with an initial COD based S(0)/X(0) ratio which was 10 times higher than their experiment for 

determination of the maximum specific growth rate (S(0)/X(0)=1/2). Fig. 8B shows the respiration rate 

data of such an experiment, from which the slowly biodegradable substrate, XS, can also be determined, as 

described above. Once the readily biodegradable substrate SS is removed (in Fig. 8B after 0.75 h) the 

further decrease of the respiration rate is determined by hydrolysis of XS. As a consequence, the rO 

measurements enable to estimate the hydrolysis rate constant. The authors advise to do this exercise at 

different biomass concentrations to check for a possible dependency of the hydrolysis rate to the biomass 

concentration. 
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Parameters of “switching functions” KOH, KOA 

Kappeler and Gujer (1992) determined the respiration rate as function of different oxygen concentrations in 

the respiration chamber of their respirometer. According to these authors the concentration of readily 

biodegradable substrate SS needs to exceed a minimal concentration in order to have an accurate 

determination of KOH. The same technique can be used for KOA with ammonia as substrate. 

Ammonification rate constant ka 

So far, no respirometric method has been reported for the determination of the ammonification rate. 

However, it is theoretically possible (see Table 6) to assess this parameter from the evolution of the oxygen 

consumption for nitrification resulting from ammonified nitrogen, provided ammonification is the rate limiting 

step. 

4.3.1.3. Simultaneous determination of kinetic parameters for heterotrophic and 
autotrophic growth 

In the previous sections on determination of heterotrophic and autotrophic growth kinetics the focus was 

put on how to determine the kinetic parameters for the heterotrophic and autotrophic processes separately. 

However, except for the examples of Sollfrank and Gujer (1991) and Kappeler and Gujer (1992) the 

presented examples mainly dealt with additions of known substrates (acetate as carbon source and 

ammonium). The fact is that when dealing with real wastewater and activated sludge both heterotrophic and 

autotrophic processes will take place simultaneously, and a detailed data interpretation of the respirograms 

and good experimental design will be needed to “separate” and as such determine the kinetic parameters 

for the different processes. 

Vanrolleghem and Verstraete (1993) proposed an experimental design that enables to simultaneously 

measure both heterotrophic and autotrophic maximum respiration rates. In their approach a mixture of 

ammonium and acetate was added to endogenous sludge. The maximum respiration rate for carbon 

oxidation and nitrification can be derived from the respirograms on the condition that the two aerobic 

processes can be clearly distinguished from each other. The problem with this approach is however that the 

kinetic parameters are highly dependent on the nature of the substrate. Thus, use of a single compound to 

represent a complex substrate like wastewater is difficult to justify scientifically. 

In the study on wastewater by Spanjers and Vanrolleghem (1995) experiments with municipal wastewater 

were presented with much lower substrate to biomass ratios (S(0)/X(0)) compared to Kappeler and Gujer 

(1992). Fig. 21 shows a typical respirogram from an experiment with a S(0)/X(0) of 1/200. This 

respirogram is much more complicated to interpret than the ones shown so far. First, simultaneous carbon 

oxidation and nitrification take place. The only seven minutes lasting initial peak in rO,ex is assumed to be 

due to the oxidation of SS. After some time only nitrification and, assumingly, oxidation of substrates 
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released by hydrolysis occurs. In this work the respirograms of the wastewater were interpreted with a 

more complex ASM1 based model including degradation of two readily biodegradable substrates SS1 and 

SS2, first order hydrolysis and nitrification. Thus, kinetic parameters for all these processes were obtained 

simultaneously. Experiments in the presence of a nitrification inhibitor ATU were performed to check the 

contribution of nitrification to the respiration rate. This is shown in the insert of Fig. 21, where the rO,ex 

related to the degradation of SS and XS can be observed. 
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Figure 21. Respiration rate after injection of 70 ml raw wastewater to 1.5 l activated sludge. Insertion: 

similar experiment but after addition of ATU (Spanjers and Vanrolleghem, 1995) 

An approach circumventing ATU addition, suggested by Spanjers and Vanrolleghem (1995), consisted of 

the following two-step procedure. First, the nitrification process is characterised separately via an 

experiment where only ammonium was added, as described above and illustrated in Fig. 20. In a second 

step, the full model is applied to fit to the data of Fig. 21. However, during this step the nitrification 

parameters are kept at their values obtained from the separate nitrification experiment, and are thereby 

used to “eliminate” the nitrification oxygen consumption in an experiment with addition of wastewater. The 

amount of nitrogen in the wastewater sample can be estimated simultaneously as it determines the length of 

the nitrification shoulder. Spanjers and Vanrolleghem (1995) demonstrated that the ATU and model-based 

elimination of the nitrification respiration rate lead to similar values for the kinetic parameters and 

wastewater characteristics. 

Another example of a detailed interpretation of a respirometric test with municipal wastewater addition is 

given by Brouwer et al. (1998). Here a model including degradation of two readily biodegradable 

substrates, hydrolysis and two step nitrification is applied to interpret wastewater respirograms. The 

problem encountered in this study was, however, that not all processes were clearly identifiable from the 

respirograms. It was thus suggested that the number of unknown model parameters should be reduced for 

this example by including experiments with separate additions of synthetic substrates, for example 

ammonium and nitrite. In this way it would be possible to fix these kinetic parameters in the characterisation 
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of the complex wastewater, similar to the approach of Spanjers and Vanrolleghem (1995). 

Finally, an application with industrial wastewater (no nitrification) was presented by Coen et al. (1998), 

where a model-based interpretation approach was applied for the determination of kinetic parameters and 

substrate concentrations of simultaneous degradation of three COD wastewater fractions. 

4.3.2. Nitrate utilisation rates 

Characterisation of reaction kinetics via analysis of the nitrate utilisation rate is basically very similar to the 

methodology based on oxygen respiration rate, and different studies have dealt with the comparison of rO,ex 

and rNO3,ex (e.g. McClintock et al., 1988; Kristensen et al., 1992; Orhon et al., 1996; Sözen et al., 

1998). In ASM1, the same kinetic expressions are applied for nitrate utilisation processes as for oxygen, 

with the only difference that a correction factor η is incorporated in the equations for anoxic processes. 

This factor allows to describe that only a fraction of the total biomass is capable of respiring with nitrate 

and/or that the anoxic rate is lower than the aerobic one. Typically, one applies the relationship given in Eq. 

30 in order to relate rO,ex with rNO3,ex. 

ex,O

ex,3NO

r

r
86.2 ⋅=η      (30)  

Correction factors for anoxic growth and hydrolysis ηη . 

It has been shown that the value of η can vary significantly for different activated sludge systems. In 

different studies values have been recorded in the range 0 - 0.95 (Van Haandel et al., 1981; Henze, 1986 

Henze et al., 1987, 1995; McClintock et al., 1988; Kristensen et al., 1992; Sözen et al., 1998; 

Spérandio et al., 1999). Some theories were developed based on general mass balances that allowed for 

an estimation of η from wastewater characteristics, treatment plant layout and operation (Henze, 1986). It 

was shown that the dominating factor for η is the potential inlet fraction of denitrifiers, which includes the 

denitrifying fraction of the influent biomass plus the primary produced anoxic biomass. Based on some 

practical constraints concerning e.g. minimum anoxic sludge age and minimum aerobic sludge age to keep 

both nitrification and denitrification in the system, it was estimated that in practice η might be in the order of 

0.4 - 0.9 (Henze, 1986). 

An underlying assumption behind Eq. 30 is that the aerobic and anoxic yields are equal. As discussed 

above significant evidence exists that the anoxic yield may be lower than the aerobic one. In the studies by 

Orhon et al. (1996) and Sözen et al. (1998) very high values (>1) for the conversion factor η were 

related to possible lower anoxic yields for which correction will be needed. The occurrence of lower 

anoxic biomass yields was already discussed above, in the section about application of nitrate utilisation 

rates for the determination of readily or slowly biodegradable substrate SS and XS. 
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4.3.3. Titrimetry 

Maximum specific autotrophic growth rate µmaxA and half-saturation concentration 
KNH 

So far, the titrimetric technique based on pH control and monitoring of the cumulative amount of base or 

acid added to keep the pH set-point, proposed by Ramadori et al. (1980), and introduced in more detail 

above, has only been applied to the determination of the nitrification kinetic parameters µmaxA and KNH. As 

illustrated in Fig. 12 and 13 and by Eq. 12, the cumulative amount of base added can be used to calculate 

the nitrification rate and thereby provide kinetic information. In the work of Gernaey et al. (1998) a model-

based data interpretation was applied for the estimation of µmaxA and KNH. The model is similar to the one 

applied to describe respirometric and nitrate utilisation rate data. The only difference is the stoichiometric 

coefficient relating the ammonium degradation to proton production Hp (Eq. 31). 

NHNH
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BAAmaxXBA
Hp SK
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+
⋅⋅⋅⋅+= µ

    (31)  

4.3.4. Summary and discussion of biological characterisation of stoichiometric 
and kinetic parameters 

Summarising, the review on biological characterisation has illustrated that, theoretically, nearly all 

parameters can be determined with biological methods. Especially respirometry stands as a powerful 

characterisation method but other methods too are useful for the characterisation of specific processes, e.g. 

titrimetry for the characterisation of nitrification and application of nitrate utilisation rates for the 

determination of the correction factor for denitrification. 

One of the challenges in the application of the biological methods is how to interpret and relate the 

experimental data to the different processes that may take place simultaneously. It is obvious that 

experiments with addition of known and simple substrate such as ammonium or acetate are easier to 

interpret in terms of determination of stoichiometric and kinetic parameters than experiments with real 

wastewater. For example, it is difficult to assess the heterotrophic yield YH by experiments with real 

wastewater, and in some cases it was therefore suggested to determine it from an experiment with known 

substrate in the form of acetate (Brands et al., 1994; Liebeskind et al., 1996). It has also been suggested 

to determine the maximum specific growth rate µmaxH based on experiments with acetate in respirometric 

experiments (e.g. Vanrolleghem and Verstraete, 1993). However, acetate does not represent the actual 

wastewater very well. As already stressed above it is generally questionable to use a single substrate to 

represent complex wastewater. Furthermore it is a known phenomenon that acetate easily gets directed 

towards the storage process instead of directly being consumed for growth (Majone et al., 1999). This 

means that if such data are only interpreted in terms of the growth process, the estimated parameters 
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related to growth will be erroneous. E.g. the stoichiometric growth yield (YH) will be overestimated (Dircks 

et al., 1999). On the other hand, characterisation of the stoichiometric and kinetic parameters for 

nitrification can be done by respirometric or titrimetric experiments with single additions of pure ammonium.  

It is of course advantageous if several parameters (kinetic or stoichiometric) and some wastewater 

components can be obtained from the same experiment. This was illustrated in studies with municipal 

wastewater by e.g. Spanjers and Vanrolleghem (1995) and Brouwer et al. (1998), and also for an 

industrial COD removal case (Coen et al., 1998). 

In Table 8 (adopted and modified from Vanrolleghem et al., 1999) the experiments described above for 

characterisation of stoichiometry and kinetics are concisely represented. Attention is drawn to  

(i) The method (respirometry, nitrate utilisation rates, titrimetry) 

(ii) The type of reactor set-up (continuous or batch experiment) and the additions performed; 

(iii) The requirement for other information collected from other experiments (or assumed); 

(iv) Major assumptions made during the interpretation of the data; 

(v) The reference where more information can be found. 

From Table 8 it can for example be seen that in the work of Spanjers and Vanrolleghem (1995) with 

wastewater (reference SV95 and experiment type “B, WW add.”) the parameters µmaxH, KS, µmaxA, KNH 

and kh, and the substrate components SS, XS and SNH could be retrieved from a single experiment. 

It will now be attempted to evaluate whether the approaches for characterisation of the kinetic and 

stoichiometric parameters as reviewed for ASM1 can hold for ASM3 too.  

As reviewed above, it should be theoretically possible to assess the ammonification rate from respirometric 

data, provided that ammonification is the rate limiting step. However, in most applications this is not the 

case making it difficult to quantify the kinetics of ammonification. Furthermore, ammonification does not 

affect the model predictions significantly, since it is usually a fast process. Thus, with this in mind the 

ammonification process was not included in ASM3, thereby also eliminating the need to determine its 

kinetic rate. 

Another simplification in ASM3 is the way the decay process is described. Instead of the more complex 

death regeneration concept it was chosen to describe decay with a more traditional and simple endogenous 

decay process. This means that the results from a simple long-term aeration test (Marais and Ekama, 

1976), where the endogenous respiration rate is monitored over a period of several days, can be applied 

more directly. In this way a transformation of the data from the endogenous test to the death regeneration 

concept is no longer needed. Furthermore, the exclusion 
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Table 8. Overview of biological methods for estimation of (combinations of) ASM1 parameters. (Fields 

with grey background indicate that a respirometric method is not applicable or not relevant) 

 Method Type of  
experiment 

Additional 
information 

Assumptions References 

Stoichiometric parameters 

YH R B, WW add. 
B, Ac add. 

SI  
Ac representative of Ss 

SG91 
Br94 

YA R B, NH4 add. 
B, NH4+Ac add. 

 
iXB, YH 

iXB≅0 SV95 
SV95 

fP R B MLVSS  K98 

iXB R B, COD add. YH, YA, ∆CODDeg  this paper 

iXP  

Kinetic parameters 

µmaxH R B, n S,Ac adds. 
B, S, Ac add. 
B, WW add. 
B, WW add. 

YH, XBH 
YH, XBH 
bH 

YH, XBH 

 
 
µH represent original XBH 
 

C84; VG90 
K94; E96; Sm96 
KG92 
SV95, B98 

KS R B, n S,Ac adds. 
B, S, Ac add. 
B, WW add. 
B, WW add. 

YH, XBH 
YH, XBH 
bH 

YH, XBH 

 
 
KS represent original XBH 

C84; VG90 
K94; E96; Sm96 
KG92 
SV95, B98 

KOH R B, n SO SO SS sufficiently high KG92 

KNO      

bH R B, no add. 
B, n Ac add. 
B, no add. 

fP, YH 
 
fP, YH 

 
YH , µH  constant 

ME76; SG91 
SV95 
V92 

R B, n NH4 adds. 
B, NH4 add. 

YA, XBA 
YA, XBA 

 C84 
D93; SV95 

T B, NH4 add. YA, XBA  G98 

µmaxA 

A B, NH4 add. YA, XBA  K92 

KNH R B, n NH4 adds. 
B, NH4 add. 
B, WW add. 

YA 
YA 

YA 

 N94 
D93; SV95 
SV95, B98 

KOA R B, n SO SNH SNH  sufficiently high KG92 

bA R B, NH4 add. 
B, n NH4+Ac add. 

  H87; N94 
SV95 

ηg R+N B, WW add.   K92; S99  

ka R B, S add.   This paper 

kh R C (on/off) 
C, WW add. 
B, WW add. 

YH, XBH 
YH 
 

max. hydrolysis rate 
KX  very large 
KX very large 

E86 
SG91 
KG92; SV95; B98 

KX R C (on/off)  YH, XBH  E86 

ηh R+N B, WW add   K92 
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Explanation to Table 8 

Method: 
R: Respirometry N: Nitrate respiration test A: Ammonia uptake test  T: 
Titrimetry 
Type of experiment: 
Ac: acetate  B: batch reactor  add.: addition  adds.: additions   
C: continuous system WW: wastewater S: synthetic substrate 
References 
B94 Brands et al., 1994 B98 Brouwer et al., 1998  C84 Cech et al., 1984   
D93 Drtil et al., 1993  E86 Ekama et al., 1986  E96 Ellis et al., 1996   
G98 Gernaey et al., 1998 H87 Henze et al., 1987  KG92 Kappeler and Gujer, 1992  
K98 Keesman et al., 1998 K94 Kong et al., 1994   K92 Kristensen et al., 1992  
ME76 Marais and Ekama, 1976 N94 Nowak et al., 1994  Sm96 Smets et al., 1996  
SG91 Sollfrank and Gujer, 1991 SV95  Spanjers and Vanrolleghem, 1995 S99 Spérandio et al., 1999 
V92 Vanrolleghem et al., 1992 VG Volskay and Grady, 1990 

 

of the death regeneration concept also resulted in a simplification of the hydrolysis process, since this 

process is now only involved in hydrolysis of slowly biodegradable substrate (XS) contained in the influent. 

However, with the introduction of the storage model concept it becomes difficult to separate between the 

kinetics of storage and growth. Already in the discussion of wastewater characterisation it was pointed out 

that the yield obtained from a respirometric test is composed of two factors Ynet=YSTO· YH. Furthermore, 

it does not seem clear how to differentiate between the storage rate and growth rate from e.g. a 

respirometric test. 

4.4. Is characterisation via lab-scale experiments relevant? 

In previous sections the sources of information that can be used for calibration of ASM1 were reviewed 

and attention was especially focused on how to characterise the different wastewater components, 

stoichiometric and kinetic parameters. Different problems were already highlighted.  

The focus is now turned back to calibration of ASM1 and the aim of describing a full-scale WWTP. It 

should be remembered that the purpose of the model calibration determines the degree of detail of the 

information that is needed, e.g. which wastewater components and parameters need a more accurate 

determination than others. Even though it may be possible to characterise some components or parameters 

it may not always be relevant for the actual purpose. Or to apply the terminology suggested by Grady et al. 

(1996); do the lab-scale experiments provide extant kinetic parameters, i.e. parameters representative for 

the biomass prior to the experiments? Furthermore it will be discussed how the relations are between lab- 

and full-scale observations, and how the biological processes are presented in ASM1: 



 

 83

(a) Transferability between lab-scale and full-scale observations: Are the different components and 

parameters that may be determined via lab-scale experiments representative, i.e. transferable to the 

full-scale system? That is, do the experiments provide extant parameters. 

(b) Transferability between full-scale observations and modeled processes: Are the full-scale processes 

described in a biologically realistic way in the model or are the model processes lumping different 

biological processes? If so, it may be impossible to characterise them by any experiment. 

(c) Transferability between model processes and lab-scale observations: Are the processes defined in 

the model reflected by the lab-scale experiments? 

These conflicts of transferability are illustrated in Fig. 22, and the discussion is taken below considering the 

different wastewater components, kinetic and stoichiometric parameters. The aim of this discussion is to 

decide which information source is most relevant for the different components and parameters. Of course, 

in principle all the components and parameters can be obtained from the model, e.g. via the default 

parameter set or via adjustment of the values during the model calibration exercise. 

Full-scale process

Lab-scale Model

A

C

B

 

Figure 22. Schematic representation of discussion on transferability 

However, some model processes do not reflect reality completely, although they enable a mathematical 

description of the biological observations. The model components and parameters related to such 

processes can not be characterised reliably via either lab-scale or full-scale data and should preferably be 

tuned during the model calibration with the full ASM1. Then there are some components and parameters 

that readily and reliably can be transferred from a lab-scale experiment. For others the lab-scale results are 

difficult to transfer to the model of the full-scale system, and for instance a mass balance with full-scale data 

may be more appropriate as information source. Whether a certain component or parameter should be 

obtained via lab-scale or full-scale data or should be tuned directly via the model will depend on what the 

component or parameter in question is depending on. In this discussion it is assumed that the values of the 

components and parameters can depend on either the actual biomass in the activated sludge system or the 

actual WWTP operation. It should be stressed that only the actual state of the system is considered in this 
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discussion, since this is what the calibrated model is aimed at describing. Obviously, the biomass character 

(e.g. maximum specific growth rate, decay rate etc.) of the WWTP is determined by both the incoming 

wastewater and WWTP operation. However, changes in biomass characteristics caused by changing 

WWTP operation or wastewater character are more long-term effects. Description of these effects is not 

within the scope of the ASM models. Thus, the actual wastewater considered for the model calibration is 

assumed to be representative for the general wastewater composition to which the biomass has adapted 

and by which the biomass character is determined. 

4.4.1. Kinetic and stoichiometric parameters 

Below, the information sources for the most relevant kinetic and stoichiometric parameters will be 

discussed in relation to Fig. 22. Furthermore, the discussion on whether a parameter is depending on the 

wastewater, biomass and/or WWTP operation is summarised in Table 9. Finally, the most relevant 

information source is indicated in Table 9. Brackets in Table 9, i.e. (X) indicates that a lab-scale 

experiment is possible for determination but the transferability of the obtained parameters to the full-scale 

situation is uncertain for different reasons, as explained below. Finally, as mentioned above all parameters 

can in principle be determined based on the model alone without additional supporting information.  

Table 9. Discussion on relevant information sources for kinetic and stoichiometric parameters. A bracket 

around X indicates that a lab-scale experiment is possible for determination but the transferability of 

the obtained parameters to the full-scale situation is uncertain due to different reasons (see text for 

further explanation) 

 Dependency Relevant information source 
 Sludge/biomass Plant operation Lab-scale 

experiment 
Full-scale data 
Mass balances 

Model 
calibration 

µ maxH X  X  X 
µmaxA X  X  X 
KS, KNO  X X (X) (X) X 
KNH X X (X) (X) X 
KOH, KOA X X (X) (X) X 
bH,bA X  X  X 
YH X  (X)  X 
YA X  (X)  X 
kh X    X 
KX X    X 
ηg X  X X X 
ηh X    X 
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The maximum specific heterotrophic growth rate, µµ maxH 

The observed actual specific growth rate in the full-scale system, µ’maxH, depends on the sludge age and 

therefore depends both on the actual wastewater and the WWTP operation. If the wastewater contains a 

significant amount of biomass, µ’maxH will depend primarily on the wastewater, whereas it will depend on 

the operation if the biomass is primarily produced within the plant. On the contrary, the maximum specific 

growth rate, µmaxH, is the maximum possible specific growth rate of the actual sludge, and is only influenced 

by the actual kind of bacteria present. It may be important to distinguish here between µmaxH and the 

growth rate, µ, which is influenced by the mixed liquor substrate concentration. Thus, µmaxH is not 

depending on the wastewater whereas µ is. 

This means that the problem of transferability between the lab-scale and the full-scale observations will not 

be significant (conflict a in Fig. 22) if the lab-scale experiment is carried out under conditions that are 

comparable to the full-scale system (e.g. with respect to pH, temperature, ratio between substrate and 

biomass concentration etc.). In other words, if the lab-scale experiments are performed in a way that 

allows measurement of extant parameter values, then little or no conflict will arise.  

As described earlier, the death regeneration concept in the model has the effect that the cell mass turnover 

rate increases, resulting in a higher growth rate than if a more traditional concept of endogenous decay was 

applied. Thus, this should be taken into account in the interpretation of lab-scale experiments and in the 

transferability of results to the full-scale model (conflict C in Fig. 22). Similarly the death regeneration 

model concept and the way it influences the maximum specific growth rate may not reflect the full-scale 

process completely (conflict B in Fig. 22), but may allow for an adequate description of observations. 

Summarising, the µmaxH is one of the most relevant parameters to study in lab-scale experiments and can be 

considered to be a biological parameter, which is only determined by the actual bacteria present (see Table 

9). 

The maximum specific autotrophic growth rate, µµ maxA 

Although specific bacterial groups undertake nitrification, they adapt to the actual environment and the 

bacterial species can therefore vary. Therefore, the discussion on the maximum specific autotrophic growth 

rate µmaxA is rather similar to the one of µmaxH. Thus, it is possible to determine the value of µmaxA from lab-

scale experiments, and transfer the value to the model of the full-scale system. 

Half-saturation coefficients : KS, KNH, KNO, KOA and KOH 

In pure cultures the half-saturation coefficients can be regarded as pure biological parameters that give 

measures of the affinity of the biomass for substrates. However, in cultures where the bacteria grow in flocs 

(as in activated sludge), the floc size and structure play a role in the diffusion of substrate to the cell and 



 

 86

thereby on the apparent value of saturation coefficients. Especially in full-scale systems mixing 

characteristics will further influence the apparent values. Even in lab-scale tests under simpler mixing 

characteristics, mixing may play a role and influence the obtained values of the half-saturation coefficients. 

Thus, the different mixing characteristics of the lab-scale and full-scale system make it difficult to transfer 

the lab-scale observation to the full-scale system (conflict A in Fig. 22). If the floc size decreases due to 

e.g. a more intensive mixing in the small batch-scale experiments, the obtained coefficients will be smaller 

than required to describe the full-scale behaviour (Henze et al, 1998). This makes it difficult to obtain a 

model relevant value of the half-saturation coefficients from lab-scale experiments (conflict C in Fig. 22). 

The saturation coefficients in ASM1 describing a full-scale situation may therefore be regarded more as 

model parameters with the purpose of preventing unrealistically high substrate uptake and growth rates. 

Thus, the biological meaning of the model half-saturation coefficients is mixed with the hydraulics of the 

system (conflict B in Fig. 22). Obviously, if a very detailed model is available to describe the hydraulics of a 

system accurately, it may be possible to separate the effects of biomass affinity for a substrate and the 

hydraulic effects from mixing. However, usually the hydraulic pattern is approximated by a simple tanks-in-

series model that may be sufficient for a mathematical description but not accurate enough for a complete 

elimination of hydraulic effects on the biological parameters. 

Thus, all half-saturation coefficients of the full-scale system will depend on both the WWTP operation 

(mixing) and the actual kind of biomass present. The coefficients can be determined by lab-scale 

experiments but the values obtained may not be very representative. It may therefore be better to estimate 

these parameters from full-scale data, via the operational rate of COD removal found by mass balances as 

function of the operational range of COD concentrations. The question is of course whether the full-scale 

data is informative enough for such determinations. Thus, in practice these values may have to be tuned 

during the model calibration. 

Decay rate of heterotrophs bH and autotrophs bA.  

The decay rate in a full-scale WWTP is in principle a characteristic of the actual biomass, and can, similarly 

to the maximum specific growth rate, be considered as a biological parameter. However, it may be difficult 

to obtain a representative value of the decay rates of a full-scale system from the lab-scale tests presented 

above (conflict A in Fig. 22), since decay and growth due to substrate inflow (and internal production) take 

place simultaneously in the full-scale WWTP. On the contrary, decay is typically investigated under starving 

conditions (endogenous respiration) in lab-scale experiments. Furthermore, the decay rate in the full-scale 

plant is typically influenced by grazing, i.e. presence of protozoa, which may not be present or may not be 

able to survive in the lab-scale experiment. 

In ASM1, the death regeneration concept includes both lysis combined with hydrolysis of released 

substrate and, subsequently, growth on this substrate. As discussed earlier, this interaction of different 
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processes makes it difficult to determine the decay coefficient related to the death regeneration concept 

(conflict B in Fig. 22). However, according to ASM1 it is possible to transfer the decay rate obtained from 

a lab-scale experiment with decreasing endogenous respiration as function of time for determination of the 

endogenous decay rate to the death regeneration model concept (via Eq. 23, conflict C in Fig. 22). 

Obviously, the change in ASM3 to the endogenous respiration decay concept makes it more 

straightforward to determine the decay rate of the model by a lab-experiment. 

Conclusively, it is possible to determine the decay rate via lab-scale experiments, and to convert the 

obtained value to the death regeneration concept of ASM1, but the value may to some extent have to be 

adjusted during the model calibration procedure. 

Maximum heterotrophic and autotrophic yield, YH and YA. 

The observed yields in a full-scale WWTP, Y’H and Y’A, are depending on the process operation, i.e. the 

actual wastewater load and the sludge age. On the other hand, the actual maximum yields (YH and YA) are 

depending on the kind of biomass present. For municipal WWTP’s the parameters YH and YA are typically 

assumed to be rather constant, indicating that the biomass character is rather similar among different 

municipal WWTP’s. However, it may still be needed in some cases to determine the biomass yields. This 

can be carried out in lab-scale experiments, but there may be some experimental difficulties, e.g. caused by 

the possible influence of storage which may be induced by the conditions in the lab-scale experiment 

(Majone et al., 1999), as earlier described (conflict A in Fig. 22). 

In fact the typical maximum heterotrophic yield of 0.67 for municipal wastewater (Henze et al., 1987) is 

higher than the yields observed with pure cultures. The reason for this may be that the model yield covers 

different processes as storage, death regeneration etc. and may thereby be considered more as a model 

yield (van Loosdrecht and Henze, 1999) (conflict B and C in Fig. 22). Although the heterotrophic biomass 

yield seems to be influenced by the available electron acceptors (the anoxic yield is reported to be lower 

than the aerobic one, Koike and Hattori, 1975; Orhon et al., 1996; McClintock et al., 1998; Spérandio 

et al., 1999), the yield may be more influenced by storage than by the type of electron acceptor.  

Hydrolysis rate kh and half-saturation coefficient KX 

Although only limited knowledge is available about hydrolysis, the process is needed in ASM1 to describe 

the degradation of slowly biodegradable organic matter originating from the influent COD and from internal 

turnover of substrate in the death regeneration cycle.  

As described above attempts have been made to analyse hydrolysis in lab-scale experiments. It may be 

possible to compare the real enzymatic hydrolysis as it takes place in lab-scale with the full-scale hydrolysis 

process. However, the real enzymatic hydrolysis is not the same as the hydrolysis process in the model, as 

it might also cover consumption of storage polymers, hydrolysis of decayed biomass (death regeneration), 
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protozoan activity etc. (conflict B and C in Fig. 22) (van Loosdrecht and Henze, 1999). Thus, it remains 

problematic to design an experiment that is representative for both the model concept and the hydrolysis 

process as it takes place in full-scale. If this is compared to the determination of e.g. the maximum specific 

growth rate, we note that this parameter also covers many details but still only describes one process, i.e. 

growth.  

Conclusively, the real hydrolysis process is probably determined by the actual biomass that produces the 

enzymes, but for the model calibration of ASM1 it does not seem relevant to attempt to characterise this 

process in lab-scale tests. Hence, the hydrolysis as it is described in ASM1 should be considered as a 

model process that has to be adjusted during the model calibration procedure. It should be remembered 

that the definition of hydrolysis has changed in ASM3 and is closer to the real biological hydrolysis. Thus, a 

characterisation of the hydrolysis parameters from a lab-scale experiment will be more relevant for ASM3. 

The problem remains, however, to design a good experiment for characterising the real biological 

hydrolysis. 

Correction factors for denitrification ηη g and ηη h 

The correction factors for denitrification can be found via a combination of respirometric and nitrate 

utilisation rate experiments for the determination of the growth and hydrolysis process, although some 

problems may be encountered in the case where the aerobic and anoxic yields can not be considered 

equal. It was also referred above that the correction factors can be determined based on some general 

mass balances of the full-scale system (Henze, 1986). Both correction factors will depend on the actual 

biomass character. However, no particular conflicts, as indicated in Fig. 22, are apparent concerning the 

correction factor for growth, ηg. Determination of the correction factor for hydrolysis will suffer from the 

same problems as indicated above for the hydrolysis itself, and may therefore also be considered more as a 

model parameter. 

4.4.2. Relevant kinetic and stoichiometric parameters for lab-scale 
characterisation 

In the discussion on the relevance of characterisation of the stoichiometric and kinetic parameters of ASM1 

via lab-scale experiments, one has to remember that none of the ASM model processes are pure or 

microbiologically correct. They are all bulk processes to some extent. It has clearly been illustrated above 

that experiments oriented in identifying mechanisms introduced in the model might easily lead to conflict 

with the actual model coefficients (van Loosdrecht and Henze, 1999). Thus, although possible, it may not 

always be relevant to retrieve the model parameters from lab-scale tests. 

Above the discussion was taken on these conflicts between lab- and full-scale observations and the links to 

the model processes. Table 9 summarised the dependency of the parameters on the biomass and WWTP 
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operation, and it was attempted to indicate the most relevant information source based on these 

discussions. Notice the difference to Table 8 that listed how the different parameters could be estimated 

from lab-scale tests, whereas Table 9 indicates whether this is relevant or not, considering that the 

parameter should correspond reasonably well both with the full-scale behaviour, i.e. extant parameters are 

sought, and the model concepts.  

From Table 9 it is deduced that it may be relevant to determine the following list of stoichiometric and 

kinetic parameters from lab-scale experiments. It is not judged whether it is always needed to characterise 

these parameters since that will depend on the purpose of the model calibration. For the same reason it is 

not attempted to make an indicative order of parameter importance. 

• µmaxH 

• µmaxA 

• ηg 

• bA 

• bH 

• (YH) 

• (YA) 

The yields are included in the list, knowing that they are not easy to determine in lab-scale tests and that 

they are usually assumed to be rather constant. However, it should also be realised that the yield 

coefficients have an important influence on nearly all the processes (see Table 6), and therefore it would be 

rather relevant to have a more accurate determination of these. 

The remaining parameters can be determined via either full-scale data or directly via the model calibration, 

as indicated in Table 9. It is important to notice that the above parameter list is significantly reduced 

compared to the list of parameters retrieved from experiments based on Table 8, basically due to the fact 

that the half-saturation coefficients and hydrolysis parameters are left out. 

4.4.3. Relevant wastewater components for lab-scale characterisation 

Only the side of the triangle dealing with the conflict between lab-scale observations and model concepts 

(conflict C) outlined in Fig. 22 is relevant when it comes to characterisation of wastewater components. 

Also, the discussion summarised in Table 9 is not relevant here, since the wastewater components are 

neither depending on the biomass or the WWTP operation. Therefore, the discussion on wastewater 

components is less extensive here (see also the earlier discussion and summary of wastewater 

characterisation methods) and is not divided according to the different components. 
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As discussed above in the review of wastewater characterisation a conflict may indeed exist between the 

need for quantification of some of the ASM1 wastewater components and what is practically obtainable 

from lab-scale experiments. The origin of this problem mainly lays in the way the components are defined in 

ASM1. The death regeneration cycle and the hydrolysis processes of ASM1 are model processes that are 

not directly measurable in lab-scale experiments, as discussed above. Thus, the slowly biodegradable 

substrate and inert particulate matter components, XS and XI respectively, that are related to these 

processes may then also be regarded as model components that should rather be quantified during the 

model calibration exercise than through dedicated experiments. Indeed, it was proposed by Henze et al. 

(1995) to estimate XI in the influent via the complete model during the calibration of the sludge balance and, 

subsequently, estimate XS from the difference between total COD and the other COD components, as 

discussed earlier. A determination of the heterotrophic biomass (XBH) in the wastewater is possible via lab-

scale experiments, as described above. However, in most cases the XBH present in wastewater is not of 

great importance, since the growth rates are so high that washout of XBH never occurs in practice. Thus, an 

inclusion of XBH in the XS component does not affect the modelling significantly, although it will affect the 

value of the heterotrophic yield coefficient (a slightly smaller yield may need to be chosen) (Henze et al., 

1998). On the contrary, the presence of autotrophic biomass (XBA) in the wastewater may be of 

importance to prevent wash out of the nitrifiers. The concentration of XBA can in principle be determined 

via lab-scale experiments, but in practice the procedure may not be straightforward and XBA may rather be 

adjusted during the model calibration. 

In general there is no need for a detailed characterisation of the nitrogen components since the main part of 

nitrogen in wastewater is ammonium without any coupling to the organic matter (Henze et al., 1998). An 

exception to this may, however, exist for some industrial wastewater. Thus, the wastewater components 

relevant to be characterised separately via lab-scale experiments are listed below. Again, an indicative 

order of importance is not aimed for, since this will depend on the actual case. 

• SNH 

• SS 

• SI 

• (SND, XND) 

The relevance of determining the inert soluble matter (SI) is linked to the determination of the soluble readily 

biodegradable substrate (SS) since SI may be needed for the mass balance of soluble COD. 

5. Biological experimental constraints 

In the previous section wastewater components, stoichiometric and kinetic parameters were listed that are 
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most relevant to be determined in lab-scale experiment were listed. This list was compiled on the basis of 

considerations that the component or parameter resulting from the lab-scale experiment should be relevant 

to full-scale behaviour and fit within the model concepts. 

Here we will further zoom in on the problem of transferability between lab-scale results and full-scale 

behaviour. As discussed above care should be taken in the transfer of results derived from lab-scale 

experiments to a model of the full-scale system. Summarising, the reason for problems with transferability 

are on the one hand differences in biological experimental conditions between lab-scale and full-scale 

experiments (conflict A in Fig. 22) and, on the other hand, differences in the models used (conflict C in Fig. 

22). 

At the experimental level the lab-scale behaviour may not equal the full-scale behaviour due to, for 

instance, differences in feeding pattern resulting in other concentration profiles, differences in environmental 

conditions such as pH, temperature or mixing behaviour, or differences in sludge history. One of the most 

discussed biological experimental factors is the ratio between initial substrate concentration (SO) and the 

initial biomass concentration (XO). This S(0)/X(0) ratio is considered to be one of the important factors 

determining (1) the response of the sludge with a certain wastewater or substrate and (2) whether the 

experimental response is sufficiently informative for adequate interpretation. The first point is of a more 

basic nature since it has been observed that the S(0)/X(0) ratio directly influences the behaviour of the 

sludge, leading to different characteristics (Chudoba et al., 1992; Grady et al., 1996, Pollard et al., 

1998). The second point is more related to the practical identifiability of model parameters, i.e. it affects the 

quality of the experimental data (Spanjers and Vanrolleghem, 1995; Spérandio and Paul, 2000). For 

instance, if S(0)/X(0) is very high the measured response (e.g. the respiration rate) may be too small and 

the experiment may take too long. On the other hand, if S(0)/X(0) is very low the respirometric response 

may be too short for a reliable measurement, or it may be swamped into the endogenous respiration rate. 

Below, special attention is paid to the first point, where the S(0)/X(0) problem will be discussed in more 

detail. 

At the modelling level the results from lab-scale experiments may be described with a model different from 

the model used to describe the full-scale behaviour. Although not obvious at first sight, the use of a simple 

model for interpretation of the lab-scale data increases calculation speeds significantly, resulting in, for 

instance, a faster and more straightforward parameter estimation. Problems arise when the model uses 

different concepts that may not allow to transfer the estimated parameters from one model to the other, e.g. 

the death regeneration versus endogenous respiration concept (Yuan and Stenström, 1996). 

5.1. Transferability between model concepts: an example 

In ASM1 the death regeneration concept is applied, whereas the model to describe the lab-scale results 
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may only include the degradation of substrates, i.e. decay and death regeneration are omitted, because they 

are considered insignificant in relation to the time scale used in the experiment (Spanjers and Vanrolleghem, 

1995). In ASM1 oxygen is consumed for growth on incoming substrate plus growth on substrate produced 

due to death regeneration, whereas in a lab-scale model one may only consider that oxygen is consumed 

for growth on incoming substrate. This is illustrated in Fig. 23. 
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Figure 23. Illustration of difference in interpretation of substrate uptake rate in lab-scale (endogenous 

respiration) model versus ASM1 (death regeneration) 

In Fig. 23 the line illustrates substrate uptake rate rS as function of time and the values at the left hand side 

of the y-axes indicate the corresponding substrate concentrations SS. The left figure illustrates how the 

substrate uptake rate is interpreted in the lab-scale (batch) experiments whereas the right figure gives the 

ASM1 interpretation. In both cases the total oxygen consumption rate is the same, but it is interpreted 

differently in the lab and full-scale model. In the lab-scale model oxygen is consumed to degrade the 

incoming substrate and the substrate concentration will eventually go to zero. Apart from oxygen for 

substrate degradation (rO,ex), oxygen is also used for endogenous respiration (rO,end). In ASM1 substrate 

will also be degraded. However the concentration will not reach zero since there will be some production 

of substrate from the death regeneration process. Thus, according to the ASM1 model concept oxygen will 

be consumed for degradation of both the incoming substrate and the produced substrate. In Fig. 23 it is 

assumed for clarity that the concentration of the produced substrate is 10 mg COD/l. This slightly higher 

substrate availability in ASM1 means that the contribution of the observed total rO to degradation of 

incoming substrate is lower in ASM1 than in the lab-scale model. As a consequence the estimated 

maximum growth rate, which is proportional to the maximum rO, will be lower in the batch system. This is 

illustrated with the size of the double arrow at the right hand side of both graphs in Fig. 23. Also, the value 

of the half-saturation coefficient KS will be underestimated in the batch model compared to ASM1. In the 
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batch model this is illustrated by a KS value of 50 whereas it may be 55 in ASM1. 

As discussed earlier, it is possible to derive analytical transformations between both model concepts for the 

decay and growth rates, the yield and the fraction of inerts produced (Henze et al., 1987). However, a 

transformation for KS is more complicated.  

5.2. Review and discussion of S(0)/X(0) ratio 

Depending on the experimental conditions the organic substrate (COD) uptake rate in both lab- and full-

scale may consist of different responses. This is illustrated in Fig. 24. 
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Figure 24. Different flows of external COD in the organisms 

In the concept presented in that figure COD is produced from decay (flow 1). Maintenance (flow 2) is 

defined as the external substrate requirements to maintain the organisms in their current state. Note the 

difference here to endogenous respiration, which can be defined as the respiration in absence of external 

substrate (for a detailed review see van Loosdrecht and Henze, 1999). However, here it is assumed that 

external substrate is present. Growth (flow 3) is divided in two; (i) increase in biomass due to production of 

cell constituents (e.g. proteins etc.) but without cell multiplication, (ii) increase in biomass caused by cell 

multiplication. Storage (flow 4) is defined as the accumulation of polymers, e.g. poly-hydroxy-alkanoates 

and glycogen. Energy spilling (flow 5) (Zeng et al., 1995) is defined as substrate waste that may take place 

when the organisms are exposed to very high substrate concentrations. In such cases the organisms may 

not be able to regulate the catabolism rate to the needs for anabolism, resulting in inefficient use of substrate 

and possible excretion of metabolites. Fig. 24 illustrates the possible COD flows in the single organisms. 

Depending on the experimental conditions one of the flows may dominate in a single organism (Fig. 24). 

The same experimental conditions also provoke a particular distribution of COD over the different 

organisms. Competition may eventually lead to a shift in the population (Novák et al., 1994). 

As mentioned above the S(0)/X(0) ratio is considered to be one of the determining factors for the way the 

organisms respond in a system. However, even though the importance of this ratio has been recognised, 
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only few references that deal with the subject in more detail can be found (Chudoba et al., 1992; Novák 

et al. 1994; Zeng et al., 1995; Grady et al., 1996; Liu, 1996). They all deal with the subject from a more 

theoretical point of view without much experimental support, and there is still a lack of both qualitative and 

especially quantitative explanation of the exact role of the S(0)/X(0) ratio. The discussion on the effect of 

S(0)/X(0) can be considered from a reaction stoichiometry or reaction kinetic point of view. 

Effect of S(0)/X(0) on stoichiometry 

Both Chudoba et al. (1992) and Liu (1996) explain the importance of the S(0)/X(0) ratio from a 

thermodynamic point of view based on the observations that the observed yield (Y’H) decreased with 

increasing S(0)/X(0) ratio (Fig. 25). 

In the work of Chudoba et al. (1992) substrate (COD) profiles versus time were measured. Here it was 

assumed that autocatalytic growth would cause substrate uptake at an increasing rate whereas substrate 

uptake at a constant rate was assumed to be an indirect evidence of storage. It was hyphotesised that at 

low S(0)/X(0) ratio the main response is storage (flow 4 in Fig. 24) since the energy level in the cell will be 

too low to trigger cell multiplication, resulting in less substrate being oxidised (Daigger and Grady, 1982) 

and thereby a higher Y’H. At high S(0)/X(0) ratios on the contrary, the growth response where cell 

multiplication (flow 3 in Fig. 24) is dominating results in lower observed yields (Chudoba et al., 1992). 

However, the lower Y’H at higher S(0)/X(0) ratios may as well be explained by less energy being required 

for growth without associated cell multiplication (flow 3) and without the involvement of storage (flow 4). A 

second possible explanation of the data of Chudoba et al. (1992) is that the contribution of endogenous 

respiration to the total amount of oxygen consumed is higher at high S(0)/X(0) ratio. This could also result 

in lower Y’H, since the experiments at high S(0)/X(0) ratios take longer time and therefore the amount of 

decayed biomass (flow 1) is higher. 

Still, a different explanation of the decreasing observed yield with increasing S(0)/X(0) is found in the work 

of Liu (1996), who presented an attempt to quantify the importance of S(0)/X(0). Here the decrease in 

Y’H is explained by an increase in energy spilling (flow 5) with increasing S(0)/X(0) (Liu, 1996). However, 

the problem in verifying this approach is to define at which S(0)/X(0) energy spilling will start to take place. 

In the study of Liu (1996) the ratio is assumed to be 1. The proposed model was tested on literature data, 

but the S(0)/X(0) ratios of all the literature data used in the study were higher than 1, making the evidence 

for the model incomplete. It should be noted that none of these studies attempted to explain the observed 

behaviour with a more complex model, such as ASM1. 
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Figure 25. Literature data of Yobs as function of S(0)/X(0) ratio: A: Rao and Gaudy, 1966; B: Chudoba, 

1969; C: Chang et al., 1993; D: Chudoba et al., 1991. Data digitised from Liu (1996) 

Effect of S(0)/X(0) on kinetics 

Another way of looking at the influence of S(0)/X(0) is from a kinetic point of view focusing on the 

physiological, i.e. enzymatic, state and adaptation. In order to describe these phenomena, the concept of 

the machinery necessary for protein synthesis (PSS) has been introduced (Grady et al., 1996). This should 

basically be understood as follows. If the organisms are adapted to grow under substrate limited 

conditions, its PSS will not be sufficient to quickly increase the growth rate if the substrate limitation is 

removed. Thus, the PSS and eventually the specific growth rate will gradually increase during time, until the 

maximum possible value according to the new conditions, i.e. physical adaptation has taken place. It has 

been stated that the synthesis of storage polymers requires less physiological adaptation than the growth 

response (Daigger and Grady, 1982). Thus, this would mean that if a substrate limitation is removed, as 

described above, a storage response may be triggered as a fast response and as an alternative mechanism 

when the growth response is too slow. 

A simple example of physiological adaptation is illustrated in Fig. 26 where three pulses of acetate were 

added consecutively to a sludge sample (Vanrolleghem et al., 1998). Each of the three responses is 
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characterised by a fast start-up of about two minutes. These two minutes are assumed to be the time 

needed by a cell to take up fresh substrate and oxidise it (Vanrolleghem et al., 1998). In the first two 

responses a more gradual increase of rO is observed for about 10 minutes, presumably due to an increased 

conversion capacity (e.g. enzyme activation or synthesis). In the third response (after 40 minutes) this 

capacity has become constitutive. Starvation of the culture for one night turned the capacity down (the 

organisms “forgot”) and a similar behaviour could be observed when acetate was added again (results not 

shown).  
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Figure 26. rO,ex profiles obtained by addition of acetate to an activated sludge sample  (Vanrolleghem et 

al., 1998) 

In both Chudoba et al. (1992) and Liu (1996) the applied S(0)/X(0) ratios are very high (above 1), 

whereas in the example of Fig. 26 the S(0)/X(0) ratio was very low (below 1/20). It is commonly assumed 

that it is necessary to work under low S(0)/X(0) ratios (Chudoba et al., 1992; Novák et al., 1994; 

Spanjers and Vanrolleghem, 1995; Grady et al., 1996). Indeed, if the S(0)/X(0) ratio is high this may 

result in a change of maximum specific growth and substrate removal rate due to physiological adaptation, 

which eventually may result in changes of the proportions among slow-growers and fast-growers leading to 

population shifts (Novák et al., 1994). The kinetics measured under such conditions will more represent 

the ultimate capabilities of the organisms (intrinsic kinetics), whereas kinetics measured in experiments 

performed under low S(0)/X(0) ratio may be more representative of the physiological state of the cells 

prior to the experiments (extant kinetics) (Grady et al., 1996). In the example of Kappeler and Gujer 

(1992) a very high S(0)/X(0) ratio was applied resulting in an overestimation of the growth rates, due to a 

shift in biomass composition towards fast-growers. In addition, population shifts will also take place if the 

substrate source is changed.  

Discussion on S(0)/X(0) ratio 

As illustrated above the discussion on the effect of the S(0)/X(0) ratio is looked at from many angles and it 

seems difficult to draw a coherent picture. However, instead of focusing on a threshold value for the 
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S(0)/X(0) ratio it may be more relevant to consider the following factors in the discussion of what kind of 

response can be expected in a lab-scale experiment: 

1. ∆S: how big is the change of substrate concentration in the lab-scale system compared to the full-scale 

system, i.e. to what extent are organisms subjected to a drastic change in their environmental 

conditions. 

2. Time: for how long is ∆S maintained, i.e. what is the time frame of the experiments. 

3. History: how strong is the history of the sludge, e.g. starvation periods prior to the experiment 

These three factors should be understood as follows. If ∆S is low and the experiment is performed over 

short-term, the risk for changing the response of the sludge compared to the full-scale system is probably 

low and extant parameters can be obtained. If ∆S is high and the time is short the risk for excess substrate 

uptake not resulting in immediate growth increases (maybe induction of storage or spilling). Finally, if ∆S is 

high and the experiment is performed over long-term the risk for physiological adaptation due to enzymatic 

changes is increasing, eventually leading to a population shift. The specific growth rate may increase during 

the experiment resulting in an increase in growth response and a decrease in excess substrate uptake 

response, i.e. the initial stress reaction such as storage or energy spilling will decrease as the organisms get 

adapted to the new environment. Thus, somehow a compromise between ∆S and time is needed.  

Furthermore, the history of the sludge will play a role in the experimental designs, since for example 

starvation periods prior to the experiment will result in an initial slower response of the sludge. It is, 

however, not really clear if for example starvation periods can lead to an initial different response. 

The above discussion on S(0)/X(0) focused on heterotrophic organisms and their response to a carbon 

substrate. However, the discussion can easily be extended to autotrophic organisms where the substrate is 

ammonium. In this case a too high ∆S may result in inhibition of the nitrification process. However, the risk 

for a population shift may be lower since the nitrifying group of organisms is supposed to be rather uniform 

in character. Still, adaptations to new environments will take place and the bacterial species can vary. 

The problem of choosing an appropriate S(0)/X(0) value will be addressed further in chapter 7. 

6. Summary 

In this extensive review numerous aspects of activated sludge model calibration have been touched upon. 

As an introduction the industry-standard Activated Sludge Model No. 1 was introduced to set the scene 

and it was compared to the more recent update ASM3. The wastewater and sludge fractions considered in 

these models were described and the processes taking place among them were given. All these items are 

focused upon when calibrating such model. 

In a next section an overview was given on the descriptions of calibration procedures that were found in 
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literature. Surprisingly, it is not possible to find a single paper where a comprehensive overview is given. 

The information is only available as “bits and pieces” and is scattered in a vast amount of literature. The 

information sets that are typically required were presented and a 10-step calibration procedure was 

proposed.  

The multitude of methods for model calibration was structured along three lines: (1) wastewater 

characterisation, (2) sludge composition analysis and (3) stoichiometric and kinetic parameters. 

The wastewater characterisation is typically done either by physical-chemical or biological characterisation 

methods. Whereas the former appear the easiest to apply, even in routine lab analysis, their results are not 

directly related to the model concepts and, moreover, the results need to be augmented with specific 

characteristics obtained from biological characterisation methods. Among these biological methods 

attention was particularly given to the respirometric tests as they form the core technique, but nitrate 

utilisation tests and the upcoming titrimetric tests were presented as well. For the extraction of the model-

related information, either direct or model-based analysis is needed. Whereas the former is really simple, 

the latter allows extracting multiple characteristics from a single experiment. 

For the sludge composition analysis, mainly in-out mass balancing methods are being used. The estimation 

of stoichiometric and kinetic parameters is typically based on dedicated batch experiments using 

respirometers. Special attention was drawn to the simultaneous estimation of parameters from well-

designed single experiments. Especially for this, model-based analysis is required. It is also noteworthy that 

these more complex approaches not only lead to stoichiometric and kinetic parameter estimates, but 

typically also lead to estimates on wastewater composition. 

In the last section of this review attention was focused upon the problem of transferring the results of the 

specific tests to a model apt to describe the full-scale behaviour. It was indeed argued that quite some 

estimation results give a near-perfect description of what happened in the batch test. However this result 

could not be applied in the practical situation because, for instance, the insufficiently modelled mixing 

characteristics have to be lumped into the biological parameters of the full-scale model. Still, it was 

attempted to point towards the parameters whose values can most likely be assessed realistically from lab-

scale tests and transferred to the full-scale model. 

All in all, this review has led to the belief that a considerable potential exists for efficient characterisation of 

Activated Sludge Models, provided that precautions are taken with respect to constraining the 

experimental conditions. The further work of this thesis is entirely devoted to this question. The thesis 

focuses on the design of optimal experiments that not only lead to high-information content data sets with 

good identifiability properties, but that also take into account the biological constraints to guarantee 

transferability of calibration results to the full-scale model. 
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Chapter 3 
 - 

Activated sludge monitoring with combined 
respirometric - titrimetric measurements 

Parts of this chapter were presented as: 

Petersen B., Gernaey K. and Vanrolleghem P.A. (1999) Modelling of activated sludge process kinetics 

using a combination of hybrid respirometric and titrimetric data. In: Proceedings 9th European Congress on 

Biotechnology. Brussels, Belgium, July 11-15 1999. 

The main part of this chapter was published as: 

Gernaey K., Petersen B., Ottoy J.P. and Vanrolleghem P.A. (2001) Activated sludge monitoring with 

combined respirometric - titrimetric measurements. Water Research, 35, 1280-1294. 
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Chapter 3 
 
Activated sludge monitoring with combined 
respirometric-titrimetric measurements 

Abstract - A short review of different respirometric methods is presented, and advantages and 

disadvantages of different principles are discussed. In this study a combined respirometric – titrimetric set-

up was applied to monitor degradation processes during batch experiments with activated sludge. The 

respirometer consists of an open aerated vessel and a closed non-aerated respiration chamber. It is 

operated with two oxygen probes resulting in two sources of information on the oxygen uptake rate, both 

collected at a high frequency. The respirometer is combined with a titrimetric unit that keeps the pH of the 

activated sludge sample at a constant value through addition of acid and/or base. The cumulative amount of 

added acid and base serves as a complementary information source on the degradation processes. 

Interpretation of respirometric data resulting from validation experiments (additions of acetate and urea as 

ammonium source) showed that the set-up provided reliable data. Data interpretation was approached in 

two ways: (1) via a basic calculation procedure, in which the oxygen uptake rates were obtained by an 

oxygen mass balance over the respiration chamber, and (2) via a model-based procedure in which 

substrate transport was included for a more accurate data interpretation. Simulation examples showed that 

the presence of substrate transport in the model may be crucial for a correct data interpretation, since 

experimental conditions (e.g. low flow rate) and/or the biodegradation kinetic parameters (e.g. high KS) 

may otherwise lead to data interpretation errors. Earlier studies already pointed out that titrimetric data can 

be related to nitrification, and this was also confirmed in this study. However, in addition, it was shown here 

for experiments with acetate that the amount of acid dosed was clearly related to the amount of acetate 

degraded. This indicates that titrimetric data can be used to study carbon source degradation. For the 

titrimetric data in this study, a model-based analysis was however only applied for the nitrification process. 

For an experiment with ammonium, it was illustrated that estimation of biodegradation kinetics on a 

combined respirometric-titrimetric data set significantly improves confidence intervals of the parameters 

compared to parameter estimation based on respirometric or titrimetric data separately. 

1. Introduction 

In the following respirometric techniques are reviewed. The advantages and disadvantages of different 

respirometric approaches are discussed with respect to their applicability for wastewater and sludge 
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kinetics characterisation. In addition recent applications of a titrimetric measuring principle for activated 

sludge is presented shortly. 

1.1. Respirometry 

Respirometry is the measurement and interpretation of the respiration rate of activated sludge, and is 

defined as the amount of oxygen per unit of volume and time that is consumed by the microorganisms in 

activated sludge. It is a frequently used tool for the characterisation of wastewater and activated sludge 

kinetics. The resulting data can for example be applied in the frame of modelling and control of the aerobic 

parts of the activated sludge process (Henze et al., 1987; Spanjers et al., 1998; Vanrolleghem et al., 

1999). Several respirometric principles were developed in the past, and one can classify them into a 

number of basic measurement principles depending on two criteria: 1) The phase where oxygen is 

measured (gas or liquid), and 2) The flow regime of both gas and liquid phase, which can be either flowing 

or static (Spanjers et al., 1998). Fig. 1 shows a schematic representation of a respirometer. 

Gas

Liquid

Gas

Liquid
 

Figure 1. Schematic representation of a respirometer (Spanjers et al., 1998) 

For most practical applications oxygen measurements are performed in the liquid phase. Hence, 

respirometric methods described in the sequel of this introduction will be limited to respirometers where 

oxygen is measured in the liquid phase using a dissolved oxygen electrode. The respiration rate is calculated 

by making a general mass balance for oxygen over the liquid phase (Eq. 1). The equation includes, in that 

order, a transport term, an aeration term and a term describing the oxygen uptake rate (rO) by the 

microorganisms. However, depending on the design of the respirometer the transport and aeration term 

may not be needed as will be illustrated below. 

OO
o
OLOin,O

inO r)SS(aK)SS(
V

Q

dt

dS
−−+−=    (1)  

1.1.1. Static gas - static liquid 

A static gas - static liquid respirometer is typically operated by monitoring the decline in dissolved oxygen 
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concentration SO with time in a closed vessel after a short aerated phase (Vernimmen et al., 1967; Cech et 

al., 1984; Kappeler and Gujer, 1992; Kristensen et al., 1992; Kroiss et al., 1992; Drtil et al., 1993; 

Ubay Çokgör et al., 1998). In this type of respirometer the mass balance of Eq. 1 becomes very simple 

because the transport and aeration term can be omitted, resulting in Eq. 2. 

O
O r

dt
dS

−=       (2)  

A completely closed respiration chamber with no headspace is needed because no aeration of the activated 

sludge sample (e.g. through surface aeration or air bubbles in the liquid phase) may take place during the 

experiment. In case an open respiration chamber is used surface aeration may influence the measured data, 

and in that case Eq. 3 (see below) applies for a correct data interpretation. However, the contribution of 

the surface aeration is typically neglected (Farkas, 1969; Takamatsu et al., 1981; Randall et al., 1991). 

Alternatively one can try to limit the oxygen transfer through the liquid-air interface of the open vessel, for 

example by covering the surface with small plastic balls (Wentzel et al., 1995), or through use of a narrow 

respiration chamber that has about the same diameter as the dissolved oxygen electrode (Gernaey et al., 

1997b). 

Because of the absence of aeration, and thereby danger of oxygen limitation, application of this type of 

respirometer is limited, especially for the determination of sludge kinetics and wastewater characteristics. 

Typically, experiments with these set-ups are carried out with high substrate concentrations and low 

biomass concentrations (high SO/XO ratio) to avoid limitation of oxygen. However, the sludge behaviour 

when subjected to a very high SO/XO ratio may not be representative for the full-scale system (Novák et 

al., 1994). Furthermore, experiments with high SO/XO ratio will most often only allow a determination of 

maximum growth rate and not of the half-saturation substrate concentration (KS) since the substrate 

concentration may never drop to values near the value of KS. Alternatively, oxygen limitation can be 

avoided by a regular reaeration of the sample (Suschka and Ferreira, 1986; Watts and Garber, 1993). 

This will allow higher sludge concentrations and thereby more realistic SO/XO ratios. Another way to solve 

the oxygen limitation problem is to oversaturate the activated sludge sample with pure oxygen or increased 

air pressure and in that way achieve a higher initial SO concentration (Ellis et al., 1996). The disadvantage 

may however be that the microorganisms are exposed to SO levels different from their natural environment. 

A closed respiration vessel is also very important in this case to avoid transfer of oxygen from the 

oversaturated liquid phase to the gas phase. It should be added here that the respirometric methodology of 

Ellis et al. (1996) is not based on Eq. 2. In their approach the cumulative oxygen consumption (expressed 

in mg/l as function of time) is calculated as the difference between the initial and actual oxygen 

concentration. Finally, static gas - static liquid respirometers have been developed where the activated 

sludge in the closed vessel is replaced when the SO concentration drops below a certain minimum, or when 

the retention time in the vessel exceeds a preset maximum (Dircks et al., 1999). 



 

 104

The rO sampling frequency is often rather low in these different kinds of static gas – static liquid 

respirometers since one will typically obtain one rO value per aeration – measurement cycle. A low rO 

sampling frequency is a disadvantage especially when the data are to be used to estimate activated sludge 

kinetic parameters (Vanrolleghem and Spanjers, 1998). 

1.1.2. Flowing gas - static liquid 

Flowing gas - static liquid respirometers are continuously aerated and have the advantage that higher sludge 

concentrations can be used, because there is a continuous input of oxygen to avoid oxygen limitation (Blok, 

1974; Farkas, 1981; Ros et al., 1988; Vanrolleghem et al., 1990, 1994). A higher sludge concentration 

will typically allow a shortening of the experiment. The transport term of Eq. 1 is not needed and the mass 

balance over the liquid phase becomes: 

OO
o
OL

O r)SS(aK
dt

dS
−−=      (3)  

It should be noted that the oxygen dynamics might not be visible in case the oxygen transfer coefficient KLa 

is too high. Moreover, too high aeration intensity may increase the risk of measurement noise. It is thus 

important to optimise the aeration in the respirometer in such a way that a reliable rO value can be obtained. 

In general, the oxygen uptake rate (rO) may be considered to consist of two components (Spanjers, 1993): 

The exogenous oxygen uptake rate (rO,ex), which is the immediate oxygen uptake needed to degrade a 

substrate, and the endogenous oxygen uptake rate (rO,end). The rO,ex is zero when no substrate is present, 

and in that case the oxygen concentration in the flowing gas – static liquid respirometer reaches a steady-

state concentration SO,eq representing the equilibrium between oxygen transfer and endogenous respiration. 

Therefore, Eq. 3 can be transformed into Eq. 4 (Vanrolleghem et al., 1994), under the assumption that 

rO,end is constant, which is a reasonable assumption for short-term experiments. 

ex,OOeq,OL
O r)SS(aK

dt

dS
−−=     (4)  

By applying Eq. 4 attention can be focused on the substrate degradation induced respiration (rO,ex) only. A 

flowing gas - static liquid respirometer allows to record rO data with a higher frequency compared to most 

static gas – static liquid respirometers (e.g. one measurement every 10 s as in Vanrolleghem et al., 1994). 

According to Eq. 4, rO,ex can be calculated from SO data measured during substrate degradation when the 

values of dSO/dt, SO,eq and KLa are known. The factor dSO/dt is the slope of the SO curve, and is typically 

obtained by a moving data window regression on the SO data. The SO,eq can be obtained easily from the 

respirogram as the SO concentration measured during the endogenous respiration phase. In the example in 

Fig. 2, SO,eq corresponds to the SO concentration measured at t = 70 min. For the oxygen transfer 

coefficient KLa several methods can be used to obtain its value (ASCE, 1996). The KLa can for example 

be obtained from a separate reaeration experiment with sludge in endogenous state (Bandyopadhyay et al., 
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1967). Alternatively, the KLa value can be estimated from a reaeration curve obtained after addition of a 

known readily biodegradable substrate to an activated sludge sample (Vanrolleghem, 1994), as illustrated 

in Fig. 2. This KLa estimation method requires the assumption that the degradation of the added known 

readily biodegradable substrate is completed at a certain point in time, and that rO is constant during the 

reaeration phase. The SO curve in Fig. 2 consists of two parts: 1) SO values are decreasing, and both 

substrate degradation and aeration influence the SO concentration; 2) SO values increase due to aeration of 

the activated sludge. The bending point in the upward part of the SO curve is subsequently determined as 

the point where d2SO/dt2 changes sign (after 23 min. in Fig. 2). From this point on KLa values are 

calculated by applying Eq. 4 at each time instant, assuming that rO,ex is zero. Thus, when the KLa value 

calculated this way becomes constant (judged by a statistical test) this is seen as an indication that the 

reaeration is the only process that takes place. In Fig. 2 this assumption is valid from the very first point 

after the bending point, and this estimated KLa value is used in the further calculations. The increased noise 

on the estimated KLa values at the end of the respirogram is mainly because SO approaches the value of 

SO,eq, eventually resulting in unrealiable KLa estimates. 
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Figure 2. Illustration of the KLa determination principle for a flowing gas - static liquid respirometer 

following the addition of a readily biodegradable substrate at t = 0 

The KLa value obtained this way is substituted in Eq. 4 to calculate rO for other experiments in which 

unknown substrates are added to the activated sludge sample in the respirometer. This approach may 

however give practical problems. An addition of an unknown substrate (e.g. a complex wastewater 

containing surfactants) or a change in the liquid volume in the sensor (e.g. by adding a large volume of 

wastewater sample) can result in KLa changes that will not be taken into account during the rO calculations. 

Finally, the question remains if the assumption of constant KLa also holds while the degradation of complex 
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wastewater samples is ongoing. Research is currently going on to investigate the problems concerning the 

assumptions behind this KLa estimation method. 

1.1.3. Static gas - flowing liquid 

In static gas - flowing liquid respirometers the SO concentration at both the inlet and the outlet of a closed 

respiration chamber is measured (Spanjers, 1993). Aerated sludge is pumped continuously through the 

respiration chamber. The rO is calculated by making an oxygen mass balance over the respiration chamber 

using the inlet (SO,in) and outlet (SO) dissolved oxygen concentration and the residence time (V/Qin) in the 

chamber (Eq. 5). 

OOin,O
inO r)SS(

V

Q

dt

dS
−−=       (5)  

Knowledge of KLa is not necessary, which gives this type of respirometer an advantage in the study of 

more complex substrates such as wastewater for which KLa estimation may be problematic. The residence 

time (V/Qin) is assumed to be known in this approach, and should be properly chosen to avoid oxygen 

limitation in the respiration chamber. A disadvantage is that a relatively small difference (SO,in – SO) must be 

calculated from the signals of two different dissolved oxygen probes, indicating that drift of the electrodes 

may cause erroneous rO data. To deal with this, the SO concentrations in inlet and outlet of the respiration 

chamber are measured by the same dissolved oxygen probe in the static gas - flowing liquid respirometer 

of Spanjers (1993). This was achieved by regular switching of the flow direction in the respiration vessel 

(e.g. once every minute). However, the frequent flow direction switch means that the response time of the 

electrode itself becomes important for the data interpretation (Spanjers and Olsson, 1992). Moreover, it is 

the cause of a lower measurement frequency of rO (Vanrolleghem and Spanjers, 1998), typically one data 

point per minute (Spanjers, 1993). As an alternative to this respirometric principle, where the residence 

time in the respiration chamber is kept constant, Kalte (1990) proposed a respirometer in which the flow 

rate is varied to maintain a constant (SO,in – SO) set-point in order to asses the short term biochemical 

oxygen demand (BODst). 

1.1.4. Hybrid respirometer 

As a compromise, taking the good and leaving the bad elements of the different existing respirometers, the 

theoretical concept of a hybrid respirometric measurement principle was proposed (Vanrolleghem and 

Spanjers, 1998). In the hybrid respirometer, the principles of a flowing gas - static liquid and a static gas - 

flowing liquid respirometer are combined. The respirometer consists of an open aerated vessel and a 

closed non-aerated respiration chamber, and is equipped with two dissolved oxygen probes (Fig. 3). 

Sludge is continuously pumped between the aeration vessel and the respiration chamber. The advantages of 

the different respirometer principles are combined (Table 1): Use of two dissolved oxygen probes results in 
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the high rO data collection frequency of the flowing gas - static liquid respirometer. At the same time rO can 

be calculated with a similar procedure as the static gas - flowing liquid respirometer because a mass 

balance for oxygen over the closed respiration chamber (Eq. 6) avoids the need to estimate KLa values. In 

addition, a second mass balance for oxygen can be made over the aeration vessel as a second source of rO 

data on condition that the KLa value can be estimated (Eq. 7).  

2,O2,O1,O
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dt
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Vanrolleghem and Spanjers (1998) proposed different implementations of the hybrid respirometer principle 

by changing the position of the dissolved oxygen probes in the set-up (Fig. 3). An obvious disadvantage of 

the hybrid respirometer is that it involves two dissolved oxygen probes with the risk that the measured SO 

outputs drift away from each other. However, each of the proposed configurations had different 

possibilities for fault detection and respirometer calibration aiming at reducing errors due to pump flow rate 

and/or dissolved oxygen probe drift. The “ultimate” hybrid respirometer has the two dissolved oxygen 

probes in the tubes transporting sludge from aeration vessel to respiration chamber and vice versa (Fig. 3). 
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Figure 3. Scheme of the operation of two different hybrid respirometer principles (Vanrolleghem and 

Spanjers, 1998). Full line = respirometer configuration with dissolved oxygen electrodes in aeration vessel 

and respiration chamber; dotted line = “ultimate” hybrid respirometer configuration with dissolved oxygen 

electrodes in the lines between the vessels 

The practical development of the hybrid respirometer resulted however in the configuration shown in Fig. 3 

where the dissolved oxygen electrodes are placed in the aeration vessel and the respiration chamber. This 

development will be discussed further below. The hybrid respirometric principle with a dissolved oxygen 

probe in the aeration vessel and a dissolved oxygen probe in a closed respiration chamber has already 
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been described by Clarke et al. (1978), Hissett et al. (1982) and Sollfrank and Gujer (1990). Both 

Clarke et al. (1978) and Hissett et al. (1982) applied a rather simple data interpretation based only on the 

difference between the two measured SO concentrations. Sollfrank and Gujer (1990) connected a 

respiration chamber to the aeration basin of an activated sludge pilot plant. They used the system to 

measure rO of the biomass and the oxygen transfer coefficient in the aeration basin. However, in none of 

these cases has a model-based interpretation of the data been carried out. 

Table 1. Comparison of advantages and disadvantages of different respirometric principles 

1.2. Titrimetry 

Besides respirometry, titration experiments can also yield information about biological nitrogen removal 

processes in activated sludge (Ramadori et al., 1980; Bogaert et al., 1997; Gernaey et al., 1997a). 

Indeed, the pH value of a biological system responds to microbial reactions and the evolution of the pH of 

a system often provides a good indication of some of the ongoing biological reactions. For activated sludge 

wastewater treatment plants the processes that mostly influence the pH of the liquid phase are: 1) 

Nitrification which causes a pH decrease due to proton production (Ramadori et al., 1980; Gernaey et al., 

1997a), 2) Denitrification which causes a pH increase due to proton consumption (Bogaert et al., 1997), 

3) Degradation of organic matter which affects pH due to a) the uptake of the carbon source through the 

cell wall of the bacteria, b) the release of CO2 resulting from respiration processes in the liquid phase, c) 

the uptake of ammonium for growth (San and Stephanopoulos, 1984; Iversen et al., 1994; Siano, 1995 

among others), 4) Stripping of CO2 due to aeration. 

The pH effects observed in a liquid medium can be related to the biological process rates and kinetics. 

However, one difficulty encountered with the observation of pH changes is the variable buffer capacity of 

the liquid medium due to the presence of several acid-base buffer systems with pH depending buffer 

capacity (Stumm and Morgan, 1981). The pH variation of the liquid medium during biological reactions is 

thus difficult to convert into a precise number of protons that is released or consumed. The problems 

Respirometer type Advantages Disadvantages 

Static gas – static liquid - Easy to operate - Danger for oxygen limitation 

- Low rO measurement frequency 

Flowing gas – static 
liquid 

- High rO measurement frequency - KLa estimation needed 

Static gas – flowing 
liquid 

- No KLa needed - Low rO measurement frequency 

Hybrid respirometer - No KLa needed 

- High rO measurement frequency 

- Two dissolved oxygen probes 
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caused by the pH depending buffer capacity of the liquid medium can be avoided by controlling the pH of a 

liquid medium at a constant pH setpoint through addition of acid and/or base. In that case, monitoring the 

acid and/or base consumption rate, needed to keep the pH constant, provides the rate of proton formation 

or consumption due to biological reactions.  

Model-based analysis of titration data can be used to estimate parameters of the reactions. This approach 

has been used in fermentation (Iversen et al., 1994), and specifically for wastewater treatment, a model-

based analysis of titration data has already successfully been applied to the nitrification process (Gernaey et 

al., 1998). 

The main goal of this paper is to demonstrate and validate the methodology of combined respirometric and 

titrimetric experiments. The validation is performed with additions of simple substrates, as acetate and urea 

as ammonium source, to an activated sludge sample. Both a basic spread-sheet calculation and a model-

based data interpretation will be applied for the interpretation of the data. Kinetic parameters will be 

estimated both on separate and combined data sets to investigate the parameter accuracy. First however, 

the practical implementation of the “ultimate” hybrid respirometer principle as proposed by Vanrolleghem 

and Spanjers (1998) will be described, and the problems of its implementation highlighted. The more 

practical implementation, used in the study, is subsequently described. 

2. Respirometer development 

Initially it was attempted to realise the “ultimate” respirometer described by Vanrolleghem and Spanjers 

(1998) where the two dissolved oxygen electrodes are located in the inlet and outlet of the respiration 

chamber (Fig. 3). This configuration has the important advantage that errors between different experiments 

and within one experiment can be minimised easily instead of relying on pre- and post-calibrations. By 

switching the flow direction and changing the flow rate at the same time the quality of pump and electrode 

calibrations (e.g. electrode response time and drifts) can be checked while the experiment is running. 

However, some basic problems related to the change of flow rate and flow direction were experienced, 

and as a consequence it was finally chosen to apply a simpler configuration. These problems are illustrated 

below to support future attempts of building the “ultimate” respirometer. 

2.1. Problems related to flow rate change in the “ultimate” 
respirometer 

It became clear from tests with tap water that the flow rate was affecting the readings of the dissolved 

oxygen electrode (see Fig. 4). With the available peristaltic pump (flow rate adjustable from 0 to 0.550 

l/min) a liquid flow rate of about 2–10 cm/sec could be obtained over the membrane surface of the 

dissolved oxygen electrodes. As can be seen in Fig. 4, the flow rate change had a clear effect on the SO 
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readings, with an increase of SO concentration as the flow increased. An increase in flow rate can normally 

result in higher SO readings because the liquid film at the surface of the electrode is renewed more 

frequently. Indeed, for some electrodes stable SO readings are only possible when the liquid flow rate over 

the electrode membrane is higher than 15 cm/sec (Willems and Ottoy, 1998) or even 30 – 40 cm/sec 

(Bogaerts, 1998). It should be stressed that these tests were carried out with electrodes with a rather large 

membrane surface (about 0.8 cm2) and with a cathode surface of about 0.2 cm2. A simple calculation 

shows that a 20 times larger respiration chamber would be needed (a volume of 10 liters instead of 0.5 

liters) in order to keep: (1) a safe liquid flow rate of minimum 40 cm/sec over the electrode surface to avoid 

a dependency between liquid flow rate and SO readings, (2) the flexibility to increase the liquid flow rate 

with a factor 5, and (3) a similar residence time in the respiration chamber. An alternative could be to 

reduce the diameter of the gap below the electrode where the liquid is passing by (in the set-up the tube 

diameter is about 0.5 cm) which however would increase the risk for clogging. 
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Figure 4. Influence of liquid flow rate variations on dissolved oxygen probe readings  

Otherwise, the increase of measured SO concentrations with increasing flow rates (Fig. 4) could be 

explained by a pressure increase in the set-up when liquid flow rates increase, thereby leading to higher 

measured SO values. Indeed, applying Daltons law and taking a flow rate of 0.046 l/min as a reference 

point, a pressure increase of about 40 mbar in the set-up could explain the increase of SO from 8.42 (flow 

rate = 0.046 l/min) to 8.77 mg/l (flow rate = 0.370 l/min). 

2.2. Problems related to flow direction change in the “ultimate” 
respirometer 

In other tap water experiments, where the flow rate was kept constant, it was observed that the SO 
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readings changed when the liquid flow direction was switched. The dissolved oxygen electrodes 

consistently measured a higher SO concentration in the inlet flow to the respiration chamber compared to 

the outlet flow (data not shown). A slightly higher liquid temperature in the respiration chamber (in 

comparison with the aeration vessel) could explain these observations. The temperature increase of the 

liquid in the respiration chamber (liquid residence time 1.5 – 6 min) can be due to heat produced by the 

stirrer of the respiration chamber. Although more important was probably the fact that only the aeration 

vessel was cooled.  

It is possible that the effects of flow rate changes illustrated in Fig. 4 could have been caused by 

temperature differences as well, due to different residence times in the respiration chamber. However, the 

SO data in Fig. 4 is obtained from the outlet of the aeration vessel. The temperature there, and therefore 

also the SO readings, is normally constant (confirmed by other data, not shown here) due to the cooling of 

the aeration vessel. This indicates that the observed effects in Fig. 4 are only caused by the change in flow 

rate, and not by temperature changes of the liquid in the aeration vessel. 

Another problem with the dissolved oxygen electrodes was a short instantaneous disturbance of the 

electrode readings upon flow direction changes before reaching a stable value. This disturbance could be 

explained by pressure differences on the membrane of the electrode caused by the change of flow 

direction. A pressure increase pushes more electrolyte away between membrane and electrode surface 

(Bogaerts, 1998). This decrease in the contact surface (the mV generating surface of the electrode) gives a 

decrease in the SO readings. 

2.3. Change of electrodes 

Because of the above mentioned problems related to flow rate and direction changes, it was decided to 

change to electrodes with a hard surface membrane and a smaller cathode surface, thereby leading to a 

lower dissolved oxygen consumption (see below in Materials and Methods section). 

2.4. Change of set-up and confirmation of temperature problem. 

The problems related to flow direction change, possibly caused by a temperature difference between the 

aeration vessel and respiration chamber, prevented that the “ultimate” respirometer concept was realised. 

E.g. the flexibility of checking for dissolved oxygen electrode drifts would not make much sense under such 

conditions. It was instead decided to build a simpler configuration with a dissolved oxygen electrode in 

each vessel, as already illustrated in Fig. 3. However, it should be noted that with this configuration the 

flexibility of changing the flow rate and direction is lost.  

In this set-up the calibration of the dissolved oxygen electrodes is done in two steps while aerated tap 

water is pumped through the set-up. First, the electrode in the aeration vessel is calibrated, and secondly 
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the electrode in the respiration vessel is calibrated to give identical readings as the electrode in the aeration 

vessel. In this way it is sought to compensate for the temperature difference between the two vessels (about 

0.6 °C) during the electrode calibration. 

A last check of the set-up concerned the adjustment of the stirrer speed in both vessels to a level that did 

not influence the electrode readings. It was indeed observed that a too low stirrer speed also influences the 

SO readings of the electrode in the respiration chamber. This can be explained again by a too low liquid 

exchange rate around the membrane surface (data not shown). 

With this new set-up the temperature hypothesis was indeed further confirmed by a tap water experiment, 

during which the flow rate was varied and the temperature of the liquid in the two vessels was recorded. 

Note that the flow rate can no longer influence the SO readings of the electrodes in this experiment as was 

described above, since the electrodes are now placed in the aeration vessel and respiration chamber 

respectively. The flow rate only influences the residence time in the respiration chamber. The measured SO 

concentrations of the tap water in the aeration vessel and respiration chamber should theoretically be 

identical regardless of the flow rate, and thereby the residence time, in the respiration chamber. This was 

however not the case, as illustrated in Fig. 5. The results of Fig. 5 should be interpreted as follows: Two 

reference experiments were carried out with a flow rate of 0.185 l/min. In these experiments the dissolved 

oxygen electrodes were calibrated to the same values, thus the difference in SO (∆SO,ref, with ∆SO = SO,1 - 

SO,2) is zero for this flow rate. The temperature difference (0.6 oC) in the reference experiments is noted as 

∆Tref but set to zero in Fig. 5. Two experiments were then carried out with half (0.0925 l/min) and double 

(0.370 l/min) flow rate compared to the reference experiment. The ∆SO and ∆T of these experiments were 

compared to the reference experiment as illustrated in Fig. 5. It was observed that both (∆SO,ref -∆SO) and 

(∆Tref -∆T) increased with decreasing flow rate but on the contrary decreased when the flow rate was 

increased. It was indeed observed that it were primarily temperature changes in the respiration chamber 

that caused the changes of (∆Tref -∆T). Summarising, at a decreased flow rate, i.e. increase of residence 

time, the temperature of the respiration chamber increased with a decrease of SO,2 as a consequence, in 

accordance to the theoretical relation between temperature and dissolved oxygen concentration. The 

opposite was observed for a flow rate increase. This was verified by calculations of SO at flow 0.0925 and 

0.370 l/min considering the change of temperature. The errors between these predicted SO values and the 

measure ones were below 1%. 

The temperature problem could probably be solved by cooling the whole set-up. However this was 

technically difficult to realise. Based on the experience gained during the practical development of the 

hybrid respirometer principle it can be concluded that to realise the “ultimate” respirometer of 

Vanrolleghem and Spanjers (1998) care has to be taken to: a) the quality of the dissolved oxygen electrode 

(especially the sensitivity to low flow velocity and pressure changes), b) a sufficiently high pump flow rate 

(to avoid influence of pump flow rate on measured SO values), c) the stirrer speed, d) accurate and 
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constant temperature of the whole system, to achieve accurate and reliable SO measurements. It is 

important to stress that these rather basic factors are not only important for the hybrid respirometer, but 

should be of general concern and checked for all types of respirometers. In simpler respirometer 

configurations, which at first sight may seem more robust, problems with the above mentioned elements 

may remain unnoticed and result in erroneous rO data. 
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Figure 5. Temperature difference between the liquid in the respiration vessel and the aeration chamber, 

and calculated endogenous respiration rate as a function of liquid flow rate (� = ∆Tref - ∆T; u = ∆SO,ref - 

∆SO) 

3. Materials and Methods 

3.1. Set-up 

A schematic overview of the different components of the set-up is shown in Fig. 6. The set-up consists of 

an aeration vessel (V = 2 l) and a respiration chamber (V = 0,5 l). The respiration chamber is completely 

closed and does not contain air. Magnetic stirrers with adjustable speed mix the contents of both vessels. A 

peristaltic pump with adjustable speed (pump 1 in Fig. 6) is used to continuously pump the activated sludge 

around in the set-up. A cooling system (Lauda WK1400) is used to control the temperature in the aeration 

vessel. The aeration vessel as well as the respiration chamber is equipped with a dissolved oxygen 

electrode (Ingold/Mettler Toledo, Inpro 6400). The dissolved oxygen probes are connected to a 

transmitter (Knick 73 O2 for the aeration vessel and Knick Stratos 2401 Oxy for the respiration chamber). 

The 4-20 mA signals from the transmitters are logged by a PC equipped with the Labview software 

package (National Instruments) and a combined A/D I/O card (National Instruments, AT-MIO-16XE-
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50). 

The pH controller is installed in the aeration vessel. The pH in the aeration vessel is measured with a 

Mettler Toledo HA 405-DXK-S8/120 Xerolyte pH electrode connected to a Knick 73 pH transmitter. 

The 4-20 mA signal is logged with the same Labview software. pH control was also implemented in 

Labview. The pH was controlled within a narrow pH setpoint ± ∆pH region, as described by Gernaey et 

al. (1997a). Only the base dosage system is shown in Fig. 6 to avoid the scheme to be overloaded. The 

pH setpoint was typically chosen between 7.5 and 8.3, and a ∆pH value of 0.03 pH units was used. When 

the pH was out of the pH setpoint ± ∆pH region, dosage of acid (0.05 N) or base (0.05 N) was done by 

opening an electromagnetic pinch valve for a short period (typically 1.5 s = 1 pulse). Acid and base 

solutions were continuously pumped around by a peristaltic pump (pump 2 in Fig. 6) to keep a constant 

liquid pressure in the tubes and thus a constant dosage rate. When the valves are closed the acid and base 

flows are recycled to the storage vessels. Opening a valve diverts the acid or base flow to the aeration 

vessel. Calibration of the dosage system was done by collecting the volume of acid or base dosed during 

50 subsequent pulses (average dosage = 3.32 ± 0.013 ml/50 pulses for 19 calibrations). The cumulative 

amount of acid and base dosed during an experiment was logged with the Labview software package. 
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Figure 6. Overview of the components of the combined respirometric - titrimetric set-up that was used to 

collect experimental data 
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3.2. Experimental work 

Activated sludge was sampled at the combined municipal-industrial wastewater treatment plant of Zele 

(operated by Aquafin NV, Aartselaar, Belgium) and transported to the lab. At the start of an experiment 

the set-up was filled with 2.5 liters of activated sludge. The activated sludge was aerated until the 

endogenous respiration phase was reached. During the experiments small substrate pulses (e.g. 10 ml) of 

acetate (10 g COD/l), ammonium (1 g N/l) and urea (1 g N/l) stock solutions were dosed to the activated 

sludge. 

4. Basic and model-based data interpretation 

Data derived from each experiment were interpreted using both a spreadsheet program (Excell) and a 

model-based data interpretation method. The modelling work was done with the WEST™ software tool 

(Hemmis NV, Kortrijk, Belgium). 

4.1. Basic data interpretation 

The dissolved oxygen and titration data were processed using a spreadsheet program. The rO,2 values were 

calculated by making a mass balance over the respiration vessel using the available SO data of the aeration 

vessel (SO,1) and the respiration chamber (SO,2), as described in Eq. 6. The SO measurements were 

corrected for the electrode response time, according to Spanjers and Olsson (1992), and dSO,2/dt was 

simply calculated with a moving window regression (over three data points). The BODst for each substrate 

addition was obtained as the area under the rO,2 curve. The value of rO,end was subtracted from rO,2 in this 

last calculation step. The titration data was interpreted by extrapolating the different slopes of the titration 

curves to obtain the amounts of base or acid needed to compensate the production or consumption during 

substrate degradation, as described by Gernaey et al. (1997a). A more detailed explanation on this 

method can also be found in chapter 2. Note that the titrimetric data are collected for the total volume of 

the set-up (values in meq) and converted to the unit meq/l via division by the total reactor volume. 

4.2. Model-based data interpretation 

Respirometric data (the rO,2 values that were calculated in the basic data interpretation step) were modelled 

by applying the model structure that is summarised in Table 2. The model in Table 2 is based on ASM1 

(Henze et al., 1987), with some modifications: 

• Nitrification was modelled as a two-step process. In the first nitrification step ammonium (SNH) is 

oxidised to nitrite (SNO2), which is subsequently oxidised to nitrate (SNO3) in the second nitrification 

step. 

• Incorporation of SNH into new biomass was neglected for the second nitrification step. It has been 
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estimated that the error introduced by this assumption is less than 0.5%. 

• Biomass decay was included in the model as endogenous respiration, and was assumed to be 

constant during the short duration of each experiment. 

• The active biomass was lumped into one fraction X, instead of subdividing it into a separate 

fraction of nitrifiers (XBA = fBA· X) and heterotrophs (XBH = fBH· X) as proposed by Henze et al. 

(1987). The main reason for this is that biomass fractionation is difficult to perform for activated 

sludge, and on the other hand the main interest is usually focused on the maximum substrate 

removal rate of the total sludge (e.g. X· µmaxH/YH for the heterotrophs).  

• In this study, a detailed model for the titrimetric data is only applied for the nitrification process (see 

Table 2). In the model protons (Hp) replace the ASM1 SALK component, which means that the 

signs of the stoichiometric factors in the Hp column are the opposite of the signs that appear in the 

SALK column in the ASM1 matrix (Henze et al., 1987). In the model SNH oxidation and uptake of 

SNH for biomass growth during nitrification will produce Hp. A constant background Hp production 

is included in the titrimetric model to take CO2 stripping into account, as was introduced by 

Gernaey et al. (1998). The effect of CO2 stripping is assumed to be constant during the short 

duration of each experiment (Gernaey et al., 1998). For heterotrophic growth, the standard 

ASM1 conversion term is included in the Hp column of Table 2 (uptake of SNH to be incorporated 

into new biomass produces Hp). However, as stated above heterotrophic substrate (here acetate) 

degradation is not modelled in this study. For more details on this topic the reader is referred to 

Gernaey et al. 2000a and 2000b. 

• In the model, the oxygen mass balances for the aeration vessel and the respiration chamber were 

described by Eq. 6 and 7. Furthermore, the model includes terms to describe (i) the first order 

dissolved oxygen probe dynamics (Spanjers and Olsson, 1992) and (ii) the biological start-up 

phenomena, that are typically observed in batch experiments, before the oxygen uptake rate has 

reached its maximum value. This start-up phase, which typically lasts 0.5 – 2 min, was assumed to 

be the time needed by a cell to take up fresh substrate and oxidise it and can be described with a 

simple first order equation (Vanrolleghem et al., 1998). Whether rO,1 and rO,2 are identical will 

depend on the experimental design. This will be illustrated and explained below for a better 

understanding of the experimental results and their interpretation.  

Besides substrate degradation and endogenous respiration (Table 2), substrate transport was included in 

the model, similar to the mass balances for oxygen (Eq. 6 and 7). As an example the mass balance over the 

respiration chamber for the biodegradable substrate is given in Eq. 8. 
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   (8)  

In this paper the model-based interpretation is applied in three steps: 

1. Model-based evaluation of the behaviour of the respirometer 

2. Model-based interpretation and evaluation of the experimental data to validate the respirometric 

method. 

3. Model based interpretation of the combined respirometric-titrimetric data including the calculation 

of confidence intervals. 
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5. Results 

5.1. Model-based evaluation of the behaviour of the respirometer 

At the start of an experiment substrate is added in the aeration vessel, and not to the respiration chamber as 

stated above. Hence, the substrate concentration in the respiration chamber must build up from zero 

through substrate supply from the aerated vessel via the liquid flow. Obviously, the oxygen uptake rate in 

the two vessels (rO,1 and rO,2 respectively) is only equal when the substrate concentration is identical in both 

vessels. 
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Figure 7. Results of simulations with the respirometer model for an addition of readily biodegradable 

substrate to the aeration vessel at time zero. SS,1 at time zero is 39.6 mg COD/l, KS = 0.5 mg COD/l, 

(µmaxH· X) = 1.084 g/l.min. A: rO,1 and rO,2 as a function of time for a liquid flow rate of 0.185 l/min; B: 

SS,1 and SS,2 as a function of time for a liquid flow rate of 0.185 l/min; C: rO,1 and rO,2 as a function of time 

for a liquid flow rate of 0.046 l/min; D: SS,1 and SS,2 as a function of time for a liquid flow rate of 0.046 

l/min 

Fig. 7 and 8 show simulation results for an addition of biodegradable substrate to the aeration vessel at time 

zero. In Fig. 7 the results are given for two simulations obtained with different liquid flow rates (0.185 l/min 

and 0.046 l/min). In the high flow rate experiment the initial substrate concentration in the respiration vessel 

(SS,2) is zero, and it takes a little while before the substrate is properly mixed and the concentrations in the 
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two vessels become identical (see Fig. 7B). Thus, initially rO,1 and rO,2 are not identical. However, as can 

be observed in Fig. 7A this difference is negligible at a flow rate of 0.185 l/min. In contrast, a flow rate of 

0.046 l/min results in a situation where the substrate concentration never reaches the same value in the two 

vessels (Fig. 7D). As a consequence the values of rO,1 and rO,2 remain different during the whole experiment 

(Fig 7C). 

Whether rO,1 is equal to rO,2 will also depend on the value of the half saturation concentration KS for the 

particular substrate under study. In the simulations given in Fig. 7A and 7B the KS value was set low to 0.5 

mg COD/l, and as noticed above rO,1 and rO,2 were similar. However, a higher KS value of 10 mg COD/l 

(Fig. 8A and B) resulted in an initial difference between rO,1 and rO,2 even at the high flow rate. A flow rate 

higher than 0.185 l/min would result in a smaller initial difference between rO,1 and rO,2 whereas a lower 

flow rate would increase the difference again. 

A

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40
Time (min)

r O
 (m

g/
l.m

in
)

rO,1

rO,2

Flow rate = 0.185 l/min 

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40
Time (min)

SS,1

SS,2

 
Figure 8. Results of simulations with the respirometer model for an addition of readily biodegradable 

substrate to the aeration vessel at time zero. SS,1 at time zero is 39.6 mg COD/l, KS = 10.0 mg COD/l, 

(µmaxH· X) = 1.084 g/l.min. A: rO,1 and rO,2 as a function of time for a liquid flow rate of 0.185 l/min; B: 

SS,1 and SS,2 as a function of time for a liquid flow rate of 0.185 l/min 

It is important to remember that rO values calculated with the basic method are based on the SO mass 

balance over the respiration vessel only (Eq. 6). The calculation thus yields rO,2 values. This means that the 
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BODst calculated based on the area under this rO,2 profile may underestimate the real value depending on 

the experimental conditions and the biodegradation kinetics (e.g. KS), as shown with the simulation 

examples. Besides an underestimation of BODst there may also be a risk to underestimate µmaxH (see Fig 

7C), and to overestimate KS values (Fig 7C, tail of rO,2 profile). 

It should be noticed that the initial phase in the rO,1 profile, before rO,1 has reached a maximum, can only be 

due to biological start-up phenomena (Vanrolleghem et al.,1998). The initial phase of the rO,2 profile, on 

the contrary, is due to a combination of biological start-up and substrate mixing phenomena, as described 

above. Thus, for a complete and accurate analysis of the respirometric data derived from the hybrid 

respirometer a model-based data interpretation, as will be illustrated below, may be needed. 

5.2. Basic interpretation of experimental data 
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Figure 9. Response of the combined respirometric - titrimetric sensor following a 100 mg COD acetate 

addition to the aeration vessel at t = 0. A: SO and titrimetric data; B: rO,2 values calculated based on the SO 

data using a mass balance for SO over the respiration vessel. The smooth line represents the model fit to the 

rO,2 data 

A typical raw data set recorded from an acetate dosage is shown in Fig. 9A. At time zero 100 mg acetate 
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COD was added in the aeration vessel of the respirometer. The corresponding rO,2 profile in Fig. 9B is 

rather typical, with a steep decrease from maximum rO to endogenous rO,end as soon as the substrate is 

completely degraded (Vanrolleghem et al., 1995). The pH controller also shows a clear response (Fig. 

9A). During acetate degradation dosage of acid is needed to keep the pH of the mixed liquor at the pH 

setpoint (8.25 in this case). This is clearly related to the acetate degradation since acid dosage and rO,2 

drop at the same moment (t = 22 min). From t = 22 min on acid dosage fell back to the background 

dosage rate that was also observed before acetate addition. The background acid dosage rate is due to 

CO2 stripping and is assumed to be constant during the experiment (Gernaey et al., 1997a, 1998). 
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Figure 10. BODst (calculated based on the area under the rO,2 profiles) and total amount of acid dosed 

during degradation as a function of the initial amount of acetate added 

A linear relationship between the amount of substrate added and BODst is usually observed (Spanjers, 

1993). The slope of this curve represents the oxygen demand per unit of COD or N, and allows the 

calculation of the biomass yield (via BODst = (1 – YH)· COD or BODst = (4.57 – YA)· SNH). The BODst 

values were calculated as the area under the rO,2 curve. A linear increase of BODst was indeed observed 

when increasing amounts of acetate were added to the respirometer (Fig. 10). The maximum average yield 

for this data series is 0.74 with a standard deviation of 0.016. This yield is slightly higher but still 

comparable to the range of YH values (0.24 - 0.72) mentioned in literature for aerobic acetate degradation 

(Brands et al., 1996; Liebeskind et al., 1996; Xu and Hasselblad; 1996; Dircks et al., 1999). 

Furthermore, a linear increase of the amount of acid (in meq) added during the degradation was observed 

as a function of the initial amount of acetate added (Fig. 10). 

A data set collected from an addition of 11 mg urea NH4-N in the aeration vessel of the respirometer is 

shown in Fig. 11A, and the corresponding rO,2 profile is given in Fig. 11B. The rO,2 profile has a tail 
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indicating that the second nitrification step (oxidation of SNO2 to SNO3) is slower compared to the first step. 

To verify the respirometric method the linearity between calculated BODst values and NH4-N 

concentrations added is illustrated in Fig. 12. The slope (4.57-YA) of this curve is typically expected to be 

4.33 g O2/g NH4-N for nitrification (Henze et al., 1987). The slope of the curve in Fig. 12 is 4.44 ± 0.16 g 

O2/g NH4-N (95% confidence interval) which is slightly higher (2.5%) than expected, but acceptable 

considering that 4.33 lays within the confidence boundaries.  
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Figure 11. Response of the combined respirometric - titrimetric sensor following an 11 mg N urea addition 

to the aeration vessel at t = 0. A: SO and titrimetric data; B: rO,2 values calculated based on the SO data 

using a mass balance for SO over the respiration vessel. The smooth line represents the model fit to the rO,2 

data 

During nitrification dosage of base is needed to compensate for the proton production in the first 

nitrification step, as already observed in earlier literature (Ramadori et al., 1980). For a series of NH4-N 

additions to activated sludge, an average recovery of 1.01 with a standard deviation of 0.05 has been 

obtained from titration data. Calculations were done assuming a production of 2 protons per NH4-N 
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oxidised, according to the method described by Gernaey et al. (1997a). This confirms that the 

stoichiometric conversion factor of 2 protons per mg NH4-N, in accordance with earlier observations 

(Massone et al., 1995; Gernaey et al., 1997a). 
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Figure 12. BODst (calculated based on the area under the rO,2 profiles) as a function of the initial urea 

concentration in the respirometer (expressed as mg N/l) 

5.3. Model-based interpretation and evaluation of experimental data. 

Examples of the model fit on rO,2 data obtained for an acetate and an urea addition are given in Fig. 9B and 

11B together with the respective rO,2 data. To illustrate the two-step nitrification model further, the 

estimated evolution of the SNH concentration in both reactors and the build up of SNO2 are shown in Fig. 13. 

The theoretically identifiable parameter combinations of a respirometric model describing the degradation 

of a single carbon substrate with Monod kinetics have been shown to be (1-YH)/YH· µmaxH· XBH, (1-

YH)· KS and (1-YH)· SS(0), assuming that only rO,ex data are available, (Dochain et al., 1995), see Table 

3. For the two-step nitrification model assuming no growth, identifiable parameter combinations are 

discussed in detail in chapter 4. Values for the identifiable parameter combinations are shown in Table 4. 

The values of the parameter combinations estimated on acetate and urea rO,2 profiles are given in Table 3 

and 4. In both cases the reproducibility of the estimates is good. Observed coefficient of variation (C.V.) 

values are low for µmax related parameter combinations. In the literature C.V. values of 15.0 % (Kong et 

al., 1996) and 10.3 % (Gernaey et al., 1998) are mentioned from a similar estimation procedure with 

respirometric and titrimetric data respectively. The C.V. values calculated for the KS related parameter 

combinations are higher compared to C.V. values of µmax related parameter combinations. This has been 

observed before in estimation of kinetic parameters based on respirometric data (Kong et al., 1996), 

titrimetric data (Gernaey et al., 1998) or substrate concentration data measured during a substrate 
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depletion experiment (Robinson and Tiedje, 1982; Simkins and Alexander, 1985). The reason for the 

generally higher C.V. values for the KS related parameter combinations compared to the µmax related 

parameter combinations is probably that the confidence intervals on the estimated KS values is larger than 

the confidence intervals on µmax (see chapter 5). Note also that the C.V. for the parameters of the second 

nitrification step is higher than for the first nitrification step. This is related to the lower amount of available 

data points related to the second step (i.e. the tail in the rO profile) and thereby a poorer practical 

parameter identifiability. 
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Figure 13. Results of a simulation with the respirometer model for an addition of urea to the aeration vessel 

at time zero. SNH,1 at time zero is 5.30 mg N/l, KSA1 = 0.43 mg N/l, (µmaxA1· X) = 0.318 mg/l.min, KSA2 = 

0.62 mg N/l, (µmaxA2· X) = 0.090 mg/l.min, liquid flow rate = 0.18 l/min. A: Evolution of rO,1 and rO,2 as a 

function of time; B: Evolution of SNH,1 , SNH,2 , SNO2,1 and SNO2,2 as a function of time 

It is also important to compare the calculated BODst (basic interpretation of rO,2 values) with estimated 

BODst values. Estimated BODst is defined as )0(S)Y1( 1,SH ⋅−  for acetate and as 

( ) )0(S)Y14.1()Y43.3( 1,NH2A1A ⋅−+−  for nitrification. Note that the estimated substrate concentration is 

the initial substrate concentration in the aeration vessel at time zero and that the estimated BODst values 

therefore have to be multiplied with V1/(V1+V2) to enable a comparision with the calculated BODst. When 

the calculated BODst values were regressed against the estimated BODst the slopes were close to 1, both 

in the case of urea and acetate and, furthermore, the correlation coefficients were close to 1 (0.99). This 

indicates that the experimental conditions applied in the experiments described in this study were such that 

the BODst values calculated as the area under the rO,2 profile, obtained from a mass balance over the 

respiration vessel only, were sufficiently accurate.  
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5.4. Model-based interpretation of combined respirometric-titrimetric 
data 

The two-step nitrification model was applied to describe and estimate parameters for an experiment with 

addition of ammonium. Parameters were estimated on rO,2 and Hp data separately as well as on the 

combined rO,2 and Hp data set. The data and model fit resulting from parameter estimation on the 

combined data set are illustrated in Fig. 14. The resulting values of the parameters µmaxA1 and KSA1 

together with their 95% confidence interval are given in Table 5. The derivation of the confidence interval is 

discussed in detail in chapter 5, and was also applied by Weijers (1999). However, details on the 

confidence calculations are beyond the scope of this chapter but are described and discussed in chapter 4 

where this example is further developed. From Table 5 it becomes clear that the confidence intervals on 

µmaxA1 and KSA1 are slightly improved when based on Hp data compared to parameter estimation based on 

rO,2 data. More importantly, it appears that the confidence intervals improve significantly when rO,2 and Hp 

data are combined for parameter estimations. The confidence on µmaxA1 and KSA1 improves 46% and 37% 

respectively compared to estimation on only rO,2, and compared to estimation on Hp the confidence 

improvements are 24% and 35% on µmaxA1 and KSA1 respectively. 
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Figure 14. Model fit to rO,2 and base addition data collected in an experiment with addition of 7.5 mg 

NH4-N to the respiration vessel at t = 0. Parameter combinations were estimated on the combined 

respirometric-titrimetric data. 
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Table 5. Results of parameter estimations on rO,2 and Hp data separately and on combined data for an 

addition of NH4-N to activated sludge. R.S.D. = relative standard deviation 

Estimated parameter → 

Data source ↓ 

 µmaxA1 

min-1 

KSA1 

mg NH4-N/l 

rO,2 data 3.27E-06 0.299 

Hp data 3.11E-06 0.253 

rO,2 + Hp data 3.26E-06 0.295 

95 % confidence intervals 
(R.S.D., %) 

µmaxA1  KSA1 

rO,2 data 1.19 5.88 

Hp data 0.84 5.66 

rO,2 + Hp data 0.64 3.70 

 

6. Discussion 

In the results section an experimental set-up with combined respirometric and titrimetric measurements was 

validated with simple substrates (acetate, and urea as N source). For practical implementations the 

advantages of the proposed respirometer are the high rO measuring frequency, and the possibility to 

calculate rO,2 based on a simple oxygen mass balance over the respiration chamber without the need for an 

estimated KLa value. However, in case the KLa in the aeration vessel is known, a second information 

source, rO,1, is available based on a mass balance for oxygen over the aeration vessel. It is investigated 

further in chapter 4 how this second data source can contribute with respect to parameter identifiability. 

The obvious disadvantage of the proposed respirometer is that it involves two dissolved oxygen electrodes 

with the risk that the measured SO outputs drift away from each other. With the respirometric approach that 

was applied in this study, it is important to calibrate and frequently compare the response of the two 

dissolved oxygen electrodes. It is clear that the reliability of the respirometer output mainly depends on the 

quality of the dissolved oxygen electrodes used in the set-up. In the “ultimate” hybrid respirometer concept 

proposed by Vanrolleghem and Spanjers (1998) checks of the dissolved oxygen electrode responses and 

re-calibrations could be carried out automatically during an experiment by changing the liquid flow rate and 

its direction. However, the realisation of this respirometer could not be achieved due to practical problems, 

as described above in the section about the development of the hybrid respirometer. 

A second disadvantage of the set-up is that a model-based data interpretation may be needed for a 
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completely correct data interpretation. The necessity for a model-based data interpretation depends on the 

liquid flow rate applied in the set-up and the KS of the biodegradation process, as was shown with 

simulation examples (Fig. 7 and 8). However, in case one is only interested in values of BODst a sufficiently 

high flow rate can be applied, and in this way a model-based analysis can be avoided. 

The respirometric data benefit from the implementation of the titration method in the hybrid respirometer. It 

automatically leads to pH control, and consequently, the possible effect of pH changes (e.g. due to proton 

consumption or production during biological reactions) on rO data can be excluded. However, the most 

important advantage of a combination of respirometric and titrimetric measurements is that two independent 

measurements are obtained simultaneously for the same process. This results in higher information content, 

and therefore, more accurate determination of wastewater composition and biodegradation kinetics. It was 

indeed illustrated in this study that the confidence intervals on the estimated parameters improve significantly 

when combined respirometric and titrimetric data are applied (Table 5). It has also been shown that YA 

became theoretically identifiable by combining the information available from the separate data sets without 

exact knowledge of the initial substrate concentration (Devisscher, 1997). Mathematical and experimental 

verification of the improved parameter identifiability with combined respirometric-titrimetric data sets will 

be investigated in more detail in chapter 4 and 5. 

A linear increase of the amount of acid (in meq) added during the acetate degradation was observed as a 

function of the initial amount of acetate added (Fig. 10). Initially it was believed that this could be explained 

fully by the proton consumption during acetate uptake (Cramer and Knaff, 1991). However, the amount of 

acid added was lower than one meq per mmol of acetate, which is the expected amount assuming that one 

proton is consumed for each mmol of acetate taken up by the cells. Obviously, factors other than substrate 

uptake affect the proton balance in the mixed liquor. Production of protons due to CO2 formation and 

uptake of NH3 by the cells are processes that will also influence the proton balance (Iversen et al., 1994). 

The contribution of these processes needs to be investigated in more detail. It should be clear that the 

ASM1 approach, taking only into account that Hp is produced (or SALK is consumed) during acetate 

degradation due to incorporation of SNH into new biomass, cannot be used to model the titrimetric data that 

were obtained for acetate. The best illustration is that ASM1 would predict production of Hp during 

carbon source degradation, while experimental data show Hp consumption since acid needed to be added 

to keep the pH of the activated sludge constant during acetate degradation (Fig. 9A). The available titration 

data for acetate were modelled, and acetate degradation kinetics was extracted via a parameter estimation 

procedure (Gernaey et al., 2000a, 2000b). In addition, a model-based interpretation of acetate titration 

profiles was combined with already existing models for interpretation of rO data. Similar to nitrification 

(Devisscher, 1997; see also chapter 4), the full information of a combined respirometric-titrimetric data set 

allows to extract the heterotrophic biomass yield YH immediately from the available data (provided iXB is 

assumed to be known), i.e. without knowing the initial substrate concentration. 
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Summarising, the combination of respirometric and titrimetric measurements certainly opens perspectives 

towards a more informative, reliable and accurate characterisation of wastewater and sludge kinetics. 

Future work will focus on applying the proposed methodology in the study of complex substrates and 

wastewaters. Yuan et al. (1999) presented an approach to combine information of titrimetric and 

respirometric experiments to determine the nitrifiable nitrogen content of wastewater. However, it can be 

foreseen that titrimetric data can be rather complex to interpret for a wastewater, and it may appear more 

difficult to generalise results obtained with titrimetry compared to respirometry. During wastewater 

degradation different processes, proton producing as well as proton consuming, may affect the pH, 

contrary to the case where only nitrification occurs. The latter allows a more straightforward interpretation 

(Massone et al., 1995; Gernaey et al., 1997a, 1998). 
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Figure 15. Example of combined respirometric-titrimetric data obtained after addition of acetate (30 mg 

COD/l) and ammonium (2 mg N/l) at t = 0. A: Respirometric data; B: Titrimetric data (Gernaey et al., 

1999) 
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Indeed, the results of this paper already illustrate that pH effects of nitrification and acetate uptake and 

degradation are opposite. When these two substrates are mixed the proton effects of the two processes 

may simply compensate for each other. An example of combined respirometric-titrimetric data collected 

after addition of a mixture of acetate and NH4-N to activated sludge is given in Fig. 15. It is clear from 

both the SO and rO,2 curves (Fig. 15A) that the substrate degradation phase can be divided in two parts. 

First, both acetate and NH4-N are oxidised simultaneously, and secondly only degradation of NH4-N 

continues. From the titration data (Fig. 15B) it can indeed be seen that the pH effects of both processes 

(acetate degradation and nitrification) almost compensate for each other, and only a slight amount of acid 

has to be added. However, as soon as acetate is degraded, base is added to compensate for the protons 

produced during the nitrification process. Thus, the titrimetric information obtained from this experiment will 

be more complex to interpret, especially since the information content of the titration profile is low during 

the phase of simultaneous acetate degradation and nitrification. Finally, there is a bend in the base curve at 

the nitrification endpoint.  

However, in general when one knows that acetate oxidation consumes protons, while ammonium oxidation 

produces them, titrimetric data can immediately serve to identify the different shoulders in rO profiles 

without knowing the initial composition of the added substrate. Such titrimetric data thus give information 

on the different processes, and combined with respirometry it becomes a powerful and very information 

rich method for characterisation of biological wastewater treatment processes.  

7. Conclusions 

A respirometric technique was applied that allows high frequency sampling of respiration rates by making 

an oxygen mass balance over a non-aerated flow-through respiration chamber without the need for KLa 

estimation. The respirometer was combined with a titrimetric technique and via validation experiments it 

was proven that the set-up produced reliable data sets.  

Simulations showed that a model-based data interpretation, which takes substrate transport in the 

respirometer into account, is necessary to exclude that operating conditions (e.g. flow rate) or degradation 

kinetics (e.g. high KS) interfere during interpretation of the respiration rate data. 

Consecutive acetate additions to activated sludge showed that titrimetric data can also yield information 

about carbon source degradation processes. 

Applying a combined respirometric-titrimetric measurement approach resulted in improved confidence 

intervals when the parameter values are obtained from the combined data set compared to estimations on 

the separate respirometric or titrimetric data sets.  
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Chapter 4 
 - 

Improved theoretical identifiability of Monod 
model parameters by combined respirometric – 

titrimetric measurements. A generalisation of 
results 

A revised version of this chapter has been submitted for publication as: 

Petersen B., Gernaey K., Devisscher M., Dochain D. and Vanrolleghem P.A. (2002) A simplified method 

to assess structurally identifiable parameters in Monod-based activated sludge models. Water Research 

(submitted). 

A condensed version of this chapter was presented as:  

Petersen B., Gernaey K. and Vanrolleghem P.A. (2000) Improved theoretical identifiability of model 

parameters by combined respirometric-titrimetric measurements. A generalisation of results. In: 

Proceedings IMACS 3rd Symposium on Mathematical Modelling, February 2-4, 2000, Vienna University 

of Technology, Austria. Vol.2, 639-642. 
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Chapter 4 
 
Improved theoretical identifiability of Monod 
model parameters by combined respirometric – 
titrimetric measurements. A generalisation of 
results 

Abstract – The first step in estimation of parameters of models applied for data interpretation should 

always be an investigation of the identifiability of the model parameters. In this study the theoretical 

identifiability of the model parameters of the two-step nitrification Monod model was studied. It was 

assumed that respirometric (dissolved oxygen or oxygen uptake rates) measurements from two types of 

respirometer and titrimetric (cumulative proton production) measurements were available. Two model 

structures including presence and absence of significant growth for description of long- and short-term 

experiments respectively were considered. The theoretical identifiability was studied via the Taylor series 

expansion and generating series methods. It was proven that the autotrophic yield becomes uniquely 

identifiable when combined respirometric and titrimetric data are considered. In one of the respirometric 

methods an input was considered, and it was illustrated that the generating series method resulted in simpler 

equations with respect to the parameters that were easier to solve for the identifiable (or combinations of) 

parameters. Most remarkable result of the study was however that the identifiability results could be 

generalised by applying a set of ASM1 matrix based generalisation rules. It appeared that the identifiable 

parameter combinations could be predicted directly based on knowledge of the process model under study 

(in ASM1-like matrix representation), the measured variables and the biodegradable substrate considered. 

This generalisation reduces the time-consuming task of deriving the theoretically identifiable model 

parameters significantly and helps the user to obtain these directly without the necessity to go too deeply 

into the mathematical background of theoretical identifiability. 

1. Introduction 

In the characterisation of wastewater degradation and many other biological degradation processes 

Monod-type growth kinetics, as described in the Activated Sludge Model No.1 (ASM1) (Henze et al., 

1987) are most often used to describe the observations. In this study the focus will be on the theoretical 



 

 136

identifiability of the parameters in Monod based models. 

A study of the theoretical identifiability of model parameters prior to practical model application, e.g. in the 

frame of parameter estimation or model calibration, is very important in order to obtain reliable parameter 

estimates. The key question of the theoretical and practical identifiability analysis can be formulated as 

follows (Dochain et al., 1995): ”Assume that a certain number of state variables are available for 

measurements; on the basis of the model structure (theoretical identifiability) or on the basis of the type and 

quality of available data (practical identifiability), can we expect to obtain unique values for the model 

parameters?”. It is important to notice the distinction between theoretical and practical identifiability in this 

statement. In the study of theoretical identifiability perfect noise-free data is assumed whereas in practice 

the data may be noise corrupted. As a result, parameters may be practically unidentifiable although they are 

theoretically identifiable (Holmberg, 1982; Jeppsson, 1996). 

For linear systems the theoretical identifiability is well understood and there are several methods available 

for testing the identifiability (see e.g. Bellman and Åström (1970), and for an overview of different methods 

Godfrey and DiStefano (1985)). On the contrary, the theoretical identifiability of non-linear models is more 

complex to assess, and only a few methods are currently available to test the identifiability. In the case of 

non-linear models the approach has more been to work out different necessary and/or sufficient conditions 

for local and/or global theoretical identifiability that may allow for some conclusions (Walter, 1982). The 

following list summarises the available methods for non-linear models, including both theoretical and 

application oriented references that have focused on Monod kinetic models. 

1. Transformation of the non-linear model into a linear model (Walter, 1982; Godfrey and DiStefano, 

1985; Ljung and Glad, 1994). Applications: Dochain et al., 1995; Bourrel et al., 1998; Sperandio and 

Paul, 2000. 

2. Series expansions: 

2.1. Taylor series expansion (Pohjanpalo, 1978; Walter, 1982; Godfrey and DiStefano, 1985; 

Chappell et al., 1990; Walter and Pronzato, 1995). Applications: Holmberg, 1982; Dochain et 

al. 1995; Jeppsson, 1996; Bourrel et al., 1998; Sperandio and Paul, 2000. 

2.2. Generating series (Walter, 1982; Walter and Lecourtier, 1982; Walter and Pronzato, 1995). No 

practical applications have been found. 

3. Similarity transformation approach or local state isomorphism (Vajda et al., 1989; Chappell et al., 

1990; Chappell and Godfrey, 1992; Walter and Pronzato, 1995). Applications: Julien, 1997; Julien et 

al., 1998. 

4. Study of the observability properties of non-linear system (Casti, 1985). Applications: Bourrel et al., 

1998. 
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In general, for both linear and non-linear models, it can be very difficult to predict which approach involves 

the least efforts for a particular example (Chappell et al., 1990). In this study the series expansion methods 

were chosen since these methods are relatively simple to apply. In the Taylor approach the series is 

generated with respect to the time domain whereas the series is generated with respect to the input domain 

in the generating series approach. In fact the generating series approach can be considered as an extension 

of the Taylor series expansion method for the case where a class of inputs is considered (Raksanyi et al., 

1985). Thus, it appears that in the specific case of a model with zero inputs, the generating series approach 

becomes equivalent to the Taylor series expansion (Walter, 1982; Vajda et al., 1989). The principles 

behind both series expansion methods will be briefly described below. 

As stressed by Dochain et al. (1995) the theoretical identifiability will only depend on the model structure 

and on which variables are measured. In the study of heterotrophic substrate degradation via the Monod 

model carried out by Holmberg (1982), measurements of both substrate and biomass were assumed to be 

available, and it was proven that all parameters were theoretically identifiable under such conditions. 

However, in a similar study assuming only biomass measurements it was not possible to identify all 

parameters theoretically (Chappell and Godfrey, 1992). In both studies (Holmberg, 1982; Chappell and 

Godfrey, 1992) it was assumed that growth took place. In the work by Dochain et al. (1995) growth was 

neglected in the heterotrophic substrate degradation model, and oxygen uptake rate data was considered 

as measurements. It appeared that in this situation only certain parameter combinations were theoretically 

identifiable. If, however, growth is assumed to take place the theoretical parameter identification improves 

because the identifiable parameter combinations obtained assuming no growth (Dochain et al., 1995) can 

be split up further (Sperandio and Paul, 2000). Bourrel et al. (1998) studied the theoretical identifiability of 

the Monod kinetics for the denitrification process in a biofilm model assuming steady state with respect to 

growth, and it was shown that depending on the measured state variables (nitrate, nitrite, carbon substrate) 

different parameter combinations were identifiable. In another study the identifiability of a reduced order 

model, to be used to control nitrification and denitrification by applying measurements of oxygen and 

nitrate, was investigated (Julien, 1997; Julien et al., 1998). Also in this study it appeared that some 

parameters were identifiable uniquely whereas others were only identifiable in combination with other 

parameters. 

The objective of this study is to analyse the theoretical identifiability of the two-step nitrification Monod 

kinetics using outputs from two types of respirometer (oxygen concentration data, SO, or oxygen uptake 

rate data, rO), output from a titrimetric method (cumulative proton production data, Hp) and combined 

respirometric and titrimetric data. The generating series and the Taylor expansion method were applied to 

investigate the theoretical identifiability. Two situations will be considered: first a model structure that 

excludes biomass growth, which simplifies the study significantly, and secondly a model structure where 

biomass growth is included in the model. These two model structures allow the description of short- and 
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long-term experiments respectively. Furthermore, the results of the identifiability study for the two-step 

nitrification model will be generalised based on an ASM1-like stoichiometric matrix. It will be proven with 

examples that the identifiable parameter combinations can be predicted by applying simple generalisation 

rules, based on only knowledge of the process under study, the measured variables and the substrate 

considered. 

The chapter is organised as follows: First the definition of theoretical identifiability is presented in section 

two together with the principles of the two methods that are applied in this study, Taylor expansion and 

generating series, are described in section two. The two-step nitrification process is presented in section 

three together with the model and the measurement principles of the two respirometers and the titrimetric 

technique (mainly repetition from chapter 3). The theoretical identifiability of the models considering 

different outputs is studied in a section four. This section is subdivided according to the different studies 

carried out: (1) Respirometric data (rO, applicable for both respirometers) or titrimetric data (Hp), 

considering both growth and no growth, (2) Combined rO and Hp data and, (3) Respirometric data from 

both respirometers (SO) and titrimetric data (Hp), considering both growth and no growth. The principle of 

the Taylor expansion method and the generating series approach are illustrated in detail for the first 

identifiability studies where growth is not included. For the remaining studies the principles are lined up but 

the equations are not written out fully due to the increasing complexity of the expressions. The power of the 

generating series approach over the Taylor series will be illustrated for the specific case of the second 

respirometer. Finally the results of the identifiability studies are generalised in section five, and the results of 

this generalisation are compared to literature results. 

2. Theory 

There is substantial literature on theoretical identifiability (e.g. Pohjanpalo, 1978; Walter, 1982; Godfrey 

and DiStefano, 1985), and different definitions have been given in the literature, however all being variants 

of the following considerations. Assuming that the general model )p(M  (Eq.1) is considered: 







=

==

)p),t(x(g)p,t(y

)p(0x)0(x     ),p,t),t(u),t(x(f)t(x
dt
d

:)p(M    (1)  

where x , u , y  and p  represent the state vector, the input vector, the output (measured variables) vector 

and the (unknown) parameter vector respectively. Two models, )p(M  and )p(M
∧

, are considered which 

have the same structure, e.g. the same parameterisation, same input u , which belongs to an admissible 

input class U, and identical outputs 
∧

≡ yy  for any input u . If it is furthermore considered that the vector p  

to be identified belongs to some admissible parametric space P, the definitions for identifiability can be 
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formulated as follows (Walter, 1982): 

Definition 1 

The parameter pi is theoretically locally identifiable for the input class U, if and only if for almost any 

value p  ∈ P there exists a neighbourhood )p(V  such that: 

ii pp
U u ,0t  ),t,p(y)t,p(y

P)p(Vp
=

∧
⇒








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∧∧

⊂∈
∧

   (2)  

This means that, if there exists another parameter vector 
∧
p  which belongs to a local sub-domain, i.e. a 

neighbourhood )p(V  of the admissible parametric space P, and if the outputs y  with both parameter 

vectors p  and 
∧
p  are equal for all time t and all inputs u , then (each component of) both parameter 

vectors are equal and thereby uniquely identifiable. On the contrary, if the parameter vectors are not equal 

for all inputs, then the system is not identifiable. E.g. if there exists at least one 
∧
p  ≠ p  such that the output 

of )p(M  can not be distinguished from the output of )p(M
∧

, this would question any further use of p .  

Definition 2 

The parameter pi is theoretically globally identifiable for the input class U, if and only if for almost any 

value p  ∈ P one has: 
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    (3)  

Definition 2 is very similar to the one above, except that the domain is now expanded to the whole 

parametric space P to access the global identifiability. 

Definition 3 

The model )p(M  is theoretically globally and/or locally identifiable if and only if all the parameters pi are 

globally and/or locally identifiable. 

2.1. Taylor series expansion 

The Taylor series expansion approach to study the theoretical identifiability was originally developed by 
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Pohjanpalo (1978). The general model as defined in Eq.1 is considered. The basis of the Taylor approach 

is that the output vector and its derivatives with respect to time, typically developed around initial time t = 

0, can be assumed to be known and unique. The successive Taylor derivatives, )p(ka , are defined as 

described in Eq. 4, and the Taylor series approximation of the output y  around time t is given in Eq. 5. 
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  (5)  

Thus, the Taylor derivatives, )p(ka , are functions of p  and the method simply consists of solving a set of 

algebraic equations (consisting of the Taylor derivatives) with respect to the parameters or combinations 

thereof. A sufficient condition for the model to be theoretically identifiable is that there exists a unique 

solution for p  (Pohjanpalo, 1978; Walter, 1982). 

2.2. Generating series 

The generating series approach generalises in some sense the Laplace transform approach for identifiability 

of linear models (Walter, 1982; Walter and Lecourtier, 1982; Walter and Pronzato, 1995). In the 

generating series approach it is considered that the model equations are written as Eq. 6.  
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In this equation x , y  and p  represent the state vector with n states, the output (measured variables) 

vector and the (unknown) parameter vector respectively, while ui represents the input with i = 0, 1,…m. 

Note that the model is defined to be linear with respect to the inputs. The generating series is based on the 

output function )p),t(x(g  and its successive Lie derivatives, typically evaluated at t = 0 (Eq. 7). 
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In Eq. 7 k,if  is the k’th component of if , e.g. in 2,1f : (1) refers to the function of the first input and (2) to 

the second state. If )p(s  denotes the vector of all the coefficients of the series of successive derivatives, a 

sufficient condition for the model to be theoretically identifiable is that there exists a unique solution for p  

from )p(s , similar to the Taylor series expansion method (Walter, 1982; Walter and Lecourtier, 1982; 
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Walter and Pronzato, 1995). 

2.3. Practical application of the series expansions methods 

The practical procedure for application of the two methods can be described by the following steps: 

1. Computation of the successive derivatives of the output function. 

2. Choice of the parameter set p  to be identified. 

3. Evaluation of the successive derivatives by inserting already known quantities and derivatives of 

lower orders. 

4. Express the successive derivatives as function of the parameter combinations that were chosen in 

step 2. 

5. Solve the set of equations resulting from step 4 with respect to p .  

6. If a unique solution can be found from step 5 the parameter set selected in step 2 is theoretically 

identifiable. 

Typically, the Taylor or generating series are developed around t = 0. However, systems that are singular 

(i.e. not solvable) around zero can not be termed unidentifiable by the argument that a unique solution for p  

is lacking around t = 0, since later observations at t > 0 may provide additional information on p  

(Pohjanpalo, 1978; Walter, 1982). In addition, it should be stressed that it is the user that defines the 

parameters or parameter combinations p  that are to be identified in step 2. Thus, the procedure becomes 

iterative, since so far there are no general rules for selecting the “right” combinations (Dochain et al., 

1995). 

Another disadvantage is that the upper bound on the number of equations that may be required is 

unknown. One usually starts with a limited number of coefficients and adds more if necessary. There is, 

however, no guarantee that new information could not have been obtained by including derivatives from an 

even higher order (Godfrey and DiStefano, 1985; Vajda et al., 1989; Chappell et al., 1990). This lack of 

an upper bound means that this condition is only sufficient, but not necessary, for identifiability (Walter and 

Lecourtier, 1982; Vajda et al., 1989). Moreover, the structure of the resulting equations is most often far 

from simple, even for models of moderate complexity. Although symbolic manipulation software packages 

have proven very useful, this problem can not always be resolved making it difficult to establish the 

identifiability properties (Raksanyi et al., 1985). 

For a model with zero input the generating series approach is equivalent to the Taylor series expansion 

method, as mentioned above. However, for models that include inputs, the generating series approach 

usually results in simpler equation structures than those of the Taylor series approach (Raksanyi et al., 
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1985; Walter and Prozato, 1995), although this was questioned by Godfrey and DiStefano (1985). In 

general, it can be difficult beforehand to judge which approach is the most suitable one for a particular 

model (Chappell et al., 1990). 

3. Case study: Two-step nitrification 

Nitrification takes place in two steps (1) oxidation of ammonium (NH4
+) to nitrite (NO2

-) and (2) oxidation 

of nitrite (NO2
-) to nitrate (NO3

-). This process is illustrated in a simple form in Eq. 8 without considering 

that a small part of NH4
+ is incorporated into the biomass during growth. 
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Note that both nitrification steps can be characterised by measurements of oxygen uptake whereas it is only 

during the first step that protons are produced. This makes it possible to characterise the first step by its 

proton production. Measurements of oxygen uptake rate (rO) can be carried out via respirometry, and 

proton production (Hp) can be quantified via a titrimetric technique (Gernaey et al., 1998). In this study 

two slightly different respirometers were considered. Detailed information on the difference between the 

two respirometric principles can be found in chapter 3. 

The first respirometer consists of a continuously aerated batch reactor and is illustrated in Fig. 1 together 

with a typical data set. For this type of respirometer the mass balance for dissolved oxygen (SO) consists of 

two parts: a term for the oxygen transfer due to aeration and a term for the oxygen uptake rate, rO (Eq. 9). 

OO
o
OL

O r)SS(aK
dt

dS
−−=      (9)  

The rO in Eq. 9 consists of two processes: (1) the immediate uptake of oxygen due to the consumption of a 

readily biodegradable substrate, i.e. the exogenous oxygen uptake rate rO,ex, and (2) the endogenous 

oxygen uptake rate rO,end. The endogenous oxygen uptake is also observed in absence of a readily 

biodegradable substrate. It is assumed that this rate is associated with e.g. oxidation of biodegradable 

matter produced internally during lysis of dead biomass etc. When no readily biodegradable substrate is 

present rO,ex is zero, and in that case the oxygen concentration in the respirometer reaches a steady-state 

concentration (SO,eq) representing the equilibrium between oxygen transfer and endogenous respiration. 

With this knowledge Eq. 9 can be transformed into Eq. 10 (Vanrolleghem, 1994), under the assumption 

that KLa, o
OS  and rO,end are constant during the observed time period. 

ex,OOeq,OL
O r)SS(aK

dt

dS
−−=     (10)  
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Figure 1. A: Schematic representation of respirometer 1. B: Typical SO and rO,ex data set obtained 

following the addition of SNH to the activated sludge in respirometer 1 at t = 0 

In this respirometer the value of rO,ex can be calculated from the measured SO data when the values of 

dSO/dt, SO,eq and KLa are known. The factor dSO/dt is the slope of the SO curve, and is typically obtained 

by a moving window regression on the SO data. SO,eq can be obtained from the respirogram as the SO 

concentration measured during the endogenous respiration phase. For the oxygen transfer coefficient KLa 

several methods can be used to obtain its value. However, the estimation of a reliable KLa value is not 

without problems (ASCE, 1996) which is the disadvantage of applying this type of respirometer. 

The second respirometer, called the hybrid respirometer, is more advanced. An illustration of its 

configuration and a typical data set (SO,1, SO,2 data and calculated rO,2 values) are given in Fig. 2A and 2B 

(see also chapter 3 for a more detailed explanation). The respirometer consists of an open continuously 

aerated vessel and, connected to it, a closed non-aerated respiration chamber. It is equipped with two 

dissolved oxygen probes. Mixed liquor is continuously pumped between the aeration vessel and the 

respiration chamber, and vice versa. The SO mass balances are given in Eq. 11 and 12, where 1 refers to 

the aeration vessel and 2 to the respiration chamber. 

1,O1,O
o
OL1,O2,O

1

in1,O r)SS(aK)SS(
V

Q

dt

dS
−−+−=    (11)  

2,O2,O1,O
2

in2,O r)SS(
V

Q

dt

dS
−−=      (12)  
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Figure 2. A: Schematic representation of respirometer 2. B: Typical SO data set obtained following the 

addition of SNH to the activated sludge in the aeration vessel of respirometer 2 at t = 0. C: Hp and rO,2 data 

resulting from the same experiment 

The main advantage of this respirometer is that rO can be calculated from a simple SO mass balance over 

the closed respiration vessel (Eq. 12), thereby avoiding the need to estimate KLa values. In the hybrid 
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respirometer substrate is added as a pulse in the aeration vessel at the start of an experiment (t = 0), and 

not to the respiration chamber. Thus, the substrate concentration in the respiration chamber builds up from 

zero through the substrate flow from the aerated vessel. The rO in the two vessels (rO,1 and rO,2 respectively) 

is obviously only equal when the substrate concentrations in both vessels are identical. The substrate 

transport is illustrated in Fig. 3, where simulated profiles of ammonium (SNH) are given for the experimental 

data of Fig. 2. In fact, at time zero, rO,2 is equal to rO,end (see chapter 3). 
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Figure 3. Simulated SNH and SNO2 profiles in aeration vessel (SNH,1, SNO2,1) and respiration chamber (SNH,2, 

SNO2,2) for the experimental data of Fig. 2 (no SNO2 added at t = 0) 

An illustration of a typical Hp data set is given in Fig. 2C. Hp data are collected in parallel with 

respirometric data during an experiment with an addition of ammonium at t = 0. As mentioned above, only 

the first nitrification step has an effect on the pH. This is clearly illustrated in Fig. 2C, where the cumulative 

proton production stops when the degradation of SNH is finished. The respirometric and titrimetric data 

were modelled by applying the model structure that is summarised in Table 1. The model in Table 1 is 

based on ASM1 (Henze et al., 1987), with some modifications: 

• Nitrification was modelled as a two-step process. In the first nitrification step SNH is oxidised to nitrite 

(SNO2), which is subsequently oxidised to nitrate (SNO3) in the second nitrification step, as described 

above. 

• For the second nitrification step nitrogen taken from SNO2 is incorporated into new biomass. 

• Biomass decay was included in the model as endogenous respiration. 
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• In this study, a detailed model for the titrimetric data is only applied for the nitrification process (see 

Table 1). In the model protons (Hp) replace the ASM1 SALK component, which means that the signs of 

the stoichiometric factors in the Hp column are the opposite of the signs that appear in the SALK column 

in the ASM1 matrix (Henze et al., 1987). In the model SNH oxidation and uptake of SNH for biomass 

growth during nitrification will produce Hp. A constant background Hp production is also included in 

the titrimetric model to take CO2 stripping into account, similar to Gernaey et al. (1998). This effect of 

CO2 stripping is assumed to be constant during the short duration of each experiment (Gernaey et al., 

1998). 

• For heterotrophic growth, the standard ASM1 conversion term for SALK is included in the Hp column 

of Table 1 (uptake of SNH to be incorporated in new biomass produces Hp). 

4. Results 

All symbolic manipulations were carried out with the MAPLE V software package (Waterloo Maple 

Software).  

4.1. Measurements of rO,ex or Hp – No net growth model 

In the model used in the first study growth and decay are not included, i.e. column 1 and row 4 in Table 1 

are excluded which means that X is considered as a constant. Moreover, incorporation of SNH for biomass 

growth is not considered (iXB = 0). It will appear that these assumptions simplify the study significantly. 

However, it should be noted that the mass balances of organic substrate and ammonium strictly speaking 

are not correct since it is only assumed that the substrate degradation induces oxygen consumption and 

proton production or consumption. The assumptions are, however, reasonable, and no significant errors 

will be induced in the case of short-term experiments where significant growth can be assumed not to take 

place. 

4.1.1. Respirometric data (rO,ex) 

In the work of Dochain et al. (1995) the theoretical identifiability of the model for heterotrophic growth on 

a readily biodegradable carbon substrate, SS, (process 1 in Table 1) was studied. The expression for rO,ex 

according to Table 1 is given in Eq. 13. 

)t(SK
)t(S

Y
X

)Y1()t(r
SS

S

H

Hmax
Hex,O +

⋅
⋅

⋅−=
µ

    (13)  

Only SS was considered to vary as function of time in the application of the Taylor series expansion since 

biomass growth was not considered in the model. It was concluded that the following three parameter 

combinations were identifiable (Eq. 14 – 16) (Dochain et al., 1995). 
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SH2 K)Y1( ⋅−=θ       (15)  

)0(S)Y1( SH3 ⋅−=θ       (16)  

For the two-step nitrification considering no net biomass growth (process 2 - 3 in Table 1, but with iXB = 

0) the expression for rO,ex is given in Eq. 17.  
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⋅
⋅
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   (17) 

It became however too complex for Maple V to simultaneously solve for identifiable parameter 

combinations for the two nitrification steps. The theoretical identifiability was therefore considered in a two 

stage approach, i.e. the first and second nitrification step were dealt with separately, similar to the study of 

a double Monod model with two readily biodegradable carbon substrates by Dochain et al. (1995). 

However, there are two major differences between the two-step nitrification process and the double 

Monod example of Dochain et al. (1995): (1) At t = 0 the concentration of the substrate for the second 

nitrification step, SNO2, is zero. Hence, only information on the kinetics of the first nitrification step is 

available at t = 0. (2) The two nitrification steps are closely linked in the way that SNO2 is produced from 

the first step, i.e. as long as SNH is still present there will be a time varying input of SNO2.  

The study of the theoretical identifiability was therefore approached as follows. First, t = 0 is considered 

and the identifiability of the first step can be analysed. Secondly, it is assumed that SNH is completely 

eliminated from the mixed liquor at a certain time instant t1 > 0, i.e. SNH = 0 and SNO2 is no longer 

produced. However degradation of accumulated SNO2 still takes place and, consequently the identifiability 

of the second nitrification step can be studied. Thus, this is an example where later observations (t > 0) can 

give further information on the set of possible identifiable parameters, as discussed earlier (Pohjanpalo, 

1978; Walter, 1982). As a side note, to be practically identifiable, a necessary condition for this approach 

will obviously be that the second nitrification step is slower than the first step resulting in a build-up of SNO2 

that is “observable” as a shoulder in the rO,ex profile. This situation is illustrated in Fig. 2 and 3. From the 

simulated SNO2 concentrations in Fig. 3 one can clearly see the build-up of SNO2. Degradation of SNH is 

finished at t = 60 min while SNO2 degradation continues. In case the second nitrification step is faster than 

the first step, then the amount of SNO2 available upon the complete degradation of SNH will be too low to 

result in a visible rO,ex response, leading to impossible practical identification of the second step parameters. 

Finally, one may have the situation where sufficient SNO2 is added initially together with SNH to cause a 

second shoulder in the rO,ex profile. In this case the rO,ex profile can be subdivided in two parts 

corresponding to the degradation of SNH and SNO2 (see Fig. 4). In this situation the theoretical identifiability 
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study could be approached as follows. First, the identifiability of the second step is carried out assuming 

that SNH is completely degraded at a point t1 > 0 (e.g. at t = 65 min in Fig. 4). The rO,ex of the second step, 

which can be assumed constant in the first period where both nitrification steps occur in parallel, can then 

be subtracted from the total rO,ex, allowing the identifiability of the first step to be studied. 
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Figure 4. A: rO,2 data resulting from an experiment with addition of a mixture of SNH and SNO2 at t = 0 in 

the aeration vessel of respirometer 2. B: Simulated SNH and SNO2 profiles in aeration vessel (SNH,1, SNO2,1) 

and respiration chamber (SNH,2, SNO2,2) 

In the following the first situation (SNO2(0) = 0) is considered. Thus, first t = 0 is considered and the 

identifiability analysis is based on the first part of Eq. 17. In the following the exogenous oxygen uptake rate 

concerning only the first nitrification step is denoted 1N
ex,Or . The Taylor series expansion was applied, and 

Eq. 18 - 20 list the first three successive derivatives of 1N
ex,Or  with respect to time at t = 0.  
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The parameter combinations that were considered as potentially identifiable in the study are given in Eq. 21 

– 23. 
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It is now sought to express the derivatives (Eq. 18 - 20) as a function of the parameter combinations (Eq. 

21 – 23) as generally expressed in Eq. 24, where i is equal to the order of the derivative. The expressions 

for the actual case are given in Eq. 25 - 27: 
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The equations 25 - 27 are finally solved for the parameter combinations, resulting in Eq. 28 – 30.  
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Conclusively, this study shows that the parameter combinations for the first nitrification step given by Eq. 

21 - 23 are indeed theoretically identifiable, considering rO,ex measurements and no net biomass growth. 

The results are similar to the parameter combinations obtained by Dochain et al. (1995), only replacing the 

factor (1-YH) in Eq. 14 – 16 by (3.43-YA1) in Eq. 21 – 23. 

The theoretical identifiability of the second nitrification step assuming t > 0 follows very much the same 

patterns as illustrated above, and results in the identifiable parameter combinations listed in Eq. 31 – 33. In 

this case Eq. 33 is not really relevant, since SNO2(0) = 0. However, in the case where SNO2(0) ≠ 0 the 

identifiability study yields identical results, and it may be relevant to identify a combination including 

SNO2(0). 
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= µβ      (31)  

2SA2A5 K)Y14.1( ⋅−=β      (32)  

)0(S)Y14.1( 2NO2A6 ⋅−=β      (33)  

4.1.2. Titrimetric data – Hp 

The model that describes the proton production rate for the first nitrification step is given in column 7 in 

Table 1 (no net growth and therefore iXB=0 is still considered). The structure of this model is in fact rather 

similar to the model for respirometric data described above, only is the output now the concentration of Hp 

(meq/l) instead of rO,ex. It is thus expected that the structure of the identifiable parameter combinations 

becomes similar to the ones derived in the previous example. The generating series principle will be 

illustrated for this study. 

The equation set for the generating series approach, according to the general formula of Eq. 6, is given in 

Eq. 34 considering the states SNH and Hp respectively. Note that there are no inputs considered in this 

case.  
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The initial value for the output Hp is zero and the initial value of SNH (at t = 0) is SNH(0). 

The first Lie derivative operator can now be written as generally stated in Eq. 35. In this equation x1 refers 

to SNH and x2 to Hp (see also Eq. 36). The first Lie derivative operator is written out completely in Eq. 36 

for this example. 
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The Lie derivative of the output g in its general form is given in Eq. 37 and the corresponding expression for 

this example in Eq. 38 - 39.  
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The successive Lie derivatives of the output g follow the general formula (Eq. 40) and for this specific 

example the expressions for the second and third derivative are given in Eq. 41 and 42. 
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The parameter combinations that were evaluated for theoretical identifiability are listed in Eq. 43 - 45. 
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Similar to the Taylor series expansion the derivatives (Eq. 39, 41 and 42) are now expressed as function of 

the parameter combinations (Eq. 43 – 45), resulting in Eq. 46 – 48. Equations 46 – 48 are again solved for 

the parameter combinations, and solutions are given in Eq. 49 – 51. 
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Thus, the parameter combinations given in Eq. 43 – 45 are theoretically identifiable. As could be expected, 

the structure of these parameter combinations and its solutions (Eq. 49 – 51) are similar to the ones derived 

in the previous example considering rO,ex data, except for the stoichiometric factors. 

The results of the theoretical identifiability studies of the two-step nitrification model considering a model 

structure with no growth and separate measurements of rO,ex or Hp are summarised in Table 2. 
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Table 2. Schematic overview of the theoretically identifiable parameter combinations for nitrification step 1 

and 2, depending on rO and Hp measurements, and for a model structure excluding biomass growth 

Process (j) Nitrification step 1 Nitrification step 2 

Measurement (i) → 

Model structure ↓ 

rO,ex Hp rO,ex 
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X
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4.2. Measurements of rO,ex or Hp – Growth model 

In the theoretical identifiability studies presented in this subsection net growth will be explicitly taken into 

account. It will be assumed that rO,end (i.e. b⋅X(t)) and the background proton production, which in the case 

of growth will be time varying, are known and that rO,ex or Hp data are available. 

4.2.1. Respirometric data (rO,ex) 

The same approach is applied as for the model that did not consider biomass growth, however, with the 

difference that X is now also a function of time with a known initial biomass concentration X(0). This 

complicates the expression of the successive derivatives significantly and below only the first two 

derivatives for the first nitrification step are illustrated (Eq. 52 – 53).  
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It appeared that it was possible to express the parameter combinations given in Eq. 54 - 57 as a function of 

derivatives evaluated at t = 0. Hence, these parameter combinations are theoretically identifiable. When 

growth is considered explicitly it appeared possible to separate µmaxA1 and X(0) in the identifiable 
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parameter combinations. Further, an extra term including the parameter iXB appears in the parameter 

combinations for SNH(0) and KSA1. 
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For the second nitrification step the theoretically identifiable parameter combinations are similar to the ones 

of the first nitrification step (see Table 3).   

4.2.2. Titrimetric data – Hp 

The generating series approach was again applied, but now growth was included in the model which alters 

the equation set for the generating series (Eq. 58) compared to the study with no growth (see Eq. 34), 

since now an equation for the state X has to be included. 
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 g = Hp    (58)    

The first two Lie derivatives with respect to the output Hp are listed in Eq. 59 – 60 for illustration purposes 

only.  
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The corresponding identifiable parameter combinations are rather similar to Eq. 54 – 57, and are listed in 

Eq. 61 - 64. Again, iXB appears in the parameter combinations since SNH incorporation for biomass growth 

is now explicitly considered for the first nitrification step. 
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Table 3 summarises the results of the theoretical identifiability studies of the two-step nitrification model 

considering a model structure with biomass growth and separate measurements of rO,ex or Hp. 

Table 3. Schematic overview of the theoretically identifiable parameter combinations for nitrification step 1 

and 2, depending on rO and Hp measurements and for a model structure excluding biomass growth. 

Process (j) Nitrification step 1 Nitrification step 2 

Measurement (i) → 

Model structure ↓ 

rO Hp rO 
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4.3. Combined measurements of rO,ex and Hp 

In this section it is assumed that rO,ex and Hp are measured simultaneously in the same system. The 

measurements of rO,ex and Hp are assumed to be independent. Consequently, the information on identifiable 

parameter combinations (derived in the previous sections) based on rO,ex and Hp data separately, can be 

combined in the search for possibly new and improved parameter identification. It should be remembered 

that improved identifiability can not be expected for the parameters of the second nitrification step (Eq. 8) 

since the cumulative proton production only yields information on the first nitrification step. Again, the 

situation with no initial addition of SNO2 is considered (SNO2(0)=0), i.e. at t = 0 rO,ex contains information on 

the first nitrification step only. 

The theoretically identifiable parameter combinations obtained under the assumption that biomass growth 

does not take place are given in Eq. 65 – 68. The first three combinations are identical to the ones derived 

for rO,ex measurements (Eq. 21 – 23). The new parameter combination α1 (Eq. 68) is proposed and, if 

identifiable, would allow an identification of YA1. Inserting YA1 in Eq. 65 – 67 would subsequently result in 

unique identification of X1Amax ⋅µ , KSA1 and SNH(0). 
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2

14
1A1 −⋅=α       (68)  

The successive derivatives as functions of the parameter combinations are listed in Eq. 69 - 72, where v0 – 

v2 are the three first derivatives based on rO,ex measurements (identical to Eq. 25 – 27) whereas z0 is based 

on the first derivative of Hp. 
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It was found that the equation set v0, v1, v2 and z0 (Eq. 69 – 72) could be solved with respect to the 

parameters β1, β2, β3 and α1, proving that the parameter combinations listed in Eq. 65 – 68 are 

theoretically identifiable. The solutions that were found for β1, β2, β3 and α1 are given in Eq. 73 - 76. 

Equations 73 – 75 are in fact identical to Eq. 28 – 30.  
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It is noteworthy that it was not possible to identify the parameters based on the first two successive 

derivatives with respect to rO,ex and Hp data respectively, indicating that information from higher order 

derivatives was needed. The analysis was also tried using the first three derivatives of the Hp measurements 

and the first derivative of rO,ex. This equation set could also be solved for the parameter combinations given 

in Eq. 65 - 68. 

Important to notice is that in fact α1 (Eq. 76), the parameter combination which will allow to identify YA1, is 

nothing else but the ratio between the stoichiometric factors relating rO,ex and the first derivative of Hp to 

dt

dSNH  (see Table 2). 

The identifiability study considering growth followed the same pattern. However, the equations became 

more complicated and they are therefore not written out fully. The parameter combinations that were found 

to be identifiable are listed in Eq. 77 - 81. Again, the parameter α2 that contains the information on YA1 is 

defined by the ratio between the stoichiometric factors relating rO,ex and the first derivative of Hp to 
dt

dSNH  

(see Table 3). 
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Summarising, by considering growth and combined measurements of rO,ex and Hp the parameters µmaxA1, 

X(0), KSA1, SNH(0) and YA1 become theoretically identifiable under the assumption that iXB is known. 

Finally, the unique identification of YA1 will also result in a unique identification of YA2 based on the 

following simple reasoning. The integral of rO,ex, which is a known quantity, is defined as (Eq. 82): 

)0(S)Y14.1()0(S)Y43.3(dtr NH2A

t

0
NH1Aex,O ⋅−+⋅−=∫    (82)  

As a result of YA1 and thereby also SNH(0) being uniquely identifiable, YA2 is the only unknown in Eq. 82 

and becomes identifiable as well. Note that in the case where SNO2 is added initially (SNO2(0)≠0) an 

identification of YA2 will only be possible if SNO2(0) is known. 

4.4. Measurements of SO and Hp 

From a practical point of view it is an advantage to consider measurements of oxygen concentrations, SO, 

for parameter estimation as an alternative to rO,ex measurements. Indeed, SO is the direct output from the 

dissolved oxygen electrode(s) in the respirometer and thus the differentiation step, which is needed to 

convert SO data into rO,ex data, but at the same time also increases the noise on the data, could be avoided. 

In the following the theoretical parameter identifiability based on SO measurements will be considered for 

both types of respirometer. The parameter identifiability should not depend on whether one focuses on SO 

or its derivative, rO, as output. However the fact that a few extra parameters related to oxygen transfer and 

biomass decay will need to be considered simultaneously, compared to the situations illustrated above, may 

complicate the matter slightly. For simplicity, only the identifiability of the first nitrification step will be 

considered in the following. However, the identifiability of the biodegradation kinetic parameters of the 

second nitrification step can also be carried out according to the procedure described above. 

4.4.1. Respirometer 1 – SO and Hp measurements 

For the first respirometric technique the equation set for the generating series approach excluding growth is 

given in Eq. 83. The successive derivatives with respect to time for the Taylor series approach will follow 

the patterns initiated in Eq. 84 – 86, where the derivatives of rO,ex are similar to the ones that were derived 
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above (Eq. 18 – 20). 
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The complexity of the equations increases significantly and the equations are therefore not written out fully. 

It was sought to identify the parameter combinations given in Eq. 87 – 91, with Eq. 87 – 89 containing the 

kinetic information identical to the earlier applied Eq. 21 – 23. 
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1SA1A2 K)Y43.3( ⋅−=β      (88)  

)0(S)Y43.3( NH1A3 ⋅−=β      (89)  

aKL15 =β        (90)  

eq,O16 S=β        (91)  

Five successive derivatives were needed to solve for the parameter sets given above. However, MAPLE 

V was not able to achieve this and a slightly different approach was applied to show that identification of 

the parameter combinations given in Eq. 87 - 91 is possible. This approach consisted of including a second 

time instant in the identifiability study. This point, t1, is defined as the point in time where all substrate is 

degraded (i.e. rO,ex = 0 at point t1), but SO is still unequal to SO,eq. It is reasonable to assume that such a 

point t1 exists since complete re-aeration to the equilibrium oxygen concentration SO,eq is only possible 

when substrate degradation is terminated, resulting in the mass balance given in Eq. 92. 
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))t(SS(aK
dt

)t(dS
1Oeq,OL

1O −⋅=       (92)  

By including this equation in the identifiability study, it becomes possible to identify the parameter 

combinations given in Eq. 87 – 91. This is again an example that later observations at t > 0 may give 

additional information needed to identify some parameters. 

If, on the other hand, growth is assumed to take place, the equilibrium concentration of oxygen SO,eq will 

change with time and one will have to consider the unreduced form of Eq. 9 for the oxygen mass balance 

(Eq. 93) 
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o
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It will be necessary to assume that either the oxygen transfer coefficient KLa or the saturation concentration 
o
OS  is known in order to identify the kinetic parameters related to rO,ex. For example, the KLa can be 

determined via separate tests (ASCE, 1996). The endogenous respiration rO,end is defined by 

)t(Xbr end,O ⋅= . If X(0) is assumed to be known, the decay rate b will be identifiable at the time instant 

where the substrate is not added yet. Thus, based on these assumptions the parameter combinations given 

in Eq. 94 - 97 (identical to Eq. 54 - 57) become identifiable. 
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Finally, it was proven (results not shown) that the yield of the first nitrification step, YA1, becomes uniquely 

identifiable by combining SO and Hp measurements. To achieve this result a similar approach was applied 

as described for the combination of rO and Hp measurements including successive derivatives of SO and the 

first derivative of Hp. 

4.4.2. Respirometer 2 – SO and Hp measurements 

For the second respirometer the complexity of the mass balance equations is increasing further, because 

two oxygen measurements are included together with transport terms as described earlier in Eq. 9 and 10. 

If Qin is considered to be a known input, the resulting complete equation set for the generating series 
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approach (including biomass growth) is given in Eq. 98. 
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The two first Lie derivatives (Lf0) with respect to the two outputs are given in equations 99 and 100.  

end,O
1N

1ex,O1,O
o
OL10

rr)SS(aK)0(gfL −−−⋅=⋅     (99)  

)0(Xb)0(Xbr)0(gfL 21end,O20
⋅−=⋅−=−=⋅     (100)  

It should be remembered that the substrate concentration in the respiration chamber at t = 0, SNH,2(0), is 

zero, resulting in Eq. 100, because substrate is only added in the aeration vessel at t = 0 for this 

respirometer. Thus, it is clear that based on Eq. 100, rO,end is identified since the biomass concentrations 

X1(0) and X2(0) are assumed to be equal. As a consequence, the successive Lie derivatives (Lf0) with 

respect to the first output SO,1 (Eq. 99) are similar to the derivatives considered for the first respirometer 
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(Eq. 84 – 86) and are leading to the same identifiable parameter sets. Alternatively, one could have 

considered equations of the type Lf1 based on the input functions in Eq. 98. However, in this case this 

choice does not give any further information on the kinetic parameters but only yields information on the 

volumes, information that is considered known already. 

It should be obvious that the Taylor series approach is much more complex in this case since the transport 

terms have to be differentiated with respect to time as well, as illustrated by Eq. 101 and 102 giving the 

second order derivatives for the Taylor approach. 
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It appeared indeed that the equations based on the Taylor approach reached such a complexity that the 

problem was not solvable in MAPLE V. Hence, in this particular example applying the Lie derivatives has 

a big advantage compared to the Taylor series approximation. 

5. Generalisation of theoretically identifiable parameter 
combinations 

A summary of the theoretically identifiable parameter combinations resulting from this study is listed in 

Table 4. The investigation of the theoretical identifiability via the series expansion methods is an iterative 

procedure, as mentioned in the introduction and further illustrated in the different examples, since the 

parameter combinations initially have to be “guessed” by the user. No rules seem to exist yet for selection 

of possible identifiable parameter combinations. 

In the evaluation of the results obtained in this study however, it appears possible to generalise the 

parameter identifiability results listed in Table 4 based on the ASM1-like stoichiometric matrix (Table 1). 

Indeed, the identifiable parameter combinations can be predicted based on knowledge of the process 

under study, the measured component and the substrate component that is degraded. The rules of this 

generalisation are illustrated in Table 5. With reference to Table 1, ν denotes the stoichiometric coefficient, 

j the process, i the measured component, while the substrate under study is denoted k. Considering that 

some components are consumed (e.g. SO, SS) whereas others are produced (e.g. X, Hp), the absolute 

values of the stoichiometric coefficients ν should be taken. In case two components are measured for the 

same process, the parameter combinations for a single measurement listed in Table 5 still hold, but with the 

additional identifiable parameter combination νi(1),j/νi(2),j, where (1) and (2) indicate the two measured 

components respectively. The generalisation of Table 5 was confirmed with the identifiable parameter 
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combinations listed in Table 4, but also with examples from literature as will be illustrated below. 

 

Table 4. Schematic overview of the theoretically identifiable parameter combinations for nitrification step 1 

and 2, depending on the available measurement(s) and the model structure 

Process (j) Nitrification step 1 Nitrification step 2 

Measurement (i) → 
Model structure ↓ 
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Example 1: 

The first nitrification step is considered (see Table 1), SNH is added, Hp is measured and biomass growth is 

assumed to take place. Thus, in this case we have, i=7, j=2 and k=4 (see Table 1). According to Table 5 

the identifiable parameter combinations are as follows: 

1. jmax,µ , i.e. the maximum specific growth rate related to process 2 which is µmaxA1. 
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Y14

Yi2
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1

14
i
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4. )0(Sk
j,k

j,i
⋅

ν

ν
 ⇔ )0(S4

2,4

2,7 ⋅
ν

ν
 ⇔ )0(S

)Yi1(14
Yi2
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1AXB

1AXB

⋅+⋅
⋅+

. 

These parameter combinations are completely in accordance with the ones derived in this study for the 

case where Hp is measured and biomass growth is considered in the model (see Table 4). 

 

Table 5. Parameter combinations for Monod degradation kinetics based on ASM1-like matrix notation. 

See text for a detailed explanation of the generalisation rules 

SO/rO or Hp measurements SO/rO and Hp measurements 
Model structures 

No growth Growth No growth Growth 

Xjmax,j,i ⋅⋅ µν  jmax,µ  Xjmax,j,i ⋅⋅ µν  jmax,µ  

j
j,k

j,i
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⋅
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⋅
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j,k

j,i
⋅

ν
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j),2(i

j),1(i

ν

ν
 

j),2(i

j),1(i

ν

ν
 

Example 2: 

The first nitrification step is again considered (see Table 1), SNH is added, Hp and SO are measured and 

growth is not considered (i.e. iXB = 0). Thus, i(1)=3, i(2)=7, j=2 and k=4. The parameter combinations 

become: 

1. Xjmax,j,i ⋅⋅ µν . Now both i(1) and i(2) can be considered to write up a series of theoretically 

identifiable parameter combinations. In this example i(1)=3 will be chosen ⇒ X2max,2,3 ⋅⋅ µν  ⇔ 

X
Y

Y43.3
1Amax

1A

1A ⋅⋅
−

µ  

2. j
j,k

j,i
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ν

ν
 ⇔ 2

2,4

2,3
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Y
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3. )0(Sk
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These results are in accordance with the results of the Maple V developments that were obtained earlier 

(Table 4). Identical results would have been obtained in case i(2)=7 was chosen for the derivation. 

Example 3: 

If we now look beyond the identifiability studies carried out in this study, then an obvious example to check 

is the situation where both rO,ex and SS are measured. Since 
)Y1(

)0(S
dtr

H

S
t

0
ex,O −

=∫  one would expect that 

the biomass yield YH becomes identifiable from such a measurement set-up. The integral of rO,ex indicates 

how much oxygen is consumed and can be regarded as oxygen measurement. Furthermore, heterotrophic 

growth is considered and SS is the substrate, i.e. i(1)=2, i(2)=3, j=1, k=2. The yield should now appear 

from the following combination: 

1. 
j),2(i

j),1(i

ν

ν
 ⇔ 

1,3

1,2

ν

ν
 ⇔ 

HH

H

H Y1
1

Y1
Y

Y
1

−
=

−
⋅ . 

This is proving, as expected, that the yield becomes identifiable if both SO and SS are measured. 

Example 4: 

If we return to literature, Holmberg (1982) proved that all the parameters µmaxH, KS, SS(0), X(0) and YH 

were identifiable in the case where SS and X measurements were available and biomass growth was 

considered. Hence, heterotrophic growth is considered, SS is substrate and SS and X are measured. In this 

example i(1)=1, i(2)=2, j=1 and k=2 and, according to the generalisation, the identifiable parameter set 

should be: 

1. jmax,µ  ⇔ Hmaxµ . 

2. )0(Xj,i ⋅ν . As in example 2 both i(1) and i(2) can be considered, here i(1)=1 will be chosen ⇔ 

)0(X)0(X1,1 =⋅ν  

3. j
j,k

j,i
K⋅

ν

ν
⇔ 1

1,2

1,1
K⋅
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H
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K

Y
1

K
Y
1
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
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Thus, since the biomass yield YH becomes identifiable from step 5 all the parameters µmaxH, KS, SS(0), 

X(0) and YH become identifiable by applying the generalisation rules, similar to the results obtained by 

Holmberg (1982). 

Example 5: 

In the work of Sperandio and Paul (2000), the theoretical identifiability was also studied for heterotrophic 

growth but here assuming only measurements of rO,ex. The identified parameters were µmaxH, 

)0(X
Y

Y1

H

H ⋅
−

, SH K)Y1( ⋅−  and )0(S)Y1( SH ⋅− , which is in fact equivalent to the ones obtained in this 

study for growth during the nitrification process. The parameter combinations derived by Sperandio and 

Paul (2000) could also be obtained directly based on the generalisation rules outlined above with i=3, j=1 

and k=2. 

1. jmax,µ  ⇔ Hmaxµ  

2. )0(Xj,i ⋅ν  ⇔ )0(X1,3 ⋅ν  ⇔ )0(X
Y

Y1

H

H ⋅
−
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6. Discussion 

The theoretical identifiability of a two-step nitrification model was studied assuming that respirometric and 

titrimetric measurements were available. The choice for a two-step nitrification model to describe 

nitrification in activated sludge was motivated by the observation that a two-step nitrification model is often 

required in practice to describe experimental data adequately. The two-step nitrification model is a more 

detailed version of the one-step nitrification model that is included in ASM1 (Henze et al., 1987). 

The Taylor and generating series approach were both applied to assess the theoretical identifiability of the 
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model parameters. In the last example of the hybrid respirometer (respirometer 2) it was illustrated that the 

generating series method may be more powerful than the Taylor method in cases where inputs are 

considered. The complexity of the equations decreased when applying the generating series approach since 

the input functions did not contain information on the kinetic parameters for the example that was studied, 

and could therefore be left out of the study, contrary to the Taylor method. When the inputs contain 

information on the parameters of interest, the generating series method allows to look at the different inputs 

separately (by taking derivatives to each input separately and combining them afterwards) whereas for the 

Taylor method the whole output function is derived with respect to time. The generating series method 

results in more, but simpler equations with respect to the parameters. On the contrary, in case no inputs are 

defined in the model the Taylor expansion method and the generating series give identical results, in 

agreement with Walter (1982). Thus, in that case the Taylor method is to be preferred since the derivation 

of the Taylor coefficients appears easier to apply than the Lie derivation. 

For the two-step nitrification model the theoretical identifiability study was carried out for (i) a model 

structure that did not include net biomass growth and (ii) a model structure where biomass growth was 

explicitly taken into account. With respect to parameter identifiability, the difference between the two 

model structures was that the no-growth parameter combination including X(0), Y and µmax can be split up 

further into µmax on the one hand, and a parameter combination including X(0) and Y on the other hand. 

Brouwer et al. (1998) also estimated nitrification kinetic parameters for a two-step nitrification model. In 

that study the assumed theoretically identifiable parameter combinations were defined to be the ones 

related to no growth although growth was considered in the model applied for parameter estimation. The 

same goes for the study of a one-step nitrification model by Vanrolleghem and Verstraete (1993), and also 

for the parameter estimations presented by Spanjers and Vanrolleghem (1995). From a theoretical point of 

view, a wrong approach was taken by including growth in the model (e.g. iXB appears in the model) 

whereas the assumed theoretically identifiable parameter combinations were based on a no-growth model 

structure (iXB did not appear in the identifiable combinations although it should have). However, the 

experiments considered in these studies were all of short-term character where significant growth is unlikely 

to take place. Thus, the practical identifiability, based on a model incorporating growth, of the theoretically 

identified parameter combinations resulting from a no-growth model structure would not have suffered 

much. The possible error in these studies is in fact related to the factor (1+iXBYA1). 

Indeed, to be able to practically identify the theoretically identifiable parameters assuming growth, the 

available data must show a significant increase of the amount of biomass, e.g. visible in an increase of rO,ex 

during a long-term experiment. If the data do not reflect such significant biomass growth, the separation of 

the parameters µmax and X(0) will not work in practice, causing high correlation between these two 

estimates. A good example for a respirometric experiment that does show significant biomass growth is 

presented in the work of Kappeler and Gujer (1992) and is also applied by Spérandio and Paul (2000). 
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An important result of this study is that the autotrophic yield, YA1 (and YA2 as well in case SNO2(0) is 

known) becomes uniquely identifiable by combining respirometric and titrimetric data when studying 

nitrification. This is an important finding since the yield is an essential parameter in substrate degradation 

models. Indeed, the yield determines the distribution of consumed substrate between biomass growth and 

energy production. It is in fact not surprising that an unique identification of the biomass yield requires two 

kinds of measurements, since the yield coefficient relates two measures, that can link how much biomass is 

produced per unit of substrate degraded. Holmberg (1982), who identified the yield coefficient uniquely by 

assuming combined measurements of biomass and substrate already proved this. In the present case with 

combined respirometric and titrimetric measurements, both measurements reflect how much biomass is 

produced per unit of substrate degraded. The biomass yield becomes identifiable for the combined 

measurements because an additional parameter combination becomes identifiable compared to a situation 

where only a single measurement is available. This additional parameter combination appears to be nothing 

else than the ratio of the two stoichiometric factors that relate the respective measured variables to 

substrate degradation. 

Finally and most substantially, it was proven and illustrated that it is possible to generalise the theoretical 

parameter identifiability based on an ASM1-like stoichiometric matrix. As stressed above one of the 

bottlenecks of the application of the series expansion methods is that the user initially has to “guess” which 

parameter combinations may be identifiable. If the problem is not solvable under these assumptions, other 

parameter combinations have to be assumed and tried out resulting in an iterative procedure. Thus, the 

generalisation rules are a very powerful tool to assess the theoretical identifiable parameter combinations 

directly, only based on knowledge of the process under study, the measured component(s) and the 

substrate component(s) that is degraded. Thereby the rather time-consuming task of assessing the 

theoretical identifiability of parameters of models, described by the Monod growth kinetics in ASM1-like 

matrix presentations, has been reduced significantly. 

7. Conclusions 

An essential first step in parameter estimation of models that are applied for data description is the 

assessment of the theoretical identifiability of the model parameters. In this study the theoretical 

identifiability of the two-step nitrification model was studied, via the Taylor series expansion and generating 

series methods, considering data resulting from two different types of respirometer and a titrimetric 

measurement. Initially, the parameter identifiability of the Monod kinetic parameters was studied based on 

measurements of oxygen uptake rates and cumulative proton consumption. It appeared that the parameter 

identifiability improves when combined respirometric and titrimetric data are available. It was proven that 

the autotrophic yield becomes uniquely identifiable in this situation. When oxygen concentration data are 

applied instead of oxygen uptake rates, it was further proven that the volumetric oxygen transfer coefficient 
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KLa was theoretically identifiable together with the Monod kinetic parameters.  

In the theoretical identifiability study including the hybrid respirometer (respirometer 2), where an input was 

considered, it was illustrated that the generating series method was more powerful than the Taylor series 

expansion, since it resulted in simpler equations with respect to the parameters. On the contrary, in case no 

inputs were defined the Taylor expansion method and the generating series gave identical results. 

The most important result of the study was however that the results of the theoretical identifiability study 

could be generalised. Based on simple generalisation rules the theoretically identifiable parameter 

combinations can be assessed directly from an ASM1-like matrix representing the model under study, 

thereby reducing the time needed for a theoretical identifiability study significantly. Thus, the theoretical 

identifiable parameters can be obtained directly without even considering the mathematical aspects of 

theoretical identifiability. 
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Chapter 5 
 - 

Practical identifiability of model parameters by 
combined respirometric-titrimetric 

measurements 

 

This chapter was published as : 

Petersen B., Gernaey K. and Vanrolleghem P.A. (2001) Practical identifiability of model 

parameters by combined respirometric - titrimetric measurements. Water Science and Technology, 43(7), 

347-356.  
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Chapter 5 
 
Practical identifiability of model parameters by 
combined respirometric-titrimetric 
measurements 

Abstract - A study on theoretical identifiability of parameters for a two-step nitrification model showed 

that a unique estimation of the yield YA1 is possible with combined respirometric-titrimetric data, contrary 

to the case where only one type of measurement is available (chapter 4). Here, the practical identifiability of 

model parameters has been evaluated. The study was carried out via evaluation of the output sensitivity 

functions and the corresponding Fisher Information Matrix (FIM). It appeared that the FIM is not 

sufficiently powerful to predict the practical identifiability of this case with combined measurements as 

parameters can indeed be identified despite the fact that the FIM became singular. In the second part of the 

chapter the accuracy of parameter estimates based on respirometric and titrimetric data and combination 

thereof was investigated. It appeared that estimation on titrimetric data (Hp) is very accurate and a fast 

convergence of the objective function towards a minimum is obtained. The same holds for estimation on 

oxygen uptake rate data (rO), however with a lower accuracy. Parameter estimation based on oxygen 

concentration data (SO) is more complex but results in a higher accuracy. Thus, when the highest accuracy 

is needed it is recommended to estimate parameters initially on Hp and/or rO data, and to subsequently use 

these parameters as initial values for final, and more accurate estimation on SO data. 

1. Introduction 

The theoretical identifiability of model parameters is based on the model structure and the available outputs, 

and gives an indication of the maximum amount of information that can be obtained from a given 

(theoretical) experiment (see chapter 4). The practical identifiability on the contrary not only depends on 

the model structure, but is also related to the experimental conditions together with the quality and quantity 

of the measurements. For a given practical case or experiment one can obtain a direct answer on the 

parameter identifiability by studying the practical parameter identifiability. It should be stressed that the 

practical parameter identifiability often does not correspond with the theoretically derived one due to poor 

data quality (Holmberg, 1982). 

The theoretical identifiability of the parameters of a two-step nitrification model based on Monod kinetics 
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has been studied via the series expansion methods: Taylor and generating series expansions (see chapter 

4). The two-step nitrification model consists of the following steps: (1) oxidation of ammonium (NH4
+) to 

nitrite (NO2
-), and (2) oxidation of nitrite (NO2

-) to nitrate (NO3
-). This process is illustrated in a simple 

form in Eq. 1, without considering that a small part of NH4
+ may be incorporated into the biomass during 

growth. Note that both nitrification steps can be characterised by measurements of oxygen uptake whereas 

only the first step can be characterised by its proton production. 







↔+

++↔+
−−

+−+

322

2224

NOO½NO

OHH2NOO½1NH
    (1)  

The theoretical identifiability study was undertaken for two different model structures, assuming absence 

and presence of biomass growth respectively. It was considered that only respirometric data 

(measurements of dissolved oxygen, SO, or oxygen uptake rate, rO), only titrimetric data (cumulative proton 

production, Hp) or a combination of both were available. Table 1 summarises the results of the theoretical 

identifiability study for a model structure that assumed no biomass growth, typically applicable for 

description of short-term experiments. 

Table 1. Schematic overview of the theoretically identifiable parameter combinations for nitrification step 1 

and 2, depending on the available measurement(s), and assuming that no biomass growth takes place 

(chapter 4) 

Process Nitrification step 1 Nitrification step 2 

Measurement → 

Model structure ↓ 

SO or rO Hp SO + Hp or 

rO + Hp 

SO or rO 

No growth 
X
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1A µ
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2
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Y

Y43.3
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1A

1A µ
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1SA1A K)Y43.3( −  

)0(S)Y43.3( NH1A−  

)Y43.3(
2

14
1A−  

X
Y

Y14.1
2Amax

2A

2A µ−  

2SA2A K)Y14.1( −  

)0(S)Y14.1( 02N2A−  

 
An important result of the theoretical identifiability study was that the autotrophic yield for the first 

nitrification step, YA1, becomes uniquely identifiable when a combination of respirometric and titrimetric 

measurements is available. This can be concluded from the “SO + Hp or rO + Hp” column in Table 1, 

where the 4. expression results in a unique identification of YA1. The autotrophic yield coefficient YA1 is 

only identifiable in a combination with other parameters in case only one kind of measurement is available, 

as can be seen in the “SO or rO” and the “Hp” column in Table 1. It is in fact not surprising that a unique 
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identification of YA1 requires two kinds of measurements, since the yield coefficient links the amount of 

produced biomass to the number of degraded substrate units. 

The methods by which the theoretical identifiability can be studied (e.g. the series expansions) may 

however not be that straightforward to apply, and may result in sets of non-linear equations that are far 

from simple, even for models of moderate complexity (Raksanyi et al., 1985). This was also realised in the 

study presented in chapter 4. Consequently, the theoretical identifiability analysis may not be very 

“practical” as a preliminary step towards parameter estimation. Alternatively, the practical parameter 

identifiability can be evaluated directly based on the sensitivity functions (Holmberg and Ranta, 1982; 

Marsilli-Libelli, 1989) and the corresponding Fisher Information Matrix (FIM), which is a known measure 

for practical identifiability (Spriet and Vansteenkiste, 1982; Munack, 1991). 

In this chapter, the theoretical identifiability results obtained with the series expansion methods in chapter 4 

are evaluated for a specific case study through interpretation of the sensitivity functions and the 

corresponding FIM. This evaluation was carried out as a preliminary step to apply the results of the 

theoretical identifiability study in the context of optimal experimental design for combined respirometric and 

titrimetric experiments (see chapter 7). Furthermore, the accuracy of parameter estimates based on 

respirometric or titrimetric data and combined measurements was investigated. 

2. Theoretical background 

Consider the general model )p(M  (Eq. 2) : 







=

==

)p),t(x(g)p,t(y

)p(0x)0(x     ),p,t),t(u),t(x(f)t(x
dt
d

:)p(M     (2)  

Parameter estimation typically aims for a minimisation of a weighted sum )p(J  of squared errors between 

model outputs )p,t(y i  and measured outputs )t(y im  with the weights iQ  and N the number of 

measurements (Eq. 3). The minimisation is obtained by optimal choice of the parameter vector p . 

( ) ( ))t(y)p,t(yQ)t(y)p,t(y)p(J imi

N

1i
i

T
imi −−= ∑

=
    (3)  

For a given p  the effect of a small deviation of the parameters, p∂ , on the model fit, described by )p(J , 

can be evaluated by introducing a linearisation of the model with respect to the parameters along the 

trajectory (Eq. 4). 
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N
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i
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where : 

p)p,t(Y)p,t(yp
p

)p,t(y
)p,t(y)pp,t(y ipi
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∂
∂
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In Eq. 5 )p,t(Y ip  denotes the output sensitivity functions with respect to the parameters. Thus, the output 

sensitivity functions are defined by Eq. 6. They can be obtained analytically by differentiating Eq. 2 with 

respect to p resulting in Eq. 7 (Posten and Munack, 1989; Munack, 1991). Simultaneous integration of Eq. 

2 and Eq. 7 results then in the output sensitivity functions. The sensitivity functions of the states can be 

derived similarly. 

p
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∂
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For a non-linear model, such as the Monod model, the sensitivity functions are dependent on the model 

parameters. This is in fact a general characteristic of non-linear models and can be used to define non-

linearity (Robinson, 1985).  

In practice one may approximate the sensitivity functions numerically via Eq. 8, an approximate form of Eq. 

6. 

p
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p
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∆
∆
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∂
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      (8)  

Returning to Eq. 4 - 5, the expected value of the objective function )( pJ  can be reformulated (Eq. 9). 
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   (9)  

Consequently, to obtain a reliable minimum for )p(J  the difference between )p(J  and )pp(J ∂+  should 

be maximised, i.e. a minimum is sought where )p(J  is sensitive towards changes in p . The reliability of the 

minimum can thus be increased by maximising the term between brackets in Eq. 9. 

If the weighting matrix iQ  in Eq. 9 is chosen as the inverse measurement error covariance matrix, assuming 

that the measurement noise is white (i.e. independent and normally distributed with zero mean), and 

uncorrelated (i.e. the measurement error covariance matrix is a diagonal matrix), the term between brackets 

in Eq. 9 is defined as the Fisher Information Matrix (FIM). This choice of iQ  means that the more a 
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measurement is noise corrupted the less it will count in the FIM. The FIM is given in Eq. 10 (Munack, 

1991). 

)p,t(YQ)p,t(YFIM ipi

N

1i

T
ip∑

=
=     (10)  

Moreover, the FIM is the inverse of the parameter estimation error covariance matrix, COV, and provides 

the Cramer-Rao lower bound on the parameter estimation errors, Eq. 11 (Ljung, 1999; Walter and 

Pronzato, 1999). 

)p(FIM)p(COV 1−≥       (11)  

Thus, the FIM can be regarded as a summary of the output sensitivity functions and the measurement 

accuracy, thereby summarising the information concerning the model parameters gained from an 

experiment. The rank of the FIM gives an indication of the theoretical parameter identifiability because the 

FIM is an approximation of the Hessian matrix of J (Söderström and Stoica, 1989). Local parameter 

identifiability requires that the rank of the FIM is full. This can for example be checked by computation of 

the determinant. If the Det(FIM)≠0 the parameters are locally identifiable (Spriet and Vansteenkiste, 1982; 

Söderström and Stoica, 1989). In case Det(FIM)=0 (FIM is singular) some of the sensitivity functions are 

proportional, i.e. they are multiples of one another. According to the FIM it will be impossible in that 

situation to obtain unique estimates of the parameters from the data. Unique parameter estimates may be 

obtained when the sensitivity equations are almost proportional, but they will be highly correlated. This 

situation is rather undesirable since it implies that several combinations of parameters may describe the data 

almost equally well (Robinson and Tiedje, 1983). Several scalar functions of FIM can be defined as a 

measure of the “quality” of the estimated parameters, e.g. the determinant, condition number and trace. 

They play a key role in the theory of optimal experimental design. Application of FIM in that respect is 

however outside the scope of this chapter but has been dealt with in other studies (e.g. Munack, 1991; 

Vanrolleghem et al., 1995; Versyck et al., 1997), see also chapter 7. Here, however, another use is made 

of the calculated FIM. Its inverse will be applied in the derivation of confidence intervals. Indeed, the 

standard deviation of the i’th estimated parameter 
∧

ip  can be obtained from the square root σi of the i’th 

diagonal element of the inverse FIM. An approximate confidence interval at level α is then given by Eq. 12, 

where t indicates the t-distribution, which converges to the normal distribution when the number of 

measurements N is high. 


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
 +− −
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−

∧

i)pN(,ii)pN(,i tp,tp σσ αα     (12)  
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3. Case study 

In the case under study data was obtained with a hybrid respirometer that was combined with a titrimetric 

measurement technique (see chapter 3). The set-up is illustrated in Fig. 1. It consists of an open 

continuously aerated vessel and, connected to it, a closed non-aerated respiration chamber. It is equipped 

with two electrodes for measurement of dissolved oxygen. Mixed liquor is continuously pumped between 

the aeration vessel and the respiration chamber. The oxygen (SO) mass balances for the aeration vessel and 

the respiration chamber are given in Eq. 13 and 14 respectively. In these equations, the suffixes 1 and 2 

refer to the aeration vessel and the respiration chamber respectively. 

1,O1,O
o
OL1,O2,O

1

in1,O r)SS(aK)SS(
V
Q

dt

dS
−−+−=    (13)  

2,O2,O1,O
2

in2,O r)SS(
V
Q

dt

dS
−−=      (14)  
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Figure 1. Experimental set-up used to collect combined respirometric-titrimetric data 

The main advantage of this respirometer is that the oxygen uptake rate rO,2 can be calculated by a simple 

SO mass balance over the closed respiration vessel (Eq. 14), thereby avoiding the need to estimate KLa 

values (see chapter 3). In the hybrid respirometer substrate is added in the aeration vessel at the start of an 

experiment (time zero), and not to the closed respiration chamber. Thus, the substrate concentration in the 
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respiration chamber builds up from zero through the substrate flow from the aerated vessel. The rO values in 

both vessels (rO,1 and rO,2 respectively) are obviously only equal when the substrate concentrations in both 

vessels are identical. The rO value in Eq. 13 and 14 consists of two processes: (1) the immediate uptake of 

oxygen due to the consumption of a readily biodegradable substrate, i.e. the exogenous oxygen uptake rate 

rO,ex, and (2) the endogenous oxygen uptake rate rO,end. The rO,ex, can be modelled via a Monod expression 

and the rO,end is typically modelled as a first order decay process Xb ⋅ . 

The basic concept behind the titrimetric measurement technique is that the pH of the activated sludge 

sample is kept at a constant pH set-point while the cumulative amount of base and/or acid needed to keep 

that set-point is measured (Ramadori et al., 1980). The cumulative amount of base or acid added contains 

kinetic information that is comparable to respirometric data in the case of nitrification, and can be modelled 

similarly (Gernaey et al., 1998). 

For this case study respirometric and titrimetric data were modelled by applying the model structure that is 

summarised in Table 2. The model in Table 2 is based on ASM1 (Henze et al., 1987), with some 

modifications, and included also equations for the substrate transport in the hybrid respirometer and a first 

order equation to describe the biological start-up until rO reaches its maximum value. A more detailed 

description of the model can be found in chapter 3. 

Table 2. Model used for interpretation of the respirometric and titrimetric data assuming that no biomass 

growth takes place 

Component → 
Process ↓ 

1. 
SO 

2. 
SNH 

3. 
SNO2 

4. 
SNO3 

5. 
Hp 

Process rate 

1. Nitrification step 1 
1A

1A

Y
Y43.3 −

−  
1AY

1−  
1AY

1
  

1AY7
1

⋅
 X

SK
S

NH1SA

NH
1Amax +

µ  

2. Nitrification step 2 
2A

2A

Y
Y14.1 −

−   
2AY

1−  
2AY

1
  X

SK
S

2NO2SA

2NO
2Amax +

µ  

 

The actual experiment under study consisted of an ammonium addition to activated sludge. Data 

interpretation was done assuming that no biomass growth takes place, by applying the model summarised 

in Table 2. The data set is presented in Fig. 2 together with the model fits. In Fig. 2 it may be difficult to 

distinguish the model fit from the data. This is due to a combination of a low noise level on the SO data and 

a good model fit. 

A tail is observed in the rO,2 profile (from t = 60 min to about t = 100 min in Fig. 2) which indicates that in 

this case the second nitrification step is slower than the first step. In this study we will only focus on the 

estimation of the parameters of the first nitrification step. Therefore, the parameters for the second step 

were fixed at known values obtained from a separate experiment with addition of nitrite. Consequently, 
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according to the theoretical identifiability analysis summarised in Table 1, the parameters µmaxA1, KSA1, YA1 

and SNH(0) could be estimated when considering combined rO,2 and Hp data. If SO data was considered 

instead of rO,2 the parameters KLa, b and o
OS  had to be estimated additionally, as can be concluded from 

Eq. 13 – 14 (see also chapter 4). 
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Figure 2. Experimental data (rO,2, Hp, SO,1 and SO,2) obtained after adding ammonium to activated sludge 

at time = 0 and model fit to experimental data 
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4. Results and discussion 

4.1. Sensitivity functions and practical identifiability 

The output sensitivity functions of SO, rO,2 and Hp with respect to the different parameters were analytically 

derived in MAPLE V (Waterloo Maple Software) according to Eq. 6 – 7 (see Appendix 5.1). In this 

analytical derivation only the model considering the first nitrification step was included. The analytically 

derived sensitivity functions were verified numerically (via Eq. 8), and it was found that the analytical and 

numerical sensitivity functions were identical. This numerical check is recommended for complex models, as 

the one under study, because errors easily slip into the analytical derivation. 

The well-known almost linear dependency between the sensitivities of the different outputs with respect to 

µmaxA1 and KSA1 was observed (data not shown, see Appendix 5.1). This is indicating that these two 

parameters will be correlated, and that it may be difficult to identify these two parameters in practice 

(Holmberg, 1982; Robinson and Tiedje, 1983). Furthermore, it can be observed in Fig. 3A and 3B that 

the sensitivity functions of the outputs rO,2 and Hp with respect to µmaxA1 and YA1 appear proportional. This 

is confirmed by the equations of the sensitivity functions which are proportional (see Appendix 5.1). 

Consequently, based on this information it will not be possible to obtain unique estimates for these two 

parameters. Note here that this finding is in conflict with the results of the theoretical identifiability study. 

Below, after a more thorough discussion of the sensitivity functions, this finding will be discussed in more 

detail. 

As mentioned above, the sensitivity functions can pinpoint the experimental conditions under which the 

dependency of the outputs on the parameters is largest, and thereby under which conditions most 

information can be obtained on the parameters. E.g. the sensitivities of rO,2 outputs with respect to the 

kinetic parameters exhibit rather sharp peaks indicating that at certain points the sensitivity of the outputs 

towards the parameters is significant (see Fig. 3A). This in fact indicates that the full information contained 

in the data is only available during a rather short part of a typical batch experiment and, further, that large 

estimation errors may be generated if one does not collect sufficient data during this “sensitive” time interval 

(Marsilli-Libelli, 1989). The sensitivities of the Hp output on the other hand do not exhibit such sharp peaks 

(Fig. 3B). The information is not only concentrated in a limited time interval and, in case of equidistant 

measurements, this may indicate that with Hp outputs better advantage is taken of the information provided 

by the entire data set.  

The sensitivity functions with respect to the initial substrate concentration seemed to be clearly 

distinguishable from the other sensitivities indicating that a unique estimate can be expected (Fig. 3C). The 

rather different shapes of the sensitivity functions of rO,2 compared to Hp illustrate the difference between 

the sensitivity of concentration (given by Hp) versus rate data (given by rO,2). The sensitivity functions of SO 
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with respect to o
OS  and b in Fig. 3D show that these are proportional, whereas it was found that the shape 

of the sensitivity function with respect to KLa was distinguishable (Appendix 5.1). This indicates that a 

unique estimate of KLa would be possible (see also chapter 4). 

Summarising, it can be expected from the detailed sensitivity analysis study that the estimation of µmaxA1 and 

KSA1 may cause practical problems. YA1 is not identifiable when considering separate measurements of rO,2, 

SO or Hp. Furthermore, it was indicated that a separation of the parameters o
OS  and b may be problematic. 

 

 

Figure 3. Sensitivity functions for rO,2, Hp and SO obtained for the nitrification case study. A: drO,2/dµmaxA1 

and drO,2/dYA1; B: dHp/dµmaxA1 and dHp/dYA1; C: drO,2/dSNH,1(0) and dHp/dSNH,1(0); D: dSO,1/d o
OS  and 

dSO,1/db 

According to the findings from the theoretical identifiability study (see Table 1) YA1 should become uniquely 

identifiable when measurements are combined. Surprisingly, however, when summarising the information of 

the sensitivity functions in the FIM for combined respirometric (SO or rO,2) and titrimetric (Hp) 

measurements, the FIM becomes singular indicating an unidentifiable situation. It was found that it is the 

inclusion of the sensitivity functions with respect to YA1 that is causing the singularity due to the fact that the 

sensitivity functions of µmaxA1 and YA1 are proportional. Thus, there seems to appear a conflict between the 

application of FIM as a measure for local parameter identifiability and the results derived from the 

theoretical identifiability studies (Table 1). The FIM does not seem to reflect the improved theoretical 

identifiability achieved by combining measurements. A similar observation was observed with the 
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parameters o
OS  and b. The parameter b is theoretically identifiable when combining two oxygen 

measurements in the hybrid respirometer (chapter 4). However, the inclusion of the sensitivity function of b 

also causes singularity of the FIM. 

The reason for this discrepancy is not clear. It may however be hypothesised that information on parameter 

identifiability obtained from the combination of measured outputs may be lost due to the local first order 

linearisation of the model with respect to the parameters on which FIM is based (see Eq. 5 and 9). 

To further investigate the practical identifiability of YA1 for the example under study, simultaneous estimation 

of µmaxA1, KA1, SNH,1(0) and YA1 was carried out. A contour plot of the objective function J as a function of 

the possibly correlated parameters µmaxA1 and YA1 is given in Fig. 4. As would be expected from the FIM 

results, it appears that the parameters µmaxA1 and YA1 are highly correlated in practice since a long valley is 

observed, indicating a severe practical identifiability problem. However, it is also obvious that the contour is 

closed. Hence, the result that YA1 is theoretically identifiable is confirmed if one evaluates the non-linear 

objective function and not its linear approximation close the minimum as done when applying a FIM-based 

analysis. Obviously this conflict between methods for identifiability analysis deserves further theoretical 

analysis. 

 

Figure 4. Contour plot of the objective function plotted as a function of µmaxA1 and YA1 
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4.2. Evaluation of parameter estimation accuracy with respirometric-
titrimetric data 

In the following, the confidence intervals of the estimated parameters are evaluated based on Eq. 11 - 12 

and it will be discussed whether respirometric data (SO or rO,2) may be more powerful than titrimetric data 

(Hp) for accurate parameter estimations. 

First, it will be described how the measurement error covariance matrix Q in Eq. 10 is practically estimated 

for SO, rO,2 and Hp data of the example given in Fig. 2. For SO and rO,2 data the measurement error (s2) is 

estimated from a data series obtained during endogenous respiration (typically before or after the substrate 

addition). In the case under study the measurement errors of rO,2 were estimated from t=100 - 120 min 

where rO,end can be considered constant. This data series for rO,2 is illustrated in Fig. 5 together with the 

average value and the residuals. The s2 is estimated via Eq. 13, where N is the number of measurements 

and p is the number of estimated parameters (here p=1, the average). 

pN
SSE

s2

−
=       (13)  

For Hp data it would, however, give an unrealistic, optimistic picture to estimate the measurement error 

from data after the point where substrate degradation is terminated, since the Hp profile in the case under 

study is a perfect horizontal line. As a consequence s2 is estimated based on the data series from t = 15 - 

35 min where the slope can be assumed constant. Thus, the data are not evaluated with respect to an 

average value but to a model of the simple form btaHp +⋅=  (calculated via the slope and intercept of the 

data series). The data series, model and residuals are illustrated in Fig. 5. In the estimation of s2 p is now 

equal to 2. Note that it appears from Fig. 5 that the residuals seem to be auto-correlated. This is in fact 

violating the white measurement noise condition in Eq. 10, and it may result in optimistic confidence 

intervals (Glasbey, 1980). Note that the auto-correlation is only visible due to the high sampling frequency 

implemented. 
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Figure 5. Data and residuals used to estimate the measurement noise on Hp and rO,2 data 
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The covariance among the residuals and the corresponding correlation matrix were estimated and are given 

in Eq. 14 - 15 respectively for the example of combined rO,2 and Hp measurements. 
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It was verified, via a t-test for correlation, that the correlation between the two data sets was insignificant at 

test level 5%. Thus, the measurement covariance matrix Q was determined to be (Eq. 16): 
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A test of the correlation between the residuals of the two SO outputs (SO,1 and SO,2) and Hp data also 

showed to be insignificant, resulting in the measurement covariance matrix Q given in Eq. 17.  
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From Eq. 16 and 17 it can be seen that the actual measurement error on SO and rO,2 is in the same order of 

magnitude, however relatively the measurement error on rO,2 data is about 100 times bigger than the relative 

error on SO data. On the contrary, it is difficult to compare the measurement variance of titrimetric and 

respirometric data since they are two different kinds of measurements. The 95% confidence intervals 

(expressed as percentage of the parameter values, Table 3) are now retrieved by calculation of the inverse 

FIM via Eq. 10 and 11, and by inserting the diagonal values into Eq. 12. It should be noted that due to the 

singularity problems with the FIM, the sensitivity functions of YA1 and b were excluded from the calculation 

of the FIM. 

These results indicate that it is more accurate to estimate the parameters based on Hp data than on rO,2 

data. This is especially the case for SNH,1(0) where the 95% confidence interval is as low as +/- 0.074% 

with Hp data. If one considers the Hp profile in Fig. 2 this is not surprising since SNH,1(0) is in fact 

determined by the location of the constant horizontal plateau and many data contain this information. 

Furthermore, it becomes obvious from Table 3 that the confidence intervals improve by the application of 

combined rO,2 and Hp measurements. This is especially the case for the parameters µmaxA1 and KSA1, where 

an improvement of about 50% is observed compared to measurements of rO,2 alone. The accuracy of the 

SNH(0) estimate does, however, not improve significantly further by applying combined rO,2 and Hp 
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measurements. When the accuracy based on SO data is compared with the accuracy obtained by using the 

SO derived rO,2, it becomes obvious that it is more accurate to estimate on the SO concentration data. This 

is clearly due to the much higher measurement noise on rO,2 data, as mentioned above. Furthermore, a 

significant improvement in accuracy is observed when two dissolved oxygen measurements are available 

(SO,1 + SO,2) compared to a situation where only one measurement is available (SO,1). This confirms the 

statement made by Vanrolleghem and Spanjers (1998) that in this set-up basically two independent 

measures of the respiration rate can be obtained, thus duplicating the information on the kinetic parameters. 

The added value of Hp to combined SO,1 and SO,2 measurements seems however to be insignificant. 

Table 3. 95% confidence intervals expressed as percentage of the parameter values, Q via measurement 

errors 

Data µmaxA1 KSA1 SNH,1(0) KLa o
OS  

rO,2 1.385 6.328 0.510 - - 

Hp 0.905 5.780 0.074 - - 

rO,2 + Hp 0.696 3.942 0.070 - - 

SO,1 0.231 0.943 0.241 0.293 0.064 

SO,1 + SO,2 0.093 0.506 0.028 0.094 0.028 

SO,1 + SO,2 + Hp 0.091 0.511 0.026 0.090 0.028 

 

The accuracy reported in Table 3 are quite impressive and warrant some verification. First of all, it was 

evaluated whether the confidence intervals were too optimistic due to the occurrence of auto-correlated 

residuals. However, the measurement noise of the applied experimental method is indeed not very 

significant, as indicated in Fig. 2. The confidence intervals were verified via simulations where the parameter 

values were set to the limits of the 95% confidence intervals. The resulting simulated curves indeed just laid 

within the edges of the measurement noise, confirming that the calculated 95% confidence intervals are 

calculated correctly. A final element of discussion is that in the calculation of confidence intervals in Table 3, 

the weighting matrix Q is based on the measurement errors only and does not include the model errors. 

Therefore, as a second evaluation of the parameter accuracy Q was based on the values of the objective 

function )p(J  obtained from the parameter estimation, thereby including both measurement noise and 

model errors, as also applied in the study of Weijers (1999). The resulting 95% confidence intervals are 

given in Table 4.  
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Table 4. 95% confidence intervals expressed as percentage of the parameter values, Q via objective 

function )p(J  

Data µmaxA1 KSA1 SNH,1(0) KLa o
OS  

rO,2 1.884 8.805 2.433 - - 

Hp 0.911 5.820 0.074 - - 

rO,2 + Hp 0.826 4.740 0.077 - - 

SO,1 0.308 1.255 0.321 0.389 0.085 

SO,1 + SO,2 0.335 1.821 0.104 0.321 0.094 

SO,1 + SO,2 + Hp 0.264 1.503 0.066 0.246 0.076 

 
In general the differences between the 95% confidence intervals obtained with the two error calculation 

approaches are not very large when considering rO,2, Hp, rO,2+Hp and SO,1 data. This indicates that the 

model has been able to describe these data adequately since the main part of the errors is included in the 

measurement noise. This is especially the case for Hp measurements, where the confidence intervals 

obtained with both approaches are almost identical. An exception is the estimation of SNH,1(0) based on 

rO,2 data where the model error seems to play a significant role. On the contrary the difference in 95% 

confidence intervals with SO,1 + SO,2 data seems significant, and when model errors are considered the 

accuracy does not improve compared to SO,1 data alone (Table 4). However, compared to Table 3 

including the Hp data now improves the accuracy. The reason for the lack of improvement in accuracy 

when considering two oxygen measurements is the fact that the complexity of the parameter estimation 

procedure increases drastically in this case. Furthermore, the model may not be adequate enough to 

describe the data as well as in the other cases.  

Consequently, based on Table 3, and thus only considering measurement errors, one may conclude that the 

most accurate parameters are obtained by applying the two oxygen measurements, SO,1 and SO,2, from the 

hybrid set-up. This is however contradicted by the results given in Table 4 which point more in the direction 

of applying only one set of oxygen measurements, i.e. SO,1. 

Another important factor to consider before choosing the most adequate measured variables for a 

parameter estimation problem is the rate of convergence of )p(J  towards a minimum and, quite related, the 

sensitivity for local minima. From experience it has appeared that convergence is significantly faster when 

rO,2 and/or Hp data are used rather than SO data. This is due to the increased complexity of the estimation 

problem when using SO data, since KLa and o
OS  both need to be estimated simultaneously with the kinetic 

parameters µmaxA1 and KSA1 and SNH,1(0). Especially the parameter estimation based on Hp data alone is 

very fast and is, in addition, also very accurate, as indicated in Table 3 and 4. Thus, in practice one may 
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initially choose to estimate the kinetic parameters on Hp and/or rO,2 data, and to obtain an even higher 

accuracy, especially for µmaxA1 and KSA1, apply these parameter values as initial guesses for parameter 

estimations based on SO data. The introduction of a second SO data source, however, may seem 

questionable based on the case under study, due to the increased complexity of the parameter estimation 

problem and the effects this has on convergence rates. 

5. Conclusions 

In this chapter the practical identifiability was studied on a nitrification example considering combined 

respirometric and titrimetric measurements. The practical identifiability was evaluated via output sensitivity 

functions and the corresponding Fisher Information Matrix (FIM). It appeared that the FIM became 

singular indicating an unidentifiable situation despite the fact that a theoretical identifiability study had shown 

that the chosen parameter set, including a unique identifiability of the yield YA1, should be identifiable with 

combined respirometric-titrimetric measurements. The FIM seemed, however, inadequate to evaluate this 

improved theoretical identifiability since the inclusion of the sensitivity of YA1 in the calculation of FIM 

caused the singularity. It was hypothesised that some information on the parameters may be lost when 

applying FIM due to the local first order linearisation of the model with respect to the parameters on which 

the FIM is based. It was found that, estimation of the YA1 was indeed possible in practice, as the 

theoretical identifiability analysis predicted, although it was strongly correlated with µmaxA1. For the case 

under study it thus seemed that an evaluation of parameter identifiability based on FIM gave a too 

pessimistic picture. This has some implications on the application of FIM in Optimal Experimental Design, 

as will be dealt with further in chapter 7. 

Furthermore, the accuracy of parameter estimates based on respirometric and titrimetric data was 

evaluated. In this evaluation considerations and experience were included, concerning (i) measurements 

errors, (ii) model errors and (iii) the complexity of the parameter estimation as characterised by the 

convergence of the estimation algorithm towards a minimum. From this it could be concluded that 

estimation of parameters on Hp data is very accurate and a fast convergence is obtained. The same holds 

for rO,2 data although the accuracy is less. It is suggested that an even higher accuracy can be obtained 

when the parameter estimates based on Hp and/or rO,2 are applied as initial values for the more complex 

parameter estimation based on SO data. Thus, these findings may be kept in mind in the choice of 

measurement. 
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Appendix 5.1 
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Output sensitivity functions of single step 
nitrification model 
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Appendix 5.1 
 
Output sensitivity functions of single step 
nitrification model 

In this appendix the output sensitivity functions of rO,ex, SO, and Hp are derived. Concerning the output 

functions of rO,ex it should be remembered that rO,ex in the hybrid set-up is derived from the mass balance 

over the respiration chamber (rO,ex2) (see chapter 3). In the study on practical identifiability of model 

parameters by combined respirometric-titrimetric measurements, the applied model was a two step 

nitrification model. However, in the presented case only the parameters of the first step could be identified, 

and the parameters for the second nitrification step were therefore fixed at known values obtained from a 

separate experiment where only nitrite was added. Thus, in the calculation of the FIM only the sensitivity 

functions related to the first step were included (see chapter 5 for the details), which in fact makes the 

derivations below similar to the derivations considering a single step nitrification model. 

In this study only short-term experiments were considered. It can therefore be assumed that significant 

growth can be neglected which means that the biomass concentration X is not considered as a function of 

time (see chapter 4). In case the experiments are not short-term the output sensitivity functions will be 

significantly more complicated (i.e. it will have to be considered that X(t) is depending on the parameters as 

well). Furthermore, the experiments under study are all performed under oxygen sufficient conditions (SO > 

2mg/l) which means that rO,ex is independent of SO. All analytically derived sensitivity functions have been 

carefully verified via a numerical procedure, as described in chapter 5. 

1. Sensitivity functions of rO,ex2 

The sensitivity of rO,ex2 with respect to µmaxA1 and KSA1 were obtained following the same procedure as 

given in Vanrolleghem and Dochain (1998) with the difference however that a 1.order description of the 

biological start-up is included (Vanrolleghem et al., 1998). 
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The substrate concentration is calculated by integration of the dynamic model for the hybrid set-up 

including substrate transport (Eq. 2 illustrates the substrate equation for the respiration chamber). 



 

 192

)t(SK

)t(S

Y
X

)e1())t(S)t(S(
V
Q

dt

)t(dS

2,NH1SA

2,NH

1A

1Amax/t
2,NH1,NH

2

in2,NH

+
⋅

−−−⋅= − µτ   (2) 

Eq. 1 results in Eq. 3. 
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The factor 
1Amax

NH )t(S

µ∂
∂

 in Eq. 3 is defined as an additional state variable, and  
)t(r
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2O,ex

µ∂

∂
 can therefore be 

obtained by a simultaneous solution of Eq. 2 and 3. The sensitivity with respect to YA1 is very similar to the 

sensitivity function of µmaxA1 (Eq. 4), and it is obvious by comparing Eq. 3 and 4 that they appear to be 

proportional (see chapter 5). 
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The sensitivity of rO,ex2 with respect to KSA1 follows the same principle and is given in Eq. 5. 
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For the sensitivity of rO,ex2 with respect to the initial substrate concentration SNH,1(0), it should be 

remembered that the substrate is added in the aeration vessel only. Thus, the sensitivity of rO,ex2 should be 

derived with respect to the initial ammonium concentration in the aerated vessel SNH,1(0) (Eq. 6).  
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In the study of Vanrolleghem and Dochain (1998) the model of heterotrophic substrate (SS) degradation 

was considered, however, for a simpler respirometer with only (aerated) vessel yielding one value of rO,ex. 

The relationship of the form given in Eq. 7 was introduced to be able to solve the sensitivity function of rO,ex 

with respect to the initial substrate concentration. 
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An important difference between the hybrid respirometer and the respirometric principle studied in 

Vanrolleghem and Dochain (1998) is that it only contains one vessel to which the substrate is added. 

However, in the hybrid respirometer rO,ex is calculated from a mass balance of the respiration chamber 

yielding rO,ex2, whereas the substrate initially is added in the aeration vessel, i.e. SNH,1(0) and SNH,2(0)=0. 

Thus, an equivalent of Eq. 7 for the hybrid becomes (Eq. 8) : 
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For the hybrid model Eq. 7 will strictly speaking only be valid from the point on where r0,ex1 equals rO,ex2, 

i.e. SNH,1(t) = SNH,2(t). Alternatively, it could be considered that substrate was added to both vessels to 

make Eq. 7 valid for the whole experimental period. This is, however, not in accordance with reality, and 

therefore this study it constrained to the situation where the transport phase is not significantly long in the 

hybrid respirometer, i.e. the flow between aeration vessel and respiration chamber is sufficiently high to 

allow a converging of rO,2 to r0,1 within a short time (see also discussion on the flow effect in chapter 3). 

Thus, an overall mass balance for SNH(t) in the system can be written as Eq. 9. 
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When SNH,1(t) = SNH,2(t), i.e. rO,ex1 = rO,ex2 and SNH,2(0)=0, then Eq. 9 results in Eq. 10, and Eq. 6 results in 

Eq. 11. 
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2. Sensitivity functions of SO 

The sensitivity functions of SO in the hybrid model with respect to the different parameters (µmaxA1, KSA1, 

YA1, SNH,1(0), KLa, o
OS  and bH) are given in the following Eq. 12 – 19. 
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where 
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 are obtained via the approach given in Eq. 1. The sensitivity functions 

concerning KSA1,  YA1 and SNH,1(0) follow the same system as outlined in Eq. 12 – 13. The sensitivity 

functions of KLa, o
OS  and b are given in Eq. 14 - 19. Note that rO,ex is independent of SO as mentioned 

above which means that 
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3. Sensitivity functions of Hp  

Before developing the sensitivity functions of Hp, it should be reminded that pH control in the hybrid set-up 

is installed in the aerated vessel only, i.e. only Hp1 is measured. Thus, in reality the protons produced in the 

respiration chamber is only compensated for, by addition of base, in the aerated vessel. This also means 

that in reality Hp2 > Hp1 despite complete mixing, i.e. SNH,1(t) = SNH,2(t). However, in the treatment of the 

data this difference between Hp1 and Hp2 is neglected and the amount of added base (in meq) to 

compensate the proton production is divided with the total volume (V1+V2) and interpreted as an overall 

proton production (in meq/l). Thus, in the data analysis it is assumed that the mixing of the system is 

instantaneous, i.e. SNH,1(t) = SNH,2(t) and Hp1 = Hp2. Altogether this small discrepancy between reality and 

data analysis will be insignificant as long as the flow is sufficiently high allowing SNH,2(t) to converge to 

SNH,1(t) within short time (see chapter 3), and thereby permitting the flow term in the model to be 

neglected. 

Finally, since insignificant growth is considered, incorporation of SNH into biomass is not considered. The 

sensitivity functions of Hp then very much follow the same procedure as for rO,ex2. The solutions with 

respect to µmaxA1 and KSA1 are given in Eq. 20 - 24. 
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For the sensitivity with respect to the initial substrate concentration Eq. 24 replaces Eq. 10.  
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Figures of the output sensitivity functions are given below. 



 

 196

 

-1.E+05

-8.E+04

-4.E+04

0.E+00

4.E+04

8.E+04

0 20 40 60 80 100 120 140

Time (min)

dr
O

,2
/d

M
u m

ax
A

1

-3

-2

-1

0

1

2

dr
O

,2
/d

Y
A

1

drO,2/dYA1

drO,2/dMumaxA1

-8.E+04

-4.E+04

0.E+00

4.E+04

8.E+04

0 20 40 60 80 100 120 140

Time (min)

dH
p/

dM
u m

ax
A

1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

dH
p/

dY
A

1

dHp/dYA1

dHp/dMumaxA1

 

 

0.00

0.05

0.10

0.15

0 20 40 60 80 100 120 140

Time (min)

dr
O

,2
/d

S
N

H
,1

(0
), 

dH
p/

dS
N

H
,1

(0
)

dr O,2/dSNH,1 (0)

dHp/dSNH,1 (0)

C

-0.35

-0.25

-0.15

-0.05

0.05

0.15

0.25

0.35

0 20 40 60 80 100 120 140

Time (min)

dr
O

,2
/d

K
S

A
1,

 d
H

p/
dK

S
A

1 drO,2 /dKSA1

dHp/dKSA1

 

-1.E+06

-8.E+05

-6.E+05

-4.E+05

-2.E+05

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

0 20 40 60 80 100 120 140

Time (min)

dS
O

,1
/d

M
u

m
ax

A
1, 

dS
O

,2
/d

M
u

m
ax

A
1

dSO,1/dMumaxA1

dSO,2/dMumaxA1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100 120 140

Time (min)

dS
O

,1
/d

K
S

A
1
, d

S
O

,2
/d

K
S

A
1

dSO,2/dK SA1

dSO,1/dK SA1



 

 197

0.0

10.0

20.0

30.0

40.0

50.0

0 20 40 60 80 100 120 140

Time (min)

dS
O

,1
/d

K
La

, d
S

O
,2

/d
K

La

dSO,1/dKLa

dSO,2/dKLa

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 20 40 60 80 100 120 140

Time (min)

dS
O

,1
/d

S
N

H
,1

(0
), 

dS
O

,2
/d

S
N

H
,1

(0
)

dSO,1/dSNH,1(0)

dSO,2/dSNH,1(0)

 

 

0.0

0.5

1.0

1.5

0 20 40 60 80 100 120 140

Time (min)

dS
O

,1
/d

S
0,

 d
S

O
,2

/d
S

0

dSO,1/dS0

dSO,2/dS0

-8.E+04

-6.E+04

-4.E+04

-2.E+04

0.E+00

0 20 40 60 80 100 120 140
Time (min)

dS
O

,1
/d

b
, d

S
O

,2
/d

b

dSO,1/db

dSO,2/db

 

 

 

 

 

 

 

 

 

 

 



 

 198

 

 

 

 

 

 

 



 

 199

Chapter 6 
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Effect of parameter scaling on the Fisher 
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Chapter 6 
 
Effect of parameter scaling on the Fisher 
Information Matrix (FIM) and FIM based 
experimental designs 

Abstract – Simple rescaling of parameter units is shown in this study to affect the numerical properties of 

the Fisher Information Matrix (FIM) and its inverse, the parameter estimation error covariance matrix 

(COV). Only parameters expressed in time units can be re-scaled usefully, e.g. min to days. Parameter 

rescaling can be used to the advantage of more reliable covariance assessment because the numerical 

problems related to inversion of the FIM can be minimised by proper rescaling. However, the effect of 

rescaling on the FIM also affects the optimal experimental design (OED) methodology based on FIM. In 

the OED theory different scalar functions (e.g. determinant, condition number, trace) of the FIM are used 

as measures of the accuracy of the estimated parameters. Different OED criteria can be defined all aiming 

at reducing the COD. In this study it is shown that most OED-criteria are sensitive to rescaling, with the 

noticeable exception of the D-criterion, that focuses on a maximisation of the determinant of FIM. It means 

that the optimal experiments calculated according to an OED-criterion will be different if the model is 

written in different time units. Obviously, this is not very practical and rescaling should be carried out 

carefully. This sensitivity to rescaling was most pronounced for the modified E criterion that focuses on a 

minimisation of the condition number of the FIM with the optimal minimum equal 1. A classic OED 

example of a simple single substrate batch biodegradation model was re-evaluated and it was found that 

the theoretically best possible experiment according to this criterion, i.e. modified E criterion = 1, could be 

obtained just by rescaling of the parameter units. However, the corresponding optimal experiments could 

not be considered “optimal”, since it is just the result of changing the time units. This work stresses that 

care should be taken when OED-criteria other than the D-criterion are used to optimise an experimental 

plan. 

1. Introduction 

The Fisher Information Matrix (FIM) is the cornerstone in the optimal experimental design (OED) theory, 

since it summarises information on the measurement errors and parameter sensitivities thereby permitting a 

quantification of the quality of parameter estimation. Under certain conditions the FIM is equal to the 
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inverse of the parameter estimation error covariance matrix (COV). This property is basically the rationale 

for the use of FIM as a suitable characterisation of parameter uncertainty (Goodwin and Payne, 1977; 

Goodwin, 1987; Walter and Pronzanto, 1990, 1999). Different optimal experimental design criteria have 

been defined to improve the quality of parameter estimation based on scalar functions of the FIM, or in 

other words the shape of the confidence region (e.g. Goodwin, 1987; Munack, 1989, 1991). 

For non-linear models the FIM is per definition parameter dependent and, thereby, the actual matrix 

elements depend on the actual parameter units. A question that can be asked therefore is whether the OED 

criteria are dependent on the parameter units (e.g. minutes rather than hours). In this respect it has been 

stated in literature that OED’s based on the D-optimal criterion, which focus on maximisation of the 

determinant of the FIM, are independent of reparametrisation (Goodwin and Payne, 1977; Walter and 

Pronzato, 1990 and 1999). However, as far as known, the remaining criteria have not been addressed with 

respect to the effect of parameter rescaling.  

In this study a scaling of parameter units only was intentionally introduced to allow for a more stable 

numerical inversion of the FIM, as we use it to access the parameter error covariance matrix COV. The 

condition number (i.e. the ratio between the largest and the smallest eigenvalue of the FIM) is considered 

as a measure of the “robustness” of the inversion. Because of its central role in optimal experimental design 

it was further investigated how such scaling of units affects the FIM properties (e.g. the eigenvalues, trace 

and determinant), and thereby potentially the results of different optimal experimental design approaches. 

Finally, special attention was paid to effects on the modified E (modE) criterion, which focuses on 

minimisation of the condition number of FIM. 

2. Theoretical background 

Parameter estimation typically aims for a minimisation of a weighted sum )p(J  of squared errors between 

model outputs )p,t(y i  and measured outputs )t(y im  with the weights iQ  and N the number of 

measurements, also denoted the objective function (Eq. 1). The minimisation is obtained by optimal choice 

of the parameter vector p . 

( ) ( ))t(y)p,t(yQ)t(y)p,t(y)p(J imi

N

1i
i

T
imi −−= ∑

=
   (1)  

For the analysis of the information content with respect to the parameters, the Fisher Information Matrix 

(FIM) can be used (Eq. 2): 

)p,t(YQ)p,t(YFIM ipi

N

1i

T
ip∑

=
=      (2)  
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where )p,t(Y ip  denotes the output sensitivity functions with respect to the parameters. The weighting 

matrix iQ  is typically chosen as the inverse of the measurement error covariance matrix. Then, the FIM is 

the inverse of the parameter estimation error covariance matrix (COV). Thus, the FIM can be regarded as 

a summary of the output sensitivity functions and the measurement accuracy, thereby summarising the 

information concerning the model parameters gained from an experiment. For a more thorough derivation 

and discussion of the FIM the reader is referred to Chapter 5 and e.g. Munack (1989 and 1991). 

Several scalar functions of FIM have been defined as a measure of the quality of the estimated parameters, 

e.g. the determinant, condition number and trace. They play key roles in the theory of optimal experimental 

design (OED). Different OED criteria have been defined based on these scalar functions which, in different 

ways, give measures of the shape of the confidence region (e.g. Goodwin, 1987; Munack, 1989 and 1991; 

Walter and Pronzato, 1990 and 1999). Basically, these OED criteria all aim at a reduction of the COV of 

the parameter estimates (i.e. maximisation of FIM) by focusing on different conditions. Once the constraints 

on the experiment and the OED criterion have been specified, the experimental design simply reduces to a 

constrained optimisation problem. Note that a priori knowledge of the model parameters is both advisable 

and unavoidable since the FIM is parameter dependent (Goodwin, 1977; Walter and Pronzato 1990).  

A – optimal criterion : min Tr(FIM-1) 

In this criterion the focus is on a minimisation of the trace, and thereby the sum of eigenvalues, i.e. the 

squares of the lengths of the axes of the confidence ellipsoids, of the inverse FIM (i.e. COV). This is 

equivalent to minimisation of the arithmetic average of the parameter errors. Note that this criterion is based 

on an inversion of the FIM. Thus, this may lead to numerical problems in case the FIM is ill-conditioned, 

i.e. singular. 

modA – optimal criterion : max Tr(FIM) 

This criterion is similar to the A criterion, only is the trace of FIM maximised. The problem with this 

criterion is, however, that in case an unidentifiable experiment is conducted, i.e. a case where FIM 

becomes singular and one of the eigenvalues becomes zero, which means that the confidence region goes 

to infinite in a certain direction, the trace may still be optimised and the problem of unidentifiability will not 

be noticed (Goodwin and Payne, 1977). This is less of a problem with the A criterion since an inversion 

will not be possible if FIM becomes singular and the problem of unidentifiability will thereby be exposed. 

D - optimal criterion : max Det(FIM) 

Here it is aimed to maximise the determinant of FIM. The determinant is proportional to the volume of the 

confidence region. Thus, by maximising Det(FIM) one minimises the volume of the confidence ellipsoids, 

and, correspondingly, one minimises the geometric average of the parameter errors. Moreover, D – 
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optimal experiments possess the property of being invariant with respect to any rescaling of the parameters, 

as mentioned above (Goodwin and Payne, 1977; Walter and Pronzato, 1990 and 1999). 

E – optimal criterion : max λλ min(FIM) 

The lengths of the axes of the confidence ellipsoids are proportional to the inverse of the square roots of the 

corresponding eigenvalues. The E criterion maximises the smallest eigenvalue of the FIM and thereby 

minimises the length of the largest axis of the confidence ellipsoids. Thus, this design aims at minimising the 

largest parameter error and thereby at maximising the distance from the singular, unidentifiable, case. 

modE – optimal criterion : min λλ max(FIM)/λλ min(FIM) 

This criterion is also related to the shape of the confidence region. Here, the focus is on a minimisation of 

the condition number, i.e. the ratio between the largest and the smallest eigenvalue. The minimum of this 

ratio is 1 indicating the case where the shape of the confidence ellipsoids is a (hyper)sphere. The ratio 

λmax(FIM)/λmin(FIM) expresses the stiffness of the FIM. The more important the stiffness becomes, the 

more problematic it becomes numerically to invert FIM until finally a singular matrix is obtained 

(λmin(FIM)=0) and the information content becomes zero, i.e. the ratio is infinite. 

3. Scaling of FIM 

The model applied to study and illustrate the effect of scaling was a simple one step Monod model 

describing the heterotrophic degradation of a readily biodegradable substrate SS and the resulting 

exogenous oxygen uptake rate, rO,ex (Eq. 3 and 4). Note further that the area under the rO,ex profile divided 

with the factor (1-YH) is a measure of the initially added substrate SS(0). 

SS

S
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HmaxS

SK

S

Y

X

dt

dS

+
⋅

−=
µ

     (3)  

SS

S

H

Hmax
Hex,O SK

S

Y

X
)Y1(r

+
⋅

−=
µ

    (4)  

Fig. 1 illustrates this example where the applied parameter values and units were: 

• µmaxH  maximum specific growth rate (min-1); 2.64⋅10-4 min-1 

• YH yield coefficient (mg COD(biomass)/mg COD(substrate)); 0.67 mg COD/mg COD 

• SS substrate (mg COD(substrate)/l), 34 mg COD/l 

• X biomass (mg COD(biomass)/l), 4000 mg COD/l 

• KS half saturation coefficient (mg COD(substrate)/l), 1 mg COD/l 
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For the Monod model given in Eq. 3 - 4, it was found that only a rescaling on the time units, i.e. the specific 

growth rate and time itself, has an effect on the condition number of the FIM. A parameter scaling of either 

the half saturation coefficient (KS), the substrate concentration (SS), the yield (YH) or the biomass 

concentration (X) requires that the values of all these remaining parameters are scaled as well. However, 

such scaling cancels itself out (e.g. since the Monod factor 
SS

S

SK
S

+
 is dimensionless), and can therefore 

not affect the condition number. 
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Figure 1. Profile of SS and rO,ex for case study 

The approach of scaling is first outlined in general below. Eq. 5 indicates a typical sensitivity function of an 

output y with respect to a parameter p as a function of a specific growth rate µmax. 

,....)(f
dt

p
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d
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     (5)  

A scaling factor α is introduced in Eq. 6 to scale µmax and time to new time units defined as 
α
t

t ='  and 

max
'
max µαµ ⋅= . 
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Thus, it is now the purpose to seek the minimum condition number of the FIM by a change of the time units 
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allowing for the most stable numerical FIM inversion. Instead of a trial and error approach, a numerical 

search algorithm was used to find a scaling factor that gave the smallest possible condition number. 

However, in order to apply an optimisation routine the simulation time must be kept constant. Thus, by 

division with α on both sides of Eq. 6, the original time unit can be kept in the model and the output y 

together with its scaled sensitivity differential equations (such as Eq. 7) can be solved for different values of 

α. Hence, an optimisation routine can be used to search for the best value of α via minimisation of the 

condition number. 
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Note that the scaling in Eq. 7 appears explicitly w.r.t. µmax but implicitly on 
dt
dy

, i.e. the values and shape 

of 
dt
dy

 stays the same whereas µmax is changing with α. Note that in case of a double Monod model with 

two specific growth rates, the scale α must be the same for both µmax parameters, since only one time unit 

can be used in a model.  

4. Results 

4.1. Scaling of FIM applied on the single Monod case study 

The case study is based on a simple illustrative example, slightly modified from Vanrolleghem et al. (1995), 

where only rO,ex is measured to characterise heterotrophic degradation of the substrate SS (Eq. 3 - 4). For 

the calculation of the FIM only the sensitivities of rO,ex with respect to two parameters, µmaxH and KS, are 

considered. Eq. 8 shows the sensitivity function of rO,ex with respect to µmaxH (Vanrolleghem and Dochain, 

1998) and Eq. 9 - 11 introduces the scaling factor α, as in Eq. 6 - 7. Eq. 12 gives the sensitivity function of 

KS (Vanrolleghem and Dochain, 1998) and Eq. 13 - 15 give the resulting scaled versions of the equations.  

Sensitivity function of rO,ex with respect to µmaxH: 
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Rescaling to new time units: 
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Division with α: 
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Time units of 
dt

dSS  back to original units to allow for optimisation of α: 
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Sensitivity function of rO,ex with respect to KS: 
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Rescaling to new time units: 
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Time units of 
dt

dSS  back to original units to allow for optimisation of α: 
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4.2. Optimisation of scaling factor 

Eq. 16 illustrates the original FIM of this example, with a condition number (λmax/λmin) of 8.05⋅108 (see 

Table 1). 
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The condition number was subsequently minimised by optimising the value of the scaling factor α. As a 

result a condition number as low as 14.018 was obtained for a α value of 44750. This scaling guarantees a 

more stable matrix inversion. From Table 1 it is clear that this reduction in condition number seems mainly 

to be caused by a reduction of λmax. Correspondingly, the actual values of the FIM properties Det(FIM), 

Tr(FIM) and Tr(FIM-1) change.  

Table 1. Properties of original and scaled FIM 

α Det(FIM) λmin λmax λmax/λmin Tr(FIM) Tr(FIM-1) 

1 1.13⋅107 0.037 3.01⋅108 8.05⋅108 3.01⋅108 26.72 

44750 5.63⋅10-3 0.020 0.281 14.018 0.300 53.45 

 
The resulting FIM is given in Eq. 17 (according to Eq. 11 and 15). From Eq. 17 and 18 it is clear that only 

these FIM elements in which the sensitivity function of µmaxH is involved, are affected by the scaling.  
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4.3. Effect of scaling on OED criteria 

Next it was investigated, via symbolic manipulation (MAPLE V, Waterloo Software), how the scaling of 

the FIM (Eq. 18) affects the different optimal experimental design (OED) criteria. 
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 is called C. Thus Eq. 17 simplifies to Eq. 19: 
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The corresponding eigenvalues, determinant and trace of this matrix are given in Eq. 20, 21 and 22 

respectively. 
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Finally, the effect of the scaling on the COV matrix (i.e. 1
scaledFIM− ) and the Tr(COV) is given in Eq. 23 - 

24. 
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From Eq. 20 - 24 it appears that only the optimal experimental design w.r.t. the D-criterion, i.e. maximising 

the Det(FIM), will remain unaffected by the scaling, in accordance with Goodwin and Payne (1977); 

Walter and Prozato (1990, 1999). The value of the Det(FIM) changes with α but the location of the 

optimum experiment does not, see Eq. 21. For the remaining criteria, which involve the eigenvalues and 

trace (A-, modA-, E- and modE-criteria), the scaling factor α appears in a non-linear way in the resulting 

expressions. Consequently, it may be expected that the resulting optimal experiments are different from the 

optimal experiments calculated for the original time units (without a scaling factor, i.e α = 1). From Eq. 23 

it can be seen that the COV of the original parameter values can readily be obtained by dividing e.g. the 

COV11 element with α2. 

In the study of Vanrolleghem et al. (1995) the degree of freedom for the OED was the initial substrate 

concentration that should be chosen in an optimal way. For this particular case, it was thoroughly 

investigated whether the scaling of the FIM affects the properties of the FIM and thereby the optimal 

experimental design results, as indicated in Eq. 20 - 24. The optimal initial substrate concentrations 

obtained via the different optimal experimental design criteria for the initial and optimal α value 

(corresponding to the lowest condition number, see Table 1) are given in Table 2.  

Table 2. Effect of scaling on the optimal initial substrate concentration considering different OED criteria 

 Optimal experimental design criteria 

α  A  modA D E modE 

1 33.42 35.21 34.37 33.42 2.35 

44750 34.24 34.51 34.37 34.21 40.05 

 

These results confirm that the D criterion based OED is unaffected by the scaling (Eq. 21), whereas the 

other criteria are affected, resulting in slightly different experiments. Thus, it is clear that the D criterion is 

the most robust experimental design w.r.t. scaling of units. Scaling is especially critical when applying the 

modE criterion, as it results in a radically different experiment especially in the absence of scaling but also 

when the scaling of the time units is introduced. Notice though that both for α = 1 and α = 44750 the 

corresponding experiments will yield the best condition numbers possible. Therefore, the most reliable 

matrix inversion will be achieved (for the given time unit). Special focus will be paid to the modE criterion 

below. 

4.4. Focus on modE criterion 

Returning to the symbolic manipulation result (Eq. 19 – 20) the expression for α can be solved for a 

condition number of 1 (modE criteria) which is the ultimate value one can achieve. Thus, if α full-fills Eq. 
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25 a condition number of 1 is obtained. 

A
BACB2B2AC 422 +−±−±=α     (25)  

Thus, there appear to be four possible values of α; two positive and two negative values respectively, for 

which a condition number of 1 can theoretically be obtained. Evidently, only positive real scaling values are 

relevant. 

For the example illustrated above, the solution to Eq. 25 are complex numbers of –1.25⋅105±2.19⋅105⋅I 
(the minimum of λmax/λmin was 14.018, see Table 1). However, for other values of A, B and C it is 

possible that the optimal condition number of 1 can be achieved. To illustrate the approach, A, B and C-

values were changed by varying the initial substrate concentration in the simulated experiments. Indeed, 

different SS(0) values lead to different trajectories of the sensitivity functions and, consequently, lead to 

other A, B and C entries in the FIM. Contour plots of the condition number as function of the initial 

substrate concentration SS(0) and the scaling factor α are given in Fig. 2. A minimum condition number of 

3.63 was reached for a SS(0) concentration of 39.69 mg/l. The optimal scaling factor α was in this case 

equal to 66730. Thus, with a FIM defined by the sensitivity functions of rO,ex with respect to the parameters 

µmaxH and KS and with the initial substrate concentration as degree of freedom, the minimum value of 1 for 

the condition number could not be reached. Still, a rather significant reduction of the condition number was 

possible with scaling on the time units alone. 

The minimum of the modE criterion implies that in the neighbourhood of the parameter vector a complete 

decorrelation between the parameter estimates is achieved, i.e. the non-diagonal elements of the COV 

matrix are insignificant (Munack, 1991). It is a well-known phenomenon that the Monod parameters µmaxH 

and KS are correlated (Holmberg, 1982) and, apparently, it is not possible to break this correlation 

completely when the experimental degree of freedom is the initial substrate concentration SS(0). In this case 

it could indeed be tested via a standard statistical test for significance of correlation that the correlation 

coefficient between µmaxH and KS was significant at a standard 5% test level. 
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Figure 2. The condition number, λmax/λmin , as function of SS(0) and scaling factor α for the case where 

FIM includes sensitivity functions of rO,ex with respect to µmaxH and KS. Minimum is obtained for λmax/λmin  

=3.63, α = 66730 and SS(0)=39.69 mg COD/l. 

Suppose next that the FIM is defined by the sensitivity functions of rO,ex with respect to µmaxH and SS(0) 

instead of µmaxH and KS, i.e. stepping from a µmaxH and KS estimation problem into a µmaxH and SS(0) 

estimation problem. These parameters are typically non-correlated.  In this case the minimum condition 

number of 1 could be readily obtained by optimisation of the initial substrate concentration SS(0) and the 

scaling factor α. Fig. 3 - 4 illustrate the contour plots of the condition number as function of the values of 

SS(0) and α. Two positive real minima for α were found, according to Eq. 25, for which a condition 

number of 1 was obtained (see Table 3). These minima were obtained with initial substrate concentrations 

of 2.45 mg/l and 41.13 mg/l respectively. 

However, a closer look at the rO,ex profiles corresponding to these two minima indicates that they are not 

very optimal for parameter estimation (Fig. 5 and 6). In the case of an initial substrate concentration of 2.45 

mg/l (Fig. 5) the rO,ex profile does not reach a plateau and thereby contains little information on µmaxH. On 

the contrary, with an initial substrate addition of 41.13 mg/l (Fig. 6) the corresponding optimal rO,ex is not 

terminated within the experimental time. Thus, in this case the information on SS(0) does not seem sufficient 

since this is related to the area under the rO,ex profile which becomes hard to assess from such data. The 

FIM characteristics and the corresponding COV are given in Table 3 and Table 4.  
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Figure 3. The condition number, λmax\λmin, as function of SS(0) and scaling factor α for the case where 

FIM includes sensitivity functions of rO,ex with respect to µmaxH and SS(0). Minimum is obtained for 

λmax\λmin =1, α = 9594 and SS(0)=2.45 mg COD/l 

 

Figure 4. The condition number, λmax\λmin, as function of SS(0) and scaling factor α for the case where 

FIM includes sensitivity functions of rO,ex with respect to µmaxH and SS(0). Minimum is obtained for 

λmax\λmin =1, α = 273374 and SS(0)=41.13 mg COD/l 
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Figure 5. rO,ex profile of optimal experiment according to ModE=1, SS(0)=2.45 mg COD/l 
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Figure 6. rO,ex profile of optimal experiment according to ModE=1, SS(0)=41.13 mg COD/l 

Table 3 Properties of orginal and scaled FIM in case where FIM is defined by the sensitivity function of 

rO,ex with respect to µmaxH and SS(0). 

SS(0) α Det(FIM) λmin λmax λmax/λmin Tr(FIM) Tr(FIM-1) 

2.45 1 9.8⋅104 0.03263 3.0⋅106 9.2⋅107 3.0⋅106 30.64 

 9594 1.0⋅⋅10-3 0.03263 0.03263 1 0.065 61.29 

41.13 1 1.1⋅105 0.001234 9.2⋅107 7.5⋅1010 9.2⋅107 810.65 

 273374 1.5⋅⋅10-6 0.001234 0.001234 1 2.5⋅10-3 1621 
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Table 4 Properties of orginal and scaled COV in case where FIM is defined by the sensitivity function of 

rO,ex with respect to µmaxH and SS(0). 

SS(0) α COV11 COV12 COV22 

2.45 1 3.33⋅10-7 7.41⋅10-12 30.64 

 9594 30.64 7.11⋅10-8 30.64 

41.13 1 1.0810-8 3.63⋅10-10 810.65 

 273374 810.65 9.92⋅10-5 810.65 

 

From Table 3 it is clear that the ModE=1 is reached by a decrease of λmax down to the value of λmin. This 

is corresponding to an increase in the actual value of COV11 related to µmaxH. Thus, in both cases we are 

increasing the actual value of the covariance on µmaxH to the one of SS(0). Apparently, there are two points 

where modE=1 is possible, the first one at SS(0) = 2.45 and the second one with SS(0) = 41.13, where the 

COV22 related to SS(0) is much larger. The latter seems intuitively right considering Fig. 5 - 6, since the 

information on SS(0) is not complete. Further, the Det(FIM) is a measure for the generalised variance and 

is largest for SS(0) = 2.45. Thus, the variance is smallest in this case, as verified in Table 4. Finally, it was 

again tested via a standard statistical test that the correlation between SS(0) and µmaxH is insignificant at a 

5% test level. 

It should be noted here that the optimal SS(0) of 39.69 mg/l in the case where FIM was calculated on the 

basis of sensitivity functions with respect to µmaxH and KS (see above) also resulted in a rO,ex profile that 

was not terminated and thereby contained insufficient information on KS. Here too the minimum condition 

number of 3.63 was mainly obtained by a decrease of λmax with corresponding increase of COV1. Similar 

observations with the modE criterion were done by Vanrolleghem et al. (1995). 

The two eigenvalues are given as function of the scaling factor in Fig. 7 and 9 and the evolution of COV as 

function of the scaling is given in Fig. 8 and 10. These figures confirm that the largest initial eigenvalue is 

reduced to the value of the smallest one to obtain ModE = 1, and, furthermore, that this takes place with a 

corresponding increase in COV11. Obviously what happens is that the confidence ellipsoid approaches a 

sphere. However this does not take place due to a decrease of parameter variance but as a results of 

covariance increase, which is the opposite of what is typically aimed for in OED. 
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Figure 7. The eigenvalues λ1 and λ2 as function of the scaling factor α for SS(0) = 2.45 mg COD/l 
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Figure 8. The COV as function of the scaling factor α for SS(0) = 2.45 mg COD/l  
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Figure 9 The eigenvalues λ1 and λ2 as function of the scaling factor α for SS(0) = 41.13 mg COD/l 
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Figure 10. The COV as function of the scaling factor α for SS(0) = 41.13 mg COD/l. Discussion 

By definition, the Fisher Information Matrix (FIM) depends on the model parameters and their actual 

values. In this study a simple single Monod model was used as case study in the investigation of changes 

(scaling) of the time units. The original purpose of this parameter scaling was simply to obtain a more 

numerically stable inversion of FIM for the application of FIM in designing optimal experiment (see chapter 
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7). Indeed, it was observed that a significant reduction of the condition number could be obtained just by 

changing the time units. In the case under study the condition number could for example be reduced from 

8.05⋅108 to 14.018, which should guarantee a more stable numerical matrix inversion. 

The FIM is basically the cornerstone of optimal experimental design (OED), and it was therefore 

investigated how this simple scaling of time units had an effect on the FIM properties, i.e. the eigenvalues of 

FIM and the corresponding determinant and trace. These factors play an essential role in the OED criteria. 

Via symbolic manipulation it appeared that only the  D-criterion (maximisation of the Det(FIM)) was 

unaffected by the scaling, as supported also by the literature (Goodwin and Payne, 1977; Walter and 

Pronzato, 1990 and 1999). These findings were confirmed by optimisations of the initial substrate added in 

the experiment under study. Here, the D-criterion remained unaffected by the scaling, whereas the A-, 

modA- and E- criteria resulted in slightly different experiments.  

Most critical, however, was the modE criterion, which yielded completely different experiments depending 

on the scaling of the time units. The modE criterion is related to the condition number and aims at obtaining 

the optimal condition number of 1. Via symbolic manipulation it was found that, theoretically, two positive 

minima could be obtained for which modE is equal to 1. Initially, the case study involved a FIM based on 

sensitivity functions of rO,ex with respect to the parameters µmaxH and KS. For these parameters and the 

conditions tested, it appeared not to be possible to obtain a condition number of 1 (a condition number of 

3.63 was reached though).  

Instead, for the FIM based on the sensitivity functions of rO,ex with respect to µmaxH and the initial substrate 

concentration SS(0) two cases leading to modE=1 could be detected. The two optimal experiments for 

which modE=1 was obtained did, however, not seem very “optimal” for parameter estimation, since the 

rO,ex profile was either rather short or not terminated within the experimental time. Via a more detailed 

analysis of the properties of the FIM and the evolution of the eigenvalues as function of the scaling factor, it 

appeared that the modE=1 was achieved in both cases by increasing the actual covariance value of µmaxH 

and thereby decreasing the value of the initially largest eigenvalue to the value of the smallest. Hence, the 

situation where modE equals 1 could be created just by scaling of the parameter units. The experimental 

designs, although optimal with respect to the modE criterion, could, however, not really be characterised as 

“optimal” for parameter estimation and were just the result of parameter scaling. It should be noted that it 

may be difficult (or even impossible) to find necessary scaling if more than one parameter with a time unit is 

defined in the model, since only one time unit can be dealt with. 

These results certainly stress that care should be taken with the scale of parameter units, since the FIM is 

depending on their actual values. Only the D-criterion based OED is unaffected by scaling, confirming that 

this OED criterion is the most reliable one and may be the best one to apply in practice (see chapter 7) 

since considerations concerning the effect of parameter units can be avoided. Care should especially be 
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taken in application of the modE criterion. In the work of Munack (1989), Baltes et al. (1994), Versyck et 

al. (1997) and Versyck and Van Impe (1999) feeding rates to fed-batch systems have been optimised 

based on the modE criterion. In the work of Versyck et al. (1997) modE=1 OED’s was obtained (for 

further review on these OED example, see chapter 5). It should be stressed that the results of the study 

conducted here indicate that one may find a scaling factor that improves the condition number. Moreover, 

in certain cases the optimal value of the modE (i.e. 1) can just be obtained by changes in parameter units. 

However, such an experiment can not be considered to be an optimal experiment unless the condition 

number of the estimation problem is the only concern.  

6. Conclusion 

In this chapter a study was conducted on the effect of rescaling of the parameter units in parameter 

estimation exercises. The example applied was the estimation of parameters in a simple single substrate 

batch biodegradation model. The study was originally initiated to evaluate whether rescaling could be used 

to improve the numerical properties of the Fisher Information Matrix in view of its inversion, as this is used 

to obtain the parameter estimation error covariance matrix. Only rescaling of the time unit was found to be 

useful to change the condition number of the FIM. Significant improvements in condition number, up to a 

factor 1010, could be obtained by rescaling the time unit of parameters. Moreover, it was shown that in 

some cases it is possible to reach the best possible condition number, i.e. a value = 1.  

This result has quite some implications for the optimal experimental design methodology. It was found that, 

among the 5 OED-criteria evaluated, only the D-criterion based experimental design is not affected by 

rescaling of the parameter units. For all other criteria, and especially the modified E criterion, which focuses 

on a minimisation of the condition number of FIM, the optimal experiment design is quite different for 

different parameter units. Hence, OED results should be compared with care in case different units are 

used to express model parameters.  
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Chapter 7 
 
Optimal Experimental Design  

Abstract - In this chapter a conceptual methodology for optimal FIM based experimental design was 

developed. This methodology was applied in two case studies focusing on the two step nitrification process 

and simultaneous nitrification and degradation of wastewater COD respectively. In both cases simple 

experimental degrees of freedom to be optimised was defined. In the first case study it was aimed to 

optimise the initial addition of nitrite to allow for simultaneous estimation of the kinetics of both nitrification 

steps. The second case focused on optimising an additional amount of ammonium to be added together 

with the wastewater with the aim to simultaneously estimate the kinetics of COD degradation and 

nitrification. The experiments were optimised via the D-criterion in which the determinant of FIM is 

maximised. Improvements in parameter accuracy up to 50% were found for both case studies. The 

theoretical results were successfully validated with experiments carried out according to the predicted 

optimal experimental design. Finally, the sensitivity of the optimal experimental design to changes in 

parameter values or substrate concentrations was investigated. Here it was found that some safety margins 

existed, thus, the designs were rather robust against parameter variations. Still, however, some critical 

situations were encountered, which would result in rather inaccurate parameter estimates. Thus, it was 

concluded that either frequent updating of the optimal experiment may be required or more robust designs 

may be strived for. 

1. Introduction 

The study on theoretical identifiability in chapter 4 and the evaluation of these results by practical 

identifiability analysis in chapter 5 and 6 can be considered as preliminary steps towards the design of 

optimal experiments. The purpose and conceptual idea of optimal experimental design, as it is applied in 

this study, is illustrated in Fig. 1. This figure will be explained step by step in the following. First, however, 

consider a range of different experimental conditions that eventually will lead to an experimental response. 

Initially experimental conditions can be understood rather broadly, since it can be any imaginary conditions 

under which the experiments can be carried out. Thus, in principle the experimental conditions are only 

limited by the reality (e.g. it would not be possible to carry out experiments under unrealistic or extreme 

conditions such as negative oxygen concentrations etc.). In practice of course the experimental condition 

space will also be limited by the experimental set-up and its flexibility, e.g. with respect to availability of 
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different equipment elements, sampling frequency, total number of samples that can be analysed etc. 

Theoretical identifiability 

Practical identifiability 

Experimental constraints

A
B C

D

E

Theoretical identifiability 

Practical identifiability 

Experimental constraints

A
B C

D

E

 

Figure 1. Conceptual idea of optimal experimental design 

The experimental conditions consist of both environmental and measured variables. Examples of 

experimental conditions are listed below: 

• Experimental conditions: 

• Measured variables: 

• Oxygen concentration (SO) 

• Oxygen uptake rate (rO) 

• pH 

• Alkalinity 

• Redox potential 

• Conductivity 

• etc. 

• Environmental variables: 

• Origin and concentration of sludge 

• History of sludge 

• Origin of substrate 

• Initial substrate to biomass ratio (S(0)/X(0)) 

• Change in substrate concentrations or load (∆S) 

• pH 

• Temperature 
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• Oxygen concentration 

• Availability of nutrients (e.g. N, P) 

• etc. 

The environmental variables are determining the response of the system, whereas the measured variables 

and the frequency of the measurements will determine what kind of information is obtained for the 

experimental response.  

In chapter 2 a thorough discussion on the S(0)/X(0) ratio was made. Basically, this ratio, or maybe more 

precisely the change in substrate concentrations or load, ∆S, that the organisms are subjected to, has an 

important influence on the resulting experimental response and may influence both the observed yield and 

kinetic parameters. Drastic changes of the environment may eventually lead to population shifts. This 

especially applies to organic substrate, which can flow into different mechanisms depending on the 

environmental conditions, as repeated in Fig. 2. In addition, sludge history can be important to consider, 

since it also influences the state of the organisms and thereby their response. For the more detailed 

discussion on this matter the reader is referred to chapter 2.  

Examples of some possible experimental responses are listed below: 

• Experimental responses: 

• Heterotrophic substrate degradation 

• Nitrification 

• Significant or insignificant growth 

• Storage of substrate 

• Decay 

• etc. 

COD

Decay
Lysis

Maintenance Growth Storage Spilling

increase of cell size Cell division

Organism1

Organism 2

Organism 3
Organism 4

1 2 3 4 5

 
Figure 2. Different flows of external COD in the organisms 

The experimental conditions are all user-defined and will depend on the purpose of the actual experiment, 

i.e. what kind of experimental response and information content are pursued to allow estimation of certain 
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model parameters with a certain accuracy.  

The space of Fig. 1 is now considered to consist of a range of different experimental conditions as 

described above. Thus, a point located at a certain position in Figure 1 is defined by a certain set of 

experimental conditions, resulting in a certain experimental response and related information content. If 

these experimental conditions comply with the purpose of the study, the point will lay within one of the 

given regions (A - D), and if the experimental conditions do not comply with the purpose the point will lay 

somewhere outside the region (E). 

The first region (A - D) to consider is summarising the results of the theoretical identifiability analysis of the 

model which parameters are sought. Thus, this region frames the experimental conditions for which unique 

parameters can theoretically be obtained from the data. Moreover, this theoretical identifiability region can 

be considered as a hard, ultimate bound on the experimental conditions since the theoretical identifiability is 

determined by the model structure and the available measurements only. This region was thoroughly studied 

in chapter 4. 

On the other hand, the region (A - B), that delineates the practical identifiability, is determined by the 

experimental data and their information content. The quality of the data may not be high enough to allow for 

a determination of all the theoretically identifiable parameters, which is why this region is a sub-set of the 

theoretical identifiability. Moreover, contrary to the region of theoretical identifiability, the region of 

practical identifiability is not fixed at a certain position in the experimental condition space, but can be 

located elsewhere. For instance when the actual model parameter values are different or the collected data 

and their properties, e.g. noise level, change. 

Finally, the half-region (A, C) indicates that certain constraints can be imposed on the experimental 

conditions to fulfil a certain experimental purpose. The purpose could for example be to obtain kinetic 

parameters that are representative for, and thereby transferable, to a full-scale system. In other words 

extant parameters are sought (Grady et al., 1996). In that case the experiments should be carried out 

under conditions that are as close as possible to the full-scale system, e.g. with respect to pH, temperature, 

load etc. Obviously such a purpose will put some constraints on the experimental conditions under which 

the experiments should be performed. Note that the model may still be able to describe data that are 

collected under experimental conditions that are outside these constraints, e.g. conditions that would favour 

the maximum capacity of the biomass thereby providing intrinsic parameters (Grady et al., 1996). 

However, the information obtained will not be in accordance with the purpose of the modelling exercise. 

The optimal experiments can now be defined as those experiments for which the conditions belong to the 

intersection of the three regions, and within this set of possible experiments the best one is selected. Thus, it 

is aimed to maximise the information content of the experimental data within given constraints. The Fisher 

Information Matrix (FIM) is central in the theory of Optimal Experimental Design (OED) for parameter 
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estimation. Indeed, the inverse of the FIM is, under certain conditions, equal to the parameter estimation 

error covariance matrix (COV) and the essence of OED is typically to reduce the COV. Different optimal 

experimental design criteria have been defined based on different scalar functions of the FIM (e.g. Walter 

and Pronzato, 1990; Munack, 1989, 1991). 

Applications of the FIM and the different OED criteria can be found within many different disciplines and 

with various purposes. For example, in the work of Munack (1991) it was clearly illustrated how the 

amount of sampling points, best positions and type of measurements were investigated and optimised via 

analysis of the FIM properties for a microbial growth process in an aerated column reactor. In the 

following, however, the focus is more on the literature that has dealt with the Monod model, and, 

furthermore, some cases are reviewed where the objective of optimising the practical identifiability of model 

parameters has been combined with other constraints. 

In the work of Munack (1989) the aim was to obtain an optimal feeding profile to increase the quality of 

the estimation of the Monod parameters µmax and KS from a fed-batch experiment. It is well known that 

these two parameters tend to be correlated resulting in practical identifiability problems (Holmberg, 1982). 

However, by introduction of a feed profile where the initial batch phase is extended by a fed-batch phase 

with drastically changes of the feed rates, the substrate concentration was repeatedly driven near the value 

of KS. Thereby, the correlation between the two Monod parameters could be broken to a large extent 

(Munack, 1989). This experimental idea was illustrated and confirmed by experimental data in the study of 

Vanrolleghem et al. (1995).  

It was, however, questioned that too steep gradients in the feeding pattern, as proposed by Munack 

(1989), may result in invalidity of the Monod model, since this model is based on balanced growth 

operating under steady state (Baltes et al., 1994). Thus, the proposed fed-batch experiments may be 

restricted to only small rates of change in substrate concentrations to ensure the validity of the Monod 

model. A combined objective function was defined in the study of Baltes et al. (1994), where an 

optimisation of the experimental design should answer two questions: (i) How to guarantee sufficient 

accuracy of the estimated parameters? and (ii) Can the optimal experimental design guarantee model 

validity. The restriction that balanced growth must exist to allow for model validity was shown to put a 

strong limitation on the rate of substrate change that was needed for improvement of parameter estimation 

accuracy. A critical biological criterion with regard to balanced growth was defined as the gradient of the 

specific growth rate as function of time and was therefore incorporated into the objective function of the 

OED. In the study it was concluded that a constant feeding rate after an initial batch phase was the most 

robust design towards changes of parameters. However, the model validity improved remarkably by the 

application of time varying feeding rates. Therefore, a compromise had to be made between security for 

parameter accuracy and model validity. Experimental verification with fermentation of yeast showed that in 

this case the constant feeding rate gave satisfactory results (Baltes et al., 1994). 
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Another study focused on combining optimal process performance (maintenance of optimal yield or 

productivity) with optimal information on the model parameters (Versyck et al., 1997; Versyck and Van 

Impe, 1999). In this study the optimal feeding rate appeared to be one where the substrate concentration 

was kept constant, but in an initial phase, preceding this phase, a disturbance was introduced either in the 

form of a batch phase or a feeding phase with a maximum feed rate level. In this way it was possible to 

combine optimal process performance with optimal parameter estimation accuracy. 

Summarising, the model validity concept as presented in Baltes et al. (1994) can be seen as an expression 

for the delineation of the first region (D) in Fig.1. Indeed, provided ideal measurements are available, all 

parameters of the model could be estimated and the model could be applied for its purpose, i.e. the model 

would be valid. However, when the rate of change of the substrate would be too fast, i.e. the experimental 

conditions were outside the region (D), the model would be invalid. In other words, if unbalanced growth 

takes place the Monod model may no longer be able to describe the data (Baltes et al., 1994) and the 

experiment can no longer be considered to lay within the region of theoretical identifiability but lays outside 

as an E experiment in Fig. 1. By combining an objective of model validity and optimisation of practical 

parameter identifiability, Baltes et al. (1994) aims at the region of practical identifiability in Fig. 1 

(experiment B). In the work of Versyck et al. (1997) and Versyck and Van Impe (1999) a further 

constraint is imposed in the search for both optimal process performance and optimal parameter 

information. Thus, to relate their work to Fig. 1, they aim for the half region indicating that certain 

constraints can be imposed on the experimental conditions to fulfil a certain experimental purpose 

(experiment A in Fig. 1). 

In this study the concept outlined in Fig. 1 is concretised for two case studies with different aims. The first 

case study deals with a classical example; the two step nitrification where the aim is to identify the second 

nitrification step. Secondly, a combined municipal-industrial wastewater is studied with the aim of 

determining the kinetics of heterotrophic substrate degradation and nitrification. Moreover, the aim in these 

studies is to design experiments that give responses that can be considered representative for the full-scale 

system under study. In this way it is pursued to obtain extant kinetic parameters for a model describing the 

full-scale system. Finally, an additional aim was to investigate the effect of the variation of the wastewater 

and reaction kinetics on the experimental designs. The aim here was to judge whether the developed 

optimal experimental designs were robust or whether the designs had to be adjusted often to maintain the 

quality of the parameter estimates as the system’s characteristic change.  

2. Theoretical background 

Parameter estimation typically aims for a minimisation of a weighted sum )p(J  of squared errors between 

model outputs )p,t(y i  and measured outputs )t(y im  with the weights iQ  and N the number of 
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measurements, also denoted the objective function (Eq. 1). The minimisation is obtained by optimal choice 

of the parameter vector p . 

( ) ( ))t(y)p,t(yQ)t(y)p,t(y)p(J imi

N

1i
i

T
imi −−= ∑

=
   (1)  

For the analysis of the information content with respect to the parameters, the Fisher Information Matrix 

(FIM) can be used (Eq. 2): 

)p,t(YQ)p,t(YFIM ipi

N

1i

T
ip∑

=
=     (2)  

where )p,t(Y ip  denotes the output sensitivity functions with respect to the parameters. The weighting 

matrix iQ  is typically chosen as the inverse measurement error covariance matrix. In this case the FIM is 

the inverse of the parameter estimation error covariance matrix (COV). Thus, the FIM can be regarded as 

a summary of the output sensitivity functions and the measurement accuracy, thereby summarising the 

information concerning the model parameters gained from an experiment. For a more thorough derivation 

and discussion of the FIM the reader is refereed to chapter 5 and e.g. Munack (1989 and 1991). 

Several scalar functions of FIM have been defined as a measure of the quality of the estimated parameters, 

e.g. the determinant, condition number and trace. They play key roles in the theory of optimal experimental 

design (OED). Different OED criteria have been defined based on these scalar functions which in different 

ways give measures of the shape of the confidence region (e.g. Goodwin, 1987; Munack, 1989 and 1991; 

Walter and Pronzato, 1990, 1999). Basically these OED criteria all aim at a reduction of the COV of the 

parameter estimates (i.e. maximisation of FIM) by focusing on different conditions. Once the constraints on 

the experiment and the OED criterion have been specified the experimental design simply reduces to a 

constrained optimisation problem. Note that a priori knowledge of the model parameters is both advisable 

and unavoidable since the FIM is parameter depending (Goodwin, 1977; Walter and Pronzato 1990). This 

dependency seems natural since on one hand the ability to design a good experiment should depend upon 

prior knowledge regarding the nature of the experiment, and on the other hand any model structure can 

already be considered as prior knowledge. 

A – optimal criterion: min Tr(FIM-1) 

In this criterion the focus is on a minimisation of the trace, and thereby the sum of eigenvalues of the inverse 

FIM (i.e. COV), i.e. the squares of the lengths of the axes of the confidence ellipsoids, This is equivalent to 

minimisation of the arithmetic average of the parameter errors. Note that this criterion is based on an 

inversion of the FIM. Thus, this may lead to numerical problems in case the FIM is badly conditioned. 
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modA – optimal criterion: max Tr(FIM) 

This criterion is similar to the A criterion, only is the trace of FIM maximised. The problem with this 

criterion is, however, that in case an unidentifiable experiment is conducted, i.e. a case where FIM 

becomes singular and one of the eigenvalues becomes zero, which means that the confidence region goes 

to infinity in a certain direction, the trace may still be optimised and the problem of unidentifiability will not 

be noticed (Goodwin and Payne, 1977). This is less of a problem with the A criterion since if FIM 

becomes singular an inversion will not be possible and the problem of unidentifiability will thereby be 

exposed. 

D - optimal criterion : max Det(FIM) 

Here it is aimed to maximise the determinant of FIM. The determinant is proportional to the volume of the 

confidence region, thus by maximising Det(FIM) one minimises the volume of the confidence ellipsoids, 

and, correspondingly, one minimises the geometric average of the parameter errors. Moreover, D–optimal 

experiments possess the property of being invariant with respect to any rescaling of the parameters, as 

mentioned above, see also the detailed analysis in chapter 6 (Goodwin and Payne, 1977; Walter and 

Pronzato, 1990 and 1999).  

E – optimal criterion : max λλ min(FIM) 

The lengths of the confidence ellipsoids are proportional to the inverse of the square roots of the 

corresponding eigenvalues. The E criterion maximises the smallest eigenvalue of the FIM and thereby 

minimises the length of the largest axis of the confidence ellipsoids. Thus, these designs aims at minimising 

the largest parameter error and thereby at maximising the distance from the singular, unidentifiable, case. 

modE – optimal criterion : min λλ max(FIM)/λλ min(FIM) 

This criterion is also related to the shape of the confidence region. Here the focus is on a minimisation of the 

condition number, i.e. the ratio between the largest and the smallest eigenvalue. The minimum of this ratio is 

1 indicating the case where the shape of the confidence ellipsoids is a (hyper) sphere. The ratio 

λmax(FIM)/λmin(FIM) expresses the stiffness of the FIM. The more important the stiffness becomes, the 

more problematic it becomes numerically to invert FIM until finally a singular matrix is obtained 

(λmin(FIM)=0) and the information content becomes zero, i.e. the ratio is infinite. 

Finally, it should be stressed that also other design criteria can be proposed. The above criteria do not 

focus on the estimation error of a particular parameter but focus more on the “overall” error. However, 

other criteria could easily be designed where, for example, the variance of a particular parameter is in 

focus. 

In this work the inverse of the calculated FIM is also used for calculation of the parameter confidence 
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intervals (see also chapter 5). Indeed, the standard deviation of the i’th estimated parameter 
∧

ip  can be 

obtained from the square root σi of the i’th diagonal element of the inverse FIM. An approximate 

confidence interval at level α is then given by Eq. 3, where t indicates the t-distribution. 





 +− −

∧

−

∧

i)pN(,ii)pN(,i tp,tp σσ αα     (3)  

3. Methodology 

The OED methodology applied in this study is summarised in Fig. 3 and includes the following steps: 

1. Model-based analysis of the reference experiment.  

2. Define experimental conditions and constraints. 

3. Investigation of theoretical identifiability of the model parameters (see chapter 4). 

4. Investigation of practical identifiability of the model parameters (see chapter 5). 

4.1 Derivation of output sensitivity functions with respect to the theoretically identifiable parameters 

from step 3. 

4.2 Calculation of FIM based on the output sensitivity functions of step 4.1. 

5. Scaling on the time related parameters in the FIM to ensure a more stable numerical inversion (see 

chapter 6). 

6. Investigate if FIM is singular as a check whether the FIM can cope with the results of the theoretical 

identifiability study (see chapter 5 - 6). 

7. Define experimental degrees of freedom. 

8. Optimisation of OED criterion to obtain the optimal experiment by modifying the given experimental 

degrees of freedom. 

9. Investigation of the sensitivity of the optimal experimental design obtained in step 8, to check how 

robust the design is towards parameter changes of the reference experiment. This can for example be 

investigated by quantifying how much a specific parameter can vary while still allowing a sufficiently 

accurate parameter estimation. 

Steps 1 - 4 in this procedure are already thoroughly described in the introduction and theoretical 

background given above. Step 5 deals with the fact that the FIM, by definition, is parameter dependent. 

Thus, the actual values of the FIM elements depend on the parameter units. In chapter 6 it was shown how 

a simple scaling (via a scaling factor α) on the time units enabled a significant reduction of the condition 

number of the FIM, and thereby increased the mathematical robustness of the FIM inversion. Moreover, 
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the effect of the scaling of the time units on the FIM properties, and thereby the results of potentially 

optimal experimental design, was investigated. From this study it was concluded that only the optimal 

experiments obtained with the D-criterion, i.e. maximisation of Det(FIM), remain unaffected by the scaling 

of time units (see chapter 6 for further details). Therefore, only this optimal experimental design criterion 

will be considered in this study. 

1. Model-based interpretation of reference experiment

2. Definition of experimental conditions and constraints

3. Theoretical identifiability study

4. Practical identifiability study :         
4.1 Derivation of sensitivity functions  
4.2 Calculation of FIM

5. Scaling of FIM         

6. FIM singular ?         Yes         

No         

7. Definition of experimental degrees of freedom

8. Optimal experimental design (OED)

9. Sensitivity/robustness of OED

Reduce parameter set 
for FIM calculation

Parameter estimates still accurate enough ? No         

Yes         

OED based on reference experiment is still valid

Adjust reference experiment 

 

Figure 3. Flow-scheme of OED procedure 

In step 6 it is checked whether the FIM becomes singular when it is calculated using the output sensitivity 

functions that were derived earlier in step 4.1, which is again based on the theoretical identifiability study. In 

chapter 5 it was observed that the FIM may become singular when composed of the output functions with 

respect to all theoretically identifiable parameters. Thus, it seemed that in some cases the FIM is inadequate 

to deal with all theoretically identifiable parameters. If this is the case, a reduced set of output functions with 

respect to the theoretically identifiable parameters must be selected instead for the calculation of the FIM, 

as was also illustrated in chapter 5. 

Now the experimental degree of freedom can be defined (step 7). The Det(FIM) is maximised in step 8 via 
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a numerical optimisation routine implemented in the WEST modelling and simulation environment (Hemmis 

NV, Kortrijk, Belgium). 

Finally, in step 9 it is investigated how robust the optimal experiment is towards changes in parameter 

values. If the parameters or measurement noise have changed too much, the optimal experiment may no 

longer yield a sufficient accurate estimation of the parameters, and the experimental design may have to be 

adjusted. 

4. Case study 1 – Two-step nitrification 

4.1. Step 1: Reference experiment 

The nitrification of the combined municipal-industrial full-scale WWTP of Zele (Aquafin NV, Aartselaar, 

Belgium) was characterised by combined respirometric-titrimetric measurements. A typical experimental 

profile, already presented and investigated in chapter 3 and 5, is illustrated in Fig. 4. The rO profile could 

not be adequately described as a single step nitrification due to the “tail” in the rO profile, indicating that the 

second nitrification step was slower than the first one. Therefore, to describe this profile a model including 

nitrification in two steps was applied (see Table 1). 
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Figure 4. Experimental data (rO, Hp, SO,1 and SO,2) of ammonium addition and model fit 

Table 1. Two step nitrification model for interpretation of respirometric and titrimetric data, assuming that 

no biomass growth takes place 

             Component → 
Process ↓ 

1. 
SO 

2. 
SNH 

3. 
SNO2 

4. 
SNO3 

5. 
Hp 

Process rate 

1. Nitrification step 1 
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1A

Y

Y43.3 −
−  
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1−  

1AY
1
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1
 X
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µ  

2. Nitrification step 2 
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2NO2SA
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However, it appeared that the “tail” in the rO profile is not sufficiently pronounced to allow for reliable 

estimation of the kinetic parameters of the second nitrification step. Thus, in previous work the parameters 

of the second nitrification step were fixed at values obtained from a separate experiment where only nitrite 

was added (see chapter 3 and 5). This means that more experimental work was necessary to characterise 

the process. 

One may of course assume that the nitrite build-up is a phenomenon only related to the batch lab-scale 

experiments and is not relevant for the full-scale behaviour. However, at the full-scale WWTP nitrite was 

observed in the final effluent too, indicating that a slower second nitrification step is also characteristic of the 

full-scale behaviour. 

The purpose of this study was to design a single experiment that allowed for simultaneous characterisation 

of the reaction kinetics of both nitrification steps. In this case the obvious optimal experimental design (A) in 

Fig. 1 is the one where the degradation of nitrite results in a more visible second shoulder, “tail”, in the rO 

profile. Such profile would contain sufficient information to identify the kinetics of the second nitrification 

step. Secondly, the experiments should be performed under conditions that are representative for the full-

scale system under study. Thus, extant parameters are sought for. Combined respirometric (rO) and 

titrimetric (Hp) measurements were applied to monitor the reactions to obtain a high accuracy on the model 

parameters, and the accuracy was compared to measurements of only rO or SO. The concept outlined in 

Fig. 1 is now concretised for this case study and is illustrated in Fig. 5. 
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Figure 5. Optimal experimental design for two step nitrification. Illustrations of experiments: A - D 

4.2. Step 2: Experimental conditions and constraints 

As defined above the purpose of this case study is to obtain accurate estimation of the kinetic parameters 

for the two step nitrification process. Furthermore, it is aimed that these parameters are representative for 

the full-scale system under study. As discussed more in detail in chapter 2 it is typically recommended to 

work under low S(0)/X(0) ratio, or expressed in another way low ∆S, to obtain responses that are 

representative for the physiological state prior to the experiments, i.e. extant parameters are sought (Grady 

et al., 1996). This may not be as severe for nitrification as for COD degradation (see chapter 2) since 

ammonium basically only flows into nitrification or is incorporated into the cell compounds. Still, if ∆S is too 

high there is a risk for substrate inhibition or changes in the nitrifying population. Therefore in this study it 

will be aimed to carry out the experiments with low ∆S to allow for conditions that are not too different 

from the full-scale system under study with respect to substrate levels. Furthermore, no significant growth is 

allowed to take place during the experiment. A model structure assuming insignificant growth (i.e. X is not a 

function of time) is thereby chosen as the one for which unique parameters are sought (see Table 1). 

Below the list of valid experimental conditions is defined: 

• Experimental conditions : 

• Measured variables : 

• Oxygen concentration (SO) 

• Oxygen uptake rate (rO) 

• Cumulative proton production (Hp) 

• Environmental variables : 

• Nitrifying sludge. 

• The ammonium load, ∆S, and S(0)/X(0) ratio should not be too different compared to the full-

scale system to ensure that the nitrifiers are not subjected to too drastic changes in their 

environmental conditions. 

• Substrates should be added in such amounts that the increase in nitrifying biomass does not 

exceed 5% to avoid significant growth. Thus, a growth of less than 5% is here considered 

negligible. 

• Ammonium and/or nitrite as substrate should be dosed such that the concentrations of ammonia 

(NH3) and nitrous acid (HNO2) are below 0.1 gN/m3 and 0.2 gN/m3 respectively to avoid 

inhibition. Note that the critical concentrations of NH3 and HNO2 are pH dependent 

(Anthonisen, 1976).  
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• pH in the range 5.5 – 10 to avoid growth limitation (Henze et al., 1997). 

• Temperature 5 – 40 oC to avoid growth limitation (Henze et al., 1997). 

• Oxygen concentration above 2 mg/l to avoid growth limitation. 

• No presence of nitrifying inhibiting components. 

The first purpose of this study was to obtain an experiment that allowed for a simultaneous characterisation 

of both nitrification steps. To fulfil this purpose, no additional experimental constraints had to be defined, 

since this purpose can be achieved by ensuring practical identifiability. However, a few further constraints 

have to be imposed on the experimental conditions already mentioned above in order to achieve the 

second part of the purpose, i.e. impose experimental conditions that are rather similar to the full-scale 

system in order to obtain extant kinetic parameters. In this case these constraints can be rather readily 

deduced and are very simple: 

• Experimental constraints: 

• pH in range 7.5 - 8.5 

• Temperature in full-scale system is 10oC 

• Sludge history 

Concerning the temperature constraint a compromise was made between the temperature of the full-scale 

system and what was practically feasible in lab-scale. Thus, the experiments were temperature controlled at 

17.5oC. 

The sludge history is included as an experimental constraint since e.g. starvation periods prior to the lab-

scale experiment may influence the results. This was simply illustrated in chapter 2 (Fig. 26) where the 

results from an experiment with three pulses of acetate to an activated sludge sample, that had been in the 

state of endogenous respiration overnight, showed that the rO of the first substrate pulse did not reach the 

maximum rate. Thus, the sludge first had to be “activated” (e.g. enzyme activation or synthesis). Clearly, 

these results proved that storage or starvation of the sludge prior to experimentation, which is often the 

case in practice and in most cases unavoidable, effects the initial experimental results. This does not mean 

that the model given in Table 1 is not able to describe the data. The experimental response may still be the 

one of growth without cell multiplication, and practical identifiability may still be obtained, but the results are 

not expressing the actual capacity of the sludge organisms. These phenomena have also been observed 

with additions of ammonium and wastewater in this study (data not shown). Consequently, in practice one 

would activate the sludge with one or two substrate additions before data are collected for determination of 

the kinetic parameters. Provided that the amount of added substrate do not cause significant growth. 

4.3. Step 3: Theoretical Identifiability 

The theoretical identifiability of the two step nitrification model was thoroughly investigated in chapter 4, 
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considering both respirometric (measurements of either SO or rO) and titrimetric (Hp) measurements. 

Moreover, model structures assuming insignificant and significant growth were studied. The results 

concerning the system with insignificant growth are summarised in Table 2 below.  

Thus, for the experimental conditions defined above the hard bound region relates to the theoretically 

identifiable parameter combinations given in the first, third and fourth column in Table 2 respectively. This 

region defines the experimental conditions, given above, for which it is theoretically possible to obtain 

unique model parameters from the data (A - D in Fig.5), i.e. the conditions have to be such that a 

nitrification response is achieved without significant growth nor inhibition of any kind. Experiments in which 

significant growth or inhibition takes place, resulting in data that can not be described by the model, lay 

outside the region of theoretical identifiability and are exemplified with experiment E in Fig. 5. 

Table 2. Schematic overview of the theoretically identifiable parameter combinations for nitrification step 1 

and 2, depending on the available measurement(s) and with a model structure assuming insignificant 

growth (chapter 4) 

Process (j) Nitrification step 1 Nitrification step 2 

Measurement (i) → 

Model structure ↓ 

SO or rO Hp SO + Hp or rO + Hp SO or rO 

No growth 
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4.4. Step 4 - 6: Practical Identifiability 

The practical identifiability of model parameters for the example given in Fig. 4 was evaluated in chapter 5. 

This study was carried out via evaluation of the output sensitivity functions and the corresponding Fisher 

Information Matrix (FIM) constructed for all theoretically identifiable parameter combinations. It appeared, 

however, that the FIM became singular indicating a practically unidentifiable situation despite the fact that 

the theoretical identifiability study had shown that the chosen parameter set, including unique identifiability 



 

 238

of the yield YA1, is identifiable with combined respirometric-titrimetric measurements (see Table 2). The 

FIM seemed, however, inadequate to deal with this theoretical identifiability result since the inclusion of the 

sensitivity of YA1 in the calculation of FIM caused the singularity. It was found that estimation of the YA1 

was indeed possible in practice, as the theoretical identifiability analysis predicted, although it was strongly 

correlated with µmaxA1. For the case under study it thus seemed that an evaluation of parameter 

identifiability based on FIM gave a too pessimistic picture. For the development of OED this result is rather 

crucial, since the FIM is the cornerstone in the search for optimal experiments. Based on the results of 

chapter 5 it is, however, not possible to include the fact that the YA1 becomes uniquely identifiable with 

combined respirometric-titrimetric measurements in the FIM and, thus, in the OED.  

We can now exemplify the experiment B in Fig. 5 by the experiment where the combined respirometric-

titrimetric data is of such high quality that the parameters of both nitrification steps, including YA1, are 

practically identifiable. It is obvious that if the aim of the experiment would be to identify YA1 then this 

would in fact be the optimal experimental design. Only, we would not be able to find it using a FIM based 

OED approach. Thus, for the OED the FIM is based on the sensitivity functions of the outputs (rO, 

combined rO and Hp or SO) with respect to the theoretically identifiable parameters listed in column 1 and 4 

in Table 2 only. In addition the parameters KLa and saturation coefficient of oxygen 0
OS  are considered in 

the case of SO measurements. 

Next, the optimal scaling factors α applied to the time units in the reference experiment to allow for a more 

stable inversion of the FIM are given in Table 3. The optimal scaling factors were found according to 

chapter 6 by minimisation of the condition number (λmax\λmin) of FIM. 

Table 3. Applied scaling factors α and the condition number of the FIM for case study 1 

Measurements α λmax\λmin 

1 3.55⋅1013 rO 

7.72⋅105 2.07⋅102 

1 9.79⋅1013 rO+Hp 

7.21⋅105 7.85⋅102 

1 1.15⋅1014 SO 

5.46⋅103 1.99⋅1010 

Obviously, the condition number of the FIM considering rO or combined rO and Hp measurements can be 

reduced significantly by scaling of the time units, in accordance with the findings of chapter 6. However, the 
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condition number of the scaled FIM when measurements of SO are used for parameter estimation remains 

rather high (1.99⋅1010). In this respect it should be remembered that only one scaling factor α can be 

considered for all parameters related to time, since it is only possible to deal with one time unit (see chapter 

6). When dealing with SO data three parameters have a time unit, i.e. µmaxA1, µmaxA2 and KLa. The value of 

KLa is in general of another order of magnitude than µmaxA1 and µmaxA2 (in this case KLa = 9.35⋅10-2 min-1, 

µmaxA1 = 3.12⋅10-6 min-1 and µmaxA2 = 6.93⋅10-7 min-1). Therefore, scaling of the time units can not reduce 

the condition number of the FIM as significantly as in the case where only rO or combined rO and Hp data 

are considered. This means that the results considering SO data may have to be taken with some 

reservation since the FIM is not as numerically stable as in the case of rO and combined rO and Hp data. 

4.4.1. Examples of experiments B - D 

In the following some illustrative examples are given for the non-optimal experiments B – D in Fig. 5.  

First, experiment B can be illustrated by the case where the kinetic parameters of the two step nitrification 

are practically identifiable, but where the experimental conditions do not comply with the constraints, e.g. 

pH outside the range of 7.5 – 8.5. An experiment of type B can also occur if the dissolved oxygen 

electrodes are wrongly calibrated. Thus, the data may be of sufficient quality to allow for a practical 

identifiability of the model parameters but the results will still be erroneous. Finally, experiment B can also 

be illustrated by the case where the sludge has been exposed to significant starvation prior to the 

experiment. The parameters may be practically identifiable but still not describing the actual capacity of the 

sludge. 

Experiment C can be exemplified by experiments of a single ammonium addition where the experimental 

constraints are fulfilled, but where the second nitrification step is not practically identifiable (as in Fig. 4). 

Thus, experiment C is not within the region of practical identifiability but it is within the region of 

experimental constraints. Furthermore, the pathological case where the degradation of added ammonium 

and nitrite complete exactly at the same time not allowing a separation of the responses, is also represented 

by an experiment C in Fig. 5. A final example of an experiment C would be an experiment that is stopped 

too early to allow for complete termination of the SO, rO or Hp profile (a typical experimental error) or 

where only a very small amount of substrate is added not allowing for informative profiles. This experiment 

may be within the experimental constraints but the parameters may not be practically identifiable. 

Finally, before aiming for the optimal experiment, experiment D can be exemplified by an experiment where 

the pH set-point is also outside the range of 7.5 – 8.5, but where the set-point is badly chosen resulting in 

non-informative Hp data. However, an even more illustrative example of a D experiment is the case 

thoroughly discussed in the previous chapter 6 where the optimal value of the ModE criterion (=1) was 

obtained just be rescaling the parameter units. The ModE=1 optimal experiment is optimal considering the 

numerical properties of the estimation problem since it secures a stable numerical inversion of the FIM. 
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Thus, if this is the primary aim such experiments are the optimal ones (A). However, if the aim is to obtain 

reliable parameter estimates, as in this case, the resulting so-called optimal rO profile clearly illustrated that it 

would not be possible to estimate parameters reliably based on such data. The optimal experiment was 

either too short to even reach the maximum rO or too long to allow a termination of the rO,ex profile within 

the defined experimental time. Indeed, it was also found in chapter 6 that the A-, modA- and E- criteria 

were affected by parameter rescaling, although to a lesser extent than the modE criterion. Consequently, 

care should be taken with the application of these criteria since they may result in misleading, theoretically 

optimal, experiments. 

4.5. Step 7: Experimental degrees of freedom 

In this case study the experimental degree of freedom to reach an optimal experiment (A) is chosen as the 

addition of an optimal amount of nitrite together with ammonium. Thus, the aim of the OED exercise is to 

optimise the initial addition of nitrite, SNO2,1(0), to obtain a rO profile which contains sufficient information to 

identify the kinetics of both nitrification steps simultaneously. The initial ammonium concentration, SNH,1(0), 

is assumed to be fixed at the same value as in the reference experiment of Fig. 4 and the pH set-point was 

8.2. Furthermore, no significant growth may take place during the experiment as defined above. For 

nitrification this condition is not that severe since the yield of nitrification is low. In this example the amount 

of SNH,1(0) is fixed to be 3.5 mg NH4-N/l. It has been calculated that the concentration of nitrifiers is about 

40 g CODNIT(biomass)/l (see chapter 8). Thus, with a total nitrification yield of 0.24 mg COD/mg N an 

addition of 3.5 mg NH4-N/l will only yield an increase in biomass of about 2%. An extra simultaneous 

addition of nitrite will not increase the growth significantly since the growth yield on nitrite is as low as 0.06 

mg COD/mg N (Sharma and Ahlert, 1977). The nitrogen load at the full-scale WWTP is about 0.02 – 

0.025 kg N/kg MLSS.d calculated on the basis of average full-scale data. In the lab-scale experiments the 

nitrogen load was about 0.015-0.025 kg N/kg MLSS.d calculated as the mass of nitrogen added per mass 

of MLSS divided with the duration of the experiment. Thus, the difference in substrate load, ∆S, which the 

nitrifiers are exposed to under the lab-scale conditions, does not differ significantly from the full-scale 

situation. One may therefore expect that the experimental response is representative for the full-scale 

system and that extant parameters can be obtained. 

The maximal experimentation time for the optimal experimental design was fixed to 130 minutes, similar to 

the experimentation time of the single ammonium addition of the experiment in Fig. 4.  

4.6. Step 8: Optimal Experimental Design 

The results of the D criterion based OED and the reference experiment are given in Table 4, considering rO, 

combined rO and Hp and SO measurements and applying the α values of Table 3. The values of all the 

other FIM characteristics for the same D-optimal experiment are reported as well. 
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Table 4. Values of the OED criteria for different experimental set-ups and with the D criterion (Det(FIM)) 

as optimisation criterion. SNO2,1(0) is the degree of freedom in the experimental design. The optimised 

value for the D criterion is given in bold 

Meas. Criterion Tr (FIM-1) Tr (FIM) Det(FIM) λmax λmin λmax\λmin SNO2,1(0) 

reference 2.39⋅10-3 1.75⋅105 8.47⋅1019 1.09⋅105 5.27⋅102 2.07⋅102 0 rO 

D 1.35⋅10-3 2.35⋅105 3.88⋅⋅1020 1.17⋅105 1.22⋅103 9.56⋅101 1.98 

reference 1.51⋅10-3 1.02⋅106 8.54⋅1022 5.69⋅105 7.25⋅102 7.85⋅102 0 rO+Hp 

D 9.05⋅10-4 1.08⋅106 3.41⋅⋅1023 5.67⋅105 1.26⋅103 4.47⋅102 1.98 

reference 6.31⋅10-2 4.86⋅1011 4.12⋅1048 3.16⋅1011 1.59⋅101 1.99⋅1010  SO 

D 7.36⋅10-2 8.49⋅1011 1.87⋅⋅1049 6.74⋅1011 1.36⋅101 4.96⋅1010 1.59 

 

As can be expected, the optimal SNO2,1(0) addition considering both rO and combined rO and Hp 

measurements is the same (1.98 mg N/l) since Hp data do not give extra information on the second 

nitrification step. However, as will be seen below, the Hp measurements improve the identification of the 

first nitrification step and thereby also the accuracy of the parameters related to the second nitrification 

step. The optimal SNO2,1(0) addition considering SO measurements and the same experimental time of 130 

min. is lower (1.59 mg N/l) since here re-aeration has to take place as well within the experimental time to 

allow for estimation of KLa and 0
OS . Hence, less time is available for complete degradation of SNO2. 

In all three cases the Det(FIM) of the optimal experiment is larger (about four times) than in the reference 

experiment indicating that the overall generalised parameter variance has decreased.  

Furthermore, the minimum eigenvalue λmin increases, indicating that the largest parameter error has 

decreased by OED. It is, however, not possible to trace specifically which parameters the largest 

parameter error, i.e. λmin, and minimum parameter error, i.e. λmax, is corresponding to (Brouwer et al., 

1998). In the case of SO measurements it was observed that also the value of λmax increased with a factor 2 

indicating that the minimum parameter error had increased. This was not observed in the case considering 

rO or combined rO and Hp measurements. This increase in λmax in the case of SO data had an effect on the 

trace of FIM (i.e. the sum of eigenvalues, equivalent to the average of the parameter errors), which also 

increased more than in the case of rO and combined rO and Hp data. However, the trace of FIM-1 

increased a bit considering SO measurements. This was not expected, since Tr (FIM-1) ideally should 

decrease for an optimal experiment. Most remarkable is, however, that the value of λmax\λmin increased 

when SO measurements are considered and a D-optimal experiment is conducted.  

These inconsistent and unexpected observations when considering SO data are most probably related to the 
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rescaling of time unit. For comparison the OED results for SO data not incorporating the scaling factor are 

given in Table 5. 

Table 5. Evaluation of the effect of parameter rescaling on the OED criteria in case of SO measurements, 

OED results obtained for α=1 

Meas. Criterion Tr (FIM-1) Tr (FIM) Det(FIM) λmax λmin λmax\λmin SNO2,1(0) 

reference 1.49⋅10-6 1.45⋅1019 1.09⋅1071 9.41⋅1018 8.19⋅104 1.15⋅1014  SO 

D 7.81⋅10-6 2.53⋅1019 4.93⋅1071 2.01⋅1019 2.18⋅105 9.19⋅1013 1.59 

It is obvious that the properties of FIM are in accordance to expectation for the unscaled case. Thus, 

again, this confirms the danger of rescaling and how changing time units may interfere with the OED criteria 

related to the eigenvalues and trace (A-, modA-, E- and modE-criterion). Only the D-criterion is invariant 

to rescaling of parameters, as stated in chapter 6. 

The expected 95% confidence intervals for the reference experiment and the experiments with optimal 

addition of SNO2 are given in Table 6. The confidence intervals are calculated based on the inverse of the 

FIM and the assumption that the measurement error remains the same for the optimal experiment (see Eq. 

3).  

Table 6. Expected 95% confidence intervals for the two step nitrification experiments optimised according 

to the D criterion, see Table 3, expressed as percentage of parameter values  

Meas. Criterion µmaxA1 KSA1 SNH,1(0) µmaxA2 KSA2 0
OS  KLa 

rO reference 1.50 6.80 0.59 7.12 29.44   

 D 1.37 6.36 0.61 3.08 21.43   

rO+Hp reference 0.72 4.04 0.09 6.39 26.18   

 D 0.70 3.97 0.09 3.00 21.18   

SO reference 0.12 0.67 0.03 0.66 2.67 0.03 0.10 

 D 0.10 0.53 0.03 0.24 1.64 0.03 0.10 

First, considering the reference experiment, it is obvious from Table 6 that combined rO and Hp 

measurements result in more narrow confidence intervals for the parameters related to the first nitrification 

step (i.e. µmaxA1,  KSA1 and SNH,1(0)) than with rO data alone, as already observed (see chapter 5). It can 

further be observed that the confidence intervals for the parameters related to the second nitrification step 

(i.e. µmaxA2 and KSA2) are slightly smaller considering combined rO and Hp measurements. Thus, apparently 

the improved parameter identifiability of the first nitrification step, due to the inclusion of Hp data, helps the 

identification of the second nitrification step in the reference experiment, where the “shoulder” in the rO 
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profile related to the second nitrification step was poorly identified (see Fig. 4). The optimal experiment 

compared to the reference experiment results in improvements of 56% and 53% for µmaxA2 and 27% and 

19% for KSA2 considering rO and combined rO and Hp measurements respectively. If SO data are 

considered an improvement of 74% for µmaxA2 and 38% for KSA2 can be obtained. Furthermore, slight 

improvements of the accuracy of the parameters related to the first step were observed in all three cases. 

If SO is measured rather than combined rO and Hp measurements it is obvious that the parameter accuracy 

improves significantly with about a factor 10. This is caused by the fact that the measurement noise 

relatively is about 100 times smaller for SO measurements than with rO measurements as discussed earlier 

(see chapter 5). 

4.7. Validation of optimal experimental design 

The actual experiments carried out to validate the procedure were made with SNO2,1(0) additions of 0.35; 

0.70; 1.40 and 2.55 mg N/l. The experimental data together with the model fits are illustrated in Figure 6 – 

7. Table 7 lists the estimated parameter combinations, and also reports the parameters of the reference 

experiment (SNO2,1(0) = 0). 
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Figure 6. Validation experiments. Profiles of SO, rO and Hp experimental data and model fits. A-B: 

addition of SNO2 = 0.35 mg N/l, C-D: addition of SNO2=0.70 mgN/l. 
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Figure 7. Validation experiments. Profiles of SO, rO and Hp experimental data and model fits. A-B: 

addition of SNO2 = 1.40 mg N/l, C-D: addition of SNO2 = 2.55 mg N/l 

As can be observed from Table 7 the estimated parameter combinations for the experiments with addition 

of different amounts of SNO2 are very close and in accordance with the reference experiment, confirming 

that these experiments can be used as validation of the procedure. Notice that it seems as if the parameter 

estimates based on SO data are slightly lower than the ones based on rO data. The reason for this is not 

clear. 

For these validation experiments Table 8 lists the actual 95% confidence intervals on the estimated kinetic 

parameter combinations. Here the combinations are not written out fully but e.g. µmaxA1 indicates the 

combination related to µmaxA1 (i.e. X
Y

Y43.3
1Amax

1A

1A µ−
). 
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Table 8. Confidence intervals as percentage of parameter values for different additions of SNO2,1(0) 

 SNO2,1(0) 
mg/l 

µmaxA1 KSA1 SNH,1(0) µmaxA2 KSA2 0
OS  KLa 

rO 0.35 1.54 6.21 0.62 8.17 39.14   

rO+Hp  0.80 3.99 0.10 5.72 25.98   

SO  0.11 0.57 0.03 0.39 2.20 0.03 0.10 

rO 0.70 1.50 6.58 0.59 4.70 27.34   

rO+Hp  0.75 3.98 0.10 4.44 25.58   

SO  0.11 0.54 0.03 0.32 1.75 0.03 0.09 

rO 1.40 1.39 6.23 0.58 3.66 31.90   

rO+Hp  0.74 3.90 0.09 3.09 25.32   

SO  0.09 0.51 0.03 0.18 1.67 0.02 0.08 

rO 2.55 1.54 6.32 0.59 1.82 18.95   

rO+Hp  0.80 3.84 0.08 1.92 20.66   

SO  0.10 0.48 0.03 0.11 1.03 0.02 0.07 

Considering the accuracy of the parameters related to the first nitrification step, the same conclusions, as 

discussed above, hold concerning the comparison of rO, combined rO and Hp and SO measurements. It is 

not expected that the accuracy of the first step changes significantly as more SNO2 is added. When focusing 

on the parameters of the second nitrification step, it is obvious that the more SNO2 is added initially the 

smaller the confidence interval of both µmaxA2 and KSA2. When comparing the addition of 0.35 mg N/l with 

an addition of 2.55 mg N/l an improvement in accuracy of about 77% for µmaxA2 and 52% for KSA2 is 

achieved. Evidently, with this experimental design the largest improvements in parameter accuracy can be 

achieved for the maximum specific growth rate µmaxA2, since a higher SNO2,1(0) results in more data 

containing information on the maximum respiration rate related to the second nitrification step, and thereby 

on µmaxA2.  

The theoretically predicted confidence intervals of the optimal experiment according to Table 6, considering 

SO data (SNO2,1(0) = 1.59), match well with the confidence intervals calculated for the evaluation 

experiment with SNO2,1(0) = 1.4 mg N/l (Table 8). Also, the theoretically predicted confidence intervals for 

an addition of 1.98 mg N/l considering either rO or combined rO and Hp measurements lay in between the 

calculated confidence intervals for the validation experiments with additions of 1.4 mg N/l and 2.55 mg N/l.  

Obviously, one can further optimise the experiment by increasing the amount added, to e.g. 2.55 mg N/l. 

However, this experiment takes about 40 or 90 minutes longer (depending on whether rO or SO data are 
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used respectively) than the experimental time constraint set to 130 min. Thus, a compromise must be 

sought between the desired accuracy and the experimentation time. 

4.8. Step 9: Sensitivity of the optimal experimental design to 
parameter variation 

Above an optimal experimental design was determined and an optimal initial addition of nitrite was defined 

to be 1.98 mg N/l or 1.59 mg N/l depending on whether rO or SO was measured respectively. The 

reference and validation experiments above were all carried out on the date 151198 and as could be seem 

from Table 7 the parameter variation among these experiments was minor. It is, however, interesting to 

pose the question whether this experimental design would hold in case the kinetic parameters of the first or 

second nitrification step would change. Or said in other words “How large parameter variation is possible 

still allowing for an accurate estimation of the parameters, especially of these related to the second 

nitrification step”. If one imagines that the value of µmaxA1 decreases, the length of the tail in the rO profile 

related to the second nitrification step will become less pronounced, resulting in a worse practical 

parameter identifiability of the second step. Thus, a higher amount of SNO,1(0) may have to be added to 

allow for the same parameter accuracy as the optimal experiment derived above. On the other hand, if 

µmaxA1 increases, the rO tail will become more pronounced resulting in even more accurate parameter 

estimates and less SNO,1(0) could thus be added to maintain the same accuracy. A similar reasoning can be 

made in case it is µmaxA2 that either decreases or increases. 

Experiments with addition of ammonium for detection of the nitrification kinetics were carried out daily 

during a measuring campaign at the full-scale WWTP of Zele (see chapter 8). The estimated parameter 

combinations based on rO measurements are listed in Table 9. Despite the fact that more accurate estimates 

are obtained with SO data, parameters of the validation experiments were estimated based on rO data due 

to the faster convergence of the objective function towards a minimum (see chapter 5). The parameters of 

the second nitrification step were estimated based on independent experiments with nitrite additions and 

their values were fixed during the parameter estimations using the experimental results of ammonium 

additions (similar to the reference experiment). 

Some variation in the kinetics can be observed with a variation in the parameter combination related to 

µmaxA1 from 0.1036 to 0.2603 (with 0.236 for the reference and optimal experiment) and for the 

combination related to µmaxA2 a variation from 0.0354 to 0.0630. Especially the experiments carried out on 

181198 and 221198 are deviating. The reason for the deviation of 181198 can be that the sludge sample 

for this experiment was taken at the full-scale plant after a heavy rain fall in the beginning of the measuring 

campaign (see also chapter 8). This may have had a dilution effect on the viable fraction of the sludge. 

There seems no obvious reason for the deviation of the experiment 221198. However, in this context the 

main point of interest is not why the sludge kinetics change but rather whether the optimal experiment is still 
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valid if and when the reaction kinetics changes. Finally, it should be noted that despite addition of similar 

amounts of SNH,1(0) the related parameter combination ( )0(S)Y43.3( 1,NH1A− ) vary with about 25%. 

Table 9. Estimated parameter combinations for different experiments with an addition of SNH,1(0) = 7.5 mg 

N/l and SNO,1(0)=0 mg N/l (values in italic were fixed, the biomass concentration is corrected for 

changes in-between the experiments to allow for a comparison of parameter combinations). 

Experiment 151198 is the reference experiment 

Date  X
Y

Y43.3
1Amax

1A

1A µ
−

 
1SA1A K)Y43.3( −  

X
Y

Y14.1
2Amax

2A

2A µ
−  2SA2A K)Y14.1( −  )0(S)Y43.3( 1,NH1A−  

151198 0.2360 0.970 0.0499 0.271 11.500 

161198 0.2603 1.091 0.0540 0.223 11.801 

181198 0.1036 1.081 0.0354 0.438 14.438 

191198 0.2331 1.150 0.0666 0.223 14.484 

201198 0.2500 1.206 0.0630 0.223 14.686 

211198 0.2637 1.148 0.0630 0.223 14.550 

221198 0.1089 0.952 0.0486 0.223 11.566 

 

The optimal experiment (SNO2,1(0) = 1.98 mg N/l, optimal for the sludge of 151198) is now simulated 

again, but with parameter combinations X
Y

Y43.3
1Amax

1A

1A µ
−

 and X
Y

Y14.1
2Amax

2A

2A µ
−

 changed 

according to the observed minimum and maximum of Table 9. For these conditions, the expected 95 % 

confidence intervals are calculated and given in Table 10. 

Table 10. Expected 95% confidence intervals expressed as percentage of parameter values for validation 

experiments (1 - 4) (changes of µmaxA1 and µmaxA2) of the optimal experiment (SNO2(0)=1.98 mg N/l), 

considering rO measurements 

 X
Y

Y43.3
1Amax

1A

1A µ
−  X

Y
Y14.1

2Amax
2A

2A µ
−  µmaxA1 KSA1 SNH,1(0) µmaxA2 KSA2 

D optimal  0.2360 0.0499 1.37 6.36 0.61 3.08 21.43 

Exp. 1 0.1036 0.0499 7.96 28.85 0.74 23.30 83.58 

Exp. 2 0.2603 0.0499 1.31 6.13 0.58 2.98 21.06 

Exp. 3 0.2360 0.0354 1.38 6.38 0.62 3.34 24.99 

Exp. 4 0.2360 0.0630 1.36 6.38 0.58 2.89 19.82 
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From Table 10 it is obvious that when the combination related to µmaxA1 decreases (Exp. 1), the parameter 

identifiability suffers significantly since the tail in the rO profile related to the second nitrification step is now 

no longer visible (see Fig. 8A). The increase in µmaxA1 (Exp. 2) results in a slight improvement of parameter 

accuracy compared to the D-optimal experiment. Also, the changes in µmaxA2 to the minimum (Exp. 3) and 

maximum (Exp. 4) observed result in the expected changes in parameter estimation accuracy, i.e. increase 

and decrease of accuracy respectively. However, for both cases the accuracy is rather comparable to the 

one of the optimal experiment. 
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Figure 8 Sensitivity of optimal experiment to parameter changes. Simulated rO profiles. A: µmaxA1 

decrease, B: µmaxA1 increase, C: µmaxA2 decrease, D: µmaxA2 increase. 

Thus, obviously the most critical situation is the one where µmaxA1 decreases and µmaxA2 remains at a high 

value. The maximum possible value of the parameter combination of µmaxA2, still allowing parameter 

estimation accuracy comparable to the optimal experiment, has been detected to be 0.0252 for the 

minimum observed µmaxA1. The corresponding expected 95% confidence intervals are listed in Table 11. 

Indeed, as observed from Table 9 this critical value for µmaxA2 is exceeded in the experiment of 181198 for 

which the minimum µmaxA1 is observed.  
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Table 11. Expected 95% confidence intervals expressed as percentage of parameter values for the critical 

experiment  

 X
Y

Y43.3
1Amax

1A

1A µ
−  X

Y
Y14.1

2Amax
2A

2A µ
−  µmaxA1 KSA1 SNH,1(0) µmaxA2 KSA2 

D optimal  0.2360 0.0499 1.37 6.36 0.61 3.08 21.43 

Critical exp 0.1036 0.0252 1.91 9.13 0.90 4.59 31.98 

 

5. Case study 2 – combined COD degradation and nitrification 

5.1. Step 1: Reference experiment 

The degradation of the readily biodegradable compounds in the combined municipal-industrial wastewater 

of the WWTP of Zele (Aquafin NV, Aartselaar, Belgium) was characterised by respirometric 

measurements. Titrimetric measurements were also carried out, but these data were not included in this 

study since it was not yet evident how to interpret the titrimetric effects of COD degradation. The titrimetric 

effect related to degradation of COD will highly depend on the kind of carbon compounds present, e.g. it 

was shown in the work of Gernaey et al. (2000a) that acetate and dextrose degradation result in 

completely opposite titrimetric effects. Obviously, it is not known which specific carbon compounds the 

wastewater COD consists of. In experiments where nitrification was suppressed it was indeed observed 

that the wastewater COD also resulted in a titrimetric effect (data not shown). However, it was not within 

the scope of this work to interpret and model this. 

A typical experimental rO profile of a wastewater from the Zele WWTP is given in Fig. 9. Based on an 

analysis of the wastewater it is known that ammonium is present and probably also some readily 

biodegradable COD (see chapter 8). From the section above (case study 1) it was realised that a model 

including nitrification in two steps was needed to describe the nitrification in this plant adequately. However, 

it is clear from the “tailing” wastewater profile in Fig. 9 that it would not be possible to separate the 

contributions of (i) the nitrification and (ii) the degradation of readily biodegradable COD to the total rO 

from each other. Thus, to analyse the example of Fig. 9 the nitrification parameters were fixed at values 

obtained from a separate experiment where only ammonium and nitrite were added (from case study 1). In 

this way kinetic parameters related to the COD degradation could be estimated (Spanjers and 

Vanrolleghem, 1995). 

However, in general the respirograms of wastewater were not informative enough to describe the 

degradation of COD via Monod kinetics, since no zero order respiration rate plateau (i.e. constant 

respiration rate) was reached in the experiments. Consequently, the degradation of COD was instead 

described via a first order model (Eq. 4), where the first order rate constant k replaces the Monod 
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parameter combination 
S

Hmax

K

µ
. The model applied to describe the wastewater data is given in Table 12. 
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Figure 9. Experimental data and model fit of a wastewater rO profile 

Table 12. COD degradation and nitrification model for interpretation of respirometric data, assuming that 

no biomass growth takes place  

             Component → 
Process ↓ 

1. 
SO 

2. 
SNH 

3. 
SNO2 

4. 
SNO3 

5. 
SS 

Process rate 

1. COD degradation 
H

H

Y
Y1−

−     
HY

1−  Xk ⋅  

2. Nitrification step 1 
1A

1A

Y

Y43.3 −
−  

1AY
1−  

1AY
1

   X
SK

S

NH1SA

NH
1Amax +

µ  

3. Nitrification step 2 
2A

2A

Y

Y14.1 −
−   

2AY
1−  

2AY
1

  X
SK

S

2NO2SA

2NO
2Amax +

µ  

 

The purpose of this study was to design an experiment that would allow for a simultaneous characterisation 

of the reaction kinetics for both the first nitrification step and the degradation of readily biodegradable 

COD. Here, we will not aim for a simultaneous identification of the second nitrification step. Thus, the 

parameters related to the second nitrification step will be fixed at values obtained in the case study above. 
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As in the case study of the two step nitrification above, the most obvious experimental design (A) is the one 

where the nitrification results in a more visible shoulder in the rO profile. Secondly, the purpose is to design 

an experiment from which extant parameters can be obtained. That is, the conditions have to be such that 

they are representative for the full-scale system to be able to transfer the lab-scale results to a model of the 

full-scale WWTP. Finally, emphasis is put on the sensitivity of the experimental design to analyse the effect 

of changes in wastewater concentration and character. Because of the faster convergence of the objective 

function toward a minimum for the parameter estimation only measurements of rO will be considered in this 

study. Again, the concept of optimal experimental design defined in Fig. 1 is now concretised for this case 

and illustrated in Fig. 10. 

 

Theoretical identifiability

Practical identifiability 

Experimental constraints

A
B

C

D

OPTIMAL EXPERIMENT

E
E1: Significant growth

B2: Practically identifiable but 
oxygen electrodes wrongly calibrated

D1: No biodegradable COD 
in present in wastewater

C1: Not possible to separate 
nitrification from COD 
degradation in the rO profile

B1: Practically identifiable but 
pH outside range of 
experimental constraints

B3: Practically identifiable but 
starvation prior to experiment

C2: Experiment stopped too 
early, i.e. data not informative

E2: Growth limitations

D2: Experiments optimised 
via the ModE criterion

 

Figure 10. Optimal experimental design for combined COD degradation and nitrification. Illustrations of 

experiments : A – D 
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5.2. Step 2: Experimental conditions and constraints 
The purpose of the experiments is to achieve accurate estimation of the kinetic parameters for COD 

degradation and the first nitrification step. In addition, these parameters should be representative for the 

full-scale system under study. As discussed above the S(0)/X(0) and ∆S are two critical factors that are 

influencing the experimental response. Also, here it will be attempted to work at the lowest S(0)/X(0) and 

∆S possible to avoid significant growth and nitrification inhibition. Thus, concerning the COD degradation 

process the growth process without cell multiplication (Fig. 2) is aimed for. Again, the model for which 

unique parameters are sought does not consider growth (i.e. X is not a function of time), see Table 12.  

The list of valid experimental conditions is rather similar to the one of the two step nitrification example 

above: 

• Experimental conditions : 

• Measured variables : 

• Oxygen uptake rate (rO) 

• Environmental variables : 

• Nitrifying and COD removing sludge from the full-scale WWTP under study. 

• The substrate load of ammonium and COD, ∆S, and S(0)/X(0) ratio should not be too different 

compared to the full-scale system to ensure that the organisms are not subjected to too drastic 

changes in their environmental conditions, and thereby changes of experimental responses 

(considering COD see Fig. 2). 

• Substrates should be added in such amounts that the biomass increase does not exceed 5% to 

avoid significant growth. Thus, a growth of less than 5% is here considered neglible. 

• Ammonium and/or nitrite as substrate should be dosed such that the concentrations of ammonia 

(NH3) and nitrous acid (HNO2) are below 0.1 gN/m3 and 0.2 gN/m3 respectively to avoid 

inhibition of nitrification Note that the critical concentrations of NH3 and HNO2 are pH 

dependent (Anthonisen, 1976).  

• pH in the range 5.5 – 10 to avoid growth limitation (Henze et al., 1997). 

• Temperature 5 – 40 oC to avoid growth limitation (Henze et al., 1997). 

• Oxygen concentration above 2 mg/l to avoid limitation. 

• No presence of inhibiting components. 

The purpose concerning simultaneous characterisation of the reaction kinetics for the first nitrification step 

and COD degradation can be fulfilled by designing an experiment for which the practical identifiability is 

ensured. Thus, no further experimental constraints will have to be imposed on the experimental conditions 

already listed above. Similar to the case of two step nitrification, however, the second purpose dealing with 
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the transferability of the lab-scale results to the full-scale system requires a few additional constraints to 

frame the experimental conditions. Again, these extra experimental constraints are rather simple and similar 

to the two step nitrification case, since the main issues of ensuring a lab-scale result that is transferable to 

the full-scale system are already defined by the conditions above. 

• Experimental constraints: 

• pH in range 7.5 - 8.5 

• Temperature in full-scale system is 10oC 

• Sludge history 

The comments on these experimental constraints given above for the two step nitrification case also apply 

here. Hence, for example a pH outside the defined range, or an experiment carried out with sludge that has 

been starved in endogenous state prior to the experiment to an extent that leads to a response significantly 

different from the full-scale behaviour, are both conditions that do not comply with the defined constraints. 

5.3. Step 3: Theoretical Identifiability 

The theoretical identifiability of Monod models was investigated in detail in chapter 4. For this case study 

the theoretical identifiability of the first order model for COD degradation was investigated and it appeared 

that the combinations Xk ⋅  and )0(S)Y1( SH ⋅−  are theoretically identifiable. Table 13 summarises the 

results given the assumption of insignificant growth and measurements of rO only. Thus, column one and two 

in Table 13 defines the hard bound region of the theoretically identifiable parameter combinations 

considered in this case study (Fig. 10).  

 

Table 13. Schematic overview of the theoretically identifiable parameter combinations for heterotrophic 

growth and nitrification, assuming measurements of rO and a model structure with insignificant growth 

(see also chapter 4) 

Process (j) Heterotrophic growth Nitrification step 1 Nitrification step 2 

Measurement (i) → 

Model structure ↓ 

rO rO rO 

No growth kX  

)0(S)Y1( SH−  
X

Y

Y43.3
1Amax

1A

1A µ
−

 

1SA1A K)Y43.3( −  

)0(S)Y43.3( NH1A−  

X
Y

Y14.1
2Amax

2A

2A µ−  

2SA2A K)Y14.1( −  

)0(S)Y14.1( 02N2A−  
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This region of theoretical identifiability frames the experimental conditions (A - D), defined above, for 

which unique parameters of the chosen model can be obtained. Again, experiments that do not comply with 

these restrictions, i.e. in case significant growth or inhibition takes place, can not be described with this 

model. Thus, such experiments lay outside the region of theoretical identifiability (experiment E in Fig. 10). 

5.4. Step 4 – 6: Practical Identifiability 

In the two step nitrification case above problems with singularity of the FIM were encountered caused by 

the introduction of combined respirometric-titrimetric measurements. Here, only respirometric 

measurements (rO) are considered and thereby the problem of the FIM being singular did not appear. 

Obviously, an experiment where the respirometric data contain sufficient information for practical 

identifiability of both the heterotrophic degradation of COD and the first nitrification step is represented by 

experiment B in Fig. 10.  

The scaling factor α that was applied on the time units in the reference experiment to allow for a more 

stable inversion of the FIM are given in Table 14. As dealt with in chapter 6 this optimal scaling factor was 

found by minimisation of the condition number (λmax\λmin) of the FIM. 

Table 14 Applied scaling factor α and the corresponding condition number of the FIM for case 2. 

Measurements α λmax\λmin 

1 4.15⋅1014 rO 

3.88⋅105 1.02⋅104 

 

Again, the condition number of the FIM can be reduced significantly by scaling of the time units. 

5.5. Examples of experiments B - D 

Experiments of the type B2 - B4 from Fig. 5 related to (1) pH outside defined range, (2) wrong calibration 

of oxygen electrodes and (3) starvation prior to experimentation respectively, but with ensured practical 

identifiability, are also relevant for this case. 

An experiment in accordance with the experimental constraints but where the first step nitrification is not 

practically identifiable from the rO profile (as in Fig. 9) is illustrated by experiment C in Fig. 10. Also, 

experiments yielding non-informative rO profiles due to a too early termination of the experiment or too little 

substrate added are represented by experiment C, similar to the two step nitrification case.  

Finally, in this case experiment D can be exemplified by an experiment where the wastewater added does 

not contain any readily biodegradable COD. Thus, in such an experiment the reaction kinetics related to the 
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first nitrification step can still be identified with the model, but the purpose of simultaneous estimation of 

degradation kinetics of readily biodegradable COD can naturally not be fulfilled excluding the experiment 

from the region of experimental constraints. Finally, a D-type experiment can also be illustrated by an 

experiment optimised via the ModE criterion, as described in the two step nitrification case.  

5.6. Step 7: Experimental degrees of freedom 

The experimental degree of freedom to obtain the optimal experiment (A) is here chosen as the optimal 

additional amount of ammonium to be added initially together with the wastewater. The aim of the OED is 

then to optimise the additional initial addition of ammonium, SNH,1(0), to obtain a rO profile which contains 

enough information to allow for simultaneous estimation of the kinetic parameters related to the first 

nitrification step and the degradation of the readily biodegradable COD. It is assumed that the amount of 

wastewater is fixed although the wastewater may contain a varying COD content. The pH set-point was 

between 8.0 – 8.2.  

The sludge load of the full-scale WWTP was calculated on the basis of average full-scale data and was 

found to be about 0.32 – 0.48 kgCOD/kgMLSS.d (see chapter 8). However, only an average of about 

16% of the total COD is readily biodegradable (see chapter 8), which gives a load of readily 

biodegradable COD of about 0.05 – 0.08 kgCOD/kgMLSS.d. The load of readily biodegradable COD in 

the lab-scale experiments was calculated to be 0.05 – 0.20 kgCOD/kgMLSS.d. Thus, in some cases the 

lab-scale load has been higher than the average full-scale load. Still, the differences are not considered to 

be significant enough to change the response of the organisms. The applied S(0)/X(0) ratios were in the 

range 1:100 – 1:200 mg COD(substrate)/mg COD(total). The heterotrophic biomass concentration was 

calculated to be about 0.217 mg CODHET/mg COD(total) (see chapter 8), resulting in a S(0)/X(0) ratio of 

about 1:20 – 1:40 mg COD(substrate)/mg CODHET. With a heterotrophic yield coefficient, YH, of 0.67 mg 

COD(biomass)/ mg COD(substrate), such S(0)/X(0) ratios will results in a biomass increase of less than 

about 3 %. Thus, the experimental constraint that no biomass growth should take place is clearly fulfilled. 

The experimentation time for the optimal experimental designs was fixed to 85 minutes, which is the time 

needed to terminate the degradation of COD and the first step nitrification step in the reference experiment 

(Fig. 9). 

5.7. Step 8: Optimal Experimental Design 

The results of the D-criterion based OED and the reference experiment are listed in Table 15, considering 

rO measurements and applying the α value of Table 14. 

Thus, according to the D-criterion the optimal SNH,1(0) value is 5.24 mg N/l. This corresponds to an extra 

addition of 2.88 mg N/l, since the wastewater contains 2.46 mg N/l according to the estimation. For this 
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optimal experiment the Det(FIM) is about ten times larger than for the reference experiment, indicating that 

the generalised parameter variance has decreased as expected. In addition the λmin has increased, Tr(FIM-

1) has decreased and Tr(FIM) has increased in the optimal experiment, in accordance with expectations. 

However, similar to the case with SO measurements in the two step nitrification case study above, the value 

of the condition number, λmax\λmin, increased. This is contrary to what is expected and indicates that the 

reference experiment is more optimal with respect to the modE criterion (minimisation of λmax\λmin) than the 

experiment predicted via the D-criterion. Again, this inconsistency may be caused by the rescaling of the 

time unit that has a negative effect on the performance of especially the modE criterion (see chapter 5). 

 

Table 15. Values of the OED criteria for different experimental set-ups and with the D criterion 

(Det(FIM)) as optimisation criterion. SNH,1(0) is the degree of freedom in the experimental design. The 

optimised value for the D-criterion is given in bold 

Meas. Criterion Tr(FIM-1) Tr(FIM) Det(FIM) λmax λmin λmax\λmin SNH,1(0
) 

SS,1(0) 

reference 1.38⋅10-1 9.26⋅104 1.15⋅1015 7.97⋅104 7.85 1.02⋅104 2.46 17.30 rO 

D 8.82⋅10-2 2.07⋅105 1.48 ⋅⋅1016 1.94⋅105 12.10 1.60⋅104 5.24 17.30 

 

The expected 95% confidence intervals for the reference experiment and the optimal experiments with the 

extra addition of SNH are given in Table 16. These confidence intervals are calculated based on the inverse 

of the FIM-1 assuming that the measurement error on rO remains the same as for the reference experiment 

(see Eq. 3). 

 

Table 16 Expected 95% confidence intervals for the experiments of combined COD degradation and 

nitrification optimised according to the D criterion, see Table 15, expressed as percentage of 

parameter values.  

Measurements Experiment µmaxA1 KSA1 SNH(0) k SS(0) 

rO reference 3.33 10.86 1.63 6.34 3.05 

 D-optimal 1.48 6.31 1.78 4.94 2.49 

 

From Table 16 it is clear that the confidence intervals for the parameters µmaxA1 and KSA1 will significantly 

improve when an extra amount of SNH is added initially. The improvement of the confidence intervals is 

55% and 42% respectively. It is not clear why the confidence interval of SNH,1(0) increases for the optimal 

experiment, although the difference is not very large. Finally, the improved identifiability of the nitrification 
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parameters helps to improve the confidence intervals of the first order degradation rate for COD 

degradation and the estimated initial concentration of readily biodegradable COD (SS) in the wastewater. 

These improve with 22% and 18% respectively. 

5.8. Validation of optimal experimental design 

The extra amount of ammonium added in the experiment carried out to validate the procedure was 2.20 mg 

N/l. The experimental data together with the model fits are illustrated in Fig. 11. The results of the estimated 

parameter combinations for the reference and validation experiment are given in Table 17. 
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Figure 11. Validation experiment. Experimental rO data and model fit of an addition of  wastewater and 

extra ammonium 

Table 17. Estimated parameter combinations for reference (NH4-N and WW) and validation experiment 

(WW + NH4-N) for combined COD degradation and nitrification (values in italic were fixed and not 

estimated). The amount originating from the wastewater is calculated based on chemical analysis of 

ammonium-nitrogen in the wastewater and indicated between brackets for WW+NH4 

Addition SNH,1(0) 

mg/l 

BODst 

(theory) 

BODst 

(model) 

X
Y

Y43.3
1Amax

1A

1A µ
−

 
1SA1A K)Y43.3( −  kX (1-YH)SS,1(0) 

NH4-N 4.54 19.65 19.30 0.2331 1.150   

WW 1.80 7.79 10.66 0.2331 1.150 0.0779 5.711 

WW+NH4 (1.80+2.20) 17.32 21.88 0.2036 1.410 0.0735 5.518 

 

As can be observed from Table 17 the estimated parameter combinations are very similar. This confirms 

that these experiments can be used as a validation of the OED procedure. The estimated BODst for the 
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single ammonium addition matches well the theoretically expected one (4.33⋅SNH,1(0)). However, the 

BODst related to the ammonium added with the wastewater seems to be overestimated. This can be 

caused by the fact that the amount of ammonium added with the wastewater is calculated on the basis of 

chemical analysis of ammonium-nitrogen (1.80 mg N/l). It is likely that parts of the organic nitrogen (for this 

wastewater the concentration of TKN is about three times higher than the NH4-N concentration) in the 

wastewater is nitrifiable and thereby results in oxygen consumption. Note that the value of SNH(0) in Table 

15 is the model value. Indeed, if one compares the experiment of the wastewater addition with the 

wastewater plus extra ammonium (2.20 mg N/l) experiment, then it is observed that the difference in 

estimated BODst (21.88 – 10.66 = 11.22) corresponds reasonably well with the theoretically expected 

(17.32 – 7.79 = 9.53).  

The actual 95% confidence interval for the validation experiment is given in Table 18. 

Table 18. Confidence intervals as percentage of parameter values for the validation experiment for 

combined COD degradation and nitrification. 

Measurements Experiment µmaxA1 KSA1 SNH(0) k SS(0) 

rO validation 1.88 7.28 0.95 5.42 2.95 

 

Obviously the confidence intervals for µmaxA1, KSA1, SS,1(0) and k are slightly larger than the theoretically 

predicted ones (see Table 16) since the actual amount of SNH added was a bit lower than the amount 

calculated by the OED procedure. However, the actual confidence interval on SNH,1(0) is smaller than 

predicted. 

5.9. Step 9: Sensitivity of the optimal experimental design to variation 
in parameters and wastewater concentrations  

In this study, the robustness of the optimal experimental design derived above was first investigated in 

general by checking the sensitivity of the parameter estimation accuracy, indicated by COV and Det(FIM), 

to changes in the kinetic parameters for degradation of COD and ammonium, i.e. k and µmaxA1, and 

changes in wastewater concentrations, i.e. SS and SNH. The sensitivity was evaluated using relative 

sensitivity functions, RSF (see Eq. 5). The optimal experiment was used as the reference, and the model 

output obtained after increasing the value of a specific parameter with 1% was used to obtain the relative 

sensitivity functions (Eq. 5). 

p
p

y
y

RSF
∆

⋅∆=      (5)  

The results of this evaluation are shown in Table 19. The influence of a parameter or substrate 
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concentration on the COV or Det(FIM) was interpreted as proposed by Julien (1997): If RSF = 0 the 

parameter has no influence at all, for RSF < 0.25 the influence of the parameter is not considered to be 

significant; if 0.25 ≤ RSF < 1, the parameter is considered to be influential; if 1 ≤ RSF < 2 the parameter is 

considered to be very influential and, finally, if 2 ≤ RSF the parameter is considered to be extremely 

influential. When the value of a parameter or initial substrate concentration and the COV or Det(FIM) 

change in the same direction, this is indicated with a positive sign in Table 19, and when they move in the 

opposite direction this is indicated with a negative sign. 

 

Table 19. Results sensitivity analysis of the D-optimal experimental design (0 = no influence, + , - = not 

very significant, + +, - - = influential; + + + , - - - = very influential; + + + +, - - - - = extremely 

influential). See text for a further explanation of the results 

Parameter COV(µmaxA1) COV(KSA1) COV(SNH,1(0)
) 

COV(k) COV(SS,1(0)
) 

Det(FIM) 

k - + - - - + + + - - - - + + 

µmaxA1 + - - - - + + + + + + + + + 

SS,1(0) 0 0 0 - - - - 0 + + + 

SNH,1(0) - - + + + + - - - + 

 

From Table 19 it becomes clear that a decrease in the degradation rate of COD (k) will increase 

COV(SS,1(0)) and COV(SNH,1(0)), i.e. the accuracy of both the SS,1(0) and SNH,1(0) determination will 

decrease. Indeed, if k decreases then the part of the rO,ex profile related to COD degradation will last 

longer, i.e. it will become more difficult to separate the area of the rO,ex profile in two fractions related to the 

SS,1(0) and SNH,1(0) concentrations respectively. This effect is not compensated by the increased number of 

data points available for the estimation of this parameter since the COD degradation will last longer for a 

lower value of k. The accuracy for µmaxA1 will decrease slightly when k decreases. An increase of k will 

have the opposite effects on the covariance. 

When the value of µmaxA1 decreases it means that the rO,ex profile is not terminated within the defined 

experimental time of 85 minutes. Obviously, this has a very negative effect on the accuracy of KSA. On the 

contrary, if µmaxA1 increases this will result in slightly more data points for the KSA1 determination, yielding a 

higher accuracy. Further, a decrease of µmaxA1 means that the degradation of COD and nitrification 

processes are better separated in the rO,ex profile, resulting in improved accuracy of k and SS,1(0). Finally, 

note that the value of µmaxA1 also determines its own accuracy: when µmaxA1 decreases more data points are 

available, yielding a better µmaxA1 estimate. 

Wastewater changes with respect to SS,1(0) only have a strong effect on the accuracy of k. There are no 
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effects on the remaining parameters. This can be explained because the sensitivity functions of rO,ex with 

respect to SS(0) are constant functions for the first order degradation model (see Appendix 7.1). 

If the concentration of SNH,1(0) increases, the accuracy of µmaxA1, k and SS,1(0) increase (their covariance 

decreases) because more data points will be available to describe the nitrification process, thus allowing for 

an improved separation between COD degradation and nitrification. However, again the rO,ex profile will 

then not terminate within the preset experimental time resulting in a worse parameter accuracy for KSA1 and 

SNH,1(0). 

Finally, µmaxA1 is the parameter that has the largest influence on the overall generalised variance expressed 

by Det(FIM). Thus, if µmaxA1 for example increases the Det(FIM) will also increase significantly.  

5.10. Validation of sensitivity of the optimal experimental design to 
variation in parameters and wastewater concentrations  

In the following the effects of parameter and initial substrate changes, discussed above, are evaluated with a 

set of experiments carried out with wastewater and extra ammonium additions during a measuring 

campaign at the combined municipal – industrial WWTP of Zele (Aquafin NV, Aartselaar, Belgium). Table 

20 lists the estimated parameter combinations. 

The variations in the parameter combination including k are considered to be related to changes in the 

wastewater organic compounds. However, the COD degradation could still be described by the first order 

model. Some variations are observed for the nitrification kinetics as well, as discussed in the previous 

section. Finally, it is again observed for some cases that the estimated BODst related to ammonium 

oxidation is larger than theoretically predicted. As described above this can be caused by the fact that the 

theoretical values are based on the concentration of the analytically measured ammonium-nitrogen, not 

including possible nitrifiable organic nitrogen. The experimental data and model fits for the experiments with 

wastewater and ammonium added are given in Fig. 12 – 13. 
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Figure 12. Experimental data (rO) of wastewater and ammonium addition together with model fits. A: 

161198, B: 201198, C: 211198, D: 221198 
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Figure 13. Experimental data (rO) of wastewater and ammonium addition together with model fits, A: 

241198, B: Change in wastewater character 

 

The confidence intervals were calculated for the experiments in which the first order rate constant k differed 

most from the reference case (Table 21). 
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Table 21 Confidence intervals as percentage of parameter values for the validation of robustness of the 

optimal-D experiment 

Experiment µmaxA1 KSA1 SNH,1(0) k SS,1(0) Det(FIM) 

D optimal 1.48 6.31 1.78 4.94 2.49 1.48⋅1016 

161198 2.98 9.26 0.97 13.19 4.07 9.61⋅1013 

201198 1.86 6.68 1.42 5.14 3.53 9.07⋅1015 

221198 2.57 8.30 1.07 4.40 2.59 5.65⋅1015 

 

From Table 21 it can be observed that the changes of parameters or substrate concentrations may be 

somewhat more complex to interpret since more than one parameter change at a time. Still, it is possible to 

draw some lines and evaluate the results based on the general sensitivity analysis in Table 19. 

For the experiment of 161198 the estimated value of the parameter combination including the first order 

degradation rate k is about four times larger compared to the k value of the D-optimal experiment. 

Furthermore, the concentration of SS,1(0) is about three times lower. According to Table 19, both an 

increase of k and a decrease of SS,1(0) will lead to a lower accuracy of the estimated k. Indeed, it can be 

observed from Table 21 that the confidence interval of k for the experiment 161198 is significantly larger 

than for the D-optimal experiment, as expected from the sensitivity results. Furthermore, both the estimated 

value of the parameter combination including µmaxA1 and the SNH,1(0) concentration are lower for the 

experiment of 161198 than for the D-optimal experiment. Especially, a lower µmaxA1 has a negative effect 

on the accuracy of the KSA1 estimate as seen from Table 19. The results in Table 21 indeed confirm this 

prediction. The decrease in SNH,1(0) results in a lower accuracy of µmaxA1 according to Table 19, as was 

confirmed for experiment 161198 (see Table 21). Summarising, the experiment 161198 is generally 

resulting in less accurate parameter estimates as generally confirmed with the lower Det(FIM) that was 

obtained for this experiment. 

For the experiments of 201198 and 221198 the values of Det(FIM) are closer to the optimal one. The 

accuracy of the parameters is also closer to the optimal ones compared to the experiment of 161198. A 

significant decrease in the parameter combination including µmaxA1 is observed for experiment 221198, 

which according to Table 19 should induce a significant reduction of the accuracy for the KSA1. This is 

indeed observed in Table 21. However, it should also be noted that the experimental time was allowed to 

be longer (125 min) compared to the defined optimal time of 85 min. It is obvious that the accuracy 

decrease of KSA1 would have been more drastic in case the experiment of 221198 had been forced to end 

after 85 min. 
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5.11. Sensitivity of the optimal experimental design to variation in 
wastewater character 

Above, the effect of a variation in wastewater concentration has been investigated. In such cases the 

optimal experimental design can be adjusted in case the resulting parameter estimates become too 

inaccurate. However, if the wastewater character (rather than its concentration) changes, e.g. the 

degradation can no longer be described by a first order model, then the OED becomes significantly more 

complicated and the whole OED procedure has to be adjusted. An example of change in wastewater 

character is given in Fig. 13B. Here, the data had to be described via a Monod model instead of the first 

order model. Thus, the region of theoretical identifiability in Fig. 10 will have to be adjusted accordingly.  

A final example of an unfortunate situation, with respect to the sensitivity of the proposed OED, is the case 

where the wastewater does not contain sufficient readily biodegradable COD (a typical weekend 

phenomenon) exemplified by experiment D in Fig. 10. In this case the aim of the OED procedure has to be 

revised since it is now only possible to identify the nitrification process. 

6. Discussion  

In this study a conceptual and general methodology for optimal experimental design was developed. The 

concept was illustrated in Fig. 1 and specifically outlined for FIM based optimal experimental designs in 

Fig. 3. The outlined procedure consists of 9 steps. In fact the procedure is a culmination of the previous 

chapters 3 – 6. The first and very important step is to define the purpose of the experiment. The purpose 

determines further (step 2) the appropriate experimental conditions, e.g. measurement technique (see 

chapter 3), possible constraints and, thereby, the model for which accurate parameter estimates is sought. 

Next the theoretical identifiability of the model parameters has to be investigated indicated by step 3 (see 

also chapter 4), and the practical identifiability is considered in step 4 – 6. The practical identifiability 

analysis includes investigation of the FIM properties, i.e. whether the FIM becomes singular (chapter 5) 

and also the effect of the rescaling of parameter units (chapter 6). If FIM becomes singular the parameter 

set, on which it is based, has to be reduced. Now the experimental degrees of freedom to reach an optimal 

experiment can be defined (step 7). The optimal experimental criterion is chosen in step 8 and is optimised 

by changing the experimental degree of freedom, in this case via a numerical optimisation routine 

implemented in the WEST software. Finally, it is considered how sensitive the suggested optimal 

experimental design is towards changes in e.g. parameters and substrate concentrations (step 9). If the 

parameter accuracy has decreased significantly it may be needed to update the optimal experiment and, 

thereby, re-run the procedure. 

In this work the procedure for optimal experimental design, outlined above, was concretised for two case 

studies. The first case study focused on the two step nitrification process and it was aimed to design an 
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experiment that allowed for simultaneous characterisation of the reaction kinetics of both nitrification steps. 

Here, the experimental degree of freedom was chosen as the addition of an optimal amount of nitrite 

together with ammonium. The second case study dealt with simultaneous characterisation of the reaction 

kinetics of the first nitrification step and readily biodegradable wastewater COD. In this study the 

experimental degree of freedom was an optimal additional amount of ammonium to be added initially 

together with the wastewater. 

In both cases the main issue of the OED was, of course, to improve the accuracy of the parameter 

estimates. Table 22 summarises and combines the expected accuracy (95% confidence intervals) of the 

two case studies (according to Table 6 – 16). 

In general it was found that the accuracy of parameter estimates is highest when oxygen measurements are 

applied for the estimations. The confidence intervals are narrower for the maximum specific growth rates 

(µmaxA1 and µmaxA2) than for the half saturation coefficients (KSA1 and KSA2). This is in accordance with 

earlier findings (see chapter 3 and 5) and also reported in literature (Kong et al., 1996; Gernaey et al., 

1998). It is also noticeable that the parameter accuracy is lower on the parameters related to the second 

nitrification step, i.e. µmaxA2 and KSA2, compared to the parameters of the first step. This is caused by a 

lower number of data points for characterisation of the second step. Finally, combined rO and Hp 

measurements result in increased accuracy of the parameter related to the first nitrification step compared 

to single measurements of rO (see also chapter 5). 

 

Table 22. Summary of expected parameter estimation accuracy (95% confidence interval) 

Parameter Case study 1 

rO 

Case study 1 

rO + Hp 

Case study 1 

SO 

Case study 2 

rO 

µmaxA1 1.50 0.70 0.10 1.48 

KSA1 6.36 3.97 0.53 6.31 

SNH,1(0) 0.61 0.09 0.03 1.78 

µmaxA1 3.08 3.00 0.24  

KSA2 21.43 21.18 1.64  

0
OS    0.03  

KLa   0.10  

k    4.94 

SS,1(0)    2.49 
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Considering the first case study, the main improvements of about 50%, compared to the reference 

experiment, in parameter accuracy were found for the parameter µmaxA2. This was in accordance with the 

goal of the optimal experimental design. Moreover, the optimised experimental degree of freedom, 

SNO,1(0), results in more data containing information on the maximum respiration rate of the second 

nitrification step, and thereby on the parameter µmaxA2. In addition, a significant improvement of about 20 - 

30% was found for the parameter KSA2. 

For the second case study, the confidence interval of both µmaxA1 and KSA1 are reduced with about 50%, 

whereas the parameter related to the first order degradation of COD was estimated with an accuracy that 

is about 20% better. Again, these results are in agreement with the purpose of the study, since the 

experimental degree of freedom, SNH,1(0), focuses on a separation of the nitrification process from the 

degradation of COD to allow for an improved identification.  

These theoretical predictions were validated with independent parameter estimations on the basis of 

experiments conducted according to the optimal experimental design. 

In these validation experiments of the two step nitrification case study it was found that rather similar 

experiments conducted with the same sludge source and wastewater lead to highly reproducible parameter 

estimates. The same applied for the second case study. Here, an interesting side remark is that the 

analytical ammonia measurement was not a good indicator of the actual nitrifiable nitrogen in the 

wastewater, since the amount analytical ammonia consistently was lower than the results of the model-

based analysis of the respirometric data.  

However, if the parameters estimated with sludge collected at different dates within the same week are 

compared large differences in parameter estimates was observed (up to a factor 2 between min and max 

value of the same parameter) for both case studies. In view of the fact that the estimates are highly accurate 

and reproducible, it can be concluded that the either the sludge parameters or in the second case study the 

wastewater composition are varying very significantly over time. Indeed, the variation in the degradation 

rate of the wastewater COD may be caused by changes in wastewater composition, however this can not 

be the cause of the differences in nitrification kinetics. Further research is then certainly desired to elucidate 

the reasons for these short-term changes. In a study of industrial wastewater (Coen et al., 1998) the 

influent characteristics and the kinetic parameters of the sludge were assessed from on-line respirometric 

experiments over a 40 hours period (approximately one data set per hour). Here it was found that the 

wastewater composition and sludge kinetics did not change that drastically, so that the identification 

algorithm applied on the on-line data was allowed to “follow” the changes. In this situation the wastewater 

composition did not seem to change significantly during the investigated period, whereas differences in 

parameters up to a factor 2 also were observed during this 40 hours period. It is likely that the specific 

organic compounds contained in the total wastewater COD may change over short-term in this specific 
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case resulting in varying kinetic parameters. However, this was not clear from the study (Coen et al., 

1998). 

In the studies conducted on the sensitivity of the OED to parameter changes it was found that quite some 

safety margin exists for the experimental design, i.e. it is rather robust against parameter variations. In the 

two step nitrification case it was obvious that a combination of a low µmaxA1 and high µmaxA2 was critical 

and a maximum value of µmaxA2 was determined that still allowed for accurate parameter estimates. One 

example was recorded (181198) where an application of the optimal experiment would have resulted in 

really inaccurate parameter estimates.  

In the case of combined COD degradation and nitrification a more systematic sensitivity study was carried 

out to check the effect of the changes of parameters and substrate concentration on the parameter 

accuracy. Here it was found that changes of the first order degradation rate of COD especially influences 

the accuracy of the estimation of initial substrates SS,1(0) and SNH,1(0), whereas for example changes of 

µmaxA1 influence the parameter accuracy of KSA1 significantly. A change in the initial substrate concentration 

SNH,1(0) had the least effect on the overall variances measured by the Det(FIM). 

The conclusion in both cases is that frequent updating of optimal experiments may be required or that one 

must strive for more robust experimental designs.  

In this study the experiments were optimised by the D-criterion which maximises the generalised variance 

expressed by Det(FIM). However, to obtain a robust experimental design an extended OED-criterion 

could be created in which the sensitivity to parameter or wastewater changes is punished for.  

In addition, in this study the defined experimental constraints, e.g. low S(0)/X(0) and ∆S, were checked 

manually. Such constraints of e.g. no significant growth could also be incorporated into the objective 

function together with the Det(FIM). In the study of Baltes et al. (1994) a critical biological criterion with 

regard to balanced growth was defined as the gradient of the specific growth rate as function of time, and 

was incorporated into the objective function of the OED. Something similar could be suggested for the case 

studies investigated here. 

However, in case the model structure changes, as exemplified in the second case study, the whole region of 

theoretical identifiability will move in the experimental condition space of Fig. 1. Thus, in such a case the 

whole OED procedure will have to be revised, since it will not be possible to create a criterion that can 

account for model structure changes. This is contrary to the suggestions above where it is discussed to 

keep the optimal experiment within the region of practical identifiability by a more robust experiment, 

however with the same model structure.  
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7. Conclusion 

A conceptual methodology for optimal experimental design was developed and specifically outline for FIM 

based optimal experimental designs. The procedure was applied in two case studies. The first case focused 

on the classical problem of identification of both nitrification steps in the two step nitrification process. A 

simple experimental degree of freedom was chosen as the addition of an optimal amount of nitrite together 

with ammonium. In the second case study it was aimed to simultaneously characterise the kinetics of the 

first nitrification step and degradation of the readily biodegradable COD in a wastewater. Also here a 

simple experimental degree of freedom was chosen as an optimal additional amount of ammonium to be 

added together with the wastewater. In both cases it was found that the optimised experiment resulted in 

significant improvements of the parameter estimates. For the case study on the two step nitrification 

process an improvement of about 50% in the accuracy of the µmaxA2 estimates was obtained. Also for the 

second case study improvements of about 50% was achieved for the parameters related to the first 

nitrification step, i.e. µmaxA1 and KSA1. The confidence intervals of the parameters related to the COD 

degradation improved about 20% in this case. These theoretical predictions were successfully validated 

with experiments carried out according to the optimal experimental design. Furthermore, it was found that 

the parameter estimates were highly reproducible for experiments performed with the same sludge source. 

On the contrary, some variation in estimated parameter values (up to a factor 2) was found for experiments 

carried out within the same week. Thus, apparently either the sludge parameters or wastewater 

composition vary significantly over short term. Finally, the sensitivity of the optimal experiment towards 

changes in values of the kinetic parameters or wastewater concentrations was evaluated for both case 

studies. For the two step nitrification example it was clear that a situation where the value of µmaxA1 is low 

combined with a high value of µmaxA2 is critical and would lead to inaccurate parameter estimates. In the 

second case study a more systematic sensitivity analysis was made. Here it was for example found that 

changes in the first order degradation rate of COD was very influential on the estimates of the substrate 

concentrations, whereas changes in µmaxA1 was extremely influential on the KSA1 estimate. Conclusively, 

either frequent updates or more robust optimal experimental design must be aimed for, and it was 

discussed how more robust experimental designs might be predicted via extension of the objective function 

of the OED. 
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Appendix 7.1 
 - 

Output sensitivity functions of two-step 
nitrification model and first order substrate 

degradation model 
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Appendix 7.1 
 
Output sensitivity functions of two-step 
nitrification model and first order substrate 
degradation model 

In this appendix the output sensitivity functions of rO,ex2 are derived considering the two-step nitrification 

model. Furthermore, the output sensitivity functions of rO,ex2 for a model describing first order degradation 

of substrate SS are developed. Growth is considered to be insignificant and it is assumed that the processes 

are not limited by oxygen. All analytically derived sensitivity functions have been carefully verified via a 

numerical procedure, as described in chapter 5. 

1. Two-step nitrification model 

1.1. Sensitivity functions of rO,ex2 

First, note that the concentration of SNO2 is depending on both µmaxA1, KSA1 and SNH,1(0). The sensitivity 

function of rO,ex2 with respect to µmaxA1 is defined in Eq. 1 
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The concentration of SNH and SNO2 are calculated by integration of the dynamic model for the hybrid set-up 

including substrate transport (Eq. 2 and 3 illustrate the substrate equations for the respiration chamber). 
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Eq. 1 results in Eq. 4. 
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The sensitivity function of rO,ex2 with respect to KSA1 is derived similarly leading to Eq. 5. 
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To be able to solve the sensitivity functions of rO,ex with respect to the initial ammonium concentration 

SNH,1(0) Eq. 6 is introduced, see further details on the underlying assumptions in the appendix of chapter 5, 

resulting in Eq. 7. 
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Only the second nitrification step is depending on the parameters µmaxA2, KSA2 and the initial nitrite 

concentration SNO2,1(0) (if added). Thus, the sensitivity functions of rO,ex2 follow the same patterns as listed 

in the appendix of chapter 5 for the single step nitrification, leading to Eq. 8 – 11. 
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For the sensitivity functions with respect to initial nitrite concentration, SNO2(0), Eq. 10 is introduced (again 

see appendix of chapter 5 for underlying assumptions).  
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The figures of the senstivity functions are given below. 
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2. First order substrate degradation 

The only relevant parameter to consider here is the first order degradation constant k and the initial 

substrate concentration SS,1(0). The sensitivity function with respect to k is simply derived in Eq. 12 – 13. 
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Concerning the initial substrate concentration SS,1(0) Eq. 14 is again introduced to be able to achieve a 

solution (see underlying assumptions in appendix of chapter 5), resulting in Eq. 15. 
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Note that the sensitivity function with respect to SS,1(0) is a constant function independent on the actual 

value of SS,1(0). Figures are given below. 
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Chapter 8 
 - 

Evaluation of an ASM1 model calibration 
procedure on a municipal-industrial wastewater 

treatment plant 

This chapter was published as: 

Petersen B., Gernaey K., Henze M. and Vanrolleghem P.A. (2002) Evaluation of an ASM1 model 

calibration procedure on a municipal-industrial wastewater treatment plant. Journal of Hydroinformatics, 4, 

15-38. 
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Chapter 8 
 
Evaluation of an ASM1 model calibration 
procedure on a municipal-industrial wastewater 
treatment plant  

Abstract - The purpose of the calibrated model determines how to approach a model calibration, e.g. 

which information is needed and to which level of detail the model should be calibrated. A systematic 

model calibration procedure was therefore defined, and evaluated for a municipal-industrial wastewater 

treatment plant. In the case that was studied it was important to have a detailed description of the process 

dynamics, since the model was to be used as the basis for optimisation scenarios in a later phase. 

Therefore, a complete model calibration procedure was applied including: (1) a description of the 

hydraulics in the system via a tracer test, (2) an intensive measuring campaign and (3) supporting lab-scale 

experiments to obtain and confirm kinetic parameters for the model. In this paper the model calibration 

procedure for this case study is described step by step, and the importance of the different steps is 

discussed. The calibrated model was evaluated via a sensitivity analysis on the influence of model 

parameters and influent component concentrations on the model output. The sensitivity analysis confirmed 

that the model output was sensitive to the parameters that were modified from the default parameter values. 

The calibrated model was finally reduced from 24 tanks in series to a 12 tanks in series configuration, 

resulting in a 50% reduction of the simulation time. 

1. Introduction 

Implementation of biological nutrient removal on wastewater treatment plants (WWTP’s) resulted in an 

increased knowledge on the biological degradation processes. This resulted in the development and use of 

more advanced dynamic mathematical models that may be able to describe the biological nutrient removal 

processes. These activated sludge models allow to study and to further increase the understanding of the 

influence of process modifications on treatment process efficiency. The dynamic models are for example 

increasingly used for scenario evaluations aiming at the optimisation of activated sludge processes (Stokes 

et al., 1993; de la Sota et al., 1994; Coen et al., 1997 among many others). The Activated Sludge Model 

No.1 (ASM1) presented by the IAWQ Task Group on Mathematical Modelling for Design and Operation 

of Biological Wastewater Treatment Processes (Henze et al., 1987) is generally accepted as state-of-the-
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art. ASM1 was primarily developed for municipal activated sludge wastewater treatment plants to describe 

the removal of organic carbon substances and nitrogen with simultaneous consumption of oxygen and 

nitrate as electron acceptors, and to yield a good description of the sludge production. ASM1 has been 

extended to include a description of biological phosphorus removal, resulting in ASM2 and ASM2d 

(Henze et al., 1995, 1998). Recently, some of the model concepts behind ASM1 have been altered in 

ASM3 (Gujer et al., 1998), a model that also focuses on the degradation of carbon and nitrogen but 

allows the introduction of processes describing the storage of bio-polymers under transient conditions. 

In this study model calibration is understood as the adaptation of the model to fit a certain set of 

informations obtained from the full-scale WWTP under study. This task is often rather time-consuming, and 

typically the time needed for a model calibration is underestimated. Even though more than a decade has 

passed since the publication of ASM1, a fully developed model calibration procedure has not been defined 

yet. We have not been able to find a complete model calibration report in literature. There may be many 

reasons for this. Important to realise is that the purpose of the model is very much determining on how to 

approach the calibration, making it difficult to generalise (Henze et al., 1995). Still, considering the wide 

application of these activated sludge models there are surprisingly few references that contain details on the 

applied model calibration procedure. Often one has to collect bits and pieces from various sources to 

obtain an overview. 

In this study it was attempted to gather and summarise the information needed to achieve a successful 

model calibration. The set of informations listed below was extracted and combined from different sources 

(Henze et al., 1987; Lesouef et al., 1992; Pedersen and Sinkjær, 1992; Siegrist and Tschui, 1992; Stokes 

et al., 1993; de la Sota et al., 1994; Dupont and Sinkjær, 1994; Weijers et al., 1996; Xu and Hultman, 

1996; Kristensen et al., 1998):  

1. Design data: e.g. reactor volumes, pump flows and aeration capacities. 

2. Operational data:  

2.1. Flow rates, as averages or dynamic trajectories, of influent, effluent, recycle and waste flows. 

2.2. pH, aeration and temperatures. 

3. Characterisation for the hydraulic model, e.g. the results of tracer tests. 

4. Characterisation for the settler model: e.g. zone settling velocities at different mixed liquor suspended 

solids concentrations 

5. Characterisation for the biological model, ASM1, of: 
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5.1.Wastewater concentrations of full-scale WWTP influent and effluent (as well as some intermediate 

streams between the WWTP’s unit processes), as averages or dynamic trajectories: e.g. SS, 

COD, TKN, NH4-N, NO3-N, PO4-P etc. 

5.2.Sludge composition: e.g. SS, VSS, COD, N and/or P content. 

5.3.Reaction kinetics: e.g. growth and decay rates.  

5.4.Reaction stoichiometry : e.g. yields 

As mentioned above, the required quality and quantity of the information will depend very much on the 

purpose of the modelling. In case the model is to be used for educational purposes (e.g. to increase basic 

understanding of the processes), for comparison of design alternatives for non-existing plants or in other 

situations where qualitative comparisons are sufficient, the default parameter values defined by Henze et al. 

(1987) can be applied. A reasonably good description can most often be obtained with this default 

parameter set for typical municipal cases without significant industrial influences (Henze et al., 1997). 

However, if the calibrated model is going to be used for process performance evaluation and optimisation, 

it may be necessary to have a more accurate description of the actual processes under study. Some 

processes may need a more adequate description than others, again depending on the purpose of the 

study. This may especially apply for models that are supposed to describe the processes in an industrial or 

combined municipal and industrial treatment plant. 

The information needed for the characterisation of the biological model, listed in point 5 above, can 

basically be gathered from three sources: 

1. Default values from literature (e.g. Henze et al., 1987). 

2. Full-scale plant data  

2.1. Average or dynamic data from grab or time/flow proportional samples. 

2.2. Conventional mass balances of the full-scale data. 

2.3. On-line data. 

2.4. Measurements in reactors to characterise process dynamics (mainly relevant for SBR’s and other 

alternating systems). 

3. Information obtained from different kinds of lab-scale experiments with wastewater and activated 

sludge from the full-scale plant under study. 

Again, the intended use of the model will determine which information source to choose for the 

characterisation of the different biological processes in the model. In addition, the purpose will decide to 

which level the model has to be calibrated, since the quality of the desired model predictions will depend 
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strongly on the quality of the model calibration. Fig. 1 illustrates the different general steps in a model 

calibration procedure. It should be stressed that, depending on the purpose, not all steps may have to be 

taken. 

Steps 1 - 5 in Fig. 1 indicate the collection of information. Design (1) and operational (2) data are in 

general always needed for a model calibration. E.g. the flow and load variations are important in the design 

of measuring campaigns for hydraulic, sludge settling and biological characterisation of the full-scale 

WWTP. The hydraulics (3) are typically characterised via tracer tests at the full-scale installation (De 

Clercq et al., 1999). The settling characteristic (4) can be characterised via on-line or lab-scale settling 

tests (Vanderhasselt et al., 1999a, 1999b). Finally, the biology can be obtained via different information 

sources as indicated above. A review of the information that can be obtained from different kinds of lab-

scale experiments is presented in detail elsewhere (see chapter 2), and for information especially obtained 

from respirometric tests the reader is referred to Vanrolleghem et al. (1999). 

PURPOSE

Decision on information needed 
(1-5) and calibration levels (6-10)

6. Calibration of 
hydraulic model

8. Simple steady state      
calibration of ASM

3. Hydraulic 
characterisation

1. Design  data     
2. Operational data

5. Biological  
characterisation

10. Dynamic calibration of ASM

4. Settling  
characterisation

7. Calibration of 
settler model

9. Steady state 
calibration of ASM

 

Figure 1. Schematic overview of the different general steps in an activated sludge model calibration 

procedure 

In Fig. 1 steps 6 - 10 illustrate different calibration levels. The calibration of the hydraulic model via tracer 
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test results, and the settler model calibration via results from sludge settling tests are indicated in steps 6 and 

7 respectively. A first ASM calibration level is typically a simple steady state model calibration step (8). In 

this phase of the model calibration the different reactors in the treatment plant are each represented by an 

ideal perfectly mixed tank, resulting in a simple treatment plant configuration. Here data obtained from the 

full-scale WWTP are averaged, thereby assuming that this average represents a steady state, and the 

model is calibrated to fit to average effluent and sludge waste data. Typically, the calibration of the ASM 

and the settler are linked together, since the aim is most often to describe the final effluent quality. 

Moreover, the recycle from the settler has an influence on the activated sludge system. Thus, at this stage, 

there may be an interaction between the steady state calibration and the settler model calibration, indicated 

with the double arrow. Finally, the characterisation of wastewater components may be adjusted according 

to the calibration of the full-scale model, indicated with the double arrow between (8) and (5) in Fig. 1. 

The next step in the calibration procedure is a steady state model calibration that includes the hydraulic 

model (9). In general, with a steady state model calibration, only parameters responsible for long-term 

behaviour of the WWTP can be determined, i.e. YH, fp, bH and XI in the influent (Henze et al., 1998; 

Nowak et al., 1999). These parameters are correlated to a certain degree, meaning that a modification of 

one parameter value can be compensated by a modification of another parameter value. In the study of 

Nowak et al. (1999) on mass balances of full-scale data, it was therefore chosen to fix YH and fp leaving 

XI in the influent and bH to be determined from the steady state data. In the study of Lesouef et al. (1992) 

two WWTP models were calibrated via steady state calibration only, and this calibrated model was 

applied to simulate dynamic process scenarios. However, if one relies entirely on a steady state calibration 

to dynamic data, some problems may be encountered since the real input variations are usually faster than 

the slow process dynamics that were focused upon during the steady state calibration. In other words, the 

process does not operate in steady state but one still attempts to fit a steady state simplification of the 

model to an unsteady situation. A steady state calibration may, however, be very useful for the 

determination of initial conditions prior to a dynamic model calibration and for the initiation of a first 

parameter estimation (e.g. Pedersen and Sinkjær, 1992; Stokes et al., 1993; Dupont and Sinkjær, 1994; 

Xu and Hultman, 1996; Kristensen et al., 1998). 

If it is the aim to describe and predict more short-term and dynamic situations, a model calibration to 

dynamic data will be needed since such data contain more information than steady state data, especially on 

fast dynamic behaviour. The important point in model calibration based on dynamic data is to obtain a 

more reliable estimation of the maximum specific growth rates µmaxH and µmaxA (Henze et al., 1998), which 

are the most important parameters in predicting dynamic situations. 

At WWTP’s data are most often collected routinely with a daily or weekly sampling frequency. This 

sampling frequency may, however, not be high enough, and for more accurate modelling it may therefore 

be required to run special measuring campaigns (e.g. Pedersen and Sinkjær 1992; de la Sota et al., 1994; 
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Dupont and Sinkjær, 1994; Xu and Hultman, 1996; Coen et al., 1997). The sampling frequencies should 

be chosen in relation to the time constants of the process and influent variations. One of the important time 

constants of the process is the hydraulic retention time. Various lengths of measuring campaigns are 

recorded in literature. Ideally, one should choose to sample about five times faster than the hydraulic 

retention time and have a test duration of 3 - 4 times this key time constant (Ljung, 1987). However, since 

measurements on full-scale WWTP’s are relatively expensive these recommendations may not always be 

completely fulfilled. 

Furthermore, data from the full-scale installation alone may be insufficient for a dynamic model calibration 

since the reaction kinetics can not be readily obtained from such data, except for specific designs like 

SBR's and alternating systems (Vanrolleghem and Coen, 1995). For a dynamic model calibration on a full-

scale WWTP the modeller is therefore typically aiming at combining more information rich results derived 

from lab-scale experiments (carried out with sludge and wastewater from the full-scale installation) with 

data obtained from measuring campaigns on the WWTP under study (Dupont and Sinkjær, 1994; Xu and 

Hultman, 1996; Kristensen et al., 1998).  

In this paper the model calibration procedure presented in Fig. 1 is illustrated for the combined municipal-

industrial activated sludge WWTP of Zele (Aquafin NV, Aartselaar, Belgium). The purpose of the model 

calibration was to obtain a good description of the N removal capacity and to a lesser extent of the COD 

removal. In a second phase the model was to be applied for process optimisation of the N removal 

(Gernaey et al., 2000c). Based on this purpose the necessary information set and calibration strategy were 

defined. A tracer test was carried out first, to have an adequate description of the hydraulic flow pattern, 

which is especially important if dynamic situations are to be predicted. The sludge at the Zele WWTP is 

settling reasonably well, and it was therefore found adequate to describe the settler with a simple point 

settler model. Thus, no specific tests were carried out to characterise the settling properties, i.e. step 4 of 

Fig. 1 is not included in this study. With respect to the wastewater characterisation an intensive measuring 

campaign was designed to obtain sufficient dynamic data. The variation in readily biodegradable organic 

substrate was characterised, since the model was to be applied later on for optimisation of N removal, 

including the start-up of denitrification. The sludge composition was analysed to support the calibration of 

the sludge balance. Moreover, lab-scale experiments were planned for the determination of the sludge 

kinetics related to nitrification and degradation of COD, and a decay experiment was carried out to 

support the description of biomass decay in the treatment plant. No specific experiments were carried out 

for the determination of stoichiometric coefficients. A sensitivity analysis was carried out on the calibrated 

model to check whether the parameters that were modified during the model calibraton procedure were 

indeed influencing the model output. It was finally investigated if the calibrated model could be reduced, to 

increase simulation speed while maintaining the same accuracy of the full model. 
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2. Case study 

The municipal activated sludge WWTP of Zele was constructed in 1983 for a design capacity of 50000 

inhabitant equivalents (IE). Fig. 2 gives a schematic overview of the process layout. The influent of the 

WWTP consists for 40 % of household wastewater and 60 % industrial wastewater (slaughterhouses, 

industrial laundry, textile cleaning, textile painting etc.). The influent is divided over two parallel rectangular 

primary clarifiers after the pretreatment step (coarse grit removal, fine grit removal, sand and grease 

removal). The effluent of the primary clarifier flows to the biological activated sludge treatment, where it is 

mixed with recycle sludge. The activated sludge tank consists of one plug flow aeration tank that is divided 

into 6 lanes of about 400 m3 each. The mixed liquor flows to two secondary clarifiers through an open 

aerated channel of about 200 m3. The clarifiers each have a diameter of 33 m and a volume of 2050 m3. 

The final effluent is discharged into a nearby stream. The underflow from the secondary clarifier flows back 

to the aeration tank through an aerated sludge recycle channel with a volume of 400 m3. The primary and 

secondary sludge are thickened prior to anaerobic digestion.  

PC 1 PC 2 

Sludge waste

Return sludge

SC 1 SC 2 

Aeration tank

Sand and 
grease removal

Archimedes screws
Fine screen

Influent

Effluent

Sampler

Sampler

Coarse screen

Li pulse

Sampler (Li)

 

Figure 2. Schematic overview of the process layout of the Zele wastewater treatment plant (Aquafin NV, 

Aartselaar, Belgium) 

The Zele WWTP is going through a stepwise renovation process with the aim to obtain an effluent quality 

that complies with the Flemish effluent standard for total N (15 mg total N per litre as yearly average). A 
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first step in the renovation process was the installation of a fine bubble aeration system in 1997. This had an 

immediate positive effect on the nitrification capacity resulting in a decrease of the effluent NH4-N 

concentration. However, the effluent total N concentration remained too high to comply with the effluent 

standard. For the period January 1997 till November 1998 an average total N concentration of 19.6 mg/l 

was calculated (average of 53 effluent samples). The absence of a denitrification compartment in the 

WWTP is believed to be the main reason for the high effluent total N concentrations. 

3. Materials and methods 

3.1. Tracer test 

A tracer test with lithium chloride (LiCl) was carried out to characterise the hydraulics of the activated 

sludge tank. The tracer was added as a pulse at the beginning of the aeration tank, where presettled influent 

is mixed with return sludge (indicated on Fig. 2). During the test mixed liquor samples were taken at the 

point where the activated sludge flows over into the secondary clarifiers (see Fig. 2). The sampling 

frequency took into account the worst case scenario (with respect to obtaining detectable Li 

concentrations) of an ideally mixed situation, although the expectation in view of the design was plug-flow 

mixing behaviour. Thus, frequent sampling (one sample every 5 to 10 minutes) was undertaken for 0 - 1.5 

times the hydraulic retention time 

3.2. Measuring campaign 

The measuring campaign was carried out in November 1998. First, a 1-day test campaign was done in 

order to test the planned strategy, e.g. to evaluate whether the planned measurement frequency of one 

sample every two hours was high enough to observe the dynamics, and to check if the installed 

measuring/sampling equipment worked properly. Only afterwards a detailed one-week measuring 

campaign was carried out. Two automatic samplers with built-in refrigerator (4°C) were installed on the 

treatment plant. Time proportional samples (100 ml every 6 minutes) were taken every second hour on the 

effluent of the primary clarifier (= influent to activated sludge tank) and on the effluent of the secondary 

clarifier (see Fig. 2). The influent samples were analysed for the following parameters via standard methods: 

Suspended solids (SS), ammonium nitrogen (NH4-N), total Kjeldahl nitrogen (TKN), total and soluble 

chemical oxygen demand (CODtot and CODsol). The effluent samples were analysed for SS, NH4-N, 

nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), CODtot and CODsol. In addition, mixed liquor and 

return sludge were sampled at regular times (once or twice per day) to measure the COD, TKN, SS and 

volatile suspended solids (VSS) content of the sludge. 

Effluent flow data were collected with a data logger that was temporarily connected to the effluent flow 

sensor. Sludge waste flows were obtained from treatment plant operation logbooks. Temperature and pH 
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of the activated sludge in the aeration tank were measured daily.  

3.3. Lab-scale experiments 

Respirometric lab-scale experiments with wastewater and activated sludge were carried out during the 

measuring campaign. Experiments were performed in the RODTOX (Vanrolleghem et al., 1994) and the 

hybrid respirometer (chapter 3). The purposes of these experiments were two fold: 

3.3.1. Wastewater characterisation – Determination of readily biodegradable COD 

The first purpose was to measure the short-term biochemical oxygen demand (BODst), to determine the 

readily biodegradable COD of the influent, denoted CODst. The BODst was determined as the area under 

the oxygen uptake rate profile related to substrate degradation as function of time (called a respirogram). 

Only unfiltered influent samples were subjected to respirometric analysis. Some of the samples (typically 

the ones with a high COD concentration) were also analysed after inhibiting nitrification with ATU. The 

measured BODst values were converted to COD units via an assumed yield factor YH of 0.67 (Henze et 

al., 1987) (Eq.1) 

)Y1(
BOD

COD
H

st
st −

=      (1)  

In case BODst was available from experiments in the presence of ATU, the value was immediately used as 

an estimate for the CODst concentration. In case the BODst value resulted from an experiment in which no 

ATU was added, the CODst concentration was determined according to Eq. 2. The BODst requirement for 

the oxidation of NH4-N (BODst,NH4) was determined using the NH4-N concentrations obtained from the 

chemical analyses of the wastewater (Eq. 3). The value of YA was set to 0.24 (Henze et al., 1987). 

4NH,s ttotal,s ts t BODBODBOD −=     (2)  

NNH)Y57.4(BOD 4A4NH,st −⋅−=     (3)  

3.3.2. Activated sludge kinetics 

Maximum specific growth rates 

Experiments were carried out to obtain data to estimate the kinetic parameters related to nitrification. The 

design of these experiments is described in more detail elsewhere (see chapter 7), but consisted of 

simultaneous addition of wastewater and ammonium, thus allowing to estimate the nitrification kinetics and 

the degradation of COD in a single experiment. The exogenous oxygen uptake rate, rO,ex, caused by the 

wastewater and ammonium addition can be described by Eq. 4. 
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Decay rate 

The endogenous respiration rate, rO,end, was measured as function of time in a long term (5 days) aerated 

batch experiment without substrate supply. The endogenous decay rate, bH’, was determined as the slope 

of the curve consisting of ln(rO,end(0))/ln(rO,end(t)) data points plotted as function of time (Ekama et al., 

1986). This decay rate was transformed into the model decay rate based on the death regeneration 

concept via Eq. 5 (Henze et al., 1987), where YH was set to 0.67 and fp to 0.08 according to the ASM1 

default parameters. 

)f1(Y1
b

b
pH

'
H

H −−
=      (5)  

Temperature correction of the parameters determined from the lab-scale experiments (18 oC) were carried 

out according to standard procedures (Henze et al., 1997). 

4. Results 

The results of the different model calibration steps, out-lined in Fig. 1, are described for the example that 

was studied. 

4.1. Step 1-2: Design and operational data 

The volumes are repeated in Table 1, and Table 2 lists the operational data during the 6 day measuring 

campaign (November 18 – 23 1998). The data includes a rain event on the first day of the measuring 

campaign, as can be seen from the flow data (2 hour averages) in Fig. 3. Therefore some key parameters 

were calculated both including and excluding the data obtained during this rain event (Table 2). Table 2 

clearly shows that the daily COD load, and thereby the sludge load, increased significantly during the rain 

period. The sludge age seems low for a nitrifying WWTP. It is the experience at the WWTP, however, that 

it is difficult to maintain a higher sludge age during winter due to a decrease in sludge settleability and 

thereby an increased risk for sludge wash-out. The observed yield is also slightly higher than expected 

according to the sludge load (Henze et al., 1997) but is probably related to the low sludge age. 

Table 1. Design data Zele WWTP 

Design parameter Unit Value 
Volume activated sludge tank m3 2600 
Volume of recycle channel m3 400 
Volume of secondary clarifier m3 2*2050 
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Table 2. Operational data Zele WWTP obtained during the measuring campaign 

Variable Unit Value 
(incl. rain period) 

Value 
(excl. rain period) 

Influent flow average m3/d 12559 10255 

Waste flow average m3/d 248 241 

Temperature oC 10.5 10.5 

pH  7.2 7.2 

Sludge concentration 
average* 

g SS/l 4.0 3.9 

COD load kg COD/d 5607 3730 

TKN load kg TKN/d 342 258 

Sludge load kg COD/kg SS.d 0.48 0.32 

Sludge production kg SS/d 2394 2300 

Sludge age d 6.2 8.6 

Observed yield kg SS/ kg COD 0.42 0.62 

*see also Table 3 
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Figure 3. Simulated flow rates during the measuring campaign (t = 0 corresponds to the beginning of the 

measuring campaign). Influent flow rates (2 hour averages) were collected at the treatment plant. Settler 

underflow rates are obtained as 0.55 * influent flow (proportional recycle flow controller). The 

discontinuous waste flow rates were obtained from treatment plant operation logbook data 
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4.2. Step 3 and 6: Characterisation of hydraulics and calibration of 
hydraulic model 

The data resulting from the tracer test are shown in Fig. 4. A sharp peak was recorded with a maximum Li 

concentration of 1.2 mg/l at t = 0.1 d. The increase of the Li concentration around t = 0.27 d is due to the 

Li that is recycled internally in the treatment plant with the sludge recycle. 
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Figure 4. Data resulting from the tracer test on the aeration tank of the Zele WWTP, together with the best 

model fit that was obtained. See text for explanation of the model 

The tracer test data were normalised by CO (Eq. 6, where M is the total mass of Li added at t = 0), and 

the time was normalised by the average hydraulic residence time (θH) during the test, which was 2.6 hours. 

First, a simple data interpretation was applied. The N tanks-in-series model (Eq. 7) was fitted to the 

normalised Li data via the solver function in MSExcel and N = 19 was found to give the best fit.  

V
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CO =         (6)  
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−
=     (7)  

This simple approach however assumes constant flow rate and, thus, does not include the flow variations 

that occurred during the tracer test. Moreover, the sludge recycle (including the LiCl that is recycled via the 

underflow of the settlers) and the residence time of the recycle liquid flow in the secondary clarifiers were 

not considered in this simplified approach. Thus, to obtain a better hydraulic description different 
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configurations were simulated in the WEST++ modelling and simulation environment (Hemmis NV, 

Kortrijk, Belgium). The value of N = 19 obtained from the simple data interpretation was used as a starting 

point for this more detailed model-based interpretation. The resulting plant configuration that gave the best 

description consisted of the following components: 

• A plug flow aeration tank consisting of 24 tanks in series (6 lanes, each consisting of 4 tanks in 

series, where each tank has a volume of 100 m3) 

• The sludge channel that transports the sludge from the aeration tank to the secondary clarifiers 

consists of two 100 m3 tanks in series. 

• An ideal point-settler and a “buffer tank” of 1000 m3 to take the residence time into account for the 

liquid that is recycled together with the recycle sludge (settler underflow). 

• The recycle channel that transports the recycle sludge from the secondary clarifiers to the aeration 

tank consists of five tanks in series of 80 m3 each. 

The model fit on the Li tracer data for this configuration is shown in Fig. 4, and the hydraulic scheme is 

illustrated in Fig. 14 in the process configuration for the dynamic model. 

4.3. Step 5: Biological characterisation 

4.3.1. Wastewater characterisation 

Results of measuring campaign 

Fig. 5, 6 and 7 show the chemical analysis results for the influent samples (presettled wastewater). The 

influent CODtot, TKN and SS concentrations were highest on Wednesday afternoon and Thursday 

morning as a result of the rain event. The CODsol and NH4-N concentrations were, however, not higher 

during the rain event compared to the other working days, indicating that the increase of CODtot and TKN 

concentrations during the rain event were related to the extra suspended solids load. The high SS content 

of the presettled wastewater during the rain event indicates that the primary clarifiers are overloaded when 

the influent flow is high, e.g. due to rainfall. 

For both COD (Fig. 5) and N (Fig. 6) a diurnal pattern can be distinguished with lower concentrations 

during the night and higher during daytime. The concentration variations are much lower in the weekend 

due to the absence of industrial discharges. The start-up of industrial activity after the weekend again 

caused an increase of the influent pollutant concentrations. In Fig. 5 it can furthermore be seen that the 

CODst, obtained via BODst from respirometric tests (Eq. 1), is related to CODsol. Moreover, the CODst 

seems to be related to the industrial discharges since there is hardly any CODst present in the influent during 

the weekend. 
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Figure 5. CODtot and CODsol concentrations measured on the influent of the Zele WWTP during the 

measuring campaign. CODst values were calculated using the BODst values resulting from respirometric 

experiments with unfiltered wastewater (see Eq. 1) 
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Figure 6. TKN and NH4-N concencentrations measured on the influent of the Zele WWTP during the 

measuring campaign 
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Figure 7. SS concentration measured on the influent of the Zele WWTP during the measuring campaign 
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Figure 8. CODtot and CODsol concentrations measured on the effluent of the Zele WWTP during the 

measuring campaign 
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Figure 9. TKN and NH4-N concentrations measured on the effluent of the Zele WWTP during the 

measuring campaign 
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Figure 10. NO3-N concentrations measured on the effluent of the Zele WWTP during the measuring 

campaign 
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The results of the chemical analyses on the effluent are shown in Fig. 8, 9 and 10. Effluent COD and N 

concentrations show a diurnal pattern, but, as expected, the variations were rather small compared to the 

concentration variations measured in the presettled influent. During the measuring campaign the effluent total 

N concentration was, in general, lower than the 15 mg/l total N effluent standard (Fig. 9). However, on 

Monday, a day with normal dry weather flow, the effluent total N concentration exceeded the 15 mg/l total 

N standard. Also, in Fig. 9 it can be seen that full nitrification was not reached. Besides NH4-N, NO3-N 

contributed significantly to the effluent total N concentrations during the measuring campaign (Fig. 10).  

4.3.2. Conversion of wastewater data into model components 

The next step in the wastewater characterisation is the conversion of the available data from the measuring 

campaign into a data set that can be used as input for ASM1. It is assumed that the oxygen concentration 

(SO) in the incoming wastewater is zero. Furthermore, the conversion of alkalinity (SALK) is not considered 

in this study. Thus, the ASM1 wastewater components to consider are related to the organic carbon 

(COD) and nitrogen components. 

COD components 

The total COD in the model includes the components described in Eq. 8 (Henze et al., 1987). 

ISIS XXSSCODtot +++=      (8)  

The presence of heterotrophic and autotrophic biomass (XBH and XBA) in the influent wastewater was not 

considered in the ASM1 report (Henze et al., 1987). Activated sludge may, however, be inoculated 

significantly by XBH in the influent, especially in cases where no primary settling is present. However, it can 

be difficult to determine the amount of biomass in the wastewater, and the biomass fraction is therefore 

often lumped into XS (Henze et al., 1995). This does not influence the modelling significantly but it may 

affect the value of the biomass yield. Contrary to the heterotrophic biomass, the presence of autotrophic 

biomass (XBA) can be important to keep sufficient nitrification in the system in cases where the sludge 

retention time is too low to sustain the nitrifying biomass. Model results may reveal whether this is the case. 

As an initial approximation XBH and XBA were assumed to be zero in this study. The methods for 

characterisation of the organic wastewater components are summarised in Fig. 11. 

• Inert soluble organic matter (SI), influent and effluent. 

Influent SI was determined via effluent data (Henze, 1992). The weekly BOD5 results of the effluent 

(available from samples that are routinely taken on the effluent of the WWTP) were used to determine the 

effluent SS concentration. An average effluent BOD5 concentration of 6.2 ± 3.0 mg/l had been measured, 

and an average BOD5/CODtot ratio of 7 ± 3 % was calculated for the effluent data. Assuming a BOD 

yield (Y) of 0.20 (STOWA, 1996), the corresponding effluent SS concentrations were calculated 
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according to Eq. 9. The influent SI was obtained by combining Eq. 9 and 10. 

effluenteffluent,S CODtot*0875.0
)Y1(

CODtot*07.0
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−
=    (9)  
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Figure 11. Summary of influent characterisation methods for organic wastewater components 

• Readily biodegradable substrate (SS), influent 

Based on the results of the respirometric tests, the influent readily biodegradable COD (Eq. 1) is set equal 

to the model component SS. 

In the next step, the mass balance for influent CODsol (CODsolinfluent) was checked (Eq. 11). 

restISluentinf SSSCODsol ++=      (11)  

In case CODsolinfluent in Eq. 11 is higher than SS + SI, Srest can be added to the slowly biodegradable 

substrate, XS. On the contrary, if CODsolinfluent is lower than SS + SI, part of the measured BODst may be 

considered to be originating from XS. For the wastewater under study it appeared that CODsolinfluent > (SS 

+ SI), thus Srest was added to the XS component. 

• Slowly biodegradable substrate (XS), influent 

Contribution to the XS concentration partly came from the mass balance in Equation 11 as Srest, but was 

also partly determined from the steady state model evaluations (see also XI). 
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• Inert suspended organic matter (XI), influent 

The best estimate for XI is obtained by comparing the measured and predicted sludge concentration and 

sludge production (Henze et al., 1987; Henze et al., 1995). The XI influent concentration is typically used 

as a “tuning component” in the model calibration of the sludge balance (Henze et al., 1995; Nowak et al., 

1999), and the XS concentration is adjusted accordingly via mass balance Eq. 12 (assuming that XBH and 

XBA are negligible, see above). 

IS XXCODsolCODtot +=−     (12)  

Initially XI was assumed to be 50 % of the particulate COD. However, this was adjusted during the model 

calibration (see below). 

Nitrogen components 

For the nitrogen fractions a similar approach was used for both influent and effluent characterisation. It was 

assumed that the influent contains negligible concentrations of nitrate (SNO). The total Kjeldahl nitrogen 

could then be fractionated according to Eq. 13 (Henze et al., 1987). 

NHNDNINDNI SSSXXTKN ++++=    (13)  

• Ammonia nitrogen (SNH) 

The analytically measured NH4-N concentration was considered to be equal to SNH. 

• Soluble biodegradable organic nitrogen (SND) 

Only TKN measurements were available. It was assumed that the ratio of soluble to total TKN was 

proportional with the ratio of CODsol to CODtot. Thus, the soluble Kjeldahl nitrogen (SKN) can be 

approximated via Eq. 14, and by assuming that the nitrogen content of inert soluble organic matter (iNSI) 

equals 1.5% (Henze et al., 1995) the concentration of SND can be determined via Eq. 15.  

NHNDNI SSSTKN
CODtot
CODsol

SKN ++=⋅=    (14)  

NHINSIND SSiSKNS −⋅−=      (15)  

• Slowly biodegradable organic nitrogen (XND) 

The nitrogen content of inert suspended organic matter (iNXI) is initially assumed to be 1% (Henze et al., 

1995) resulting in Eq. 16 for the determination of XND. 

SKNXiTKNX INXIND −⋅−=     (16)  
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4.3.3. Sludge composition 

The average results of the sludge composition analysis, based on ten measurements of the COD, SS and 

VSS content of the activated sludge and recycle sludge, are given in Table 3. The measured COD/VSS 

ratio is slightly higher than typical values, although Stokes et al. (1993) observed similar values. This highly 

reduced matter content could be due to industrial discharges (e.g. discharge of fat from the 

slaughterhouses). 

Table 3. Analysis results on activated sludge and recycle sludge (average and 95% confidence interval, 

resulting from 10 measurements) 

 SS (g/l) VSS/SS COD/SS COD/VSS TKN/COD (%) 

Activated sludge 4.01 ± 1.20 0.70 ± 0.02 1.38 ± 0.26 1.99 ± 0.36 3.90 ± 1.31 

Recycle sludge 10.05 ± 5.27 0.69 ± 0.02 1.37 ± 0.12 1.98 ± 0.17 3.45 ± 1.38 

 

4.3.4. Kinetic characterisation 

In Fig. 12 a typical respirogram of a wastewater and a respirogram obtained after addition of wastewater 

plus extra ammonium are illustrated. It is obvious that the wastewater respirogram can not be separated 

clearly into two parts, i.e. one part that describes the oxygen consumption due to COD degradation and 

one part that describes the nitrification. Thus, the wastewater respirogram alone is not informative enough 

for the identification of both the nitrification kinetics and the degradation kinetics related to COD removal. 

Therefore optimal experiments were designed where extra ammonium was added together with the 

wastewater to simultaneously identify both processes from one set of experimental data. For a complete 

description of the lab-scale experiments and their interpretation, including the estimation of kinetic 

parameters, the reader is referred to chapter 7. 
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Figure 12. Example of respirograms obtained from respirometric tests with wastewater and wastewater 

mixed with ammonium 

The respirograms were in general not informative enough to describe the degradation of COD in the 

wastewater via Monod kinetics, as described in Eq. 4 (no zero order respiration rate plateau was reached 

in the experiment). Consequently, the degradation of COD was instead described via a first order model 

(Eq. 17), where the first order rate constant k replaces the Monod parameter combination 
S

Hmax

K
µ

. 

)t(SXk
Y

Y1
r SBH

H

H
ex,O ⋅⋅⋅−=      (17)  

4.4. Step 7-9: Steady state model calibration 

For the steady state model calibration a simple WWTP configuration was constructed in WEST++ (Fig. 

13). The steady state configuration consists of one aeration tank (V = 2600 m3), a point-settler, an internal 

recycle line (V = 400 m3), and a constant average sludge waste flow from the recycle line. 

 

Figure 13. Treatment plant configuration used for the steady state model calibration 
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As mentioned above, the main aim of the steady state model is to fit the modelled sludge production to the 

sludge production calculated from plant data collected during the measuring campaign (based on waste 

flow data and sludge concentration measurements). This is done by adjusting parameters responsible for 

long-term behaviour, i.e. the decay rates bH and bA, together with the influent concentration of XI. The 

experimental value of the decay rate determined based on the lab-scale test was 0.41 d-1 (corrected for 

temperature and transformed to the death regeneration concept, as described in Eq. 5), and was used as a 

guideline for the model calibration. The influent for the steady state model was obtained by averaging the 

dynamic influent data. Initially, these averages were calculated using only the dry weather flow data (influent 

data from 11/19/98 at 10.00 a.m. until the end of the measuring campaign, and with the wastewater 

characterisation as described above). For this period of the measuring campaign a total sludge production 

of 10342 kg SS was calculated, with an average waste flow rate of 241 m3/day. Converting into COD 

units, using the SS to COD conversion factor of 1.38 resulting from the COD analyses done on the recycle 

sludge samples, the sludge production was calculated to be equivalent with 14065 kg COD. However, 

during the initial calibration of the steady state model only about half of this sludge production could be 

predicted no matter the values applied for bH and bA. Adjustment of the specific growth rates did not solve 

the sludge balance problem either. The simulated average sludge concentration in the aeration tank and the 

recycle line were much lower than the measured concentrations. It was tried to increase the model sludge 

production by assuming that all particulate COD consisted of XI (instead of 50% as initially assumed), but 

the sludge balance did not improve sufficiently to solve the problem.  

The resulting distribution of the different COD components in the influent is summarised in Table 4. Initially, 

XI consisted of 30% of the total COD and XS of 42 %, assuming that XS consisted of Srest plus 50% of the 

particulate COD, as described above. 

Table 4. The average COD composition of the influent during the measuring campaign 

COD component % 

SI 12 % 

SS 16 % 

XS 22 % 

XI 50 % 

 

It was then tried to find other reasons for the imbalance in the sludge production. As mentioned above (Fig. 

5 and 7) the COD and SS concentrations together with the influent flow (Fig. 3) were very high during the 

first 2 days of the measuring campaign due to the rainfall. This indicates that the primary clarifiers did not 

retain the solids sufficiently during the rain event. This high load during the rain event could be due to a flush 
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effect in the sewers. This extra load of COD and SS contributed significantly to the sludge production, and 

this extra sludge production was most probably only wasted during the following dry weather flow days. 

To take this into account for the sludge balance during the model calibration it was therefore decided to 

include the data measured during the rain event for the calculation of the average influent composition. 

The sludge production too was recalculated to include the data of the rain event. A total sludge production 

of 14364 kg SS (19535 kg COD) was now obtained with an average waste flow rate of 248 m3/d. A new 

series of steady state simulations resulted in a sludge production of 19177 kg COD, which was 

comparable to the sludge production measured at the WWTP (with the wastewater composition of Table 

3). 

The final calibrated value of bH was 0.5 d-1 which is higher than the default value for 10 oC (Henze et al., 

1987) but in accordance with the experimental value of 0.41 d-1. Furthermore, initial adjustments of the 

maximum specific growth rates, µmaxA and µmaxH, were carried out during the steady state calibration. 

However, it should be stressed that final values can only be assigned to these parameters in the dynamic 

model calibration, which is the last part of the model calibration procedure (Fig. 1). 

The fraction of autotrophic biomass, fBA, in the activated sludge of the full-scale installation can be 

approximated by Eq. 18 (Sinkjær et al., 1994). 

VMLVSS
N

b1
Yf NIT

XA

X
ABA ⋅

⋅
⋅+

⋅=
θ

θ
    (18)  

The calculated fraction became 0.0085 mg CODNIT/mg COD. This value is very comparable with the 

steady state model calibration that yielded an autotrophic biomass fraction of 0.0086 mg CODNIT/mg 

COD. The fraction of heterotrophic biomass was calculated similarly and a value of 0.217 mg CODHET/mg 

COD was obtained comparable to a model value of 0.182 mg CODHET/mgCOD. 

4.5. Step 10: Dynamic model calibration 

The configuration of the dynamic model (see Fig. 14) consists of a plug flow reactor (6 times 4 reactors in 

series of 100 m3 each), a sludge line (2 reactors in series of 100 m3 each), a pointsettler, an effluent buffer 

tank (V = 3500 m3), and a sludge recycle line (5 reactors in series of 80 m3 each). The effluent buffer tank 

was added to the configuration to simulate the liquid retention time in the settlers, however no reactions 

were assumed to take place there. 
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Figure 14. Model configuration for the calibrated model 

The recycle flow was controlled at 55 % of the influent flow rate, to simulate the behaviour of the full-scale 

WWTP. To this purpose an influent flow measurement coupled to a proportional underflow controller was 

included in the model. Furthermore, a waste flow controller (see Fig. 14) was implemented in the model to 

simulate the discontinuous sludge waste from the recycle line. This on/off controller was fed with a data 

flow that indicated the sludge waste rate (data obtained from plant operation logbook). 

A problem with the nitrogen balance appeared during the rain period, since a rather high simulated effluent 

SNH peak occurred (20 - 25 mg NH4-N/l) which was not observed in the measured ammonium data. To 

solve the problem, it was assumed that the nitrogen content of the high XI load during the rain period was 

higher than the assumed 1%. By adjustment of iNXI to 3% during the rain weather period the problem of the 

nitrogen balance could be solved, because less nitrogen was thus released by hydrolysis and 

ammonification. Note, that a fraction of inert nitrogen of 3% is considerably higher than the typical value of 

0.5 - 1% (Henze et al., 1995). 

The maximum specific growth rates µmaxH and µmaxA were calibrated to 2.8 d-1 and 0.31 d-1 respectively 

and the KS was adjusted to 15 mg COD/l. 

The parameter combination involving µmaxA identifiable from the lab-scale experiments is given by 

A

BAAmax
A Y

X
)Y57.4(

⋅
⋅−
µ

 (see chapter 4), which in fact is equal to the maximum oxygen uptake rate for 

nitrification assuming no substrate limitations. Thus, a way to validate the parameters of the full-scale model 

with the ones derived from lab-scale experiments (corrected for temperature differences) is to compare the 

parameter combination just described. With a µmaxA of 0.31 d-1 and an average simulated XBA of about 40 

mg COD/l, the simulated maximum oxygen uptake rate becomes 225 mg/l.d. This is in very good 

agreement with the parameter combination derived from lab-scale experiments which had an average of 

237 mg/l.d (n=21) with a 95% confidence interval of 175-300 mg/l.d. The simulated SNH concentration in 

the aeration tanks was always higher than about 3 mg N/l (i.e. the minimum measured concentration of the 
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final effluent, see Fig. 9). Thus, in this case the influence of the half saturation coefficient, KNH, is 

insignificant. 

In the lab-scale experiments the heterotrophic substrate degradation was described with a first order 

expression since the data were not informative enough to be described with the Monod model, as 

explained above. An evaluation of the calibrated parameters of the full-scale model versus the lab-scale 

parameters can however still be carried out. The substrate degradation rate was calculated based on both 

the lab-scale model and its parameters on the one hand (Eq. 17), and the Monod model and its parameters 

on the other hand (Eq. 19).  

)t(SK
)t(S

Y
X

r
SS

S

H

BHHmax
S +

⋅
=

µ
    (19)  

The calculated profiles can be seen in Fig. 15. The lab-scale parameters are estimated on 16 different lab 

tests and the corresponding 95% confidence interval is given in Fig. 15 as well. For the Monod model the 

average simulated biomass concentration was used for XBH. It is clear from Eq. 15 that as SS increases, the 

model result based on the lab-scale parameters deviates from the Monod model. However, important to 

notice is that for the smaller SS concentrations in the first order region of the Monod model, SS<KS, the 

Monod profile lies within the results of the lab-scale experiments, confirming that a value of 2.8 d-1 for 

µmaxH and 15 mg/l for KS are reasonable. The simulated SS concentrations in the main part of the aeration 

tanks were indeed below the value of KS. Thus, the experimental first order description of the SS removal 

is realistic. 
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Figure 15. Substrate removal rate (dSS/dt) plotted as a function of the substrate concentration for the 

Monod model (used in the calibrated model) and the 1st order model (used for the interpretation of 

respirometric data) 
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Both the description of the effluent SNH and SS data are good (Fig. 16 and 17). Only on one occasion do 

the simulations result in a SS peak that is not present in the data. This SS peak results from a high influent 

concentration together with a high flow rate, which could not be modelled adequately. One explanation 

could be that degradation of SS could have continued for a while in the secondary clarifiers, while the 

model assumes that no degradation reactions take place in the clarifiers. Initially the model predicted too 

high SNO concentrations in the final effluent. Although the activated sludge system is fully aerated it is likely 

that some simultaneous denitrification can take place in the system, e.g. in the less intensively aerated 

recycle channel. E.g. the NO3-N effluent concentration decreased to about 1 mg N/l on Friday evening and 

Saturday morning. This was probably due to an increased residence time in the aeration tank (lower flow) 

combined with availability of sufficient readily biodegradable carbon for denitrification entering the WWTP 

on Friday afternoon (see Fig. 3). The effluent NO3-N concentration increased again on Sunday and 

Monday (Fig. 10) due to lack of readily biodegradable COD (see Fig. 5). 
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Figure 16. Effluent SNH data (squares) and model effluent SNH predictions 
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Figure 17. Effluent SS data (squares) and model effluent SS predictions 

The saturation coefficient for oxygen, KOH, was increased slightly to 0.5 mg O2/l to decrease the inhibition 

of denitrification by O2, and the fraction of denitrifiers, ηg, was decreased to 0.6, to make the simulated 

SNO concentration in the effluent approach the measured values. The resulting description of effluent SNO is 

not perfect but follows the trend of the data reasonably (Fig. 18). Table 5 shows the complete parameter 

list for the dynamic model. 
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Figure 18. Effluent SNO data (squares) and model effluent SNO predictions 
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Table 5. List of main parameters for dynamic model (10 oC) 

Parameter Default (10 oC) Calibrated Units 

YH 0.67  g cell COD formed/g COD oxidized 

YA 0.24  g cell COD formed/g N oxidized 

µmaxH 3.0 2.8 d-1 

µmaxA 0.3 0.31 d-1 

bH 0.2 0.5 d-1 

bA 0.05 0.02 d-1 

KS 20 15 g COD/m3 

KNH 1.0  g NH4-N/m3 

KNO 0.5  g NO3-N/m3 

KOH 0.2 0.5 g O2/m3 

KOA 0.4  g O2/m3 

kh 1.0  g slowly biodegradable COD/g cell COD.d 

KX 0.01  g slowly biodegradable COD/g cell COD 

ηg 0.8 0.6 Dimensionless 

 

Finally, the removal efficiencies for CODtot, CODsol, TKN and NH4-N have been calculated based on 

the actual measured and averaged data on the one hand, and based on averaged results of the dynamic 

simulation including the whole measuring campaign on the other hand. From these results, it has been 

calculated how close the model describes the removal of CODtot, CODsol, TKN and NH4-N (see Table 

6). As it can be seen from Table 6 the model describes 94 - 100% of the actual removal, which can be 

considered to be very satisfactory. 

Table 6. Removal efficiency based on measurements and simulation, expressed as percentage of the 

observed removal that is described by the model 

Removal efficiency CODtot CODsol TKN NH4-N 

Measurements 84% 73% 68% 58% 

Simulation 83% 72% 67% 54% 

Model description 99% 100% 99% 94% 
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4.6. Sensitivity analysis 

The parameter values of the calibrated model given in Table 5 did not seem very different from the default 

parameter set. Therefore, it was investigated if the parameters that were modified during the model 

calibration were indeed influencing the model outputs significantly. To this purpose a sensitivity analysis was 

carried out with the calibrated model, to check the sensitivity of the model output (effluent SS, SNH and SNO 

concentrations) and the predicted sludge concentration (X) to changes in the model parameters and influent 

pollutant concentrations. The sensitivity was evaluated using relative sensitivity functions, RSF (see Eq. 20). 

The calibrated model was used as the reference simulation, and the model output obtained after increasing 

the value of a specific parameter with 1% was used to obtain the relative sensitivity functions (Eq. 20). 

p
p

*
y
y

RSF
∆

∆=      (20)  

The value of the relative sensitivity function at the beginning of the period with dynamic data was used for 

the evaluation (= output corresponding to the end of the steady state simulation). One can comment that 

this leads to a steady state sensitivity analysis. However, it should be added here that a similar sensitivity 

analysis was done for the period with dynamic data (calculation of the average model deviation ∆y based 

on the simulation data obtained for the period with dynamic data). The results of this analysis were rather 

similar to the results of the steady state analysis presented here. The results of this evaluation are shown in 

Table 7. The influence of a parameter on the model output was interpreted as proposed by Julien (1997): 

For RSF < 0.25 a parameter is considered to have no significant influence on a certain model output; if 

0.25 ≤ RSF < 1, the parameter is considered to be influential; if 1 ≤ RSF < 2 the parameter is considered 

to be very influential; if 2 ≤ RSF the parameter is considered to be extremely influential. When the value of 

a parameter and the output change in the same direction, this is indicated with a positive sign in Table 7, 

when they move in the opposite direction this is indicated with a negative sign. 

The sludge concentration is only significantly influenced by the value of YH and by the influent XI 

concentration. The latter confirms that a modification of the influent fractionation (the fraction of XI was 

increased) was indeed one of the most appropriate things to do to increase the sludge concentration in the 

system (and consequently also the sludge production) during the steady state model calibration. Besides the 

sludge concentration, YH also influences the output SS,  SNO and SNH concentrations. However, at the 

beginning of the calibration it was decided not to change YH (and YA). The sensitivity analysis shows 

furthermore that all but one (ηg) of the parameters that were modified from their default values in the final 

calibrated model (µmaxH,  µmaxA,  bH, bA,  KS,  KOH, ηg) influence one or several of the simulated effluent 

concentrations. This confirms (at least for 6 out of 7 parameters, µmaxH, µmaxA, bH, bA, KS, KOH) that a 

modification of these parameter values resulted in a considerable change in the simulated model output. 

Finally, it should be stressed that both µmaxH and µmaxA are very influential on effluent SS and extremely 
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influential on effluent SNH and SNO concentrations respectively. In other words, this confirms that even a 

slight modification of the value of these parameters, as in the presented model calibration, can have an 

important effect on the model output. 

 

Table 7. Results sensitivity analysis with the calibrated model of the Zele WWTP. (+, - = influential; + + , - 

- = very influential; + + +, - - - = extremely influential). See text for a further explanation of the results 

Parameter X Effluent SS Effluent SNO Effluent SNH 

YH + - - + - - 

YA     

µmaxH  - -   

µmaxA   + + + - - - 

bH  + + +   

bA   - + 

KS  + +   

KNH   - + 

KOH    - 

KOA   - + 

ka     

kh  - -  + 

KX     

ηg     

Influent component X Effluent SS Effluent SNO Effluent SNH 

SS   - + 

SNH   + + + 

XI +    

XS  + - - + 

 

4.7. Model reduction 

It was investigated whether the number of tanks could be reduced in the hydraulic model to increase the 

calculation speed of the model. To evaluate the effect of model reduction, the quality of the fit between 

simulated values and available data was evaluated by calculating the average relative deviation (ARD) 
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between model predictions of SNH and available data points (Eq. 21). 
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For the calibrated model ARD was 16.5% when considering the effluent SNH concentration. For a 

reduction of the number of tanks from 24 to 12 in the activated sludge lanes, and from 5 to 3 in the recycle 

channel, the same ARD (16.5%) was obtained for effluent SNH. Thus, this model reduction gave the same 

accuracy as the full model. However a further reduction of the number of tanks to 8 in the activated sludge 

lanes and 2 in the recycle channel gave a significantly worse description with an ARD of 73.5%. Although 

the dynamics of the effluent SNH data could still be described, the simulated SNH concentrations were in 

general higher than the measured data with the last model. The reason for this is simply that the mixing 

patterns are more approaching an ideally mixed situation compared to the original model. In general, except 

for the case of zero order degradation kinetics, an ideally mixed tank results in a lower substrate removal 

efficiency in comparison with an ideal plug-flow tank when the same reactor volume is available. 

Conclusively, the model reduction resulted in a model that needed about 50% less calculation time for a 

simulation than the original calibrated model. 

In principle, one could imagine that if the value of µmaxA is increased then a similar model fit for the reduced 

8 tanks in series model could be reached as for the calibrated model, since an increase of µmaxA would 

decrease the outlet SNH(0). Thus, this means that a “wrong” hydraulic characterisation could be 

compensated by a change of parameter values. 

5. Discussion 

In this study it was stressed that the purpose of the model should determine how the model is calibrated, 

e.g. which information is needed and to which level the model should be calibrated. A systematic and 

general model calibration procedure was proposed, and illustrated for a combined municipal-industrial 

WWTP. ASM1 was applied in the case under study, but the proposed general model calibration 

procedure is applicable for any activated sludge model. 

The purpose of the case study was to obtain a good description of the biological N removal, since the 

model was to be used for process optimisations focusing on an improvement of the N-removal capacity, 

including start-up of denitrification (Gernaey et al., 2000c). Therefore, it was also important to describe the 

variation in readily biodegradable COD. Biodegradation of COD will influence the N components in the 

activated sludge system, e.g. because SNH is incorporated into new biomass and SNO is consumed during 

denitrification. It was observed that the presence of readily biodegradable COD in the influent was mainly 

related to industrial activity, resulting in a lack of biodegradable COD during the weekend. For future 

implementation of denitrification in the WWTP this may cause problems in maintaining the denitrification 
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efficiency during weekends. This weekend effect was reported previously for another Flemish municipal 

WWTP by Coen et al. (1997). 

In this study it was obviously important to have a good description of the hydraulic patterns to describe the 

dynamics of the system adequately. Indeed, a model reduction study showed that the number of tanks 

could be halved, from 24 to 12, still giving the same description of the effluent data with the same 

parameter set as the calibrated model. However, it also became clear that a further model reduction would 

not be possible without a compensating change in the kinetic parameters. In other words, for a further 

model reduction (a decrease of the number of tanks below 12) errors in hydraulics have to be 

compensated by “wrong” biological parameters deviating from the lab-scale results, e.g. increase of µmaxA 

to decrease the effluent SNH concentration. Thus, in case a hydraulic model would not have been available 

at all, e.g. the hydraulics were described with a 4 tanks in series model, the calibrated parameter set might 

have been rather different and not corresponding at all to the results of the lab-scale experiments. This is 

immediately linked to the importance of evaluating the key kinetic parameters with lab-scale experiments. 

In this case study the decay rate and the two specific growth rates µmaxA and µmaxH were determined. It 

was illustrated how to compare these parameters obtained from lab-scale experiments with the parameters 

of the full-scale model, thereby verifying that the parameters of the full-scale model were realistic. 

Thus, as just described above the information obtained from different tests for hydraulic, sludge settling (if 

needed) and biological characterisation help to frame the model calibration, and in fact reduces the 

apparently high degree of freedom of the model parameters significantly. 

For this case study, it could be questioned, however, whether it was necessary to determine some kinetic 

parameters in lab-scale experiments, since the resulting calibrated parameters were not far from the ASM1 

default parameter set (Henze et al., 1987). Still, even in this case the lab-scale results gave extra 

confirmation on the parameter set of the calibrated model, thereby increasing the quality and confidence of 

the model calibration. Moreover, the sensitivity analysis clearly showed that the calibrated model was 

indeed sensitive to changes of the parameters that were modified during the model calibration procedure. 

Two of the most influential parameters were µmaxA and µmaxH, which confirmed that even the small 

deviations of these parameters from their default values (Henze et al., 1987) in the calibrated model has a 

considerable influence on the model output. It should be stressed that such a sensitivity analysis is case 

specific, since the results of the analysis can be influenced by the data set that is studied. This can be 

illustrated with the parameter KNH. The calibrated model presented here is not sensitive to a change of KNH 

because the SNH concentrations in the plant are always considerably higher than the value of KNH (1 mg 

N/l). However, one could imagine that the influence of KNH could be larger for a model that describes a 

treatment plant with almost complete nitrification (e.g. effluent SNH concentration around 1 mg N/l). 

It was clear from this study that there is an interaction between wastewater characterisation and calibration 
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of the full-scale model to the available data (effluent and sludge wasted). For instance, the influent 

concentration of XI and XS were adjusted during the steady state model calibration to be able to describe 

the sludge production data. In this phase it became clear that it was important to include the data of the rain 

weather period prior to the dry weather period, since a high COD load originating from the rain period 

contributed significantly to the sludge that was wasted during the following days.  

6. Conclusions 

A systematic model calibration procedure was presented and evaluated for a combined municipal-industrial 

WWTP. It was underlined that it is very important to define the purpose of the model carefully since this 

will determine how to approach the model calibration. In this study it was clearly illustrated how additional 

information obtained from tests specifically designed to describe the hydraulics and the biology of the 

system help to decide on realistic model parameters during the model calibration procedure. 

The aim of this study was to obtain a good description of the N removal capacity, since the model was to 

be applied for process optimisation in a later stage. It was thus important to have a good description of the 

process dynamics. Therefore, the hydraulic behaviour of the system was investigated, resulting in a 24 

tanks-in-series model to describe the plug flow aeration tank. It was shown that this hydraulic model could 

be reduced to a 12 tanks-in-series model, yielding a 50% reduction of the calculation time for the scenario 

simulations. Two of the most important parameters to adjust to correctly describe the dynamics were the 

specific growth rates, as was also evidenced by a sensitivity analysis carried out with the calibrated model. 

Consequently, additional information on the specific growth rates derived from lab-scale experiments is 

important to confirm that the calibrated parameters of the full-scale model are realistic.  
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Chapter 9 
 
Conclusions and perspectives 

The task of model calibration is often rather time-consuming and the time and resources needed for a 

reliable calibrated model, that can be applied for different purposes, is very often under-estimated. In this 

thesis it was aimed to set-up a more methodological approach for model calibration with special focus to 

the investigation, illustration and solution of the problems encountered when deriving information from lab-

scale experiments.  

The study focused especially on the development of a general methodology to apply optimal experimental 

design on lab-scale experiments with activated sludge aiming at accurate parameter estimates for biological 

models. The concept of the proposed method can be illustrated by Fig. 1. 

 

Theoretical identifiability

Practical identifiability

Experimental constraints

A
B

C

D

E

 

Figure 1. Conceptual idea of parameter identifiability and optimal experimental design 

The first step in this conceptual methodology consists of a thorough analysis of the purpose of the 

experiment, i.e. which experimental response is sought. This purpose determines the conditions under 

which the experiments should ideally be carried out. Each point in Fig. 1 corresponds to a set of 

experimental conditions leading to an experimental response with a certain information content. If these 

experimental conditions are in accordance with the defined purpose, the point will lay within one of the 

defined regions (A - D) in Fig. 1. The exact position will depend on the experimental conditions and on the 

information content of the data. The point will, however, be located outside the defined regions if the 
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experimental conditions do not comply with the purpose (point E in Fig. 1). 

In Fig. 1 the region to investigate first is the region defining the theoretical identifiability of the model for 

which accurate parameters are sought. This region, outlined by the outer circle in Fig 1 (A – D) frames the 

experimental conditions that allow theoretically to obtain unique parameter values from the selected and 

available measurements. The bound on this region is considered to be a hard, ultimate one since the 

theoretical identifiability is entirely defined by the structure of the model under study and the chosen 

measurements.  

On the other hand, the practical identifiability region (indicated by A and B in Fig. 1) is related to the quality 

and thereby the information content of the experimental data. Even when the theoretical identifiability 

analysis has shown that some given parameters are identifiable, they may not be practically identifiable, for 

instance if the data are too noise corrupted (Holmberg, 1982). Therefore, the practical identifiability region 

is a sub-set of the theoretical identifiability region. Furthermore, this region is not fixed at a certain position 

but can be located elsewhere within the theoretical identifiability region in case the actual model parameter 

values or the collected data and their properties, e.g. the noise level on the data, change. 

At last, the region (C – A) indicates that in addition certain constraints can be imposed on the experimental 

conditions, to ensure that the experiment fulfils a defined purpose. 

The optimal experiment (A) is now determined as the one for which the experimental conditions belong to 

the intersection of the three regions in Fig. 1: practically identifiable, theoretically identifiable and obeying to 

the experimental constraints.  

These conceptual ideas on a methodology for optimal experimental designs are very general and can be 

applied to any case where the aim is to obtain accurate parameters from an experiment (lab-scale as well 

as full-scale). 

In this study the conceptual methodology was investigated and illustrated for lab-scale experiments with the 

purpose of obtaining accurate parameter estimates of activated sludge reaction kinetics and wastewater 

component concentrations. Two case studies were carried out. The first one focused on the classical 

example of the two-step nitrification process, and the second case study aimed at characterisation of 

combined COD degradation and nitrification kinetics. For determination of the optimal experiments the 

theory of Optimal Experimental Design (OED) was applied. The cornerstone in OED is the Fisher 

Information Matrix (FIM) which under some conditions equals the parameter estimation error covariance 

matrix (COV). The essence of most OED is basically to reduce the COV, and different optimal 

experimental design criteria have been defined based on different scalar functions of the FIM (e.g. Walter 

and Pronzato, 1990; Munack, 1989 and 1991). In general, of course, different other experimental design 

procedures for optimisation of experiments can be applied depending on the purpose and model under 

study. 
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Since measurements are the basis on which parameter estimation is conducted, the study started by 

focusing on the available measuring techniques. After a thorough literature review, it was concluded that 

respirometric and titrimetric methods were the most powerful data generators for the processes that were 

studied. To maximise the data quality, a methodology of combined respirometric-titrimetric measurements 

was developed and evaluated (see chapter 3) and applied in this study. With respect to the respirometric 

method one of the hybrid respirometer principles proposed by Vanrolleghem and Spanjers (1998) was 

implemented. The hybrid respirometer consists of an open aerated vessel and a closed non-aerated 

respiration chamber. It is operated with two oxygen electrodes resulting in two sources of information on 

the oxygen uptake rate, both collected at a high frequency. The obvious advantage of this respirometer is 

that the oxygen uptake rate (rO) can be obtained by making a simple oxygen mass balance over the 

respiration chamber, without the need to estimate the oxygen transfer coefficient (KLa).  

Especially for characterisation of the nitrification process titrimetric data are straightforward to interpret 

(e.g. Gernaey et al., 1997a) due to the well-defined proton production during the first nitrification step. In 

chapter 3 the potential of this method for characterisation of organic carbon compounds was illustrated 

with acetate. However, an application of this titrimetric method for organic carbon and wastewater COD 

characterisation may eventually not be without problems due to the more complex and compound 

dependent titrimetric effects caused by the degradation of organic matter. Further work is currently done in 

this direction (Gernaey et al., 2000a, 2000b), but it was, however, out of the scope of this thesis to 

analyse this subject in more detail. 

It was already noticed in chapter 3, and investigated in more detail in chapter 5, that the accuracy of the 

parameter estimates increased significantly when combined measurements (respirometric and titrimetric 

data) were considered for characterisation of the nitrification kinetic parameters rather than single 

measurements (respirometric or titrimetric data). For example the accuracy of the parameters µmaxA1 and 

KSA1 improved with about 50% when combined rO and Hp data were used compared to measurements of 

rO alone. In chapter 5 the accuracy was evaluated based on (i) the measurement errors, (ii) model errors 

and (iii) the complexity of the parameter estimation as characterised by the rate of convergence of the 

estimation algorithm towards a minimum. Here it was concluded that especially parameter estimation based 

on Hp data was very accurate and fast convergence was obtained. The same holds for rO data, but in that 

case the accuracy of the parameters was lower. However, in general, the accuracy based on SO data was 

much higher. This was clearly caused by the much lower measurement noise compared to the rO data. 

Furthermore, a significant improvement in accuracy was observed when two dissolved oxygen 

measurements were available (SO,1 + SO,2) compared to a single measurement (SO,1). This confirms the 

statement made by Vanrolleghem and Spanjers (1998) that basically two independent measures of the 

respiration rate can be obtained in the hybrid respirometer, thus duplicating the information on the kinetic 

parameters. The added value of Hp to combined SO,1 and SO,2 measurements was not significant, because 
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it did not improve the parameter accuracy any further. However, the complexity of the parameter 

estimation procedure increased significantly when based on SO data only with a much slower rate of 

convergence towards the final parameter estimates. It was therefore suggested that parameter estimates 

based on Hp and/or rO could be applied as initial values for the more complex parameter estimation based 

on SO data, in case the highest possible parameter accuracy is aimed for. 

The next step in the thesis, after having developed and evaluated the measuring methodology, was to 

analyse the theoretical identifiability of the models that were applied for data interpretation (chapter 4). 

Again, the nitrification process was selected as the example under study due to the possibility of 

characterising this process via combined respirometric-titrimetric measurements. In chapter 4 a thorough 

study of the theoretical identifiability of the two-step nitrification model based on Monod kinetics was 

undertaken considering respirometric outputs (dissolved oxygen or oxygen uptake rates) from two types of 

respirometer and titrimetric outputs (cumulative proton production). In the analysis two model structures 

including presence or absence of biomass growth were investigated for the interpretation of long- and 

short-term experiments respectively. The theoretical identifiability was studied by the series expansion 

methods: both the Taylor and generating series methods were applied. It was illustrated in the analysis of 

the hybrid respirometer that the generating series method was more powerful than the Taylor series 

expansion when an input is considered, since it resulted in simpler equations with respect to the parameters. 

This is in accordance with Walter (1982).  

From this study of the nitrification process it appeared that the parameter identifiability improves 

significantly when combined respirometric and titrimetric data are available. It was proven that the yield of 

the first nitrification step (YA1) becomes uniquely identifiable. This was not a complete surprise since in 

general the yield coefficient relates amounts of produced biomass to amounts of degraded substrate. The 

possibility for a unique identification of YA1 is important, since it means that all parameters that are typically 

identified in combination with the biomass yield coefficient when considering respirometric measurements 

alone (Dochain et al., 1995), could now be uniquely identified. An exception to this is the maximum 

specific growth rate, which in case no biomass growth is considered (i.e. short-term experiments), would 

only be identifiable as a parameter combination involving the biomass concentration. However, in case 

biomass growth is considered (i.e. long-term experiments) all parameters become uniquely identifiable with 

combined respirometric-titrimetric measurements. 

The most important result of the theoretical identifiability analysis reported in chapter 4 was that the results 

could be generalised. Indeed, an important disadvantage of the series expansion methods to evaluate the 

theoretical identifiability is that the user initially has to “guess” which parameter combinations may be the 

“right”, i.e. theoretically identifiable, ones. If the problem is not solvable with this “guess”, other parameter 

combinations may have to be assumed resulting in an iterative time-consuming trial and error procedure. It 

appeared, however, that by applying a set of simple generalisation rules the theoretical identifiable 
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parameter combinations could be assessed directly, only based on (i) knowledge of the process under 

study, (ii) the measured component(s) and (iii) the substrate component(s) that is degraded. The 

generalisation was proven to work with several examples, also taken from literature data. This result 

significantly reduces the time consuming task of analysing the theoretical identifiability of models described 

by Monod growth kinetics in ASM1-like matrix presentations. Thus the generalisation of theoretically 

identifiable parameter combinations may become a powerful tool in future identifiability studies since it can 

help the users to obtain the identifiable parameter combinations directly without the need to go too deeply 

into the mathematical background of theoretical identifiability. This study of theoretical identifiability has 

focused on Monod models. However, it may be possible to extend the generalisation rules, to also cover 

the theoretically identifiable parameter combinations of non-Monod kinetic models. This would for sure be 

a topic that is worth investigating further. 

The practical identifiability of a specific nitrification example was investigated in more detail in chapter 5. 

The investigation was carried out by evaluation of the output sensitivity functions and the corresponding 

FIM. Local parameter identifiability requires that the rank of FIM is full. This can, for instance, be 

investigated by calculation of the determinant of the FIM, i.e. if the Det(FIM) ≠ 0 the parameters are 

locally identifiable (Spriet and Vansteenkiste, 1982; Söderström and Stoica, 1989). In this study it 

appeared that the FIM became singular, when calculated on the basis of output sensitivity functions with 

respect to all parameters that are theoretically identifiable considering combined respirometric – titrimetric 

measurements, i.e. including the sensitivity function of YA1. The reason for the singularity was that the output 

sensitivity functions of the respirometric or titrimetric output with respect to µmaxA1 and YA1, as expected, 

were proportional. By definition this results in a singular FIM. However, the theoretical identifiability 

analysis in chapter 4 had clearly shown that the YA1 becomes identifiable with combined measurements. 

Moreover, by investigation of the sum of squared error objective function as a function of the parameters 

µmaxA1 and YA1, it was clearly observed that the YA1 was practically identifiable although strongly correlated 

with µmaxA1. The FIM approach was obviously not able to deal with this and the FIM analysis gave a too 

pessimistic picture of the practical parameter identifiability. Thus, in further studies of practical identifiability 

using FIM properties, the theoretical result that YA1 becomes uniquely identifiable could not be included.  

Hence, this work clearly illustrated some limitations in the application of FIM as a measure of practical 

identifiability and care should be taken in using the FIM as a measure of identifiability since the method may 

not be sensitive enough. 

Another problem related to the application of the properties of the FIM in different optimal experimental 

design criteria was encountered and analysed in depth in chapter 6. Different optimal experimental design 

criteria have been developed based on scalar functions of the FIM (e.g. Goodwin, 1987; Munack, 1989, 

1991). Initially, the study reported in chapter 6 aimed at evaluating whether rescaling of parameter units 

could be used to improve the numerical properties of the FIM giving a more stable inversion and thereby 
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more reliable assessment of the parameter estimation error covariance matrix. The condition number (i.e. 

the ratio between the largest and the smallest eigenvalue of the FIM) is a measure of the “robustness” of 

the inversion. It was found that improvements in condition number up to a factor 1010 could be obtained 

just by rescaling the time unit of the parameters. In addition, it was found that in some cases it is possible to 

reach the most optimal condition number (=1). This result has some serious implications for optimal 

experimental design methodology and certainly stresses that care should be taken with scaling of parameter 

units since the FIM is dependent on the actual parameter values. Via a simple parameter estimation 

example of a single substrate batch model with Monod kinetics it was proven that both the A-, modA-, E- 

and modE-criteria were affected by rescaling, and that only the D-criterion (which focuses on maximisation 

of the determinant of FIM) was unaffected by rescaling. The invariance of the D-criterion with respect to 

parameter rescaling was in fact already addressed by Goodwin (1987) and repeated in Walter and 

Pronzato (1999). However, as far as known, no evaluation was made with respect to the remaining 

criteria. The rescaling is especially critical for the modE criterion that focuses on the optimisation of the 

condition number of the FIM. In the work of Munack (1989), Baltes et al. (1994), Versyck et al. (1997) 

and Versyck and Van Impe (1999) feeding rates to fed-batch systems have exactly been optimised based 

on the modE criterion. In the work of Versyck et al. (1997) the optimum of the modE (=1) was obtained. 

Although these results can not be questioned, it must be stressed that it may be possible in some cases to 

obtain the optimum value for this criterion just by parameter rescaling, which, of course, has nothing to do 

with optimal design of an experiment. 

Following the investigation of different aspects and details of the theoretical and practical identifiability, the 

focus was turned to the conceptual procedure for optimal experimental design (Fig. 1). The concept was 

specially outlined for FIM based optimal experimental designs. This procedure consisted of 9 steps, and 

the procedure was applied in practice for two simple case studies in chapter 7. In both case studies, the 

purpose was to obtain parameter estimates that were as accurate as possible, and in addition these 

estimated parameters should be representative for the full-scale system under study. 

Some emphasis was put on the definition of the experimental conditions that would lead to the desired 

experimental response for which parameters would be theoretically identifiable. For instance, one of the 

important factors to be considered was the ratio between the initial substrate and biomass concentration, 

S(0)/X(0). The influence of this ratio on the experimental response was discussed in detail in chapter 2. It 

was discussed there that it could be more relevant to focus on the change in substrate concentrations or 

load, ∆S, which the organisms are subjected to. It is typically recommended to work under low S(0)/X(0) 

ratio, or expressed in another way low ∆S, to obtain responses that are representative for the physiological 

state of the biomass prior to the experiments (Grady et al., 1996), i.e. the physiological state of the 

biomass in the activated sludge plant in order to obtain what are called “extant kinetic parameters”. This 

S(0)/X(0) ratio may have an important influence on the resulting experimental responses and may influence 
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both the observed biomass yield and the kinetic parameters. Drastic changes of the environment may 

eventually even lead to biomass population shifts. The latter applies especially to organic substrate (COD), 

which can flow into different mechanisms depending on the environmental conditions. For nitrification on 

the other hand, a too high change in substrate load may lead to substrate inhibition of the nitrification 

process. 

In case study 1 the aim was to design a simple experiment that allowed for simultaneous characterisation of 

the reaction kinetics of both nitrification steps. The experimental degree of freedom to be optimised was 

selected as the addition of an optimal amount of nitrite together with the ammonium at the beginning of the 

experiment. The purpose of the second case study was to design an experiment that would allow for a 

simultaneous characterisation of the reaction kinetics for both the first nitrification step and the degradation 

of readily biodegradable wastewater COD. In the second case study the experimental degree of freedom 

was defined as the optimal amount of ammonium to be added initially together with the wastewater. 

In both case studies the experiment was optimised via application of the D-criterion (maximisation of 

Det(FIM) or in other words minimisation of the generalised parameter covariance), and it was thoroughly 

investigated and evaluated how the confidence intervals on the estimated parameters improved in the 

optimal experimental designs. For the first case study the main improvement in parameter accuracy (about 

50%) compared to the reference experiment was found for the parameter µmaxA2. This was in agreement 

with the purpose of the optimal experiment, where the optimised experimental degree of freedom was the 

initial amount of nitrite (SNO2(0)) added. Indeed, an increase of SNO2(0) results in more information on the 

maximum respiration rate of the second nitrification step, and thereby on the parameter µmaxA2. Moreover, 

a significant improvement in accuracy (about 20 - 30 %) was obtained for the parameter KSA2. In the 

second case study, a reduction of about 50% of the confidence intervals of the kinetic parameters related 

to the first nitrification step, µmaxA1 and KSA1, was found. Furthermore, the accuracy of the parameter 

related to the first order degradation of COD improved with about 20%. These results were also in 

accordance with the aim of the study where the experimental degree of freedom was chosen as the 

additional amount of ammonium, SNH(0), to be added together with the wastewater. Indeed, an increase of 

SNH(0) focuses on a better separation of the nitrification process from COD degradation in the respirogram 

to allow for a better identification of both processes. 

These theoretical predictions were validated with independent parameter estimations based on experiments 

that were carried out according to the optimal experimental design. In both case studies it was found that 

rather similar experiments conducted with the same sludge source and wastewater lead to highly 

reproducible parameter estimates. However, rather large differences (up to a factor 2) in parameter 

estimates were found for experiments in both case studies, when using sludge collected at different days 

within the same week. Considering that the parameter estimates are highly accurate and reproducible, it 

was concluded that either the sludge parameters or, in the second case study, the wastewater varied 
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significantly, even over such a short-term period. 

Interesting to discuss is how sensitive the proposed optimal experimental design is towards changes of 

reaction kinetics or changes in wastewater substrate concentrations. This was investigated in both case 

studies. It was found that some safety margin exists for the experimental design, which means that it is 

rather robust against parameter variations. However, for the two step nitrification case it was for example 

found that a combination of a low µmaxA1 and high µmaxA2 was critical and could result in experimental data 

that would not allow to practically identify the kinetic parameters of both nitrification step. One example 

was recorded where the optimal experiment indeed would have resulted in very inaccurate parameter 

estimates.  

In the second case study dealing with combined COD degradation and nitrification, a more systematic 

sensitivity study was carried out to evaluate the effect of changes of parameters and substrate 

concentrations on the parameter estimation accuracy. In that study it was concluded that changes in the first 

order degradation rate of the wastewater COD especially influenced the accuracy of the estimation of initial 

substrates (in this case SS,1(0) and SNH,1(0)). On the other hand changes of µmaxA1 influenced the parameter 

accuracy of KSA1 significantly and changes of the initial substrate concentration SNH(0) had the least effect 

on the overall variances as quantified by the Det(FIM).  

The conclusion of the sensitivity study was that depending on the acceptable accuracy of the parameter 

estimates, the optimal experimental designs may need frequent updating to ensure the practical parameter 

identifiability, or more robust experimental designs must be developed. 

The situation of frequent updating versus robust OED will be considered in more detail below. As 

mentioned above in the presentation of the conceptual methodology the region of practical identifiability 

may move but, as long as the model structure does not change, only within the hard bound region of 

theoretical identifiability. This adaptation of the optimal experimental design is illustrated in Fig. 2. To make 

the discussion more concrete in the example used in Fig.2, on can imagine that the ratio between the 

ammonium content of the wastewater SNH and the wastewater character, expressed by the first order 

degradation rate k, changes. Indeed, in case study 2 short-term variations were observed for both the 

parameter k and the ammonium concentration in the wastewater. Suppose now that a model was 

calibrated under some experimental conditions, and that these parameters were used to design the next 

experiment. However, in the mean time the system has changed its properties, e.g. change of k or SNH, and 

the experiment conducted according to this design will lead to an experimental response that may not allow 

an accurate estimation of the parameters. In Fig. 2, it is illustrated how the region of practical identifiability 

moves within the region of theoretical identifiability in case the parameters, here either SNH or k, change. 

Thus, in this situation, the optimal experiment, illustrated by experiment A, will have to be adapted. One 

can even imagine that the parameters change to such an extent that the experiment no longer complies with 
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the experimental constraints, as illustrated in Fig. 2. This can be exemplified with the situation where a 

practical identification of the parameters is only possible under such experimental conditions that the sludge 

is no longer reacting as it would do in the full-scale system. Thus, “intrinsic” parameters are obtained 

instead of extant parameters. 

The direction in which the practical identifiability region moves may be predictable based on e.g. the sludge 

history or daily variations of e.g. wastewater composition. Ideally, the adjustment of the optimal experiment 

should be carried out so often that the regions of practical identifiability overlap to obtain the most reliable 

update. This is illustrated in Fig. 3. 

As an alternative to the frequent update of the optimal experimental design, a more robust experimental 

design can be applied, illustrated in Fig. 4. In the two studied cases a robust experiment would be one 

where a large amount of either SNO2 or SNH is added initially, but still allowing the experiment to comply 

with the defined experimental conditions and constraints. As an example the added amount should be such 

that no biomass growth or other changes in the experimental response occur. In such robust experimental 

design the accuracy of parameter estimates may be lower, but the adaptation of the design will not have to 

take place as frequently. Thus, a compromise between accuracy and adaptation frequency will have to be 

made. 
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Figure 2. The region of practical identifiability moves in case the rate between SNH and wastewater 

character, expressed by the degradation rate k, changes 
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Figure 3. Frequent update of the region of practical identifiability in case the rate between SNH and 

wastewater character, expressed by the degradation rate k, changes 
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Figure 4. Robust experimental design for practical identifiability in case the rate between SNH and 

wastewater character, expressed by the degradation rate k, changes 

In this study the D-criterion, which focuses on maximisation of the determinant of FIM (Det(FIM)), was 
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applied to optimise the experiment. A more extended OED-criterion could however be created in which 

the sensitivity of the OED to parameter or wastewater changes is leading to increased penalties to ensure a 

robust experimental design. Moreover, in this study one of the required experimental conditions was that no 

biomass growth must take place during the experiment, e.g. low S(0)/X(0) and low ∆S were strived for. 

Such conditions could also be incorporated into a combined objective function of the OED together with 

the Det(FIM). For example in the study of Baltes et al. (1994) a critical biological criterion with regard to 

balanced growth was defined and incorporated into the objective function of the OED. Certainly, 

development of combined OED criteria opens perspectives for more advanced and reliable experimental 

designs in which the classical OED criteria, e.g. Det(FIM), which includes parameter accuracy alone, can 

be combined with different other constraints focusing for example on specific biological factors. 

In the last part of the thesis the focus was on evaluating an ASM1 model calibration procedure for a 

combined municipal-industrial WWTP. A systematic model calibration procedure was defined in chapter 2, 

based on a thorough literature review. The kind of information that is needed, and the way model 

calibrations have been approached in literature. It was stressed that the purpose of the model calibration is 

determining how the calibration can be approached in a step-wise way. In the full-scale case under study it 

was important to have a detailed description of the process dynamics, since the model was to be used as 

the basis for optimisation scenarios in a later phase (Gernaey et al., 2000c). Therefore, a complete model 

calibration procedure was applied in this case including : (1) a description of the hydraulics in the system via 

a tracer test, (2) an intensive measuring campaign and (3) supporting lab-scale experiments to obtain and 

confirm kinetic parameters for the model. In this model calibration it was clearly demonstrated how the 

information obtained from different tests for hydraulic, sludge settling (if needed) and biological 

characterisation can help to frame the model calibration, and in fact reduce the apparently high degree of 

freedom of the model parameters significantly. 

In this study, the calibrated parameters µmaxA, µmaxH and bH were compared to the parameters obtained 

from lab-scale experiments. It was illustrated how these parameters could be compared to the parameters 

of the full-scale model, thereby verifying via lab-scale experimental data that the parameter values of the 

calibrated full-scale model were realistic. 

In the literature review in chapter 2 it was discussed in detail which wastewater components and 

parameters are most relevant to be characterised via lab-scale experiments for an ASM1 model 

calibration. This discussion included the problem of transferability between lab-scale and full-scale 

observations and potentially different model concepts. Here it was deduced that it may be relevant to 

determine the parameters µmaxA, µmaxH, ηg, bA, bH and possibly also YA and YH, whereas e.g. the half-

saturation coefficients derived from lab-scale experiments are not representative for the full-scale system, 

mainly due to different mixing characteristics. The yields were included in the list, knowing that they are not 

easy to determine in lab-scale tests and that they are usually assumed to be rather constant. However, it 
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was also realised that the yield coefficients have an important influence on nearly all the processes, and 

therefore it could be relevant in some cases to have a more accurate determination of these values. 

In this model calibration it was chosen to determine µmaxA, µmaxH and bH via lab-scale tests, as mentioned 

above, whereas the determination of the anoxic correction factor for denitrification, ηg was adjusted during 

the model calibration. It was not aimed to determine the yield coefficients in this case. 

In the study in chapter 8 the resulting calibrated parameters did not differ a lot from the ASM1 default 

parameter set (Henze et al., 1987). Thus, one could question whether it was necessary to determine some 

of the parameters in lab-scale experiments at all. Still, even in this case the lab-scale results gave useful 

confirmation on the validity of the parameter set of the calibrated model, thereby, increasing the quality and 

confidence of the model calibration. The calibrated model was evaluated via a sensitivity study on the 

influence of model parameters and influent component concentrations on the model output. This analysis 

clearly showed that the calibrated model was sensitive to changes of the parameters that were modified 

during the model calibration procedure. The two most influential parameters were µmaxA and µmaxH which 

confirmed that even the small deviations of these parameters from their default values had a considerable 

influence on the model output. Furthermore, this confirmed the importance of having an extra information 

source on the values of these parameters via lab-scale tests. 

Finally, the focus is returned to the figure outlined in the problem statement that illustrated the problems of 

transferability between lab-scale experiments and the full-scale system (Fig. 5).  

Theoretical identifiability

Practical identifiability

Experimental constraints
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D
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C

 

Figure 5. Conceptual idea of parameter identifiability and optimal experimental design in case information 

is retrieved from lab-scale experiments 

Via this figure it was hypothesised that lab-scale experimental conditions may allow for a larger region of 

practical identifiability, but problems may arise whether the obtained parameters are transferable to full-

scale applications. Indeed in the study presented in this thesis we have seen that it was possible to transfer 

the values of the parameters µmaxA, µmaxH and bH from the lab-scale test to the full-scale model, although 
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the lab-scale experiment used to validate µmaxH was interpreted with a different model (first order 

degradation kinetics) than the full-scale model (Monod kinetics). Thus, for these parameters it was possible 

to find an optimal experiment (A) that yielded values that complied with the experimental constraints on 

transferability. However, it has also been discussed that for some ASM1 parameters it may not be relevant 

or possible to retrieve realistic parameter values from lab-scale experiments. A typical example is the half-

saturation coefficients which may not describe the same phenomena in lab-scale compared to full-scale 

systems, due to the different mixing patterns. Thus, in this case it is difficult to create an experiment (A) and 

the regions of practical parameter identifiability of the lab-scale experiment may not overlap with the region 

of experimental constraints, as also illustrated in Fig. 5. Certainly further research is needed in the direction 

of characterisation of the different ASM parameters and components to solve the transferability problems 

related to differences in lab-scale and full-scale behaviours. 
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Summary 

The activated sludge process is one of the most widespread biological wastewater purification 

technologies. Especially during the last two decades modelling of biological degradation processes in 

activated sludge plants has been an important research topic. This thesis deals with calibration, identifiability 

and optimal experimental design of activated sludge models. The aim was to define a more methodological 

approach for model calibration with special focus on the investigation, illustration and solution of the 

problems -of both theoretical and practical origin- encountered when deriving information from lab-scale 

experiments. The focus in this thesis is on the Activated Sludge Model No. 1 (ASM1; Henze et al., 1987). 

However, the developed methodologies are transferable to model calibration applications in general. 

Generally speaking, a good model calibration exercise can benefit from the information derived from lab-

scale experiments. In such lab-scale experiments it is tried to characterise (part of) the kinetics of the 

biomass present in the full-scale system under study. In the frame of this thesis a conceptual methodology 

to carry out lab-scale experiments was defined, investigated and illustrated, with the purpose of obtaining 

accurate parameter estimates of activated sludge reaction kinetics and wastewater component 

concentrations. For the determination of the optimal experiments the theory of optimal Experimental Design 

(OED), based on the Fisher Information Matrix (FIM), was applied. 

The literature review (chapter 2) begins with a detailed description of ASM1, and a discussion of the 

differences between ASM1 and the recently proposed ASM3 (Gujer et al., 1999). However, the main 

part of the literature review is focusing on ASM1 model calibration methodology and available methods for 

characterisation of wastewater components and of activated sludge reaction kinetics. The different methods 

were discussed and evaluated thoroughly. Furthermore, the relevance of characterising the different 

wastewater components and kinetic parameters via lab-scale experiments was discussed and a list of the 

most relevant parameters and components was defined. Based on the literature review it was concluded 

that especially respirometry, and to a lesser extent titrimetry and nitrate uptake rate measurements, are 

powerful methods that allow for the characterisation of several activated sludge kinetic parameters and 

wastewater components. 

With the literature review in mind, and to maximise the quality of the experimental data, a combined 

respirometric-titrimetric measurement methodology was developed and evaluated (chapter 3). It was 

already indicated in chapter 3, and investigated in more detail in chapter 5, that the accuracy of the 

parameter estimates improves significantly when combined measurements are available for the parameter 

estimation (respirometry and titration). For example, the accuracy of the kinetic parameters of the first 

nitrification step improved with 50% when combined respirometric-titrimetric measurements were available 
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compared to a situation where only respirometry was applied. Furthermore, it was concluded that 

especially parameter estimation based on titrimetric data was very accurate, with a fast convergence of the 

estimation algorithm towards a minimum. In general, however, it was found that the parameter accuracy 

based on oxygen measurements instead of oxygen uptake rates was the highest. 

In chapter 4 the focus was on theoretical identifiability of the models that are applied to interpret the data 

resulting from the developed experimental set-up (see chapter 3). The nitrification process was used as an 

example to study the theoretical identifiability considering combined respirometric-titrimetric measurements. 

Two model structures were investigated, including presence and absence of biomass growth for 

interpretation of short- and long-term experiments respectively. The theoretical identifiability was studied 

via the Taylor and generating series methods. From this study it appeared clearly that the parameter 

identifiability improves significantly when combined respirometric-titrimetric measurements are available, 

since the autotrophic yield YA becomes uniquely identifiable. The most important result of the theoretical 

identifiability study was however that the results could be generalised. It appeared that the theoretical 

identifiable parameter combinations for Monod type growth models described in an ASM1-like matrix 

notation, could be obtained directly via a simple set of generalisation rules only based on (i) knowledge of 

the process under study, (ii) measured component(s) and (iii) the substrate component(s) that is degraded. 

Application of these generalisation rules results in a significant reduction in the often very time consuming 

task of assessing the theoretical identifiable parameter combinations. Furthermore, it can help the users to 

obtain the identifiable parameter combinations directly without the need to go too deeply into the 

mathematical background of theoretical identifiability. 

The practical identifiability was investigated in chapter 5 for a specific nitrification example. The 

identifiability analysis was carried out via an evaluation of the output sensitivity functions and the 

corresponding FIM. Local parameter identifiability requires that the rank of FIM is full. In this study, 

however, it appeared that the FIM became singular when it was calculated based on the output sensitivity 

functions with respect to all theoretically identifiable parameters, considering combined respirometric-

titrimetric measurements. The singularity was clearly related to the presence of the output sensitivity function 

with respect to the autotrophic biomass yield. However, when investigating the sum of squared errors 

based objective function as a function of the model parameters, it was clearly observed that the yield was 

practically identifiable. Obviously, the FIM was not able to reflect the full information of the available 

combined respirometric-titrimetric dataset, and therefore gave a more pessimistic picture of the 

identifiability properties than prediced in the theoretical study of chapter 4.  

In chapter 6 another problem related to the properties of the FIM in the different OED criteria was 

investigated. Different OED criteria have been developed based on different scalar functions of the FIM 

(e.g. the eigenvalues and corresponding trace and determinant of the FIM). Originally, the analysis 

described in chapter 6 was undertaken to improve the numerical properties of the FIM, allowing for a 
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more stable matrix inversion (the inverse of FIM is the parameter estimation covariance matrix). The 

condition number, i.e. the ratio between the largest and the smallest eigenvalues, was used as a measure of 

the robustness of the inversion. It appeared that improvements in the condition number up to a factor 1010 

could be obtained just by rescaling the time units of the parameters. In addition, it was found that by 

rescaling the parameter units it was possible in some cases to obtain the optimal condition number (= 1). 

Only the D-criterion (maximisation of the FIM and thereby minimisation of the generalised parameter 

covariance) appeared to be unaffected by the parameter rescaling. The rescaling was especially critical for 

the modE criterion, which focuses on the minimisation of the condition number. Thus, these results have 

some serious implications for the optimal experimental design methodology. 

Finally, the focus was turned back to the conceptual methodology for optimal experimental design in 

chapter 7. In this chapter a step-wise procedure was defined for the FIM based OED, and using the 

results obtained in the previous chapter as a basis. This OED procedure was illustrated for two case 

studies, first for the two-step nitrification process and second for a combined nitrification and COD 

degradation process. In both cases it was aimed at obtaining accurate parameter estimates, and the issue of 

parameter transferability between the obtained lab-scale results and the full-scale WWTP under study was 

addressed. Furthermore, some emphasis was put on the definition of experimental conditions that would 

lead to the desired experimental response. In both case studies improvements in parameter accuracy of 

about 50% were obtained for the optimal experiments. These theoretical predictions were validated based 

on experiments carried out according to the optimal experimental designs resulting from the simulations. In 

both case studies it was found that the reproducibility of the parameter estimates was rather high for 

experiments carried out with the same activated sludge sample. However, differences in parameter 

estimates (up to a factor 2) were found for experiments with sludge collected at different days within the 

same week. The sensitivity of the proposed optimal experiments towards parameter changes were 

therefore addressed in detail for both case studies, and the critical situations that would lead to very 

inaccurate parameter estimates were identified. Finally, the choice was discussed between on the one hand 

a robust experiment with resulting lower parameter accuracy, and on the other hand a more frequent 

update of the optimal experiment.  

In the last part of the thesis a systematic model calibration procedure was defined for ASM1, and applied 

on a municipal-industrial WWTP. Here it was clearly illustrated how the information obtained from different 

tests for hydraulic and biological characterisation can help to frame the model calibration, e.g. to choose 

realistic parameter values. Moreover, the calibrated model was evaluated via a sensitivity study, 

investigating the influence of changes of model parameters and influent component concentrations on the 

model output. This analysis clearly showed that the calibrated model was sensitive to changes of the 

parameters that were also modified during the model calibration procedure. The model calibration was 

finalised with a model reduction, resulting in a 50% reduction of the calculation time needed for the 
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simulation compared to the original calibrated model. 
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Samenvatting 

Het actief slib proces is één van de meest populaire waterzuiveringstechnieken. Vooral tijdens de voorbije 

twee decennia was het modelleren van biologische afbraakprocessen in actief slib installaties een belangrijk 

onderzoeksgebied. Deze thesis behandelt de kalibratie, de identificeerbaarheid en optimale proefopzetten 

voor actief slib modellen. Daarbij wordt in deze thesis in het bijzonder aandacht besteed aan Actief Slib 

Model Nr. 1 (ASM1; Henze et al., 1987). De methodes die ontwikkeld werden in het kader van deze 

thesis zijn echter overdraagbaar naar om het even welk actief slib model, of zelfs meer algemeen naar 

toepassingen waarin de kalibratie van een model een belangrijke rol speelt. 

Algemeen wordt aangenomen dat bij de uitvoering van een modelkalibratie voordeel kan gehaald worden 

uit de informatie die afgeleid wordt uit experimenten op laboratoriumschaal. In dergelijke experimenten 

wordt getracht om (een deel van) de kinetische parameters te karakteriseren van de biomassa aanwezig in 

de volschalige installatie die moet gemodelleerd worden. In het kader van deze thesis werd een 

conceptuele methodiek om dergelijke experimenten op laboratoriumschaal uit te voeren gedefinieerd, 

onderzocht, en concreet toegepast, met als doel het verkrijgen van accurate parameterschattingen met 

betrekking tot de actief slib reactiekinetiek en de concentratie van afvalwatercomponenten. Voor de 

bepaling van de optimale proefopzet werd de optimale proefopzet theorie (“optimal experimental design”, 

OED), gebaseerd op de Fisher Informatie Matrix (FIM), toegepast. 

Het literatuuroverzicht (hoofdstuk 2) start met een gedetailleerde beschrijving van ASM1, en een discussie 

die de verschillen behandelt tussen ASM1 en het recent voorgestelde ASM3 (Gujer et al., 1999). Het 

belangrijkste deel van het literatuuroverzicht is echter gewijd aan de kalibratie van ASM1, en de 

beschikbare methodes voor het bepalen van afvalwatercomponenten en de actief slib reactiekinetiek. De 

verschillende methodes werden in detail besproken en geëvalueerd. Verder wordt ook de relevantie 

besproken van het bepalen van de verschillende afvalwatercomponenten en kinetische parameters. Op 

basis van het literatuuroverzicht werd besloten dat vooral respirometrie, en in mindere mate titrimetrie en 

metingen van de nitraatverbruikssnelheid, veelzijdige methoden zijn die toelaten om heel wat verschillende 

actief slib kinetische parameters en afvalwatercomponenten te bepalen. 

Met de conclusies van het literatuuroverzicht in het achterhoofd, en met het oog op het maximaliseren van 

de kwaliteit van de experimentele data, werd een gecombineerde respirometrische-titrimetrische methode 

ontwikkeld en grondig geëvalueerd (hoofdstuk 3). Reeds in hoofdstuk 3, en later in meer detail uitgewerkt 

in hoofdstuk 5, werd erop gewezen dat de accuraatheid van de geschatte parameters significant toeneemt 

wanneer de gecombineerde datasets beschikbaar zijn voor het schatten van parameters (respirometrie en 

titrimetrie). Zo verbeterde de accuraatheid van de kinetische parameters van de eerste stap van het 
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nitrificatieproces met 50% wanneer gecombineerde respirometrische-titrimetrische data beschikbaar 

waren, dit in vergelijking met een situatie waar alleen respirometrie werd aangewend. Verder kon ook 

besloten worden dat vooral de schattingen gebaseerd op titratiedata heel accuraat waren, met een snelle 

convergentie van het gebruikte schattingsalgoritme naar een minimum in de kwadratensom. Meer algemeen 

werd geconcludeerd dat de accuraatheid van de parameters bekomen op basis van opgeloste 

zuurstofmetingen in plaats van zuurstofopnamesnelheden beter was. 

In hoofdstuk 4 wordt aandacht besteed aan de theoretische identificeerbaarheid van de modellen die 

gebruikt worden voor de interpretatie van de data die gegenereerd werden met de ontwikkelde 

proefopstelling (zie hoofdstuk 3). Het nitrificatieproces werd als voorbeeld gebruikt voor het bestuderen 

van de theoretische identificeerbaarheid wanneer gecombineerde respirometrische-titrimetrische data 

beschikbaar zijn. Twee modelstructuren werden onderzocht, respectievelijk een model met en een model 

zonder biomassa aangroei. De theoretische identificeerbaarheid werd bestudeerd via de Taylor en de 

“generating series” expansiemethoden. Uit deze studie voor het nitrificatieproces bleek duidelijk dat de 

identificeerbaarheid van de parameters significant toeneemt wanneer gecombineerde respirometrische-

titrimetrische metingen beschikbaar zijn, aangezien de autotrofe celopbrengstcoëfficiënt YA identificeerbaar 

wordt. Het belangrijkste resultaat van de theoretische identificeerbaarheidsstudie was echter dat de 

resultaten konden veralgemeend worden. Voor Monod groeimodellen die uitgeschreven worden in een 

matrixnotatie, zoals in ASM1, bleek dat de theoretisch identificeerbare parametercombinaties direct 

konden bekomen worden via een beperkt aantal algemene formules, louter op basis van (i) kennis van het 

te bestuderen proces, (ii) de gemeten component(en) en (iii) het substraat dat wordt afgebroken. 

Toepassing van deze algemene formules resulteert in een significante vermindering van de energie en tijd die 

moet geïnvesteerd worden in de vaak heel tijdrovende taak die het bepalen van de theoretisch 

identificeerbare parametercombinaties is. 

De praktische identificeerbaarheid werd bestudeerd in hoofdstuk 5 voor een specifiek nitrificatievoorbeeld. 

De studie van de identificeerbaarheid werd uitgevoerd via een evaluatie van de output sensitiviteitsfuncties 

en de daarmee overeenkomende FIM. Lokale identificeerbaarheid van de parameters vereist dat de rang 

van de FIM volledig is. In deze studie bleek echter dat de FIM singulier werd wanneer de FIM werd 

berekend op basis van de output sensitiviteitsfuncties voor alle theoretisch identificeerbare parameters, en 

in de veronderstelling dat gecombineerde respirometrische-titrimetrische metingen beschikbaar zijn. Het feit 

dat de FIM singulier was, werd duidelijk veroorzaakt door de aanwezigheid van de output 

sensitiviteitsfunctie met betrekking tot de autotrofe celopbrengstcoëfficiënt YA1. Wanneer echter de op 

basis van de som van kwadratische fouten bekomen doelfunctie werd bestudeerd als functie van de 

modelparameters, bleek duidelijk dat de celopbrengstcoëfficiënt toch praktisch identificeerbaar was. De 

FIM was dus niet in staat om alle informatie aanwezig in de gecombineerde respirometrische-titrimetrische 

dataset optimaal te benutten, en gaf daarom een meer pessimistisch beeld van de identificeerbaarheid dan 
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werd voorspeld in de theoretische studie uitgevoerd in hoofdstuk 4. 

In hoofdstuk 6 werd een ander probleem gerelateerd tot de eigenschappen van de FIM en de verschillende 

OED criteria onderzocht. Verschillende OED criteria werden ontwikkeld op basis van verschillende 

scalaire functies van de FIM (vb. de eigenwaarden en het spoor en de determinant van de FIM). De 

analyse in hoofdstuk 6 werd gestart met het oog op het verbeteren van de numerieke eigenschappen van 

de FIM, wat moest toelaten om een meer stabiele matrixinversie te bekomen (inversie van de FIM geeft de 

parameterschatting covariantiematrix). Verbeteringen in het conditiegetal tot een factor 1010 konden 

bekomen worden door gewoon de tijdseenheden van de parameters te herschalen. Daarenboven bleek dat 

het herschalen van de eenheden van de parameters in sommige gevallen toeliet om het optimaal 

conditiegetal (= 1) te bekomen. Verder werd ook duidelijk dat zowel het A, modA, E en modE OED 

criterium beïnvloed werden door het herschalen van de parameters. Alleen het D criterium bleek niet 

beïnvloed te worden door de parameterschaling. De parameterschaling had vooral een belangrijke invloed 

op het modE criterium, dat gesteund is op de minimalisatie van het conditiegetal. Deze resultaten hebben 

dus ernstige implicaties voor de OED methodologie. 

Uiteindelijk werd in hoofdstuk 7 opnieuw ingegaan op de conceptuele methodologie voor het bekomen van 

optimale proefopzetten. In dit hoofdstuk werd een stapsgewijze procedure gedefinieerd voor ontwikkeling 

van FIM gebaseerde optimale proefopzetten, daarbij gebruik makend van de resultaten die bekomen 

werden in het vorige hoofdstuk. De procedure voor het bekomen van de optimale proefopzet werd 

concreet uitgewerkt voor twee gevalstudies. Eerst werd het tweestapsnitrificatieproces bestudeerd, daarna 

een gecombineerd proces bestaande uit nitrificatie en CZV afbraak. In beide gevallen werd ernaar 

gestreefd accurate parameterschattingen te bekomen. Tevens werd het probleem behandeld van de 

overdraagbaarheid van de parameters tussen de op laboratoriumschaal behaalde resultaten en de 

praktische situatie van de volschalige actief slib waterzuiveringsinstallatie. Verder werd aandacht besteed 

aan het definiëren van experimentele condities die resulteren in de gewenste experimentele respons. In 

beide gevalstudies werden voor het optimale experiment verbeteringen in de accuraatheid van de 

parameters van 50% bekomen. Deze theoretische voorspellingen werden gevalideerd op basis van 

experimenten die werden uitgevoerd in overeenstemming met de optimale proefopzet die eerder als 

resultaat van de simulaties naar voren kwam. Voor beide gevalstudies was de herhaalbaarheid van de 

parameterschattingen betrekkelijk hoog voor experimenten die uitgevoerd werden met hetzelfde actief slib 

monster. Grotere verschillen in geschatte parameters (tot een factor 2) werden echter gevonden voor actief 

slib monsters die op verschillende dagen binnen dezelfde week genomen werden. De gevoeligheid van de 

voorgestelde optimale proefopzetten voor veranderingen van de parameters werd daarom uitvoerig 

bestudeerd voor beide gevalstudies, en de kritische situaties die zouden resulteren in weinig accurate 

geschatte parameterwaarden werden geïdentificeerd. Tenslotte werd de keuze besproken tussen aan de 

ene kant een robuust experiment met de daarmee overeenstemmende lagere accuraatheid van de geschatte 
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parameter en, aan de andere kant, een meer frequente aanpassing van de optimale proefopzet. 

In het laatste deel van de thesis werd een systematische modelkalibratieprocedure gedefinieerd voor 

ASM1, en in praktijk toegepast voor een gecombineerde huishoudelijk-industriële actief slib 

waterzuiveringsinstallatie. Er werd duidelijk aangetoond dat de informatie die werd bekomen uit 

verschillende experimenten voor de hydraulische en biologische karakterisering, een bijdrage kan leveren 

bij het kiezen van realistische waarden voor de modelparameters. Daarnaast werd het gekalibreerde model 

verder geëvalueerd via een sensitiviteitsanalyse, waarbij onderzocht werd hoe de output van het model 

beïnvloed wordt door veranderingen van de waarden van de parameters in het model. Deze analyse 

toonde duidelijk aan dat het gekalibreerde model gevoelig was aan veranderingen van die parameters die 

ook gewijzigd waren tijdens de modelkalibratie. De modelkalibratie werd vervolledigd met een 

modelreductie. Deze laatste resulteerde in een reductie van de benodigde rekentijd voor de simulaties met 

50%, in vergelijking met het originele gekalibreerde model. 
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