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Peter V. zijn groep, Biomath, op een project voor de brandweer. Dat was dan wel modelleren 

van luchtkwaliteit, maar daar kon ik ook wel zeker in geïnteresseerd zijn. Er was ook wel 

geen plaats voor me in een bureau tenzij dat ene opstapelkot, vol met kadootjes van de 

buitenlandse studenten. Verscholen achter zwanen van kroonkurken en porseleinen beeldjes 

probeerden Lieven en ik daar de wetenschap ter nut te zijn. Bedankt Lieven voor dat fijne jaar 

daar.  

 

Na dat ene jaar kwamen er vele volgende. Ik verschoof mijn belangstelling beetje naar 

stedelijk afvalwatersystemen, ook zeker interessant, en begon op het Europese CD4WC 

project. Ik zou iedereen daar willen bedanken voor de echt goede en leuke samenwerking, 

vooral Anne-Marie en ook mijn naaste collega’s en tevens bureaugenoten en vrienden, 

Lorenzo, Peter B. en Webbey. 

 

Bij het einde van het vorige project, werd er me gevraagd of ik bereid was in het Harmoni-CA 

project te stappen. Natuurlijk was ik bereid want dat leek me ook wel interessant. De lijn 

tussen wetenschap en politiek werd er slechts een subtiele nuance die dit project uitermate 

boeiend hield. Enorm veel interessante en toffe mensen kwam ik in die twee jaar tegen. 

Michiel, altijd klaar voor een goed gesprek, Ilke waar ik ongelooflijk mee kon lachen, Pasky, 

de altijd even goedgezinde en positieveling, Bob zijn grappige verhalen en gevatte 

opmerkingen. 
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ingevingen, in vrolijkheid en in vriendschap ik voelde toen jij naar Canada vertrok, dan drukt 

dat meteen uit waar ik je voor dank. Dank je wel. 

 

In die 10 jaar stonden er ook veel mensen buiten de uniefmuren aan mijn zijde, zowel in de 

rustige als in de woelige periodes van mijn leven, waarvoor ik heel veel dank je wil zeggen: 

Joachim, Judith, Isolde en Myrthe, mijn ouders, Laurette en Michiel, Gerard, Jona en Wout, 

An, Els, Debbe en Jo, Janbart, Immanuel, de ww’s en hun mm’s.  

 

Voor de uiteindelijke laatste zware afwerkingsperiode van dit werk, kan ik zeggen dat het 

boekje er niet zou geweest zijn zonder de steun en liefde van Bregt, oprichter van taxibedrijf 

Bregt en Benny. Dank je wel! 
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SAMENVATTING 
 

In de Europese wetgeving, meer bepaald in de Kaderrichtlijn Water, wordt gesteld dat alle 

oppervlaktewater een goede ecologische toestand moet behalen, gelijkend op de natuurlijke 

toestand zonder enige menselijke invloed. De “Clean Water Act”, de belangrijkste wet in de 

Verenigde Staten met betrekking tot water, heeft als doel het herstel en het behoud van de 

chemische, fysische en biologische integriteit van het oppervlaktewater. Om de doelstellingen 

van deze beide wetten te halen, zijn er nog vele maatregelen nodig om de rivierwaterkwaliteit 

te verbeteren.  

Om de huidige toestand te evalueren en voorspellingen te maken over het effect van de 

maatregelen ter verbetering van de rivierwaterkwaliteit, worden modellen gebruikt. Omwille 

van verschillende redenen is de onzekerheid op de modelresultaten echter soms zeer groot. 

Vooreerst is er het probleem van het gebruik van gegevens van slechte kwaliteit als invoer 

voor het model en voor de kalibratie. Ten tweede zijn de modellen die tegenwoordig gebruikt 

worden steeds complexer en dat heeft als gevolg dat er ook meer parameters zijn. Omwille 

van correlatie en afhankelijkheden tussen de parameters, is het niet mogelijk om alle 

parameters te schatten tijdens de kalibratie. Het gevolg daarvan is dat de onzekerheid nog 

groter kan worden doordat verkeerde parameters een vaste waarde krijgen of de parameters 

die niet geschat worden een verkeerde vaste waarde krijgen.  

Het doel van dit eindwerk is om goede modelleerpraktijken aan te moedigen en om de 

onzekerheid op de modelresultaten te verkleinen door op een overzichtelijke manier methodes 

aan te reiken die de waterbeheerder of ingenieur daarbij kunnen helpen. De methodes 

ontwikkeld en gebruikt in dit werk zijn eenvoudig en voor de hand liggend, met gemakkelijk 

te gebruiken software of software die gemakkelijk kan ontwikkeld worden door de gebruiker 

zelf. De methodes zijn allen toegepast op reële gevallenstudies met name de Dender of de 

Nete in België. 

Reductie van de onzekerheid op de modelresultaten kan bekomen worden op verschillende 

plaatsen in het modelleerproces. In dit proefschrift werden voor iedere stap enkele belangrijke 

aspecten gerelateerd aan modelbetrouwbaarheid, behandeld door het toepassen en bespreken 

van methodes en middelen die het gedrag van het model grondig analyseren en door het 

nemen van acties om de modelonzekerheid te verkleinen.  

De eerste stap van het modelleerproces is het opstellen van het modelstudieplan en de 

beslissing over welk model het meest geschikt is voor het beschouwde probleem. Het is niet 

enkel noodzakelijk een model te kiezen dat de huidige toestand van de rivier goed kan 

weergeven, ook de toekomstige veranderingen in het systeem door het toepassen van 

bepaalde scenarios moeten kunnen geëvalueerd worden. Met een sensitiviteitsanalyse (SA) 

werd een evaluatie gedaan voor twee verschillende waterkwaliteitsmodelconcepten, QUAL2E 

en RWQM1, in het licht van hun gebruik voor beheersbeslissingen. Er werd aangetoond voor 

de gevallenstudie de Dender, dat de opgeloste zuurstof resultaten van het QUAL2E-gebaseerd 

waterkwaliteitsmodel vooral gerelateerd waren aan de groei van de algen daar waar het 

RWQM1 ook de sedimentatie in rekening brengt en processen, uitgevoerd door verschillende 
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microbiële gemeenschappen, benadrukt en differentieert. Deze studie toont aan dat beheerders 

zich bewust moeten zijn van de mogelijkheden en beperkingen van het model dat ze 

gebruiken en dus een model moeten kiezen dat past bij hun specifieke problemen en 

verwachtingen. Ook is het goed om te weten welke processen belangrijker zullen worden bij 

de uitvoering van een maatregel zodat bij het opstellen van het model al extra aandacht 

besteed wordt aan die processen om tot betrouwbaardere resultaten te komen. 

Soms is het nodig een model op te stellen van een bekken waar weinig of geen gegevens 

voorhanden zijn. In een dergelijke situatie is het moeilijk te beslissen welke processen 

belangrijk zijn en dus in het model moeten aanwezig zijn. De enige data die gemakkelijk te 

verkrijgen zijn, zijn data die kunnen verzameld worden door directe waarnemingen zoals 

heuvelachtig landschap, aanwezigheid van algenbloei in de zomer of hoge 

zomertemperaturen. In dit doctoraatsonderzoek werd een studie gedaan voor 

modeltoepassingen in niet-bemeten bekkens, waarin de meest belangrijke parameters voor 

verschillende omstandigheden bepaald werden met een soort van sensitiviteitsanalyse van de 

sensitiviteitsanalyse. Het besluit is dat het model verschillende sensitiviteit vertoont tegenover 

de parameters, afhankelijk van de externe omstandigheden. Er kon een tabel opgesteld 

worden waarin die externe omstandigheden, hier “zachte data” genoemd (data die 

gemakkelijk kunnen verzameld worden), gerelateerd worden aan de belangrijkheid van de 

parameters. In die tabel wordt een eerste aanduiding gegeven op welke parameters/processen 

men moet focussen in een bepaald bekken, gekenmerkt door bepaalde “zachte data”. De 

meest belangrijke parameterset kennen, is belangrijk voor de kalibratie van het model, 

optimaal experimenteel ontwerp (OEO), onzekerheidsbepalingen en scenario analyse waarbij 

andere processen belangrijk kunnen worden in vergelijking met de uitgangstoestand. 

De tweede stap is de gegevensverzameling en de meetcampagnes. Het is duidelijk dat het 

belangrijk is te weten welke gegevens nodig zijn en welke meetdata (plaats, frequentie, 

hoeveelheid,…) best zijn voor de kalibratie van een model om uiteindelijk zo een klein 

mogelijke onzekerheid te hebben op de modelresultaten. Er werd een methode van iteratief 

optimaal experimenteel ontwerp (OEO) voorgesteld om de onzekerheid op 

parameterschattingen tijdens de kalibratie zo klein mogelijk te maken. Er werd aangetoond 

dat OEO methodes gebruikt kunnen worden voor een strategie van iteratief sequentiëel 

ontwerp voor het meten van waterkwaliteitsvariabelen, voor kalibratie van modellen. In een 

eerste stap is een relatief uitgebreide set van metingen nodig om het riviermodel op te stellen. 

Gebruikmakende van dit initiële model maakt deze OEO methode het mogelijk efficiënte 

meetstrategieën te definiëren om betere modelparameterschattingen te bekomen en de 

onzekerheid op die schattingen kleiner te maken. Voor de verzameling van invoergegevens 

werd een onzekerheidsanalyse toegepast om meetcampagnes richting te geven. Parameters, 

diffuse en puntvervuilingen werden afzonderlijk beschouwd zodat informatie over de 

modelsensitiviteit tegenover deze inputs bekomen werd. De studie gaf aan wanneer en waar 

best gemeten zou worden.  

De derde stap bestaat uit de opbouw van het eigenlijk model. Ook in deze stap van het 

modelleerproces kunnen verschillende acties ondernomen worden om minimale onzekerheid 
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op de resultaten te verzekeren. Grondige controles dienen uitgevoerd te worden op de 

invoergegevensbestanden door de uitvoering van testsimulaties en door evaluatie van de 

massabalansen. Dit werd echter niet in detail besproken in dit eindwerk. 

Een kalibratie en validatie wordt uitgevoerd in de vierde stap. Er zijn twee problemen bij het 

kalibreren. Ten eerste kunnen niet alle parameters geschat worden door het bestaan van 

correlaties en afhankelijkheden tussen de parameters. In dit werk werd een SA toegepast om 

de belangrijkste parameters te bepalen, gerelateerd aan het probleem van de modelstudie. De 

SA toonde aan dat voor schatting tijdens de kalibratie ongeveer 10 parameters voldoende zijn 

om tot goede overeenkomsten te komen tussen modelresultaten en metingen, voor de periodes 

waar de opgeloste zuurstof concentraties onder kritieke waardes gaat. Ten tweede moet het 

probleem aangepakt worden van het vastzetten van parameters die echter beter geschat 

zouden worden. Een praktisch voorbeeld toont de gevolgen aan van het gebruik van een 

verkeerde parameter subset voor de kalibratie van een model. Er werd aangetoond dat 

kalibreren met verschillende subsets geheel andere resultaten kan opleveren en kan leiden tot 

afwijkende conclusies. 

In de laatste stap dient de simulatie met evaluatie van de modelresultaten uitgevoerd te 

worden. Eens het model gekalibreerd en gevalideerd is, kan het gebruikt worden voor 

scenario-evaluaties en de vergelijking van scenarios. Onzekerheidsbanden rond de resultaten 

dienen zoveel mogelijk mee berekend te worden. De onzekerheid op de modelresultaten kan 

immers te hoog zijn om een significant verschil te vinden tussen twee scenarios. Twee 

praktische voorbeelden, de evaluatie van de kosteneffectiviteit van beluchting in de Dender en 

de bepaling van het effect van het aanplanten van schaduwplanten langsheen de Nete, werd 

voorgesteld. Onzekerheidsanalyse op de resultaten voor de Dender, voor het scenario “met 

beluchting”, toonde aan dat het mogelijk is dat de opgeloste zuurstof in de rivier nog beneden 

bepaalde kritieke waardes duikt, zelfs als het ontworpen beluchtingsysteem in werking is, 

maar dan wel enkel voor korte periodes. De onzekerheidsanalyse toont ook dat de twee opties 

met of zonder beluchting significant verschillend zijn. Voor de studie op de Nete voor 

beschaduwing, kon er besloten worden dat beschaduwen effectief de waterkwaliteit van een 

oppervlaktewater kan beïnvloeden, vooral voor rivieren die te kampen hebben met te grote 

algenbloei gedurende de zomerperiodes. Algenbloei werd gereduceerd door beschaduwing tot 

20%. Voor de studie op de Nete werden echter geen positieve effecten gevonden voor de 

minimum, maximum en gemiddelde concentraties van opgeloste zuurstof, chemische 

zuurstofvraag, fosfaten, ammonium en nitraten in het water. 

De algemene conclusie van deze studie is dat men de onzekerheid op de resultaten kleiner kan 

maken door het toepassen van verschillende methodes op de modellen. Ook werden een 

aantal suggesties voor betere meetcampagnes geformuleerd. Meetcampagnes die erop gericht 

zijn het model beter te kalibreren voor de lage opgeloste zuurstofgehaltes in de rivier zouden 

best gediend zijn met metingen in de lenteperiode. Wanneer men het model wil kalibreren 

voor puntvervuilingen, dan zijn metingen tijdens droge periodes best. Voor de kalibratie van 

het model voor de studie van diffuse pollutie zijn metingen tijdens periodes met regen en 

hoge waterdebieten nodig.  
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SUMMARY 
 

In European legislation, especially in the Water Framework Directive (WFD), it is stated that 

all water bodies need to have a good ecological status, close to the pristine conditions. Pristine 

water means that the water is kept natural and healthy as it was in ancient times, before any 

influence of humans. In the Clean Water Act (CWA), the principal governing law for water in 

the United States, the objective is the restoration and maintenance of the chemical, physical 

and biological integrity of the nation’s water. To reach the goals of the WFD or the CWA, a 

lot of measures are still needed to improve the water quality.   

To evaluate the present situation and to predict the effects of measures taken to improve the 

river water quality, models are used. For several reasons, the uncertainty on the model results 

is sometimes very high. First there is the problem of the use of poor quality data as inputs or 

for the calibration of model parameters.  Second, the models used nowadays are more 

complex and as such they contain more parameters.  Because of correlation and parameter 

dependencies, it is not possible to estimate all parameters. Hence, some parameters need to be 

fixed while only the most important parameters are changed during the calibration. As a 

consequence, the uncertainty on the model predictions becomes even larger because of fixing 

wrong subsets of parameters or due to setting a subset of the model parameters on wrong 

values taken from literature. 

It is the aim of this dissertation to promote good modelling practices and to provide in a 

systematic way methods that help the water manager or engineer to minimise the uncertainty 

on the model results. The methods developed and applied in this work are simple, 

straightforward, with easy to use software or with software that can easily be developed by 

the user. The methods and tools were applied on real case studies, either the river Dender or 

the river Nete, both in Belgium. 

Reduction of the output uncertainty of a model can be achieved during many stages of the 

modelling process. In this work, for every modelling step, some important issues related to 

model reliability were answered by discussing and applying methods and tools that help to 

analyse the behaviour of the model and perform actions to reduce output uncertainty.  

The first step in the modelling process is the model study plan and the decision of the most 

adequate model for the problem under consideration. It is not only necessary to decide for a 

model that can describe the current state of the river well, but also it must be capable of 

evaluating the probable changes in the system when the model is used for scenario analysis. 

With a sensitivity analysis two different water quality concepts, QUAL2E and RWQM1, were 

evaluated with regard to their use in management decisions. It was shown that for the case 

study on the Dender river, the DO model results of QUAL2E-based water quality models 

mainly relate to the algae processes whereas the RWQM1 is also taking into account 

sedimentation and stresses processes performed by different microbial communities. This 

study shows that managers should be aware of the possibilities and limitation of the model 

they use and choose a model that fits their problem and expectations. Also, knowing which 
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processes will become important after execution of a scenario can make that during model set 

up extra attention is paid towards those processes in order to get more reliable results. 

Sometimes one needs to make a model of a basin with few or no available data. In such 

situation it is difficult to decide what processes are important and need to be included in the 

model. The only data that are easily obtained are data which can be gathered by direct 

observation like hilly region, algae bloom in summer, high summer temperatures. In this work 

a study for model application in ungauged basins is performed in which the most important 

parameters are identified for different circumstances by using a kind of sensitivity analysis of 

a sensitivity analysis. It is concluded that the model shows different sensitivities to the 

parameters in different external circumstances. A table could be established in which external 

circumstances, here called soft data, i.e. data that are easily collected, are related to the 

importance of the parameters. In this table a first indication is given of which 

parameters/processes one should focus on in a particular catchment characterised by the soft 

data. Knowing the most influential set of parameters is important for calibration of a model, 

optimal experimental design, uncertainty estimations and scenario analysis where other 

processes can become important compared to the base case.  

The second step involves data gathering and measurement campaigns. It is obvious that it is 

important to know what input data is needed and what kind of measurement data (frequency, 

location, amount, …) for calibration is best suited to have minimal uncertainty of the output 

results. A method of iterative optimal experimental design (OED) was proposed to minimise 

uncertainty of parameter estimates during calibration. It is shown that OED methods can be 

used for an iterative, sequential design of a strategy for measuring water quality variables in a 

river, in view of the calibration of water quality models. In a first stage a relatively extensive 

set of measurements is needed to set up a model for the river. Using this initial model, the 

OED method enables the definition of efficient measurement strategies, to find better model 

parameter estimates and reduce the uncertainty of those estimates. For the collection of input 

data, an uncertainty analysis is performed to guide measurement campaigns. Parameters, 

diffuse and point pollution inputs were considered separately, providing information on the 

model sensitivity towards these three. This study showed important periods and locations for 

measurements. 

The third step comprises of the set-up of the model. Also in this step of the modelling process 

different actions exist to assure minimal output uncertainty. There is the need of profound 

checks of the input files, performance of test runs and checking mass balances. In this work, 

no additional research related to this step in the modelling process is performed.  

A calibration and validation of the model is performed in the fourth step of the modelling 

process. Two problems arise during the calibration. The first one is that not all parameters can 

be estimated because of correlation and dependencies. In this work a sensitivity analysis was 

applied to identify the most important parameters related to a modelling problem. The SA 

revealed that only around 10 parameters need to be changed during calibration to obtain good 

fits between simulated and measured values, for the periods with dissolved oxygen 
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concentrations below a critical value.  Second, the problem of fixing wrong parameter subsets 

on literature values should be dealt with. A practical example shows the consequences of 

using the wrong parameter subset for the calibration of the model. It was demonstrated that 

calibrating with different subsets of parameters gives very different model predictions and can 

lead to different conclusions. 

In the last step a simulation and evaluation of the model results needs to be performed. Once 

the model is calibrated and validated the model can be used for scenario analysis and 

comparison of different scenarios. Next to the simulation results, uncertainty calculations are 

needed as well because uncertainty on the results can be too high to find a significant 

difference between the results of two scenarios. Two practical examples, the evaluation of the 

cost-effectiveness of in-stream aeration for the Dender river and the assessment of the effect 

of shading along the Nete river are presented. Uncertainty analysis on the results for the 

Dender, for the scenario ‘with aeration’ shows that it is possible for the dissolved oxygen 

content of the river to drop below a critical level even when the designed aeration system is 

installed, albeit for very short periods. The uncertainty analysis also shows that the two 

options, “with” or “without aeration” are significantly different. For the Nete case study about 

shading, it could be concluded that shading can effectively influence the water quality of a 

surface water body, in particular in streams that suffer from excessive algal growth during the 

summer periods because algal growth is reduced by shading up to 20%. In this case study 

however, no significant positive effects of shading on the minimum, maximum and average 

concentrations of DO, COD, phosphates, ammonium and nitrates in the water were identified. 

The overall conclusion of this PhD study is that by applying different methodologies on the 

models, uncertainty on the results can be made smaller and a number of suggestions for better 

measurement campaigns were formulated.  Measurement campaigns that aim to calibrate the 

model better for the low DO concentrations in the river should preferably be organised in 

spring. When calibrating the model for the Dender river for point pollution, measurements 

during dry periods are needed. For calibration of the model to study diffuse pollution, 

measurements during periods with rainfall and high flows are needed.  



9 

Table of contents 
 
SAMENVATTING................................................................................................................................................. 3 
SUMMARY............................................................................................................................................................ 6 
Table of contents..................................................................................................................................................... 9 
List of figures .........................................................................................................................................................13 
List of tables...........................................................................................................................................................17 
List of abbreviations...............................................................................................................................................20 
CHAPTER I: INTRODUCTION...........................................................................................................................25 
1. River water quality.........................................................................................................................................25 
2. River water quality modelling and monitoring ..............................................................................................25 
3. Objectives ......................................................................................................................................................26 
4. Research approach .........................................................................................................................................28 
5. Outline of the thesis .......................................................................................................................................29 
CHAPTER II: LITERATURE REVIEW...............................................................................................................33 
1. Water quality regulations ...............................................................................................................................33 
1.1. EU Water Framework Directive (WFD).............................................................................................33 
1.2. USA: the Clean Water Act of 1972.....................................................................................................34 
1.3. Developing countries ..........................................................................................................................35 

2. Water Pollution ..............................................................................................................................................36 
2.1. Point pollution.....................................................................................................................................36 
2.2. Diffuse pollution .................................................................................................................................37 

3. Water system modelling: actual situation ......................................................................................................38 
3.1. Water quality modelling......................................................................................................................39 
3.2. Water quality models ..........................................................................................................................39 
3.3. The modelling process ........................................................................................................................43 

4. Sensitivity analysis.........................................................................................................................................46 
4.1. Introduction.........................................................................................................................................46 
4.2. Examples.............................................................................................................................................48 
4.2.1. Example 1 ......................................................................................................................................48 
4.2.2. Example 2 ......................................................................................................................................48 

4.3. Experimental design of SA (Sampling) ..............................................................................................49 
4.3.1. Screening design ............................................................................................................................49 
4.3.2. Random sampling...........................................................................................................................50 
4.3.3. Latin Hypercube Sampling (LHS) .................................................................................................50 
4.3.4. Correlation control .........................................................................................................................50 
4.3.5. Quasi-random sampling with low-discrepancy sequences .............................................................51 

4.4. Methods of sensitivity analysis ...........................................................................................................52 
4.4.1. Screening methods .........................................................................................................................52 
4.4.2. Local methods ................................................................................................................................53 
4.4.3. Global methods ..............................................................................................................................55 
4.4.4. Sensitivity and model emulators ....................................................................................................67 
4.4.5. Choice of the method .....................................................................................................................70 

5. Uncertainty analysis .......................................................................................................................................75 
5.1. Analytical propagation techniques ......................................................................................................77 
5.2. Approximation methods based upon Taylor series .............................................................................77 
5.3. Numerical propagation techniques......................................................................................................78 
5.4. Comparison of selected methods for propagation of probability distributions of inputs ....................82 

6. Optimal experimental design for parameter estimation .................................................................................82 
6.1. Structural versus practical identifiability ............................................................................................83 
6.2. Optimal experimental design to maximize the practical identifiability of parameters........................84 
6.2.1. Fisher information matrix...............................................................................................................85 
6.2.2. Calculation of the FIM ...................................................................................................................87 

6.3. Iterative optimal experimental design procedure ................................................................................88 
6.4. OED in hydrology...............................................................................................................................89 

CHAPTER III: MATERIALS AND METHODS..................................................................................................93 
1. Software for calibration, optimisation, sensitivity and uncertainty analysis ..................................................93 
1.1. Pest......................................................................................................................................................93 



 

 10 

1.1.1. The parameter estimation algorithm...............................................................................................93 
1.1.2. Non-linear parameter estimation ....................................................................................................94 
1.1.3. PEST applications in hydrology.....................................................................................................98 

1.2. Uncsam ...............................................................................................................................................98 
1.2.1. Sensitivity and uncertainty analysis based on regression and correlation analysis ........................99 

1.3. SCE-UA ..............................................................................................................................................99 
2. Software for river models.............................................................................................................................102 
2.1. ESWAT.............................................................................................................................................102 
2.1.1. SWAT ..........................................................................................................................................102 
2.1.2. Development of ESWAT .............................................................................................................104 
Sub-hourly Runoff/Infiltration Module........................................................................................................105 
Hourly River routing....................................................................................................................................106 
Hourly time convolution module .................................................................................................................106 

2.2. WEST................................................................................................................................................108 
2.2.1. The simplified RWQM1 river model in WEST ...........................................................................108 

CHAPTER IV: DESCRIPTION OF THE CASE STUDIES ...............................................................................113 
1. Introduction..................................................................................................................................................113 
2. The Dender catchment .................................................................................................................................113 
2.1. Description of the basin ....................................................................................................................113 
2.1.1. Geography....................................................................................................................................113 
2.1.2. The topography ............................................................................................................................115 
2.1.3. Soil characteristics .......................................................................................................................119 
2.1.4. The land use .................................................................................................................................119 

2.2. The river............................................................................................................................................120 
2.3. Hydro-meteorological and water quality data ...................................................................................120 
2.3.1. Meteorological data......................................................................................................................120 
2.3.2. Hydrological data .........................................................................................................................121 
2.3.3. In-stream water quality data .........................................................................................................121 
2.3.4. Point source emissions .................................................................................................................123 
The situation in 1994....................................................................................................................................123 
The AWP scenario .......................................................................................................................................124 
2.3.5. Diffuse pollution sources .............................................................................................................126 

3. The Nete catchment .....................................................................................................................................126 
3.1. Description of the basin ....................................................................................................................126 
3.1.1. Geography....................................................................................................................................126 

3.2. Pressures in the basin ........................................................................................................................128 
3.2.1. The households.............................................................................................................................128 
3.2.2. Industry ........................................................................................................................................129 
3.2.3. Agriculture ...................................................................................................................................130 

3.3. Water quality.....................................................................................................................................131 
3.3.1. Biological water quality ...............................................................................................................131 
3.3.2. Physico-chemical water quality....................................................................................................132 

CHAPTER V: CALCULATION AND REDUCTION OF OUTPUT UNCERTAINTY....................................137 
1. Introduction..................................................................................................................................................137 
1.1. Modelling approach for the river Dender in ESWAT.......................................................................140 
1.1.1. The subbasins ...............................................................................................................................140 
1.1.2. The land use .................................................................................................................................140 
1.1.3. The soils .......................................................................................................................................141 
1.1.4. HRU’s ..........................................................................................................................................142 
1.1.5. The river .......................................................................................................................................143 
1.1.6. Pollution .......................................................................................................................................143 
1.1.7. Boundary conditions ....................................................................................................................146 

1.2. Modelling approach for the river Nete in West.................................................................................146 
1.2.1. The water quantity model.............................................................................................................146 
1.2.2. The biochemical model ................................................................................................................146 
1.2.3. The simulation period...................................................................................................................148 
1.2.4. The input data...............................................................................................................................148 

2. Effect of different river water quality model concepts used for river basin management decisions ............149 
2.1. Introduction.......................................................................................................................................149 
2.2. Methodology.....................................................................................................................................150 



11 

2.3. Results...............................................................................................................................................155 
2.3.1. Time series ...................................................................................................................................155 
2.3.2. Sensitivity analysis.......................................................................................................................158 

2.4. Conclusions.......................................................................................................................................160 
3. Sensitivity analysis to identify ‘soft data’ for the evaluation of a river water quality model.......................161 
3.1. Introduction.......................................................................................................................................161 
3.2. Methodology.....................................................................................................................................161 
3.3. Results and discussion ......................................................................................................................162 
3.4. Conclusions.......................................................................................................................................168 

4. Optimal experimental design in river water quality modelling....................................................................168 
4.1. Introduction.......................................................................................................................................168 
4.2. Methodology.....................................................................................................................................169 
4.3. Results...............................................................................................................................................172 
4.3.1. Optimal experimental design including practical considerations .................................................174 

4.4. Conclusions and recommendations...................................................................................................177 
5. The evaluation of uncertainty propagation into river water quality predictions to guide future monitoring 

campaigns ............................................................................................................................................................178 
5.1. Introduction.......................................................................................................................................178 
5.2. Methodology.....................................................................................................................................178 
5.3. Results and discussion ......................................................................................................................181 
5.4. Conclusions.......................................................................................................................................188 

6. Sensitivity analysis to define the most sensitive parameter subset for auto-calibration of a river water quality 

model ...................................................................................................................................................................189 
6.1. Introduction.......................................................................................................................................189 
6.2. Methodology.....................................................................................................................................190 
6.3. Results and discussion ......................................................................................................................190 
6.3.1. Sensitivity analysis.......................................................................................................................190 
6.3.2. Calibration....................................................................................................................................191 
6.3.3. Validation.....................................................................................................................................194 

6.4. Conclusions.......................................................................................................................................196 
7. Importance of the selection of model parameter subsets..............................................................................197 
7.1. Introduction.......................................................................................................................................197 
7.2. Methodology.....................................................................................................................................197 
7.2.1. Selection of reference parameter subset. ......................................................................................198 
7.2.2. Calibration....................................................................................................................................198 
7.2.3. Analysis of the model output of the models calibrated with different subsets .............................199 

7.3. Conclusions.......................................................................................................................................203 
8. Cost-effectiveness of in-stream aeration to improve river water quality .....................................................203 
8.1. Introduction.......................................................................................................................................203 
8.2. Methodology.....................................................................................................................................204 
8.3. Results and discussion ......................................................................................................................205 
8.3.1. Comparison between different in-stream aeration methods .........................................................205 
8.3.2. Comparison of in-stream aeration with other measures ...............................................................207 
8.3.3. Uncertainty on the results.............................................................................................................209 

8.4. Conclusions.......................................................................................................................................210 
9. Assessment of the effect of shading on river water quality for the Nete river .............................................210 
9.1. Introduction.......................................................................................................................................210 
9.2. Case study: the Nete river basin, model implemented in WEST ......................................................211 
9.3. Sensitivity analysis............................................................................................................................212 
9.4. Calibration procedure........................................................................................................................215 
9.5. Scenario analysis and discussion ......................................................................................................217 
9.6. Uncertainty analysis..........................................................................................................................219 
9.7. Conclusions.......................................................................................................................................222 

CHAPTER VI: CONCLUSIONS AND PERSPECTIVES..................................................................................225 
10. Conclusions ...........................................................................................................................................225 
10.1. Water quality modelling....................................................................................................................225 
10.2. Calculation and reduction of output uncertainty ...............................................................................225 
10.2.1. Model study plan..........................................................................................................................227 
10.2.2. Data collection .............................................................................................................................228 
10.2.3. Model set up.................................................................................................................................229 



 

 12 

10.2.4. Calibration and validation ............................................................................................................229 
10.2.5. Model evaluation..........................................................................................................................230 

11. General conclusion ................................................................................................................................232 
12. Perspectives ...........................................................................................................................................232 
12.1. The ideal model.................................................................................................................................232 
12.1.1. Sensitivity analysis.......................................................................................................................233 
12.1.2. Optimal experimental design........................................................................................................233 
12.1.3. Ungauged basins ..........................................................................................................................233 
12.1.4. Guidelines about model selection.................................................................................................234 

12.2. Overall perspective ...........................................................................................................................234 
LITERATURE.....................................................................................................................................................235 
APPENDIX A: QUESTIONNAIRRE .................................................................................................................245 
APPENDIX B: BIOGEOCHEMICAL CONVERSION PROCESSES OF RWQM1 .........................................254 
APPENDIX C: BIOCHEMICAL PROCESSES IN QUAL2E ............................................................................263 
APPENDIX D: EMISSION LIMITS IN EUROPE .............................................................................................267 
 

 



13 

 

List of figures 
 

Figure I.1: The modelling process (adapted from refsgaard, 2006) 

Figure II.1: Different categories of water quality models 

Figure II.2: The modelling process in water management 

Figure II.3: Morris’ OAT design 

Figure II.4: Regional Sensitivity Analysis of example 1  

Figure II.5: Regional Sensitivity Analysis of example structure 2  

Figure II.6: Decision tree to choose a sensitivity analysis method 

Figure II.7a-b: Effect of different FIM design criteria (D-criterion: left, Modified E 

criterion, right) on the size and shape of the parameter confidence region 

Figure II.8: Possible ways to identify the FIM and calculate the objective functional 

(from Baetens (2000)) 

Figure II.9: General procedure for optimal experimental design (from Dochain and 

Vanrolleghem, 2001) 

Figure III.1: Iterative improvement of initial parameter values toward the global 

objective function minimum 

Figure III.2: The phenomenon of “hemstitching” 

Figure III.3: Scheme of the hydrologic cycle in SWAT (Neitsch et al., 1999) 

Figure III.4: In-stream processes modelled by SWAT (Neitsch et al., 1999) 

Figure IV.1: The Dender river in Belgium 

Figure IV.2: Delineation of the Flemish part of the Dender basin and the location of 

the weirs 

Figure IV.3: DEM of the Dender catchment 

Figure IV.4: Soil map for the Dender basin 

Figure IV.5: Land use map for the Dender basin 

Figure IV.6: Longitudinal profile of the Dender between Deux-Acren and 

Geraardsbergen 

Figure IV.7: Scheme of the modelled basin with the locations of the measuring points  

Figure IV.8: Scheme of the Dender river 

Figure IV.9: Domestic and industrial loads in 1994 and after AWP II 

Figure IV.10. The Nete catchment basin and the selected reach 

Figure IV.11: Geographical position of the Nete basin in Flanders 

Figure IV.12: Administrative organisation of the Nete river basin 

Figure IV.13: Main residential areas in the Nete catchment basin (VMM, 1992) 

Figure IV.14:  Main industrial areas in the Nete catchment basin (VMM, 1992) 



 

 14 

Figure IV.15: Biological water quality in the Nete catchment based on BBI (VMM, 

1992) 

Figure IV.16: Physico-chemical water quality in the Nete catchment based on the PI 

(VMM, 1992) 

Figure V.1: The modelling process with related sections of this chapter 

Figure V.2: Pattern of solar radiation during day-time in three different conditions of 

shading 

Figure V.3: Modelled temperature profile along the river with and without shading 

Figure V.4: Time series 1994 (base (full line) and scenario reduction diffuse pollution 

(dashed line)) with measurements (symbols) in 1994 for DO at Denderbelle, 

simulated with the QUAL2E-based model 

Figure V.5: Time series 1994 (base (full line) and scenario reduction diffuse pollution 

(dashed line)) with measurements (symbols) in 1994 for NO3 at Denderbelle, 

simulated with QUAL2E based model 

Figure V.6: Time series 1994 (base (full line) and scenario reduction diffuse pollution 

(dashed line)) with measurements (symbols) in 1994 for DO at Denderbelle, 

simulated with RWQM1 based model 

Figure V.7: Time series 1994 (base (full line) and scenario reduction diffuse pollution 

(dashed line)) with measurements (symbols) in 1994 for NO3 at Denderbelle, 

simulated with RWQM1 model 

Figure V.8: Sampled parameters sets and their 10% variation region around them 

Figure V.9: Ranking results of the regional sensitivity analysis of the 100 different 

parameter sets 

Figure V.10: Simulations of DO in the Dender simulated with two different parameter 

sets 

Figure V.11: Optimal experimental design for river water quality modelling (PEST = 

Parameter ESTimation model (Pest Manual, 1994)) 

Figure V.12: Optimization of the Det(FIM) (3 parameters of sampling layout) 

Figure V.13: The Det(FIM) as a function of the sampling interval (left) and total 

number of samples (right) 

Figure V.14: The optimization of the Det(FIM) with variation of 5 parameters 

Figure V.15: The Det(FIM) as a function of the sampling interval (left) and the total 

number of samples (right) 

Figure V.16: DO with confidence bounds on 22 February, sampling scheme 1 (left), 2 

(right) and 3 (under) 

Figure V.17: Det(FIM) as a function of the measured water quality variables. (1= DO; 

2 = DO + NO3; 3 = DO + NO3 + BOD; 4 = DO + NO3 + BOD + NH4) 

Figure V.18: Measurements (symbols) and simulation of nitrate (line) with confidence 

intervals (dashed line) related to parameter uncertainty at Denderbelle, 1994 



15 

Figure V.19: Measurements (symbols) and simulation of nitrate (line) with confidence 

intervals (dashed line) related to point pollution input uncertainty at Denderbelle, 

1994 

Figure V.20: Measurements (symbols) and simulation of nitrate (line) with confidence 

intervals (dashed line) related to diffuse pollution input uncertainty at Denderbelle, 

1994 

Figure V.21: Rainfall and Flow in 1994 at Denderbelle 

Figure V.22: Uncertainty propagation from upstream to the mouth of the Dender in 

1994 related to diffuse pollution input uncertainty 

Figure V.23: Model results for flow, Denderbelle, 1994 

Figure V.24: Model results (line) and measurements (symbols) for NO3-N, 

Denderbelle, 1994 

Figure V.25: Model results for Chl a, Denderbelle, 1994 

Figure V.26: Model results (line) and measurements (symbols) for NO3-N, 

Denderbelle, 1994 

Figure V.27: Model results (line) and measurements (symbols) for DO before 

recalibration, Pollare, 2000 

Figure V.28: Model results (line) and measurements (symbols) for NO3-N before 

recalibration, Pollare, 2000 

Figure V.29: Model results (line) and measurements (symbols) for DO after 

recalibration, Pollare, 2000 

Figure V.30: Model results (line) and measurements (symbols) for NO3-N after 

recalibration, Pollare, 2000 

Figure V.31: Model results and measurements (symbols) of DO at Denderbelle, 1994, 

model calibrated with two different subsets of parameters (full line is the reference, 

dotted line calibrated with the subset 1) 

Figure V.32: Model results and measurements (symbols) of DO at Denderbelle, 1994, 

model calibrated with two different subsets of parameters (full line is the reference, 

dotted line calibrated with the subset 2) 

Figure V.33: Model results and measurements (symbols) of DO at Denderbelle, 1994, 

model calibrated with two different subsets of parameters (full line is the reference, 

dotted line calibrated with the subset 3) 

Figure V.34: Time series (line) and measurements (symbols) of dissolved oxygen at 

Denderbelle, 1994 

Figure V.35: Comparison of obtained dissoved oxygen concentrations at Denderbelle 

with aeration (left) and with implementation of the AWP plan (with BOD load 

reduction and with total load reduction) (right) 

Figure V.36: Influence of 90% reduction in amount of fertiliser use for the river 

Dender 1994 

Figure V.37: DO time series during aeration period of scenario ‘without aeration’ and 

‘with aeration’ with uncertainty expressed as 5 % and 95% percentiles 



 

 16 

Figure V.38: The Nete river basin and the stretch of the Grote Nete selected for this 

study 

Figure V.39: Results of hydraulic calibration as comparison of measured and 

simulated time series (left) and as plot of residuals (measurement minus simulation) 

(right) 

Figure V.40: Calibration of biochemical model in the closing section for six water 

quality parameters 

Figure V.41: The concentration-duration curves of DO and algae for the unshaded 

case (up) and completely shaded case (down) 

Figure V.42: Effect of shading on DO concentration during the year. Difference 

between scenario 0 and scenario 4 for DO; the full line represents the 50
th
 percentile, 

while the dotted lines are the 5
th
 and 95

th
 percentiles 

Figure V.43: Effect of shading on concentration of algae during the year. Difference 

between scenario 0 and scenario 4 for average concentration of algae; the full line 

represent the 50
th
 percentile, while the dotted lines are the 5

th
 and 95

th
 percentiles 

Figure VI.1: The modelling process 

Figure A.1: The introduction of a bias when using two “different calibrated” models 



17 

 

List of tables 
 

Table II.1: Sensitivity indices of Example 2 

Table II.2: Correlation analysis of example 2 using Spearman, Pearson and Kendall 

correlation. The PVal is the p-value testing the hypothesis of no correlation against 

the alternative that there is a non-zero correlation. 

Table II.3: Different optimal design criteria based on FIM properties 

Table III.1: Sensitivity and uncertainty measures available in UNCSAM 

Table III.2: New or modified modules of ESWAT 

Table III.3: State variables in the simplified river quality model and relation to 

RWQM1 formulation (Reichert et al., 2001a) 

Table III.4: Processes used in the simplified river water quality model and relation to 

RWQM1 formulation (Reichert et al., 2001a) 

Table IV.1: The main tributaries of the Dender in Flanders (VMM, 1992) 

Table IV.2: Conversion table for soils 

Table IV.3: Land uses in the Dender basin 

Table IV.4: Meteorological data for the Dender Basin 

Table IV.5: Available hydrological data 

Table IV.6: Emission of point sources – situation 1994 (VMM, 1994; VMM, 2000) 

Table IV.7: Overview of sources of domestic pollution in the Dender basin (VMM, 

1994) 

Table IV.8: Yearly nitrogen and phosphorus application rates for each municipality 

Table IV.9: Classification of biological measuring sites in the Nete catchment based 

on the BBI (VMM, 1992) 

Table IV.10: Physico-chemical water quality in the Nete basin based on the PIO 

Table IV.11: Heavy metals and pesticides present in the catchment and their main 

sources 

Table V.1: Land uses in ESWAT 

Table V.2: The soil data in SWAT 

Table V.3: Calculated distribution of land uses 

Table V.4: Channel characteristics for the Dender river 

Table V.5: Fertiliser application rates for every subbasin 

Table V.6: Composition of the manure as input in SWAT 

Table V.7: Agricultural management practices dates 

Table V.8: Comparison between QUAL2E and RWQM1 based water quality models 

Table V.9: Parameters and initial conditions used in the sensitivity analyses. 

(*Arnolds et al, 1996; **Bowie et al, 1985; ***calibrated) 



 

 18 

Table V.10: Simulations of DO in the Dender simulated with two different parameter 

sets 

Table V.11: Ranking of parameters of QUAL2E model based on the standardized 

regression coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l 

(base case) 

Table V.12: Ranking of parameters of RWQM1 model based on the standardized 

regression coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l 

(base case) 

Table V.13: Ranking of parameters of QUAL2E model based on the standardized 

regression coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l 

(reduced diffuse pollution) 

Table V.14: Ranking of parameters of RWQM1 model based on the standardized 

regression coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l 

(reduced diffuse pollution) 

Table V.15: Some observed relations between soft data and sensitive parameters 

Table V.16: Values for two different parameter sets with as main difference with and 

without algae growth 

Table V.17: Non-optimal sampling designs 

Table V.18: Selected sampling schemes for evaluation of resulting uncertainty in 

model output 

Table V.19: Results of the sensitivity analysis for the model output “hours NO3 > 

3mg/l” at Denderbelle, 1994 

Table V.20: Composition of the manure as input in SWAT 

Table V.21: Ranges for global sensitivity analysis of management practice inputs for 

nitrogen 

Table V.22: The normalized regression coefficient and the rank of importance in the 

sensitivity analysis for time of DO < 5 mg/l and time of Chl a > 11 ųg/l 

Table V.23: The normalized regression coefficient and the rank of importance in the 

sensitivity analysis for time of NO3-N>3 mg/l (hourly time step) 

Table V.24: The parameter values after calibration of the model 

Table V.25: Different sets of variable parameters used for the calibration of the 

modified QUAL2E in ESWAT (based on questionnaire (appendix A)) 

Table V.26: Subsets of parameters for calibration and their particular focus 

Table V.27: Values of the parameters after the calibration with different subsets 

Table V.28: Results for the time that DO<5mg/l at Denderbelle for the different 

calibrations 

Table V.29: Calculation of costs for aeration of the Dender in summer 

Table V.30: Values of the parameters for the river Nete model with frequency 

distribution characteristics for the Monte Carlo sampling 

Table V.31: Regression statistics for DO concentration below critical threshold (5 mg 

O2/l) and average DO concentration 



19 

Table V.32: Characteristics of the four considered scenarios 

Table V.33: Effect of shading on the algal concentration in the downstream section 

and on algal growth in the stretch 

Table V.34: Number of hours of exceedance of water quality variables under different 

scenarios of shading 

Table B.1: Qualitative stoechiometric matrix of the complete river quality model No 1 

Table B.2: Stoechiometric parameters 

Table B.3: Kinetic parameters 

Table B.4: Process rates 

Table C.1: Water column processes 

Table C.2: Water bed exchange 

Table D.1: Emission limits in Europe 



 

 20 

List of abbreviations 
 

AIM   Analytically Integrated Magnus 

ANOVA Analysis Of Variance 

AnnAGNPS Annualized Agricultural Non Point Source 

ASM   Activated Sludge Model 

AWP  General Water Plan 

B  behavioural 

BBI  Belgian Biotic Index 

BMPs  Best Management Practices 

BOD  Biological Oxygen Demand 

cBOD  carbonaceous Biological Oxygen Demand 

CCE  competitive complex evolution 

CDF  cumulative distribution functions 

Chl a  Chlorophyl a 

CLT  Central Limit Theorem 

COD  Chemical Oxygen Demand 

cut-HDMR cut-High Dimensional Model Representation 

CWA  Clean Water Act 

DEM  Digital elevation map 

DO  dissolved oxygen 

1D  one dimensional 

2D  two dimensional 

3D  three dimensional 

EE  elementary effects 

ESWAT  Extended Soil and Water Assessment Tool 

EU  European Union 

EVAP  evaporation 

FAST  Fourier amplitude sensitivity test 

FF  fractional factorial 

FF  factor fixing 

FIM  Fisher Information Matrix  

FM  factor mapping 

FORM  First Order Reliability Method 

FP  factors prioritising 

GIS   Geographical Information System(s) 

GLUE  Generalized Likelihood Uncertainty Estimation 

GFM  Green’s Function Method 

GUI  Graphical User Interface 

GVA  Gross Value Added 



21 

GWQP  General Water Quality Plan  

HDMR  High Dimensional Model Representation 

HRU's   Hydrological Response Units 

HSPF  Hydrologic Simulation Program Fortran 

IMP   impervious 

INF  infiltration 

LHS  Latin Hypercube sampling 

MSL  Model Specification Language 

NB  non behavioural 

OAT  One-factor-At-a-Time 

ODE  Ordinary Differential Equation 

OED  Optimal Experimental Design 

OED-PE  Optimal Experimental Design for Parameter Estimation 

PEST  Parameter estimation 

RSA  Regional Sensivity Analysis 

RSC  Standardized Regression Coefficient 

RS-HDMR Random Sampling High Dimensional Model Representation 

RSRC  Ranked Standardised Regression Coefficient 

RWQM   River Water Quality Model 

SA  Sensitivity analysis 

SCE  Shuffled Complex Evolution 

SDP  State Depending Parameter 

SOD  sediment oxygen demand 

SORM  Second Order Reliability Method 

SWAT  Soil and Water Assessment Tool 

SWIM   Soil and Water Integrated Model 

TMDL  Total Maximum Daily Load 

UA  Uncertainty analysis 

UPM  Urban Pollution Management 

USDA  United States Department of Agriculture 

VIF  Variation Inflation Facor 

VLM   Flemish Institude for Landuse 

VMM  Flemish Environmental Agency 

WEST   World-wide Engine for Simulation, Training and automation 

WFD  Water Framework Directive 

WWTP  Waste Water Treatment Plants 



 

 22 

 

 

 



Parts of this chapter were published as: 

� Vandenberghe, V., van Griensven, A. and Bauwens, W. (2001). Sensitivity analysis 
and calibration of the parameters of ESWAT: Application to the river Dender. Water 

Science and Technology, 43(7), 295-301 

� Vandenberghe, V. , van Griensven A. and Bauwens W. (2002). Detection of the most 
optimal measuring points for water quality variables: application to the river water 

quality model of the river Dender in ESWAT, Water Science and Technology, 46(3), 

1-7 

� Vandenberghe, V., Bauwens, W. and Vanrolleghem, P.A. (2004). The Evaluation of 
Uncertainty Propagation into River Water Quality Predictions to Guide Future 

Monitoring Campaigns. Environmental Monitoring and Software, 22, 275-232. 

� Vandenberghe V., van Griensven A., Bauwens W. and Vanrolleghem P.A. (2006). 
Effect of different river water quality model concepts used for river basin management 

decisions Water Science & Technology, 53(10), 277-284. 

 

 

 

CHAPTER I 
INTRODUCTION 



 

 



Methodologies for reduction of output uncertainty of river water quality models 

25 

CHAPTER I: INTRODUCTION 

1. River water quality 

 

Water is an integral part of life on this planet. More than three-fourths of the Earth's surface is 

covered by water. Most of the water on Earth, about 97%, is salt water found in oceans that 

men cannot drink or use for crops because of the salt content. One can remove salt from ocean 

water, but desalination is still very expensive. Only about 3% of the Earth's water is fresh. 

Two thirds of this is in solid form, found in ice caps and glaciers. Because it is frozen, the 

fresh water in ice caps is not available for use by people or plants. That leaves about 1% of all 

the Earth's water in a form available to life. This fresh water is found in lakes, rivers, streams, 

ponds, and in the ground. Because it is at the same time such a valuable and a very sparse 

product, care has to be taken to keep the fresh water quality optimal. This is reflected in 

legislation concerning water quality. 

In European legislation, especially in the Water Framework Directive (WFD) (EU, 2000),  it 

is stated that all water bodies need to have a good ecological status, close to the pristine 

conditions. In the Clean Water Act (CWA) (P.L. 95-217, 1977), the principal governing law 

in the United States for water, the objective is the restoration and maintenance of the 

chemical, physical and biological integrity of the nation’s water. Pristine water means that the 

water is kept natural and healthy as it was in ancient times, before any influence of humans 

that polluted rivers. Pollution is caused by releasing waste into the river, by the creation of 

sewer networks with outlets to the river, and intensification of agriculture that uses pesticides 

and fertilizers which finally reach the river water etc…; and also by construction of dams and 

sluices, by straightening of river bends, reinforcement of the banks to make navigation 

possible. The latter ones are no source of pollution, but they change the hydrological state and 

morphology of the water body. Due to all these influences, the river water quality and ecology 

is now at some places far away from pristine situations: oxygen drops, excessive algae 

blooms, too high concentrations of nutrients, heavy metals, pesticides or other toxic 

compounds deteriorate water quality while fauna and flora in the water are suffering. While 

considerable progress has been made, to reach the goals of the WFD or the CWA, a lot of 

measures are still needed to improve water quality.   

 

2. River water quality modelling and monitoring 

 

To evaluate the present situation and to predict the effects of measures taken to improve river 

water quality, models are used. Before making a model of a river, data is gathered: 

hydrometeorological data, quality measurements in the river, land use, management practices 

on land, point pollution measurements, flow and water level data. Depending on the desired 

outcome and use of the model, a simple conceptual model or a very complex physically based 
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model can be used and the amount of data needed follows the desired degree of complexity 

and accuracy of the model results. Most of the time, the necessary data are not all available. 

This means that simpler models would be better suited for use (models that only need those 

data that are available) or, that additional data gathering and monitoring campaigns are 

necessary if they stick to their known models. This is a clear source of problems: the institute 

or company the modeller is linked to, has a licence for only one model or sticks to its own 

home-made models while additional monitoring campaigns are expensive. The fact that 

modellers and information gatherers are not working at the same time on the same project in 

the same institute can also be seen as a problem. People start making assumptions, 

extrapolations and make use of statistical relationships that are insufficiently backed up. Next 

to the problem of missing data there is the problem of wrong or inaccurate data. Many data 

are available that have not received a thorough quality check. The use of poor quality data as 

inputs or for the calibration, consequently, results in ignored uncertainty on the model 

predictions.  

These days it is the aim of models to cope also with the changes in society, climate, land use, 

etc. and therefore a lot of processes are considered. This goes together with more complexity 

and as such more parameters in the model.  Because of correlation and parameter 

dependencies, it is not possible to estimate all parameters from the limited data. Hence, some 

parameters need to be fixed while only the most important parameters are changed during the 

calibration. This has as a consequence that the uncertainty on the model predictions becomes 

even larger because of fixing wrong subsets of parameters or due to setting a subset of the 

model parameters on wrong values taken from literature. Therefore, every step of the 

modelling process should be processed with much care and research. The modelling process 

is pictured in figure I.1. 

 

3. Objectives 

 

This dissertation has to be situated in the field of real applications of river water quality 

modelling for water management. It is the overall objective to promote good modelling 

practices and to provide, in a systematic way, methods that help the water manager or 

engineer to minimise the uncertainty on his/her model results. Therefore, the methods 

developed in this work are simple, straightforward, with easy to use software or with software 

that can easily be developed by the user. The developed methods and tools are applied and 

tested on real case studies, either the river Dender or the river Nete, both in Belgium. The 

methods and conclusions of these case studies are kept general and described in such a way 

that they form guidelines for further modelling work, applicable to other river basins. 

Reduction of the output uncertainty of a model can be done during many stages of the 

modelling process (figure I.1). In this work, for every step, some important issues related to 

model reliability are answered by discussing and applying methods and tools that help to 

analyse the behaviour of the model and perform actions to reduce output uncertainty. 
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Figure I.1: The modelling process (adapted from Refsgaard et al. (2004)) 

 

Step 1. The model study plan and the decision of the most adequate model for the 

problem under consideration 

It is not only necessary to choose a model that can model well the current state of the river, 

but there comes an additional question: What model concept should be used, in view of 

evaluating the probable changes in the system when the model is used for scenario analysis? 

To find the answer, with a sensitivity analysis an evaluation is done for two different water 

quality concepts with regard to their use in management decisions. 

Sometimes one needs to make a model of a basin with few or no data available. In such 

situation it is difficult to decide what processes are important and needs to be included in the 

model. The only data that are easily obtained are data which can be gathered by direct 

observation like hilly region, algae bloom in summer, high summer temperatures. In this work 

a study for model application in ungauged basins is performed in which the most important 
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parameters for different circumstances are identified with a kind of sensitivity analysis of a 

sensitivity analysis. 

Step 2. Data gathering and measurement campaigns 

It is obvious that it is important to know what input data is needed and what kind of 

measurement data (frequency, location, amount, …) for calibration is best suited to have 

minimal uncertainty of the output results. A method of iterative optimal experimental design 

is proposed to minimise uncertainty of parameter estimates during calibration and for the 

collection of input data an uncertainty analysis to guide measurement campaigns is applied. 

Step 3. The set-up of the model 

Also in this step of the modelling process different actions can be done to assure a minimal 

output uncertainty. There is the need of profound checks of the input files, performance of test 

runs and checking mass balances. In this work, no additional research related to this step in 

the modelling process is performed.  

Step 4. Calibration and validation of the model  

Two problems arise during the calibration. First of all not all parameters can be estimated 

because of correlation and dependencies. In this work a sensitivity analysis is applied to 

identify the most important parameters related to a modelling problem. Secondly, the problem 

of fixing wrong parameter subsets on literature values should be dealt with. A practical 

example shows the consequences of using the wrong parameter subset for the calibration of 

the model.  

Step 5. Simulation and evaluation of the model results with an uncertainty analysis (UA) 

to evaluate the trustworthiness of the model outcomes 

Once the model is calibrated and validated the model can be used for scenario analysis and 

comparison of different scenarios. The uncertainty on the results can be too high to find a 

significant difference between the results of two scenarios. Two practical examples, the 

evaluation of the cost-effectiveness of in-stream aeration for the Dender river and the 

assessment of the effect of shading along the Nete river are presented.  In this part it is the aim 

to show the role of uncertainty bounds around the results in the evaluation and to answer the 

question whether the difference between the scenarios is statistically significant or not.  

 

4. Research approach 

 

There exist many different methods for sensitivity analysis and uncertainty analysis. The 

purpose of this research was therefore not to reinvent the wheel, but to show the strength and 

usefulness of different existing model evaluation methods, implemented in non-commercial 

software and to adopt them to the specific needs of the river water quality models used.   
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The sensitivity analysis is performed with the aid of the UNCSAM (Janssen et al., 1992) 

program, a program that calculates sensitivity indicators based on regression and correlation. 

The PEST (Doherty, 2000) program and the SCE-UA (Shuffled Complex) method (Duan et 

al., 1992) were used for the calibration of the Dender model. The Nete model was calibrated 

manually. Uncertainty analysis was performed based on the 5% and 95% confidence bounds, 

calculated in Microsoft Excel and the optimal experimental design was executed with a 

linkage of software tools where all the links and the executables are programmed in Perl code.  

The models of the two case studies, Dender and Nete were made with different tools. 

The river water model for the river Dender had already been implemented in ESWAT 

(Extended Soil and Water Assessment Tool). The SWAT code was extended by (van 

Griensven and Bauwens, 2001) to be able to also consider urban drainage and to allow the 

calculation of urban processes. For the river Nete, the model was implemented in WEST® 

(World-wide Engine for Simulation, Training and Automation) (Ghermandi, 2004; 

MOSTforWATER NV). WEST® is a multi-platform modelling and experimentation system. 

It allows one to construct models and conduct virtual experiments (simulations) on any kind 

of system that can be represented by differential and algebraic equations. The waste water 

treatment models, a runoff/sewer model and tanks-in-series river models are now 

implemented in this package (Meirlaen et al., 2001; Solvi et al., 2005). The advantage of the 

use of this model is that WEST has an open structure in which the user is allowed to change 

existing models and define new ones as needed. In that way, for example, the algal growth 

model in RWQM1 could be changed for the model of the Nete. 

5. Outline of the thesis 

 

After the introduction (chapter I), this dissertation starts with a literature review (chapter II). 

In there, the reader will find a general part about legislation and modelling which comprises 

of ‘Water quality regulations’ (II.1), ‘Water pollution’ (II.2), ‘Water system modelling’ (II.3) 

and a part about Modelling methodologies with ‘Sensitivity analysis’ (II.4), ‘Uncertainty 

analysis’ (II.5) and ‘Optimal experimental design’ (II.6). Before the chapters of the own 

research, chapter III and IV describe the ‘Materials and Methods’ and the ‘Case studies’ used 

in the research part. Chapter V is the own research about ‘calculation and reduction of output 

uncertainties”, after an introduction (V.1) in which all of the studies done here are situated in 

the modelling process, in eight subparts different methods are presented for the calculation 

and reduction of output uncertainties, ‘Effect of different river water quality model concepts 

used for river basin management decisions’ (V.2), ‘Sensitivity analysis to identify ‘soft data’ 

for the evaluation of a river water quality model’ (V.3) ‘Optimal experimental design in river 

water quality modelling’ (V.4), ‘The evaluation of uncertainty propagation into river water 

quality predictions to guide future monitoring campaigns’(V.5), ‘Sensitivity analysis to define 

the most sensitive parameter subset for auto-calibration of a river water quality model’ (V.6), 

‘Importance of the selection of model parameter subsets’ (V.7), ‘Cost-effectiveness of in-

stream aeration to improve river water quality’ (V.8) and ‘Assessment of the effect of shading 
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on river water quality for the Nete river’ (V.9). The last chapter contains the ‘Conclusions and 

perspectives’ (chapter VI). 



Parts of this chapter were published as: 

� Vandenberghe, V., van Griensven, A. and Bauwens, W. (2001). Sensitivity 
analysis and calibration of the parameters of ESWAT: Application to the river 

Dender. Water Science and Technology, 43(7), 295-301 

� Vandenberghe, V. , van Griensven A. and Bauwens W. (2002). Detection of the 
most optimal measuring points for water quality variables: application to the 

river water quality model of the river Dender in ESWAT, Water Science and 

Technology, 46(3), 1-7 

� Vandenberghe, V., Bauwens, W. and Vanrolleghem, P.A. (2004). The 
Evaluation of Uncertainty Propagation into River Water Quality Predictions to 

Guide Future Monitoring Campaigns. Environmental Monitoring and Software, 
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CHAPTER II: LITERATURE REVIEW 

1. Water quality regulations 

 

In the early stages, water quality regulation was based on physical and chemical water 

quality criteria. However, this is not reliable unless it is supplemented by biological 

criteria. Currently, the physicochemical method is thus supplemented by biological and 

ecological criteria for the purpose of restoring and maintaining the ecological integrity 

of water resources. Among such water quality criteria, the new EU Water Framework 

Directive (WFD) (CEC, 1999) and the Clean Water Act (CWA) of the USA are the 

most important water quality regulations in use today. 

1.1. EU Water Framework Directive (WFD) 
 

The historical development of the European Union (EU) water legislation is presented 

elsewhere (Blöch, 2001; Kallis and Butler, 2001; Tyson et al., 1993; Zabel et al., 2001), 

and can be summarized into three “waves”. In the “first wave” of EU water regulations, 

before 1980 (after the Treaty of Rome was signed in 1972), the main concern was 

directed to the protection of “public health” and harmonization of environmental rules 

to avoid market distortion. This first legislation can be broadly characterized into two 

types (Somsen, 1990): water use directives and water pollutant directives. The water use 

directives include drinking water directives (CEC, 1975 and 1980a), the water for 

bathing directive (CEC, 1976a), fish and shellfish harvesting directives (CEC, 1978; 

CEC, 1979). Water pollutant directives include the dangerous substance directives for 

surface waters (CEC, 1976b) and for groundwater (CEC, 1980b). This legislation 

addressed only a limited number of waters such as those rivers and lakes used for 

drinking water abstraction. As the ecological degradation was not addressed in this early 

water legislation, the nutrient load from urban systems and agricultural sites resulted in 

considerable deterioration of the ecosystems mainly due to eutrophication, 

disappearance of wetlands and salination of coastal groundwater. This ecological 

problem resulted in the “second wave” of EU water legislation in which two important 

water legislations were adopted: the Urban Wastewater Directive (CEC, 1991a), which 

addresses the water pollution from all settlements and the Nitrates Directive (CEC, 

1991b), which addresses the water pollution by nitrates from agriculture. Whereas the 

Urban Wastewater Directive had already achieved considerable progress in getting the 

surface water cleaner, the nitrate level still remained high in rivers, and the 

implementation of the nitrate directive was indicated to be unsatisfactory because the 

EU water policy was fragmented in terms of objectives and means to control water 

pollution. 
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Consequently, a new single piece of framework legislation was proposed, which 

involves a range of instruments, scientific and technical cooperation at regional and 

European level. This brings about the “third wave” or the current period of EU water 

legislation, the so-called new European water policy or the Water Framework Directive 

(WFD). This new directive is established with the following key objectives (Blöch, 

2001): 

• protection of all waters such as surface water and groundwater; 

• achieving “good” ecological and chemical status for all water by a set deadline 
of 15 years; 

• water management based on a river basins approach; 

• emissions and discharges control by a “combined approach” of emission limit 
values and quality standards; 

• getting the price right: mandatory pricing policy for water, contributing to the 
wise use of water and thus to resource protection, and 

• getting the citizen involved more closely: strengthen public participation. 

 
Summarizing, the ultimate goal of the directive is to achieve a “good” ecological and chemical 

status in the surface waters and “good” chemical status in groundwater. Surface water is of good 

ecological quality if there is only slight departure from the biological community that would be 

expected in conditions of minimal anthropogenic impact. This indicates that the standard 

process is provided in the WFD for defining local standards accordingly. To achieve the 

ultimate objective, the directive introduced other mandatory approaches as indicated above: 

river basin approach, combined approach, setting water price and strengthen public 

participation. The river basin approach is the main innovation of the directive in the sense that 

rivers and lakes will need to be managed by the natural geological and hydrological unit instead 

of according to only administrative or political boundaries. This approach is generally agreed as 

the most effective way to address water pollution by all possible sources. 

1.2. USA: the Clean Water Act of 1972 

 

Increasing environmental concerns resulting from water quality degradation in the 

United States led to the passage of the Federal Water Pollution Control Act 

Amendments of 1972 (PL 92 92-500) and amendments passed in 1977 (PL 95-217) and 

in 1987 (PL 100-4), collectively referred to as the CWA (Chen et al., 1993). The 

objectives of the Clean Water Act (CWA) include: 

• restoring and maintaining the chemical, physical, and biological integrity of the 
nation’s waters; 

• achieving water quality suitable for protection and propagation of aquatic life 
and to provide for water recreation, and 
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• achieving the ultimate goal of eliminating the discharge of pollutants (zero 
discharge). 

The Total Maximum Daily Load (TMDL) concept is used as a guiding principle to restore the 

polluted waters. It accounts for all sources of pollution: since 1999 both point and non-point 

source pollution are considered. Before that time TMDL only considered point source pollution. 

The TMDL is the amount of specific pollutants that a river, stream or lake can assimilate while 

still meeting the water quality standards. The Clean Water Act requires that regulatory agencies 

determine total maximum daily loads for every water body that does not meet water quality 

standards. The TMDL is calculated for water bodies and the control measures are implemented 

to ensure that this level is never exceeded. It is developed in two steps: calculation of the 

maximum amount of a pollutant that a water body can take in and still meet the water quality 

standards, and a distribution of that amount to the pollutant’s sources. To implement the TMDL, 

the regulations agency works with local governments and the public to determine how to reduce 

pollutant loads to bring the impaired water into compliance. The implementation of TMDL 

most often involves putting Best Management Practices (BMPs) in place or upgrading the 

wastewater treatment plants. Being based on the river basin approach, the water legislation in 

the EU and the USA share the same approach in addressing the protection of all waters from all 

sources of pollution. Indirectly, the water legislation in both EU and USA may influence wider 

international developments in water policy, as they will provide a major reference to other 

countries in reforming their water policies and institutions. 

1.3. Developing countries 

 

When discussing water quality regulation in developing countries, it is important to note 

the difference between developing and poor developing countries, as these two groups 

of countries differ in setting their priorities. In developing countries like in Malaysia, 

South Africa and Thailand numerous efforts haven been initiated to overcome 

environmental degradation (Ujang and Buckley, 2002), e.g. setting new regulations and 

policies, and initiating university-industry collaboration on pollution prevention and 

cleaner production. It is also indicated that the water quality policy development in 

developing countries is progressing in a similar way to the developed countries (EU, 

USA and Japan), i.e. they are moving towards the river basin approach. 

In poor developing countries on the other hand, the situation is different in the sense 

that economic activities are declining, leading to political instability and environmental 

degradation. In many situations, water resources are limited and water quality is 

deteriorating, particularly in the case of Africa and South Asia. In these countries, water 

pollution issues are therefore not the main concern because other issues such as national 

security, food availability and epidemic control are more pressing. The general 

problems in these countries are also outlined in Ujang and Buckley (2002) and 

summarised as follows: 
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• lack of environmental awareness among the majority of policy makers and the 
general public create a situation where water and wastewater management 

sectors are perceived to be less important than other sectors such as military 

empowerment, food security, road improvement, electricity, mass education and 

health care facilities; 

• insufficient expertise, leading to gaps between ideal policies and 

implementation; 

• inappropriate policies on the conservation of water resources, e.g. no legislation 
for deforestation activities in water catchment areas; 

• insufficient funding for water supply and sanitation programmes because of 
competing public expenditure due to rapid urbanization and population growth; 

• insufficient water resources, especially in arid and urban areas, and 

• inappropriate management systems and institutional support for providing water 
supply and sanitation facilities. 

It should be noted that water quality management needs to be developed in line with 

economic development otherwise the environmental issues may limit the progress of the 

economy. Many examples can be given. Developing artificial ponds or lakes for water 

supply and irrigation services in arid and semi arid regions is particularly an important 

one. If the artificial pond or lake is not protected from pollution due to agricultural 

runoff, the water quality of the lake or pond will deteriorate with time due to high 

salinity or contamination by pesticides/herbicides. Such water quality deterioration will 

in turn affect the economic activities such as irrigation and drinking water supplies. 

2. Water Pollution 

 

Water pollution is a large set of adverse effects upon water bodies caused by human 

activities. There exist two main types of water pollution: point pollution and diffuse 

pollution. Also other natural causes of pollution exist such as volcanoes, algae blooms, 

storms, and earthquakes, but these are not further discussed in this literature study. 

2.1. Point pollution 

 

Point pollution is characterised by a fixed location and a discharge structure like a 

discharge pipe or a sewer overflow construction. The main point pollution discharges 

are the industrial loads and the loads coming from wastewater treatment plants 

(WWTPs). Further there is still pollution coming from unconnected households. The 

emissions or large point pollution sources are most often well known due to regular 

measurements. The emissions of smaller industries are often just estimated on the basis 
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of average values of water discharge per sector. Unconnected households are also 

estimated with an average pollution load per inhabitant. Emission limits are fixed in 

legislation. Table D1 in Appendix D gives the emission limits as stated in European 

legislations. 

2.2. Diffuse pollution 

 

Diffuse pollution also referred to as non-point pollution results from the release of a 

variety of substances in many different situations. It includes:  

• nutrients such as nitrogen and phosphorus from over-application of fertilisers 
and manures;  

• faecal and other pathogens from livestock and from overloaded and badly 
connected drainage systems;  

• soil particles from arable and livestock farming, upland erosion, forestry, urban 
areas and construction and demolition sites;  

• pesticides, veterinary medicines and biocides from industrial, municipal and 
agricultural use, poor storage and handling, and run-off;  

• organic wastes (slurries, silage liquor, surplus crops, sewage sludge and 
industrial wastes) that are poorly stored or disposed of and spread to land;  

• oil and hydrocarbons from car maintenance, disposal of waste oils, spills from 
storage and handling, road and industrial run-off;  

• chlorinated solvents from industrial areas where the use of solvents is 
ubiquitous;  

• metals, including iron, acidifying pollutants and chemicals from atmospheric 
deposition, abandoned mines, industrial processes etc.  

Rural areas should not always necessarily be considered as pollutant areas. Non-intensive 

grazing for instance has beneficial effects on erosion reduction and does not cause excessive 

nutrient loads to the receiving systems.  In Europe, an evolution towards more intensive 

practices took place during the past decades and has caused an increase of nutrient release into 

the environment (Poirot, 1999). Under the Common Agricultural Policy of the EU, the Gross 

Value Added (GVA) of the agricultural sector has raised sharply over the last 25 years. This 

was mainly due to the increased investments giving an increase of the volume of production 

(Barthelemy and Vidal, 1999). The measures have generally led to a reduction of permanent 

grassland in favour of wheat, maize, the appearance of oilseed and protein crops and annual 

crops as fodder. The livestock production also follows a trend to intensification, where the small 

extensive holdings are replaced by modern and specialised ones.  These "non-land-bound" 

farms resulted in a considerable growth in the livestock sector (Boschma et al., 1999). In 

particular, the pig husbandry constitutes the most intensive type. The intensification in livestock 
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production and crop culture has lead to a high application of nutrients to agricultural land. 

Livestock manure is the second most important source in the EU. The Netherlands and Belgium 

had the highest input of nitrogen from manure per hectare coming mostly from pig production 

(Pau Val and Vidal, 1999). Within the European soils, 115 millions of hectares suffer from 

water erosion and 42 million hectares from wind erosion (Montarella, 1999).  Most agricultural 

activities are considered to be non-point sources. This is not the case for the large "non-land-

bound" farms that are agricultural enterprises where a large number of animals are kept and 

raised in confined areas. The feed is here generally brought to the animals, rather than that the 

animals are grazing or otherwise seeking feed in pastures, fields or rangeland. Such activities 

are treated in a similar manner to other industrial sources of pollution. Whereas point-source 

pollution can be measured by monitoring the discharge and the water quality, diffuse pollution 

sources are very difficult to monitor because the sources are distributed along the river.  

3. Water system modelling: actual situation 

 

Integral water system management needs a good foundation when it comes to juridical 

questions, decision-making, the set up of water management plans and the realisation of 

the decisions in practice. To completely understand the causes of perturbations in the 

water system (bad water quality, poor ecology, flooding, …) and to restore the natural 

equilibriums, it is best to work in an integrated way and to work in a complete cycle of 

optimal measuring networks,  accessible data and useful numerical models. This would 

allow to comprehend the water system in all its aspects and provide the necessary input 

for integral water management (reports of actual situation, evaluations, scenario 

calculations,…). The integration of all possible knowledge around water systems is still 

a big challenge. At the moment however, it is mostly the case that the different 

subsystems (sewers, wastewater treatment plants, receiving water, groundwater) are 

supervised by different organisations and there is little communication between them. 

When looking at modelling, everyone uses different models, there is no linkage between 

models for different subsystems, reliability analysis is rarely done, and the need of input 

data for all those models is not structured and as such gathered data is mostly not 

complying with the data needs. New European projects (www.CD4WC.info, 

www.tiszariver.com, www.SMURF-project.info,…) tried to overcome this by studying 

the interactions among the different subsystems, gathering all knowledge into a central 

database, working out a case study for improvement of an urban river. In all those 

projects one of the main conclusions was the need for more and better input data for the 

models. Methods that help formulating which data collections are most useful for a 

certain model, can fill this gap. At the end of each model use, the user can then use 

these methods to not only indicate the need for more data but also to exactly formulate 

the desired accuracy, frequency, place and period of the data collection. 
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3.1. Water quality modelling 

 

One of the models used for the subsystem ‘receiving water’ is the water quality model. 

This dissertation is focussing all its efforts on water quality modelling. Water quality 

models try to support the decision making process in a scientific and technical manner. 

Those models make it possible to quickly and systematically run simulations over large 

simulated periods and the results and conclusions are based on scientific assumptions. 

Models allow visualising the results in an attractive manner, which makes the transfer 

of knowledge easier.  Simulations of future scenarios are also possible with the aid of 

models. 

In most modelling applications, research is based on the following research themes: 

• the oxygen balance 
• eutrophication 
• pollution by heavy metals 
• pollution by pesticides 

 

In the past, scenarios were mainly based on the reduction of pollution loads, nowadays 

also scenarios with actions taken in the receiving water itself are evaluated. Evaluations 

of reduction in point pollution and diffuse pollution showed often that the receiving 

water quality is not improving as expected according to the effort related to the 

reduction of those pollution sources. With the aid of models, those effects can be 

investigated a priori before large investments are done that do not give the desired 

effect. 

3.2. Water quality models 

 

Models are usually grouped into categories based on the environment modelled, the 

purpose of the model, the number of dimensions considered, how the processes are 

decribed, whether the data used are discrete observed measurements or statistical 

distributions and whether temporal variability is considered (see figure II.1). The above 

subdivisions give information about the limitations of a particular model. When looking 

at the purposes of the models, one knows that hydrochemical models are designed to 

model the chemical and biological processes and the main aim is to represent water 

chemistry. A mixing zone model will only represent that portion of the system that is 

immediately downstream or adjacent to a discharge point into the water and a time-of-

travel model provides the user with the time of arrival of pollutants downstream of an 

accident and so is only used to simulate simple pollution incidents.  

The dimensions simulated by a particular model will provide information on both the 

complexity of a model and also on its suitability to specific applications. A 0D model 
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does not represent the processes of dispersion of contaminants in any direction but 

simply represents the volumes and concentrations assuming that the water body is 

completely and instantaneously mixed. A one-dimensional (1D) model represents the 

water flow and the advection and dispersion of solutes in just one direction (i.e. 

downstream in a river model) and so the stream is assumed to be completely and 

instantaneously mixed across its width and depth. Following from this, a two-

dimensional (2D) model will either simulate dispersion across the width or the depth of 

the stream but not both. Three-dimensional models (3D) account for the water flows 

and solute transport in all directions. These models are complex and sophisticated and 

usually are reserved for large (deep and wide) estuaries where the mixing patterns are 

complex (Cox, 2003). 

The difference between mechanistic and empirical models is often not clear-cut and 

mechanistic descriptions will often contain empirically derived components. Empirical 

models make no attempt to explicitly model hydrochemical processes. The model inputs 

are related directly to its outputs by one or more experimentally obtained relationships. 

They do not represent any mechanism and are as such often referred to as black-box 

models. They can cope with a large number of inputs with minimal computation 

requirement. Mechanistic models quantitatively describe the relationship between the 

variables and the underlying principles of cause and are physically based. A last 

division can be made according to the time variation: dynamic and steady state models. 

Dynamic models describe the behaviour of a system over time whereas the outputs of 

steady-state models do not change in time. 
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Figure II.1 Different categories of water quality models 

 

Two main trends in mechanistic river water quality modelling can be identified. These 

are represented by the traditional QUAL2E model that is based on the original Streeter–

Phelps equations and the recently developed RWQM1 (River Water Quality Model nr 

1) based on the mass balance-based approach adapted in the ASM (Activated Sludge 

Model) for waste water treatment plants (WWTP). 

 

Qual2E 

During the 1980s and 1990s the standard model in water quality was QUAL2E (Brown 

and Barnwell, 1987; Shanahan et al., 1998). QUAL2E is an example of a 

multiconstituent river ecosystem model. This model is able to predict a variety of water 

quality constituents including conservative substances, algal biomass and Chlorophyll-

a, ammonia, nitrite, nitrate, phosphorus, carbonaceous biological oxygen demand 
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(cBOD), sediment oxygen demand, dissolved oxygen (DO), coliforms and 

radionuclides.  

The main state variables are BOD and DO. By adding new variables and constituents, 

the model became a three layer model (Masliev et al., 1995) 

• The phenomenological level: the traditional Streeter-Phelps state variables 
(BOD and DO) 

• The biochemical level: the extended Streeter-Phelps model variables (ammonia, 
nitrate, nitrite and sediment oxygen demand (SOD) 

• The ecological level: the algae model variables  (organic nitrogen, organic 
phoporus, dissolved phosphorus and chla) 

The QUAL2E model is until now the most widely known model for river water quality. 

A large number of eutrophication models are based on its process descriptions and it is 

implemented in a large number of simulation programs, e.g. SWAT (Arnold et al., 

1996), QUAL2K (Park and Lee, 2002), WASP5 (Ambrose and Martin, 1993), ISIS 

(Wallingford, 1994), DUFLOW-EUTRO (Aalderink et al., 1995), MIKE11 (DHI, 

1992),… QUAL2E was designed for steady state conditions, but it is also coupled to 

complex hydrodynamic models to be applicable for unsteady state conditions, e.g. 

ESWAT(van Griensven et al., 2000), CE-QUAL-RIV1 (U.S. Army Corp of engineers, 

1995), CE-QUAL-ICM (Cerco and Cole, 1995), WASP5 (Masliev et al., 1995; 

Shanahan et al., 1998) point toward problems with the use of QUAL2E, like non-closed 

mass balances, e.g. the decay of algal biomass is not included in the BOD, processes in 

the sediments are not linked to the river column processes. Further, the variable BOD as 

a measure for organic carbon, only has a biological meaning, is hard to estimate and not 

a quantitative mass value.  

 

RWQM1 

In order to overcome some of the problems with QUAL2E, a new model has recently 

been developed, the River Water Quality Model No.1 (RWQM1) (Reichert et al., 

2001b). The main goal of this effort, however, was to formulate a suite of standardised, 

consistent river water quality models and guidelines for their use. Moreover, RWQM1 

was aimed to be compatible with the existing ASM models since they are both COD-

based models, so no conversion between variables are needed anymore when modelling 

in an integrated way whereby connection of ASM based models and a river model is 

needed. RWQM1 introduced bacterial biomass as an explicit component. In this way, 

bacterial concentration can vary in time, allowing a better description of the observed 

water quality changes without modifications of the parameters. It also introduces some 

new processes that were not included in QUAL2E like pH equilibrium reactions, 

precipitation and predation processes. No anaerobic processes are included in the 
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general model structure. RWQM1 is designed to have closed mass and elemental 

balances. For every organic component a fixed composition is given, described by the 

mass fractions αC (carbon), αH (hydrogen), αO (oxygen), αN (nitrogen), αP 

(phosphorus) and αX (all the other elements), which moreover sum to one. With the aid 

of the chemical oxidation reaction and a choice of a reference compound for every 

element considered, the COD of each form of organic matter can be determined. For all 

reactions the ionic charge balance is closed as well. 

The RWQM1 model is implemented in the following software platforms: WEST 

(MOSTforWATER NV), Aquasim (Reichert, 1994) and ESWAT (van Griensven and 

Bauwens, 2001).  

3.3. The modelling process 

 

In this section the process to make a model of a water body is described. Focus is here 

on the different steps that preferably should be taken when modelling for the purpose of 

WFD compliance.  

A modelling study will involve several phases and several actors. A typical WFD 

modelling study will involve the following four different types of actors (Scholten et al., 

2004):  

• The water manager, i.e. the person or organisation responsible for the 
management or protection of the water resources, and thus of the modelling 

study and the outcome (the problem owner).  

• The modeller, i.e. a person or an organisation that works with the model 
conducting the modelling study. If the modeller and the water manager belong to 

different organisations, their roles will typically be denoted consultant and 

client, respectively.  

• The reviewer, i.e. a person that is conducting some kind of external review of a 
modelling study. The review may be more or less comprehensive depending on 

the requirements of the particular case. The reviewer is typically appointed by 

the water manager to support the water manager to match the modelling 

capability of the modeller.  

• The stakeholders/public. A stakeholder is an interested party with a stake in the 
water management issue, either in exploiting or protecting the resource. 

Stakeholders include the following different groups: (i) competent water 

resource authority (typically the water manager, cf. above); (ii) interest groups; 

and (iii) general public.  
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The WFD modelling process may, according to the HarmoniQuA project (Refsgaard et 

al., 2004, www.harmoniqua.org; Scholten et al., 2004) be decomposed into five major 

steps (figure II.2).  

• STEP 1 (Model Study Plan). This step aims to agree on a Model Study Plan 
comprising answers to the questions: Why is modelling required for this 

particular model study? What is the overall modelling approach and which work 

should be carried out? Who will do the modelling work? Who should do the 

technical reviews? Which stakeholders/public should be involved and to what 

degree? What are the resources available for the project? The water manager 

needs to describe the problem and its context as well as the available data. A 

very important task is then to analyse and determine what are the various 

requirements of the modelling study in terms of the expected accuracy of 

modelling results. The acceptable level of accuracy will vary from case to case 

and must be seen in a socio-economic context. It should, therefore, be defined 

through a dialogue between the modeller, water manager and 

stakeholders/public. In this respect an analysis of the key sources of uncertainty 

is crucial in order to focus the study on the elements that produce most 

information of relevance to the problem at hand. This is achived with a 

sensitivity analysis. 

• STEP 2 (Data and Conceptualisation). In this step the modeller should gather all 
the relevant knowledge about the study basin and develop an overview of the 

processes and their interactions in order to conceptualise how the system should 

be modelled in sufficient detail to meet the requirements specified in the Model 

Study Plan. Consideration must be given to the spatial and temporal detail 

required of a model, to the system dynamics, to the boundary conditions and to 

how the model parameters can be determined from the available data. The need 

to model certain processes in alternative ways or to differing levels of detail in 

order to enable assessments of model structure uncertainty should be evaluated. 

The availability of existing computer codes that can address the model 

requirements should also be addressed.  

• STEP 3 (Model Set-up). Model Set-up implies transforming the conceptual 
model into a site-specific model that can be run in the selected model code. A 

major task in Model Set-up is the processing of data in order to prepare the input 

files necessary for executing the model. Usually, the model is run within a 

Graphical User Interface (GUI) where many tasks have been automated. The 

GUI speeds up the generation of input files, but it does not guarantee that the 

input files are error-free. The modeller performs this work.  

• STEP 4 (Calibration and Validation). This step is concerned with the process of 
analysing the model that was constructed during the previous step, first by 
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calibrating the model, and then by validating its performance against 

independent field data. Finally, the reliability of model simulations for the 

intended domain of applicability is assessed through uncertainty analyses. The 

results are described so that the scope of model use and its associated limitations 

are documented and made explicit. The modeller performs this work.  

• STEP 5 (Simulation and Evaluation). In this step the modeller uses the 
calibrated and validated model to make simulations to meet the objectives and 

requirements of the model study. Depending on the objectives of the study, these 

simulations may result in specific results that can be used in subsequent decision 

making (e.g. for planning or design purposes) or to improve understanding (e.g. 

of the hydrological/ecological regime of the study area). It is important to carry 

out suitable uncertainty assessments of the model predictions in order to arrive 

at a robust decision. As with the other steps, the quality of the results needs to be 

assessed through internal and external reviews.  

 

 
Figure II.2. The modelling process in water management (Refsgaard et al., 2004) 

 

Sensitivity analysis can be used as an aid in identifying the important uncertainties for 

the purpose of prioritizing additional data collection or research (Frey et al., 2004). In 
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addition, sensitivity analysis can play an important role in model verification and 

validation throughout the course of model development and refinement (Fraedrich and 

Goldberg, 2000; Wagener, 2003). Sensitivity analysis also can be used to provide 

insight into the robustness of model results when making decisions (Saltelli et al., 

2000). 

Modelers conduct sensitivity analysis for a number of reasons including the desire to 

determine: 

1. Input parameters that contribute most to output variability, thereby requiring 

additional research to increase knowledge of parameter behaviour in order to reduce 

output uncertainty; 

2. If parameter interactions are present, which (group of) parameters interact with each 

other; 

3. Which parameters are insignificant and can be held constant or eliminated from the 

final model; and 

4. The optimal regions within the parameter space for use in subsequent calibration 

studies.  

Sensitivity analysis methods have been applied in various research fields, including 

complex engineering systems, economics, physics, social sciences, medical decision 

making, and others (e.g., (Helton, 1993)). 

As can be seen in figure II.2 sensitivity and uncertainty assessments should be done in 

step 1, 4 and 5. Sensitivity analysis can find the parameters that are important in the 

calibration. Uncertainty assessment can either help to detect the most important sources 

of uncertainty or to quantify the uncertainties on the model results. Further in this 

literature review methods for sensitivity analysis and uncertainty analysis will be 

discussed. 

4. Sensitivity analysis 

4.1. Introduction 

 

Sensitivity analysis (SA) is “The study of how the uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input” (Saltelli et al., 2000). This definition is general enough to cover a variety 

of strategies for sensitivity analysis, while committing the strategy to some sort of 

quantitative partition of the output uncertainty (no matter how this uncertainty is 

defined) into factors-related components. 

Originally, SA was created to deal simply with uncertainties in the input variables and 

model parameters. Over the course of time the ideas have been extended to incorporate 
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model conceptual uncertainty, i.e. uncertainty in model structures, assumptions and 

specifications. As a whole, SA is used to increase the confidence in the model and its 

predictions, by providing an understanding of how the model response variables 

respond to changes in the inputs, be they data used to calibrate the model, model 

structures, or factors, i.e. the model independent variables. SA is thus closely linked to 

uncertainty analysis (Beven, 2007; Refsgaard et al., 2007), which aims to quantify the 

overall uncertainty associated with the response as a result of uncertainties in the model 

input. 

Often the terms sensitivity and uncertainty analysis are mixed as both are sometimes 

using the same techniques. One can say that SA focuses on the inputs and studies the 

influence of variations on parameters, initial conditions and inputs on model outputs, 

whereas UA is more related to uncertain aspects in the modelling process and its 

influence on the model outputs. 

In order to apply sensitivity analysis, it is paramount to understand in which ways 

parameters and factors can be varied. For example, it may be necessary to run the 

model(s) with a multiple set of parameters (e.g. a floodplain model with different 

surface roughness parameters) to observe the change in the prediction variable (e.g. 

flood inundation extent). In sensitivity analysis this is understood as Experimental 

Design, which will be discussed in part II.4.3. 

Fundamentally, sensitivity analysis can be grouped in four major subdivisions, which 

are graphical methods, screening methods, local methods and global methods:  

Graphical methods include different ways to plot results of model outcome and 

parameters (e.g. scatter plots) or of other sensitivity analyses themselves (e.g. in the 

form of histograms).  

Screening methods are often preliminary numerical experiments whose purpose is to 

isolate the most important factors amongst a large number that may affect a particular 

model response. By using screening methods, factors can also be ranked in their order 

of importance. However, the percentage of the output variation that each factor is 

accounting for cannot be quantified. 

Local methods investigate how small changes of parameters affect the model output. 

Therefore, these analysis techniques evaluate this partial derivative at one specific set of 

parameter values, also called the nominal parameter set. For some local methods, 

differential equations need to be solved and will require complex manipulations of the 

model equations. However, this is often not practically feasible because the models are 

too complicated or the model equations are not directly accessible (e.g. because they are 

compiled in executable commercial code). 

Global methods evaluate the effect on the model output by varying all parameters at the 

same time, in a multivariate fashion. Properties of global methods should be the 
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inclusion of the influence of range and shape of the probability distributions of the input 

factors; the sensitivity estimates of individual factors are evaluated by varying all other 

factors as well (multidimensional averaging); and global methods should be model-

independent, i.e. they should work irrespective of the non-linearity, interaction structure 

and possible discontinuity of the model at hand. 

An important approach to sensitivity, which has developed in the last few years, falls 

within the emulation context. More about model emulators is given in II.4.4 of this 

chapter. The basic idea is to represent in a direct way the relationship between model 

output and model parameters or factors without the need to run the model multiple 

times. If the emulation exercise is successful, one can obtain a simple relationship 

between the model parameters or factors and the model output that fits well the original 

model and is less computationally demanding. Given the emulator, this can be used to 

compute any measure of interest, including sensitivities. 

4.2. Examples  

 

The methodologies, which will be introduced in what follows, have been demonstrated 

on two examples. These are purely mathematical functions, which have been used 

earlier to demonstrate sensitivity analysis techniques (Ratto et al., 2004; Saltelli et al., 

2004).  

4.2.1. Example 1  

The first example is a simple additive combination of two factors. The example is taken 

from Saltelli et al. (2004): 

2

2 2

1Y X X= +
  

with 

0.2 0.25~ ( 0.5,0.5) |j YX U < <−
  

Y: Predicted variable 

Xj: Factors j 

U: Uniform distribution 

4.2.2. Example 2 

This example uses the Sobol g-function that is a non-linear and non-additive model. It 

has been used in previous studies to test global sensitivity analysis models (Ratto et al., 

2004; Saltelli et al., 2004).  
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Y: Predicted variable 

Xj: Factors j 

U: Uniform distribution 

This allows to tune the importance of the factors by changing a. The smaller a is the 

more important it should be. For this structure eight input factors have been considered 

(k=8) with aj=[0,1,4.5,9,99,99,99,99]. 

4.3. Experimental design of SA (Sampling) 

 

Different sampling procedures exist, the most important ones are: screening design 

(one-at-a-time, Morris, fractional factorial), random sampling, Latin Hypercube 

sampling, correlation control and quasi-random sampling. The two first ones are used in 

the screening methods, which are explained in section 4.3.1 and the others can be used 

for the global methods, explained in section 4.3.3. 

 

4.3.1. Screening design 

Probably the simplest way to sample parameters for doing a sensitivity analysis is to use 

a `one-at-a-time' (OAT) design, where only one parameter changes values between 

consecutive simulations. Hence, if there is any change in value of the output between 

two consecutive simulations, it can only be attributed to a change in the parameter ix  

that has been changed. OAT sampling is inefficient when the number of parameters k is 

large and only a few of them are influential. Each simulation changes the value of one 

parameter. If only a few parameters are influential, most of the simulations would be 

devoted to determining the very small effects of non-influential parameters. These 

simulations would be duplicates as far as the values of influential parameters are 

concerned. Very little new information would be generated. 

It is possible that there are no influential parameters for sensitivity analysis to reveal. 

This happens when sensitivity analysis indicates that many parameters have similar 

small effects, but cannot give further insight into this model's behaviour. All of the 

parameters are equally non-influential. Usually, however, there are a few parameters 
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that stand out from the rest. So with large numbers of parameters, it is desirable to find a 

more efficient approach than changing one parameter at a time.  

In fractional factorial design (FF), a fraction of a full factorial design is ‘cleverly’ 

selected to generate a smaller, feasible design that can still produce useful results. In 

general, if one starts with a full factorial design on two levels for n parameters, 

requiring k = 2
n
 simulations, it can be converted into a fractional factorial (FF) design 

for k-1 parameters. 

Morris design is perhaps one of the most efficient ways to sample parameters for 

screening purposes. It allows estimating sensitivity measures at the cost of )1( +kr  

model runs, where k is the number of parameters and 8≈r  (see dedicated part in 

section 4.4.1 on the Morris screening method). 

 

4.3.2. Random sampling 

Here the input factor is sampled randomly according to the joint probability distribution. 

This is a technique easy to explain, provides unbiased estimates for means, variances 

and distribution functions and is easy to implement. The problem is that the sample of 

parameter values has to be sufficiently large and that the term ‘sufficiently‘ is not well 

defined. When the underlying models need a long time to evaluate then the required 

sample size to achieve a certain purpose may be too large to be computational 

practicable. 

 

4.3.3. Latin Hypercube Sampling (LHS) 

The Latin Hypercube Sampling method uses a stratified sampling approach (McKay et 

al., 1979) to ensure the full coverage of the range of each variable. It subdivides the 

distribution of each parameter into N ranges, each with a probability of occurrence 

equal to 1/N. Random values of the parameters are generated such that each range is 

sampled only once. . It is possible to combine two-level FF and LH sampling, to secure 

the advantages of both (see e.g. Saltelli et al. (2007)). 

 

4.3.4. Correlation control 

Control of correlation within a sample can be very important. If two or more parameters 

are correlated, then it is necessary that the appropriate correlation structure is 

incorporated into the sample if meaningful results are to be obtained in subsequent 

uncertainty/sensitivity studies. What is present in most situations is some idea of the 

extent to which parameters tend to move up or down together and more information 

about variable linkage is not available. Therefore the measures of correlation can not be 

determined quantitatively but an idea of which variables are related is present. So for 



Methodologies for reduction of output uncertainty of river water quality models 

 

51 

most uncertainty/sensitivity analysis problems, rank correlation is probably the most 

natural measure of congruent variable behaviour.  

 

4.3.5. Quasi-random sampling with low-discrepancy sequences 

Using a pseudo-random generator for sampling is much simpler than using a complex 

design: as many values as necessary can be generated, and if more parameters or more 

simulations are desired, it is a simple matter to generate more. Unfortunately samples 

generated randomly tend to have clusters and gaps. Where a cluster occurs, function 

values in that vicinity are overemphasized in statistical analysis. Where a gap arises, 

function values within that gap are not sampled for statistical analysis. The net effect is 

that mean values estimated with random samples have an uncertainty that diminishes 

slowly as N/1 . To reduce an estimated uncertainty by a factor of 10, the analyst must 

increase N by a factor of 10
2
 = 100.  

A mathematical measure called discrepancy characterizes the lumpiness of a sequence 

of points in a multidimensional space. The discrepancy of a sequence of points is the 

maximum absolute difference over a specified set of regions between the area fraction 

and the point fraction. Smaller discrepancy values are better for sensitivity analysis (the 

distribution is less lumpy). 

Random sequences (and also LH samples) of k-dimensional points have a relatively 

high discrepancy (see e.g. Saltelli et al. (2007)).  But there are infinite sequences of k-

dimensional points that behave much better with respect to this measure. They are 

called low-discrepancy sequences. 

They have the property that as the sequence length N gets very large, the discrepancy 

shrinks at the theoretically optimal rate. As a result, an estimated mean for a function 

),...( 1 kxxfy =  evaluated on points ),...,( 1 iki xx , Ni ,...,1=  from such a sequence will 

converge much more quickly than would an estimated mean based on the same number 

of random points. While the rate of stochastic convergence for pure pseudo-random 

Monte Carlo methods is N
−1/2
, the actual rate of convergence of quasi-Monte Carlo 

methods can be N
−c
 with c ≤ 1 (Sobol, 1993). This means that the rate of convergence 

can be doubled, in such cases where c approaches one.  

Samples made from a finite subset of such sequences are called quasi-random samples. 

These samples are not random, in the sense of being completely unpredictable. In fact, 

to maintain an even spread of points, an algorithm that generates low-discrepancy 

sequences must somehow bias the selection of new points to keep them away from the 

points already present. But they are like random points in the sense that they are 

uniformly distributed across the entire sample space. 
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4.4. Methods of sensitivity analysis 

 

This section introduces different methodologies to perform sensitivity analysis. 

Categories of sensitivity analysis are introduced and followed by a more detailed 

explanation of each methodology. 

4.4.1. Screening methods 

Screening methods are preliminary numerical experiments whose purpose is to isolate 

the most important factors amongst a large number of factors that may affect a 

particular model response. By using screening methods, factors can be ranked in order 

of importance. However, the percentage of the output variation that each factor is 

accounting for cannot be quantified. 

One-At-a-Time (OAT) 

This is the simplest class of screening designs. Here a set of simulations is performed in 

which only one parameter is modified between two consecutive simulations. Therefore, 

changes in the model outcome can for sure be assigned to that modified parameter and 

the magnitude of the change is an indication of the sensitivity.  

OAT can be classified into five categories (Saltelli et al., 2000)  

• Standard OAT, which varies one factor from a standard condition (from a 
nominal value to an extreme value) 

• Strict OAT, which varies one factor from the condition of the last preceding 
experimental run 

• Paired OAT, which produces two observations and hence one simple 
comparison at a time 

• Free OAT, which makes each new run under new conditions 

• Curved OAT, which produces a subset of results by varying only one easy-to-
vary factor 

Many OAT experiments are local, that is, the factors are changed over small intervals 

around their nominal values. Results of such a local experiment are dependent on the 

choice of this point because the model behaviour is identified only locally in the input 

space. If the model results show strong non-linearity then a change in the selected 

nominal values provides totally different results. 

Morris sampling 

A sampling design that is not dependent on the choice of the specific point in the input 

space is that proposed by Morris (1991) (see figure II.3). The sampling design takes a 

number r of incremental changes for each input factor randomly selecting the initial 
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point on a grid of p-levels in the k-dimensional space of input factors. This provides a 

set of r ‘elementary effects’ (EE) for each input factor. In the original Morris work, 

taking the average (µ ) and the standard deviation (σ ) of the set of EE’s allows to 

determine which factors have negligible effects, linear and additive effects or non-linear 

or interaction effects. Morris´ computational cost is of r(k+1) model runs for k input 

parameters. Campolongo et al. (2007) have developed and refined Morris’ original 

work. The sampling strategy of Morris is improved to avoid oversampling of some 

levels and undersampling of others that often occurs in the standard Morris procedure. 

Moreover, only the mean of the absolute values of the elementary effects is computed 

( *µ ). For screening purposes, this is actually the only measure needed, since this alone 

is able to provide negligible input factors ( 0* ≈µ ). Moreover, it is rather resilient 

against type II errors, i.e. if a factor is seen as non-influential by *µ , it is unlikely to be 

seen as influential by any other measure (Campolongo et al., 2007; Saltelli et al., 

2004)). 

u

v

 

Figure II.3: Morris’ OAT design 

Advantages and Disadvantages 

Screening procedures do not give any quantitative information about the sensitivity, so 

they are very useful as a first screening when the number of parameters is too high to 

perform a quantitative analysis. The low computational cost is one of the main 

advantages of the screening methods.  

 

4.4.2. Local methods 

Local sensitivity analysis methods refer to small changes of parameters. A factor is 

called sensitive if small changes produce significant changes in the output. On the other 

hand, a factor is called insensitive if changes of the factor produce insignificant changes 

in the model output. This variation can be analytically solved if the analytical solution 
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of the model equation is known. Unfortunately, this is rarely the case and numerical 

methods have to be used in order to approximate the sensitivity function. The sensitivity 

functions describe the effect of the disturbance in the parameters on the considered 

output in time. Since sensitivity functions are used in several applications like 

uncertainty analysis and optimal experimental design, model reduction, etc., it is of 

great importance that a correct approximation of the sensitivity function is calculated to 

produce accurate results. Various techniques for local sensitivity analysis will be 

described here, which are (a) the finite difference method, (b) the direct differential 

method, (c) Green’s function method, (d) the polynomial approximation method and (e) 

automatic differentiation. 

 

The finite difference method 

The simplest way of calculating local sensitivities is to use the finite difference 

approximation. This technique is also called the brute force method or indirect method. 

It is very easy to implement because it requires no extra code beyond the original model 

solver. In this method an infinitesimal variation (perturbation) of the parameters, inputs 

or initial conditions is applied. It should be noted that only one parameter is perturbed at 

a time while all others are kept at their nominal value. The finite difference technique 

was found to be too computationally intensive, especially in cases with a large number 

of input factors (De Pauw and Vanrolleghem, 2003a). 

 

Direct method for sensitivity analysis 

Atherton et al. (1975) developed the direct method for sensitivity analysis. 

Differentiation of the equations with respect to the model factors yields a set of 

sensitivity differential equations. The solution of these equations results in the 

sensitivity functions. The direct differential method sensitivity analysis method relies on 

the fact that the sensitivity differential equations (obtained after differentiating the 

ordinary differential equation (ODE) system equations with respect to the parameters) 

are coupled with the equations of the ODE system. Both systems of differential 

equations are coupled through the jacobian matrix of the right hand side of the ODE 

system with respect to the states and the parameters. The implementation of this method 

is difficult, but the advantage is that less numerical simulations are needed and 

numerical problems of the finite difference technique are avoided. 
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Green function’s method 

The difficulties of solving the large sets of differential equations led to the development 

of the Green’s function method, also called the variational method (Hwang et al., 1978). 

This method makes use of the fact that the sensitivities can be expressed in integral, 

rather than differential form. There are a number of variations of the Green’s function 

method. Probably the most used method is the GFM/AIM method (Green Function’s 

method/Analytically Integrated Magnus). It is beyond the scope of this document to go 

into more detail on these solving techniques. In all Green’s function methods, the 

numerical effort is proportional to the number of variables and not the number of 

parameters. So this method should be preferred when the number of parameters is large 

compared to the number of variables. When the number of variables is much larger than 

the number of parameters, direct differential methods should be used. 

 

Automatic differentiation 

Recently, a technique called automatic differentiation has gained a lot of attention. 

Automatic differentiation techniques are based on the fact that every function, no matter 

how complicated, is executed on a computer as a sequence of elementary functions. By 

applying the chain rule of differentiation repeatedly to the composition of these 

elementary operations, one can compute the derivative information exactly and in a 

completely automated fashion. This method produces compilable code that evaluates 

derivatives up to machine precision with a minimum of human effort.  

 

Advantages and Disadvantages 

All the above techniques except for the finite difference technique have one thing in 

common. They all require complex manipulations of the model equations. In many 

studies this is not practically feasible because the models are too complicated or the 

model equations are not directly accessible (e.g. because they are compiled in 

executable commercial code). This is the basic reason why the finite difference method, 

although inefficient, is still used very often. 

 

4.4.3. Global methods 

Two key global properties are essential for global sensitivity methods (Saltelli et al., 

2000): 

• the inclusion of the influence of range and shape of the probability distributions 
of the input factors; 
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• the sensitivity estimates of individual factors are evaluated varying all other 
factors as well (multidimensional averaging). 

Finally, global methods should be model-independent, i.e. they should work irrespective 

of the non-linearity, interaction structure and possible discontinuity of the model at 

hand. Four methods are presented here: variance based methods, regression analysis, 

regionalised sensitivity analysis and enthropy. 

4.4.3.1 Variance based methods 

Variance-based methods quantify sensitivity by decomposing the variance of model 

outputs into factor related components. In particular, the variance is decomposed into 

main effects and interaction effects. The main effect of a parameter quantifies the 

portion of the variance of the model output that is explained by that parameter, by 

allowing all other parameters to be varied at the same time. It can also be interpreted as 

the expected reduction in the variance (i.e. in the uncertainty) of the model output that 

could be obtained if we were able to fix that parameter to its ‘true’, albeit unknown, 

value. For this reason, the main effect provides the answer to the Factors Prioritization 

setting. The total effect of a parameter measures the residual variance of the model 

output that remains by removing the portion explained by all other parameters, i.e. 

quantifies the variance (i.e. the uncertainty) in the model output that would be left by 

fixing any other factor to its ‘true’, albeit unknown, value. The total effect of a 

parameter can also be seen as the sum of its main effect and all its interaction terms with 

any other model parameter. When a parameter has a null total effect, this provides a 

sufficient condition for assessing its irrelevance in the model. For this reason, the total 

effect provides the answer to the Factors Fixing setting. The total effect, main effect and 

interaction effects are normalized by the unconditional variance to obtain sensitivity 

indices. The variance-based analysis allows for an analytical solution of example 2: 

 

Table II.1: Sensitivity indices of example 2 

Factor Main effect Total effect 

1X  0.7165 0.7871 

2X  0.1791 0.2422 

3X  0.0237 0.0343 

4X  0.0072 0.0105 

8,7,6,5X  0.0001 0.0001 

sum 0.927 - 
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Table II.1 shows that the main effects (i.e. the additive part of the model) account for 

about 93% of the entire output variation, implying that only 7% is due to interaction 

terms. Analysing the total effects, one can see that interaction terms involve parameters 

1X , 2X  and 3X .  

There are several methods available for the estimation of variance-based indices: the 

‘classic’ ones are the Sobol’ method, FAST and extended FAST. Moreover, reliable 

estimates of main effects and low order interaction effects can be obtained by applying 

parametric and non-parametric smoothing techniques (RS-HDMR, SDP, spline, see  

section 4.4.4 on emulation). 

 

FAST 

FAST is a methodology which allows to estimate the entire set of main effect 

sensitivities by Fourier transformation (Koda et al., 1979; McRae et al., 1982b), using a 

single sample of size N.  

When using FAST, iV  is computed by exploring the k-dimensional space of the input 

factors with a search curve defined by a set of parametric equations 

 

( ))sin( sGx iii ω=    

 

with ki ,...2,1= , where s  is a scalar varying in ( )+∞∞− ,  and the iω  are a set of 

different angular frequencies associated with each factor and the iG  are properly 

selected transformation function. Scanning the above equation for different values of s  

results in a curve in the k-dimensional hypercube whereby each dimension is explored 

with a different frequency iω . Fourier analysis allows then the computation of 

( )( )
iX XYEV

ii −X  based on the signal at iω  and its harmonics. The implementation of the 

method requires care, mostly in avoiding interferences, based on accurate selection of 

the set of k  frequencies iω  (Koda et al., 1979; McRae et al., 1982b). Extensions of the 

FAST method are described in Saltelli et al. (1999) and Tarantola et al. (2006). 

In classic FAST only the main effect terms iV  are computed. Extended FAST (Saltelli 

et al., 1999)  allows the computation of higher order terms, in particular it allows to 

compute the entire set of main and total effects, at the cost of kN model runs.   
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The Sobol’ method 

The Sobol’ method is a Monte Carlo procedure that allows to compute any term of the 

variance decomposition, each at the cost of N model runs (Sobol, 1993). Following 

Saltelli (2002), the cost of estimating the entire set of main and total effects is of (2+k)N 

model evaluations, which roughly halves the computational cost with respect to the 

original Sobol’ algorithm. The method of Sobol’ is based on decomposing the variance 

of model output into terms of increasing dimensionality, as in the classical Analysis Of 

Variance (ANOVA) of factorial experimental designs. The indices can be used for 

estimating the influence of individual variables or groups of variables on the model 

output. 

 

 ANOVA-representation 

 

Consider an integral function f(x) defined in I
n
. We shall study its representation in the 

form 

),...,()(
1

...

1

1 ss ii

n

s

n

i

ii xxfxf ∑∑
=

=
                   

where 1≤i1<…<is≤n.  

The formula can also be given as  

),...,,(...),()()( 21...120 nnji

ji
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i
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<

                    (1) 

The total numbers of summands in (2) is 2
n
. 

 

Formula (1) is called the ANOVA representation (comes from Analysis Of Variance) of 

f(x) if  

0)...,(... ,11
=∫ dxxxf

ss iiii   for k=i1,…,is 

and from this follows that the members in (1) are orthogonal and can be expressed as 

integrals of f(x). Thus: 
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and so on. 

Assume now that f(x) is square integrable, then squaring (1) and integrating over I
n
 you 

get 

 

The constants siiiii dxdxfD
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=  are called global sensitivity indices. 

The integer s is often called the order or the dimension of this index. All the 
sii SS ...

1
 are 

non-negative and their sum is 

 

The introduction of 
sii SS ...

1
is more or less evident. The main breakthrough of the 

computation of global sensitivity measures with the method of Sobol´ is the 

computation algorithm, a Monte Carlo algorithm. 

 

The ANOVA representation for subsets of variables looks like D = Dy + Dz+ Dyz 
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is the variance corresponding to the subset y. The inner sum 

is extended over all groups (i1,…,is) where all the i1,…,is belong to K. Same for Dz. Dyz 

quantifies how much the model output variance depends on interactions between the 

two subgroups y and z. The total variance corresponding to the subset y is 
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 The Monte Carlo based approach 

 

For the computation of yS and z

tot

y SS −= 1 one has to estimate four integrals: 

∫ dxxf )( , ∫ dxxf )(
2 , ')',()( dzdxzyfxf∫  and ∫ '),'()( dxdyzyfxf . 

When one considers now two independent random points ξ and ξ’ uniformly distributed 

in I
m
 and let ξ = (η,ζ) and ξ’= (η’,ζ’) then each Monte Carlo trial requires three 

computations of the model: f(η,ζ), f(η,ζ’) and f(η’,ζ). After N trials, crude Monte Carlo 
estimates are obtained: 
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Advantages 

Extremely robust, these global methods work with any type of discontinuous (even 

randomised) mapping between input factors and the output. Sobol’ estimator is 

unbiased. They do not rely on any hypothesis about the smoothness of the mapping. The 

only key assumption is that variance (i.e. the second moment) is an adequate measure 

for quantifying the sensitivity of the model output. Computing main effects and total 

effects for each factor, while still being far from a full factors mapping, gives a fairly 

instructive description of the system. Moreover, they provide unambiguous and clear 

answers to well specified sensitivity settings (prioritisation and fixing). 

Disadvantages 

The computational cost is relatively high, which implies that these methods cannot be 

applied to computationally expensive models. 

They do not provide any mapping, i.e. they decompose the output uncertainty but they 

do not provide information about, e.g., the input factors responsible for producing Y 

values in specified regions, such as extreme high/low or any behavioural classification. 
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4.4.3.2 Regression Analysis 

In a regression analysis a relationship between the conditional expected variable y given 

some input variables x is established (see e.g. Iman et al., 1985). The simplest form of 

regression analysis is correlation analysis. In table II.2 a correlation analysis for 

example 1 is presented together with the p-value that is testing the hypothesis of no 

correlation against the alternative that there is a non-zero correlation. It can be seen that 

this simple analysis fails to identify sensitivities and predominantly suggests insensitive 

model factors.  

Nonlinear regression approaches include approaches such as Neural Networks (Zeng 

and Yeung, 2003) or random forests (Pappenberger et al., 2006). Many other models 

can be postulated as a relationship. However, more complex approaches should be 

treated with care as they usually exhibit larger uncertainties in the identification (for a 

discussion on that topic see Young et al., 1996). Smoothing procedures to estimate the 

decomposition of the model output into additive factor related components (RS-HDMR, 

SDP and spline, see further) can be seen as nonlinear extensions of the regression 

analysis into the sensitivity analysis context.  

The regression coefficient can be used as a measure of sensitivity. In general, the 

sensitivity of a factor can be quantified by computing a measure of fit (such as the 

correlation coefficient, Kendall’s coefficient of concordance or top down coefficient of 

concordance, see Helton et al., 2005), the distribution of this measure of fitness and the 

significance level. The measures of fit are estimated from a random sample and are 

themselves random variables. Therefore, if a measure of fit is not significantly different 

from zero, then there is no statistical significant relationship between the variables 

(typical tests include the Student’s t-test or the Kolmogorov-Smirnov test). If the 

measure of fit is statistically significant then there is evidence that a relationship exists. 

The lower the significance level  for which the hypothesis that the measure of fit is zero 

can be rejected (usual levels are 0.05 or 0.1), the stronger is the evidence of a 

relationship (Frey et al., 2004; Frey and Patil, 2002). If linear regression is used 

nonlinear monotonic data can be transformed into linear relationships by for example 

taking the logarithm or rank transforming the data. The usage of ranked transformed 

correlation coefficients such as Spearman correlation coefficient can significantly 

improve the resolution of the sensitivity analysis (Helton et al., 2005; Helton et al., 

2006). However, nonlinear methods should be preferred if such transformation does not 

improve the analysis. 

The coefficients of a regression analysis are often identified by least squares 

optimization and thus have to fulfil assumptions such as the independence of input 

variables and a normal distribution of errors. 

Helton et al. (2006) advocate that any regression analysis should be performed in a step-

wise manner, with a regression model first constructed with the most influential variable 
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followed by the next most important variable. The importance is identified by 

computing the coefficient of determination for a regression model containing only a 

single variable. Variable importance is then indicated by the order in which the factors 

are chosen, the changes of the coefficient of determination that are caused by added 

additional factors and a standardized regression coefficient (e.g. the Pearson correlation 

coefficient).  

Table II.2: Correlation analysis of example 2 using Spearman, Pearson and Kendall 

correlation. The PVal is the p-value testing the hypothesis of no correlation against the 

alternative that there is a non-zero correlation 
Factor 1 Factor 2 Factor 3 Factor 4  

Corr Pval Corr Pval Corr Pval Corr Pval 

Spearman 0.02 0.30 0.01 0.50 0.01 0.68 0.00 0.73 

Pearson 0.02 0.27 0.02 0.64 0.02 0.46 0.00 0.90 

Kendall 0.01 0.27 -0.01 0.43 0.00 0.71 0.00 0.73 

 Factor 5 Factor 6 Factor 7 Factor 8 

 Corr Pval Corr Pval Corr Pval Corr Pval 

Spearman 0.00 0.99 0.00 0.98 0.00 0.98 0.00 0.00 

Pearson 0.00 0.78 0.00 0.79 0.00 0.76 0.00 0.00 

Kendall 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.00 

Advantages  

Regression analysis is conceptually simple and is part of many software packages 

(Helton et al., 2006). The technique allows the evaluation of the sensitivity of individual 

model inputs without neglecting the influence of other factors (Cullen and Frey, 1999). 

The methodology has a large degree of flexibility (multiple ways of transforming data 

and assumption of different model relationships). 

Disadvantages 

If the key assumptions of the regression analysis are not met, then, the results will not 

be robust. Moreover, a functional relationship between the input and the selected 

outputs has to be assumed (not model-free).  

In the case of correlated inputs, the problem of multicollinearity can affect the 

robustness. This is the case when two variables are highly correlated and thus 

essentially convey the same information. Any couple of highly correlated variable 

would exhibit very similar sensitivity, due to the correlation, irrespective to the possibly 

extremely different effect onto the model output itself.   

A second assumption of regression analysis is that the errors are distributed normally, 

which is not the case for many real world examples. Therefore, if the functional 

relationship used for the regression is not correct, this can give biased and misleading 

results. Neter et al. (1996) have shown that the result of regression analysis depends 

largely on the functional form chosen a priori and that such an analysis can lead to 

results which are counter-intuitive or statistically insignificant.  
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4.4.3.3 Regionalised Sensitivity Analysis 

The Regionalised Sensitivity analysis (RSA) has been originally developed in the 

context of environmental models by Spear and Hornberger (Spear and Hornberger, 

1980) and further developed by Beven and Binley (1992). The paper by Spear and 

Hornberger (Spear and Hornberger, 1980) is one of the first landmark papers in Monte 

Carlo analysis and thus this method requires to execute the model multiple times using 

factor set sampled from their joint distributions. It has been applied to many 

environmental and water resource system applications (Chang and Delleur, 1992; 

Hornberger and Cosby, 1985; Lence and Takyi, 1992; Osidele and Beck, 2004). The 

Regional Sensitivity Analysis procedure involves three fundamental tasks: (1) Running 

the model in a Monte Carlo framework (2) a qualitative definition of system behaviour 

and (3) a binary classification of model output (Osidele and Beck, 2004). The definition 

of system behaviour involves the setting of thresholds and boundaries in which the 

model output has to lie. This expected behaviour can be derived from hard data such as 

measurements or soft data such as empirical information (for discussion on hard and 

soft data see e.g. Seibert and McDonnell, 2002). For example, a predicted flow 

hydrograph is expected to lie within a certain range of limits (Pappenberger and Beven, 

2004). Such a constrain should take account of all model errors (e.g. input, parameters, 

model structure), the errors in the measurements and the commensurability errors; van 

Straten and Keesman, 1991). All model simulations which fall outside the qualitative 

definition of the system behaviour are called nonbehavioural (NB) and all model 

simulations which fulfil the constraints are termed behavioural (B) (Spear and 

Hornberger, 1980). The subjectivity within this separation is based on an understanding 

of the system (Freer et al., 2003). The distributions of the factors which are classified as 

NB and the once which are classified as B can be compared by a Kolmogrov-Smirnov 

test (Saltelli et al., 2004).  

The importance of the uncertainty of each factor is inversely related to the significance 

level for rejecting H0. A low significance level means that there is stronger evidence for 

a significant discrepancy between the factor distributions for B and NB. On the 

contrary, a high significance level indicates that the H0 hypothesis cannot be rejected 

and the possibility that this factor or process is redundant in the model structure. Input 

factors can be grouped into three sensitivity classes, based on the significance level for 

rejecting H0: 

[1] critical (<1%); [2] important (>1% & <10%); and [3] possibly insignificant (>10%).  

(Osidele and Beck, 2004; Saltelli et al., 2004). 

In figure II.4 the behavioural (0.25> y >0.2), non-behavioural (0.2>y) and prior 

distribution of example 1 is plotted and is defined as the entire sampled space. For more 

details see Saltelli et al. (2004). The hypothesis that the two distributions are the same 

cannot be rejected (significance level, 0.05).  
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Figure II.4: Regional Sensitivity Analysis of example 1. Behavioural is defined as 0.25> 

y >0.2, non-behavioural as 0.2>y 

The method has been further developed by Beven and Binley (1992) within the 

Generalized Likelihood Uncertainty Estimation (GLUE) framework. In the RSA 

application all behavioural and nonbehavioural factor sets are regarded as equally likely 

representations of the modelled system whereas within the GLUE framework the 

performance of each simulation is taken into account. Similar to RSA the Monte Carlo 

runs of the model are classified into behavioural and nonbehavioural. However, a model 

performance (e.g. a Nash-Sutcliffe of a flow hydrograph) is computed for all 

behavioural runs. These model performances are binned according to their ranked 

performance (for example in 10% steps, meaning that the best 10% of all models are 

treated together as well as the 10%-20% ‘best’ models etc.). The performances of each 

bin are normalized (by for example dividing through the sum) and a cumulative 

distribution function (cdf) against the factor values is plotted. The larger the area such 

an ensemble of cdfs encloses, the more sensitive a factor can be considered. The 

sensitivity measure can be quantified either by the area or the significance level on 

which the hypothesis that the area is equal to zero can be rejected (see Pappenberger et 

al., in press). Figure II.5 shows the result of the analysis for example 2 (assuming that 

all factors are behavioural and that the response variable is a performance measure). It 

can be seen that factor 1 and 2 show sensitivity by having a spread in the cumulative 

distribution functions. The different cdf’s are based on subdividing the model response 

in bins of 10% (e.g. the lowest 10% of model response, all response with values 

between 10% and 20% etc.) 
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Figure II.5: Regional Sensitivity Analysis of example structure 2. 

Advantages 

The method has the advantage that it is conceptually simple and easy to implement. The 

result has an easy to understand qualitative meaning and the methodology is model free 

(no assumptions of a model have to be made for the sensitivity analysis).  

Disadvantages 

In its current form, the methodology cannot quantify higher order effects (problem of 

multicollinearity) or search for interacting structures, except for stylised structures 

detectable through correlation analysis within the B or NB samples. It has also to be 

noted that only a hypothesis rejection is sufficient to make a decision. The acceptance of 

a hypothesis in this kind of test does not imply that there is no importance of that 

particular factor. 

Saltelli et al. (2004) argue that the fraction of behavioural models is too small for large 

models and that this implies a lack of statistical power. However, one could argue that 

this is due to overparameterization /complexity combined with the difficult task to 

search the entire model response space adequately or simply that the model is 

inadequate for the task in question. 
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4.4.3.3 Entropy 

 

Krykacz-Hausmann (2001) argued that sensitivity should be measured as a deviation of 

the factor distribution from being uniform (if the factor has been sampled from a 

uniform prior distribution). The author developed a sensitivity measure which is based 

on the Kullback-Leibler Entropy (Kullback and Leibler, 1951) and was extended by Liu 

at al. (2004). Entropy is a measure of disorder in the universe or of the availability of 

the energy in a system to do work. The Kullback–Leibler entropy is a measure of the 

difference between two probability distributions: from a "true" probability distribution P 

to an arbitrary probability distribution Q. 

Liu et al. (2004)  point out that this entropy shares many properties of a metric measure 

such as non-negativity, additivity and convexity despite not being a metric measure. 

The K-L entropy can be understood as a measure, which expresses the lack of 

overlapping between probability density functions (within given limits). Liu et al. 

(2004) define total and main effect indices in analogy to the Sobol method. The concept 

of entropy and sensitivity is also exploited (in a slightly different formulation) in 

methodologies such as the dynamic identifiability analysis (Wagener et al., 2003) for 

rainfall-runoff models and its numerical expression by Horritt (2005) for flood 

inundation models.  

Advantages 

It has been argued that variance-based methods rely too heavily on the assumption that 

the second moment is sufficient to describe the uncertainties and sensitivities 

encountered. These assumptions may be invalid if the distribution is highly skewed due 

to nonlinear functions or inputs (Liu et al., 2004). This methodology proposes a way to 

overcome this limitation by taking account of the full probability density function.  

Disadvantage 

The mathematical framework on which first and higher order effects as well as total 

effects are calculated is less rigid than for the variance-based methods (despite being 

designed to be an improvement to those methods). It can be argued that the main order 

effect as formulated by Liu et al. (2004)  actually contains properties of the total effect 

(if the definitions of the Sobol method are used). The method relies on a structured 

sampling design which maybe difficult to achieve in some practical applications, e.g. 

due to numerical instabilities. 
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4.4.4. Sensitivity and model emulators 

An important approach to sensitivity analysis, which has developed in the last few 

years, falls within the emulation context. The basic idea is to represent in a direct way 

the relationship between the model factors and the model results, whose form is usually 

unknown to the analyst. If the emulation exercise is successful, one can obtain a simple 

relationship between the model factors and the model output that fits well the original 

model and is less computationally demanding. Given the emulator, this can be used to 

compute any measure of interest, including sensitivities. 

There is a vast literature in this framework. Local approximation methods provide a first 

class of emulator that matches the properties of the model at a base point and in the 

nearby region (Taylor series). Interpolation methods look at 'nice' functions that go 

through a set of data points spanning the entire domain of the mapping. The 

approximation is then identified by fixing a set of parameters (e.g. the coefficients of the 

polynomials) using a set of data points (Lagrange, Chebyshev interpolation). The cut-

High Dimensional Model Representation (cut-HDMR) expansion (see later) is an example 

of this. Regression methods differ from interpolation whereby a set of more data points 

than the amount of parameters is used to identify the approximating function. For 

univariate models, the interpolation approach can be extended by applying piecewise 

polynomials, constructing functions that are only piecewise smooth. Splines (the cubic 

spline is the most popular) are a powerful and widely used piecewise polynomial 

interpolation, which are smooth where the polynomial pieces connect. In the 

multivariate case, which is the most interesting, radial basis function networks can be 

seen as the equivalent of univariate piecewise interpolation.  

All the above approaches can be referred to as model approximation methods: see 

Storlie and Helton (2006) for a review of smoothing methods for sensitivity analysis 

purposes.  

There are strong links between regression analysis and the theory of variance based 

sensitivity analysis. Let )(⋅g  be the generic function approximating the true model 

),...,( 1 kXXfY =  and let us assume a quadratic loss function ]))g(-E[(Y 2⋅  as a 

measure of 'fit' for g. If we were to approximate f with a function of one single 

parameter Xi, which is the function )(* ii Xg  that provides minimum loss? 

It is well known from standard school texts on statistics that the univariate function  

)|(*

ii XYEg =   (2) 

i.e. the conditional expectation of Y given Xi, is the minimum loss approximation to f. 

The above expression tells us that at any p-location pii xX ,= , the value of g* is 
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obtained by integrating (averaging) Y over all the remaining ),...,...,( 1,11 kii XXXX +−  

input factors. 

Equation (2) can be generalised to any subset of the input factors, by  

),...,|( 1

*

ilii XXYEg =
 

Both equations are linked to the HDMR decomposition of f: 
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we explicitly highlight the link between the terms of the HDMR and the minimum loss 

approximating functions )(⋅g . Each term of the decomposition tells the analyst how 

much Y moves around its mean level 0f  as a function of single input factors or groups 

of them. 

Coming back to the emulation problem, we require that the smoothing function(s) of 

increasing order approximate and ultimately converge to (.)*

ig . This assures that, given 

a truncation of the full HDMR expansion, the emulator obtained is the optimal one in a 

least squares sense among all possible models of the same order of interaction. 

 

cut- High Dimensional Model Representation (cut-HDMR) 

The papers by H. Rabitz and co-workers (Rabitz et al., (1999) and Rabitz and Aliş 

(2000)) can be seen as precursory applications of the emulation approach in SA. There, 

the emulator is given by the so-called cut- High Dimensional Model Representation 

(cut-HDMR) expansion, obtained by evaluating the model on quadrature points falling 

on lines, planes and hyper-planes passing through a `base' point  in the input factor 

space, and truncating the order of the hyper-planes . Then, all the required integrals are 

computed on the truncated cut-HDMR function. This helps to reduce the computational 

cost of the analysis with respect to variance based methods, albeit still not sufficiently to 

treat computational expensive models. Moreover, the cut-HDMR approach still depends 

significantly on the dimensionality of the problem. 
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Random Sampling-HDMR (RS-HDMR) 

The same research group who worked on cut-HDMR presented the so-called Random 

Sampling-HDMR (Liu et al., 2004), where the HDMR terms are estimated by 

smoothing a Monte Carlo sample of the mapping  with orthogonal polynomials. Due to 

the curse of dimensionality problem, a truncated HDMR is estimated, usually up to 

order three, using polynomials of order up to 2-3. RS-HDMR can be seen as the first 

implementation of the emulation concept within the sensitivity context. RS-HDMR 

allows to significantly reduce the computational cost of sensitivity analysis.  

 

Bayesian and Kriging Emulators 

The theoretical foundations of model emulation are grounded in statistical theory of 

stochastic processes. The general framework is originally due to Sacks et al. (1989). 

Oakley and O’Hagan (2004) have demonstrated its application in SA, where a Bayesian 

approach is applied to produce a Gaussian process emulator of the computational model 

and, subsequently, to compute sensitivity indices in an extremely efficient way, with a 

computational cost of only a few hundreds of runs for a reasonable number of input 

variables. Kriging emulators (Kleijnen, 2007a) are similar to Gaussian, except that they 

do not rely on Bayesian interpretation. 

Their computational efficiency is linked to certain limitations and hypotheses: namely, 

that the model response needs to be smooth and the number of input variables should 

not be very high (< 30). Moreover, Gaussian/kriging emulators can be prone to the 

curse of dimensionality and to the smoothness assumptions of the function under 

analysis. This is because Gaussian emulators try to interpolate and predict the )(⋅f  

mapping by applying a Gaussian kernel of the same k-dimensionality as the input 

parameter space. Therefore, as k increases, the number of hyper-parameters to be 

estimated (linked to the covariance structure of the k-dimensional Gaussian kernel), 

increases strongly, possibly implying problems with identification and over-

parameterization. Under such hypotheses and caveats, the GP emulator works in an 

extremely efficient way and a few hundred runs are sufficient to describe with good 

accuracy most of the model behaviour. More details on Gaussian emulator can be found 

in Oakley and O’Hagan (2004).  

 

State Depending Parameter (SDP) 

This is a non-parametric methodology and it is based on an approach to State 

Depending Parameter (SDP) modelling. It was applied for sensitivity analysis and 

emulation by Ratto et al. (2004). The estimation is performed with the help of the 

`classical' recursive (non-numerical) Kalman filter (Kalman, 1960) and associated fixed 

interval smoothing algorithms.  

As for the RS-HDMR, the emulator is based on a truncated ANOVA-HDMR expansion 

up to the order 3 and, as in the previously published approaches, it normally estimates 
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all the main effects with only a few hundred Monte Carlo realisations (< 1,000), almost 

independently of the dimensionality k of the problem. 

 

Splines 

The spline approach is based on the SDP method introduced above. The methodology 

estimates the relationship of the state dependent parameters over hermite cubic splines 

(Pappenberger and Stauch, 2006). For this, an interval of the random input variable Xi  

is divided into m-1 subsections resulting in m node locations, each with node values 

Y1…Ym. For each subinterval of the random variable Xi, the polynomials pol(Xi,m) are 

estimated as cubic hermite interpolating polynomials based on four interpolation 

conditions (see De Boor, 2001). The shape preserving algorithm by Fritsch and Carslon 

(1980) is applied and the values of the knots of the cubic spline optimised using a 

Levenberg-Marquart nonlinear least square minimisation (Stauch et al., in press) (see 

also chapter of materials and methods). The optimisation procedure duplicates the 

backfitting algorithm for the SDP procedure  

The number of nodes and location has been fixed after several initial tests, but could be 

optimised Bitterlich et al. (2004). However, initial tests suggest that this is not always 

necessary.  

Advantages and disadvantages 

All emulation approaches allow to perform quantitative global sensitivity analysis, like 

variance-based analysis, with a much lower computational effort compared to classical 

Monte Carlo estimation approaches (FAST, Sobol’). This is because they try to make 

best use of the smoothness properties of the function under analysis. These methods are 

less simple to code with respect to classical methods, although they are conceptually 

simple. The RS-HDMR (polynomial regression), SDP (non-parametric, recursive 

regression) and spline approaches can also be seen as extensions of the regression 

approach for the estimation of low order HDMR expansions. As such (and irrespective 

of the emulation context), they can be used for estimating main effect variance-based 

sensitivity indices, for such models where the number of model evaluations required by 

classical Monte Carlo methods are unaffordable. 

 

4.4.5. Choice of the method 

After this summation of all the methods for SA, out of all the advantages and 

disadvantages and the obtained answers from every SA method, two ways of how to 

choose the right SA will be presented here ( Pappenberger, 2007).  
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4.4.5.1 According to sensitivity aim/setting 

Saltelli et al. (2004) have argued that the effectiveness of a sensitivity analysis is greater 

if the purpose of the analysis is specified unambiguously beforehand. Over time, 

practitioners have identified cogent questions for sensitivity analysis. These questions 

define the setting, which in turn allows for the selection of the strategy. The most 

typical settings are: 

Factors prioritization (FP) 

Assume that, in principle, the uncertain input factors can be ‘discovered’, i.e. 

determined or measured, so as to find their true value. One legitimate question is then 

“which factor should one try to determine first in order to have the largest expected 

reduction in the variance of the model output”?  The variance-based main effect 

provides the answer to the Factor Prioritization setting.  

 

Factors fixing (FF) 

Another aim of sensitivity analysis is to simplify models. If a model is used 

systematically in a Monte Carlo framework, so that input uncertainties are 

systematically propagated into the output, it might be useful to ascertain which input 

factors can be fixed, anywhere in their range of variation, without sensibly affecting a 

specific output of interest. This may be useful for simplifying a model in a larger sense, 

because we may be able then to condense entire sections of our models if all factors 

entering in a section are non-influential. Saltelli and Tarantola (2002) also showed that 

the variance-based total effect  provides the answer to the Factor Fixing setting. A null 

total effect is a sufficient condition for an input factor to be irrelevant, and therefore to 

be fixed. 

 

Factors Mapping (FM) 

In this case, the analyst is interested to as many information as possible, either global 

and local, i.e. which values of an input factor (or of group of factors) are responsible for 

driving the model output in a given region? Which conditions are able to drive a 

specified model behaviour? In this case, a full array of methods, from local ones, to 

Monte Carlo Filtering, to model emulators, to variance-based and entropy-based 

methods can provide useful insights about model properties. 

 

Calibration 

In this case, the analyst aims at identifying the portions of the input factors space that 

allow the model to behave according to available information (data, constraints) about 

the modelled system. FP and FF settings are linked to calibration and can be used to 

prepare a calibration step: with FP and FF one can say what can be effectively 

calibrated (those parameters having large main effects) and what cannot (those having 
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null total effect). Parameters in the grey area (i.e. small main effect and large total 

effect) fall under the so-called equifinality conditions. An effective calibration can be 

performed by first concentrating on the input factors highlighted by the FP setting. 

In figure II.6 a decision tree is presented to provide guidance on the choice of methods, 

Therefore, specifying the aim for the sensitivity analysis becomes crucial for 

concentrating on specific sensitivity methods: 

- FP? Variance based (VB) main effects provide the answer. This setting is also 

connected to Type I errors, i.e. when one is ‘scared’ of labelling as important something 

that is not: if one gets a high main effect, he can be sure that this parameter is really 

relevant for the model. As far as the computational cost is concerned, the classical 

Monte Carlo algorithms (Sobol’) to estimate main effects require a few thousands of 

model runs: this might be unaffordable in some cases. In such cases, we point the 

readers to recently developed smoothing methods (RS-HDMR, SDP, spline) that are not 

particularly difficult to code and that allow to reliably estimate main effects with few 

hundreds of model runs. 

- FF? Variance based total effects provide the answer. This is also linked to Type II 

errors, i.e. one is ‘scared’ of fixing something that can have an effect on the model. In 

this case, therefore, one is mostly interested at the zero sensitivity indices. From the 

computational point of view the only reliable route to compute total effects is the 

classical Monte Carlo algorithm (Sobol’). However, it has been shown that the 

screening method based on elementary effects (Morris, 1991, as extended by 

Campolongo et al., 2007), provides an excellent proxy to total effects at a much smaller 

computational cost: whenever a zero index is found using the Morris approach, it is 

extremely difficult that any other method detects any effect for such an input factor. 

Both the FF and the FP settings can be treated at a quite small computational cost by 

taking a few hundred runs to perform the screening test by Campolongo et al. (2007) 

plus another few hundred runs to apply a smoothing technique for estimating the main 

effects. 

- FM? In this case, the suggestion of using as many methods as possible is justified by 

the fact that one is interested to as many information, both global and local, i.e. which 

parameter values are responsible for driving the output in a given region? It has to be 

noted that many methods can be applied using the same sample, for example Monte 

Carlo Filtering (MCF), regression analysis, smoothing and emulation approaches can be 

applied on the same Monte Carlo sample. 

- In the case of numerical instabilities, MCF can be very useful to map the occurrence of 

such numerical problems. Moreover, most of the sensitivity methodologies (MCF, 

Morris, Sobol’, smoothing, etc.) can be applied also in such cases when model 

simulation fails for a portion of the sample. 
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4.4.5.2 According to the computational Cost 

Here the best SA method is presented with a decision tree. The decision tree is a 

pragmatic approach to sensitivity analysis. For a scientific approach we suggest to use 

as many methods as possible to highlight differences and have a maximum 

understanding of the processes, in particular when the aim of the analysis is a 

‘mapping’. This can be easily achieved as most methods can be based on the same 

sampling design. Figure II.6 shows a decision tree based on the computational cost and 

learning curve of performing a sensitivity analysis. Explanation for each field is given 

below. The decisions are based on the most widely agreed approaches.



 

 

Figure II.6: Decision tree to choose a sensitivity analysis method 
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Explanation of fields 

Can the  model be run easily multiple times? 

The model can be executed externally e.g. from another programming language without the 

use of a Graphical User Interface. The model output is parsed back or the output files are 

sufficiently documented so they can be read from an external controller (e.g. another 

programming language) 

Model structure is 'simple' e.g. Manning equation 

No numerical analysis or complex direct solution schemes are required to compute these 

equations.  

In depth model knowledge 

The user is greatly familiar with the model and has used it many times before 

Model has many areas of numerical instability 

For many parameter sets, the model does not converge to a solution. ‘Many’ has to be defined 

in respect to the model run time and the number of model parameters. 

Model has a long runtime and / or many parameters 

The more parameters a model has the more runs are necessary to describe the response 

surface adequately.  

The question about the sample dimension depends highly on the type of model used and 

should be based on previous experience. In general, a few hundreds/one thousand of model 

runs is in many cases sufficient for deriving useful information about the most important 

model characteristics. This is due to the fact that there is always an upper bound to the 

number of important input factors. This implies that there is always a small subset of input 

factor (usually not larger than 10) that produce most of the output variation, which makes the 

‘effective’ dimension of the problem much smaller than the k-dimensional input space 

considered by the modeller. As a very bold statement, we argue that a model with more than 

20 parameters and an execution time of more than 10 minutes should be considered as 

computing intensive (if executed on a single CPU).  

5. Uncertainty analysis 

 

One definition for uncertainty analysis is ´the means of calculating and representing the 

certainty with which the model results represent reality´. The important questions one should 

consider are whether prior theory adequately matches observed behaviour and whether the 

predictions obtained from models are meaningful and useful (Beck, 1987). 

The difference between the model results and reality arises from: 

• uncertainty of the values of the parameters that appear in the identified structure of the 
dynamic model for the system behaviour; model parameter error (ε1) 
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• uncertainty of the model structure, i.e. uncertainty about the relationships among the 
variables characterising the dynamic behaviour of systems and uncertainty associated 

with predictions of the future behaviour of the system; model structure error (ε2) 

• numerical errors, truncation errors, rounding errors and typographical mistakes in the 
numerical implementation (ε3) 

• boundary condition uncertainties (ε4) 

• sampling errors (i.e. the data not representing the required spatial and temporal 
averages) (ε5) 

• measurement errors (ε6) 

• human reliability, human mistakes (ε7) 

 

The model inputs can have errors ε4, ε5 and ε6, while calibration data only can have errors ε5 

and ε6. An error-free model should have results that equate error-free observations and 

therefore we can summarise the relationship between the actual model results and the actual 

observations by 

 

It is the goal of the modeller to achieve an error free model by reducing the errors (ε1-ε4). 

However, the model structure errors ε2, numerical errors ε3, and the boundary condition 

errors ε4 are difficult to control by the modeller. So the aim becomes to compensate as far as 

possible for ε2-ε4 by identification of the optimum effective parameter values. As such the 

best parameter estimates compensate for the other errors.   

As a result, uncertainty analysis in water quality modelling mainly focussed on model 

parameter variability (Schnoor, 1996). Recently also the other errors gain more attention, this 

mainly driven by the problem of ungauged basins and how to deal with all the different 

sources of uncertainty to produce a model for such basins which gives results with realistic 

uncertainty bounds. It would also be ideal if one could come up with the magnitude of 

different uncertainty causes in view of reducing those uncertainties by additional 

measurements or ameliorations to model structure.  

In the next section, the different methods will be given with the pro’s and contra’s and with 

indication of which uncertainty can be detected with the method. 

In order to quantify uncertainty, the distribution of model inputs should be propagated 

through the model to obtain distributions on model outputs. Propagation techniques may be 

analytical, approximation, or numerical. 

 

 

7654321 εεεεεεε −−−=−−−− OM
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5.1. Analytical propagation techniques 

 

For simple models in which the output is a function of a linear combination of model inputs 

with no dependency, the propagation of probability distributions through the model is 

straightforward. For such cases the Central Limit Theorem (CLT) can be used. CLT can be 

stated in a variety of ways. One way is the application of the CLT for the sum of independent 

random variables. The distribution of the sum of independent random variables approaches a 

normal distribution as the number of random variables becomes large (De Groot, 1986). It is 

not required to assume a specific shape for the probability distribution for each of the 

variables in the sum. The CLT for the sum of independent variables can be summarized as: 
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where sµ is the mean of the sum and ix ,µ are the means of each of the variables being added 

together. The variance of the sum is equal to the sum of the variances: 

( ) ( )
2

1

,

2 ∑
=

=
n

i

ixs σσ  

The same approach can be used for models with log normal distributional input, using a 

logarithmic transformation. 

Advantages. Analytical propagation techniques based on the CLT are straightforward and 

easy to implement to simple models in which the model output is a linear sum or products of 

model inputs. 

Disadvantages. Although the results of the CLT approach are useful in some cases for 

propagating the mean and the variance through a simple linear model, they do not imply 

anything about the shape of the model output distribution (Cullen and Frey, 1999). Moreover, 

the implications of the CLT are relevant only if the conditions of the CLT exist for a 

particular situation. Thus, if a model contains both products and sums of inputs, or for which 

some of the inputs are dominant over others, or for which some of the inputs are not 

statistically independent, the analytical propagation techniques based on the CLT cannot be 

used. 

5.2. Approximation methods based upon Taylor series 

 

There are a number of methods based upon the use of the Taylor series expansions for 

propagating the mean and other central moments of random variables through a model. The 

basic approach is to take a general function, such as: 

( )
nxxxhy ,...,, 21=  

and then expand the function about the point [E(x1), E(x2), …, E(xn)] using a multivariate 

Taylor series expansion. The series is usually truncated at a specified set of higher order 
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terms. For example, the mean of the output distribution, E(y), can be approximated by the 

following Taylor series expansion (Hahn and Shapiro, 1967): 
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The function h and the partial derivatives on the right side are evaluated at the point [E(x1), 

E(x2), …, E(xn)] and . The variance of the model output, 2

yσ , of statistically independent 

random variables, is approximated by the following: 
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where, ( )
ix3µ  is the third central moment of each input random variable. 

Advantages. Based upon a sufficient number of central moments for a model output, it may 

be possible to select a parametric probability distribution model that provides a good 

representation of the output distribution (Cullen and Frey, 1999). Once a parametric 

distribution of the output is specified, predictions can be made regarding any percentile of the 

model output. Thus, as an advantage of approximation methods based upon Taylor series, it 

may only be necessary to propagate the moments of each probability distribution of the model 

inputs instead of the entire probability distribution. 

Disadvantages. Approximation methods based on Taylor series typically have three major 

limitations (Cullen and Frey, 1999). First, as a primary limitation in application of these 

techniques, the model function should be differentiable. Therefore, these methods cannot be 

applied to problems with discrete or discontinuous behaviours. Second, these methods are 

computationally intensive as they typically require the evaluation of second order (and 

potentially higher) derivatives of the model. Third, although these techniques are capable of 

propagating the central moments of the input distributions, information regarding the tails of 

the input distributions cannot be propagated. In environmental exposure and risk assessment 

problems where the shape of the tails is critical, this limitation can be problematic. 

5.3. Numerical propagation techniques 

 

The most common techniques for numerical propagation of uncertainty are sampling-based 

methods. Some of the sampling-based methods for propagating probability distributions are: 

(1) Monte Carlo and Latin Hypercube Sampling methods; and (2) the Fourier Amplitude 

Sensitivity Test (FAST); and (3) reliability based methods. 

 

Monte Carlo Simulation 

In Monte Carlo simulation, a model is run repeatedly, using different values for each of the 

uncertain input parameters each time (Ang and Tang, 1975; Hahn and Shapiro, 1967; Morgan 

and Henrion, 1990). The values of each of the uncertain inputs are generated based on the 

probability distribution for the input. With many input variables, one can envision Monte 
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Carlo simulation as providing a random sampling from a space of m dimensions, where m is 

the number of inputs to a model. 

As a general approach for applying Monte Carlo simulation to a model, for each input a 

probability distribution should be specified. Random samples are generated from each of the 

probability distributions. One sample from each input distribution is selected, and the set of 

samples is fed into the model. The model is then executed, as it would be for any 

deterministic analysis. The process is repeated until the specified number of model iterations 

has been completed. Thus, instead of obtaining a single number for model outputs as in a 

deterministic simulation, a set of samples is obtained. These can be represented as cumulative 

distribution functions (CDFs) and summarized using typical statistics such as mean and 

variance. Most numerical simulation methods, including random Monte Carlo, require the 

generation of uniformly distributed random numbers between 0 and 1 (Cullen and Frey, 

1999). Given a uniformly distributed random variable, several methods exist from which to 

simulate random variables that are described by other probability distributions (e.g., normal, 

lognormal, and gamma). These methods include the inverse transformation, composition, and 

function of random variables (e.g., (Ang and Tang, 1975)). In addition methods exist for 

simulation of jointly distributed random variables, which enables one to represent correlations 

between two or more simulated random variables. 

 

• Advantages. Advantages of Monte Carlo methods in propagating probability distributions of 

inputs flow from the fact that their output provides more information compared to analytical 

and approximate methods. Moreover, because Monte Carlo methods provide a probability 

distribution of the output, they avoid the problem of compounding conservative values of 

input variables and obtaining only worst case scenario’s (Burmaster and Harris, 1993). 

Additional advantages follow from the information provided by Monte Carlo simulation. For 

example, results based on Monte Carlo simulations can typically also be used for sensitivity 

analysis, permitting the risk assessors to determine where additional data will be most useful 

in reducing uncertainty (Finley and Paustenbach, 1994). 

• Disadvantages. Because Monte Carlo simulation requires multiple iterations of a model, 

such simulations can be computationally intensive if the model requires a large run time per 

simulation. Furthermore, depending on the data quality objectives of the analysis, it may be 

necessary to perform a large number of simulations. Sample sizes of more than 1000 are most 

of the time already too time consuming.  

Although not a limitation of the method itself, in practice results based on Monte Carlo 

simulations are easy to misuse by stretching them beyond the limits of credibility. For 

example, problems can arise when inexperienced analysts use commercial simulation 

packages due to ease of application and lack of familiarity with underlying assumptions and 

restrictions. Typical misapplications of Monte Carlo simulation include failure to properly 

develop input distributions and misinterpretation or over-interpretation of results. For 

example, it is not possible to have a precise estimate of an upper percentile of an output 

distribution without a large simulation sample size. 
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Latin Hypercube Sampling Methods 

An alternative to random Monte Carlo simulation is Latin Hypercube Sampling (LHS) 

(McKay et al., 1979). In LHS methods, parameter ranges are first divided into ranges of equal 

probability, and one sample is taken from each equal probability range. However, the order of 

samples is typically random over the course of the simulation, and the pairing of samples 

between two or more random input variables is usually treated as independent. In median 

LHS, one sample is taken from the median of each equal-probability interval, while in random 

LHS one sample is taken at random within each interval (Morgan and Henrion, 1990). 

• Advantages. LHS typically has the same advantages as Monte Carlo simulation. 

Furthermore, LHS ensures better coverage of the entire range of the distribution. Because the 

distributions are more evenly sampled over the entire range of the probable values in LHS, the 

number of samples required to adequately represent a distribution is lower for LHS compared 

to random Monte Carlo simulation (Iman and Conover, 1982; McKay et al., 1979; Morgan 

and Henrion, 1990). Moreover, compared to Monte Carlo simulation, LHS reduces the 

statistical fluctuation in simulations of random variables for a given sample size (Cullen and 

Frey, 1999). 

• Disadvantages. Because LHS is not random in pairing of values of the input random 

variables, it is not practical to use LHS to characterize the effect of statistical sampling error 

using the bootstrap technique (Cullen and Frey, 1999) With the bootstrap, the observations 

need to be randomly reassigned, and estimates recomputed. There are specific situations in 

which median LHS cannot provide correct results, such as when sampling from a periodic 

function if the sample intervals are spaced with the same period (Morgan and Henrion, 1990), 

but this is a rare problem in practice. 

 

Fourier Amplitude Sensitivity Test  

FAST has been developed for uncertainty and sensitivity analysis (Cukier et al., 1973; Cukier 

et al., 1978; Schaibly and Shuler, 1973). The FAST method applies a functional 

transformation to each input, assigns each input a distinct integer frequency, and introduces a 

common independent variable to all inputs (Cukier et al., 1978; McRae et al., 1982a). The 

inputs vary simultaneously with this independent variable in such a way that output becomes 

a periodic function of the independent parameter. Fourier analysis is performed on the output, 

which produces Fourier amplitudes for each frequency. FAST provides a way to estimate the 

expected value and variance of the output variable and the contribution of individual factors 

to this variance (Saltelli et al., 2000). See also literature section II.4 on SA. 

• Advantages. The FAST method is superior to local sensitivity analysis methods 

because it can apportion the output variance to the variance in the inputs. It also can be used 

for local sensitivity analysis with little modification (Fontaine et al., 1992). It is model 

independent and works for monotonic and non-monotonic models (Saltelli et al., 2000). 

Furthermore, it can allow arbitrarily large variations in input parameters. Therefore, the effect 

of extreme events can be analyzed (eg. Helton, 1993; eg. Lu and Mohanty, 2001). The 

evaluation of sensitivity estimates can be carried out independently for each factor using just a 
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single set of runs (Saltelli et al., 2000). The FAST method can be used to determine the 

difference in sensitivities in terms of the differing amount of variance in the output explained 

by each input and, thus, can be used to rank order key inputs. 

• Disadvantages. The FAST method suffers from computational complexity for a large 

number of inputs. The classical FAST method is good only for models with no important or 

significant interactions among inputs (Saltelli and Bolado, 1998). However, the extended 

FAST method developed by Saltelli et al., (1999) can account for high-order interactions. The 

reliability of the FAST method can be poor for discrete inputs (Saltelli et al., 2000). Current 

software tools for FAST are not readily amenable to application to complex risk assessment 

models. 

 

Reliability Based Methods (FORM and SORM)  

First order reliability methods, also known as FORM, estimate the probability of an event 

under consideration. FORM can provide the probability that an output exceeds a specific 

value, also known as probability of failure (Hamed et al., 1995; Karamchandani and Cornel, 

1992; Lu et al., 1994). The failure probability can be expressed by: 
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where, iµ and 2

iσ are the mean and variance of input ix . Various methods have been suggested 

to improve the accuracy of FORM calculations and to give a rough estimate of the quality of 

approximation. The second order reliability method (SORM) uses second-order terms in 

estimation of the mean and variance of the output, and hence, provides more accuracy 

(Fiessler et al., 1979). 

• Advantages. FORM and SORM typically require only the knowledge of the moments of 

component reliabilities, that is, no distribution function must be specified. Moreover, 
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generation of random numbers is not required; therefore, there is no sampling error in 

propagation. Finally, they can be applied to dependent as well as correlated inputs, although 

the equations for dependent variables would be more difficult to derive due to their 

complexity. 

• Disadvantages. FORM and SORM are approximate and a finite error is associated with the 

use of only up to first and second order terms, respectively. Furthermore, the accuracy of 

these methods is not readily quantifiable. 

5.4. Comparison of selected methods for propagation of probability distributions of 

inputs 

 

The ideal method(s) for propagation of probability distributions of inputs should: (1) not be 

dependent on the functional form of the model; (2) provide insight regarding the entire range 

of the output distribution; (3) require few iterations of the model; (4) not only propagate the 

probability distributions, but also provide insights regarding sensitivity of the model output to 

the inputs; and (5) be typically available in commonly used software packages. Based on the 

discussions provided for advantages and disadvantages of typical methods for propagation of 

probability distributions of inputs, sampling based numerical methods including Monte Carlo 

simulation and LHS are preferred. These methods can be used for a wide variety of models 

and can accommodate a wide variety of assumptions regarding input distributions. 

Furthermore, these methods enable characterization of the probability distribution for the 

model output. The sample values generated as part of a Monte Carlo or Latin hypercube 

simulation can be used as the basis for sensitivity analysis with a wide variety of sensitivity 

analysis methods. Both of these methods are commonly available and are widely used. The 

main potential disadvantage is the need for repeated iterations of a model. As computing 

power increases, this limitation typically decreases in practice.  

6. Optimal experimental design for parameter estimation 

 

Quantitative measurements are needed to calibrate and to statistically assess the performance 

of a proposed mathematical model describing the system under investigation. To successfully 

identify model structure and reliably estimate model parameters, an experimental design can 

be used because it can drastically improve the estimation accuracy. In this dissertation, model 

structure uncertainty is not discussed, so this subject is also left out in this section. Since 

quantitative time-resolved measurements are time and cost intensive, improvements and 

measurements will reduce the experimental costs needed to achieve a prespecified accuracy. 

In this section an overview of different techniques to design experiments that give the most 

valuable information for parameter estimation is given. First a distinction is made between 

structural and practical identifiability of the parameters. Then the methods that are commonly 

used in optimal experimental design (OED) are described and at the end of this section the 

studies that for now exist about OED in hydrological modelling are presented.  
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6.1. Structural versus practical identifiability 

 

It is important to differentiate between structural and practical identifiability of parameters 

because a structurally unidentifiable parameter will not benefit from any optimal experimental 

design technique whereas practically unidentifiable parameters can become better identifiable 

with a good measurement set-up. Hence, in such case, optimal experimental design 

techniques can therefore be applied. 

For the analysis of structural identifiability a known model structure with perfectly noise-free 

data should be considered (Dochain and Vanrolleghem, 2001). The question to be answered is 

whether in that case it is evident that all parameters in the model are identifiable. Consider for 

instance the following simple equation: y = ax1 + bx2 + c(x1 + x2), where x1 and x2 are two 

variables, y is the measured variable and a, b and c are the model parameters. From this 

simple example it is obvious that only the parameter combinations (a+c) and (b+c) can be 

identified unless the value of one of them is a priori known. When a model has parameters 

that theoretically can be determined uniquely from a noise-free data set, one says the model 

parameters are structurally identifiable. For linear equations it seems an easy task to decide 

whether or not the parameters can be identified from the structural point of view. Despite this 

a number of different tests for parameter identifiability were developed for linear models. An 

overview of these different methods is given in (Godfrey and Distefano, 1985). For models 

that are non-linear in the parameters the problem is a lot more complex. In this case several 

structural identifiability tests exist, but they are usually very complex (Dochain et al., 1995).  

While the structural identifiability is studied under the assumption of perfect, i.e. noiseless data, the 

problem of highly correlated parameters arises when a limited set of experimental, noise-corrupted 

data is used for parameter estimation. Under such conditions the uniqueness of parameter estimates 

predicted by the theoretical analyses, may no longer be guaranteed, because a change in one parameter 

can be compensated almost completely by a proportional shift in another one, still producing a 

satisfying fit between experimental data and model predictions. In addition, the numerical algorithms 

that perform the non-linear estimation show poor convergence when faced with this type of ill-

conditioned optimization problems, the estimates being very sensitive to the initial parameter values 

given to the algorithm (Dochain and Vanrolleghem, 2001). The practical identifiability not only 

depends on the noise level of the data, but also depends on the experimental conditions themselves. 

Practical identifiability is thus related to the quality of the data and is related to their information 

content, i.e. whether or not the available data are informative enough to identify the model parameters 

accurately. Holmberg (1982) shows that the practical identifiability of Monod parameters from batch 

experiments depends on the chosen initial substrate concentration. The author states that the optimal 

initial substrate concentration depends not only on the noise level of the data but also on the sampling 

instants. De Pauw (2003b) performed optimal experimental design for calibration of bioprocess 

models. Vanrolleghem et al. (1995) performed research to improve the practical identifiability of a 

biokinetic model of activated sludge respiration. For river water quality modelling Reichert and 

Vanrolleghem (2001) presented a technique based on the sensitivity ranking and the collinearity index 

which allows to find practical identifiable subsets of parameters for the River Water Quality Model 1 

(RWQM1) (Reichert et al., 2001a). 
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6.2. Optimal experimental design to maximize the practical identifiability of 

parameters 

 

The quality of a model calibration can be evaluated by analysing the parameter estimation 

error covariance matrix C (Equation 1).  

 

( ) ( )
( )

( ) 



















=

2

2

2

,cov

,cov

,cov,cov

ni

jji

nijii

n

C

θ

θ

θ

σθθ

σθθ

θθθθσ

OM

L

 (1) 

 

This matrix is calculated by several parameter estimation algorithms and can also be 

estimated using different techniques (Dochain and Vanrolleghem, 2001). The diagonal 

elements are the variances of the parameter estimates and the off-diagonal elements are the 

covariances between the different parameters. The parameter estimation covariance matrix 

can be used to calculate confidence intervals, confidence regions and parameter correlations. 

Small variances will result in small confidence regions and thus more accurate parameter 

estimations. 

The quality of the model calibration largely depends on the quality of the available data and 

thus on the design of the experiment which was used to obtain the data. Poorly designed 

experiments result in poor data and will obviously result in poorly estimated parameters (large 

variances or strong correlations). Designing experiments is a difficult task and is often 

performed without a clear strategy. This is due to the large amount of choices that can be 

made and experimental constraints that have to be met when designing an experiment. These 

choices and constraints include (De Pauw and Vanrolleghem, 2003b): 

• Resources, including experimentation time and expenses, might be limited. 

• Which measurements have to be performed? 

• Which measuring frequencies can or have to be used? 

• Where should the measurements be performed? 

• Which experimental manipulations should be performed (e.g. temperatures, flow rates, 
…) and what are the constraints for these manipulations? 

In order to design an experiment that will produce high quality data required for an accurate 

model calibration, optimal experimental design for parameter estimation (OED-PE) can be 

used. This is a mathematical technique, which provides a solution to the complex problem of 

constrained choices resulting in an optimal experiment. The basis of OED-PE is the Fisher 

Information Matrix (FIM) which under certain conditions (uncorrelated white measurement 
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noise), gives the lower bound of the parameter estimation error covariance matrix according 

to the Cramer-Rao inequality (Ljung, 1999; Walter and Pronzato, 1999): 

 

                                                ( ) 1−≥ FIMC θ                                                                 (2) 

6.2.1. Fisher information matrix 

The Fisher Information Matrix (Equation 3) summarises the information content of a certain 

experiment (Bard, 1974). Two sources of information are considered in its definition: 

sensitivity functions and measurement error. The summation of these two terms is made at 

each measurement point (i=0 . N). 
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Sensitivity functions indicate how sensitive a certain variable (y) is with respect to a certain 

parameter (θ). Mathematically this is expressed as the partial derivative of the variable to the 

parameter (∂y/∂θ). A variable is said to be sensitive if small changes in the parameter produce 
significant changes in the variable.  This is explained in the literature chapter “sensitivity 

analysis”.  

The second source of information in the FIM is related to the measurement error, which is 

expressed as a (time-varying) measurement error covariance matrix (Q). This matrix contains 

the measurement errors and correlations between the measurements. Measurements with large 

measurement error will obviously contribute less to the information content of the experiment 

than measurements with small measurement error. 

As already discussed, the FIM is the inverse of the parameter estimation error covariance 

matrix (Equation 2). This relationship is illustrated in Figures II.7a and II.7b for a 2 parameter 

estimation problem. These figures represent the confidence regions of two parameters (θ1 and 

θ2). The size, shape and orientation of the confidence ellipse are determined by the 
eigenvalues and eigenvectors of the FIM. The largest axis of the confidence ellipse is 

inversely proportional to the square root of the smallest eigenvalue (λmin), while the smallest 

axis is inversely proportional to the square root of the largest eigenvalue (λmax). In this way 

properties of the FIM determine the properties of the confidence region and thus the accuracy 

of the parameter estimates.  

The information content of the experiment can be evaluated in different means by considering 

different properties of the FIM. All of these criteria are based on the shape of the confidence 

region of the parameters.  Actually, each parameter obtained from a parameter estimation 

procedure is situated within a confidence region. For linear models and for one parameter this 

will be a symmetric interval, for two parameters the confidence region will be an ellipse, 
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whereas for n parameters the confidence region will be an n-dimensional ellipsoid. The 

volume of this ellipsoid is proportional to the inverse of the determinant of the FIM (Walter 

and Pronzato, 1999). Following criteria exist: 

D-optimal criterion (i.e. the volume criterion) 

Optimising this criterion will select for the experimental conditions that will minimize the 

volume of the ellipsoid.  This volume is inversely proportional to the determinant of the FIM, 

i.e. the product of its eigenvalues. Maximizing the determinant of the FIM physically means 

minimizing the geometric average of the errors on the parameter values. 

E-optimal criterion (i.e. the shape criterion) 

With this criterion experimental conditions will be selected for which the longest axis of the 

confidence ellipsoid is shortest, which is equivalent to maximizing the smallest eigenvalue of 

the FIM. 

Modified E-optimal criterion 

This criterion is a slight modification of the above criterion, i.e. instead of only taking into 

account the smallest eigenvalue, the ratio of the largest to the smallest eigenvalue will be 

minimized.  This ratio expresses the stiffness of the FIM. The more important the stiffness 

becomes, the more difficult it becomes to invert the matrix until finally a singular matrix is 

obtained i.e. complete correlation between two parameters exist.. The modified E-optimal 

criterion will thus give rise to a FIM that is as far away as possible from singularity. The 

modified E design criterion aims at reducing parameter correlations by getting the shape of 

the confidence region as close to a circle as possible. This is illustrated in Figure II.7b. The 

best value one can obtain for the modified E criterion is 1, and this has been achieved. 

However, one must be aware that such optimum only guaranties the confidence region is a 

circle, but it can be a very large circle (Dochain and Vanrolleghem, 2001). 

Modified A-optimal criterion 

This criterion will maximize the trace of the FIM, i.e. it allows maximizing the sum of the 

eigenvalues of the FIM. Physically this criterion will minimize the arithmetic mean of the 

error on the parameter estimates and assures there is no problem if the FIM is singular.. 

A-optimal criterion 

This criterion will minimize the trace of the inverse of the FIM. Physically this criterion will, 

as with the modified A-optimal criterion, minimize the arithmetic mean of the error on the 

parameter estimates. 

Table II.3 lists these criteria. The D- and A-optimal design criteria aim at minimizing the 

volume of the confidence ellipse. This is illustrated in Figure II.7a. Bard (1974) shows that 

the D-optimal criterion is best suited as design criterion for parameter estimation.  
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Figure II.7a-b: Effect of different FIM design criteria (D-criterion: left, Modified E criterion, 

right) on the size and shape of the parameter confidence region 

 

Table II.3: Different optimal design criteria based on FIM properties 

Name Criterion 

A-optimal design min[tr(FIM
-1
)] 

Modified A-optimal design max[tr(FIM)] 

D-optimal design max[det(FIM)] 

E-optimal design max[λmin(FIM)] 

Modified E-optimal design min[λmax(FIM)/λmin(FIM)] 

tr(): sum of eigenvalues; det(): product of eigenvalues 

 

6.2.2. Calculation of the FIM 

For the practical implementation of the OED, it is necessary to calculate the value of the FIM 

for each proposed experiment. To calculate the elements of the FIM the sensitivity functions 

have to be calculated. These sensitivity functions can be calculated analytically, which is a 

laborious task, or the calculations can be based on a numerical approximation. In the latter 

case model predictions are calculated where for each simulation run a single parameter is 

perturbed slightly from its optimal value. This is only one of the possibilities (see literature 

chapter about SA).  As such, at each measurement time instant a number of model predictions 

are available corresponding to the number of parameters plus one.  To obtain the 

approximated value for the sensitivities, the difference is made between the slightly perturbed 

predictions and the nominal model predictions. Dividing this difference by the perturbation of 

the parameter gives the sensitivity.  This calculation has to be performed for each response 

(yk), for all parameters (θp) at each time instant (tn). The accuracy of the numerical 

approximation largely depends on the magnitude of the parameter perturbation (De Pauw and 

Vanrolleghem, 2003a). It is suggested to verify the results by calculating the matrix using a 

fixed parameter perturbation and subsequently recalculating the matrix using a parameter 

perturbation half the previous one or to use a perturbation factor.  If no difference is noticed in 

the sensitivities, the fixed value is used for all subsequent calculation. Unfortunately, both 

methods, analytically and numerically are still (computer) time consuming. Indeed, as 

indicated above, for every measurement point (i.e. time) the change in the value of the 

(a) (b) 
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response (y) has to be calculated for a small change in the parameters, and this for all 

parameters. 

Fortunately, calculation of the FIM can be performed using a third method.  Indeed, the 

elements of the FIM are the elements of the inverse of the covariance matrix of the parameter 

estimates (Godfrey and Distefano, 1985). This covariance matrix can typically be obtained 

from mathematical parameter estimation algorithms (for theoretical background on the 

calculation of the covariance matrix, see chapter “Materials and Methods”). In the 

"covariance method" for the optimal experimental design of experiments, the steps between 

simulating the experiment and evaluating the objective functional are different. For the 

covariance method, experimental data including noise have to be generated. Therefore noise 

is added to the simulated data. These "created" concentration profiles are then used as virtual 

experimental data and used as input data for parameter estimation. From the parameter 

estimation algorithm also the covariance matrix is obtained. This matrix can then be inverted 

to obtain the FIM. This procedure has to be repeated for each possible next experiment. The 

possible ways for the calculation of the FIM are given schematically in figure II.8. 

Figure II.8: Possible ways to identify the FIM and calculate the objective functional (from Baetens 

(2000)) 

6.3. Iterative optimal experimental design procedure 

 

Before starting experimental design, a preliminary model should be available. Parameter 

values can be obtained from literature or when no literature values are available, initial 

parameter values can be based on at least one experiment, i.e. an initial experiment has to be 

performed.  With parameter estimation algorithm an initial set of parameter values is 

obtained. 

Based on the current model an experiment is proposed by choosing certain experimental 

degrees of freedom. This experiment is then simulated on the computer and an objective 
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function is evaluated. Typically this objective function is a design criterion from the Fisher 

Information Matrix (table II.3) which summarizes the information content of the proposed 

experiment and is also a measure for the accuracy of the parameter estimates (in case this 

experiment would be performed in reality and the model would be fitted to the acquired data). 

A (non-linear) optimisation algorithm can be used to propose different experiments ( from the 

experimental degrees of freedom and within the experimental constraints and find an 

“optimal” experiment in the sense that it for instance maximizes the parameter estimation 

accuracy and/or minimizes parameter correlations. 

Once the “optimal” experiment is found it can be performed in reality. Based on the data of 

this experiment the model can be refitted and the accuracy of the parameter estimates 

evaluated. If the required accuracy is not yet reached another iteration can be performed, 

leading to an even better “optimal” experiment (figure II.9). Finally, a calibrated model is 

available for its intended use. 

 

 

Figure II.9: General procedure for optimal experimental design (from Dochain and Vanrolleghem, 

2001) 

6.4. OED in hydrology 

 

At the moment only a limited number of studies in the domain of hydrology have addressed 

the problem of designing experiments by which more informative data can be collected.  

In 1983, Szidarovsky (1983), dealt with the optimal location problem for measuring water 

quality for a single experimental point, and extended this to a second, third and fourth design 

which pertains to the case of multiple additional points. For the second and third case, an 

optimal regular observation network was designed to minimize the uncertainty of the 

estimation process subject to either the given number of additional data, or an upper bound for 
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the cost of the additional data. In the fourth case, the number or cost of additional points was 

minimized subject to bounded uncertainty conditions. Finally, a numerical example was used 

to illustrate the models and algorithms.  

A second interesting study was performed by Casman et al. (1988). They describe optimal 

experimental design for river water quality modelling. In their case the boundary conditions 

and parameters are not exactly known and they show how sequential design is needed. They 

illustrated the methods on a simple Streeter-Phelps model.   

Tung and Hathorn (1989) performed a study to determine critical locations in a stochastic 

stream environment. They defined as criteria the variance of dissolved oxygen (DO) deficit 

and so the probability of violating specified DO standards and took measurements at the place 

associated with the maximum value of their respective functions. Also here again the 

mathematical model is restricted to the simple Streeter Phelps model. 

More recent research in the field of hydrology is performed on the determination of good 

measurements for specific parameters. In this context one can find the optimal experimental 

design for dispersion experiments by Agunwamba (2002). Their design helps to determine the 

dispersion coefficient more accurate. Research on optimal experimental design is also done 

for parameter estimation in column outflow experiments (Altmann-Dieses et al., 2002).  

Experimental conditions, such as irrigation schemes, substance concentrations, and sampling 

schemes lead to an intricate, nonlinear, constrained optimization problem that is solved by a 

direct approach based on a structured sequential quadratic programming (SQP) method. 

Another recent study was performed by Catanai et al. (2004) in which an estimation is done 

of the, longitudinal and transversal dispersivity coefficients, from a soil column experiment. 

The dispersivity coefficient is an important parameter for groundwater modelling.  

Most of the research on optimal experimental design was done around the late 80’s but 

apparently this kind of research was not extended and was not applied on real studies. 

Possible explanation of this phenomenon is the large computational need for the calculation 

of optimal experimental design for environmental systems. Simple and theoretical concepts 

could be checked but the more complex models with inclusion of natural variability in the 

experimental conditions could not be examined.  
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CHAPTER III: MATERIALS AND METHODS 

1. Software for calibration, optimisation, sensitivity and uncertainty 

analysis 

1.1. Pest  

 

PEST is a software for model-independent parameter estimation and uncertainty analysis 

(Doherty, 2000). The purpose of PEST (which is an acronym for Parameter ESTimation) is to 

assist in data interpretation, model calibration and predictive analysis. One can use PEST 

when model parameters and/or excitations need to be adjusted until model-generated numbers 

fit a set of observations as closely as possible, provided certain continuity conditions are met.  

PEST is able to "take control" of a model, running it as many times as it needs to, while 

adjusting its parameters until the discrepancies between selected model outputs and a 

complementary set of field or laboratory measurements is reduced to a minimum in the 

weighted least squares sense. Using PEST has two main advantages over other packages for 

parameter estimation. First, it doesn’t have the difficulty that normally one needs to partially 

recode the model under consideration or programming tasks are needed in order to 

communicate with an estimation program; this usually involves recasting the model as a 

subroutine which is then called by the estimator each time it needs to run the model. PEST 

communicates with the model through the model's own input and output files. The only 

requirements for the “model” are that it can be run from the command line and that it reads 

and write ASCII files. Secondly, it makes use of a particularly robust variant of the Gauss-

Marquardt-Levenberg method for nonlinear parameter estimation, so the performance of the 

estimator is not degraded when optimizing parameters for large numerical models, or for the 

sometimes-complex models used for simulating environmental processes. 

1.1.1. The parameter estimation algorithm 

For linear models (ie. models for which observations are calculated from parameters through 

a matrix equation with constant parameter coefficients), optimisation can be achieved in one 

step. However for nonlinear problems (most models fall into this category), parameter 

estimation is an iterative process. At the beginning of each iteration the relationship between 

model parameters and model-generated observations is linearised by formulating it as a 

Taylor expansion about the currently best parameter set; hence the derivatives of all 

observations with respect to all parameters must be calculated. This linearised problem is then 

solved for a better parameter set, and the new parameters tested by running the model again. 

By comparing parameter changes and objective function improvement achieved through the 

current iteration with those achieved in previous iterations, PEST can tell whether it is worth 

undertaking another optimisation iteration; if so, the whole process is repeated.  

Unless a model can calculate them itself, derivatives of observations with respect to 

parameters must be calculated by PEST using finite differences. During every optimisation 

iteration the model is ran once for each adjustable parameter, a small user-supplied increment 
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being added to the parameter value prior to the run. The resulting observation changes are 

divided by this increment in order to calculate their derivatives with respect to the parameter. 

This is repeated for each parameter. This technique of derivatives calculation is referred to as 

the method of “forward differences”.  

Derivatives calculated in this way are approximate. If the increment is too large the 

approximation will be poor; if the increment is too small, the round-off errors will reduce the 

quality of the derivatives accuracy. Both of these effects will degrade optimisation 

performance. To combat the problem of derivatives inaccuracy, PEST allows derivatives to be 

calculated using the method of “central differences”. Using this method, two model runs are 

required to calculate a set of observation derivatives with respect to any parameter. For the 

first run an increment is added to the current parameter value, while for the second run the 

increment is subtracted. Hence three observation-parameter pairs are used in the calculation of 

any derivative (the third pair being the current parameter value and corresponding observation 

value). The derivative is calculated either by (i) fitting a parabola to all three points, (ii) 

constructing a best-fit straight line for the three points or (iii) by simply using finite 

differences on the outer two points (the user can choose).  

PEST can make the switch from the forward difference method to the central difference 

method automatically according to a criterion, which is supplied to it prior to the 

commencement of the run.  

1.1.2. Non-linear parameter estimation 

Let the relationships between parameters and model-generated observations for a particular 

model be represented by the function M which maps the n-dimensional parameter space into 

the m-dimensional observation space. Suppose that for the set of parameters comprised in the 

vector b0 the corresponding set of model-calculated observations (generated using M) is c0, ie.  

c0 = M(b0)   (1)  

Now to generate a set of observations c corresponding to a parameter vector b that differs 

only slightly from b0, Taylor’s theorem tells that the following relationship is approximately 

correct, the approximation improving with proximity of b to b0:  

c = c0 + J(b - b0)   (2)  

where J is the Jacobian matrix of M, ie. the matrix comprised of m rows (one for each 

observation), the n elements of each row being the derivatives of one particular observation 

with respect to each of the n parameters. To put it another way, Jij is the derivative of the i’th 

observation with respect to the j’th parameter. Equation 2 is a linearisation of equation 1.  

To derive a set of model parameters for which the model-generated observations are as close 

as possible to our set of experimental observations in the least squares sense, i.e. to determine 

a parameter set for which the objective function Φ defined by  

Φ = (c - c0 - J(b - b0))
t
Q (c - c0 - J(b - b0))   (3)  
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is a minimum, with Q the weighing matrix for the observations and where c in equation 3 now 

represents the experimental observation vector, the parameter upgrade vector (b - b0) can be 

calculated on the basis of the vector (c - c0) which defines the discrepancy between the model-

calculated observations c0 and their experimental counterparts c. Denoting u as the parameter 

upgrade vector, the vector u which minimises Φ of equation 3 is given by  

u = (J
t
QJ)

-1
J
t
Q(c - c0)    (4)  

and the parameter covariance matrix becomes  

C(b) = (J
t
QJ)

-1    
(5)  

The linear equations represented by the matrix equation 4 are often referred to as the “normal 

equations”. The matrix (J
t
QJ) is often referred to as the “normal matrix”.  

Because equation 2 is only approximately correct, so too is equation 4; in other words, the 

vector b defined by adding the parameter upgrade vector u of equation 4 to the current 

parameter values b0 is not guaranteed to be that for which the objective function is at its 

minimum. Hence the new set of parameters contained in b must then be used as a starting 

point in determining a further parameter upgrade vector, and so on until, hopefully, we arrive 

at the global Φ minimum. This process requires that an initial set of parameters b0 be supplied 

to start off the optimisation process. The process of iterative convergence towards the 

objective function minimum is represented diagrammatically for a two-parameter problem in 

figure III.1.  

It is an unfortunate fact in working with nonlinear problems that a global minimum in the 

objective function may be difficult to find. For some models the task is made no easier by the 

fact that the objective function may even possess local minima, distinct from the global 

minimum. Hence it is always a good idea to supply an initial parameter set b0 that you 

consider to be a good approximation to the true parameter set. A suitable choice for the initial 

parameter set can also reduce the number of iterations necessary to minimise the objective 

function; Also, the inclusion of prior information into the objective function can change its 

structure in parameter space, often making the global minimum easier to find (depending on 

what weights are applied to the articles of prior information). Once again, this enhances 

optimisation stability and may reduce the number of iterations required to determine the 

optimal parameter set.  
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Figure III.1: Iterative improvement of initial parameter values toward the global objective 

function minimum. 

The Marquardt Parameter Equation (4) forms the basis of nonlinear weighted least squares 

parameter estimation. It can be rewritten as  

u = (J
t
QJ)

-1
J
t
Qr (6)  

where u is the parameter upgrade vector and r is the vector of residuals for the current 

parameter set. Let the gradient of the objective function in parameter space be denoted by the 

vector 

i

i
b

g
∂
Φ∂

=
  

i.e. by the partial derivative of the objective function with respect to the i’th parameter. The 

parameter upgrade vector cannot be at an angle of greater than 90 degrees to the negative of 

the gradient vector. If the angle between u and -g is greater than 90 degrees, u would have a 

component along the positive direction of the gradient v thus cause the objective function to 

rise, which is the opposite of what we want. However, in spite of the fact that -g defines the 

direction of steepest descent of Φ, it can be shown that u is normally a far better parameter 

upgrade direction than -g, especially when parameters are highly correlated. In such 

situations, iteratively following the direction of the steepest descent leads to the phenomenon 

of “hemstitching” from side to side of a valley in Φ as parameters are upgraded on successive 

iterations; convergence toward the global Φ minimum is then extremely slow. See figure III.2.  
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Figure III.2: The phenomenon of “hemstitching” 

Nevertheless, most parameter estimation problems benefit from adjusting u such that it is a 

little closer to the direction of -g in the initial stages of the estimation process. 

Mathematically, this can be achieved by including in equation 6 the so-called “Marquardt 

parameter”, named after Marquardt (1963), though the use of this parameter was, in fact, 

pioneered by Levenberg (1944). Equation 6 becomes 

u = (J
t

QJ + αI)
-1

J
t

Qr   (7)  

where α is the Marquardt parameter and I is the n × n identity matrix. It can be shown that the 

gradient vector g can be expressed as  

g = -2J
t

Qr   (8)  

It follows from equations 7 and 8 that when α is very high the direction of u approaches that 

of the negative of the gradient vector; when α is zero, equation 6 is equivalent to equation 5. 

Thus for the initial optimisation iterations it is often beneficial for α to assume a relatively 

high value, decreasing as the estimation process progresses and the optimum value of Φ is 

approached. Where the direction is now favourable, the magnitude may be not. 

Under the linearity assumption used in deriving all equations presented so far, it can be shown 

that the optimal parameter adjustment vector is given by βu, where u is determined using 

equation 7 and β is calculated as 
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where, once again, the vector c represents the experimental observations, c0 represents their 

current model-calculated counterparts, w is the weight pertaining to observation i, and γ is 

given by 

 

∑
= ∂

∂
=

n

j j

i
ji

b

c
u

1

0γ  

 

i.e. 

 

Ju=γ  

where J represents the Jacobian matrix once again. If b0 holds the current parameter set the 

new, upgraded set is calculated using the equation 

ubb β+= 0  

1.1.3. PEST applications in hydrology 

PEST is widely used as a parameter estimation tool coupled with various simulation tools. 

Baginska et al. (2003) coupled PEST with Annualized Agricultural NonPoint Source 

(AnnAGNPS) to determine the export of nitrogen and phosphorous through nonpoint sources. 

Application with Surface-Water Assessment Tools (SWAT) to model snowmelt hydrology 

was made by Wang and Melesse (2005). Urban runoff models and watershed models such as 

Hydrologic Simulation Program Fortran (HSPF) have also been coupled with PEST (Doherty 

and Johnston, 2003; Ovbiebo and Kuch, 1998). PEST has also been successfully applied with 

temperature and salinity models as in Gao and Meerick (1996). The field of groundwater has 

found PEST to be a useful tool with application for flow, heat transfer, and mass transfer 

(Doherty, 2003; Keating et al., 2003; Vesselinov et al., 2001).  

The comparison between the results after calibration of a model for the river Dender with 

PEST and with SCE-UA (explained here further (section 1.3) is discussed in the work of van 

Griensven (2002). There it was found that PEST often gives different values after calibration 

depending on the initial parameter values. SCE-UA always finds the same solution. This 

indicates that PEST gets stuck in local optima. On the other hand, it was seen that SCE-UA 

always finds the same solution, independently of the search parameters. 

1.2. Uncsam 

 

The UNCSAM computer package developed by Janssen et al. (1992) was used to generate 

random values for each uncertain parameter using the Monte Carlo, Latin Hypercube (McKay 

et al., 1979) Simulation approach and to perform various regression and correlation analyses 

among input parameters and model output. UNCSAM offers tools to perform sensitivity and 

uncertainty analysis on a model in an automised way. The results of the analyses are stored in 
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ASCII files in the form of tables or plot constructions. The model simulations and the analysis 

of the simulation results by UNCSAM, need interfacing between UNCSAM and the model. 

Tools for the interfacing are supplied in the software package. 

 

1.2.1. Sensitivity and uncertainty analysis based on regression and correlation 

analysis 

In the literature study, the chapters about sensitivity and uncertainty analysis, the theory about 

sensitivity and uncertainty analysis based on regression analysis and correlation analysis is 

explained. Also the Monte Carlo technique and the Latin Hypercube sampling can be found 

there in detail. UNCSAM performs a least squares regression and then calculates measures 

that can be used for sensitivity and uncertainty interpretations. In table III.1 the different 

measures are given. 

 

Table III.1: Sensitivity and uncertainty measures available in UNCSAM 
Method Original data Rank transformed data Formula 

Ordinary regression 

coefficient (ORC) 

Rank transformed regression 

coefficient (RRC) 
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Standardised regression 
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Normalised regression 
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Rank transformed relative 
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Rank transformed linear 

correlation coefficient (LCC) 

Rank transformed correlation 

coefficient (RCC) iixyr  

Partial correlation coefficient 

(PCC) 

Rank transformed Partial 

correlation coefficient (PRCC) 
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Correlation 

Semi-partial correlation 

coefficient (SPC) 

Semi-partial rank transformed 

correlation coefficient (SPRC) 
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1.3. SCE-UA 

 

The Shuffled Complex Evolution (SCE) algorithm was developed by Duan et al. (1992), 

using the best features of multiple complex shuffling and competitive evolution (Holland, 

1975) based on the simplex search method of Nelder and Mead (1965). The algorithm is 

freely available as FORTRAN code. As it searches over the whole parameter space, the 
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algorithm finds the global optimum with a success rate of 100% (Sorooshian et al., 1993). 

Duan et al. (1992) describes the SCE-UA as an approach that treats the global search as a 

process of natural evolution. The sampled points constitute a population that is partitioned 

into several communities (complexes), each of which is permitted to evolve independently 

(i.e., search the space in different directions). After a certain number of generations, the 

communities are mixed and new communities are formed through a process of shuffling. This 

procedure enhances survivability by a sharing of the information (about the search space) 

gained independently by each search community.  

The SCE-UA requires less runs than the random search method and claims to systematically 

find the global optimum (Sorooshian et al., 1993). A large number of studies (Cooper et al., 

1997; Duan et al., 1992; Franchini et al., 1998; Gan and Biftu, 1996; Kuczera, 1997; 

Sorooshian et al., 1993; Thyer et al., 1999) concluded that in general the global population-

evolution based algorithms are more effective than multi-start local search procedures, which 

in turn perform better than pure local search methods for calibration of rainfall-runoff models. 

The SCE-UA method operates according to the following steps (Duan et al., 1992): 

1. Sample points are generated from the feasible space (using upper and lower bounds of the 

parameters). The criterion function values are computed using these sampled points. 

2. The sampled points are sorted and ranked in ascending order based on the criterion function 

values. This will result in the smallest criterion function value generating parameters at the 

top of the sampled parameter list. 

3. The sampled points are partitioned into complexes with predefined size of the complex 

population. 

4. Each complex is evolved independently a predefined number of times. The evolution of the 

complexes takes place using three types of evolution steps, namely: reflection, contraction 

and mutation. In the reflection step, the worst point in the subcomplex is reflected through the 

centroid of the other points. Since the reflected point has a lower criterion value than the 

worst point, the worst point is discarded and replaced by the new point. Thus an evolution 

step is completed. If the reflection step does not improve the criterion value, a contraction 

step in evolution is tried. In the contraction step, the new point lies halfway between the worst 

point and the centroid of the other points. If after the reflection step, the criterion value is 

outside the feasible parameter space, the mutation step is initiated. It is also used when both 

reflection and contraction steps fail to improve the criterion value. In a mutation step, a point 

is randomly selected in the feasible parameter space to replace the worst point of the sub-

complex. 

5. The evolved complexes from the previous step are combined into a single sample 

population. The sample population is sorted in order of increasing criterion value. Steps 3 to 5 

are repeated until conditions as defined in step 6 are met. 
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6. The loop is stopped if the number of evolutionary steps has exceeded a predefined value or 

the criterion value has not improved by a predefined percentage in a predefined number of 

steps. 
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2. Software for river models 

2.1. ESWAT 

 

ESWAT is an extension of SWAT (van Griensven, 2002; van Griensven and Bauwens, 2001), 

the Soil and Water Assessment Tool developed by the USDA (Arnold et al., 1996). ESWAT 

was developed to allow for an integral modelling of the water quantity and quality processes 

in river basins. First the SWAT simulator is described here shortly. More detail can found in 

the user manual, which can be downloaded from http://www.brc.tamus.edu/swat. Next, the 

extensions made by van Griensven (2002) are described.  

2.1.1. SWAT 

SWAT98 - the Soil and Water Assessment Tool - was developed by the ARS/USDA as an 

integrator of the simulators CREAMS, GLEAMS, SWRRB and ROTO (Arnold et al., 1996). 

It includes modules for river basin scale modelling, hydrologic river routing, sediment, 

nutrient and pesticide transport. The calculation time step is daily.  

SWAT has been developed and used for analysing agricultural management practices, water 

supply management and climate change effects on water, sediment and agricultural chemical 

yield in large complex watersheds with varying soils, land use and management conditions 

over long periods of time. To satisfy this objective, the model 

• is partly physically based and partly distributed 

• uses readily available inputs 

• is computationally efficient to operate on large basins in a reasonable time 

• runs in continuous time (daily updating of the water balance, plant growth, nutrient 
and pesticide concentrations, etc.)  

• is capable of simulating long periods for computing the effects of management 
changes.   

The water quantity processes simulated by SWAT include precipitation, evapotranspiration, 

surface run-off and lateral, ground water and river flow. The water quality section includes 

the calculation of the wash-off of sediment, nutrients and pesticides and the percolation of the 

latter two. Nutrient transformations as well as crop growth and agricultural management 

practices are also incorporated. Figure III.3 shows the hydrological cycle in SWAT and figure 

II.4 the in-stream processes modelled by SWAT. 

The simulator is integrated in a GIS by an ArcView or GRASS pre-processor. Subbasin 

delineation is automated by means of a Digital elevation map (DEM). Within the subbasins, 

HRU's (Hydrological Response Units) can be defined by combining land use and soil maps. 

The program calculates the fluxes of each- HRU (per surface unity e.g. m²). These outputs 

will be aggregated to sub-basin output, in accordance to the fractions of the HRU's. The 

subbasin outputs will then be routed through river reaches according to the river network. 
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Figure III.3: Scheme of the hydrologic cycle in SWAT (Neitsch et al., 1999) 

 

Figure III.4: In-stream processes modelled by SWAT (Neitsch et al., 1999) 

The spatial variability of the terrain strongly affects the storm runoff and non-point source 

pollution processes. The use of GIS (Geographical Information System(s)) creates new 
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possibilities to account for the spatial variability. GIS can be used as a modelling tool itself or 

as a link between the heterogeneous terrain data and an existing non-GIS model. For SWAT, 

an interface was developed which links a GIS (Arcview) with the model (Di Luzio et al., 

2000). The interface calculates some input parameters and creates all the input files for the 

model based on topographic, soil and landuse maps of the catchment. The SWAT Arcview 

interface was created as an Arcview extension rather than as a stand-alone program. The 

interface uses Arcview map themes and database files, which need to be prepared before 

running the interface. 

2.1.2. Development of ESWAT 

ESWAT is developed by van Griensven (2002) starting from SWAT98.1 (table III.2). The 

extension of SWAT focuses on the incorporation of a detailed river water quality module. 

Because sub-daily processes - such as algae respiration or combined sewer overflows- can 

determine the river water quality, the simulator was also modified to perform calculations on 

a sub-daily time step. An hourly time step is used for the simulation of water, nutrients, 

pesticides and river quality processes. The simulation of erosion processes is performed at a 

user-defined fraction of an hour and requires precipitation data with a sub-hourly time step.  

Another important feature of ESWAT is the incorporation of modules to perform multi-

objective auto-calibrations based on the SCE-UA method. 

In this dissertation ESWAT is used because of several strong points: 

• It is free available software.  

• The extensions made it possible to work on a sub daily time scale, which was really 
needed because algal blooms are modelled.  

• There are two possibilities for the water quality model: one based on QUAL2E and the 
other is the RWQM1 model including processes in the sediment. The availability of 

both models makes it possible to compare the results.  

• Modelling the influence of structures and weirs was another important modification 
because the river Dender contains 12 sluices.  

• A last and very important aspect of ESWAT is the easy manipulation of all input files. 
Model parameters and inputs for the model are all accessible. For SA and UA based 

on Monte Carlo methods this is necessary.   

It should be mentioned that the USDA in the SWAT2000 version and the SWAT2003 version 

adopts several of the changes. In this paragraph, an overview will be given of the major new 

or modified modules of ESWAT. 
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Table III.2: New or modified modules of ESWAT 
MODULES OF ESWAT changes to SWAT DESCRIPTION 

CLIMATE EXTENDED sub-hourly rainfall data series 

Potential Evapotranspiration (PET): data series option 

radiation, wind speed, relative humidity: data series 

option  

INFILTRATION/RUNOFF EXTENDED new hourly infiltration module  

RIVER ROUTING EXTENDED new hourly river routing method instead of daily 

method 

CANOPY STORAGE EXTENDED hourly option 

REDISTRIBUTION ORIGINAL  

EVAPOTRANSPIRATION EXTENDED PET data 

LATERAL SUBSURFACE FLOW ORIGINAL  

PONDS ORIGINAL  

RETURN FLOW EXTENDED inclusion of initial value for the groundwater flow 

EROSION EXTENDED sub-hourly peak runoff calculation 

PLANT GROWTH ORIGINAL  

NUTRIENT TRANSPORT ORIGINAL  

PESTICIDES TRANSPORT ORIGINAL  

CROP MANAGEMENT ORIGINAL  

RIVER WATER QUALITY NEW Original QUAL2E processes 

extended QUAL2E processes based on BOD 

extended QUAL2E processes based on COD 

RWQM processes 

REAERATION AT WEIRS NEW  

SEDIMENT ROUTING EXTENDED hourly routing 

AUTO-CALIBRATION NEW extended SCE-UA method 

 

2.1.2.1 Hydrology 

Sub-hourly Runoff/Infiltration Module 

Runoff is calculated with a simplified infiltration model. Before saturation, the potential 

infiltration rate varies linearly between a maximal infiltration rate (F0) and the saturation 

infiltration rate (FE), as a function of soil water content. After saturation, the potential 

infiltration rate equals the saturation infiltration rate. The hourly runoff is then the result of 

the rain minus the infiltration. The soil water content will also change due to 

evapotranspiration and percolation to lower soil layers and the groundwater (Arnold et al., 

1998). 

The maximal and saturated infiltration rates are calculated using the saturated soil 

conductivity (Ks). 
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FE = f1*Ks  (mm/hr)     and  F0 = f2*FE  (mm/hr)   

 

where f1 and f2 are obtained by calibration, Ks is the saturated infiltration rate (mm/hr). 

Hourly River routing 

The continuity equation expresses the mass balance for a river reach over a time step dt. The 

storage at the beginning and at the end of the time step is represented by V1 and V2 

respectively. The inflow rate "I" and outflow rate "Q" are considered constant over the time 

step "dt". Additional losses, such as evaporation (EVAP) and infiltration (INF) can also be 

taken into account. 

INFEVAPdtIVVdtQ −−+−=   21                   

The routing method is based on the assessment of V2, considering a constant flow velocity 

over the length of the reach. The latter velocity, v, is related to the inflow rate I by an 

empirical power function: 

         

 

where W is the channel width and b and c are parameters. This relation can be assessed when 

using corresponding flow and river height observations or by literature. 

According to this equation, the corresponding reach volume, Veq, and residence time, γ, are: 

  

                 

 

                    

In case the residence time γ is smaller than the calculation time step dt (thus one hour), the 
reach volume at the end of the time step will be stabilised to Veq: 

 

         

However, when γ is larger than the time step, only part of V1 will be replaced by Veq:  
             

 

 

Hourly time convolution module  

All runoff variables undergo a time convolution before entering the river reach. This was 

done using the Nash Cascade algorithm (Nash, 1958), where three virtual reservoirs transform 
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the runoff variables. The following equations describe how the Nash Cascade algorithm was 

implemented:  

 

V' = V1 + I* (t2-t1)          

Q = V' * rnash           

V2 = V'-Q*(t2-t1)          

where V = reservoir volume (m³), I = reservoir inflow (m³/hr), Q = reservoir outflow (m³/hr), 

t2-t1= time step between time 2 and time 1 (hr), rnash = coefficient ranging from 0-1(=1/knash).  

2.1.2.2 Water quality 

 

The water quality modules of ESWAT represent different concepts.  

One of them is based on the equations of QUAL2E (Brown and Barnwell, 1987) with the 

inclusion of denitrification and phosphate adsorption/desorption. The adsorption of dissolved 

P to sediments is simulated using the Freudlich equation (Parfitt and Rochester, 1983). It is 

this one that is used in this thesis work. 

Considering the criticisms of Masliev et al. (1995) and Shanahan et al. (1998) , new modules 

were developed to close the mass balance. In the original QUAL2E equation, the sink and 

release of pollutants at the level of the river bed are dissociated. In order to close the mass 

balances, VUB-QUAL-BOD includes new state variables for the river bed. Also sessile 

macrophytes were added in the model in the form of plants, with processes similar to algae, 

but without settling and death. In VUB-QUAL-COD the biological oxygen demand (BOD) 

component is replaced by fast and slow chemical oxygen demand (COD) components.  

The VUB-RWQM module is based on the equations of RWQM as presented by Reichert et al. 

(2001b). This model is also used in this thesis for a comparison of the applicability of 

different model concepts (see chapter Sensitivity Analysis). The RWQM model was not 

directly applicable in an integrated modelling context and the following modifications were 

needed:  

• Splitting up of the organic components (organic N, organic P and organic C) 

• Separate rates of hydrolysis for these components 

The RWQM model defines processes and variables for the water column and the river bed, 

but does not specify the exchange between those phases. Following processes are proposed: 

• Diffusion processes of the soluble components at the sediment/water column interface 

• Deposition/resuspension of the solids 
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2.2. WEST 

 

WEST (World-wide Engine for Simulation, Training and automation) is a multi-platform 

modelling and experimentation system (Vanhooren et al., 2003). It allows one to construct 

models and conduct virtual experiments on any kind of system that can be represented by 

differential algebraic equations. The WEST simulator was originally used to simulate 

wastewater treatment plants and an extensive WWTP model base is available (Vanhooren et 

al., 2003). The model base plays a central role in WEST. In this model base, models are 

described in a high level object-oriented declarative language specifically developed to 

incorporate models. The model base is aimed at maximal reuse of existing knowledge and is 

therefore structured hierarchically. This indicates that WEST has an open structure in that the 

user is allowed to change existing models and define new ones as needed. Next to the ASM-

WWTP models, a runoff/sewer model based on Kosim (itwh, 1995; Paulsen, 1986) and the 

RWQM1 (Reichert et al., 2001b) a river water quality model are now implemented in this 

package and can run in simultaneous simulations mode e.g. for integrated RTC investigations 

(Meirlaen et al., 2001).  

In order to formulate and run a new model for a specific application in the WEST simulator, 

three main steps must be followed hierarchically: 

• Writing a MSL-USER model 

• Use the modelling environment to make the particular configuration 

• Use the experimentation environment to perform model evaluations 

In the first step, the user-defined model is described or written using the Model Specification 

language (MSL code). Once the model is described and documented with the appropriate 

syntax, it will be loaded in the modelling environment, also called the configuration builder. 

In the second step, which occurs in the modelling environment, the user represents the set up 

of the system graphically using annotated icons. Each icon is linked with an appropriate 

model implemented in the first step. The compiler of the modelling environment translates the 

MSL code into so called MSL-EXEC (c++code), which is then used by a standard C++ 

compiler to create executable code. In the WEST compiler, the MSL-EXEC is prepared for 

experimentation. In the third step, done in the experimentation environment, the compiled 

model is used to simulate the system, plot the output, make sensitivity analysis and do 

parameter estimation or optimisation. 

2.2.1. The simplified RWQM1 river model in WEST 

In the model base different river models are available. First of all, the complex RWQM1 that 

was developed for data rich conditions. However, in many cases not enough data is available 

or the problem of the river under consideration can be tackled with a simpler model. 

Therefore a simplified RWQM1 was implemented in the WEST model base by Deksissa 

(2004).   
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The complex hydrodynamic river model, which is based on the St. Venant equations (De St. 

Venant, 1871), was simplified to a typical Continuously Stirred Tank Reactor in Series 

(CSTRS) modelling approach in which the river is represented as a series of river 

compartments (tanks), each of which is assumed completely mixed (Beck and Reda, 1994; 

Whitehead et al., 1997). This relatively simple hydraulic model can then be extended quite 

easily to include the water quality submodel. 

The complex RWQM1 contains pH and zooplankton (primary consumer) calculation, which 

requires large sets of specific monitoring data and high computational power. Selecting and 

modifying the most important sub-model components derive a simplified version of RWQM1. 

The procedure for sub-model selection is presented in Vanrolleghem (2001). The state 

variables and process descriptions in the simplified version of the model are given in tables 

III.3 and III.4 respectively. 

Table III.3: State variables in the simplified river quality model and relation to RWQM1 

formulation (Reichert et al., 2001a) 

 State variables Description 

1 S_I Inert soluble COD 

2 S_S Readily degradable COD 

3 S_O Dissolved oxygen 

4 S_NH(SNH4+SNH3) Ammonia nitrogen 

5 S_NO(SNO2+SNO3) Nitrite+nitrate nitrogen 

6 S_PO(SHPO4+SH2PO4) Phosphate phosphorus 

7 X_H Heterotrophic biomass 

8 X_N(XN1+XN2) Nitrifying biomass 

9 X_P P adsorbed to particles 

10 X_I Particulate inert COD 

11 X_S Particulate organic matter 
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Table III.4: Processes used in the simplified river water quality model and relation to 

RWQM1 formulation (Reichert et al., 2001a) 

 Processes 

1 Aerobic growth of Heterotrophs with ammonia 

2 Aerobic growth of Heterotrophs with nitrate 

3 Aerobic respiration of Heterotrophs 

4 Anoxic growth of Heterotrophs with nitrate 

5 Anoxic respiration of heterotrophs 

6 Growth of nitrifiers 

7 Aerobic respiration of Nitrifiers 

8 Hydrolysis of particulate organic materials 

9 Adsorption of Phosphate 

10 Desorption of Phosphate 

 

For other applications the model base was further extended with other river water quality 

models, all derived from the complex RWQM1 and then adapted and simplified according to 

the problem at hand. As such there was another simplified model made which contains the 

processes as implemented by Deksissa (2004) with an addition of a temperature model and 

the processes for algae growth and death.  It is the latter that is used in section 9 of chapter V. 
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CHAPTER IV: DESCRIPTION OF THE CASE STUDIES  
 

1. Introduction 

 

In this chapter extended descriptions are given of two case studies used to illustrate and perform the 

different aspects of sensitivity and uncertainty analysis and optimal experimental design. The first one is 

the Dender, which was chosen for the considerable amount of data that was already available for this river 

thanks to previous studies (Manache, 2001; VMM, 1992) and because a model was already made in 

ESWAT for the year 1994 in the context of a PhD research by van Griensven (van Griensven, 2002). The 

second case study, the Grote Nete, was chosen for the different characteristics that made this river suitable 

for a study about shading and its effect on river water quality (Ghermandi, 2004).  

2. The Dender catchment 

 

The Dender is an example of a river system that is highly characterised by human activities with 

impacts on both the river morphology and the water quality. High pollution loads and long 

residence times in summer are translated in very bad water quality indices. The pollution 

originates from manure applications in agriculture (up to 80 % of the area), industrial activities 

and households (the inhabitant density is more than 500 inhabitants per km². In 1994; less than 

10% of the wastewater was treated) (Demuynck et al., 1997). 

2.1. Description of the basin 

2.1.1. Geography 

The Dender river, a tributary of the Schelde river in Belgium (figure IV.1), drains a total area of 

about 1384 km
2
, 707 km

2
 of which is situated in the Flemish Region. The Dender rises in the 

Wallonian Region of Belgium by the confluence at Ath of the Eastern and Western Dender and 

the channel Ath-Blaton. The Western Dender rises in the Barry Region at a height of between 60 

and 70 m above sea level.  The confluence at Ath is situated at a height of about 40 m above sea 

level. The mouth of the Dender River is situated in Dendermonde at a height of less than 10 m 

above sea level. The Dender model used in this dissertation only covers the Flemish part of the 

basin. The following descriptions are thus only regarding this part. The main tributaries of the 

Dender River in the Flemish region are shown in table IV.1 and figure IV.2.  
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Figure IV.1: The Dender river in Belgium 
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Figure IV.2: Delineation of the Flemish part of the Dender basin and the location of the weirs 
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Table IV.1: The main tributaries of the Dender in Flanders (VMM, 1992) 

Tributary Length (km) Area (km
2
) Mouth at: 

Molenbeek 21.5 55 Geraardsbergen 

Wolfputbeek 15 49 Ninove 

Bellebeek 22.5 103 Teralfene 

Molenbeek 12 28 Aalst 

Molenbeek 24 83 Mespelare 

Mark 25 170 Deux-Acren 

2.1.2. The topography 

A digital elevation model (DEM) of the Dender basin is shown on figure IV.3. The map was 

constructed by the National Geographic Institute of Belgium by scanning, vectorising and 

identifying the altitude lines of a 1/50:000 map. Heights are given in meters, referring to the 

Belgian zero-level, spread according to a raster (50 m). The accuracy of the elevation is around 8 

m with a confidence level of 90%. While the basin is very flat in the northern part, steep slopes – 

of up to 20% - can be observed in the southern part. 
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Figure IV.3: DEM of the Dender catchment 
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Table IV.2: Conversion table for soils 

Texture 

class 

Percentage 

(%) 

Class SWAT name 

X, O, Z 1.03 Sand Sand 

S 2.24 Loamy-

sand 

Loamsand 

L 22. Sandy-

loam 

Sandyloam 

P 1.5 Silty Loam Siltyloam 

A 60 Loam Loam 

E 2 Clay Loam Clayloam 

U 0.27 Clay Clay 

OB 10 Buildings Impervious 

7V 0.011 Unknown Impervious 

B 0.04 Unknown Impervious 

Other O 0.001 Unknown Impervious 
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Figure IV.4: Soil map for the Dender basin 
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Figure IV.5: Land use map for the Dender basin 
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2.1.3. Soil characteristics 

The soil map, based on data from the Soil Map of Belgium and the Fysische Systeemkaart 

Vlaanderen, originates form the Geographical Institute of Belgium (figure IV.4.). The dominant 

soil type is loam (table IV.2). Sandyloam and loam cover 83 % of the area. The soil type 

Sandyloam occurs mainly in the north of the basin and near the rivers. It is assumed that the 

texture class OB can be classified as IMP (impervious) that means that there will be no 

infiltration in those areas.  

2.1.4. The land use  

The land use map (figure IV.5) is originating from the Bodembedekkingskaart of GIS 

Vlaanderen. This map was created using a LANDSAT image of August 1995. The original map 

has a grid cell size of 20 x 20 meter. Table IV.3 provides an overview of the land use distribution 

within the basin. 

 

Table IV.3: Land uses in the Dender basin 
SWAT class % in Dender Basin Description 

AGRL 17.91 Crop culture (not corn) 

CORN 21.88 Corn culture 

FRSD 8.50 Deciduous forest 

FRSE 0.64 Evergreen forest 

IMP 9.92 Impervious area 

PAST 29.96 Pasture 

RNGB 2.39 Range land 

URBN 8.46 Urbanised area 

WATR 0.33 Water 

 

The land use map was derived by classification from 3 LANDSAT TM images by combining the 

reference classification (numeric product) and the CORINE Land Cover data (manual 

interpretation) for Flanders. The final dataset comprises the following classes: continuous urban 

fabric, discontinuous urban fabric, urban fringe/green urban area, industry/commercial, 

infrastructure, harbour, airport, mineral extraction sites, highway, regional way, arable land, 

grassland, maize/tuberous plants, alluvial grassland, orchard, deciduous forest, coniferous forest, 

mixed forest, parks/gardens, heathland/bare soil, beach/dunes, mud flat, navigable waterway, 

unnavigable waterway, estuaria, sea. 
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In the Dender basin, it is observed that the main urban centres are located in the valley of the 

main river. About 30% of the landuse is pasture, while crop farming represents ca. 50% of the 

landuse. 

2.2. The river 

 

The river was canalised to guarantee ship-traffic. Ship locks and weirs, which maintain a constant 

water level during low flows, are situated at: Dendermonde, Denderbelle, Aalst, Teralfene, 

Denderleeuw, Pollare, Idegem, Geraardsbergen (figure IV.2). The longitudinal profile in figure 

IV.6 shows the water level and the bottom level at different places along the main stream. 

The canal has a typical width of 20 to 30 m and a depth of 3 m between Geraardsbergen and 

Aalst; downstream of Aalst, the canal widens to 45 to 55 m and deepens to 3.7m.  

Height [m above sea level]

Distance [m]
 

Figure IV.6: Longitudinal profile of the Dender between Deux-Acren and Geraardsbergen 

2.3. Hydro-meteorological and water quality data 

2.3.1. Meteorological data 

Daily records of the Royal Meteorologic Institute were used for the study. Table IV.4 shows the 

meteorological datasets. Although Ukkel is not situated in the Dender basin, the datasets of these 

stations are assumed to be representative for the climate in the Dender basin. The available 

rainfall data at Dendermonde, Pollare and Geraardsbergen, located inside the basin allow a 



Methodologies for reduction of output uncertainty of river water quality models 

 

121 

representation of the spatial variability of the rainfall. The minimum and maximum temperatures 

after 1978 are generated using the average daily temperatures and rainfall data (Olivié, 1999). 

Table IV.4: Meteorological data for the Dender Basin 

Variable Station Available years 

Average daily temperature Ukkel 1968-2000 

Min. & max. daily temperature Ukkel 1968-1978 

Sub-hourly precipitation Ukkel 1970-1994 

Daily precipitation Pollare 1970-2000 

Daily precipitation Dendermonde 1970-2000 

Daily precipitation Geraardsbergen 1970-2000 

Daily solar radiation Ukkel 1970-1998 

2.3.2. Hydrological data 

Measured discharges of the Dender and some of the tributaries (table IV.5) were obtained from 

the Hydrologic Information Center of the Ministry of the Flemish Region. The flow at 

Denderbelle is measured at a weir, near a lock, based on a stage-discharge relation. The relation 

is believed not to be very reliable, especially at low flows (due to leakage losses at the lock). 

Therefore, a lower limit of 1 m
3
/s was applied (VMM, 1992). This explains why in some periods, 

mainly in summer, a constant daily flow of 1 m
3
/s is measured for a period of time. The flow at 

the mouth of the river has an average value of 10 m³/s and covers a range of more than 100 m³/s 

to less than 1 m³/s.  

 

Table IV.5: Available hydrological data 

River/Tributary Station Draining area [km
2
] Available years Years 

Dender Denderbelle 1244 1970-1994 25 

Bellebeek Essene 92 1972-1981 6 

Molenbeek Hofstade 57 1969-1977 7 

Molenbeek Aalst 28 1969-1977 6 

Molenbeek Geraardsbergen 19 1972-1991 15 

Mark Viane 171 1977-1991 7 

2.3.3. In-stream water quality data 

The river water quality is monitored by the Flemish Region, by analysing a number of samples 

(+/- 12/year) during the year (VMM, 2000). This study uses 4-hourly water quality data from 

continuous measurement campaigns conducted during the second part of 1994 (Anonymous, 

1995). The data consist of measurements of BOD, DO, NH3, NO3 and PO4 at three locations 

along the Flemish part of the river (figure IV.7). 
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Figure IV.7: Scheme of the modelled basin with the locations of the measuring points  



Methodologies for reduction of output uncertainty of river water quality models 

 

123 

16

14

12

11

9

6

4

3

13

15

7

10

8

5

2

1

Point source 1,2
Sluice Geraardsbergen

Point source 3

Sluice Idegem

Point source 4

Point source 5

Sluice Pollare

Point source 6

Sluice Denderleeuw

Point source 7
Sluice Teralfene

Point source 8,9

Sluice Aalst

Point source 10,11,12

Sluice Denderbelle

Point source 13

Sluice Dendermonde

16

14

12

11

9

6

4

3

13

15

7

10

8

5

2

1

Point source 1,2
Sluice Geraardsbergen

Point source 3

Sluice Idegem

Point source 4

Point source 5

Sluice Pollare

Point source 6

Sluice Denderleeuw

Point source 7
Sluice Teralfene

Point source 8,9

Sluice Aalst

Point source 10,11,12

Sluice Denderbelle

Point source 13

Sluice Dendermonde

 
Figure IV.8: The scheme of the Dender river  

2.3.4. Point source emissions 

The situation in 1994 

In table IV.6 overall emissions of point sources are shown for the different pollution sources ( see 

also figure IV.8). The domestic pollution is assessed by using Inhabitant Equivalents and by 

applying removal efficiencies when the wastewater is treated. Measuring campaigns assesses the 

industrial pollution. The border-crossing pollution is the pollution coming from neighbouring 

catchments. This pollution includes the pollution coming from the Walloon part of the Dender 

catchment but also the Mark River is included (Demuynck et al., 1997).  
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Table IV.7 gives an overview of the domestic pollution from different sources in the Dender 

basin as for 1994. Sixteen % of the population is not connected to any sewer system or WWTP 

and directly pollutes the Dender. However, the biggest part of the domestic pollution comes from 

the sewer systems connected to the Dender. In 1994 less than 10 % of the domestic pollution was 

treated before it reached the Dender. 

Table IV.6: Emission of point sources – situation 1994 (VMM, 1994; VMM, 2000) 

Parameter Domestic Industry Border 

crossing 

Agriculture Total 

BOD (kg/day) 17 000 1 700 2 300 NA 21 000 

COD (kg/day) 34 354 5 153 25 978 NA 65 485 

Total N 

(kg/day) 

2 690 420 4 450 2050 10 650 

Total P 

(kg/day) 

525 140 500 110 1 275 

 

Table IV.7: Overview of sources of domestic pollution in the Dender basin (VMM, 1994) 

Source  Inhabitants BOD 

(kg/d) 

COD 

(kg/d) 

Tot. N 

(kg/d) 

Tot. P 

(kg/d) 

Via sewer system 239000 12900 21000 2390 477 

Via  WWTP 39400 166 881 210 29 

Diffuse  54000 3700 2400 272 54 

Total 332000 16700 25000 2870 560 

The AWP scenario 

In 1994, the Flemish environmental agency proposed the AWPII plan (VMM, 1994). Hereby 

more than 90 % of the domestic and industial pollution should be treated by 2010 (figure IV.9). 

Figure IV.9: Domestic and industrial loads in 1994 and after AWP II 
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Table IV.8: Yearly nitrogen and phosphorus application rates for each municipality 

Name area  

[ha] 

Nitrogen  

[kg] 

Phosphates 

[kg] 

Nitrogen  

[kg N /ha] 

Phosphates  

[kg P2O5 /ha] 

Aalst 7856 613927 242037 78 31 

Affligem 1799 112033 43676 62 24 

Asse 5023 561484 232488 112 46 

Bever 1923 352947 138869 184 72 

Brakel 5705 1028669 379500 180 67 

Buggenhout 2563 356163 138813 139 54 

Denderleeuw 1389 111364 44878 80 32 

Dendermonde 5645 697199 290034 124 51 

Dilbeek 4148 244395 104099 59 25 

Erpe Mere 3434 419734 170078 122 50 

Galmaarden 3525 510698 194836 145 55 

Geraardsbergen 8008 965973 388680 121 49 

Gooik 4028 767006 285851 190 71 

Haaltert 3055 356276 140182 117 46 

Herne 4471 862507 350028 193 78 

Herzele 4786 932657 383194 195 80 

Lebbeke 2738 350048 140638 128 51 

Lede 2992 280036 113002 94 38 

Lennik 3116 429599 169642 138 54 

Liedekerke 1009 39553 20380 39 20 

Lierde 2639 532687 210072 202 80 

Merchtem 3691 619614 260385 168 71 

Ninove 7306 1022820 398640 140 55 

Opwijk 1995 290559 117458 146 59 

Pepingen 3597 783463 315511 218 88 

Roosdaal 2191 232243 95160 106 43 

Ternat 2470 229971 90325 93 37 

Zottegem 5745 862906 328804 150 57 
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2.3.5. Diffuse pollution sources  

Data on fertiliser and manure use were provided by the VLM (Vlaamse Landmaatschappij), as 

data on the nutrient use and production for each commune in Flanders. Manure transports in and 

out of the villages are hereby not considered. The data are divided into three groups: animal 

production, chemical fertilisers and other fertilisers.  

The data collected for the municipalities within the Dender basin for the years 1992 and 1993 are 

summarised in table IV.8.  

3. The Nete catchment 

 

The Nete is another tributary of the Scheldt River. The basin is part of the Flanders Region in 

Belgium. Approximately 600.000 inhabitants live in the basin and 4.121 companies are situated 

inside the region. There is a big variation of the concentrations of the different pollutants but 

most often the quality standards are not met and still a lot of measures are needed to improve the 

water quality. 

 
Figure IV.10. The Nete catchment basin and the selected reach 

The studied reach in this dissertation is the one of the Grote Nete, 19.5 km between the most 

upstream and the most downstream water quality measuring station. Figure IV.10 shows the 

whole Nete catchment basin and, highlighted, the river stretch selected for the case study. 

Most of the information about the Nete catchment has been taken from the general water quality 

plan (AWPII) of the Nete basin published by the Flemish Environmental Agency (VMM, 2000). 

3.1. Description of the basin 

3.1.1. Geography 

The Nete river basin district is located entirely within the Flanders region in Belgium (see figure 

IV.11) and covers a surface of 1673 km² and a total length of watercourses of 2224km.  
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Figure IV.11: Geographical position of the Nete basin in Flanders 

 

The basin is administratively subdivided into three provinces (Antwerp, Limburg and Flemish 

Brabant) and 54 municipalities, 27 entirely and 27 partially located in the basin (see figure 

IV.12). Almost the whole catchment is situated within the borders of the province of Antwerp, 

but the source of the Grote Nete and the most Southern parts of the watercourse network are 

located respectively in the provinces Limburg and Flemish Brabant.  

The main rivers within the river basin district are the Grote Nete and the Kleine Nete. The total 

length of Grote and Kleine Nete amount to 151 km, while the total length of all watercourses in 

the water basin district amounts to 2224 km. In Lier the Kleine and the Grote Nete together form 

the Beneden-Nete, which drains into the Scheldt via the Rupel.  

The boundaries of the river basin district are the river basin of the Maas in the North, the Dutch 

border and the river basin of the Maas in the East, the basins of the Demer and the Dijle-Zenne in 

the South, and the basin of the Beneden-Schelde in the West.  
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Figure IV.12: Administrative organisation of the Nete river basin (VMM, 1992) 

3.2. Pressures in the basin 

 

The principal users of water can be divided into three groups: agriculture, industry and 

households. Through their use of water, these three groups produce wastewater or other waste 

products that, released into the environment, pollute surface and groundwater and have in general 

a negative impact on the quality of water dependent ecosystems.  

3.2.1. The households 

The number of inhabitants of a river basin district and the percentage of households connected to 

the sewage infrastructure are two of the aspects that mainly determine the contribution of 

households to surface water pollution.  

The AWPII reports a population of 600.000 people in the Nete catchment basin at the end of year 

1997. The principal residential areas are Turnhout, Lier, Geel, Herentals, Beerse and Vosselaar. 

Figure IV.13 illustrates the main residential areas in the Nete catchment basin.  
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Figure IV.13: Main residential areas in the Nete catchment basin (VMM, 1992) 

 

At the end of 1997, only 58% of the population was connected to sewerage with treatment. Since 

then, the situation has significantly improved thanks to the investment programmes of the 

Flemish Region that resulted in an expansion of the regional collector system on the one hand 

and of the municipal sewage systems on the other. In spite of these improvements, however, 

households are still expected to be one of the most significant sources of oxygen binding 

substances (BOD, COD), suspended solids, nutrients and zinc.  

3.2.2. Industry 

The biggest industrial areas in the catchment basin of the Nete are concentrated around the Albert 

Channel (in the municipalities of Herentals, Olen and Geel) and in the municipality of Lommel. 

Important industrial sites also exist in the municipality Tessenderlo. The heavy salt pollution 

released by these installations is responsible for the serious degradation of the ecological status of 

the Grote Laak, a tributary of the Grote Nete. Figure IV.14 illustrates the main industrial areas in 

the Nete basin.  

Like the households, industries can be connected to public sewerage and hence their wastewater 

can be treated in WWTP together with wastewater coming from households. In the last years, 

however, the trend has been to disconnect the largest companies from public WWTP and to 

provide them with an own treatment installation and a direct discharge into surface water.  
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Figure IV.14.  Main industrial areas in the Nete catchment basin (VMM, 1992) 

3.2.3. Agriculture 

The principal contribution of agriculture to the pollution of surface water bodies consists in the 

release of nutrients like nitrogen and phosphorus via diffuse pollution from arable land. In 

comparison to it, the direct point pollution of a farm is relatively slight.  

The quantification of diffuse pollution is a complex task. To examine the impact of diffuse 

nutrient pollution from agricultural land-use, a series of processes must be taken into account that 

determine the fate of the nutrients after being released on the field as fertilisers or manure. 

Among the different fate determining processes absorption by plants, dispersion and formation of 

gas, which escapes into the atmosphere, leaching into the ground- and surface water and binding 

of nutrients to the soil and water bottom, are probably the most important ones. The 

quantification of these processes requires the use of mathematical models.  

Several different model approaches are reported in the literature. The most simplified approaches 

suggest the use of export coefficients that take into account only the land-use type. Other authors 

suggest slightly more complex approaches that also take into account some of the release 

processes mentioned previously, generally in a statistical and not physical based way. The second 

General Water Quality Plan (GWQP2) suggests the use of the SENTWA model (VMM, 2002), 

which estimates the partial losses through atmospheric deposition, losses into groundwater, direct 

impact of mineral and organic fertilisers, effect of natural drainage, of erosion and or run-off, and 

excessive organic pressure (VMM, 1992).  
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It must be stressed that a correct estimation of the nutrient load from agriculture is of particular 

importance in the Nete basin since agriculture represents the principal land-use in the area. 

Besides, phosphorus and nitrogen concentrations are, together with light and temperature, the 

main factors affecting for eutrophication in water bodies. 

3.3. Water quality 

3.3.1. Biological water quality  

The AWPII reports a description of the biological water quality in the Nete basin based on the 

Belgian Biotic Index (BBI) (VMM, 1992). This index is based on the presence of freshwater 

macro-invertebrates in the water, including worms, leeches, snails, crustaceans, shellfish and 

insects. As the pollution of a watercourse increases (in terms of reduction of dissolved oxygen or 

increase in toxic substances), the number and species of macro-invertebrates decrease 

significantly. The BBI can therefore be considered as a standard for the general status of a 

watercourse over a period of time of weeks/months.  

Figure IV.15 illustrates the biological water quality of the watercourses in the Nete catchment 

basin district according to the BBI classification.  

 

Figure IV.15: Biological water quality in the Nete catchment based on BBI (VMM, 1992) 
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Figure IV.15 shows that the biological water quality in the Nete catchment basin is generally 

quite low. The studied reach has an overall ppor water quality. Table IV.9 shows the BBI 

classification of the biological water quality in the Nete as reported in the AWPII (VMM, 1992). 

Table IV.9: Classification of biological measuring sites in the Nete catchment based on the BBI 

(VMM, 1992) 

BBI class Percentage of measuring sites (%) 

Extremely poor 0 

Very poor 12 

Poor 16 

Fair 40 

Good 29 

Very good 3 
 

3.3.2. Physico-chemical water quality 

The description of the physico-chemical water quality in the AWPII is made by means of the 

oxygen-Prati Index (PIO), which is based on measurements of dissolved oxygen. The lower the 

Prati-Index, the better is the water quality. Figure IV.16 shows the results of 12 monthly 

measurements of PIO during 1997. 

 

Figure IV.16:  Physico-chemical water quality in the Nete catchment based on the PI (VMM, 

1992) 
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The physico-chemical water quality in the Nete catchment is generally higher than in the rest of 

Flanders. Nevertheless the average value of the Prati Index is 2.8, below the accepted standard 

value. The studied stretch of the Grote Nete has a moderately polluted status. Table IV.10 shows 

the classification of the physico-chemical water quality in the Nete based on the PIO as reported 

in the AWPII. 

Table IV.10: Physico-chemical water quality in the Nete basin based on the PIO 

PIo class Percentage of measuring sites (%) 

Extremely polluted 0 

polluted 16 

Moderately polluted 56 

acceptable 25 

Non polluted 3 

 

An exhaustive description of the chemical status of the watercourses in the Nete basin must also 

take into account the presence of other specific chemical pollutants like heavy metals and 

pesticides.  

These specific pollutants can be highly toxic for aquatic organisms. Furthermore, given their 

characteristics of bioaccumulation and, in some cases, bio-magnification along the food chain, 

they can provide a serious ecological as well as sanitary problem. Pesticides can be virtually non-

biodegradable and can therefore accumulate in the environment.  

The sources of heavy metal pollution in surface water bodies are generally industry discharges 

and run-off from urban areas or roads. Pesticides can enter the watercourses via run-off from 

agricultural land or by direct entrance into the water body (spray drift during application of 

pesticides).  

The presence of seven heavy metals is reported in the Nete catchment basin see table IV.11. 

Among these seven elements, cadmium appears to represent the most serious danger, while the 

concentration of the other six is below the water quality standard required by the VMM. The 

average concentration of arsenic, cadmium, nickel and zinc in the Nete catchment is, however, 

higher than in the Flemish region. Some areas, like the upper course of the Grote Nete, show high 

concentrations of both cadmium and zinc due to a historical contamination by these pollutants.  

Table IV.11: Heavy metals and pesticides present in the catchment and their main sources 

 Pollutant Source 

Heavy metals arsenic, cadmium, chrome, 

copper, nickel, lead and zinc 

industry, traffic, agriculture 

ad households 

Pesticides isodrine, alpha-endosulfan, 

atrazine, isoproturone and 

diazonine 

agriculture 
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Pesticide investigation is extremely complex due to the huge number of different components 

actually available on the market and their rapid and far-reaching contamination of the 

environment. Five pesticides are reported in the Nete catchment (see table IV.11).  

The river stretch selected as case study in this thesis is the reach of the Grote Nete located 

between the confluence with the Grote Laak (upstream) and with the Wimp (downstream).
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CHAPTER V: CALCULATION AND REDUCTION OF 
OUTPUT UNCERTAINTY 

1. Introduction 

 

In the literature chapter (section 3.3), the modelling process is presented in figure II.2. For 

every step of this modelling process, a lot of issues and questions can be put forward by 

modellers, water managers and stakeholders to attain the most reliable model results.   In this 

chapter it is the aim to discuss and apply methodologies to answer these questions and 

problems. Figure II.2 is brought again in this chapter to visualise the modelling process 

together with the different sections of the research part of this dissertation work, as figure V.1 

to make it easier to follow through the different sections of this chapter.  

 

 

 

Figure V.1: The modelling process refsgaard et al. (2004) with related sections of this chapter 
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Step 1. The model study plan and the decision of the most adequate model for the problem 

under consideration. 

The water manager needs to describe the problem for which he/she needs modelling and its 

context as well as the available data. A very important task is then to analyse and determine 

what are the various requirements of the modelling study in terms of the expected accuracy of 

modelling results. The acceptable level of accuracy will vary from case to case and must be 

seen in a socio-economic context. It should, therefore, be defined through a dialogue between 

the modeller, water manager and stakeholders/public. In this respect an analysis of the key 

sources of uncertainty is crucial in order to focus the study on the elements that produce most 

information of relevance to the problem at hand. This is achieved with a sensitivity analysis. 

It is not only necessary to decide for a model that can model well the current state of the river, 

but there comes an additional question: What model concept should be used, in view of 

evaluating the probable changes in the system when the model is used for scenario analysis? 

To find answers about what are the most influencing parameters and processes, not only for 

evaluation of the current state of the water but also with regard to scenarios, in section 2 of 

this chapter, a sensitivity analysis is performed for two different water quality concepts with 

regard their use in management decisions. 

Sometimes one needs to make a model of a basin with few or no data available. Often extra 

data will be necessary but due to time restrictions or budget limitations decisions have to 

made regarding priorities for data collection. In such situation it is also difficult to decide 

what processes are important and needs to be in the model. The only data that are easily 

obtained are data which can be gathered by direct observation like hilly region, algae bloom 

in summer, high summer temperatures. In this work a study for model application in 

ungauged basins is performed in which the most important parameters in different 

circumstances are identified with a kind of sensitivity analysis of a sensitivity analysis 

(section 3). 

Step 2. Data gathering and measurement campaigns 

In this step the modeller should gather all the relevant knowledge. Consideration must be 

given to the spatial and temporal detail required of a model, to the system dynamics, to the 

boundary conditions and to how the model parameters can be determined from the available 

data. It is obvious that it is important to know what input data is needed and what kind of 

measurement data (frequency, location, amount, …) for calibration is best suited. To 

minimise the uncertainty of the output results, in section 4, a method of iterative optimal 

experimental design is proposed to minimise uncertainty of parameter estimates during 

calibration. When extra measurement campaigns are possible it is best to do previous 

investigation about what measurements are best to get more reliable results. In section 5 an 

uncertainty analysis to guide measurement campaigns for the collection of input data is 

presented.  

The need to model certain processes in alternative ways or to different levels of detail in order 

to enable assessments of model structure uncertainty should also be evaluated. Like this it is 
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possible to make the uncertainty on the model results in some cases much smaller. This is not 

discussed in this work. 

Step 3. The set-up of the model 

Model set-up implies transforming the conceptual model into a site-specific model that can be 

run in the selected model code. A major task in Model set-up is the processing of data. A 

profound check that all the input files are error free is for sure needed to avoid errors.  To 

avoid mistakes it is always good to check the mass balances. 

No items are discussed for this step in this dissertation. 

Step 4. Calibration and validation of the model  

This step is concerned with the process of tuning and analysing the model that was 

constructed during the previous step, first by calibrating the model, and then by validating its 

performance against independent field data.  

Two problems arise during the calibration. First of all not all the parameters can be estimated 

because of correlation and dependencies. In section 6 a sensitivity analysis is applied to detect 

the most important parameters related to a modelling problem. A validation is then performed 

for the model calibrated with these most important parameters but for a different year than the 

calibration period.  Secondly, the problem of fixing wrong parameter subsets on literature 

values should be dealt with. Section 7 shows in a practical example the consequences of using 

the wrong parameter subset for the calibration of the model.  

Step 5. Simulation and evaluation of the model results with an uncertainty analysis (UA) to 

evaluate the trustworthiness of the model outcomes 

In this step the modeller uses the calibrated and validated model to make simulations to meet 

the objectives and requirements of the model study. Depending on the objectives of the study, 

these simulations may result in specific results that can be used in subsequent decision 

making (e.g. for planning or design purposes) or to improve understanding (e.g. of the 

hydrological/ecological regime of the study area). It is important to carry out suitable 

uncertainty assessments of the model predictions in order to arrive at a robust decision. It can 

be that the uncertainty on the results are too high to see difference between the results of two 

scenarios. Two practical examples, the evaluation of the cost-effectiveness of in-stream 

aeration for the Dender river ( section 8) and the assessment of the effect of shading ( section 

9) along the Nete river are presented.  In these part it is the aim to show the role of uncertainty 

bounds around the results in the evaluation and to answer the question whether the difference 

between the scenarios is significantly different from 0 or not.  

All methods and procedures in section 2 till 8 are applied on a real case study: the river 

Dender in Flanders, Belgium. The model of the river Dender is made in ESWAT, an 

extension of SWAT (van Griensven and Bauwens, 2001), the Soil and Water Assessment 

Tool developed by the USDA (Arnold et al., 1996). More information about the ESWAT 

modelling environment can be found in the chapter III “Materials and methods”. For section 9 

the case study is the Nete river. A model for the Nete river was implemented in the WEST® 
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software (MOSTforWATER NV) (Vanhooren et al., 2003) which is explained in chapter III 3 

“Materials and Methods”. The description of these two case studies can be found in chapter 

IV. 

1.1. Modelling approach for the river Dender in ESWAT 

 

The ESWAT model for the Dender covers the Flemish part of the basin. The upstream 

Walloon part of the basin is added to the river as a dynamic upstream point source. A basic 

SWAT model for the basin was implemented using the Arcvieuw interface. Then the SWAT 

model was subsequently adapted manually to build an ESWAT model, by adding data as 

manuring scheme and point source pollution.  

 

1.1.1. The subbasins 

Based on the DEM of the catchment, the Dender was divided into 16 subbasins and reaches, 

from which 7 form the main channel (figure IV.7). Each of the major tributaries of the Dender 

River is also represented by one subbasin. The subbasins get precipitation data of the nearest 

rain gauge observations. The daily precipitation records are transformed to minute rainfall by 

combining it to the 10 minute rainfall of Ukkel using the rainfall converter. The subbasins are 

further partitioned into a total of 80 HRU's, as defined by land use (impervious, agriculture, 

corn culture, forest, pasture) and soil type.  

 

1.1.2. The land use 

Table V.1 shows how the original land use classes are converted to the classification used by 

ESWAT. To assure a better match between the "impervious" areas in the soil map and the 

impervious areas in the land use map, all impervious areas in the soil map were also defined 

as impervious in the land use map.   
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Table V.1: Land uses in ESWAT 
Land Use Class % in Dender basin ESWAT code Description 

City Centre 0.672 IMP Impervious 

Urban area 4.761 IMP Impervious 

Industrial zone 0.605 IMP Impervious 

Infrastructure 3.286 IMP Impervious 

Airport 0.001 IMP Impervious 

Green Urban zone 8.476 URBN Urban grass 

Farming land 17.931 AGRL Agricultural land generic 

Pasture 28.171 PAST Pasture 

Amiss 21.904 CORN Corn 

Wet pasture 1.828 PAST Pasture 

Leaf forest 8.510 FRSD Deciduous forest 

Needle forest 0.248 FRSE Evergreen forest 

Mixture of leaf and needle forest 0.396 FRSE Evergreen forest 

Heath land 2.394 RNGB Range 

Salt marsh, mud 0.004 RNGB Range 

River (Boats) 0.184 WATR Water 

Lakes 0.021 WATR Water 

Estuary 0.000 WATR Water 

River (Small boats) 0.129 WATR Water 

Highway 0.073 IMP Impervious 

Road 0.406 IMP Impervious 

 

1.1.3. The soils 

A simple soil classification system was used. A detailed soil and land use classification is 

indeed not useful in SWAT because only the most common combinations appear in the 

HRU's and thus the less common soil types disappear. Main soil classes are sand, loamsand, 

silty loam and impervious areas. For land use, 5 classes are important: impervious areas, 

forests, pasture, corn (maize and corn) and land for common agricultural use (crop culture, not 

corn). About 30% of the land use is pasture, while crop farming represents ca. 50% of the 

land use.  

The soil classes used and their parameters (taken from Arnold et al. (1996) and Dingman 

(1994)) are shown in table V.2. 
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Table V.2: The soil data in SWAT 
SWAT name Bulk. Density 

(g/cm3) 

Avail Water  

Capacity 

Hydraulic 

Conductivity 

(mm/hr) 

Clay 

(fraction) 

Silt 

(fraction) 

Sand 

(fraction) 

Rock 

(fraction) 

USLE Soil 

factor 

Sand 1.6 0.13 720 0.05 0.05 0.9 0 0.08 

Loamsand 1.6 0.14 2880 0.1 0.15 0.75 0 0.13 

Sandyloam 1.6 0.14 115.2 0.1 0.4 0.5 0 0.37 

Siltyloam 1.5 0.2 46.8 0.1 0.5 0.4 0 0.24 

Loam 1.6 0.15 22.7 0.15 0.8 0.05 0 0.62 

Clayloam 1.6 0.13 7.9 0.3 0.35 0.35 0 0.21 

Clay 1.4 0.11 2.9 0.6 0.2 0.2 0 0.08 

 

1.1.4. HRU’s 

To build the model, the total catchment was subdivided into 16 subbasins. Input information 

for each subbasin is grouped into categories of unique areas of land cover, soil and 

management within the subbasins called hydrological response units (HRU’s). HRU's were 

defined using a lower bound percentage of 10% for soil and land use within a subbasin. In 

total 80 HRU's were defined with 5 different crops and 6 different soil for the 16 subbasins. 

Tab. VI-11 provides a summary of the land use in the river basin, after application of the 

HRU's. The distribution shown in table V.3 differs from the distribution of the land uses of 

the original map (table V.1). The land use classes FRSE (evergreen forest), RNGB (range), 

URBN (Urban Grass Land) and WATR (Water) cannot be found anymore in the new land use 

distribution; AGRL, CORN, IMP and PAST have become more important while FRSD 

becomes less important. This is because in most of the subbasins, the fraction of FRSD is too 

small to be a HRU, so it is neglected. The other land uses get bigger parts of the total area 

because of the disappearance of some land uses. 

Table V.3: Calculated distribution of land uses (percentages) 

land use\soil IMP Clayloam Loam Loam 

sand 

Sand Sandy 

loam 

Silty 

loam 

Total 

IMP 16. 0.000 0.0 0.000 0.000 0.0 0.000 16. 

AGRL 0.0 0.005 18. 0.003 0.000 1.7 0.000 20. 

CORN 0.0 0.007 21. 0.009 0.000 4.8 0.000 26. 

FRSD 0.0 0.129 0.9 0.000 0.000 0.67 0.000 2. 

PAST 0.0 0.007 30. 0.000 0.005 6.2 0.005 36. 

Total 16. 0.148 70.168 0.012 0.005 13.3 0.005 100. 
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The original SWAT land use classification does not contain a land use class accounting for 

bare soil or impervious areas.  The latter classes are however very important when runoff or 

sediment losses are modelled. To overcome this drawback, an additional ‘crop’ was created in 

the crop database by putting all crop parameters equal to zero. In addition, a specific crop 

management option had to be defined. 

1.1.5. The river 

The SWAT Arcview Interface automatically calculates for each subbasin, the average main 

channel width, depth and length. Since the Dender River is not a natural river, the channel 

depths of the main river are hereby underestimated. Table V.4 shows the river characteristics, 

set in SWAT. Also, the channel length of some of the subbasins was underestimated by the 

SWAT Arcview interface. The channel length of these subbasins was corrected using the 

cross section plans for the Dender river.  

Table V.4: Channel characteristics for the Dender river (Bold = main channel) 

Subbasin Channel Width [m] Channel Depth [m] Channel Length [km] 

1 57. 3.7 0.27 

2 54. 3.7 8.2 

3 13. 0.6 6.6 

4 15. 0.7 24. 

5 48. 3.6 3. 

6 9. 0.48 12. 

7 45. 3.0 5.7 

8 34. 3.0 7.3 

9 21. 0.84 22.5 

10 27. 2.5 2.1 

11 12. 0.59 15. 

12 10. 0.51 2.1 

13 22. 3.3 5.1 

14 14. 0.64 21.5 

15 12. 2.72 5.5 

16 22. 0.85 25. 

 

1.1.6. Pollution 

For each subbasin, the domestic pollution was assessed by considering the inhabitant densities 

and inhabitant equivalents (IE's). Domestic and industrial pollution were added as constant 

point sources in the model.  



Chapter V: CALCULATION AND REDUCTION OF OUTPUT UNCERTAINTY 

144 

For the diffuse pollution sources first application of nutrients needs to be simulated. Although 

there is an unmistakable relation between intensive agricultural activity and the occurrence of 

high nutrient concentrations in the environment, few precise data are available about the 

contribution of agricultural activity to the total nutrient concentrations. The data needed for 

the model implemented in ESWAT were also very sparse and on municipal level and so 

conversions had to be made to make the data useful for the model (Smets, 1999). An Avenue 

script for ArcView was developed to transform the data for the villages to data at sub-basin 

scale (Table V.5). The amounts of fertiliser are distributed over pasture, corn land and generic 

agricultural land according to the typical manuring periods for these land uses.  

 

Table V.5: Fertiliser application rates for every subbasin 

Subbasin Nitrogen [kg N /ha] Phosphorus [kg P / ha] 

1 184 33 

2 128 23 

3 162 29 

4 174 31 

5 193 33 

6 99 17 

7 201 34 

8 136 24 

9 107 19 

10 225 39 

11 158 27 

12 186 33 

13 198 34 

14 194 34 

15 165 28 

16 166 28 

 

The following assumptions are hereby made: 

 

• The application of fertilisers is assumed to be homogeneously spread over the commune. 

• The application rates for the different crops are assumed to be the same. Fertilisers are 

applied to AGRL, CORN and PAST. While this assumption may be crude, the objective 

was to apply the correct total amount of fertilisers to the Dender basin, rather than 

applying the correct amount of fertiliser to each crop. 
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• The composition of animal manure and chemical fertilisers are assumed to be the same. 

Table V.6 shows the assumptions that were made about the composition. 

• The mechanism by which animal manure and chemical fertilisers are spread in nature and 

the losses occurring from that, are assumed to be the same.  

• It is assumed that the fertiliser application rate remains constant during the simulation 

period. 

 

Table V.6: Composition of the manure as input in SWAT 

Chemical Percentage of total fertiliser 

(100*kg/kg) 

HNO3 28.5% 

Mineral P 7.5 % 

Organic N 28% 

Organic P 7.5% 

Ammonia 28.5 % 

 

Next to the application of nutrients, additional management information needs to be provided 

in SWAT concerning planting and harvesting dates, dates on which tillage is applied,…. 

Limited information was available with regard to these activities. Originally, the data of table 

V.7 have been used: 

Table V.7: Agricultural management practices dates (day.month) 

 AGRL 

Generic 

agriculture 

CORN 

Corn 

Maize 

FRSD 

Deciduous 

Forest 

PAST 

Pasture 

IMP 

Imperviou

s 

Planting 1.03 1.04 NA NA 1.01 

Harvesting 1.10 1.10 NA NA 2.01 

Fertilising 01.03, 01.04, 

01.05 

01.03, 01.04, 

01.05 

No 01.03, 01.04, 

01.05 

no 

Tillage No No No no no 

 

In this way, for IMP, a crop is planted but is already harvested the next day. Although the 

land use IMP does not have a planting and harvesting date, SWAT requires those data.  

As the application of fertiliser was concentrated to one day in the month, this could cause 

enormous nutrient loads at the first rainy day following the manuring. To avoid these 

unrealistic peaks, fertilisation has been spread over 10 days for each the month in stead of 

manuring at the first day of the month. 
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1.1.7. Boundary conditions  

To account for the water flow coming from the Wallonian part of the Dender catchment, a 

point source was added as an upstream boundary of the catchment. The water flows used for 

this boundary are based on measured values of Bilhee, which were corrected to account for 

the full draining area of the Wallonian part of the Dender catchment (without Mark).  

1.2. Modelling approach for the river Nete in West 

1.2.1. The water quantity model 

The hydraulic behaviour of the river Nete in the selected stretch is approximated in this study 

with a cascade of tanks. A number of 10 tanks-in-series with different lengths and variable 

volumes was chosen as an acceptable compromise between calibration results and 

computation time. It was assumed that the rating curve for all tanks was the same as in the 

flow measurement station, since topography and morphology are uniform in the river stretch. 

The limits in the applicability of the tanks-in-series approach, including the difficulty to take 

into account backwater effects (Solvi et al., 2005), were of little limitation in the present 

study.  

The developed model does not include a hydrologic model. The flow rate from the upstream 

section of the stretch is taken as input of the model. The contribution due to the base flow has 

been accounted for by estimating the groundwater inflow as 10% of the water flowing in each 

tank.  

1.2.2. The biochemical model 

The biochemical model used for the present study is a sub-model of the River Water Quality 

Model Nr.1 (RWQM1)  (Reichert et al., 2001a; Vanrolleghem et al., 2001). This sub-model 

does not include processes and state variables that are not relevant for the problem at hand 

such as chemical pH-dependent reactions and the state variable “consumers” (and connected 

processes). Neglecting the pH-dependent reactions is justified by the fact that the 

measurements of pH show that in the whole simulation period and in all measuring stations 

the pH is relatively constant, in the range between 6.8 and 7.8. The same RWQM1 sub-model 

has been successfully tested on a South African basin (Deksissa et al., 2004) and on an Italian 

basin (Benedetti et al., 2004).  A heat balance model was included in the model in order to 

account for the effect of changes in solar radiation on water temperature. Based on Talati and 

Stenstrom (1990) the heat balance model includes the effects of solar radiation, atmospheric 

radiation, surface evaporation and surface convection as a function of radiation intensity, air 

temperature, wind speed, relative humidity and water surface of the river (for each of the 10 

tanks-in-series). In addition, the heat balance contribution due to the base flow has been 

accounted for by assuming the groundwater temperature equal to 11°C. This temperature 

represents the yearly average in the region as reported in the measurement database in 

Flanders (DOV, 2005).  

The reduction of light intensity induced by the shading of tree species that are commonly 

found on the banks of the Nete River (Alnus glutinosa, Salix spp. and Populus nigra) was 
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evaluated by means of field measurements. The measurements showed that in the full shade 

of a tree the incident solar radiation can decrease by 95%, which is in agreement with what 

indicated by Hill et al. (1995) and Hill (1996).  
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Figure V.2: Pattern of solar radiation during daytime in three different conditions of shading   

 

 

Figure V.3: Modelled temperature profile along the river with (black) and without shading 

(dashed) 

Figure V.2 shows an example of the intensity of solar radiation during daytime as estimated 

through measurements in three different conditions: full sun, sunspot under a tree and full tree 

shade. For introduction of shading into the model, conditions analogous to those of "sun spot 

under a tree" are assumed, as a conservative hypothesis, in the scenarios. 
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The effect of shading on the water temperature obtained with the temperature model, was 

compared with the indications found in literature. The reduction in the daily maximum 

temperatures was of about 7°C, and of about 3°C for the daily average temperature, consistent 

with the 4-10°C difference in peak temperature reported in literature for watercourses in New 

Zealand (Quinn et al., 1992), and with the daily fluctuations of water temperature for 

Australian catchments reported by Lovett and Price (1999). Figure V.3 is an extraction of 

some days of the temperature profile along the river, with and without shading.  

1.2.3. The simulation period 

Since the present study mainly focuses on the effects of shading on water quality and in 

particular on algal blooms, the summer period of 2002 (from April 1
st
 to October 31

st
) is taken 

as simulation period. Because of the absence of algal blooms and reduced foliage density, 

other seasons are of little importance for the objectives of this study. 

1.2.4. The input data 

The flow rate from the upstream section of the stretch is available from an automated 

measurement station. To calibrate the model, the flow in a section 12.2 km downstream the 

initial section as well as water quality measurements collected by VMM at seven 

measurement locations along the stretch were used.  

Four sources of pollution are considered in the model: agriculture, untreated industrial 

effluents, untreated households effluents and effluents of WWTPs. The impact of diffuse 

nutrient pollution from agricultural land-use has been estimated by VMM by means of the 

SENTWA model (System for the Evaluation of Nutrient Transport to Water), which takes 

into account the partial losses through atmospheric deposition, the losses into groundwater, 

the direct impact of mineral and organic fertilisers, the effect of natural drainage, erosion and 

run-off (VMM, 2004). VMM also provided statistics concerning the number of households 

not connected to any WWTP for each of the hydrographic zones of the Nete basin. The 

pollutant loads entering the stream from untreated municipal sewage were estimated on the 

basis of typical loads per inhabitant per day (60 g/d of BOD; 110 g/d of COD; 90 g/d of 

suspended solids; 12 g/d of total nitrogen; 2 g/d of total phosphorus). Data concerning 

industrial effluents and effluents from WWTPs were provided respectively by VMM and by 

Aquafin NV, the latter being responsible for the construction and operation of sewage 

treatment plants in the whole of Flanders. 

The frequency with which data for the various model input were available ranged between 

hourly (flow, water level, temperature and solar radiation), daily (WWTP effluent), twice-

weekly (water quality parameters in the WWTP effluents) to monthly (nutrient loads from 

agriculture and water quality parameters in the upstream section). For untreated households 

and industrial effluents a steady state value was assumed for the whole simulation. The input 

file for the model was created with hourly time-steps. The loads of pollutants were assumed to 

remain constant between two measurements. 
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2. Effect of different river water quality model concepts used for river basin 

management decisions 

2.1. Introduction 

 

For integrated water quality management, a holistic approach is necessary at river basin scale. 

As diffuse pollution sources are increasingly responsible for water quality problems, water 

quality modelling entered the field of catchment modelling. Upscaling of agricultural field-

scale modelling tools or the inclusion of erosion and nutrient equations in catchment 

hydrological models has led to a number of tools that enable the calculation of the 

contributions of water, nutrients and sediments from drained areas. In integrated river water 

quality modelling, the in-stream processes play a key role, as it is here that the pollution of 

different origins are added and are transformed to what finally determines the water quality.  

Within the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1996), the original water 

quality module – based on QUAL2E (Brown and Barnwell, 1987)  - appeared to be 

erroneously implemented. Time steps of only 1 day were possible that cannot be used in 

evaluating river water quality processes that change on a subdaily time base. Therefore, two 

alternative formulations using hourly time steps based on the QUAL2E and the more 

elaborated River Water Quality Model nr. 1 (RWQM1) (Reichert et al., 2001b) were 

incorporated in the SWAT model codes and applied on the highly polluted Dender river basin 

(Belgium) (van Griensven and Bauwens, 2001). Since these concepts represent different 

processes or different formulations of the processes (see table V.8), they may give rise to 

different results. This is revealed when the two models are applied for pollution abatement 

scenarios. When using water quality models for management purposes it is important to have 

knowledge of the key processes in the river system. To this end a sensitivity analysis (SA) on 

the parameters of both concepts was performed. With the results of this SA, one is able to 

define the restrictions of use of a certain river water quality model, for instance, when the 

model results are not sensitive towards parameters of sediment processes, this model cannot 

be used for the evaluation of anti-erosion measures.  

Table V.8: Comparison between QUAL2E and RWQM1 based water quality models 
QUAL2E RWQM1 

 Based on activated sludge modelling concept 

Effect focused Cause focused 

No microbial masses modelled Microbial masses modelled 

Simple Complex 

Few parameters and variables Many parameters and variables  

Not closed mass balances Closed mass balances 

 

To show the effects on management decision, a specific scenario is evaluated in which the 

pollution load to the river Dender originating from agricultural fertilizer use, is to be 
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diminished. Both river water quality concepts were used to evaluate the decrease in diffuse 

pollution input and a comparison is made in this study. 

2.2. Methodology 

 

The capabilities of the two different concepts of river water quality modelling to predict and 

assess the effects of future scenarios for pollution abatement are explored by studying a 

reduction in diffuse pollution load towards the river Dender.  The ESWAT model was 

calibrated for the two water quality model concepts with two weekly measurements taken in 

1994. The calibration was done with the multi-objective calibration method described in van 

Griensven and Bauwens (2003). The calibration of the flow was also done by multi-objective 

calibration, the parameters calibrated were the hydraulic conductivity of the soils, the canopy 

index, the infiltration runoff time lagging, the groundwater parameters and the routing 

parameters. The calibration led to a Nash-Sutcliffe efficiency of 0,9 for the hourly flow. For 

both concepts, the results are given for the time series of NO3 and DO. Sensitivity analysis 

(SA) on the models is performed on the model results for 1994 as well as the model results 

obtained after decreasing the diffuse pollution input. This SA is performed with a global 

sensitivity analysis to see the most influential parameters of the water quality model.  The 

method used is a regression and correlation technique (Saltelli et al. 2000) with Latin 

Hypercube Monte Carlo sampling (McKay 1995). Regression is done between the parameters 

and the output. This output is chosen depending on the problem. Because one of the problems 

in the river Dender is oxygen shortage during some periods of the year, due to eutrophication, 

and the diffuse pollution is influencing the nitrate content of the river, the critical output 

considered here is the amount of hours that the oxygen concentration drops below 5 mg/l and 

the nitrate concentration is higher than 3 mg/l. 
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Table V.9: Parameters and initial conditions used in the sensitivity analyses for the QUAL2E 

model in ESWAT. (*Arnolds et al, 1996; **Bowie et al, 1985; ***calibrated) 
variable Description Units Range Nominal value 

aio Ratio of chlorophyll to algae biomass  µg-chl a/mg-algae 10-100* 10*** 

ai1 Fraction of algae biomass that is nitrogen mgN/mg algae 0.07-0.09* 0.09*** 

ai2 Fraction of algae biomass that is phosphorus mgP/mg algae 0.01-0.02* 0.02*** 

ai3 O2 production per unit algae growth mg O2/mg algae 1.4-2.6** 2.3** 

ai4 O2 uptake per unit of algae respiration mg O2/mg algae 1.6-2.3* 2.0* 

ai5 O2 uptake per unit of NH3 oxidation mg O2/mg NH3-N  3.0-4.0* 3.5* 

ai6 O2 uptake per unit of HNO2 oxidation mg O2/mg HNO2-N 1.00-1.14* 1.07* 

µmax Maximum algae growth rate 1/day 1.0-3.0* 2.2* 

rhoq Algae respiration rate 1/day 0.05-0.5* 0.2* 

Kl Michaelis-Menten half-saturation constant 

for light 

langley/hour 0.72-6.16** 5.226*** 

Kn Michaelis-Menten half-saturation constant 

for Nitrogen 

mgN/l 0-10* 0.1* 

Kp Michaelis-Mentn half-saturation constant 

for Phosphorus 

mgP/l 0-10* 0.014* 

Λ0 Minimum light intensity for algae bloom J/m
2 

1.5-7.5*** 5.0*** 

Λ1 Algae light self-shading coefficient g algae biomass/m² 0.01-2.0*** 0.3*** 

Λ2 Sediment shading coefficient mg/l 10-200*** 100*** 

Pn Algae preference factor for ammonia mg/l 0-1* 0.3*** 

kdd Algae die-off rate 1/day 0.01-0.8*** 0.2**** 

rs1 Local algae settling rate in the reach  m/day 0.01-1.85* 0.15* 

rs2 Benthic (sediment) source rate for 

dissolved phosphorus in the reach)  

mg dissolved 

P/(m
2
·day) 

0.01-0.03** 0.01** 

rs3 Benthic source rate for NH4-N in the reach mg NH4-N/(m
2
·day). 0.0004-1.8** 1.0** 

rs4 Rate coefficient for organic N settling in 

the reach  

m/day 0.001-3.0*** 0.05* 

rs5 Organic phosphorus settling rate in the 

reach 

m/day 0.001-0.1* 0.03* 

rk1 Carbonaceous biological oxygen demand 

deoxygenation rate coefficient in the reach  

1/day 

 

0.02-3.4* 0.87* 

rk2 Oxygen reaeration rate in accordance with 

Fickian diffusion in the reach 

m/day
 

 

0-100* 0.3*** 

rk3 Rate of loss of carbonaceous biological 

oxygen demand due to settling in the reach  

m/day
 

 

0.1-3.0*** 0.2*** 

rk4 Benthic oxygen demand rate in the reach. 

If no value for rk4 is entered, the model 

sets rk4 = 2.0 

m²/day 

 

0.02-12.8** 5** 

rk5 Rate constant for denitrification  day
-1 

0.05-4.0* 0.9* 

Rk6 Decay rate for arbitrary non-conservative 

constituent in the reach. 

day
-1 

 

0-10*** 1*** 

bc1 Rate constant for biological oxidation of 

NH4 to NO2 in the reach 

day
-1 

 

0.1-1* 0.1*** 

bc2 Rate constant for biological oxidation of 

NO2 to NO3 in the reach  

day-1 

 

0.2-2* 1.0* 

bc3 Rate constant for hydrolysis of organic N 

to NH4 in the reach 

day-1 

 

0.2-0.4* 0.4*** 

bc4 Rate constant for mineralization of organic 

P to dissolved P in the reach  

day
-1 

 

0.01-0.7* 0.1* 

rktemp Rate constant for heat exchange m*day
-1 

0.1-1*** 0.35*** 
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Table V.10: Parameters and initial conditions used in the sensitivity analyses for the RWQM1 

model in ESWAT, see also appendix B 
Parameter Units Minimum Maximum Nominal value 

water column     

k,death, alg T
-1
 0.0500 0.2000 0.14 

k,death,con T
-1
 0.0250 0.0750 1.05 

k,gro,alg T
-1
 4.0000 7.0000 4.292 

k,gro,con L
3
M
-1
T
-1
 0.000016 0.000024 0.00002 

k,gro,h,aer T
-1
 1.0000 3.0000 2.758 

k,gro,h,anox T
-1
 1.0000 3.0000 2.021 

k,gro,N1 T
-1
 0.5000 2.0000 1.042 

k,gro,N2 T
-1
 0.1000 2.0000 0.96 

k,hyd, orgC T
-1
 0.0100 0.5000 0.213 

k,resp,,alg T
-1
 0.0500 0.5000 0.5 

k,resp,con T
-1
 0.0500 0.5000 1.05 

k,resp,H,aer T
-1
 0.0500 0.5000 0.35 

k,resp,H,anox T
-1
 0.0500 0.5000 0.13 

k,resp,N1 T
-1
 0.0500 0.5000 0.463 

k,resp,N2 T
-1
 0.0500 0.5000 0.206 

k,eq,1 T
-1
 fixed value fixed value 100000 

k,eq,2 T
-1
 fixed value fixed value 10000 

k,eq,w L
3
M
-1
T
-1
 fixed value fixed value 10000 

k,eq,N T
-1
 fixed value fixed value 10000 

k,eq,P T
-1
 fixed value fixed value 10000 

k,eq,so L
3
M
-1
T
-1
 fixed value fixed value 2 

k,ads T
-1
 0.0500 1.5000 1.2 

k,set,org T
-1
 0.1000 10.0000 0.761 

k,set,eros T
-1
 0.0000 30.0000 0.1 

k,res,sed T
-1
 0.0000 10.0000 1.3 

kcon,set,xii T
-1
 0.0000 10.0000 0.5 

kexp,set T
-1
 0.6000 1.0000 0.8 

Kreaer T
-1
 0.5000 10.0000 2.187 

kCO2 T
-1
 0.2550 0.3450 0.3 

diff O2 T
-1
 0.0014 0.0018 0.0016 

diff SS T
-1
 0.00081 0.00109 0.000952 

diff HPO4 T
-1
 0.00102 0.00138 0.0012 

diff NH4 T
-1
 0.00102 0.00138 0.0012 

diff NO2 T
-1
 0.00102 0.00138 0.0012 

diff NO3 T
-1
 0.00102 0.00138 0.0012 

diff CO2 T
-1
 0.00102 0.00138 0.0012 

k,hyd, orgN T
-1
 0.0100 0.5000 0.1 

k,hyd, orgP T
-1
 0.0100 0.5000 0.1 

Rktemp T
-1
 0.0010 0.0014 0.0012 

Boundlayer L 0.0010 0.3000 0.006 

k,death,alg,sed T
-1
 0.0085 0.0115 0.01 

k,death,sed T
-1
 0.0425 0.0575 0.05 

k,gro,alg,sed T
-1
 1.7000 2.3000 2 

k,gro,con,sed L
3
M
-1
T
-1
 0.0002 0.0002 0.0002 

k,gro,h,aer,sed T
-1
 1.7000 2.3000 2 

k,gro,h,anox,sed T
-1
 1.3600 1.8400 1.6 

k,gro,N1,sed T
-1
 1.2750 1.7250 1.5 

k,gro,N2,sed T
-1
 1.2750 1.7250 1.5 

k,hyd,sed T
-1
 0.0255 0.0345 0.03 

k,resp,alg,sed T
-1
 0.0850 0.1150 0.1 

k,resp,con,sed T
-1
 0.0425 0.0575 0.05 

k,resp,H,aer,sed T
-1
 0.1700 0.2300 0.2 

k,resp,H,anx,sed T
-1
 0.0850 0.1150 0.1 

k,resp,N1,sed T
-1
 0.0425 0.0575 0.05 
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k,resp,N2,sed T
-1
 0.0425 0.0575 0.05 

k,eq,1 T
-1
 fixed value fixed value 100000 

k,eq,2 T
-1
 fixed value fixed value 10000 

k,eq,w L
3
M
-1
T
-1
 fixed value fixed value 10000 

k,eq,N T
-1
 fixed value fixed value 10000 

k,eq,P T
-1
 fixed value fixed value 10000 

k,eq,so T
-1
 1.7000 2.3000 2 

k,ads,sed T
-1
 0.2000 0.8000 1 

M,HPO4,alg ML
-3
 0.0170 0.0230 0.02 

M,HPO4,h,aer ML
-3
 0.0170 0.0230 0.02 

M,HPO4,H,anox ML
-3
 0.0170 0.0230 0.02 

M,HPO4,N1 ML
-3
 0.0170 0.0230 0.02 

M,HPO4,n2 ML
-3
 0.0170 0.0230 0.02 

M,N,alg ML
-3
 0.0850 0.1150 0.1 

M,N,H,aer ML
-3
 0.1700 0.2300 0.2 

M,NH4,n1 ML
-3
 0.4250 0.5750 0.5 

M,NO3,H,anox ML
-3
 0.0850 0.1150 0.1 

M,NO2,H,anox ML
-3
 0.0850 0.1150 0.1 

M,NO2,n2 ML
-3
 0.4250 0.5750 0.5 

M,O2,alg ML
-3
 0.1700 0.2300 0.2 

M,O2,con ML
-3
 0.4250 0.5750 0.5 

M,O2,H,aer ML
-3
 0.8500 1.1500 1 

M,O2,N1 ML
-3
 0.0850 0.1150 0.1 

M,O2,n2 ML
-3
 0.0850 0.1150 0.1 

M,S,H,aer ML
-3
 1.7000 2.3000 2 

M,S,H,anox ML
-3
 1.7000 2.3000 2 

Ki EL
-2
 3.4000 4.6000 4 

M,NH4,alg ML
-3
 0.0850 0.1150 0.1 

M,alg,alg ML
-3
 0.0850 0.1150 0.1 

M,algbed,alg ML
-3
 0.0850 0.1150 0.1 

depth sed layer L 0.0850 0.1150 0.1 

 

The sensitivity analysis presented here focuses on the parameters of the in-stream QUAL2E 

based water quality model only, which includes 33 parameters and the parameters of the 

RWQM1 model which includes 86 parameters. In table V.9 and V.10 all water quality 

parameters with nominal default values and boundaries are given for resp. the parameters of 

the QUAL2E and the RWQM1 model. Those values come from literature, the SWAT manual 

and from own experience with the model. 

Various statistical methods can be employed to quantify the sensitivity and uncertainty 

contribution of the sources to the model outputs. Widely used are those based on linear 

regression analysis and correlation analysis between the inputs and the simulated model 

outputs and whereby the parameters with significant correlation are determined to be 

important.  

 

A linear relation is assumed between the model parameters pxx ,...,1  and the model output Y : 

                                                                    with k = 1,...,N where N is the number of model-

outcomes. 

)()(...)()( 110 kekxkxkY pp ++++= βββ
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The quantities β0 ,β1,....,βp denote the ordinary regression coefficients (ORC), obtained by 

minimizing the criterion ( )[ ]2
1 1

0 )()(∑ ∑= =
−−

N

k

p

i
ii kxkY ββ  and e(k) represents the error due to 

a non-perfect matching of the linear approximation. 

The goodness of the linear approximation can be assessed by considering the coefficient of 

determination (R
2
) of the regression:  

2

2

ˆ2

y

y

S

S
R =   

with 22

ˆ
, yy SS  resp. the variation on the model results and the variation explained by the linear 

regression on the approximated value. 

The confidence in the ordering of importance of the input factors based on that statistic is as 

good as the associated model coefficient of determination R
2
 of the whole multi-linear 

regression. The closer R
2
 is to 1, the better the results. 

Because an extension of the set of regressors with additional variables will invariably lead to 

an increase of R
2
, independent of the significance of the added variable, an alternative 

measure can be introduced: the adjusted coefficient of determination R
2
adj: 

( ) ( ) ( )( )[ ]pNNRRadj +−−−−= 11.11 22  

The closer the value of this coefficient is to 1, the better the regression. It is recommended to 

use the rank transformed values to calculate the sensitivity when the value of 2R  or 2

adjR is 

smaller than 0.7 (Saltelli et al., 2000). 

When the input variables are linearly related, the application of a linear regression can lead to 

an accuracy problem, the collinearity problem (Hocking, 1983). The Variation Inflation Facor 

(VIF) is a measure of collinearity and is defined as: 

[ ] ( ) 121
−

−== iiixi RCVIF   

where [Cx]ii represent the diagonal elements of the covariance matrix relating y versus x and 
2

iR  = the 2R  value that results from regressing y on only ix . 

A linear regression can be applied as long as the VIF is smaller than 5 (Janssen et al., 1992) .  

In this study, the standardized regression coefficients (SRC) are used as sensitivity measures.  

SRCi = 

ixi

y

Sx

Sy

/

/

∆

∆
  

with ixy ∆∆ /   the change in output due to a change in an input factor and yS , 
ix

S the standard 

deviation of respectively the output and the input. The input standard deviation 
ix

S  is 

specified by the user and based on literature values or own experience with the model. 
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Only the parameters contributing significantly in this linear regression (90% level) are 

presented. 

The sensitivity analysis on the base scenario reveals which processes will typically be taken 

into account when the abatement scenarios are evaluated. The sensitivity analysis on the 

reduced diffuse pollution scenario shows the importance of the changed input on the modelled 

processes. It helps to decide which processes have to be measured and evaluated in view of 

attaining more reliable results of the model when using it to evaluate a future scenario.   

2.3. Results 

2.3.1. Time series 

The base scenario with real input of the year 1994 and the scenario with 90% fertiliser use 

reduction are presented in figures V.4 to V.7. In figures V.4 and V.5 the DO and NO3 time 

series with a QUAL2E model concept are given at Denderbelle, a river stretch close to the 

mouth of the river. Figures V.6 and V.7 give the time series at the same location as a result of 

simulations with the RWQM1 model. 

 

0

2

4

6

8

10

12

0
1
/0
1
/1
9
9
4

0
1
/0
2
/1
9
9
4

0
1
/0
3
/1
9
9
4

0
1
/0
4
/1
9
9
4

0
1
/0
5
/1
9
9
4

0
1
/0
6
/1
9
9
4

0
1
/0
7
/1
9
9
4

0
1
/0
8
/1
9
9
4

0
1
/0
9
/1
9
9
4

0
1
/1
0
/1
9
9
4

0
1
/1
1
/1
9
9
4

0
1
/1
2
/1
9
9
4

time (date)

d
is
s
o
lv
e
d
 o
x
y
g
e
n
 (
m
g
/l
) measurements

 
Figure V.4: Time series 1994 (base (full line) and scenario reduction diffuse pollution (dashed 

line)) with measurements (symbols) in 1994 for DO at Denderbelle, simulated with the 

QUAL2E-based model 
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Figure V.5: Time series 1994 (base (full line) and scenario reduction diffuse pollution (dashed 

line)) with measurements (symbols) in 1994 for NO3 at Denderbelle, simulated with 

QUAL2E based model 
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Figure V.6: Time series 1994 (base (full line) and scenario reduction diffuse pollution (dashed 

line)) with measurements (symbols) in 1994 for DO at Denderbelle, simulated with RWQM1 

based model 

 

 



Methodologies for reduction of output uncertainty of river water quality models 

 

157 

0

2

4

6

8

10

12

14

16

0
1
/0
1
/1
9
9
4

0
1
/0
2
/1
9
9
4

0
1
/0
3
/1
9
9
4

0
1
/0
4
/1
9
9
4

0
1
/0
5
/1
9
9
4

0
1
/0
6
/1
9
9
4

0
1
/0
7
/1
9
9
4

0
1
/0
8
/1
9
9
4

0
1
/0
9
/1
9
9
4

0
1
/1
0
/1
9
9
4

0
1
/1
1
/1
9
9
4

0
1
/1
2
/1
9
9
4

time (date)

n
it
ra
te
 (
m
g
/l
)

NO3-N mg/l (reduced diffuse pollution)

 
Figure V.7: Time series 1994 (base (full line) and scenario reduction diffuse pollution (dashed 

line)) with measurements (symbols) in 1994 for NO3 at Denderbelle, simulated with RWQM1 

model 

 

From the comparison of the simulations with the two water quality concepts, it can be 

concluded that the dissolved oxygen profiles of the base and the reduction scenario are 

approximately the same for both model concepts, but for the nitrate concentration in the river, 

the profiles are different, although calibrated in the same way. As a possible explanation for 

this difference it should be mentioned that the RWQM1 model was difficult to calibrate for 

nitrates. The mass balance is closed here and by calibrating with data on DO, BOD, NO3, 

NO2, NH4 and PO4 it was apparently not possible to find a good fit for all of them. More and 

more accurate data are needed to obtain better results. It can be concluded that the QUAL2E 

model with its lumping of processes of different microbial communities is easier to calibrate 

with less data. 

Comparing the results of the scenarios, the same conclusions would be drawn from both 

model results on dissolved oxygen. Lowering the diffuse pollution towards the river is not a 

solution in itself as the nutrients coming from households are still high and still lead to algae 

growth during summer, with extremely low oxygen concentrations. For nitrates the 

conclusions with RWQM1 are more optimistic, showing that nitrates are much lower in the 

river during the whole year. Due to the importance of sediment processes by this model, 

nitrates are lowered. In the reduction scenario, the sensitivity analysis for RWQM1 (table 

V.12) shows that sedimentation and diffusion processes become even more important in this 

reduced diffuse pollution scenario. So, to attain more accurate results with more reliability, 

special attention will be needed towards the calibration and validation of those processes if a 

RWQM1 model is used. For the QUAL2E model too the settling processes come more into 

the picture (compare also table V.13 to table V.11 further on) showing the importance of the 

sediments when the input of nitrates and phosphates decrease. 

When looking at diffuse pollution abatement scenarios, algae play an important role as the 

amount of nutrients used by algae for growth (P and N) originate mainly from agricultural 

fertilizer use. In this study, the difference between the modeling approach towards algae 
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growth only becomes relevant when in the future scenario point pollution loads are 

diminished as well. In the Dender case it appears that the nutrients never become limiting, and 

algae growth continues with increased temperature and solar radiation. Consequently, the 

differences in dissolved oxygen profiles between base and reduction scenarios are not really 

significant. Processes that are of importance are denitrification in the water and in the 

sediments. 

2.3.2. Sensitivity analysis  

Tables V.11 to V.14 gives the result of the sensitivity analysis on the base case and the 

scenario of reduced diffuse pollution. The results of the base case are similar to the results 

found in (van Griensven and Vanrolleghem, 2005) with a one factor-at-the-time method for 

the sensitivity analysis. There is an indication that QUAL2E is suited for evaluations related 

to algae while RWQM1 is better representing the settling and river bed interactions, and the 

microbial dynamics/limiting factors, as can be seen in the SA in which these process related 

parameters are ranked as highly important. The results of the SA for the reduction scenarios 

indicate that due to the decreased load of nutrients to the river some processes become more 

or less important. For the QUAL2E model for the base case, nitrification/denitrification is 

important, but for the reduction scenario the benthic oxygen demand, organic N settling and 

cBOD deoxygenation become also important.  In the SA for RWQM1 the results show a shift 

in importance of processes towards sediment processes and diffusion in the river water and 

stresses processes performed separately by different microbial communities. As the microbial 

masses change between scenarios, and this is explicitly considered in the RWQM1, this can 

give better results. However, this only holds if sufficient measurement data are available for 

calibration and validation. If one needs to work with a restricted amount of data, the 

QUAL2E-based modelling will perform better. 

Table V.11: Ranking of parameters of QUAL2E model based on the standardized regression 

coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l (base case) 

NO3 >3 mg/l DO <  5 mg/l 

Parameter  SRC Parameter SRC 

O2 uptake/NH4 oxidation -0.704  O2 uptake/NH4 oxidation 0.521 

Denitrification rate -0.342 Rate biological oxidation of 

NH4 to HNO2 

0.354 

Reaeration rate 0.321 O2 uptake/algae respiration 0.279 

O2 uptake/HNO2 oxidation -0.211 cBOD deoxygenation rate 0.268 

Rate biological oxidation of 

HNO2 to HNO3 

-0.268 O2 production/algae growth -0.240 

cBOD loss due to settling 0.173 Algae resp rate 0.159 

O2 uptake/algae respiration 0.121 O2 uptake/HNO2 oxidation 0.159 

  Max algae growth rate -0.159 

  cBOD loss due to settling -0.149 
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Table V.12: Ranking of parameters of RWQM1 model based on the standardized regression 

coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l (base case) 

NO3 >3 mg/l DO < 5 mg/l 

Parameter  SRC Parameter SRC 

Growth rate first stage 

Nitrifiers 

-0.662 Growth rate heterotrophs, 

aerobic 

0.482 

Respiration rate first stage 

Nitrifiers 

0.341 Respiration rate algae 0.394 

Respiration rate heterotrophs, 

aerobic 

0.150 Respiration rate first stage 

Nitrifiers 

0.319 

Respiration rate heterotrophs, 

anoxic 

-0.145 Growth rate algae -0.313 

Growth rate consumers in 

sediment 

-0.123 Growth rate second stage 

Nitrifiers 

-0.260 

Hydrolysis rate in sediment 0.111 Growth rate heterotrophs, 

aerobic in sediments 

-0.073 

Diffusion suspended solids -0.101 Reaeration rate -0.072 

Growth rate heterotrophs, 

aerobic in sediments 

- 0.097   

Respiration rate algae 0.088   

Reaeration rate 0.086   

 

Table V.13: Ranking of parameters of QUAL2E model based on the standardized regression 

coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l (reduced diffuse 

pollution) 
NO3 >3 mg/l DO < 5 mg/l 

Parameter  SRC Parameter  SRC 

Reaeration rate -0.728 Reaeration rate -0.728 

Benthic oxygen demand  0.360 Rate biological oxidation 

of NH4 to HNO2 

0.360 

CBOD loss due to settling  0.229 Benthic source rate NH4 0.229 

Rate biological oxidation of 

NH4 to HNO2 

0.185 Benthic oxygen demand 0.185 

Algae preference factor for 

ammonia 

0.122 O2 uptake/NH4 oxidation 0.122 

Rate org N settling -1.00 Rate org N settling -1.00 

Half saturation constant for 

nitrogen 

-0.083 Algae respiration rate -0.087 

cBOD deoxygenation rate 0.078 Halfsaturation constant for 

phosphorus 

-0.083 

O2 uptake/NH4 oxidation 0.12   
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Table V.14: Ranking of parameters of RWQM1 model based on the standardized regression 

coefficient for the output time of NO3 >3 mg/l and time of DO < 5 mg/l (reduced diffuse 

pollution) 
NO3 >3 mg/l DO < 5 mg/l 

Parameter  SRC Parameter SRC 

Growth rate first stage 

Nitrifiers 

-0.853 Growth rate heterotrophs, 

aerobic 

0.416 

Respiration rate first 

stage nitrifiers 

0.331 Growth rate first stage 

nitrifiers 

-0.376 

Respiration rate 

heterotrophs, aerobic 

0.100 Respiration rate algae 0.373 

Respiration rate 

heterotrophs, anoxic 

-0.099 Respiration rate first stage 

Nitrifiers 

0.328 

Diffusion ammonium 0.065 Growth rate algae -0.265 

Respiration rate 

heterotrophs, anoxic in 

sediments 

-0.060 Growth rate second stage 

nitrifiers 

-0.237 

Growth rate consumers 

in sediment 

0.059 Growth rate heterotrophs, 

anoxic 

0.101 

Growth rate algae 0.048 Respiration rate 

heterotrophs, aerobic 

-0.093 

Hydrolysis rate in 

sediment 

0.043 Sediment boundary layer  -0.085 

Diffusion nitrite 0.08   

 

2.4. Conclusions 

 

The two main concepts in river water quality modelling in use today, QUAL2E and RWQM1 

were compared in view of their role in management decision-making. It is shown that the 

focuses for the two concepts are somewhat different. For this case study on the Dender River, 

the output of the QUAL2E-based water quality models is mainly influenced by the algae 

processes where as in the RWQM1 different microbial communities perform processes 

separately and also sedimentation is taking into account.  

When a RWQM1 model can be used that is well calibrated, it should be preferred over a 

QUAL2E-based model for evaluation of a scenario of reduced diffuse pollution, because as it 

was shown that the sediment processes then become more important. 

The sensitivity of the model results with respect to the processes is not the same for the 2 river 

water quality modelling concepts and the different models are not always able to properly 

answer the same management problem. This clearly shows that managers should be aware of 

the possibilities and limitation of the model they use and choose a model that fits their 

problem and expectations. Also, knowing which processes will become important after 

execution of a scenario can make that extra attention is paid towards those processes during 

model set up in order to get more reliable results. Here expert knowledge also plays an 

important role. In the Dender river case study, the sediment and diffusion processes become 

more important. 
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3. Sensitivity analysis to identify ‘soft data’ for the evaluation of a river 

water quality model  

3.1. Introduction 

 

The results of a sensitivity analysis can provide guidelines about how parameter uncertainty 

will affect the model output, but these are always related to the specific circumstances under 

which the model was built and calibrated. If the model has to be applied on a river with 

different characteristics, again an extended dataset is needed to identify the important 

parameters of the model and the associated uncertainty levels. If it were possible to link 

uncertainty and characteristics of the river basin in advance, this could open perspectives for 

model applications in ungauged basins.  Research on this topic is also performed in other 

studies. One of the methods proposed in Belgium is the method by Hundecha (2002). They 

linked the catchment properties, i.e. the model parameters, with a transfer function. That way 

similar catchments could be linked with similar parameter values. They calibrated these 

transfer functions with the runoff data of gauged catchments.  

The aim of this research was to examine the link between catchment properties and sensitivity 

of parameters of a river water quality model by testing the local sensitivity of a river water 

quality model to the a priori assumption of parameter values. In non-linear models, the 

propagation of uncertainty of a particular parameter depends on several factors, such as the 

values of the other model parameters and the specific conditions. The values of parameters 

also can differ according to specific circumstances. For example, a river with important algae 

blooms during summer periods will have its parameters of the algae growth model adapted to 

the growing species when calibrated.  

The presented analysis can reveal important information about the uncertainty propagation for 

situations in which no or poor data are available. Indeed, if general clusters can be found of 

cases in which some parameters are more sensitive than others, then this information can be 

used as 'soft data' to identify when certain parameters become more important than others and 

this can for example be used to divide the parameters in uncertainty classes or to get an idea 

of the values of those parameters. Another aspect is that once the important parameters are 

detected, optimal experimental design techniques can be used to determine the optimal 

measurement strategy that allows a better identification of the parameter values before 

calibrating the model.  

3.2. Methodology 

 

The method used here is based on the one described in Weijers and Vanrolleghem (Weijers 

and Vanrolleghem, 1997). It is like a kind a kind of sensitivity analysis of the sensitivity 

analysis. It starts with a Latin Hypercube Monte Carlo sampling (McKay et al., 1979) of all 

the parameters over the whole parameter space, 100 samples are taken (method is the same as 
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described in section 2 of this chapter). The parameter space is delineated based on literature, 

mostly out of Jorgensen et al. (1991). For each set of sampled parameters, a regional 

sensitivity analysis is done in which the values are changed 10 % around their nominal value, 

again with a Latin Hypercube Monte Carlo using 100 samples.  This procedure is visualised 

in figure V.8. 

Parameter set

Region of 10% 

variation for SA

Parameter set

Region of 10% 

variation for SA

 

Figure V.8: Sampled parameter sets and their 10% variation region around them. 

In this way for each sampled set of parameters the most sensitive parameters can be detected 

by ranking them. Given the model’s non-linearity it is obvious that these most important 

parameters will not be the same for all sampled sets. The ranking will be related to the 

nominal values of the parameters. From this analysis the parameters can be identified that are 

sensitive in all cases, in some cases or never. For those that sometimes appear to be the most 

sensitive ones, we can try to see under which circumstances they become more important and 

what kind of parameter set they are linked with. That way a link is created between parameter 

sensitivity, value and external circumstances. 

One must realise an assumption is made, namely that the model is general and complete in the 

description of all the processes so that 10000 Monte Carlo-runs cover all possible situations 

for the river Dender. Different situations in the watershed are corresponding to different 

parameter values which lead to different sensitivities. These situations can be called the “soft 

data”. An example of soft data can be: temperature of the water, colour of the water, residence 

time, important diffuse pollution, … 

3.3. Results and discussion 
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results and the corresponding characteristics of the river. Figure V.10 gives an example of two 

such different runs, with or without algae growth. 

 

No algae growth 

• Most important parameters: rk2, ai5, ai6, bc1, rk1, rk3, rk4, bc3, rktem, bc2 

(O2 reaeration rate, O2 uptake per unit of NH3, rate constant for biological oxidation of 

NH4 to NO2, O2 uptake per unit of HNO2, cBOD oxygenation rate, cBOD loss rate due to 

settling, rate constant for hydrolysis of organic N to NH4, rate constant for heat exchange, 

rate constant for biological oxidation of NO2 to NO3) 

With algae growth 

• Most important parameters: ai5, bc1, ai4, rk1, ai3, rhoq, ai6, pn, rk3, rk5 

(O2 uptake per unit of NH3, Rate constant for biological oxidation of NH4 to NO2 in the reach, 

O2 uptake per unit of algae respiration, cBOD oxygenation rate , O2 production per unit of 

algae growth, algae respiration rate, O2 uptake per unit of HNO2 oxidation, algae preference 

factor for ammonia , cBOD loss rate due to settling, rate constant for denitrification) 

0,00E+00

2,00E+00

4,00E+00

6,00E+00

8,00E+00

1,00E+01

1,20E+01

1

5
4
6

1
0
9
1

1
6
3
6

2
1
8
1

2
7
2
6

3
2
7
1

3
8
1
6

4
3
6
1

4
9
0
6

5
4
5
1

5
9
9
6

6
5
4
1

7
0
8
6

7
6
3
1

8
1
7
6

8
7
2
1

time  (h)

D
O
 (
m
g
/l
)

0

2

4

6

8

10

12

1

4
9
1

9
8
1

1
4
7
1

1
9
6
1

2
4
5
1

2
9
4
1

3
4
3
1

3
9
2
1

4
4
1
1

4
9
0
1

5
3
9
1

5
8
8
1

6
3
7
1

6
8
6
1

7
3
5
1

7
8
4
1

8
3
3
1

time (h)

D
O
 (
m
g
/l
)

 
 

Figure V.10: Simulations of DO in the Dender simulated with two different parameter sets 

 

With the analysis it was detected that if the river has a low ammonium concentration the 

parameter rs3 becomes also important, and if the river has a high ammonium content rs4 

becomes more important. A river with high phosphates gives bc4 as important parameter in 

addition to the parameters related to benthic processes. 

The analysis of all the different runs is very time consuming and it was therefore decided to 

only consider the most obvious cases. Table V.15 summarizes some of the findings of this 

limited study. Not only the importance of the parameters under different circumstances can be 

detected but also linking of the parameter values to the “soft data” is possible. As an example 

two different parameter sets are given, one with and one without algae growth (table V.16). 

These values give an idea of the magnitude of the parameters to start a calibration with when 

a particular situation is to be modelled, but it’s obvious that much more analysis is needed to 

also identify other parameter sets which give similar outputs, but for which other aspects are 

different. This may be the subject of different research. 
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Table V.15: Some observed relations between soft data and sensitive parameters 

Soft data  Sensitive parameters 

No algae growth ( no green colouring of water) rk2,ai5,ai6,bc1,rk1,rk3,rk4,bc3,rktemp,bc2 

Algae growth (green colouring of water) ai5, bc1, ai4, rk1, ai3, rhoq, ai6, pn, rk3, rk5 

Low ammonium content  + rs3 

High ammonium content  + rs4  

High phosphate + bc4 + rs2  
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Table V.16: Values for two different parameter sets with as main difference with and without 

algae growth 
variable Description units Without algae 

growth 

With algae 

growth in 

summer 

aio Ratio of chlorophyll to algae biomass  µg-chl a/mg-algae 10 10 

ai1 Fraction of algae biomass that is nitrogen mgN/mg algae 0.09 0.09 

ai2 Fraction of algae biomass that is 

phosphorus 

mgP/mg algae 0.02 0.02 

ai3 O2 production per unit algae growth mg O2/mg algae 2.3 2.3 

ai4 O2 uptake per unit of algae respiration mg O2/mg algae 2.0 2.0 

ai5 O2 uptake per unit of NH3 oxidation mg O2/mg NH3-N  3.35 3.35 

ai6 O2 uptake per unit of HNO2 oxidation mg O2/mg HNO2-N 1.065 1.065 

µmax Maximum algae growth rate 1/day 2.1 2.1 

rhoq Algae respiration rate 1/day 0.3 0.3 

Kl Michaelis-Menten half-saturation constant 

for light 

langley/hour 4.4 1.4 

Kn Michaelis-Menten half-saturation constant 

for Nitrogen 

mgN/l 0.1 0.1 

Kp Michaelis-Mentn half-saturation constant 

for Phosphorus 

mgP/l 1.1 1.2 

Λ0 Minimum light intensity for algae bloom J/m
2 

4.3 4.3 

Λ1 Algae light self-shading coefficient g algae biomass/m² 100 1 

Λ2 Sediment shading coefficient mg/l 1 50 

Pn Algae preference factor for ammonia mg/l 0.3 0.3 

kdd Algae die-off rate 1/day 0.02 0.02 

rs1 Local algae settling rate in the reach  m/day 0.1 0.01 

rs2 Benthic (sediment) source rate for 

dissolved phosphorus in the reach)  

mg dissolved 

P/(m2·day) 

0.01 0.01 

rs3 Benthic source rate for NH4-N in the 

reach 

mg NH4-

N/(m
2
·day). 

1.0 1.0 

rs4 Rate coefficient for organic N settling in 

the reach  

m/day 1 2.8 

rs5 Organic phosphorus settling rate in the 

reach 

m/day 0.05 0.03 

rk1 Carbonaceous biological oxygen demand 

deoxygenation rate coefficient in the 

reach  

1/day
 

 

0.15 1.01 

rk2 Oxygen reaeration rate in accordance 

with Fickian diffusion in the reach 

m/day
 

 

0.01 2.6 

rk3 Rate of loss of carbonaceous biological 

oxygen demand due to settling in the 

reach  

m/day 

 

1 2.15 

rk4 Benthic oxygen demand rate in the reach. 

If no value for rk4 is entered, the model 

sets rk4 = 2.0 

m²/day 

 

0.05 0.046 

rk5 Rate constant for denitrification  day
-1 

0.05 0.9 

Rk6 Decay rate for arbitrary non-conservative 

constituent in the reach. 

day
-1 

 

1 1 

bc1 Rate constant for biological oxidation of 

NH4 to NO2 in the reach 

day
-1 

 

0.15 0.48 

bc2 Rate constant for biological oxidation of 

NO2 to NO3 in the reach  

day
-1 

 

1.0 1.0 

bc3 Rate constant for hydrolysis of organic N 

to NH4 in the reach 

day
-1 

 

0.4 0.4 

bc4 Rate constant for mineralization of 

organic P to dissolved P in the reach  

day
-1 

 

0.1 0.1 

rktemp Rate constant for heat exchange m*day
-1 

0.35 0.35 
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3.4. Conclusions 

 

With a sensitivity analysis of the sensitivity analysis it is found that the model has different 

sensitivities of the parameters in different external circumstances. A table in which external 

circumstances, here called soft data, are related to the sensitivity of the parameters could be 

established. This table with soft data, e.g. occurrence of algae growth, plants in the water, 

high summer temperatures, a lot of agriculture with fertiliser use in the region,  is ‘not case 

specific’, because it is assumed that all possible situations are presented by the different 

parameter subsets. It is a first indicator of which parameters/processes one should focus on in 

a particular catchment characterised by the soft data. Knowing the most influential set of 

parameters is important for calibration of a model, optimal experimental design, uncertainty 

estimations and scenario analysis where other processes can become important compared to 

the base case. The latter aspect will be illustrated in section 1 of the next chapter dealing with 

scenario analysis.  

This study reporting soft data is here only done for water quality parameters. It should be 

extended to other parts of a catchment model like the parameters of the rainfall/runoff module 

or the diffuse pollution processes. In this research the analysis of the different subsets was 

done visually and manually, to show the usefulness. It would be better and more complete to 

use a cluster method. Such a method can make use of clustering techniques in which the 

parameter sets that give more or less identical results for one variable are clustered. Within 

these sets of parameters again other results, for other variables, can be considered for further 

clustering. 

4. Optimal experimental design in river water quality modelling 

4.1. Introduction 

 

Parameters of a river water quality model are not always practically identifiable because there 

is an insufficient amount of data or data taken in periods or in places that are not suitable for 

calibration of the model. Optimal experimental design (OED) techniques are a useful tool to 

construct experiments to obtain information needed for calibration of a model of the system 

under consideration. OED has been applied in many disciplines like modelling of waste water 

treatment plants (De Pauw, 2006; Vanrolleghem and Coen, 1993), fermentation processes 

(Versyck et al., 1997; Zelic et al., 2004) soil processes (Catania et al., 2004), systems biology 

(Faller et al., 2003), food technology (Foubert, 2003; Nahor et al., 2001), pharmacology 

(Fedorov and Leonov, 2001), electrical engineering (Ko et al., 2004) and chemical 

engineering (Atkinson and Hunter, 1968). A common thing in all those researches is that the 

experimental conditions are ‘controllable’: temperature, time, pH, measurement frequency, 

initial concentration,… In OED for a natural river system, things become more complicated 

as a combination of different factors like temperature, flow and concentration is not occurring 

on the desired moments and as such, a method has to be found which maximises the content 

of information of experiments, without knowing the exact situations under which those 
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measurements will occur.  Further, external conditions like weather, discharges in the river or 

diffuse pollution into the river can change year after year, so measurements that are likely to 

be optimal for a particular year can appear to be sub-optimal the next year. All those reasons 

make that a normal straightforward optimal experimental design cannot be used for river 

water quality modelling and extensions of those designs are needed to find a good 

measurement set-up. 

In this section it is the aim to find a good set-up for measurements to reduce the uncertainty of 

a river water quality model, based on a set of previous measurements and a model calibrated 

with those measurements. It is assumed that the calibrated model gives good results but that 

the uncertainty bounds related to the model outcomes are too wide to draw reliable 

conclusions for management decisions. It is further the aim to find a cost-effective solution, 

so that the obtained amelioration with more or better measurements can be linked and 

compared to costs and practical considerations. The methods are applied on a practical case 

study, the river Dender in Flanders, Belgium.  

4.2. Methodology 

 

The purpose is to maximize the practical identifiability by defining an optimal experimental 

design to increase the information content of the data. Different experiments (sampling 

schemes) will reveal more or less information and more or less reliability, e.g. schemes that 

lack dynamics will provide less information than schemes with more variation in time. 

Optimal sampling design techniques aim at the identification of sampling schemes to improve 

different facets of the mathematical modelling process, according to explicitly stated 

objectives. The objective considered here is to increase the precision of the parameters for the 

water quality module of ESWAT. 

According to the experimental design theory, described in more detail in the literature study, 

chapter “Optimal Experimental Design”, the method used here is the D-optimal experimental 

design (Goodwin and Payne, 1977; Walter and Pronzato, 1999), because this method is the 

most general method for minimising the overall error on the estimated parameters. 

For the ‘traditional’ use of optimal experimental design in river water quality modelling, three 

problems arise: 

• The experimental circumstances cannot be imposed and data cannot be collected for 
any preferred circumstance.  

• The behaviour of the system varies randomly according to the natural variability of 
external circumstances. 

• The model used for the OED contains itself a lot of uncertainty: the parameters can be 
under or overestimated. 

Therefore, it is not possible to find one exclusive best experimental design but the 

experimental design can help in giving information about how, where and when the 
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measurements are best taken, because there exist periods and circumstances under which the 

model is more sensitive to parameter changes than others.  

 

(Wald, 1974) has demonstrated that when experiments are carried out in sequence, a smaller 

number of them are required, on the average, than when they are performed simultaneously. 

This is true even where no use is made of information gained in one experiment for planning 

the next one. The gain in this case accrues entirely from the ability to terminate the 

experimentation precisely at the point at which one’s goal has been met. If, in addition, one is 

able to design each experiment in the light of the results of the previous ones, the gain in 

efficiency can be even more impressive. This can be generalised when considering an 

experiment as a collection of data. 

In a D-optimal experimental design, considering the determinant of the inverse of the 

covariance matrix of the parameter estimates (C) or Fisher Information Matrix (FIM) 

(Godfrey and Distefano, 1985) assesses the precision of the parameters: 

( ) ( ) ( )bCbFIMQSSbC
T 11

)(
−−

==  

with b representing the model parameter vector, Q a diagonal matrix, the elements being the 

squares of the observation weights (these are the a priori probability of the observations) and 

S the sensitivity matrix of the outputs to the parameters in comparison to the observations. 

Calculation of the covariance matrix based on the Jacobian matrix instead of the Hessian is 

acceptable when assuming linearity and assuming observations with constant standard 

deviations (Bard 1974). The determinant of the FIM, Det(FIM) is inversely proportional to 

the volume of the confidence region. Thus, by maximizing Det(FIM), the volume of the 

confidence ellipsoids, and, correspondingly, the geometric average of the parameter errors is 

minimized. D-optimal experiments also have the advantage of being invariant with respect to 

any scaling of the parameters (Petersen, 2000).  An extra aspect to be considered here is that 

for non-linear models, the FIM is dependent on the particular set of parameter values at hand.  

The OED technique requires an initial data set to calibrate the model. Non-accurate parameter 

estimates may therefore lead to an inefficient experimental layout. This means that for the 

processes related to the non-accurate parameters better measurements could be identified. The 

design can only be approached by an iterative process of data collection and design 

refinement, known as a “sequential design” (Casman et al., 1988). Experiment after 

experiment the model parameters can be updated and finally will converge to one best 

parameter set. Figure V.11 shows the iterative scheme that is used to find the optimal 

measurements starting with a model that is calibrated with the currently available data. Next 

the different steps are explained in more detail. 
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Figure V.11. Optimal experimental design for river water quality modelling (PEST = 

Parameter ESTimation model (Pest Manual, 1994)) 

 

Generating synthetic data series  

The evaluation of different sampling schemes requires the availability of a long time series of 

high frequency water quality data at different places along the river. Because such historical 

series were not available, a simulation generated synthetic “observation” series with the 

Dender model using ESWAT. For realism, the output series were subsequently altered by 

addition of pseudo-random noise.  The noise terms were generated, considering a normal 

distribution and variations that are consistent with the accuracy of the measuring devices used 

to measure the variables (Bols, 1999): 3% for Dissolved Oxygen (DO); 10% for Biological 

Oxygen Demand (BOD) and 5% for NO3 and NH4. Then the parameters for the sampling 

layout are defined. Examples of such parameters are (i) the sampling frequency e.g. every two 

hours,(ii) location of the measurements, e.g. at the mouth + 6 km more upstream the mouth 

and (iii) measured variables e.g. DO + NH3. 

Calibration of the model 

With each set of data selected from the synthetic time series on the basis of a certain sample 

layout, the model can be calibrated. To be sure that the calibration process does not end in a 

local optimum, the initial parameter guesses are taken in the neighbourhood of the parameter 

values obtained during the calibration with the available data. Indeed, the purpose of this step 

is not to find the parameter values, but rather to obtain the covariance matrix from the 

optimisation method, because the inverse of the covariance matrix is the FIM (See literature 

chapter on OED and the chapter “Materials and methods”. Here the PEST (Parameter 

ESTimation) program (Doherty, 2000) is used. The parameter estimation in the PEST 

program is done by a minimisation of the following objective function (J) by finding the 

optimal choice of the parameters θ. 

   ( ) ( )[ ] ( )[ ]θθθ yyQyyJ
T −∗∗−=  

with y being the output of the model and Q a weighing factor for the model outputs. 
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Calculating the determinant of the FIM 

The PEST program also calculates the covariance matrix of the parameters at their best 

estimates, given the relation ( )bCbFIM 1)( −= , this means that also the FIM and from this the 

Det(FIM) can be determined.  

 

Maximization of the Det(FIM) by changing the sampling layout 

 

In a loop, different observations related to a different sampling layout can be selected. The 

Shuffled Complex Method (SCE-UA) (Duan et al., 1992) is used here to find the sampling 

layout that maximises the Det(FIM) in order to optimize the parameters of the sampling 

layout. A description of this method is given in the chapter “Materials and Methods”. After 

several evaluations of the Det(FIM), the shuffled complex method finds the optimum very 

fast because the method searches the whole parameter space in an efficient and effective 

manner. In this research the loop will end once the observation set that maximises the 

det(FIM) is found. 

4.3. Results 

 

The methodology has been applied for an OED at the Dender river. As an illustration of the 

applicability of the method, a simple case, whereby only DO is considered at one specific 

location is presented first. The synthetic “observation” series consists of 1 year of hourly data. 

The optimization is limited to (i) the measuring frequency, (ii) the number of samples and (iii) 

the period of the year for sampling. The sampling time step was allowed to vary between one 

hour and two days; the minimum number of samples is 1 and the maximum number is 8760 

(365*24). Samples could be taken during winter, summer or a mixed summer–winter period, 

depending on the start of the period and the total number of samples that are taken.  

In figure V.12, the optimisation process is shown. SCE-UA used 136 runs to find the layout 

for which the Det(FIM) is the largest. As could be expected, the results show that the 

uncertainty in the parameters became minimal for the smallest sampling interval (figure V.13 

left), a very large number of samples (figure V.13 right) and a large period, mainly spring and 

summer months (data not shown). A sample every hour, starting in February and ending on 

August 30
th
, representing a total of 5804 samples appears to provide the best results. 
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Figure V.12: Optimization of the Det(FIM) (3 parameters of sampling layout) (see text) 
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Figure V.13: The Det(FIM) as a function of the sampling interval (left) and total number of 

samples (right) 

A second example supports a more complex planning, whereby in addition the measured 

variables (only DO or combined DO-NO3, DO-NO3-BOD or DO-NO3-BOD-NH4) and 

sample locations (4 possible combinations of 3 possible locations: upstream, halfway, 

downstream) are considered as parameters for the sampling layout. 

A substantial increase in the number of iterations for the optimization is observed (figure 

V.14). The best way to take samples is on an hourly time basis (figure V.15 left), over nearly 

the whole year (8730 samples) (figure V.15 right), on two locations (data not shown) and with 

measurement of the four variables (data not shown). This is again a very logical result. 

However, looking at figure V.15 it can be deduced that other sampling schemes could be 

defined that provide a quasi-similar accuracy, with fewer samples or a lower frequency. The 

determinant of the FIM is not changing significantly between 5,000 to 8,000 samples that 

mean that the confidence regions around the parameters do not differ very much in that range. 

This is explained by other factors that influence the accuracy, such as the period of the year 

during which the sampling takes place. 
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Figure V.14: The optimization of the Det(FIM) with variation of 5 parameters (see text) 
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Figure V.15: The Det(FIM) as a function of the sampling interval (left) and the total number 

of samples (right) (points marked with  ⊞are further investigated, see text) 

Alternatively, some sampling schemes clearly appear as non-optimal (such schemes are 

indicated by squares in figure V.15): these schemes require a lot of samples, but due to the 

wrong choice of other factors, the information content of these schemes is poor. More details 

on these schemes are given in table V.17. The reason for the bad performance of these 

schemes is related to the sampling place (upstream) and to the fact that the sampling period 

does not include the spring period, which seems to be important for the calibration process. 

A few points with high det(FIM) although with only a few sampling points can be seen on the 

graph. After checking these it was seen that these are high by miscalculation and coincidence 

because of too few samples. 

 

Table V.17: Non-optimal sampling designs 
Sampling 

interval (h) 

Number of 

samples 

Period Location Observed variables Det(FIM) 

1 5972 16 Apr.-31 Dec. Geraardsbergen DO-NO3 4,08E+17 

1 5340 22 May-15 Nov. Geraardsbergen DO-NO3-BOD 1,19E+19 

1 4902 11 May-31 Dec. Geraardsbergen DO-NO3-BOD 5,92E+20 

4.3.1. Optimal experimental design including practical considerations 

In itself the value of the Det(FIM) has no physical meaning. A further analysis is needed to 

check the improvement of the calibration with the optimal set of measurements in contrast 
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with a - for calibration purposes - less good measurement set, which is however characterized 

by lower costs and efforts or that is more practically feasible.   

The performance of the calibration is evaluated by looking at the final uncertainty on the 

model results taking into account the variances and correlation between the parameters after 

calibration. This is because finally, in practice, one may only be interested in the uncertainty 

of the model results and not in the parameters themselves. This uncertainty on the results is 

then evaluated in view of acceptability towards the purpose of the model. 

To illustrate the procedure, three sampling schemes (table V.18) from the first test case are 

considered (indicated by squares in figure V.13). More details about the schemes are given in 

table V.18. The model outputs and the 95% confidence intervals for the considered schemes 

for a day (22 February), chosen because of the low oxygen content that increases during the 

day, are given in figure V.16. The results of the uncertainty analysis show that the average 

width of the confidence interval in the model output is reduced by 45% for scheme 2 when 

compared to scheme 1 and by 60% if scheme 3 is compared to scheme 1. The results illustrate 

the possibilities of the method to define a dedicated sampling strategy, in view of a given 

modelling accuracy. 

Table V.18: Selected sampling schemes for evaluation of resulting uncertainty in model 

output 
Sampling interval (h) Number of samples Period Det(FIM) 

37 42 26 Oct.-31 Dec. 4,93E+14 

2 818 23 Oct.-31 Dec. 1,69E+20 

1 8008 2 Feb.-30 Aug. 9,62E+22 
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Figure V.16: DO with confidence bounds on 22 February, sampling scheme 1 (left), 2 (right) 

and 3 (under) 

Based on the results of OED it is possible to find out to what extent some more expensive 

measurements can be substituted with less expensive ones. Therefore, a comparison is made 

of the Det(FIM) for different measured water quality variables (figure V.17). 
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Figure V.17: Det(FIM) as a function of the measured water quality variables. (1= DO; 2 = DO 

+ NO3; 3 = DO + NO3 + BOD; 4 = DO + NO3 + BOD + NH4) 

As can be seen in figure V.20, the highest Det(FIM) that can be obtained without measuring 

BOD is 1E+21 and including BOD measurement is 1E+25. Here again it has to be checked 

what the consequence is for the uncertainty on the simulated DO concentrations. Further a 

cost analysis is needed, as for some variables, it is likely that measuring at high frequency 

during the whole year is more expensive than measuring during three months at a low 

frequency. 

The usefulness of this method resides in its ability to evaluate sub-optimal sampling strategies, 

whereby strategies are evaluated in view of the limitations of costs and other practical 
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considerations. This can be of great importance for some costly and time-consuming analysis of 

samples, e.g. for pesticide modelling and monitoring (Holvoet et al., 2006) . By extending the 

OED method with a procedure for the definition of the modelling uncertainty, it thus becomes 

possible to define the optimal sampling strategy to obtain a given modelling accuracy. 

Further extensions of the OED can be done according to the aims or possibilities of the 

experimental design. A first extension can be the addition of more or other parameters of 

sampling layout. Those can be other measurable variables such as suspended solids and water 

temperature or additional sampling locations. One may also try to find out if a distinction has 

to be made between the different variables in relation to their sampling frequency and period. 

As such, sampling schemes can become very efficient and advanced. 

4.4. Conclusions and recommendations 

 

It has been shown that OED methods can be used for an iterative, sequential design of a 

strategy for measuring water quality variables on a river, in view of the calibration of water 

quality models. In a first stage a relatively extensive set of measurements is needed to set up a 

model for the river. Using the model, the OED method enables the definition of efficient 

measurements strategies, to find better model parameter estimates and reduce the uncertainty 

in those estimates. In subsequent stages, the measurement strategy can be updated in an 

iterative way. 

For the river Dender, it was shown that the method is able to define the most logical solution 

to the problems, if a maximal accuracy is aimed at, the optimal sampling strategy will be the 

one with the highest number of samples and the highest sampling frequency, at the maximal 

number of locations and whereby a maximal number of variables is measured. But this 

method is also able to find sub-optimal sampling strategies with acceptable accuracy. Also 

costs and practical matters can be considered.  

The method can easily be extended with even more parameters of sampling layout to finally 

come to very efficient sampling layouts. Another extension can be the use different evaluation 

criteria for the OED because other criteria than the maximization of the det(FIM) can be more 

suitable for the problem under consideration. Also a method pareto optimisation for 

optimising for more than one evaluation criterium at the same time can be applied and is 

developed by De Pauw (2005) . For example, the reliability of the parameter estimates can be 

less important than the final uncertainty on critical values of certain parameters. So it is 

evident that in such cases other schemes for the OED can be applied (or a combination of 

different criteria). In those cases the optimisation is done on for instance the minimisation of 

the uncertainty of the dissolved oxygen concentrations below 5mg/l.  

This research is not only applicable in river water quality models. Other fields of application 

are e.g. rainfall-runoff modelling for the detection of optimal gauge locations or groundwater 

modelling. 
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5. The evaluation of uncertainty propagation into river water quality 

predictions to guide future monitoring campaigns 

5.1. Introduction 

 

In the field of environmental modelling and assessment, uncertainty analysis (UA) is a 

necessary tool to provide, next to the simulation results, also a quantitative expression of the 

reliability of those results.  Next to the expression of uncertainty bounds on the results, 

uncertainty studies have mainly been used to provide insight in the parameter uncertainty. 

However, uncertainty analysis can also be a means to prioritise uncertainties and focus 

research efforts on the most problematic points of a model. As such, it helps to prepare future 

measurement campaigns and to guide policy decisions.  

In this study, the use of an UA as an evaluation tool is assumed to be applied on an already 

calibrated model that can simulate measured data well but with an unacceptably high 

uncertainty, especially in view of predicting water quality. We only consider parameter and 

input uncertainty that can be minimised by gathering additional data. Model structure 

uncertainty and mathematical uncertainty are not taken into consideration. That way the 

presented uncertainty bounds around the results will not contain 95% of the The aim of this 

research is to show how UA can be used to guide future monitoring campaigns to make model 

results more reliable by minimising the parameter and input data uncertainty of the model. 

5.2. Methodology 

 

To reduce the overall uncertainty on the model results for a certain variable the following 

steps are proposed. 

1. Identify which sources contribute mainly to the overall uncertainty on the model 

results 

2. Estimate or calculate the uncertainty related to those main contributors 

3. Propagate the uncertainty through the model 

4. Analyse the model results to set up a monitoring campaign 

5. Perform the measurements 

6. Recalibrate the model with new inputs 

7. Repeat step 3 till 6 until satisfying results are obtained 

 

For every step of this process different techniques exist that can be chosen among according 

to the experience of the modeller. In the practical example the methods used are described.  
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Step 1: Identification of the main uncertainty contributors, uncertainty characterisation 

 

his step is mainly carried out via a global or local sensitivity analysis. Because it is assumed 

that an already calibrated model is available, a local sensitivity analysis should be able to 

identify the most important parameters and data of the model. Indeed, local analysis is done 

around an a priori assumed value of the parameter. For a local sensitivity analysis the 

following methods exist: finite difference method, (b) the direct differential method, (c) the 

Green’s function method, (d) the polynomial approximation method and (e) automatic 

differentiation. Global sensitivity analysis can be done in various ways: with a Monte Carlo 

approach, first order or second order reliability methods and model emulators. An overview 

of available sensitivity techniques with advantages and disadvantages is given in the chapter 

“Sensitivity Analysis” of the literature study. 

 

Step 2: Estimation or calculation of uncertainty 

 

Parameter uncertainty can be calculated from the covariance matrix. The latter is obtained 

during the local sensitivity analysis or the calibration process if the optimisation methods is 

derivative based so that the covariance matrix is calculated during the optimisation (Beck, 

1987). 

If no direct calculations are possible, e.g. for the uncertainty on the inputs, the uncertainties 

need to be estimated. One can divide the parameters and data in uncertainty classes 

(accurately known, very poorly known and an intermediate class) and assign a percentage 

uncertainty to them. A similar approach was adopted by Reichert and Vanrolleghem (2001). 

Other options are expert knowledge, questionnaires or statistical calculation of uncertainties 

with historic data.  

 

Step 3: Propagate the uncertainty through the model 

 

For this step Monte Carlo methods can be used, in which the input data or parameters are 

sampled between the uncertainty bounds that are detected in the previous step. If correlation 

between some of the parameters and inputs exist and are known, these correlations should be 

considered in the analysis. Another option is to apply linear error propagation. The advantage 

of the latter is computational efficiency. However, if there are significant non-linearities 

within the uncertainty range in the model, the results will be inaccurate. Monte Carlo 

simulation is a simple technique but requires a large number of model runs, which is 

computationally very demanding. Less runs with the same results as ‘ad random sampling’ 

are needed with ‘the Latin Hypercube sampling’ (McKay et al., 1979). Many methods for 

uncertainty analysis are presented in detail in the chapter Literature review, Uncertainty 

Analysis. 
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Step 4: Analyse the model results to set up a future measurement campaign 

 

Two different approaches can be used according to the aim for which the additional 

measurements are collected. If it is the aim to reduce parameter uncertainty, an automated 

optimal experimental design method that is explained in Vandenberghe et al (2002) can be 

used.  It is based on maximisation of the determinant of the Fisher Information Matrix, which 

corresponds to the minimisation of the variance of the parameters. This method requires a lot 

of simulation runs but is totally automated and as such requires no additional information or 

knowledge from the modeller. The complete method and procedure is explained in the chapter 

“Optimal experimental design”. 

However, when only focussing on the input data uncertainty that leads to output uncertainty 

expert knowledge is required. It is then the aim to find a link between periods of high/low 

uncertainty and external circumstances (rain, discharge points, seasons, solar radiation…) 

This information is then used to make decisions about location, period, frequency… of future 

measurements.  

 

Step 5: Perform the measurements 

 

At this stage it is essential to ensure a good quality control on the measurements to minimise 

measurement errors. Important is also to carefully adding information concerning exact hour, 

location and depth of the sample. This information is sometimes crucial to the modeller like in 

situations were the water quality variable changes very fast or in rivers were the water is 

stagnant and there is a depth gradient for the variable.  

Step 6: Recalibrate the model with new inputs 

 

An important issue here is that the calibration method must be able to find the optimum.  

First, a choice is made between manual and automated methods. The former may depend on 

the experience of the modeller.  Automated methods can differ in search method: global 

search methods scan the whole parameter space and are as such able to find the global 

optimum, but do not provide uncertainty measures. Local search methods start on a certain 

point in parameter space and end when they find an optimum. However, there is no assurance 

that this is the global optimum, so it is best to start in the neighbourhood of the optimum for 

those methods. With these methods covariance matrices for the optimum parameters are often 

calculated because they are derivative based.  

 

Step 7: Repeat step 3 till 6 until satisfying results are obtained 

 

The stop criterion for this ‘trial and error method’ is dictated by an ‘a priori’ desired reliability 

of the model results. In practice however, personnel, time and equipment matters will be the 

limiting factor and will indicate when this process stops.  
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5.3. Results and discussion  

 

The seven steps are now demonstrated on a case study: simulations of the water quality of the 

river Dender, Flanders, Belgium for 1994 with a QUAL2E based model in ESWAT.  The 

evaluation of the uncertainty on model results is performed for nitrate in the river water. 

 

Step 1: Identification of the main uncertainty contributors 

 

We evaluate the sensitivity of the model on the following result: the time that NO3-N is higher 

than 3 mg/l at Denderbelle, near the mouth of the river in 1994. For nitrate there are almost no 

limits in regulation. In Belgium the sum of NO2-N, NO3-N needs to stay below 10 mg/l  for 

basic water quality. The choice for this 3 mg/l is based on the fact that it is seen from 

simulations that periods with problem of eutrophication are linked to periods of high nitrate, 

here higher than 3 mg/l. A sensitivity analysis for all input data and parameters in the 

ESWAT model is too complex for the program we use: UNCSAM (Janssen et al., 1992), 

described in the chapter “Materials and methods”. This program cannot handle more than 50 

parameters at the time. So we split the problem in different parts: 1) sensitivity to model 

parameters 2) sensitivity to point pollution input and 3) sensitivity to diffuse pollution input.  

Each sub problem gives a ranking of the parameters by using the Standardised Regression 

Coefficient (SRC). 

SRCi = 

ixi

y

Sx

Sy

/

/

∆

∆
 (1) with  ixy ∆∆ /  = change in output due to a change in an input factor and 

yS , 
ix

S  the standard deviation of respectively the output and the input. The input standard 

deviation  
ix

S  is specified and chosen by the user and presents typically the possible literature 

values. 

This technique for sensitivity analysis is better explained in the chapter “Sensitivity analysis”. 

For each of the subproblems the parameters or data that contribute significantly to the output 

(5 % level) are then taken together in one overall sensitivity analysis to compare the 

contribution of the different outputs. The column with the SRC as a result of that analysis is 

indicated in table V.19 with “combined parameter- input”.  
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Table V.19: Results of the sensitivity analysis for the model output “hours NO3 >3mg/l” at 

Denderbelle, 1994. (pa16 = Amount of fertilisation on pasture in subbasin 16; fa4 = Amount of fertilisation on farming land in 
subbasin 4; gropa = growth date of pasture; plfa = Plant date on farming land; co5 = Amount of fertilisation on corn in subbasin 5; co15 = 

Amount of fertilisation on corn in subbasin 15; pa12 = Amount of fertilisation on pasture in subbasin 12; co11 = Amount of fertilisation on 

corn in subbasin 11; ai5 = O2 uptake per unit of NH3 oxidation; rk5 = denitrification rate; rk2 = oxygen reaeration rate; ai6 =  O2 uptake per 

unit of HNO2 oxidation; bc2 = rate NO2 to NO3; rk3 = rate of loss of bod due to settling; ai4 = O2 uptake per unit of algae respiration; Rs5 = 

organic phophorous settling rate) 

Diffuse 

pollution 

input 

SRC Point 

pollution 

input 

SRC parameter  SRC Combined 

Parameter-

input 

SRC 

Pa16 -0.30 BOD point 6 -0.61 Ai5  -0.7 Ai5 -0.51 

Fa4  0.23 NO3 point 7  0.42 Rk5  -0.34 Ai6  -0.50 

gropa -0.18 BOD point 5 -0.38 Rk2   0.32 Rk5 -0.40 

plfa  0.17 BOD point 8 -0.24 Ai6  -0.21 Bc2  0.38 

Co5 -0.17 NH3 point 1  0.23 Bc2 -0.2 Ai4 -0.31 

Co15 -0.16 BOD point 3 -0.23 Rk3  0.17 Rk2   0.12 

Pa12  0.16 BOD point 7 -0.22 Ai4  0.12 plfa -0.08 

Co11  0.15 BOD point 1 -0.14 Rs5 -0.09 BOD point 6 -0.07 

  NO3 point 5  0.11   BOD point 1 -0.07 

  BOD point 4 -0.09   Pa16  0.07 

  NH3 point 2  0.09     

  BOD point 2 -0.08     

  NH3 point 3  0.06     

 

SA for the parameters 

For the parameters, the sampling for the sensitivity analysis was based on own experience 

with the model and literature ranges. The results here are the results taken from the SA on the 

parameters of the QUAL2E water quality model for the Dender river as given in section 2 of 

this chapter. 

SA for the point pollution input 

Point pollution towards the Dender river is due to loads coming from households via the 

WWTP, from industry and from households discharging immediately into the river without 

treatment. These kinds of input data are provided by the Flemish Environmental Institute 

(Vlaamse Milieu Maatschappij, VMM). For the ranges of uncertainty of the point pollution 

inputs we sampled uniform between halve and double the values, as we decided that those 

inputs belong to the uncertainty class 'poorly known’ (Reichert and Vanrolleghem, 2001). 

Indeed, the loads coming from point pollution were only available as yearly averages instead 

of varying values per day or even hourly (e.g. loads differ between day and night, week days 

and week-ends and official holiday periods). The inputs that were varied were discharge of 

the loads and the loads of NO3-N, NH3-N, BOD, DO and Dissolved P on 11 different points.  

(For the location of those points see the chapter of “Case studies”).  

SA for the diffuse pollution input 

A previous study in SWIM (Soil and Water Integrated Model) for the same kind of nitrogen 

leaching model as available in ESWAT from arable land in large river basins (Krysanova and 

Haberlandt, 2001) showed that the relative importance of natural and antropogenic factors 

affecting nitrogen leaching in the Saale river basin was as follows: (1) soil, (2) climate (3) 
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fertilisation rate and (4) crop rotation. Reducing the uncertainty on inputs for soil and climate 

depends on better equipment to measure the different variables and proper use of 

sophisticated mathematical techniques to interpolate for places that are not measured. A lot of 

studies on that subject already exist (Lacasse et al., 2007; Sevruk 1986). Reducing the input 

uncertainty related to fertilisation rate was not studied often before. In Flanders, new 

legislation concerning fertilisation application was made in the late nineties. Campaigns to list 

the fertiliser use were then started and it is known that still a large amount of information is 

wrong or missing. A lot of effort is still needed to complete the information. The evaluation 

and quantification of the impacts of land management practices on nitrogen wash-off to 

surface water is therefore very important.  

The focus for diffuse pollution input related uncertainty is here on fertilisation rate and time 

of fertiliser application on the most important crops. For the application of fertiliser for the 

different land uses three application dates were assumed; 1
st
 of March, 1

st
 of April and 1

st
 of 

May. Also operations such as planting and harvesting dates can be defined. Day and months 

were used to specify the planting and harvesting dates. Of course, those dates depend on 

climate, crop and farmer. So assumptions had to be made concerning those dates. 

Data on fertiliser and manure use are provided by The Flemish Institute for Land Use (VLM). 

They provided data on the nutrient use and production for each municipality in Flanders. In 

ESWAT, one has to specify for each subbasin the total amount of fertiliser and the detailed 

composition of the fertiliser. Some conversions of the supplied data had to be made so that 

they could be used in ESWAT. It consisted of recalculations of the application rates for each 

municipality to application rates per subbasin (Smets, 1999). Further the assumption was 

made that the same amount of fertiliser is applied on all crops. This is clearly different from 

practice, but at this stage, insufficient details are available to specify this more realistically. 

The fractions of mineral N, organic N, and NH3-N in the fertilisers are considered to be 

known and fixed. Hence, we only analyse the total amount of fertiliser used (see table V.20). 

As there are a lot of differences in management practices between the different farmers and 

the time of planting and harvesting is different from year to year, the plant date and harvest 

date for the crops are also considered in the analysis. For a global sensitivity analysis we take 

the uniform distribution with standard deviation 
ix

S . The ranges of the uniform distributions 

are given in table V.21.  We assumed no correlation. To supply the information on those 

ranges a few farmers living in Maarkedal (situated in the Dender basin) were interviewed 

about their land management practices.  
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Table V.20: Composition of the manure as input in SWAT 

Chemical Percentage of total fertiliser (100*kg/kg) 

HNO3 28.5% 

Mineral P  7.5% 

Organic N 28.0% 

Organic P  7.5% 

Ammonia 28.5% 

 

Table V.21: Ranges for global sensitivity analysis of management practice inputs for nitrogen 

Input Uncertainty 

Plant date for the crops +/- 1 month 

Harvest date of the crops +/- 1 month 

Amount of fertiliser applied per subbasin and per crop (kg/ha) +/- 25% 

 

SA on parameters and inputs 

The global sensitivity of the parameters and the inputs shows that some parameters, O2 uptake 

per unit of NH3 oxidation, O2 uptake per unit of HNO2 oxidation, denitrification rate, rate 

NO2 to NO3, O2 uptake per unit of algae respiration and the reaeration rate are most 

influencing followed by the input data, plant date on farming land, amount of fertilisation on 

pasture in subbasin 12 and bod loads from point 1 and 6. This could not be seen from the 

separate analyses of inputs and parameters. So, different values of the parameters can give 

different model results while those results are not much influenced by the input data for this 

river. This again shows the importance of a well-calibrated model.  

Step 2: Estimation or calculation of uncertainty 

 

For both the point and diffuse pollution input the same uncertainties were taken as the 

sampling range used for the sensitivity analysis because we obtained no new information 

between the SA and the UA.  For the uncertainty on the parameters a recalibration with the 

most influencing parameters with a derivative based method, in that way that uncertainty 

ranges can be calculated with the covariance matrix, is best, but is not done here. 

Uncertainties of 50 % were assigned to each of the parameters.  

 

Step 3: Propagation of the uncertainty through the model 

 

Here again the uncertainties are split: parameter uncertainty, diffuse pollution uncertainty and 

point pollution uncertainty.  
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Then for each an uncertainty analysis was performed in which all of the uncertainty sources 

are varied at the same time to see the effects of the uncertainty on parameters and inputs. For 

this analysis we calculate the uncertainty bands (i.e. the 5% and 95% percentiles) for the 

results of the time series.  

Figure V.18 shows the propagation in time of the parameter uncertainty for Nitrate in the river 

at Denderbelle, 1994. Output uncertainty becomes high at certain moments due to parameter 

uncertainty.   

Figure V.19 and V.20 show the time series of nitrate in the river water at Denderbelle, 

situated near the mouth, with the 5% and 95% uncertainty bounds with resp. uncertainty on 

point input and diffuse pollution input.  

 

Step 4: Analyse the model results to set up a future measurement campaign 

 

To cope with the parameter uncertainty optimal experimental design based on the Fisher 

Information Matrix should be done (as explained in the “optimal experimental design chapter) 

as this is the most objective method to find important measurement places to better estimate 

the parameters. This design of new experiments is not presented here as we focus on the 

uncertainty analysis and what information can be revealed from it.  
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Figure V.18: Measurements (symbols) and simulation of nitrate (line) with confidence 

intervals (dashed line) related to parameter uncertainty at Denderbelle, 1994. 
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Figure V.19: Measurements (symbols) and simulation of nitrate (line) with confidence 

intervals (dashed line) related to point pollution input uncertainty at Denderbelle, 1994. 
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Figure V.20: Measurements (symbols) and simulation of nitrate (line) with confidence 

intervals (dashed line) related to diffuse pollution input uncertainty at Denderbelle, 1994. 
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Figure V.21: Rainfall (full) and Flow (dashed) in 1994 at Denderbelle. 

 

Linking the obtained results in step 3 to the external circumstances, rain and flow (figure 

V.21), we can see that diffuse pollution inputs are important during periods with high rainfall 

and high flows. During dry weather flows, the input uncertainty of the loads is also 

propagated.  Hence this UA learns that we can obtain a better calibration for the diffuse 

pollution part of the model with data that are taken during wet periods with high flows, 

because the model output nitrate is more sensitive towards inputs of diffuse pollution in those 

periods. If one focuses on calibrating the in-stream behaviour and point pollution then 

measurements during dry periods are needed, as in such conditions the model is not sensitive 

towards input of diffuse pollution. 

 

Further it is seen on figure V.20 that the 95 % bounds show much higher peaks than the mean 

concentrations time series. This means that some peak values of nitrate in the river water at 

Denderbelle may not be predicted properly due to an underestimation of the amount of 

fertiliser used. Those peaks (eg. day 156 and 260) are significantly higher than the levels of 

nitrate for basic water quality.  

 

It is also of interest to know how the uncertainty is propagated from one place to the other. 

This analysis was done for the uncertainty propagation due to diffuse pollution inputs. The 

amount of time that NO3-N was higher than 3 mg/l was calculated. This was done for the time 

series of the mean, the 5 % - bound and the 95% - bound (figure V.22). The uncertainty 

bounds become larger when approaching the mouth due to the summation of the uncertainties 

on all diffuse pollution inputs that enter the river. However, it is interesting to see that with 

the available quality of input data no conclusions can be drawn concerning the question 

whether the diffuse pollution causes more hours nitrate exceedance downstream than 

upstream. The uncertainty bounds on the model results are too wide, more accurate data are 

needed to draw good conclusions from the model results. This would mean that the model 

results show no indication that there is a difference in pollution state between the different 
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locations in the Dender. However, we can assume that most of the influencing uncertainties 

related to diffuse pollution work in the same direction, this is especially the case for the 

amount of fertiliser applied on the fields, which also seemed to be the most influential input in 

the sensitivity analysis so comparing one place to the other, we can assume that there is a 

significant higher amount of NO3 critical value exceedance downstream than upstream. 
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Figure V.22: Uncertainty propagation from upstream to the mouth of the Dender in 1994 

related to diffuse pollution input uncertainty. 

 

Step 5: Perform the measurements 

Step 6: Recalibrate the model with new inputs 

Step 7: Repeat step 3 till 6 until satisfying results are obtained 
 

Those three steps are only relevant for future measurement campaigns. However, no additional 

measurements were done until now.  

5.4. Conclusions 

 

The results of uncertainty analysis were evaluated to guide future monitoring campaigns.  

Diffuse and point pollution inputs are considered separately and give information of the 

model sensitivity to the inputs. Measurements during dry periods can be used to better 

calibrate the model for point source pollution because the inputs of diffuse pollution are not 

important then. On the other hand, periods with rainfall and high flows are needed for the 

calibration of the model with diffuse pollution because the model output nitrate is then very 

sensitive towards the inputs related to farmer’s practices.  

When comparing the influence of the uncertainty of the diffuse pollution inputs, the 

uncertainty bounds appeared to be too wide to draw reliable conclusions from the model 

Hours 
of 
NO3 > 
3mg/l 
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results. So, it showed the importance of accurate measurements and input data if the model 

results serve for decision support. 

It is obvious from the comparison between the global sensitivity analysis for the subgroups 

and for all most influencing parameters together that the parameters are most important. This 

shows that it is best to start with a good calibration of your model and then focus on more 

accurate input data. 

Too often a model is calibrated with only one comprehensive measurement campaign. This is 

mostly not the most efficient way. When e.g. only measurements during dry periods are made, 

the model cannot be well calibrated for the diffuse pollution part. So it is better to perform 

two separate smaller measurement campaigns with the first one being ‘exploring’, while the 

second campaign is guided by previous analysis of the model results. The combination of the 

two monitoring campaigns can assure that at least some measurements are performed at ‘the 

right moment’, making the calibration process easier and more reliable.  

It is necessary to combine all previous uncertainty analysis to evaluate the total uncertainty on 

the model results and to compare them with the measurements. In this way, model structure 

uncertainty can also be quantified (Willems and Berlamont, 2002). 

In this research the second monitoring campaign is missing and could have shown the 

possibilities of the proposed succession of steps. 

6. Sensitivity analysis to define the most sensitive parameter subset for 

auto-calibration of a river water quality model 

6.1. Introduction 

 

A mathematical model of a system under consideration has to be calibrated in such a way that 

the model reproduces the measurements and that predictions made with the model are 

representing reality, which is checked in a validation. In hydrology, the models used vary 

between simple black box models and complicated, distributed physical models. There is a 

trend to make more use of the complicated models because next to the generation of 

predictions of water flows and quality they help in understanding the system. Nowadays, the 

computational burden of such complicated model is not an issue anymore, but the main 

problem is the calibration of the large amount of parameters. During calibration, parameter 

values are adjusted between boundaries until the model outcomes fit the measurements best.  

For models with many parameters a trial and error calibration is very tedious, if not 

impossible. Automatic calibration procedures also pose problems, mainly due to the high 

correlation that often exists between the many parameters. In this chapter a sensitivity 

analysis procedure is proposed to reduce the number of parameters for calibration.  
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6.2. Methodology 

 

The sensitivity analysis presented here focuses on the parameters of the in-stream QUAL2E 

based water quality model only, which includes 33 parameters. The method is a global one 

based on regression analysis whereby the sampling is done with Latin Hypercube sampling 

(McKay et al., 1979) (see literature study on sensitivity analysis). The table XX in section 2 

of this chapter gives all the water quality parameters with nominal default values and 

boundaries. Those values come from literature, the SWAT manual and from own experience 

with the model. 

The focus in this sensitivity analysis is on critical outputs for dissolved oxygen (DO), nitrate 

(NO3) and chlorofyl a (Chl a). The critical outputs are taken as the time that the oxygen 

concentration in the water drops below 5 mg/l, the time that the Chl a content of the water 

goes above 11µg/l and NO3 above 3mg/l. Those variables are chosen as they are most 

problematic for the river Dender. Dissolved oxygen becomes very low during periods of low 

flow, nitrates are linked to eutrophication periods and in the whole summer period algae 

growth is high. Other outputs could be considered like the sensitivity of the nitrate 

concentration averaged over the whole period or the sensitivity of the objective function for 

the ammonium or dissolved oxygen. This objective function is the square of the sum of the 

squared differences between model results and measurements.  The parameters that are most 

important for this objective function, will be the parameters that are able to minimise this 

function best. The choice depends on the problem at hand and the answers that one wants to 

get out of the SA.  

The critical value for dissolved oxygen, 5mg/l, is chosen because it is set as the basic water 

quality standard in Belgium.  The Chl a and NO3 limits are not defined in legislation, but 

values of  11µg/l and 3mg/l are attained in the investigated river during summer months with 

at the same time low DO concentrations which is an indication of eutrophication, so those 

limits can be considered as indicative for water quality problems. 

Various statistical methods can be employed to quantify the sensitivity and uncertainty contribution of 

the sources to the model outputs. In this section the same method as explained in section 2 of this 

chapter is applied which is based on linear regression analysis and correlation analysis between the 

inputs and the simulated model outputs and whereby the parameters with significant correlation are 

determined to be important.  

6.3. Results and discussion 

6.3.1. Sensitivity analysis 

The sensitivity analysis was carried out, based on simulations for the whole year of 1994 and 

on the water quality variables at the mouth of the river at Denderbelle.  

The largest VIF value amounted to 1.68 for all the cases. Values for R
2
adj were 0.92, 0.95 and 

0.87 for the regression between the parameters and the amount of time with too low oxygen, 

high algae and high nitrate concentration in the river water.  
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In tables V.22 and V.23 the result of the sensitivity analysis is shown. The parameters shown 

are those that are significant in the regression analysis on a 5 % level. It is obvious that 

different sets of important parameters are obtained when other evaluation criteria are used. If 

one wants to calibrate the Dender model for all the variables, DO, Chl a and NO3, all 

parameters in tables V.22 and V.23 need to be considered in the calibration procedure, which 

makes in total 20 parameters. For an automatic calibration this can already be a too large 

number of parameters. Because of dependencies between the parameters the automatic 

calibration will not find a unique solution and the number of parameters need to become 

smaller. So it is recommended to first start with formulating the aim of the model and then to 

perform a SA in function of the aims. It is however always a good procedure to fix the aim of 

the model before choosing a model and calibrating it. 

 

Table V.22: The normalized regression coefficient and the rank of importance in the 

sensitivity analysis for time of DO < 5 mg/l and  time of Chl a > 11 ųg/l 
DO < 5 mg/l  Chl a > 11 ųg/l  

Parameter SRC Rank Parameter SRC Rank 

ai5 0.521 1 rhoq  -0.626 1 

Bc1 0.354 2 umax 0.577 2 

ai4 0.279 3 kp -0.255 3 

rk1 0.268 4 rk6 -0.250 4 

ai3 -0.240 5 Λ1 0.099 5 

rhoq  0.159 6 ai5 0.069 6 

ai6 0.159 7 rk4 0.065 7 

umax  -0.159 8 bc2 0.051 8 

rk3 -0.149 9 ai1 0.049 9 

rk2 0.138 10    

 

 

Table V.23: The normalized regression coefficient and the rank of importance in the 

sensitivity analysis for time of NO3-N>3 mg/l (hourly time step) 
NO3-N >3 mg/l 

Parameter  SRC Rank 

ai5  -0.7 1 

rk5  -0.34 2 

rk2  0.32 3 

ai6  -0.21 4 

bc2 -0.2 5 

rk3 0.17 6 

ai4 0.12 7 

rs5 -0.09 8 

 

6.3.2. Calibration 

It is chosen here to calibrate the model with the set of important parameters for time of DO<5 

mg/l. This calibration is done with the PEST software. The methodology of this calibration is 

described in the chapter “Materials and Methods”. A calibration for the flow was done in the 

study by van griensven and Bauwens (2005). The flow in 1994 is given in figure V.23 and the 

results of the calibration are shown in figures V.24 and V.25. and V.26. The following 

parameter values (explanation in table V.1) were obtained during the calibration (table V.24). 
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Table V.24: The parameter values after calibration of the model 
Parameter 

(table V.1) 

Value after calibration Unit 

ai5 3.71 mg O2/mg NH3-N 

bc1 0.1 day-1 

ai4 2.0 mg O2/mg algae 

rk1 0.064 l/day 

ai3 2.3 mg O2/mg algae 

rhoq  0.2 l/day 

ai6 1.0 mg O2/mg HNO2-N 

umax  2.2 l/day 

rk3 3.0 m/day 

rk2 1.09 m/day 
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Figure V.23: Model results for flow, Denderbelle, 1994 
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Figure V.24: Model results (line) and measurements (symbols) for DO, Denderbelle, 1994 
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Figure V.25: Model results for Chl a, Denderbelle, 1994 
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Figure V.26: Model results (line) and measurements (symbols) for NO3-N, Denderbelle, 1994 

 

6.3.3. Validation 

The validation of this model was done for the year 2000. The measurements for 1994 were 

obtained in dedicated measurement campaigns but for 2000 the only measurements available 

were those from the Flemish Environmental Agency (VMM). On several places along the 

Dender the VMM measures the physico-chemical parameters around 2 times per month. Also, 

because measurements at Denderbelle were not available for the year 2000, the validation is 

done with measurements at Pollare, upstream of Denderbelle. The results for DO were very 

good and no additional calibration was needed. However the fit between model results and 

measurements for nitrates were very bad and additional calibration was then done with the 

parameters ai5 and rk5 (O2 uptake per unit of NH3 oxidation and denitrification rate resp.). 

Note that the results for 1994 for NO3 after automatic calibration were overestimated but then 

deemed acceptable.  

The results for 2000, before and after recalibration with the VMM data, are shown in figures , 

V.27, V.28 V.29, V30.  
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 Figure V.27: Model results (line) and measurements (symbols) for DO before recalibration, 

Pollare, 2000 
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Figure V.28: Model results (line) and measurements (symbols) for NO3-N before 

recalibration, Pollare, 2000 
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Figure V.29: Model results (line) and measurements (symbols) for DO after recalibration, 

Pollare, 2000 
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Figure IV.30: Model results (line) and measurements (symbols) for NO3-N after recalibration, 

Pollare, 2000 

6.4. Conclusions 

 

A sensitivity analysis for the QUAL2E based river water quality model of the Dender river, 

implemented in ESWAT was performed to reduce the number of parameters to calibrate. The 

SA revealed that only around 10 parameters need to be changed during calibration to obtain 

good fits between simulated and measured values, this for a particular aim, in this case being 

to have good simulation results for the periods with lower DO concentrations.   

Different parameters are ranked as most sensitive when different criteria are used. This means 

that the modeller has to decide before calibration what the aim of his model will be. If one 
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wants to have a good degree of reliability of the model for the low oxygen values, it is best to 

look at sensitivity of parameters towards low oxygen outcomes.  It is seen in the validation 

that indeed the DO results are fitting well the measurements when the calibration was 

performed with the most sensitive parameters for the amount of time that DO goes below a 

critical value. However, an additional calibration was needed to get good results for the nitrate 

simulations of the validation period.  

7. Importance of the selection of model parameter subsets 

7.1. Introduction 

 

Many river water quality models are available ranging from simple, conceptual models to 

more complex, physically based models (Rauch et al., 1998) that are preferred more and more 

because of their ability to make extrapolations. However, due to the complexity of such 

models many parameters need to be determined (= calibrated) before the model describes the 

system well.  

Fortunately most modellers have become aware of the fact that the calibration process does 

not normally result in a unique parameter set because parameters are often highly correlated 

with each other. The question that automatically rises is “how would the model predictions 

change if another subset of parameters were used in the calibration of the model?” If there 

exists differences between the model results after calibration with different subsets of 

parameters, it is interesting where the differences are situated and what the influence is on 

some variables that are subject to legislation or are critical to biological life.  

The aim of this research is to detect the variation of critical water quality variables after 

calibration of a complex water quality model where different subsets of parameters are 

changed while the other parameters are fixed, typically to literature values. It shows how far 

parameters can compensate for each other. Here, the modified QUAL2E model (van 

Griensven and Bauwens, 2002) with an application on the river Dender in Belgium is used.  

7.2. Methodology 

 

The order of steps to obtain a calibrated model is: sensitivity analysis, calibration with the 

most sensitive parameters and afterwards uncertainty analysis and validation. The objective of 

sensitivity analysis of model output can be defined as ‘to evaluate how a given model depends 

on its input factors’ (Saltelli et al., 2000). It is often assumed that the number of important 

parameters in a model is small compared to the total number of parameters. A sensitivity 

analysis can reveal those most influential parameters. In practice the step of SA is often 

neglected. The modeller uses his experience about the model and/or processes and starts a 

manual calibration in which he changes +/ - 10 parameters. The other parameters are kept on 

a fixed literature value.  
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A comparison of different calibrated models that were all assumed to be the best calibrated 

model would show the possible variation between results. It is the aim of this contribution to 

focus on critical dissolved oxygen concentrations in the river and the influence on decisions 

that would be taken based on the different outcomes. 

First a calibration of the model with the most important parameters will be conducted and 

these most important parameters will be the reference subset. The most important parameters 

are found in section 2 of this chapter. The output of the calibrated model gives a time series, 

which can be compared with other time series obtained after calibration with different subsets 

of parameters. The selection of the different subsets is based on a questionnaire sent around to 

30 water modellers in 2002. The results of that questionnaire are given in appendix A. The 

most commonly used subsets are given in table V.25. 

 

Table V.25: Different sets of variable parameters most often used for the calibration of the 

modified QUAL2E in ESWAT (based on questionnaire (appendix A)) 

Name of the set Variable set of parameters (according to table V1) 

Reference µmax, ai3, ai4, rhoq, ai0, λ1, ai5, rk2, rk1, rk4 

Subset 1 rk4 , bc3, rk3, µmax, bc1, rs4, rk1, rhoq, ai6, λ1  

Subset 2 µmax, rk1, rs2, rs3, rk4, bc2, kl, kp, kn, λ0, pn, kdd 

Subset 3 rk2, rk4, rk1, bc1, bc2, bc3, rs2, rs3, rs4, rs5, rk3  

Subset 4 rk2, rk4, rk6 

Subset 5 µmax, rk4, λ1, rk1, kdd, rk2, λ2, bc1, kp, pn 

 

7.2.1. Selection of reference parameter subset. 

In order to compare the outcomes of models calibrated with different parameter sets it was 

decided to define a reference parameter subset. The reference set was selected to contain those 

parameters that are influencing the critical values most because that set gives the most reliable 

predictions for the critical variable under consideration. The critical value considered here is 

DO and the parameter subset that is chosen here is the one found in section 2: µmax, ai3, ai4, 

rhoq, ai0, λ1, ai5, rk2, rk1, rk4. For this set all the most important parameters can be tuned to 

give the best estimates for the low DO values, the values we are interested in and there is no 

risk to fix an influential parameter on a wrong value.  

7.2.2. Calibration  

The model was calibrated with different sets of parameters given in table V.1. The calibration 

of the model was done with the optimization program PEST (Pest Manual, 1994) (see chapter 

“Materials and Methods”).  The objective function was the weighted sum of squared 

differences between measured and modelled dissolved oxygen (DO) concentrations.  
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With =kω weight given to the observations of each variable, =obs  observation, =calc  

calculated value and n = the number of observations for each variable, k = numbering for each 

variable, i = numbering for each observation . 

All fixed parameters were set on the nominal value given in table V.1. The most influential 

parameters were varied, starting from their nominal value until the lowest objective function 

value was reached. 

7.2.3. Analysis of the model output of the models calibrated with different subsets  

In figures V.31, V.32 and V.33 the results are given of the model results after calibrating 

different subsets. In each of the figures one subset calibration is compared with the reference. 

When analysing what kind of parameters are chosen to be important, the major differences 

between the reference and the subsets can be summarised as in table V.26. 

 

Table V.26: Subsets of parameters for calibration and their particular focus 

Parameters for calibration Focus on 

Reference Production, uptake and reaeration of O2, algae growth and respiration, 

cBOD processes 

Subset 1 cBOD processes, benthic oxygen demand, nitrification, denitrification 

Subset 2 Algae processes, benthic processes 

Subset 3 Reaeration, O2 processes, benthic processes, nitrification, 

denitrification, phosphates 
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Figure V.31: Model results and measurements (symbols) of DO at Denderbelle, 1994, model 

calibrated with two different subsets of parameters (full line is the reference, dotted line 

calibrated with subset 1) 
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Figure V.32: Model results and measurements (symbols) of DO at Denderbelle, 1994, model 

calibrated with two different subsets of parameters (full line is the reference, dotted line 

calibrated with subset 2) 
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Figure V.33: Model results and measurements (symbols) of DO at Denderbelle, 1994, model 

calibrated with two different subsets of parameters (full line is the reference, dotted line 

calibrated with subset 3) 

 

In table V.27 the values of the parameters obtained after the calibration with different subsets 

are presented. From this table we see that the parameters algae respiration rate (rhoq), 

carbonaceous biological oxygen demand deoxygenation rate coefficient (rk1), oxygen 

reaeration rate (rk2) and rate of loss of carbonaceous biological oxygen demand due to 

settling in the reach (rk3) are the parameters that are very different after the different 

calibrations. Apparently these parameters can compensate easily for other fixed ones to obtain 

good results for the dissolved oxygen concentrations in the Dender.  During the calibration 

with subset 2 it was found that the benthic (sediment) source rate for dissolved phosphorus 

(rs2) and the benthic source rate for NH4-N in the reach (rs3), could not be taken in the 

calibration process due to the correlation with other parameters (those two parameters are 

linear combinations of the other parameters which results in a singular covariance matrix 

which is not invertible) 
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Table V.27: Values of the parameters (according to table V.1) after the calibration with 

different subsets 

 Reference Subset 1 Subset 2 Subset 3 

ai5 3.71    

bc1 0.1 0.11  0.1 

ai4 2.0    

rk1 0.064 0.81 0.15 0.87 

ai3 2.3    

rhoq  0.2 0.054   

ai6 1.0 1.03   

umax  2.2 2.1 1.86  

rk3 3.0 2.9  2.15 

rk2 1.09   0.3 

rk4   3.1 4.3  

rs4  6.26  6 

λ1  0.016   

bc3  0.4  0.4 

rs2  Fixed on nominal 

value  

 0.01 

bc2   1.04 1 

rs3  Fixed on nominal 

value 

 1 

kp   0.042  

kl   5.2  

kn   0.073  

λ0   5.0  

kdd   0.01  

rs5    0,03 

pn   0.3  

 

It can be concluded that sometimes fixing the parameter values to literature values or to 

values delivered with the software gives as a result that no algae growth is simulated in this 

river, although in reality there is a lot of algae growth during summer period. The results after 
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calibration with subset 1 and subset 2 give no diurnal oxygen dynamics typical for algae 

growth, wich means there are no processes of photosynthesis and respiration simulated. 

Further, the three subsets give more periods below critical oxygen levels (see table V.28). 

Also, when the model is calibrated with the parameters focusing on the nitrification and 

denitrification processes and on the benthic processes included, the oxygen concentrations go 

lower in spring and autumn. 

Table V.28: Results for the time that DO<5mg/l at Denderbelle for the different calibrations 

Calibration parameter set Hours DO < 5 mg/l 

Reference 5000 

Subset 1 5520 

Subset 2 5160 

Subset 3 6193 

7.3. Conclusions   

 

It was demonstrated here that calibrating with different subsets of parameters gives different 

model predictions and can lead to different conclusions. This result is for sure particular for 

this case study, but it shows the importance of performing a sensitivity analysis before 

calibration to select the most important parameters for the particular problem at hand. That 

way one avoids skipping important parameters that need to be adjusted for that particular 

case, and which cannot be compensated by calibrating with other parameters. In the case 

study the consequence of a wrong calibration could be that too many measures would be 

taken to increase the DO levels during spring and autumn while in reality this would not be 

necessary. 

8. Cost-effectiveness of in-stream aeration to improve river water 

quality 

8.1. Introduction 

 

The core issue of the European Water Framework Directive (WFD) is the achievement of 

good water quality in surface and ground waters on a river basin scale. To reach this goal the 

combined approach of emission limits and water quality standards proposed by the Directive 

will make new strategies available to the water managers. Interventions will not necessarily 

be limited to the sources of pollution but measures in the receiving water bodies will also be a 

possible way to achieve the water quality objectives. These measures need to be evaluated in 

terms of cost-effectiveness. Models can be used to perform these evaluations but uncertainty 

on the results is unavoidable. Hence, reliable modelling requires that the uncertainties are 

considered too. 
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One of the possible measures is in-stream aeration to compensate oxygen shortages during 

certain periods and to ensure fully aerobic conditions in the river at any time. Technical 

reaeration can be questioned as a measure to improve the receiving water quality as the 

philosophy behind the WFD is to go back to pristine situations in a cost-effective way and 

technical reaeration is a man-made intervention which consumes a lot of energy. Further, it 

can be questioned whether the self-purifying capacity of the river itself can be used for waste 

water treatment. Still, in heavily modified rivers or rivers suffering from a large diffuse 

pollution load, intervention might be necessary. This is obviously the case if acute fish death 

is occurring as a result of sudden oxygen drops. 

The aim of this research is to assess the cost-effectiveness of aeration techniques in improving 

the water quality in surface water bodies. The Belgian Dender River is used as a real-case 

application. Literature review results about reaeration rates, oxygen transfer rates and energy 

consumption are used to run scenarios with the QUAL2E river water quality model 

implemented in ESWAT for the river Dender (van Griensven and Bauwens, 2001). The 

scenarios are then compared in terms of costs and effects on the dissolved oxygen content at 

the mouth of the river and uncertainty analysis is included to be able to see if there is a 

significant difference of the results without or with aeration.  

8.2. Methodology 

 

The river water quality model of the river Dender will be used to calculate some important 

values like amount of time needed for aeration and the amount of DO suppliance. First, from 

the model results, the duration of periods during which the dissolved oxygen is below 3 mg/l 

is calculated. Three mg/l is here taken as the critical value for biological life in cyprinid 

waters (UPM, 1998). Second, with the aid of the model, the amount of extra dissolved oxygen 

needed to obtain oxygen concentrations higher than 3 mg/l is calculated. Oxygen is supplied 

as a point load and a trial and error method provides the amount of oxygen needed. With 

those data a comparison was made in energy requirements for three different methods of 

aeration: The Clean Flo inversion/oxygenation method, a fine bubble aerator and a 

mechanical stirrer.  This calculation provides the magnitude of costs for instream aeration that 

prevents the oxygen level to drop below 3 mg/l. Natural reaeration is no option for the river 

Dender because it is a flat river and the stream velocity is too low. At the sluices some 

aeration occurs but not enough. 

In a second part of this research other measures which result in a reduction in pollution to the 

river or that avoid algae blooms during summer are discussed and compared with the in-

stream aeration option. The measures looked at are: a connection of all households to the 

sewer system according to the General Water Plans for the Dender (AWP1), shading and 

reduction in diffuse pollution.  

Uncertainty bounds on the results are included. These are the 5 and 95 % confidence intervals 

calculated with a Latin Hypercube Monte Carlo simulation. This latter technique is well 

explained in section 5 of chapter V. The uncertainty is caused by parameter uncertainty and 
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input uncertainty. Uncertainty ranges applied are according to the results in section 5 of 

chapter V. 

8.3. Results and discussion 

8.3.1. Comparison between different in-stream aeration methods 

 The dissolved oxygen time series for the river Dender at Denderbelle in 1994 is given in 

figure V.34. No in-stream aeration is applied here. The number of hours that the dissolved 

oxygen drops below 3 mg/l is 3810. Rather than installing an aeration system that can be 

switched on and off, in summer a relatively long period exists during which continuous 

supply of oxygen is required. The maintenance costs and follow up of the dissolved oxygen 

concentration would undo the benefit of the few times that the aeration can be switched off. In 

this year it is necessary to aerate the river from 21
st
 of April till 13th of October i.e. 4200 

hours of aeration are needed. 
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Figure V.34: Time series (line) and measurements (symbols) of dissolved oxygen at 

Denderbelle, 1994. 
 

To calculate the energy costs for the in-stream aeration with diffusive aerators we first 

calculate the actual oxygen transfer (OTRact) rate needed by using the maximal transfer rate 

(OTRmax) for the aeration equipment. The following formula is used: 

Taking an average of 2 mg/l as actual DO and the saturation level of 9,5 mg/l DO at 15° C the 

maximal OTR needs to be multiplied by 0,789.  We take this average over the summer period. 

The Actual OTR and the needed power are given in table V.29. Also the investment and 

maintenance costs are presented.  
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Inversion/oxygenation system “Clean Flo” 

This system oxygenates the water and removes toxic gases. The process inverts and 

oxygenates 11000 m
3
/d of water per diffuser at 2 m depth using a laminar flow principle. 

Laminar flow prevents mixing of anoxic, high toxic gas-content bottom water with the main 

water body before the water reaches the surface. At the surface, the uprising water spreads out 

towards the shore in a 0.04 cm deep layer. This oxygenates the water and rids the water of 

toxic gases. Laminar flow causes a Venturi effect to add water from the water body to the 

water column as it rises, causing increased water flow in deeper water. 

When calculating costs for the Clean Flo system, if necessary, also land acquisition along the 

shore for cabinet placements has to be considered in addition to protective fencing or concrete 

buildings to protect against vandalism. (Clean Flo international, 2004) 

 

Fine bubble aerators 

Fine bubble aerators are the most energy efficient means of aeration but have the largest 

capital and maintenance costs. Fine bubble aeration is generally defined as a diffuser system 

that produces air bubbles in water or wastewater with bubble diameters of approximately 0.5 

mm to 4 mm diameter. All diffuser systems create a spectrum of bubble sizes but high 

efficiency fine bubble systems have a large fraction of bubbles in the 0.5 mm to 2 mm 

diameter range. 

The high maintenance costs are related to the problem of clogging. Diffuser clogging often 

occurs from the inside. It is caused by dust and dirt particles carried in by the air supply or by 

impurities in the water. Calcium carbonate often forms a deposit, which clogs the pore outlet. 

Another source of plugging is bacterial slime, which forms a layer on the external surface of 

the diffuser. 

 

Mechanical surface aerator 

Mechanical aerators work by creating small droplets of water using a mixer. These droplets 

are propelled through the atmosphere above the water‘s surface. Oxygen in the air is 

transferred into the small water droplets, which then fall back into the water. 
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Table V.29: Calculation of costs for aeration of the Dender in summer 
 Fine bubble aerator Mechanical surface 

aerator 

Clean Flo system 

(Clean Flo 

international, 2004) 

Maximal OTR 2,72 kg/kWh 2 kg/kWh not available 

Actual OTR 2,15 kg/kWh 1,5 kg/kWh not available 

Needed power  1953 kWh  2800 kWh  4230 kWh for 

oxygenation + 

laminar movement 

Energy costs/year  574180 € for 4200 

hours 

823200 € for 4200 

hours 

1184400 € 

Maintenance 

costs/yeqr 

332700 € not available 5 000 € 

Investment 

costs/yeqr 

50000 € 20 000 € 20 000 € 

Total cost/year 936880 € 1023200 € (without 

maintenance) 

1434400 € 

 

8.3.2. Comparison of in-stream aeration with other measures  

In the model an amount of 4000 kg O2/day is transferred for a period of 4000 hours. This 

amount is obtained by trial and error in the model until reasonable results were obtained for 

the whole summer period. Figure V.35 (left) shows the effect on the dissolved oxygen 

concentration at a point close to the mouth.     

AWP 1999 

The total cost for the whole investment program in the Dender catchment for the period 1991-

2005 amounts to 233 mio €. This investment program includes the renovation and 

construction of wastewater treatment plants, construction of a new sewer system and 

connection of households to the new and existing sewer system. The reduction in point 

pollution load was calculated and reported in the AWP 1999 project description (VMM, 

1999). In figure V.35 (right) the effect on the dissolved oxygen by the reduction of the BOD 

load and of the total load according to the AWP plans, is presented. If the reduction in N and 

P load is also taken into account, the oxygen level is much better. Hence, it is obvious that 

biological nitrification and phosphorous removal are important for the river Dender to bring 

the oxygen levels up to acceptable levels. 
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Figure VI.35: Comparison of obtained dissoved oxygen concentrations at Denderbelle 

without (grey) and with aeration (black) (left) and without aeration (grey), with 

implementation of the AWP plan (right) (with BOD load reduction (dashed) and with total 

load reduction (black))  
 

Shading 

Another option for reducing algae growth is the reduction of sunlight that is reaching the river 

water surface by planting trees along the river providing shading in this way. According to 

(Ghermandi, 2004) shading would produce a 15 % higher minimum dissolved oxygen content 

and a 30 % higher average minimum DO. To have the same effect at Denderbelle, an 

additional amount of 1000 kg O2 per day introduced 8 km upstream is needed. This would 

increase the costs for aeration to +/- 300000 €. Hence, shading is an attractive and less 

expensive alternative. However it is not sufficient to avoid fish kills. When combining both 

measures, shading and aeration, the additional amount of aeration needed is calculated with 

the model results 3000 kg (4000 kg O2 /day – 1000 kg O2 /day). It will be less because 

shading also lowers the average water temperature and as processes go slower at lower 

temperature, less DO is needed. Further, all additional advantages of shading such as lower 

water temperature, less algae, recreational value and habitat for birds should be considered 

too.  

 

Diffuse pollution 

The reduction in diffuse pollution also leads to a reduction in phosphate and nitrogen load to 

the river and as a consequence less algae blooms and less respiration during night time.  
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Figure V.36: Influence of 90% reduction in amount (black) of fertiliser use for the river 

Dender 1994. (without aeration (grey)) 
 

It is a measure that assures good oxygen levels only if the algae bloom is caused by the 

diffuse pollution input. If, however, the nutrients, nitrate and phosphate are not limiting algae 
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growth due to the discharge of nutrients via point sources, the measure will not influence 

much and the same situation of low oxygen during summer holds as is the case for the Dender 

river. As can be seen in figure V.36, the oxygen levels are better until June 10
th
. With higher 

temperature and lower flows during summer, the oxygen levels become critical again and in 

this case in-stream aeration is the only option for avoiding fish kills. Moreover, reducing 

diffuse pollution means dealing with agricultural fertiliser and manure use. Hence, the 

economic and political consequences are important and warrant a study on itself. It is obvious 

for the river Dender that reduction in diffuse pollution has to be accompanied by reduction in 

point pollution loads as proposed by the AWP 99.  

 

8.3.3. Uncertainty on the results 

The uncertainties on the results are shown for the scenario ‘without aeration’ and ‘with 

aeration’ only for the period where the aeration device is on (figure V.37). The uncertainty on 

the parameters of the water quality model, uncertainty on the inputs of the point pollution 

inputs and uncertainty in fertiliser amount and plant and harvesting dates. The uncertainty on 

the hydrodynamic model for the river Dender was not considered here as it is assumed that 

the model was well calibrated thanks to the many measurements of flow available for this 

river. 

The uncertainty represented by the 5 % and 95 % percentiles on both scenario’s shows that 

the river Dender benefits significantly from aeration during the summer period. The 

uncertainty analysis also allows concluding that it is possible for the dissolved oxygen content 

of the river to go below 3 mg/l even when the aeration system is installed, albeit only for very 

short periods.  
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Figure V.37: DO time series during aeration period of scenario ‘without aeration’ (blue) and 

‘with aeration’ (red) with uncertainty expressed as 5 % and 95% percentiles (dashed)  
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8.4. Conclusions 

 

This modelling study evaluated the extent of reaeration needed to maintain a minimum of 3 

mg O2/l in the Dender River, to get an idea of aeration costs and to see whether other 

measures exist that can avoid the need for aeration. 

In-stream aeration is found to be a very effective measure for the compliance with dissolved 

oxygen standards in rivers. It can be switched on when needed, e.g. during crucial periods of 

low oxygen e.g. in summer. This avoids excessive energy costs.  

Comparison of different methods (fine bubble diffuser, meachanical aeration, the 

oxygenation/inversion system of Clean Flo), shows that aeration costs to obtain oxygen levels 

above 3 mg/l in the river Dender is about the same for all the systems. 

Other measures to raise the oxygen levels in the Dender were compared in terms of their 

effectiveness. The fundamental option, reducing the point pollution load, following the AWP 

1999 plan, is the best option and ensures that oxygen levels are above critical levels the whole 

year. However, it is a very expensive option and it also takes a long period before it will be 

fully implemented: 16 years.  In the meantime in-stream aeration techniques can help 

overcoming critical periods.  

Shading is a very attractive additional measure that can be combined with other measures in 

the stream. It reduces algae blooms, assures higher minimum DO levels and has also other 

advantages such as lower water temperature, less algae, high recreational value and a habitat 

for birds. Reduction in diffuse pollution input does not appear to be a valid option for the 

Dender as long as nitrogen and phosphates are still discharging through point pollution. Algae 

blooms keep occurring during summer even though diffuse pollution was reduced by 90 %.  

Uncertainty analysis on the results for the scenario ‘with aeration’ shows that it is possible for 

the dissolved oxygen content of the river to go below 3 mg/l even when the designed aeration 

system is installed, albeit for very short periods. Further the UA shows that the two options, 

with or without aeration are significantly different. 

9. Assessment of the effect of shading on river water quality for the 

Nete river 

9.1. Introduction 

 

In this section just like in section 8 an evaluation is made of an in-stream measure, shading, 

that can be applied to improve the river water quality. Ecological engineers and water 

managers look with increasing interest at shading by riparian vegetation for its potential 

positive effect on the water quality in surface watercourses.  

While the role of near-stream vegetation in filtering the contaminants from diffuse pollution, 

in controlling erosion processes and in reducing the impact of floods has been extensively 

analysed, the impact of shading by riparian vegetation on the water quality is less clearly 
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understood. Research suggests that shading might influence the water quality in small to 

medium watercourses mainly by reducing the temperature of the water and the solar radiation 

that reaches the water surface (Beschta et al., 1987; Collier et al., 2001). Cooler water can 

hold a higher concentration of dissolved oxygen (DO) and therefore increase a stream’s 

capacity to assimilate organic wastes from sewers, treatment plants or diffuse sources. 

Furthermore, water temperature both affects the growth and development rates of most 

aquatic organisms and influences the kinetics of chemical reactions. At lower temperatures, 

oxygen consumption rates decrease, leading to a smaller risk for oxygen depletion. Light 

availability, on the other hand, controls algal growth, together with nutrient availability and 

hydraulic mixing conditions. Light interception can inhibit excessive algal growth in streams 

that are particularly exposed to the risk of eutrophication. 

The degree to which riparian vegetation affects water temperature and incident solar radiation 

depends on a series of factors, including geographic and climatic aspects, characteristics of 

the channel, type of vegetation and turbidity of the water. Channel width is probably the most 

obvious factor influencing the effect of riparian shading. The wider the channel, the smaller is 

the fraction of solar radiation that is intercepted by the riparian vegetation. Riparian shade is 

unlikely to have a significant influence on stream temperatures where the natural low-flow 

stream width exceeds 30 m (Washington Forest Practice Board, 1992). The characteristics of 

the vegetation that most influence the effect of shading include canopy height, width of the 

vegetated buffer zone and foliage density. Fast-growing trees, with a deep and strong root 

system like Alnus glutinosa, Salix spp. and Populus nigra seem thus to be the most indicated 

tree species for shading (Ministry of the Flemish Community of Belgium, 2000). 

This section provides a model-based assessment of the efficiency of shading by riparian 

vegetation as a measure to increase the water quality in a watercourse, by evaluating its effect 

on five water quality parameters in a medium-sized river stretch located in the Nete river 

basin in Belgium. Because of data scarcity there is a large uncertainty on the model outcomes. 

Therefore, an uncertainty analysis is applied to identify if the measure gives a significant 

effect on the water quality variables. For scenario analysis it is however not always needed to 

comprise all possible uncertainty into the uncertainty analysis. Only those inputs and 

parameters for which the related uncertainties can differ under different circumstances are 

taken into account because decisions about the improvement caused by the implemented 

measures are based on the difference between the results of the scenarios. Uncertainties that 

are the same for the different scenarios will become zero for the difference, only the others 

form an uncertainty bound around the difference and form the basis of decision. It is 

suggested that the results found in this study have a more general validity so that they can be 

extended to watercourses with characteristics similar to the studied one.  

9.2. Case study: the Nete river basin, model implemented in WEST 

 

The Nete river basin is located entirely within the Flemish Region of Belgium and covers a 

surface of 1673 km² (see figure V.38). The main watercourses within the river basin are the 
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Grote Nete and the Kleine Nete. For this study a stretch of the Grote Nete of 19.5 km of 

length was selected. The boundaries of the stretch are the confluence with the Grote Laak 

(upstream) and with the Wimp (downstream). More information about the Grote Nete can be 

found in de chapter “Case studies” and the modelling approach is described in section 1.2 of 

this chapter.  

 
Figure V.38: The Nete river basin and the stretch of the Grote Nete selected for this study. 

A model for the Nete river was implemented in the WEST® software (MOSTforWATER 

NV) (Vanhooren et al., 2003). 

9.3. Sensitivity analysis 

 

A global sensitivity analysis was performed in order to identify the most influential 

parameters of the water quality model. This helped in manually adjusting the parameter 

values to obtain the calibrated model. The method used is a regression and correlation 

technique (Saltelli et al., 2000) with Latin Hypercube Monte Carlo sampling (McKay et al., 

1979).  More explanation of this method can be found in the chapters about sensitivity 

analysis. Regression is done between the parameters under consideration and a critical output 

of the model. Since oxygen shortage is one of the main water quality issues in the Nete, the 

amount of hours that the oxygen concentration drops below 5 mg O2/l and the average DO 

concentration are chosen as the critical outputs for the problem at hand.  

The mean values of the parameters, distributions, variance, minimum and maximum used in 

the Monte Carlo sampling are given in table V.30. The variance is chosen to be either 50% or 

20% around the mean value. Some of the uncertainty sources are not part of the water quality 

model but were included in the uncertainty analysis due to their importance for algae and 

oxygen dynamics. These are the atmospheric radiation factor (beta_ar), the groundwater 

quantity, measured as fraction of the inflow (GW_q) and its temperature in °C (GW_t). For 

these parameters variations coming from literature have been applied (Reichert et al., 2001b). 

The uncertainty in the model inputs has been accounted for multiplying the nine inputs by 

nine independent factors varying between 0.5 and 1.5. 
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Table V.30: Values of the parameters for the river Nete model with frequency distribution 

characteristics for the Monte Carlo sampling 

Parameter Mean Var. Min Max Dist. Parameter Mean Var. Min Max Dist. 

alfa1 96.859 20% 77.487 116.231 t K_HPO4_H_aer  0.02 50% 0.01 0.03 u 

alfa2 48.226 20% 38.581 57.871 t K_N_H_aer  0.2 50% 0.1 0.3 u 

Beta1 11.613 20% 9.290 13.936 t K_NH4_N1  0.5 50% 0.25 0.75 u 

Beta2 16.157 20% 12.926 19.388 t K_HPO4_ALG*  0.02 50% 0.01 0.03 u 

Kla_base 1 50% 0.5 1.5 t K_O_N1  0.5 50% 0.25 0.75 u 

Pow_v 0.97 50% 0.485 1.455 t K_NO2_N2  0.5 50% 0.25 0.75 u 

Pow_h -1.6 50% -0.8 -2.4 t K_NO3_H_anox  0.5 50% 0.25 0.75 u 

K_gro_H_anox  1.6 50% 0.8 2.4 u K_NO2_H_anox  0.2 50% 0.1 0.3 u 

K_gro_ALG*  2 50% 1 3 u K_N_ALG*  0.1 50% 0.05 0.15 u 

K_gro_N1  0.8 50% 0.4 1.2 u K_HPO4_H_anox  0.02 50% 0.01 0.03 u 

K_gro_N2  1.1 50% 0.55 1.65 u K_I*  30 50% 15 45 u 

K_hyd  3 50% 1.5 4.5 u K_O_ALG*  0.2 50% 0.1 0.3 u 

K_resp_ALG*  0.1 50% 0.05 0.15 u K_death_ALG*  0.1 50% 0.05 0.15 u 

K_resp_H_aer  0.2 50% 0.1 0.3 u K_ads  0.5 50% 0.25 0.75 u 

K_resp_H_anox  0.1 50% 0.05 0.15 u beta_ar*     0.8 0.9 u 

K_resp_N1  0.05 50% 0.025 0.075 u GW_q*     0.08 0.12 u 

K_resp_N2  0.05 50% 0.025 0.075 u GW_t*     10 12 u 

K_O_H_aer  0.2 50% 0.1 0.3 u       

*parameter used for difference analysis (see paragraph on uncertainty analysis) 

Var.=variation, Dist.=distribution, t=triangular distribution, u=uniform distribution. 

 

Table V.31 illustrates some statistics of the performed regression. The coefficient of 

determination (R
2
) of the regression can be used to assess the goodness of the linear 

approximation of the regression between parameters and outputs. R
2
 is defined as: 

2

2

ˆ2

y

y

S

S
R =

 

with
22

ˆ
, yy SS  respectively the variation on the model outcomes and the variation on the 

approximated value after linearisation.  

Since an extension of the set of regressors with additional variables invariably leads to an 

increase of R
2
, independently from the significance of the added variable, the adjusted 

coefficient of determination R
2
adj is introduced as an alternative measure of the goodness of 

the approximation: 

( ) ( ) ( )( )[ ]pNNRRadj +−−−−= 11.11 22

 

with N the number of simulations and p the number of parameters considered. The closer the 

value of this coefficient is to 1, the better the regression. 

Furthermore, numerical problems may occur when applying a linear regression analysis if the 

parameters are highly correlated. The Variance Inflation Factor (VIF) is a suitable measure 

for the correlation. It is defined as: 

[ ]
iixi CVIF 1−=
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with [ ]
iixC 1−  the i-th diagonal element of the inverse of the correlation matrix. It is assumed 

that a linear regression can be applied as long as the VIF is less than 5 for all I (Janssen et al., 

1992).  

Table V.31: Regression statistics for DO concentration below critical threshold (5 mg O2/l) 

and average DO concentration. 

 Original parameter values Ranked parameter values 

DO concentration < 5 mgO2/l   

R
2 

0.65 0.76 

R
2
adj 0.61 0.73 

Largest VIF 1.20 1.15 

 

Average DO concentration   

R
2 

0.92 0.92 

R
2
adj 0.92 0.91 

Largest VIF 1.16 1.14 

 

In this study, standardized regression coefficients (SRC) are used as sensitivity measures:  

ixi

y

i
Sx

Sy
SRC

/

/

∆

∆
=

 

with  ixy ∆∆ /  the change in output due to a change in the i-th input and xy SS ,  the standard 

deviations of output and input respectively. The standard deviation of the input 
ix

S  is 

specified by the user. If the regression is not good enough, that is if the R
2
adj is less than 0.7 

(Saltelli et al., 2000), it is advisable to perform a substitution of the values of parameters and 

results by their ranks. The measure thus obtained is called ranked standardised regression 

coefficient (RSRC).   

In the regression, 45 parameters were used and 500 Monte Carlo runs were performed. As 

illustrated in table V.31, the regression is not satisfying enough to get quantitative results 

(R
2
adj less than 0.7), the uncertainty contribution expressed by the SRC representing only a 

small fraction of the real uncertainty, but a qualitative ranking of the parameters that most 

influence the output results can be obtained on the basis of the rank transformed standard 

regression coefficient (RSRC).  

The most important parameters determining the frequency of events with DO concentration 

below 5 mg/l, in descending order of importance are: Kla_base, pow_h, alfa1, 

K_growth_algae, beta1, k_gro_N1, pow_v, K_gro_H_aer, K_NO3_anox. Next to these 

parameters, also the nine inputs influence very much the results. It can however be expected 

that this load is known with good precision as it is based on direct measurements in the river. 

For the sensitivity analysis performed on the average value of DO, the following important 

parameters were obtained:  K_growth_algae, alfa1, Kla_base, K_HPO4_het, K_NH’_N1, 

K_NO2_N2, K_NO3_H, K_N_alg. Here again the input upstream is also very important. The 

analysis with the average DO output gives a better regression between parameters and output 
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than with the exceedance frequency of low DO values. This confirms that during extreme low 

DO values, the model outcome reacts nonlinearly on parameter changes. 

9.4. Calibration procedure 

 

The calibration procedure was manual and included two distinct steps: hydraulic calibration 

and calibration of the biochemical transformations. The simulation period consisted of 100 

days of steady state input followed by a dynamic input for the period from April 1
st
 to 

October 31
st
, 2002. The steady state inputs were obtained by averaging influent flows and 

pollutant concentrations during the month of April. Figure V.39 illustrates the results of the 

hydraulic calibration 12.2 km downstream of the initial section.  
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Figure V.39: Results of hydraulic calibration as comparison of measured and simulated time 

series (left) and as plot of residuals (measurement minus simulation) (right). 

The hydraulic routing of the Nete is well reproduced by the model with exception of an 

underestimation of the peak flow. This may be due to the fact that the contribution of several 

minor tributaries of the Nete during periods of high rainfall is neglected in the model. The 

only calibration parameter was the number of tanks-in-series (10 tanks in the calibrated 

model) in which the river stretch is subdivided. 
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Figure V.40: Calibration of biochemical model in the closing section for six water quality 

parameters………..Concentration upstream ─ Concentration downstream ◊ Measured at 

Hulsthout 

 

Six water quality variables were selected for the calibration of the biochemical model at 

different sections: DO, chemical oxygen demand (COD), nitrates, ammonium nitrogen, 

phosphates and algal biomass. Few significant parameters were tuned for the calibration: 

Monod's constants for the death of algae, the growth of algae, the algal uptake of HPO4, the 

uptake of nitrogen by algae, heterotrophic (X_H) and autotrophic (X_N1 and X_N2) bacteria 

in the upstream section and the re-aeration coefficient (kla). In this procedure, X_H, X_N1 

and X_N2 were treated as model parameters and not as state variables since, in the absence of 
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direct measurements, they had to be estimated on the basis of literature indications. The best 

results were obtained for upstream concentrations of 4 mgX_H/l, 0.3 mgX_N1/l and 0.1 

mgX_N2/l.  

Figure V.40 shows the results of the calibration in the downstream section. The points 

represent the measurements made by VMM in the same section. In judging the results, it 

should be noted that the phosphates concentration was often below the detection limit: 

therefore all points in figure V.40 which indicate a concentration of 0.15 mg P/l must be 

intended as indicating a concentration less or equal to 0.15 mg P/l. The algae concentration 

might be overestimated, however this is not clear with only these two measurements.  

Because of data scarcity, the evaluation of the calibration procedure had to be limited to a 

visual assessment of the fit between the model output and the few available measurements. 

For the same reason it was not possible to validate the model on a separate set of data. Due to 

the lack of model validation, the study must be indicated as semi-hypothetical and its results 

cannot be interpreted as supporting a riparian management strategy along the Nete, but as 

evaluating with more general validity the effects of shading in watercourses with similar 

characteristics.  

9.5. Scenario analysis and discussion 

 

Four scenarios were evaluated that represent different realistic shading conditions along the 

modelled stretch. In all scenarios, the effects of shading both on incident solar radiation and 

on water temperature were taken into account. The scenarios refer to the shading conditions 

induced by fully developed trees. The shading conditions in the four scenarios are described 

in table V.32. 

Table V.32: Characteristics of the four considered scenarios 

Scenario 
Length of shaded 

stretch [km] 
 

1: alternate shading 11.9 

 

2: upstream shading 9.6 

 

3: downstream shading 9.9 

 

4: complete shading 19.5 

 
 

In the first scenario, shaded and unshaded conditions are assumed to alternate along the river 

stretch. This is reflected in the model by an alternation of tanks in shaded conditions with 

unshaded tanks as illustrated in table V.32. This scenario is intended to represent conditions 

of shading that are optimal for aquatic life (Ministry of the Flemish Community, 2000). Since 
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the ten tanks used in the model represent stretches of river characterized by different lengths, 

the total length of the shaded sections is greater than half of the total length of the stretch and 

amounts to 11.9 km (61% of the total length). The second scenario represents conditions of 

upstream shading. In this scenario, the first three tanks-in-series are modelled with shaded 

conditions, while the remaining seven tanks reflect unshaded conditions. Because of the 

different length of the tanks, the three upstream tanks account for approximately half the 

length of the stretch (9.6 km, 49% of the total length). The third scenario is chosen to 

represent the exact opposite conditions of shading of the second scenario. Only the seven 

tanks downstream of the stretch are in shaded conditions. This corresponds to shading along 

9.9 km, 51% of the total length. The fourth and last scenario represents conditions of 

complete shading along the whole modelled stretch (all ten tanks-in-series are modelled in 

shaded conditions).  

The effect of shading on the water quality of the river Nete in the four scenarios is evaluated 

comparing the output of the scenarios with the output of the calibrated model, which 

represents the current, reference shading conditions along the stretch. The effect on the algal 

biomass was evaluated both in terms of the change in the algal concentration in the closing 

section and of the algal growth within the stretch. The results of the analysis, averaged over 

the whole simulation period, are reported in table V.33.  

Table V.33: Effect of shading on the algal concentration in the downstream section and on 

algal growth in the stretch 

Scenario Concentration of algae downstream Algal growth in the stretch 

1. Alternate shading -4.4 % -11% 

2. Upstream shading -3.3 % -8 % 

3. Downstream shading -4.4 % -11 % 

4. Complete shading -7.7 % -19 % 

 

According to table V.33, the variation in the concentration of algae within the simulated 

stretch is in the range between 3.3 and 7.7%, according to the scenario that is considered. This 

relatively low effect is explained by the small length of the simulated stretch (19.5 km): the 

short time of travel between upstream and downstream section does not allow for large effects 

on the algal concentration to take place. The highest effect on the algal concentration is given, 

as expected, by the scenario with complete shading. The sum of the effects of upstream and 

downstream shading corresponds approximately to the effect of complete shading, with 

upstream shading and downstream shading producing quite similar results. The effect of 

alternate shading is analogous to the effect of downstream shading, although in the 

corresponding scenarios different lengths of the stretch are in shaded conditions (61% for 

alternate against 51% for downstream shading).  

Table V.33 shows that the effects of shading are more significant for the selected stretch when 

the difference in the total growth, rather than the difference in concentration, is considered. 

The growth of algae during the whole dynamic period is reduced by almost 20% with 

complete shading of the river stretch. The analysis of the variations in the modelled algal 

growth indicates that algae are slightly more affected by downstream shading than upstream 
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shading. Alternate shading does not prove to be more efficient than downstream shading in 

reducing the total algal production. 

The effects of shading on the concentrations of DO, COD, phosphates, and ammonium 

nitrogen are insignificant when looking at minimal, maximal and average concentrations. 

During some periods of the year, however, a significant change in the profiles of the water 

quality variables towards better or worse conditions is clearly identifiable. This is illustrated 

for the variable DO in figure V.40, where the difference between DO concentrations in 

unshaded and completely shaded conditions is given over the whole year.  

In table V.34 the effects are given as number of hours that the considered variables exceed or 

fall below a certain critical value. This value was assumed to be 5 mg O2/l for DO, 14 mg/l 

for algae, 0.3 mg/l for phosphate and 5 mg/l for ammonia, according to legislation in Belgium 

concerning basic water quality. According to this analysis, shading induces slightly worse 

conditions for DO, its concentration being more hours under the critical level of 5 mg O2/l 

with the shading option. The time of exceedance of critical concentration of algae is almost 

reduced to half in the case of complete shading. Exceedance of critical phosphate 

concentration is not affected by shading. Ammonia did not exceed the critical value in any 

case.  

Table V.34: Number of hours of exceedance of water quality variables under different 

scenarios of shading. 

Scenario DO<5 mgO2/l PO4>0.3 mg/l algae>14 mg/l NH3>5 mg/l 

0. No shading  279 19 95 0 

1. Alternate shading  283 18 68 0 

2. Upstream shading 282 18 75 0 

3. Dowstream shading 283 18 70 0 

4. Complete shading  286 18 49 0 

9.6. Uncertainty analysis 

 

To verify how much the results are influenced by the uncertainty in the parameters, a 

concentration-duration curve for DO with 5
th
, 50

th
 and 95

th
 percentiles is shown in Figure 5 

for the unshaded scenario and the completely shaded one. The curves express the percentage 

of time that DO is below a given concentration. Only these two scenarios are shown as they 

represent the extreme cases: the other scenarios fall in between those two. The uncertainty is 

calculated with Monte Carlo simulations where the parameter ranges are taken from table 

V.30. 

The uncertainty bounds around the results of the DO and the concentrations of algae are wide. 

From this analysis it is therefore not possible to get to conclusions about the outcome of a 

scenario. However, not all the parameter and input uncertainties need to be taken into account 

for scenario analysis under uncertainty. Uncertainty on parameters that influence the 

outcomes in both scenarios in the same way, so called ‘fully dependent parameters’ (Reichert 

and Borsuk, 2003), will only shift the results in one direction and with the same magnitude. 

Therefore, an analysis on the difference of a variable in two scenarios was performed in order 
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to see whether the 5
th
 and 95

th
 percentile uncertainty bounds around the difference include or 

not the zero. Only the independent parameters and inputs are used in such analysis. They are 

indicated with asterisks in table V.30. The results of the described uncertainty analysis on the 

difference between scenario 0 and scenario 4 for DO concentration and average growth of 

algae at the end of the stretch are shown in figure V.41. 
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Figure V.41: The concentration-duration curves of DO and algae for the unshaded case (up) 

and completely shaded case (down). 

From figure V.42 and figure V.43, it can be inferred that shading does not significantly reduce 

or increase the lowest oxygen levels in the last stretch of the river. The uncertainty concerning 

the difference between the scenarios contains both positive and negative values. However, a 

clear trend is here visible. In colder periods, when no algal growth occurs, the non-shaded 

scenario has higher oxygen concentrations, which become lower oxygen concentrations than 

the shaded scenario during warm periods with algal growth. In other words, the algae actually 

increase the oxygen concentration because of the production of oxygen. 

The results of the uncertainty analysis for the algae indicate that there is a significant 

distinction between the scenarios. Shading reduces algal growth, and thus can effectively 

improve the conditions in rivers with excessively algal growth during summer periods. 
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Figure V.42: Effect of shading on DO concentration during the year. Difference between 

scenario 0 and scenario 4 for DO; the full line represents the 50
th
 percentile, while the dotted 

lines are the 5
th
 and 95

th
 percentiles. 
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Figure V.43. Effect of shading on concentration of algae during the year. Difference between 

scenario 0 and scenario 4 for average concentration of algae; the full line represent the 50
th
 

percentile, while the dotted lines are the 5
th
 and 95

th
 percentiles. 
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9.7. Conclusions 

 

The present study makes use of a dynamic modelling approach to predict water quality 

reactions within a river and to estimate the changes in water quality induced by shading of 

riparian vegetation. Such approach allowed to avoid the prohibitive costs required for 

extensive field measurement campaigns.  

According to the analysis performed, shading can effectively influence the water quality in a 

surface water body, in particular in streams that suffer from excessive algal growth during the 

summer periods. The reduction of algal growth due to a full shading scenario was estimated to 

be about 20% at the outlet of a 19.5 km long stretch of the river Nete in Belgium.  

No significant positive effects of shading on the minimum, maximum and average 

concentrations of DO, COD, phosphates, ammonium nitrogen and nitrates in the water were 

identified.   

The influence of shading on the exceedance of critical thresholds for several compounds was 

examined. A positive effect is seen on algal concentration. At the downstream section of the 

modelled stretch, the time of exceedance of a critical concentration of algal biomass was 

reduced to about half by complete shading of the stretch. A slightly negative effect of shading 

on the exceedance of the threshold value for DO was identified. 
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CHAPTER VI: CONCLUSIONS AND PERSPECTIVES 

10. Conclusions 

10.1. Water quality modelling 

 

Due to the (sub-daily) variability and seasonality of weather, water quality processes and 

pollution sources, long time series of several water quality data should be analysed to get a 

picture of the stress on the ecological community. Integrated river basin water quality models 

can assist in the development of the pollution abatement plans to achieve the desired water 

quality standards and objectives. The models act as a surrogate to expensive water quality 

monitoring, since they can provide water quality variables whenever there are no or few data 

available. Catchment models can be used in watershed management to quantify the pollutant 

loads to a receiving water body. Once the model has been validated for a watershed’s existing 

conditions, it can be used to predict impacts of alternative management plans to reduce 

pollutant loadings. To develop programmes of measures, modelling tools that account for all 

the important pollution sources are needed. In particular, the modelling tools must be able to 

quantify human impacts on river water ecology at river basin scale. Development of such 

tools is therefore an important issue in the European research programmes. 

However, the results of modelling studies require careful evaluation and a profound 

uncertainty analysis is necessary. It is not only satisfactory to perform an uncertainty analysis 

and present the uncertainty bounds on the model results but extra attention should go also to 

efforts to minimise the uncertainty on model outcomes. 

10.2. Calculation and reduction of output uncertainty 

 

The modelling process can be seen as a connection of activities and products ( figure VI.1). 
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1. Model study plan

2. Data collection

3. Model set up

4. Calibration and

validation

5. Simulation and

evaluation

1. Model study plan

2. Data collection

3. Model set up

4. Calibration and

validation

5. Simulation and

evaluation

 

 

Figure VI.1: The modelling process (adapted from refsgaard et al (2004)) 

Every step has its own specific procedures in which different techniques and expertise are 

needed. During all these steps errors can be made which will accumulate into ever larger 

uncertainty bounds around the model results. The errors comprise of (Schnoor, 1996): 

• uncertainty of the values of the parameters that appear in the identified structure of the 
dynamic model for the system behaviour; model parameter error (ε1) 

• uncertainty of the model structure, i.e. uncertainty about the relationships among the 
variables characterising the dynamic behaviour of systems and uncertainty associated 

with predictions of the future behaviour of the system; model structure error (ε2) 

• numerical errors, truncation errors, rounding errors and typographical mistakes in the 
numerical implementation (ε3) 

• boundary condition uncertainties (ε4) 
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• sampling errors (i.e. the data do not represent the required spatial and temporal 
averages) (ε5) 

• measurement errors (ε6) 

• human reliability (ε7) 

The model inputs can have errors ε4, ε5 and ε6, while calibration data only can have errors ε5 

and ε6. An error-free model should have results that equate error-free observations and 

therefore we can summarise the relationship between the actual model results and the actual 

observations by 

 

It is the goal of the modeller to achieve an error-free model by reducing the errors (ε1-ε4). 

However, the model structure errors ε2, numerical errors ε3, and the boundary condition 

errors ε4 are difficult to control by the modeller. So, the aim becomes to compensate as far as 

possible for ε2-ε4 by identification of the optimum effective parameter values. As such the 

best parameter estimates compensate for the other errors.  

This dissertation therefore aimed at minimising the output uncertainty on the model results of 

river water quality models. The focus was on the parameter uncertainty and model input 

uncertainty. Different methodologies were applied in several steps of the modelling process 

and for each part the main conclusion is given here. 

10.2.1. Model study plan 

10.2.1.1 Effect of different river water quality model concepts used for river basin management 

decisions 

The two main concepts in river water quality modelling in use today are QUAL2E and 

RWQM1. The focus in the two concepts are somewhat different. Here they were compared in 

view of their role in modelling present and future states of the river and for management 

decision-making. After such an analysis it becomes more clear what model concept to use. It 

is shown that for this case study on the Dender river, QUAL2E-based water quality models 

their model results of DO are mainly influenced by the algae processes whereas the RWQM1 

is also taking into account sedimentation and stresses processes performed separately by 

different microbial communities.  

In view of deciding on different pollution abatement scenarios, a RWQM1 model should be 

preferred over a QUAL2E-based model for evaluation of a scenario of reduced diffuse 

pollution, because it was shown that the sediment processes then become more important and 

RWQM1 simulates these.  

The sensitivity of the model results with respect to the processes is not the same for the 2 river 

water quality modelling concepts and the different models are not always able to properly 

answer the same management problem. This clearly shows that managers should be aware of 
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the possibilities and limitation of the model they use and choose a model that fits their 

problem and expectations. Also, knowing which processes will become important after 

execution of a scenario can make that during model set up extra attention is paid towards 

those processes in order to get more reliable results.  

 

10.2.1.2 Sensitivity analysis to identify ‘soft data’ for the evaluation of a river water quality model 

In ungauged basins, the modeller has no data as input or for parameter calibration. Therefore 

any information that can be found about what kind of measurements are most important or 

anything that can be known about the parameters, even if it is only based on a first visual 

inspection of the catchment, is of great value. 

With a sensitivity analysis of the sensitivity analysis it could be concluded that the model shows 

different sensitivities to the parameters in different external circumstances. A table in which external 

circumstances, here called soft data, i.e. data that are easily collected, are related to the importance of 

the parameters could be established. It is a first indicator of which parameters/processes one should 

focus on in a particular catchment characterised by the soft data. Knowing the most influential set of 

parameters is important for calibration of a model, optimal experimental design, uncertainty 

estimations and scenario analysis where other processes can become important compared to the base 

case.  

10.2.2. Data collection 

10.2.2.1 Optimal experimental design in river water quality modelling 

In literature many examples exist of the application of optimal experimental design (OED) for 

model parameter estimation. What is common in all these researches is that the experimental 

conditions that define the experiment are ‘controllable’ in the experimental set-ups studied 

(typically reactors): temperature, time, pH, measurement frequency, initial concentration,… 

In OED for a natural river system, things become more complicated as a combination of 

different factors like temperature, flow and concentration is not occurring on the desired 

moments and as such, a method has to be found which maximises the content of information 

of experimental data, without knowing the exact situations under which those measurements 

will occur. 

In this dissertation it is shown that OED methods can be used for an iterative, sequential 

design of a strategy for measuring water quality variables in a river, in view of the calibration 

of water quality models. In a first stage a relatively extensive set of measurements is needed 

to set up a model for the river. Using this initial model, the OED method enables the 

definition of efficient measurements strategies, to find better model parameter estimates and 

reduce the uncertainty in those estimates. In subsequent stages, the measurement strategy can 

be updated in an iterative way. This methodology is able to find sub-optimal sampling 

strategies with acceptable accuracy and for which also costs and practical limitations can be 

considered. 



Methodologies for reduction of output uncertainty of river water quality models 

 

229 

10.2.2.2 The evaluation of uncertainty propagation into river water quality predictions to guide 

future monitoring campaigns 

Uncertainty analysis should not only be applied to obtain an idea on the uncertainty of the 

final model results or to calculate risk. It can also give indications for reducing the 

uncertainty. Here, the results of uncertainty analysis were evaluated to guide future 

monitoring campaigns.  Parameters, diffuse and point pollution inputs were considered 

separately, providing information on the model sensitivity towards these three. It is obvious 

from the comparison between the global sensitivity analysis for the subgroups and for all most 

influencing inputs together that the parameters are most important. This shows that it is best 

to start with a good calibration of the model and then focus on obtaining more accurate input 

data. 

Too often a model is calibrated with only one comprehensive measurement campaign. This is 

mostly not the most efficient way. When, for instance, only measurements during dry periods 

are made, the model cannot be well calibrated for the diffuse pollution part that is driven by 

rainfall. So it is better to perform two separate smaller measurement campaigns with the first 

one being ‘exploring’, while the second campaign is guided by previous analysis of the model 

results. The combination of the two monitoring campaigns can assure that at least some 

measurements are performed at ‘the right moment’, making the calibration process easier and 

more reliable.  

It could be concluded that for the Dender River, measurements during dry periods can be used 

to better calibrate the model for point source pollution because the inputs of diffuse pollution 

are not important then. On the other hand, periods with rainfall and high flows are needed for 

the calibration of the model with diffuse pollution because the model output nitrate is then 

very sensitive towards the inputs related to farmer’s practices. 

When considering the influence of the uncertainty of the diffuse pollution inputs, the 

uncertainty bounds appeared sometimes to be too high to draw reliable conclusions from the 

model results. So, it showed the importance of accurate measurements and input data if the 

model results serve for decision support. 

10.2.3. Model set up 

Also in this step of the modelling process different actions can be done to assure a minimal output 

uncertainty. There is the need of profound checks of the input files, performance of test runs and 

checking mass balances. In this work, no additional research related to this step in the modelling 

process is performed.  

10.2.4. Calibration and validation 

10.2.4.1 Sensitivity analysis to define the most sensitive parameter subset for ayto)calibration of a 

river water quality model 

Due to the complexity of models, they contain too many parameters to be able to change them 

all during an automatic calibration. A sensitivity analysis was performed to reduce the number 

of parameters in an automatic calibration procedure for the river water quality model of the 

Dender river, implemented in ESWAT. In the literature a lot of methods are described for 
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performing SA. It was first of all decided to use a global SA because of the non-linearity of 

the investigated water quality model. Another main advantage is that this technique is 

conceptually simple and is part of many software packages. It is a technique that cannot be 

used if the key assumptions of the regression analysis are not met because then, the results 

will not be robust. Also in the case of correlated inputs, the problem of multicollinearity can 

affect the robustness. This is the case when two variables are highly correlated and thus 

essentially convey the same information. Before applying the regression analysis technique 

for sensitivity and uncertainty analysis on the water quality model of the Dender River, these 

aspects were checked and it could be concluded that the technique was suitable. 

The SA revealed that only around 10 parameters needed to be changed during calibration to 

obtain good fits between simulated and measured values, this for a particular aim, in this case 

to have good simulation results for the periods with DO concentrations below a critical value.  

When other criteria are considered, different parameters become important. In the validation 

was found that indeed the DO results are fitting well the measurements when the calibration 

was performed with the selected parameters for the amount of time that DO goes below a 

critical value. However, an additional calibration was needed to get good results for the nitrate 

simulations of the validation period. 

10.2.4.2 Importance of the selection of model parameter subsets 

For the complex models that are now available for river water quality modelling it becomes a 

very difficult task to calibrate all the model parameters. Parameters are correlated, some are 

not identifiable and many automatic calibration methods cannot even handle all the 

parameters at the same time. Therefore, it is common practice of modellers to fix part of the 

parameters on literature values or values that are provided together with the modelling 

software and only calibrate the model with a subset of parameters. Many modellers choose 

that subset of parameters themselves without performing a sensitivity analysis, relying on 

their expert knowledge or experience. From a questionnaire held among water quality 

modellers, some of these subsets were taken to calibrate the model with and the results were 

compared. 

It was demonstrated that calibrating with different subsets of parameters gives very different 

model predictions and can lead to different conclusions. In the case study, the Dender river, 

the consequence of a wrong calibration could be that too many measures would be taken to 

increase the DO levels during spring and autumn while in reality this would not be necessary. 

10.2.5. Model evaluation 

10.2.5.1 Cost-effectiveness of in-stream aeration to improve river water quality 

One of the strengths of water quality models is their predicting power. Without the need to 

implement measures around the river for pollution control, e.g reduction in fertiliser use on 

the surrounding fields, aeration of a river, building extra waste water treatment capacity and 

evaluate their performance once they are implemented, the influence of such measures can 

already be evaluated beforehand by performing model simulations. For the evaluation of the 
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cost-effectiveness of in-stream aeration, modelling is applied to evaluate different 

management options. The uncertainty on the results is also calculated and presented to present 

the quality of the scenario results. In literature a number of in-stream aeration techniques, 

natural as well as artificial, are described and documented. Their capability of transferring 

oxygen into the water, their power needs, their investment and maintenance costs are 

provided. Modelling of in-stream aeration is however very useful to evaluate the effect and to 

get an idea about the extent of reaeration needed to maintain a minimum dissolved oxygen 

level in a river, the accompanying aeration costs and also to see whether other measures exist 

that can avoid the need for aeration. 

In-stream aeration is found to be a very effective measure for the compliance with dissolved 

oxygen standards in rivers. It can be switched on when needed, e.g. during crucial periods of 

low oxygen, e.g. in summer. This avoids excessive energy costs.  

Comparison of different methods (fine bubble diffuser, mechanical aeration, the  

oxygenation/inversion system of Clean Flo), shows that aeration costs to obtain oxygen levels 

above 3 mg/l in the river Dender are about the same for all systems evaluated. 

Other measures to raise the oxygen levels in the Dender were compared in terms of their 

effectiveness. The fundamental option, reducing the point pollution load, following the AWP 

1999 plan, is the best option and ensures that oxygen levels are above critical levels the whole 

year. However, it is a very expensive option and it also takes a long period before it will be 

fully implemented: 16 years.  In the meantime in-stream aeration techniques can help 

overcoming critical periods.  

Uncertainty analysis on the results for the scenario ‘with aeration’ shows that it is possible for 

the dissolved oxygen content of the river to drop below 3 mg/l even when the designed 

aeration system is installed, albeit for very short periods. The uncertainty analysis also shows 

that the two options, with or without aeration are significantly different. 

10.2.5.2 Assessment of the effect of shading on river water quality for the Nete river 

Simulations were performed to evaluate the effect of planting trees along the river bank for 

shading. Uncertainty bounds accompany the results. 

In literature it is suggested that shading might influence the water quality in small to medium 

water courses by reducing the solar radiation that reaches the water surface and the 

temperature of the water. A dynamic modelling approach is performed here to estimate the 

changes in water quality induced by shading of riparian vegetation. Such approach allows 

avoiding the prohibitive costs required for extensive field measurement campaigns.  

It can be concluded that shading can effectively influence the water quality in a surface water 

body, in particular in streams that suffer from excessive algal growth during the summer 

periods. The reduction of algal growth due to a full shading scenario was estimated to be 

about 20% at the outlet of a 19.5 km long stretch of the river Nete in Belgium.  

No significant positive effects of shading on the minimum, maximum and average 

concentrations of DO, COD, phosphates, ammonium and nitrates in the water were identified 
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however.  Therefore, also the influence of shading on the exceedance of critical thresholds for 

several compounds was examined. A positive effect is seen on algal concentration. At the 

downstream section of the modelled stretch, the time of exceedance of a critical concentration 

of algal biomass was reduced to about half by complete shading of the stretch. A slightly 

negative effect of shading on the exceedance of the threshold value for DO was identified in 

the last stretch of the river and from the scenario analysis together with uncertainty analysis it 

can be inferred that shading does not significantly reduce or increase the lowest oxygen 

levels. The uncertainty concerning the difference between the scenarios contains both positive 

and negative values. However, a clear trend is here visible. In colder periods, when no algal 

growth occurs, the non-shaded scenario has higher oxygen concentrations, which become 

lower during warm periods with algal growth. In other words, in this system the algae actually 

increase the oxygen concentration because of the production of oxygen. 

11. General conclusion 

 

In this dissertation it was the overall objective to promote good modelling practices and to 

provide in a systematic way methods that help the water manager or engineer to minimise the 

uncertainty on his model results. Therefore, the methods developed in this work were chosen 

to be simple, straightforward, with easy to use software or with software that can easily be 

developed by the user. The methods and tools were applied on real case studies, either the 

river Dender or the river Nete, both in Belgium. It was found that by applying different 

methodologies on the models, uncertainty could be made smaller and a number of suggestions 

for better measurement campaigns were formulated. Measurement campaigns that aim to 

calibrate the model better for the low DO amounts in the river should preferably hold the 

spring period. When calibrating the model for the Dender river for point pollution 

measurements during dry periods are needed and for calibration of the model with diffuse 

pollution measurements during periods with rainfall and high flows are needed.  

12. Perspectives 

12.1. The ideal model 

 

The ideal tool for river basin water quality management should incorporate all relevant 

process descriptions and enable the simulation of the output variables needed by decision 

makers of any kind, preferably without the need for calibration and with only small 

uncertainty bounds around the model results. These are probably too many wishes at the same 

time. However, with the available computational power and the development of better 

modelling techniques, it should be possible to come closer and closer to this ideal tool. Large 

research programs are focussing on water quality models and good modelling practices. A 

modeller can nowadays be guided through the whole process of model set-up with literature 

and spread sheets, in which all necessary steps are described. But still there are gaps in the 

available knowledge. These are mainly related to the model structure, to modelling of 
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ungauged basins, to the modelling of some subsystems like sediment flow and heavy metal 

behaviour. Further there is still the uncertainty about how the biological status of the river will 

follow the improvements of the physico-chemical water quality. Next to these knowledge 

gaps, also budgetary reasons are limiting progress in the development of river basin models. 

Monitoring is expensive and still better data, with both higher temporal and spatial resolution 

are needed for model calibration. Another important aspect in this matter is the separation 

between modellers and data gatherers. Data gathering is still a matter of collecting the 

necessary information for evaluation of the current state of the water bodies, and these data 

are often not satisfactory for use in model set-up. The communication between modellers and 

data collectors can still improve a lot as was also one of the major conclusions from the 

Harmoni-CA project (van Griensven et al., 2006).  

Related to the knowledge gaps also during the work for this dissertation some points were 

found to still require future research. 

12.1.1. Sensitivity analysis 

The usefulness of sensitivity analysis as a first step in the modelling process is still 

underestimated. Care should be taken that the set of most important parameter set is taken for 

the calibration of the model, considering the purpose of the model study. Otherwise wrong 

conclusions can be drawn. Many sensitivity analysis methods exist. Each has its own 

advantages and disadvantages, but often only one technique is used, the one the modeller is 

familiar with.  Clear guidance with decision trees should exist about the choice of a technique. 

12.1.2. Optimal experimental design 

The optimal experimental design performed in this dissertation should be extended with even 

more parameters of sampling layout to finally come to very efficient sampling layouts. 

Another extension should be the use of different evaluation criteria for the OED because other 

criteria than the maximization of the det(FIM) can be more suitable for the problem under 

consideration. Also a method of pareto optimisation allowing to optimise for more than one 

evaluation criterion at the same time, should be developed.  

It cannot be expected that the modeller should create extensions on the software he uses 

himself to detect what additional data he needs. The development of OED tools that can easily 

be linked with modelling software is necessary. Further, because the process of the OED in 

river water quality modelling is an iterative process, the ideal way of working would be the 

automatic incorporation of new information and data coming from automatic measurement 

stations into the OED tool and the automatic adaptation of the current measurement set-up 

when the OED requires other data. This was already developed in EAST by De Pauw (2005), 

however still not available to modellers. 

12.1.3. Ungauged basins 

The study in this dissertation about the use of soft data to get a first idea about parameter 

values and sensitivities of the model was only done for water quality parameters. It should be 

extended to other parts of a catchment model like the parameters of the rainfall/runoff module 
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or the diffuse pollution processes. In this research the analysis of the results of simulations 

with different subsets of parameters was done visually and manually, to prove the usefulness 

and relevance of further study. It would be better and more complete to use a cluster method. 

Such a method can make use of clustering techniques in which the parameter sets that give 

more or less identical results for one variable are clustered. An example is to cluster according 

to amount of time of DO limit exceedance. Within these sets of parameters again other 

results, for other variables, can be considered for further clustering. Within the group of 

parameter sets that give low amount of time of DO limit exceedance, this might then give 

different subsets of important parameters according to the occurrence of summer algae 

blooms or not.  Finally, information tables could be produced in which the modeller that is 

facing a model study in an ungauged basin can find basic information on the basis of soft data 

for his model set-up. Starting from there, the modeller can decide on performing a 

measurement campaign for detection or calibration of those parameters that are most crucial.  

12.1.4. Guidelines about model selection 

Although a lot of literature exists about different model concepts, still more research is 

needed to indicate under which circumstances, which model concepts, are preferable. This is 

especially in view of future changes to the system due to, for instance, changing land use, 

climate change, pollution reduction. Some parameter values can change or processes that are 

not modelled can suddenly become important and it is essential that the modeller is aware of 

this and is able to make an opinion of the possibilities but also of the limitations of the chosen 

model concept.  

12.2. Overall perspective 

 

As the uncertainty on model results becomes smaller, the predictive power will be better and 

more and more trust will be put on the use of models in water management. Automatically, 

more river basin management studies will be supported with modelling. This generates a 

positive loop, as more studies are asked, more money becomes available for research in 

modelling, extra monitoring can be done and knowledge gaps about model use will be filled. 

This in turn generates newer, better and more reliable models. For the moment, with the 

support of the European Commision, that acknowledges the need of river basin modelling for 

compliance with the Water Framework Directive, we entered this positive loop. More and 

more guidance related to modelling tools is freely available and we enter a period in which 

the modelling community is progressing fast towards making models a standard, irreplaceable 

tool in river basin management. It is a too positive idea thinking that model results will be 100 

% reliable. Therefore uncertainty calculations have to be given with every model result that 

serves for predictions and for scenario evaluation so that the decision process can take into 

account uncertainties and risk. More and more there is awareness about this and uncertainty 

analysis will become less a “thing” that should be avoided but a standard procedure 

accompanying every model study. 
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APPENDIX A: QUESTIONNAIRRE 
 

Selection of parameters to be estimated during the calibration of river 

water quality models  
 
For the prediction of river water quality, good models are needed. The calibration of a model is an 

important step in the process of ending up with a model suitable to describe the behaviour of the river 

under consideration. 

 

For the calibration of a model, the modeller typically searches for the parameter values that 

minimise the difference between the measured and the predicted values (the objective 

function). This is not straightforward as most of the time the model has a large amount of 

parameters, some parameters can be correlated and some parameters can even be 

unidentifiable from the restricted set of available data. One can either calibrate the model by 

trial and error or one can choose to perform an automated calibration. In the latter case it is 

impossible to vary all the parameters during the optimisation and only the most sensitive or 

most important parameters are taken into account in the calibration. 

 

A lot of combinations of parameter values can be able to minimise the prediction errors. 

When the model output for one selected variable is considered in a situation different from the 

one used to calibrate the model with, the outputs made by calibrated models with different 

parameter values can be expected to be almost identical. However, perhaps a bias may be 

introduced around critical or extreme values (figure A.1).   
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             time 

 

Figure A.1: the introduction of a bias when using two “different calibrated” models 

 

It is difficult to decide what parameter set to use in the calibration in case the number of 

parameters is too large for the available data. Possibility is to first perform a sensitivity 

analysis on the model and to take the most sensitive parameters for the calibration. However, 
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in most cases the modeller starts to calibrate without first performing such a global sensitivity 

analysis. 

 

The question remains whether the models used to predict river water quality are still useful 

when one doesn’t know which calibration is best. 

 

The following questionnaire is to get an idea on which parameters are considered to be a 

logical choice by modellers that calibrate a river water quality model, which parameters are 

varied during a calibration and which are set on a fixed value based on literature or previous 

research.   

Many modellers today are now using calibrated models, both simple or very complex ones, 

and everyone is facing the same problems during calibration. It would be interesting to see 

how you are working during calibration, methods can be compared and the bias introduced by 

taking different parameter sets can be evaluated. 

 

I will use the results of this questionnaire for my Phd-research “sensitivity and uncertainty 

analysis in river water quality modelling”. First of all, the results of this questionnaire will be 

published and commented in a report (eventually a paper) which will be sent to everyone who 

filled in this questionnaire. Secondly, based on the results different selected parameter sets 

will be determined and used in the calibration of a modified QUAL2E model and a RWQM1 

model, both implemented in ESWAT. 

 

I think if everyone takes the time to fill in this questionnaire, we will all learn from it. In 

literature one finds a lot of model results and applications of a model but it is hard to find how 

one calibrated his/her model. 

 

Thanks in advance. 

 

This questionnaire takes 30 minutes to fill in the answers. Just follow the instructions on the 

questionnaire and when finished return it to the address below. If anything isn’t clear, please 

feel free to contact me or my promotors, W. Bauwens (wbauwens@vub.ac.be) and P. 

Vanrolleghem (peter.vanrolleghem@biomath.rug.ac.be).  

 

 

Veronique Vandenberghe 

Ghent University 

Faculty of Agricultural and Applied Biological Sciences 

Department Applied Mathematics, Biometrics and Process Control 

Coupure Links 653 

B-9000 Gent 

Belgium 

 

Phone: ++ 32-9-264.59.37 

Fax: ++ 32-2-264.62.20 

E-mail: veronique.vandenberghe@biomath.rug.ac.be 
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The questionnaire 
 

1. What kind of water quality model are you using now: 

 

O Streeter-Phelps (Simple or extended) 

O QUAL1 

O QUAL2E 

O RWQM1 

 

2. You performed model calibration… 

 

O many times 

O a few times 

O never 

 

3. Which procedure are you using for calibration? 

 

O trial and error, calibration for one variable 

variable: ……………………………………………………………. 

objective function:…………………………………………………. 

 

O trial and error, calibration for different variables 

variables: …………………………………………………………… 

objective function:…………………………………………………. 

 

O auto-calibration, for one variable 

variable: ……………………………………………………………. 

objective function:…………………………………………………. 

 

O auto-calibration, different variables at the same time 

variables: …………………………………………………………… 

objective function:…………………………………………………. 

 

4. When calibrating your model you take… 

  

O the whole parameter set variable 

O only a selected set of parameters variable 

 

5. Are you first performing a sensitivity analysis before calibration? 

 

O yes 

O no 

O sometimes 

 

6. If Yes on question 5, what kind of sensitivity analysis? 

 

O global sensitivity analysis 

O local sensitivity analysis 
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7. If yes on question 5, which measures are you using to evaluate the sensitivity? 

 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………… 

 

8. Are you first performing an identifiability analysis before calibration? 

 

O yes 

O no 

O sometimes 

 

9. If yes on question 8, which measures are you using to evaluate the identifiability? 

 

…………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

………………………………………………………… 

  

10. Can you indicate the importance of the following parameters in the calibration 

process? (X = of little importance, XX = important, XXX = of many importance, 

indicate only those who are used during calibration!).  

If some parameters are not used in your model, just cross them out, if some 

parameters are missing that also seem important, add them please. There is also an 

extra column to indicate the ranges of the parameters that you use. 

 

 

QUAL2E 

 
Variable description importance range units 

Aio ration of chlorophyll_a to algae biomass     

ai1 fraction of algae biomass that is nitrogen    

ai2 fraction of algae biomass that is phosphorus    

ai3 O2 production per unit algae growth    

ai4 O2 uptake per unit of algae respiration    

ai5 O2 uptake per unit of NH3 oxidation    

ai6 O2 uptake per unit of HNO2 oxidation    

µmax maximum algae growth rate    

Rhoq algae respiration rate    

Kl Michaelis-Menton half-saturation constant for light    

kN Michaelis-Menton half-saturation constant for Nitrogen    

kP Michaelis-Menton half-saturation constant for Phosphor    

Λ0 Minimum light intensity for algae bloom 
 

  

Λ1 algal light self shading coefficient    

Λ2 sediment shading coefficient    

pN Algae preference factor for ammonia    

Kdd Algae die-off rate    

RS1(:) Local algae settling rate in the reach.     

RS2(:) Benthic (sediment) source rate for dissolved phosphorus in the 
reach).  

   

RS3(:) Benthic source rate for NH4-N in the reach.    
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Variable description importance range units 

RS4(:) Rate coefficient for organic N settling in the reach.     

RS5(:) Organic phosphorus settling rate in the reach..    

RK1(:) Carbonaceous biological oxygen demand deoxygenation rate 
coefficient in the reach.  

   

RK2(:) Oxygen reaeration rate in accordance with Fickian diffusion in 
the reach. 

   

RK3(:) Rate of loss of carbonaceous biological oxygen demand due to 
settling in the reach.  

   

RK4(:) Benthic oxygen demand rate in the reach. If no value for RK4 is 
entered, the model sets RK4 = 2.0. 

   

RK5(:) Coliform die-off rate in the reach.     

RK6(:) Decay rate for arbitrary non-conservative constituent in the 
reach.  

   

BC1(:) Rate constant for biological oxidation of NH4 to NO2 in the reach.     

BC2(:) Rate constant for biological oxidation of NO2 to NO3 in the 
reach.  

   

BC3(:) Rate constant for hydrolysis of organic N to NH4 in the reach.     

BC4(:) Rate constant for mineralization of organic P to dissolved P in 
the reach.  

   

Rktemp rate constant for heat exchange 
 

  

 

RWQM1 
 
Variable description importance range units 

YH,aer Yield for aerobic heterotrophic growth    

YH,anox,NO3
 Yield for anoxic heterotrophic growth with nitrate    

YH,anox,NO2
 Yield for anoxic heterotrophic growth with nitrite    

fI,BAC 
Fraction of respired heterotrophic and autotrophic biomass that 
becomes inert 

   

YN1 
Yield for growth of 1

st
 step nitrifiers    

YN2 
Yield for growth of 2

nd
 step nitrifiers    

FI,ALG 
Fraction of particulate organic matter that becomes inert during 
death of algae 

   

YALG,death 
Yield for death of algae (set to a value that avoids consumption 
of nutrients and oxygen) 

   

YCON 
Yield for grazing (set to a value that avoids consumption of 
nutrients and oxygen) 

   

Fe 
Fraction of incorporated biomass that is excreted as faecal 
pellets 

   

fI,CON 
Fraction of particulate organic matter that becomes inert during 
death of consumers 

   

YCON,death 
Yield for death of consumers (set to a value that avoids 
consumption  
of nutrients and oxygen) 

   

YYD 
Yield for hydrolysis (set to a value that avoids consumption of  
nutrients and oxygen) 
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   Variable description importance range units 

kdeath,ALG,To Specific death rate for algae    

kdeath,CON,To Specific death rate for consumers    

kgro,ALG,To Maximum specific growth rate for algae    

kgro,CON,To Maximum specific growth rate for consumers per mass unit of 
grazed organisms  

   

kgro,H,aer,To Maximum aerobic specific growth rate of heterotrophs    

kgro,H,anox,To Maximum anoxic specific growth rate of heterotrophs    

kgro,N1,To Maximum specific growth rate of 1st stage nitrifiers    

kgro,N2,To Maximum specific growth rate of 2nd stage nitrifiers    

khyd,To Hydrolysis rate constant    

kresp,ALG,To Maximum specific respiration rate of algae    

kresp,CON,To Maximum specific respiration rate of consumers    

kresp,H,aer,To Maximum aerobic specific respiration rate of heterotrophs    

kresp,H,anox,To Maximum anoxic specific respiration rate of heteroptrophs    

kresp,N1,To Maximum specific respiration rate of 2nd stage nitrifiers    

kresp,N2,To Maximum specific respiration rate of 1st stage nitrifiers    

keq,1 Rate constant for CO2-HCO3
-
 equilibrium*    

keq,2 Rate constant for HCO3
-
-CO3

2-
 equilibrium*    

keq,w Rate constant for H2O-OH
-
 equilibrium*    

keq,N Rate constant for NH4
+
-NH3 equilibrium*    

keq,P Rate constant for H2PO4
-
-HPO4

2-
 equilibrium*    

keq,so Rate constant for calcium carbonate equilibrium (in contrast to 
the equilibria above, in this case kinetic effects due to slow 
calcite precipitation or dissolution are typical) 

   

kads Phosphate adsorption rate constant    

kdes Phosphate desorption rate constant    

KHPO4,ALG Saturation coefficient for growth of algae on phosphate    

KHPO4,H,aer Saturation coefficient for aerobic growth of heterotrophs on 
phosphate 

   

KHPO4,H,anox Saturation coefficient for anoxic growth of heterotrophs on 
phosphate 

   

KHPO4,N1 Saturation coefficient for growth of 1st stage nitrifiers on 
phosphate 

   

KHPO4,N2 Saturation coefficient for growth of 2nd stage nitrifiers on 
phosphate 

   

KN,ALG Saturation coefficient for growth of algae on nitrogen    

KNH4,ALG Saturation coefficient for growth of algae on ammonia    

KN,H,aer Saturation coefficient for aerobic growth of heterotrophs on 
nitrogen 

   

KNH4,N1 Saturation coefficient for growth of 1st stage nitrifiers on 
ammonia 

   

KI Saturation coefficient for growth of algae on light    

KNO3,H,anox Saturation coefficient for anoxic growth of heterotrophs on nitrate    

KNO2,H,anox Saturation coefficient for anoxic growth of heterotrophs on nitrite    

KNO2,N2 Saturation coefficient for growth of 2nd stage nitrifiers on nitrite    

KO2,ALG Saturation/inhibition coefficient for endogenous respiration of 
algae 

   

KO2,CON Saturation/inhibition coefficient for endogenous respiration of 
consumers 

   

KO2,H,aer Saturation/inhibition coefficient for aerobic endogenous 
respiration of heterotrophs 
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Variable description importance range units 

KO2,N1 Saturation/inhibition coefficient for aerobic endogenous 
respiration of 1st stage nitrifiers 

   

KO2,N2 Saturation/inhibition coefficient for aerobic endogenous 
respiration of 2nd stage nitrifiers 

   

KS,H,aer Saturation coefficient for aerobic growth of heterotrophs on 
dissolved organic substrate 

   

KS,H,anox Saturation coefficient for anoxic growth of heterotrophs on 
dissolved organic substrate 

   

βALG Temperature correction factor for algae growth rate    

βCON Temperature correction factor for consumer growth rate    

βH Temperature correction factor for heterotroph growth rate    

βhyd Temperature correction factor for hydrolysis    

βN1 Temperature correction factor for 1st stage nitrifier growth rate    

βN2 Temperature correction factor for 2nd stage nitrifier growth rate    

 

 

11.  Did you consider correlation between your parameters during sensitivity analysis or 

calibration? 

 

O yes 

O no 

O I will in the future 

 

 

RESULTS 
 

Qual2E:   14 answers 

RWQM1:   3 answers 

 

10 persons performed model calibration already a lot of times. Four persons did it a few 

times. The last ones use a trial and error method and if they first performed a sensitivity 

analysis they use a local sensitivity analysis. 

 

Following procedures are used for calibration: 

  

Trial and error, calibration for different variables 

� NO3, P, org C, org N, chl a with maximum likelihood method , root of mean squared 
residuals or boolean measures 

� DO, BOD, NH4, P, chl a, NO3, curve fitting 
 

 

Auto-calibration, different variables at the same time 

- DO, HNO3, NH3, BOD, aggregation of mean squared errors by transformation in 

probabilistic scale, weighted sum of squared errors 

- DO, BOD, SS, maximum likelihood method 

 

Persons who make use of both methods prefer trial and error when there are not many data 

available and with sufficient data they use an auto-calibration. 
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Most persons are first performing a sensitivity analysis before calibration. That sensitivity 

analysis is for 8 persons a global sensitivity analysis and for the others a local sensitivity. 

People who do their calibration with trial and error perform only a local sensitivity analysis.  

Some people answered that they think that the sensitivity of the parameters is known by now 

so SA becomes unnecessary. 

 

The measures used for sensitivity analysis are, the relative sensitivity coefficient, the 

normalised regression coefficient and even just the absolute change of the output due to 

changes of the input. 

 

No one performs an identifiability analysis. 

 

The following parameter sets are indicated as being important for the calibration (X = of little 

importance, XX = important, XXX= of many importance). (for the meaning of the parameters 

see appendix B) 

 

QUAL2E RWQM1 
(Rk4 , bc3, rk3 (XXX)), (µmax, bc1, rs4, rk1, 

rhoq(XX)), (ai6, Λ1(X))   

(Fe, fi,bac, k,death,alg,To, k,death,conc,To(XXX)) 

(µmax, rk1(XXX)), (rs2, rs3, rk4, bc2(XX)), 

(kl, kp, kn, Λ0, pn, kdd, (X)) 

 

(Rk2, rk4(XXX)), (rk1, bc1, bc2, bc3, 

bc1(XX)), (rs2, rs3, rs4, rs5, rk3 (X)) 

 

Reaeration coefficient, decay rates, SOD  

(µmax, rk4, Λ1, rk1(XXX)), (kdd, rk2, Λ2, 

bc1(XX)), (kp, pn(X)) 

 

 

 No one considered correlation between the parameters. 

 

5 CONCLUSIONS 
 

This survey was send around to +/-100 persons who are working in the field of river water 

modelling. The response on this survey was positive but not many useful questionnaires have 

been returned. Most people work with already calibrated models to perform their research. 

They rely on the model results as being able to represent more or less the concentration levels 

and the seasonal variation in the river. The model is not calibrated for a particular river.  

For the RWQM1-model only one person returned a completely filled in questionnaire.  The 

use of this model is relatively new in the field and therefor not many people are using it in 

practical applications yet. 

The people, who perform calibrations on the model they use, can be divided into two groups. 

The first group uses the power of computers to perform first a global sensitivity analysis and 

use the results of that analysis in an auto-calibration for different variables at the time. The 

other group still uses trial and error and performs first a local sensitivity analysis.  

The calibrations are always done for different variables and only a selected set of the 

parameters is taken variable. From the results of this survey it is clear that if people start to 

calibrate their model with only the parameters that they consider “important” or of “many 

importance”, this set of parameters is not the same for everyone.  
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No one did take the effort to indicate the range of the parameters they vary in the calibration. 

Identifiability analysis seems a tool that is not used by river water quality modellers. No one 

considers correlation between his parameters. 

 

DISCUSSION 

 

Although there are many techniques available for the calibration of river water quality 

models, those techniques are not commonly used. The reasons can be that those techniques 

are too difficult, are not described to be understandable to everyone, are time-consuming or 

are not known to river water quality modellers. The model outputs of models that are not well 

calibrated can become very unreliable. It will be necessary to evaluate the uncertainty of 

critical values of river water quality variables related to the calibration process. Such an 

evaluation can help people to decide if it is worth to put time and effort into the calibration 

process.  

 

 

 

 

 



 

 

APPENDIX B: BIOGEOCHEMICAL CONVERSION 
PROCESSES OF RWQM1 
 

In this appendix a complete description of the biogeochemical process of RWQM1 

equations is given. In order to apply the model, these biochemical process equations must 

be supplemented by transport equations, equations for substance transfer between adjacent 

river compartments and to the atmosphere, geometrical conversions between 

concentrations in the water column and surface densities of sessile organisms, etc. 

The qualitative stoichiometric matrix of the model is given in Table B1; the stoichiometric 

parameters required to make all stoichiometric coefficients unique are listed in Table B2; 

the kinetic parameters are defined in Table B3; and the formulations of the process rates are 

given in Table B4. These definitions make the model stoichiometry unique up to the 

numerical values of the parameters.  

In Table B1, the signs of all nonzero stoichiometric coefficients are given: “+” indicates a 

positive stoichiometric coefficient, “–” a negative coefficient, “?” indicates a coefficient the 

sign of which depends on the composition of the organic substances involved in the process 

and on the stoichiometric parameters, and “(+)” is the same as “?”, but in this case, the 

composition of compounds and the stoichiometric parameters should be chosen in a way 

that guarantees that this coefficient is nonnegative (because there is no limiting factor to the 

corresponding compound in the process rate). In Table B4, limiting terms in square 

brackets can be omitted if the chosen stoichiometry is such that the corresponding 

component is not consumed.  
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Table B.1: Qualitative stoichiometric matrix of the complete River Water Quality Model No. 1 
(1) (2) (3) (4) (5) (6) (7) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

j Process ↓  SS  SI  SNH4  SNH3  SNO2  SNO3  SHPO4  SO2  SCO2  SHCO3  SCO3  SH  SOH  SCa  XH  XN1  XN2  XALG  XCON  XS  XI  XP  XII

(1a)
Aerobic Growth of 

Heterotrophs with NH4
 - ?   ?  -  +   ? 1         

(1b)
Aerobic Growth of 

Heterotrophs with NO3
 -  - ?  -  +   ? 1         

(2)
Aerobic Respiration of 

Heterotrophs
  +    +  -  +   - -1       +   

(3a)
Anoxic Growth of 

Heterotrophs with NO3
 -  + - ?   +   ? 1         

(3b)
Anoxic Growth of 

Heterotrophs with NO2
 -  - ?   +   ? 1         

(4)
Anoxic Respiration of 

Heterotrophs
  +   -  +   +   - -1       +   

(5)
Growth of 1st-stage 

Nitrifiers
  -  +   -  -  -   +  1        

(6)
Aerobic Respiration of 

1st-stage Nitrifiers
  +    +  -  +   -  -1      +   

(7)
Growth of 2nd-stage 

Nitrifiers
   -  +  -  -  -   -   1       

(8)
Aerobic Respiration of 

2nd-stage Nitrifiers
  +    +  -  +   -   -1     +   

(9a) Growth of Algae with NH4  -   -  +  -   -    1      

(9b) Growth of Algae with NO3     -  -  +  -   -    1      

(10)
Aerobic Respiration of 

Algae
  +    +  -  +   -    -1    +   

(11) Death of Algae   (+)    (+)  (+)  ?   ?    -1   +  +   

(12a)
Growth of Consumers on 

XALG
  (+)    (+) -  ?   ?    - 1 +    

(12b)
Growth of Consumers on 

XS
  (+)    (+) -  ?   ?    1 -    

(12c)
Growth of Consumers on 

XH
  (+)    (+) -  ?   ? -   1    

(12d)
Growth of Consumers on 

XN1
  (+)    (+) -  ?   ?  -  1    

(12e)
Growth of Consumers on 

XN2
  (+)    (+) -  ?   ?   - 1    

(13)
Aerobic Respiration of 

Consumers
  +    + -  +   -     -1   +   

(14) Death of Consumers   (+)    (+)  (+)  ?   ?     -1  +  +   

(15) Hydrolysis  +  (+)    (+)  (+)  ?   ?      -1    

(16) Equilibrium CO2 ↔ HCO3       -1 1  +          

(17) Equilibrium HCO3 ↔ CO3 -1 1 +

(18) Equilibrium H2O ↔ H + 1 1

(19) Equilibrium NH4 ↔ NH3 -1 1 +

(20)
Equilibrium H2PO4 ↔ 
HPO4

1 +

(21) Equilibrium Ca ↔ CO3 + 1

(22) Adsorption of Phosphate     -1            1  

(23) Desorption of Phosphate     1            -1  

Component       →                  i

 



 

 

Table B.2: Stoichiometric parameters 
Symbol Description Unit 

YH,aer Yield for aerobic heterotrophic growth gXH/gSS 

YH,anox,NO3
 Yield for anoxic heterotrophic growth with nitrate gXH/gSS 

YH,anox,NO2
 Yield for anoxic heterotrophic growth with nitrite gXH/gSS 

fI,BAC 
Fraction of respired heterotrophic and autotrophic biomass that 
becomes inert 

gXI/gXH 

YN1 
Yield for growth of 1

st
 step nitrifiers gXN1/gSNH4-N 

YN2 
Yield for growth of 2

nd
 step nitrifiers gXN2/gSNO2-N 

FI,ALG 
Fraction of particulate organic matter that becomes inert during  
death of algae 

gXI/g(XS+XI) 

YALG,death 
Yield for death of algae (set to a value that avoids consumption 
of nutrients and oxygen) 

g(XS+XI)/gXALG 

YCON 
Yield for grazing (set to a value that avoids consumption of 
nutrients and oxygen) 

gXCON/gXALG 

Fe 
Fraction of incorporated biomass that is excreted as faecal 
pellets 

gXS/gXCON 

fI,CON 
Fraction of particulate organic matter that becomes inert during  
death of consumers 

gXI/g(XS+XI) 

YCON,death 
Yield for death of consumers (set to a value that avoids 
consumption  
of nutrients and oxygen) 

g(XS+XI)/gXCON 

YHYD 
Yield for hydrolysis (set to a value that avoids consumption of  
nutrients and oxygen) 

gSS/gXS 
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Table B.3:Kinetic parameters 
Symbol Description Units 

kdeath,ALG,To Specific death rate for algae T
-1
 

kdeath,CON,To Specific death rate for consumers T
-1
 

kgro,ALG,To Maximum specific growth rate for algae T
-1
 

kgro,CON,To Maximum specific growth rate for consumers per mass unit of 
grazed organisms  

L
3
M
-1
T
-1
 

kgro,H,aer,To Maximum aerobic specific growth rate of heterotrophs T
-1
 

kgro,H,anox,To Maximum anoxic specific growth rate of heterotrophs T
-1
 

kgro,N1,To Maximum specific growth rate of 1st stage nitrifiers T
-1
 

kgro,N2,To Maximum specific growth rate of 2nd stage nitrifiers T
-1
 

khyd,To Hydrolysis rate constant T
-1
 

kresp,ALG,To Maximum specific respiration rate of algae T
-1
 

kresp,CON,To Maximum specific respiration rate of consumers T
-1
 

kresp,H,aer,To Maximum aerobic specific respiration rate of heterotrophs T
-1
 

kresp,H,anox,To Maximum anoxic specific respiration rate of heteroptrophs T
-1
 

kresp,N1,To Maximum specific respiration rate of 2nd stage nitrifiers T
-1
 

kresp,N2,To Maximum specific respiration rate of 1st stage nitrifiers T
-1
 

keq,1 Rate constant for CO2-HCO3
-
 equilibrium* T

-1
 

keq,2 Rate constant for HCO3
-
-CO3

2-
 equilibrium* T

-1
 

keq,w Rate constant for H2O-OH
-
 equilibrium* L

3
M
-1
T
-1
 

keq,N Rate constant for NH4
+
-NH3 equilibrium* T

-1
 

keq,P Rate constant for H2PO4
-
-HPO4

2-
 equilibrium* T

-1
 

keq,so Rate constant for calcium carbonate equilibrium (in contrast to 
the equilibria above, in this case kinetic effects due to slow 
calcite precipitation or dissolution are typical) 

L
3
M
-1
T
-1
 

kads Phosphate adsorption rate constant T
-1
 

kdes Phosphate desorption rate constant T
-1
 

KHPO4,ALG Saturation coefficient for growth of algae on phosphate ML
-3
 

KHPO4,H,aer Saturation coefficient for aerobic growth of heterotrophs on 
phosphate 

ML
-3
 

KHPO4,H,anox Saturation coefficient for anoxic growth of heterotrophs on 
phosphate 

ML
-3
 

KHPO4,N1 Saturation coefficient for growth of 1st stage nitrifiers on 
phosphate 

ML
-3
 

KHPO4,N2 Saturation coefficient for growth of 2nd stage nitrifiers on 
phosphate 

ML
-3
 

KN,ALG Saturation coefficient for growth of algae on nitrogen ML
-3
 

KNH4,ALG Saturation coefficient for growth of algae on ammonia ML
-3
 

KN,H,aer Saturation coefficient for aerobic growth of heterotrophs on 
nitrogen 

ML
-3
 

KNH4,N1 Saturation coefficient for growth of 1st stage nitrifiers on 
ammonia 

ML
-3
 

KI Saturation coefficient for growth of algae on light EL
-2
 

KNO3,H,anox Saturation coefficient for anoxic growth of heterotrophs on nitrate ML
-3
 



 

 

KNO2,H,anox Saturation coefficient for anoxic growth of heterotrophs on nitrite ML
-3
 

KNO2,N2 Saturation coefficient for growth of 2nd stage nitrifiers on nitrite ML
-3
 

KO2,ALG Saturation/inhibition coefficient for endogenous respiration of 
algae 

ML
-3
 

KO2,CON Saturation/inhibition coefficient for endogenous respiration of 
consumers 

ML
-3
 

KO2,H,aer Saturation/inhibition coefficient for aerobic endogenous 
respiration of heterotrophs 

ML
-3
 

KO2,N1 Saturation/inhibition coefficient for aerobic endogenous 
respiration of 1st stage nitrifiers 

ML
-3
 

KO2,N2 Saturation/inhibition coefficient for aerobic endogenous 
respiration of 2nd stage nitrifiers 

ML
-3
 

KS,H,aer Saturation coefficient for aerobic growth of heterotrophs on 
dissolved organic substrate 

ML
-3
 

KS,H,anox Saturation coefficient for anoxic growth of heterotrophs on 
dissolved organic substrate 

ML
-3
 

βALG Temperature correction factor for algae growth rate ºC
-1
 

βCON Temperature correction factor for consumer growth rate ºC
-1
 

βH Temperature correction factor for heterotroph growth rate ºC
-1
 

βhyd Temperature correction factor for hydrolysis ºC
-1
 

βN1 Temperature correction factor for 1st stage nitrifier growth rate ºC
-1
 

βN2 Temperature correction factor for 2nd stage nitrifier growth rate ºC
-1
 

• *  Rate constant need not have a value realistic for the chemical processes; the 

value simply must be large enough to guarantee that the concentrations are always very 

close to their equilibrium values. 

The following processes are considered in the model (numbers correspond to rows in 

Tables B1 and B4): 

 

• (1) Aerobic Growth of Heterotrophs: Growth of heterotrophic organisms using 

dissolved organic substrate, dissolved oxygen, and nutrients. If the organic substrate 

contains enough phosphorus (αP,XH < YH,aer αP,SS), no phosphate uptake from the 
surrounding water is necessary and the limiting term with respect to phosphate can be 

neglected. If there is not enough nitrogen in the substrate (αN,XH > YH,aer αN,SS), 
ammonia is consumed by process (1a). If ammonia concentrations become very low, 

there is a switch to the nitrate uptake process (1b). The ammonia limitation term in 

process (1a) and the whole process (1b) can be omitted if there is enough nitrogen in 

the substrate (αN,XH < YH,aer αN,SS). In this case, the excess nitrogen is released as 
ammonia by process (1a). 

• (2,6,8,10,13) Aerobic Endogenous Respiration: Loss of biomass by aerobic endogenous 

respiration. 
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• (3) Anoxic Growth of Heterotrophs: Growth of heterotrophic organisms with oxygen 

gained by reducing nitrate to nitrite or nitrite to molecular nitrogen (denitrification; 

processes 3a and 3b, respectively). If αP,XH < YH,aer αP,SS, SHPO4 must be available for 
growth. In the process rate, the phosphate limitation term (square brackets in Table 3.5) 

is only present if this condition is fulfilled. This process is inhibited by the presence of 

dissolved oxygen. 

• (4) Anoxic Endogenous Respiration of Heterotrophic Organisms: Loss of heterotrophic 

biomass in the absence of dissolved oxygen by endogenous respiration with nitrate (for 

simplicity this process is formulated as a one-step reduction of nitrate to molecular 

nitrogen in contrast to anoxic growth). 

• (5) Growth of 1
st
 Stage Nitrifiers: Growth of organisms that oxidise ammonia to nitrite. 

• (7) Growth of 2
nd
 Stage Nitrifiers: Growth of organisms that oxidise nitrite to nitrate. In 

order to avoid problems in the absence of ammonia, it is assumed that the nitrogen 

source for build up of biomass is also nitrite (due to the small contribution to nitrite 

consumption this assumption is not important). 

• (9) Growth of Algae: Growth of algae by primary production. This process is divided 

into two subprocesses describing growth with ammonia (preferred) or nitrate as the 

nitrogen source. The Steele (1965) function is used to describe light limitation and light 

inhibition. 

• (11,14) Death of Algae or Consumers: Conversion of algae or consumers to slowly 

degradable and inert organic matter by death, lysis, etc. With the degree of 

simplification in this model, which uses a constant composition of organic substances 

for each class, death of algae and consumers is difficult to describe. This is because 

dead organic material may have a composition other than algae or consumers. This 

problem is solved with the introduction of a yield coefficient for the death process that 

is used to make mass conservation of all elements possible without requiring an uptake 

of oxygen, nitrogen, phosphorus, or carbon during the death process. The disadvantage 

of this concept is that, depending on differences in the composition of algae and 

particulate organic matter, the process may release oxygen, ammonia, phosphate, and 

carbon dioxide. If there is not strong evidence for different composition of different 

classes of organic material, this problem can be solved by using the same composition 

for algae, consumers, and dead organic substances and setting these yield coefficients 

to unity. 



 

 

• (12) Growth of Consumers: Growth of consumers by grazing on algae, on particulate 

organic matter, and on heterotrophic and autotrophic organisms (subprocesses 12a and 

12e, respectively) with production of faecal pellets in the form of slowly biodegradable 

particulate organic matter. It is assumed that organic matter is homogeneously 

distributed. Note that this assumption may be violated for sessile organisms. A simple 

way to consider this fact is discussed in the case study of the River Glatt in Chapter 5. 

The yield coefficient must be small enough to guarantee the availability of enough 

nitrogen and phosphorus in the food for building consumer biomass. A very simple 

process rate proportional to the product of food and consumer concentrations was 

chosen. In some cases limiting terms with respect to food or consumers may be 

necessary. 

• (15) Hydrolysis: Dissolution of slowly biodegradable particulate organic matter to 

dissolved organic matter catalysed by heterotrophic biomass. Similarly to the death 

processes, a yield coefficient is introduced to guarantee that no oxygen, ammonia, or 

phosphate be consumed during the hydrolysis process. If there is not strong evidence 

that the composition of particulate and dissolved organic matter is different, the same 

composition should be used and the yield coefficient set equal to unity. 

• (16-21) Chemical Equilibria: Chemical equilibria between CO2 and HCO3
–
, between 

HCO3
–
 and CO3

2-
, between H2O and  H

+
 and OH

–
, between NH4

+
 and NH3, between 

H2PO4
–
 and HPO4

2–
, and between Ca

2+
 and CO3

2–
 and CaCO3(s). 

• (22) Adsorption of Phosphate: Any type of binding of phosphate on particulate matter. 

• (23) Desorption of Phosphate: Release of phosphate previously bound on particulate 

matter. 

 

Note that all process formulations given above are based on in-situ concentrations of 

substrates and in-situ light conditions.



 

  

Table B.4: Process rates (terms in square brackets are omitted under certain circumstances, see text). 

No. Process Rate 

(1a) Aerobic Growth of Heterotrophs with 
NH4 H

H2PO4HPO4aerH,HPO4,

H2PO4HPO4

NH3NH4aerH,N,

NH3NH4

O2aerH,O2,

O2

SaerH,S,

S
Toaer,H,gro,

0e X
SSK

SS

SSK

SS

SK

S

SK

S
k

)TT(
H













++

+













++

+

++
−β  

(1b) Aerobic Growth of Heterotrophs with 
NO3 

























++

+

+++++
−β

N

H2PO4HPO4aerH,HPO4,

H2PO4HPO4

NO3aerH,N,

NO3

3NH4NHaerH,N,

aerH,N,

O2aerH,O2,

O2

SaerH,S,

S
Toaer,H,gro,

0He X
SSK

SS

SK

S

SSK

K

SK

S

SK

S
k

)TT(  

(2) Aerobic Endogenous Respiration 
of Heterotrophs H

O2aerH,O2,

O2
Toaer,H,resp,

0He X
SK

S
k

)TT(

+
−β  

(3a) Anoxic Growth of Heterotrophs with NO3 
H

H2PO4HPO4anoxH,HPO4,

H2PO4HPO4

NO3anoxH,NO3,

NO3

O2aerH,O2,

aerH,O2,

SanoxH,S,

S
Toanox,H,gro,

0He X
SSK

SS

SK

S

SK

K

SK

S
k

)TT(













++

+

+++
−β  

(3b) Anoxic Growth of Heterotrophs with NO2 
H

H2PO4HPO4anoxH,HPO4,

H2PO4HPO4

NO2anoxH,NO2,

NO2

O2aerH,O2,

aerH,O2,

SanoxH,S,

S
Toanox,H,gro,

0He X
SSK

SS

SK

S

SK

K

SK

S
k

)TT(













++

+

+++
−β  

(4) Anoxic Endogenous Respiration of 
Heterotrophs H

NO3anoxH,NO3,

NO3

O2aerH,O2,

aerH,O2,

Toanox,H,resp,
0He X

SK

S

SK

K
k

)TT(

++
−β  

(5) Growth of 1
st
-stage Nitrifiers 

N1

H2PO4HPO4N1HPO4,

H2PO4HPO4

NH3NH4N1NH4,

NH3NH4

O2N1O2,

O2

ToN1,gro,
0N1e X

SSK

SS

SSK

SS

SK

S
k

)TT(

++

+

++

+

+
−β  

(6) Aerobic Endogenous Respiration of 
1
st
-stage Nitrifiers N1

O2N1O2,

O2
ToN1,resp,

0N1e X
SK

S
k

)TT(

+
−β  

(7) Growth of 2
nd
-stage nitrifiers 

N2

H2PO4HPO4N2HPO4,

H2PO4HPO4

NO2N2NO2,

NO2

O2N2O2,

O2

ToN2,gro,
0N2e X

SSK

SS

SK

S

SK

S
k

)TT(

++

+

++
−β  

(8) Aerobic Endogenous Respiration of 
2
nd
-stage Nitrifiers N2

O2N2O2,

O2
ToN2,resp,

0N2e X
SK

S
k

)TT(

+
−β  



 

 

(9a) Growth of Algae with NH4 
ALG

IIH2PO4HPO4ALGHPO4,

H2PO4HPO4

NH3NH4ALGNH4,

NH3NH4

NO3NH3NH4ALGN,

NO3NH3NH4
ToALG,gro, 1expe 0ALG X

K

I

K

I

SSK

SS

SSK

SS

SSSK

SSS
k

)TT(









−

++

+

++

+

+++

++−β  

(9b) Growth of Algae with NO3 
ALG

IIH2PO4HPO4ALGHPO4,

H2PO4HPO4

NH3NH4ALGNH4,

ALGNH4,

NO3NH3NH4ALGN,

NO3NH3NH4
ToALG,gro, 1expe 0ALG X

K

I

K

I

SSK

SS

SSK

K

SSSK

SSS
k

)TT(









−

++

+

+++++

++−β  

(10) Aerobic Endogenous Respiration of 
Algae ALG

O2ALGO2,

O2

ToALG,resp,
0ALGe X

SK

S
k

)TT(

+
−β  

(11) Death of Algae 
ALGToALG,death,

0ALGe Xk
)TT( −β  

(12 a-e) Growth of Consumers on Xi 
,XX

SK

S
k

)TT(

CONi

O2CONO2,

O2
ToCON,gro,

0CONe
+

−β         i = ALG, S, H, N1, N2 

(13) Aerobic Endogenous Respiration 
of Consumers CON

O2CONO2,

O2

ToCON,resp,
0CONe X

SK

S
k

)TT(

+
−β  

(14) Death of Consumers 
CONToCON,death,

0CONe Xk
)TT( −β  

(15) Hydrolysis 
STohyd,

0hyde Xk
)TT( −β  

(16) Equilibrium CO2 ↔ HCO3
–
 )K/SSS(k eq,1HCO3HCO2eq,1 −  

(17) Equilibrium H
+
 ↔ OH– )K/SSS(k eq,2CO3ΗHCO3eq,2 −  

(18) Equilibrium HCO3
–
 ↔ CO3

2–
 )K/SS(k H weq,OHweq, 1−  

(19) Equilibrium NH4
+
 ↔ NH3 )K/SSS(k H Neq,NH3NH4Neq, −  

(20) Equilibrium H2PO4
–
 ↔ HPO4

2–
 )K/SSS(k Peq,HPO4HH2PO4Peq, −  

(21) Equilibrium Ca
2+
 ↔ CO3

2–
 )K/SS(k s0eq,CO3Cas0eq, 1−  

(22) Adsorption of Phosphate 
HPO4adsSk  

(23) Desorption of Phosphate 
PdesXk  



 

  

 

APPENDIX C: BIOCHEMICAL PROCESSES IN QUAL2E 
Water column processes 

 

The river column variables are expressed in mg/l, the river bed variables as g/m
2
 and the river depth H in m. 

 

Table C.1: Water column processes 
Process rate O2 C/BO

D 

org. 

N 

org.P diss. 

P 

abs. 

P 

NH3-

N 

HNO2-

N 

HNO3-

N 

algae Bed 

C/BO

D 

Bed 

Org 

N 

Bed 

Org P 

Bed 

AdsP 

Plants 

Reaeration R *(DOsat-DO) +1               

C/BOD 

degradation 
rk1*γrk1*f(DO)*C
/BOD 

-1 -1              

Algal 

growth 
if light > λ 
f(light)*f(algae)*f(

sediment)*min(fN,

fP)*µmax*γµ*alga
e 

+ai

3 

   -ai2  -

F*ai1 

 -(1-F) 

ai1 

+1      

Algal 

respiration 
rhoc*γrhoc *algae -ai4    +ai2  +F*ai

1 

 +(1-F) 

ai1 

-1      

Algal death rd*algae  +ai3 +ai1 +ai2      -1      

Hydrolysis 

org N 
bc3* γbc3*organic 
N 

  -1    +1         

Hydrolysis 

org P  
bc4*γbc4*organic 
P 

   -1 +1           

Nitrification to 

nitrite 

bc1*(1-exp(-

0.6*DO) 

*γbc1*NH3-N 

-ai5      -1 +1        

Nitrification 

to nitrate 

bc2*(1-exp(-

0.6*DO)*γbc2*HN
O2-N 

-ai6       -1 +1       

De-

nitrification 

 

if DO < 2 mg/l 

rk5*γrk5*HNO3-N 
        -1       

 

P 

adsorption/ 

desorption 

rk6*γrk6 (Pabs-eq-

Pads) 

    -1 +1          

 



 

 

Water bed exchange 
 

The river column variables are expressed in mg/l, the river bed variables as g/m
2
 and the river depth H in m. 

 

Table C.2: Water bed exchange 

Process rate O2 BOD org. 

N 

org.

P 

diss. 

P 

abs. 

P 

NH3 HNO2 HNO3 algae Bed 

C/BOD 

Bed 

Org N 

Bed 

Org 

P 

Bed 

AdsP 

Plant

s 

Algal settling rs1*γrs1*algae          -1/H +ai3 +ai1 +ai2   

C/BOD settling rk3*γrk3*C/BO
D 

 -1/H         +1     

Organic N 

settling 
rs4*γrs4*organic 
N 

  -

1/H 

        +1    

Organic P settling rs5*γrs5*organic 
P 

   -

1/H 

        +1   

Benthic diss P 

production 
rs2*γrs2      +1/H        -1   

Benthic ammonia 

production 
rs3*γrs3       +1/H     -1    

Benthic oxygen 

uptake 
rk4*γrk4*DO -

1/H 

         -1     

Sedimentation/be

d degradation 

power equation      -

AdsP/

SS 

       +H*(ad

sP/SS) 

 

Plant 

photosynthesis 
f(light)*rp1*γrp
1*plants 

+1/

H 

             +1 

Plant respiration rp2*γrp2* plants -

1/H 

             -1 

 



 

  

 The extended QUAL2E processes  
Table C.3: Extended QUAL2E processes 

Process  rate SO XS XN XP SP XADP SNH SNO2 SNO3 XA XS,S XN,S XP,S XADP,S XA,S 
Reaeration 

R *(SO,sat-SO) 

+1               

COD decay 

rk1*γrk1*f(SO)*XS 

-1 -1              

Algae growth 

if light > λ 
f(light)*f(XA)*f(sediment)*min(f(SN),f(S

P))*µmax*γµ*XA 

+ai3    -ai2  -F* 

ai1 

 -(1-F) 

ai1 

+1      

Algae respiration 

rhoc*γrhoc *XA 
-ai4    +ai2  +F*

ai1 

 +(1-

F) ai1 

-1      

Algal death 

rd*XA 

 +ai

3 

+ai1 +ai2      -1      

Hydrolysis org N 

bc3* γbc3*XN 

  -1    +1         

Hydrolysis org P  

bc4*γbc4*XP 

   -1 +1           

Nitrification to nitrite 

bc1*(1-exp(-0.6*DO) *γbc1*SNH 
-ai5      -1 +1        

Nitrification to nitrate 

bc2*(1-exp(-0.6*SO)*γbc2*SNO2 
-ai6       -1 +1       

De-nitrification 

if SO < 2 mg/l    rk5*γrk5*SNO3 
        -1       

 

P adsorption/ desorption 

rk6*γrk6 (XADP-eq-Pads) 

    -1 +1          

Algal settling 

rs1*γrs1*XA 

         -1/H +ai3 +ai1 +ai2   

Org Carbon settling 

rk3*γrk3*XS 

 -

1/H 

        +1     

Organic N settling 

rs4*γrs4*XN 

  -1/H         +1    

Organic P settling 

rs5*γrs5*XP 

   -1/H         +1   

Benthic diss P production 

rs2*γrs2 
    +1/H        -1   

Benthic ammonia production 

rs3*γrs3 
      +1/

H 

    -1    

Benthic oxygen uptake 

rk4*γrk4*SO 
-1/H          -1     

Sedimentation/bed degradation      -(XADP        +H*(X  



 

 

power equation /XI) ADP/XI) 

Plant photosynthesis 

f(light,XA,S)*f(XA,S)*rp1*γrp1*XA,S 

+1/H              +1 

Plant respiration 

rp2*γrp2* XA,S 

-1/H              -1 

 

 



 

  

 

 

APPENDIX D: EMISSION LIMITS IN EUROPE 
Table D.1: Emission limits in Europe 

   BOD COD Total Nitrogen Total Phosphorous Ammonia 

Country Legislation Category General Monthly Weekly Removal General Removal General Removal General Removal General Monthly Weekly 

   [mg/l] [mg/l] [mg/l] [%] [mg/l] [%] [mg/l] [%] [mg/l] [%] [mg/l] [mg/l] [mg/l] 

2 000 – 
10 000 PE 

25   70 – 90 125 75        

10 000 – 100 
000 PE 

25   70 – 90 125 75 15 70 – 80 2 80    general 
EU UWWTD 

91/271/EEC 

> 100 000 
PE 

25   70 – 90 125 75 10 70 – 80 1 80    

Size 
Category 1 Less than 
60 kg/d BOD5 

40    150         

Size 
Category 2 60 to 300 
kg/d BOD5 

25    110         

Size 
Category 3 300 to 
600 kg/d BOD5 

20    90      10   

Size 
Category 4 600 to 
6,000 kg/d BOD5 

20    90  18  2  10   

Germany 

wastewater 
Ordinance June 2004 
(Federal Law Gazette I p. 
1106) 

Size 
Category 5 larger 
than 6,000 kg/d 
BOD5 

15    75  10  1  10   

 


