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Résumé

La prise de conscience croissante de I'épuisement des ressources naturelles, la demande
croissante de nutriments et d’énergie pour la production alimentaire et les normes de plus en
plus strictes de décharge des nutriments et de fertilisation, ont donné lieu a une attention
accrue pour la récupération des nutriments a partir des déchets municipaux et agricoles. Cette
thése de doctorat vise a stimuler la transition vers une bio-économie en fournissant des
(moyens a développer des) stratégies durables pour la récupération des nutriments a partir des
déchets organiques aprés la production de bio-énergie par la digestion anaérobie. Une attention
particuliere est accordée a la valorisation des produits récupérés comme substituts
renouvelables aux engrais chimiques et/ou comme engrais organo-minéraux durables dans
I'agriculture. Trois phases de recherche complémentaires ont été exécutées: 1) l'inventaire des
technologies et la classification des produits, 2) I'évaluation de la valeur des produits, 3) la
modélisation et I'optimisation des procédés.

Dans la premiere phase, une revue systématique des technologies et une classification des
produits ont été réalisées. Dans la seconde phase, la caractérisation des produits et des
analyses de bilan de masse dans des stations de récupération des ressources de I'eau et des
déchets (StaRRED) a grande échelle ont été exécutées. Une évaluation économique et
écologique de différents scénarios de bio-fertilisation a été menée et les scénarios les plus
durables ont été sélectionnés pour une évaluation agronomique réalisée ultérieurement sur le
terrain et & I'échelle de la serre. Dans la troisiéme phase, une librairie générique de modéles
pour la récupération des nutriments a été élaborée visant a modéliser la quantité et la qualité
d'engrais. Une meilleure compréhension de la performance et des interactions des processus
unitaires a été obtenue par des analyses de sensibilité globale. Les modeles ont été utilisés
avec succés comme un outil pour la configuration et I'optimisation des chaines de traitement.
Sur la base de toutes les connaissances acquises, une feuille de route générique pour la mise
en place des stratégies de récupération des nutriments en fonction des marchés et des
Iégislations des engrais, et de la caractérisation des déchets a été développée.

En tant que telle, la présente thése développe les concepts de fermeture maximale des cycles
des nutriments dans une approche du berceau-au-berceau. Le travail apporte des preuves
importantes de l'impact positif des produits récupérés sur I'économie, I'agronomie et I'écologie
de la production végétale intensive. En outre, cette these offre des informations et des outils
fondamentaux pour faciliter la mise en ceuvre et l'optimisation des stratégies durables de
récupération des nutriments. Ces résultats ouvrent de nouvelles possibilités pour une
croissance économique durable axée sur les ressources biologiques et créent ainsi une
situation gagnant-gagnant pour l'environnement, la société et I'économie en Belgique, au
Canada, et au-dela.






Summary

The increasing awareness of natural resource depletion, the increasing demand of nutrients and
energy for food production, and the more and more stringent nutrient discharge and fertilization
levels, have resulted in an increased attention for nutrient recovery from municipal and
agricultural wastes. This PhD dissertation aims at stimulating the transition to a bio-based
economy by providing (tools to develop) sustainable strategies for nutrient recovery from
organic wastes following bio-energy production through anaerobic digestion (= bio-digestion
waste). Particular attention is paid to the valorization of the recovered products as renewable
substitutes for chemical fertilizers and/or as sustainable organo-mineral fertilizers in agriculture.
Three complementary research phases were conducted: 1) technology inventory and product
classification, 2) product value evaluation, 3) process modelling and optimization.

In the first phase, a systematic technology review and product classification was performed. In
phase 2, product characterizations and mass balance analyses at full-scale waste(water)
resource recovery facilities (WRRFs) were executed. An economic and ecological evaluation of
different bio-based fertilization scenarios was conducted and the most sustainable scenarios
were selected for subsequent agronomic evaluation at field and greenhouse scale. In phase 3,
a generic nutrient recovery model library was developed aiming at fertilizer quantity and quality
as model outputs. Increased insights in unit process performance and interactions were
obtained through global sensitivity analyses. The models were successfully used as a tool for
treatment train configuration and optimization. Based on all acquired knowledge, a generic
roadmap for setting up nutrient recovery strategies as function of fertilizer markets, legislations,
and waste characterization was established.

As such, the present dissertation further develops the concepts of maximally closing nutrient
cycles in a cradle-to-cradle approach. The work reveals important evidence of the positive
impact of recovered products on the economy, agronomy, and ecology of intensive plant
production. Moreover, it provides the fundamental information and tools to facilitate the
implementation and optimization of sustainable nutrient recovery strategies. All of this may open
up new opportunities for sustainable and more bio-based economic growth and thus create a
win-win situation for the environment, the society, and the economy in Belgium, Canada, and

beyond.






Samenvatting

Het toenemende bewustzijn omtrent de uitputting van natuurlijke hulpbronnen, de groeiende
vraag naar nutriénten en energie voor de voedselproductie en de steeds strengere lozings- en
bemestingsnormen voor nutriénten, hebben geresulteerd in een verhoogde aandacht voor
nutriéntrecuperatie uit gemeentelijk en landbouwafval. Dit proefschrift beoogt de overgang naar
een bio-gebaseerde economie te stimuleren door het verstrekken van (instrumenten voor de
ontwikkeling van) duurzame strategieén voor nutriéntrecuperatie uit organisch afval na bio-
energie productie via anaerobe vergisting. Bijzondere aandacht wordt besteed aan de
valorisatie van de gerecupereerde producten als hernieuwbare kunstmestvervangers en/of als
duurzame organo-minerale meststoffen in de landbouw. Drie complementaire onderzoeksfasen
werden uitgevoerd: 1) technologie-inventarisatie en product-classificatie, 2) evaluatie van de
productwaarde, 3) modellering en procesoptimalisatie.

In de eerste fase werd een systematisch technologisch overzicht gemaakt en werd een product-
classificatie opgesteld. In fase 2 werden de producten gekarakteriseerd en werden
massabalansen in afval(water)grondstofrecuperatie-installaties (AGRI's) op volle schaal
berekend. Een economische en ecologische evaluatie van verschillende bio-gebaseerde
bemestingsscenario’s werd verricht en de meest duurzame scenario's werden geselecteerd
voor daarop volgende agronomische evaluatie op het veld en in de serre. In fase 3 werd een
generieke modellenbank voor nutriéntrecuperatie ontwikkeld, gericht op het modelleren van
meststof-kwantiteit en -kwaliteit. Beter inzicht in de prestaties van de eenheidsprocessen en
interacties werd verkregen via globale gevoeligheidsanalyses. De modellen werden met succes
gebruikt als instrument voor configuratie en optimalisatie van de behandelingstrein. Op basis
van alle verworven kennis werd een generiek stappenplan ontwikkeld voor het opstellen van
nutriéntrecuperatie strategieén als functie van meststofmarkten, wetgevingen en de

karakterisering van de afvalstroom.

Als zodanig ontwikkelt dit proefschrift verder de concepten van het maximaal sluiten van
nutriéntenkringlopen in een cradle-to-cradle benadering. Het werk onthult significant bewijs van
de positieve impact van gerecupereerde producten op de economie, agronomie en ecologie van
de intensieve gewasproductie. Bovendien biedt het de fundamentele informatie en instrumenten
om de implementatie en optimalisatie van duurzame strategieén voor nutriéntrecuperatie te
bevorderen. Dit alles kan leiden tot nieuwe kansen voor een duurzame en meer bio-gebaseerde
economische groei en kan dus een win-win situatie creéren voor het milieu, de maatschappij en

de economie in Belgié, Canada en daarbuiten.
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Collision efficiency factor

Specific area of surface per gram of seed material before the
seed crystals start to grow in the crystallizing solution

Carbon content of component i

Degree Celcius

Average gas bubble diameter

Liquid phase diffusion coefficient

Gas phase diffusion coefficient

Particle diameter

German degrees of hardness

Turbulence constant

Yield (catabolism only) of product on substrate

Fraction of non-settleable precipitates

Fraction of non-settleable solids

Root mean square velocity gradient

Temperature dependent Henry coefficient of component i
Discount rate

Hydrogen inhibition for substrate degradation

Hydrogen sulfide inhibition for substrate degradation
Inhibition of biomass growth due to lack of inorganic nitrogen
pH inhibition of acetogens and acidogens

pH inhibition of component i

Aggregation constant

Acid dissociation constant

Floc break-up constant

Temperature dependent nucleation rate coefficient

First order decay rate for biomass death of component i

Complex particulate first order disintegration rate of
component i
Temperature dependent dissolution rate coefficient

Individual gaseous mass transfer coefficient of component i
Overall gaseous mass transfer coefficient of component i
Temperature dependent growth rate coefficient

First order hydrolysis rate of component i

lon pairing equilibrium constant

Individual liquid mass transfer coefficient of component i
Overall liquid mass transfer coefficient of component i
Overall liquid-gas mass transfer coefficient of component i
Specific Monod maximum uptake rate of component i
Solubility product

Monod half saturation constant of component i
Temperature dependent liquid-solid transfer coefficient
Water dissociation constant

Unit

[ML2T"]
[LT]
[LT]

[ML2T]

[T~]
[LT]
[T~]
[LT]
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Mw
[M]
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N
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ng
np
Ng
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Qig
Qprec
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Description

Potassium content of component i
Length (dimension)

Total mass / moles of fertilizer

Mass of seed material in the reactor
Molecular weight

Mass / Moles (dimension)
Liquid-solid transfer reaction order
Total number of periods

Avogadro constant (6.022E23 mol')
Reaction order for nucleation
Reaction order for dissolution
Reaction order for growth

Number of particles

Nitrogen content of component i
Partial pressure of component i in the gas phase
Phosphorus content of component i
Gas flow rate

In- and outgoing flow rates

Liquid flow rate

Precipitate extraction rate (for NRM-Prec)
Recycle flow rate (for NRM-Scrub)
Regression coefficient

Universal gas law constant (0.082)
Net cash flow at time t

Saturation ratio

In- and outgoing activities of component i
Sulfur content of component i

Time

Temperature

Time (dimension)

Average rise velocity of gas bubbles

= v* + v~ = sum of the number of positive and negative species

= stoichiometric liquid-solid transfer coefficient

Total fertilizer volume
Head space volume / gas volume

Stoichiometric coefficient for component i on process j

Liquid volume

Biomass substrate yield

Density of the flow

Net rate of floc (agglomerate) appearance
Specific kinetic rate for process j

Mean residence time of gas bubble in the reactor
Volume fraction
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Foreword

This dissertation consists of three complementary phases: 1) technology inventory and product
classification, 2) product value evaluation, 3) process modelling and optimization. The first two
phases were conducted at Ghent University (Belgium, PhD supervisors: Prof. F.M.G. Tack and
Prof. E. Meers) during May 2011 - April 2013, whereas the third phase was conducted at
Université Laval (model EAU, supervisor: Prof. P.A. Vanrolleghem) during May 2013 - April 2015
in collaboration with the enterprise Primodal Inc. (industrial co-supervisor: Dr. E. Belia). The first
and second phase of the PhD were financed by i) Ghent University under the appointment of
assisting academic staff, ii) the European Commission under the Interreg IVb Project Arbor
(Accelerating Renewable Energies through valorization of Biogenic Organic Raw Material), and
iii) the Environmental & Energy Technology Innovation Platform (MIP) under the project
Nutricycle. The third phase of the PhD was funded by i) the Natural Sciences and Engineering
Research Council of Canada (NSERC), ii) the Fonds de Recherche de Québec sur la Nature et
les Technologies (FRQNT), and iii) Primodal Inc. through an Industrial Innovation Scholarship
(Bourse en Milieu de Pratique, BMP Innovation doctorat), awarded to Céline Vaneeckhaute in
May 2013.

The dissertation is presented in a paper format. All papers were redrafted in order to logically fit
in the dissertation and avoid unnecessary repetition. Nevertheless, attempts were made to
provide adequate information in the introduction section of each chapter so as to make it fully
accessible as a stand-alone article. Material for illustration was also added. The following peer-
reviewed papers were included in the dissertation:

1. Chapter 2: Vaneeckhaute, C.2¢, Lebuf, V.b, Michels, E.°, Belia, E.9, Tack, F.M.G.¢,
Vanrollegem, P.A.2, Meers, E.°, revisions submitted. Nutrient recovery from bio-
digestion waste: Systematic technology review and product classification.

2. Chapter 3: Vaneeckhaute, C.2¢, Meers, E.c, Michels, E.°, Christiaens, P.e, Tack,
F.M.G.c, 2012. Fate of macronutrients in water treatment of digestate using vibrating
reversed osmosis. Water Air Soil Pollut. 223(4), 1593-1603.

3. Chapter 4: Vaneeckhaute, C.2¢, Meers, E.¢, Michels, E.¢, Buysse, J.!, Tack, F.M.G.¢,
2013b. Ecological and economic benefits of the application of bio-based mineral
fertilizers in modern agriculture. Biomass Bioenerg. 49, 239-248.

4. Chapter 5: Vaneeckhaute, C.2¢, Meers, E.¢, Ghekiere, G.9, Accoe, F.b, Tack, F.M.G.°,
2013c. Closing the nutrient cycle by using bio-digestion waste derivatives as chemical
fertilizer substitutes: A field experiment. Biomass Bioenerg. 55, 175-189.

5. Chapter 5: Vaneeckhaute, C.2¢, Ghekiere, G.9, Michels, E.¢, Vanrolleghem, P.A.2, Tack,
F.M.G.c, Meers, E.c, 2014. Assessing nutrient use efficiency and environmental
pressure of macro-nutrients in bio-based mineral fertilizers: A review of recent
advances and best practices at field scale. Adv. Agron. 128, 137-180.

6. Chapter 6: Vaneeckhaute, C.2¢, Janda, J.°, Meers, E.c, Tack, F.M.G.c, 2015a.
Efficiency of soil and fertilizer phosphorus use in time: A comparison between
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recovered struvite, FePO4-sludge, digestate, animal manure, and synthetic fertilizer, in:
Rackshit, A., Singh, H.B., Sen, A. (Eds.), Nutrient Use Efficiency: From Basics to
Advances. Springer, New Dehli, India.

7. Chapter 6: Vaneeckhaute, C.2¢, Janda, J.°, Vanrolleghem, P.A.2, Meers, E.c, Tack,
F.M.G.c, 2015b. Phosphorus use efficiency in bio-based fertilizers: A bio-availability
and fractionation study. Pedosphere, accepted.

8. Chapter 7: Vaneeckhaute, C. 3¢, Zeleke, A. ¢, Meers, E. ¢, Tack, F.M.G.°, submitted.
Comparative evaluation of pre-treatment methods to enhance phosphorus release from
digestate.

9. Chapter 8: Vaneeckhaute, C.2¢, Meers, E.c, Tack, F.M.G.¢, Belia, E.9, Vanrolleghem,
P.A.3, 2015¢c. Modelling of nutrient recovery systems: Advances and limitations, in:
Meers, E., Velthof, G. (Eds.), The Recovery and Use of Mineral Nutrients from Organic
Residues. Wiley, West Sussex, UK.

10. Chapter 9: Vaneeckhaute, C.2¢, Claeys, F.H.A.", Tack, F.M.G.c, Meers, E.c, Belia, E.9,
Vanrolleghem, P.A.2, submitted. Development, implementation and validation of a
generic nutrient recovery model (NRM) library.

11. Chapter 10: Vaneeckhaute, C.2¢, Claeys, F.H.A.h, Belia, E.9, Tack, F.M.G.¢, Meers, E.¢,
Vanrolleghem, P.A.2, submitted. Global sensitivity analysis in nutrient recovery model
(NRM) applications: Factor prioritization, treatment train configuration and optimization.

12. Chapter 11: Vaneeckhaute, C.2¢, Belia, E.9, Tack, F.M.G.¢, Meers, E.¢, Vanrolleghem,
P.A.3, in preparation. Roadmap for setting up nutrient recovery strategies.

The institutions of the co-authors are given below:

a

model EAU, Département de génie civil et de génie des eaux, Université Laval, 1065
avenue de la Médecine, Québec G1V 0A6, QC, Canada.

Flemish Coordination Center for Manure Processing, Abdijbekestraat 9, 8200 Brugge,
Belgium.

Laboratory of Analytical and Applied Ecochemistry, Faculty of Bioscience Engineering,
Ghent University, Coupure Links 653, 9000 Ghent, Belgium.

Primodal Inc., 145 Rue Aberdeen, Québec G1R 2C9, QC, Canada.

Eco-Projects, Tiengemeten 15, 8730 Beernem, Belgium.

Department of Agricultural Economics, Faculty of Bioscience Engineering, Ghent University,
Coupure Links 653, 9000 Ghent, Belgium.

Provincial Research and Advice Center for Agriculture and Horticulture (Inagro vzw),
leperseweg 87, B-8800 Beitem, Belgium.

MIKE by DHI Software for water environments, Guldensporenpark 104, 9820 Merelbeke,
Belgium.

The first author, Céline Vaneeckhaute, wrote all above-mentioned papers. All papers were

reviewed and commented by the associated co-authors. The first author developed the concept
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of each paper and also undertook all experimental work at lab, field, and greenhouse scale, all
modelling work, as well as the data processing and statistical analyses. For papers 4-5 (field-
scale assessments), Inagro vzw (Beitem, Belgium) helped in setting up the fertilization
scenarios. The firm Bocotrans (Tielt, Belgium) conducted the manure application to the field
using pc-controlled injection, while Inagro vzw provided machinery for the harvest at the field.
Both practices were performed under assistance and coordination of Céline Vaneeckhaute. For
papers 4, 6, 7, and 8 MSc thesis students (under supervision of Céline Vaneeckhaute) provided
assistance in conducting the physicochemical lab work and collecting samples at the field. For
paper 10 (model development), DHI (Merelbeke, Belgium) helped in the establishment of the
PHREEQC-Tornado software coupling.

It should be noted that next to these peer-reviewed papers, multiple reports, national papers,
conference papers, and presentations have been published. An overview of all publications is
given at the end of this dissertation.

Finally, the obtained data were used for holistic life cycle assessments (LCA) by the
Luxembourg Institute of Science and Technology (LIST) (Esch-sur-Alzette, Luxembourg), the
University of Bath (Bath, UK), and Bangor University (Gwynedd, UK). A summary of the main
findings to date is provided in Chapter 12, based on the following papers:

1. Vazquez-Rowe, l.abc, Golkowska, K.2, Lebuf, V.9, Vaneeckhaute, C.&f, Michels, E.e,
Meers, E.e, Benetto, E.2, Koster, D.2, submitted. Environmental assessment of digestate
treatment technologies using LCA methodology.

2. Vaneeckhaute, C.ef, Adams, P.9, Rodhe, L.", Thelin, G.\, Styles, D.J, Prade, Tk,
D’Hertefeldt, T.!, in preparation. Wide-scale use of recycled nutrients: Bottlenecks or
opportunities?
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CHAPTER 1:
GENERAL INTRODUCTION

Need for a sustainable resource management
(Pictures: Sutton et al., 2013)



As introduction to this dissertation, the present chapter provides the rationale of the research
(Section 1.1), the specific problem statements and research objectives (Section 1.2.1), the
overall objectives and expected impact (Section 1.2.2), and the originality of the PhD (Section
1.3). The structure of the dissertation and interrelationships between the chapters are described

in Section 1.4.

1.1 Rationale

In the transition from a fossil reserve-based to a bio-based economy, it has become a critical
challenge to maximally close nutrient cycles and migrate to a more effective and sustainable
resource management, both from an economical and an ecological perspective. Estimates of
nutrient reserves are highly uncertain, but based on population growth and future demand for
nutrients, it is expected that depletion will occur within 93 to 291 years for phosphorus (P), 235
to 510 years for potassium (K), and 20 years for zinc (Zn) (Elser and Bennett, 2011; Neset and
Cordell, 2012; Scholz and Wellmer, 2013). Geopolitical moves can, however, shift this date
forward, making nutrient scarcity an imminent threat. Moreover, the quality of the remaining
natural resources is declining, there is no substitute available, and to date these nutrients
cannot be manufactured. At the same time, the agricultural demand for bio-available mineral
fertilizers is continuously increasing, mainly due to the rising world population, the increasing
meat consumption, and the cultivation of energy crops (Godfray et al., 2010; Syers et al., 2008).
This imbalance between availability and demand will continue to considerably push up the
prices for nutrient resources in the near future. The increasing cost for fossil energy is another
important price influencing factor, as a strong positive correlation between energy prices and
fertilizer costs has been observed (Oskam et al., 2011). Next to these economic consequences,
the current use of chemical fertilizers also results in an important environmental impact. The
production and transport of these mineral fertilizers requires significant amounts of fossil energy
(Gellings and Parmenter, 2004). For example, the production of reactive ammonium (NHa)
through the extraction of unreactive atmospheric nitrogen gas (N») via the Haber Bosch process
amounts to a fossil energy consumption of 35.2-40.5 GJ ton' NHs (EFMA, 2014). The total
energy consumption is equivalent to + 2 % of world energy use (EFMA, 2004; Sutton et al.,
2013). Hence, the dependency of agriculture on fossil reserve-based mineral fertilizers
(especially N, P, and K) must be regarded as a very serious threat to future human food security
(Sutton et al., 2013; van Vuuren et al., 2010).

Despite these unfavourable prospects, a large amount of minerals is again dispersed in the
environment through processing or disposal of waste streams, often in difficult to extract, non-
bio-available form such as sewage sludge, industrial sludge, manure, household waste,
incineration ashes, etc. (Hou et al, 2012). In addition, the observed intensification of animal
production and the resulting manure excesses, combined with a limited availability of arable
land for the disposal of waste (manure, sludge, etc.) and the excessive use of chemical mineral
fertilizers, has led to surplus fertilization and nutrient accumulation in many soils worldwide.

These phenomena have caused environmental pollution. Leaching of nitrates and phosphates



or runoff to water bodies has led to eutrophication of surface waters, atmospheric emissions, as
well as soil erosion (Sutton et al., 2013). In turn, these sources of pollution have stimulated the
introduction of increasingly stringent regulations for the application of nutrients to agricultural
fields, and have led to more strict requirements for the quality of discharge/emission from
waste(water) treatment facilities (Kang et al., 2011; Ranatunga et al., 2013; WERF, 2010). A
new global effort is needed to address ‘The Nutrient Nexus’, where reduced nutrient losses and
improved nutrient use efficiency across all sectors simultaneously provide the foundation for a
greener economy to produce more food and energy while reducing environmental pollution
(Sutton et al., 2013; WERF, 2010). Indeed, nutrient cycles represent a key nexus point
between global economic, social, and environmental challenges (Mo and Zhang, 2013;
Sutton et al., 2013).

In the case of P, for example, a recent global scenario analysis (Fig. 1.1) indicated that meeting
the increasing long-term P demand would likely require demand management measures to
reduce business-as-usual demand by two-thirds, and the remaining third could be met through
a high recovery of P from human excreta, manure, food waste, and mining waste. However,
achieving such a high recovery and reuse scenario will undoubtedly require substantial changes
to physical infrastructure, new partnerships, and strategic policies to guide P recovery and
reuse in an integrated way (Cordell and White, 2011).
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Figure 1.1 A sustainable scenario for meeting long-term future phosphorus demand (million
ton y') through increased phosphorus use efficiency and recovery (Cordell and White, 2011).

Medium (2020) and long-term (2050) strategic environmental policy objectives are being or
have been set across the world in order to support the growth of a more innovative, resource-
efficient economy, based on the sustainable production of bio-based products (bio-energy and



bio-materials) from renewable biomass sources (Bio-Economy Network Canada, 2015;
EuropaBio, 2014; Novotny, 2013; UNEP, 2013). In the framework of these objectives, the
anaerobic (co-)digestion of sewage sludge, organic biological waste (crop residues and other
food waste), and animal manure has been evaluated as one of the most energy-efficient and
environmentally friendly technologies for bio-energy production, organic biodegradable waste
valorization, and potential recovery of valuable nutrient resources, which are concentrated in the
remaining (mineralized) digestate (EC, 2011; Fehrenbach et al., 2008; UNEP, 2013). Despite its
great potential, further sustainable development of this technology is currently hindered,
because these digestates can often not or only sparingly be returned to agricultural land in their
crude unprocessed form. This is especially the case in high-nutrient regions, such as (parts of)
Western Europe (e.g. Flanders (Belgium), the Netherlands, Nord-Rein Westfalen (Germany),
Bretagne (France), Denmark, etc.), the Eastern and Midwestern United States of America
(USA) and Canada (e.g. Quebec, Alberta, Ontario, Pennsylvania, California, etc.), and areas of
East and South Asia, due to strict legislative constraints related to the overproduction of animal
manure in comparison to the available arable land to spread it on (see above; FAO, 2004a;
Lemmens et al., 2007; WCC, 2015). As such, for example, in Flanders (Belgium), digestates
produced as a by-product from the (co-)digestion of animal manure are currently still
categorized as ‘waste’ and ‘animal manure’ in environmental and fertilizer legislations and are
penalised accordingly. Moreover, in most countries, periods when spreading fertilizer on
agricultural land is allowed, are regulated in order to minimize nutrient leaching. Therefore
storage capacity for digestate becomes expensive due to its high volume, and transportation
problems may occur during application periods. Hence, further processing of digestate into
transportable/exportable end products, concentrated mineral fertilizers (cfr. chemical fertilizers),
and/or environmentally neutral components is required to overcome practical and potential
environmental problems, and legislative bottlenecks related to the direct application of
digestate.

So far, the technical approach for digestate processing was similar to the approach for the
treatment of manure and wastewater. This means that the focus was on little cost-effective,
energy-intensive, and non-sustainable nutrient removal practices through destruction or
emission, e.g. biological nitrification/denitrification (Lemmens et al., 2007). Hence, again clearly
a paradox exists: N is extracted as N> from the atmosphere in large quantities for the chemical
production of mineral fertilizers (see above: Haber Bosch process), whereas it is forced to
transform again into N2 during digestate, manure, and wastewater processing. The challenge
for anaerobic digestion plants now is to achieve optimal recovery and recycling of
nutrients from the digestate in a sustainable way. As such, regulatory drivers can be met
and an internal revenue source can be produced, i.e. the present ‘waste’ problem can be turned

into an economic opportunity.

Although to date many technologies for the recovery of nutrients from wastewater, manure, and
digestate have been proposed and implemented to varying degrees, there is no common
strategy to promote the use of these sources of nutrients by farmers (USEPA, 2012; WERF,



2010). As a consequence, the details of their application and potential benefits are not well
established in the farming community (Novotny, 2012; WERF, 2010). Also, the price of
recovered fertilizers is generally still higher than the price of chemical fertilizers, resulting in a
persistent uncertainty of fertilizer sales (EC, 2011; Seymour, 2009; USEPA, 2013). Moreover, a
high inconsistency in marketing prices has been observed in regions where commercialization
has been possible (Seymour, 2009). Challenges remain with regard to the recovery of nutrients
as pure marketable commodities with stable composition and added value for the agricultural
sector, such as controlled- or slow-release granular fertilizer products or concentrated solutions
with high nutrient use efficiency (Guest, 2015; Rahman et al., 2014; WERF, 2010). Much more
could also be done in terms of identifying markets for recovered nutrients and bringing down
barriers to their increased use, and implementing and optimizing the technologies that are
already available (Guest, 2015; Khunjar and Fisher, 2014; Novotny, 2013; Seymour, 2009;
USEPA, 2012; WERF, 2010).

1.2 Problem statement, objectives, and impact

1.2.1 Problem statement and specific research objectives

This PhD dissertation aims at stimulating the transition to a bio-based economy by providing
(tools to develop) sustainable strategies for nutrient (and energy) recovery from digested
biodegradable waste (hereafter referred to as bio-digestion waste or digestate) with economic
valorization of the recovered products as: i) renewable bio-based substitutes for chemical

fertilizers (= inorganic recovered products) and/or ii) sustainable bio-based organo-mineral
fertilizers (= organic products containing recycled nutrients) in agriculture. Specifically, this
research strives to optimize and foster the implementation of best available technologies for
nutrient recovery (= technology push) with focus on demand-driven agricultural valorization of
the recovered products (= market pull). The specific objectives of this multidisciplinary PhD are
pursued through three complementary research phases:

PHASE I: Technology inventory and product classification

> Problem statement I.1: The choice of the best set of nutrient recovery technologies

(NRTs) depends on the characteristics of the input waste stream and has a strong
influence on the composition and properties of the resulting fertilizer end and by-
products. Understanding the fundamentals of the existing processes is thus of
paramount importance to sustainably create new high-quality fertilizers. Contemporary
knowledge on NRTs is spread over a handful of academic and industrial experts, but an
overall comprehensive overview is lacking. Moreover, a classification of recovered
products on the basis of their fertilizer properties is missing. Consequently, the use of
bio-based fertilizers is hindered, as these products are mostly classified as waste in
environmental legislation, despite the fact that some of them have similar properties as

conventional fossil reserve-based chemical fertilizers.



>

Objective I.1: To create a systematic overview of technologies for nutrient recovery
from bio-digestion waste and a classification of the resulting end products. Hereby, it is
also aimed to investigate the technical and economic state-of-the-art of the existing
technologies and those under development, and to gather available information on
product quality.

PHASE II: Product value evaluation

>

Problem statement Il.1: During anaerobic digestion and digestate processing, multiple

derivatives are produced, some of them having potential for reuse as chemical fertilizer
substitutes. In-depth research on the composition and properties of these products
compared to conventional fertilizers is scarce, and studies on the fate of nutrients in
digestate processing are lacking, though very relevant.

Obijective Il.1: To characterize the physicochemical properties of digestate and its
various (recovered) derivatives on different points in time and for different full-scale
installations in order to conduct complete mass balance analyses. Special attention
should be given to general conditions, electrical conductivity and pH, macronutrients
and their speciation, essential and non-essential trace elements, organic carbon, and
nutrient ratios. Potential bottlenecks for reuse should be identified.

Problem statement II.2: In general, the production cost of recovered fertilizers is still

higher than the price of chemical mineral fertilizers. Even when producers reduce their
marketing cost, agricultural use will remain limited because there is no common strategy
to promote the use of these nutrient sources by farmers. Existing economic studies on
technology evaluation do not take the whole-chain-benefits of nutrient recovery into
account, although overall costs for the agricultural and waste processing sector may
significantly reduce when nutrient recovery strategies would be applied.

Obijective Il.2: To perform an economic and ecological evaluation of different bio-
based fertilization scenarios in a concept of cradle-to-cradle agricultural reuse of
valuable macro- and micronutrients, and to explore the whole-chain marketing value of

the recovered products as compared to chemical mineral fertilizers.

Problem statement 1l.3: An important issue in resource recovery is social perception

and agricultural acceptance. Currently, the agricultural use of recovered products is
marginal, because its availability is still limited to farmers and as such, the details of its
application and potential benefits are not well established in the farming community.
Long-term field experiments are required to prove and validate the fertilizer potential of
these products. This will help to better classify bio-based products in legislation
concerning environment and fertilizers, and serve as a support to stimulate their use.

Objective 1I.3: To experimentally assess the fertilizer potential and impact on soil quality
and crop production by field and greenhouse application of renewable fertilizers as
compared to traditional agricultural practices using chemical fertilizers and animal

manure (= agronomic evaluation).



PHASE IlII: Process modelling and optimization

» Problem statement lll.1: Mathematical models are becoming important tools to aid

technology development, process operation, and optimization. However, current models
used for conventional treatment plant design, process optimization, and control do not
allow the integration of nutrient recovery practices. This flaw is related to the omission of
key fundamental physicochemical components and reactions that are essential to
mathematically describe nutrient recovery. Thus, to date, no generic models for nutrient
recovery systems based on adequate chemical speciation and reaction kinetics are
available and implemented. Consequently, the potential to adequately put together a
treatment train of unit processes and their operating conditions to maximize resource
recovery and fertilizer quality is missing.

» Obijective lll.1: To develop generic integrated biological-physicochemical process
models for the best available nutrient recovery systems based on in-depth chemical
speciation and reaction kinetics, aiming at fertilizer quality and quantity as model

outputs.

» Problem statement I1l.2: Although many industrial technologies for nutrient recovery

are already proposed and used to varying degrees, challenges remain in improving their
operational performance, decreasing the economic costs, and recovering the nutrients
as marketable products with added value for the agricultural sector. Finding the
appropriate combination of technologies for a particular waste flow and the optimal
process conditions for the overall treatment train is a key concern.

> Obijective lll.2: To apply the developed models as a tool for process optimization of
single nutrient recovery systems, as well as for determining optimal combinations of unit
processes in order to maximize resource recovery (nutrients, energy) from a particular
waste stream and minimize energy and chemical requirements.

1.2.2 Overall objectives and expected impact

Overall, this research aims to support the transition from a fossil reserve-based to a bio-based
economy by facilitating sustainable resource management through nutrient and energy recovery
via anaerobic digestion of biodegradable wastes and valorization of the resulting digestate in a

cross-sectorial approach (Fig. 1.2).

At the scale of waste(water) (including manure, sludge, digestate, etc.) treatment, the aim is to
promote the transition from treatment or disposal plants to waste(water) resource recovery
facilities (WRRFs). Nowadays, significant amounts of energy are wasted through the production
(via Haber Bosch and mining; see above) and associated transport of bio-available nutrients
(e.g. NHs-N) from sources that are not bio-available (e.g. atmospheric N2) (Fig. 1.3: upper red
arrows). However, ultimately these bio-available nutrients end up in waste(water) treatment

plants (WWTPs), where they are generally transformed again into a non-bioavailable form
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using energy intensive processes, e.g. biological nitrification-denitrification (Fig. 1.3: lower red
arrows). This research targets the sustainable extraction of bio-available nutrients from
waste(water) systems and subsequent reuse as concentrated bio-based fertilizers with high
nutrient use efficiency (Fig. 1.3: green arrows). Hence, overall, at the scale of waste(water)
treatment, it is aimed to stimulate the paradigm shift from non-sustainable practices of nutrient

removal into sustainable approaches of cradle-to-cradle nutrient recovery.

As such, this PhD research clearly addresses ‘the Nutrient Nexus' and is therefore very
important to the three pillars of sustainable development: environment, society, and economics
(Fig. 1.4).
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Figure 1.4 ‘The Nutrient Nexus’: nutrient cycles represent a key nexus point between global
economic, social, and environmental challenges; improving full-chain Nutrient Use Efficiency

becomes the shared key to delivering multiple benefits (Sutton et al., 2013).

The current imbalance between nutrient availability in waste(water) treatment systems and the
demand for high-efficiency fertilizers in agricultural systems will lead to continuously increasing
costs of nutrient resources in the near future. By providing strategies for nutrient recovery,
treatment plants may reduce their environmental impact, while at the same time allowing to
market recovered nutrients for high-quality reuse and increase their profitability. On the other
hand, by converting to the use of sustainable and effective fertilizers, such as slow-release
granules or concentrated solutions with high nutrient use efficiency, the agricultural sector can
reduce its environmental impact caused by nutrients, can become less dependent of the use of
chemical fertilizers, and improve its social acceptance, while developing a sustainable and



profitable agriculture. This PhD dissertation further develops the concepts of closing nutrient
cycles (= waste to feed/food), thereby stimulating the decoupling of economic growth from the
use of natural resources, addressing food security for future generations, and mitigating the
environmental impact of traditional waste stream processing or disposal. Ultimately, this
research may help reducing the waste of finite resources and environmental pollution, while
residues may acquire economic value. This would open up new opportunities for sustainable
and more bio-based economic growth and thus create a win-win situation for both the
environment, society, and the economy in Belgium, Canada, and beyond.

1.3 Originality

The originality of the present work can be considered from different points of view (Fig. 1.5).

Technology development and | | Agronomic studies:

optimization studies: - Mostly 1 product: struvite

- Mostly by industry - Lack of in-depth studies
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conditions to maximize resource
recovery and minimize energy and
chemical requirements

Figure 1.5 Schema indicating the originality of the PhD dissertation.
Boxes refer to current available research studies.
Arrows indicate the focus of this PhD.

Current available studies focusing on nutrient recovery technology development and
optimization (mainly conducted by industry) do mostly not consider the fertilizer value and
demand of the resulting products, nor the integration of the technology in treatment trains for
nutrient recovery. On the other hand, studies concerning the evaluation of recovered fertilizer
quality (mainly on struvite, produced at lab-scale, mostly performed by universities or research
groups) do not account for the variable conditions under which these fertilizers have to be
produced. Furthermore, although mathematical models are useful tools for technology
development, process operation, and optimization, current models are incapable to adequately
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put together a treatment train of unit processes and to evaluate the operating conditions that

maximize nutrient recovery and fertilizer quality at minimal cost.

The originality of the present work resides in its focus on bridging the gap between
industrial technology development (= technology push) and demand-driven nutrient
valorization (= market pull) following a multidisciplinary cross-sectorial approach. The
research integrates a technology inventory and product classification, economic and ecological
scenario analyses, experimental data assessments (focusing on technology AND product
quality), modelling and treatment train optimization, to select and optimize whole-chain
sustainable nutrient recovery strategies. For the first time, the available knowledge on nutrient
recovery technologies (state-of-the-art, process conditions, economics, commercial processes
available, etc.) is compiled in a comprehensive overview, while the resulting end products are
classified according to their fertilizer characteristics. Moreover, new (best available) products,
such as ammonium sulfate from acidic air scrubbers, are used as sustainable substitute for
conventional chemical fertilizers (next to other digestate derivatives) in different original bio-
based fertilization scenarios at the field-scale. Also highly innovative is the development of
three-phase dynamic process models for nutrient recovery systems based on adequate
chemical speciation and their application for treatment train optimization. As such, unit process
interactions (input characteristics, chemical dosage, fertilizer production, etc.) can be
considered, and strategies that maximize sustainable benefits can be determined.

1.4 Dissertation plan and interrelationships

Multidisciplinary in nature, this dissertation consists of three complementary phases (see
Section 1.2): 1) technology inventory and product classification, 2) product value evaluation, 3)
process modelling and optimization. The first two phases were conducted at Ghent University
(Belgium, PhD supervisors: Prof. F.M.G. Tack and Prof. E. Meers), whereas the third phase
was conducted at Université Laval (Quebec, Canada, supervisor: Prof. P.A. Vanrolleghem) in
collaboration with the enterprise Primodal Inc. (Quebec, Canada, supervisor: Dr. E. Belia). The
dissertation is presented in a paper format. The principal objective of each chapter and how it
interconnects with other chapters of the dissertation is detailed in Figure 1.6 and further
described below. An overview of the peer-reviewed papers used per chapter, with indication of
the state of publication and the co-authors is provided in Table 1.1.
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Phase I.1

Technical data : Paper 1
) Technology overview and
Economic product classification
Phase II.1 Technology selection
Experimental Product characterization Paper 2

data and mass balance analysis

Phase 1.2 Product selection

L,  Paper 12-15

Economical and
ecological evaluation

Paper 3 Communication and

stimulation of scenario
implementation

Phase 11.3 Scenario selection

Agronomic evaluation Paper 4-8
(Field/pot trials + modelling)

Quality specification
Phase Il1.1 Paper 9-10
Technological model
development
Phase III.2 Tool for optimization
Paper 11

Process optimization
(units + treatment trains)

Figure 1.6 Overview of the PhD research strategy and interrelationships.
Phase I: technology inventory and product classification;
Phase II: product value evaluation; Phase lll: process modelling and optimization.
Blocks and phase numbers correspond to the objectives defined in Section 1.2.1.

Table 1.1 Overview of peer-reviewed papers per chapter, state of publication, and co-authors.
Note: other publications (national papers, scientific reports, proceedings, etc.) are given at the
end of this dissertation.

Chapter Paper State of publication Co-authors?®
2 1 Revisions submitted EB, EM, EM2, FT, PV, VL
3 2 Published (2012) EM, EM2, PC, TF
4 3 Published (2013) EM, EM2, FT, JB
5 4-5 Published (2013)/Published (2014) EM, EM2, FA, FT, GG, PV
6 6-7 Published (2015)/Accepted (2015) EM, FT, JJ, PV
7 8 Submitted AZ, EM, FT
8 9 Accepted (2015) EB, EM, FT, PV
9 10 Submitted EB, EM, FC, FT, PV
10 11 Submitted EB, EM, FC, FT, PV
11 12 In preparation EB, EM, FT, PV
. . DK, DS, EB2, EM, EM2, GT,
12 13-15 Submitted/In preparation IV, KG. LR, PA. TP, VL

2 AZ = Aga Zeleke; DK = Daniel Koster; DS = David Styles; EB = Evangelina Belia; EB2 = Enrico Benetto; EM = Erik
Meers; EM2 = Evi Michels; FA = Frederik Accoe; FC = Filip Claeys; FT = Filip Tack; GG = Greet Ghekiere; GT =
Gunar Thelin; IV = lan Vazquez-Rowe; JB = Jeroen Buysse; JJ = Joery Janda; KG = Katarzyna Golkowska; LR = Lena
Rodhe; PA = Paul Adams; PC = Patrick Christiaens; PV = Peter Vanrolleghem; TD = Tina D’hertefeldt; TP = Thomas
Prade; VL = Viooltje Lebuf.
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The work begins with a systematic overview and critical comparison of available and
developing technologies for nutrient recovery from bio-digestion waste, as well as a
classification of the resulting end products in Chapter 2 (= Phase |, Paper 1; Vaneeckhaute et
al., 2013a). Note that this chapter was continuously updated and completed by inclusion of the
findings obtained throughout this PhD research.

Chapters 3 to 7 cover the experimental content of the dissertation aiming at product value
evaluation (= Phase Il). In Chapter 3, the fate of macronutrients in digestate processing is
investigated through detailed physicochemical and mass balance analyses of a full-scale
recovery facility (Paper 2; Vaneeckhaute et al., 2012). Based on further in-depth product
characterizations, an economic and ecological evaluation of different agricultural reuse
scenarios is presented in Chapter 4 (Paper 3; Vaneeckhaute et al., 2013b). The most
interesting scenarios are selected for field-scale implementation. The fertilizer potential and the
impact on soil and crop production of these bio-based fertilization scenarios as substitutes for
conventional practices, using animal manure and chemical fertilizers, in agriculture is then
explored by means of field and greenhouse experiments in Chapters 5-6 (Papers 4-7;
Vaneeckhaute et al., 2013c, 2014, 2015a, 2015b). Chapter 5 provides the proof-of-concept of
closing nutrient cycles in a cradle-to-cradle approach by means of two-year field-trial results,
using high-level performance indicators for measuring farming’s pressure on the environment
and how that pressure is changing over time. Recommendations for good management
practices for the implementation of bio-based fertilization scenarios are also provided.

It should be noted that, in line with (European) legislative constraints, Chapters 4 and 5 mainly
focus on the (simultaneous) replacement of conventional fertilization, i.e. animal manure
additionally supplied with chemical N and K fertilizers, by bio-based alternative scenarios.
Nevertheless, in light of P depletion and the increasingly strict regulations for P fertilizer
application to agricultural soils (especially in P saturated regions), the effective use of (fixed) soil
P and the recovery of products with high P use efficiency evidently also deserves increased
attention. The field-scale assessment above revealed interesting observations in terms of soil P
extraction when applying bio-based products. In order to confirm and further study these
findings, a detailed greenhouse experiment evaluating the P release and use efficiency of
various bio-based P fertilizers as compared to their fossil reserve-based counterparts is
elaborated in Chapter 6.

Given the beneficial agronomic value of struvite as concentrated P fertilizer in Chapter 6, a brief
lab-scale experiment is presented in Chapter 7 (Paper 8) showing the potential of various pre-
treatments to improve the release of P in the liquid fraction of digestate during solid-liquid
separation. This is especially relevant in P saturated regions to increase the local valorization of
the remaining (P-poor) organic thick fraction, meanwhile increasing the struvite (or Ca/Mg-P
precipitate or concentrated P-solution) recovery potential from the liquid fraction and its purity.
Indeed, the current potential for struvite production is often limited as traditional digestate
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processing practices mostly involve the (non-sustainable) elimination of P and organic carbon
from the local agricultural cycle through export of the separated thick fraction.

Chapters 8 to 10 cover the modelling content of the dissertation (= Phase lll). Indeed, although
the above chapters provide evidence of the agronomic, economic, and ecological value of bio-
based products, a prerequisite for marketing is that they can compete with conventional fertilizer
quality specifications. The findings illustrate that mathematical models can be very valuable
tools for optimization of both process/treatment train performance and fertilizer quality.

First, important fertilizer quality specifications (based on the previous chapters), as well as
advances and limitations in modelling of nutrient recovery systems are reviewed in Chapter 8
(Paper 9; Vaneeckhaute et al., 2015c). This is necessary to clearly define and justify the specific
modelling objectives and approach. In Chapter 9 (Paper 10), the development, implementation,
and validation of a generic nutrient recovery model (NRM) library with focus on the
sustainable production of marketable fertilizers is elaborated. Chapter 10 (Paper 11) presents
global sensitivity analyses, performed to identify the factors (input characteristics, operational
conditions, and kinetic parameters) with the highest impact on the model outputs of interest.
Increased insights in the interactions between unit process inputs and outputs are reported and
recommendations for future monitoring and research are provided. Based on the results, the
valuable use of the NRM library as a tool for configuration and optimization of nutrient
recovery treatment trains that maximize resource recovery and minimize energy and chemical

requirements is demonstrated.

Finally, in order to facilitate communication and nutrient recovery scenario implementation, a
generic roadmap for setting up nutrient recovery strategies from digestate is presented in
Chapter 11 (Paper 12). This chapter should provide useful guidance for waste(water)

processing utilities aiming at implementing nutrient recovery strategies.

In addition, the data obtained in this dissertation were and are being used by various research
institutions (Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg,
University of Bath, Bath, United Kingdom, UK, and Bangor University, Gwynedd, UK) for
holistic life cycle assessments (LCA) of digestate processing and nutrient recovery
strategies. A summary of the main findings obtained to date is provided in Chapter 12 (Papers
13-15). These LCA studies provide quantitative estimations of the overall improvements in
process sustainability and can therefore greatly help in global policy making, communication,

and stimulation of recovery scenario implementation.

Finally, based on all results, observations, and experiences acquired during the PhD research,
general conclusions and recommendations towards the different stakeholders in the field of
nutrient recovery are compiled in Chapter 13.
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Abstract

Nutrient recovery from digested biodegradable waste as marketable products has become an
important task for anaerobic digestion plants to meet both regulatory drivers and market
demands, while producing an internal revenue source. As such, the present waste problem
could be turned into an economic opportunity. The aim of this chapter was to provide a
comprehensive overview and critical comparison of the available and emerging technologies for
nutrient recovery from digestate and a classification of the resulting end products according to
their fertilizer characteristics. Based on the stage of implementation, the technical performance,
as well as financial aspects, struvite precipitation/crystallization, ammonia stripping and
(subsequent) absorption using an acidic air scrubber were selected as best available
technologies to be applied at full-scale for nutrient recovery as marketable fertilizer
commodities. The resulting end products can and should be classified as renewable N/P-
precipitates and N/S-solutions, respectively, in fertilizer and environmental legislations. This
would stimulate their use and foster nutrient recovery technology implementation. A promising
technology also exists in vibratory membrane filtration for the recovery of both N/K-concentrates
and reusable water. However, the technical and economic performance of this technology for
the treatment of digestate is to be studied at pilot- and full-scale. Further research on the
physicochemical characteristics of recovered products, as well as on the agronomic,
environmental, and economic impact of substituting conventional (chemical) fertilizers by bio-
based alternatives is indispensable for effective marketing and application of these commodities
as renewable fertilizers in agriculture.

Keywords: anaerobic digestion; bio-based fertilizers; digestate; residuals valorization;
sustainable agriculture; sustainable resource management.
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Résumé

La récupération de nutriments a partir de déchets biodégradables digérés et la confection de
produits commercialisables sont devenues des taches importantes des installations de
digestion anaérobie afin de répondre aux exigences réglementaires et celles du marché, tout en
produisant une source de revenus interne. Ainsi, le probléme des déchets pourrait étre
transformé en une opportunité économique. L'objectif de ce chapitre était de fournir une vue
d'ensemble et une comparaison critique des technologies disponibles et émergentes pour la
récupération des nutriments présents dans le digestat et une classification des produits finaux
en fonction de leurs propriétés fertilisantes. Basé sur I'état de la mise en ceuvre, la performance
technique ainsi que les aspects financiers, la précipitation/cristallisation de struvite, le stripage
et I'absorption (ultérieure) d'ammoniac en utilisant un laveur a air acide ont été sélectionnés a
titre des meilleures technologies disponibles applicables a grande échelle pour la récupération
des nutriments comme produits fertilisants commercialisables. Les produits finaux résultants
peuvent et devraient étre classées comme N/P-précipités et N/S-solutions renouvelables,
respectivement, dans les législations sur les engrais et celles sur I'environnement. Cela
stimulerait leur utilisation et favoriserait la mise en ceuvre des technologies pour la récupération
des nutriments. Une technologie prometteuse supplémentaire, la filtration membranaire
vibrante, permet également la production de N/K-concentrats et d’eau réutilisable en méme
temps. Cependant, la performance technique et économique de cette technologie devrait étre
étudiée davantage a I'échelle du pilote et a grande échelle. De plus amples recherches sur les
caractéristiques physicochimiques des produits récupérés, ainsi que sur l'impact agronomique,
environnemental et économique de la substitution des engrais conventionnels (chimiques) par
des alternatives biologiques sont indispensables pour la commercialisation et I'application
efficace de ces produits comme engrais renouvelables dans le secteur agricole.

Mots-clés: agriculture durable; bio-engrais; digestat; digestion anaérobie; gestion durable des
ressources; valorisation des résidus.
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2.1 Introduction

The focus of waste management has shifted from disposal and destruction to minimization,
recovery, and recycling. Anaerobic (co-)digestion is an established, environmentally friendly,
and efficient technology to convert animal manure, sewage sludge, organic biological
food/industrial wastes, and/or energy crops into renewable energy and digestates rich in bio-
available (macro)nutrients (Batstone and Jensen, 2011; Fehrenbach et al., 2008; Mata-Alvarez
et al., 2014; Wilkinson, 2011). Despite its high potential, the further sustainable development of
this technology is currently hindered, especially in high-nutrient regions, because the digestate
cannot or only sparingly be returned to agricultural land in its crude form. This technical barrier
is mainly posed by legislative constraints (strict nitrogen (N) and phosphorus (P) fertilization
levels in the frame of environmental legislations), as well as practical (large volumes) and
economic (high transportation and storage costs) complications (Chapter 1; Lemmens et al.,
2007). Further processing is required in order to concentrate and recover the nutrients as high-
quality end products, thereby overcoming the obstacles related to the direct application of
digestate.

The selection of the nutrient recovery technology (NRT) depends on the input waste stream
characteristics and has a strong influence on the composition and properties of the resulting
fertilizer end and by-products. Understanding the fundamentals of the existing processes is thus
of paramount importance to sustainably create new high-quality fertilizers. Contemporary
knowledge on NRTs and product quality is spread over a handful of academic and industrial
experts. Reviews on the potential of particular technologies, e.g. struvite crystallization (Le
Corre et al., 2009), microalgae production (Fenton and Uallachain, 2012), membranes (Masse
et al., 2007), and on P recovery only (Desmidt et al., 2015; Morse et al., 1998), have been
published, but an overall comprehensive overview is lacking. Moreover, a shortcoming of many
research articles and reviews on nutrient recovery is the lack of attention given to the quality,
value, and demand for the final nutrient product. Because of these flaws, the use of recovered
bio-based fertilizers is currently not or not sufficiently encouraged in environmental legislations
(mostly these products are classified as waste), although some of them have similar properties
as conventional fossil reserve-based chemical fertilizers (see Chapters 3-6; Vaneeckhaute et
al., 2012, 2013a,b,c, 2014, 2015a, 2015b). In turn, these legislative bottlenecks hinder the
marketing and efficient use of bio-based products.

The aim of this chapter is to provide a systematic overview and critical comparison of
technologies for the recovery of macronutrients from digestate, as well as a classification of the
resulting end products based on their fertilizer characteristics. The focus is on the recovery of N,
P, and potassium (K), but parallel attention is given to sulfur (S), calcium (Ca), and magnesium
(Mg). First, the general composition of digestate is briefly discussed (Section 2.2). In the core of
this chapter, the technical and economic state-of-the-art of the existing technologies and those
under development is explored (Section 2.3) and available information on product quality and
value is compiled (Section 2.4.1-2.4.2). Qualitative and legislative requirements for effective
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fertilizer marketing, as well was market trends and prices are also discussed (Section 2.4.3-
2.44). To this end, an intensive discussion platform was established involving existing
international academic experts, administrations, and companies active in the field of nutrient
recovery. A detailed literature review was also conducted. Financial and technical aspects for
the most established technologies at full-scale were further investigated by requesting budget
proposals using a predefined questionnaire to key technology suppliers in the field. The survey
involved capital and operational costs, use of consumables, recovered product quality, and
potential revenues, among other technical items. As such, this review chapter can provide the
fundamental basis to classify and categorize recycled products in environmental and fertilizer
legislations, thereby stimulating their economic valorization as marketable commodities. This, in
turn, may foster the development and implementation of innovative nutrient recovery

technologies.

2.2 Digestate characteristics

Digestate is the remaining product after biogas production in an anaerobic digester. It contains
the non-digested recalcitrant organic fraction, water, micro- and macronutrients (Méller and
Miiller, 2012; Vaneeckhaute et al., 2012, 2013b,c, 2014). The composition of digestate varies
strongly according to the composition of the feedstock (biodegradable waste) that is digested.
Hence, giving a standard composition of digestate is not possible. Because of this constraint,
213 digestates from different (co-)digestion plants in Flanders (Northern part of Belgium
confronted with high nutrient pressure) were sampled and analyzed during four years (2008-
2011; Vlaco, 2012). Product quality ranges are compiled in Table 2.1. Based on the results, a
short overview of how physicochemical characteristics change during the digestion process and
how the feedstock influences the digestate composition is given below.

Table 2.1 Composition (10" percentile, median, 90t percentile; No. of observations: 213) of
unprocessed digestate (VLACO, 2012). w% = % on fresh weight.

Parameter Unit Unprocessed digestate
10-perc median 90-perc

Dry weight W% 4.98 8.70 12.0
Organic matter W% 2.8 5.3 7.6
pH(H:20) - 8.1 8.3 8.6
Electrical conductivity mS cm™’ 20 32 45
Total N W% 0.17 0.42 0.75
NHs-N gL’ 0.52 2.15 3.41
NOs-N mg L 3.10 5.85 10.0
C:N-ratio - 3.89 6.58 13.7
Total P2Os W% 0.14 0.39 0.65
Total K20 W% 0.20 0.35 0.50
Total CaO W% 0.16 0.30 0.55
Total MgO W% 0.03 0.09 0.20
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During anaerobic digestion, easily degradable organic matter is converted into methane (CHy)
and carbon dioxide (CO.), while complex organic matter, such as lignin, remains in the
digestate, thereby increasing its amount of effective organic carbon (OC). This is the OC that
remains in the soil after one year and thus contributes to the humus built-up (average: 33.7 kg
ton"! in digestate vs. 20.0 kg ton"! in pig manure on fresh weight (FW); Vlaco, 2012). As such,
the digestate contains important soil-improving qualities (WPA, 2007). The percentage of
organic dry matter can vary between 30 and 80 %, with lower values for increasing slurry
fractions and higher values for increasing fractions of kitchen and garden waste (KGW). The
average dry matter content of 100 % KGW was estimated at 21 % (WPA, 2007), whereas the
median dry matter content of the 213 studied digestates amounted to 8.7 % (Table 2.1).

Due to the degradation of 70-90 % of volatile fatty acids (VFAs) during digestion, the pH is
increased and odor emissions are significantly lower during the application of digestate on
agricultural fields as compared to pig slurry (Bond et al., 2012). The pH of slurry is on average
7.1 (WPA, 2007), whereas the median digestate pH amounts to 8.3 (Table 2.1). However, the
higher pH causes an increased risk for NHs volatilisation. This is why injecting the digestate is
strongly advised (WPA, 2007).

Next, during the digestion process, organically bound N is released as ammonium (NH4*), which
is directly available for crop uptake. The higher the share of NHs-N, the higher the efficiency of
the digestate as a N fertilizer. An input stream with a high N level is pig slurry (average: 6.78 kg
N ton' FW), in comparison to cattle slurry (3.75 kg N ton'' FW) and maize (4.00 kg N ton' FW)
(WPA, 2007). The Vlaco (2012) data showed a median total N content of 4.2 kg N ton' FW
(Table 2.1). When digesting raw pig slurry, more than 80 % of the N becomes available as
NH.+. However, for digestates produced from organic waste such as KGW, the share of NH4* is
often not higher than 44-47 %, which is even lower than the value for raw pig slurry (£ 60 %).
Digestates with a low NH4-N content are mostly originating from organic food/industrial wastes,
including KGW (WPA, 2007).

Furthermore, the total P content of the input streams is not changed during the digestion
process, but the organically bound P becomes available for the plant during digestion. Pig slurry
has a high P2Os content of roughly 5 kg ton' FW. By adding co-products to pig slurry the P2Os
content of the digestate is somewhat lowered. The 213 studied digestates showed a median
total P2Os content of 3.9 kg ton' FW (Table 2.1).

Also the total contents of K, Ca, Mg, and heavy metals are not altered during anaerobic
digestion. K, Ca, and Mg become soluble. Zinc (Zn) and copper (Cu) contents in the digestate
can become critically high, especially during the digestion of 100 % pig slurry, since the dry
matter content decreases. This can hinder the beneficial reuse of recovered products, although
both elements are essential micronutrients for healthy plant growth (Hillel, 2008).

Finally, impurities such as weed seeds and pathogens can be killed off during the digestion
process (Bond et al., 2012). The extent to which this inactivation is sufficient depends entirely
on the temperature and residence time in the digester and on the type of organism.
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2.3 Technology overview

2.3.1 Three-step framework for nutrient recovery

Before going into the details of the nutrient recovery technologies for digestate treatment, one
should be aware that anaerobic digestion itself usually constitutes an intermediate step, among
other potential technologies, in the processing treatment train. Indeed, from a technological
perspective, nutrient recovery from biodegradable waste for reuse as concentrated fertilizer
products can be represented by a three-step framework (Fig. 2.1). Note that not all recovery
systems require all three components.

Dilute waste .
) Release/ . Low nutrient
flow, manure Concentration o Extraction
stabilization effluent
or sludge

Recovered nutrients

Figure 2.1 Three-step framework for nutrient recovery as
concentrated fertilizer products.

First, a concentration step can be applied to increase the nutrient content (N — 1000 mg L' and
P — 100 mg L") of the waste stream. Established technologies for this purpose are enhanced
biological P removal (EBPR) (Lesjean et al., 2003; Pastor et al., 2008), adsorption/ion exchange
(Jorgensen and Weatherley, 2003), the use of biomass such as algae, duckweed, and purple
non-sulfur bacteria (Gonzalez-Fernandez et al, 2011; Xu and Chen, 2011), chemical
precipitation (De Haas et al., 2000; Pratt et al., 2012), and nanofiltration/reversed osmosis
(Masse et al., 2007). Next, a nutrient release/stabilization step may be used to generate a low
flow stream with high nutrient availability. Based on the digestate characteristics presented
above (Section 2.2), anaerobic digestion can be categorized as a nutrient release/stabilization
step. Other potential technologies for this purpose are aerobic digestion (Liu et al, 2010),
thermolysis (Azuara et al., 2013), sonication (Castrillon et al, 2011), microwave treatment
(Tyagi and Lo, 2013), or chemical extraction (Carrere et al., 2010).

Finally, the nutrient extraction or recovery step may take place. To date, there is no
straightforward definition of a nutrient recovery technology (NRT). In this review we consider
an NRT as a process that: 1) creates an end product with higher nutrient concentrations
than the crude digestate (= concentrated product that contains both minerals and
organics), or 2) separates the envisaged nutrients from organic compounds, with the aim
to produce an end product that is fit for use in the chemical or fertilizer industry or as a
chemical fertilizer substitute. The breakthrough of such technologies would make it possible
to reuse reactive nutrients locally and close nutrient cycles in a cross-sectorial cradle-to-cradle
approach (Chapter 1: Fig. 1.2). The existing and developing NRTSs for digestate processing are
further reviewed and discussed in the sections below. The preceding concentration and
alternative nutrient release/stabilization steps are out of scope of the present review, and will
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thus not be studied. Reference is made to Mehta et al. (2015) for a technology description of
such processes.

2.3.2 Digestate processing technologies

In the past decade, a diverse range of technologies that can be applied for digestate processing
has been developed. However, certainly not all of them can be considered as an NRT. An
overview of existing digestate processing technologies is presented in Figure 2.2. The
technologies delineated as NRT are indicated in shaded boxes. It must be noted that these
technologies could also be applied on undigested manure, sludge, and wastewater. However,
as indicated above, implementing anaerobic digestion as an intermediate step can highly
improve the overall process efficiency.

- Thermal
g 1 Evaporation drying

Solid fraction Mechanical separation Liquid fraction
(with or without
polymer addition)

v v

Composting [ NRT 3: Acid air . Evaporation
il scrubber
Thermal drying Air f Biological nitrification-
denitrification
Combustion
Pyrolysis NRT 1: P crystallization
1
: Air + NH, NRT 2: NH, stripping
v NRT 4: Membrane filtration
NRT 7: P extraction - Reversed osmosis

- Forward osmosis
- Electrodialysis
- Transmembrane-
chemosorption

NRT 5: NH; sorption

NRT 6: Biomass production
and harvest

Figure 2.2 Schematic overview of digestate processing technologies.
Shaded boxes: nutrient recovery technology (NRT).

In general, digestate processing starts with a mechanical separation into a liquid fraction and
solid or thick fraction (Hjorth et al., 2010). Most of the N and K end up in the liquid fraction, while
most of the recalcitrant organic matter, P, Ca, and Mg is recovered in the thick fraction (Chapter
3; Vaneeckhaute et al., 2012). From literature, the technologies for nutrient recovery from the
liquid fraction available or under development today are: 1) chemical crystallization (Le Corre et
al., 2009; Uludag-Demirer et al., 2005), 2) gas stripping and absorption (Bonmati and Flotats,
2003; Gustin and Marinsek-Logar, 2011; Liao et al., 1995), 3) acidic air scrubbing (Bonmati and
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Flotats, 2003; Melse and Ogink, 2005; Melse et al., 2009), 4) membrane separation (Kertesz et
al., 2010; Ledda et al., 2013; Waeger et al., 2010), 5) ammonia sorption (Guo et al., 2013; Pelin
et al., 2013; WRAP, 2012), and 6) biomass production and harvest (Gonzalez-Fernandez et al.,
2011; Xu and Shen, 2011). For the thick fraction, only P extraction from ashes produced by
combustion or pyrolysis can be considered a potential NRT (Adam et al., 2009; Schoumans et
al., 2010). However, as it is critically questioned whether incineration is a sustainable
technology, the interest is growing to maximally extract nutrients from the crude digestate,
thereby eliminating the solid-liquid separation step or producing an organic, P-poor thick
fraction. For extractive nutrient recovery to become a viable option, the process must have an
equivalent treatment efficiency as conventional treatment, the process must be cost-effective,
the process must be simple to operate and maintain, and most importantly, there must be a
market for the recovered nutrient products. The technical and economic state-of-the-art of
the above-mentioned NRTs is discussed below. Product quality and fertilizer markets are
discussed in section 2.4. All costs are expressed in euros (€) and Canadian dollar (CAD) (€ 1 =
1.415 CAD; November 2014).

2.3.3 Phosphorus precipitation and crystallization (NRT 1)

2.3.3.1 Chemical struvite recovery

Nutrient recovery through P precipitation and crystallization is a mature technology, mostly
involving the addition of Mg (MgO/MgClz) to a solution containing soluble PO4-P (ortho-P) and
ammonium, thereby increasing the pH to 8.3-10 and inducing the precipitation of struvite,
MgNH4PQO4:6H-0 (Le Corre et al., 2009). The process has been implemented at full-scale
installations for wastewater, (digested) sludge and manure treatment, as well as at pilot-scale
for the treatment of crude digestate. The most established processes commercially available
today are: i) AIRPREX, Berliner Wasserbetriebe (Germany, DE), ii) ANPHOS, Colsen (the
Netherlands, NL), ii) CAFR, NALVA (DE), iv) Ceres, Ceres Milieutechniek (Belgium, BE), v)
NuReSys, Akwadok (BE) (Desmidt et al., 2012), vi) Nutritec, Sustec (NL), vii) Pearl, Ostara
(Canada, CA), viii) Phosnix, Unitika (Japan, JP), ix) PHOSPAQ, Paques (NL) (Abma et al.,
2010), and x) PRISA, Aachen University (DE) (Montag et al., 2007). Moreover, in Gelderland
(NL) four installations are available for the production of K-struvite (KMgPO4:6H20) from calf
manure (Graeser et al., 2008). These processes have the ability to remove and recover over
80-90 % of the soluble P in the waste(water) flow, yet only 10-40 % of the NH4-N can be
captured (Le Corre et al., 2009). Crystal/pellet sizes range from 0.5 mm to 5 mm and above,
depending on the final end-use. The design involves fluidized bed reactors and continuously
stirred tank reactors.

At present, struvite recovery can be economical on side streams from wastewater treatment
with a P load of more than 20 % by weight, as it has the potential to reduce operational costs
related to energy and chemical (iron (Fe) / aluminium (Al)) consumption and nuisance struvite
formation in piping/equipment. Meanwhile, a high-quality, slow-release granular fertilizer with
agricultural reuse perspectives is produced (Latifian et al., 2012; Ryu et al., 2012; Shu et al.,
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2006; WERF, 2010). Assuming that a treatment plant can recover 1kg of struvite from
100 m3 of wastewater (Mlnch and Barr, 2001), Shu et al. (2006) estimated chemical savings for
P recovery from digester supernatants at € 0.19 (0.27 CAD) d' (compared to alum), savings
from reduced sludge handling at € 0.002 (0.003 CAD) d-', from reduced sludge disposal at €
0.023 (0.033 CAD) d', from reduced cleaning of struvite deposits at € 3.8-19.2 (5.4-27.1 CAD)
d', and savings from reduced landfiling at € 0.002 (0.003 CAD) d'. As such, the loss of
producing struvite could amount to € 0.05 (0.07 CAD) d-', while the gain for the treatment plant
can be € 0.52 (0.74 CAD) d' (Shu et al., 2006). Hence, assuming a struvite plant would cost €
1.4 (2.0 CAD) million, the payback period of a plant processing + 55,000 m?® d' of waste could
be less than five years according to this study (Shu et al., 2006).

However, operational costs and payback times are highly dependent on the input composition
(e.g. available P, Mg, and pH) as it determines the chemical (NaOH, Mg) and energy costs,
which can range between € 200-75,000 (282-106,000 CAD) y' (Jaffer et al., 2002). Dockhorn
(2009) estimated operating and maintenance costs for a plant treating 350,000 person
equivalents (PE) at € 2,800 (3,960 CAD) ton! struvite if the PO4-P concentration is 50 mg L1,
and € 520 (735 CAD) ton! if the PO4-P concentration is 800 mg L-'. Battistoni et al. (2005a,b)
estimated operating costs at € 0.19-0.28 (0.27-0.40 CAD) m? digestate. Based on budget
proposals provided by the above-mentioned suppliers in the context of the present review,
capital costs may range from € 2,300-24,500 (3,250-34,600 CAD) kg P d', while revenues
from struvite valorization in agriculture range from + € 45 (64 CAD) ton-! struvite in Belgium
(NuReSys, Waregem, BE, personal communication 2013) to + € 109-314 (154-444 CAD) ton
in Australia (Doyle and Parsons, 2002), and + € 250 (353 CAD) ton'! in Japan (Kohler, 2004).
Values of € 736 (1,041 CAD) and € 1,393 (1,970 CAD) ton' have also been reported
(Dockhorn, 2009). As such, overall profits of struvite production may range from € -7,800
(-11,030 CAD) y' (loss) to € 89,400 (126,400 CAD) y-' (gain) (Minch and Barr, 2001).

Although worldwide some utilities have installed these systems, the uptake of this technology
has not been widespread due to market, regulatory, and site-specific conditions. Also, important
technical challenges remain in the further reduction of chemical requirements, the guarantee of
a pure product, as well as the stable and controlled production of struvite. If struvite would be
recovered only from municipal wastewater treatment plants worldwide, 0.63 million tons of P (as
P2Os) could be harvested annually (Shu et al., 2006).

However, an important constraint is that in conventional digestate treatment anno 2014 (Fig.
2.2) most of the P is lost in the thick fraction after solid-liquid separation. Hence, the overall P
recovery potential from digestate as struvite is limited to the remaining soluble P in the liquid
fraction. In recent years, methods to improve the release of P in the liquid fraction, e.g.
microwave treatment and/or acid extraction, are therefore gaining increased attention (see
Chapter 7). This is especially interesting in P saturated regions so as to recover more P as
struvite from the (acidified) liquid fraction, while improving the local valorization potential of the
(P-poor) organic thick fraction.
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2.3.3.2 Electrochemical struvite recovery

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology in
Germany have patented an electrochemical process to precipitate struvite without chemical
addition and with low energy consumption (70 Wh m-) (IGB, 2012). A mobile pilot plant using
an electrolytic cell consisting of an inert cathode and a sacrificial Mg anode is currently in the
test phase. The electrolytic process splits the water molecules into hydroxide (OH-) ions and
hydrogen gas (Hz) at the cathode. Oxidation takes place at the anode: Mg?* ions are released
into the solution and react with P and N to form struvite. At lab-scale, P removal efficiencies
above 99 % were achieved. No further economic or technical information is available to date.

2.3.3.3 Bio-electrochemical struvite recovery

An energy-efficient method of concurrent Hx and struvite production was investigated at
Pennsylvania State University (USA), based on bio-electrochemically driven struvite
crystallization at the cathode of a single chamber microbial electrolysis struvite precipitation cell
(Cusick and Logan, 2012). In a microbial electrolysis cell, microorganisms convert organic and
inorganic matter into electrical current at a significantly lower potential (minimum of 0.2 V when
bacteria are used) than that needed for splitting water in electrochemical struvite precipitation
(Section 2.3.3.2). At lab-scale, P removal efficiencies ranged from 20 to 40 %, with higher
removals obtained using mesh cathodes than with flat plates. Overall energy efficiencies based
on substrate and electricity inputs were high (73t4 %) and not dependent on the applied
voltage. However, the technical and economic feasibility of scaling up this technology is
challenging. To date, neither pilot nor full-scale installations have been implemented and tested.

2.3.3.4 Calcium phosphate recovery

Next to Mg, calcium hydroxide (Ca(OH)z) can also be added to the liquid fraction in order to
increase the pH (> 10.0) and temperature (70 °C), thereby inducing P precipitation as
Cas(PO4)sOH (hydroxyapatite) or CaHPO4:2H.O (brushite). The reaction is fast (5 min), but
often preceding CO: stripping must be applied to avoid unwanted calcium carbonate (CaCOs)
precipitation. Examples of commercial calcium phosphate precipitation processes are: i)
Crystalactor, DHV Water (NL) (Eggers et al., 1991), ii) FIX-Phos, TU DA (DE), iii) Kurita, Kurita
Water Industries (JP), iv) Phostrip, Tetra Technologies inc. (USA) (Szpyrkowicz and Ziliograndi,
1995), and v) P-Roc, Kit-CMM (DE) (Berg et al., 2007). Removal efficiencies of 80-100 % P
have been achieved, but 50-60 % is more typical. Based on a market demand in the framework
of this study to the suppliers mentioned above, capital costs may range between € 2,300-2,900
kg P d'. Operational costs are mainly determined by the amount of Ca(OH). required, which
on its turn highly depends on the input waste characteristics. Finally, Quan et al. (2010)
reported on the ability to couple CaNH4PO4:4H>O precipitation and ammonia stripping in a
water sparged aerocyclone (WSA) in order to recover both P and N. To date, this path has only
been examined at lab-scale, but further research on this methodology seems interesting.
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2.3.4 Ammonia stripping and absorption (NRT 2)

Stripping of ammonia (NHs) involves the physical transfer of NHs from the aqueous phase
(waste stream) to a gas phase, mostly in a packed bed tower. The gas is then transferred to an
air scrubber (Section 2.3.5), where mass transfer and absorption of the NHz from the gas to a
liguid phase, mostly sulfuric acid (H2SOs), takes place in order to form and recover a
concentrated solution of ammonium sulfate ((NH4).SO4; AmS) as an end product (Liao et al.,
1995; USEPA, 2010). AmS is an inorganic salt, which could be reused as a marketable fertilizer
rich in direct available macronutrients, N and S, thereby providing a valuable substitute for
chemical fertilizers based on fossil resources (Chapters 4-5; Vaneeckhaute et al, 2013b,c,
2014). Alternatively, ammonium nitrate (NH4NOg) fertilizer (by addition of HNOgs; Udert et al.,
2014), a concentrated ammonia solution (by addition of liquid NHs), or other ammonia salts can
be produced, depending on local legislations and options for land application. Ammonia
stripping is developed at full-scale and sometimes implemented for wastewater treatment. The
implementation of this technology for the treatment of N-rich digestate and manure is on the

rise.

Commercially available stripping technologies for (digested) sludge and manure treatment are:
i) AMFER, Colsen (NL), ii) ANAStrip, GNS (DE), and the (untitled) stripping processes
developed by the manufacturers: iii) Anaergia (Canada, CA), iv) Branch Environmental Corp
(USA), v) Europe Environnement (France, FR), and vi) RVT Process Equipment (DE).
Theoretically, these systems may achieve NHs recovery efficiencies up to 98 %, but they are
generally operated to reach 80-90 % recovery in order to reduce the operating costs. At
present, most stripping units implemented at full-scale focus on the production of AmS fertilizer.
The AmS content in the recovered solution ranges from + 25 % AmS (ANAStrip, GNS) and 30
% AmS (Branch Environmental Corp) to 38 % AmS (Anaergia; RVT Process Equipment) and 40
% AmS (AMFER, Colsen; Europe Environnement).

Capital costs of stripping are relatively low compared to biological activated sludge (AS)
systems for nutrient removal and depend on the method used for pH-increment. This can occur
i) chemically by use of base, mostly sodium hydroxide (NaOH) (Branch Environmental Corp;
Europe Environnement; RVT Process Equipment), or ii) physically by simultaneous stripping of
CO: (Anaergia; Colsen), optionally in combination with the addition of low-quality gypsum
(CaS0s) for parallel recovery of CaCOs (GNS). Operational costs depend a lot on the
operational temperature, pH, and liquid flow rate. For a 90 % NHs recovery efficiency from
leachate at a temperature of 70 °C, a pH of 11, and a flow rate of 70 m3 h-', overall costs are
estimated at + € 8.1 (711.5 CAD) m3, while at a temperature of 30 °C this would be * four times
less, i.e. € 2.0 (2.8 CAD) m3 (Collivignarelli et al., 1998).

A comparison of budget proposals provided by the above suppliers for NHs stripping and
absorption systems treating a digestate flow of 800 m® d' at 2,400 mg NHs-N L' (90 %
recovery) resulted in a capex ranging from = € 500,000 (770,000 CAD) to € 1.58 (2.23 CAD)
million if the pH-increase is conducted chemically, and from € 3.5 (5.0 CAD) million to € 11-15
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(16-21 CAD) million if the pH-increase is established physically. Electricity consumption for this
case was estimated by the suppliers at 127-400 kWhe h' (1.54-12 kWhg m), heat
consumption at 2,115-2,333 kWh, h' (62-69 kWhy, m3; note: + 50 % could be recovered within
the process), and H>SO4 (concentrated at 95-97 %) consumption at 5.5-6.8 ton d-' or 7.0-10 kg
m- digestate. If NaOH is used for pH-increase, it consumption would amount to 6.0-6.5 kg m=.
As such, operational costs range between € 1.4 and € 2.5 (2.0-3.5 CAD) million y' depending
on the system, equivalent to € 4.5-8.6 (6.4-12.2 CAD) m-? of digestate.

Currently, advanced processes for biological removal of NHs, such as deammonification via
Anammox (Magri et al., 2013), are often still cheaper (depending on the technology provider).
However, as stripping could (partially) replace a nitrification-denitrification step, additionally
remove odorous compounds and dust particles, and produce a marketable end product, it is
expected that this technology can be competitive, especially in regions where N demand is high
(WERF, 2010). Where commercialization of the AmS-solution is possible, revenues currently
range from € 90 to 120 (130-170 CAD) ton"' FW, which under optimal process conditions should
largely compensate the operational costs. Moreover, the higher process stability (e.g. to input
variation, freezing conditions, etc.), lower surface requirements (for the above case: + 1,500
m?2), higher ability for treatment of high N flows, immediate start-up, and ease of automation are
all drivers for implementation of stripping units instead of conventional biological systems.

The major technical bottlenecks observed to date in NHs stripping are scaling and fouling of the
packing material, and the consequent high energy and chemical requirements (Bonmati and
Flotats, 2003; Lemmens et al., 2007; Quan et al., 2010). To avoid scaling, one can install a
lime-softening step before stripping, which removes a large part of the Ca, Mg, carbonic acids
and carbonates, and increases the pH. In case of high buffering capacity, a preceding CO:
stripper might also be economical. To avoid fouling, it is important that during preceding solid-
liguid separation as many suspended solids as possible are retained in the solid fraction.
Nonetheless, it is unavoidable that the packing material will have to be cleaned periodically.
Because of these constraints, some of the above manufacturers have developed a stripping
process without internal packing (Anaergia; Colsen). As such, the process developed by
Anaergia would be capable of handling waste flows containing up to 8-9 % total suspended
solids (TSS). Note that both technologies also operate without any chemical addition. Hence,
although capital costs are higher (see above), in terms of sustainability and operational costs,
these processes are probably the best available options to date.

Furthermore, a combination of the NHs stripping technology and struvite precipitation was
studied by Quan et al. (2010). Both processes were taking place simultaneously in a WSA
reactor at lab-scale. The wastewater containing NHs is pumped into the water jacket and then
sparged towards the centerline of the WSA through the porous section of the inner tube wall,
thus forming a large gas-liquid contact area. The transfer of NHs from liquid to air is high (> 97
%) due to the very small amount of liquid. The authors claim that the WSA, in comparison to the
traditionally used packed towers, is characterized by a good mass transfer performance and

31



self-cleaning function. The technology would therefore be suitable for air stripping of
wastewaters containing suspended particles at a temperature of 30 °C and a pH > 11. However,
to date, no pilot nor full-scale application is available.

Finally, the Dutch company Dorset developed a low-energy (< 1 kW m=3) NHjs stripping system
for manure and digestate treatment without air recirculation or ventilation. The system consists
of rotating disks that are partly submerged in either the liquid manure or the receiving H2SO.-
solution. The NHs; coming from the gas phase at the first disk is absorbed in H.SO4 at the other
disk. Recoveries of + 80 % NHs are obtained at pilot-scale (Dorset, 2014).

2.3.5 Acidic air scrubbing (NRT 3)

Acidic air scrubbing mostly concerns a packed tower in which sulphuric acid (H2SQOs) is sprayed
with nozzles over the packing material and treatment air is blown into the tower in counter-
current (Melse and Ogink, 2005; USEPA, 2000). As is the case for NHs stripping and absorption
(Section 2.3.4), mostly ammonium sulfate ((NH4)2SO4; AmS) is produced and the wash water is
recycled until it is saturated and the removal efficiency of NHz cannot be guaranteed anymore.
At that point, the AmS-solution should be removed and fresh H.SO4 added.

The technology is used at full-scale at anaerobic digestion and sludge/manure processing
plants. Examples of well-established technology developers are Dorset Farm Systems
(NL/USA), Envitech (CA), and Inno+ (NL). Average NHs; recovery efficiencies of 91-99 % are
found in literature (Manuzon et al., 2007; Melse and Ogink, 2005; USEPA, 2000). Investment
costs (in case of a new installation for air treatment of one stable) are estimated at € 18 (25
CAD) kg' NHs recovery, whereas exploitation costs (including variable and fixed costs) of an
acidic air scrubber are estimated at € 6-7 (8.5-10 CAD) kg"' NHs recovery (Arends et al., 2008;
Melse and Willers, 2004). As these costs are expected to reduce with 50 % (investment) and
14-25 % (exploitation) for large-scale projects (Melse and Willers, 2004; Melse and Ogink,
2005), the installation is economically viable at many waste-processing plants.

The main operational costs can be attributed to the energy (0.057 kWh 1,000 m-2 air) and acid
(minimum 1.5 L H>SO4 at 98 % kg' NHs recovery; note: depends on AmS concentration)
requirements (Melse and Willers, 2004). However, power inputs depend a lot on the reactor
type, ranging from 3.8 atm cm? air s*! for spray-chambers to 260 atm cm? air s for venturi
scrubbers (Cooper and Alley, 2011). An interesting advantage of an acidic air scrubber is that
odors, dust particles, and water vapour can also be removed. Technical bottlenecks are mainly
related to corrosion problems. The reject AmS-solution is already recognised in Flanders and
the Netherlands as a mineral fertilizer in environmental and fertilizer legislations. Requirements
for recognition in Quebec are discussed in Section 2.4.4. Nevertheless, marketing is still
hindered due to its variable N and S content (30-100 kg N ton-'; 61-100 kg S ton"), acidic and
corrosive features (pH 2.5-7; high salt content: 100-150 mS cm'), as well as social perception
and farmers’ distrust in its fertilizer properties (Chapters 4-5; Vaneeckhaute et al., 2013b,c,
2014). It should be noted that the product properties are highly dependent on the technology
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provider, not only in terms of AmS content (see above), but also in terms of pH. Manufacturers
delivering a fertilizer product at relatively high pH, suitable for direct application in agriculture,
are Anaergia (pH 5.5) and RVT Process Equipment (pH 6-7).

2.3.6 Membrane filtration (NRT 4)

2.3.6.1 Pressure-driven membrane filtration

Pressure-driven membrane filtration, involving microfiltration (MF), ultrafiltration (UF), and/or
reversed osmosis (RO), is an established technology in wastewater treatment. It has, however,
not yet proven to be a valuable option for the treatment of digestate, manure, and sludge. Only
a few commercial pilots have been installed at full-scale manure and digestate processing
facilities, mostly on a short-term basis because of excessive operational costs. Nevertheless,
the produced membrane filtration concentrates are an interesting nutrient source, which could
potentially be reused as chemical fertilizer substitutes rich in N and K (Chapter 3; De Hoop et
al, 2011; Ledda et al, 2013; Vaneeckhaute et al, 2012; Velthof, 2011). Examples of
manufacturers for slurry filtration systems are: i) A3 Watersolutions (DE), ii) AquaPurga
International (NL), iii) New Logic (CA), iv) VP Systems (NL), and v) Wehrle Umwelt GmbH (DE).
Operating temperatures range from 10-40 °C, while the pH is usually between 6 and 8. RO has
also been applied at full-scale in combination with NHs stripping of liquid digestate (Biorek
Process, BIOSCAN (Denmark, DK); Norddahl and Rohold, 1998).

In reality, the cost of an RO filtration system for manure and digestate treatment is difficult to
determine because it depends on the frequency of membrane cleaning and replacement, as
well as the permeate and concentrate end-use, which on its turn are site and region specific
(Masse et al,, 2007). Gerard (2002) estimated the cost of manure treatment using two RO
cycles at € 12 (17 CAD) m= for a 2 m® d'' flow at a pilot-scale installation in France. At a pig
farm in Canada, the company Purin Pur estimated the costs of an UF-RO treatment train at €
4.22 (5.97 CAD) m3 in 2000 (Charlebois, 2000). In 2009-2010, a large pilot project was
established in the Netherlands, in which, with authorization of the European Commission, the
RO concentrate of eight different manure/digestate processing facilities was applied to
agricultural fields. The costs of the installations plus the costs of transporting the final products
amounted to € 9-13 (13-18 CAD) ton' manure/digestate, which was economically feasible for
seven of the eight installations as the price received for treating the manure at that time
amounted to € 11-13 (7.8-9.2 CAD) ton"' waste (De Hoop et al., 2011; Velthof, 2011). The
economic value of the RO concentrates is estimated at € 6.1+1.1 (8.6+1.6 CAD) ton' FW
(Chapter 3; Vaneeckhaute et al., 2012), while the average price paid by farmers during the pilot
project was € 1.25 (1.77 CAD) ton" in 2009 and € 1.19 (1.68 CAD) ton"' in 2010. Yet, the
standard deviation was high (Velthof, 2011). No other prices for membrane concentrate
marketing have been reported to date.

The biggest technical problem stated in membrane filtration is clogging and fouling of the
membrane, resulting in significant chemical and energy requirements (Kertesz et al., 2010;
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Waeger et al., 2010). The equivalent energy requirement for an RO system is estimated at 4-6
kWh m3 (Moon and Lee, 2012; Semiat, 2008). To reduce cleaning requirements, vibrating (60-
90 Hz) shear enhanced processing (VSEP) has been used for manure purification at pilot-scale
(Johnson et al., 2004; New Logic, 2008). Although this technology may provide an interesting
solution, little data are available on the system performance in relation with the energy
consumption and treatment costs. The energy consumption per vibration is estimated at 8.83
kW (Johnson G., New Logic Inc., Ontario, CA, personal communication 2011), while the energy
consumed by the recirculation pump is estimated at 9.4 kWh m=3 of permeate in a 154 m?
membrane area unit (VSEP series i-10; Akoum et al., 2005). This could be reduced to 6 kWh
m-3 if plane ceramic membranes are used. Energetic calculations based on these data indicate
that large VSEP units will consume significantly less energy per m® of permeate than traditional
cross-flow filtration. Nevertheless, energy consumption and economic performance remain
critical points of attention in the evaluation of membrane technologies for nutrient recovery. As
information on the technical performance of this technology for the treatment of digestate is
lacking, the use of a VSERP filtration unit in a full-scale digestate treatment train will be further
studied in Chapter 3 (Vaneeckhaute et al., 2012).

Different alternative technologies to improve the performance of membrane filtration in terms of
chemical and energy requirements, as well as operational costs are currently under
development. The most studied examples are forward osmosis (Section 2.3.6.2; Chen et al.,
2012b; Li et al., 2013; Sant’Anna et al., 2012; Zhao et al., 2012), electrodialysis (Section 2.3.6.3;
Ippersiel et al., 2012; Mondor et al., 2008), and transmembrane chemosorption (Section 2.3.6.4;
Sustec, 2014).

2.3.6.2 Forward osmosis (FO)

During the last couple of years, there has been a global increase in interest in forward osmosis
(FO) as opposed to RO (Zhao et al., 2012). Similar as in RO, a semi-permeable membrane is
used in FO, but no external pressure is required. The permeate flow is obtained by creating a
difference in osmotic pressure between the liquid waste stream and a draw solution such as
sodium chloride (NaCl) on the other side of the membrane. Through water extraction, the liquid
waste stream is concentrated and the draw solution diluted. The draw solution should then
again be concentrated through water removal.

FO is still under development and could be an interesting technology for use in domestic
wastewater treatment (Chen et al., 2012b), food processing (Sant'/Anna et al., 2012), and
seawater desalination (Li et al., 2013), but also for the concentration of digestate. The potential
advantages of FO are its low energy consumption, low fouling propensity, reduced or easy
cleaning, low costs, high salt rejection, and high water flux (Sant’Anna et al., 2012). However, to
date, the equivalent energy requirement ranges from 3 to 8 kWh m= (Moon and Lee, 2012).
Hence, it is too early to say that the FO technique is capable enough to compete with or
displace the prevalent membrane filtration techniques, primarily RO. The biggest technical
challenge is to find a reliable and economic way to concentrate the draw solution. Researchers
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expect that the further development of FO to a reliable system, applicable at full-scale for
manure and digestate treatment, will take another five to ten years (Zhao et al., 2012).

2.3.6.3 Transmembrane chemosorption (TMCS)

Transmembrane chemosorption (TMCS) is a hybrid membrane process, which was developed
in pig slurry treatment systems in the Netherlands in order to recover N from liquid waste
streams as a concentrated (NH.)>SOs4 solution (several 100 g NH4* L'; Sustec, 2014). By
increasing the pH, NHs is brought into the gas phase, diffuses through a hollow-fibore membrane
with gas-filled pores, and is captured at the other side of the membrane in a sulphuric acid
solution (Rulkens et al., 1998). Compared to stripping, TMCS requires a very small amount of
energy, less than 1 kWh m= (Sustec, Wageningen, NL, personal communication 2013). The
company Sustec works on the further development of this technology. Pilot tests are carried out
at Varkens Innovatie Centrum in Sterksel (NL) and at the pig farm Kempfarm (Leunen, NL). In
these installations recovery efficiencies of 99 % NH; are achieved. Norddahl et al. (2006)
obtained NHs recovery efficiencies of 70 % when using similar membrane contactors for the
treatment of digestate.

2.3.6.4 Electrodialysis (ED)

During electrodialysis (ED), NHs in the diluate solution is transferred by electromigration to an
adjacent solution by an ion-exchange membrane under the driving force of an electrical
potential. This means that the main ionic compounds in the liquid digestate (= the diluate cells),
i.e. NH4*, K+, and bicarbonate (HCOg'), are transferred and concentrated. Mondor et al. (2008)
suggested that the combined use of ED and RO membranes to recover and concentrate NH4* is
potentially interesting (83 % NHs recovery at lab-scale), but the process must include a
mechanism to trap volatilized NHsz (17 %). Ippersiel et al. (2012) used ED as a pre-treatment to
NHs stripping without pH modification for the treatment of swine manure. The maximum
achievable total NH4-N concentration in the concentrate solution (seven times the input
concentration) was limited by water transport from the manure to the concentrate compartment.
This was attributed to the transfer of solvated ions and osmosis. To date, ED has only limited
application at full-scale and it mostly concerns small installations. Extensive testing is required
to gain further insights into the process operation, certainly for the treatment of complex waste
matrices as manure and digestates. At present, especially the high energy consumption, i.e.
3.25-3.60 kWh kg' NH4+-N (Mondor et al., 2008, 2009; Ippersiel et al., 2012) and 1.2-1.5 kWh
kg' K (Decloux et al, 2002), and strongly variable costs for membranes, electrodes, and
casings are important bottlenecks for implementation (Verliefde A., Ghent University, Belgium,
personal communication 2013).

2.3.7 Ammonia sorption (NRT 5)

A number of materials may be used to selectively adsorb ammonium (NH4*) from waste flows.
These materials include zeolites, clays, and resins. Adsorption is carried out in a packed
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column. Once the adsorption media is saturated, the column is taken offline and is regenerated
to recover the NH4*. Regeneration can be achieved by a number of techniques, including nitric
acid (HNO3) washing, sodium chloride (NaCl) washing, or biologically. The technique to be used
depends on the adsorption material and the desired end product. Adsorption can therefore
either be operated as a batch process using a single column, or a series of multiple columns
can be sequenced to provide continuous operation (Ganrot, 2012; WRAP, 2012).

In the context of wastewater treatment, especially natural zeolites have been succesfully used
as adsorption agent for final NH4-N removal (Celik et al., 2001; Du et al., 2005; Jorgensen et al.,
1976; Jorgensen and Weatherley, 2003; Koon and Kaufman, 1975; Wang et al., 2011;
Weatherley and Miladinovic, 2004; Wei et al., 2011; Zhang et al., 2011). Mainly the use of
clinoptilolite, (Na,K,Ca)2-3Al3(Al,Si)2Si13036 :12(H20), has been studied because of its low-cost
availability (Pelin et al., 2013). However, full-scale wastewater treatment plants that employ the

NH4* ion exchange technique are scarce, and few applications have been developed to recover
NH4-N, for example, for agricultural purposes (Hedstrom, 2001; Pelin et al., 2013).
Nevertheless, because the zeolite is porous, the ammonium can leak out of the zeolite at a
much slower rate than it was adsorbed. This makes the ammonium-filled clinoptilolite itself a
potential slow-release fertilizer (Ganrot, 2012). An important remark is that the initial N
concentration in the above-mentioned applications was only a few 10 mg L'. Over the past
decade, there has been increasing interest of using natural zeolite for NHs-N removal from
waste streams with relatively high N concentration or high ionic strength (Hankins et al., 2004;
Liu and Lo, 2001; Milan et al., 1997; Wang et al., 2006). However, its applicability in practice for
the treatment of the liquid fraction of digestate (containing both high N and ionic concentrations)
still remains to be demonstrated, as does the use of the nutrient-enriched clinoptilolite or other
regenerated N-solutions as a fertilizer (Guo et al, 2013; Lemmens et al., 2007; Pelin et al.,
2013).

To date, removal efficiencies of 18 % P (probably due to adsorption) and 15-60 % N (due to ion
exchange) have been reported for the treatment of human urine using clinoptilolite at lab-scale
(Ganrot, 2012). This means that the technology would currently not be feasible as stand-alone
NRT for digestate processing, though it may be used as an intermediate step in the digestate
treatment train. As such, some research has been performed towards the combined use of
zeolite and struvite precipitation to obtain a slow-release fertilizer with both high N and P
concentrations. Overall recovery efficiencies of 100 % P and 83 % N have been obtained at lab-
scale, and the fertilizer potential of the resulting product has been demonstrated at greenhouse
scale (Ganrot, 2012). Moreover, Liberti et al. (1982) investigated a system where NH4* ions
were concentrated by the NH4* ion exchange technique, followed by air stripping of NHs gas,
which was subsequently absorbed in sulfuric acid. Zeolites may also be used to further treat the
effluent produced by membrane filtration of the liquid fraction of digestate (Guo et al., 2013).
Hence, although there is potential to use zeolites as a technology for nutrient recovery, to date
the use of this process for digestate treatment can rather be considered as an intermediate or
final concentration step in the three-step framework (Fig. 2.1).
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An important challenge for implementation of zeolites for digestate treatment is fouling of the
adsorbent bed, as well as maintaining the bed capacity after multiple recovery/regeneration
cycles (WRAP, 2012). Moreover, to date, experiments on the operational performance, process
optimization, and recovery/regeneration methodologies are mostly carried out at lab-scale.
Hence, further investigation into the process efficiency at pilot-scale is required (Hedstrdm,
2001).

Finally, costs of this technology are expected to be low, but will depend on the nearby
availability of the zeolites used, the required pre-treatment of the packing column to obtain NH4*
selectivity, the recovery/regeneration method (if applicable), and the required frequency of
regeneration. No cost-benefit analyses for nutrient recovery from digestate using zeolites have
been reported on in literature to date.

2.3.8 Biomass production and harvest (NRT 6)

Both macrophytes (mostly duckweeds and water hyacinths) and microalgae have been
examined for biological nutrient recovery (Fenton and Uallachain, 2012; Hasan and Chakrabarti,
2009; Shilton et al., 2012). Duckweed (L. minor, L. punctate, S. polyrrhiza, S. oligorrhiza) ponds
have been successfully used as an efficient and potentially low-cost option in (anaerobically
digested) agricultural waste polishing, generating a biomass with high protein content. A
detailed overview of the nutrient and heavy metal content of duckweed as function of water
quality has been reported (Leng, 1999; Ramjeed-Samad, 2010). Based on its mineral
composition, the plant appears to have the ability to recover 600, 56-140, 400, 100, 60, 32, and
24 kg ha' y' of N, P, K, Ca, Mg, Na, and Fe, respectively, at a production of 10 ton dry weight
(DW) ha' (Leng, 1999). Xu and Shen (2011) found removal efficiencies of 83.7 and 89.4 % for
total N and P from pig wastewater, respectively, using S. oligorrhiza in eight weeks at a harvest
frequency of two times a week. Mohedano et al. (2012) found an average of 98.0 % total N and
98.8 % total P recovery at full-scale, resulting in an average biomass (L. punctate) protein
content of 28-35 %. However, above 60 mg N L' a toxic effect was noticed perhaps due to high
levels of free ammonia in the water. Hence, levels below this value should be maintained in
order to obtain a consistently high protein content (15-45 % by DW, depending on the N supply;
Hasan and Chakrabarti, 2009).

Skillicorn et al. (1993) estimated the capital costs for a 0.5 ha large duckweed system at + €
2,600 (3,700 CAD). However, capital costs are significantly influenced by land area
requirements, next to the costs associated with pond inoculation, harvesting, and disposal of
biomass. As such, Mburu et al. (2013) evaluated the capital expenditures (CAPEX) for a full-
scale waste stabilization pond at € + 705,000 (7 million CAD) (based on 2,700 person
equivalents (PE) at 8.3 m? PE™"), and at € + 276,000 (390,000 CAD) (for 2,700 PE at 3.4 m?
PE") for a pilot-scale horizontal subsurface flow constructed wetland. Maintenance costs for the
first design are, however, significantly lower: € 283 (400 CAD) compared to € 23,300 (33,000
CAD) for 2,700 PE. As such, the total cost of these 'green’ nutrient recovery systems can be
evaluated at € 12-33 (17-47 CAD) PE' y!, with an average of € 14.4 (20.4 CAD) PE" y,
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whereas the cost for a traditional activated sludge system is at least three times
higher. However, without water reuse, associated gray-water sales, and duckweed valorization,
currently the economic viability of duckweed systems remains questionable (Hasan and
Chakrabarti, 2009).

Furthermore, the ability of microalgae to assimilate excess nutrients from the environment has
been thoroughly studied (Cai et al., 2013). However, to date, tests of growing algae in
waste(water) are mostly at laboratory scale. Pilot-scale algae cultivation continues to face many
problematic issues, including contamination, inconsistency in waste(water) components, and
unstable biomass production. The major challenge associated with culturing algae in nutrient-
rich natural water and slurry comes from the design of the cultivation system. The addition of
polymer that precipitates suspended solids, thereby allowing light penetration, would improve
the technical feasibility of growing algae on the liquid fraction of (digested) slurry. Nevertheless,
Muylaert and Sanders (2010) predict that breakthrough of algae in the bio-based economy will
last another 5-15 years, as currently costs of algae production are too high as compared to
other types of biomass. Estimates of the algal production cost range from € 3.2-240 (4.5-340
CAD) kg' dry biomass (Benemann, 2008; Couteau and Sorgeloos, 1992; Lavens and
Sorgeloos, 1996). Prior economic-engineering feasibility analyses have concluded that even the
simplest open pond systems, including harvesting and algal biomass processing equipment,
would cost at least € 78,000 (713,000 CAD) ha' and possibly significantly more (Benemann,
2008). To this, the operating costs will need to be added.

The harvested algae/macrophytes can serve as a feedstock for the chemical and biofuel
industry, can be used as animal feed (provided that the necessary amendments in legislation
are made), or spread out as a fertilizer (Demirbas, 2011; Lundquist et al., 2010). As such, El-
Shafai et al. (2007) estimated a biomass value of € 5,300 (7,450 CAD) y' (by comparison with
other feed sources) for a protein yield of approximately 11 ton ha' y' (L. gibba). Next to the
large footprint required, biomass harvesting remains an important technical bottleneck, which

requires further research.

2.3.9 Phosphorus extraction from ashes/biochar (NRT 7)

The remaining ashes after combustion of biodegradable waste (manure, sludge, digestate)
contain P, K, Al, and silicium (Si) compounds and possibly heavy metals such as Cu, Zn, and
cadmium (Cd). Several companies have designed different processes to extract P from such
combustion ashes (Schoumans et al, 2010). These processes can be subdivided into
thermochemical and wet-chemical technologies. The Finnish company Outotec, for example,
adds MgCl> and heats the ashes up to 1,000 °C in order to gasify the heavy metals.
Phosphorus is bound as CaHPO4 and sold as chemical mineral fertilizer substitute. The Belgian
company EcoPhos developed and tested, at lab-scale, a chemical P extraction process by
addition of hydrogen chloride (HCI) to combustion ashes (Bolland, 1996). Also the Swedish
company EasyMining developed a process (Cleanmap Technology) that involves the use of
HCI, which is suitable for ashes from incinerated manure. Other P recovery processes from ash

38



are: IClI Amfert (NL), Mephrec (DE), PAsH (DE), RecoPhos (Austria (AT), BE, DE, FR,
Switzerland (CH)), sephos (DE), and susAN/AsH DEC (AT, DE, Finland (FI), NL). P recoveries
up to 78 % are found in literature (Petzet et al., 2012; Schoumans et al., 2010). Operational
costs for wet extraction itself can be lower than € 1 (1.4 CAD) m-= fresh slurry, whereas net
costs for combustion (including revenues from energy and P recovery) range from € 0-10 (0-14
CAD) ton! FW slurry, depending on the water content. However, a thorough flue gas cleaning
system is indispensable and post-processing to remove heavy metals is often required. Hence,

few full-scale installations currently exist.

Experiments with pyrolysis of manure cakes have also been conducted. The fraction of nutrients
recovered in the resulting biochar is larger than in incineration ashes and the plant-availability of
the nutrients tends to be higher, especially for P. It was estimated that the value of P in bio-char
is about five times higher than the value of P in ash: < € 1 (1.4 CAD) m3 vs. € 4.25 (6.01 CAD)
m-3 (Schoumans et al., 2010).

Nevertheless, as digestate is classified as a waste stream that is eligible for recycling as sail
conditioner, it is in a lot of countries not authorised to convert the product into energy by
combustion/pyrolysis according to environmental legislations. Alternatively, P could be extracted
from dried or dewatered digestate, but to date such tests are absent in literature. Some
processes attempting to recover P from dried or dewatered sludge are: IEACHPOs (CH),
Mephrec (DE), PHOXNAN/10PROX (DE), and Seaborne (DE).

2.3.10 Critical comparison

Based on the above compiled information, a critical comparative technology overview is given in
Table 2.2. At present, only struvite precipitation/crystallization, NHs stripping and absorption in a
tower (with or without packing), acidic air scrubbing, and pressure-driven membrane filtration
have been applied at full-scale for nutrient recovery from digestate. Of these technologies, only
the first three have shown potential to be economically viable for implementation at digestate
processing facilities.

Traditional membrane filtration systems often suffer technical problems in wastewater
treatment, making them economically not yet viable for digestate treatment. An interesting
solution may exist in vibrating membrane filtration (VSEP) using RO membranes. However,
further research is required in order to evaluate the technical and economic performance of this
process (see Chapter 3). Nevertheless, it should be pointed out that membrane filtration is the
most established technology to date for the simultaneous recovery of both N and K.

Further, Table 2.2 shows that the NRT that currently achieves the highest simultaneous nutrient
recovery efficiency of both N and P would be biomass production and harvest. However, the
overall cost of this treatment is still high and large surface areas are required, making its
potential implementation very region-specific. Further research to improve the economic and
technical feasibility of this technology is recommended.
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Table 2.2 Technology overview: technology, mechanism, feed, % recovery, main technical bottlenecks, economic and ecological evaluation, stage of
development, and references. 1 = relatively high; | = relatively low; CAPEX = capital expenditures; OPEX = operational expenditures; PE = person
equivalent; RO = reversed osmosis; R&D = research and development. Note: in order to reduce table complexity, costs are only expressed in € (€ 1 =

1.415 CAD; November 2014).

. Main technical Economic Ecological Stage of
L)
Technology Mechanism Feed % recovery bottlenecks evaluation Evaluation development References
Precipitation in ) .
L . . Can be profitable; Chemical use (NaOH, Mg) 1; X
piping/equipment; CAPEX: € 2.300.24.500 kg-' 1. N — Jaffer et al. (2002);

. N 4 ' . : € 2,300-24, g'Pd"; Fe/Al use |; Landfill |; .
Struylt'e . Physicochemical Liquid 80-90 :/° P Pollution W't_h organic OPEX: € -520-2,800 ton™" struvite or Sludge handling and Full-scale Le Corre et al (2,009)’
precipitation 10-40 % N compounds; € -200-75.000 y' disposal |; Cleaning of Shu et al. (2006);

Stable a}nd controlled Overall: € -7,800-89,400 y' struvite deposits | Technology providers
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, production T ..
. - Chemical use |; Lab
L) ’
Electrochemical Liquid >99%P R&D Needed R&D needed Energy use |- < 70 Wh m? Pilot: test phase IGB (2012)
Bio-electrochemical  Liquid  20-40 % P R&D Needed R&D needed Energy efficiency 1:7324 %; | o, Cusick and Logan (2012)
Hz production
Calcium Co-precipitation of Can be profitable; Chemical use (Ca(OH)2) 1; Full-scale: manure &  Berg et al. (2007);
phosphate Physicochemical Liquid 50-100 % P CaCOg; Preceding CO2 CAPEX: € 2,300-2,900 kg' P d''; Fe/Al use | 21 wastewater; Eggers et al. (1991);
precipitation stripping often required OPEX: depends on Ca(OH). use Lab: digestate Technology providers
Odors |; Energy use (air/
CAPEX: € 0.5-15 million, OPEX: € heat) 1: 1.54-12 kWhe m™ .
4.5-8.6 m*, both for 800 m*d’ at2.4  and 62-69 kWhi m; Acid Z%%”s‘f}“ and Flotats
- Physicochemical: Upto 98 % N; . . g N m™ (90 % recovery); use 1:7-10 kg H2S04 m; e )
gl;;:jsrtr;i;;gr)‘mg & tower (packed bed Liquid Typical: F;);Eir:]g ﬁgtgﬁer{rloswn of Overall: € 2.0-8.1 m for 70 m3h'’; Base use (1): 0-6.5 kg Full-scale gc;g\él)g!narelh etal.
P or no packing) 80-90 % N P 9 Depends on pH and temperature; NaOH m, all for 800 m= d! Lemmens et al. (2007):
Can (partially) replace activated at2.4 gNm?3 (90 % Technolo ro'viders ’
sludge system; Interest in S 1 recovery); Chemical use for ay P
L Sleaning N
Physicochemical: . . . " o .
water-sparged Liquid > 97 % NHs R&D needed; Ir)terest in S 1; Potential for Se]f-cleanlpg, Ene:rgy use |; Lab Quan et al. (2010)
Scale-up?! simultaneous P recovery Acid use 1; Chemical use |
___________________ aerocyclone .
Physicochemical: - o R&D needed; Interest in S 1; Energy use |: <1 kW; .
rotating disks Liquid 80 % NHs Scale-up?! No air scrubber required Acid use 1; Chemical use | Pilot Dorset (2014)
Fouling/corrosion of Can be profitable; Odor |; Energy use (air) 1: ngizggdetozli'n(f?gg(;g)-
Acidic air . . 90 9 packing material; CAPEX: € 13 kg'' NHs removal; min. 0.057 kWh kg! NHs; ] : ’
scrubbing Physicochemical Gas 91-99 % N Performance under OPEX: € 6-7 kg'' NH3 removal; Acid use 1: min. 1.5 L H2SO4 Ful-scale ?‘lzlglgi)gnd Willers
; Y - # ;
freezing conditions?! Interestin S 1 kg NHs USEPA (2000)
Charlebois (2000);
De Hoop et al. (2011);
Membrane Prheysssiﬁfg-driven Liquid ’\/‘ %r.]ad é(r;ds on gﬂczr;iﬂr?é;ane peetne® High CAPEX & OPEX: € 4-13 m Ezse&%huﬁw?(ﬁoy Full-scale Sjgi’sf’zf?gf’(zm 0);
filtration p q o dep High maintenance and 9 ) y Moon and Lee (2012);
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Technology . o Main technical Economic Ecological Stage of
(Continuation) Mechanism Feed % recovery bottlenecks evaluation Evaluation development References
Reverse solute diffusion; Energy use | (to be g:g:li(ﬁ:‘;n food Moon and Lee (2012);
Physical: - Need for new membrane . confirmed): 3-8 kWh m’3; L Sant'Anna et al. (2012);
. Liquid R&D needed Costs | (no data available) . . processing; Full-
forward osmosis development and draw Chemical use |: less scale digestate/ Zhao et al. (2012)
solute design cleaning manure‘?’in 510y
T Physicochemical: T e . T Norddahl et al. (2006);
transmembrane Liquid 70-99 % NH3 Membrane clogging ggpclends on mass t'rar)sfer, (E:rr:ergy ulse i< 1.§Wh m= Pilot Rulkens et al. (1998);
chemosorption imilar costs as stripping emical use (acid) 1 Sustec (2014)
High energy
consumption; Variable Energy use 1: Decloux et al. (2002);
Lo costs for membranes, 3 M I Full-scale: limited; Ippersiel et al. (2012);
Elleegttrrggg?n;;gal. Liquid 80-83 % NHs electrodes, cases; High costs (no data available) 2;215231 162 lli\\?lvz ig_1 EH“ N Lab: Mondor et al. (2008,
Y Acid NHg trap required; e 1-0 KWN G digestate/manure 2009)
Post-treatment NHs volatilization
(RO/stripping) required
Eglﬂmg-d the packing Potentially low costs relative to other Ganrot (2012);
18% P Re enération and technologies (depending on Energy use |; Full-scale: limited for ~ Guo et al. (2013);
NH3 sorption Physicochemical Liquid 15-6?) % NH ma?ntenance- availability, pre-treatment, and Chen%i}::al usé 1 wastewater; Lemmens et al. (2007);
o s Post- and/or , re- regeneration); Further research Lab: digestate Pelin et al. (2013);
treatment reqF:Jire d needed for digestate treatment WRAP (2012)
Benemann, (2008);
Harvest method; R Couteau and Sorgeloos
. ’ Capex: > € 80,000 ha'; ’
) Reduced light ’ L a4 pa— . ] . (1992); Lavens and
B;gg]ui:sti)n and  Biological Liquid = S498%N penetration; Dilution g \;ezr-:asg(lgné?rq?hytes)' gﬁgra ol '4(3'8 n;dEnEioh)- gﬂgvangjC e Sorgeloos, (1996);
p 9 q 90-99 % P often required; Large v B gy use 1 (CO. ; ; Mburu et al. (2013);
harvest surface area: Overall (algae): € 4-300 kg™ dry Polymer use 1 Mostly lab: algae Mohedano et al. (2012);
Toxic if N > 60 mg Lt weight Skillicorn et al. (1993);
Xu and Shen (2011)
822:i: ea;ﬁg ’hfcleu;vgas Combustion = sustainable?!;  Full-scale:
P extraction Thermochemical / metal rgr"noval requ)ilred' < €1 m3slurry (wet extraction); Energy use 1: temperature- incinerated sludge; Bolland (1996);
from ashes/ Solid Upto 78 % P ’ € 3 ton""slurry (pyrolysis); dependent; Lab: incinerated Petzet et al. (2012);

bio-char

Wet-chemical

pH, temperature, and
chemical choice are
critical

€ 0-10 m™ slurry (combustion)

Chemical use 1: process-
dependent

digestate, but often
not authorized!

Schoumans et al. (2010)
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In terms of costs, NH3 sorption and recovery of N-enriched (natural) zeolites is probably the
lowest-cost option available to date (depending on the nearby availability of the adsorbent).
However, recovery efficiencies are relatively low and further testing is required on the
implementation of this technology for digestate treatment. Moreover, the marketing value of the
recovered N-zeolites remains to be explored. The use of this technology in combination with
struvite or stripping (depending on the purpose) may be interesting, in order to maximize the
overall nutrient recovery potential at minimal costs.

Further, from an ecological point of view (chemical and energy use), transmembrane
chemosorption, forward osmoses, (bio)electrochemical struvite recovery, and NHj; sorption
appear as the most interesting NRTs. However, none of these technologies is currently applied
at full-scale for the treatment of digestate. Yet, after sufficient testing and optimization, these
systems have the potential to become part of commonly used digestate processing
technologies. The extraction of P from ashes or biochars seems the least promising technology,
because it can be questionned whether combustion/pyrolysis of digestate is a sustainable
treatment option and if this should be encouraged.

Finally, from a technical perspective, it can be stated that further fine-tuning is still required for
all technologies in order to minimize operational costs, especially in terms of energy and
chemical consumption, produce high-quality, pure fertilizers, and economically valorize the
recovered nutrients. The best available and most established technologies for nutrient recovery
from digestate in terms of technical performance and fertilizer marketing potential are struvite
precipitation, ammonia stripping and absorption using a stripping column with or without
packing, and acidic air scrubbing. It is not surprising that these are the only technologies to date
that have been successfully implemented at full-scale digestate processing facilities.

2.4 Fertilizer quality, markets, and regulations for reuse

2.4.1 Fertilizer quality specifications
For efficient use in the agricultural sector, recovered nutrient products must have the following
characteristics:

a) Consistent chemical nutrient composition and uniform distribution compatible with
fossil reserve-based chemical fertilizers:

The three principal macronutrients in fertilizer mixes, so called because they are required in the
largest quantities, are nitrogen (N), phosphorus (P), and potassium (K). The most common
fertilizers in current use are mixtures of compounds containing the three components,
conventionally expressed in terms of the relative percentages of N, P-Os, and K>O by weight
(Hillel, 2008). The nutrient ratio to be used in mixed fertilizers depends on crop requirements
and soil characteristics, e.g. a 1:1:1 (N:P20s5:K>0) ratio is the base fertilizer for grain crops,
sugar beets, potatoes, and vegetables on soddy podzols, gray forests, and chernozems, while a
1:1.5:1 ratio is applied at planting time for grains, vegetables, and industrial crops.
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Nitrogen promotes healthy leaf, stem, and branch growth. Most plant forms can't metabolize N
in its natural state (N2), so fertilizers must incorporate N compounds that plants can use, such as
ammonium nitrate and ammonium sulfate (Hillel, 2008). The high solubility of these forms,
however, makes them especially vulnerable to leaching by percolating water. Phosphorus
provides the materials needed for seed germination and healthy root system development, while
K materials promote healthy flowering and fruit production. To be available as nutrient to plants,
P must be present in the soil solution as the anions H.PO4 or HPO4?. This element is frequently
deficient and chemical mineral fertilizers must be added. The added P, however, may not
remain in available form for long, because it tends to be converted to less soluble or insoluble
forms, either by reaction with Ca or with Fe and Al oxides in the soil, or by strong adsorption
onto the edges of clay crystals. The interest in slow-release granulated P fertilizers is therefore
growing (Palmer and Kay, 2005). Potassium nutrients tend to cling to clay and organic matter,
thereby causing the immobilization or fixation of K ions. For this reason, soils often require the
careful addition of K in the form of fertilizer around plant root system structures to ensure this
nutrient's availability (Barber, 1995).

Other important macronutrients include sulfur (S), calcium (Ca) and magnesium (Mg), hydrogen
(H), oxygen (O), as well as carbon (C). Nine additional elements are essential nutrients for many
plants, albeit in small quantities. Hence, they are called micronutrients or trace elements. These
include boron (B), chlorine (Cl), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn),
molybdenum (Mo), nickel (Ni), and zinc (Zn) (Hillel, 2008). They can be applied separately as
micronutrient fertilizer, but are often incorporated in mixed fertilizers (ratios depend on crop and
soil conditions).

b) A low salinity, sodicity, and a pH close to neutral:

The term soil salinity refers to the presence of electrolytic mineral solutes, most commonly Na*,
K+, Ca?*, Mg?*, Cl, SO+*, NOs, HCOg, and CQOs?, in concentrations that are harmful to many
plants in the soil and in the aqueous solution within it. Overall salinity is usually expressed in
terms of total dissolved solids (TDS) or electrical conductivity (EC). Soil sodicity generally
refers to the dispersion of clay resulting in deterioration of soil structure by clogging of large
pores in the soil. This occurs when the sodium (Na) ion predominates in the exchange complex
of the soil. Hence, the sodium adsorption ratio (SAR), i.e. the ratio of monovalent Na over
divalent Ca and Mg, is an important parameter to evaluate. Fertilizers can also affect a soil's pH,
which is a measure of the soil's acidity. When acidity levels are too high (hence the pH too low),
essential minerals and nutrients may be prevented from reaching a plant's root system, the
concentration of potentially toxic metal ions may increase, and the activity of soil
microorganisms may be inhibited (Hillel, 2008). Moreover, strongly acidic or basic fertilizers may
cause plant burning, while basic fertilizers may also favour NH3 volatilization.

c) Desirable physical characteristics:
The important physical properties of liquid fertilizers are density and viscosity. The strength of
the gelling agent (i.e. the thickener) is also critical. It should be strong enough to keep the solids
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in suspension, but not so strong that the liquid is too thick to be pumped and poured. Important
physical characteristics of solid fertilizers are particle size, density, granule hardness, and
moisture content (Barnes and Fortune, 2006; Dombalov et al., 1999; Fittmar, 2009; Haby et al.,
2003; McCauley et al., 2009; Sahoy, 2013). The effect of these parameters and typical values

for conventional chemical mineral fertilizers are presented in Table 2.3.

Table 2.3 Desirable physical characteristics of solid fertilizers: parameter, process affected,
impact, and typical values; compiled from Barnes and Fortune (2006), Dambolav et al. (1999),
Fittmar (2009), Haby et al. (2003), McCauley et al. (2009), and Sahoy (2013).

Typical
Parameter | Process affected Impact values
Fertilizer »  size | — dissolution in H.O 1 — rate of nutrient release 1 —
effectiveness nutrient leaching 1
Further processing > size T — ease of washing 1, filtering 1, transportation 1 and
. storing 1
Particle  Fooooo T
size and Purit » size t — surface area to volume ratio | — purity 1
distribution y > uniformity 1t — purity 1 1-4 mm
[ Occupational health | . Lo
| angsaiety |~ Srenationt - distbulon offerlzer powder |
Environmental . ) . .
aspects »  granulation 1 — dust formation | — nutrient leaching |
Storin »  density 1 — packing volume
Density |- g ___________________________ y Tpg _________ R 700-1,570
y Calibrating kg m?
machinery
» hardness 1 — resistance to crushing forces, abrasion, and hi
Handling and storing impacts 1 ctrrusn '?r?
Hardness »  hardness 1 — thermal stability 1 SO gg 5'
[ T Y ) ) 2
Environmental > hardness 1 — fertilizer dustiness | kg cm
aspects
» CRH?t — ease of handling and storing in wet environments 1
Moisture . ) » CRH? | — clump formation 1, ease of spreading |, ease of CRH2:
content Handling and storing storing | (should be prevented from getting wet) 72-92 %
»  surface area T — water absorption 1

@ CRH = critical relative humidity = relative humidity of the surrounding atmosphere (at a certain temperature) at which
the material begins to absorb moisture from the atmosphere and b