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Résumé 
 
La prise de conscience croissante de l’épuisement des ressources naturelles, la demande 

croissante de nutriments et d’énergie pour la production alimentaire et les normes de plus en 

plus strictes de décharge des nutriments et de fertilisation, ont donné lieu à une attention 

accrue pour la récupération des nutriments à partir des déchets municipaux et agricoles. Cette 

thèse de doctorat vise à stimuler la transition vers une bio-économie en fournissant des 

(moyens à développer des) stratégies durables pour la récupération des nutriments à partir des 

déchets organiques après la production de bio-énergie par la digestion anaérobie. Une attention 

particulière est accordée à la valorisation des produits récupérés comme substituts 

renouvelables aux engrais chimiques et/ou comme engrais organo-minéraux durables dans 

l'agriculture. Trois phases de recherche complémentaires ont été exécutées: 1) l'inventaire des 

technologies et la classification des produits, 2) l'évaluation de la valeur des produits, 3) la 

modélisation et l’optimisation des procédés. 

Dans la première phase, une revue systématique des technologies et une classification des 

produits ont été réalisées. Dans la seconde phase, la caractérisation des produits et des 

analyses de bilan de masse dans des stations de récupération des ressources de l’eau et des 

déchets (StaRRED) à grande échelle ont été exécutées. Une évaluation économique et 

écologique de différents scénarios de bio-fertilisation a été menée et les scénarios les plus 

durables ont été sélectionnés pour une évaluation agronomique réalisée ultérieurement sur le 

terrain et à l'échelle de la serre. Dans la troisième phase, une librairie générique de modèles 

pour la récupération des nutriments a été élaborée visant à modéliser la quantité et la qualité 

d'engrais. Une meilleure compréhension de la performance et des interactions des processus 

unitaires a été obtenue par des analyses de sensibilité globale. Les modèles ont été utilisés 

avec succès comme un outil pour la configuration et l'optimisation des chaînes de traitement. 

Sur la base de toutes les connaissances acquises, une feuille de route générique pour la mise 

en place des stratégies de récupération des nutriments en fonction des marchés et des 

législations des engrais, et de la caractérisation des déchets a été développée. 

En tant que telle, la présente thèse développe les concepts de fermeture maximale des cycles 

des nutriments dans une approche du berceau-au-berceau. Le travail apporte des preuves 

importantes de l'impact positif des produits récupérés sur l'économie, l'agronomie et l'écologie 

de la production végétale intensive. En outre, cette thèse offre des informations et des outils 

fondamentaux pour faciliter la mise en œuvre et l'optimisation des stratégies durables de 

récupération des nutriments. Ces résultats ouvrent de nouvelles possibilités pour une 

croissance économique durable axée sur les ressources biologiques et créent ainsi une 

situation gagnant-gagnant pour l'environnement, la société et l'économie en Belgique, au 

Canada, et au-delà. 



  



 

 V

 
Summary 
The increasing awareness of natural resource depletion, the increasing demand of nutrients and 

energy for food production, and the more and more stringent nutrient discharge and fertilization 

levels, have resulted in an increased attention for nutrient recovery from municipal and 

agricultural wastes. This PhD dissertation aims at stimulating the transition to a bio-based 

economy by providing (tools to develop) sustainable strategies for nutrient recovery from 

organic wastes following bio-energy production through anaerobic digestion (= bio-digestion 

waste). Particular attention is paid to the valorization of the recovered products as renewable 

substitutes for chemical fertilizers and/or as sustainable organo-mineral fertilizers in agriculture. 

Three complementary research phases were conducted: 1) technology inventory and product 

classification, 2) product value evaluation, 3) process modelling and optimization.  

In the first phase, a systematic technology review and product classification was performed. In 

phase 2, product characterizations and mass balance analyses at full-scale waste(water) 

resource recovery facilities (WRRFs) were executed. An economic and ecological evaluation of 

different bio-based fertilization scenarios was conducted and the most sustainable scenarios 

were selected for subsequent agronomic evaluation at field and greenhouse scale. In phase 3, 

a generic nutrient recovery model library was developed aiming at fertilizer quantity and quality 

as model outputs. Increased insights in unit process performance and interactions were 

obtained through global sensitivity analyses. The models were successfully used as a tool for 

treatment train configuration and optimization. Based on all acquired knowledge, a generic 

roadmap for setting up nutrient recovery strategies as function of fertilizer markets, legislations, 

and waste characterization was established.  

As such, the present dissertation further develops the concepts of maximally closing nutrient 

cycles in a cradle-to-cradle approach. The work reveals important evidence of the positive 

impact of recovered products on the economy, agronomy, and ecology of intensive plant 

production. Moreover, it provides the fundamental information and tools to facilitate the 

implementation and optimization of sustainable nutrient recovery strategies. All of this may open 

up new opportunities for sustainable and more bio-based economic growth and thus create a 

win-win situation for the environment, the society, and the economy in Belgium, Canada, and 

beyond.
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Samenvatting 
 
Het toenemende bewustzijn omtrent de uitputting van natuurlijke hulpbronnen, de groeiende 

vraag naar nutriënten en energie voor de voedselproductie en de steeds strengere lozings- en 

bemestingsnormen voor nutriënten, hebben geresulteerd in een verhoogde aandacht voor 

nutriëntrecuperatie uit gemeentelijk en landbouwafval. Dit proefschrift beoogt de overgang naar 

een bio-gebaseerde economie te stimuleren door het verstrekken van (instrumenten voor de 

ontwikkeling van) duurzame strategieën voor nutriëntrecuperatie uit organisch afval na bio-

energie productie via anaerobe vergisting. Bijzondere aandacht wordt besteed aan de 

valorisatie van de gerecupereerde producten als hernieuwbare kunstmestvervangers en/of als 

duurzame organo-minerale meststoffen in de landbouw. Drie complementaire onderzoeksfasen 

werden uitgevoerd: 1) technologie-inventarisatie en product-classificatie, 2) evaluatie van de 

productwaarde, 3) modellering en procesoptimalisatie. 

In de eerste fase werd een systematisch technologisch overzicht gemaakt en werd een product-

classificatie opgesteld. In fase 2 werden de producten gekarakteriseerd en werden 

massabalansen in afval(water)grondstofrecuperatie-installaties (AGRI’s) op volle schaal 

berekend. Een economische en ecologische evaluatie van verschillende bio-gebaseerde 

bemestingsscenario’s werd verricht en de meest duurzame scenario's werden geselecteerd 

voor daarop volgende agronomische evaluatie op het veld en in de serre. In fase 3 werd een 

generieke modellenbank voor nutriëntrecuperatie ontwikkeld, gericht op het modelleren van 

meststof-kwantiteit en -kwaliteit. Beter inzicht in de prestaties van de eenheidsprocessen en 

interacties werd verkregen via globale gevoeligheidsanalyses. De modellen werden met succes 

gebruikt als instrument voor configuratie en optimalisatie van de behandelingstrein. Op basis 

van alle verworven kennis werd een generiek stappenplan ontwikkeld voor het opstellen van 

nutriëntrecuperatie strategieën als functie van meststofmarkten, wetgevingen en de 

karakterisering van de afvalstroom. 

Als zodanig ontwikkelt dit proefschrift verder de concepten van het maximaal sluiten van 

nutriëntenkringlopen in een cradle-to-cradle benadering. Het werk onthult significant bewijs van 

de positieve impact van gerecupereerde producten op de economie, agronomie en ecologie van 

de intensieve gewasproductie. Bovendien biedt het de fundamentele informatie en instrumenten 

om de implementatie en optimalisatie van duurzame strategieën voor nutriëntrecuperatie te 

bevorderen. Dit alles kan leiden tot nieuwe kansen voor een duurzame en meer bio-gebaseerde 

economische groei en kan dus een win-win situatie creëren voor het milieu, de maatschappij en 

de economie in België, Canada en daarbuiten. 
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C_i Carbon content of component i �M	M��� 
  °C Degree Celcius    - 
� Average gas bubble diameter ��� 
�� Liquid phase diffusion coefficient �L�	T��� 
�� Gas phase diffusion coefficient �L�	T��� 
�� Particle diameter ��� 

D°H German degrees of hardness - 
� Turbulence constant - 

fproduct,substrate Yield (catabolism only) of product on substrate �M	M��� 
f_ns_P Fraction of non-settleable precipitates - 
f_ns_X Fraction of non-settleable solids - 

�	�  Root mean square velocity gradient �T��� 
��,� Temperature dependent Henry coefficient of component �  �M	L��	atm��� 
� Discount rate - 

!"#,�$%�&'(&	 Hydrogen inhibition for substrate degradation - 

!"#),�$%�&'(&	 Hydrogen sulfide inhibition for substrate degradation - 

!*",��+�&  Inhibition of biomass growth due to lack of inorganic nitrogen - 

!�",%(, pH inhibition of acetogens and acidogens - 

!�",� pH inhibition of component � - 

-( Aggregation constant - 

-(
 Acid dissociation constant - 

-% Floc break-up constant .T/��L��0  
12,� Temperature dependent nucleation rate coefficient �M	L��	T��� 
1
	,,� First order decay rate for biomass death of component �  �T��� 

1
��,� Complex particulate first order disintegration rate of  
component � 

�T��� 

13,� Temperature dependent dissolution rate coefficient �M	L��	T��� 
14,� Individual gaseous mass transfer coefficient of component �  �L	T��� 
-4,� Overall gaseous mass transfer coefficient of component �  �L	T��� 
14,� Temperature dependent growth rate coefficient �M	L��	T��� 
156
,� First order hydrolysis rate of component �  �T��� 
-�� Ion pairing equilibrium constant - 

17,� Individual liquid mass transfer coefficient of component �  �L	T��� 
-7,� Overall liquid mass transfer coefficient of component �  �T��� 
-7/4,� Overall liquid-gas mass transfer coefficient of component �  �L	T��� 
1+,� Specific Monod maximum uptake rate of component �  �T��� 
-� Solubility product �M	L��� 
-9� Monod half saturation constant of component �  �M	L��� 
1� Temperature dependent liquid-solid transfer coefficient �M	L��	T��� 
-: Water dissociation constant - 
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Symbol Description       Unit 
   

K_i Potassium content of component i �M	M��� 
						���						 Length (dimension) - 
;<	'&���=	' Total mass / moles of fertilizer �;� 
;�		
 Mass of seed material in the reactor �;� 
;> Molecular weight �M	M��� 
�;� Mass / Moles (dimension) - 
? Liquid-solid transfer reaction order - 

@ Total number of periods  �A� 
NA Avogadro constant (6.022E23 mol-1) �M��� 
?2 Reaction order for nucleation - 
?3 Reaction order for dissolution - 
?4 Reaction order for growth - 
@�('& Number of particles - 
N_i Nitrogen content of component i �M	M��� 
B�,�(� Partial pressure of component	� in the gas phase atm 
P_i Phosphorus content of component i �M	M��� 
Qgas Gas flow rate �L�	T��� 

Qin/Qout In- and outgoing flow rates �L�	T��� 
Qliq Liquid flow rate  �L�	T��� 

Qprec Precipitate extraction rate (for NRM-Prec) �L�	T��� 
Qrecycle Recycle flow rate (for NRM-Scrub) �L�	T��� 

r Regression coefficient - 

C Universal gas law constant (0.082) L atm mol-1 K-1
 

C� Net cash flow at time D $ 
E Saturation ratio - 

E�
�F/ E�

G$& In- and outgoing activities of component �  �M	L��� 
S_i Sulfur content of component i �M	M��� 
D Time �A� 
A Temperature K 
�A� Time (dimension) - 
H  Average rise velocity of gas bubbles �L	T��� 
I J I+ + I- = sum of the number of positive and negative species 

= stoichiometric liquid-solid transfer coefficient 
- 

K<	'&���=	' Total fertilizer volume �L�� 
K�(� Head space volume / gas volume �L�� 
L�,M Stoichiometric coefficient for component � on process N  �M	M��� 
K��O Liquid volume �L�� 

Ysubstrate Biomass substrate yield �M	M��� 
P Density of the flow �M	L��� 
P(���  Net rate of floc (agglomerate) appearance �L��	T��� 
PM Specific kinetic rate for process N  �M	L��T��� 

Q�(� Mean residence time of gas bubble in the reactor �T� 
φ Volume fraction - 
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As introduction to this dissertation, the present chapter provides the rationale of the research 

(Section 1.1), the specific problem statements and research objectives (Section 1.2.1), the 

overall objectives and expected impact (Section 1.2.2), and the originality of the PhD (Section 

1.3). The structure of the dissertation and interrelationships between the chapters are described 

in Section 1.4.  

1.1  Rationale  
In the transition from a fossil reserve-based to a bio-based economy, it has become a critical 

challenge to maximally close nutrient cycles and migrate to a more effective and sustainable 

resource management, both from an economical and an ecological perspective. Estimates of 

nutrient reserves are highly uncertain, but based on population growth and future demand for 

nutrients, it is expected that depletion will occur within 93 to 291 years for phosphorus (P), 235 

to 510 years for potassium (K), and 20 years for zinc (Zn) (Elser and Bennett, 2011; Neset and 

Cordell, 2012;  Scholz and Wellmer, 2013). Geopolitical moves can, however, shift this date 

forward, making nutrient scarcity an imminent threat. Moreover, the quality of the remaining 

natural resources is declining, there is no substitute available, and to date these nutrients 

cannot be manufactured. At the same time, the agricultural demand for bio-available mineral 

fertilizers is continuously increasing, mainly due to the rising world population, the increasing 

meat consumption, and the cultivation of energy crops (Godfray et al., 2010; Syers et al., 2008). 

This imbalance between availability and demand will continue to considerably push up the 

prices for nutrient resources in the near future. The increasing cost for fossil energy is another 

important price influencing factor, as a strong positive correlation between energy prices and 

fertilizer costs has been observed (Oskam et al., 2011). Next to these economic consequences, 

the current use of chemical fertilizers also results in an important environmental impact. The 

production and transport of these mineral fertilizers requires significant amounts of fossil energy 

(Gellings and Parmenter, 2004). For example, the production of reactive ammonium (NH4) 

through the extraction of unreactive atmospheric nitrogen gas (N2) via the Haber Bosch process 

amounts to a fossil energy consumption of 35.2-40.5 GJ ton-1 NH4 (EFMA, 2014). The total 

energy consumption is equivalent to ± 2 % of world energy use (EFMA, 2004; Sutton et al., 

2013). Hence, the dependency of agriculture on fossil reserve-based mineral fertilizers 

(especially N, P, and K) must be regarded as a very serious threat to future human food security 

(Sutton et al., 2013; van Vuuren et al., 2010).  

Despite these unfavourable prospects, a large amount of minerals is again dispersed in the 

environment through processing or disposal of waste streams, often in difficult to extract, non-

bio-available form such as sewage sludge, industrial sludge, manure, household waste, 

incineration ashes, etc. (Hou et al., 2012). In addition, the observed intensification of animal 

production and the resulting manure excesses, combined with a limited availability of arable 

land for the disposal of waste (manure, sludge, etc.) and the excessive use of chemical mineral 

fertilizers, has led to surplus fertilization and nutrient accumulation in many soils worldwide. 

These phenomena have caused environmental pollution. Leaching of nitrates and phosphates 
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or runoff to water bodies has led to eutrophication of surface waters, atmospheric emissions, as 

well as soil erosion (Sutton et al., 2013). In turn, these sources of pollution have stimulated the 

introduction of increasingly stringent regulations for the application of nutrients to agricultural 

fields, and have led to more strict requirements for the quality of discharge/emission from 

waste(water) treatment facilities (Kang et al., 2011; Ranatunga et al., 2013; WERF, 2010). A 

new global effort is needed to address ‘The Nutrient Nexus’, where reduced nutrient losses and 

improved nutrient use efficiency across all sectors simultaneously provide the foundation for a 

greener economy to produce more food and energy while reducing environmental pollution 

(Sutton et al., 2013; WERF, 2010). Indeed, nutrient cycles represent a key nexus point 

between global economic, social, and environmental challenges (Mo and Zhang, 2013; 

Sutton et al., 2013). 

In the case of P, for example, a recent global scenario analysis (Fig. 1.1) indicated that meeting 

the increasing long-term P demand would likely require demand management measures to 

reduce business-as-usual demand by two-thirds, and the remaining third could be met through 

a high recovery of P from human excreta, manure, food waste, and mining waste. However, 

achieving such a high recovery and reuse scenario will undoubtedly require substantial changes 

to physical infrastructure, new partnerships, and strategic policies to guide P recovery and 

reuse in an integrated way (Cordell and White, 2011).  

 

Figure 1.1 A sustainable scenario for meeting long-term future phosphorus demand (million  
ton y-1) through increased phosphorus use efficiency and recovery (Cordell and White, 2011). 

 

Medium (2020) and long-term (2050) strategic environmental policy objectives are being or 

have been set across the world in order to support the growth of a more innovative, resource-

efficient economy, based on the sustainable production of bio-based products (bio-energy and 
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bio-materials) from renewable biomass sources (Bio-Economy Network Canada, 2015; 

EuropaBio, 2014; Novotny, 2013; UNEP, 2013). In the framework of these objectives, the 

anaerobic (co-)digestion of sewage sludge, organic biological waste (crop residues and other 

food waste), and animal manure has been evaluated as one of the most energy-efficient and 

environmentally friendly technologies for bio-energy production, organic biodegradable waste 

valorization, and potential recovery of valuable nutrient resources, which are concentrated in the 

remaining (mineralized) digestate (EC, 2011; Fehrenbach et al., 2008; UNEP, 2013). Despite its 

great potential, further sustainable development of this technology is currently hindered, 

because these digestates can often not or only sparingly be returned to agricultural land in their 

crude unprocessed form. This is especially the case in high-nutrient regions, such as (parts of) 

Western Europe (e.g. Flanders (Belgium), the Netherlands, Nord-Rein Westfalen (Germany), 

Bretagne (France), Denmark, etc.), the Eastern and Midwestern United States of America 

(USA) and Canada (e.g. Quebec, Alberta, Ontario, Pennsylvania, California, etc.), and areas of 

East and South Asia, due to strict legislative constraints related to the overproduction of animal 

manure in comparison to the available arable land to spread it on (see above; FAO, 2004a; 

Lemmens et al., 2007; WCC, 2015). As such, for example, in Flanders (Belgium), digestates 

produced as a by-product from the (co-)digestion of animal manure are currently still 

categorized as ‘waste’ and ‘animal manure’ in environmental and fertilizer legislations and are 

penalised accordingly. Moreover, in most countries, periods when spreading fertilizer on 

agricultural land is allowed, are regulated in order to minimize nutrient leaching. Therefore 

storage capacity for digestate becomes expensive due to its high volume, and transportation 

problems may occur during application periods. Hence, further processing of digestate into 

transportable/exportable end products, concentrated mineral fertilizers (cfr. chemical fertilizers), 

and/or environmentally neutral components is required to overcome practical and potential 

environmental problems, and  legislative bottlenecks related to the direct application of 

digestate.  

So far, the technical approach for digestate processing was similar to the approach for the 

treatment of manure and wastewater. This means that the focus was on little cost-effective, 

energy-intensive, and non-sustainable nutrient removal practices through destruction or 

emission, e.g. biological nitrification/denitrification (Lemmens et al., 2007). Hence, again clearly 

a paradox exists: N is extracted as N2 from the atmosphere in large quantities for the chemical 

production of mineral fertilizers (see above: Haber Bosch process), whereas it is forced to 

transform again into N2 during digestate, manure, and wastewater processing. The challenge 

for anaerobic digestion plants now is to achieve optimal recovery and recycling of 

nutrients from the digestate in a sustainable way. As such, regulatory drivers can be met 

and an internal revenue source can be produced, i.e. the present ‘waste’ problem can be turned 

into an economic opportunity.  

Although to date many technologies for the recovery of nutrients from wastewater, manure, and 

digestate have been proposed and implemented to varying degrees, there is no common 

strategy to promote the use of these sources of nutrients by farmers (USEPA, 2012; WERF, 
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2010). As a consequence, the details of their application and potential benefits are not well 

established in the farming community (Novotny, 2012; WERF, 2010). Also, the price of 

recovered fertilizers is generally still higher than the price of chemical fertilizers, resulting in a 

persistent uncertainty of fertilizer sales (EC, 2011; Seymour, 2009; USEPA, 2013). Moreover, a 

high inconsistency in marketing prices has been observed in regions where commercialization 

has been possible (Seymour, 2009). Challenges remain with regard to the recovery of nutrients 

as pure marketable commodities with stable composition and added value for the agricultural 

sector, such as controlled- or slow-release granular fertilizer products or concentrated solutions 

with high nutrient use efficiency (Guest, 2015; Rahman et al., 2014; WERF, 2010). Much more 

could also be done in terms of identifying markets for recovered nutrients and bringing down 

barriers to their increased use, and implementing and optimizing the technologies that are 

already available (Guest, 2015; Khunjar and Fisher, 2014; Novotny, 2013; Seymour, 2009; 

USEPA, 2012; WERF, 2010).  

 

1.2 Problem statement, objectives, and impact  

1.2.1 Problem statement and specific research objectives     

This PhD dissertation aims at stimulating the transition to a bio-based economy by providing 

(tools to develop) sustainable strategies for nutrient (and energy) recovery from digested 

biodegradable waste (hereafter referred to as bio-digestion waste or digestate) with economic 

valorization of the recovered products as: i) renewable bio-based substitutes for chemical 

fertilizers (= inorganic recovered products) and/or ii) sustainable bio-based organo-mineral 

fertilizers (= organic products containing recycled nutrients) in agriculture. Specifically, this 

research strives to optimize and foster the implementation of best available technologies for 

nutrient recovery (= technology push) with focus on demand-driven agricultural valorization of 

the recovered products (= market pull). The specific objectives of this multidisciplinary PhD are 

pursued through three complementary research phases:  

PHASE I: Technology inventory and product classification  

� Problem statement I.1: The choice of the best set of nutrient recovery technologies 

(NRTs) depends on the characteristics of the input waste stream and has a strong 

influence on the composition and properties of the resulting fertilizer end and by-

products. Understanding the fundamentals of the existing processes is thus of 

paramount importance to sustainably create new high-quality fertilizers. Contemporary 

knowledge on NRTs is spread over a handful of academic and industrial experts, but an 

overall comprehensive overview is lacking. Moreover, a classification of recovered 

products on the basis of their fertilizer properties is missing. Consequently, the use of 

bio-based fertilizers is hindered, as these products are mostly classified as waste in 

environmental legislation, despite the fact that some of them have similar properties as 

conventional fossil reserve-based chemical fertilizers.  
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� Objective I.1: To create a systematic overview of technologies for nutrient recovery 

from bio-digestion waste and a classification of the resulting end products. Hereby, it is 

also aimed to investigate the technical and economic state-of-the-art of the existing 

technologies and those under development, and to gather available information on 

product quality.  

 

PHASE II: Product value evaluation 

� Problem statement II.1: During anaerobic digestion and digestate processing, multiple 

derivatives are produced, some of them having potential for reuse as chemical fertilizer 

substitutes. In-depth research on the composition and properties of these products 

compared to conventional fertilizers is scarce, and studies on the fate of nutrients in 

digestate processing are lacking, though very relevant.  

� Objective II.1: To characterize the physicochemical properties of digestate and its 

various (recovered) derivatives on different points in time and for different full-scale 

installations in order to conduct complete mass balance analyses. Special attention 

should be given to general conditions, electrical conductivity and pH, macronutrients 

and their speciation, essential and non-essential trace elements, organic carbon, and 

nutrient ratios. Potential bottlenecks for reuse should be identified. 

� Problem statement II.2: In general, the production cost of recovered fertilizers is still 

higher than the price of chemical mineral fertilizers. Even when producers reduce their 

marketing cost, agricultural use will remain limited because there is no common strategy 

to promote the use of these nutrient sources by farmers. Existing economic studies on 

technology evaluation do not take the whole-chain-benefits of nutrient recovery into 

account, although overall costs for the agricultural and waste processing sector may 

significantly reduce when nutrient recovery strategies would be applied.  

� Objective II.2: To perform an economic and ecological evaluation of different bio-

based fertilization scenarios in a concept of cradle-to-cradle agricultural reuse of 

valuable macro- and micronutrients, and to explore the whole-chain marketing value of 

the recovered products as compared to chemical mineral fertilizers. 

� Problem statement II.3: An important issue in resource recovery is social perception 

and agricultural acceptance. Currently, the agricultural use of recovered products is 

marginal, because its availability is still limited to farmers and as such, the details of its 

application and potential benefits are not well established in the farming community. 

Long-term field experiments are required to prove and validate the fertilizer potential of 

these products. This will help to better classify bio-based products in legislation 

concerning environment and fertilizers, and serve as a support to stimulate their use.   

� Objective II.3: To experimentally assess the fertilizer potential and impact on soil quality 

and crop production by field and greenhouse application of renewable fertilizers as 

compared to traditional agricultural practices using chemical fertilizers and animal 

manure (= agronomic evaluation). 
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PHASE III: Process modelling and optimization 

� Problem statement III.1: Mathematical models are becoming important tools to aid 

technology development, process operation, and optimization. However, current models 

used for conventional treatment plant design, process optimization, and control do not 

allow the integration of nutrient recovery practices. This flaw is related to the omission of 

key fundamental physicochemical components and reactions that are essential to 

mathematically describe nutrient recovery. Thus, to date, no generic models for nutrient 

recovery systems based on adequate chemical speciation and reaction kinetics are 

available and implemented. Consequently, the potential to adequately put together a 

treatment train of unit processes and their operating conditions to maximize resource 

recovery and fertilizer quality is missing.  

� Objective III.1: To develop generic integrated biological-physicochemical process 

models for the best available nutrient recovery systems based on in-depth chemical 

speciation and reaction kinetics, aiming at fertilizer quality and quantity as model 

outputs.    

� Problem statement III.2: Although many industrial technologies for nutrient recovery 

are already proposed and used to varying degrees, challenges remain in improving their 

operational performance, decreasing the economic costs, and recovering the nutrients 

as marketable products with added value for the agricultural sector. Finding the 

appropriate combination of technologies for a particular waste flow and the optimal 

process conditions for the overall treatment train is a key concern.  

� Objective III.2: To apply the developed models as a tool for process optimization of 

single nutrient recovery systems, as well as for determining optimal combinations of unit 

processes in order to maximize resource recovery (nutrients, energy) from a particular 

waste stream and minimize energy and chemical requirements.   

 

1.2.2 Overall objectives and expected impact  

Overall, this research aims to support the transition from a fossil reserve-based to a bio-based 

economy by facilitating sustainable resource management through nutrient and energy recovery 

via anaerobic digestion of biodegradable wastes and valorization of the resulting digestate in a 

cross-sectorial approach (Fig. 1.2). 

At the scale of waste(water) (including manure, sludge, digestate, etc.) treatment, the aim is to 

promote the transition from treatment or disposal plants to waste(water) resource recovery 

facilities (WRRFs). Nowadays, significant amounts of energy are wasted through the production 

(via Haber Bosch and mining; see above) and associated transport of bio-available nutrients 

(e.g. NH4-N) from sources that are not bio-available (e.g. atmospheric N2) (Fig. 1.3: upper red 

arrows). However, ultimately these bio-available nutrients end up in waste(water) treatment 

plants (WWTPs), where they are generally transformed again into a non-bioavailable form 
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Figure 1.2 Cross-sectorial approach to sustainable resource management.  
Red arrows: current non-sustainable approach. Green arrows: targeted sustainable approach. 

Note that energy and nutrient recovery are often integrated in the water recovery facility.  
 

 

 

Figure 1.3 Cross-sectorial transition from nutrient removal to recovery.  
Red arrows: non-sustainable nutrient flows that should be minimized. 

Green arrows: targeted sustainable closed nutrient cycle. 
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using energy intensive processes, e.g. biological nitrification-denitrification (Fig. 1.3: lower red 

arrows). This research targets the sustainable extraction of bio-available nutrients from 

waste(water) systems and subsequent reuse as concentrated bio-based fertilizers with high 

nutrient use efficiency (Fig. 1.3: green arrows). Hence, overall, at the scale of waste(water) 

treatment, it is aimed to stimulate the paradigm shift from non-sustainable practices of nutrient 

removal into sustainable approaches of cradle-to-cradle nutrient recovery.  

As such, this PhD research clearly addresses ‘the Nutrient Nexus’ and is therefore very 

important to the three pillars of sustainable development: environment, society, and economics 

(Fig. 1.4).  

Figure 1.4 ‘The Nutrient Nexus’: nutrient cycles represent a key nexus point between global 
economic, social, and environmental challenges; improving full-chain Nutrient Use Efficiency 

becomes the shared key to delivering multiple benefits (Sutton et al., 2013). 

 

The current imbalance between nutrient availability in waste(water) treatment systems and the 

demand for high-efficiency fertilizers in agricultural systems will lead to continuously increasing 

costs of nutrient resources in the near future. By providing strategies for nutrient recovery, 

treatment plants may reduce their environmental impact, while at the same time allowing to 

market recovered nutrients for high-quality reuse and increase their profitability. On the other 

hand, by converting to the use of sustainable and effective fertilizers, such as slow-release 

granules or concentrated solutions with high nutrient use efficiency, the agricultural sector can 

reduce its environmental impact caused by nutrients, can become less dependent of the use of 

chemical fertilizers, and improve its social acceptance, while developing a sustainable and 
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profitable agriculture. This PhD dissertation further develops the concepts of closing nutrient 

cycles (= waste to feed/food), thereby stimulating the decoupling of economic growth from the 

use of natural resources, addressing food security for future generations, and mitigating the 

environmental impact of traditional waste stream processing or disposal. Ultimately, this 

research may help reducing the waste of finite resources and environmental pollution, while 

residues may acquire economic value. This would open up new opportunities for sustainable 

and more bio-based economic growth and thus create a win-win situation for both the 

environment, society, and the economy in Belgium, Canada, and beyond. 

 

 

 

1.3 Originality  
 The originality of the present work can be considered from different points of view (Fig. 1.5). 

 

 
 

 

 

 

 

 

 

 

 
Figure 1.5 Schema indicating the originality of the PhD dissertation.  

Boxes refer to current available research studies.  
Arrows indicate the focus of this PhD.  

 

Current available studies focusing on nutrient recovery technology development and 

optimization (mainly conducted by industry) do mostly not consider the fertilizer value and 

demand of the resulting products, nor the integration of the technology in treatment trains for 

nutrient recovery. On the other hand, studies concerning the evaluation of recovered fertilizer 

quality (mainly on struvite, produced at lab-scale, mostly performed by universities or research 

groups) do not account for the variable conditions under which these fertilizers have to be 

produced. Furthermore, although mathematical models are useful tools for technology 

development, process operation, and optimization, current models are incapable to adequately 
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put together a treatment train of unit processes and to evaluate the operating conditions that 

maximize nutrient recovery and fertilizer quality at minimal cost.  

The originality of the present work resides in its focus on bridging the gap between 

industrial technology development (= technology push) and demand-driven nutrient 

valorization (= market pull) following a multidisciplinary cross-sectorial approach. The 

research integrates a technology inventory and product classification, economic and ecological 

scenario analyses, experimental data assessments (focusing on technology AND product 

quality), modelling and treatment train optimization, to select and optimize whole-chain 

sustainable nutrient recovery strategies. For the first time, the available knowledge on nutrient 

recovery technologies (state-of-the-art, process conditions, economics, commercial processes 

available, etc.) is compiled in a comprehensive overview, while the resulting end products are 

classified according to their fertilizer characteristics. Moreover, new (best available) products, 

such as ammonium sulfate from acidic air scrubbers, are used as sustainable substitute for 

conventional chemical fertilizers (next to other digestate derivatives) in different original bio-

based fertilization scenarios at the field-scale. Also highly innovative is the development of 

three-phase dynamic process models for nutrient recovery systems based on adequate 

chemical speciation and their application for treatment train optimization. As such, unit process 

interactions (input characteristics, chemical dosage, fertilizer production, etc.) can be 

considered, and strategies that maximize sustainable benefits can be determined. 

 

1.4 Dissertation plan and interrelationships  
Multidisciplinary in nature, this dissertation consists of three complementary phases (see 

Section 1.2): 1) technology inventory and product classification, 2) product value evaluation, 3) 

process modelling and optimization. The first two phases were conducted at Ghent University 

(Belgium, PhD supervisors: Prof. F.M.G. Tack and Prof. E. Meers), whereas the third phase 

was conducted at Université Laval (Quebec, Canada, supervisor: Prof. P.A. Vanrolleghem) in 

collaboration with the enterprise Primodal Inc. (Quebec, Canada, supervisor: Dr. E. Belia). The 

dissertation is presented in a paper format. The principal objective of each chapter and how it 

interconnects with other chapters of the dissertation is detailed in Figure 1.6 and further 

described below. An overview of the peer-reviewed papers used per chapter, with indication of 

the state of publication and the co-authors is provided in Table 1.1.  
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Figure 1.6 Overview of the PhD research strategy and interrelationships. 
Phase I: technology inventory and product classification;  

Phase II: product value evaluation; Phase III: process modelling and optimization.  
Blocks and phase numbers correspond to the objectives defined in Section 1.2.1. 

 
Table 1.1 Overview of peer-reviewed papers per chapter, state of publication, and co-authors. 
Note: other publications (national papers, scientific reports, proceedings, etc.) are given at the 
end of this dissertation.  

a AZ = Aga Zeleke; DK = Daniel Koster; DS = David Styles; EB = Evangelina Belia; EB2 = Enrico Benetto; EM = Erik               
  Meers; EM2 = Evi Michels; FA = Frederik Accoe; FC = Filip Claeys; FT = Filip Tack;  GG = Greet Ghekiere; GT = 
  Gunar Thelin; IV = Ian Vázquez-Rowe; JB = Jeroen Buysse; JJ = Joery Janda; KG = Katarzyna Golkowska; LR = Lena  
  Rodhe; PA = Paul Adams; PC = Patrick Christiaens; PV = Peter Vanrolleghem; TD = Tina D’hertefeldt; TP = Thomas  
  Prade; VL = Viooltje Lebuf.  
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The work begins with a systematic overview and critical comparison of available and 

developing technologies for nutrient recovery from bio-digestion waste, as well as a 

classification of the resulting end products in Chapter 2 (= Phase I, Paper 1; Vaneeckhaute et 

al., 2013a). Note that this chapter was continuously updated and completed by inclusion of the 

findings obtained throughout this PhD research.  

Chapters 3 to 7 cover the experimental content of the dissertation aiming at product value 

evaluation (= Phase II). In Chapter 3, the fate of macronutrients in digestate processing is 

investigated through detailed physicochemical and mass balance analyses of a full-scale 

recovery facility (Paper 2; Vaneeckhaute et al., 2012). Based on further in-depth product 

characterizations, an economic and ecological evaluation of different agricultural reuse 

scenarios is presented in Chapter 4 (Paper 3; Vaneeckhaute et al., 2013b). The most 

interesting scenarios are selected for field-scale implementation. The fertilizer potential and the 

impact on soil and crop production of these bio-based fertilization scenarios as substitutes for 

conventional practices, using animal manure and chemical fertilizers, in agriculture is then 

explored by means of field and greenhouse experiments in Chapters 5-6 (Papers 4-7; 

Vaneeckhaute et al., 2013c, 2014, 2015a, 2015b). Chapter 5 provides the proof-of-concept of 

closing nutrient cycles in a cradle-to-cradle approach by means of two-year field-trial results, 

using high-level performance indicators for measuring farming’s pressure on the environment 

and how that pressure is changing over time. Recommendations for good management 

practices for the implementation of bio-based fertilization scenarios are also provided.  

It should be noted that, in line with (European) legislative constraints, Chapters 4 and 5 mainly 

focus on the (simultaneous) replacement of conventional fertilization, i.e. animal manure 

additionally supplied with chemical N and K fertilizers, by bio-based alternative scenarios. 

Nevertheless, in light of P depletion and the increasingly strict regulations for P fertilizer 

application to agricultural soils (especially in P saturated regions), the effective use of (fixed) soil 

P and the recovery of products with high P use efficiency evidently also deserves increased 

attention. The field-scale assessment above revealed interesting observations in terms of soil P 

extraction when applying bio-based products. In order to confirm and further study these 

findings, a detailed greenhouse experiment evaluating the P release and use efficiency of 

various bio-based P fertilizers as compared to their fossil reserve-based counterparts is 

elaborated in Chapter 6.   

Given the beneficial agronomic value of struvite as concentrated P fertilizer in Chapter 6, a brief 

lab-scale experiment is presented in Chapter 7 (Paper 8) showing the potential of various pre-

treatments to improve the release of P in the liquid fraction of digestate during solid-liquid 

separation. This is especially relevant in P saturated regions to increase the local valorization of 

the remaining (P-poor) organic thick fraction, meanwhile increasing the struvite (or Ca/Mg-P 

precipitate or concentrated P-solution) recovery potential from the liquid fraction and its purity. 

Indeed, the current potential for struvite production is often limited as traditional digestate 



 

14  

processing practices mostly involve the (non-sustainable) elimination of P and organic carbon 

from the local agricultural cycle through export of the separated thick fraction.  

Chapters 8 to 10 cover the modelling content of the dissertation (= Phase III). Indeed, although 

the above chapters provide evidence of the agronomic, economic, and ecological value of bio-

based products, a prerequisite for marketing is that they can compete with conventional fertilizer 

quality specifications. The findings illustrate that mathematical models can be very valuable 

tools for optimization of both process/treatment train performance and fertilizer quality.  

First, important fertilizer quality specifications (based on the previous chapters), as well as 

advances and limitations in modelling of nutrient recovery systems are reviewed in Chapter 8 

(Paper 9; Vaneeckhaute et al., 2015c). This is necessary to clearly define and justify the specific 

modelling objectives and approach. In Chapter 9 (Paper 10), the development, implementation, 

and validation of a generic nutrient recovery model (NRM) library with focus on the 

sustainable production of marketable fertilizers is elaborated. Chapter 10 (Paper 11) presents 

global sensitivity analyses, performed to identify the factors (input characteristics, operational 

conditions, and kinetic parameters) with the highest impact on the model outputs of interest. 

Increased insights in the interactions between unit process inputs and outputs are reported and 

recommendations for future monitoring and research are provided. Based on the results, the 

valuable use of the NRM library as a tool for configuration and optimization of nutrient 

recovery treatment trains that maximize resource recovery and minimize energy and chemical 

requirements is demonstrated.  

Finally, in order to facilitate communication and nutrient recovery scenario implementation, a 

generic roadmap for setting up nutrient recovery strategies from digestate is presented in 

Chapter 11 (Paper 12). This chapter should provide useful guidance for waste(water) 

processing utilities aiming at implementing nutrient recovery strategies.  

In addition, the data obtained in this dissertation were and are being used by various research 

institutions (Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg, 

University of Bath, Bath, United Kingdom, UK, and Bangor University, Gwynedd, UK) for 

holistic life cycle assessments (LCA) of digestate processing and nutrient recovery 

strategies. A summary of the main findings obtained to date is provided in Chapter 12 (Papers 

13-15). These LCA studies provide quantitative estimations of the overall improvements in 

process sustainability and can therefore greatly help in global policy making, communication, 

and stimulation of recovery scenario implementation. 

Finally, based on all results, observations, and experiences acquired during the PhD research, 

general conclusions and recommendations towards the different stakeholders in the field of 

nutrient recovery are compiled in Chapter 13.  
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CHAPTER 2: 
NUTRIENT RECOVERY FROM BIO-DIGESTION 

WASTE: SYSTEMATIC TECHNOLOGY REVIEW  

AND PRODUCT CLASSIFICATION  

 

Digestate production through anaerobic digestion: bottleneck or opportunity?  

(Picture: Roese Energietechnik GmbH, Breitungen, Germany) 
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revisions submitted. Nutrient recovery from bio-digestion waste: Systematic technology review 

and product classification. 



 

20  

Abstract   
Nutrient recovery from digested biodegradable waste as marketable products has become an 
important task for anaerobic digestion plants to meet both regulatory drivers and market 
demands, while producing an internal revenue source. As such, the present waste problem 
could be turned into an economic opportunity. The aim of this chapter was to provide a 
comprehensive overview and critical comparison of the available and emerging technologies for 
nutrient recovery from digestate and a classification of the resulting end products according to 
their fertilizer characteristics. Based on the stage of implementation, the technical performance, 
as well as financial aspects, struvite precipitation/crystallization, ammonia stripping and 
(subsequent) absorption using an acidic air scrubber were selected as best available 
technologies to be applied at full-scale for nutrient recovery as marketable fertilizer 
commodities. The resulting end products can and should be classified as renewable N/P-
precipitates and N/S-solutions, respectively, in fertilizer and environmental legislations. This 
would stimulate their use and foster nutrient recovery technology implementation. A promising 
technology also exists in vibratory membrane filtration for the recovery of both N/K-concentrates 
and reusable water. However, the technical and economic performance of this technology for 
the treatment of digestate is to be studied at pilot- and full-scale. Further research on the 
physicochemical characteristics of recovered products, as well as on the agronomic, 
environmental, and economic impact of substituting conventional (chemical) fertilizers by bio-
based alternatives is indispensable for effective marketing and application of these commodities 
as renewable fertilizers in agriculture. 
 

Keywords: anaerobic digestion; bio-based fertilizers; digestate; residuals valorization; 

sustainable agriculture; sustainable resource management. 
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Résumé 
La récupération de nutriments à partir de déchets biodégradables digérés et la confection de 
produits commercialisables sont devenues des tâches importantes des installations de 
digestion anaérobie afin de répondre aux exigences réglementaires et celles du marché, tout en 
produisant une source de revenus interne. Ainsi, le problème des déchets pourrait être 
transformé en une opportunité économique. L’objectif de ce chapitre était de fournir une vue 
d'ensemble et une comparaison critique des technologies disponibles et émergentes pour la 
récupération des nutriments présents dans le digestat et une classification des produits finaux 
en fonction de leurs propriétés fertilisantes. Basé sur l’état de la mise en œuvre, la performance 
technique ainsi que les aspects financiers, la précipitation/cristallisation de struvite, le stripage 
et l’absorption (ultérieure) d'ammoniac en utilisant un laveur à air acide ont été sélectionnés à 
titre des meilleures technologies disponibles applicables à grande échelle pour la récupération 
des nutriments comme produits fertilisants commercialisables. Les produits finaux résultants 
peuvent et devraient être classées comme N/P-précipités et N/S-solutions renouvelables, 
respectivement, dans les législations sur les engrais et celles sur l’environnement. Cela 
stimulerait leur utilisation et favoriserait la mise en œuvre des technologies pour la récupération 
des nutriments. Une technologie prometteuse supplémentaire, la filtration membranaire 
vibrante, permet également la production de N/K-concentrats et d’eau réutilisable en même 
temps. Cependant, la performance technique et économique de cette technologie devrait être 
étudiée davantage à l’échelle du pilote et à grande échelle. De plus amples recherches sur les 
caractéristiques physicochimiques des produits récupérés, ainsi que sur l'impact agronomique, 
environnemental et économique de la substitution des engrais conventionnels (chimiques) par 
des alternatives biologiques sont indispensables pour la commercialisation et l'application 
efficace de ces produits comme engrais renouvelables dans le secteur agricole. 
 
Mots-clés: agriculture durable; bio-engrais; digestat; digestion anaérobie; gestion durable des 

ressources; valorisation des résidus. 
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2.1 Introduction  
The focus of waste management has shifted from disposal and destruction to minimization, 

recovery, and recycling. Anaerobic (co-)digestion is an established, environmentally friendly, 

and efficient technology to convert animal manure, sewage sludge, organic biological 

food/industrial wastes, and/or energy crops into renewable energy and digestates rich in bio-

available (macro)nutrients (Batstone and Jensen, 2011; Fehrenbach et al., 2008; Mata-Alvarez 

et al., 2014; Wilkinson, 2011). Despite its high potential, the further sustainable development of 

this technology is currently hindered, especially in high-nutrient regions, because the digestate 

cannot or only sparingly be returned to agricultural land in its crude form. This technical barrier 

is mainly posed by legislative constraints (strict nitrogen (N) and phosphorus (P) fertilization 

levels in the frame of environmental legislations), as well as practical (large volumes) and 

economic (high transportation and storage costs) complications (Chapter 1; Lemmens et al., 

2007). Further processing is required in order to concentrate and recover the nutrients as high-

quality end products, thereby overcoming the obstacles related to the direct application of 

digestate. 

The selection of the nutrient recovery technology (NRT) depends on the input waste stream 

characteristics and has a strong influence on the composition and properties of the resulting 

fertilizer end and by-products. Understanding the fundamentals of the existing processes is thus 

of paramount importance to sustainably create new high-quality fertilizers. Contemporary 

knowledge on NRTs and product quality is spread over a handful of academic and industrial 

experts. Reviews on the potential of particular technologies, e.g. struvite crystallization (Le 

Corre et al., 2009), microalgae production (Fenton and Uallachain, 2012), membranes (Masse 

et al., 2007), and on P recovery only (Desmidt et al., 2015; Morse et al., 1998), have been 

published, but an overall comprehensive overview is lacking. Moreover, a shortcoming of many 

research articles and reviews on nutrient recovery is the lack of attention given to the quality, 

value, and demand for the final nutrient product. Because of these flaws, the use of recovered 

bio-based fertilizers is currently not or not sufficiently encouraged in environmental legislations 

(mostly these products are classified as waste), although some of them have similar properties 

as conventional fossil reserve-based chemical fertilizers (see Chapters 3-6; Vaneeckhaute et 

al., 2012, 2013a,b,c, 2014, 2015a, 2015b). In turn, these legislative bottlenecks hinder the 

marketing and efficient use of bio-based products. 

The aim of this chapter is to provide a systematic overview and critical comparison of 

technologies for the recovery of macronutrients from digestate, as well as a classification of the 

resulting end products based on their fertilizer characteristics. The focus is on the recovery of N, 

P, and potassium (K), but parallel attention is given to sulfur (S), calcium (Ca), and magnesium 

(Mg). First, the general composition of digestate is briefly discussed (Section 2.2). In the core of 

this chapter, the technical and economic state-of-the-art of the existing technologies and those 

under development is explored (Section 2.3) and available information on product quality and 

value is compiled (Section 2.4.1-2.4.2). Qualitative and legislative requirements for effective 
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fertilizer marketing, as well was market trends and prices are also discussed (Section 2.4.3-

2.4.4). To this end, an intensive discussion platform was established involving existing 

international academic experts, administrations, and companies active in the field of nutrient 

recovery. A detailed literature review was also conducted. Financial and technical aspects for 

the most established technologies at full-scale were further investigated by requesting budget 

proposals using a predefined questionnaire to key technology suppliers in the field. The survey 

involved capital and operational costs, use of consumables, recovered product quality, and 

potential revenues, among other technical items. As such, this review chapter can provide the 

fundamental basis to classify and categorize recycled products in environmental and fertilizer 

legislations, thereby stimulating their economic valorization as marketable commodities. This, in 

turn, may foster the development and implementation of innovative nutrient recovery 

technologies.   

 
2.2 Digestate characteristics    
Digestate is the remaining product after biogas production in an anaerobic digester. It contains 

the non-digested recalcitrant organic fraction, water, micro- and macronutrients (Möller and 

Müller, 2012; Vaneeckhaute et al., 2012, 2013b,c, 2014). The composition of digestate varies 

strongly according to the composition of the feedstock (biodegradable waste) that is digested. 

Hence, giving a standard composition of digestate is not possible. Because of this constraint, 

213 digestates from different (co-)digestion plants in Flanders (Northern part of Belgium 

confronted with high nutrient pressure) were sampled and analyzed during four years (2008-

2011; Vlaco, 2012). Product quality ranges are compiled in Table 2.1. Based on the results, a 

short overview of how physicochemical characteristics change during the digestion process and 

how the feedstock influences the digestate composition is given below.  

 
Table 2.1 Composition (10th percentile, median, 90th percentile; No. of observations: 213) of 
unprocessed digestate (VLACO, 2012). w% = % on fresh weight. 

 

 Parameter Unit Unprocessed digestate  
   10-perc median 90-perc  

Dry weight w% 4.98 8.70 12.0  
Organic matter w% 2.8 5.3 7.6  
pH(H2O) - 8.1 8.3 8.6  
Electrical conductivity mS cm-1 20 32 45 

 Total N w% 0.17 0.42 0.75  
NH4-N g L-1 0.52 2.15 3.41  
NO3-N mg L-1 3.10 5.85 10.0  
C:N-ratio - 3.89 6.58 13.7  
Total P2O5 w% 0.14 0.39 0.65  
Total K2O w% 0.20 0.35 0.50  
Total CaO w% 0.16 0.30 0.55  
Total MgO w% 0.03 0.09 0.20  
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During anaerobic digestion, easily degradable organic matter is converted into methane (CH4) 

and carbon dioxide (CO2), while complex organic matter, such as lignin, remains in the 

digestate, thereby increasing its amount of effective organic carbon (OC). This is the OC that 

remains in the soil after one year and thus contributes to the humus built-up (average: 33.7 kg 

ton-1 in digestate vs. 20.0 kg ton-1 in pig manure on fresh weight (FW); Vlaco, 2012). As such, 

the digestate contains important soil-improving qualities (WPA, 2007). The percentage of 

organic dry matter can vary between 30 and 80 %, with lower values for increasing slurry 

fractions and higher values for increasing fractions of kitchen and garden waste (KGW). The 

average dry matter content of 100 % KGW was estimated at 21 % (WPA, 2007), whereas the 

median dry matter content of the 213 studied digestates amounted to 8.7 % (Table 2.1).  

Due to the degradation of 70-90 % of volatile fatty acids (VFAs) during digestion, the pH is 

increased and odor emissions are significantly lower during the application of digestate on 

agricultural fields as compared to pig slurry (Bond et al., 2012). The pH of slurry is on average 

7.1 (WPA, 2007), whereas the median digestate pH amounts to 8.3 (Table 2.1). However, the 

higher pH causes an increased risk for NH3 volatilisation. This is why injecting the digestate is 

strongly advised (WPA, 2007).  

Next, during the digestion process, organically bound N is released as ammonium (NH4
+), which 

is directly available for crop uptake. The higher the share of NH4-N, the higher the efficiency of 

the digestate as a N fertilizer. An input stream with a high N level is pig slurry (average: 6.78 kg 

N ton-1 FW), in comparison to cattle slurry (3.75 kg N ton-1 FW) and maize (4.00 kg N ton-1 FW) 

(WPA, 2007). The Vlaco (2012) data showed a median total N content of 4.2 kg N ton-1 FW 

(Table 2.1). When digesting raw pig slurry, more than 80 % of the N becomes available as 

NH4
+. However, for digestates produced from organic waste such as KGW, the share of NH4

+ is 

often not higher than 44-47 %, which is even lower than the value for raw pig slurry (± 60 %). 

Digestates with a low NH4-N content are mostly originating from organic food/industrial wastes, 

including KGW (WPA, 2007). 

Furthermore, the total P content of the input streams is not changed during the digestion 

process, but the organically bound P becomes available for the plant during digestion. Pig slurry 

has a high P2O5 content of roughly 5 kg ton-1 FW. By adding co-products to pig slurry the P2O5 

content of the digestate is somewhat lowered. The 213 studied digestates showed a median 

total P2O5 content of 3.9 kg ton-1 FW (Table 2.1).  

Also the total contents of K, Ca, Mg, and heavy metals are not altered during anaerobic 

digestion. K, Ca, and Mg become soluble. Zinc (Zn) and copper (Cu) contents in the digestate 

can become critically high, especially during the digestion of 100 % pig slurry, since the dry 

matter content decreases. This can hinder the beneficial reuse of recovered products, although 

both elements are essential micronutrients for healthy plant growth (Hillel, 2008).   

Finally, impurities such as weed seeds and pathogens can be killed off during the digestion 

process (Bond et al., 2012). The extent to which this inactivation is sufficient depends entirely 

on the temperature and residence time in the digester and on the type of organism.   
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2.3 Technology overview 

2.3.1 Three-step framework for nutrient recovery  

Before going into the details of the nutrient recovery technologies for digestate treatment, one 

should be aware that anaerobic digestion itself usually constitutes an intermediate step, among 

other potential technologies, in the processing treatment train. Indeed, from a technological 

perspective, nutrient recovery from biodegradable waste for reuse as concentrated fertilizer 

products can be represented by a three-step framework (Fig. 2.1). Note that not all recovery 

systems require all three components.    

 

 

Figure 2.1 Three-step framework for nutrient recovery as  
          concentrated fertilizer products. 

 
First, a concentration step can be applied to increase the nutrient content (N → 1000 mg L-1 and 

P → 100 mg L-1) of the waste stream. Established technologies for this purpose are enhanced 

biological P removal (EBPR) (Lesjean et al., 2003; Pastor et al., 2008), adsorption/ion exchange 

(Jorgensen and Weatherley, 2003), the use of biomass such as algae, duckweed, and purple 

non-sulfur bacteria (Gonzalez-Fernandez et al., 2011; Xu and Chen, 2011), chemical 

precipitation (De Haas et al., 2000; Pratt et al., 2012), and nanofiltration/reversed osmosis 

(Masse et al., 2007). Next, a nutrient release/stabilization step may be used to generate a low 

flow stream with high nutrient availability. Based on the digestate characteristics presented 

above (Section 2.2), anaerobic digestion can be categorized as a nutrient release/stabilization 

step. Other potential technologies for this purpose are aerobic digestion (Liu et al., 2010), 

thermolysis (Azuara et al., 2013), sonication (Castrillon et al., 2011), microwave treatment 

(Tyagi and Lo, 2013), or chemical extraction (Carrere et al., 2010).  

Finally, the nutrient extraction or recovery step may take place. To date, there is no 

straightforward definition of a nutrient recovery technology (NRT). In this review we consider 

an NRT as a process that: 1) creates an end product with higher nutrient concentrations 

than the crude digestate (= concentrated product that contains both minerals and 

organics), or 2) separates the envisaged nutrients from organic compounds, with the aim 

to produce an end product that is fit for use in the chemical or fertilizer industry or as a 

chemical fertilizer substitute. The breakthrough of such technologies would make it possible 

to reuse reactive nutrients locally and close nutrient cycles in a cross-sectorial cradle-to-cradle 

approach (Chapter 1: Fig. 1.2). The existing and developing NRTs for digestate processing are 

further reviewed and discussed in the sections below. The preceding concentration and 

alternative nutrient release/stabilization steps are out of scope of the present review, and will 
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thus not be studied. Reference is made to Mehta et al. (2015) for a technology description of 

such processes.  

 

2.3.2 Digestate processing technologies 

In the past decade, a diverse range of technologies that can be applied for digestate processing 

has been developed. However, certainly not all of them can be considered as an NRT. An 

overview of existing digestate processing technologies is presented in Figure 2.2. The 

technologies delineated as NRT are indicated in shaded boxes. It must be noted that these 

technologies could also be applied on undigested manure, sludge, and wastewater. However, 

as indicated above, implementing anaerobic digestion as an intermediate step can highly 

improve the overall process efficiency. 

 

Figure 2.2 Schematic overview of digestate processing technologies.  
Shaded boxes: nutrient recovery technology (NRT). 

 

In general, digestate processing starts with a mechanical separation into a liquid fraction and 

solid or thick fraction (Hjorth et al., 2010). Most of the N and K end up in the liquid fraction, while 

most of the recalcitrant organic matter, P, Ca, and Mg is recovered in the thick fraction (Chapter 

3; Vaneeckhaute et al., 2012). From literature, the technologies for nutrient recovery from the 

liquid fraction available or under development today are: 1) chemical crystallization (Le Corre et 

al., 2009; Uludag-Demirer et al., 2005), 2) gas stripping and absorption (Bonmati and Flotats, 

2003; Gustin and Marinsek-Logar, 2011; Liao et al., 1995), 3) acidic air scrubbing (Bonmati and 
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Flotats, 2003; Melse and Ogink, 2005; Melse et al., 2009), 4) membrane separation (Kertesz et 

al., 2010; Ledda et al., 2013; Waeger et al., 2010), 5) ammonia sorption (Guo et al., 2013; Pelin 

et al., 2013; WRAP, 2012), and 6) biomass production and harvest (Gonzalez-Fernandez et al., 

2011; Xu and Shen, 2011). For the thick fraction, only P extraction from ashes produced by 

combustion or pyrolysis can be considered a potential NRT (Adam et al., 2009; Schoumans et 

al., 2010). However, as it is critically questioned whether incineration is a sustainable 

technology, the interest is growing to maximally extract nutrients from the crude digestate, 

thereby eliminating the solid-liquid separation step or producing an organic, P-poor thick 

fraction. For extractive nutrient recovery to become a viable option, the process must have an 

equivalent treatment efficiency as conventional treatment, the process must be cost-effective, 

the process must be simple to operate and maintain, and most importantly, there must be a 

market for the recovered nutrient products. The technical and economic state-of-the-art of 

the above-mentioned NRTs is discussed below. Product quality and fertilizer markets are 

discussed in section 2.4. All costs are expressed in euros (€) and Canadian dollar (CAD) (€ 1 ≈ 

1.415 CAD; November 2014).  

 

2.3.3 Phosphorus precipitation and crystallization (NRT 1) 

2.3.3.1 Chemical struvite recovery  

Nutrient recovery through P precipitation and crystallization is a mature technology, mostly 

involving the addition of Mg (MgO/MgCl2) to a solution containing soluble PO4-P (ortho-P) and 

ammonium, thereby increasing the pH to 8.3-10 and inducing the precipitation of struvite, 

MgNH4PO4:6H2O (Le Corre et al., 2009). The process has been implemented at full-scale 

installations for wastewater, (digested) sludge and manure treatment, as well as at pilot-scale 

for the treatment of crude digestate. The most established processes commercially available 

today are: i) AIRPREX, Berliner Wasserbetriebe (Germany, DE), ii) ANPHOS, Colsen (the 

Netherlands, NL), iii) CAFR, NALVA (DE), iv) Ceres, Ceres Milieutechniek (Belgium, BE), v) 

NuReSys, Akwadok (BE) (Desmidt et al., 2012), vi) Nutritec, Sustec (NL), vii) Pearl, Ostara 

(Canada, CA), viii) Phosnix, Unitika (Japan, JP), ix) PHOSPAQ, Paques (NL) (Abma et al., 

2010), and x) PRISA, Aachen University (DE) (Montag et al., 2007). Moreover, in Gelderland 

(NL) four installations are available for the production of K-struvite (KMgPO4:6H2O) from calf 

manure (Graeser et al., 2008). These processes have the ability to remove and recover over 

80-90 % of the soluble P in the waste(water) flow, yet only 10-40 % of the NH4-N can be 

captured (Le Corre et al., 2009). Crystal/pellet sizes range from 0.5 mm to 5 mm and above, 

depending on the final end-use. The design involves fluidized bed reactors and continuously 

stirred tank reactors.  

At present, struvite recovery can be economical on side streams from wastewater treatment 

with a P load of more than 20 % by weight, as it has the potential to reduce operational costs 

related to energy and chemical (iron (Fe) / aluminium (Al)) consumption and nuisance struvite 

formation in piping/equipment. Meanwhile, a high-quality, slow-release granular fertilizer with 

agricultural reuse perspectives is produced (Latifian et al., 2012; Ryu et al., 2012; Shu et al., 
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2006; WERF, 2010). Assuming that a treatment plant can recover 1 kg of struvite from 

100 m3 of wastewater (Münch and Barr, 2001), Shu et al. (2006) estimated chemical savings for 

P recovery from digester supernatants at € 0.19 (0.27 CAD) d-1 (compared to alum), savings 

from reduced sludge handling at € 0.002 (0.003 CAD) d-1, from reduced sludge disposal at € 

0.023 (0.033 CAD) d-1, from reduced cleaning of struvite deposits at € 3.8-19.2 (5.4-27.1 CAD) 

d-1, and savings from reduced landfilling at € 0.002 (0.003 CAD) d-1. As such, the loss of 

producing struvite could amount to € 0.05 (0.07 CAD) d-1, while the gain for the treatment plant 

can be € 0.52 (0.74 CAD) d-1 (Shu et al., 2006). Hence, assuming a struvite plant would cost € 

1.4 (2.0 CAD) million, the payback period of a plant processing ± 55,000 m3 d-1 of waste could 

be less than five years according to this study (Shu et al., 2006).  

However, operational costs and payback times are highly dependent on the input composition 

(e.g. available P, Mg, and pH) as it determines the chemical (NaOH, Mg) and energy costs, 

which can range between € 200-75,000 (282-106,000 CAD) y-1 (Jaffer et al., 2002). Dockhorn 

(2009) estimated operating and maintenance costs for a plant treating 350,000 person 

equivalents (PE) at € 2,800 (3,960 CAD) ton-1 struvite if the PO4-P concentration is 50 mg L−1, 

and € 520 (735 CAD) ton-1 if the PO4-P concentration is 800 mg L−1. Battistoni et al. (2005a,b) 

estimated operating costs at € 0.19-0.28 (0.27-0.40 CAD) m-3 digestate. Based on budget 

proposals provided by the above-mentioned suppliers in the context of the present review, 

capital costs may range from € 2,300-24,500 (3,250-34,600 CAD) kg-1 P d-1, while revenues 

from struvite valorization in agriculture range from ± € 45 (64 CAD) ton-1 struvite in Belgium 

(NuReSys, Waregem, BE, personal communication 2013) to ± € 109-314 (154-444 CAD) ton-1 

in Australia (Doyle and Parsons, 2002), and ± € 250 (353 CAD) ton-1 in Japan (Kohler, 2004). 

Values of € 736 (1,041 CAD) and € 1,393 (1,970 CAD) ton-1 have also been reported 

(Dockhorn, 2009). As such, overall profits of struvite production may range from € -7,800  

(-11,030 CAD) y-1 (loss) to € 89,400 (126,400 CAD) y-1 (gain) (Münch and Barr, 2001). 

Although worldwide some utilities have installed these systems, the uptake of this technology 

has not been widespread due to market, regulatory, and site-specific conditions. Also, important 

technical challenges remain in the further reduction of chemical requirements, the guarantee of 

a pure product, as well as the stable and controlled production of struvite. If struvite would be 

recovered only from municipal wastewater treatment plants worldwide, 0.63 million tons of P (as 

P2O5) could be harvested annually (Shu et al., 2006).  

However, an important constraint is that in conventional digestate treatment anno 2014 (Fig. 

2.2) most of the P is lost in the thick fraction after solid-liquid separation. Hence, the overall P 

recovery potential from digestate as struvite is limited to the remaining soluble P in the liquid 

fraction. In recent years, methods to improve the release of P in the liquid fraction, e.g. 

microwave treatment and/or acid extraction, are therefore gaining increased attention (see 

Chapter 7). This is especially interesting in P saturated regions so as to recover more P as 

struvite from the (acidified) liquid fraction, while improving the local valorization potential of the 

(P-poor) organic thick fraction.  
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2.3.3.2 Electrochemical struvite recovery  

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology in 

Germany have patented an electrochemical process to precipitate struvite without chemical 

addition and with low energy consumption (70 Wh m-3) (IGB, 2012). A mobile pilot plant using 

an electrolytic cell consisting of an inert cathode and a sacrificial Mg anode is currently in the 

test phase. The electrolytic process splits the water molecules into hydroxide (OH-) ions and 

hydrogen gas (H2) at the cathode. Oxidation takes place at the anode: Mg2+ ions are released 

into the solution and react with P and N to form struvite. At lab-scale, P removal efficiencies 

above 99 % were achieved. No further economic or technical information is available to date. 

 

2.3.3.3 Bio-electrochemical struvite recovery 

An energy-efficient method of concurrent H2 and struvite production was investigated at 

Pennsylvania State University (USA), based on bio-electrochemically driven struvite 

crystallization at the cathode of a single chamber microbial electrolysis struvite precipitation cell 

(Cusick and Logan, 2012). In a microbial electrolysis cell, microorganisms convert organic and 

inorganic matter into electrical current at a significantly lower potential (minimum of 0.2 V when 

bacteria are used) than that needed for splitting water in electrochemical struvite precipitation 

(Section 2.3.3.2). At lab-scale, P removal efficiencies ranged from 20 to 40 %, with higher 

removals obtained using mesh cathodes than with flat plates. Overall energy efficiencies based 

on substrate and electricity inputs were high (73±4 %) and not dependent on the applied 

voltage. However, the technical and economic feasibility of scaling up this technology is 

challenging. To date, neither pilot nor full-scale installations have been implemented and tested.  

 

2.3.3.4 Calcium phosphate recovery  

Next to Mg, calcium hydroxide (Ca(OH)2) can also be added to the liquid fraction in order to 

increase the pH (> 10.0) and temperature (70 °C), thereby inducing P precipitation as 

Ca5(PO4)3OH (hydroxyapatite) or CaHPO4:2H2O (brushite). The reaction is fast (5 min), but 

often preceding CO2 stripping must be applied to avoid unwanted calcium carbonate (CaCO3) 

precipitation. Examples of commercial calcium phosphate precipitation processes are: i) 

Crystalactor, DHV Water (NL) (Eggers et al., 1991), ii) FIX-Phos, TU DA (DE), iii) Kurita, Kurita 

Water Industries (JP), iv) Phostrip, Tetra Technologies inc. (USA) (Szpyrkowicz and Ziliograndi, 

1995), and v) P-Roc, Kit-CMM (DE) (Berg et al., 2007). Removal efficiencies of 80-100 % P 

have been achieved, but 50-60 % is more typical. Based on a market demand in the framework 

of this study to the suppliers mentioned above, capital costs may range between € 2,300-2,900 

kg-1 P d-1. Operational costs are mainly determined by the amount of Ca(OH)2 required, which 

on its turn highly depends on the input waste characteristics. Finally, Quan et al. (2010) 

reported on the ability to couple CaNH4PO4:4H2O precipitation and ammonia stripping in a 

water sparged aerocyclone (WSA) in order to recover both P and N. To date, this path has only 

been examined at lab-scale, but further research on this methodology seems interesting.    
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2.3.4 Ammonia stripping and absorption (NRT 2)   

Stripping of ammonia (NH3) involves the physical transfer of NH3 from the aqueous phase 

(waste stream) to a gas phase, mostly in a packed bed tower. The gas is then transferred to an 

air scrubber (Section 2.3.5), where mass transfer and absorption of the NH3 from the gas to a 

liquid phase, mostly sulfuric acid (H2SO4), takes place in order to form and recover a 

concentrated solution of ammonium sulfate ((NH4)2SO4; AmS) as an end product  (Liao et al., 

1995; USEPA, 2010). AmS is an inorganic salt, which could be reused as a marketable fertilizer 

rich in direct available macronutrients, N and S, thereby providing a valuable substitute for 

chemical fertilizers based on fossil resources (Chapters 4-5; Vaneeckhaute et al., 2013b,c, 

2014). Alternatively, ammonium nitrate (NH4NO3) fertilizer (by addition of HNO3; Udert et al., 

2014), a concentrated ammonia solution (by addition of liquid NH3), or other ammonia salts can 

be produced, depending on local legislations and options for land application. Ammonia 

stripping is developed at full-scale and sometimes implemented for wastewater treatment. The 

implementation of this technology for the treatment of N-rich digestate and manure is on the 

rise.  

Commercially available stripping technologies for (digested) sludge and manure treatment are: 

i) AMFER, Colsen (NL), ii) ANAStrip, GNS (DE), and the (untitled) stripping processes 

developed by the manufacturers: iii) Anaergia (Canada, CA), iv) Branch Environmental Corp 

(USA), v) Europe Environnement (France, FR), and vi) RVT Process Equipment (DE). 

Theoretically, these systems may achieve NH3 recovery efficiencies up to 98 %, but they are 

generally operated to reach 80-90 % recovery in order to reduce the operating costs. At 

present, most stripping units implemented at full-scale focus on the production of AmS fertilizer. 

The AmS content in the recovered solution ranges from ± 25 % AmS (ANAStrip, GNS) and 30 

% AmS (Branch Environmental Corp) to 38 % AmS (Anaergia; RVT Process Equipment) and 40 

% AmS (AMFER, Colsen; Europe Environnement).  

Capital costs of stripping are relatively low compared to biological activated sludge (AS) 

systems for nutrient removal and depend on the method used for pH-increment. This can occur 

i) chemically by use of base, mostly sodium hydroxide (NaOH) (Branch Environmental Corp; 

Europe Environnement; RVT Process Equipment), or ii) physically by simultaneous stripping of 

CO2 (Anaergia; Colsen), optionally in combination with the addition of low-quality gypsum 

(CaSO4) for parallel recovery of CaCO3 (GNS). Operational costs depend a lot on the 

operational temperature, pH, and liquid flow rate. For a 90 % NH3 recovery efficiency from 

leachate at a temperature of 70 ºC, a pH of 11, and a flow rate of 70 m3 h-1, overall costs are 

estimated at ± € 8.1 (11.5 CAD) m-3, while at a temperature of 30 ºC this would be ± four times 

less, i.e. € 2.0 (2.8 CAD) m-3 (Collivignarelli et al., 1998).  

A comparison of budget proposals provided by the above suppliers for NH3 stripping and 

absorption systems treating a digestate flow of 800 m3 d-1 at 2,400 mg NH4-N L-1 (90 % 

recovery) resulted in a capex ranging from ± € 500,000 (710,000 CAD) to € 1.58 (2.23 CAD) 

million if the pH-increase is conducted chemically, and from € 3.5 (5.0 CAD) million to € 11-15 
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(16-21 CAD) million if the pH-increase is established physically. Electricity consumption for this 

case was estimated by the suppliers at 127-400 kWhel h-1 (1.54-12 kWhel m-3), heat 

consumption at 2,115-2,333 kWhth h-1 (62-69 kWhth m-3; note: ± 50 % could be recovered within 

the process), and H2SO4 (concentrated at 95-97 %) consumption at 5.5-6.8 ton d-1 or 7.0-10 kg 

m-3 digestate. If NaOH is used for pH-increase, it consumption would amount to 6.0-6.5 kg m-3. 

As such, operational costs range between € 1.4 and € 2.5 (2.0-3.5 CAD) million y-1 depending 

on the system, equivalent to € 4.5-8.6 (6.4-12.2 CAD) m-3 of digestate.  

Currently, advanced processes for biological removal of NH3, such as deammonification via 

Anammox (Magri et al., 2013), are often still cheaper (depending on the technology provider). 

However, as stripping could (partially) replace a nitrification-denitrification step, additionally 

remove odorous compounds and dust particles, and produce a marketable end product, it is 

expected that this technology can be competitive, especially in regions where N demand is high 

(WERF, 2010). Where commercialization of the AmS-solution is possible, revenues currently 

range from € 90 to 120 (130-170 CAD) ton-1 FW, which under optimal process conditions should 

largely compensate the operational costs. Moreover, the higher process stability (e.g. to input 

variation, freezing conditions, etc.), lower surface requirements (for the above case: ± 1,500 

m2), higher ability for treatment of high N flows, immediate start-up, and ease of automation are 

all drivers for implementation of stripping units instead of conventional biological systems.  

The major technical bottlenecks observed to date in NH3 stripping are scaling and fouling of the 

packing material, and the consequent high energy and chemical requirements (Bonmati and 

Flotats, 2003; Lemmens et al., 2007; Quan et al., 2010). To avoid scaling, one can install a 

lime-softening step before stripping, which removes a large part of the Ca, Mg, carbonic acids 

and carbonates, and increases the pH. In case of high buffering capacity, a preceding CO2 

stripper might also be economical. To avoid fouling, it is important that during preceding solid-

liquid separation as many suspended solids as possible are retained in the solid fraction. 

Nonetheless, it is unavoidable that the packing material will have to be cleaned periodically. 

Because of these constraints, some of the above manufacturers have developed a stripping 

process without internal packing (Anaergia; Colsen). As such, the process developed by 

Anaergia would be capable of handling waste flows containing up to 8-9 % total suspended 

solids (TSS). Note that both technologies also operate without any chemical addition. Hence, 

although capital costs are higher (see above), in terms of sustainability and operational costs, 

these processes are probably the best available options to date.  

Furthermore, a combination of the NH3 stripping technology and struvite precipitation was 

studied by Quan et al. (2010). Both processes were taking place simultaneously in a WSA 

reactor at lab-scale. The wastewater containing NH3 is pumped into the water jacket and then 

sparged towards the centerline of the WSA through the porous section of the inner tube wall, 

thus forming a large gas-liquid contact area. The transfer of NH3 from liquid to air is high (> 97 

%) due to the very small amount of liquid. The authors claim that the WSA, in comparison to the 

traditionally used packed towers, is characterized by a good mass transfer performance and 
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self-cleaning function. The technology would therefore be suitable for air stripping of 

wastewaters containing suspended particles at a temperature of 30 °C and a pH > 11. However, 

to date, no pilot nor full-scale application is available.  

Finally, the Dutch company Dorset developed a low-energy (< 1 kW m-3) NH3 stripping system 

for manure and digestate treatment without air recirculation or ventilation. The system consists 

of rotating disks that are partly submerged in either the liquid manure or the receiving H2SO4- 

solution. The NH3 coming from the gas phase at the first disk is absorbed in H2SO4 at the other 

disk. Recoveries of ± 80 % NH3 are obtained at pilot-scale (Dorset, 2014).   

 

2.3.5 Acidic air scrubbing (NRT 3)  

Acidic air scrubbing mostly concerns a packed tower in which sulphuric acid (H2SO4) is sprayed 

with nozzles over the packing material and treatment air is blown into the tower in counter-

current (Melse and Ogink, 2005; USEPA, 2000). As is the case for NH3 stripping and absorption 

(Section 2.3.4), mostly ammonium sulfate ((NH4)2SO4; AmS) is produced and the wash water is 

recycled until it is saturated and the removal efficiency of NH3 cannot be guaranteed anymore. 

At that point, the AmS-solution should be removed and fresh H2SO4 added.  

The technology is used at full-scale at anaerobic digestion and sludge/manure processing 

plants. Examples of well-established technology developers are Dorset Farm Systems 

(NL/USA), Envitech (CA), and Inno+ (NL). Average NH3 recovery efficiencies of 91-99 % are 

found in literature (Manuzon et al., 2007; Melse and Ogink, 2005; USEPA, 2000). Investment 

costs (in case of a new installation for air treatment of one stable) are estimated at € 18 (25 

CAD) kg-1 NH3 recovery, whereas exploitation costs (including variable and fixed costs) of an 

acidic air scrubber are estimated at € 6-7 (8.5-10 CAD) kg-1 NH3 recovery (Arends et al., 2008; 

Melse and Willers, 2004). As these costs are expected to reduce with 50 % (investment) and 

14-25 % (exploitation) for large-scale projects (Melse and Willers, 2004; Melse and Ogink, 

2005), the installation is economically viable at many waste-processing plants.  

The main operational costs can be attributed to the energy (0.057 kWh 1,000 m-3 air) and acid 

(minimum 1.5 L H2SO4 at 98 % kg-1 NH3 recovery; note: depends on AmS concentration) 

requirements (Melse and Willers, 2004). However, power inputs depend a lot on the reactor 

type, ranging from 3.8 atm cm3 air s-1 for spray-chambers to 260 atm cm3 air s-1 for venturi 

scrubbers (Cooper and Alley, 2011). An interesting advantage of an acidic air scrubber is that 

odors, dust particles, and water vapour can also be removed. Technical bottlenecks are mainly 

related to corrosion problems. The reject AmS-solution is already recognised in Flanders and 

the Netherlands as a mineral fertilizer in environmental and fertilizer legislations. Requirements 

for recognition in Quebec are discussed in Section 2.4.4. Nevertheless, marketing is still 

hindered due to its variable N and S content (30-100 kg N ton-1; 61-100 kg S ton-1), acidic and 

corrosive features (pH 2.5-7; high salt content: 100-150 mS cm-1), as well as social perception 

and farmers’ distrust in its fertilizer properties (Chapters 4-5; Vaneeckhaute et al., 2013b,c, 

2014). It should be noted that the product properties are highly dependent on the technology 
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provider, not only in terms of AmS content (see above), but also in terms of pH. Manufacturers 

delivering a fertilizer product at relatively high pH, suitable for direct application in agriculture, 

are Anaergia (pH 5.5) and RVT Process Equipment (pH 6-7).  

   

2.3.6 Membrane filtration (NRT 4)  

2.3.6.1 Pressure-driven membrane filtration 

Pressure-driven membrane filtration, involving microfiltration (MF), ultrafiltration (UF), and/or 

reversed osmosis (RO), is an established technology in wastewater treatment. It has, however, 

not yet proven to be a valuable option for the treatment of digestate, manure, and sludge. Only 

a few commercial pilots have been installed at full-scale manure and digestate processing 

facilities, mostly on a short-term basis because of excessive operational costs. Nevertheless, 

the produced membrane filtration concentrates are an interesting nutrient source, which could 

potentially be reused as chemical fertilizer substitutes rich in N and K (Chapter 3; De Hoop et 

al., 2011; Ledda et al., 2013; Vaneeckhaute et al., 2012; Velthof, 2011). Examples of 

manufacturers for slurry filtration systems are: i) A3 Watersolutions (DE), ii) AquaPurga 

International (NL), iii) New Logic (CA), iv) VP Systems (NL), and v) Wehrle Umwelt GmbH (DE). 

Operating temperatures range from 10-40 °C, while the pH is usually between 6 and 8. RO has 

also been applied at full-scale in combination with NH3 stripping of liquid digestate (Biorek 

Process, BIOSCAN (Denmark, DK); Norddahl and Rohold, 1998).  

In reality, the cost of an RO filtration system for manure and digestate treatment is difficult to 

determine because it depends on the frequency of membrane cleaning and replacement, as 

well as the permeate and concentrate end-use, which on its turn are site and region specific 

(Masse et al., 2007). Gerard (2002) estimated the cost of manure treatment using two RO 

cycles at € 12 (17 CAD) m-3 for a 2 m3 d-1 flow at a pilot-scale installation in France. At a pig 

farm in Canada, the company Purin Pur estimated the costs of an UF-RO treatment train at € 

4.22 (5.97 CAD) m-3 in 2000 (Charlebois, 2000). In 2009-2010, a large pilot project was 

established in the Netherlands, in which, with authorization of the European Commission, the 

RO concentrate of eight different manure/digestate processing facilities was applied to 

agricultural fields. The costs of the installations plus the costs of transporting the final products 

amounted to € 9-13 (13-18 CAD) ton-1 manure/digestate, which was economically feasible for 

seven of the eight installations as the price received for treating the manure at that time 

amounted to € 11-13 (7.8-9.2 CAD) ton-1 waste (De Hoop et al., 2011; Velthof, 2011). The 

economic value of the RO concentrates is estimated at € 6.1±1.1 (8.6±1.6 CAD) ton-1 FW 

(Chapter 3; Vaneeckhaute et al., 2012), while the average price paid by farmers during the pilot 

project was € 1.25 (1.77 CAD) ton-1 in 2009 and € 1.19 (1.68 CAD) ton-1 in 2010. Yet, the 

standard deviation was high (Velthof, 2011). No other prices for membrane concentrate 

marketing have been reported to date. 

The biggest technical problem stated in membrane filtration is clogging and fouling of the 

membrane, resulting in significant chemical and energy requirements (Kertesz et al., 2010; 
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Waeger et al., 2010). The equivalent energy requirement for an RO system is estimated at 4-6 

kWh m-3 (Moon and Lee, 2012; Semiat, 2008). To reduce cleaning requirements, vibrating (60-

90 Hz) shear enhanced processing (VSEP) has been used for manure purification at pilot-scale 

(Johnson et al., 2004; New Logic, 2008). Although this technology may provide an interesting 

solution, little data are available on the system performance in relation with the energy 

consumption and treatment costs. The energy consumption per vibration is estimated at 8.83 

kW (Johnson G., New Logic Inc., Ontario, CA, personal communication 2011), while the energy 

consumed by the recirculation pump is estimated at 9.4 kWh m-3 of permeate in a 154 m2 

membrane area unit (VSEP series i-10; Akoum et al., 2005). This could be reduced to 6 kWh  

m-3 if plane ceramic membranes are used. Energetic calculations based on these data indicate 

that large VSEP units will consume significantly less energy per m3 of permeate than traditional 

cross-flow filtration. Nevertheless, energy consumption and economic performance remain 

critical points of attention in the evaluation of membrane technologies for nutrient recovery. As 

information on the technical performance of this technology for the treatment of digestate is 

lacking, the use of a VSEP filtration unit in a full-scale digestate treatment train will be further 

studied in Chapter 3 (Vaneeckhaute et al., 2012). 

Different alternative technologies to improve the performance of membrane filtration in terms of 

chemical and energy requirements, as well as operational costs are currently under 

development. The most studied examples are forward osmosis (Section 2.3.6.2; Chen et al., 

2012b; Li et al., 2013; Sant’Anna et al., 2012; Zhao et al., 2012), electrodialysis (Section 2.3.6.3; 

Ippersiel et al., 2012; Mondor et al., 2008), and transmembrane chemosorption (Section 2.3.6.4; 

Sustec, 2014).    

 

2.3.6.2 Forward osmosis (FO) 

During the last couple of years, there has been a global increase in interest in forward osmosis 

(FO) as opposed to RO (Zhao et al., 2012). Similar as in RO, a semi-permeable membrane is 

used in FO, but no external pressure is required. The permeate flow is obtained by creating a 

difference in osmotic pressure between the liquid waste stream and a draw solution such as 

sodium chloride (NaCl) on the other side of the membrane. Through water extraction, the liquid 

waste stream is concentrated and the draw solution diluted. The draw solution should then 

again be concentrated through water removal.  

FO is still under development and could be an interesting technology for use in domestic 

wastewater treatment (Chen et al., 2012b), food processing (Sant’Anna et al., 2012), and 

seawater desalination (Li et al., 2013), but also for the concentration of digestate. The potential 

advantages of FO are its low energy consumption, low fouling propensity, reduced or easy 

cleaning, low costs, high salt rejection, and high water flux (Sant’Anna et al., 2012). However, to 

date, the equivalent energy requirement ranges from 3 to 8 kWh m-3 (Moon and Lee, 2012). 

Hence, it is too early to say that the FO technique is capable enough to compete with or 

displace the prevalent membrane filtration techniques, primarily RO. The biggest technical 

challenge is to find a reliable and economic way to concentrate the draw solution. Researchers 
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expect that the further development of FO to a reliable system, applicable at full-scale for 

manure and digestate treatment, will take another five to ten years (Zhao et al., 2012). 

 

2.3.6.3 Transmembrane chemosorption (TMCS) 

Transmembrane chemosorption (TMCS) is a hybrid membrane process, which was developed 

in pig slurry treatment systems in the Netherlands in order to recover N from liquid waste 

streams as a concentrated (NH4)2SO4 solution (several 100 g NH4
+ L-1; Sustec, 2014). By 

increasing the pH, NH3 is brought into the gas phase, diffuses through a hollow-fibre membrane 

with gas-filled pores, and is captured at the other side of the membrane in a sulphuric acid 

solution (Rulkens et al., 1998). Compared to stripping, TMCS requires a very small amount of 

energy, less than 1 kWh m-3 (Sustec, Wageningen, NL, personal communication 2013). The 

company Sustec works on the further development of this technology. Pilot tests are carried out 

at Varkens Innovatie Centrum in Sterksel (NL) and at the pig farm Kempfarm (Leunen, NL). In 

these installations recovery efficiencies of 99 % NH3 are achieved. Norddahl et al. (2006) 

obtained NH3 recovery efficiencies of 70 % when using similar membrane contactors for the 

treatment of digestate.  

 

2.3.6.4 Electrodialysis (ED)  

During electrodialysis (ED), NH3 in the diluate solution is transferred by electromigration to an 

adjacent solution by an ion-exchange membrane under the driving force of an electrical 

potential. This means that the main ionic compounds in the liquid digestate (= the diluate cells), 

i.e. NH4
+, K+, and bicarbonate (HCO3

-), are transferred and concentrated. Mondor et al. (2008) 

suggested that the combined use of ED and RO membranes to recover and concentrate NH4
+ is 

potentially interesting (83 % NH3 recovery at lab-scale), but the process must include a 

mechanism to trap volatilized NH3 (17 %). Ippersiel et al. (2012) used ED as a pre-treatment to 

NH3 stripping without pH modification for the treatment of swine manure. The maximum 

achievable total NH4-N concentration in the concentrate solution (seven times the input 

concentration) was limited by water transport from the manure to the concentrate compartment. 

This was attributed to the transfer of solvated ions and osmosis. To date, ED has only limited 

application at full-scale and it mostly concerns small installations. Extensive testing is required 

to gain further insights into the process operation, certainly for the treatment of complex waste 

matrices as manure and digestates. At present, especially the high energy consumption, i.e. 

3.25-3.60 kWh kg-1 NH4-N (Mondor et al., 2008, 2009; Ippersiel et al., 2012) and 1.2-1.5 kWh  

kg-1 K (Decloux et al., 2002), and strongly variable costs for membranes, electrodes, and 

casings are important bottlenecks for implementation (Verliefde A., Ghent University, Belgium, 

personal communication 2013).   

 

2.3.7 Ammonia sorption (NRT 5)  

A number of materials may be used to selectively adsorb ammonium (NH4
+) from waste flows. 

These materials include zeolites, clays, and resins. Adsorption is carried out in a packed 
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column. Once the adsorption media is saturated, the column is taken offline and is regenerated 

to recover the NH4
+. Regeneration can be achieved by a number of techniques, including nitric 

acid (HNO3) washing, sodium chloride (NaCl) washing, or biologically. The technique to be used 

depends on the adsorption material and the desired end product. Adsorption can therefore 

either be operated as a batch process using a single column, or a series of multiple columns 

can be sequenced to provide continuous operation (Ganrot, 2012; WRAP, 2012).  

In the context of wastewater treatment, especially natural zeolites have been succesfully used 

as adsorption agent for final NH4-N removal (Çelik et al., 2001; Du et al., 2005; Jorgensen et al., 

1976; Jorgensen and Weatherley, 2003; Koon and Kaufman, 1975; Wang et al., 2011; 

Weatherley and Miladinovic, 2004; Wei et al., 2011; Zhang et al., 2011). Mainly the use of 

clinoptilolite, (Na,K,Ca)2-3Al3(Al,Si)2Si13O36 :12(H2O), has been studied because of its low-cost 

availability (Pelin et al., 2013). However, full-scale wastewater treatment plants that employ the 

NH4
+ ion exchange technique are scarce, and few applications have been developed to recover 

NH4-N, for example, for agricultural purposes (Hedström, 2001; Pelin et al., 2013). 

Nevertheless, because the zeolite is porous, the ammonium can leak out of the zeolite at a 

much slower rate than it was adsorbed. This makes the ammonium-filled clinoptilolite itself a 

potential slow-release fertilizer (Ganrot, 2012). An important remark is that the initial N 

concentration in the above-mentioned applications was only a few 10 mg L-1. Over the past 

decade, there has been increasing interest of using natural zeolite for NH4-N removal from 

waste streams with relatively high N concentration or high ionic strength (Hankins et al., 2004; 

Liu and Lo, 2001; Milan et al., 1997; Wang et al., 2006). However, its applicability in practice for 

the treatment of the liquid fraction of digestate (containing both high N and ionic concentrations) 

still remains to be demonstrated, as does the use of the nutrient-enriched clinoptilolite or other 

regenerated N-solutions as a fertilizer (Guo et al., 2013; Lemmens et al., 2007; Pelin et al., 

2013).  

To date, removal efficiencies of 18 % P (probably due to adsorption) and 15-60 % N (due to ion 

exchange) have been reported for the treatment of human urine using clinoptilolite at lab-scale 

(Ganrot, 2012). This means that the technology would currently not be feasible as stand-alone 

NRT for digestate processing, though it may be used as an intermediate step in the digestate 

treatment train. As such, some research has been performed towards the combined use of 

zeolite and struvite precipitation to obtain a slow-release fertilizer with both high N and P 

concentrations. Overall recovery efficiencies of 100 % P and 83 % N have been obtained at lab-

scale, and the fertilizer potential of the resulting product has been demonstrated at greenhouse 

scale (Ganrot, 2012). Moreover, Liberti et al. (1982) investigated a system where NH4
+ ions 

were concentrated by the NH4
+ ion exchange technique, followed by air stripping of NH3 gas, 

which was subsequently absorbed in sulfuric acid. Zeolites may also be used to further treat the 

effluent produced by membrane filtration of the liquid fraction of digestate (Guo et al., 2013). 

Hence, although there is potential to use zeolites as a technology for nutrient recovery, to date 

the use of this process for digestate treatment can rather be considered as an intermediate or 

final concentration step in the three-step framework (Fig. 2.1). 
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An important challenge for implementation of zeolites for digestate treatment is fouling of the 

adsorbent bed, as well as maintaining the bed capacity after multiple recovery/regeneration 

cycles (WRAP, 2012). Moreover, to date, experiments on the operational performance, process 

optimization, and recovery/regeneration methodologies are mostly carried out at lab-scale. 

Hence, further investigation into the process efficiency at pilot-scale is required (Hedström, 

2001).  

Finally, costs of this technology are expected to be low, but will depend on the nearby 

availability of the zeolites used, the required pre-treatment of the packing column to obtain NH4
+ 

selectivity, the recovery/regeneration method (if applicable), and the required frequency of 

regeneration. No cost-benefit analyses for nutrient recovery from digestate using zeolites have 

been reported on in literature to date.  

 

2.3.8 Biomass production and harvest (NRT 6)  

Both macrophytes (mostly duckweeds and water hyacinths) and microalgae have been 

examined for biological nutrient recovery (Fenton and Uallachain, 2012; Hasan and Chakrabarti, 

2009; Shilton et al., 2012). Duckweed (L. minor, L. punctate, S. polyrrhiza, S. oligorrhiza) ponds 

have been successfully used as an efficient and potentially low-cost option in (anaerobically 

digested) agricultural waste polishing, generating a biomass with high protein content. A 

detailed overview of the nutrient and heavy metal content of duckweed as function of water 

quality has been reported (Leng, 1999; Ramjeed-Samad, 2010). Based on its mineral 

composition, the plant appears to have the ability to recover 600, 56-140, 400, 100, 60, 32, and 

24 kg ha-1 y-1 of N, P, K, Ca, Mg, Na, and Fe, respectively, at a production of 10 ton dry weight 

(DW) ha-1 (Leng, 1999). Xu and Shen (2011) found removal efficiencies of 83.7 and 89.4 % for 

total N and P from pig wastewater, respectively, using S. oligorrhiza in eight weeks at a harvest 

frequency of two times a week. Mohedano et al. (2012) found an average of 98.0 % total N and 

98.8 % total P recovery at full-scale, resulting in an average biomass (L. punctate) protein 

content of 28-35 %. However, above 60 mg N L-1 a toxic effect was noticed perhaps due to high 

levels of free ammonia in the water. Hence, levels below this value should be maintained in 

order to obtain a consistently high protein content (15-45 % by DW, depending on the N supply; 

Hasan and Chakrabarti, 2009).  

Skillicorn et al. (1993) estimated the capital costs for a 0.5 ha large duckweed system at ± € 

2,600 (3,700 CAD). However, capital costs are significantly influenced by land area 

requirements, next to the costs associated with pond inoculation, harvesting, and disposal of 

biomass. As such, Mburu et al. (2013) evaluated the capital expenditures (CAPEX) for a full-

scale waste stabilization pond at € ± 705,000 (1 million CAD) (based on 2,700 person 

equivalents (PE) at 8.3 m2 PE-1), and at € ± 276,000 (390,000 CAD) (for 2,700 PE at 3.4 m2  

PE-1) for a pilot-scale horizontal subsurface flow constructed wetland. Maintenance costs for the 

first design are, however, significantly lower: € 283 (400 CAD) compared to € 23,300 (33,000 

CAD) for 2,700 PE. As such, the total cost of these 'green' nutrient recovery systems can be 

evaluated at € 12-33 (17-47 CAD) PE-1 y-1, with an average of € 14.4 (20.4 CAD) PE-1 y-1, 
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whereas the cost for a traditional activated sludge system is at least three times 

higher. However, without water reuse, associated gray-water sales, and duckweed valorization, 

currently the economic viability of duckweed systems remains questionable (Hasan and 

Chakrabarti, 2009).  

Furthermore, the ability of microalgae to assimilate excess nutrients from the environment has 

been thoroughly studied (Cai et al., 2013). However, to date, tests of growing algae in 

waste(water) are mostly at laboratory scale. Pilot-scale algae cultivation continues to face many 

problematic issues, including contamination, inconsistency in waste(water) components, and 

unstable biomass production. The major challenge associated with culturing algae in nutrient-

rich natural water and slurry comes from the design of the cultivation system. The addition of 

polymer that precipitates suspended solids, thereby allowing light penetration, would improve 

the technical feasibility of growing algae on the liquid fraction of (digested) slurry. Nevertheless, 

Muylaert and Sanders (2010) predict that breakthrough of algae in the bio-based economy will 

last another 5-15 years, as currently costs of algae production are too high as compared to 

other types of biomass. Estimates of the algal production cost range from € 3.2-240 (4.5-340 

CAD) kg-1 dry biomass (Benemann, 2008; Couteau and Sorgeloos, 1992; Lavens and 

Sorgeloos, 1996). Prior economic-engineering feasibility analyses have concluded that even the 

simplest open pond systems, including harvesting and algal biomass processing equipment, 

would cost at least € 78,000 (113,000 CAD) ha-1 and possibly significantly more (Benemann, 

2008). To this, the operating costs will need to be added. 

The harvested algae/macrophytes can serve as a feedstock for the chemical and biofuel 

industry, can be used as animal feed (provided that the necessary amendments in legislation 

are made), or spread out as a fertilizer (Demirbas, 2011; Lundquist et al., 2010). As such, El-

Shafai et al. (2007) estimated a biomass value of € 5,300 (7,450 CAD) y-1 (by comparison with 

other feed sources) for a protein yield of approximately 11 ton ha-1 y-1 (L. gibba). Next to the 

large footprint required, biomass harvesting remains an important technical bottleneck, which 

requires further research.  

 

2.3.9 Phosphorus extraction from ashes/biochar (NRT 7) 

The remaining ashes after combustion of biodegradable waste (manure, sludge, digestate) 

contain P, K, Al, and silicium (Si) compounds and possibly heavy metals such as Cu, Zn, and 

cadmium (Cd). Several companies have designed different processes to extract P from such 

combustion ashes (Schoumans et al., 2010). These processes can be subdivided into 

thermochemical and wet-chemical technologies. The Finnish company Outotec, for example, 

adds MgCl2 and heats the ashes up to 1,000 °C in order to gasify the heavy metals. 

Phosphorus is bound as CaHPO4 and sold as chemical mineral fertilizer substitute. The Belgian 

company EcoPhos developed and tested, at lab-scale, a chemical P extraction process by 

addition of hydrogen chloride (HCl) to combustion ashes (Bolland, 1996). Also the Swedish 

company EasyMining developed a process (Cleanmap Technology) that involves the use of 

HCl, which is suitable for ashes from incinerated manure. Other P recovery processes from ash 
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are: ICI Amfert (NL), Mephrec (DE), PAsH (DE), RecoPhos (Austria (AT), BE, DE, FR, 

Switzerland (CH)), sephos (DE), and susAN/AsH DEC (AT, DE, Finland (FI), NL). P recoveries 

up to 78 % are found in literature (Petzet et al., 2012; Schoumans et al., 2010). Operational 

costs for wet extraction itself can be lower than € 1 (1.4 CAD) m-3 fresh slurry, whereas net 

costs for combustion (including revenues from energy and P recovery) range from € 0-10 (0-14 

CAD) ton-1 FW slurry, depending on the water content. However, a thorough flue gas cleaning 

system is indispensable and post-processing to remove heavy metals is often required. Hence, 

few full-scale installations currently exist.  

Experiments with pyrolysis of manure cakes have also been conducted. The fraction of nutrients 

recovered in the resulting biochar is larger than in incineration ashes and the plant-availability of 

the nutrients tends to be higher, especially for P. It was estimated that the value of P in bio-char 

is about five times higher than the value of P in ash: < € 1 (1.4 CAD) m-3 vs. € 4.25 (6.01 CAD) 

m-3 (Schoumans et al., 2010).  

Nevertheless, as digestate is classified as a waste stream that is eligible for recycling as soil 

conditioner, it is in a lot of countries not authorised to convert the product into energy by 

combustion/pyrolysis according to environmental legislations. Alternatively, P could be extracted 

from dried or dewatered digestate, but to date such tests are absent in literature. Some 

processes attempting to recover P from dried or dewatered sludge are: lEACHPOs (CH), 

Mephrec (DE), PHOXNAN/10PROX (DE), and Seaborne (DE).   

 

2.3.10 Critical comparison  

Based on the above compiled information, a critical comparative technology overview is given in 

Table 2.2. At present, only struvite precipitation/crystallization, NH3 stripping and absorption in a 

tower (with or without packing), acidic air scrubbing, and pressure-driven membrane filtration 

have been applied at full-scale for nutrient recovery from digestate. Of these technologies, only 

the first three have shown potential to be economically viable for implementation at digestate 

processing facilities.  

Traditional membrane filtration systems often suffer technical problems in wastewater 

treatment, making them economically not yet viable for digestate treatment. An interesting 

solution may exist in vibrating membrane filtration (VSEP) using RO membranes. However, 

further research is required in order to evaluate the technical and economic performance of this 

process (see Chapter 3). Nevertheless, it should be pointed out that membrane filtration is the 

most established technology to date for the simultaneous recovery of both N and K.  

Further, Table 2.2 shows that the NRT that currently achieves the highest simultaneous nutrient 

recovery efficiency of both N and P would be biomass production and harvest. However, the 

overall cost of this treatment is still high and large surface areas are required, making its 

potential implementation very region-specific. Further research to improve the economic and 

technical feasibility of this technology is recommended. 
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Table 2.2 Technology overview: technology, mechanism, feed, % recovery, main technical bottlenecks, economic and ecological evaluation, stage of 
development, and references. ↑ = relatively high; ↓ = relatively low; CAPEX = capital expenditures; OPEX = operational expenditures; PE = person 
equivalent; RO = reversed osmosis; R&D = research and development. Note: in order to reduce table complexity, costs are only expressed in € (€ 1 ≈ 
1.415 CAD; November 2014). 

Technology Mechanism Feed % recovery Main technical 
bottlenecks 

Economic 
evaluation 

Ecological 
Evaluation 

Stage of 
development 

References 

Struvite 
precipitation 

Physicochemical Liquid 80-90 % P 
10-40 % N 

Precipitation in 
piping/equipment; 
Pollution with organic 
compounds; 
Stable and controlled 
production 

Can be profitable; 
CAPEX: € 2,300-24,500 kg-1 P d-1; 
OPEX: € -520-2,800 ton-1 struvite or   
          € -200-75,000 y-1 

Overall: € -7,800-89,400 y1 

Chemical use (NaOH, Mg) ↑; 
Fe/Al use ↓; Landfill ↓; 
Sludge handling and 
disposal ↓; Cleaning of 

struvite deposits ↓ 

Full-scale 

Jaffer et al. (2002); 
Le Corre et al. (2009); 
Shu et al. (2006); 
Technology providers 

 Electrochemical Liquid > 99 % P  R&D Needed R&D needed Chemical use ↓; 
Energy use ↓: < 70 Wh m-3 

Lab 
Pilot: test phase  

IGB (2012) 

 Bio-electrochemical Liquid 20-40 % P R&D Needed R&D needed Energy efficiency ↑: 73±4 %;  
H2 production 

Lab Cusick and Logan (2012) 

Calcium 
phosphate 
precipitation 

Physicochemical Liquid 
 
50-100 % P 
 

Co-precipitation of 
CaCO3; Preceding CO2 
stripping often required  

Can be profitable; 
CAPEX: € 2,300-2,900 kg-1 P d-1; 
OPEX: depends on Ca(OH)2 use 

Chemical use (Ca(OH)2) ↑;  
Fe/Al use ↓ 

Full-scale: manure & 
wastewater;  
Lab: digestate  

Berg et al. (2007); 
Eggers et al. (1991);  
Technology providers 

NH3 stripping & 
absorption 

Physicochemical: 
tower (packed bed 
or no packing)  

Liquid 
Up to 98 % N; 
Typical:  
80-90 % N 

Fouling and corrosion of 
packing material 

CAPEX: € 0.5-15 million, OPEX: € 
4.5-8.6 m-3, both for 800 m3 d-1 at 2.4 
g N m-3 (90 % recovery);  
Overall: € 2.0-8.1 m-3 for 70 m3 h-1; 
Depends on pH and temperature;  
Can (partially) replace activated 
sludge system; Interest in S ↑ 

Odors ↓; Energy use (air/ 
heat) ↑: 1.54-12 kWhel m-3 
and 62-69 kWhth m-3; Acid 
use ↑: 7-10 kg H2SO4 m-3; 
Base use (↑): 0-6.5 kg 
NaOH m-3, all for 800 m-3 d-1 
at 2.4 g N m-3 (90 % 
recovery); Chemical use for 
cleaning ↑ 

Full-scale 

Bonmati and Flotats 
(2003);  
Collivignarelli et al. 
(1998);  
Lemmens et al. (2007);  
Technology providers 

 
Physicochemical: 
water-sparged 
aerocyclone 

Liquid > 97 % NH3 
R&D needed; 
Scale-up?! 

Interest in S ↑; Potential for 
simultaneous P recovery 

Self-cleaning; Energy use ↓; 
Acid use ↑; Chemical use ↓ 

Lab Quan et al. (2010)  

 Physicochemical: 
rotating disks 

Liquid ± 80 % NH3 
R&D needed;  
Scale-up?! 

Interest in S ↑;  
No air scrubber required 

Energy use ↓: < 1 kW;  
Acid use ↑; Chemical use ↓ 

Pilot Dorset (2014) 

Acidic air 
scrubbing 

Physicochemical Gas 91-99 % N 

Fouling/corrosion of 
packing material; 
Performance under 
freezing conditions?!  

Can be profitable; 
CAPEX: € 13  kg-1 NH3 removal; 
OPEX: € 6-7 kg-1 NH3 removal; 
Interest in S ↑ 

Odor ↓; Energy use (air) ↑:  
min. 0.057 kWh kg-1 NH3;  
Acid use ↑: min. 1.5 L H2SO4 
kg-1 NH3 

Full-scale 

Manuzon et al. (2007);  
Melse and Ogink (2005);  
Melse and Willers 
(2004);  
USEPA (2000) 

Membrane 
filtration 

Physical:  
pressure-driven 
membrane filtration  

Liquid 
N and K; 
% depends on 
pre-treatment 

Membrane blocking & 
scaling;  
High maintenance and 
power requirements 

High CAPEX & OPEX: € 4-13 m-3  
Energy use ↑:  
4-6 kWh m-3 (RO);  
Chemical use (cleaning) ↑ 

Full-scale 

Charlebois (2000);  
De Hoop et al. (2011); 
Gerard (2002);  
Kertesz et al. (2010); 
Moon and Lee (2012); 
Semiat (2008);  
Velthof (2011);  
Waeger et al. (2010) 
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Technology 
(Continuation) 

Mechanism Feed % recovery Main technical  
bottlenecks 

Economic  
evaluation 

Ecological 
Evaluation 

Stage of 
development 

References 

 
Physical: 
forward osmosis 

Liquid R&D needed 

Reverse solute diffusion;  
Need for new membrane 
development and draw 
solute design  

Costs ↓ (no data available) 

Energy use ↓ (to be 
confirmed): 3-8 kWh m-3; 
Chemical use ↓: less 
cleaning 

Full-scale: 
desalination, food 
processing; Full-
scale digestate/ 
manure: in 5-10 y 

Moon and Lee (2012);  
Sant’Anna et al. (2012);  
Zhao et al. (2012) 
 

 
Physicochemical: 
transmembrane 
chemosorption 

Liquid 70-99 % NH3 Membrane clogging  Depends on mass transfer; 
Similar costs as stripping 

Energy use ↓: < 1 kWh m-3; 
Chemical use (acid) ↑ 

Pilot  
Norddahl et al. (2006);  
Rulkens et al. (1998);  
Sustec (2014) 

 
Electrochemical: 
electrodialysis 

Liquid 80-83 % NH3 

High energy 
consumption; Variable 
costs for membranes, 
electrodes, cases;  
Acid NH3 trap required;  
Post-treatment 
(RO/stripping) required 

High costs (no data available)  

Energy use ↑:  
3.25-3.60 kWh kg-1 NH4-N  
or 1.2-1.5 kWh kg-1 K;   
NH3 volatilization 

Full-scale: limited; 
Lab: 
digestate/manure 

Decloux et al. (2002); 
Ippersiel et al. (2012);  
Mondor et al. (2008, 
2009) 
 

NH3 sorption Physicochemical Liquid 18 % P 
15-60 % NH3 

Fouling of the packing 
column; 
Regeneration and 
maintenance;  
Post- and/or pre-
treatment required 

Potentially low costs relative to other 
technologies (depending on 
availability, pre-treatment, and 
regeneration); Further research 
needed for digestate treatment 

Energy use ↓; 
Chemical use ↑ 

Full-scale: limited for 
wastewater; 
Lab: digestate 

Ganrot (2012);  
Guo et al. (2013); 
Lemmens et al. (2007);  
Pelin et al. (2013);  
WRAP (2012) 

Biomass 
production and 
harvest 

Biological Liquid 
84-98 % N  
90-99 % P 

Harvest method;  
Reduced light 
penetration; Dilution 
often required; Large 
surface area;  
Toxic if N > 60 mg L-1 

Capex:  > € 80,000 ha-1; 
Overall (macrophytes):  
€ 12-33 PE-1 y-1 
Overall (algae): € 4-300 kg-1 dry 
weight 

Surface ↑: 3.4-8.3 m2 PE-1; 
Energy use ↑ (CO2 addition); 
Polymer use ↑ 

Pilot/Full-scale: 
duckweed; 
Mostly lab: algae 

Benemann, (2008);  
Couteau and Sorgeloos, 
(1992); Lavens and 
Sorgeloos, (1996); 
Mburu et al. (2013);  
Mohedano et al. (2012); 
Skillicorn et al. (1993); 
Xu and Shen (2011) 

P extraction 
from ashes/  
bio-char 

Thermochemical /  
Wet-chemical Solid  Up to 78 % P 

Often heating, flue gas 
cleaning, and heavy 
metal removal required; 
pH, temperature, and 
chemical choice are 
critical 

< € 1 m-3 slurry (wet extraction);  
€ 3 ton-1 slurry (pyrolysis); 
€ 0-10 m-3  slurry (combustion) 

Combustion = sustainable?!; 
Energy use ↑: temperature-
dependent; 
Chemical use ↑: process-
dependent 

Full-scale: 
incinerated sludge; 
Lab: incinerated 
digestate, but often 
not authorized! 

Bolland (1996);  
Petzet et al. (2012); 
Schoumans et al. (2010) 
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In terms of costs, NH3 sorption and recovery of N-enriched (natural) zeolites is probably the 

lowest-cost option available to date (depending on the nearby availability of the adsorbent). 

However, recovery efficiencies are relatively low and further testing is required on the 

implementation of this technology for digestate treatment. Moreover, the marketing value of the 

recovered N-zeolites remains to be explored. The use of this technology in combination with 

struvite or stripping (depending on the purpose) may be interesting, in order to maximize the 

overall nutrient recovery potential at minimal costs.    

Further, from an ecological point of view (chemical and energy use), transmembrane 

chemosorption, forward osmoses, (bio)electrochemical struvite recovery, and NH3 sorption 

appear as the most interesting NRTs. However, none of these technologies is currently applied 

at full-scale for the treatment of digestate. Yet, after sufficient testing and optimization, these 

systems have the potential to become part of commonly used digestate processing 

technologies. The extraction of P from ashes or biochars seems the least promising technology, 

because it can be questionned whether combustion/pyrolysis of digestate is a sustainable 

treatment option and if this should be encouraged.  

Finally, from a technical perspective, it can be stated that further fine-tuning is still required for 

all technologies in order to minimize operational costs, especially in terms of energy and 

chemical consumption, produce high-quality, pure fertilizers, and economically valorize the 

recovered nutrients. The best available and most established technologies for nutrient recovery 

from digestate in terms of technical performance and fertilizer marketing potential are struvite 

precipitation, ammonia stripping and absorption using a stripping column with or without 

packing, and acidic air scrubbing. It is not surprising that these are the only technologies to date 

that have been successfully implemented at full-scale digestate processing facilities.   

 

2.4 Fertilizer quality, markets, and regulations for reuse  

2.4.1 Fertilizer quality specifications  

For efficient use in the agricultural sector, recovered nutrient products must have the following 

characteristics:  

a) Consistent chemical nutrient composition and uniform distribution compatible with 

fossil reserve-based chemical fertilizers: 

The three principal macronutrients in fertilizer mixes, so called because they are required in the 

largest quantities, are nitrogen (N), phosphorus (P), and potassium (K). The most common 

fertilizers in current use are mixtures of compounds containing the three components, 

conventionally expressed in terms of the relative percentages of N, P2O5, and K2O by weight 

(Hillel, 2008). The nutrient ratio to be used in mixed fertilizers depends on crop requirements 

and soil characteristics, e.g. a 1:1:1 (N:P2O5:K2O) ratio is the base fertilizer for grain crops, 

sugar beets, potatoes, and vegetables on soddy podzols, gray forests, and chernozems, while a 

1:1.5:1 ratio is applied at planting time for grains, vegetables, and industrial crops.  
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Nitrogen promotes healthy leaf, stem, and branch growth. Most plant forms can't metabolize N 

in its natural state (N2), so fertilizers must incorporate N compounds that plants can use, such as 

ammonium nitrate and ammonium sulfate (Hillel, 2008). The high solubility of these forms, 

however, makes them especially vulnerable to leaching by percolating water. Phosphorus 

provides the materials needed for seed germination and healthy root system development, while 

K materials promote healthy flowering and fruit production. To be available as nutrient to plants, 

P must be present in the soil solution as the anions H2PO4
- or HPO4

2-. This element is frequently 

deficient and chemical mineral fertilizers must be added. The added P, however, may not 

remain in available form for long, because it tends to be converted to less soluble or insoluble 

forms, either by reaction with Ca or with Fe and Al oxides in the soil, or by strong adsorption 

onto the edges of clay crystals. The interest in slow-release granulated P fertilizers is therefore 

growing (Palmer and Kay, 2005). Potassium nutrients tend to cling to clay and organic matter, 

thereby causing the immobilization or fixation of K ions. For this reason, soils often require the 

careful addition of K in the form of fertilizer around plant root system structures to ensure this 

nutrient's availability (Barber, 1995).   

Other important macronutrients include sulfur (S), calcium (Ca) and magnesium (Mg), hydrogen 

(H), oxygen (O), as well as carbon (C). Nine additional elements are essential nutrients for many 

plants, albeit in small quantities. Hence, they are called micronutrients or trace elements. These 

include boron (B), chlorine (Cl), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), 

molybdenum (Mo), nickel (Ni), and zinc (Zn) (Hillel, 2008). They can be applied separately as 

micronutrient fertilizer, but are often incorporated in mixed fertilizers (ratios depend on crop and 

soil conditions).  
  

b) A low salinity, sodicity, and a pH close to neutral: 

The term soil salinity refers to the presence of electrolytic mineral solutes, most commonly Na+, 

K+, Ca2+, Mg2+, Cl-, SO4
2-, NO3

-, HCO3
-, and CO3

2-, in concentrations that are harmful to many 

plants in the soil and in the aqueous solution within it. Overall salinity is usually expressed in 

terms of total dissolved solids (TDS) or electrical conductivity (EC). Soil sodicity generally 

refers to the dispersion of clay resulting in deterioration of soil structure by clogging of large 

pores in the soil. This occurs when the sodium (Na) ion predominates in the exchange complex 

of the soil. Hence, the sodium adsorption ratio (SAR), i.e. the ratio of monovalent Na over 

divalent Ca and Mg, is an important parameter to evaluate. Fertilizers can also affect a soil's pH, 

which is a measure of the soil's acidity. When acidity levels are too high (hence the pH too low), 

essential minerals and nutrients may be prevented from reaching a plant's root system, the 

concentration of potentially toxic metal ions may increase, and the activity of soil 

microorganisms may be inhibited (Hillel, 2008). Moreover, strongly acidic or basic fertilizers may 

cause plant burning, while basic fertilizers may also favour NH3 volatilization. 
 

c) Desirable physical characteristics: 

The important physical properties of liquid fertilizers are density and viscosity. The strength of 

the gelling agent (i.e. the thickener) is also critical. It should be strong enough to keep the solids 
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in suspension, but not so strong that the liquid is too thick to be pumped and poured. Important 

physical characteristics of solid fertilizers are particle size, density, granule hardness, and 

moisture content (Barnes and Fortune, 2006; Dombalov et al., 1999; Fittmar, 2009; Haby et al., 

2003; McCauley et al., 2009; Sahoy, 2013). The effect of these parameters and typical values 

for conventional chemical mineral fertilizers are presented in Table 2.3.   

 

Table 2.3 Desirable physical characteristics of solid fertilizers: parameter, process affected, 
impact, and typical values; compiled from Barnes and Fortune (2006), Dambolav et al. (1999), 
Fittmar (2009), Haby et al. (2003), McCauley et al. (2009), and Sahoy (2013). 

Parameter Process affected         Impact Typical 
values 

Particle 
size and 
distribution 
 

Fertilizer 
effectiveness 

� size ↓ → dissolution in H2O ↑ → rate of nutrient release ↑ → 
nutrient leaching ↑ 

1-4 mm 

Further processing � size ↑ → ease of washing ↑, filtering ↑, transportation ↑ and 
storing ↑ 

Purity � size ↑ → surface area to volume ratio ↓ → purity ↑ 
� uniformity ↑ → purity ↑ 

Occupational health 
and safety � granulation ↑ → distribution of fertilizer powder ↓  

Environmental 
aspects � granulation ↑ → dust formation ↓ → nutrient leaching ↓ 

Density 

Storing � density ↑ → packing volume ↓ 
700-1,570 

kg m-3 Calibrating 
machinery 

 

Hardness 

Handling and storing 
� hardness ↑ → resistance to crushing forces, abrasion, and 

impacts ↑ 
� hardness ↑ → thermal stability ↑ 

crushing 
strength: 
0.5-7.5  
kg cm-2 Environmental 

aspects 
� hardness ↑ → fertilizer dustiness ↓ 

Moisture 
content Handling and storing 

� CRHa ↑ → ease of handling and storing in wet environments ↑ 
� CRHa ↓ → clump formation ↑, ease of spreading ↓, ease of 

storing ↓ (should be prevented from getting wet) 
� surface area ↑ → water absorption ↑ 

CRHa:  
72-92 % 

a  CRH = critical relative humidity = relative humidity of the surrounding atmosphere (at a certain temperature) at which  
the material begins to absorb moisture from the atmosphere and below which it will not absorb atmospheric moisture. 

 

 

It should be noted that granule hardness also depends on the chemical composition of the 

fertilizer, the shape of the particles, and how much moisture it contains. On its turn, moisture 

absorption depends on the chemical composition of the fertilizer, environmental conditions, and 

the shape and size of the particles.  

 
 

d) No/minimal pathogen content: Depending on the temperature of the process, anaerobic 

digestion as a pre-treatment step to nutrient recovery can provide partial or complete 

pasteurization of the waste material (Bond et al., 2012; Tchobanoglous et al., 2003). In  

European legislation, a product is considered pasteurized if it was subjected to 1 h heating at 70 

°C or an equivalent treatment (regulation EG 1069/2009 or former 1774/2002; EC, 2002, 2009), 

whereas in the USA the requirement to obtain class A biosolids (= potential use at home 

gardens, lawns, etc.) is at least 30 min heating at 70 °C or an equivalent of that (Tchobanoglous 

et al., 2003). In Canada, currently the USA requirements for class A biosolids are used to 

classify a product as P1 (= free of fecal pathogens) in the regulatory framework for recycling of 

fertilizer residuals (MDDEFP, 2012).  



                                                                             

45 

e) No/minimal odor: Anaerobic (co-)digestion of organic wastes results in odor reduction (Bond 

et al., 2012; Tchobanoglous et al., 2003). However, to meet regulatory standards for odor and 

greenhouse gas emissions, air scrubbers are required at most waste processing facilities.    

 

f) Be authorized for registration and application in accordance with regulatory standards: 

see Section 2.4.4.   

 

2.4.2 Classification of recovered products  

A classification of products that can be recovered from digestate is provided in Table 2.4. 

Comparative information on their fertilizer characteristics and marketing value is also presented. 

Based on their fertilizer composition, the current available recovered products can be classified 

as N/P-, K/P-, or P-precipitates, P-extracts, N/S-solutions, N/K-concentrates, N-zeolites, and 

biomass. The two recovered bio-based products that are currently supplied in the largest 

quantities and offer the highest potential for agricultural valorization are struvite from chemical 

precipitation and AmS from stripping and acidic air scrubbing. These products can be classified 

as N/P-precipitate and N/S-solution, respectively. N/K-concentrates could become an important 

recovered fertilizer in the future, if a technical and economic membrane filtration option would 

become available, for example, the VSEP technology (Chapter 3). 

In-depth product characterization in time and long-term field trials aiming at the evaluation of the 

environmental impact of bio-based products are rare in literature, but highly important in the 

development of a market for recovered nutrients. Several researchers have investigated the 

fertilizer properties of struvite and the product has been evaluated as an eco-friendly fertilizer for 

agricultural production (Rahman et al., 2011; 2014). However, the findings reported are mainly 

based on greenhouse studies, whereas long-term field trials using recovered struvite from 

(digested) bio-waste produced at full-scale are limited (Thompson, 2013). Moreover, to reduce 

costs, these field trials are focussed on plant yield and P uptake in particular, but do not 

investigate the release and mobility of (other) nutrients and heavy metals.  

Next, no reference has been found in literature on the beneficial value of recovered AmS 

fertilizer, except for the two-year field trial conducted in the context of this dissertation (Chapter 

5; Vaneeckhaute et al., 2013b,c, 2014). For membrane filtration concentrates, the only study 

that has been reported on to date is the pilot plant project in the Netherlands, in which the 

product has been applied during a two-year field experiment (De Hoop et al., 2011; Velthof, 

2011). In order to establish the use of bio-based products in the agricultural community and to 

hasten the integration of these products in environmental and fertilizer legislations, more in-

depth field trials focusing on the environmental impact of these products, next to their 

agronomic potential, should be conducted. Best management practices should also be 

established. All of this may help to better estimate the economic value of these amendments 

compared to the conventional used chemical fertilizers. Indeed, to be economically profitable, 

the price allocated to the recovered nutrients should be in accordance with the market price of 

N, P, K, and S in traditional mineral fertilizers. 
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Table 2.4 Classification of recovered end products: class, technology, feedstock, product, composition/quality, current marketing value, and references.

Class Technology Feedstock Product Composition/quality Marketing value References 

N/P-
precipitates 

Struvite precipitation 
(chemical) 

Liquid fractions, 
(acidified) raw digestate 

MgNH4PO4:6H2O 
 

Pure struvite: 6 % N, 29 % P2O5, 10 % Mg;  
Ostara: 5 % N, 28 % P2O5, 10 % Mg;  
Crystalactor: 9 % N, 46 % P2O5, 16 % Mg; 
Crystals (0.5-5 mm); Slow-release; Purity?! 

 € 45-1,393 ton-1 

 (64-1,970 CAD ton-1) 

Dockhorn (2009);  
Doyle and Parsons (2002); 
Kohler (2004);  
Technology providers 

 
Struvite precipitation  
(electrochemical) 

Liquid fractions 
 
MgNH4PO4:6H2O 
 

R&D needed  R&D needed  IGB (2012) 

 
Struvite precipitation  
(bio-electrochemical) 

Liquid fractions MgNH4PO4:6H2O R&D needed (40 % soluble P removal) R&D needed Cusick and Logan (2012) 

K/P-
precipitates 

Struvite precipitation 
(chemical) 

Liquid fractions, 
(acidified) raw digestate 

KMgPO4:6H2O R&D needed R&D needed Graeser et al. (2008) 

P-precipitates 
Calcium phosphate 
precipitation 

Liquid fractions, (acidified) 
raw digestate  

Ca5(PO4)3OH 
CaHPO4:2H2O 

Ptot: 10-11 %; Crystals; Purity?! R&D needed  
Berg et al. (2007); 
Eggers et al. (1991)  

P-extracts P extraction Ashes/biochar 
Acid P-extract, 
CaHPO4, struvite, 
Fe/Al-PO4 

P2O5: 15-35 %;  
High P bio-availability;  
Purity?! 

€ 0.89-4.25 m-3 
(1.4-6.01 CAD m-3) 

Petzet et al. (2012);  
Schoumans et al. (2010) 

N/S-solutions Stripping & absorption 
(Decarbonated) liquid 
flows 

(NH4)2SO4-solution 

AmS: 25-38 %; 
N: 30-100 kg m-3;  
S: 61-100 kg m-3; 
pH: 3-7;  
High salt content: 30-150 mS cm-1 

€ 90-120 ton-1 

(130-170 CAD ton-1) 

Liao et al. (1995);  
USEPA (2000); 
Vaneeckhaute et al. (2013a,b,c, 
2014); 
Technology providers 

 Acidic air scrubbing Strip gas, air (NH4)2SO4-solution 
Ntot: 30-70 kg m-³; S: 61-100 kg m-3; 
pH: 3-7;  
High salt content: 30-150 mS cm-1 

€ 90-120 ton-1 
(130-170 CAD ton-1) 

Vaneeckhaute et al. (2013a,b,c, 
2014); 
Technology providers 

 
Transmembrane 
chemosorption 

Tested on urine; Potential 
for liquid fractions of 
manure/digestate 

(NH4)2SO4-solution Several 100 g NH4
+ L-1 

 
R&D needed 
 

Sustec (2014) 

N/K-
concentrates 

Reversed osmosis 

Permeate from 
ultrafiltration, 
microfiltration or dissolved 
air flotation 

N/K-concentrates 

Ntot: 3-11 kg ton-1: 
92 % NH4-N, 8 % organic N; 
K2Otot: 5.0-13.6 kg ton-1;  
P2O5tot: 0-1.4 kg ton-1; Purity?! 

€ 1.19-1.25 ton-1 
(1.68-1.77 CAD ton-1) 

De Hoop et al. (2011);  
Vaneeckhaute et al. (2012); 
Velthof (2011) 

 
Forward osmosis Liquid fractions N/K-concentrates 

R&D needed; Potential for high-quality 
product through high rejection 

R&D needed 
Moon and Lee (2012);  
Sant’Anna et al. (2012); 
Zhao et al. (2012) 

 Electrodialysis (Filtrated) liquid fractions N/K-concentrates 
R&D needed;  
7 x the input concentration 

R&D needed 
Decloux et al. (2002); 
Ippersiel et al. (2012); 
Mondor et al. (2008, 2009) 

N-zeolites NH3 sorption 
(Filtrated) liquid fractions  
(to be confirmed for 
digestate) 

N-enriched 
Clinoptilolite  

Slow-release fertilizer;  
Potential contamination (metals, etc.); 
R&D needed  

R&D needed  

Ganrot (2012);  
Guo et al. (2013);  
Lemmens et al. (2007);  
Pelin et al. (2013) 

Biomass 
Biomass production  
& harvest 

Diluted liquid fractions 
Biomass  
(algae, macrophytes) 

Duckweed: 30 % P on dry weight;   
High content of proteins, N, P, K, C;  
Potential for biofuel and chemical industry,  
or as animal feed 

€ 5,300 (7,450 CAD) y-1 
for a protein yield of  
± 11.1 ton ha-1 y-1 

Demirbas (2011); 
El-Shafai et al. (2007);   
Leng (1999);  
Hasan and Chakrabarti (2009);  
Lundquist et al. (2010) 
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2.4.3 Fertilizer market trends and prices   

As in the case of fuel, fertilizers are internationally traded commodities and their prices are 

determined by global supply and demand factors. The world demand for agricultural 

commodities is rising, driven by growing populations, increased demand for meat, and strong 

government biofuel initiatives. This rising demand has resulted in increased agricultural 

commodity prices, which, in turn, has led to higher profit margins for farmers. The latter has 

enabled farmers to increase fertilizer usage to boost yields as a means of increasing production 

(Oskam et al., 2011). World fertilizer nutrient (N + P2O5 + K2O) consumption reached 180.1 

million tons in 2012, up by 1.9 % over 2011, and the demand is estimated to grow at 1.95 % per 

year from 2012 to 2016. During this period, the demand for N, P, and K is forecast to grow 

annually by 1.3 %, 2.0 %, and 3.7 %, respectively (FAO, 2012).  

On the other hand, several minerals, such as P and K, which are nowadays being extracted 

through mining, are becoming scarce at rapid pace (Fixen and Johnston, 2012). If agriculture 

would continue to be dependent on high rates of P application, a depletion of more than 50 % of 

the total resource base by 2100 and a complete depletion during the 22nd century in the worst 

case is predicted (van Vuuren et al., 2010). The resulting imbalance between the increased 

demand and depleting supply for nutrients has substantially driven up fertilizer prices in recent 

years. As an example, every one-cent per kg increase in the fertilizer price adds about 61 

million CAD (€ 43 million) to the Canadian farmers' annual fertilizer bill (AAFC, 2012). 

Agriculture and Agri-Food Canada (AAFC, 2012) estimates that the average prices paid for 

fertilizers in Canada increased by about 29 % in 2011, which could be translated into about a 

969 million CAD  (€ 685 million) increase in the Canadian farmers' 2011 fertilizer bill.  

Besides production cost, the price of fertilizers at the retail level is also affected by prices for 

gasoline and diesel, because transportation costs represent an important part of the cost of 

marketing fertilizers. In Canada, the correlation (R2) between the price of natural gas and the 

price of N fertilizer was estimated at 0.74, based on monthly data over 1991-2010 (AAFC, 

2012). The effective use of nutrients, as well as the cradle-to-cradle recycling of these valuable 

resources from waste flows, is therefore essential in order to guarantee a sustainable nutrient 

supply for future food production. 

From the technology review above, the two recovered bio-based products that currently offer 

the highest potential for agricultural valorization are struvite and ammonium sulfate (AmS). As a 

fertilizer, AmS supplies two fundamental nutrients: N and S. Of the total worldwide amount of N 

fertilizers, only 4 % is AmS (Sutton et al., 2013), mainly due to its relatively low N content as 

compared to that of, for instance, urea (21 % and 45 %, respectively). Recently, however, the 

worldwide supply of AmS has increased, in part due to the production of AmS by direct reaction 

crystallization from (spent) sulfuric acid and NH3. This additional AmS supply has been 

absorbed quickly in the marketplace because of a general increase in fertilizer demand and an 

increased need for S nutrition in particular. Deficiency of S became a problem for more than 75 

countries according to United Nations statistics (UN, 2014) and supply of this nutrient could be 
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efficient by using new (recovered) fertilizers containing sulfate (Till, 2010). The current 

additional production capacity of AmS from waste streams has not even been sufficient to fulfill 

the market requirements, however, and naturally, this gap in the supply-demand relationship 

has led to a rise in AmS prices. As one might expect, the price of AmS varies with the various 

types of product quality available. The largest disparity is related to particle size, where reported 

prices of granular (2-3 mm) crystals are up to three times higher than these of < 1 mm crystals 

(Gea-Messo, 2013). This price differential can be a strong incentive to produce large crystals. 

Hence, the trend of the market is toward the production of the so-called ‘granular’ AmS quality, 

with a coarse fraction of 80 % > 1.8 mm, which has a higher sales return compared to standard 

quality, but requires an improvement of the production process (Gea-Messo, 2013). 

Next, the demand for controlled- and slow-release (CSR) fertilizers, such as struvite, will 

continue to grow as they prove to be an efficient alternative to conventional fertilizers because 

of their environmentally friendly, resource-saving, and labor-saving (mainly due to the 

decreased application frequency) characteristics (Glauser at al., 2013; Palmer and Kay, 2005). 

However, because of the high price of these products relative to conventional fertilizers, their 

use is still limited primarily to ornamental, horticultural, and turf applications. As larger 

production scales for these materials are achieved, costs will continue to decline, making them 

more attractive for commodity/open-field/broad-acre crops, such as maize, wheat, and potatoes. 

Coated fertilizers, particularly polymer-coated products, have been the fastest-growing segment 

of the CSR fertilizer market and will continue to grow at a faster rate than other CSR fertilizer 

types. Overall, global demand for these products will continue to increase at about 2 % annually 

during 2012-2017 for horticultural and turf applications, including agricultural crop applications 

(Glauser et al., 2013).    

Considering the full nutrient chain, at present on average over 80 % of N and 25-75 % of P 

consumed end up lost in the environment, wasting the energy used to prepare them and 

causing emissions of greenhouse gases and nutrient compounds to water (Sutton et al., 2013). 

Hence, if the production price of recovered AmS and struvite from organic wastes would be 

competitive with that of chemical fertilizers and if their application proves not harmful for crop 

production and soil quality, these products may and should be used to fulfill future fertilizer 

market demands, thereby meeting the challenge to produce more food and energy with less 

pollution.   

 
 

2.4.4 Regulations for reuse in the European Union and Canada (Quebec) 

2.4.4.1 Towards a revised fertilizer regulation in the European Union 

In the European Union (EU), new fertilizers should obtain an EC (European Commission) 

conformity certificate (= conform to the revised European Fertilizer Regulation criteria) in order 

to be sold throughout Europe. The revision of the EU Fertilizer Regulation 2003/2003 (EC, 

2003), currently under discussion, will widen the scope of the Regulation to include inorganic, 

organo-mineral, and organic fertilizers, organic soil improvers, liming products, growing media, 
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as well as plant bio-stimulant and agronomic fertilizer additives. This will considerably facilitate 

the placing on the market both of organic products containing recycled nutrients (e.g. processed 

biosolids, digestates, composts, biochars) and inorganic recovered products (e.g. struvite, 

phosphates recovered from sewage sludge, incineration ash, etc.). Fertilizing materials which 

are certified to comply with the new essential requirements outlined in the EU Fertilizer 

Regulation (minimum nutrient content, quality, and safety criteria) will be authorised to be placed 

on the Internal Market (transported and sold across the European Union), whereas at present 

such products registered as ‘fertilizers’ in one Member State cannot be exported or require a 

new registration dossier for sale in another Member State (except in cases where there has 

been mutually recognition by the authorities of the importing Member State). 

Despite these favourable prospects, harmonization of the Fertilizer Regulation with other 

regulations will be required before effective marketing of bio-based products in the EU will be 

possible. As such, clarification is needed regarding the application of REACH (2007) (European 

chemical regulation) for substances (digestates, recovered products) leaving the waste status. 

There is also a need for coherence with the Animal By-Products Directive (EG 1069/2009 or 

former 1774/2002; EC, 2002, 2009) and the Nitrates Directive (91/676/EEC; EC, 1991). In 

particular, fertilizer products recovered from manures are currently penalised by the limitations 

for spreading ‘processed manure’ as defined in the Nitrates Directive. This could be resolved if 

the criteria defining ‘mineral fertilizers’ under the revised Fertilizers Directive were considered to 

also define a product as no longer being regarded as ‘processed manure’ under the Nitrates 

Directive. Finally, digestates and recovered products are also still subject to end-of-waste 

criteria under the Waste Framework Directive (2008/98/EC; EC, 2008), but it is likely that the 

associated obligations (e.g. traceability) will not be adopted. Instead, each Member State will 

have to put in place national end-of-waste criteria.  

 

2.4.4.2 Fertilizer regulations in Canada and Quebec  

At the Canadian level, the Canadian Food Inspection Agency regulates agricultural fertilizers 

through the Fertilizers Act (Minister of Justice, 2006) and Fertilizer Regulations (Minister of 

Justice, 2013). At provincial level, regulations on the beneficial use of fertilizing residuals are 

provided by the ‘Ministère du Développement Durable, Environnement, Faune et Parcs’ 

(MDDEFP, 2012). An important incentive for reuse is that incineration of biodegradable organic 

material, such as manure, municipal solid waste, and sewage sludge, will be prohibited from 

2020 on by the MDDEFP. Currently, ± one million tons of fertilizer residuals are used annually 

on agricultural soils, however, mostly in hard-extractable form. Hence, the MDDEFP promotes 

the valorization of reusable resources, including nutrients, organic matter, and energy from bio-

waste through its ‘Plan Agro-Environnemental de Valorisation’ (PAEV). Valorization must rely 

on good management practices:  

i. Strategies to reduce the risks for the environment and human health to a minimum; 

ii. Strategies to reduce greenhouse gas emissions to a minimum; 

iii. Practices that take in account the effectiveness and value of the resources (= 
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product efficiency). 

As a consequence, multiple municipalities in Quebec (Ville de Saint-Hyacinthe, Ville de 

Repentigny, Ville de Montréal, Ville de Québec, etc.) are intensively looking for more 

sustainable practices of sludge and municipal solid waste collection and treatment, involving 

anaerobic digestion and valorization of the resulting digestate, e.g. Centre de Biométhanisation 

de l’Agglomération de Québec (CBAQ):  

https://www.ville.quebec.qc.ca/grandsprojetsverts/matieresresiduelles/matieres_organiques/inde

x.aspx. This transition emphasizes the importance of this PhD research. 

According to the federal Fertilizers Regulation, the ammonium salt of sulfuric acid containing at 

least 20 % N can be recognized as a mineral fertilizer (class 1.2; Minister of Justice, 2013). 

Recovered AmS should therefore be upgraded or the recovery process should be optimized to 

produce fertilizers acceptable for agricultural use according to current standards. At present, 

there exists no particular category for magnesium-ammonium-phosphate fertilizers, but struvite 

may be classified either as ammonia phosphate (class 2.2; Minister of Justice, 2013) or 

precipitated phosphate (class 2.11; Minister of Justice, 2013). When one would like to register 

and apply a novel product, detailed information, including product identification, characterization, 

test data, and all other information relevant to identifying the risk to the environment, is required 

in order to obtain the authorization of the Minister of Justice (2013). Hence, field and pot 

experiments are indispensable to prove the fertilizer effectiveness of these novel 

products.  

 

2.5 Need for further research  
Most NRTs described above are derived from the wastewater treatment sector where they are 

well developed or under development. Application of these technologies for digestate, sludge, 

and manure treatment, however, causes new technical bottlenecks. Moreover, adjusting the 

process in a way that the characteristics of the end products can be made client-specific and 

more predictable is an important concern. A lot of efforts by several companies and research 

institutes are being put into solving these technical issues. However, lab, pilot, and/or full-scale 

tests are expensive and time-consuming. Hence, the development of a process and treatment 

train optimization tool for resource recovery that allows to predict fertilizer quantity and quality 

under variable conditions (operation, input characteristics, etc.) may be a highly valuable 

contribution to overcome the above bottlenecks (see Chapters 8-10). 

Next, a research area that deserves more attention is the valorization of end products and the 

economic evaluation of implementing NRTs in a centralised or decentralised approach. Both 

aspects are interlinked, because the added value of the end products will affect the profitability 

of implementing such technologies. The end products could either be used as mineral fertilizer 

substitute, sustainable organo-mineral fertilizer (replacement for manure), or as raw material for 

industrial processes. When farmers are the end-users, it is essential that the fertilizer value of 

the end product is demonstrated by incubation studies or field trials to assess plant availability 
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of the present nutrients and the applicability of these products for several cropping systems (see 

Chapter 5; Vaneeckhaute et al. 2013c, 2014). Industrial end-users also have both technical and 

regulatory requirements for the input streams of their production processes, which have to be 

taken into account. 

Furthermore, a clearly defined and homogenized legislative framework is indispensable for 

future developments in the area of nutrient recovery. Clearly, certain end products have similar 

characteristics as fossil reserve-based mineral fertilizers. If these products would achieve the 

regulatory status of ‘renewable’ mineral fertilizer according to fertilizer regulations, it would be 

possible to apply them as substitute for chemical mineral fertilizers in addition to animal manure 

(or raw digestate). Such a legislative transition would greatly help to overcome the present 

‘barriers-to-change’ in the area of nutrient management and to achieve successful marketing of 

recovered products for agricultural use.  

Finally, one of the most important topics in global policy making is the overall improvement of 

process sustainability. This leads to the proposition to further investigate the environmental 

impact of NRTs, see, e.g. Chapter 4 (Vaneeckhaute et al., 2013b). Indeed, these technologies 

may also have some adverse effects on the environment, related to the consumption of fossil 

fuels, use of chemicals, possible NH3 emissions, transport, etc. However, if their implementation 

could reduce the production and use of chemical mineral fertilizers in the farming community, 

(partially) replace non-sustainable nutrient removal practices in the waste(water) processing 

sector, produce renewable energy (anaerobic digestion), and thereby avoid the emissions 

posed by untreated animal manure and other biodegradable wastes, overall a serious decrease 

in primary energy consumption and greenhouse gas emissions could be achieved. Sutton et al. 

(2013) reported that a global improvement in full-chain nutrient use efficiency of 20 % in 2020 

relative to 2013 would deliver an estimated saving of 20 million tons of reactive N. This would 

equate to a global improvement in human health, climate, and biodiversity in the order of € 143 

(40-319) billion per year (202 (57-197) billion CAD per year). A thorough investigation and 

evaluation of nutrient recovery strategies and treatment trains by means of life cycle 

assessments could provide an objective basis for further policy making (see Chapter 12).  

 

2.6 Conclusions  
Struvite precipitation/crystallization, NH3 stripping and absorption, and acidic air scrubbing can 

be selected as best available technologies for nutrient recovery from digestate. These 

technologies have already been implemented at full-scale and have the ability to produce 

marketable end products. Vibrating membrane filtration (VSEP) also shows potential to become 

part of the commonly used nutrient recovery technologies, but its technical and economic 

performance at full-scale remains to be demonstrated. All technologies require further technical 

fine-tuning in order to minimize operational costs, especially related to energy and chemical 

use, and to improve the quality and predictability of the produced fertilizers. To date, recovered 

bio-based fertilizers can be classified as renewable N/P-, K/P-, or P-precipitates, P-extracts, 
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N/S-solutions, N/K-concentrates, N-zeolites, and biomass. Future research should further 

explore, verify, and improve the fertilizer characteristics and marketing value of these products 

towards industrial and agricultural end-users.   
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CHAPTER 3: 
FATE OF MACRONUTRIENTS IN WATER TREATMENT 

OF DIGESTATE USING VIBRATING  

REVERSED OSMOSIS 

 

 

Air picture of the case study site: Goemaere Eneco Energy, Diksmuide, Belgium 

(Picture: Reynen J.) 

 

 

 

 

Redrafted from:  

Vaneeckhaute, C., Meers, E., Michels, E., Christiaens, P., Tack, F.M.G., 2012. Fate of 

macronutrients in water treatment of digestate using vibrating reversed osmosis. Water Air Soil 

Pollut. 223(4), 1593-1603.  
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Abstract    
In the transition from a fossil reserve-based to a bio-based economy, it has become an 
important challenge to maximally recover and recycle valuable nutrients from digestate 
processing. Membrane filtration is a suitable technology to separate nutrients in easily 
transportable concentrates, which could potentially be reused as renewable fertilizers, in the 
meantime producing high-quality water. However, traditional membrane filtration systems often 
suffer technical problems in waste stream treatment. The aim of this study was to evaluate the 
performance of vibratory shear enhanced processing (VSEP) in the removal of macronutrients 
(N, P, K, Ca, Mg) and salts (Na) from the liquid fraction of digestates, reducing their 
concentrations down to dischargeable/reusable water. In addition, the reuse potential of VSEP-
concentrates as sustainable substitutes for fossil reserve-based mineral fertilizers was 
evaluated. Removal efficiencies for N and P by two VSEP filtration steps were high, though not 
sufficient to continuously reach the Flemish legislation criteria for discharge into surface waters 
(15 mg N L-1 and 2 mg P L-1). Additional purification can occur in a subsequent lagoon, yet 
further optimization of the VSEP filtration system is advised. Furthermore, concentrates 
produced by one membrane filtration step showed potential as N/K fertilizer with an economic 
value of € 6.3±1.1 (8.9±1.5 CAD) ton-1 fresh weight. Further research is required to evaluate the 
impact on crop production and soil quality by application of these new potential renewable 
fertilizers, and the associated economic and ecological impact.  
 
Keywords: anaerobic digestion; bio-based fertilizers; digestate processing; nutrient recycling; 

vibrating membrane filtration; water quality. 
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Résumé 
Pour permettre le passage d'une économie axée sur les ressources fossiles à une économie 
axée sur les ressources biologiques, la récupération et le recyclage optimal des nutriments 
provenant du digestat constituent un défi important. La filtration membranaire est une 
technologie adaptée à la concentration des nutriments dans des concentrés facilement 
transportables et utilisables en tant qu’engrais renouvelables et à la production d’une eau de 
haute qualité. Cependant, les systèmes traditionnels de filtration membranaire souffrent souvent 
de problèmes techniques dans le traitement des flux de déchets. L’objectif de cette étude était 
d'évaluer la performance de la filtration membranaire vibrante (VSEP) dans l'enlèvement des 
macronutriments (N, P, K, Ca, Mg) et du sel (Na) de la fraction liquide du digestat afin d’obtenir 
de l’eau déchargeable ou réutilisable. En outre, le potentiel de réutilisation des concentrés de 
VSEP comme substituts durables aux engrais minéraux fossiles a été évalué. La performance 
d’enlèvement de N et P en deux étapes de filtration était élevée, mais pas suffisante pour 
atteindre en permanence les critères de la législation flamande pour déversement dans les 
eaux de surface (15 mg N L-1 et 2 mg P L-1). Une purification supplémentaire peut être réalisée 
dans une lagune, mais une optimisation plus poussée du système de filtration VSEP est 
conseillée. En outre, les concentrés produits par une étape de filtration membranaire ont révélé 
un engrais N-K potentiel d’une valeur économique de € 6.3±1.1 (8.9±1.5 CAD) tonne-1 poids 
frais. Des recherches supplémentaires sont nécessaires pour évaluer l'impact de l’application 
de ces engrais potentiels sur la production agricole et la qualité des sols, et l'impact 
économique et écologique associé. 
 
Mots-clés: bio-engrais; digestion anaérobie; filtration membranaire vibrante; qualité de l'eau; 

recyclage des nutriments; traitement du digestat. 
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3.1 Introduction    
The European 2001/77/EG guideline states that, by 2020, 13 % of the generated electricity in 

Belgium should be based on renewable resources. Strikingly, the current renewable contribution 

comprises only 4.7 % in relative renewable share of the overall national energy production 

(Mira-T, 2010). In this respect, the Flemish Energy Agency (2010) estimates that based on the 

production potential of various renewable technologies (solar, wind, hydro, biomass, and other), 

72 % of the renewable objectives in Flanders need to be derived from bio-energy (FEA, 2010). 

Hereby the production of biogas through anaerobic (co-)digestion of energy crops, organic 

residues, and animal wastes has been evaluated as one of the most energy-efficient and 

environmentally beneficial technologies for bio-energy production (Fehrenbach et al., 2008).  

In spite of its high potential, it was not until 2007 that, following adaptations in the Manure 

Decree, anaerobic digestion effectively launched as a budding market in Belgium. However, an 

important issue complicating the development of bio-digestion in Flanders and other high-

nutrient regions is that the produced digestate may not, or only sparingly, be returned to arable 

land as a fertilizer in its crude unprocessed form (Chapter 1; Lemmens et al. 2007). The 

underlying reason for this technical prerequisite is that, due to the intensive industrial animal 

production, the northern part of Belgium (Flanders) is confronted with an overproduction of 

animal manure in comparison to the available arable land to spread it on. As a consequence, 

overfertilization has led to eutrophication of water bodies. This resulted in the condemnation of 

Belgium in respect with the EU Nitrate Directive (91/676/EEC; EC, 1991), forcing local 

administrators and governments to enforce more stringent regulations regarding manure and 

digestates.  

Previous chapters have shown the relevance and importance of recovering and recycling 

valuable nutrients from the digestate in a sustainable and environmentally friendly manner. 

Initial steps of digestate processing generally involve the use of separation and/or dewatering 

technologies, using emulsion or powder based polymers for flocculation (Hjorth et al., 2010). 

The resulting thick fractions are commonly pasteurized and stabilized turning them into 

exportable organic soil conditioners, rich in phosphorus (P). The liquid fraction still contains 

most of the digestate’s potassium (K) and inorganic nitrogen (N), next to the remaining soluble 

P. Chapter 2 has revealed the potential to extract and recover these valuable nutrients from the 

liquid digestate for reuse as concentrated fertilizer products, thereby providing sustainable 

substitutes for fossil reserve-based mineral fertilizers.  

To date, the best available technologies for nutrient recovery from the liquid fraction are struvite 

precipitation/crystallization, ammonia stripping, and (subsequent) acidic air scrubbing, in order 

to produce N/P and N/S fertilizers, respectively (Chapter 2). In addition, membrane filtration 

technologies are of increasing interest in order to recover N/K fertilizers. Indeed, membrane 

filtration may potentially be used to separate nutrients from the liquid digestate in easily 

transportable and usable N/K-concentrates that can be applied when and where needed, 

according to plant requirements for optimum growth and contamination vulnerability of the 



                                                                             

 61

agricultural site (Kertesz et al., 2010; Masse et al., 2007). Moreover, selective reversed osmosis 

(RO) membranes (1 nm pore size) can also produce water of relatively high quality that could 

be discharged or reused (Gagliardo et al., 1998; Roeper et al., 2007).  

In spite of all their benefits, traditional membrane technologies often experience technical 

problems for waste stream treatment, mainly caused by membrane fouling and clogging (Masse 

et al. 2007). Membrane fouling is characterized by a decline in flux, due to the deposition and 

accumulation of materials on the membrane surface or within the pore structure (Cheryan, 

1998). In its strictest sense, fouling causes an irreversible flux decline, which can only be 

restored by thermo-chemical cleaning, if it can be recovered at all. In short-term studies, clean 

water flux could always be recovered following intensive acidic and alkaline cleaning (Bilstad et 

al., 1992), which, however, still leads to high operational costs. Because of these technical 

bottlenecks, to date membrane filtration has not yet proven to be a viable option for the 

treatment of digestate.  

Atkinson (2005) and Johnson et al. (2004), from New Logic Research (Emeryville, Ontario, 

Canada), reported on the use of vibrating shear enhanced processing (VSEP) for manure 

purification. The system uses vibrating (60-90 Hz) RO-membranes to minimize flux reduction 

due to concentration polarization and membrane fouling (Kertesz et al., 2010). As such, the 

VSEP technology has the potential to make it technically feasible to convert nutrient-rich waste 

flows into dischargeable water according to the Flemish legislation criteria for discharge into 

surface waters (15 mg N L-1, 2 mg P L-1, and 125 mg COD L-1, i.e. chemical oxygen demand). 

Meanwhile, operational costs may be reduced. Nevertheless, studies evaluating the 

performance of the VSEP technology in a pilot/full-scale digestate treatment train aiming at the 

production of dischargeable/reusable water and N/K-concentrates are absent in literature.  

This chapter aims to study the fate of macronutrients (N, P, K, calcium (Ca), magnesium (Mg)) 

and sodium (Na ~ salt content) in the treatment process of the liquid fraction of digestate 

produced by co-digestion of animal manure, energy maize, and residues from the food industry, 

using vibrating reversed osmosis to reduce their concentrations down to dischargeable/reusable 

water. To this end, process streams have been characterized and mass balances throughout 

the treatment train were set up. First, the potential of the VSEP technology to transform the 

liquid fraction of digestate into dischargeable/reusable water is assessed. Next, the prospects 

for reusing nutrient-rich VSEP-concentrates in a sustainable cradle-to-cradle concept are 

explored and evaluated.   

 

3.2 Material and methods   

3.2.1 Site description and experimental set-up  

The test site is a full-scale biogas plant (378 kWel) located in Diksmuide, Belgium (Goemaere 

Eneco Energy). It concerns an anaerobic digester with an input feed consisting of animal 

manure (30 %), energy maize (30 %), and residues from the food industry (40 %), with a total 
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capacity of 12,000 tons y-1 of fresh weight (FW). The digestate treatment process, operational 

since October 2007, is schematically represented in Figure 3.1.  

The digestate (10±0 % dry weight, DW) is first separated into a liquid and thick fraction (19±3 % 

DW) using a rotating drum, after adding polymer solution. The resulting thick fraction is then 

guided to a screw press for further dewatering, followed by a dryer, in order to obtain an 

exportable end product at 76±1 % DW. The liquid fraction is filtrated twice by a VSEP using RO-

membranes (Fig. 3.2; VSEP Series i-84, ± 140 m2 membrane area, New Logic, Emeryville, 

Ontario, Canada). Each filtration step results in a concentrate and permeate flow. The permeate 

produced by the second filtration should meet the Flemish legislation criteria for discharge into 

surface waters.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.2 Pilot installation of the vibratory shear enhanced processing (VSEP) technology  
at Goemaere Eneco Energy, Diksmuide, Belgium. Picture: Vaneeckhaute C. 

 

Total daily incoming feed volume to the VSEP for the first (1st) filtration is 50 m3 (Fig. 3.1). At an 

operational time of 12 h d-1, this results in a feed flow of 4.2 m3 h-1. The feed includes liquid 

fraction produced by the rotating drum (2.3 m3 h-1), recycled concentrate from the second (2nd) 

membrane filtration step (0.50 m3 h-1), washing water from the rotating drum (0.50 m3 h-1), and 

cleaning water for the VSEP (0.80 m3 h-1). The membrane recovery rate is 80 %, thus resulting 

in a permeate flow of 40 m3 d-1 and a concentrate flow of 10 m3 d-1 produced by the 1st filtration. 

The permeate (40 m3 d-1) is then forwarded towards the VSEP for the 2nd filtration. At an 

operational time of 6 h d-1, this results in a feed flow of 6.7 m3 h-1. The 2nd filtration, with 

membrane recovery rate of 85 %, produces a permeate flow of 34 m3 d-1 and a concentrate flow 

of 6.0 m3 d-1.   

Because the VSEP-permeate is warm (45 °C) and biologically inactive, it cannot be discharged 

in surface waters as such. It is guided to a lagoon for cooling, biological reactivation, and further 

water polishing (Fig. 3.3). The lagoon consists of two compartments (width: 12 m, length: 21 m). 



                                                                             

 63

 

 
Figure 3.1 Schematic representation of the digestate treatment process. 

Numbers 1-11 mark the sample locations. The volumetric flow rates of streams 3, 7, and 10 change during the process.  
LF = liquid fraction; TF = thick fraction; VSEP = vibratory shear enhanced processing.  
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The first compartment (depth: 2.5 m) is mechanically aerated in order to cool down the water 

and to provide oxygen for biological processes. In this compartment NH4-N is converted into 

NO3-N (nitrification). The second compartment (depth: 1 m) is half-filled with porous lava stones 

and has a low water flow velocity. This allows the rooting of different macrophyte species, such 

as the marsh marigold (Caltha palustris), which take up nutrients for growth. Also, in this 

compartment NO3-N is converted into N2 (denitrification), while organic matter is 

microbiologically degraded. The lagoon thus serves as a buffer zone where further biological 

purification, as well as natural purification by dilution with rainwater, of the VSEP-permeate 

occurs.    

 

Figure 3.3 Lagoon for final effluent treatment at Goemaere Eneco Energy,  
Diksmuide, Belgium. Pictures: Vaneeckhaute C. 

 
Samples for physicochemical analysis of the process streams were taken during two sampling 

campaigns spread over two months time. During each sampling event, two homogenized 

samples (ten liters each) were taken of the different process streams on a different time of the 

day (= total of four samples per stream). The samples were collected in polyethylene sampling 

buckets and transported within 1 h from the test site to the laboratory, carried in cooler boxes 

filled with ice. In the laboratory, the four replicate samples were stored cool (1-5 °C) and kept 

separate for replicate analysis. Each sample was analyzed twice in order to detect the precision 

of the analytical method. The following process flows were sampled (Fig. 3.1): raw digestate (1), 

thick (2) and liquid (3) fraction produced by the rotating drum, polymer solution (4), thick (5) and 

liquid (6) fraction produced by the screw press, permeate (7) and concentrate (8) produced by 

the 1st filtration step, permeate (9) and concentrate (10) produced by the 2nd filtration step, and 

finally the exportable end product (11). Moreover, the contents of N and P, as well as the COD 

in the second compartment of the lagoon following membrane filtration were daily monitored at 

the test site during the experimental period (two months).  
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3.2.2 Liquid sample analysis   

Electrical conductivity (EC) and pH were determined potentiometrically using a WTW F537 

conductivity electrode (Wissenschaftlich Technischen Werkstäten, Weilcheim, DE) and an Orion 

520A pH meter (Orion Research, Boston, USA), respectively. The salt content was estimated as 

total dissolved solids (TDS) from the EC using the following approximation: TDS (mg L-1) = EC 

(µS cm-1) x 0.64 (Ali et al., 2012; Van Ranst et al., 1999). Total N content was determined using 

a Kjeltec system 1002 distilling unit (Gerhardt Vapodest, Köningswinter, DE) after digestion of 

the sample in a sulphuric-salicylic acid mixture. Finally, the captured ammonia in the distillate 

was titrated with 0.01 mol L-1 hydrogen chloride (HCl) in the presence of a methyl red 

bromocresol green mixed indicator (Van Ranst et al., 1999). Total P content was determined 

using the colorimetric method of Scheel (1936; Van Ranst et al., 1999) after wet digestion of the 

liquid samples (2.5 g sample + 2 mL nitric acid, HNO3, + 1 mL hydrogen peroxide, H2O2). The 

absorbance at 700 nm of samples and standards was determined using a Jenway 6400 

spectrophotometer (Barloworld Scientific T/As Jenway, Felsted, UK). Ca and Mg were analyzed 

using inductively coupled plasma optical emission spectrometry (ICP-OES; Varian Vista MPX, 

Palo Alto, CA, USA) after wet digestion (as described above). The total hardness (D°H, German 

degrees of hardness) was computed from the Ca and Mg contents, using the formulations in 

CSA (2015). Na and K in the digested samples (see above) were analyzed using a flame 

photometer (Eppendorf ELEX6361, Hamburg, DE). The COD was determined photometrically 

using Dr. Lange standardized cuvette-tests (Dr. Bruno Lange GmbH & Co, KG Düsseldorf, DE).  

 

3.2.3 Thick sample analysis   

The dry weight (DW) content was determined as residual weight after 48 h drying at 100 °C in 

an oven (EU 170, Jouan s.a, Saint Herblain, FR). The EC and pH were measured using a WTW 

F537 conductivity electrode (Wissenschaftlich Technischen Werkstäten, Weilcheim, DE) and an 

Orion 520A pH meter (Orion Research, Boston, USA), respectively, after equilibration for 1 h in 

deionized water at a 5:1 liquid:dry sample ratio and subsequent filtering (white ribbon, MN 640 

m, Macherey-Nagel, Düren, DE). The salt content was derived from the EC as described in 

Section 3.2.2. Total N was determined using the Kjeldahl procedure (Section 3.2.2; Van Ranst 

et al., 1999). For the determination of P, dry samples were incinerated at 450 °C during 4 h in a 

muffle furnace (Nabertherm, Lilientahl, DE). The P content was then determined by the 

colorimetric method of Scheel (1936; Van Ranst et al., 1999) after digestion of the residual ash 

(1 g ash + 5 mL of 3 mol L-1 HNO3 + 5 mL of 6 mol L-1 HNO3). Ca and Mg in the digested 

samples were analyzed by means of ICP-OES, while Na and K in the digested samples were 

determined using a flame photometer (Section 3.2.2).   

 

3.2.4 Mass balance calculations  

Process flow rates were monitored by means of flow meters at inlet and outlet points of each 

process step (rotating drum, screw press, VSEP 1st filtration, VSEP 2nd filtration, dryer). Nutrient 

mass flow rates were assessed by multiplying the volumetric flow rate and nutrient 
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concentrations for each individual flow. This allowed calculating removal/recovery efficiencies of 

macronutrients in the liquid fraction of the digestate for each process step.   

  
 
 

3.3 Results 
3.3.1 Physicochemical characterization of process flows  

Average macronutrient contents (+ standard deviations of the replicates) in the different process 

flows were analyzed (Table 3.1). It is clear that the permeate produced by one filtration step did 

not meet the Flemish discharge legislation criteria of 15 mg N L-1 and 2 mg P L-1. N and P 

contents in the VSEP-permeate produced by the 2nd filtration were low, although average 

concentrations were also not below the discharge criteria. Nevertheless, in the subsequent 

lagoon, the average concentrations for N and P based on daily monitoring during the 

experimental period were 12±6 mg N L-1 and 1.6±1.0 mg P L-1, respectively, and thus met the 

discharge levels. Furthermore, it was observed that the COD in the VSEP-permeates can reach 

high peaks related to the addition of citric acid (C6H8O7) during acidic cleaning events. 

Nevertheless, the COD in the lagoon (26±10 mg COD L-1) was constantly below the Flemish 

discharge level of 125 mg COD L-1 due to microbial breakdown of the organic matter and 

dilution with rainwater. Finally, it was observed that average concentrations of Ca, Mg, and Na 

in the permeate produced by the 2nd filtration step were very low, in agreement with the low salt 

content (0.56 g salt kg-1 FW or 0.88 mS cm-1) and total hardness (0.19±0.12 D°H) of this 

process flow.  

 

3.3.2 Mass balances   

Figures 3.4, 3.5, and 3.6 exhibit mass balances of the process for N and P, K and Na, and Ca 

and Mg, respectively. The volumetric flow rates (m3 h-1) can be found in Figure 3.1. It should be 

remarked that the flow rate of some streams (3, 7, and 10) change in the digestate treatment 

process (output one unit vs. input subsequent unit). As a first step in the process, the incoming 

mass flow to the rotating drum is determined mainly by the raw digestate produced by the 

anaerobic digester. Also the liquid fraction produced by the subsequent screw press is recycled 

to the rotating drum. Polyelectrolyte was used to improve the separation efficiency. The 

resulting thick fraction is further dewatered by the screw press and dried to an exportable end 

product. The separated liquid mass flow contained more N, K, and Na than the corresponding 

thick flow. Reversely, the thick mass flow was richer in P, Ca, and Mg. The liquid fraction 

produced by the rotating drum enters the VSEP filtration system. As expected, most of the 

macronutrients after the 1st filtration step ended up in the concentrate. The permeate produced 

by the 1st VSEP filtration step is submitted to a 2nd filtration. The concentrate produced by this 

2nd filtration is recycled to the VSEP for the 1st filtration step. During the sampling period, the 

permeate produced by the 2nd filtration did not continuously meet the Flemish legislation criteria 

for discharge into surface waters. It was guided to a lagoon for further biological and natural 

purification, as well as for cooling.  
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Table 3.1 Concentrations (g kg-1 FW) of N, P, K, Na, Ca, Mg, dry weight (DW, %), density (g L-1), electrical conductivity (EC, mS cm-1), salt content (g 
kg-1 FW), total hardness (D°H), and chemical oxygen demand (COD, mg L-1) in the characterized process flows (mean ± standard deviation; n = 4). 
Numbers 1-11 correspond with the sample locations in Figure 3.1. FW = fresh weight; LF = liquid fraction; TF = thick fraction. 

Process flow N 
 (g kg-1 FW) 

       P 
       (g kg-1 FW) 

K 
(g kg-1 FW) 

Na 
 (g kg-1 FW) 

Ca 
(g kg-1 FW) 

Mg 
(g kg-1 FW) 

1. Digestate 4.6 ± 0.4 2.2 ± 0.8 3.5 ± 0.9 1.4 ± 0.6 2.3 ± 0.1 1.1 ± 0.1 

2. TF Rotating drum 4.4 ± 0.0 4.4 ± 1.9 2.1 ± 0.2 1.1 ± 0.1 4.3 ± 0.1 2.2 ± 0.2 

3. LF Rotating drum 2.6 ± 0.3 0.23 ± 0.11 1.5 ± 0.1 0.76 ± 0.13 0.054 ± 0.002 0.064 ± 0.024 

4. Polymer solution 0.32 ± 0.03 0.46 ± 0.29 0.077 ± 0.022 0.045 ± 0.011 0.0046 ± 0.0023 0.00055 ± 0.00033 

5. TF Screw press 5.7 ± 0.1 6.0 ± 2.3 2.1 ± 0.5 1.1 ± 0.3 6.3 ± 0.4 2.7 ± 0.2 

6. LF Screw press 3.2 ± 1.9 1.8 ± 0.8 1.7 ± 0.1 0.90 ± 0.08 2.1 ± 0.1 1.4 ± 0.3 

7. VSEP-permeate 1st filtration 0.13 ± 0.02 0.11 ± 0.00 0.18 ± 0.13 0.080 ± 0.089 0.00056 ± 0.00013 0.00028 ± 0.00007 

8. VSEP-concentrate 1st filtration 7.3 ± 1.6 0.42 ± 0.08 2.9 ± 1.0 1.0 ± 0.6 0.19 ± 0.11 0.13 ± 0.16 

9. VSEP-permeate 2nd filtration 0.094 ± 0.040 0.11 ± 0.00 0.11 ± 0.02 0.041 ± 0.019 0.00095 ± 0.00084 0.00023 ± 0.00001 

10. VSEP-concentrate 2nd filtration 0.98 ± 0.20 0.12 ± 0.01 0.69 ± 0.25 0.28 ± 0.21 0.018 ± 0.007 0.014 ± 0.013 

11. Dry end product  18 ± 1 14 ± 0 7.8 ± 0.3 2.4 ± 1.7 19 ± 2 8.0 ± 0.9 

Process flow DW 
 (%) 

       Density 
      (g L-1) 

EC 
(mS cm-1) 

Salt content 
(g kg-1 FW) 

Total hardness 
(D°H) 

COD 
(mg L-1) 

1. Digestate 10 ± 0      - 57 187 574 ± 14  -  

2. TF Rotating drum 17 ± 1      - 35 116 1,085 ± 14  -  

3. LF Rotating drum 1.4 ± 0.0      1,016 24 15 22 ± 6  -  

4. Polymer solution - ± -      1,000 1.3 0.82 0.77 ± 0.40  -  

5. TF Screw press 23 ± 1     - 24 82 1,502 ± 56  -  

6. LF Screw press 8.2 ± 1.7     1,036 16 10 616 ± 83  -  

7. VSEP-permeate 1st filtration - ± -     1,000 1.5  0.95 0.14 ± 0.03 473 ± 67 

8. VSEP-concentrate 1st filtration 7.4 ± 0.0     1,045 66 40 56 ± 52  -  

9. VSEP-permeate 2nd filtration - ± -     1,000 0.88 0.56 0.19 ± 0.12 92 ± 42 

10. VSEP-concentrate 2nd filtration 0.53 ± 0.00     1,003 14 8.8 5.7 ± 4.0  -  

11. Dry end product  76 ± 1     - 26 96 4,498 ± 487  -  
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Figure 3.4 Mass balance for nitrogen (N) and phosphorus (P) in kg h-1.  
The volumetric flow rates of streams 3, 7, and 10 change during the process. 

LF = liquid fraction; TF = thick fraction; VSEP = vibratory shear enhanced processing.  
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Figure 3.5 Mass balance for K and Na in kg h-1.  

The volumetric flow rates of streams 3, 7, and 10 change during the process.  
LF = liquid fraction; TF = thick fraction; VSEP = vibratory shear enhanced processing. 
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Figure 3.6 Mass balance for Ca and Mg in kg h-1. 
The volumetric flow rates of streams 3, 7, and 10 change during the process.  

LF = liquid fraction; TF = thick fraction; VSEP = vibratory shear enhanced processing.
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3.4. Discussion  
3.4.1 Mass balance equilibrium   

Total incoming and outgoing mass flows to each particular unit process are approximately equal 

(Fig. 3.4-3.6), showing that the mass balances are roughly in equilibrium. Small deviations can 

be caused by the accuracy and precision of the used physicochemical laboratory protocols. 

Larger deviations can also be caused by biological activity or physicochemical reactions. This 

can occur, for example, when N escapes from the system as nitrogen gas (N2) or ammonia 

(NH3), or forms ammonium sulfate by reaction with sulfuric acid (H2SO4) or hydrogen sulfide 

(H2S). Nitrogen losses to air are an important issue in manure and digestate processing. Based 

on the observed data, it is estimated that the average N losses in the rotating drum, the screw 

press, and the dryer are 0.85 %, 0.44 %, and 5.0 %, respectively, resulting in a total N loss of 

6.3 % over these process steps. The released ammonia is captured in an acidic air scrubber, 

thereby producing ammonium sulfate as a waste stream. This product could potentially be 

reused as renewable fertilizer in agriculture in order to close the N cycle (Chapter 2). On the 

contrary, for the VSEP system, it was observed that total outgoing mass flows can be larger 

than total incoming flows. This is related to the fact that sludge from previous filtration steps is 

retained on the membrane surface and can end up in concentrates produced by subsequent 

filtrations. Finally, the use of washing water can also cause mass balance deviations, for 

example, when the rotating drum is cleaned with permeate produced by the 1st filtration step.  

 

3.4.2 Digestate pre-treatment   

In general, digestate processing tends to be limited to an initial separation and/or dewatering 

step, producing a liquid and thick fraction with different macronutrient contents (Hjorth et al., 

2010). In this particular case, the initial separation occurred using a rotating drum after addition 

of polymer solution, followed by a screw press for further dewatering of the resulting thick 

fraction. As expected (Hjorth et al., 2010), most of the P (91 %), Ca (96 %), and Mg (92 %) were 

recovered in the thick fraction, which can be dried to an exportable (to P-poor regions), organic 

soil conditioner. In contrast, most of the N (57 %), K (78 %), and Na (72 %) ended up in the 

liquid fraction. The VSEP system is intended to separate these valuable macronutrients into 

easily transportable concentrates, producing permeates low in nutrient contents that meet the 

Flemish legislation criteria for discharge into surface waters.  

 

3.4.3 VSEP performance in water treatment of digestate      

Monitoring results for the 1st VSEP filtration step show average removal efficiencies of 93 % for 

N present in the total incoming feed and 59 % for P, which are insufficient to achieve the 

Flemish discharge criteria (respectively 15 and 2 mg L-1). Yet, in this study, the N removal was 

higher than that reported by Johnson et al. (2004) for hog manure (79 %), while the P removal 

was less (86 %). Forwarding the permeate to a 2nd VSEP filtration step resulted in a total N and 

P removal of 95 % and 69 %, respectively, which is still not sufficient to meet the discharge 



 

72  

criteria. Also the COD in the produced permeates was often too high for discharge in surface 

waters due to intensive cleaning events with citric acid (C6H8O7). Further purification in the 

lagoon through microbiological nitrification-denitrification, nutrient accumulation, plant nutrient 

uptake (autotrophic photosynthesis), and dilution with rainwater, allowed improving the water 

quality to the standards for dischargeable water. However, due to technical and mechanical 

problems, the VSEP performance was instable and legislative levels were also frequently 

exceeded in the lagoon. Moreover, during the nitrification-denitrification process in the lagoon, 

N2 gas is released in the atmosphere and eliminated from the local agricultural cycle. It is 

therefore advised to further optimize VSEP process parameters, such as vibration frequency 

and amplitude, filtration time, pH and temperature, as well as conditioning and pre-filtration of 

the feed (Frappart et al., 2008; Johnson et al., 2004; Petala and Zouboulis, 2006). Johnson et 

al. (2004) and Masse et al. (2010) found that pH and temperature have significant effects on the 

ammonia-ammonium equilibrium and thus on the removal efficiency of N from manure 

wastewater by VSEP filtration systems. In this context, also the membrane type is of particular 

importance. During the anaerobic digestion most of the N is transformed into positively charged 

ammonium, which is better retained using negatively charged membranes. 

There exist no discharge criteria for K, Na, Ca, and Mg, though, regarding future water reuse 

perspectives, these elements are of particular interest. Results show that both the salt content 

(0.88 mS cm-1 or 0.56 g salt kg-1 FW) and the total hardness (0.19±0.12 D°H) in the produced 

permeates were low, making it a valuable source of high-quality water that could potentially be 

reused, for example, as process water, irrigation water, or drinking water (Vaneeckhaute, 2010). 

RO-membranes have also been evaluated positively in the past for the elimination of viruses 

and bacteria from wastewater streams (Gagliardo et al., 1998; Roeper et al., 2007; Tam et al., 

2007). The fate of micronutrients and heavy metals in digestate processing was not at the core 

of the present chapter. However, the concentrations of aluminium (Al), cadmium (Cd), copper 

(Cu), iron (Fe), manganese (Mn), lead (Pb), nickel (Ni), and zinc (Zn) in the various process 

flows were also identified and are given as supplementary information in Appendix 1. The 

concentrations of these metals in the VSEP-permeates were mostly lower than the respective 

detection limits of inductively coupled plasma optical emission spectrometry (ICP-OES), again 

indicating the reuse potential of these water flows for high-quality applications (Vaneeckhaute, 

2010). Regarding the worldwide increasing scarcity of water resources and the rising prices of 

tap water (± € 2 m-3; Flemish Water Supply Company VMW, Leuven, Belgium, personal 

communication 2011), it is an important challenge, economically as well as ecologically, to 

maximally recover this high-quality water source in a sustainable cradle-to-cradle 

approach. In addition, water reuse could turn out in economic benefits for anaerobic digestion 

plants, thereby stimulating the further development of this bio-energy technology in Flanders 

and abroad.  

Compared to other membrane filtration systems, previous studies have shown that the gel layer 

is much lower in the case of the VSEP, because of the high shear-enhanced forces on the 

membrane surface during the experiments (Bian et al., 2000; Culkin et al., 1998; Johnson et al., 
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2004; Wei and Mark, 2008). Though there are currently several VSEPs in operation for 

agricultural wastewater treatment (New Logic Research Inc., Emeryville, Ontaria, Canada, 

personal communication 2012), there are little data available on the energy consumption and 

treatment costs of this technology. Akoum et al. (2005) reported on the potential energy saving 

of the vibratory concept. When 61 cm-diameter membranes are used, a total of 151 m2 can be 

installed on a single shaft (VSEP series i-10). The energy consumed per vibration is then 

8.83 kW, as it is not much affected by the number of compartments. Energy consumed by the 

feed pump is also small, as its flow rate does not need to be much larger than the permeate 

flow rate. They estimated the energy consumed by the recirculation pump at 9.4 kWh per m3 of 

permeate in a 154 m2 membrane area unit. This could be reduced to 6 kWh m−3 if plane 

ceramic membranes were used. Energetic calculations based on these data indicate that large 

VSEP units will consume significantly less energy per m3 of permeate than traditional cross-flow 

filtration. Nevertheless, energy consumption and economic performance remain critical points of 

attention in evaluating membrane technology.  

 

3.4.4 Agricultural and economic value of concentrates   

Membrane technology allows to concentrate nutrients recovered in the liquid fraction of 

digestate in a small volume that can be transported to agricultural fields. Concentrates produced 

by the 1st membrane filtration step could potentially be reused as inorganic fertilizers, rich in N 

and K. The N content was 7.3±1.6 kg ton-1 FW, which is comparable to that of conventional pig 

manure (5-10 kg N ton-1 FW; Lemmens et al. 2007). The K2O content was 3.5±0.0 kg ton-1 FW, 

which is lower than predicted literature data (6-12 kg K2O ton-1 FW; Melse and Verdoes, 2002), 

but slightly higher than that of conventional pig manure (3.3 kg K2O ton-1 FW; Lemmens et al., 

2007). As expected, the amount of P in the concentrates was rather low, because most of the P 

ends up in the separated thick fraction during the pre-treatment. Regarding the P restrictions 

that become more and more stringent in high-nutrient regions, the use of this P-poor fertilizer 

could benefit important advantages. Concentrates produced by the 2nd membrane filtration step 

were poor in macronutrients and have therefore little/no potential for reuse as a fertilizer. This 

flow is currently recycled within the process. 

Although K is an important element for crop production, high ratios of K over N and P are not 

preferred in every agricultural sector. Especially cattle farmers rather use K-poor fertilizers, 

because of the potential health risks for cattle (head illness) at high K fertilization (> 50 ton ha-1 

y-1; Hillel, 2008; Romheld and Kirkby, 2010). Also, high ratios of monovalent cations, such as K 

and Na, to divalent bases, such as Ca and Mg, may cause degradation of the soil structure, 

especially when soils are rich in clay (USEPA, 2004). Hence, the soil characteristics, the type of 

animal production and agricultural crop, as well as the characteristics of the base fertilizer, will 

all play a role in determining the optimal concentrate dose that ensures sufficient readily 

available K2O for plant growth at minimal environmental pollution and health risks (EFMA, 2003; 

Hillel 2008; Romheld and Kirkby, 2010). Furthermore, concentrates produced by the 1st 

membrane filtration could have higher salt contents (66 mS cm-1) compared to conventional 
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animal manure (30-50 mS cm-1; Moral et al., 2008). This results in high salt:N ratio’s (± 6) for 

this product. Too high salt contents can cause soil degradation and can dramatically reduce 

crop production (Verlinden, 2005). Therefore, when using concentrates in agriculture, it will also 

be important to pay attention to the salt doses per unit N that is applied to the soil. Extensive 

greenhouse and field-testing will be required to investigate the impact of concentrates on soil 

and crop production.  

Finally, noteworthy is that no products exceeded the legal composition and use requirements in 

terms of heavy metals (Al, Cd, Cu, Fe, Mn, Pb, Ni, Zn) for reuse as fertilizer and/or soil 

conditioner in agriculture, as described in Flemish legislation (Vlarea, 1989; Appendix 1). The 

level of contamination with organic substances and pathogens in these potential fertilizers was 

out of scope of the present study, but definitely is an important topic for future research. 

Next to the potential ecological benefits of recovering nutrients and substituting 

chemical fertilizers, reuse of concentrates as a renewable fertilizer and/or soil 

conditioner in agriculture could also result in significant economic benefits. Nowadays, 

the anaerobic digestion plant has to pay high disposal or treatment costs for the offset of the 

produced concentrates. In the meantime, prices for chemical mineral fertilizers are increasing 

and nutrient resources are depleting (Öborn et al., 2005; Ruddock et al., 2003; Smit et al., 2009; 

Vilalba et al., 2008). Reuse of valuable nutrients coming from digestate processing could 

therefore also convert the digestate problem into an economic opportunity.  

The economic value of concentrates can be calculated based on current cost prices for fossil 

reserve-based chemical fertilizers/soil conditioners (Table 3.2). The latter were obtained from a 

price request at Brenntag NV (Deerlijk, Belgium; 2011).  

 
Table 3.2 Economic value (€ ton-1 FW; CAD ton-1 FW ) of chemical fertilizers/soil conditioners 
(Brenntag NV, 2011). FW = fresh weight. € 1 ≈ 1.415 CAD (November 2014).  
    Chemical fertilizer / Soil conditioner Economic value (€ ton-1 FW; CAD ton-1 FW) 

    Ammonium nitrate (27 % N) 165 (232) 

    Tripel superphosphate (46 % P) 268 (377) 

    Potassium chloride (60 % K) 365 (514) 

    Calcium oxide (71.5 % Ca) 165 (232) 

    Kieserite (25 % Mg) 260 (366) 

 

The application of concentrates in agriculture could have a value of € 6.3±1.1 (8.9±1.5 CAD) 

ton-1 FW, if both N and K are appreciated by the agriculturist. If only N is appreciated, the 

economic value is € 4.5±1.0 (6.3±1.4 CAD) ton-1 FW, whereas it amounts to € 1.8±0.1 (2.5±0.14 

CAD) ton-1 FW if only K is of relevance. Unlike traditional mineral fertilizers, these concentrates 

could also contain significant amounts of organic carbon (24±1 % in this study). Application of 

concentrates could therefore also have additional values in organic carbon recycling.  
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3.5 Conclusions and future perspectives    
The performance of the VSEP filtration system technically and mechanically proved not yet 

satisfactory to allow for a reliable, continuous operation. Further technical/mechanical 

optimization of the process is required in order to implement the VSEP system in full-scale 

installations.  

One VSEP filtration step resulted in an average removal of 93 % N and 59 % P, which was not 

sufficient to achieve the Flemish legal discharge criteria of 15 mg N L-1 and 2 mg P L-1. A 

second VSEP filtration step allowed to achieve a total average removal efficiency of 95 % N and 

69 % P, which was still not sufficient to meet the discharge criteria. A subsequent treatment in 

an aerated lagoon allowed producing dischargeable water. However, also in the lagoon, the 

discharge criteria were regularly exceeded due to the instability of the VSEP performance. 

Optimization of process parameters, such as membrane type, pH, temperature, as well as 

condition and pre-filtration of the feed, is therefore advised. On the upside, the salt content, the 

total hardness, and (heavy) metal concentrations in the permeate of the second VSEP filtration 

step were low, indicating that it could potentially be a water source for reuse in high-quality 

applications.      

Concentrates produced by the first VSEP filtration step were rich in macronutrients and could 

potentially be reused as a sustainable substitute for fossil reserve-based mineral fertilizers. 

However, pot and field experiments are required to evaluate its impact on plant growth and soil 

quality. Reuse of nutrient-rich concentrates produced by VSEP membrane filtration in a 

sustainable cradle-to-cradle approach might so benefit the economic performance of anaerobic 

digestion in Flanders (and other high-nutrient regions), thereby stimulating the production of bio-

energy in the framework of the 2020 objectives.   

The VSEP filtration system has potential for use in the conversion of the liquid fraction of 

digestates into dischargeable/reusable water and renewable fertilizers, though further 

optimization and testing in full-scale installations is required.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



 

 

 

 

  

 

 

 CHAPTER 4: 
ECOLOGICAL AND ECONOMIC BENEFITS OF THE 

APPLICATION OF BIO-BASED (ORGANO-)MINERAL 

FERTILIZERS IN MODERN AGRICULTURE 

 

 

Ammonium sulfate wastewater from acidic air scrubbing (left) and 

membrane filtration concentrates (right) (Pictures: Vaneeckhaute C.) 
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Vaneeckhaute, C., Meers, E., Michels, E., Buysse, J., Tack, F.M.G., 2013b. Ecological and 

economic benefits of the application of bio-based mineral fertilizers in modern agriculture. 

Biomass Bioenerg. 49, 239-248.  
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Abstract    

During anaerobic digestion and digestate processing, multiple derivatives are produced, some 
of them possessing potential for reuse as chemical fertilizer substitutes. In-depth research on 
the composition and properties of these products is scarce, though very relevant, in order to 
identify bottlenecks for reuse and to evaluate the economic and environmental impact of various 
bio-based fertilization scenarios. A first aim of this chapter was to characterize in more detail the 
physicochemical properties of digestates and its derivatives. The fertilizer value and potential 
bottlenecks for agricultural reuse of these products were identified. Secondly, the economic and 
ecological (in terms of energy use and associated greenhouse gas emissions) benefits of 
substituting conventional fertilizers by bio-based alternatives were quantified and evaluated, 
using the Flanders region (Belgium) as an example. Ammonium sulfate (AmS) wastewater from 
acidic air scrubbers for ammonia recovery showed potential for application as N/S fertilizer. 
Analogously, concentrates resulting from membrane filtrated liquid fraction of digestate showed 
promise as N/K fertilizer. Substituting conventional fertilizers by digestate derivatives in different 
cultivation scenarios can result in significant economic and ecological benefits for the crop 
farmer. The most interesting scenario likely exists of an optimal (in terms of effective N over P 
content) combination of digestate and its liquid fraction as base fertilizer, meanwhile substituting 
chemical N by recovered AmS or concentrates. Based on the analysis, it was estimated that a 
marketing value of ± € 0.93 (1.31 CAD) kg-1 N and ± € 0.60 (0.85 CAD) kg-1 N could be imposed 
for the production of acidic air scrubber water and membrane filtration concentrates, 
respectively, in order to balance with the status quo (= no cost impact for the crop farmer). 
Starting from theoretical scenarios outlined in the current chapter, field test validation will be 
required to confirm the potential substitution of fossil reserve-based mineral fertilizers by bio-
based alternatives. Moreover, a reconsideration of the legislative categorization of digestate and 
its derivatives based on their effective fertilizer properties is recommended so as to maximize 
the beneficial use of these products.  
 
Keywords: agricultural economics, anaerobic digestion, digestate processing, nutrient 

recycling, renewable fertilizers, sustainable agriculture.  
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Résumé  

Pendant la digestion anaérobie et le traitement du digestat, plusieurs dérivés sont produits et 
certains d'entre eux peuvent servir de substituts aux engrais chimiques. Les recherches 
approfondies sur la composition et les propriétés de ces produits sont rares, bien que très 
utiles, afin d'identifier les goulots d'étranglement à la réutilisation et d’évaluer l'impact 
économique et environnemental de divers scénarios de bio-fertilisation. Un premier objectif de 
ce chapitre était de caractériser plus en détail les propriétés physicochimiques des digestats et 
de leurs dérivés. La valeur des engrais et les goulots d'étranglement potentiels pour la 
réutilisation agricole de ces produits ont été identifiés. Deuxièmement, les avantages 
économiques et écologiques (en termes de consommation d'énergie et les émissions de gaz à 
effet de serre associées) de la substitution des engrais conventionnels par des alternatives 
d'origine biologique sont quantifiés et évalués en utilisant la région des Flandres (Belgique) à 
titre d’exemple. Les solutions de sulfates d’ammonium (AmS) provenant de récupérateurs 
d’ammoniac à laveur à air acide ont démontré leur potentiel pour application comme engrais N-
S. De manière analogue, les concentrés résultant de la filtration membranaire de la fraction 
liquide du digestat ont montré promesses à titre d’engrais N-K. La substitution des engrais 
conventionnels par des dérivés de digestat dans différents scénarios de culture peut entraîner 
des avantages économiques et écologiques importants pour l'agriculteur. Le scénario 
probablement le plus intéressant est tiré d’une combinaison optimale (en termes du rapport de 
N effective sur la teneur en P) du digestat et sa fraction liquide en tant qu’engrais de base, tout 
en substituant le N chimique par les solutions d’AmS récupérés ou par des concentrés. Basé 
sur cet analyse, une valeur économique estimée à ± € 0.93 (1.31 CAD) kg-1 N et ± € 0.60 (0.85 

CAD) kg-1 N pourrait être donnée à la production d’AmS et aux concentrés, respectivement, afin 
d'équilibrer le statu quo (c’est-à-dire sans impact sur les coûts de l'agriculteur). À partir des 
scénarios théoriques énoncés dans ce chapitre, la validation sur le terrain sera nécessaire pour 
confirmer le remplacement potentiel des engrais minéraux non-renouvelables par des 
alternatives biologiques. En outre, un réexamen de la catégorisation législative du digestat et de 
ses dérivés en fonction de leurs propriétés réelles d'engrais est recommandé afin de maximiser 
l'utilisation bénéfique de ces produits. 
 

Mots-clés: agriculture durable, digestion anaérobie, économie agricole, engrais renouvelables, 

recyclage des nutriments, traitement du digestat. 
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4.1 Introduction  
In 2010, chemical fertilizer use in Europe (EU-27) was as high as 10.4 million tons of nitrogen 

(N), 2.4 million tons of phosphate (P2O5), and 2.7 million tons of potash (K2O) (EFMA, 2010). By 

2019/2020, these fertilizer consumption figures are expected to reach 10.8, 2.7, and 3.2 million 

tons, respectively (EFMA, 2010). Unfortunately, fertilizer production requires significant amounts 

of fossil energy, prices for mineral fertilizers are increasing, whereas nutrient resources are 

depleting (Chapter 1; Öborn et al., 2005; Ruddock et al., 2005; Smit et al., 2009; Vilalba et al., 

2008). In the transition from a fossil reserve-based to a bio-based economy, it has therefore 

become an important challenge to maximally recover and recycle valuable nutrients from waste 

streams in a sustainable and environmentally friendly manner. 

In the framework of the 2020 directives, the conversion of biomass, such as energy crops, 

organic residues, and animal wastes, into biogas through anaerobic (co-)digestion has been 

evaluated as one of the most energy-efficient and environmentally beneficial technologies for 

bio-energy production and organic waste valorization (EC, 2011; Fehrenbach et al., 2008; 

UNEP, 2013). However, in regions facing local manure production excesses, the resulting 

digestates have to be processed further and cannot or only sparingly be returned to arable land 

as a fertilizer in its crude, unprocessed form (Chapter 1; Lemmens et al., 2007).  

Initial steps of digestate processing generally comprise the use of separation and/or dewatering 

technologies, using emulsion or powder based polymers for flocculation (Hjorth et al., 2010). 

The resulting thick fractions (TF) are mostly dried, and as such turned into pasteurized and 

stabilized exportable organic soil conditioners, high in phosphorus (P) and organic matter 

(Chapter 3; Umetsu et al., 2002; Vaneeckhaute et al., 2012). The liquid fraction (LF) produced 

by the separation step contains the majority of the digestate’s potassium (K) and inorganic N. 

This LF can be processed further by ammonia stripping or membrane filtration, for example 

microfiltration (MF), ultrafiltration (UF), and/or reversed osmosis (RO) (Chapters 2-3; Masse et 

al., 2007; Vaneeckhaute et al., 2012, 2013a). Each step in a membrane cascade again 

generates two downstream products, concentrate and permeate, with varying characteristics 

concerning macro- and micronutrient composition. Alternatively, the LF after separation can be 

treated biologically, for example by nitrification-denitrification. However, the latter ultimately 

converts valuable N into nitrogen gas (N2), which is then eliminated from the local agricultural 

cycle. In regions where agricultural N emissions to the environment are already excessive and 

in conflict with the European Nitrate Directive for protection of water bodies, this N elimination 

may be economically and ecologically sensible for a given portion of the N.  

Exhaust gases of the biogas cogeneration engines and driers need to be washed before 

emission into the atmosphere. This involves the use of acidic, alkaline, and/or oxidative 

scrubber techniques, again resulting in different types of specific streams, some of which 

contain large amounts of inorganic nutrients. In acidic air scrubbers, for example, sulfuric acid is 

dosed to capture ammonia (NH3) and amines, thereby producing ammonium sulfate (AmS, 

(NH4)2SO4) as a nutrient-rich waste stream (Chapter 2). Alkaline air scrubbers are then used to 
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oxidize organic compounds and to neutralize acidic components that escaped from the system, 

such as hydrogen sulfide (H2S) (Bonmati and Flotats, 2003). 

Previous chapters have shown that (some of) the above-described derivatives may potentially 

function as either inorganic or organo-mineral fertilizers and/or soil conditioners, in the 

meantime providing renewable substitutes for mineral fertilizers, of which the production is 

based on fossil resources. Such a sustainable development strategy is in line with the cradle-to-

cradle approach (Braungart and Mc. Donough, 2003): waste turns into secondary resources 

(Fig. 4.1).  

Figure 4.1 Visualization of the cradle-to-cradle concept:  
biomass waste (manure, organic biological waste, energy crops) is turned into  
secondary resources (renewable energy and green or renewable fertilizers). 

 

However, in general, the production cost of recovered fertilizers is often still higher than the 

price of chemical mineral fertilizers (Chapter 2; EC, 2011; Seymour, 2009; USEPA, 2013). Even 

when producers impose no marketing cost, agricultural acceptance and application is still 

limited, because there is no common strategy to promote the use of these nutrient sources by 

farmers (WERF, 2010). To date, only the fertilizer value of digestates in their crude form have 

been compared with animal manures in comprehensive research (Chapter 2: Section 2.2). 

Insights in the composition and properties of the more important derivatives are lacking, though 

very relevant, as the treatment and the transport of these products are expensive and energy 

consuming, while valuable nutrients are often wasted (Sutton et al., 2013). Due to these flaws, 

existing economic studies on technology evaluation (Chapter 2) do not take in account the 

whole-chain benefits of nutrient recovery, although overall costs for the agricultural and waste 

processing sector may significantly reduce when applying nutrient recovery strategies. Indeed, if 

a sustainable market for digestate and its derivatives would exist, the digestate problem could 

be turned into an economic and ecological opportunity (USEPA, 2013; WERF, 2010).  

The present chapter first aims to characterize the physicochemical properties of the different 

derivatives coming from digestate processing, with attention for general conditions such as pH 
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and electrical conductivity (EC), macronutrients and their availability, essential and non-

essential trace elements, organic carbon (OC), and nutritive ratios. The fertilizer value and the 

potential bottlenecks for reuse of these products in comparison with conventional fertilizers are 

identified. Secondly, based on the characterizations, the economic and ecological (in terms of 

energy use and the associated carbon foot print) benefits of substituting conventional fertilizers 

by digestate derivatives are calculated for the most relevant cultivation scenarios in Flanders, a 

high-nutrient region in the North of Belgium. The knowledge obtained in this research should 

greatly enhance the understanding and useful application of digestate and its derivatives. 

Getting a better view on the dilemmas and opportunities posed by these products can in turn 

help to improve the underlying economics of anaerobic digestion. As such, this study can serve 

as a catalyst to stimulate this vital, yet fragile, innovative economic activity in the framework of 

the 2020 objectives. 

 
4.2 Material and methods  
4.2.1 Site description and experimental set-up  

Samples of the various digestate derivatives were taken in three different full-scale mesophilic 

(37 °C) anaerobic digestion plants in Belgium: Goemaere Eneco Energy Diksmuide (capacity: 

20,000 ton y-1, 378 kWel), Mandel Eneco Energy Roeselare (60,000 ton y-1, 3.033 MWel), and 

SAP Eneco Energy Houthulst (60,000 ton y-1, 2.83 MWel). The incoming feed to the digesters is 

composed of animal manure (± 30 %), organic biological waste from the food industry (± 40 %), 

and energy maize (± 30 %). The following process streams were sampled: digestates, thick 

fractions (TF) of digestates after separation, TF of digestates after separation and drying, liquid 

fractions (LF) of digestates after separation, concentrates produced by one vibrating membrane 

filtration step of the LF using reversed osmosis (RO) membranes, concentrates produced by 

two subsequent vibrating membrane filtration steps, wastewater from an acidic air scrubber, and 

wastewater from an alkaline air scrubber. For detailed process description, see Chapter 3.  

The samples in the digestion plants were taken on three different points in time over the course 

of approximately one year (2011-2012). Acidic air scrubber water (AmS) was additionally 

sampled two times at the pig farm of Ladevo BVBA, Ruiselede, Belgium, and conventional pig 

slurry was sampled two times at the site of Huisman, Aalter, Belgium. The samples (10 L each) 

were collected in polyethylene sampling buckets and transported within 1 h from the sampling 

site to the laboratory, carried in cooler boxes filled with ice. In the laboratory, the replicate 

samples were stored cool (1-5 °C) and kept separate for replicate analysis.  

It should be noted that struvite, although selected as best available technology in Chapter 2, 

was not sampled for the purpose of this chapter, as at the time of the study (2011) the common 

practice in Flanders, Belgium (and other high-nutrient regions in Europe) involved the maximum 

separation of P into the thick fraction for export purposes. Hence, full-scale digestate treatment 

plants including struvite production were not available. Moreover, the use of struvite for 

commodity/open-field/broad-acre crops, such as maize, was not attractive due to the strict P 
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fertilization levels. The production of such crops is, however, at the core of the economic and 

ecological analysis presented below. For struvite characterizations, reference is made to 

Chapter 6.  

 

4.2.2 Liquid sample analysis  

Electrical conductivity (EC) and pH were determined potentiometrically using a WTW F537 

conductivity electrode (Wissenschaftlich Technischen Werkstäten, Weilcheim, DE) and an Orion 

520A pH meter (Orion Research, Boston, USA), respectively. The salt content was estimated as 

total dissolved solids (TDS) from the EC using the following approximation: TDS (mg L-1) = EC 

(µS cm-1) x 0.64 (Ali et al., 2012; Van Ranst et al., 1999). Suspended solids (SS) were 

determined by vacuum filtration (0.45 µm pores) of 100-300 mL sample and subsequent drying 

of the filter in a muffle furnace (Memmert, Schwabach, DE) at 105 °C. Total N content was 

determined using a Kjeltec system 1002 distilling unit (Gerhardt Vapodest, Köningswinter, DE) 

after digestion of the sample in a sulphuric-salicylic acid mixture. Finally, the captured ammonia 

in the distillate was titrated with 0.01 mol L-1 hydrogen chloride (HCl) in the presence of a methyl 

red bromocresol green mixed indicator (Van Ranst et al., 1999). The total P content was 

determined using the colorimetric method of Scheel (1936; Van Ranst et al., 1999) after wet 

digestion of the liquid samples (2.5 g sample + 2 mL nitric acid, HNO3, + 1 mL hydrogen 

peroxide, H2O2). The absorbance at 700 nm of samples and standards was determined using a 

Jenway 6400 spectrophotometer (Barloworld Scientific T/As Jenway, Felsted, UK). Calcium 

(Ca), magnesium (Mg), and (heavy) metals, i.e. aluminium (Al), cadmium (Cd), chrome (Cr), 

copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn), were analyzed 

using inductively coupled plasma optical emission spectrometry (ICP-OES; Varian Vista MPX, 

Palo Alto, CA, USA) after wet digestion (as described above). Sodium (Na) and potassium (K) 

in the digested samples (see above) were analyzed using a flame photometer (Eppendorf 

ELEX6361, Hamburg, DE). Ammonium (NH4) was determined using a Kjeltec system 1002 

distilling unit (Gerhardt Vapodest, Köningswinter, DE) after addition of magnesium oxide (MgO) 

to the liquid sample (50 mL). Finally, the captured ammonia in the distillate was titrated with 

0.01 mol L-1 HCl in the presence of a methyl red bromocresol green mixed indicator (Van Ranst 

et al., 1999). Nitrate (NO3
-), chloride (Cl-), and sulfate (SO4

-2) were analyzed using ionic 

chromatography (Metrohm 761, Herisau, CH) after centrifugation and subsequent vacuum 

filtration (0.45 µm pores) of the liquid fraction. Total sulfur (S) was analyzed as described by 

Weaver et al. (1994). The procedure involves product ashing, refluxing, and ionic 

chromatography (Metrohm 761, Herisau, CH). The extractable amount of macronutrients was 

determined in an NH4OAc-EDTA pH 4.65 extract of the samples, as recommended by VIAK AS 

(1993) for determination of plant available nutrients.  

 

4.2.3 Thick sample analysis  

Dry weight (DW) content was determined as residual weight after 48 h drying at 100 °C. Ash 

and organic carbon (OC) were determined by incineration of the dry samples in a furnace 
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(Nabertherm, Lilientahl, DE) at 550 °C during 4 h. The loss of ignition (= weight loss after 

incineration) was divided by a conversion factor of 1.8 to calculate OC, which is to date the 

official factor used for compost products in the Flemish waste and soil remediation decree 

(CSA, 2012). The EC and pH were measured using a WTW F537 conductivity electrode 

(Wissenschaftlich Technischen Werkstäten, Weilcheim, DE) and an Orion 520A pH meter 

(Orion Research, Boston, US), respectively, after equilibration for 1 h in deionized water at a 5:1 

liquid to dry sample ratio and subsequent filtering (white ribbon, MN 640 m, Macherey-Nagel, 

Düren, DE). The salt content was calculated from the EC as described in Section 4.2.2. Total N 

was determined using the Kjeldahl procedure on fresh weight (FW) content (Section 4.2.2; Van 

Ranst et al., 1999). For the determination of total P, dry samples were incinerated at 450 °C 

during 4 h in a muffle furnace (Nabertherm, Lilientahl, DE). The P content was then determined 

by the colorimetric method of Scheel (1936; Van Ranst et al., 1999) after digestion of the 

residual ash (1 g ash + 5 mL of 3 mol L-1 HNO3 + 5 ml of 6 mol L-1 HNO3). Ca, Mg, and (heavy) 

metal (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) contents in the digested samples (see above) were 

analyzed by means of ICP-OES (Varian Vista MPX, Palo Alto, CA, USA). Na and K in the 

digested samples (see above) were determined using a flame photometer (Eppendorf 

ELEX6361, Hamburg, DE). The NH4 content was determined using a Kjeltec system 1002 

distilling unit (Gerhardt Vapodest, Köningswinter, DE) after addition of MgO to the sample (50 

mL). Finally, the captured ammonia in the distillate was titrated with 0.01 mol L-1 HCl in the 

presence of a methyl red bromocresol green mixed indicator (Van Ranst et al., 1999). Chloride 

was determined by means of a potentiometric titration using an automatic titrator (Methrohm, 

Herisau, CH), provided by a Hg/(Hg)2SO4 referential electrode (Van Ranst et al., 1999). The 

extractable amount of macronutrients was again determined in an NH4OAc-EDTA pH 4.65 

extract of the samples (VIAK AS, 1993; Van Ranst et al., 1999). 

 

4.2.4 Economic and ecological analysis   

The economic and ecological benefits were calculated for the current most relevant reuse 

scenarios (Sc) of the renewable fertilizers presented above for the cultivation of maize in 

Flanders (Table 4.1). Expert advice (Inagro vzw, Beitem, Belgium) was used to draw up the 

fertilization scenarios. 

For each scenario, the total amount of available or effective N applied to the soil was assumed 

to be 150 kg ha-1 y-1, according to the Flemish manure regulation for the cultivation of maize on 

non-sandy soils (MAP4, 2011). The amount of effective N in both animal manure and organo-

mineral digestate derivatives was considered to be 60 % of the total N content, as described by 

policy (MAP4, 2011). For air scrubber water, an N availability coefficient of 100 % was 

assumed. Furthermore, the maximum application standard of 250 kg ha-1 y-1 for total N, 80 kg 

ha-1 y-1 for total P2O5 (MAP4, 2011), and a total K2O dose of 220 kg ha-1 y-1 were respected for 

each scenario. The different scenarios were compared with the common practice (Sc 0): 

maximum amount of animal manure (P2O5 = limiting factor), chemical mineral starter fertilizer 

(N, applied to the field at sowing), and additional optimizing fertilization with chemical fertilizers
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Table 4.1 Nitrogen (N) and potassium (K2O) dose (kg ha-1 y-1) per product used in the 21 scenarios (Sc) for reuse of digestate derivatives as renewable 
fertilizers in agriculture. Crop = maize; Soil = non-sandy. Sc 0: common practice; Sc 1-21: reuse of digestate derivatives as renewable fertilizers. Total P2O5 
dose in all scenarios = 80 kg ha-1 y-1. CF = chemical fertilizer; LF = liquid fraction.  

(kg ha-1 y-1) Nitrogen (N) Potassium (K2O) 

 
 

Animal manure 
 

Digestate 
  

LF digestate 
 

Mixturea 
 

Air scrubber 
 

Starter CFb 
  

CF 
 

Concentrates 
 

Totalc 
 

CF 
Sc 0 117 - - - - 25 55 - 197 156 
Sc 1 117 - - - 55 25 - - 197 156 
Sc 2 117 - - - 80 - - - 197 156 
Sc 3 - 98 - - - 25 66 - 189 154 
Sc 4 - 98 - - 66 25 - - 189 154 
Sc 5 - 98 - - 91 - - - 189 154 
Sc 6 - - 170 - - 25 23 - 218 55 
Sc 7 - - 170 - 23 25 - - 218 55 
Sc 8 - - 170 - 48 - - - 218 55 
Sc 9 - - - 170 - 25 23 - 218 126 
Sc 10 - - - 170 23 25 - - 218 126 
Sc 11 - - - 170 48 - - - 218 126 
Sc 12 - - - 187  - 25 - 21 233 102 
Sc 13 - - - 186 - - - 64  250 74 
Sc 14 116 - - - - 25 - 93 233 94 
Sc 15 115 - - - - - - 135 250 66 
Sc 16 59 47 - - - 25 61 - 192 157 
Sc 17 59 47 - - - - 86 - 192 157 
Sc 18 87 - 122 - - 25 - - 233 55 
Sc 19 72 - 178 - - - - - 250 8 
Sc 20 59 - - 94 - 25 33 - 211 136 
Sc 21 59 - - 94 - - 58 - 211 136 

a Mixture of digestate (volume fraction (φ) = 0.5) and liquid fraction of digestate after separation (φ = 0.5).  
b If starter fertilizer is used (= applied at the moment of sowing), it was supposed to be dosed at 25 kg N ha-1 y-1.   
c In all scenarios the amount of effective N applied to soil was 150 kg ha-1 y-1, in compliance with the Flemish manure regulation (MAP4, 2011). The amount of effective N in both animal manure and  
  organo-mineral digestate derivatives was considered to be 60 % of the total N content, as described by policy (MAP4, 2011).   
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(N, K2O), in compliance with the maximum allowable levels of N and P2O5 application on 

agricultural land, as limited by the legal fertilization guidelines (MAP4, 2011).  

In Sc 1 and 2, chemical N was partially and completely substituted by air scrubber N. In Sc 3-5, 

animal manure was substituted by digestate (P2O5 = limiting factor), with partial, complete, or 

without the simultaneous substitution of chemical N by air scrubber N. Scenarios 6-8 and 9-11 

were similar, but now manure was substituted by (P-poor) LF digestate and an LF 

digestate/digestate mixture (volume fraction (φ) = 0.5), respectively. Note that for these 

scenarios the maximum allowable dose of total N from ‘animal manure’, i.e. 170 kg N ha-1 y-1, 

was also respected. Indeed, currently these products are penalised by the limitations for 

spreading ‘processed manure’ in MAP4 (2011). As such, N was the limiting factor for these 

scenarios. In Sc 12 and 13, the same mixture was used as base fertilizer, but now the product 

was supposed to be categorized as an ‘alternative fertilizer’ (= possible at the moment if no 

addition of animal manure to the digester) and P2O5 was assumed to be the limiting factor. 

Moreover, chemical N was now replaced by membrane filtration concentrates up to the 

maximum allowable level of 150 kg effective N ha-1, with and without the use of starter fertilizer. 

Scenarios 14 and 15 are similar as Sc 12-13, but now manure was used as base fertilizer. 

Finally, in Sc 16-17, 18-19, and 20-21, it was attempted to replace (part of) the chemical N (and 

animal manure) by digestates, LF digestates, and mixtures (φ = 0.5) of digestate and LF 

digestate, respectively. In Sc 16-17 and Sc 20-21, 50 % of the P2O5 was supposed to come 

from animal manure and 50 % from raw digestate and the digestate mixture, respectively. In Sc 

18, 75 % P2O5 was supposed to come from animal manure and 25 % from LF digestate, 

whereas in Sc 19, 5/8th of the applied P2O5 was from manure and 3/8th from LF digestate.  

The data used for the economic and ecological analysis of the different cultivation scenarios are 

presented in Table 4.2. As it concerns a case study for Flanders (Belgium), costs are expressed 

in euros (€ 1 ≈ 1.415 CAD; November 2014).  

The economic and ecological impact of chemical fertilizer production, packing, transport, and 

application was taken in account. The energy use for transport and application was calculated 

for a lorry with a capacity of 20 tons and a diesel consumption of 11.6 MJ km-1 (Stichting 

EnergieTransitie Nederland, Boxtel, the Netherlands, personal communication 2011; Wiens et 

al., 2008). The lorry was supposed to travel from the port of Antwerp, the distribution point in 

Belgium, to Ypres in the west of Flanders (129 km), the region with the highest nutrient use in 

Belgium. Next, the impact of transport and application of animal manure and digestate 

derivatives were incorporated in the calculation (Wiens et al., 2008). It was assumed that the 

transport distance from the farm/digestion plant to the field is less than 5 km and that a tractor of 

88.3 kW is used, with a diesel consumption of 10 L h-1. As such, it is possible to apply 30 tons 

ha-1 h-1 of animal manure or digestate derivatives, which is a common figure (Wiens et al., 

2008). The transport costs were then calculated based on the current average cost prize for 

diesel in Europe (€ 1.37 L-1; EU Energy Portal, 2011). Further, it was assumed that an 

agricultural contractor was paid € 2.5 ton-1 FW for fertilizer application (Lemmens et al., 2007).  
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Table 4.2 Data used for the economic and ecological analysis of the 21 cultivation scenarios. 
FW = fresh weight; LF = liquid fraction. € 1 ≈ 1.415 CAD (November 2014).  

 
Item Value Reference 

COSTS Cost chemical N production & packaging  (€ kg-1 N) 1.037 Triferto (2011), pers. communication 

 
Cost chemical P production & packaging (€ kg-1 P2O5) 0.956 Triferto (2011), pers. communication 

 
Cost chemical K production & packaging (€ kg-1 K2O) 0.625 Triferto (2011), pers. communication 

 
Cost chemical S production & packaging (€ kg-1 S) 0.750 Triferto (2011), pers. communication 

 
Cost chemical fertilizer application (€ ton-1 FW) 2.5 Lemmens et al. (2007) 

 
Cost chemical fertilizer transport (€ ton-1 FW) 2.85 Calculation, see Section 4.2.4 

 
Cost animal manure application (€ ton-1 FW) 2.5 Lemmens et al. (2007) 

 
Cost animal manure transport (€ ton-1 FW) 0.457 Calculation, see Section 4.2.4 

 
Benefits animal manure (€ ton-1 FW) 11.9 Calculation, see Section 4.2.4 

 
Benefits digestate (€ ton-1 FW) 9.99 Calculation, see Section 4.2.4 

 
Benefits LF digestate (€ ton-1 FW) 5.29 Calculation, see Section 4.2.4 

 
Benefits mixturea digestate/LF digestate (€ ton-1 FW) 6.91 Calculation, see Section 4.2.4 

ENERGY Production chemical N (GJ ton-1 N) 22.6b IFA (2012)  

 
Packaging chemical N (GJ ton-1 N) 2.6 Gellings and Parmenter (2004) 

 
Production chemical P (GJ ton-1 P2O5) 7.7 Gellings and Parmenter (2004) 

 
Packaging chemical P (GJ ton-1 P2O5) 2.6 Gellings and Parmenter (2004) 

 
Production chemical K (GJ ton-1 K2O) 6.4 Gellings and Parmenter (2004) 

 
Packaging chemical K (GJ ton-1 K2O) 1.8 Gellings and Parmenter (2004) 

 
Transport + application chemical fertilizer (MJ ton-1 FW) 74.8 Calculated from data in Section 4.2.4 

 
Transport + application animal manure (MJ ton-1 FW) 12.0 Calculated from data in Section 4.2.4 

GENERAL Energy content diesel (MJ L-1) 36.0 Defra (2011a) 
 Energy content natural gas (MJ m-3) 37.5 Defra (2011a)  

 
Cost diesel (€ L-1) 1.37 EU Energy Portal (2011) 

 CO2 emission diesel (kg L-1) 2.668 Defra (2011a) 
 CO2 emission natural gas (kg m-3) 2.0196 Defra (2011a) 
 a Mixture of digestate (volume fraction (φ) = 0.5) and liquid fraction of digestate after separation (φ = 0.5).  
b Note that this number refers to the best available practice anno 2012. The worldwide average anno 2014 is 38 GJ  
  ton-1 NH4 (EFMA, 2014).  
 

Next to these costs, also the economic benefits for the crop farmer (third party) when accepting 

animal manure or digestate derivatives as base fertilizer were handled. Indeed, due to the 

overproduction of animal manure in Flanders, to date an income can be received by third 

parties for spreading excessive animal manure or digestate and LF digestate on agricultural 

fields. Note that this is the case in most high-nutrient regions. The fee amounts to € 250 ha-1 

(Lemmens et al., 2007), resulting in € 11.9 ton-1 FW or € 1.47 kg-1 N for animal manure, based 

on the maximum allowable dose for total N application from animal manure, i.e. 170 kg N ha-1 

(MAP4, 2011), and the average N content of this stream (Table 4.3). When animal manure is 

substituted by digestate, LF digestate, and a mixture of digestate (φ = 0.5) and LF digestate (φ 

= 0.5), the benefits are € 9.99 ton-1 FW, € 5.29 ton-1 FW, and € 6.91 ton-1 FW, respectively, 

based on the N content of these streams (Table 4.3). Nevertheless, it is expected that in the 

future these benefits will have to be calculated using the P content of the product, in line with 

the legislative standards for soil P application that become the more and more strict (MAP4, 

2011).  

Based on all these data, the economic impact and energy use for the various cultivation 

scenarios was calculated using the following functions (Eq. 4.1 and 4.2):  

RST SUVWVXYU UVZT [€ ]^�_`�_a = bc�'G
$,&�GF +  bc�(,e�F� + bc&'(F��G'& +  bc(����,(&�GF +
��&'(F��G'& +  ��(����,(&�GF +  f;&'(F��G'& +  f;(����,(&�GF  –  f;/��%	F	<�&�                          hi. [k. _a  
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lWSmno pZS [qr ]^�_`�_a = bc�'G
$,&�GF +  bc�(,e�F� +  bc&'(F��G'& + bc(����,(&�GF + ��&'(F��G'& 
+ ��(����,(&�GF +  f;&'(F��G'& +  f;(����,(&�GF                                                                                     hi. [k. sa  

where ‘CF’ refers to chemical fertilizers, ‘DD’ are digestate derivatives, and ‘AM’ is animal 

manure.  

Finally, when fossil reserve-based mineral fertilizers are replaced by digestate derivatives, 

significant savings in greenhouse gas (GHG) emissions can be expected. The GHG emissions 

associated to energy use were calculated for the different scenarios in terms of carbon dioxide 

(CO2) equivalents (kg ha-1 y-1). It was assumed that diesel is used for the transport and 

application of fertilizers and that natural gas is used for the production of chemical fertilizers.  

Note that the scope of this study concerns a cost-benefit calculation for a crop farmer (third 

party) accepting excessive animal manure or digestate derivatives (for which currently no 

market exists) in different chemical fertilizer replacement scenarios. It does not take into 

account the digestate (and its derivatives) production costs, as to date these products are 

considered as waste streams from bio-energy production through anaerobic digestion, which is 

an inevitable process for meeting the European 2020 directives. Also, potential GHG emissions, 

other than those provoked by energy consumption, e.g. nitrous oxide (N2O) emissions during 

manure spreading, were not accounted for. For life cycle assessments of anaerobic digestion, 

digestate processing technologies, and bio-based fertilization strategies, reference is made to 

Chapter 12. Moreover, it was assumed that there is no difference in crop production between 

the various scenarios. This should of course be validated at field scale (see Chapter 5).  

 

4.3 Results   
4.3.1 Physicochemical analysis  

Digestates, thick fractions (TF) and liquid fractions (LF) of digestates after separation, TF of 

digestates after separation and drying, as well as conventional pig slurry were sampled and 

physicochemically analyzed (Table 4.3). Also, a mixture of digestate (φ = 0.5) and LF digestate 

(φ = 0.5) was made and characterized (Table 4.3). The average N:P2O5:K2O (N:P:K) ratio 

(relative by weight) was very variable for the different products: 1.2:1:0.8 (2.8:1:1.6) for raw 

digestates, 0.33:1:0.2 (0.77:1:0.36) and 5.8:1:5.6 (13:1:11) for TF and LF after separation, 

respectively, 0.53:1:0.31 (1.2:1:0.6) for TF after drying, 2.3:1:1.3 (5.4:1:2.5) for the mixtures, 

and 1.5:1:0.8 (3.4:1:1.5) for pig slurry. Hence, most of the P ended up in the thick fraction after 

solid-liquid separation of digestate, whereas most of the N and K ended up in the liquid fraction. 

The amount of extractable nutrients and the nitrogen use efficiency (NUE) was always higher in 

the digestates and its derivatives (up to 100 %) as compared to animal manure, whereas the 

organic carbon content (on DW %) was lower. Yet, the C:N-ratio was slightly higher for raw 

digestate and significantly higher for the thick fractions as compared to pig slurry: 5.3 (raw 

digestate) and 13-17 (TF digestate) vs. 5.0 (pig slurry). Micronutrient contents were in all 

samples lower than the Flemish legislation criteria for use as fertilizer and/or soil conditioner in 
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Table 4.3 Physicochemical characterization of pig slurry, digestate, thick (TF) and liquid (LF) fraction of digestate after separation, TF of digestate after 
separation and drying, and a mixture of digestate (volume fraction, φ = 0.5) and LF digestate (φ = 0.5) (mean ± standard deviation; No of sampling sites 
= 3 for digestate derivatives, 1 for pig slurry; No. of sampling moments in time = 3 for digestate derivatives, 2 for pig slurry; No of replications per 
sample = 2). DW = dry weight; EC = electrical conductivity; FW = fresh weight; OC = organic carbon.   

 Parameter Pig slurry Digestate TF digestate 
after separationa 

 
      TF digestate 

 

      LF digestate  
      after separation   Mixtureb 

 DW (%) 10 ± 1 11 ± 1 23 ± 1 76 ± 1 2.5 ± 0.9 6.2 ± 0.6 
 Ash (% on DW) 29 ± 1 43 ± 1 42 ± 1 48 ± 13 56 ± 2 35 ± 1 
 OC (% on DW) 41 ± 1 33 ± 1 33 ± 1 30 ± 8 26 ± 1 37 ± 1 
 pH (-) 7.4 ± 0.6 7.9 ± 0.6 8.1 ± 0.0 8.2 ± 0.0 7.7 ± 0.5 7.8 ± 0.4 
 EC (mS cm-1) 37 ± 2 43 ± 20 24 ± 1 26 ± 1 30 ± 6 32 ± 6 
 Salt (g kg-1 FW) 24 ± 1 28 ± 10 15 ± 1 17 ± 1 19 ± 4 20 ± 4 
 Total N (g kg-1 FW) 8.1 ± 0.2 6.8 ± 0.8 4.5 ± 0.0 17 ± 1 3.6 ± 0.4 4.7 ± 0.6 
 NH4-N (g kg-1 FW) 4.9 ± 1.6 5.5 ± 0.8 3.6 ± 0.0 14 ± 1 2.8 ± 0.3 4.0 ± 0.5 
 Total P (g kg-1 FW) 2.4 ± 0.3 2.5 ± 1.1 5.9 ± 2.2 14 ± 0 0.27 ± 0.05 0.87 ± 0.12 
 Extractable P (%) 97 ± 2 100 ± 0  -   -  90 ± 1 100 ± 0 
 K (g kg-1 FW) 3.6 ± 0.3 3.8 ± 0.8 2.1 ± 0.5 8.4 ± 0.5 2.9 ± 1.1 2.2 ± 0.5 
 Extractable K (%) 82 ± 2 100 ± 0  -   -  85 ± 2 100 ± 0 
 Ca (g kg-1 FW) 3.0 ± 0.2 2.9 ± 1.8 6.2 ± 0.5 20 ± 2 0.19 ± 0.09 1.5 ± 0.9 
 Extractable Ca (%) 80 ± 1 100 ± 0  -   -  59 ± 0 100 ± 0 
 Mg (g kg-1 FW) 1.3 ± 0.1 1.2 ± 0.4 2.6 ± 0.5 8.4 ± 0.7 0.058 ± 0.040 0.58 ± 0.14 
 Extractable Mg (%) 89 ± 0 100 ± 0  -   -   

- 
 100 ± 0 100 ± 0 

 S (g kg-1 FW) 0.80 ± 0.09 1.2 ± 0.7  -   -  0.19 ± 0.09 0.69 ± 0.42 
 Na (g kg-1 FW) 2.3 ± 0.2 2.8 ± 1.2 1.0 ± 0.3 2.4 ± 1.7 3.1 ± 0.1 2.5 ± 0.5 
 Extractable Na (%) 44 ± 1 65 ± 0  -   -  50 ± 0 62 ± 1 
 Cl (g kg-1 FW) 3.9 ± - 1.7 ± 0.5 0.68 ± - 3.5 ± - 2.9 ± - 2.7 ± - 
 Al (g kg-1 FW) 0.089 ± 0.025 0.30 ± 0.14 0.70 ± 0.00 2.4 ± 0.3 0.018 ± 0.021 0.088 ± 0.015 
 Cd (mg kg-1 FW) 0.0028 ± 0.0021 0.067 ± 0.090 0.050 ± 0.025 1.3 ± 1.6 < 0.0050 ± 0 0.018 ± 0.006 
 Cr (mg kg-1 FW) 0.57 ± 0.04 - -                - 0.087 ± 0.001 0.43 ± 0.08 
 Cu (mg kg-1 FW) 35 ± 2 5.7 ± 5.4 22 ± 2 72 ± 9 0.33 ± 0.25 8.5 ± 1.8 
 Fe (g kg-1 FW) 0.15 ± 0.01 1.2 ± 0.1 2.6 ± 1 9.1 ± 2.3 7.3 ± 6.7 4.4 ± 4.0 
 Mn (mg kg-1 FW) 46 ± 1 29 ± 22 96 ± 21 334 ± 22 0.43 ± 0.12 17 ± 4 
 Ni (mg kg-1 FW) 1.0 ± 0.2 1.0 ± 0.5 1.9 ± 0.8 33 ± 8 0.50 ± 0.41 0.56 ± 0.02 
 Pb (mg kg-1 FW) 0.16 ± 0.04 0.48 ± 0.00 1.4 ± 0.0 3.7 ± 0.0 0.028 ± 0.020 0.20 ± 0.06 
 Zn (mg kg-1 FW) 86 ± 4 26 ± 13 45 ± 3 352 ± 126 7.1 ± 6.7 17 ± 6 
 NUEc (%) 60 81                 80               78      77   85 
a  Only one installation was sampled in time.  
b  Mixture of digestate (volume fraction (φ) = 0.5) and liquid fraction of digestate after separation (φ = 0.5).  
c  NUE = nitrogen use efficiency: average relative amount of NH4-N compared to the total amount of N. 
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agriculture (Vlarea, 1989). Only for one sample of dry thick digestate the amount of Ni slightly 

exceeded the legal standard: 54 vs. 50 mg kg-1 DW. Moreover, for manure, one sample slightly 

exceeded the legal standard for Zn, 901 vs. 900 mg kg-1 DW, while also the Cu concentration 

was critical, 370 vs. 375 mg kg-1 DW. For the sampled digestates, the variation in time and/or 

between different installations was especially remarkable for the salt content (~ EC and Na), for 

the macronutrients, P and Ca, and the micronutrients, Cu, Mn, Ni, and Zn. Remarkable for the 

liquid fraction of digestate after separation was the very high Fe concentration and the high 

variation in both Fe and Al concentrations. Also the variation in Cu, Ni, Pb, and Zn was very 

clear. For pig manure, the variation in the NH4-N concentration in time (note: samples from the 

same sampling site!) was most expressed.  

Furthermore, concentrates produced by one vibrating membrane (RO) filtration step of LF 

digestate, as well as concentrates following two subsequent vibrating membrane (RO) filtration 

steps were sampled and physicochemically analyzed (Table 4.4). The N:P2O5:K2O (N:P:K) ratio 

(relative by weight) was 25:1:20 (58:1:39) for concentrates following one filtration and 4.3:1:7.7 

(10:1:8.4) after two filtrations. Results show that concentrates produced by the first filtration not 

only contained more macronutrients and OC on FW content, but also more salts and trace 

elements as compared to concentrates produced by the second filtration. Yet, the 

concentrations of heavy metals were in all concentrate samples below the Flemish legislation 

criteria for use as fertilizer and/or soil conditioner in agriculture (Vlarea, 1989). Similar as for 

digestates, especially the salt content (~ EC, Na, and K contents), the P, Mn, and Zn contents 

were remarkably variable in time and/or between different installations. The NUE was in the 

range of that for digestates, hence higher than the NUE of pig slurry.  

 

Table 4.4 Physicochemical characterization of concentrates produced by one vibrating 
membrane (RO) filtration step of the liquid fraction of digestate and concentrates following two 
subsequent membrane filtration steps (mean ± standard deviation; No. of sampling sites = 3; 
No. of sampling moments in time = 3; No. of replications per sample = 2). DW = dry weight; EC 
= electrical conductivity; FW = fresh weight; OC = organic carbon; RO = reversed osmosis.  

Parameter 
Concentrate  
1st filtration 

step 

Concentrate 
2nd filtration 

step 
  Parameter 

Concentrate  
 1st filtration 

step 

Concentrate 
2nd filtration  

step 

DW (%) 7.0 ± 0.6 0.53 ± 0.02   SO4-S (g kg-1 FW) 22 ± 3 0.65 ± 0.10 

Density (g L-1) 1,041 ± 5 1,004 ± 1   Na (g kg-1 FW) 3.1 ± 3.0 0.49 ± 0.30 

Ash (% on DW) 43 ± 2 66 ± 0   Cl (g kg-1 FW) 5.1 ± 0.1 2.0 ± 0.0 

OC (% on DW) 33 ± 1 20 ± 0   Al (g kg-1 FW) 0.0035 ± 0.0005 0.00024 ± 0.00018 

pH (-) 5.6 ± 0.3 5.8 ± 0.4   Cd (mg kg-1 FW) 0.011 ± 0.011 <0.0040 ± 0 

EC (mS cm-1) 60 ± 8 12 ± 3   Cr (mg kg-1 FW) 0.19 ± 0.00 0.41 ± 0.00 

Salt (g kg-1 FW) 37 ± 5 7.6 ± 1.7   Cu (mg kg-1 FW) 0.66 ± 0.20 <0.010 ± 0 

Total N (g kg-1 FW) 6.4 ± 1.4 0.83 ± 0.20   Fe (g kg-1 FW) 0.047 ± 0.020 0.0016 ± 0.0007 

NH4-N (g kg-1 FW) 5.0 ± 0.3 0.76 ± 0.18   Mn (mg kg-1 FW) 2.9 ± 1.6 0.061 ± 0.022 

Total P (g kg-1 FW) 0.11 ± 0.10 0.083 ± 0.050   Ni (mg kg-1 FW) 0.43 ± 0.03 0.025 ± 0.010 

K (g kg-1 FW) 4.3 ± 2.7 0.70 ± 0.01   Pb (mg kg-1 FW) 0.12 ± 0.03 0.025 ± 0.010 

Ca (g kg-1 FW) 0.20 ± 0.03 0.011 ± 0.010   Zn (mg kg-1 FW) 6.5 ± 7.1 0.034 ± 0.019 

Mg (g kg-1 FW) 0.083 ± 0.056 0.014 ± 0.009   NUEa (%) 79 
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a NUE = nitrogen use efficiency: average relative amount of NH4-N compared to the total amount of N. 
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Finally, wastewaters produced by both acidic and alkaline air scrubbers (receiving air from 

digestate driers) were sampled and physicochemically analyzed (Table 4.5). Results show that 

the pH of the acidic wastewater was continuously in the range of 2 to 3, while the pH of the 

alkaline water was around 9. The EC and the salt content of the acidic and the alkaline 

wastewaters were both high. The N content of the acidic wastewater was about three orders of 

magnitude higher compared to that of the alkaline wastewater, although it was quite low as 

compared to values provided by technology suppliers anno 2014 (5.3-8.5 % N on FW content; 

Chapter 2). As expected, the NUE of the acidic air scrubber water was 100 %.   

 
Table 4.5 Physicochemical characterization of acidic and alkaline air scrubber water (mean ± 
standard deviation; No. of sampling sites = 2; No. of sampling moments in time = 3; No. of 
replications per sample = 2). EC = electrical conductivity; FW = fresh weight. 
 Parameter        Acidic air scrubber              Alkaline air scrubber water  

 Density (g L-1) 1,034 ± 3 1,061 ± 4  

 Suspended solids (g L-1) 0.11 ± 0.02 0.057 ± 0.03  

 pH (-) 2.4 ± 0.3 9.0 ± 0.4  

 EC (mS cm-1) 112 ± 42 68 ± 1  

 Salt content (g kg-1 FW) 72 ± 27 44 ± 1  

 Total N (g kg-1 FW) 23 ± 9 0.071 ± 0.042  

 NH4-N (g kg-1 FW) 23 ± 9 0.049 ± 0.063  

 SO4-S (g kg-1 FW) 34 ± 6 0.32 ± 0.16  

 Cl (g kg-1 FW) 2.0 ± 0.2 10 ± 2  

 NUEa (%)         100                   69  
a  NUE = nitrogen use efficiency: average relative amount of NH4-N compared to the total amount of N. 

 

 

4.3.2 Economic and ecological analysis  

Twenty-one different cultivation scenarios were economically (Table 4.6) and ecologically, i.e. in 

terms of energy use (Table 4.7) and the associated carbon footprint (Fig. 4.2), evaluated. In Sc 

3 and Sc 16 to 21, the economic cost was higher than that of the reference scenario. Moreover, 

in Sc 3, 16, and 17, also the ecological impact was higher as compared to the reference. 

Interestingly, all the other scenarios under study had a significantly lower ecological and 

economic impact than the common practice.  
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Table 4.6 Economic analysis (€ ha-1 y-1) of the 21 cultivation scenarios. Sc 0: common practice; Sc 1-21: reuse of digestate derivatives as renewable 
fertilizers. AM = animal manure; CF = chemical fertilizer; DD = digestate derivatives. € 1 ≈ 1.415 CAD (November 2014). 

(€ ha-1 y-1) 
CF 

  production +  
packaging 

CF 
application 

CF 
transport 

DD 
application 

DD 
transport 

AM 
application 

AM  
transport 

AM/DD 
benefits 

Net  
economic costa 

Sc 0 180 2.0 2.3 0 0 36 6.6 172 55 
Sc 1 123 1.5 1.7 6.0 1.1 36 6.6 172 4.4 
Sc 2 98 1.3 1.5 8.7 1.6 36 6.6 172 -19 
Sc 3 191 2.1 2.4 36 6.6 - - 144 94 
Sc 4 122 1.5 1.7 43 7.9 - - 144 32 
Sc 5 96 1.3 1.5 46 8.4 - - 144 9.1 
Sc 6 84 0.67 0.77 118 22 - - 250 -25 
Sc 7 60 0.46 0.52 121 22 - - 250 -46 
Sc 8 34 0.23 0.26 123 23 - - 250 -70 
Sc 9 128 0.97 1.1 90 17 - - 250 -12 
Sc 10 105 0.76 0.86 93 17 - - 250 -34 
Sc 11 79 0.52 0.60 95 18 - - 250 -57 
Sc 12 90 0.66 0.75 108 20 - - 275 -57 
Sc 13 46 0.31 0.35 124 23 - - 275 -82 
Sc 14 85 0.62 0.71 36 6.6 36 6.5 171 0.59 
Sc 15 41 0.28 0.31 53 9.6 35 6.5 169 -23 
Sc 16 187 2.3 2.6 17 3.2 18 3.3 87 147 
Sc 17 187 2.3 2.6 17 3.2 18 3.3 87 147 
Sc 18 60 0.46 0.52 85 15 27 4.9 128 65 
Sc 19 5.0 0.033 0.038 124 23 22 4.1 106 72 
Sc 20 146 1.1 1.3 50 9.1 18 3.3 87 142 
Sc 21 146 1.1 1.3 50 9.1 18 3.3 87 142 

 a  Net economic cost = CFproduction + CFpacking + CFapplication + CFtransport + DDapplication + DDtransport + AMapplication + AMtransport  – AM/DDbenefits  
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Table 4.7 Ecological analysis (energy use, GJ ha-1 y-1) of the 21 cultivation scenarios. Sc 0: common practice; Sc 1-21: reuse of digestate derivatives as 
renewable fertilizers. AM = animal manure; CF = chemical fertilizer; DD = digestate derivatives.  

(GJ ha-1 y-1) 
CF  

production + packaging 
CF 

 transport + application 
AM 

transport + application 
DD 

transport + application 
Total  

energy usea 
Sc 0 3.3 0.061 0.17 0 3.5 
Sc 1 1.9 0.046 0.17 0.029 2.2 
Sc 2 1.3 0.039 0.17 0.042 1.5 
Sc 3 3.6 0.064 - 0.17 3.8 
Sc 4 1.9 0.045 - 0.20 2.1 
Sc 5 1.3 0.038 - 0.22 1.5 
Sc 6 1.7 0.020 - 0.57 2.2 
Sc 7 1.1 0.014 - 0.58 1.7 
Sc 8 0.45 0.0068 - 0.60 1.0 
Sc 9 2.2 0.029 - 0.43 2.7 
Sc 10 1.7 0.029 - 0.44 2.1 
Sc 11 1.0 0.016 - 0.46 1.5 
Sc 12 1.5 0.020 - 0.52 2.0 
Sc 13 0.60 0.0090 - 0.60 1.2 
Sc 14 1.4 0.019 0.17 0.17 1.8 
Sc 15 0.54 0.0082 0.17 0.25 0.97 
Sc 16 3.5 0.068 0.087 0.083 3.7 
Sc 17 3.5 0.068 0.087 0.083 3.7 
Sc 18 1.1 0.014 0.13 0.41 1.6 
Sc 19 0.066 0.0010 0.11 0.59 0.77 
Sc 20 2.6 0.033 0.087 0.24 2.9 
Sc 21 2.6 0.033 0.087 0.24 2.9 

    a  Total energy use = CFproduction + CFpacking + CFapplication + CFtransport + DDapplication + DDtransport + AMapplication + AMtransport 



 

94 

 

Figure 4.2 Greenhouse gas (GHG) emissions from energy use expressed in terms of  
CO2-equivalents (kg ha-1 y-1) for the 21 cultivation scenarios. Sc 0: common practice;  

Sc 1-21: reuse of digestate derivatives as renewable fertilizers. Red dashed lines indicate 
groups of comparable scenarios (see Table 4.1). 

 
4.4 Discussion 
4.4.1 Fertilizer value   

In nutrient-rich regions, raw digestates can only for a portion be deposited on available 

agricultural land. Nevertheless, analytical results show that application of this product can be 

beneficial. From an agronomic point of view, one of the major advantages when using digestate 

instead of conventional animal manure is its higher nitrogen use efficiency (NUE) and the higher 

stability of this property. The NUE represents the relative amount of NH4-N compared to the 

total amount of N, i.e. 81 vs. 60 % in average for digestates and pig slurry in this study, 

respectively (Table 4.3). These findings are completely in line with Calus et al. (2007), who 

reported average values of 82 % for digestate from pig manure and 64 % for pig slurry as such. 

Indeed, through anaerobic digestion organic N is converted into NH4, which is directly available 

for the plant (Calus et al., 2007; Vlaco, 2012). On top of N, the extraction efficiency of other 

macronutrients (P, K, Na, Ca, Mg), using NH4OAc-EDTA at pH 4.65 as an extraction agent, was 

higher (up to 100 %) for digestate derivatives than for conventional pig manure. This 

measurement can be translated into a higher nutrient availability for plants (VIAK AS, 1993). 

Moreover, during anaerobic digestion easily biodegradable organic compounds are converted 

into biogas, while complex molecules such as lignin stay behind (Calus et al., 2007). As such, 

the relative amount of effective organic carbon (OC) to total carbon (i.e. the OC that contributes 

to the humus built-up; Chapter 2: Section 2.2) is generally higher for digestate as compared to 

animal manure: 70-80 % vs. ± 30 % for pig slurry (Vlaco, 2012). Hence, although the C:N-ratio 

in this study was only slightly higher for raw digestates as compared to pig slurry (5.3 vs. 5.0), 
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the ratio of effective OC to N (and P) can be significantly higher. As such, the digestate exhibits 

important soil enhancing properties.  

Another interesting observation is that the N:P-ratio was about four times higher for liquid 

fractions (LF) of digestates than for animal manure, i.e. 13 vs. 3.4, and approximately five times 

higher than for raw digestates, i.e. 13 vs. 2.8. Indeed, most of the P ends up in the thick fraction 

after solid-liquid separation. In light of P becoming increasingly more restrictive in legislative 

frameworks for soil nutrient application rates (e.g. MAP4, 2011), this nutrient has become the 

limiting element in allowed dosage of organic fertilizers, especially in P saturated regions. In this 

perspective, the use of P-reduced LF digestate is highly interesting because more N can be 

applied to the soil for the same amount of P. Hence, a reduction in chemical N fertilizer 

requirements can be expected, which is also the case for K. When mixing digestate (φ = 0.5) 

and its LF (φ = 0.5), the relative amount of N (and K) to P remains high, while also the soil 

structure enhancing properties (Ca, Mg, OC) are maintained. Note that in this study the ratio of 

effective N to P was also slightly higher for raw digestates as compared to animal manure, i.e. 

2.2 vs. 2.0. All of these benefits make it an interesting opportunity for livestock farmers to 

treat their (excess) manure via anaerobic (co-)digestion and reuse the digestate and/or 

its derivatives on soil, either as organo-mineral base fertilizer and/or as substitute for fossil 

reserve-based mineral fertilizers (cfr. Fig. 4.1).  

In addition, results indicate that concentrates produced by membrane filtration have potential as 

N/K fertilizer. The observed N content was 6.4±1.4 kg ton-1 FW, which is comparable to the N 

content in conventional pig manure, i.e. 5-10 kg ton-1 FW (Lemmens et al., 2007). The average 

NUE was 78 %, which is higher than that for conventional pig manure, i.e. 60 % in this study or 

64 % in Calus et al. (2007). Furthermore, wastewater from acidic air scrubbers shows potential 

as mineral N/S fertilizer. The N content was 23±9 kg ton-1 FW and the S content was 34±6 kg 

ton-1 FW. Both the N and S extraction efficiency were 100 %, which is a prerequisite for 

recognition as a valuable mineral fertilizer according to the EU requirements for ‘sulfate of 

ammonia’ (EC 2003/2003; EC, 2003). Note that the same requirement is imposed by the 

Canadian Fertilizers Regulation (Minister of Justice, 2013). Finally, the wastewater from alkaline 

air scrubbers was poor in nutrients and therefore exhibits no potential as a fertilizer.  

From the above, it can be concluded that the legislative classification of digestate and its 

derivatives should be reconsidered on a national, European, and international scale, with 

due attention for the qualitative fertilizer properties of these valuable products. The legal 

categorization of such derivatives as ‘renewable mineral fertilizers’ and/or ‘renewable organo-

mineral fertilizers’, next to the existing framework for ‘chemical (= fossil reserve-based) mineral 

fertilizers’ (EC 2003/2003; EC, 2003), might be indispensable for their success in the European 

Union. A similar transition will be required in the Canadian Fertilizers Regulation (Minister of 

Justice, 2013), before effective marketing of bio-based products will be possible. Nevertheless, 

there are also still some practical bottlenecks for reuse, requiring further research and 

optimization (Section 4.2.2).   



 

96 

4.4.2 Potential bottlenecks for reuse 

When using acidic air scrubber water (AmS-solution) in agriculture, one should be aware of 

some practical limitations. First of all, the low pH (2 to 3 in this study) of this stream shows that 

the wastewater not only contains ammonium sulfate, but also significant amounts of sulfuric 

acid. As a consequence, the product has acidifying and corrosive properties. It is therefore 

advised to use corrosion-resistant injectors and to avoid direct contact with skin and plants. 

Another, more practical, solution may be to mix the acidic with the alkaline air scrubber 

wastewater (pH 9), thereby neutralizing the pH, or at least maintaining a weak acidic pH to 

avoid unwanted ammonia emissions. Meanwhile, the latter nutrient poor product can also be 

valorized.  

Next, an important note is that during mixing or storing of the acidic waste stream, H2S can be 

released which is very toxic even at low concentrations. The production of this toxic gas is 

related to the presence of sulfate reducing bacteria under low-oxygen conditions, which use 

sulfates for the oxidation of organic compounds or hydrogen (Kool et al., 2005).  

Finally, a critical point when using acidic air scrubber wastewater in agriculture could be the salt 

content. Results show that the EC of this stream was 112±42 mS cm-1, while that of 

conventional pig manure amounted to 37±2 mS cm-1, which is in line with literature data, 30-50 

mS cm-1 (Lemmens et al., 2007; Moral et al., 2008). Nevertheless, when considering the salt 

doses per kg N applied for air scrubber water and pig manure, i.e. 3.1 vs. 3.0, respectively, only 

a slight difference can be observed. Moreover, on the basis of the amount of effective N 

applied, the salt doses for pig manure, i.e. 4.9, was drastically higher than for air scrubber 

water, i.e. 3.1. Still, when applying AmS as mineral fertilizer (in addition to animal manure or 

digestate), the salt doses may be significantly higher than when applying traditional 

concentrated (usually up to 20-30 % N; Triferto, 2015) chemical mineral fertilizers, such as 

NH4NO3. Too high salt doses can cause soil salinization in the long term (depending on soil 

characteristics and climate) and can dramatically reduce crop production (USEPA, 2004; 

Verlinden, 2005). Moreover, salts may leach into groundwater, which is undesired from an 

environmental perspective, nor in view of drinking water extraction. For all the above reasons, 

best management practices for implementation and use of wastewater from acidic air 

scrubbers should be established in order to minimize health risks and to prevent soil and 

water degradation. 

As for acidic air scrubber water, results show that also membrane filtration concentrates have 

elevated salt contents, 60±8 mS cm-1, resulting in high salt:N-ratios (up to 6) for this product. 

Therefore, when using concentrates in agriculture, it may be important to pay attention to the 

salt doses per unit N applied to the soil. Also high sodium adsorption ratios (SAR), which are 

ratios of the monovalent cation, Na, to divalent bases, Ca and Mg, can cause degradation of the 

soil structure, especially when soils are rich in clay (USEPA, 2004). Finally, the K2O content of 

the concentrates produced by the first filtration was 5.2±3.2 kg ton-1 FW, which is slightly lower 

than the expected range of Burton (2007), but still higher than that of conventional pig manure, 
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i.e. 4.3±4 kg ton-1 FW in this study. Although this element can be important for crop production, 

high ratios of K to N are not preferred for every agricultural application. Particularly cattle 

farmers rather use K-poor fertilizers, because of the potential health risks for cattle, such as 

head illness, at high K fertilization, i.e. > 50 tons ha-1 y-1 (Hillel, 2008; Romheld and Kirkby, 

2010). Hence, when setting up fertilizer recommendations for concentrate dosage, one should 

take into account the product’s K content and that of the base fertilizer, in relation to the type of 

livestock production, the K demand of the agricultural crop, and the soil characteristics (EFMA, 

2003; Hillel 2008; Romheld and Kirkby, 2010). 

None of the analyzed products exceeded the legal composition and use requirements in terms 

of heavy metals (Cd, Cr, Cu, Pb, Ni, Zn) for reuse as fertilizer and/or soil conditioner in 

agriculture, as described in Flemish legislation (Vlarea, 1989). Only for one sample of dry thick 

digestate the amount of nickel (Ni) slightly exceeded the legal standard, while for pig manure 

the zinc (Zn) and copper (Cu) contents were critical. There currently exists no standard for iron 

(Fe) application, though it should be remarked that some liquid fractions under study contained 

drastically high Fe concentrations as compared to pig slurry and raw digestate. This is related to 

the addition of Fe-salts for improved coagulation/flocculation during solid-liquid separation. 

These high concentrations may cause Fe accumulation in the soil after long-term application, 

which can impact on the plant availability of important nutrients, mainly P (Hillel, 2008; Sposito, 

2008). Field trials are required to evaluate the nutrient availability in soils after long-term bio-

based fertilizer application. Moreover, the quality of the resulting fertilizer end products should 

be (more) considered in the selection of operational strategies, such as the choice of chemical 

dosing (e.g. Fe/Al-salts).  

Furthermore, the larger share of NH4-N relative to total N in digestates and its derivatives as 

compared to conventional animal manure (see above) may provoke higher risks for ammonia 

volatilization. Therefore, emission-poor application techniques, e.g. direct injection, are 

recommended. Also, fields must be ploughed as soon as possible after application of these 

fertilizers in order to minimize NH3 emissions to air.  

The microbiological quality of digestate and its derivatives was out of scope of the present 

dissertation, but definitely is an important topic for future research. An orientating study (Calus 

et al., 2007) demonstrated that the amount of both aerobic and plant pathogens in digestate is 

less than in animal manure, while the amount of anaerobic pathogens would be higher. A 

thorough quantification and comparative study of the microbiological quality and the impact of 

recovered products on soil organisms is required. Also the degree of contamination with organic 

substances in the various bio-based products needs to be investigated. All of this may help 

stimulating the beneficial use of these products in environmental legislations and in the farming 

community.  
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4.4.3 Economic and ecological benefits  

Reuse of valuable nutrient products from digestate processing as substitutes for chemical 

fertilizers in agriculture could result in significant fossil energy and CO2 emission savings, as 

well as cost savings. Although the present study is based on the Flanders (Belgium) situation, 

the overall comparative outcomes (not the actual values) are expected to be generalizable for 

other (high-nutrient) regions.  

The energy consumption for chemical fertilizer use (N, P2O5, K2O) in the reference scenario 

was 3.5 GJ ha-1, which resulted in a GHG emission of 195 kg ha-1 y-1 in terms of CO2-

equivalents, assuming that natural gas is used for the production of chemical fertilizers and that 

diesel is used for the transport and application of fertilizers. The economic fertilization cost in 

this scenario amounted to € 55 ha-1.  

The substitution of chemical fertilizers by acidic air scrubber wastewater resulted in a 

significantly lower economic and ecological impact (Sc 1-2), especially because of the reduction 

in chemical fertilizer N production. This was also the case when chemical fertilizers were 

substituted by membrane filtration concentrates (Sc 14-15). The latter scenarios also resulted in 

significantly lower chemical K2O needs as compared to the reference. Based on these 

scenarios and in order to balance with the status quo (= no cost impact for the crop farmer as 

compared to the reference scenario), the anaerobic digestion plant may impose a marketing 

value of € 0.93 (1.32 CAD) kg-1 N (= € 74 ha-1 / 80 kg N ha-1 = (cost Sc 0 – cost Sc 2) / N 

applied as air scrubber water in Sc 2) produced as ammonium sulfate from the digestate or € 

0.58 (0.82 CAD) kg-1 N (= € 78 ha-1 / 135 kg N ha-1 = (cost Sc 0 – cost Sc 15) / N applied as 

concentrates in Sc 15) produced as membrane filtration concentrate. Note that this reasoning 

assumes that there is no impact on crop production when using bio-based alternatives.  

Replacing animal manure with digestates as base fertilizer (Sc 3-4-5) resulted in more 

mineral (chemical) N requirements than the common practice, because the applied effective 

N:P2O5-ratio was lower for the crude digestates than for animal manure. This resulted in a 

higher economic impact for Sc 3-4-5 as compared to Sc 0-1-2 and a higher ecological impact 

for Sc 3 (no substitution of chemical N by air scrubber water) compared to the reference. Yet, it 

should be remarked that in this study the amount of effective N relative to total N in the 

digestate derivatives was assumed to be 60 %, according to the Flemish manure regulation. 

Nevertheless, results indicate that the actual amount of effective N in digestate derivatives is 

significantly higher (± 81 %; Section 4.4.1). Hence, if these products would be used according to 

their actual fertilizer value, the economic and ecological impact could be seriously lowered. 

Indeed, it would be possible to apply about 20 % more effective N for the same amount of P, 

thus the use of chemical N would notably reduce. The implementation of a new legislative 

categorization for these products (other than ‘animal manure’) is therefore indispensable for 

their effective and sustainable use in the farming community.   

On the other hand, the complete substitution of animal manure with LF digestate (Sc 6-7-8) 

resulted in a significant reduction in chemical K2O requirements, and hence economic and 
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ecological benefits for the crop farmer. Moreover, due to the very high N:P2O5-ratio, the 

maximum allowable N dose for ‘animal manure’ can be achieved, without exceeding the 

maximum P fertilization level. Nevertheless, depending on the soil and crop type, additional 

mineral (chemical or bio-based) P fertilization may be required (see Chapter 6).  

Substituting animal manure by a mixture of digestate (φ = 0.5) and LF digestate (φ = 0.5) 

(Sc 9-10-11) also resulted in lower chemical K2O requirements than the common practice, while 

a high N and P2O5 dose was maintained. Assuming that no animal manure was added to the 

digester or that a new categorization for these products (other than ‘animal manure’) would exist 

(Sc 12-13), then the highest economic benefits were achieved (Sc 13: € 82 ha-1). In these 

scenarios also a relative reduction of 60-65 % in the ecological impact was obtained compared 

to the common practice.  

According to the analysis, the (partial) substitution of chemical fertilizers by digestates (Sc 

16-17) and mixtures of digestate (φ = 0.5) and LF digestate (φ = 0.5) (Sc 20-21) is not 

interesting, especially not in terms of economics. This is mainly due to the fact that in this case 

no revenues were considered for accepting the bio-based products as base fertilizer, next to the 

higher transportation and application costs for these products as compared to chemical 

fertilizers. On the other hand, substituting chemical fertilizers with LF digestate turned out in 

significantly lower chemical K2O requirements, while no chemical N was needed (Sc 19). This 

resulted in a very low ecological impact, i.e. an energy use of 0.77 GJ ha-1 and an associated 

GHG emission of 55 kg ha-1 expressed in terms of CO2-equivalents. Nevertheless, because the 

N concentration in the liquid fraction is low, the application and transportation costs in this 

scenario were again higher than in the common practice (Sc 0).  

Overall, based on the analysis, the most beneficial scenario in terms of both economic 

and environmental impact would exist of an optimal mixture of digestate and its liquid 

fraction for use as base fertilizer with high effective N content, but low P2O5 content (yet 

high enough to meet crop requirements), combined with a complete substitution of 

chemical N by air scrubber water or concentrates. A next important task exists in the field-

scale evaluation of the impact on crop production and soil quality of such bio-based fertilization 

scenarios (Chapter 5).  

An important remark for the above calculations is that an income was supposed for accepting 

excessive animal manure, digestate, and LF digestate by third parties, i.e. crop farmers (see 

Section 4.2.4), as this is currently the situation in Flanders. This may, however, not always be 

the case, e.g. i) in other regions, ii) in the future, or iii) if the farmer uses its own excessive 

manure for farm-scale digestion and the resulting digestate for application to his own fields. 

Note that the latter case also imposes no costs for the farmer for disposal of the excessive 

manure. When eliminating the benefits from the cost calculations presented in Table 4.6 (so 

supposing no income for the crop farmer from manure/digestate/LF digestate acceptation and 

no cost for disposal of these products by the livestock farmer or anaerobic digestion plant), still 
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most scenarios, except for Sc 3, 9, 16-17, and 20-21, pose economic benefits for the crop 

farmer (Fig. 4.3). 

Figure 4.3 Economic analysis (€ ha-1) of the 21 cultivation scenarios supposing no revenues 
from manure, digestate, and liquid fraction of digestate acceptance. Sc 0: common practice;  
Sc 1-21: reuse of digestate derivatives as renewable fertilizers. € 1 ≈ 1.415 CAD (November 

2014). Red dashed lines indicate groups of comparable scenarios (see Table 4.1). 
 

In this case, the most interesting scenarios involve a complete substitution of chemical N by air 

scrubber water (Sc 2 and 5) or by membrane filtration concentrates (Sc 15). Based on these 

results and in order to balance with the status quo (similar as above), the anaerobic digestion 

plant may now impose a marketing value of € 0.93 (1.31 CAD) kg-1 N (= € 74 ha-1 / 80 kg N ha-1 

= (cost Sc 0 – cost Sc 2) / N applied as air scrubber water in Sc 2) produced as ammonium 

sulfate from the digestate or € 0.60 (0.85 CAD) kg-1 N (= € 81 ha-1 / 135 kg N ha-1 = (cost Sc 0 – 

cost Sc 15) / N applied as concentrates in Sc 15) produced as membrane filtration concentrate, 

which are about the same figures as estimated above.  

A final interesting point is that significant amounts of S are applied to the soil when air scrubber 

water is used (Sc 1, 2, 4, 5, 7, 8, 10, and 11). This could result in an extra economic benefit of  

€ 0.75 kg-1 S (Triferto, Ghent, Belgium, personal communication 2011), depending on the S 

need of the agricultural crops.  

 

4.5 Conclusions and future perspectives   
The recovery and cradle-to-cradle reuse of macronutrients from digestate derivatives can be an 

important aspect in the further development of sustainable agriculture, anaerobic digestion, and 

green chemistry. Concentrates following membrane filtration through reversed osmosis show 

potential as renewable N/K fertilizer, whereas wastewater from acidic air scrubbers shows 

potential as renewable N/S fertilizer. Important bottlenecks for agricultural reuse of concentrates 

could be the salt content, the sodium adsorption ratio, and the K content, especially for cattle 

farmers. Bottlenecks for agricultural reuse of acidic air scrubber water could be the pH, the salt 

content, and its corrosive properties.  
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Substituting chemical fertilizers by acidic air scrubber water or membrane filtration concentrates 

theoretically always results in significant economic and ecological benefits for the crop farmer. 

The highest combined environmental and economic benefits could be obtained by use of an 

optimal (in terms of effective N over P content) combination of digestate and its liquid fraction as 

base fertilizer, meanwhile substituting chemical N by air scrubber wastewater or concentrates. 

Based on the analysis, it is estimated that a marketing value of ± € 0.93 (1.31 CAD) kg-1 N and 

± € 0.60 (0.85 CAD) kg-1 N could be imposed for the production of acidic air scrubber water and 

membrane filtration concentrates, respectively, in order to balance with the status quo (= no 

cost impact for the crop farmer).  

Starting from theoretical scenarios outlined in the current study, field test validation will be 

required in order to evaluate the impact on soil and crop production by application of these new 

green fertilizers (see Chapter 5). Moreover, a reconsideration of the legislative categorization of 

digestate and its derivatives based on the effective fertilizer properties is indispensable for the 

effective use and economic valorization of these products.  

 

 

 

 

 

 

 

 

 



 

 



  

 

 

CHAPTER 5:  
ASSESSING NUTRIENT USE EFFICIENCY AND 

ENVIRONMENTAL PRESSURE OF MACRO-

NUTRIENTS IN BIO-BASED FERTILIZERS:  

A REVIEW OF TWO-YEAR FIELD TRIAL RESULTS 

 

Field test site in Wingene, Belgium 2011-2012 (Pictures: Vaneeckhaute C.) 

 

Redrafted from:  

Vaneeckhaute, C., Meers, E., Ghekiere, G., Accoe, F., Tack, F.M.G., 2013c. Closing the 

nutrient cycle by using bio-digestion waste derivatives as chemical fertilizer substitutes: A field 

experiment. Biomass Bioenerg. 55, 175-189.  

Vaneeckhaute, C., Ghekiere, G., Michels, E., Vanrolleghem, P.A., Tack, F.M.G., Meers, E., 

2014. Assessing nutrient use efficiency and environmental pressure of macronutrients in bio-

based mineral fertilizers: A review of recent advances and best practices at field scale. Adv. 

Agron. 128, 137-180.  
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Abstract      

The use of bio-based (organo-)mineral fertilizers in agriculture as sustainable substitute for 
fossil reserve-based mineral fertilizers can result in serious economic and ecological benefits for 
the agriculturist. However, the opportunity to close nutrient cycles in this sector has been 
difficult to realise due to obstacles and inconsistencies in (national) legislative systems, the still 
limited availability of recovered products to farmers, social perception, and farmers’ distrust. As 
such, to date, the details of their application and potential benefits are not well established in the 
farming community. Field-scale assessments evaluating the impact on soil and crop production 
of bio-based fertilization scenarios are lacking, though highly essential. The aim of this study 
was to evaluate the impact on soil and crop production of using bio-digestion waste derivatives 
as substitute for chemical fertilizers and/or animal manure. In a two-year field trial, the fertilizer 
potential of recovered ammonium sulfate from acidic air scrubbers for ammonia removal, 
digestate, and its liquid fraction produced by mechanical separation was evaluated using high-
level performance indicators for measuring farming’s pressure on the environment and how that 
pressure is changing over time. Nutrient balances, nutrient use efficiencies, and apparent 
nutrient recoveries were assessed. In addition, the biogas yield of the harvested energy crops 
was determined, and an economic and ecological evaluation was conducted. Fertilizer market 
trends, and technical and legislative bottlenecks for bio-based fertilizer application were also 
discussed. 

Application of bio-digestion waste derivatives induced small, albeit not always statistically 
significant, improvement in crop yield compared to current common practices using animal 
manure and chemical fertilizers. Moreover, the use of these products could stimulate the 
mobilization of nutrients from the soil, thereby increasing the use efficiency of soil minerals, 
especially of phosphorus (P) and potassium (K). For all reuse scenarios the calculated 
economic and ecological benefits were significantly higher than the reference (up to 3.5 and 4.4 
times, respectively).  

Overall, based on the two-year field trial results, it was concluded that the use of bio-based 
fertilizers has a positive impact on the economy, agronomy, and ecology of intensive plant 
production. The proof-of-concept provided in this chapter should help to better classify these 
bio-based products in environmental and fertilizer legislations, and serve as a support to 
encourage their use in the farming community. Moreover, this review should stimulate and 
provide guidance for further field research on bio-based fertilizers, which is highly essential in 
the development and implementation of more effective and environmentally friendly farming 
strategies.   
 
Keywords: agricultural economics, alternative farming strategies, cradle-to-cradle nutrient 

recycling, energy maize, environmental management, sustainable agriculture.  
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Résumé  
L'utilisation d’engrais (organo-)minéraux extraits de ressources biologiques en tant que substitut 
durable aux engrais minéraux à base de ressources fossiles peut engendrer d’énormes 
avantages économiques et écologiques pour l'agriculteur. Toutefois, la possibilité de fermer les 
cycles des nutriments dans ce secteur a été difficile à réaliser en raison d'obstacles et 
d’incohérences présents dans les systèmes législatifs (nationaux), de la disponibilité encore 
limitée des produits récupérés pour les agriculteurs et de la perception sociale et la méfiance 
des agriculteurs. En tant que tel, à ce jour, les détails d’une telle utilisation et les avantages 
potentiels ne sont pas bien établis dans la communauté agricole. Des essais sur le terrain 
évaluant l'impact sur le sol et sur la production agricole des scénarios de bio-fertilisation font 
défaut, bien qu’ils soient essentiels. Le but de cette étude était d'évaluer l'impact sur le sol et sur 
la production agricole de l'utilisation des dérivés de la bio-digestion comme substitut pour des 
engrais chimiques et/ou des lisiers. Dans un essai sur le terrain de deux ans, le potentiel de 
fertilisation de sulfate d'ammonium récupéré à l’aide de laveurs à air acide, de digestat et sa 
fraction liquide produite par séparation mécanique a été évalué en utilisant des indicateurs de 
performance de haut niveau qui mesurent la pression des pratiques agricoles sur 
l’environnement et l’évolution de cette pression au fil du temps. Les bilans de nutriments, les 
efficacités d’utilisation des nutriments, et les récupérations apparentes des nutriments ont été 
calculés. De plus, le rendement de production de biogaz des cultures énergétiques récoltées a 
été déterminé, et une évaluation économique et écologique a été menée. Les tendances du 
marché des engrais, et les goulots d'étranglement techniques et législatifs pour l'application des 
bio-engrais ont également été évalués. 

L’application des dérivés de la bio-digestion induisait une petite, bien que pas toujours 
statistiquement significative, amélioration du rendement des cultures par rapport aux pratiques 
courantes utilisant les lisiers et les engrais chimiques. En outre, l'utilisation de ces produits 
pouvait stimuler la mobilisation des nutriments du sol, augmentant ainsi l'efficacité de l'utilisation 
des minéraux du sol, surtout du phosphore (P) et potassium (K). Pour tous les scénarios de 
récupération, les avantages économiques et écologiques calculés étaient significativement plus 
élevés que le scénario de référence (jusqu’à 3.5 et 4.4 fois, respectivement).  

En général, sur la base des résultats de deux ans, il a été conclu que l'utilisation de bio-engrais 
a un impact positif sur l'économie, l'agronomie et l'écologie de la production végétale intensive. 
La preuve de concept fourni dans ce chapitre devrait aider à mieux classer ces bio-produits 
dans les législations environnementales et celles sur les engrais, et servir à encourager leur 
utilisation dans la communauté agricole. De plus, cette revue devrait stimuler et orienter de 
futures recherches sur le terrain sur les bio-engrais, ouvrant la porte au développement et à la 
mise en œuvre de stratégies agricoles plus efficaces et plus respectueuses de l'environnement. 
 
Mots-clés: agriculture durable, économie agricole, gestion de l'environnement, maïs 

énergétique, recyclage des nutriments du berceau-au-berceau, stratégies agricoles alternatives.  
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5.1 Introduction  
Nutrient recovery from digestates and cradle-to-cradle reuse as sustainable fertilizers in 

agriculture has become an important challenge in the further development of sustainable 

agriculture, green chemistry, and renewable energy production through anaerobic digestion, 

both from an economic as well as an ecological point of view (Chapter 4). Previous chapters 

revealed that ammonium sulfate (AmS, (NH4)2SO4) wastewater resulting from NH3 recovery by 

an acidic air scrubber could potentially be reused as a formulated N/S fertilizer, whereas 

concentrates resulting from membrane filtration of liquid digestate could potentially be reused as 

N/K fertilizer (Vaneeckhaute et al., 2012, 2013b). In this way, sustainable alternatives for fossil 

reserve-based mineral fertilizers could be provided, while valuable nutrients are being recycled. 

Furthermore, in light of phosphorus (P) levels for soil application that become more and more 

strict in (European) fertilizer legislation, reuse of the P-poor liquid fraction (LF) after mechanical 

separation of raw digestates, or a mixture of raw digestate and its LF might be of important 

interest in the near future.   

Despite the potential economic and ecological benefits (Chapter 4), the opportunity to close 

nutrient cycles in this sector has been difficult to realise due to obstacles and inconsistencies in 

(national) legislative systems and lack of insights in the composition and properties of these 

recovered products, as well as in their impact on crop yield and soil quality. Hence, to date, the 

details of their application and potential benefits are not well established in the farming 

community. In 2010-2011, Wageningen UR (the Netherlands) has conducted a field trial aiming 

to evaluate the fertilizer value of concentrates produced by reversed osmosis membrane 

filtration of liquid manure and digestate (De Vries et al., 2012). However, field-scale 

assessments using AmS wastewater from acidic air scrubbers and other digestate derivatives in 

completely bio-based fertilization scenarios are lacking in literature. Field trials are, however, 

essential to demonstrate the fertilizer value of (a formulated combination of) these new products 

in terms of plant nutrient availability and their applicability for several cropping systems. In 

addition, field trials are crucial to evaluate the effective environmental impact of recovered bio-

based products (Johnston, 1997), as well as the economics (crop yield may not be reduced!).  

The present chapter aims to demonstrate the fertilizer potential of digestate and its derivatives 

(in particular recovered AmS) by means of a groundbreaking field trial in which eight different 

cultivation scenarios are compared. The scenarios were selected based on their beneficial 

economic and ecological impact as presented in Chapter 4. As such, AmS wastewater from an 

acidic air scrubber for ammonia removal, liquid fractions (LF) of digestate, and/or optimized 

mixtures of raw digestate and LF digestate were applied to soil, either as substitute for fossil 

reserve-based chemical fertilizers and/or as more sustainable and applicable (improved 

nitrogen to phosphorus, N:P, ratio) organo-mineral equivalent for animal manure. The crop type 

under study was energy maize. It is hypothesized that the use of these products does not cause 

significant differences in crop yield and nutrient uptake compared to the common practice using 

animal manure and chemical fertilizers.  
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In order to evaluate the potential environmental impact using these bio-based products in 

agriculture, nutrient use efficiencies, nutrient balances, and apparent nutrient recoveries were 

assessed. General soil qualitative parameters, such as the salt content, pH, organic carbon 

(OC) content, sodium adsorption ratio (SAR), as well as P and heavy metal accumulation, were 

measured in time (two years), while nutrient and OC dynamics were also modelled in the longer 

term (30 years). In addition, the biogas yield of the harvested energy maize was determined. As 

such, the nutrients coming from the digestate are cradle-to-cradle recycled to the anaerobic 

digestion plant and nutrient cycles are maximally closed (cfr. Fig. 4.1). Based on the results, the 

economic and ecological benefits of the various bio-based fertilization scenarios were 

recalculated. Due attention was given to the fertilization cost for the various scenarios as well as 

to the assessment of their carbon footprint (from energy use) and nutrient losses (see Chapter 

4). Finally, technical and legislative implications for bio-based fertilizer application, as well as 

fertilizer market trends and prices, are discussed.  

Overall, this chapter may help to better classify these bio-based products in fertilizer and 

environmental legislations and serve as a support to stimulate their use in the farming 

community. Moreover, reuse of bio-digestion waste can improve the economic viability of 

anaerobic digestion plants, especially in high-nutrient regions. In this way, regulatory drivers can 

be met, while an internal revenue source can be produced, hence the present waste problem 

could be turned into an economic opportunity. Finally, this chapter aims to stimulate and provide 

guidance for further field research on bio-based fertilizers. Such studies are highly essential in 

the development and implementation of more effective and environmentally friendly farming 

strategies.   

 

5.2 Material and methods: Guidelines for good practice   
This section provides guidelines for field experiments aiming to demonstrate the effectiveness 

of bio-based fertilizers as compared to traditional fertilization using animal manure and chemical 

fertilizers. The best management practices used in the field tests performed to date using bio-

digestion waste are presented based on the two-year field trial under study.   

 

5.2.1 Site description and fertilization strategies    

The test site concerns a 0.8 ha large sandy-loam field located in Wingene, Belgium (51° 3′ 0″ N, 

3° 16′ 0″ E). The field was divided into four blocks (n = 4), and each block was divided into eight 

subplots of 9 m by 7.5 m, which were randomly assigned to the eight treatments under study 

(Figure 5.1). The soil characteristics before the field trial (April 21 2011) can be found in Table 

5.1. The methods used for physicochemical analysis are described in Section 5.2.3. Note that 

the P status of the soil was high, confirming the problem of P accumulation in Flemish soils. The 

present field was, however, not yet registered as P saturated soil in the Flemish fertilizer 

legislation at the moment of the field trial.   
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Figure 5.1 Division of the field into 32 subplots. The first number indicates the repetition (1-4).  
The last number indicates the fertilization scenario (1-8). 

 

Table 5.1 Soil characteristics before fertilization (April 21 2011): parameter, soil layer, analysis, 
target zone, limit, and evaluation. Extractable amounts were determined using ammonium 
lactate/acetic acid (pH 3.75) as an extraction agent. DW = dry weight; OC = organic carbon.  
Parameter  Soil layer (cm) Analysis Target zone Limit Evaluation 
Texture 0-23 sandy-loama - - - 
Bulk density (kg L-1) 0-30 1.45 - - - 
 30-90 1.5 - - - 
pH(KCl) 0-23 7.0 5.5-6 5.3 rather high 
OC (% on DW) 0-23 1.9 1.3-1.6 0.9 rather high 
Extractable Ca (g kg-1 DW) 0-23 19 1.0 2.7 high 
Extractable K (mg kg-1 DW) 0-23 121 140-230 - rather low 
Extractable Mg (mg kg-1 DW) 0-23 214 90-160 - rather high 
Extractable Na (mg kg-1 DW) 0-23 20 31-67 - rather low 
Extractable P (mg kg-1 DW) 0-23 816 120-200 - high 
NO3-N (kg ha-1) 0-30 25 - - - 
 30-60 10 - - - 
 60-90 5 - - - 
NH4-N (kg ha-1) 0-30 4 - - - 
 30-60 6 - - - 
 60-90 5 - - - 
a Note: during the experiment in 2011 it was observed that the 0-90 cm soil layer was rather sandy than sandy-loam.   
  Hence, in 2012 the fertilization advice was set for a sandy soil. 
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Based on the soil characteristics, the fertilization advice was calculated by Inagro vzw, Beitem, 

Belgium, using the soil balance method. The nutrient inputs considered in this method are the 

soil nutrient reserves, the release of nutrients from soil organic carbon (SOC), from organic 

material (crop residues, intercrops, etc.), and organic fertilizers. The nutrient outputs are 

determined by the crop nutrient uptake and the residual nutrients, such as the NO3-residue. The 

difference between the outputs and the inputs determines the fertilization advice. As such, the 

fertilizer recommendations were formulated at 150 kg effective N ha-1 y-1 (= maximum allowable 

dose for the cultivation of maize on non-sandy soils in compliance with MAP4, 2011), 171 kg  

ha-1 y-1 potash (K2O), and 30 kg ha-1 y-1 magnesium oxide (MgO) in 2011, and 135 (= maximum 

allowable dose for the cultivation of maize on sandy soils in compliance with MAP4, 2011), 250, 

and 60 kg ha-1 y-1, respectively, in 2012. The fact that the recommended K and Mg dose was 

higher in 2012 confirms the observed extraction of K and Mg from the soil complex in 2011 (see 

Section 5.3; Vaneeckhaute et al., 2013c). On the other hand, the recommended N dose was 

lower in 2012, as high NO3-N residues were observed at the end of the field experiment in 2011 

(see Section 5.3; Vaneeckhaute et al., 2013c). The amount of effective N for the organic and 

organo-mineral fertilizers was set at 60 % of the total N content, as described in the Flemish 

manure decree (MAP4, 2011). The nitrogen use efficiency of AmS wastewater from an acidic air 

scrubber was set at 100 %, similar as for chemical mineral N fertilizers. Furthermore, for 

phosphate (P2O5) the maximum allowable dosage of 80 kg ha-1 y-1 for the cultivation of maize 

was respected (MAP4, 2011).  

An overview of the eight different fertilization scenarios (Sc 1-8) tested in 2011 and 2012 is 

provided in Table 5.2. Group 0 (Sc 1) represents the reference scenario in which only animal 

manure and chemical fertilizers (N, K2O) were used (cfr. Sc 0 in Chapter 4). In Group I, 

chemical N was partially (Sc 2) or completely (Sc 3) substituted by AmS wastewater from an 

acidic air scrubber (cfr. Sc 1-2 in Chapter 4).  

In group II (Sc 4-6), animal manure was converted into digestate through anaerobic  

(co-)digestion and mixtures of digestate and its LF were spread to the field, with partial, 

complete, or without the simultaneous substitution of chemical N by air scrubber water (cfr. Sc 

9-11 in Chapter 4). Based on the product characterizations, an optimal combination was sought 

between raw digestate and its LF after mechanical separation using the Excel 2010 solver. The 

aim was to provide a concentrated mixture with high effective N content, but relatively low P2O5 

content. As such, chemical fertilizer N requirements can be reduced. Hence, while P2O5 was the 

limiting factor for manure application in group 0 and I, N became the limiting factor in group II, 

as the ratio of P2O5 over effective N was lower for the digestate mixtures as compared to animal 

manure. In 2011, a mixture of 50 volume % (φ = 0.5) raw digestate and 50 % (φ = 0.5) LF 

digestate was used for this purpose. In 2012, the use of a mixture containing 40 volume % (φ = 

0.4) raw digestate and 60 % (φ = 0.6) LF digestate (Sc 4) could completely fulfill the fertilizer N 

requirements, without the addition of chemical N and without exceeding the maximum allowable 

P2O5 level. Therefore, in Sc 5-6, the raw digestate was used as such (φ = 1), with partial or 

complete substitution of chemical N by air scrubber water.  



 

110 

Table 5.2 Eight different fertilization scenarios (Sc) expressed as effective nitrogen (N; kg ha-1 y-1), additional application of chemical potash (K2O; kg 
ha-1 y-1), and equivalent dosage of phosphate (P2O5; kg ha-1 y-1). Values represent the intended dosage (based on preliminary product 
characterizations). Values between brackets represent the actual dosage (based on product characterizations at the moment of fertilizer application).   

a Group 0 = reference (conventional fertilization): animal manure + chemical fertilizers (N, K2O); Group I = substitution of chemical fertilizer N by ammonium sulfate (AmS) air scrubber  
  water; Group II = anaerobic (co-)digestion of animal manure and field application of digestate with complete, partial, or without the substitution of chemical fertilizer N by AmS; Group III =  
  use of the liquid fraction (LF) of digestate as P-poor fertilizer in addition to animal manure with or without the substitution of chemical fertilizer N by AmS.   
b Ammonium nitrate (27 % N).  
c Patentkali (30 % K2O, 10 % MgO, 45 % SO3 by weight).  
d No chemical P was used.   
e Mixture (volume percent, φ = 0.5) of raw digestate and LF digestate.    
f Mixture of LF digestate (φ = 0.6) and raw digestate (φ = 0.4).   
g Maximum allowable fertilization level was exceeded. 

Groupa Sc Year Chemical 
start N Chemical Nb Air scrubber 

N 
Animal 

manure N 
Digestate 
mixture N 

Raw  
digestate N 

LF  
digestate N 

Chemical 
K2Oc P2O5

d 

0 1 2011 25 29  96 (98)    78 80 (108)g 

0  2012 30 30  75 (58)    213 80 (45) 

I 2 2011 25  29 96 (98)    78 80 (108)g 

I  2012 30  30 75 (58)    213 80 (45) 

I 3 2011   54 96 (98)    78 80 (108)g 

I  2012   60 75 (58)    213 80 (45) 

II 4 2011 25 18   107e (105)   29 80 (74) 

II  2012     134f (139)g   0 80 (101)g 

II 5 2011 25  18  107e (105)   29 80 (74) 

II  2012 33     102 (141)g  46 61 (159)g 

II 6 2011   43  107e (105)   29 80 (74) 

II  2012   33   102 (141)g  46 61 (159)g 

III 7 2011 25   84 (86)   35 (36) 33 77 (105)g 

III  2012 33   67 (52)   35 (39) 121 76 (49) 

III 8 2011    78 (80)   59 (60) 0 76 (105)g 

III  2012   33 67 (52)   35 (39) 121 76 (49) 
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Finally, in group III (Sc 7-8), LF digestate was applied as P-poor fertilizer in combination with 

animal manure, with or without the substitution of chemical N by air scrubber water (cfr. 

optimized version of Sc 18-19 in Chapter 4). Although the maximum allowable level for effective 

N was always respected, it should be noted that for group III it was supposed that i) the LF was 

derived from a process where no animal manure was added to the digester, or ii) the LF can be 

classified as ‘alternative fertilizer’, other than ‘animal manure’. As such, its corresponding N 

dose was not accounted for as ‘animal manure N’, so the maximum allowable level for total N 

from animal manure, i.e. 170 kg ha-1 (MAP4, 2011), may be exceeded here.  

Important to note is that in Sc 3, 6, and 8, as well as in Sc 4 in 2012, no starter fertilizer (= 

applied to the field at sowing) was used. Furthermore, it should be remarked that the actual 

rates of application (based on product characterizations at the moment of fertilizer application) 

were sometimes deviating from the intended doses (based on preliminary product 

characterizations used for setting up the fertilization scenarios) and at times higher than the 

maximum allowable level due to differences in organic fertilizer composition over time. 

Moreover, in 2012 the digestate dosage in Sc 5-6 was higher than intended due to technical 

issues.  

 

5.2.2 Sampling, fertilizer application, and field follow-up  

Product samples were taken for physicochemical characterization before fertilization in order to 

determine the allowable fertilizer doses in compliance with MAP4 (2011). At the moment of 

fertilizer application, products were again sampled and analyzed in order to determine the 

nutrient content of the products that were actually applied to the field (Table 5.3).  

Digestate and LF digestate after mechanical separation were sampled at the site of SAP Eneco 

Energy, Houthulst, Belgium. It concerns a mesophilic (37 °C) anaerobic co-digestion plant 

(capacity: 60,000 ton y-1, 2.83 MWel) with an input feed consisting of 30 % animal manure, 30 % 

energy maize, and 40 % organic biological waste supplied by the food industry. Pig manure was 

collected at the pig farm of Huisman, Aalter, Belgium. Acidic air scrubber water was sampled at 

the piggery of Ladevo BVBA, Ruiselede in 2011 and at Senergho, Hooglede in 2012, both in 

Belgium. 

Two replicate samples of every product were each time collected in polyethylene sampling 

bottles (10 L), stored cool (± 4 °C), and transported within 1 h to the laboratory for 

physicochemical analysis. In the laboratory, the replicate samples were kept separated for 

separate analysis after homogenization of each particular sample. Because the pH of the air 

scrubber water was very low (2-3), it was neutralized before application to the field. In 2011, the 

pH-adjustment was conducted by adding sodium hydroxide (1 L NaOH per 200 L acidic 

wastewater, based on laboratory experiments), whereas in 2012, the pH-adjustment was 

assessed by mixing the acidic air scrubber water with alkaline air scrubber water from the same 

site. Hence, the latter provides a more environmentally friendly solution.  
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Table 5.3 Physicochemical product characterization per year (mean ± standard deviation; n = 2). DW = dry weight; EC = electrical conductivity; FW = 
fresh weight; N/A = not applicable; OC = organic carbon.  

Parameter Year 
Animal 
manure 

Digestate 
mixturea 

Raw 
digestate 

Liquid fraction 
digestate 

Air scrubber 
wastewater  

(pH-adjusted) 
DW (%) 2011 10 ± 0 6.2 ± 0.1 N/A 2.5 ± 0.1 - 

2012 4.3 ± 0.0 7.1 ± 0.0 14 ± 0 2.5 ± 0.0 - 

OC (% on DW) 2011 40 ± 0 36 ± 0 N/A 31 ± 0 - 

 2012 28 ± 2 34 ± 0  32 ± 0 35 ± 0 - 

EC (mS cm-1) 2011 35 ± 0 29 ± 0 N/A 34 ± 0 135 ± 0 

2012 31 ± 0 35 ± 0 36 ± 0 34 ± 0 208 ± 0 

pH 2011 7.8 ± 0.0 8.2 ± 0.0 N/A 7.4 ± 0 8.5 ± 0.0 

2012 7.7 ± 0.0 8.0 ± 0.0 8.3 ± 0.0 7.8 ± 0.0 6.9 ± 0.0 

Total N (g kg-1 FW) 2011 8.1 ± 0.0 4.7 ± 0.0 N/A 3.6 ± 0.0 27 ± 0 

2012 5.3 ± 0.0 5.6 ± 0.0 7.4 ± 0.0 4.3 ± 0.0 42 ± 0 

NH4-N (g kg-1 FW) 2011 5.6 ± 0.0 3.1 ± 0.1 N/A 2.8 ± 0.0 27 ± 0 

2012 3.2 ± 0.1 3.7 ± 0.1 4.5 ± 0.0 3.2 ± 0.1 41 ± 4 

P2O5 (g kg-1 FW) 2011 5.4 ± 0.2 2.0 ± 0.3 N/A 0.62 ± 0.03 - 

2012 2.4 ± 0.1 2.3 ± 0.2 5.0 ± 0.4 0.57 ± 0.02 - 

K2O (g kg-1 FW) 2011 4.7 ± 0.0 3.1 ± 0.5 N/A 3.5 ± - - 

2012 2.9 ± 1.7 4.0 ± 4.0 5.5 ± 3.0 3.0 ± 1.6 - 

Ca (g kg-1 FW) 2011 3.0 ± 0.0 1.3 ± 0.3 N/A 0.11 ± 0.00 - 

 

2012 1.9 ± 0.0 2.1 ± 0.0 6.5 ± 0.0 0.37 ± 0.00 - 

Mg (g kg-1 FW) 2011 1.3 ± 0.0 0.34 ± 0.04 N/A 0.016 ± 0.000 - 

2012 1.1 ± 0.0 0.86 ± 0.04 2.0 ± 0.1 0.10 ± 0.01 - 

Na (g kg-1 FW) 2011 2.2 ± 0.0 2.0 ± 0.5 N/A 3.1 ± 0.0 - 

2012 2.2 ± 0.0 3.4 ± 0.1 3.8 ± 0.1 3.1 ± 0.0 - 

S (g kg-1 FW) 2011 0.80 ± 0.09 0.39 ± 0.01 N/A 0.11 ± 0.01 31 ± 0 

2012 0.42 ± 0.00 0.84 ± 0.30 1.7 ± 0.1 0.27 ± 0.02 48 ± 0 
a 50 volume % raw digestate and 50 volume % liquid fraction digestate in 2011, 40 volume % raw digestate and 60 volume % liquid fraction digestate in 2012.  
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It should be remarked that in 2011 the pH after adjustment in practice in the field was slightly 

higher than predicted under laboratory conditions, i.e. 8.5 instead of 7. However, because of the 

high solubility of NH4 and the immediate fertilizer application after sampling, NH3 losses in the 

environment were not expected to be significantly influenced by this pH adjustment (Hillel, 2008; 

Zumdahl, 2005).   

Fertilizers were applied to the soil on April 29-30 2011 and May 30 2012 and ploughed one day 

thereafter. In 2012, the fertilization was conducted late in the season due to the very exceptional 

wet weather conditions in April of that year (Table 5.4; RMI, 2014).  

 
Table 5.4 Weather conditions in West Flanders (Belgium) in 2011 and 2012, and degree of 
abnormality by means of the statistical characteristic (SC) based on the reference period 1833-
2010 (RMI, 2014). 
Month      Average temperature (°C)   Total rainfall (mm) 

 2011 SCa 2012 SCa 2011 SCa 2012 SCa 
January 4.0 n 5.1 n 90.5 n 86.4 n 
February 5.4 n 3.7 va 44.0 n 30.0 n 
March 7.7 n 8.9 va 22.4 e 32.9 n 
April 14.1 ve 8.4 va 25.8 n 104.1 ve 
May 14.8 n 14.3 n 22.5 ve 63.4 n 
June 16.8 n 15.4 n 72.3 n 133.1 a 
July 16.0 e 17.3 n 55.6 n 115.7 a 
August 17.3 n 19.2 n 189.3 ve 22.5 a 
September 16.5 a 14.5 n 83.1 n 51.6 n 
October 12.1 n 11.1 n 48.8 n 119.4 va 
November 8.6 a 7.1 n 8.5 ve 44.7 a 
December 6.1 e 5.1 n 152.1 a 172.7 ve 
a SC = Statistical characteristic: n = normal, a = abnormal (averages one time in 6 y), va = very abnormal (averages one  
  time in 10 y), e = exceptional (averages one time in 30 y), ve = very exceptional (averages one time in 100 y). 
 

Depending on the scenario, starter fertilizers were also applied at the moment of sowing (Table 

5.2). On May 5 2011, energy maize of the species Atletico (breeder: KWS, Belgium; Food and 

Agricultural Organisation (FAO) ripeness index: 280) was sown at a seed density of 102,000  

ha-1. The crops were harvested on October 7. The preceding crop was fodder maize. On 

October 22 2011, Italian rye grass was sown as an intercrop, and on June 2 2012 energy maize 

of the species Fernandez (breeder: KWS, Belgium; FAO ripeness index: 260) was sown at a 

seed density of 100,000 ha-1. Immediately after sampling, pig manure, digestate, and LF 

digestate were applied to the field by use of pc-controlled injection (Bocotrans, Tielt, Belgium; 

Fig. 5.2), whereas the pH-adjusted air scrubber water and the chemical fertilizers, ammonium 

nitrate (27 % N) and patentkali (30 % K2O, 10 % MgO, 45 % SO3 by weight), were applied to 

the plots by hand-application in order to ensure high precision of the applied dosage.   
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Figure 5.2 Fertilizer application by means of pc-controlled injection (Bocotrans, Tielt, Belgium). 
Picture: Vaneeckhaute C. 

 

Samples of soils and plants were taken in April, July, September, October (harvest), and 

November (soil) 2011, as well as in April, August, and November (harvest) 2012. A length 

measurement was also performed on August 17 2011 (n = 320). At each sampling moment, 

four homogeneous soil samples were taken per subplot at three depths (0-30 cm, 30-60 cm, 60-

90 cm) using a soil core sampler. Six plants were harvested manually by use of trimming 

scissors in a rectangle (4.5 x 3.5 m) around the boreholes. The samples were collected in 

polyethylene sampling bags, stored in cooler boxes filled with ice (± 4 °C), and transported 

within 1 h from the test site to the laboratory. In the laboratory, the replicate samples were again 

stored cool (1-5 °C) for subsequent separate analysis. The harvest was conducted by use of a 

maize chopper and the crop fresh weight (FW) yield was determined at the field using a 

transportable balance (Kubota KA-10-60A, capacity: 0.02-60 kg, Robbe Bascules NV, Torhout, 

Belgium; Fig. 5.3).   

 

5.2.3 Physicochemical analysis 

Note that, unless indicated otherwise, the same analytical devices were used for the soil and 

plant analyses (Sections 5.2.3.2-5.2.3.3) as described for the products (Section 5.2.3.1). 

 
5.2.3.1 Product analysis   

Dry weight (DW) content was determined as residual weight after 72 h drying at 80 °C in an 

oven (EU 170, Jouan s.a., Saint Herblain, FR). The OC content was determined after 

incineration of the dry samples during 4 h at 550 °C in a muffle furnace (Nabertherm, Lilientahl, 

DE). The loss of ignition (= weight loss after incineration) was divided by a conversion factor of  
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Figure 5.3 Determination of fresh weight biomass yield at the field.  
Balance: Kubota KA-10-60A, Robbe Bascules NV, Torhout, Belgium. 

Picture: Vaneeckhaute C. 
 

1.8 to calculate OC, which is to date the official factor used for compost products in the 

Compendium for Sampling and Analysis provided in the Flemish waste and soil remediation 

decree (CSA, 2012). Note that this factor may be higher for manure and digestate derivatives, 

though a standard conversion factor for these products is currently not available. Conductivity 

and pH were determined potentiometrically using a WTW-LF537 (Wissenschaftlich Technischen 

Werkstäten, Weilcheim, DE) conductivity electrode and an Orion-520A pH-meter (Orion 

Research, Boston, USA), respectively. The solid samples were first equilibrated for 1 h in 

deionized water at a 5:1 liquid to dry sample ratio and subsequently filtered (MN 640 m, 

Macherey-Nagel, DE). Total N content was determined using a Kjeltec system 1002 distilling 

unit (Gerhardt Vapodest, Köningswinter, DE) after digestion of the sample in a sulphuric-

salicylic acid mixture. The captured ammonia in the distillate was then titrated with 0.01 mol L-1 

hydrogen chloride (HCl) in the presence of a methyl red bromocresol green mixed indicator 

(Van Ranst et al., 1999). Ammonium (NH4) was determined using the same Kjeltec-1002 

distilling unit after addition of magnesium oxide (MgO) to the sample and subsequent titration 

(Van Ranst et al., 1999). Total P was determined using the colorimetric method of Scheel (Van 

Ranst et al., 1999) after wet digestion of the liquid samples using nitric acid (HNO3) and 

hydrogen peroxide (H2O2). The absorbance at 700 nm of samples and standards was 

determined using a Jenway 6400 spectrophotometer (Barloworld Scientific T/As Jenway, 

Felsted, UK). Calcium (Ca), Mg, and (heavy) metals, i.e. aluminium (Al), cadmium (Cd), chrome 

(Cr), copper (Cu), iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn), were analyzed using 

inductively coupled plasma optical emission spectrometry (ICP-OES, Varian Vista MPX, Palo 

Alto, CA, USA; Van Ranst et al., 1999), whereas sodium (Na) and K were analyzed using a 
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flame photometer (Eppendorf ELEX6361, Hamburg, DE), both after wet digestion of the 

samples (2.5 g sample + 2 mL HNO3 + 1 mL H2O2; Van Ranst et al., 1999). Nitrate (NO3
-) and 

sulfate (SO4
2-) were analyzed using ionic chromatography (Metrohm-761, Herisau, CH) after 

centrifugation and subsequent vacuum filtration (0.45 µm pores) of the liquid fraction. Total 

sulfur (S) was analyzed as described by Weaver et al. (1994). The procedure involves product 

ashing, refluxing, and ionic chromatography (Metrohm 761, Herisau, CH).  

 

5.2.3.2 Soil analysis  

Soil samples were dried at 50 °C in a soil oven (EU 170, Jouan s.a., Saint Herblain, FR) for 

minimum 72 h. OC was determined as described for the product analyses (Section 5.2.3.1) 

using a conversion factor of 1.72 as in CSA (2012). Soil texture was determined manually using 

the standard method described in CSA (2012). The bulk density of the soil was determined as 

the mass of dry soil over its total (wet) soil volume (USDA, 2013). Soil conductivity was 

measured with a WTW-LF537 electrode after equilibration for 30 min in deionized water at a 5:1 

liquid to dry sample ratio and subsequent filtration (MN 640 m). To determine the actual soil pH 

(pH-H2O), 10 g of air-dried soil was allowed to equilibrate in 50 mL of deionized water for 16 h, 

while for the potential soil pH (pH-KCl), 50 mL of 1 mol L-1 potassium chloride (KCl) was added 

to 10 g of air-dried soil and allowed to equilibrate for 10 min. The pH of the supernatant was 

then measured using a pH Orion-520A glass-electrode. Total N in the soil was determined using 

a Kjeldahl destruction, while total P was determined using the method of Scheel after aqua 

regia digestion (1 g sample + 7.5 ml HCl, 2.5 ml HNO3 and 2.5 ml distilled water). NH4 and NO3 

were determined using an AA3 auto-analyzer (BRAN+LUEBBE, Norderstedt, DE) after 

extraction with KCl. Na, K, Ca, Mg, and (heavy) metals (Al, arsenic (As), Cd, Cr, Cu, Fe, 

mercury (Hg), Ni, Pb, Zn) were analyzed using ICP-OES after aqua regia digestion for the 

determination of total amounts (Van Ranst et al., 1999). Total S was determined using the same 

ICP-OES after microwave destruction. Therefore, 1 g of dry soil was mixed with 2.5 mL 

perchloric acid (HClO4) and 3.5 mL HNO3, allowed to rest for 12 h, and heated in a microwave 

(CEM MARS 5, Drogenbos, BE) during 40 min at 100 °C and 600 W. Plant available amounts of 

P, K, S, Ca, and Mg were determined after ammonium lactate/acetic acid (pH 3.75) extraction of 

the samples (NSI, 2010; VIAK AS, 1993). The SAR, which refers to the ratio of the monovalent 

cation, Na+, to the divalent cations, Ca2+ and Mg2+, was determined as described by Hillel 

(2008; Eq. 5.1):  

EfC = [@�a
t[b�a + [;ua                                                                  hi. [v. _a 

in which [@�a ,  [b�a , and [;ua  represent the ion activities (mmol L-1) of Na, Ca, and Mg, 

respectively, in the saturation extract of the soil. 

 

5.2.3.3 Plant analysis  

Plant samples collected in the field were weighed for determination of the FW biomass yield and 

oven-dried at 55 °C for determination of the DW content. The dry samples were grinded to pass 



 

 117 

a 1 mm sieve (Retsch SM-2000, Haan, DE) and incinerated at 550 °C during 4 h in order to 

determine the OC content, similar as described in Section 5.2.3.2. Total N was determined 

using the Kjeldahl method and total P was determined using the method of Vanadate (Van 

Ranst et al., 1999) after incineration of the samples during 4 h at 450 °C and digestion of the 

residual ash (1 g ash + 5 mL of 3 mol L-1 HNO3 + 5 mL of 6 mol L-1 HNO3). Total amounts of Na, 

K, Ca, Mg, and metals (Al, As, Cd, Cr, Cu, Fe, Hg, Pb, Ni, Zn) in the digested samples were 

determined using ICP-OES. Total S was determined using the same ICP-OES after microwave 

destruction of 0.2 g dry and grinded plant sample (see Section 5.2.3.2).   

 

5.2.4 Performance indicator calculations   

5.2.4.1 Nutrient use efficiency  

The nutrient use efficiency (%) was determined using Equation 5.2:  

RpTmYSWT pZS SwwYUYSWUo [%a = 100 . {'G� F$&'�	F& $�&(e	 |}~ �����*$&'�	F& �$���6 &5'G$�5 <	'&���=(&�GF [}~ ����a                         hi. [v. sa       

It gives an indication of the effectiveness of the fertilizers applied (organic + chemical), without 

taking in account the amount of available nutrients in the soil before fertilization (Parn et al., 

2012). Nutrient use efficiencies were evaluated through time for the primary macronutrients, N, 

P2O5, and K2O, the secondary macronutrients, S, Ca, and Mg, as well as for the micronutrient, 

Na, in order to evaluate the potential salt accumulation in the soil.  

 

5.2.4.2 Nutrient balances and apparent recovery  

Soil nutrient balances provide a method for estimating the annual nutrient loadings to 

agricultural soils and hence provide an indication of the potential risk associated with losses of 

nutrients to the environment (leaching, accumulation, volatilization, etc.), which can impact on 

soil, air, and water quality, and on climate change (Defra, 2011b; Parn et al., 2012). In this study 

nutrient balances were assessed in two different ways. First, the apparent nutrient surplus was 

calculated using Equation 5.3:  

����mSWT WpTmYSWT Zpm��pZ [kg ha��a                                                                   

= ?HD���?D �?BHD9 [kg ha��a − ���B ?HD���?D HBD�1� �D ℎ��L�9D [kg ha��a                            hi. [v. �a 

in which the ‘inputs’ refer to the nutrient supply by fertilization and natural deposition, i.e. 30 kg 

N ha-1, 3 kg P2O5 ha-1, and 8 kg K2O ha-1 (van der Burgt et al., 2006). A positive or surplus 

balance means that less nutrients have been taken out of the field with the harvest than have 

been put there. In contrast, if the balance is negative or in deficit, more nutrients have been 

eliminated from the field than have been applied. This balance does not estimate the actual 

losses of nutrients to the environment, but significant nutrient surpluses are directly linked with 

these losses.  

Secondly, the actual environmental pollution was determined by taking in account the measured 

changes in soil nutrient reserves over time. It was calculated using Equation 5.4: 
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�UTp�� �V��pTYVW YW�S� [kg ha��a                                                                                                             hi. [v. ka 

= 9��� ?HD���?D ��9��L�9 ������ ���D�����D��? [kg ha��a +  ?HD���?D �?BHD9 [kg ha��a −
9��� ?HD���?D ��9��L�9 �D ℎ��L�9D [kg ha��a −  ���B ?HD���?D HBD�1� �D ℎ��L�9D [kg ha��a =
9��� ?HD���?D ��9��L�9 ������ ���D�����D��? [kg ha��a −
9��� ?HD���?D ��9��L�9 �D ℎ��L�9D [kg ha��a + �BB���?D ?HD���?D 9H�B�H9 [kg ha��a 

A positive actual pollution index is directly linked to nutrient losses in the environment, e.g. 

through leaching, whereas a negative pollution index indicates that more nutrients have 

become available for the plant during the growing season, e.g. via exchange from the clay-

humus complex in the soil. These nutrients may, however, be vulnerable for leaching later in 

the fall and winter, unless they would be captured by an intercrop.   

Finally, also the apparent recovery was determined as the percentage of total available 

nutrients from the soil that are recovered in the crops at the harvest using Equation 5.5: 

����mSWT mSUV�Smo [%a                                                                                                                              hi. [v. va 
= 100 . ���B ?HD���?D HBD�1� �D ℎ��L�9D [kg ha��a9��� ?HD���?D ��9��L�9 ������ ���D�����D��? [kg ha��a  +  ?HD���?D �?BHD9 [kg ha��a 
 

in which the ‘inputs‘ refer again to the nutrient supply by fertilization and natural deposition. 

Hence, it gives an idea of the total amount of nutrients from the soil (not only from the fertilizers 

applied) that have been taken up by the crops during the growing season. The apparent 

recovery has become an increasingly important indicator to evaluate the fertilizer performance, 

next to the nutrient use efficiency, since the awareness of nutrient depletion, especially for P 

(van Dam and Ehlert, 2008). 

 

5.2.5 Model simulations   

Models are useful tools to evaluate environmental impacts associated with nutrient 

management in cropping systems and to predict them correctly (Cannavo et al., 2008). In this 

study, simulations of N dynamics were conducted with the computer model NDICEA (Nitrogen 

Dynamics In Crop rotations in Ecological Agriculture) nitrogen planner 6.0.16 (van der Burgt et 

al., 2006). It is a process-based simulation model which calculates dynamics of the state 

variables soil water (m3 ha-1), soil carbon (kg ha-1), soil organic matter (kg ha-1), apparent initial 

age of a source of organic matter (year), and soil organic (kg ha-1) and inorganic nitrogen (kg 

ha-1) for each soil layer over the course of a crop rotation with a time step of one week. The 

model applies to homogenous layers in well-drained, mineral soils. The purpose of using 

NDICEA is to reconstruct dynamics of water and nitrogen in cropping system experiments or in 

farmers’ fields. This purpose resulted in a target-oriented approach: the target crop production, 

expressed in terms of biomass, water use, and nitrogen accumulation is input for the model, 

and the model ‘reconstructs’ the dynamics of the state variables (van der Burgt et al., 2006). 

In this modelling exercise, the physicochemical product analyses, plant yields, crop nutrient 

uptake data, as well as the soil measurements (e.g. nitrate residue) in time collected during the 

two-year field trial were used as input to the model. Moreover, the particular weather conditions 



 

 119 

for the site under study in 2011 and 2012 were automatically selected by NDICEA from online 

weather station databases. The nutrient balances obtained are thus specific for each scenario. 

Simulations were conducted over three and thirty years. To this end, crop rotation data from the 

fertilization year prior to the field experiment (i.e. 2010) were additionally inserted in order to 

correctly calibrate the model. The set of three-year field-trial data was then calculated after 

three and thirty years using the ‘repeat’ function in NDICEA, i.e. a one time and ten times 

repetition, respectively. The resulting output represents the 2nd (year 4-6) and 11th (year 31-33) 

cycle, respectively. The first year of the output cycle is not conclusive (only required for model 

calibration). Hence, only the 2nd and 3rd year of the resulting cycle is presented in the results 

section below (Section 5.3).  

On top of that, carbon dynamics in the long term (30 years) were determined using the 

‘Koolstofsimulator’ software 20110706 (LNE, 2006). To this end, contact was sought with the 

department of Environment, Nature, and Energy of the Flemish government (LNE, Brussels, 

Belgium) and the Soil Service Institute of Belgium (Leuven-Heverlee, Belgium) (Tits M., Elsen 

A., personal communication 2011). Upon request, a modified version of the Koolstofsimulator 

was prepared in the context of this research and obtained in 2012. It allows the self-insertion 

and application of new organic/organo-mineral fertilizers. The most important factor in the 

calculations is the amount of effective organic carbon (EOC), which is the OC that remains in 

the soil after one year and thus contributes to the humus build-up (Vlaco, 2012). The ratio of 

EOC over OC in the digestate derivatives can be as high as 0.8 (Vlaco, 2012; Chapter 2, 

Section 2.2). Nevertheless, in this modelling exercise a conservative standard value of 0.41 was 

used, as proposed by van der Burgt et al. (2011). The standard value for pig manure amounts 

to 0.31 (LNE, 2006). The initial soil organic carbon (SOC) content was set at 1.9 % (Table 5.1).  

 

5.2.6 Statistical analysis  

Statistical analyses were performed using SPSS Statistics 21. A one-way ANOVA model was 

used to determine the effect of fertilizer type (i.e. the independent variable, between-groups 

factor) on plant yield and DW content, plant nutrient uptake, nutrient soil contents, and soil 

quality parameters (i.e. the dependent variable). The condition of normality was checked using 

the Kolmogorov Smirnov test and QQ-plots, whereas equality of variances was checked with 

the Levene test. When homoscedascity was found, significance of effects was tested by use of 

an F-test and post-hoc pair-wise comparisons were conducted using Tukey's honestly 

significant difference (HSD) test (α = 0.05; n = 4). When no homoscedascity was found, a 

Welch F-test combined with a post-hoc Games-Howell test was used (α = 0.05; n = 4). When 

the condition of normality was not fulfilled, the non-parametric Kruskal-Wallis test was applied 

instead of the one-way ANOVA. Significant parameter correlations were determined using the 

Pearson correlation coefficient (r). 
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5.2.7 Analysis of biogas potential  

In 2011, the biogas potential of the energy maize was determined in the biogas lab of the 

university college of West Flanders (Innolab, Kortrijk, Belgium) via a mesophillic batch test (Fig. 

5.4). Homogenized subsamples of the harvested plant material were taken for the analysis. The 

four replicate subsamples per treatment were then mixed and again homogenized. A control 

with inoculum sludge and a flask (5 L) with an equal amount of sludge to which a known amount 

of dry, grinded biomass was added, were prepared in duplicate (Fig. 5.4A). The organic dry 

weight load to the reactor was 4 g L-1. The used inoculum was an exhausted digestate, 

composed of different digestates from stable working biogas reactors. The two controls and the 

two flasks with inoculum material had the same volume and were incubated at 37 °C. The flasks 

were connected to gas catch columns, filled with acid water to avoid dissolution of CO2, and the  

produced gas was read out on the column (Fig. 5.4B).  

 

 
 
 

Figure 5.4 Biogas batch test at Innolab, Kortrijk, Belgium.  
A: sludge flasks; B: gas catch columns. Pictures: Willems B. 

 

In 2012, the harvested plants were digested in a mesophilic pilot-scale anaerobic digester 

located at Inagro, Beitem, Belgium.   

 

5.2.8 Economic and ecological benefits  

The methodology used for the economic and ecological evaluation of the application of bio-

based fertilizers in agriculture can be found in Chapter 4. Attention was given to the fertilization 

cost and the carbon footprint (energy use and the associated greenhouse gas (GHG) 

emissions) of the various fertilization scenarios. As the test site is located in Flanders (Belgium), 

costs are expressed in euros (€ 1 ≈ 1.415 CAD; November 2014). 

A B 
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5.3 Results and discussion 
5.3.1 Impact of fertilization strategy on crop production and biogas 

potential 

5.3.1.1 Crop yield 

Over the whole experimental period, the mean biomass yields, both on FW and DW content, 

were the highest when LF digestate was used as P-poor fertilizer in addition to animal manure 

(Sc 7-8). This effect was significant at the harvest in 2012 (Sc 4 < 1/7/8; Sc 5 < 8) and in 2011 

(Sc 2 < 5/7) (Fig. 5.5).  

Figure 5.5 Fresh weight (FW) biomass yield (ton ha-1) as a function of time for the eight 
different fertilization scenarios (mean, error bars: +/- 1 standard deviation; n = 4). 

p-values and small letters refer to statistical analyses using one-way ANOVA and post-hoc  
pair-wise comparisons. * = significant difference at the 5 % level. 

 

 

 

 

 

 

 

The length measurement in August 2011 showed not much effect of the variable treatment 

throughout the field (3.61±0.03 m, p = 0.19), nor did the cob percentage on DW content (31±3 

%). The average DW biomass yield in this study was at the harvest in 2011 approximately 23±1 

ton ha-1 (Atletico), which is regular for the cultivation of this species in Flanders and higher than 

that of silo maize, i.e. 15 ton ha-1 (Ghekiere et al., 2011). However, the DW biomass yield in 

2012 was significantly lower for all treatments, i.e. 17±1 ton ha-1 in 2012 (Fernandez) as 

compared to the 2011 results. This is most likely related to the exceptional weather conditions 

occurring in 2012 (Table 5.4). Boerenbond (2012) reported severe damage to maize production 

all over the West of Flanders in that year. They assigned the cause of the damage to the 

combination of the cold weather in May, the extremely wet conditions in June and July (leading 

to nutrient losses and reduced crop nutrient uptake), and the exceptional drought in August 

(during the most sensitive maize pollination stage).   
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5.3.1.2 Biogas potential  

The DW content of the biomass and DW yield at the harvest are key parameters for 

determination of the biogas yield (Amon et al., 2007; Calus et al., 2007; Ghekiere et al., 2011; 

Matjaz et al., 2010). Before energy maize is digested, the maize first has to be ensilaged in 

order to reach a maximum yield (Amon et al., 2007). Therefore, a minimum DW content in the 

total plant of 28 % is required in order to prevent sap losses in the silage. The DW content may 

also not exceed 35 %, because then the fermentation potential diminishes due to the higher 

lignin content of more ripened maize (Ghekiere et al., 2011). The average DW content in this 

study at the harvest was 28±1 % in 2011 and 29±0 % in 2012 (Fig. 5.6). Hence, the energy 

maize was suitable for biogas production (desired: 28-35 %; Matjaz et al., 2010). 

Figure 5.6 Dry weight (DW) content (%) as a function of time for the eight 
different fertilization scenarios (mean, error bars: +/- 1 standard deviation; n = 4). 
p-values and small letters refer to statistical analyses using one-way ANOVA and 

post-hoc pair-wise comparisons. * = significant difference at the 5 % level. ND = not determined. 
 

Biogas batch tests in 2011 showed little effect (p = 0.11) of the fertilizers applied on the biogas 

potential (Nm3 ha-1) of the harvested crops (mean ± standard deviation: 349±16 Nm3 CH4 ton-1 

DW; Table 5.5). Also, no significant differences were observed in the biomass organic carbon 

content during the field trial in 2011 (p > 0.1). The average plant OC content at the harvest was 

95±1 % on DW.  

The obtained average methane production potential of the energy maize in this study was in line 

with the results obtained in Calus et al. (2007), who repored an average of 345 Nm3 ton-1 DW for  
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Table 5.5 Biogas potential of the harvested energy maize for the eight different fertilization 
scenarios in 2011 determined by means of a mesophillic anaerobic digestion batch test (mean ± 
standard deviation; n = 4). DW = dry weight; FW = fresh weight.  

Scenario DW 
(%) 

Residence 
time (d) 

Biogas  
(Nm3 ton-1 FW)a 

CH4b,c 
(Nm3 ha-1) 

Energyd 
(GJ ha-1) 

Electricitye 
(MWhel ha-1) 

Heate 
(MWhth ha-1) 

1 28 42 136 7,765 ± 570 278 ± 20 31 ± 2 34 ± 2 

2 29 34 143 7,749 ± 405 277 ± 14 31 ± 2 34 ± 2 

3 28 36 135 7,623 ± 126 273 ± 4 30 ± 0 33 ± 0 

4 29 39 140 7,879 ± 381 282 ± 14 31 ± 2 34 ± 2 

5 27 37 131 8,255 ± 921 296 ± 33 33 ± 4 36 ± 4 

6 28 42 135 8,468 ± 443 303 ± 16 34 ± 2 37 ± 2 

7 28 41 139 8,403 ± 428 301 ± 15 33 ± 2 37 ± 2 

8 29 37 140 8,762 ± 988 314 ± 35 35 ± 4 38 ± 4 
a  Normalized volumetric unit: temperature = 0 °C and pressure = 1,013.25 hPa.  
b Considering a biogas CH4 content of 65 % (Vaneeckhaute, 2009).  
c Conversion made using the biomass dry weight content and dry weight biomass yield.   
d Considering an energetic value of 35.8 MJ Nm-3 CH4 (Vaneeckhaute, 2009).   
e Conversion of CH4 into electricity (40 %) and heat (44 %) using a combined heat and power (CHP) engine; 1 kWh =      
  3.6 MJ (cfr. Eneco Energy biogas installations; Vaneeckhaute, 2009).  

 

seven different energy maize species. However, when taking in account the biomass yield, the 

methane production potential of the energy maize per hectare was significantly higher for each 

treatment in this study (8,112±414 m3 ha-1) compared to the range of 4,856-6,621 m3 ha-1 

obtained in Calus et al. (2007) and to the average energetic potential of 220 GJ ha-1 obtained in 

Veldeman (2007). Hence, the DW biomass yield obtained in this study for the species Atletico 

was significantly higher than that obtained for the energy maize species in the aforementioned  

studies. This is in accordance with its higher FAO ripeness index. Indeed, such species bloom 

later in the season, so that they have a longer vegetative period in which they can grow more 

biomass (Amon et al., 2007; Matjaz et al., 2010). Interestingly, although there was not much 

effect of the fertilizers used on the biogas potential per ton fresh weight, the average energetic 

potential per hectare was higher for Sc 4-8 (= use of digestate) compared to Sc 1-3 (= use of 

manure) due to the higher mean FW biomass yields obtained in these scenarios (Fig. 5.5). 

There was also a very strong linear correlation (Y = 6.1X – 32.8; R2 = 1) between the biogas 

potential (Nm3 ton-1 FW; Y) and the DW content of the biomass (%; X), where higher DW 

contents resulted in a higher biogas potential.  

In 2012, the harvested plant material delivered an average methane production of ± 340 Nm3 

CH4 ton-1 DW in a pilot-scale anaerobic digester after ensilaging for about one month. 

Differences in biogas production between the treatments were not studied here.  

 

5.3.2 Impact of fertilization strategy on nutrient dynamics in the 

environment  

5.3.2.1 Nitrogen dynamics  

a) Nitrogen use efficiency, plant N uptake, and soil NO3-N residue   

The NO3-N residue in the soil profile (0-90 cm) between the 1st of October and the 15th of 
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November gives an indication of the amount of N that may end up in ground and surface 

waters. A judicious fertilization is of crucial importance to obtain low NO3-N residues. During this 

field trial, no significant differences in NO3-N residue in the soil were observed between the 

treatments, except in November 2011 (Fig. 5.7: Sc 5 > 2/4/6/8).  

Figure 5.7 Soil NO3-N residue (kg ha-1) as a function of time for the eight different fertilization 
scenarios in the 0-90 cm soil layer (mean, error bars: +/- 1 standard deviation; n = 4). Red non-
dashed line indicates the Flemish environmental standard of 90 kg NO3-N ha-1 between October 

1 and November 15. p-values and small letters refer to statistical analyses using one-way 
ANOVA and post-hoc pair-wise comparisons. * = significant difference at the 5 % level.    

 

It should, however, be remarked that at that time all scenarios exceeded the Flemish 

environmental standard of 90 kg NO3-N ha-1 due to exceptional weather conditions, 

characterized by an extremely dry spring, wet summer, and hot autumn (Table 5.4; 

Vaneeckhaute et al., 2013c). The Flemish Land Agency (VLM, 2012) reported that in 2011 

approximately 40 % of the NO3-N residue measurements in West Flanders exceeded the 

maximum allowable level. Further, it might be possible that the dose of 150 kg ha-1 of effective 

N, which is the maximum allowable dose for the cultivation of maize on non-sandy soils (MAP4, 

2011), was too high for the field under study. Indeed, during the experiment in 2011 it was 

observed that the 0-90 cm soil layer was rather sandy than sandy-loam. In all respects, these 

high NO3-N residues may increase the risk for NO3 leaching to ground and surface waters. 

Therefore, in 2012, guided measures were implemented at the field (VLM, 2012; Section 5.2.1). 

Concerning the intercrop, it is likely that the density of the Italian rye grass was too low and that 

the grass was sown too late, so that it had not yet taken up its maximum amount of N at the 

sampling moment (November 25 2011). The N uptake is dependent on the date of sowing and 
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normally ranges for this species between 40 and 60 kg ha-1, and up to 80 kg ha-1 under good 

conditions. In order to reach a maximum N uptake, it is advised to sow the rye grass as soon as 

possible after the harvest and not later than October 15 (VLM, 2012). Therefore, in 2012, the 

intercrop was sown immediately after the harvest to optimally enjoy the benefits. In November 

2012, all scenarios showed a NO3-N residue below the limit of 90 kg ha-1.  

No significant differences in total soil N content (0-30 cm) were determined during the field trial 

(Appendix 2: Table A2.1). Nevertheless, there was a strong significant effect of the fertilizers 

applied on the N use efficiency (NUE; Fig. 5.8) and the plant N uptake (kg ha-1; Table 5.6) in 

2012.  

Figure 5.8 Nitrogen use efficiency (NUE, %) as a function of time for the eight different 
fertilization scenarios (mean, error bars: +/- 1 standard deviation; n = 4).  

p-values and small letters refer to statistical analyses using one-way ANOVA and  
post-hoc pair-wise comparisons. * = significant difference at the 5 % level. 

 

The scenarios in which chemical fertilizer N was completely replaced by air scrubber water (Sc 

3/8) showed the highest NUE and plant N uptake. Furthermore, a strong significant correlation 

was found between the NUE and the DW biomass yield (r = 0.80; p ≈ 0.00). 

Finally, it should be remarked that the plant nitrogen uptake in 2012 was lower for all scenarios 

as compared to the measurements in 2011, likely due to the unfavorable weather conditions 

occurring in that growing season (see Section 5.3.1.1). This was also the case for the plant K, 

S, Ca, Mg, and Na uptake (see Table 5.6). The plant P uptake was less affected, probably due 

to the large amount of available P in the soil (Table 5.1).  
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Table 5.6 Plant nutrient uptake (N, P2O5, K2O, S, Ca, Mg, Na; kg ha-1) in time for the eight 
different fertilization scenarios (mean ± standard deviation; n = 4). p-values and small letters 
refer to statistical analyses using one-way ANOVA and post-hoc pair-wise comparisons.  
* = significant difference at the 5 % level. 

Scenario Jul/11 Sep/11 Oct/11 Aug/12 Nov/12 
N (kg ha-1) p = 0.11 p = 0.33        p = 0.68 p = 0.00* p = 0.032* 

1 119 ± 13 235 ± 26 306 ± 42 68 ± 14c 140 ± 23ab 
2 119 ± 12 232 ± 24 300 ± 21 69 ± 16c 157 ± 40ab 
3 122 ± 13 227 ± 35 308 ± 20 104 ± 20a 195 ± 21a 
4 116 ± 11 229 ± 22 329 ± 33 92 ± 13ab 146 ± 9ab 
5 130 ± 13 259 ± 17 318 ± 40 81 ± 21b 155 ± 11ab 
6 113 ± 15 234 ± 20 310 ± 28 81 ± 21b 165 ± 13ab 
7 126 ± 11 260 ± 49 345 ± 42 76 ± 12bc 106 ± 40b 
8 103 ± 6 214 ± 22 305 ± 53 100 ± 26a 173 ± 30ab 

P2O5 (kg ha-1) p = 0.10 p = 0.40        p = 0.67 p = 0.0010* p = 0.010* 
1 34 ± 3 101 ± 10 134 ± 18 37 ± 3ab 96 ± 32b 
2 32 ± 2 110 ± 16 128 ± 9 37 ± 4b 116 ± 21ab 
3 36 ± 2 106 ± 16 135 ± 12 37 ± 4ab 155 ± 23a 
4 33 ± 2 94 ± 16 141 ± 12 35 ± 5b 106 ± 16ab 
5 35 ± 4 109 ± 9 146 ± 22 34 ± 5ab 124 ± 7ab 
6 34 ± 5 105 ± 10 139 ± 4 32 ± 11ab 153 ± 23a 
7 38 ± 4 112 ± 4 152 ± 19 33 ± 12ab 118 ± 13ab 
8 30 ± 5 97 ± 13 141 ± 30 35 ± 12a 153 ± 13a 

K2O (kg ha-1) p = 0.18 p = 0.94 p = 0.0038* p = 0.014* p = 0.84 
1 164 ± 10 292 ± 29 333 ± 28c 189 ± 28ab 272 ± 92 
2 143 ± 9 338 ± 58 346 ± 32b 164 ± 21b 244 ± 52 
3 154 ± 9 289 ± 57 352 ± 37abc 204 ± 34ab 199 ± 55 
4 161 ± 32 304 ± 92 420 ± 13ab 195 ± 20ab 285 ± 112 
5 162 ± 30 321 ± 49 431 ± 39a 196 ± 35ab 224 ± 61 
6 176 ± 20 326 ± 44 406 ± 62abc  211 ± 57a 276 ± 38 
7 168 ± 7 309 ± 43 366 ± 17abc 182 ± 42ab 254 ± 88 
8 153 ± 30 314 ± 85 383 ± 12abc 218 ± 33a 246 ± 37 

S (kg ha-1) p = 0.036* p = 0.095       p = 0.45 p = 0.0080* p = 0.035* 
1 6.2 ± 0.6ab 18 ± 2 23 ± 3 6.2 ± 0.7ab 14 ± 1ab 
2 6.3 ± 0.4ab 17 ± 3 23 ± 1 5.7 ± 1.7b 15 ± 1ab 
3 6.4 ± 0.5ab 17 ± 3 24 ± 2 8.2 ± 2.7a 17 ± 2a 
4 6.1 ± 0.8ab 16 ± 3 25 ± 3 7.0 ± 1.1ab 13 ± 2ab 
5 6.7 ± 0.4ab 13 ± 3 26 ± 3 7.7 ± 1.5ab 14 ± 1ab 
6 6.3 ± 0.8ab 14 ± 2 24 ± 1 7.4 ± 3.2ab 16 ± 2ab 
7 7.0 ± 0.3a 15 ± 4 26 ± 2 6.1 ± 0.8ab 12 ± 2b 
8 5.4 ± 0.4b 13 ± 3 26 ± 4 8.0 ± 2.0ab 15 ± 2ab 

Ca (kg ha-1) p = 0.17 p = 0.089       p = 0.53 p = 0.00* p = 0.64 
1 19 ± 2 35 ± 2 48 ± 6 17 ± 2b 21 ± 9 
2 16 ± 1 37 ± 5 48 ± 7 14 ± 2b 25 ± 3 
3 12 ± 8 34 ± 5 47 ± 7 24 ± 5a 25 ± 10 
4 13 ± 4 32 ± 11 48 ± 4 17 ± 5b 31 ± 7 
5 13 ± 7 41 ± 4 53 ± 4 16 ± 3b 27 ± 7 
6 16 ± 3 31 ± 8 40 ± 8 16 ± 5b 16 ± 5 
7 19 ± 3 43 ± 6 47 ± 4 15 ± 8b 23 ± 11 
8 12 ± 2 31 ± 4 48 ± 13 18 ± 2ab 23 ± 8 

Mg (kg ha-1) p = 0.16 p = 0.13        p = 0.56 p = 0.18 p = 0.22 
1 14 ± 1 29 ± 2 36 ± 4 6.8 ± 0.7 17 ± 3 
2 11 ± 1 30 ± 4 36 ± 4 6.1 ± 0.9 14 ± 1 
3 9 ± 6 29 ± 4 36 ± 3 7.2 ± 1.6 16 ± 2 
4 9 ± 3 26 ± 6 38 ± 3 6.4 ± 1.2 17 ± 1 
5 8 ± 4 28 ± 2 37 ± 4 6.3 ± 1.5 15 ± 0 
6 12 ± 2 27 ± 4 34 ± 3   7.6 ± 2.6 17 ± 2 
7 14 ± 2 34 ± 4 41 ± 4 6.4 ± 1.2 14 ± 2 
8 9 ± 2 26 ± 2 38 ± 8 6.5 ± 1.4 15 ± 2 

Na (kg ha-1) p = 0.090 p = 0.64         p = 0.56 p = 0.038* p = 0.019* 
1 1.2 ± 0.1 3.9 ± 0.8 6.1 ± 1.5 0.40 ± 0.20 1.6 ± 0.4 
2 1.7 ± 0.9 4.1 ± 1.0 6.0 ± 1.7 0.43 ± 0.20 1.9 ± 0.3 
3 1.1 ± 0.2 4.4 ± 1.6 6.1 ± 1.2 0.41 ± 0.21 1.2 ± 0.3 
4 0.95 ± 0.28 3.1 ± 1.6 5.6 ± 0.6 0.44 ± 0.36 1.3 ± 0.2 
5 1.1 ± 0.2 4.2 ± 0.7 5.6 ± 1.1 0.42 ± 0.35 1.5 ± 0.2 
6 1.2 ± 0.1 3.8 ± 0.6 5.2 ± 1.7 0.34 ± 0.37 2.0 ± 0.4 
7 1.4 ± 0.2 4.4 ± 1.5 7.0 ± 0.7 0.33 ± 0.37 1.3 ± 0.4 
8 1.0 ± 0.2 3.3 ± 0.7 6.5 ± 0.9 0.22 ± 0.14 1.2 ± 0.1 
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b) Nitrogen balances and apparent recovery  

First, it should be remarked that not all scenarios can be compared with each other as the N 

delivery was not always equal. This variety was caused by the difference in organic fertilizer 

composition over time. Especially in 2012, the actual amount of effective N applied to the soil in 

Sc 5 and 6 was higher than intended, also partly due to technical reasons (Table 5.2). 

Therefore, for 2012, only Sc 1, 2, and 3 will be compared with each other, and Sc 7 with Sc 8. 

A comparison of model simulations over 3 and 30 years (i.e. after one and ten repetitions of the 

three-year rotation, respectively; see Section 5.2.5) for Sc 1 and 3 using the NDICEA software 

tool is given in Figure 5.9. The output represents the last two years of the 2nd (year 5-6) and 11th 

(year 32-33) cycle, respectively (see Section 5.2.5). The mineral balance for Sc 1, 2, and 3 over 

3 and 30 years is presented in Table 5.7.  

Figure 5.9 Model simulations for Scenario 1 and 3 using the NDICEA software tool over  
3 years (A; one repetition of the three-year cycle; see Section 5.2.5) and 30 years (B; ten 

repetitions of the three-year cycle). 1: evolution of mineral N in topsoil and subsoil (kg ha-1);  
2: cumulative leaching and denitrification in subsoil (kg ha-1); 3: cumulative N availability/uptake 

(kg ha-1); 4: cumulative denitrification in topsoil (kg ha-1). 
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Table 5.7 Nutrient balances (N, P2O5, K2O; kg ha-1 y-1) for Scenarios 1, 2, and 3 simulated with 
the NDICEA software tool based on the two-year field trial results. Crop type: energy maize. 
Initial soil characteristics: Table 5.1. N-3: simulation over 3 years (= one repetition of the three-
year cycle; see Section 5.2.5); N-30: simulation over 30 years (= ten repetitions of the three-
year cycle).   

 

The evolution of mineral N in the topsoil and subsoil (Fig. 5.9-1), as well as the cumulative N 

leaching and denitrification in the subsoil (Fig. 5.9-2 and Fig. 5.9-4), indicate that the amount of 

N leaching to ground and surface waters decreased significantly as more chemical N was 

replaced by air scrubber water (Sc 3 < 1). The mineral balance (Table 5.7) shows that the 

amount of N volatilization simulated over three years was slightly higher for Sc 3 as compared 

to Sc 1. However, model simulations over 30 years predict that the beneficial effect of reduced 

N leaching will be more expressed in the long term, while the amount of N volatilization will 

remain quasi equal. Reasons for these effects are related to the observed differences in plant 

nutrient uptake, biomass yield, soil nitrate residues, etc. between the different scenarios during 

the field trial (see above), since these data were used as input to the model. Also, the simulation 

results of the cumulative N availability/uptake (Fig. 5.9-3) show that in the long term the plant N 

uptake in Sc 3 will be higher than in Sc 1 (cfr. Fig. 5.8), leading to lower nutrient losses in the 

environment. Noteworthy, when comparing Sc 7 with Sc 8, these findings could be confirmed 

(unpublished data).   

Furthermore, the two-year field trial results show that for Sc 1-3 and Sc 7-8 the average N 

uptake by the plant was higher than the available amount through manure application and 

deposition, resulting in a negative apparent N surplus on the soil balance (Table 5.8). The 

amount of N extracted from the soil, as well as the apparent N recovery and NUE, increased as 

more chemical N was substituted by air scrubber water (Sc 3 > 2 > 1; Sc 8 > 7). Consequently, 

a point of attention when using air scrubber water in agriculture might be the breakdown of soil 

organic matter (SOM), similar as was found by Minamikawa et al. (2005) for the use of chemical 

ammonium sulfate fertilizer. This can also explain the negative value for SOM build-up obtained 

with the model simulations (Table 5.7). Indeed, the model results indicated a higher N 

mineralization from the soil (humus and other intial available SOM) for Sc 3. Nevertheless, 

when simulating over 30 years, the average SOM breakdown was equal to that of the reference.

  Scenario 1 Scenario 2 Scenario 3 

  N-3 N-30 P2O5 K2O N-3  N-30 P2O5 K2O N-3 N-30 P2O5 K2O 

Manure application 186 186 76 219 186 186 76 219 186 186 76 219 

Nitrogen binding 0 0   0 0   0 0   

Deposition 30 30 3 8 30 30 3 8 30 30 3 8 

Total application 216 216 79 227 216 216 79 227 216 216 79 227 

Removal with products 228 228 77 301 240 240 76 292 251 251 82 271 

Calculated surplus -12 -12 1 -74 -24 -24 2 -65 -36 -36 -4 -44 

Volatilization 15 15   16 16   17 17   

Denitrification  6 3   5 3   6 3   

Leaching 45 24   41 18     31 2     

Organic matter build-up -50 -20     -66 -21     -82 -20     
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Table 5.8 Calculated nitrogen balance (kg ha-1), apparent recovery (%), and nitrogen use efficiency (NUE, %) in 2011 and 2012 for the eight different 
fertilization scenarios (Sc). Soil layer: 0-30 cm. Average values are marked in bold.  

a Doses exceeded the maximum allowable fertilization level of 135 kg effective N ha-1 in 2012.  

Sc Year 
Available 

April 
Manure 
supply Deposition 

Total 
available 

Available 
November 

Plant 
uptake 

Apparent 
surplus 

Actual 
pollution 

Apparent 
recovery NUE 

 (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (%) (%) 

1 2011 29 216 30 275 70 306 -60 -101 111 142 

 2012 16 157 30 203 24 140 47 39 69 89 

 average 23 186 30 239 47 223 -6.5 -31 90 116 

2 2011 29 216 30 275 80 300 -54 -105 109 139 

 
2012 16 157 30 203 27 157 30 -19 77 100 

 
average 23 186 30 239 53 228 -12 -62 93 120 

3 2011 29 216 30 275 66 308 -62 -99 112 143 

 
2012 11 157 30 201 25 195 -8.0 -19 97 124 

 average 20 186 30 238 45 251 -35 -59 105 134 

4 2011 29 217 30 276 100 329 -82 -153 119 152 

 2012 11 232a 30 273 35 146 116 92 53 63 

 average 20 226 30 275 67 238 17 -31 86 108 

5 2011 29 217 30 276 57 318 -71 -99 115 147 

 2012 12 268a 30 310 29 155 143 126 50 58 

 
average 20 243 30 219 43 236 36 14 83 103 

6 2011 29 217 30 276 71 310 -63 -105 112 143 

 
2012 11 268a 30 309 24 165 103 120 53 62 

 
average 20 243 30 222 48 237 20 7.5 83 103 

7 2011 29 225 30 284 71 345 -90 -132 121 153 

 2012 12 185 30 227 24 106 79 97 47 57 

 average 21 205 30 208 48 226 -5.5 -18 84 105 

8 2011 29 230 30 289 56 305 -45 -72 106 133 

 2012 10 185 30 225 24 173 12 28 77 94 

 average 20 210 30 206 40 239 -17 -22 92 114 



 

130 

As the plant N uptake was higher when more air scrubber water was used, the amount of N 

provided by the breakdown of harvested crop residues also increased. It is predicted that these 

residues will deliver a significant amount of direct available N for the plant in the long term. 

When comparing Sc 7 with Sc 8, these findings could again be confirmed (unpublished data).   

 

5.3.2.2 Phosphorus dynamics 

a) Phosphorus use efficiency, plant uptake, and soil availability  

The P use efficiency (PUE; Fig. 5.10) was at each sampling moment significantly affected by 

the treatment.  

 

Figure 5.10 Phosphorus use efficiency (PUE, %) as a function of time for the eight different 
fertilization scenarios (mean, error bars: +/- 1 standard deviation; n = 4). p-values and small 

letters refer to statistical analyses using one-way ANOVA and post-hoc pair-wise comparisons. 
* = significant difference at the 5 % level. 

 
In 2011, the application of digestate with or without the substitution of chemical fertilizer N by air 

scrubber water (Group II) resulted in significantly higher PUEs, while the P dosage was the 

lowest (Table 5.2). However, in 2012, the PUEs were the lowest for this group, while the P 

dosage was the highest (note: far in excess of the standard due to technical issues). The plant 

P uptake over time was thus clearly not correlated (r = 0.091, p ≈ 0.00) to the P dosage applied 

to the field. Therefore, regarding the imminent depletion of P reserves (Neset and Cordell, 

2012), the use of products with low (but bio-available) P content seems preferable, at least in P 

saturated regions. Note that in such regions it is often preferred to apply no P at all, unless for 

* 

* 

* * 

p = 0.00* 

p = 0.00* 

p = 0.00* 

p = 0.00* 

p = 0.00* 
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crops with poor, inefficient root systems. Since the ratio of P2O5 to effective N is in general lower 

for digestate derivatives than for animal manure (Table 5.3), as well as the amount of 

mineralized P over total P, anaerobic (co-)digestion can serve as an interesting step in the 

treatment of manure. Indeed, sustainable fertilizers could be produced, while renewable energy 

is provided. Noteworthy in this respect is that both in 2011 and 2012 the PUE was higher for Sc 

7-8, in which P-poor LF digestate was applied, as compared to the reference.   

In 2012, the plant P uptake was significantly higher when chemical fertilizers were completely 

substituted by air scrubber wastewater as compared to the reference (Sc 3/6/8 > 1; Table 5.6). 

The higher P uptake in these scenarios may be attributed to the higher dosage of NH4-N by the 

air scrubber water. Indeed, the uptake of NH4
+ by the roots as well as the nitrification of NH4

+ 

into NO3
- are acidifying processes, which can increase soil P mobilization and uptake in the 

rhizosphere due to the local pH decrease (Diwani et al., 2007; Timmermans et al., 2012). 

Hence, the P uptake was also highly correlated to the NUE (r = 0.93; p ≈ 0.00) and the plant N 

uptake (r = 0.84, p ≈ 0.00). Note that in contrast to the N uptake, the P uptake was less affected 

by the unfavorable weather conditions in 2012 (see Sections 5.3.1.1 and 5.3.2.1), likely due to 

the high stocks of available P in the soil. To date, no significant differences were observed in 

the available (Table 5.9) and total soil P2O5 contents between (Appendix 2: Table A2.1) the 

different treatments. However, these parameters require follow-up in the longer term.  

  

b) Phosphorus balances and apparent recovery  

First, it should be remarked that in Sc 5 and Sc 6 the P2O5 doses exceeded by far the maximum 

allowable fertilization level of 80 kg ha-1 y-1 in 2012 due to technical issues (cfr. N). Therefore, 

these scenarios are not representative to compare for P2O5 balances in 2012. The apparent 

surplus on the soil balance was for each of the other scenarios negative, indicating that more 

P2O was extracted from the soil than was supplied (Table 5.10). With respect to the exhaustive 

natural P sources and knowing that in many countries some 40 % (15-70 %) of soils test as high 

and very high in readily available P (EFMA, 2000), this is a very positive and important finding 

that deserves further study (see Chapter 6).  

Moreover, the more chemical N was replaced by air scrubber wastewater (Sc 3 vs. 2 vs. 1, Sc 8 

vs. 7), the higher the observed average extraction of P2O5 from the soil. This is in line with the 

higher apparent P recovery and PUE found for these scenarios. Hence, again the synergetic 

effect between the plant NH4-N and P uptake is underlined (Diwani et al., 2007; Timmerman et 

al., 2012). Interestingly, when comparing Sc 1 with Sc 7, it can also be noticed that the use of 

LF digestate as P-poor fertilizer in addition to animal manure can significantly reduce the 

amount of P2O5 leaching and increase the soil P2O5 recovery. Hence, the use of P-poor LF 

digestate appears again as an interesting alternative.  
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Table 5.9 Extractable soil nutrient amounts through ammonium lactate/acetic acid (pH 3.75) 
extraction (P2O5, K2O, Ca, Mg, Na; kg or ton ha-1) in time for the eight different fertilization 
scenarios (mean ± standard deviation; n = 4). Soil layer: 0-30 cm. p-values and small letters 
refer to statistical analyses using one-way ANOVA and post-hoc pair-wise comparisons. * = 
significant difference at the 5 % level. 

 a Note: extremely high value likely related to a measurement error. 

Scenario Apr/11 Jul/11 Oct/11 Apr/12 Aug/12 Nov/12 
Extract. P2O5 (ton ha-1)        p = 0.78 p = 0.71  p = 0.84 p = 0.31 

1 6.4 5.4 ± 1.3 6.8 ± 0.7 7.5 5.6 ± 1.0 4.1 ± 2.1 
2 6.4 5.0 ± 0.4 7.0 ± 0.6 7.5 5.6 ± 0.5 3.9 ± 1.9 
3 6.4 5.2 ± 0.2 6.6 ± 0.3 7.5 6.1 ± 0.4 6.0 ± 0.6 
4 6.4 5.7 ± 0.8 6.6 ± 1.3 7.5 5.2 ± 0.7 5.5 ± 0.8 
5 6.4 5.2 ± 0.4  6.9 ± 1.1 7.5 5.9 ± 0.6 6.4 ± 0.6 
6 6.4 5.7 ± 0.2 7.1 ± 0.7 7.5 5.7 ± 0.8 6.1 ± 0.4 
7 6.4 5.1 ± 0.2 7.1 ± 0.4 7.5 5.7 ± 0.6 6.1 ± 0.2 
8 6.4  5.2 ± 0.5 6.0 ± 0.7 7.5 5.4 ± 0.4 5.6 ± 0.2 

Extract. K2O (kg ha-1)       p = 0.18 p = 0.35  p = 0.13 p = 0.61 
1 496 678 ± 128 332 ± 98 304 451 ± 74 597 ± 76 
2 496 756 ± 181 326 ± 201 304 416 ± 44 626 ± 87 
3 496 704 ± 18 286 ± 55 304 421 ± 19 690 ± 94 
4 496 808 ± 185 354 ± 120 304 464 ± 64 579 ± 162 
5 496 854 ± 67 263 ± 67 304 377 ± 56 661 ± 81 
6 496 978 ± 226 488 ± 303 304 450 ± 54 706 ± 75 
7 496 731 ± 151 469 ± 112 304 407 ± 53 677 ± 9 
8 496 821 ± 176 395 ± 65 304 542 ± 80 660 ± 15 

Extract. Ca (ton ha-1)       p = 0.22 p = 0.40  p = 0.76 p = 0.74 
1 19a 11 ± 2 5.4 ± 0.9 7.3 7.7 ± 1.6 8.1 ± 1.7 
2 19a 11 ± 2 5.7 ± 0.4 7.3 8.0 ± 1.2 8.4 ± 1.3 
3 19a 10 ± 3 5.3 ± 0.4 7.3 8.7 ± 0.4 9.2 ± 0.5 
4 19a 10 ± 2 5.2 ± 0.8 7.3 7.4 ± 2.1 7.8 ± 2.1 
5 19a 12 ± 1 5.5 ± 1.0 7.3 8.9 ± 1.2 9.4 ± 1.2 
6 19a 11 ± 1 5.4 ± 0.3 7.3 8.3 ± 0.9 8.9 ± 1.1 
7 19a 10 ± 1 5.5 ± 0.5 7.3 8.2 ± 0.2 8.7 ± 0.1 
8 19a 10 ± 1 5.1 ± 0.3 7.3 7.7 ± 0.5 8.2 ± 0.5 

Extract. Mg (kg ha-1)       p = 0.45 p = 0.67  p = 0.15 p = 0.45 
1 732 908 ± 234 422 ± 143 541 472 ± 60 393 ± 62 
2 732 889 ± 154 410 ± 39 541 493 ± 62 363 ± 29 
3 732 859 ± 72 397 ± 45 541 539 ± 66 371 ± 16 
4 732 826 ± 173 362 ± 90 541 459 ± 135 404 ± 48 
5 732 953 ± 128 373 ± 92 541 522 ± 75 334 ± 50 
6 732 994 ± 36 400 ± 41 541 550 ± 49 398 ± 50 
7 732 995 ± 137 440 ± 28 541 532 ± 5 357 ± 48 
8 732 924 ± 114 376 ± 45 541 520 ± 19 474 ± 65 

Extract. Na (kg ha-1)      p = 0.010* p = 0.070  p = 0.012*    p = 0.015* 
1 68 173 ± 10b 74 ± 16 <68 120 ± 28b 126 ± 29b 
2 68 164 ± 66ab 119 ± 53 <68 123 ± 1b 130 ± 5ab 
3 68 165 ± 49ab 84 ± 10 <68 141 ± 9ab 149 ± 7ab 
4 68 152 ± 4ab 104 ± 19 <68 169 ± 40ab 177 ± 40a

b 5 68 329 ± 88a 102 ± 22 <68 204 ± 45a 215 ± 51a 
6 68 251 ± 49ab 112 ± 29 <68 156 ± 14ab 167 ± 20a

b 7 68 267 ± 106ab 128 ± 27 <68 147 ± 13ab 155 ± 13a
b 8 68 242 ± 40ab 122 ± 30 <68 178 ± 13ab 188 ± 15a
b 
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Table 5.10 Phosphorus balance (kg P2O5 ha-1), apparent recovery (%), and phosphorus use efficiency (PUE, %) in 2011 and 2012 for the eight different 
fertilization scenarios (Sc). Soil layer: 0-30 cm. Average values are marked in bold. Available amounts were determined using ammonium lactate/acetic 
acid (pH 3.75) as an extraction agent. 

Sc Year 
Available 

April 
Manure 
supply Deposition 

Total 
available 

Available 
November 

Plant 
uptake 

Apparent 
surplus 

Actual 
pollution 

Apparent 
recovery PUE 

    (ton ha-1) (kg ha-1) (kg ha-1) (ton ha-1) (ton ha-1) (kg ha-1) (kg ha-1) (ton ha-1) % % 

1 2011 6.4 108a 3 6.5 6.8 134 -23 -0.43 2.1 124 

 
2012 7.5 44 3 7.6 4.1 96 -49 3.3b 1.3 218 

  average 6.9 76 3 7.0 5.5 115 -36 1.5 1.7 170 

2 2011 6.4 108a 3 6.5 7.3 128 -17 -0.93 2 119 

 
2012 7.5 44 3 7.6 3.9 116 -69 3.5b 1.5 264 

  average 6.9 76 3 7.0 5.6 122 -43 1.3 1.8 192 

3 2011 6.4 108a 3 6.5 6.6 135 -24 -0.23 2.1 125 

 2012 7.5 44 3 7.6 6.0 155 -108 1.4 2.1 352 

  average 6.9 76 3 7.0 6.3 145 -66 0.59 2.1 239 

4 2011 6.4 74 3 6.5 6.6 141 -64 -0.27 2.2 191 

 
2012 7.5 98a 3 7.6 5.5 106 -5.2 2.0 1.4 108 

  average 6.9 86a 3 7.0 6.1 123 -34 0.85 1.8 150 

5 2011 6.4 74 3 6.5 6.9 146 -69 -0.58 2.3 197 

 2012 7.5 159a 3 7.7 6.4 124 38 1.1 1.6 78 

  average 6.9 117a 3 7.1 6.7 135 -15 0.27 1.9 138 

6 2011 6.4 74 3 6.5 7.1 139 -62 -0.77 2.2 188 

 2012 7.5 159a 3 7.7 6.1 153 9.3 1.4 2 96 

  average 6.9 117a 3 7.1 6.6 146 -27 0.34 2.1 142 

7 2011 6.4 105a 3 6.5 7.1 152 -44 -0.75 2.3 145 

 2012 7.5 48 3 7.6 6.1 118 -67 1.3 1.6 246 

  average 6.9 76 3 7.0 6.6 135 -55 0.30 2 196 

8 2011 6.4 105a 3 6.5 6.0 141 -33 0.36 2.2 134 

 2012 7.5 48 3 7.6 5.6 153 -102 1.8 2 319 

  average 6.9 76 3 7.0 5.8 147 -68 1.1 2.1 227 
a Doses exceeded the maximum allowable fertilization level of 80 kg P2O5 ha-1.  
b Note: very large standard deviation on the result (see Table 5.9).
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5.3.2.3 Potassium dynamics 

a) Potassium use efficiency, plant uptake, and soil availability  

A first interesting observation was that the required amount of chemical K2O was much lower 

and sometimes nil in Sc 4 to 8 (Table 5.2), since the ratio of K2O to effective N was higher for 

digestate and its LF as compared to animal manure (Table 5.3). Nevertheless, when using 

digestates or LF digestates (Sc 4-8), the KUE (Fig. 5.11) was significantly higher than in 

conventional scenarios using animal manure additionally supplied with chemical K2O (Sc 1-3), 

both in 2011 and 2012. This indicates that the availability of K2O in animal manure can be 

increased by anaerobic (co-)digestion, thereby creating valuable substitutes for chemical K2O 

fertilizers. Since K2O is, similar as P2O5, a scarce resource (Born et al., 2005), this may result in 

significant ecological and economic benefits for the farmer (Chapter 4; Vaneeckhaute et al., 

2013b). 

Figure 5.11 Potassium use efficiency (KUE, %) as a function of time for the eight different 
fertilization scenarios (mean, error bars: +/- 1 standard deviation; n = 4). p-values and small 

letters refer to statistical analyses using one-way ANOVA and post-hoc pair-wise comparisons. 
* = significant difference at the 5 % level. 

 

Furthermore, the plant K2O uptake was significantly higher for Sc 5 compared to Sc 3 and for 

Sc 3 compared to Sc 2 at the harvest in 2011 (Table 5.6). In 2012, a significant effect was found 

in August, when Sc 6 and Sc 8, in which chemical N was completely replaced by air scrubber 

water, showed a higher plant K2O uptake than Sc 2. To date, no significant differences were 

observed in the available soil K2O content during the field trial (Table 5.9), nor in the total soil 

* 

* 

* * 

p = 0.00* 

p = 0.00* 

p = 0.00* 

p = 0.00* 

p = 0.00* 

p = 0.044* 

p = 0.19 

p = 0.49 

p = 0.00* 

p = 0.00* 

p = 0.00* 

p = ND 
p = ND 

p = 0.72 

p = 0.85 

p = 0.01* 

p = 0.10 

p = 0.59 

p = 0.41 

p = 0.00* 

p = 0.47 

p = 0.03* 

p = 0.94 

p = 0.52 

p = ND 

p = 0.00* 

p = 0.23 
p = 0.00* 

p = 0.12 

p = 0.00* 
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K2O content (Appendix 2: Table A2.1), but these are parameters that require long-term follow-

up. 

 

b) Potassium balances and apparent recovery 

Nutrient balances show that the K2O uptake by the plant (average over time) was for all 

scenarios higher than the available amount through manure application and deposition, 

resulting in a K2O deficit on the soil balance (Table 5.7) and a negative actual pollution index 

(Table 5.11). The latter indicates that somehow more K2O has become available for the plants 

over time, e.g. via exchange from the clay-humus complex in the soil. The amount of K2O 

extracted from the soil and the apparent recovery were much higher when digestate and/or LF 

digestates (Sc 4-8) were used as compared to animal manure additionally supplied with high 

amounts of chemical K2O (Sc 1-3), similar as was observed for the KUE. On the one hand, this 

natural mining effect of K2O is interesting regarding its potential depletion (Born et al., 2005). 

However, if the soil balance is negative for a long period of time, soil fertility will decrease and 

yields will be reduced. At that time, additional K2O fertilization will be required. The use of LF 

digestate, which contains high amounts of soluble K2O, but low amounts of P2O5, seems very 

useful for this purpose. Furthermore, a valuable and easily transportable N/K fertilizer might 

exist in concentrates resulting from membrane filtration of LF digestate (Chapters 3-4; 

Vaneeckhaute et al., 2012, 2013b). Hence, the sustainable production of these products 

deserves further research, as does the agronomic impact of their use at field-scale.   

 

5.3.2.4 Dynamics of secondary macronutrients  

Next to the three principal macronutrients (N, P2O5, K2O), important secondary macronutrients 

for plants are S, Ca, and Mg. According to United Nation statistics (UN, 2013), deficiency of S 

became a problem for more than 75 countries, and supply of this nutrient could be efficient by 

using new (recovered) fertilizers containing available sulfate (Fowler et al., 2007; Till, 2010). In 

this perspective, an interesting observation was that the average plant S uptake in 2012 

significantly increased as more air scrubber water was used (Table 5.6), and that the ratio of 

mineral S to effective N generally increased through anaerobic (co-)digestion (Table 5.3). 

Besides, an S deficit may occur when no air scrubber water or no digestates (and no chemical 

patentkali) is used (Sc 1 and 7; Table 5.12). The latter may cause significant S shortages in the 

long term, which might result in a yield reduction, depending on the S demand of the agricultural 

crop.  

It should be noted that the common practice of using patentkali as chemical potassium fertilizer 

in addition to animal manure (Sc 1-3) resulted in significantly higher S surpluses on the soil 

balance as compared to the use of digestate derivatives (Sc 4-8; Table 5.12). This is due to the 

higher chemical potassium requirements in these scenarios. Based on the balances, it can be 

stated that the use of recovered ammonium sulfate fertilizer in addition to digestate derivatives 

as organo-mineral fertilizer does not have a detiorating impact on the S balance as compared to 

the common practice using chemical fertilizers (N, K) and animal manure.  
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Table 5.11 Potassium balance (kg K2O ha-1), apparent recovery (%), and potassium use efficiency (KUE, %) in 2011 and 2012 for the eight different 
fertilization scenarios (Sc). Soil layer: 0-30 cm. Average values are marked in bold. Available amounts were determined using ammonium lactate/acetic 
acid (pH 3.75) as an extraction agent. 

Sc Year Available 
April 

Manure 
supply 

Deposition Total 
available 

Available 
November 

Plant 
uptake 

Apparent 
surplus 

Actual 
pollution 

Apparent 
recovery 

KUE 

 (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (%) (%) 

1 2011 496 172 8 676 332 333 -153 11 49 194 

 2012 304 266 8 578 597 268 5.7 -288 46 101 

 
average 400 219 8 627 465 301 -73 -139 48 148 

2 2011 496 172 8 676 326 346 -166 4.0 51 201 

 2012 304 266 8 578 626 243 31 -292 42 91 

 average 400 219 8 627 476 294 -68 -144 46 146 

3 2011 496 172 8 676 286 352 -172 38 52 205 

 2012 304 266 8 578 690 198 76 -310 34 74 

 average 400 219 8 627 488 275 -48 -136 43 140 

4 2011 496 145 8 649 354 420 -267 -125 65 290 

 
2012 304 168 8 480 579 279 -103 -379 58 166 

 average 400 156 8 564 467 350 -186 -252 62 228 

5 2011 496 145 8 649 263 431 -278 -45 66 297 

 2012 304 222 8 534 661 222 8.2 -349 42 100 

 average 400 183 8 591 462 327 -135 -197 54 199 

6 2011 496 145 8 649 488 406 -253 -246 63 280 

 2012 304 222 8 534 706 277 -47 -450 52 125 

 
average 400 183 8 591 597 342 -151 -348 57 203 

7 2011 496 171 8 675 469 366 -187 -160 54 214 

 2012 304 214 8 526 677 255 -33 -406 48 119 

 average 400 193 8 601 573 310 -110 -283 51 167 

8 2011 496 171 8 675 395  383 -204 -103 57 224 

 2012 304 214 8 526 660 248 -26 -382 47 116 

 average 400 190 8 601 527 307 -115 -243 51 170 
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Table 5.12 Sulfur balance (kg S ha-1), apparent recovery (%), and sulfur use efficiency (SUE, %) in 2011 and 2012 for the eight different fertilization 
scenarios (Sc). Soil layer: 0-30 cm. Average values are marked in bold. N/A = not available. Available amounts were determined using ammonium 
lactate/acetic acid (pH 3.75) as an extraction agent.   

a First number: fertilizer application not taking in account S addition via patentkali (17 % S by weight); second number: application taking in account S addition via patentkali (if applicable). 

Sc Year Available 
April 

Manure 
supplya 

Total 
availablea 

Available 
November 

Plant 
uptake 

Apparent 
surplusa 

Actual 
pollutiona 

Apparent 
recoverya SUEa 

  (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (%) (%) 

1 2011 N/A 16/60 N/A 129 23 -7.2/37 N/A N/A 145/38 

 2012 75 8.0/129 83/204 94 14 -5.8/115 -25/96 17/6.9 173/11 

 
average 75 12/95 83/204 111 18 -6.5/76 -25/96 17/6.9 159/25 

2 2011 N/A 57/101 N/A 128 23 34/78 N/A N/A 40/23 

 2012 75 42/163 117/238 90 15 27/148 12/133 13/6.3 37/9.2 

 average 75 50/132 117/238 109 19 30/113 12/133 13/6.3 39/16 

3 2011 N/A 93/137 N/A 126 24 69/113 N/A N/A 26/18 

 2012 75 77/198 152/273 123 17 60/181 13/133 11/6.2 22/8.6 

 average 75 85/168 152/273 124 20 65/147 13/133 11/6.2 24/13 

4 2011 N/A 15/31 N/A 124 25 -11/5.6 N/A N/A 166/81 

 
2012 75 35 110 109 13 22 -12 12 37 

 
average 75 25/33 110 116 19 6.0/14 -12 12 101/59 

5 2011 N/A 40/57 N/A 135 26 14/31 N/A N/A 65/46 

 2012 75 54/80 129/155 118 14 40/66 -2.9/23 11/9.0 25/18 

 average 75 47/69 129/155 126 20 27/49 -2.9/23 11/9.0 45/32 

6 2011 N/A 76/92 N/A 134 24 52/68 N/A N/A 32/26 

 2012 75 92/118 167/193 120 16 76/102 31/57 10/8.3 17/14 

 
average 75 84/105 167/193 127 20 64/85 31/57 10/8.3 25/20 

7 2011 N/A 16/34 N/A 133 26 -10/8.3 N/A N/A 166/76 

 2012 75 11/80 86/155 117 12 -0.77/68 -43/26 14/7.7 107/15 

 average 75 13/57 86/155 125 19 -5.6/38 -43/26 14/7.7 137/46 

8 2011 N/A 16 N/A 129 26 -10 N/A N/A 161 

 2012 75 49/118 124/193 113 15 34/103 -3.5/65 12/7.8 30/13 

 average 75 33/67 124/193 121 20 12/57 -3.5/65 12/7.8 95/87 
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Furthermore, a remarkable observation was that free Ca and Mg disappeared in the 

environment in all scenarios (Tables 5.13-5.14: average positive actual pollution index), 

although Ca and Mg are not considered to be leachable nutrients. Since the CaUE and 

especially the MgUE were positively correlated with the PUE (2011: rMg/P = 0.99 (p = 0.00), rCa/P 

= 0.65 (p = 0.079); 2012: rMg/P = 0.89 (p = 0.00), rCa/P = 0.61 (p = 0.11)), it is likely that these free 

cations precipitated with P thereby making this element more slowly available. As digestate 

generally contains more Ca and Mg than animal manure (Table 5.3), the use of this product 

seems valuable to reduce P leaching by providing a source of slow-release P, meanwhile 

maintaining a neutral soil pH and increasing the activity of soil bacteria. Nevertheless, also 

retrodegradation into immobilized and fixed soil P may occur (Sposito, 2008). Accurate 

greenhouse experiments are recommended to further study the P release pattern of digestate 

derivatives in time in comparison with traditional P fertilizers and animal manure (see Chapter 6). 

Finally, no effect of the treatment on the total and available soil Ca, Mg, and S contents were 

observed over time (Table 5.9 and Appendix 2: Table A2.1), but these are again parameters 

that require long-term follow-up. 

 

5.3.4 Impact of fertilization strategy on general soil quality 

Soil organic carbon (SOC) is the most important component in maintaining soil quality because 

of its role in improving physical, chemical, and biological properties of the soil. Changes in 

agricultural practices often influence both quantity and quality of SOC and its turnover rates. As 

such, stagnation or decline in yields has been observed in intensive cropping systems in the last 

few decades, attributed to the poor quality and quantity of SOC and its impact on nutrient supply 

(Bhandari et al., 2002). Interestingly, during anaerobic digestion, easily degradable organic 

matter is converted into CH4 and CO2, while complex organic matter such as lignin remains in 

the digestate, thereby increasing its amount of effective OC (EOC). This is the percentage of 

OC that remains in the soil after one year and thus contributes to the humus build-up. As such, 

the digestate contains important soil improving qualities (WPA, 2007).  

The level of SOC at a point of time reflects the long-term balance between addition and losses 

of SOC, particularly C and N, under continuous cultivation (Manna et al., 2005). Overall, 

significantly more OC was applied to the field in the scenarios in which digestate or its LF was 

used to (partially) replace animal manure: 217±0 (Sc 1-3) vs. 1,294±240 (Sc 4-6) vs. 329±0 (Sc 

7-8) kg OC ha-1 in 2012, and 800±0 (Sc 1-3) vs. 835±15 (Sc 4-8) kg OC ha-1 in 2011.  

As expected, to date, the SOC was not significantly affected by the treatments. Small changes 

in total SOC between treatments are difficult to detect because of large background levels and 

natural variability (Carter, 2002). Hence, this parameter requires follow-up in the longer term in 

order to sustain soil quality and long-term productivity of agricultural systems. Model simulations 

using the ‘Koolstofsimulator’ (LNE, 2006) over 30 years predict that the SOC content will be 

reduced from 1.95 to 1.62 % for Sc 1, while it would remain approximately stable when 

digestate or its LF is used (Sc 4-8).  
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Table 5.13 Calcium balance (ton ha-1, kg ha-1), apparent recovery (%), and calcium use efficiency (CaUE, %) in 2011 and 2012 for the eight different 
fertilization scenarios (Sc). Soil layer: 0-30 cm. Average values are marked in bold. Available amounts were determined using ammonium lactate/acetic 
acid (pH 3.75) as an extraction agent. 

a Note: extremely high value likely related to a measurement error.  

Sc Year 
Available  

April 
Manure 
supply 

Total 
available 

Available  
November 

Plant 
uptake 

Apparent 
surplus 

Actual 
pollution 

Apparent 
recovery CaUE 

  (ton ha-1) (kg ha-1) (ton ha-1) (ton ha-1) (kg ha-1) (kg ha-1) (ton ha-1) (%) (%) 

1 2011 19a 59 19 5.4 48 11 14 0.25 81 

 
2012 7.3 35 7.3 8.1 21 14 -0.8 

 
0.29 59 

 average 13 47 13 6.7 34 13 6.6 0.27 70 

2 2011 19a 59 19 5.7 48 11 13 0.25 80 

 
2012 7.3 35 7.3 8.4 25 10 -1.1 0.34 70 

 average 13 47 13 7.0 36 11 6.0 0.30 75 

3 2011 19a 59 19 5.3 47 12 14 0.25 79 

 2012 7.3 35 7.3 9.2 25 10 -1.9 0.34 73 

 
average 13 47 13 7.3 36 11 6.1 0.30 76 

4 2011 19a 50 19 5.2 48 1.6 14 0.25 97 

 2012 7.3 120 7.4 7.8 31 89 -0.4 0.42 25 

 
average 13 85 13 6.5 39 46 6.8 0.34 61 

5 2011 19a 50 19 5.5 53 -2.5 14 0.28 105 

 
2012 7.3 209 7.5 9.4 27 182 -1.9 0.36 13 

 average 13 130 13 7.4 40 90 6.1 0.32 59 

6 2011 19a 50 19 5.4 40 10 14 0.21 81 

 
2012 7.3 209 7.5 8.9 16 193 -1.4 0.21 7.8 

 average 13 130 13 7.2 28 101 6.3 0.21 44 

7 2011 19a 54 19 5.5 47 6.9 14 0.25 87 

 2012 7.3 36 7.3 8.7 23 13 -1.4 0.32 65 

 
average 13 45 13 7.1 35 10 6.3 0.29 76 

8 2011 19a 51 19 5.1 48 3.0 14 0.25 94 

 2012 7.3 36 7.3 8.2 23 13 -0.9 0.32 64 

 
average 13 44 13 6.6 36 8 6.6 0.29 79 
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Table 5.14 Magnesium balance (kg ha-1), apparent recovery (%), and magnesium use efficiency (MgUE, %) in 2011 and 2012 for the eight different 
fertilization scenarios (Sc). Soil layer: 0-30 cm. Average values are marked in bold. Available amounts were determined using ammonium lactate/acetic 
acid (pH 3.75) as an extraction agent. 

Sc Year 
Available 

April 
Manure 
supplya 

Total 
availablea 

Available  
November 

Plant 
uptake 

Apparent 
surplusa 

Actual 
pollutiona 

Apparent 
recoverya MgUEa 

  (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (%) (%) 

1 2011 732 27/43 759/775 422 36 -9.6/6.8 301/317 4.8/4.6 136/84 

 
2012 541 20/63 561/604 393 17 3.0/46 151/194 3.0/2.8 85/27 

 average 637 23/53 660/690 407 27 -3.3/26 226/256 3.9/3.7 110/56 

2 2011 732 27/43 759/775 410 36 -9.7/6.8 313/329 4.8/4.6 136/84 

 
2012 541 20/63 561/604 363 14 6.0/49 184/227 2.5/2.3 70/22 

 
average 637 23/53 660/690 386 25 -1.9/28 249/278 3.7/3.5 103/53 

3 2011 732 27/43 759/775 397 36 -9.5/6.8 325/342 4.8/4.6 135/84 

 
2012 541 20/63 561/604 371 16 3.7/47 174/217 2.9/2.6 82/25 

 average 637 23/53 660/690 384 26 -2.9/27 250/280 3.8/3.6 108/55 

4 2011 732 13/19 745/751 362 38 -25/-19 345/350 5.0/5.1 295/200 

 
2012 541 36 577 404 17 19 156 3.0 48 

 average 637 24/28 661/664 383 27 -3.0/0.0 251/253 4.0/4.1 172/124 

5 2011 732 13/19 745/751 373 37 -24/-18 335/341 5.0/4.9 291/195 

 
2012 541 65/74 606/615 334 15 50/59 258/266 2.5/2.4 23/20 

 
average 637 39/47 676/683 353 26 13/21 296/304 3.7/3.7 157/108 

6 2011 732 13/19 745/751 400 34 -21/-15 311/317 4.6/4.5 269/179 

 
2012 541 65/74 606/615 398 17 48/57 191/200 2.7/2.8 26/23 

 
average 637 39/47 676/683 399 25 13/21 251/259 3.7/3.7 147/101 

7 2011 732 24/31 756/763 440 41 -17/-10 274/281 5.4/5.4 173/132 

 
2012 541 19/43 560/584 357 14 4.7/29 189/213 2.5/2.4 75/33 

 average 637 21/37 658/674 399 28 -6.3/10 232/247 4.0/3.9 124/83 

8 2011 732 22 754 376 38 -16 340 5.1 173 

 
2012 541 19/43 560/584 474 15 3.6/28 71/95 2.7/2.6 81/35 

 average 637 21/33 657/669 425 27 -6.3/6.0 206/218 3.9/2.9 127/104 
a First number: fertilizer application not taking in account Mg addition via patentkali (10 % MgO by weight); second number: application taking in account Mg addition via patentkali (if  
  applicable).  
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The data obtained from this field trial have also been used by the Swedish University of 

Agricultural Sciences (Uppsula, Sweden) to study more in depth the effect of using bio-based 

residues as soil amendments on the SOC content under various cropping scenarios. The 

results were again most beneficial for Sc 4-6, in which digestate (mixtures) were used instead of 

animal manure (Appendix 3; Vaneeckhaute et al., in preparation). However, a thorough study 

comparing and diversifying humification coefficients of various bio-based fertilizers is required 

for more precise quantification of predicted SOC effects.  

Furthermore, in the two years of the field trial, no significant effect of the fertilization strategy on 

the soil pH(H2O) (mean ± standard deviation: 6.2±0.3) and pH(KCl) (mean ± standard deviation: 

5.2±0.6) was observed (Fig. 5.12). In Aug 2012, a sharp decrease in pH(KCl) values was 

noticed for all scenarios, while the pH(H2O) values only slightly decreased. This effect is likely 

caused by a measurement error, e.g. the use of a slightly more acidic KCl solution at that 

sampling moment. Still, the results can be used for comparison of soil pH(KCl) values between 

the different treatments.  

Figure 5.12 pH(H2O) (A) and pH(KCl) (B) as a function of time for the eight different fertilization 
scenarios (mean, error bars: +/- 1 standard deviation; n = 4). p-values and small letters refer to 

statistical analyses using one-way ANOVA and post-hoc pair-wise comparisons.  
* = significant difference at the 5 % level.  

 
In Aug 2012, after the second fertilization, the EC was significantly higher as more air scrubber 

water was used, but this effect disappeared again later in the season (mean ± standard 

deviation: 107±26 µS cm-1). The total amount of soil Na, which also gives an indication of salt 

accumulation, was significantly higher for Sc 5 compared to Sc 2 and Sc 3 in July 2011, but 

thereafter no more significant differences were observed (Appendix 2: Table A2.1). Another 

issue would be an excess of Na over divalent cations (Ca, Mg), i.e. a high sodium adsorption 

ratio (SAR), leading to a poor soil structure. A significant effect of the fertilization strategy on the 

soil SAR was observed in 2012 (paug = 0.032; pnov = 0.013), but no statistically significant 

differences could be detected using post-hoc pair-wise comparison tests. Yet, the SAR was in 

each case well below SAR 6 (maximum SAR over time: ± 1.75), which is the internationally 

accepted level, above which soil permeability and structural stability may be affected 

(Hamaiedeh and Bino, 2010). A soil is referred to as sodic, only when it reaches an SAR of 13 

(Hillel, 2008).   
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Finally, because digestate is the waste product resulting from the co-digestion of animal 

manure, energy crops, organic biological waste from the food industry, and/or municipal sludge, 

it could also contain an important amount of micronutrients and heavy metals. Moreover, raw 

animal manure can contain significant amounts of Cu and Zn (Chapter 4; Dourmad and 

Jonderville, 2011). On the one hand, Cu, Zn, B, Co, Fe, Mn, Mo, and Ni are all essential trace 

elements for plants, but on the other hand, there also exist soil environmental quality standards 

for Cu, Zn, and Ni, as well as for As, Cd, Cr, Hg, and Pb (FSD, 2007). In all scenarios, including 

the reference, the Flemish soil environmental quality standard for Cu accumulation (17 mg kg-1 

dry soil; FSD, 2007) was exceeded (mean ± standard deviation: 33±2 mg kg-1; Appendix 2: 

Table A2.2), but this is likely the legacy of historical manure excesses on the soil balance (Van 

Meirvenne et al., 2008). No other heavy metal accumulation has been observed thus far. Note 

that all products applied to soil (Table 5.3) also respected the legal composition and use 

requirements in terms of heavy metals for reuse as fertilizer and/or soil conditioner in 

agriculture, as described in Flemish legislation (Vlarea, 1989). Moreover, the harvested plant 

material met the Vlarea (1989) standards (Appendix 2: Table A2.3). Hence, in terms of heavy 

metals the energy maize was suitable as input stream for anaerobic (co-)digestion.  

 

5.3.5 Economic and ecological evaluation 

The economic benefits for the crop farmer are presented in Figure 5.13A. Figure 5.13B presents 

the situation when not taking in account potential revenues from (excessive) animal manure, 

digestate, and LF digestate acceptance (see Chapter 4). The energy use and GHG emissions 

for the eight different scenarios are presented in Figure 5.14A and 5.14B, respectively.  

For all reuse scenarios, the calculated economic benefits were significantly higher compared to 

the reference (Sc 1), whereas the energy use and the resulting GHG emissions were 

significantly lower (cfr. Chapter 4). Hence, the application of bio-based fertilizers in agriculture 

can result in significant economic benefits for the crop farmer, as well as ecological benefits 

through energy use and associated GHG emission reductions (Chapter 4; Vaneeckhaute et al., 

2012). In the present study, the complete substitution of chemical fertilizer N by air scrubber 

water (Sc 3) almost doubled the economic benefits, while the energy use and GHG emissions 

were 2.5 times reduced. When meanwhile substituting animal manure by the digestate/LF 

mixture (Sc 4-6), the observed benefits were even higher, because in these scenarios less 

chemical N was required due to the higher effective N/P-ratio of the mixture. Also the need for 

chemical K2O was less. Both the economic benefits and the reduction in carbon footprint and 

energy use were the highest for Sc 8, respectively 3.5 and 4.4 times higher than the reference, 

as both chemical N and K2O were completely eliminated in this treatment.  

When no revenues for the crop farmer were considered for accepting animal manure, digestate, 

and LF digestate (and hence no cost for disposal of these products by the livestock farmer or 

anaerobic digestion plant; Chapter 4), the lowest cost scenario was Sc 3, whereas the costs for 

Sc 4 and 7 were higher than the reference. Also the use of LF digestate (Sc 8) became less       
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Figure 5.13 Net economic benefits (€ ha-1; A) and costs (€ ha-1; B) for the crop farmer for the 
eight different fertilization scenarios. Costs: situation where no revenues are obtained for 

(excessive) animal manure, digestate, and LF digestate acceptance.  
€ 1 ≈ 1.415 CAD (November 2014). 

Figure 5.14 Energy use (GJ ha-1; A) and associated greenhouse gas (GHG) emission 
expressed as CO2-equivalents (kg ha-1; B) for the eight different fertilization scenarios. 

 
interesting (though still more beneficial than the reference) due to the higher transportation  

costs related to the lower N concentration of this product. In any case, the beneficial effect of  

substituting chemical N by air scrubber wastewater is clear from the results. Based on Sc 3 and 

in order to balance with the status quo (= no economic impact for the crop farmer), the 

anaerobic digestion plant could impose a price of € 0.94 (1.33 CAD) kg-1 N (= € 51 ha-1 / 54 kg 

N ha-1 = (cost Sc 1 – cost Sc 3) / N applied as air scrubber water in Sc 3), for the production of 

N fertilizer via acidic air scrubbing. 

As such, reuse of bio-digestion waste derivatives can also improve the economic viability of 

anaerobic digestion plants, especially in high-nutrient regions: no more costs for disposal and/or 

export, but potential revenues from local fertilizer marketing. This, in turn, can serve as a 

catalyst to meet renewable energy and waste(water) directives across the world. Note that the 

above cost calculations do not yet take in account all environmental and health benefits 

resulting from the improved nutrient use efficiencies when applying bio-based strategies. 

Holistic life cycle assessments seem relevant and will be aspect of further research (Chapter 

12). 
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5.3.6 Technical implications and recommendations 

The reviewed two-year field trial results clearly indicate that ammonium sulfate (AmS) 

wastewater from an acidic air scrubber for NH3 recovery can be used as a valuable N/S-rich 

mineral fertilizer from an agronomic point of view. No (negative) differences in crop yield, soil 

fertility, and the studied soil quality parameters were observed when using the air scrubber 

water as compared to the reference, whether it was applied as starter fertilizer at the moment of 

sowing or right after ploughing (five days prior to sowing). However, there still remain some 

technical (see below) and legislative (see Section 5.3.7) bottlenecks hindering its use.  

First, the pH of the acidic air scrubber water in this study amounted to 2, which is practically 

very low for use as a fertilizer. The low pH could cause corrosion to application instruments, leaf 

burning, and soil acidification after long-term application. Moreover, it causes a potential hazard 

for the farmer. It is therefore advised to neutralize the acidic pH. In this study, in 2011, the pH-

adjustment was conducted by addition of NaOH. However, environmental-technical solutions 

are required to neutralize the pH of this waste stream in a practical, economic, and 

environmentally friendly way. More sustainable options may exist in the addition of wastewater 

from an alkaline air scrubber (see this study: 2012) or the development of air scrubbers that 

directly produce air scrubber water at a higher pH. Interesting technology providers in this 

respect are Anaergia (Ontario, Canada) and RVT Process Equipment (Steinwiesen, Germany), 

who recently came up with a process that delivers an AmS-solution at pH 5.5 and 6-7, 

respectively (Chapter 2).   

Another technical implication is the way of spreading the air scrubber water to the field. As 

the observed N content of this product was in the range of 20-30 g kg-1 FW, approximately 

1,000 L ha-1 has to be applied for the partial substitution of chemical N in conventional 

fertilization scenarios. This implies that the farmer must drive much slower than when applying 

liquid chemical mineral fertilizers, which usually only amounts to 300 L ha-1. Indeed, the product 

is less concentrated than traditional liquid chemical N fertilizers, such as ammonium nitrate urea 

solutions, which usually contain about 30 % N (Triferto, Ghent, Belgium, personal 

communication 2013). One potential way to overcome this problem is to evaporate (part of) the 

water and crystallize the ammonium sulfate solution, but then significant amounts of energy 

have to be used. Modified or innovative application techniques should be developed for this new 

type of fertilizer and/or methods to concentrate the N content in an economic and ecological 

way should be discovered. Alternatively, the product could be mixed with chemical N fertilizer in 

order to increase the N content and the pH at the same time. It should, however, be noted that 

the N content of the air scrubber wastewater in this study was quite low as compared to values 

currently obtained by technology suppliers (5.3-8.5 % N on FW content; Chapter 2). 

Nevertheless, application remains a challenge due to the corrosive properties of the product. A 

corrosion-resistant spoke wheel injector is probably the most feasible application method 

available today (e.g. SpikeWheel, Liquiject, Helix, Oregon, USA). Alternatively, the product can 

be applied using a peristaltic pump installed on existing machinery, e.g. a sowing machine.  
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Furthermore, a problem still exists in the variability of manure and digestate composition over 

time. In order to move towards more sustainable fertilization practices, it is crucial that farmers 

and operators are able to control and stabilize the nutrient content, mainly N, P, K, but also S, of 

their end products. In this respect, the use of mathematical models for nutrient and energy 

recovery can be very valuable for optimization of both process performance and fertilizer 

quality. As to date an adequate integrated biological-physicochemical modelling framework for 

resource recovery is lacking (Batstone et al., 2012), the development and use of such prototype 

models will be aspect of further research (Chapters 8-10).  

Overall, based on the findings of the two-year field trial, the following general 

recommendations for the use of recovered AmS can be made towards agricultural end-users:  

• Application:  

o use as starter fertilizer or as chemical fertilizer substitute in spring and summer; 

o avoid contact of fertilizer with plants (risk of leaf burning);  

o verify the S status of the soil and the S demand of the plant. Ideally, the AmS 

dose should not exceed the plant demand for S. Higher doses may lead to 

sulfate leaching, which is not desirable from an environmental point of view, nor 

for drinking water extraction. Simultaneous addition of patentkali or other 

chemical fertilizers containing sulfate salts is inadvisable; 

o the N working or availability coefficient is 100 %. This value should be 

accounted for when determining the optimal dose; 

o use corrosion-resistant application techniques. Among the currently available 

techniques, a corrosion-resistant spoke wheel injector is recommended. 

Injection is advised so as to minimize ammonia emissions. 

• Transport: transport in closed truck to avoid environmental pollution and for safety.  

• Safety: 

o avoid direct contact with the product and wear protective clothing; 

o store in a separate dedicated fluid-tight storage space to avoid soil 

contamination and for external safety; 

o prevent discharge to a manure cellar in or under a stable (which is in open 

communication with the animals) in view of the risk for release of the toxic 

hydrogen sulfide (H2S) gas. 

Finally, upon request of Quebec City, an official technical fact sheet with guidelines for 

application of AmS in Quebec and associated recommendations was developed (Appendix 4). 

Guidelines for integration of this product in (completely) bio-based fertilization scenarios as 

function of fertilizer legislations are presented in Chapter 11 (Section 11.2).   

 

5.3.7 Fertilizer market trends and legislations 

Besides the technical issues above, AmS wastewater from an acidic air scrubber has not often 

been applied to date, mainly due to legislative constraints and farmers’ distrust in its fertilizer 
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properties. On the other hand, the worldwide supply of AmS has recently increased, in part due 

to the production of AmS by direct reaction crystallization from (spent) sulfuric acid and NH3. 

This additional AmS supply has been absorbed quickly in the marketplace, because of a 

general increase in fertilizer demand and an increased need for S nutrition in particular (Till, 

2010). The current additional production capacity of AmS from waste streams has not even 

been sufficient to fulfill the market requirements, however, and naturally, this gap in the supply-

demand relationship has led to a rise in AmS prices (see Chapter 2: Section 2.4.3). As one 

might expect, the price of AmS varies with the various types of product quality available. The 

largest disparity is related to particle size, where up to three times higher prices have been 

reported for granular (2-3 mm) crystals compared to < 1 mm crystals. This price differential can 

be a strong incentive to produce large crystals. Hence, the trend of the market is toward the 

production of the so-called ‘granular’ AmS quality, with a coarse fraction of 80 % > 1.8 mm, 

which has a higher sales return compared to standard quality, but requires an improvement of 

the production process (Gea-Messo, 2013). AmS from acidic air scrubbers can be beneficially 

used to fill the supply-demand gap, whether or not after crystallization. Therefore, it is highly 

important that the results obtained in this study are widely spread and that governmental 

authorities, such as the European Commission (EU) and the Minister of Justice (Canada), 

stimulate the use of air scrubber water as valuable mineral fertilizer for agricultural purposes, 

both in fertilizer legislations and in the farming community.  

Furthermore, in many regions, an important legislative bottleneck for the beneficial use of 

all digestate derivatives is that, if the biodegradable material fed into an anaerobic digestion 

plant contains any waste, the digestate produced and its derivatives would normally be 

classified as waste and be subject to waste regulation controls. Moreover, in the European 

Union, all derivatives produced from animal manure, including (LF) digestates, are also still 

categorized as ‘animal manure’ in environmental legislation and can therefore often not or only 

sparingly be returned to agricultural land (see Chapter 1: Section 1.1). Yet, the beneficial effects 

of the substitution of animal manure by recovered organo-mineral fertilizers (digestates and 

liquid fractions) are clear from the above field-trial results. The nutrient availability of these 

products is mostly higher than that of animal manure, indicating that they have better mineral 

fertilizer properties, next to the beneficial organic properties. Therefore, the use of these 

(organo-mineral) bio-based fertilizers should be stimulated in environmental and fertilizer 

legislations. The need exists for better classification of these products based on their particular 

fertilizer characteristics and for greater differentiation between soils, crops, and fertilizer types in 

the recommendations given on N, P, and K fertilizer requirements. A new legislative framework, 

in which these products are classified based on their own specific fertilizer properties, instead of 

straightforwardly obtaining the definition of ‘animal manure’, may be indispensable for effective 

fertilizer marketing and application.     
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5.4 Conclusions and further research   
Recent ground-breaking field research shows that the use of wastewater from an acidic air 

scrubber for NH3 recovery as sustainable substitute for chemical fertilizer N in agriculture can 

result in higher N use efficiencies and less N leaching. In addition, the more chemical N was 

replaced by air scrubber water, the higher the observed P use efficiency and apparent P 

recovery. Furthermore, the P and K use efficiency could be improved when using digestate 

and/or its liquid fraction produced by mechanical separation to (partially) replace animal 

manure. Small, yet not always statistically significant, increases in crop yield were obtained 

when the liquid fraction of digestate was used as N/K fertilizer in addition to animal manure. In 

any case, equal to higher yields when using bio-based fertilizers in substitution of their fossil 

reserve-based counterparts is considered as a positive outcome. 

As added benefits to the generation of bio-fertilizers from waste via anaerobic (co-)digestion, 

renewable energy is produced, negative environmental impacts of untreated animal manure are 

avoided, while the economics are also improved. Moreover, the use of bio-based fertilizers can 

result in added supply of (effective) organic carbon, thereby contributing to the struggle against 

organic carbon depletion in many soils worldwide.  

We therefore conclude that the use of bio-based fertilizers has a positive impact on the 

economy, agronomy, and ecology of intensive plant production. The need exists for better 

classification of these bio-digestion waste derivatives in fertilizer and environmental legislations 

based on their particular fertilizer characteristics. Moreover, a greater differentiation between 

soils, crops, and fertilizer types in the recommendations given on N, P, and K fertilizer 

requirements is needed. The outcomes obtained in this study should be widely spread as they 

provide important evidence and guidance for further policy making and bio-based fertilizer 

scenario implementation. Field-scale experiments using the presented best management 

practices to evaluate and prove the performance of (different) bio-based fertilizers in the long 

term are also recommended. As such, the presented field trial was also repeated in 2013-2014 

at the same field (Sigurnjak and Vaneeckhaute, in preparation). A parallel field trial was also 

performed on a different soil type (Bongaman, 2013: MSc Thesis tutored by Vaneeckhaute C.). 

Moreover, the development and use of physicochemical models to predict, control, and optimize 

the recovered fertilizer quality seems very valuable (see Chapters 8-10). Finally, a thorough 

evaluation of the humification coefficients of various bio-based fertilizers is recommended in 

order to better predict the effect of these products on soil organic carbon. All of this should 

foster the development and implementation of more sustainable, effective, and environmentally 

friendly farming practices. 



 

 

 

 

 

 

 

 

 

 

 



 

 

 
       

           CHAPTER 6:   
PHOSPHORUS USE EFFICIENCY IN BIO-BASED 

FERTILIZERS: A BIO-AVAILABILITY AND 

FRACTIONATION STUDY 

 
 

Greenhouse experiment at Ecochem, Ghent University, Belgium 
(Picture: Vaneeckhaute C.) 
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phosphorus use in time: A comparison between recovered struvite, FePO4-sludge, digestate, 
animal manure, and synthetic fertilizer, in: Rackshit, A., Singh, H.B., Sen, A. (Eds.), Nutrient 
Use Efficiency: From Basics to Advances. Springer, New Dehli, India.  

Vaneeckhaute, C., Janda, J., Vanrolleghem, P.A., Meers, E., Tack, F.M.G., 2015b. Phosphorus 
use efficiency in bio-based fertilizers: A bio-availability and fractionation study. Pedosphere, 
accepted.  
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Abstract  
Although to date some technologies producing bio-based phosphorus (P) fertilizers have been 
proposed and implemented, the efficient use of the recovered products is still limited due to 
legislative constraints, lack of insights in their P release with time, and in the corresponding 
mechanisms. The aim of this chapter was to evaluate the fertilizer performance in terms of P 
release and use efficiency of recovered struvite, iron phosphate (FePO4) sludge, digestate, and 
animal manure as compared to fossil reserve-based mineral triple superphosphate (TSP). First, 
product physicochemical characteristics and P fractionations in the context of European fertilizer 
legislation were assessed. Next, a controlled greenhouse experiment was set up to evaluate 
plant reactions as well as changes in P availability on sandy soils with both high and low P 
status. P soil fractions were determined in extracts with water (Pw), ammonium lactate (PAl), 
CaCl2 (P-PAE), and in soil solution sampled with Rhizon soil moisture samplers (Prhizon). 
Based on all results, long-term field trials evaluating the P release effect of struvite and 
digestate as compared to animal manure and TSP on different soil types with varying P status 
appear to be worthwhile. These products show promise as sustainable substitutes for 
conventional P fertilizers and could contribute to a more efficient use of P in agriculture. A 
refined classification of P application standards/recommendations in terms of soil P status, 
texture, and fertilizer characteristics, next to the crop P demand, is recommended. Moreover, 
the additional use of Rhizon samplers for determination of direct available P, including dissolved 
organic P, is proposed for better understanding and categorization of different P fertilizers in 
environmental and fertilizer legislations.  
 
Keywords: digestate, iron phosphate sludge, nutrient recycling, rhizon soil moisture samplers, 

struvite, sustainable resource management. 
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Résumé  
Bien qu'à ce jour certaines technologies produisant des bio-engrais phosphatés aient été 
proposées et mises en œuvre, la pleine utilisation de ces produits est limitée par des 
contraintes législatives et une compréhension limitée des mécanismes de libération du 
phosphore (P) dans le temps. L’objectif de ce chapitre était d'évaluer la performance de 
libération du P des engrais et de comparer l'efficacité d'utilisation du P provenant de struvite 
récupérée, de boues de phosphate de fer (FePO4), de digestat et lisiers d’animaux versus les 
triples superphosphates (TSP) minéraux provenant des réserves fossiles. Tout d'abord, les 
caractéristiques physicochimiques des produits et le fractionnement du P dans le cadre de la 
législation européenne d'engrais ont été évalués. Ensuite, une expérience en serre a été mise 
en place pour évaluer les réactions des plantes, ainsi que les changements dans la disponibilité 
du P sur les sols sableux avec un état à la fois élevé et bas de P. Les fractions de P dans le sol 
ont été déterminées dans des extraites avec de l'eau (Pw), du lactate d'ammonium (PAl), du 
CaCl2 (P-PAE) et dans la solution du sol échantillonnée avec des échantillonneurs d'humidité 
du sol Rhizon (Prhizon). Sur la base de tous les résultats, les essais sur le terrain à long terme 
évaluant l'effet de libération de P de struvite et de digestat par rapport aux lisiers et TSP, sur 
différents types de sols avec un état variable de P, semblent intéressants. Ces produits 
semblent prometteurs comme substituts durables pour les engrais classiques de P, et 
pourraient contribuer à une utilisation plus efficace de P dans l'agriculture. Une classification 
raffinée des normes et recommandations d’application de P en termes de l’état de P du sol, de 
la texture et des caractéristiques d'engrais, en plus de la demande de P de la culture, est 
recommandée. De plus, l'utilisation additionnelle des échantillonneurs Rhizon pour la 
détermination du P directement disponible, y compris le P organique dissous, est proposée 
pour une meilleure compréhension et catégorisation des différents engrais phosphatés dans les 
législations environnementales et celles sur les engrais. 
 
Mots-clés: boues de phosphates de fer, digestat, gestion durable des ressources, recyclage 

des nutriments, Rhizon échantillonneurs d'humidité du sol, struvite.  
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6.1 Introduction  
The rapid and increasing phosphorus (P) consumption in modern agriculture has raised 

concerns on both its supply security (Elser and Bennett, 2011; Godfray et al., 2010; Neset and 

Cordell, 2012; Scholz and Wellmer, 2013) and its impact on the environment (soil P 

accumulation, leaching, and/or eutrophication) (Kang et al., 2011; Ranatunga et al., 2013; Syers 

et al., 2008). Consequently, the effective use of soil P and P containing mineral and organic 

fertilizers, as well as the cradle-to-cradle recycling of P from municipal, agricultural, and other 

biodegradable waste sources as green renewable fertilizers with high P use efficiency (e.g. 

slow-release granules), has become highly important (Huang et al., 2012; Ma et al., 2011; 

Schröder et al., 2011; Syers et al., 2008; Zhang et al., 2013a).  

Traditional P removal processes from waste(water) streams often involve the addition of iron 

(Fe) or aluminium (Al) salts, resulting in the production of substantial quantities of Fe/AlPO4-

sludge (Sano et al., 2012). Alternatively, in the past decades, the controlled precipitation of 

struvite (MgNH4PO4:6H2O) through addition of Mg to the waste flow has gained interest as a 

route for P recovery (Latifian et al., 2012; Ryu et al., 2012; Shu et al., 2006). Moreover, the 

anaerobic (co-)digestion of animal manure, sludges, organic biological food waste, and/or 

energy crops has proven to be an effective technology for bio-energy production and 

release/mineralization of nutrients, which are concentrated in the remaining digestate 

(Fehrenbach et al., 2008). During a preceding field-scale assessment (Chapter 5), it has been 

observed that the use of a formulated mixture of digestate with its liquid fraction (LF) in 

agriculture as substitute for animal manure may stimulate P mobilization in the soil, thereby 

increasing the use efficiency of soil minerals (to be confirmed) (Vaneeckhaute et al., 2013c, 

2014). Especially in P saturated regions (e.g. Flanders, Quebec, Eastern China, Italy, Northern 

Spain, etc.; MacDonald et al., 2011), the extraction of P from agricultural fields is relevant, for 

example, to export the recovered P towards P deficient regions, for local reuse (e.g. in the 

horticultural sector or for plants with high P demand), and/or for industrial purposes. On the 

other hand, although the use of LF digestate (with high effective nitrogen (N) over P ratio) is 

interesting in terms of current legislative fertilization standards, its supply of plant available P 

may be insufficient, depending on the crop P demand and the soil P status. Hence, additional 

fertilization with a source of bio-available P may be required.  

In this context it must be understood that only a small proportion (15-20 %) of the total amount 

of P in the plant (uptake: ± 2.5 kg P2O5 ha-1 d-1; EFMA, 2000) is directly provided by the fertilizer 

applied to that crop. The remainder comes from soil reserves. Hence, there must be adequate 

reserves of readily available P in the soil (Syers et al. 2008). The P status of European soils has 

been estimated by EFMA (2000). For many countries, some 25 % (5-55 %) of soils test as very 

low and low in readily available P. Such soils require significantly more P to be applied than is 

removed by the crop to increase soil reserves and thus soil fertility. On the other hand, in many 

countries, some 40 % (15-70 %) of soils test as high and very high in readily available P. On 

such soils, when crops are grown that have small, inefficient root systems, but a large daily 
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uptake of P at critical growth stages, it may be necessary to apply more starter P fertilizer than 

required for crop growth to avoid P shortages in the beginning of the growing season. On soils 

with a medium P analysis value, applications need to sustain the P status. This may require a 

small extra amount of P on top of that removed with the harvested crop (EFMA, 2000).  

All the above clearly indicates the relevance of fundamental comparative research on the P 

release pattern in time of potential sustainable alternatives for chemical P fertilizers produced 

from natural and exhaustive phosphate rock and/or for animal manure (products with improved 

P use efficiency). Such an evaluation is essential to determine the agricultural potential of new 

fertilizers and their responsible application (Erro et al., 2011). Yet, such studies are currently 

lacking in literature for the above-mentioned bio-based products (struvite, digestate, Fe/AlPO4-

sludge), although their production and availability is on the rise (Chapter 2). 

The performance of a fertilizer can be evaluated via i) product fractionation, ii) plant reaction 

analysis, and/or iii) chemical soil analysis (Dekker and Postma, 2008; Millier and Hooda, 2011; 

Prummel and Sissingh, 1983; Singh et al., 2005; Sissingh, 1971; van Dam and Ehlert, 2008; 

Wang et al., 2013). A P fractionation of fertilizers is, in general, based on the P solubility in 

solvents with different strength and selectivity (e.g. Frossard et al., 2002; He et al., 2004, 2007). 

With respect to European (EU) legislation, the most important solvents are, ranked from strong 

to weak: i) mineral acid (MA), ii) neutral ammonium citrate solution (NAC), and iii) water (EC, 

2003). Next to the P solubility, the fertilizer performance is usually expressed as bio-availability 

indices, such as the phosphorus use efficiency (PUE). It can be based on the fresh weight (FW) 

and dry weight (DW) yield, the growth rate (FW, DW), the P uptake (rate), and the degree and 

rate in which the P status of the soil changes, as determined by chemical methods (van Dam 

and Ehlert, 2008). Previous studies have shown that the crop response to P fertilization gives 

insufficient guidance to determine the fertilizer performance (no correlation), while chemical soil 

analyses can be conclusive (Árendás and Csathó, 2002; Prummel and Sissingh, 1983; van 

Dam and Ehlert, 2008). Therefore, most studies evaluating P fertilizers to date are based on soil 

bioavailability indices. Soil measurements can be divided into P capacity and P intensity of the 

soil, based on the strength of the extraction method. The P intensity gives an indication of the 

total amount of P which is directly available for the plant during a short period of time, while the 

P capacity gives an indication of the amount of P that may be released in the long term, i.e. the 

backorder capacity (Dekker and Postma, 2008).  

In some countries, e.g. the Netherlands, Switzerland, and Norway, fertilizer recommendations 

are based on the P status of the soil, measured as PAl and Pw number. It corresponds to an 

extraction with ammonium lactate and water, respectively (Ehlert et al., 2006; Singh et al., 2005; 

Sissingh, 1971). The PAl number is a measure of the P capacity of the soil, whereas the Pw 

number reflects a combination of the soil P capacity and intensity. It is not straigthforward to 

define the boundaries between the different methods, but Figure 6.1 may provide guidance.  
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Figure 6.1 P-cycle in the soil-plant system with indication of bio-availability indices.  

PAl = P extractable with ammonium lactate; Prhizon = P extractable with rhizon soil moisture 
samplers; P-PAE = plant available elements (= P extractable with CaCl2); 

Pw = P extractable with water.   
 

In the latest decade, also the PAE method (Plant Available Elements) has received increased 

attention. It concerns a multi-element extraction with 0.01 M calcium chloride (CaCl2), and 

hence provides a simple alternative for the many extraction procedures that are currently used 

for single nutrients (Ehlert et al., 2006; Houba et al., 2000; van Erp et al., 1998). With respect to 

P (P-PAE), this measurement gives an indication of the P intensity (Houba et al., 2000). An 

important limitation of all these standard methods is that root formation, soil compaction, and 

mineralization of organic matter is not or not sufficiently accounted for (Amoakwah et al., 2013; 

Ehlert et al., 2006; Soine, 2009). Underestimations have been observed in literature, especially 

for the determination of direct available P (Amoakwah et al., 2013; Sánchez-Alcalá et al., 2014). 

Alternatively, the use of Rhizon soil moisture samplers (SMS) allows assessing the total amount 

of P in the actual soil solution (Prhizon), including dissolved organic and inorganic forms 

(Eijkelkamp, 2003; Fig. 6.1). Besides the ease of sampling, Rhizon SMS for direct extraction of 

soil moisture also overcomes disadvantages related to traditional sampling using ceramic cups, 

such as the exchange of (divalent) cations and P (Grossmann and Udluft, 1991). Moreover, in 

contrast to the above standard methods, the use of Rhizon samplers is not destructive, less 

laborious and time consuming, and most importantly, it does not change the composition of the 

soil solution in the process of extracting it (Amoakwah et al., 2013; Sánchez-Alcalá et al., 2014).  

The first aim of this study is to evaluate the fertilizer performance of bio-based recovered 

products (struvite, FePO4-sludge, digestate from co-digestion) and pig manure as compared to 

fossil reserve-based mineral fertilizer, triple superphosphate (TSP, Ca(H2PO4)2:H2O). After 

product physicochemical analysis and P fractionation (in the framework of EU legislation), a 

controlled greenhouse experiment was set up in order to: i) evaluate the PUE based on plant 

reactions and changes in the chemical soil P bio-availability status during the most critical main 

growing period, and ii) confirm and further study under precise conditions some nutrient release 

mechanisms previously observed under practical field conditions (see above; Chapter 5; 



 

 155 

Vaneeckhaute et al., 2013c, 2014). A second aim is to overcome the limitations of standard soil 

extraction methods by using Rhizon SMS to determine the P delivery in the short term. A 

controlled greenhouse experiment was preferred for this purpose above a field trial so as to 

minimize potential soil disturbances, e.g. of hydraulic levels, to which the various extraction 

methods are sensitive (Eikelkamp, 2003). Based on the results, practical implications are 

discussed and recommendations in terms of legislative revisions and associated further field 

research are provided. As such, this chapter gives valuable information to guide further efforts 

to optimize P supply and minimize accumulation and eutrophication risks, aiming at a more 

responsible and efficient use of P in agriculture.  

 

6.2 Material and methods  
6.2.1 Experimental set-up  

An overview of the experimental set-up can be found in Figure 6.2. First, a product 

physicochemical characterization and P fractionation in the framework of EU legislation was 

conducted (Section 6.2.2). Then, a greenhouse experiment (Section 6.2.3) was set up in order 

to evaluate the plant reaction and soil P bio-availability status in time (Section 6.2.4). Based on 

the obtained results, average phosphorus use efficiencies (PUEs) were calculated for the 

different bio-based fertilizers (including recovered products and pig manure) as compared to a 

control and a reference TSP (Section 6.2.5). 

 
Figure 6.2 Overview of the experimental set-up: phosphorus (P) fractionation and pot  

(= greenhouse) experiment. PAE = plant available elements (= P extractable with CaCl2);  
PAl = P extractable with ammonium lactate; Prhizon = P extractable with rhizon soil moisture 

samplers; PUE = phosphorus use efficiency; Pw = P extractable with water;  
TSP = triple superphosphate. 

 

6.2.2 Product characterization and phosphorus fractionation  

The DW content was determined as residual weight after 72 h drying at 80 °C in an oven (EU 

170, Jouan s.a, Saint Herblain, FR). Organic carbon (OC) was determined after incineration of 

the dry samples during 4 h at 550 °C in a muffle furnace (Nabertherm, Lilientahl, DE). The loss 

of ignition (= weight loss after incineration) was divided by a conversion factor of 1.8 to calculate 

OC, hence assuming that organic matter contains 55 % OC (CSA, 2012; Van Ranst et al., 

1999). Electrical conductivity (EC) and pH were determined potentiometrically using a WTW-
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LF537 (Wissenschaftlich Technischen Werkstäten, Weilcheim, DE) electrode and an Orion-

520A (Orion Research, Boston, USA) pH-meter, respectively. The solid samples were first 

equilibrated for 1 h in deionized water at a 5:1 liquid to dry sample ratio and subsequently 

filtered (MN 640 m, Macherey-Nagel, DE). Total N content was determined using a Kjeltec 

system 1002 distilling unit (Gerhardt Vapodest, Koningswinter, DE) after digestion of the sample 

in a sulphuric-salicylic acid mixture. The captured ammonia (NH3) in the distillate was then 

titrated with 0.01 mol L-1 hydrogen chloride (HCl) in the presence of a methyl red bromocresol 

green mixed indicator (Van Ranst et al., 1999). Ammonium (NH4) was determined using the 

Kjeltec-1002 distilling unit after addition of magnesium oxide (MgO) to the sample and 

subsequent titration (Van Ranst et al., 1999). The amount of effective N for organic fertilizers 

was calculated from the analysis of total N and NH4-N based on the official formula used by 

agronomes in Flanders and the Netherlands for determination of fertilizer N recommendations 

(Inagro, Beitem, BE, personal communication 2012; van Eekeren et al., 2006): Effective N = 

(Ntot – NH4-N) X 0.475 + (NH4-N X 0.8). It states that 80 % of the NH4-N is plant available. On 

top of that, 47.5 % of the remaining N, i.e. nitrates and organic N, becomes plant available in 

the short term. Total P was determined using the colorimetric method of Scheel (1936; Van 

Ranst et al., 1999) after wet digestion of the liquid samples using nitric acid (HNO3) and 

hydrogen peroxide (H2O2). The absorbance at 700 nm of samples and standards was 

determined using a Jenway 6400 spectrophotometer (Barloworld Scientific T/As Jenway, 

Felsted, UK). Calcium (Ca), magnesium (Mg), and potassium (K) were analyzed using 

inductively coupled plasma optical emission spectrometry (ICP-OES, Varian Vista MPX, Palo 

Alto, USA) (Van Ranst et al., 1999) after wet digestion in HNO3 and H2O2. The determination of 

the fraction of P soluble in water, mineral acid (= mixture of HNO3 and sulfuric acid, H2SO4), and 

neutral ammonium citrate ((NH4)2C6H6O7) was determined as described in EC (2003).  

 

6.2.3 Greenhouse experiment  

Substrates used in the greenhouse experiment were: i) a nutrient-rich sandy soil with high P 

status (Pw > 55 mg P2O5 L-1 soil; Alterra, 2012) from Ranst, Belgium (pH = 5.0; EC = 111 µS 

cm-1; bulk density = 1.262 kg L-1; oxalate extractable Fe/Al: Feox = 34 mmol kg-1 soil, Alox = 66 

mmol kg-1 soil), and ii) a nutrient-poor, P deficient (Pw < 36 mg P2O5 L-1 soil; Alterra, 2012) 

laboratory-grade Rheinsand (pH = 7.9; EC = 67 µS cm-1; bulk density = 1.612 kg L-1). Methods 

used for soil physicochemical analysis are described in Section 6.2.4. Although Rheinsand is 

rarely used for agricultural production, tests on this soil may provide additional information on 

the fertilizer effect itself, i.e. the absolute amount of available P effectively provided by the 

fertilizers only. Indeed, on P saturated soils (as is often the case in Flanders), differences in the 

P delivery by the fertilizers themselves may be difficult to detect due to large background 

concentrations. Moreover, the comparison between the high P and low P soil may provide 

information on the indirect P liberation from the soil complex as a result of fertilizer application. 

Hence, comparison with the Rheinsand soil was thought to be useful.   
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TSP was collected at Triferto, Ghent, struvite at the NuReSys water treatment plant of 

Clarebout Potatoes, Nieuwkerke-Heuvelland, and FePO4-sludge at the piggery of Innova 

Manure, Ichtegem, all in Belgium. Animal manure was sampled at the piggery of Ivaco, Gistel, 

Belgium, and digestate was sampled at the biogas plant SAP Eneco Energy, Houthulst, 

Belgium. The latter concerns a full-scale mesophilic (37 °C) anaerobic co-digestion plant 

(capacity: 60,000 ton y-1, 2.83 MWel) with an input feed consisting of animal manure (30 %), 

energy maize (30 %), and organic biological waste supplied by the food industry (40 %). Two 

replicate samples of each waste stream were collected in polyethylene sampling bottles (10 L) 

and transported within 1 h to the laboratory for physicochemical analysis, carried in cooler 

boxes filled with ice (± 4 °C). In the laboratory, the replicate samples were stored cool (1-5 °C) 

and kept separated for separate analysis after homogenization of each particular sample. The 

product characteristics can be found in Table 6.1. The obtained data were used to calculate the 

maximum allowable product dosage for the different cultivation scenarios in compliance with the 

Flemish manure decree (MAP4, 2011).   

 

Table 6.1 Product physicochemical characterization (mean ± standard deviation; n = 2). DW = 
dry weight; EC = electrical conductivity; OC = organic carbon; TSP = triple superphosphate.  
Parameter TSP Struvite FePO4-sludge Pig manure Digestate 

pH 2.6 8.4  4.6  7.7 8.6 

EC (mS cm-1) 29 547  15  35 37 

DW (%) 100           100 2.0  ± 0.0 6.2  ± 0.1 9.8  ± 0.0 

OC (% on DW) 1.6  ± 0.0 29  ± 0 25  ± 0 37  ± 1 34  ± 1 

Total P2O5 (g kg-1 DW) 430  ± 5 293  ± 3 26  ± 1 53  ± 0 30  ± 0 

Total N (g kg-1 DW) 0.49  ± 0.03 52  ± 2 55  ± 0 105  ± 0 67  ± 0 

NH4-N (g kg-1 DW) 0.23  ± 0.06 28  ± 1 13  ± 0 74  ± 2 39  ± 0 

Effective N (g kg-1 DW) 0.31  ± 0.04 34  ± 1 30  ± 1 74  ± 2 45  ± 0 

Total K2O (g kg-1 DW) 1.9  ± 0.3 11  ± 0 116  ± 5 74  ± 6 58  ± 0 

Ratio effective N:P2O5:K2O 0.00072:1:0.0044 0.12:1:0.038 1.1:1:4.5 1.4:1:1.4 1.5:1:2.0 

Total Ca (g kg-1 DW) 138  ± 1 0.58  ± 0.00 9.5  ± 0.0 29  ± 0 26  ± 0 

Total Mg (g kg-1 DW) 2.1  ± 0.0 87  ± 1 5.0  ± 0.0 14  ± 0 6.1  ± 0.0 

 

Plastic containers (height: 14 cm, diameter: 13 cm) were filled with 1 kg of soil and the soil 

moisture solution was brought to field capacity (23 % for sand and 19 % for Rheinsand by 

weight; Section 6.2.4). After two days of equilibration (March 16 2012), an equivalent product 

dose of 80 kg P2O5 ha-1 was applied to all containers (Table 6.2). This refers to the maximum 

allowable yearly amount of P application to a sandy soil in Flanders with the purpose of maize 

cultivation (MAP4, 2011). Simultaneously, a control treatment without P fertilization was set up. 

Differences in N, K, Ca, and Mg application between the scenarios were corrected by adding 

the appropriate amount of a 1 M ammonium nitrate (NH4NO3), potassium sulfate (K2SO4), 

calcium sulfate (CaSO4:2H2O), and magnesium sulfate (MgSO4:7H2O) solution up to the 

fertilizer recommendation levels of 135 kg effective N ha-1, 250 kg K2O ha-1, 100 kg CaO ha-1, 

and 50 kg MgO ha-1, respectively, and without exceeding the field capacity. Soils were  
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Table 6.2 Product (ton DW ha-1) and macronutrient (total N, effective N, total P, K2O, Ca, Mg, 
and OC; kg ha-1) dosage to soil by bio-based fertilizer application (standardized to 80 kg P2O5 
ha-1). Differences in N, K, Ca, and Mg application were corrected by adding the appropriate 
amount of a 1 M NH4NO3, K2SO4, CaSO4:2H2O, and/or MgSO4:7H2O solution. DW = dry weight; 
OC = organic carbon; TSP = triple superphosphate.  

Fertilizer type Product  
(ton DW ha-1) 

Total N 
(kg ha-1) 

Effective N 
 (kg ha-1) 

Total P2O5 
(kg ha-1) 

Total K2O 
 (kg ha-1) 

Total Ca 
(kg ha-1) 

Total Mg  
(kg ha-1) 

OC 
(kg ha-1) 

TSP 0.19 0.093 0.059 80 0.36 26 0.40 3.0 
Struvite 0.27 14 9.2 80 3.0 0.16 24 78 
FePO4-sludge 3.08 169 92 80 357 29 15 770 
Pig manure 1.51 159 112 80 112 44 21 559 
Digestate 2.76 185 124 80 160 72 17 938 

 

homogenized and soil moisture content was again brought to field capacity with deionized 

water. Each treatment was repeated four times, resulting in a total of 48 containers (5 

amendments and 1 control, 2 soil types, 4 replications).  

After four days of equilibration (March 21 2012), seven energy maize seeds of the species 

Atletico (breeder: KWS, Belgium; Food and Agricultural Organisation (FAO) ripeness index: 

280; P demand: high) were sown in each container at a depth of 2 cm. The containers were 

covered with perforated plastics in order to reduce evapotranspiration. When the plants reached 

the height of the plastic, the plastics were removed, and the plants were thinned out to five 

plants per container. In each container a Rhizon SMS (MOM 10 cm male luer, PE/PVC tubing, 9 

mL vacuette; Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands) was inserted 

diagonally from the topsoil through the soil column. A greenhouse bench at ± 20 °C was divided 

into four blocks representing the four replications, and in each block 12 containers were 

randomly placed.  

The plants were lightened with Brite-Grow bio growing lamps (LUX 1500, 36 W) 50 cm above 

the plants in a day-night cycle (6 AM till 8 PM). The soils were weighed daily and the soil 

moisture content was adjusted to field capacity each time. The increasing plant weight was 

taken into account using the visual estimation method proposed by Datema et al. (1986). After 

one week, leakage of soil solution was visible in two containers: one struvite and one control 

treatment, both on the sandy soil. These two containers were removed from the experiment. 

Homogeneous soil samples (10 g) were taken for analysis of PAl, Pw, and P-PAE by means of 

a soil auger the first two weeks and the last two weeks of the experiment. Rhizon soil moisture 

extracts were sampled weekly during the experiment and the P concentration in the soil solution 

as well as the pH were analyzed each time. Furthermore, the length of the plants was measured 

weekly. After five weeks of growth, the plants were harvested, their yield was determined, and 

plant samples were taken for physicochemical analysis. The soils were maintained on the 

greenhouse bench and were moisturized every week up to field capacity. Finally, PAl, P-PAE, 

and Pw in the soils were measured again after six months.  
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6.2.4 Plant and soil analysis   

The DW content of the biomass was determined as residual weight after one week drying at  

65 °C. Macronutrients (N, P, K, Ca, Mg) in the biomass were determined following the same 

methodology as described for the product analysis (Section 6.2.2).  

Soil pH and EC were determined using the same procedure as described for the products 

(Section 6.2.2). Field capacities were determined in accordance with the Compendium for 

Sampling and Analysis provided in the Flemish waste and soil remediation decree (CSA, 2012).  

Soil bulk densities were determined as the mass of dry soil over its total (wet) soil volume 

(USDA, 2013). 

For the determination of PAl, 2.5 g of soil was mixed with 50 mL of ammonium lactate solution 

(pH 3.75), shaken for 4 h and filtered until colorless using a white ribbon filter (MN 640 m, 

Macherey-Nagel, Düren, DE; CSA, 2012). For the determination of Pw, 4 cm3 of soil and 240 

mL of distilled water were mixed in a 250 mL flask, shaken for 1 h and filtered (white ribbon) 

until colorless (EL&I, 2009; Sissingh, 1971). For P-PAE, 1 g of dry soil was mixed with 25 mL 

0.01 M CaCl2 in a 40 mL centrifuge tube, shaken for 1 h, centrifuged during 10 min at 4,000 rpm 

(Heraeus megafuge 1.0, Kendro Laboratory Products, Hanau, DE), and filtered (white ribbon) 

(Van Ranst et al., 1999). Note that the P-PAE number is generally expressed as mg P kg-1 soil, 

whereas the Pw and PAl numbers are officially expressed as mg P2O5 L-1 soil and mg P2O5 100 

g-1 soil, respectively. The total P content in the filtered extraction solutions and Rhizon SMS 

extracts was then determined using the colorimetric method of Scheel (Section 6.2.2). Finally, in 

acidic sandy soils, P ions are expected to react with Fe and Al ions to form poorly soluble 

compounds (Hillel, 2008). Hence, an extraction of the soil with ammonium oxalate ((NH4)2C2O4) 

and oxalic acid (H2C2O4) was also performed in order to determine the active forms of Fe and Al 

separately. The procedure described in CSA (2012) was used for this purpose.  

 

6.2.5 Phosphorus use efficiency (PUE)  

Average PUEs (%) of the bio-based fertilizers were calculated based on the plant reaction and 

the soil status using the following equation (Eq. 7.1): 

                   PUE[B�����D��a���� ¡¢£�¤�¥¡¢ = |�('(+	&	'¦§¨�©ª«¬§§®ª« – �('(+	&	'¯¨°¬«¨�|�('(+	&	'«ª©ª«ª°¯ª – �('(+	&	'¯¨°¬«¨� . 100               Eq.Eq.Eq.Eq.    [6.1a[6.1a[6.1a[6.1a 
where ‘bio-fertilizer’ refers to the bio-based fertilizers under study, ‘control’ to the blank 

treatment, ‘reference’ to the TSP treatment, and where ‘parameter’ can refer to:   

i. the plant P uptake, the plant FW and DW yield: PUE(uptake), PUE(FWyield), and 

PUE(DWyield). Here, the PUE refers to the percentage of P in the bio-based 

fertilizers that has the same effectiveness as the reference fossil reserve-based 

mineral P fertilizer, TSP;   

ii. the PAl, Pw, P-PAE, and the P concentration in the soil solution extracted with 

Rhizon SMS: PUE(PAl), PUE(Pw), PUE(PAE), and PUE(Prhizon). Here, the PUE 
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refers to the increment in soil P status by application of the bio-based fertilizers as 

compared to the increment by application of TSP. 

 

6.2.6 Statistical analysis  

Statistical analyses were conducted using SAS 9.3. A one-way ANOVA model was used to 

determine the effect of the fertilizer type (i.e. the independent variable, between-groups factor) 

on the different plant and soil parameters (i.e. the dependent variable) per measurement. 

Furthermore, a two-way mixed ANOVA model was used to determine whether any change in 

plant and soil parameters (i.e. the dependent variable) was the result of the interaction between 

the type of treatment (i.e. the between-group factor) and time (in weeks, i.e. the within-group 

factor). As the interaction term between time and treatment was never significant at the 5 % 

significance level (α = 0.05), it was eliminated from the model. Follow-up tests were performed 

to determine whether the mean value for each plant and soil parameter was significantly 

different in time, and whether the average of these parameters over the whole experimental 

period was significantly different between the treatments. The condition of normality was 

checked using the Kolmogorov Smirnov test and QQ-plots, whereas equality of variances was 

checked with the Levene test. When homoscedascity was found, significance of effects was 

tested by use of an F-test and post-hoc pair-wise comparisons were conducted using Tukey's 

honestly significant difference (HSD) test (α = 0.05). When no homoscedascity was found, a 

Welch F-test combined with a post-hoc Games-Howell test was used (α = 0.05). When the 

condition of normality was not fulfilled, the non-parametric Kruskal-Wallis test was applied 

instead of the one-way ANOVA. For convenience of discussion, significant parameter 

correlations were determined using the Pearson correlation coefficient, r. 

 

6.3 Results   
6.3.1 Product characterization and phosphorus fractionation  

First, it must be noticed that TSP and struvite were dry, granular products, while the other 

products were liquids. For recognition of new P fertilizers in the framework of EU fertilizer 

legislations, the amount of P soluble in water and ammonium citrate, next to the total amount of 

P must be demonstrated. Moreover, the amount of P soluble in mineral acid must be higher 

than 2 % (EC, 2003). The extracted P fractions for the different products under study are shown 

in Table 6.3.  

 
Table 6.3 Phosphorus (P) fractionation: total P, P soluble in water, neutral ammonium citrate 
(NAC), and mineral acid (MA) (g kg-1 DW; mean ± standard deviation; n = 2). DW = dry weight; 
TSP = triple superphosphate.  

Parameter TSP  Struvite FePO4-sludge Pig manure Digestate 

Total P2O5 (g kg-1 DW) 430 ± 5 293 ± 3 26 ± 1 53 ± 0 30 ± 0 

P2O5 extractable in water (g kg-1 DW) 413 ± 1     5.0 ± 0.0   1.0 ± 0.0 45 ± 2 23 ± 0 

P2O5 extractable in NAC (g kg-1 DW) 410 ± 1 282 ± 3 25 ± 1 48 ± 0 28 ± 0 

P2O5 extractable in MA (g kg-1 DW) 398 ± 1 288 ± 5 23 ± 0 52 ± 0 30 ± 0 
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The relative solubility of P in neutral ammonium citrate was high for all fertilizers (91-100 % of 

total P), similar as the solubility in mineral acid (92-100 %). The amount of P soluble in water 

was low for struvite (1.7 % of total P) and FePO4-sludge (3.9 %) as compared to TSP (96 %), 

while their relative amount of P soluble in mineral acid was in the same line as the reference. 

Digestate had approximately the same P solubility’s in the different extraction reagents as 

animal manure (79-100 % of total P). Compared to TSP, the P solubility of both products in 

water was lower, while it was higher in mineral acid. Furthermore, the pH of TSP and FePO4-

sludge was low (2.6-4.6), while for struvite and digestate it was alkaline (8.4-8.6) (Table 6.1). 

The pH of pig manure was quasi neutral. Finally, all bio-based fertilizers under study added 

significantly more organic carbon (OC) to the soil as compared to TSP (Table 6.2). 

 

6.3.2 Plant reaction 

6.3.2.1 Biomass yield and phosphorus uptake  

On the sandy soil at the harvest all treatments showed a significantly higher FW biomass yield 

(g FW container-1 or kg-1 soil; Table 6.4), DW biomass yield (g DW kg-1 soil; Table 6.4), and 

length (cm; Fig. 6.3) as compared to the reference TSP. Conversely, the DW content (%) and P 

content (mg P kg-1 plant DW) of the biomass were significantly higher for the TSP treatment. 

However, the absolute P uptake per container (mg P container-1 or kg-1 soil) was only 

significantly higher for TSP as compared to the control (Table 6.4). 

Figure 6.3 Plant length (cm) as a function of time (d) for the different treatments on sand (A) 
and on Rheinsand (B) (mean, error bars: +/- 1 standard deviation; n = 4). p-values refer to 
statistical analyses using one-way ANOVA. When a significant difference was observed  

(p < 0.05), post-hoc pair-wise comparisons were added using small letters. 
 

On Rheinsand, no significant differences were observed in the biomass length (Fig. 6.3) and 

DW yield (Table 6.4). The DW content was significantly lower for TSP and FePO4-sludge as 

compared to the control and digestate, while FePO4-sludge had a significantly higher FW yield 

than the control, manure, and digestate. The use of TSP, manure, and digestate resulted in a 

significantly higher P content (g kg-1 plant DW) and absolute P uptake (mg P container-1 or kg-1 

p = 0.21  
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Table 6.4 Biomass yield (g FW/DW container-1 or kg-1 soil), dry weight content (%), and phosphorus uptake (mg P kg-1 soil) at the harvest (mean ± 
standard deviation; n = 4), as well as average phosphorus use efficiencies (PUE) based on the plant reaction for the different treatments on P-rich sand 
and Rheinsand. p-values and small letters refer to statistical analyses using one-way ANOVA and post-hoc pair-wise comparisons (α = 0.05). DW = dry 
weight; FW = fresh weight; TSP = triple superphosphate.  

Sand Yield  
(g FW kg-1) 

PUE(FWyield)  
(%) 

DW 
(%) 

Yield  
(g DW kg-1) 

PUE(DWyield)  
(%) 

P uptake  
(mg kg-1) 

PUE(uptake) 
 (%) 

 p < 0.0001 - p < 0.0001 p = 0.00021 -     p = 0.012 - 
Control 26 ± 2a 0 19 ± 0ab 4.7 ± 0.3a 0 32 ± 2b 0 
TSP 20 ± 2b 100 20 ± 2a 4.0 ± 0.2b 100 39 ± 3a 100 
Struvite 27 ± 0a -21a 17 ± 0bc 4.7 ± 0.1a    9.6ab 34 ± 2ab 22 
FePO4-sludge 29 ± 1a -68a 17 ± 0c 4.9 ± 0.1a -16a 33 ± 3ab 16 
Pig manure 28 ± 1a -46a 17 ± 0bc 4.8 ± 0.2a -9.0a 35 ± 2ab 37 
Digestate 29 ± 1a -67a 17 ± 1c 4.8 ± 0.2a -15a 37 ± 2ab 80 

Rheinsand Yield  
(g FW kg-1) 

PUE(FWyield)  
(%) 

DW 
(%) 

Yield  
(g DW kg-1) 

PUE(DWyield)  
(%) 

P uptake  
(mg kg-1) 

PUE(uptake)  
(%) 

 p = 0.0031 - p < 0.0001 p = 0.20 - p < 0.0001 - 
Control 15 ± 1b 0 26 ± 0a 3.9 ± 0.1a 0 5.4 ± 0.7c 0 
TSP 16 ± 1ab 100 25 ± 0b 4.0 ± 0.8a 100 9.2 ± 0.6a 100 
Struvite 16 ± 2ab 75 25 ± 1ab 3.9 ± 0.3a 67 7.0 ± 1.5bc 42 
FePO4-sludge 17 ± 0a 159 24 ± 0b 4.1 ± 0.1a 233 5.6 ± 0.9c 3.3 
Pig manure 15 ± 1b -8.9b 26 ± 1ab 3.8 ± 0.1a -67b 8.4 ± 0.8ab 80 
Digestate 14 ± 1b -45b 27 ± 1a 3.8 ± 0.1a -100b 7.8 ± 0.5ab 63 
a PUE shows the opposite sign as results for the reference TSP are lower than the control.   
b Result for the bio-based fertilizer is lower than the control.   
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soil) as compared to the control and FePO4-sludge. Moreover, the plant P uptake at the harvest 

was significantly lower for struvite as compared to TSP on Rheinsand.  

 

6.3.2.2 Phosphorus use efficiency (PUE)  

The PUE(FWyield) and PUE(DWyield) on the sandy soil were mostly negative as the yield of 

the reference TSP was lower than the control (Table 6.4). Among the bio-based products, the 

best average PUEs based on crop yield were observed for FePO4-sludge and digestate, the 

latter simultaneously showing the highest PUE(uptake). Also on Rheinsand, the PUE(FWyield) 

and PUE(DWyield) were the highest for FePO4-sludge, however its PUE(uptake) was the 

lowest. The PUE(uptake) for manure and digestate were the highest on Rheinsand, yet their 

PUE(FWyield) and PUE(DWyield) were negative as the yields were slightly lower than the 

control.  

 

6.3.3 Soil bio-availability indices    

6.3.3.1 P-PAE, PAl, and Pw number    

Bio-availability curves and corresponding statistics per measurement of P-PAE, PAl, and Pw 

are presented in Figure 6.4.   

Figure 6.4 P-PAE (A; mg P kg-1 soil), Pw (B; mg P2O5 L-1 soil), PAl on sand (C; mg P2O5 100 g-1 
soil), and PAl on Rheinsand (D; mg P2O5 100 g-1 soil) as a function of time (wk) after sowing for 

the different treatments (mean, error bars: +/- 1 standard deviation; n = 4).  
p-values and small letters refer to statistical analyses using one-way ANOVA  

and post-hoc pair-wise comparisons (α = 0.05). 
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First, it must be remarked that P-PAE and Pw could only be detected on the sandy soil as the 

values on Rheinsand were lower than the detection limit of both the available 

spectrophotometer (0.66 mg P L-1; Jenway 6400, Barloworld Scientific T/As, Felsted, UK) and 

the continuous flow analyzer (0.05 mg P L-1; AA3, BRAN+LUEBBE, Norderstedt, DE).  

Over the whole experimental period, the mean P-PAE (mg P kg-1 soil) was significantly higher 

(p < 0.0001) for TSP as compared to the other treatments and the control, as well as for struvite 

compared to the control, digestate, and FePO4-sludge (Fig. 6.4A). The effect of FePO4-sludge 

on the P-PAE number was in average significantly lower (p < 0.0001) than that of all other 

treatments. The two-way ANOVA for P-PAE indicated a significant (p < 0.0001) decrease for all 

treatments from week 2 to 4 and week 4 to 5. The mean Pw over time (mg P2O5 L-1 soil) for 

TSP, digestate, and struvite was significantly higher (p < 0.0001) than for the control and 

FePO4-sludge (Fig. 6.4B). A significant decrease (p = 0.0021) was observed in week 2 for all 

treatments. Overall, the mean PAl (mg P2O5 100 g-1 soil) in time on the sandy soil was 

significantly higher (p < 0.0001) for TSP than for all other treatments (Fig. 6.4C), while on 

Rheinsand this effect was only significant (p = 0.030) compared to FePO4-sludge (Fig. 6.4D). 

Both on sand and Rheinsand, no significant changes in time were found based on the weekly 

average PAl (p > 0.1). After six months, no more significant effect of the treatment on the P-

PAE (p = 0.15) and PAl number (p = 0.10) was observed, whereas the control showed a 

significantly higher (p = 0.0069) Pw number than struvite, manure, and FePO4-sludge.  

 

6.3.3.2 pH and phosphorus content in the soil solution (Prhizon)  

The pH and P content in the soil solution extracted with rhizon SMS are presented in Figure 6.5. 

On sand, the average pH over time was significantly lower (p < 0.0001) for pig manure as 

compared to all other treatments, as well as for TSP compared to struvite, FePO4-sludge, the 

control, and digestate (Fig. 6.5A). Conversely, the average Prhizon (mg P2O5 L-1) over time was 

significantly higher (p < 0.0001) for manure as compared to struvite, the control, and FePO4-

sludge (Fig. 6.5C). The latest showed significantly lower Prhizon values (p < 0.0001) than the 

other treatments and the control, while digestate showed a significantly higher (p < 0.0001) 

average pH than all other treatments, both on sand and Rheinsand (Fig 6.5A,B).   

 

6.3.3.3 Phosphorus use efficiency (PUE)   

The average PUE based on the various soil analyses is presented in Figure 6.6 as a function of 

time. The calculated average values over time are provided in Table 6.5. On the sandy soil, all 

fertilizers presented a lower PUE(PAE) and PUE(PAl) than the reference TSP during the whole 

experimental period (Fig. 6.6A,C; Table 6.5). Struvite showed the highest PUE(PAE), while the 

P-PAE number for FePO4-sludge was even lower than the control. PUE(Pw) increased in time 

for struvite and digestate relative to TSP (Fig. 6.6B). For FePO4-sludge, it was negative and 

decreasing. PUE(Prhizon) was very high (up to > 100 %) for pig manure on both sand and 

Rheinsand (Fig. 6.6E,F). On sand, the curve for struvite showed a similar pattern as for pig 
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manure up to week 3 (Fig. 6.6E). However, on Rheinsand the values for struvite were always 

lower as compared to the reference and pig manure (Fig. 6.6F). 

 

 

 

 

Figure 6.5 pH and P2O5 concentration (mg L-1) in the soil solution (Prhizon) as a function of 
time (wk) after sowing on sand (A, C) and on Rheinsand (B, D) (mean, error bars: +/- 1 

standard deviation; n = 4). p-values and small letters refer to statistical analyses using one-way 
ANOVA and post-hoc pair-wise comparisons (α = 0.05). Detection limit: 0.05 mg L-1. 

  
 
Table 6.5 Average phosphorus use efficiency (PUE; %) over time based on soil analyses (PAE, 
Pw, PAl, Prhizon) on sand and on Rheinsand (if detectable) for the different bio-based fertilizers 
relative to the reference triple superphosphate (TSP; PUE = 100 %). PUE(control) = 0 %.  
PUE (%) PUE(PAE) PUE(Pw) PUE(PAl) PUE(PAl) PUE(Prhizon) PUE(Prhizon) 

 
Sand Sand Sand Rheinsand Sand Rheinsand 

Struvite 57 374 1.6 -94b 145 60 
FePO4-sludge -41a -46a 23 -606b -131a 3.2 

Animal manure 21 24 34 -215b 130 114 

Digestate 14 212 -3.0a 453b 71 81 
a Effect of bio-based fertilizer < control.  
b No significant difference with the control because of high standard error. 
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Figure 6.6 Average phosphorus use efficiency (PUE; %) as a function of time (wk) after sowing 
for the different treatments relative to the reference triple superphosphate (TSP; PUE = 100 %), 

based on P-PAE (A), Pw (B), PAl sand (C), PAl Rheinsand (D), Prhizon sand (E),  
and Prhizon Rheinsand (F). PUE(control) = 0 %. 
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6.4 Discussion  

6.4.1 Effect of bio-based fertilizer on the plant reaction  

The P use efficiency based on the plant reaction can be expressed in terms of the plant yield 

and P uptake. However, as the plant yield is mainly influenced by the N effect, as well as 

multiple other factors, such as micronutrient availability, the effect of P is hard to detect, 

especially for complex organic P fertilizers. Therefore, in literature the PUE based on the plant 

reaction is mostly calculated in terms of P uptake, if it is calculated at all (van Dam and Ehlert, 

2008; Mohanty et al., 2006). Indeed, some authors showed that there is no correlation between 

the crop response and the P supply (Árendás and Csathó, 2002; Prummel and Sissingh, 1983; 

van Dam and Ehlert, 2008).  

Also in the present study, no relevant effect of the fertilizer type on the biomass yield was 

observed. For the acidic sandy soil, this is not surprising due to the high P status (Pw control > 

55 mg P2O5 L-1 soil) of Flemish soils, i.e. no response to P in terms of plant growth is expected. 

Though, an akward observation was that on this high-P sandy soil, the use of the reference TSP 

resulted in lower yields and lengths as compared to all other treatments under study (Table 6.4; 

Fig. 6.3). A similar effect was observed in the study of, for example, van Dam and Ehlert (2008), 

Liu et al. (2011), Meena et al. (2007), Mohanty et al. (2006), and Uddin et al. (2012). These 

authors attributed this phenomenom to the fact that most of the P contained in TSP is water-

soluble (96 % in this study) and therefore partly adsorbed and fixed by the substantial amount of 

Fe and Al oxides in acidic sandy soils (Feox = 34 mmol kg-1, Alox = 66 mmol kg-1 in this study). 

By means of a literature review, van Dam and Ehlert (2008) showed that the relative efficiency 

in terms of plant yield for animal manure as compared to TSP can vary between 30 and 378 % 

(140 % in this study). The higher values were, indeed, related to conditions that hinder the 

operation of the readily soluble P fertilizer reference, such as phosphate fixation by Fe and Al 

compounds and precipitation with Ca compounds. On Rheinsand, which had a low P level (Pw 

control < 36 mg P2O5 L-1 soil), the highest FW biomass yields were obtained for TSP, FePO4-

sludge, and struvite (Table 6.4). Hence, the above problem did not (or less) occur in this case.  

As mentioned above, a more relevant comparison of the fertilizer effect may be made based on 

the plant P uptake. The P uptake was the highest for TSP both on sand and Rheinsand. Yet, on 

the P-rich soil all amendments could cover the crop P demand (no significant difference with 

TSP), while on the P-poor soil FePO4-sludge and struvite showed a significantly lower P uptake 

as compared to TSP. This indicates that the initial soil P status plays an important role in 

determining the plant P availability and uptake. The use of pig manure and digestate resulted in 

a plant P uptake comparable to TSP on the P deficient soil, indicating that the absolute fertilizer 

effect in terms of direct available P was similar. The application of FePO4-sludge resulted in the 

lowest P uptake (Table 6.4), indicating that the P in FePO4-sludge is most fixed. This can be 

attributed to the lower solubility and stronger P fixation capacity of FePO4 as compared to the 

Ca/Mg-P precipitates (struvite, TSP) under study (Hillel, 2008; Zumdahl, 2005). In general, it 
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can be stated that the fertilizers with the highest P solubility in water (i.e. TSP, manure, 

and digestate) resulted in the highest plant P uptake. 

 

6.4.2 Effect of bio-based fertilizer on soil phosphorus availability  

6.4.2.1 Struvite 

The P solubility of struvite in water was much lower as compared to the reference TSP, 

whereas the solubility in neutral ammonium citrate and mineral acid was relatively high (Table 

6.3), in line with literature findings (Barak and Stafford, 2006; Bridger et al., 1962). These 

measurements indicate that struvite has slow-release properties. This was confirmed by the 

bio-availability curve for Prhizon on P deficient Rheinsand (Fig. 6.6F), which showed an 

increase in direct available soluble P from ± 0 % to ± 75 % as compared to TSP in 

approximately two weeks time. Moreover, it is in line with the slow-release properties of this 

product for NH4-N found in literature (Latifian et al., 2012; Ryu et al., 2012; Shu et al., 2006; 

WERF, 2010).  

In spite of these findings, struvite demonstrated the highest efficiency (relative to TSP) among 

the bio-based fertilizers in terms of direct available P on the P-rich sandy soil (Fig. 6.6A,E). This 

was confirmed by the significant correlation between the P-PAE for struvite and TSP on sand (r 

= 0.63, p = 0.030). The high PUE(PAE) and PUE(Prhizon) on sand may be attributed to the 

higher amount of NH4-N relative to P2O5 in struvite (Table 6.1). In the study of Bridger et al. 

(1962) on struvite and other metal ammonium phosphates, P release appeared to be largely the 

result of microbial nitrification of the ammonium constituent rather than simple dissolution. The 

uptake of NH4
+ by the roots as well as the nitrification of NH4

+ into nitrate (NO3
-) are acidifying 

processes, which can increase soil P mobilization and uptake in the rhizosphere (Bridger et al., 

1962; Diwani et al., 2007). Indeed, during the first three weeks of growth on struvite-amended 

soils, the pH in the soil solution was the lowest (Fig. 6.5A), while the amount of direct available 

P was the highest (Fig. 6.5C). Note that a similar effect on soil P bio-availability was found when 

applying bio-based ammonium sulfate (AmS) during the field trials (see e.g. Section 5.3.2.2 in 

Chapter 5). Other contributing factors to the extra soil P liberation could be the presence of Mg 

in struvite (~ synergetic effect between Mg and P uptake; Gonzalez-Ponce et al., 2009; Ryu et 

al., 2012) and/or its high salt content (~ anion exchange with the clay-humus complex of the 

soil; Hartzell et al., 2010).  

At the end of the growing season, PUE(Al) and especially PUE(Pw) increased (Fig. 6.5B,C,D), 

indicating that struvite addition increased the soil P capacity, mainly the readily available 

inorganic P pool (Fig. 6.1), for delivery in the longer term. As the plant P uptake was 

significantly lower for struvite than for TSP on Rheinsand after five weeks of growth (Sections 

6.3.2/6.4.1), it is likely that the release and plant uptake of P directly provided by struvite 

application was not yet completed at the moment of harvest. On the high-P sandy soil, no 

significant difference in plant P uptake between struvite and TSP was found, indicating that the 

amount of P liberated from the soil was sufficient to support the crop demand. This difference in 
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soil P uptake on P-rich sand and P-poor Rheinsand confirms again the short-term soil P 

mobilization provoked by struvite application (see above). Further research on the P delivery 

and plant P uptake (and the corresponding mechanisms) in the longer term on different soil 

types with varying P status is advised for this product.   

 

6.4.2.2 Iron phosphate sludge 

Iron phosphate (FePO4) sludge showed not useful as starter fertilizer for crop growth, as 

its P solubility in water was very low (Table 6.3), as were all soil bio-availability indices. In 

agreement to Hahn et al. (2002) and Nieminen et al. (2011), the solubility in neutral ammonium 

citrate was 100 %. Accordingly, the efficiency of this product to supply direct available P was 

low, and the lowest of all fertilizers under study. Yet, the P capacity over time was slightly 

increasing, indicating that the addition of FePO4-sludge slowly increased the amount of P that 

can be released in the longer term. Hence, as expected, the product has slow release 

properties. This phenomenon was also reflected in the highly significant correlation for PAl on 

sand between struvite and FePO4-sludge (r = 0.86, p < 0.0001). Nevertheless, as the P-PAE 

and Prhizon were even lower than the control, the use of this product for agricultural crop 

production is discouraged, especially on P-rich soils, so as to avoid further soil P accumulation. 

On the other hand, the product’s ability to fixate P is of increasing interest for forestry on drained 

peat- and wetlands so as to provide a sustainable alternative for soluble P fertilizers by reducing 

P leaching and increasing P adsorption (Larsen et al., 1959; Nieminen et al., 2003, 2011; 

Scheffer and Kuntze, 1999; Silfverberg and Hartman, 1999). P uptake by trees can be 

supported by tree root/mycorrhiza associations that can release P from highly insoluble forms. 

Fe-containing fertilizers are not as susceptible to leaching as pure apatites and a higher 

proportion of added P may thus remain available to the trees. A long study period will, however, 

be required because of the slow development of active root/mycorrhiza associations that may 

be necessary for significant P release from Fe-containing P fertilizers (Nieminen et al., 2003, 

2011). As such, the duration of the growth response after P fertilization is expected to be over 

30 years.  

 

6.4.2.3 Digestate and animal manure   

The efficiency of digestate in supplying direct available P was slightly increasing during the 

greenhouse experiment (Fig. 6.6A), indicating that P from digestate was released slower than 

from the reference TSP. The product had a relatively high P solubility in water, though lower 

than TSP, while its solubility in mineral acid was 100 % (Table 6.3). The PUE(Pw) was therefore 

high (Fig. 6.6B; Table 6.5). Pig manure released direct available P somewhat faster than 

digestate, as the PUE(PAE) was higher after one week, but equal after four weeks (Fig. 6.6A). 

In addition, its P solubility in water was slightly higher as compared to digestate, while the 

solubility in mineral acid was slightly lower (Table 6.3). This is in line with the observed bio-

availability indices: P-PAE (Fig. 6.4A) and Prhizon (Fig. 6.5C,D) were higher for pig manure 

than for digestate, whereas Pw was slightly lower (Fig. 6.4B).  
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All these results correspond to observations made during a preceding field-scale assessment 

(Chapter 5, e.g. Section 5.3.2.4; Vaneeckhaute et al., 2013c, 2014) and to literature data 

(Huang et al., 2012; Möller and Müller, 2012; Güngor et al., 2007; Güngor and Karthikeyan, 

2008), indicating that anaerobic (co-)digestion of animal manure reduces the fraction of 

direct available inorganic P in the soil solution, whereas it increases the fraction of 

readily available soil P that can be released in the short term. This phenomenon would be 

caused by the enhanced formation and precipitation of calcium phosphate, magnesium 

phosphate, and/or struvite through mineralization of N, P, and Mg during (co-)digestion in 

combination with a substantial increase of the manure pH (Hjorth et al., 2010; Le Corre et al., 

2009; Möller and Müller, 2012). As a comprehensive example, Güngor et al. (2007) showed that 

43 % of the mineral P species in dairy manure were struvite and 57 % more weakly bounded 

dicalcium phosphate (CaHPO4:2H2O), whereas 78 % struvite and 22 % hydroxylapatite 

(Ca5(PO4)3(OH)) were detected in the digested manure sample. Noteworthy in this perspective 

is that the correlation for both P-PAE and the pH in the soil solution was highly significant 

between struvite and digestate, with r = 0.90 (p < 0.0001) and r = 0.85 (p < 0.0001) for the P-

PAE and pH, respectively. Moreover, during the field trial a significant correlation was found 

between the Ca, Mg, and P use efficiency when applying digestates or its liquid fraction 

(Chapter 5: Section 5.3.2.4). Consequently, the conversion of animal manure through anaerobic 

(co-)digestion and the subsequent use of digestate on agricultural fields may offer a solution to 

control water soluble P in soils, meanwhile supplying sufficient P to support plant growth, similar 

as was observed during the field trial (Chapter 5).   

Another interesting finding is that the P intensity of the soil, measured as P-PAE, was lower for 

digestate and pig manure than for TSP (Fig. 6.4A), while Prhizon was higher, especially for pig 

manure (Fig. 6.5C,D). It is likely that this extra amount of soluble P for the organic fertilizers, 

digestate and pig manure, was attributed to the release of organic P2O5 in the soil solution 

(Huang et al., 2012; Roboredo, 2012), which cannot (or not completely) be measured with the 

PAE method. Indeed, the P-PAE number was significantly correlated for the mineral fertilizers, 

struvite and TSP (r = 0.63, p < 0.0001), but no significant correlation was found between the P-

PAE measurements for the other products. On the other hand, on Rheinsand, the correlation of 

P in the soil solution (Prhizon), which includes dissolved organic forms, between TSP and pig 

manure (r = 0.76, p < 0.0001), as well as TSP and digestate (r = 0.73, p < 0.0001), was 

significant, although only a relatively weak correlation was found between TSP and struvite (r = 

0.59; p = 0.010). Huang et al. (2012) emphasized that this organic dissolved P fraction in soils 

also plays a role in plant P utilization. Hence, measurements carried out in the context of 

fertilizer recommendations and legislative standards should be able to detect both 

inorganic and organic P fractions.  

As the average PUE(Prhizon) was much higher for pig manure than for TSP, both on sand and 

Rheinsand (Fig. 6.6E,F), and since pig manure is a liquid fertilizer, application of this product 

might cause a higher risk of leaching in the field, especially on soils low in Fe and Al (cfr. Kang 

et al., 2011; Yang et al., 2012). Since also the efficiency in terms of P uptake and yield on sand 
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was slightly higher (Table 6.4) and the soil pH significantly higher for the digestate treatment 

than for pig manure (Fig. 6.5), treating manure by anaerobic (co-)digestion before field 

application appears again as an interesting option from an environmental point of view. 

Meanwhile renewable energy can be produced. Although it is likely that similar results will be 

obtained for each digestion process fed with animal manure, it should be noted that the present 

results are based on digestate from co-digestion of pig manure (30 %) with organic biological 

waste from the food industry (40 %) and energy maize (30 %). 

Finally, an interesting point is that all bio-based fertilizers under study, especially digestate, 

added significantly more organic carbon (OC) to the soil as compared to TSP (Table 6.2). 

Application of these products could therefore also contribute to the struggle against OC 

depletion in many agricultural soils worldwide.   

 

6.4.3 Practical implications and recommendations   

In the wastewater and manure processing industry, Fe- and Al-salts are often used for P 

removal during solid-liquid separation so as to improve coagulation/flocculation practices and 

achieve water discharge levels. However, this chapter indicates that the resulting FePO4-sludge 

is not valuable for reuse as a fertilizer in terms of P release for crop growth. An increased 

accumulation of P in the soil is expected when using the product for agricultural purposes. Its 

use may be interesting on drained soils, though this remains to be evidenced. Similar results will 

likely be obtained for AlPO4-sludge because of the comparable P binding properties of trivalent 

Fe and Al. However, the fertilizer effect of AlPO4-sludge in terms of P bio-availability remains to 

be confirmed.  

In the transition towards a more efficient use of nutrients in agriculture, alternative P recovery 

and/or release techniques are recommended instead of the traditional methods for P removal. 

The present chapter demonstrates that manure treatment via anaerobic (co-)digestion (with 

other bio-degradable wastes) and/or struvite precipitation may deliver sustainable substitutes 

(digestate, struvite) for chemical P fertilizers and/or animal manure in agriculture. Moreover, the 

application of struvite may increase the liberation of P from the soil complex in high-P soils. 

Field-scale assessments using these bio-based products on soils with different P status are 

suggested to evaluate the P release and uptake in the long term, and to provide sufficient 

information for the establishment of responsible fertilizer application recommendations.  

Although these new fertilizers are already produced and available today (quantities depend on 

the region, i.e. legislations, nutrient excesses, etc.; Chapter 2), marketing of these products also 

depends on the economic viability of the nutrient recovery/release technique in question and the 

economic competitiveness of the products as compared to commonly used fertilizers (Chapter 

2). Herewith another important bottleneck arises: in many regions all derivatives produced from 

animal manure are currently still categorized as ‘animal manure’ and/or ‘waste’ in environmental 

and/or fertilizer legislation and can therefore not or only sparingly be returned to agricultural 

land (see previous chapters). Hence, the need exists for greater differentiation between soils, 
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crops, and fertilizer types in the recommendations given on P fertilizer requirements (EC, 2003), 

as well as in fertilizer legislations. For example, in the Flemish fertilizer regulation (MAP 4, 

2011), currently only one standard for total P application as function of the crop type counts. In 

contrast to N standards, no distinction is made between P application from animal manure, 

alternative organic fertilizers, or mineral fertilizers. Moreover, the standard is currently 

independent of the soil P status and soil texture. Only for P saturated sandy soils one stricter 

norm exists, but even here no further classification is imposed.  

Nevertheless, in the present study, important differences in P solubility and bio-availability for 

various P fertilizers and different soil P statuses were observed. Hence, a more refined 

legislative framework in terms of P application is advised. For this purpose, a combination of 

measurements of the soil chemical P status, texture, and fertilizer properties (mainly P 

fractionation, NH4:P-ratio, and P-binding compounds as Fe, Al, Ca, and Mg), in addition to the 

crop demand for P, is recommended. Regarding the aim to reduce P leaching and run-off, the 

most important parameter to evaluate is direct available P. As the P-PAE method does not 

(sufficiently) account for the release of dissolved organic P, measurements with Rhizon SMS 

are proposed as a valuable complementary method to provide the fundamental information for 

better categorization of different P fertilizers in environmental and fertilizer legislations. Bio-

availability indices based on the crop yield are generally less conclusive, hence their use is less 

advisable.  

Besides pot experiments, the use of Rhizon SMS in field trials is possible, but the samplers 

have to be inserted in the soil from trenches. Trenches disturb, however, the hydraulic 

properties of the soil. Less mobile elements may be sampled correctly from trenches, but 

concentrations of mobile nutrients may differ from those in undisturbed soil due to differing soil 

water conditions (Eijkelkamp, 2003). An alternative for trenches are manholes, e.g. augered 

with an Edelman auger. Further research on the soil disturbing impact of the various sampling 

methods at field-scale compared to results obtained from controlled greenhouse experiments is 

recommended.  

Finally, an important note is that, due to legislative constraints, the current practice of digestate 

processing in P saturated regions mostly involves a solid-liquid separation step (Chapter 2: 

Section 2.3.2). The purpose is basically to concentrate the organic matter, P, Ca, and Mg in a 

thick fraction, which can then be pasteurized and exported (to P-poor regions). As such, the P 

recovery potential as concentrated and pure struvite from the liquid fraction is limited, although 

(local) recovery of this mineral fertilizer may be interesting and relevant, e.g. for horticultural 

purposes or for crops with high (bio-available) P demand. Moreover, through export, the 

valuable and effective organic carbon (Chapter 2: Section 2.2; Appendix 3) is eliminated from 

the local agricultural cycle, while organic carbon depletion in many soils worldwide has become 

an alarming issue. This leads to the suggestion to stimulate the release of P in the liquid fraction 

for subsequent mineral (and pure) P recovery as struvite. As such, thick fractions with a more 

interesting (i.e. higher) C:P-ratio for local reuse as soil conditionner can be recovered, and soil 
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organic carbon could be maintained. Pre-treatment methods to improve the release of P in the 

liquid fraction during solid-liquid separation are therefore gaining importance in P saturated 

regions. This will be aspect of Chapter 7.  

 

6.5 Conclusions and perspectives   
Greenhouse experimental results indicate that some P-containing recovered bio-based products 

can be used as sustainable substitute for chemical P fertilizers and/or animal manure in 

agriculture. Struvite provided a high P availability for the plant in the beginning of the growing 

season, as well as a stock for delayed slow release. The product seems to stimulate the 

liberation of P from the soil complex, thereby providing sufficient direct plant available P to 

support plant growth on P-rich sandy soils. The addition of FePO4-sludge proved not useful in 

terms of short-term P release. Its use as a fertilizer for agricultural crop production should be 

discouraged. Hence, from an agronomic point of view, the implementation of struvite recovery in 

waste(water) treatment facilities seems more valuable than traditional practices of P removal 

using Fe-salts. Moreover, the P use efficiency in animal manure could be improved via 

anaerobic (co-)digestion and application of the resulting digestate for crop production. As added 

benefits, negative environmental impacts of untreated animal manure are avoided, renewable 

energy is produced, important amounts of organic carbon are added to the soil, and the soil pH 

is maintained.  

Furthermore, this study confirmed previous literature findings that chemical soil analyses are 

more conclusive than the plant reaction in terms of P fertilizer performance. The additional use 

of Rhizon soil moisture samplers for determination of total direct available P is proposed for 

better understanding and categorization of different inorganic and organic P fertilizers in 

environmental and fertilizer legislations. This may contribute to an improved differentiation 

between soils, crops, and fertilizer types in the recommendations and standards given on P 

fertilizer requirements. Indeed, a classification of P application standards in terms of the soil P 

status, texture, and fertilizer properties, next to the crop P demand, is recommended. Based on 

the results of the presented greenhouse experiment, field-scale validation of recovered struvite 

and digestates as compared to animal manure and chemical P fertilizers seems worthwhile. 

Particular attention should be given to the soil bio-availability indices, including Prhizon, on 

various soil types with different texture and P status. This should further help to refine the P 

fertilizer legislations and associated recommendations.   

 

 

 

 

 



 

 



 

 

 

 

 

 

CHAPTER 7:  
COMPARATIVE EVALUATION OF PRE-TREATMENT 

METHODS TO ENHANCE PHOSPHORUS  

RELEASE FROM DIGESTATE 

  

 

Mechanical solid-liquid separation of digestate (left) and  

struvite produced from the liquid fraction of digestate (right) 

(Pictures: Vaneeckhaute C.) 
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Vaneeckhaute, C., Zeleke, A., Tack, F.M.G., Meers, E.,  in preparation. Comparative evaluation 

of pre-treatment methods to enhance phosphorus release from digestate.  
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Abstract  
Although struvite may serve as a valuable chemical fertilizer substitute, the potential to recover 
mineral phosphorus (P) fertilizers from the liquid fraction of digestate is often limited as most of 
the P ends up in the thick fraction after solid-liquid separation. Moreover, in P saturated regions 
the thick fraction is usually transformed into an exportable end product, and hence valuable 
nutrients (P, Ca, Mg) and organic carbon (OC) are eliminated from the local agricultural cycle. 
The aim of this chapter was to evaluate various pre-treatment methods to improve the amount 
of P released in the liquid fraction after solid-liquid separation. As such, the P recovery potential 
from the liquid fraction as concentrated fertilizer product (struvite, Ca/Mg-P precipitates, or P-
rich solutions) can be increased, whereas soil OC can be maintained through local recycling of 
the resulting (P-poor) organic thick fraction. Four different mechanical pre-treatments 
(microwave heating, conventional heating, ultrasonic treatment, and orbital shaking) were tested 
in combination with the chemical dosing of three different acids (citric acid, formic acid, and HCl) 
down to pH 4, 5, and 6. All pre-treatments proved effective in releasing ortho-P into the liquid 
fraction at all tested pH values, except for orbital shaking, which was of interest only using citric 
acid at pH 6. The pre-treatments released 13-28 % soluble ortho-P relative to total P. Based on 
the experimental results, overall the maximum P release efficiency was obtained using 
microwave heating (1 h at 70 °C) and citric acid at pH 5. However, when balancing the recovery 
efficiency with the acid costs, the addition of HCl down to pH 4 under microwave heating was 
most feasible. Nevertheless, if no pasteurization (defined as 1h heating at 70 °C) is required for 
fertilizer marketing, then orbital shaking (i.e. mixing in practice) with HCl addition may be more 
attractive, considering the ease of implementation and costs of the mechanical treatment. In 
general, the chemical costs as function of the P release efficiency were high for all pre-
treatments: ± € 8-700 (11-990 CAD) kg-1 P released in addition to the untreated control. Further 
substantive case studies are required in order to conclude on the economic feasibility of 
implementing such pre-treatments for P release from digestate at full-scale.  
 
Keywords: acidification, conventional heating, microwave heating, orbital shaking, 

pasteurization, ultrasonic treatment.  
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Résumé 
Bien que la struvite peut servir comme un important substitut aux engrais chimiques, le potentiel 
de récupération des engrais minéraux de la fraction liquide du digestat est souvent limité car le 
phosphore (P) se retrouve essentiellement dans la fraction solide après la séparation solide-
liquide. De plus, dans les régions saturées en P la fraction solide est généralement transformée 
en un produit fini exportable, et donc certains nutriments importants (P, Ca, Mg) et le carbone 
organique (CO) sont éliminés du cycle agricole local. L'objectif de ce chapitre était d'évaluer des 
diverses méthodes de prétraitement augmentant la quantité de P libéré dans la fraction liquide 
après séparation solide-liquide. Comme telle, le potentiel de récupération des engrais 
concentrés (struvite, Ca/Mg-P précipités ou des solutions riche en P) de la fraction liquide peut 
être augmenté, et le carbone organique du sol peut être maintenu grâce au recyclage local de 
la fraction solide organique (pauvre en P). Quatre différents prétraitements mécaniques (micro-
onde, chauffage conventionnel, traitement par ultrasons et agitation orbitale) ont été testés en 
combinaison avec le dosage chimique de trois acides différentes (l'acide citrique, l'acide 
formique et le HCl) à des pH de 4, 5 et 6. Tous les prétraitements se sont avérés efficaces pour 
la libération de P dans la fraction liquide à toutes les valeurs de pH testées, à l’exception de 
l’agitation orbitale à pH 6, qui était seulement intéressant en dosant l’acide citrique. Les 
prétraitements ont libérés 13-28 % d’ortho-P soluble par rapport au P total. D'après les résultats 
expérimentaux, la meilleure efficacité globale de libération de P a été obtenue en utilisant une 
combinaison des micro-ondes (1 h à 70 °C) et l’acide citrique jusqu’à un pH de 5. Afin 
d’équilibrer le rendement de récupération avec les coûts du traitement, l'utilisation de HCl à pH 
4 sous micro-ondes était l'option la plus réalisable. Cependant, si aucune pasteurisation (définie 
comme 1 h de chauffage à 70 °C) n’est nécessaire pour la commercialisation des engrais, alors 
l’ajout de HCl sous agitation orbitale (c'est à dire mélanger dans la pratique) semble l’option la 
plus attrayante, compte tenu de la facilité de mise en œuvre et les coûts du traitement 
mécanique. En général, les coûts des produits chimiques en fonction de l’efficacité de libération 
de P étaient élevés pour tous les prétraitements: ± € 8-700 (11-990 CAD) kg-1 P libéré en plus 
du contrôle non traité. Davantage études de cas approfondies sont nécessaires afin de conclure 
sur la faisabilité économique de la mise en œuvre de ces prétraitements pour la libération de P 
à pleine échelle. 
 
Mots-clés: acidification, agitation orbitale, chauffage conventionnel, traitement micro-ondes, 

traitement par ultrasons, pasteurisation. 
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7.1 Introduction 
The recovery and efficient use of phosphorus (P) has become an important challenge in light of 

natural P resources that are rapidly depleting and the increasingly strict legislative standards for 

P application to agricultural soils. The latter results from the observed P accumulation in many 

soils worldwide caused by excessive manure (and sludge) application. Previous chapters 

(Chapters 5-6) have shown that the P use efficiency (PUE) in animal manure may be increased 

through anaerobic (co-)digestion. Indeed, during digestion, struvite precipitation may occur, as 

well as calcium (Ca) and magnesium (Mg) phosphate formation, which both end up in the 

digestate, thereby improving its slow-release properties (Güngor et al., 2007; Güngor and 

Karthikeyan, 2008). However, due to legislative constraints, processing of digestate is required 

(especially in high-nutrient regions) in order to obtain exportable end products, concentrated 

mineral fertilizers (= chemical fertilizer substitutes), or environmentally neutral compounds. As 

such, current digestate processing practices mostly involve a solid-liquid separation step. In P 

saturated regions, the thick fraction is then transformed into an organic end product fit for 

export, and hence valuable nutrients (P, Ca, Mg) and organic carbon (OC) are eliminated from 

the local agricultural cycle (Chapters 2-3). As a consequence, also soil organic carbon depletion 

has become an important issue worldwide (Bhandari et al., 2002; Manna et al., 2005). This 

leads to the suggestion to enhance the release of soluble orthophosphates (i.e. inorganic 

soluble PO4-P) in the liquid fraction during solid-liquid separation (after or prior to digestion) in 

order to obtain: i) a stabilized carbon-rich soil conditioner with increased local marketing 

potential, and ii) a P-rich liquid fraction with increased potential for P recovery as high-purity 

struvite, Ca/Mg-P precipitates, or a concentrated P-solution. A local market for the latter 

products may exist in the horticultural sector, for crops with high P demand, and/or for industrial 

purposes.  

Methods that have been used to improve the P release from (digested) manure and/or sludge 

mainly consist of microwave heating, advanced oxidation, and acidification to around pH 4 

(Danesh et al., 2006; Harris et al., 2008; Huchzermeier and Tao, 2012; Jin et al., 2009; Qureshi 

et al., 2008; Zeng and Li, 2006; Zhang et al., 2010). Microwave heating would help in digesting 

organic P and polyphosphates, i.e. salts or esters of polymeric oxyanions formed from 

tetrahedral PO4, that are often available in animal manure (Jin et al., 2009; Qureshi et al., 

2008). However, Pan et al. (2006) have shown that additional acidification is required in order to 

effectively improve the P release from dairy manure, which is not the case for sewage sludge 

(Liao et al., 2005). Acidification followed by solid-liquid separation concerns a potential low-cost 

option to concentrate P ions in the liquid fraction for direct use in the horticultural sector as 

concentrated P-solution, or for subsequent precipitation as pure struvite or Ca/Mg-P 

precipitates. Both organic acids, such as citric acid (Szogi et al. 2008) and formic acid (Daumer 

et al., 2010), and mineral acids, as hydrochloric acid (HCl) and sulfuric acid (H2SO4) (Müller et 

al., 2005; Szogi et al. 2008), have been used for this purpose.  
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Although the potential of some of the above techniques to improve the P release in the liquid 

fraction has already been shown at lab-, pilot-, and even full-scale (e.g. acidification of digested 

sludge in the Seaborne process; Müller et al., 2005), limited research comparing (combinations 

of) various pre-treatment methods for P release has been conducted to date, definitely not for 

the treatment of digestate. As such, the application of efficient and cost-effective pre-treatments 

is still limited, as there is no common basis comparing the P release efficiency in relation to the 

costs of the pre-treatment methods involved. Moreover, on top of the above methods, ultrasonic 

treatment is gaining importance to improve the bio-degradability and/or dewatering of manure or 

sludge (Ruiz-Hernando et al., 2013; Wu-Haan et al., 2010). Also conventional heating is often 

applied for product (digestate/manure/sludge) pasteurization (Chapters 2-3; Ruiz-Hernando et 

al., 2013). Nevertheless, studies on the P release when applying these pre-treatments (whether 

or not in combination with acidification) are lacking in literature, though relevant because of their 

increasing use.  

This chapter aims to compare (combinations of) promising pre-treatment methods (acidification 

+ mechanical treatment) to improve the P release from digestate. The selected mechanical pre-

treatments involve microwave heating, conventional heating, ultrasonic treatment, and orbital 

shaking (i.e. mixing in practice), whereas the chemical pre-treatments concern the addition of 

the organic acids, citric acid and formic acid, and the mineral acid, HCl. The heat treatments 

were applied so as to respect the European standards for product pasteurization, i.e. 1 h 

heating at 70 °C according to the regulation EG 1069/2009 (formal 1774/2002; EC, 2002, 2009). 

A comparative economic evaluation of the various treatments based on the chemical cost as 

function of the P release efficiency is also presented.  

Note that these treatments can be applied on liquid waste streams both prior or after anaerobic 

digestion. In this study, it was aimed to test the treatments on the non-degraded digestate. This 

is of increasing interest as the thick fraction after pre-treatment and solid-liquid separation can 

(partially) be fed back into the anaerobic digester for further improved degradation and organic 

waste stabilization (Lindner et al., 2015). Indeed, during anaerobic digestion only a part of the 

available organic matter is transformed into biogas. The digestate hence still contains a large 

fraction of organic matter that potentially can be converted. By application of a disintegration 

technique (pre-treatments above) on the digestate and subsequent recirculation to the digester, 

the overall degradation potential could be significantly increased, while reactor dimensions can 

be reduced and a more stabilized soil conditioner is obtained (Lindner et al., 2015; Müller et al., 

2005; Saha et al., 2011). All this may come on top of the potential improved P recovery when 

applying a pre-treatment. Yet, important is the finding of Jin et al. (2006) that H2SO4-based pre-

treatments result in a low anaerobic digestability due to sulfur (S) inhibition, unlike HCl. 

Moreover, it leads to high concentrations of hydrogen sulfide (H2S) in the biogas, which are 

unwanted in terms of corrosion risks in subsequent piping and equipment. H2S is also highly 

toxic to humans, even at low concentrations, and odorous when escaping from the system. 

Therefore, HCl was selected as mineral acid for the purpose of this study.  
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7.2 Materials and methods 
7.2.1 Experimental set-up   

Digestate (20 L) was collected at Wittevrongel Eneco Energy, Aalter, Belgium, and transported 

to the laboratory within 1 h, carried in cooler boxes filled with ice. It concerns a mesophilic (35 

°C) anaerobic (co-)digestion plant (capacity: 60,000 ton y-1, 3.033 MWel), with an input feed 

mainly consisting of (dairy) manure, additionally supplied with organic biological by-products 

provided by the food industry (percentage depends on the availability). The sample was stored 

at a temperature of 4 °C before use. Prior to the pre-treatment, the digestate was homogenized 

and physicochemically analyzed as described in Section 7.2.2. The product characteristics are 

given in Table 7.1.  

 

Table 7.1 Physicochemical characteristics of the digestate used for the various pre-treatments 
(mean ± standard deviation; n = 2). DW = dry weight; EC = electrical conductivity; OC = organic 
carbon.  

 

 

An overview of the experimental set-up can be found in Figure 7.1.  

Figure 7.1 Overview of the experimental set-up for pre-treatment (acidification + mechanical 
treatment) of digestate to improve the P release efficiency in the liquid fraction  

after solid-liquid separation. 
 

 

Homogenized subsamples were taken for pre-treatment. Four mechanical pre-treatments were 

used, each in combination with three different acids and adjusted to three different pH values (4, 

5, and 6). For each treatment, 5 g of digestate was weighted on an electronic balance (CP8201, 

Acid

Digestate 

(5 g digestate + 30 mL milli-Q water)

Solid - liquid separation (centrifuge)

pH adjustment 

Mechanical pre-treatment

Thick fraction

Nutrient-rich 
liquid fraction

 Parameter  Value        
 pH                               7.8  
 EC (mS cm-1) 30 ± 0         
 Density (g L-1) 1,047 ± 5    
 Dry weight (%) 7.4 ± 0.0  
 OC (% on DW) 31 ± 0         
 Alkalinity (g HCO3 L-1) 17 ± 0         
 Total P (mg L-1) 422 ± 24       
 Soluble ortho-P (mg L-1) 48 ± 7  
 Inorganic P (mg L-1) 244 ± 12  
 Organic P (mg L-1) 178 ± 31  
 NH4-N (g L-1) 3.0 ± 0.0        
 Total Ca (mg L-1) 338 ± 80       
 Total Mg (mg L-1) 117 ± 10       
 Total K (g L-1) 4.5 ± 0.0       
 Total Na (g L-1) 2.3 ± 0.1  
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Sartorius, Göttingen, Germany) and 30 mL of milli-Q (i.e. ultrapure) water was added to the 

sample. The latter was necessary for correct pH-adjustment and to avoid foaming. The samples 

were adjusted to pH 4, 5, and 6 by addition of the acid (2 M) using a micropipette and a pH-

meter, during continuous stirring on a magnetic stirrer (Cenco Instruments b.v., Breda, the 

Netherlands). The amount of acid required was recorded. In addition, for each treatment, a 

control (= no acid addition) was prepared, resulting in a total of 48 different pre-treatments (4 

mechanical treatments, 3 acids, 3 pH-values, 12 controls). All pre-treatments were prepared in 

triplicate (= total of 144 treatments).  

For the microwave and conventional heating pre-treatments, the samples were weighted before 

and after the treatments. The water lost through evaporation was added to each sample. All 

treated samples were transferred to centrifuge tubes (45 mL) and decanted using a laboratory 

centrifuge (Heraeus megafuge 1.0, Kendro Laboratory Products, Hanau, Germany) at 3,000 

rpm for one min. The liquid fractions were separated from the solid fractions, filtered through 

0.45 µm pores, diluted with distilled water in 50 mL volumetric flasks, and manually transferred 

to test tubes for physicochemical analysis of soluble ortho-P (Section 8.2.2).  

Organic acids (formic acid, 90 % CH2O2 and citric acid, 100 % C6H8O7, each 2 M) and mineral 

acid (hydrochloric acid, 37 % HCl, 2 M) were used. These chemicals were applied to the 

digestate samples to adjust the pH down to 4, 5, and 6 before using the mechanical pre-

treatments. The duration and temperature of the mechanical pre-treatments that involve heat 

were chosen in line with the European requirements for product pasteurization, i.e. 1 h heating 

at 70 °C or a proven equivalent (EC, 2002, 2009). As such, the subsequent recovered products 

(concentrated P-solution, struvite, or Ca/Mg-P precipitates) could be recognized as a valuable 

chemical fertilizer substitute for horticultural purposes (strict hygienic requirements) and/or for 

export. Also the remaining organic thick fraction is pasteurized in this way. The following 

mechanical pre-treatments were applied:  

1. A time-controlled orbital shaker (GFL 3015, Gesellshaft für Labortechnik mbH, 

Burgwedel, Germany): All samples were shaken at 200 rpm during 60 min in 250 mL 

erlenmeyer flasks; 

2. A conventional heating plate (HT22, Harry Gestigkeit GmbH, Düsseldorf, Germany): 

The temperature was adjusted to 70 °C and the power to 100 watt %. The samples 

were treated for 60 min in an erlenmeyer flask; 

3. A temperature-controlled ultrasonic bath (Bandelin Electronic 12207, Berlin, Germany), 

with a basket to keep the samples away from the tank base: The basket was filled with 

distilled water up to the minimum water requirement for use (± 15 cm water height). The 

temperature was adjusted to 25 °C and the samples were treated for 15 min in 100 mL 

erlenmeyer flasks; 

4. A microwave oven (CEM MARS 5, Drogenbos, Belgium): It concerns an open 

microwave digester, equipped with a rotating microwave diffuser for homogenous 
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microwave distribution. The system is capable of accommodating up to 36 volumetric 

flasks at one run. Centrifuge tubes of 45 mL were used, consisting of a control cap with 

a vent tube. A temperature sensor was inserted through a hole on top of the microwave 

oven into the sealed tubes. The temperature was fixed at 70 °C and the power output 

was fixed at 600 W. The samples were treated for 1h.  

 

7.2.2 Physicochemical analysis  

The DW content was determined as residual weight after 72 h drying at 80 °C in an oven (EU 

170, Jouan s.a, Saint Herblain, FR). Organic carbon (OC) was determined after incineration of 

the dry samples during 4 h at 550 °C in a muffle furnace (Nabertherm, Lilientahl, DE). The loss 

of ignition (= weight loss after incineration) was divided by a conversion factor of 1.72 to 

calculate OC, hence assuming that organic matter contains 58 % OC (Van Ranst et al., 1999). 

Electrical conductivity (EC) and pH were determined potentiometrically using a WTW-LF537 

(Wissenschaftlich Technischen Werkstäten, Weilcheim, DE) electrode and an Orion-520A (Orion 

Research, Boston, USA) pH-meter, respectively. Ammonium (NH4) was determined using the 

Kjeltec-1002 distilling unit (Gerhardt Vapodest, Köningswinter, DE) after addition of magnesium 

oxide (MgO) to the sample and subsequent titration (Van Ranst et al., 1999). The initial total P 

content in the digestate sample was determined using the colorimetric method of Scheel (1936; 

Van Ranst et al., 1999) after wet digestion using nitric acid (HNO3) and hydrogen peroxide 

(H2O2). The initial amount of inorganic P was determined by the method of Møberg and 

Petersen (1982), while organic P was computed by the difference between total P and inorganic 

P. Soluble ortho-P was analyzed using the method of Scheel (1936) in the liquid fraction after 

centrifugation and filtration (0.45 µm pores). The absorbance at 700 nm of samples and 

standards was determined using a Jenway 6400 spectrophotometer (Barloworld Scientific T/As 

Jenway, Felsted, UK). Total calcium (Ca), magnesium (Mg), and potassium (K) were analyzed 

using inductively coupled plasma optical emission spectrometry (ICP-OES, Varian Vista MPX, 

Palo Alto, CA, USA; Van Ranst et al., 1999) after wet digestion in HNO3 and H2O2. Bicarbonate 

(HCO3
-) alkalinity was determined by the titration method described by Van Ranst et al. (1999).  

 

7.2.3 Statistical analysis 

Statistical analyses were conducted using SAS 9.3. A one-way ANOVA model (α = 0.05) was 

used to compare the effect of the various pre-treatments (i.e. the independent variable, 

between-groups factor) on the amount of P released (i.e. the dependent variable). For each 

mechanical treatment, significant differences between the three applied acids were searched 

per pH value. Moreover, for each acid used, the effect of the mechanical pre-treatment was 

checked at each pH value under study. The condition of normality was verified using the 

Kolmogorov Smirnov test and QQ-plots, whereas equality of variances was checked with the 

Levene Test. When homoscedascity was found, significance of effects was tested by use of an 

F-test and post-hoc pair-wise comparisons were conducted using Tukey's honestly significant 

difference (HSD) test (α = 0.05). When no homoscedascity was found, a Welch F-test combined 
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with a post-hoc Games-Howell test was used (α = 0.05). When the condition of normality was 

not fulfilled, the non-parametric Kruskal-Wallis test was applied instead of the one-way ANOVA.  

 

7.3 Results  

7.3.1 Acid requirements  

The amount of acid (mol L-1 digestate) required to reach pH 4, 5, and 6 is presented in Figure 

7.2. The initial pH of the solution (5 g digestate + 30 mL milli-Q water) was about 8.3. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Amount of acid (citric acid, formic acid, HCl) used (mol acid L-1 digestate)  
to reach the required pH (4, 5, or 6) for the pre-treatment.  

Initial pH (5 g digestate + 30 mL milli-Q water) = 8.3. 
 

It can be seen that for the same amount of acid, the obtained pH decreased from formic acid to 

HCl and citric acid. Hence, the amount of acid needed to obtain a certain pH increased 

reversely.  

 

7.3.2 Orthophosphate release  

The amount of orthophosphate released from digestate (mg P L-1) as function of the pre-

treatment is presented in Figure 7.3. The ortho-P release without any pre-treatment (no 

mechanical treatment and no acidification) was 48±7 mg L-1 or about 11 % of the initial total P 

(Table 7.1). Especially for the microwave and conventional heating pre-treatments, occasionally 

large standard deviations on the results were obtained. These can be attributed to dilution 

errors when adding water to replace water lost through evaporation (see Section 7.2.1).  
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Figure 7.3 Concentration of orthophosphate released from digestate (mg P L-1 digestate; mean 
± standard deviation; n = 3) after pre-treatment at pH 4, 5, and 6 as function of the chemical 

(citric acid, formic acid, HCl) and mechanical treatment used: A = microwave heating,  
B = conventional heating, C = orbital shaking, and D = ultrasonic bath. Control = no 
acidification. Note: initial ortho-P concentration without pre-treatment = 48±7 mg L-1. 

 

All pre-treatments resulted in a significant effect (p < 0.05) on the ortho-P release as compared 

to the control (no acid addition) and to the untreated digestate, except for orbital shaking in 

combination with HCl and formic acid at pH 6. Citric acid generally released more soluble ortho-

P ions into the liquid fraction as compared to the other acids, which was significant (p < 0.05) at 

pH 6 for all mechanical pre-treatments and at pH 5 for microwave treatment, orbital shaking, 

and conventional heating. At pH 4, no significant differences (p > 0.05) between the different 

acids per mechanical treatment were found, except for orbital shaking, where the use of citric 

acid again resulted in the highest ortho-P release. For the ultrasonic treatment, the use of formic 

acid also resulted in a significantly higher ortho-P release as compared to HCl at pH 6. 

Using the same molar concentration of acid (hence the same pH) for all mechanical pre-

treatments, no statistically significant difference (p > 0.05) between the mechanical pre-

treatment methods in releasing soluble ortho-P ions was found with citric acid. For formic acid at 

pH 6, the ultrasonic treatment showed a significantly higher P release than all other mechanical 

pre-treatments, while conventional heating also released significantly more P than orbital 

shaking. These effects disappeared at lower pH values. At pH 4, the microwave treatment 

showed a significantly higher P release than orbital shaking. No other significant differences 
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between the various mechanical pre-treatments at pH 4 and 5 were observed using formic acid. 

The P release for HCl at pH 6 was significantly higher for conventional heating and ultrasonic 

treatment as compared to the microwave treatment, which on its turn showed significantly 

higher values than orbital shaking. Nevertheless, these effects disappeared at lower pH values, 

and at pH 4 the microwave treatment showed again a significantly higher effect than all other 

mechanical pre-treatments under study.  

For each mechanical pre-treatment, the maximum obtained ortho-P release (mg L-1) using the 

different acids is presented in Figure 7.4.  

 

Figure 7.4 Maximum concentration of orthophosphate (mg P L-1 digestate; mean ± standard 

deviation; n = 3) released from digestate as function of the chemical and mechanical pre-
treatments used. All results are the maximum concentrations at pH 4, except for citric acid: 

maximum concentration at pH 5 for microwave and conventional heating.  
Note: initial ortho-P concentration without pre-treatment = 48±7 mg L-1. 

 

Interestingly, for citric acid under microwave and conventional heating pre-treatments, the 

maximum amount of ortho-P released was found at pH 5. For the other acids, the maximum 

release was found at pH 4, independently of the mechanical treatment. The highest average 

ortho-P release was found for the combination of citric acid and microwave treatment at pH 5 

(143±26 mg L-1), which was comparable to that of HCl and microwave treatment at pH 4 

(133±12 mg L-1). The maximum obtained ortho-P release with formic acid was in average 

slightly lower, i.e. 117±6 mg L-1 under microwave heating at pH 4.  

0

20

40

60

80

100

120

140

160

180

m
ic

ro
w

av
e

co
nv

en
tio

na
l h

ea
tin

g

or
bi

ta
l s

ha
ki

ng

ul
tr

as
on

ic
 b

at
h

m
ic

ro
w

av
e

co
nv

en
tio

na
l h

ea
tin

g

or
bi

ta
l s

ha
ki

ng

ul
tr

as
on

ic
 b

at
h

m
ic

ro
w

av
e

co
nv

en
tio

na
l h

ea
tin

g

or
bi

ta
l s

ha
ki

ng

ul
tr

as
on

ic
 b

at
h

Citric acid Formic acid HCl

M
ax

im
u

m
 o

rt
h

o
p

h
o

sp
h

at
e 

re
le

as
e 

(m
g

 L
-1

)



 

186 

7.4 Discussion 
All physicochemical pre-treatments used, resulted in higher concentrations of soluble ortho-P 

ions in the liquid fraction as compared to the control (no acidification) and to the untreated 

digestate, except for orbital shaking in combination with HCl and formic acid at pH 6. Hence, the 

combination of the applied mechanical instruments and acids were found to be effective in 

increasing the release of ortho-P in the liquid fraction of digestate, although orbital shaking at 

pH 6 was only of interest with addition of citric acid.  

It should be remarked that the mechanical treatments alone were not effective in improving the 

release of ortho-P in the liquid fraction, similar as was previously observed by Pan et al. (2006) 

for microwave digestion of dairy manure. Little to no hydrolysis would occur without acidification. 

These authors attributed this inconvenience to the inherent characteristics of manure. The 

phosphorus in manure exists in many forms, such as inorganic residual P, acid-soluble organic 

P, and lipid P, which are neither very soluble nor easily hydrolised. This was likely also the case 

for the digestate under study, which was mainly produced from dairy manure. Indeed, in the 

case of livestock residues, the hydrolysis step in anaerobic digestion is restricted by the 

presence of fibers, resulting in a low anaerobic degradation, and hence high digestate fiber 

concentration (Gonzalez-Fernandez et al., 2008; Zwart et al., 2006). In this study the synergetic 

effect of acidification and mechanical treatment was the most expressed for microwave heating, 

which at lower pH (4), hence higher acidification, showed a significantly higher P release than 

the other mechanical treatments when using formic acid or HCl. Looking at all three acids, the 

ultrasonic treatment seems to be the most capable mechanical pre-treatment for releasing 

ortho-P from digestate at a higher pH (6). Literature evidence to support this finding is lacking 

for digestate. However, Saha et al. (2011) found that ultrasonic treatment was more effective 

than microwave heating (without acidification) for COD (chemical oxygen demand) solubilization 

of various sewage sludges. This may support the improved P release found in this study at 

relatively high pH (6) for HCl and formic acid under the ultrasonic treatment. Interestingly, when 

using citric acid, all mechanical pre-treatments were very effective at pH 6 (see below).  

The maximum P release efficiency (%) provoked by the various pre-treatment methods is 

presented in Figure 7.5. It was calculated as the difference between the maximum amount of 

ortho-P release achieved with the pre-treatment at the respective pH (Fig. 7.4) and the ortho-P 

release without pre-treatment (48±7 mg L-1), relative to the total initial amount of P in the 

digestate (Table 7.1). The pre-treatments released 12-28 % soluble ortho P. Alternatively, the 

absolute (maximum) P release compared to total P (hence not correcting for the untreated 

control) ranged from 25 to 40 %, which is about 2.3 to 3.6 times higher as compared to not 

applying a pre-treatment at all (± 11 %). Note that the latter value corresponds well to the value 

obtained at full-scale during solid-liquid separation in Chapter 3, i.e. ± 9 % of the total P ended 

up in the liquid fraction (Vaneeckhaute et al., 2012).  
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Figure 7.5 Maximum orthophosphate release efficiency (%) from digestate by the pre-
treatments at the respective pH (mean ± standard deviation; n = 3). All results are calculated 

based on the maximum P release at pH 4, except for citric acid: maximum P release at pH 5 for  
microwave and conventional heating. Efficiency = ((maximum ortho-P release with pre-
treatment) – (ortho-P release without pre-treatment, i.e. 48±7 mg L-1)) / (total initial P). 

 

Looking at the maximum obtained P release efficiencies, among the mechanical pre-

treatments, the microwave treatment was generally most effective in releasing ortho-P. 

The obtained ortho-P release efficiencies are in line with Jin et al. (2009), who reported values 

in the range of 13 to 30 % using microwave digestion and various chemicals (NaOH, CaO, 

H2SO4, HCl) for the treatment of dairy manure. Moreover, the P release obtained in this study 

was similar to that in Pan et al. (2006) using a closed vessel microwave with addition of H2SO4 

(1:50-ratio) at 60 °C for dairy manure treatment (115±3 mg P L-1 or 40 % of total P). Differences 

can be attributed to the different chemicals used, the heating temperature, the pH, the 

microwave system used (open system for this study), and differences in initial P content and 

animal diet (He et al., 2004; Szogi et al., 2008), next to the fact that in this study the manure 

was subjected to anaerobic (co-)digestion prior to the microwave treatment. 

The improved P release may be attributed to the ability of microwave digestion to convert other 

forms of P, such as polyphosphates and organic phosphates, into orthophosphates via 

hydrolysis at 70 °C as compared to mesophilic anaerobic digestion at 35 °C (Jin et al., 2009; 

Qureshi et al., 2008). The fact that microwave digestion was able to release more ortho-P than 

conventional heating is likely due to an increased solubilization of lignocelluloses under 
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microwave heating at low pH. Also Jin et al. (2009) previously observed this effect. Orbital 

shaking and ultrasonic treatment, both without imposed heat supply, showed similar maximum 

release efficiencies as conventional heating at low pH. Hence, from a technical point of view, if 

pasteurization is targeted, microwave heating may be preferred above conventional heating in 

order to simultaneously maximize the P release efficiency, at least when working at low pH.  

The differences between the three acids can be attributed to the strength and individual 

properties of the acids. Citric acid generally released more soluble ortho-P ions into the liquid 

fraction under all pre-treatments (Fig. 7.3). Even at high pH (6), high ortho-P release efficiencies 

were obtained under all mechanical treatments. Moreover, less acid was required to reach a 

certain P release and pH as compared to the other chemicals under study (Fig. 7.2, 7.3). The 

improved P release is probably caused by complex formation of citrate with cations in the 

solution (Ca2+ and Mg2+), which reduced the availability of Ca2+ and Mg2+ as free cations to 

precipitate with P (FAO, 2004b; Zumdahl, 2005). Formic acid showed a lower P release, likely 

because formic acid is a monodentate (only one atom in the ligand can bind to the metal), 

whereas citric acid is a multidentate (FAO, 2004b). Citric acid also generally released more P 

than HCl from digestate, which is in line with the findings of Szogi et al. (2008) for poultry litter. 

Overall, in this study, HCl and formic acid showed similar release efficiencies at the same pH. 

However, less acid was required when using HCl to obtain a particular pH. HCl also seems to 

be more effective when heat (microwave or conventional heating) is involved, though this could 

statistically not be evidenced.  

Although citric acid seems the most interesting chemical to use, the choice of the acid 

also depends on its price. The estimated acid cost for each pre-treatment is presented in 

Table 7.2.  It was calculated from the cost price of the used acids, as offered by the chemical 

provider (Brenntag NV, 2012). Also the average amount of additional ortho-P release above that 

obtained without pre-treatment (48±7 mg L-1) is presented.   

 

Table 7.2 Acid dose (mol L-1 digestate), estimated acid cost (€ m-3 digestate), and additional 
ortho-P released from digestate under the various pre-treatments (g m-3 digestate) relative to 
the P released without pre-treatment (48±7 g m-3). Acid prices: HCl: € 0.0014 mol-1, citric acid: € 
0.13 mol-1, formic acid: € 0.02 mol-1 (Brenntag NV, 2012). € 1 ≈ 1.415 CAD (November 2014).  

Acid pH Acid dose   
(mol L-1)  

Acid cost 
(€ m-3) 

Average additional P release (g m-3) compared 
to no pre-treatment 

    
Microwave Conventional Orbital 

shaking 
Ultrasonic 

Heating Heating bath 

HCl 
6 0.25 0.35 8.0 21 0 27 
5 0.38 0.53 40 47 48 51 
4 0.49 0.69 85 66 60 63 

Citric acid 
6 0.13 16.39 61 64 52 54 
5 0.21 27.31 95 70 69 63 
4 0.36 47.34 86 69 71 67 

Formic 
acid 

6 0.34 6.86 0 19 0 43 
5 0.53 10.50 49 44 47 55 
4 0.74 14.73 69 59 61 61 
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Although the combination of microwave treatment and citric acid at pH 5 resulted in the highest 

average ortho-P release, the cost of this treatment (only for the acids) was about 50 times 

higher as compared to the use of HCl. In this respect, it seems more interesting to use HCl 

down to pH 4 (hence more acid required), which still resulted in high P release efficiencies 

under the various mechanical pre-treatments, though significantly reduced the acid costs. 

Moreover, if no pasteurization is required for effective fertilizer marketing, then orbital shaking 

may be considered as mechanical treatment (in combination with HCl addition down to pH 4), 

due to its generally lower operational cost and energy use, but still relatively high P release 

efficiency. In practice, this pre-treatment can easily be realized by addition of the acid into a 

continuously stirred tank reactor, for example, a digestate storage tank. The choice and cost of 

the mechanical treatment will also depend on the local availability of (recovered) heat. This will 

not be further discussed here.  

Although the above estimated costs seem fairly high, the results are comparable to the findings 

of Daumer et al. (2010) for the treatment of raw pig slurry using formic acid down to pH 5, i.e. € 

8 (11 CAD) m-3, only taking in account the acid costs. Hence, the findings were believed to be 

realistic. Looking on a phosphorus base, the costs are even more discouraging, ranging from € 

8 (11 CAD) (microwave heating, HCl, pH 4) to ± € 700 (990 CAD) (ultrasonic bath, citric acid, 

pH 4) per extra kg of P released as compared to not applying a pre-treatment at all. To this, the 

costs for a Mg-source will have to be added if struvite is to be produced, next to the costs for the 

mechanical treatment. On the other hand, a reduction in transport costs (estimated at € 1.2 (1.7 

CAD) ton-1 km-1; Daumer et al., 2010) can be obtained as the resulting organic thick fraction 

should have increased local valorization potential (higher C:P-ratio). Moreover, the thick fraction 

may (partially) be recycled to the anaerobic digester prior to marketing in order to enhance 

biogas production and further stabilize the organic amendment. It should, however, be remarked 

that the fertilizer value and characteristics of such organic thick fractions remain to be explored. 

The carbonate content, for example, may be reduced during acidification. 

Revenues can also be obtained from (local) struvite fertilizer marketing, ranging from ± € 45 to 

1,400 ton-1 anno 2014 (± 64-2000 CAD ton-1; Chapter 2: Table 2.4). On top of that, the 

production and transport costs for chemical P fertilizers may be reduced or even eliminated. 

Hence, the economic feasibility of implementing a pre-treatment will have to be evaluated 

for each specific case.  

Next to the costs and technical performance, another important factor influencing the chemical 

choice is related to the acid composition. Mineral acids supply anions (chloride in this case) at 

high concentrations. These soluble anions increase the salinity of the final effluent. On the other 

hand, organic acids increase the easily degradable carbon content of the effluent (Daumer et 

al., 2010). Hence, the acid to be preferred will also depend on the required effluent quality. Note 

that when simultaneously applying a mechanical treatment, further COD degradation is 

expected to occur. Also pathogens can be further killed off during the pre-treatment. Moreover, 

next to P, (heavy) metals can be released, which could be recovered prior to struvite 
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precipitation, meanwhile improving the struvite purity and effluent quality (Müller et al., 2005). 

The Ca/Mg-dose needed for P precipitation may also be reduced, due to the potential improved 

Mg release. Yet, the pH will have to be increased after the pre-treatment to allow for 

precipitation to occur. Finally, acids of reduced quality could be used, which may significantly 

reduce the acid costs, but again impact on the fertilizer and effluent quality. These aspects were 

out of scope of the present study, but should be taken in account when selecting the technically 

and economically most feasible pre-treatment for each particular case.  

  

7.5 Conclusions and perspectives  
The P release potential of various combinations of mechanical (microwave heating, 

conventional heating, orbital shaking, ultrasonic bath) and chemical (acidification using HCl, 

citric acid, and formic acid down to pH 4, 5, and 6) pre-treatments was studied. All pre-

treatments were effective in increasing the release of P from digestate, although orbital shaking 

at pH 6 was only of interest with addition of citric acid. Based on the experimental results, 

overall the maximum P release efficiency was obtained using citric acid under microwave 

heating at pH 5. However, when comparing the P release efficiency and the chemical costs for 

the various pre-treatments, acidification with HCl down to pH 4 under microwave heating was 

the most feasible option. Nevertheless, if no pasteurization is required for fertilizer marketing, 

then orbital shaking (i.e. mixing in practice) in combination with HCl may be more attractive, 

considering the ease of implementation and costs for the mechanical treatment. In general, the 

chemical costs as function of the P release efficiency were high for all pre-treatments. Further 

substantive case studies are required so as to conclude on the economic feasibility of 

implementing such treatments for P release from digestate at full-scale. Aspects as improved 

COD degradation and biogas production, chemical fertilizer replacement, local fertilizer markets, 

the fertilizer value of the remaining organic thick fraction, transport costs, and pasteurization will 

have to be considered in the evaluation.  
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CHAPTER 8  
MODELLING AND OPTIMIZATION OF NUTRIENT 

RECOVERY SYSTEMS: ADVANCES AND LIMITATIONS 

 

 

    From complex waste matrix (left) to recovered high-quality fertilizer (right): challenge?! 

(Pictures: Lebuf V., Vaneeckhaute C.) 
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Abstract 
Mathematical models have become very important tools for technology design, optimizing 
performance, and process troubleshooting as they are both time and cost efficient. Although a 
number of models of waste(water) treatment facilities have been developed and applied 
extensively, these state-of-the-art models lack the inclusion of key fundamental physico-
chemical processes that play a major role for nutrient recovery. Critical elements to be dealt 
with include accurate descriptions of acid-base reactions, slow precipitation kinetics, liquid-gas 
exchange, and ion pairing in the complex mixture of chemical entities that the recovery systems 
in place deal with. Moreover, nutrient recovery models should provide information on the 
physicochemical characteristics (e.g. purity, particle diameter, density, etc.) of the recovered 
products under varying conditions (input composition, pH, temperature, reagents, etc.) in order 
to determine and control their fertilizer properties. Hence, considerable research is required 
before integrated models will be available that allow designing and optimizing recovery facilities 
at the same level as is now possible for traditional biological nutrient removal systems. This 
chapter first gives a brief overview of important fertilizer quality specifications for effective 
product marketing. Secondly, this chapter elaborates on the modelling advances and limitations 
involved in the transition from nutrient removal to nutrient recovery models. Finally, the chapter 
provides recommendations for the development of a generic physicochemical modelling 
framework in view of nutrient recovery. It is expected that the establishment of a generic nutrient 
recovery model library can greatly facilitate the implementation and optimization of full-scale 
treatment trains for nutrient recovery. A compromise should be found between model accuracy 
and simulation times.  
 
Keywords: anaerobic digestion, fertilizer quality, mathematical modelling, nutrient recovery 

model library, physicochemical framework, treatment train. 
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Résumé 

Les modèles mathématiques sont devenus des outils très importants pour la conception de la 
technologie, l'optimisation de la performance et le dépannage des processus car ils sont à la 
fois efficaces et économiques. Bien qu'un certain nombre de modèles pour des installations de 
traitement des déchets et eaux usées aient été mis au point et largement appliqués, ces 
modèles ne tiennent pas compte de processus physicochimiques fondamentaux jouant un rôle 
majeur dans la récupération des nutriments. Les éléments clés à traiter incluent une description 
précise des réactions acido-basiques, la cinétique lente de la précipitation, l’échange gaz-
liquide et la sorption/désorption dans le mélange complexe d’espèces chimiques qui se 
produisent dans les systèmes de récupération. En outre, les modèles de récupération des 
nutriments devraient fournir des informations sur les caractéristiques physicochimiques (par 
exemple la pureté, le diamètre des particules, la densité, etc.) des produits récupérés dans des 
conditions variables (composition de l'affluent, le pH, la température, les réactifs, etc.) afin de 
déterminer et de contrôler leurs propriétés fertilisantes. Ainsi, une recherche considérable est 
nécessaire avant que des modèles intégrés seront disponibles, qui permettent la conception et 
l'optimisation des installations de récupération à un niveau similaire à ce qui se fait dans le 
domaine de l’épuration biologique. Ce chapitre examine d'abord en bref les spécifications 
qualitatives requises pour la commercialisation de bio-engrais. Deuxièmement, ce chapitre 
explore les défis de modélisation impliqués dans la transition des modèles d'élimination des 
nutriments à des modèles de récupération. Enfin, le chapitre fournit des recommandations pour 
le développement d'un cadre générique de modélisation physicochimique pour la récupération 
des nutriments. Il est prévu que la mise en place d'une librairie générique de modèles pour la 
récupération des nutriments peut grandement faciliter la mise en œuvre et l'optimisation des 
chaînes de traitement pour la récupération des nutriments à pleine échelle. Un compromis 
devra être trouvé entre la précision des modèles et le temps de simulation.  
 
Mots-clés: cadre physicochimique, chaîne de traitement, digestion anaérobie, librairie de 

modèles de récupération des nutriments, modélisation mathématique, qualité des engrais. 
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8.1 Introduction  
Driven by economic, ecological, and community considerations, waste(water) treatment plants 

(WWTPs) are increasingly transformed into waste(water) resource recovery facilities (WRRFs). 

Next to the long recognized and successfully recovered resources, water itself and energy, 

attention is growing to extract other valuable products from waste(waters), in particular nutrients. 

Although to date many processes for the recovery of nutrients from waste(water) have been 

proposed and applied to varying degrees (Chapter 2; Vaneeckhaute et al., 2013a), challenges 

remain in improving their operational performance, decreasing the economic costs, and 

recovering the nutrients as pure marketable products with added value for the agricultural 

sector.  

Previous chapters provide evidence of the agronomic value of recovered products. However, a 

prerequisite for marketing and recognition in environmental legislations is that these bio-based 

fertilizers can compete with conventional fertilizer quality specifications, as summarized in 

Chapter 2 (Section 2.4). The fact that the WRRFs aim at delivering high-value products that can 

partially replace those produced by other means (e.g. chemical mineral nitrogen (N) production 

through the Haber-Bosch process) leads to a paradigm shift in specifications of the outputs of 

the facility: no longer treated wastewater and biosolids (i.e. organic thick fractions), but products 

that have to compete with what is already on the market. Previous chapters demonstrated that 

there are still some qualitative bottlenecks for product reuse requiring further optimization. 

Moreover, a problem still exists in the variability of digestate (and manure) composition over 

time. Hence, in order to move towards more sustainable fertilization practices, it is crucial that 

farmers and operators are able to predict the macronutrient content, mainly N, phosphorus (P), 

potassium (K), and sulfur (S), of their end products. 

From the literature (Chapter 2; Vaneeckhaute et al., 2013a), the techniques for nutrient recovery 

from digestate available or under development today and the recovered fertilizer products 

(between brackets) are: 1) chemical precipitation/crystallization (struvite, calciumphosphates), 

2) gas stripping (ammonia, NH3) and absorption (ammoniumsulfate (AmS) solution), 3) acidic 

air scrubbing (AmS-solution), 4) membrane separation (N/K-concentrates), 5) ammonia sorption 

(N-zeolites), and 6) biomass production and harvest (biomass). Hence, in contrast to the 

traditional biological nutrient removal technologies used in WWTPs, e.g. the activitated sludge 

(AS) system for N removal, the main unit processes considered in WRRFs rely on (changes in) 

the physicochemical properties of the solution. Important properties are, for example, ion 

activities, the chemical redox state, and the degree of solution supersaturation, to effectively 

perform precipitation, extraction, stripping, phase separation, crystallization, sorption, and 

filtration processes for recovery. On their turn, these fundamental properties are determined by 

the underlying chemical solution speciation, which is the detailed distribution of total component 

amounts between the ionic species physically present in the system. Consequently, the 

production of a pure and marketable fertilizer product from a complex waste matrix is 

challenging.  
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Resource recovery treatment trains are being conceived to maximize the recovery of interesting 

products from waste streams (WWTP sludge, manure, etc.) at minimal cost and environmental 

impact. A state-of-the-art example is given in Figure 8.1 and further examples can be found in 

Verstraete and Vlaeminck (2011). However, finding the appropriate combination of 

technologie(s) for a particular waste flow and the optimal operational conditions for the unit 

processes in the overall treatment train is a key concern. 

Figure 8.1 Treatment train for recovery of energy, organic fertilizer, ammonium sulfate fertilizer, 
and N/P/K slow-release fertilizer from a waste stream.  

CHP = combined heat and power generation. 
 

Mathematical models have become very important tools for technology design, optimizing 

performance, and process troubleshooting of treatment systems as they are both time and cost 

efficient (Rieger et al., 2012). Moreover, models can fill the gap between lab/pilot-scale 

experiments and commercial scale operation (Yu et al., 2011). Although a number of models of 

treatment facilities have been developed and applied extensively (Henze et al., 2000; Rieger et 

al., 2012), these state-of-the-art models focus on biological processes for the removal of 

nutrients (N, P) and chemical oxygen demand (COD). Fundamental physicochemical properties 

of the solution (see above) are not (or not sufficiently) accounted for, although they clearly play 

a major role in resource recovery.  

In order to integrate nutrient and energy recovery processes in the existing model libraries 

and/or to predict the physicochemical waste input properties (sludge, manure, etc.) for a nutrient 

recovery treatment train (Fig. 8.1), existing models will have to be extended so that they allow 

for physicochemical transformations to occur. Critical elements to be dealt with include accurate 

descriptions of acid-base reactions, slow precipitation kinetics, liquid-gas exchange, and 

sorption/desorption in the complex mixture of chemicals that the systems in place deal with 

(Batstone et al., 2012). Moreover, WRRF models should provide information on the 

physicochemical characteristics (e.g. macronutrient content, particle diameter, density, etc.) of 

the recovered products in order to determine and control their fertilizer properties (Vanrolleghem 

and Vaneeckhaute, 2014). Hence, considerable research is required before integrated models 
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will be available that will allow designing and optimizing WRRFs in the same way as is now 

possible for traditional biological WWTPs.  

First important steps were made towards a physicochemical modelling framework compatible 

with the current more biological process-oriented modelling frameworks (Batstone et al., 2012; 

Fernández et al., 2014; Grau et al., 2007b; Hauduc et al., 2014; Lizarralde et al., 2014; Takacs 

et al., 2006). However, these modelling studies focus on the integration of simplified 

physicochemical models in the existing (biological) nutrient removal models, e.g. the P 

precipitation model in the Activated Sludge Model 2d (ASM2d; Hauduc et al., 2014). Moreover, 

the scope of the existing studies stops at the anaerobic digestion of mainly WWTP sludge, 

where it mostly aims at the prediction of uncontrolled struvite precipitation during digestion. No 

work has been done on the development of generic models for the controlled nutrient 

recovery treatment train following the digester (Fig. 8.1). Consequently, models to 

adequately put together a nutrient recovery treatment train of unit processes and their operating 

conditions to maximize resource recovery and fertilizer quality in a sustainable and cost-

effective way are missing, although the need clearly exists.  

This chapter first gives a brief overview of the most important fertilizer quality specifications 

(Section 8.2) based on the findings of the previous chapters, in order to compile essential model 

outputs with focus on fertilizer commercialization. Next, the chapter elaborates on the limitations 

and advances in nutrient recovery process modelling and optimization (Section 8.3). The focus 

is on anaerobic digestion and the best nutrient recovery systems available, as selected in 

Chapter 2. Finally, based on the findings of the review, objectives and recommendations for 

future work (Section 8.4) in terms of nutrient recovery model development and implementation 

are provided. As such, this chapter aims to build up the fundamental basis for the modelling 

work that is subsequently presented in Chapters 9 and 10.    

 

8.2 Fertilizer quality specifications  
For generic fertilizer quality specifications, reference is made to Chapter 2 (Section 2.4).  

From the agronomic results presented in Phase II (Chapters 3-7) of this dissertation, the most 

important physicochemical qualitative fertilizer properties that deserve attention when using bio-

based products in agriculture can be derived. It concerns: i) the pH, ii) the salt content, iii) the 

sodium adsorption ratio (SAR), iv) the macronutrient (N, P, K, S, calcium (Ca), magnesium 

(Mg)) and (organic) carbon content, v) the macronutrient use efficiency, and vi) impurities, e.g. 

iron (Fe) and aluminium (Al) compounds. Important factors determining the product’s economic 

value, next to the nutrient content, are the density for liquid fertilizers and the particle size for 

granular fertilizer products. Hence, WRRF models should allow to accurately predict these 

product characteristics under variable operating conditions and variable input compositions.   
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8.3 Modelling and optimization: Advances and limitations  
The present section describes in more detail the advances and limitations in modelling and 

optimization of anaerobic digestion (Section 8.3.1) and of the best available nutrient recovery 

technologies selected in Chapter 2 (Vaneeckhaute et al., 2013a): P precipitation/crystallization 

(Section 8.3.2), NH3 stripping and absorption (Section 8.3.3), and acidic air scrubbing (Section 

8.3.4).  

 

8.3.1 Anaerobic digestion  

The reaction system in anaerobic digestion is complex with a number of sequential and parallel 

steps. These reactions can be divided into biochemical reactions, which act on the pool of 

biologically available organic components, and physicochemical reactions, which are not 

biologically mediated and encompass liquid-liquid reactions (i.e. ion association/dissociation), 

gas-liquid exchange (i.e. gas transfer), and liquid-solid transformation (i.e. precipitation and 

dissolution of ions). Anaerobic digestion is affected by several operating conditions, such as the 

specific characteristics of the waste stream, temperature, pH, macro- and micronutrients, 

inhibition (NH3, volatile fatty acids (VFA), shock loading), toxicity, retention time, mixing 

conditions, and feeding strategy (Astals et al., 2013; Bhuiyan et al., 2009; Hafner and Bisogni, 

2009; Zhang and Jahng, 2010). Monitoring VFAs and alkalinity during digestion is particularly 

essential for efficient digester process control because the acid/alkalinity ratio will change 

before the pH begins to drop (which is fatal for methanogenic bacteria) (Vanrolleghem and Lee, 

2003). In recent years, several authors underlined the importance of modelling the 

physicochemical system in anaerobic processes. The following arguments were used:   

i. A number of biological inhibition factors can be expressed physicochemically, such as 

pH, free acids and bases, and dissolved gas concentrations (Batstone et al., 2002); 

ii. Major performance variables such as gas flow and carbonate alkalinity are dependent 

on correct estimation of physicochemical transformations (Batstone et al., 2002); 

iii. Often, pH control with a strong acid or base is the major operating cost. In this case, the 

control setpoint (pH) must be calculated from the physicochemical state (Batstone et al., 

2002; Lauwers et al., 2013); 

iv. The acid-base subsystem is vitally important to calculate gas transfer (lots of gases are 

also acids or bases), while gas transfer has a significant impact on the acid-base 

subsystem through its effect on pH (Batstone et al., 2012); 

v. Chemical speciation of major solutes in digestion is required, e.g. to understand the 

toxicity of NH3 and VFAs and to mitigate uncontrolled struvite precipitation in the 

reactor, piping, and equipment (Bhuiyan et al., 2009; Hafner and Bisogni, 2009); 

vi. Precipitation processes are critical in modern waste(water) treatment, as they describe 

the behavior of P in all stages, e.g. struvite formation, especially during digestion of 

sludge from enhanced biological P removal (EBPR) (Ikumi, 2011), precipitation of Fe 

and Al with P after addition of Fe/Al-salts (Hauduc et al., 2013), as well as Ca and Mg 

scaling (Batstone et al., 2012; Brouckaert et al., 2010; Harding, 2009; van Rensburg et 
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al., 2003); 

vii. The presence of precipitates provides a slow buffer to changes in pH, and emerging 

processes such as P recovery are highly dependent on metal ion precipitation 

(Brouckaert et al., 2010; Kim et al., 2004). 

The lack of ion activity correction (at low conductivity), ion pairing (at high conductivity), 

precipitation, and P modelling are assumed the main limitations of the Anaerobic 

Digestion Model No. 1 (ADM1), which is the generic anaerobic digestion model currently 

provided by the International Water Association (Batstone et al., 2012; Lauwers et al., 2013). 

Due to lack of activity corrections, ADM1 also fails to predict pH correctly. pH is vital for proper 

precipitation prediction (Ganigue et al., 2010). In recent years, some attempts have been made 

to improve the predictability of anaerobic digestion by integrating physicochemistry, mainly in 

order to overcome the nuisance problem of struvite precipitation. Research groups that have 

been working on this issue are the University of Cape Town (South Africa; Musvoto et al., 

2000b; Sotemann et al., 2005; van Rensburg et al., 2003) and KwaZulu-Natal (South Africa; 

Brouckaert et al., 2010), the Center of Studies and Technical Research (CEIT, San Sebastian, 

Spain; Lizarralde et al., 2013, 2014), Cornell University (New York, USA; Hafner and Bisogni, 

2009), and EnviroSim (Ontario, Canada; Takacs et al., 2006). However, to date, no generic 

approach has been agreed upon to incorporate solution speciation based on ion activity, 

and the kinetics of precipitation of multiple minerals that share common ions, as well as 

competing reactions, such as ion pairing, in an anaerobic digester for organic waste 

treatment.  

Furthermore, the ADM1 application has practical problems related to the characterization of the 

digester feedstock and the associated model definition of the enzymatic disintegration and 

hydrolysis steps. As biological wastes are heterogeneous and dynamically changing in 

composition, it is difficult to find unique parameter values that are applicable to all possible 

combinations and ratios of wastes together with decaying anaerobic biomass. Since ADM1 has 

been published, several methods have been developed to overcome such parameter estimation 

and substrate fractionation problems. These approaches are based on elemental analysis (Grau 

et al., 2007a; Kleerebezem and van Loosdrecht, 2006; Zaher et al., 2009a), physicochemical 

analysis (Batstone et al., 2009), the conversion of other model outputs, e.g. activated sludge 

models (ASM), to ADM1 state variables (Copp et al., 2004; Vanrolleghem et al., 2005; Zaher et 

al., 2007), or anaerobic respirometry (Girault et al., 2012; Zaher et al., 2009b). A powerful 

dynamic interface to ADM1 to simulate the digestion of any combination of waste streams by 

evaluating their independent hydrolysis rates and operational settings (optimal feed ratio, 

hydraulic retention time, etc.) is the general integrated solid waste co-digestion (GISCOD) 

modelling tool, developed by Zaher et al. (2009a). 

 

8.3.2 Phosphorus precipitation/crystallization  

The ability to predict the P precipitation potential from a waste(water) flow is an important 

consideration for designers and operators to determine the feasibility and economics of nutrient 
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recovery, e.g. as struvite (MgNH4PO4:6H2O), and for the subsequent design and operation of 

reactors for P crystallization. For good product quality control, it is essential to know the best 

conditions under which the target precipitation reaction is likely to occur. Based on experimental 

studies conducted thus far, P recovery through crystallization was found to be mainly affected 

by the following operating factors: supersaturation (Bouropoulos and Koutsoukos, 2000; 

Ohlinger et al., 1998), pH (Doyle et al., 2002; Münch and Barr, 2001; Nelson et al., 2003), Mg to 

P molar ratio in case of struvite (Adnan et al., 2003; Jeong and Hwang, 2005; Le Corre et al., 

2007b; Münch and Barr, 2001; Nelson et al., 2003), crystal retention time (Adnan et al., 2003), 

recycle ratio, i.e. the ratio between the feed flow and the recycle flow (Adnan et al., 2003), 

reactor seeding (Ohlinger et al., 1998; Wu and Bishop, 2004), temperature (Bhuiyan et al., 

2009; Doyle et al., 2000), turbulence and mixing (Ohlinger et al., 1998; Regy et al., 2002). The 

crucial value to control is the supersaturation value, next to the total crystal surface, retention 

time, and flow pattern. To optimize the size of recovered crystals, researchers have often tested 

crystallization onto seed materials such as sand (Battistoni et al., 2002) or preformed crystals 

(Shimamura et al., 2003). Seeding clearly impacts the final particle size distribution (PSD).  

Especially struvite solubility is widely studied. However, the conditions reported to be optimal for 

struvite crystallization vary from publication to publication (Andrade and Schuling, 2001; Huang 

et al., 2011; Le Corre et al., 2009), and to date the purity of the product precipitated cannot be 

guaranteed due to the availability of foreign ions and co-precipitation. Recently, Schneider et al. 

(2013) underlined the importance of modelling solution thermodynamics and the presence of 

foreign ions in nutrient recovery systems, as the constituent species concentrations, the solution 

pH, and ionic strength directly determine the generation of supersaturation.    

Although a substantial number of models have been developed for P precipitation and/or 

crystallization, these models mostly focus on the precipitation of one target compound, e.g. 

struvite (Bhuiyan et al., 2007; Celen et al., 2007; Miles and Ellis, 1998; Mohan et al., 2011; Wu 

and Zhou, 2012; to mention a few), Ca5(PO4)3OH (Maurer et al., 1999), or FePO4 (Hauduc et 

al., 2013, 2014), accounting only for the solubility product and supersaturation ratio of the target 

species, e.g. for struvite based on the three main constituents, Mg2+, PO4
3-, and NH4

+. Besides 

the equilibrium model developed by Lee et al. (2013) for struvite formation with simultaneous Ca 

precipitation, no other models have been described in the literature for simulation of P recovery 

as a pure target product (e.g. struvite) under the competitive inhibition of other ions, e.g. Ca and 

Fe ions. Moreover, no models applied for nutrient recovery from waste(water) by means of 

precipitation/crystallization account for supersaturation ratios and solubility products of multiple 

competing precipitation reactions based on a detailed solution speciation, including e.g. PO4
3-, 

HPO4
2-, Ca2+, Fe3+, and Al3+ ionic species, and the time-dependent behaviour of super-

saturation. As a result, given the complex nature of (digested) waste and the multiple competing 

processes (complex formation, ion exchange, co-precipitation, etc.), the current models often 

overestimate removal efficiencies (Rahaman et al., 2008, 2014) or underpredict the precipitate 

formation potential (Doyle and Parsons, 2002; Parsons et al., 2001). Hence, pilot testing is still 

indispensable for proper design and process performance evaluation. Besides, the product’s 
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fertilizer potential is affected by concurrent precipitation. For example, in Chapter 6 it was 

observed that FePO4-sludge is not an interesting product in terms of P release for agricultural 

crop growth because of its high P-binding capacity, in contrast to the valuable slow-release 

struvite fertilizer (Vaneeckhaute et al., 2015a, 2015b). 

Next to the simplified thermodynamic approach of the current models for P precipitation/ 

crystallization, another limitation is that most of the present studies focus on the development of 

a thermodynamic chemical equilibrium model. Much less work has been carried out to couple 

solution thermodynamics to the fundamental kinetics of P crystallization, which involves the 

relatively slow processes of nucleation, crystal growth, agglomeration, and breakage, and 

hence should be modelled dynamically. The main research groups that have been working on 

modelling these phenomena are the Australian universities, James Cook and Queenland (Ali 

and Schneider, 2008; Galbraith et al., 2014; Harrison et al., 2011), Cranfield University 

(Bedford, UK; Le Corre et al., 2007a,b), and the University of British Columbia (Vancouver, 

Canada; Bhuiyan et al., 2008; Rahaman et al., 2008). These studies focus on the production of 

N-struvite only, and are limited to crystal growth and occasionally nucleation, described by 

empirical power laws. Only Le Corre et al. (2007a,b) studied aggregation and suggested that 

aggregation without the addition of coagulants is not significant in the case of struvite. However, 

recently, Galbraith et al. (2014) proposed a generalized model for P crystallization driven by the 

three key mechanisms of nucleation, growth, and aggregation. Nevertheless, this model is likely 

too complex for direct application to real-world, large-scale nutrient recovery systems, since it 

employs complex crystal population dynamics. To date, it has only been tested on synthetic 

solutions containing principal reactants, while it is expected that the presence of competing ions 

and suspended particles in the complex matrix of (digested) waste flows will significantly 

influence the rate of crystal formation and its purity (Quintana et al., 2005). Hence, as in all 

other kinetic modelling efforts described above, a significant problem of this model is the fact 

that the underlying kinetic equations are all driven by solution supersaturation, which is not 

adequately accounted for due to the simplified thermodynamic approach (even though the 

kinetics are described in a very complex way). 

Ideally, a more easily-applicable generic modelling approach for real waste flows would 

build up a detailed chemical speciation model to correctly predict supersaturation of 

multiple precipitates, coupled to a simplified classical kinetic model (e.g. Perez et al., 

2008) to describe the main slow mechanisms involved in crystal formation. As such, the 

model can provide accurate information on product quantity and quality, such as purity and 

particle size, which is essential to obtain marketable end products acceptable for agricultural 

use.    

 

8.3.3 Ammonia stripping and absorption  

The operational pH and temperature are the most important factors in the NH3-NH4
+ equilibrium. 

Above pH 10, NH3 predominates in the solution and an increased temperature enhances NH3 

stripping (Saracco and Genon, 1994). However, as for P precipitation, optimal conditions for 
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NH3 removal reported in literature are very variable. Lemmens et al. (2007) state that for optimal 

NH3 removal, the pH of the liquid fraction should be around 10 and the temperature around 70 

°C. However, Liao et al. (1995) and Gustin and Marinsek-Logar (2011) found no appreciable 

improvement in NH3 removal by changing the temperature at high pH (10.5-11.5), while other 

studies showed that ‘complete’ removal without chemical addition is possible at a temperature 

of 80 °C (Bonmati and Flotats, 2003) and 60 °C (Campos et al., 2013). The latter would be 

caused by the transformation of bicarbonate (HCO3
-) to carbonate (CO3

2-) at higher 

temperature, resulting in a pH increase through carbon dioxide (CO2) stripping. Hence, the 

alkalinity of the feed flow is also very important in determining optimal process conditions and 

costs. This underlines the essence of modelling treatment trains for resource recovery, 

as alkalinity is also a key operational factor for anaerobic digestion. Hence, process 

optimization of these systems is interconnected.  

The rate of mass transfer of a compound is proportional to the contact area, which is 

determined by the specific surface area (m2 m−3) and the degree of wetness of the packing 

material (if there is any), which, in turn, is affected by the means of wetting, such as trickling, 

spraying, and submerging, and the liquid flow rate (Collivignarelli et al., 1998; Melse and Ogink, 

2005). In practice, air stripping in packed towers typically leads to scaling and fouling of the 

packing material due to reactions between CO2 in the air and some metal ions in the 

waste(water). Slaked lime is therefore often added to adjust the pH of the waste flow and 

reduce the carbonate content before entering the stripping tower (Alitalo et al., 2012; USEPA, 

2000). Alternatively, calcium carbonate (CaCO3) could simultaneously be recovered in the 

stripping column (GNS, 2014). In case of high buffering capacity, an additional CO2 stripper 

before the NH3 stripping process might be economical (RVT Process Equipment,  Steinwiesen, 

Germany, personal communication 2014).  

With the purpose of improving the mass transfer and eliminating scaling problems, in recent 

years some new gas-liquid contactors without packing have been used for the gas-liquid 

operation, such as the water-sparged aerocyclone (Bokotko et al., 2005; Quan et al., 2009, 

2010) and bubble column reactor (BCR) (Collivigneralli et al., 1998; Powers et al., 1987). In 

these systems the gas film resistance is decreased and the gas-liquid contact area increased. 

This accelerates the mass transfer of NH3 (which has a low Henry coefficient or very high 

solubility) from the liquid to the gas phase (Mattermuller et al., 1981; Powers et al., 1987).  

Mathematical models are particularly important for process optimization and scale-up of 

stripping systems in order to fill the information gap between lab/pilot- and full-scale 

(Collivignarelli et al., 1998; Yu et al., 2011). For example, most laboratory stripping experiments 

use blowers instead of fans, because there are no appropriate fans available for lab-scale NH3 

stripping experiments. At a commercial scale, though, it is possible to achieve a large volume of 

airflow with small air pressure by fans, which require minimal electrical consumption.  

Previously reported theoretical modelling studies are mostly based on empirical methods, such 

as mass transfer correlation of the volatile compound under study, and assume that the flow in 
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stripping towers is homogenous, i.e. spatially independent (Arogo et al., 1999, Katechis et al., 

1998). Collivigneralli et al. (1998) and Powers et al. (1987) developed steady state models for 

BCRs and accounted for the entrainment of NH3 in bubbles, as well as for the temperature and 

pH dependency of the Henry coefficient. Recently, Yu et al. (2011) showed that the distribution 

of temperature and liquid volume fraction in a packed tower is not homogenous. The authors 

underlined the importance of considering liquid residence time in the design. Little efforts have 

been made to connect mass and heat transfer with chemical reactions, other than the NH3-NH4
+ 

equilibrium, occurring in stripping towers for N recovery. For instance, CaCO3 precipitation, 

which mainly causes the above-mentioned blocking and scaling problems, may occur and 

should be quantified. Also the simultaneous removal of other volatile compounds, such as 

amines, from the waste flow may not be underestimated in view of odor emission control. 

Moreover, a series of strippers could be implemented for combined N and S recovery (Lee et 

al., 2002). Yet, again, because of the complex nature of (digested) waste material, modelling 

the chemical speciation and solution thermodynamics, next to an appropriate rate-based 

mass transfer model, is essential to improve process design, operational performance, 

and recovered product quality.     

 

8.3.4 Acidic air scrubbing  

The equipment most often used for acidic air scrubbing to capture NH3 are packed towers and 

venturi scrubbers. The pH is controlled, usually at a value below 4, by addition of acid (typically 

sulfuric acid, H2SO4; Chapter 2) to the recirculation water in order to enhance the mass transfer 

and absorption process. A minimum water discharge rate is required to prevent precipitation of 

ammonium sulfate ((NH4)2SO4, AmS) on the packing column, which causes blocking and 

clogging of the system. At an NH3 removal efficiency of 95 %, the discharge water production is 

about 0.2 m3 kg-1 NH3 (Melse and Ogink, 2005). Melse and Ogink (2005) reported that the AmS 

concentration of acidic air scrubbers is usually controlled at a level of ± 150 g AmS L-1, which is 

roughly 40 % of the maximum solubility at pH 4. However, commercial processes combining 

stripping and NH3 absorption seem to achieve more concentrated solutions, i.e. 25 % AmS 

(ANAStrip, GNS, Halle, Germany, personal communication 2014) to 38 % AmS (RVT Process 

Equipment, Steinwiesen, Germany, personal communication 2014) and 40 % AmS (Amfer, 

Colsen, Hulst, the Netherlands, personal communication 2014). From literature and contact with 

technology providers, process control with pH measurement and automatic water discharge 

appears to be sufficient to guarantee adequate NH3 recovery. In order to simultaneously 

capture sour reacting components, e.g. hydrogen sulfide (H2S) and CO2, often a two-stage 

scrubber is used in the field of gas purification, capturing these compounds in an alkaline 

aqueous solution, such as sodium hydroxide (NaOH) (Brettschneider et al., 2004; See Chapter 

4: alkaline air scrubber water). Using a subsequent bioreactor, elemental S could 

simultaneously be recovered after biological oxidation (Lens et al., 2006). Furthermore, a recent 

study (Jiang et al., 2014) demonstrated the economic viability of integrating NH3 stripping, 

absorption, and biogas purification (H2S and CO2 absorption) for both N and S recovery.  
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The rate of mass transfer of a compound to the liquid phase is proportional to the concentration 

gradient between the gas and liquid phase. The concentration in the liquid phase is determined 

by the component solubility, the rate of water discharge and fresh water supply, the pH, and if 

applicable, the transformation of NH3 (or H2S, etc.) into other compounds (Manuzon et al., 

2007). Furthermore, the empty bed air residence time, which can be calculated by dividing the 

reactor volume by the air flow rate, determines the total mass transfer and depends on 

solubility. Simplified models have been developed in literature to predict the performance of a 

counter-current gas absorption tower based on the above mass transfer principles (Calvert and 

Englund, 1984, Fair et al., 1997, Manuzon et al., 2007). Manuzon et al. (2007) designed and 

optimized a prototype acid spray wet scrubber for single-stage and multi-stage NH3 absorption, 

while commercial scale H2S stripping columns have also been modelled (Taylor et al., 2010). 

Nevertheless, no generic absorber model with the purpose of nutrient recovery, taking in 

account ion activity and other physicochemical reactions than the targeted gas-liquid 

equilibrium (e.g. NH3-NH4
+), such as precipitation (e.g. AmS) and simultaneous 

absorption/volatilization of multiple compounds, has been proposed. 

Finally, several technologies are commercially available for the crystallization of AmS. It 

involves both evaporative crystallizers for undersaturated solutions (external heat is required to 

obtain supersaturation) and reaction crystallizers for concentrated reactants (use of dissolution 

and reaction heat only). Examples are the Oslo type and Draft Tube Baffled (DTB) type 

crystallizers (Hofmann et al., 2009). Currently 80-90 % of the AmS crystallizers operate in 

evaporative mode and DTB is recommended (Gea-Messo, 2013), resulting in crystal sizes of 2-

2.4 mm. Mathematical models of FBR crystallizers for AmS production from NH3 and H2SO4 

have been reported on in literature (Belcu and Turtoi, 1996; Daudey, 1987; Kubota and 

Onosawa, 2009) because of their long-time record for industrial application. Usually the process 

is described in terms of dynamic heat and mass balances, combined with a dynamic population 

balance, which describes the crystal size distribution (CSD). The nucleation rate is traditionally 

described using an empirical power law based on supersaturation, which is the main driving 

force (Daudey, 1987). However, as supersaturation is difficult to measure, it is often replaced by 

the growth rate, which is also a function of supersaturation, but which can be estimated 

experimentally. Because such experiments are expensive and time-consuming, models 

that are able to adequately predict solution supersaturation or sensors that allow online 

monitoring of this control parameter would be valuable tools for crystallization process 

and product quality optimization (cfr. Section 8.3.2).   

 

8.4 Recommendations for research  
8.4.1 Definition of modelling objectives   

From the literature review above, it is clear that a first important research objective should 

involve the development of generic integrated biological-physicochemical three-phase process 

models for anaerobic digestion and for the best nutrient recovery systems available to date. The 
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models should include an accurate chemical solution speciation as well as reaction dynamics, 

though a balance must be found between model accuracy, complexity, and simulation times 

(Section 8.4.3).  

Secondly, the generic model library should be applicable as a tool for process optimization of 

single nutrient recovery systems, as well as for determination of optimal unit process 

combinations, in order to maximize resource recovery (nutrients, energy) from a particular 

waste stream and minimize energy and chemical requirements. Modelling of treatment trains is 

important as a combination of suboptimal unit processes may lead to an overall optimal output. 

Moreover, modelling of treatment trains can help identifying bottlenecks in operational strategies 

and treatment processes upstream. For example, the use of Fe and/or Al salts to improve 

separation/dewatering has a huge impact on the P bio-availability (Chapter 6; Vaneeckhaute et 

al., 2015a) and limits the potential for P recovery as valuable fertilizer product downstream. 

In summary, a common base for modelling is required, which should not only facilitate process 

and treatment train implementation, but also serve as a generic framework allowing to make 

outcomes more comparable and compatible. 

 

8.4.2 Recommended model properties  

The generic models should be based on mass balances to describe physicochemical and 

biochemical transformation and transport processes, as well as on accurate calculation of water 

chemistry in order to correctly define solution speciation and driving forces for component 

transformation (e.g. supersaturation). A dynamic modelling approach, i.e. one that accounts for 

time-dependent changes in the state of the system, is recommended, because the models 

should be applicable to real-time situations and (variable) operating conditions, such as i) 

periodical load variations, e.g. absence of operators in weekends/evenings, seasonal variations, 

etc., ii) individual disturbances, e.g. rain events and incorrect control manipulations, and iii) 

systems that are operated intermittently or cyclically as is the case for multiple nutrient recovery 

processes, e.g. intermittent aeration in stripping systems and (semi-)batch processes to obtain 

target fertilizer specifications, e.g. a target AmS concentration via acidic air scrubbing.  

The system to be described consists of interactions between three phases: liquid, solid, and 

gas. Both heterogeneous transfer reactions that occur between phases (gas transfer, liquid-

solid transfer) and homogenous transformation reactions that occur within a single phase (bio-

degradation, acid-base chemistry, ion pairing) must be taken in account. Model outputs should 

involve fertilizer quality and quantity measurements. Based on the literature review above, 

desired outputs for each discussed resource recovery process are compiled in Table 8.1.  

Via the interrelated chemical and biological processes, the mass balance and continuity based 

process models fix quantitatively the relationship between all components considered in the 

system so that the system’s output is governed completely by the input waste stream 

characteristics and the applied process conditions. Factors that are expected to influence the 

process outputs and hence must be included as model inputs are presented in Table 8.2.  
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Table 8.1 Recommended model outputs for each unit process. AD = anaerobic digestion; Prec 
= precipitation/crystallization; Strip = stripping; Scrub = scrubbing.  

Model outputs AD Prec Strip Scrub 

Biogas volume and composition X - - - 
Consumables (air, chemicals, heat, etc.) X X X X 
Fertilizer quantity    X X X X 
Fertilizer (and/or effluent) quality  
 

    
Dry weight content / density 

 
X X (X)a X 

Macronutrient content (N, P, K, S, Ca, Mg) X X X  X 
Macronutrient use efficiency (N, P, K, S)  X X (X)a X 

Micronutrient content  X X (X)a (X)b 
Organic carbon content X X (X)a - 

Particle size - X - - 
pH X X (X)a X 

Purity - X X X 
Salt content  X X (X)a X 

Scaling potential  X X X X 
a Values between brackets refer only to the effluent quality from the stripping unit, not to the stripped gas.  
b  Depending on the origin of the acid used in the air scrubber, micronutrients can be taken in account or ignored.   

 

Table 8.2 Factors that potentially influence the model outputs per unit process and reference for 
corresponding equations. AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = 
stripping; Scrub = scrubbing.  

Influencing factors AD Prec Strip Scrub Reference 

Aeration (air flow rate) - (X)a X X Tchobanoglous et al. (2003) 

Alkalinity (addition/removal) X - X - Crittenden et al. (2012) 

Bubble size - - X X Gujer (2008) 

Chemical pH-adjustment (acid/base dose) X X X X Crittenden et al. (2012) 

Feed composition  X X X X - 

Feed flow rate X X X X - 

Heating (temperature) X X X X Tchobanoglous et al. (2003) 

Mixing (q� value)b X X - - Crittenden et al. (2012) 

Reactor seeding - X - - Schneider et al. (2013) 

Reactor height  - - X X Gujer (2008) 

Residence time (liquid, air, crystals) X X X X Tchobanoglous et al. (2003) 
 a   Value between brackets represents the use of air instead of chemicals for pH increase.   
 b   �̅ is the root mean square velocity gradient �Time���, which depends on the power input (Camp and Stein, 1943). 
 

Evidently, the mathematical models should allow evaluating how a change in these model 

inputs will impact on the value of the process outputs. As such, the models could be used as a 

valuable tool for process optimization. 

 

8.4.3 Numerical solution   

When combining biological and chemical reactions, the numerical solution is a critical step 

because of the stiffness that arises when considering reactions with very different conversion 

rates, i.e. the range of the time constants is large (Lizarralde et al., 2014). Because they are 

much more rapid, the homogenous physicochemical reactions can be assumed at equilibrium 

compared to the time scale of heterogeneous physicochemical reactions and biological 

reactions (Batstone et al., 2012). Therefore, for the fast reactions the steady state solutions can 
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be perfectly adequate and a thermodynamic equilibrium approach may be applied. However, for 

slower reactions, a kinetic approach must be applied because one is interested in the time-

variable or dynamic variation of the constituents. This makes the simulation of such a system 

challenging, and in order to avoid excessively long simulation times, one needs to be somewhat 

creative when implementing the model.  

In the case of dynamic models, two possible solution procedures have been applied to date for 

stiff systems: 

1. ODE (ordinary differential equation) approach: All reactions are calculated 

simultaneously using ODEs as in Musvoto et al. (2000a, b) and Sotemann et al. (2005); 

2. DAE (differential algebraic equation) approach: The slower reactions are represented 

by differential equations (ODE) and the fast reactions are calculated by use of algebraic 

equations (AE) at each iteration step as in Batstone et al. (2012), Brouckaert et al. 

(2010), Volcke et al. (2005), or Rosen et al. (2006). The modeller can choose between 

having a tailored code to solve water chemistry or using an external software tool such 

as PHREEQC (Parkhurst and Appelo, 2013) or Visual MINTEQ (Allison et al., 1991) at 

each iteration step.  

The use of an external geochemical software tool with designated thermodynamic databases is 

interesting so as to accurately calculate chemical speciation and pH. Software tools as 

PHREEQC and MINTEQ are generally accepted tools for equilibrium water quality modelling 

and have a dedicated and proven solver for chemical speciation calculations. However, 

simulation times using the full PHREEQC/MINTEQ thermodynamic databases for chemical 

speciation may be longer than when an integrated code is used (Lizarralde et al., 2014). On the 

other hand, the latter may be less flexible and complete. Hence, an important challenge 

exists in the development of an efficient methodology for solving the (stiff) equations in 

nutrient recovery models. A compromise should be found between model accuracy and 

simulation times.   

 

8.5 Conclusions and perspectives  
The advances and limitations in modelling and optimization of nutrient recovery systems were 

reviewed. In order to select important model outputs, a brief overview of relevant fertilizer quality 

specifications was also provided. Based on the findings, recommendations for model 

development in view of nutrient recovery were specified.  

Further research should involve the construction of a generic nutrient recovery model library 

based on detailed solution speciation and reaction dynamics aiming at fertilizer quantity and 

quality as model outputs. The library should be applicable as a generic tool for process 

optimization of single nutrient recovery systems, as well as for determination of optimal unit 

process combinations, in order to maximize resource recovery (nutrients, energy) from a 

particular waste stream and minimize energy and chemical requirements. Finally, numerical 

solution should be regarded as a critical step in resource recovery modelling, requiring further 



 

 211 

research and optimization. Starting from the modelling objectives and recommended model 

properties outlined in the present chapter, the development and implementation of a generic 

nutrient recovery model library will be aspect of Chapter 9.  



 

 



 

 

 

 

 

 

 

           CHAPTER 9:  
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Towards a generic modelling framework for nutrient recovery processes 
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submitted. Development, implementation, and validation of a generic nutrient recovery model 

(NRM) library.  
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Abstract  
In the transition from waste(water) treatment plants (WWTPs) to waste(water) resource recovery 
facilities (WRRFs), the construction of accurate mathematical models at minimal computational 
effort is becoming an important challenge to hasten process and treatment train implementation 
and optimization. The present chapter aimed at the development of a generic nutrient recovery 
model (NRM) library based on detailed solution speciation and reaction kinetics, with focus on 
fertilizer quality and quantity as model outputs. The purpose was to provide a common base that 
compiles the large body of knowledge on nutrient recovery processes currently available from 
research studies and operational experience. To this end, dynamic physicochemical three-
phase process models for precipitation/crystallization, stripping, and acidic air scrubbing as key 
units were developed, as well as four ancillary units. In addition, a compatible combined 
biological-physicochemical anaerobic digester model was constructed. The latter includes 
sulfurgenesis, biological N/P/K/S release/uptake, interactions with organics, among all other 
relevant processes, such as precipitation, ion pairing, and liquid-gas transfer.  

In order to facilitate numerical solution, an efficient procedure for calling PHREEQC selected 
chemical speciation outputs from the Modelica coded kinetic transformation models using the 
Tornado(/WEST) software kernel was developed. A reduction of execution time was established 
at two critical points during model simulations: i) the uploading and reading of the database and 
input files (through PHREEQC model reduction), and ii) the transfer of data between PHREEQC 
and Tornado (through tight model coupling). An average improvement of model simulation 
speeds of 64±10 % an 79±7 % was obtained using the developed reduced models as compared 
to full PHREEQC and MINTEQ databases, respectively. An important discovery concerns the 
omission of essential physicochemical components/species/reactions in view of nutrient 
recovery, e.g. aluminum phosphate, potassium struvite, and ammonium sulfate precipitation, in 
the existing standard geochemical databases. Because of these flaws, a generic database with 
the purpose of nutrient recovery was created for future applications.  

The models were successfully validated against experimental results at steady state. Their 
functionality in terms of increased process understanding and optimization was also 
demonstrated. All model results were found very sensitive to the input waste flow composition 
through its direct effect on pH. For optimization of process performance and sustainability, a 
more detailed input characterization than is common for WRRFs today is advised. Based on the 
results, recommendations for further experimental research in order to fully calibrate the NRMs 
were provided. 
 
Keywords: combined chemical equilibrium-kinetic modelling approach, chemical speciation, 

generic physicochemical framework, numerical solution, process optimization, reduced 

PHREEQC. 
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Résumé 

Dans la transition des stations d’épuration d’eaux usées (STEP) vers des stations de 
récupération des ressources de l’eau et des déchets (StaRRED), la construction des modèles 
mathématiques précis à l'effort de calcul minimal devient un défi important pour accélérer la 
mise en œuvre et l'optimisation des processus et des chaînes de traitement. Le présent chapitre 
vise le développement d'une librairie générique de modèles pour la récupération des nutriments 
(MRN) basée sur la spéciation chimique de la solution et sur la cinétique détaillée des réactions, 
tout en mettant l'accent sur la qualité et la quantité des produits fertilisants en sortie de modèle. 
L’objectif était de fournir une base commune qui compile le grand corpus de connaissances sur 
les processus de récupération des nutriments actuellement disponibles à partir des études de 
recherche et d'expérience opérationnelle. À cette fin, des modèles dynamiques et physico-
chimiques de processus en trois phases pour la précipitation/cristallisation, le stripage et le 
lavage à air acide comme unités clés ont été développés, ainsi que quatre unités auxiliaires. En 
outre, un modèle combinant la biologie et la physicochimie de la digestion anaérobie a été 
construit. Ce dernier inclut la genèse de soufre, la libération/absorption biologique de N/P/K/S, 
les interactions avec les matières organiques ainsi que tous les autres processus pertinents, 
comme les précipitations, les couplages des ions et les transferts gaz-liquide.  

Afin de simplifier la solution numérique du modèle, une procédure efficace capable d’extraire les 
sorties d’intérêt du modèle de spéciation chimique PHREEQC et de les transmettre au modèle 
développé en Modelica, utilisant le logiciel Tornado/WEST, a été développée. Une réduction du 
temps d'exécution a été établi à deux points critiques pendant les simulations de modèle: i) 
l'ajout et la lecture des bases de données et des fichiers d'entrée (par la réduction du modèle 
PHREEQC), et ii) le transfert de données entre PHREEQC et Tornado (par le fort couplage des 
modèles). Une réduction moyenne des temps de simulation de modèle de 64±10 % et 79±7 % a 
été obtenue en utilisant les modèles réduits développés versus un modèle utilisant les bases de 
données complètes de PHREEQC et MINTEQ, respectivement. Une découverte importante 
concerne l'omission des composants/espèces/réactions physico-chimiques essentielles en vue 
de la récupération des nutriments, par exemple la précipitation de phosphate d'aluminium, de 
struvite de potassium et de sulfate d'ammonium, dans les bases de données géochimiques 
existantes. En raison de ces défauts, une base de données générique visant la récupération 
des nutriments a été créé pour les applications futures.  

Les modèles ont été validés avec succès par comparaison avec les résultats expérimentaux à 
l'état d'équilibre. Leur fonctionnalité accrue en termes de compréhension et optimisation des 
processus a également été démontrée. Tous les résultats des modèles ont été trouvés très 
sensibles à la composition des flux de déchets d'entrée par leur effet direct sur le pH. Pour 
l'optimisation de la performance et de la durabilité des processus, une caractérisation des flux 
d’entrée plus détaillée que la caractérisation réalisée dans les StaRRED actuellement est 
recommandée. Basé sur ces résultats, des recommandations pour la poursuite des recherches 
expérimentales afin de calibrer entièrement les MRN ont été fournies. 
 
Mots-clés: approche de modélisation d’équilibre chimique–cinétique combinée, cadre 

physicochimique générique, optimisation des processus, PHREEQC réduite, solution 

numérique, spéciation chimique. 
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9.1 Introduction 
In the transition from waste(water) treatment plants (WWTPs) to waste(water) resource recovery 

facilities (WRRFs), mathematical models are becoming important tools to hasten nutrient 

recovery process implementation and optimization (Chapter 8). Indeed, models may aid in 

technology development, process operation, optimization, and scale-up in a cost-effective way 

(Rieger et al., 2012; Yu et al., 2011). Although to date many processes for the recovery of 

nutrients from waste(water) have been proposed and applied to varying degrees, no generic 

models for nutrient recovery aiming at the construction and optimization of treatment trains for 

resource recovery are currently available. Moreover, existing model libraries for WWTPs, e.g. 

activated sludge models (ASMs), do not allow the integration of nutrient recovery unit processes 

and/or the coupling of a nutrient recovery treatment train. This is due to the omission of key 

fundamental physicochemical components and transformations that are essential to describe 

nutrient recovery (Chapter 8). Consequently, the potential to adequately put together an optimal 

treatment train of unit processes and their operating conditions that maximize nutrient recovery 

and fertilizer quality is missing.  

This research aimed at developing generic integrated biological-physicochemical three-phase 

mathematical process models for the best nutrient recovery systems currently available (as 

selected in Chapter 2). The models are based on detailed solution speciation and reaction 

kinetics. This nutrient recovery model (NRM) library is a compilation of the large body of 

knowledge on nutrient recovery processes that is currently available from research studies and 

operational experience. In contrast to existing model libraries for waste(water) treatment 

(Chapter 8), e.g. the ASM library, the scope of the NRM library starts at the anaerobic digester 

and focusses on the nutrient recovery treatment train following the digester (Fig. 9.1). In 

addition to the development of a generic physicochemical modelling framework, a critical and 

challenging step when combining (stiff) biological and physicochemical differential equations is 

the numerical solution (Chapter 8). Hence, a generic methodology to allow for accurate 

chemical speciation at minimal computational effort is also proposed. 

The development of such a common basis for modelling of nutrient recovery systems requires 

considerable testing and validation, and comes along with the discovery of new data gaps and 

needs for experimentation. In fact, there is a long development path before new models may 

actually be used by the different stakeholders in the field. To speed up this process, three 

different nutrient recovery model user objectives (NRM-UOs) were aimed from short to longer 

term:  

1. NRM-UO I: Use of models for increased process understanding and optimization; 

2. NRM-UO II: Use of models for process design and control (e.g. fertilizer quality) 

operations; 

3. NRM-UO III: Use of models to assess environmental nutrient pollution (greenhouse 

gases (GHGs), nutrient leaching, etc.) over the whole waste-nutrient-soil-plant system.  
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Figure 9.1 Scope of the nutrient recovery model (NRM) library as compared to  

the activated sludge model (ASM) library. 

 

The present chapter describes the specifications, the development methodology, and 

implementation of the generic refined NRM framework. Aiming at the first stage of use (NRM-

UO I), the functionality of the models in terms of increased process understanding and 

optimization is demonstrated through testing and validation. Recommendations for further 

experimental research required to fully calibrate the models, as well as case-specific potential 

extensions, are provided. As such, in a second phase (NRM-UO II; beyond this PhD), the fine-

tuned models may allow for technology design and process control. In a third phase (NRM-UO 

III; beyond this PhD), the models may be coupled to soil nutrient balance models (e.g. the 

NDICEA software tool used in Chapter 5) to allow for environmental pollution assessments, 

which may aid in governmental decision-making (e.g. setting nutrient pollution levels, subsidies, 

etc.), as well as agricultural decision-making (e.g. timing of fertilizer application, fertilizer mixing, 

etc.). The expected benefits from this first phase of development for the different stakeholders 

are:  

i. Increased process understanding (consultants, operators, researchers, technology 

developers);  

ii. Increased use of models to specify operational conditions (consultants, operators);  
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iii. Increased use of models to select important factors for monitoring (consultants, 

operators);  

iv. Increased use of models to set up an optimal treatment train for nutrient recovery 

(consultants, researchers);  

v. Optimization of process performance (consultants, operators, researchers, technology 

developers);  

vi. Optimization of fertilizer quality (consultants, operators, researchers, technology 

developers);  

vii. Increased thinking prior to decision-making, e.g. through study of ‘what if’ scenarios 

(consultants, operators, researchers, technology developers);  

viii. Increased technology transfer from research to industry (researchers, operators, 

technology developers); 

ix. Common basis for further model development and validation studies to make outcomes 

comparable and compatible (consultants, operators, researchers, technology 

developers).  

All these benefits should hasten and facilitate the implementation of cost-effective full-scale 

treatment trains for anaerobic digestion and nutrient recovery from biodegradable waste(water) 

flows.   
 

9.2 Nutrient recovery model (NRM) methodology   
The methodology used for NRM development can be represented by six steps, shown in Figure 

9.2 and described in detail in the sections below.  

Figure 9.2 Six-step model development scheme. Step I: definition of modelling objectives;  
Step II: theoretical model development. MSL = model specification language.  
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The generic models are based on mass balances to describe physicochemical and biochemical 

transformation and transport processes, as well as an accurate calculation of water chemistry in 

order to correctly define solution speciation and driving forces for component transformation. 

Two key features of the models should be clear. First, a dynamic modelling approach, i.e. one 

that accounts for time-dependent changes in the state of the system, was applied, because the 

models should be applicable to real-time situations and (variable) operating conditions, such as 

i) periodical load variations, e.g. absence of operators in weekends/evenings, seasonal 

variations, etc., ii) individual disturbances, e.g. rain events and incorrect control manipulations, 

and iii) systems that are operated intermittently or cyclically as is the case for multiple nutrient 

recovery processes, e.g. intermittent aeration in stripping systems and (semi-)batch processes 

to obtain target fertilizer specifications, e.g. a predefined ammonium sulfate (AmS) 

concentration in the acidic air scrubber (Chapter 8).  

Secondly, the geochemical modelling software tool PHREEQC, i.e. PH REdox EQuilibrium in C 

language (Parkhurst and Appelo, 2013), was used for two purposes in the development of the 

NRM library:  

1. PHREEQC for NRM building (Section 9.2.2.1), which involves the selection of 

species and reactions to be included in the models, the preparation of a reduced 

PHREEQC model database, and the definition of PHREEQC selected outputs; 

2. PHREEQC for NRM simulation (Section 9.2.3), which involves the tight coupling 

of the reduced PHREEQC model to a kinetic and mass balance model in order to 

accurately calculate speciation and driving forces for component transformations at 

each time step during the model simulations. 

As such, a methodology to allow for accurate chemical speciation at minimal computational 

effort was developed (see below).   

Note that in the following sections, variables will be defined with their dimension given in straight 

brackets: �;� for mass, ��� for length, and �A� for time. 

 

9.2.1 Step I: Definition of modelling objectives  

9.2.1.1 Selection of unit processes and input waste streams    

A literature review on nutrient recovery technologies (Chapter 2; Vaneeckhaute et al., 2013a) 

was conducted in order to select the best available technologies as key unit processes for 

modelling (Table 9.1: four key units). The selection was made based on the economic 

feasibility, full-scale application at this stage, and the potential to produce marketable end 

products for agricultural applications (see Chapters 2-8; Vaneeckhaute et al. 2013a,b,c; 2014, 

2015a,b,c). With the purpose of modelling treatment trains, four ancillary units were additionally 

selected (Table 9.1).  
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Table 9.1 Key units and ancillary units included in the nutrient recovery model (NRM) library. 

 Type Unit Model name 
 Key unit Anaerobic digester NRM-AD 
 Key unit Precipitation/crystallization unit NRM-Prec 
 Key unit Stripping unit NRM-Strip 
 Key unit Air scrubber NRM-Scrub 
 Ancillary unit Settling tank NRM-Settle 
 Ancillary unit Storage tank NRM-Store 
 Ancillary unit Chemical dosing unit NRM-Chem 
 Ancillary unit Heat exchanger NRM-Heat 
 

As mentioned above, in contrast to existing studies, the scope of the present research 

starts at the anaerobic digestion unit and focusses on the nutrient recovery treatment 

train following the digester (Fig. 9.1). No recycle flows to upstream facilities in the WRRF, 

e.g. to an activated sludge (AS) system, were currently considered. In later stages, the 

proposed NRM models could be coupled to activated sludge models (ASMs), if a compatible 

generic physicochemical framework is also integrated in the ASMs.    

As input waste stream to the digester, manure and sludge (primary and secondary sludge, and 

mixtures of these) from WWTPs removing nitrogen (N) and chemical oxygen demand (COD) 

were considered for NRM-UO I (Fig. 9.1). Digestate (the remaining product after digestion) was 

considered as input stream to the key units for controlled nutrient recovery following the 

digester. WWTP sludge was selected, next to manure, as the current most advanced models for 

anaerobic digestion originate from the municipal wastewater and sludge treatment sector 

(Chapter 8). Nevertheless, for future applications, the generic NRM-AD implementation allows 

easy extension to co-digestion of other organic-biological wastes, e.g. using the general 

integrated solid waste co-digestion (GISCOD) modelling tool proposed by Zaher et al. (2009b) 

(Chapter 8: Section 8.3.1). The NRM-AD model can also be extended to allow for specific 

reactions occurring during the treatment of sludge from enhanced biological phosphorus (P) 

removal (EBPR) as e.g. in Ikumi (2011), but this was considered to be outside the scope of 

NRM-UO I.  

 

9.2.1.2 Specification of model outputs and influencing factors  

In order to develop valuable tools for process optimization, the desired model outputs and 

factors that may affect these outputs were defined for each NRM key unit (see Chapter 8: 

Tables 8.1-8.2).  

Obviously, the total content of principal macronutrients, N, P, and potassium (K), in the 

fertilizer product and the amount of biogas production are important model outputs, so as to 

quantitatively and qualitatively determine the overall resource recovery. Next to the three 

principal macronutrients, N, P, and K, previous chapters have shown the relevance of the 

secondary macronutrient, sulfur (S), in the context of nutrient recovery. Some motivations for 

inclusion of S in the models were: i) the demand for S fertilization in agriculture is increasing, 
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hence its recovery deserves attention (Till, 2010), ii) S may precipitate with iron (Fe), making Fe 

less available for P precipitation, iii) sulfate reducing bacteria (SRBs) compete with methane 

(CH4) producing bacteria for the same substrate, hence at high sulfate concentrations CH4 

production may be reduced (UCT, 2007), iv) hydrogen sulfide (H2S) is an important inhibitor of 

CH4 producing bacteria (UCT, 2007), and v) high biogas H2S values cause important concerns 

(toxicity, corrosion, biogas pollution, etc.), e.g. in the paper industry (Reiter and Piccot, 2004). 

Calcium (Ca) and magnesium (Mg) are also of importance, mainly for their soil improving 

properties and their interaction with P (Chapters 5-6).  

For all nutrient recovery systems, the percentage recovery of the target nutrient is a key 

performance measure. It was calculated using Equation 9.1:  

% C���L��¶ = E�� . ·�F  –  E�G$& . ·G$&E��F. ·�F  . 100                                             hi. [¸. _a 

in which E��F and E�G$& are the in- and outgoing liquid flow activities for component � �M L���, and 

·�F and ·G$& are the in- and outgoing flow rates �L� T���.  
Furthermore, the macronutrient use efficiency (N, P, K, S) in the fertilizer end products is an 

important factor in determining the agronomic potential and sustainability of the produced 

fertilizers (Chapters 5-6). It was evaluated as the percentage available or mineralized nutrient 

content over the total nutrient content, e.g. NH4-N/total N, ortho-P/total P, etc. This is possible 

by means of a solution speciation calculation (Section 9.2.2.1). 

Next, the fertilizer pH and salt content are of important concern as they may impact on soil 

quality (Chapters 5-6). The pH was directly calculated from solution speciation. Salts were 

characterized using the sodium adsorption ratio (SAR), i.e. the relative amount of available 

sodium (Na) over divalent cations, Ca and Mg (Hillel, 2008; Chapter 5: Eq. 5.1).  

Factors that may additionally determine the value of the recovered product are the particle size 

(for solid fertilizers), the density (for liquid fertilizers), and the product purity (Chapters 2, 4-5). 

To date (with the purpose of NRM-UO I), the particle size was evaluated as mean particle 

diameter (Section 9.2.2.2), but in future research one may be interested in particle size 

distributions (PSDs) (Nopens et al., 2014; Perez et al., 2008). Hence, PSDs may be included for 

future applications, e.g. using the generic approach presented by Perez et al. (2008).  

For the NRM-Prec unit, product purity was evaluated by calculating the fraction of precipitated 

target mineral(s) over the total product collected, taking in account the presence of multiple 

competing and concurrent precipitation reactions. To this end, also the precipitation of principal 

micronutrients occurring in waste(water) treatment, such as Fe and aluminium (Al), were 

evaluated, as these precipitates may negatively impact on the fertilizer P release in the soil 

(Chapter 6). Moreover, pollution with organics was accounted for. For the NRM-Strip/NRM-

Scrub units, purity was evaluated by calculating the amount of volatile target component(s) 

captured over the total amount of gas/liquid captured.  



 

222 

Finally, the formation of scale within the treatment module is an important operational 

bottleneck for multiple nutrient recovery technologies. Especially calcium carbonate (CaCO3) 

and magnesium carbonate (MgCO3) formation in the stripping and scrubbing units are of 

concern (Chapters 2, 8). To determine scale formation, the amount of CaCO3 and MgCO3 

precipitates formed were evaluated in time, next to other relevant precipitation reactions. The 

scaling potential was then examined by using the scaling criteria of the Ryzner Index 

(Tchobanoglous et al., 2003).  

 

9.2.2 Step II: Theoretical model development  

The dynamic mathematical model of each unit process was built using (Fig. 9.3): i) the definition 

of a chemical speciation model by means of geochemical modelling software (PHREEQC for 

model building, Section 9.2.2.1), ii) the description of a kinetic physicochemical and biochemical 

transformation model tailored to the models developed in the first step (Section 9.2.2.2), and iii) 

the selection of a reactor mass balance model to describe the (time-dependent) process 

conditions (Section 9.2.2.3).  

 
Figure 9.3 Development of combined physicochemical-biological three-phase (liquid-solid-gas) 
process models. COD = chemical oxygen demand; G = gas; P = precipitate; Q_gas = gas flow 

rate; Q_liq = liquid flow rate; Q_prec = precipitate extraction rate (for NRM-Prec);  
S = soluble; X = biological particulate COD.  

 

9.2.2.1 Chemical speciation model: PHREEQC for NRM building   

In order to describe the water chemistry in each system, first the potentially present chemical 

components and species were defined, and the possible heterogeneous physicochemical 

transformation reactions (gas transfer, precipitation) were selected using generally accepted 

geochemical software for equilibrium water quality modelling, PHREEQC 3.0.6  (Parkhurst and 

Appelo, 2013). Visual MINTEQ 3.1 was used as a control (Allison et al., 1991). As the involved 

homogeneous reactions (acid-base, ion pairing) in a speciation calculation are very rapid 
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compared to heterogeneous physicochemical reactions and biological reactions (Batstone et al., 

2012), instantaneous equilibrium was assumed to be adequate for solving water chemistry in 

NRMs. A reduced PHREEQC database and input script with definition of selected model 

outputs were developed for each key unit, so as to compromise between model accuracy and 

simulation times when coupling the speciation model to the kinetic mass balance model 

(Section 9.2.3.1). The proposed four-step procedure used for NRM building, involving the 

selection of the relevant species/reactions and the preparation of the reduced PHREEQC 

chemical speciation model, is presented in Figure 9.4 and further described below.   

 

Figure 9.4 Use of PHREEQC for nutrient recovery model (NRM) building:  
methodology for selection of relevant species and reactions per key unit and  

development of a reduced PHREEQC chemical speciation model.  
 

Step 1: Selection of relevant components for each unit process 

Based on literature, collected experimental data, and prior knowledge (Section 9.2.4 + Chapters 

2-8; Vaneeckhaute et al. 2012, 2013a,b,c, 2014, 2015b,c), the most important physicochemical 

dissolved components to include in models for nutrient recovery from both (digested) manure 

and sludge were selected for each key unit process (Table 9.2). In line with the selected model 

outputs (Section 9.2.1.2), it was aimed to represent five important component classes:  

1. All important macronutrients for recovery in line with the findings of the previous 

chapters (~ determine recovery efficiency and fertilizer value);  

2. Gaseous compounds (~ determine biogas production, volatilization, odors, greenhouse 

gas emissions, etc.);  

3. Salts (~ impact on ionic strength and soil quality); 
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4. Inorganic and organic carbon compounds (~ impact on biogas production, product 

purity, and scaling); 

5. Micronutrients that may occur in large quantities in waste(water) treatment, e.g. Fe and 

Al as a result of coagulation/flocculation practices (~ impact on product purity and 

recovery potential).  

 

Table 9.2 Dissolved physicochemical components selected for each key unit in the nutrient 
recovery model (NRM) library. AD = anaerobic digestion; Prec = precipitation/crystallization; 
Strip = stripping; Scrub = scrubbing. Component names are given by their valence state.    
Symbol Component AD Prec Strip Scrub Symbol Component AD Prec Strip Scrub 
S_Acetate Acetate X X X - S_K Potassium X X X - 
S_Al Aluminium X X X - S_Mg Magnesium X X X - 
S_Butyrate Butyrate X X X - S_Na Sodium X X X - 
S_Ca Calcium X X X - S_N_min3_ Nitrogen (-III)f X X X X 
S_C_4_ Carbon (+IV)a X X X X S_N_0_ Nitrogen (0)g X (X)l X X 
S_Cl Chloride X X X - S_N_5_ Nitrogen (+V)h X X X X 
S_C_min4_ Carbon (-IV)b X - X X S_O_0_ Oxygen (0)i - (X)l X X 
S_DOM Dissolved OMc X X X - S_P Phosphorus X X X - 
S_Fe Iron X X X - S_Propionate Propionate X X X - 
S_H_0_ Hydrogen (0)d X - X X S_S_min2_ Sulfide (-II)j X X X X 
S_H_I_ Hydrogen (+I)e X X X X S_S_6_ Sulfate (+VI)k X X X X 
S_H2O Water  X X X X S_Valerate Valerate  X X X - 
a carbonate species; b CH4(aq); c OM = organic matter; d H2(aq); e refers to pH; f ammonia species; g N2(aq); h nitrate 
species; i O2(aq); j sulfide species; k sulfate species; l values between brackets represent the use of air instead of 
chemicals for pH-adjustment. 
 

Since redox reactions too were considered, components that exist in more than one valence 

state in solution were identified by their component name followed by their valence. For 

instance, i) the component S_C_4_ constitutes CO3
2- plus HCO3

- plus H2CO3 (or CO2,aq) plus 

various other carbonate complexes present in the solution, such as MgCO3 and CaHCO3
+, and 

ii) S_N_min3_ constitutes both NH4
+ and dissolved NH3, as well as its various complexes. Only 

for Fe, the two valence states, Fe (+II) and Fe (+III), were lumped together into one component 

for total Fe, as the measurement of its valency is complicated and generally not provided in 

practice in WRRFs, nor in literature. Yet, in the speciation calculation, the Fe (+II) / Fe (+III) 

redox equilibrium was considered, as calculated from the occurring redox potential. The input Fe 

redox states can optionally be specified, if such data are available.  

As it is well-known that the presence of organic compounds may influence the purity of the 

recovered products (Kozic et al., 2011), relevant interactions between inorganic and organic 

components were also accounted for. Among the organic biological components considered 

(see Section 9.2.2.3), volatile fatty acids (VFAs) up to valerate were included as individual 

components in the physicochemical models. Oh and Martin (2010) indeed emphasized the 

particular importance of their physicochemical behaviour in WRRFs. The remaining soluble 

organic chemical oxygen demand (COD) fractions (see Section 9.2.2.3) were lumped into one 

component, i.e. dissolved organic carbon (DOC; 1 g DOC ≈ 0.33 x g COD). For DOC, the 

complexation with metals (Ca, Mg) was computed using a competitive Gaussian model for 

dissolved organic matter (DOM; 1 mol DOC ≈  8.6 x 10-2 mol DOM; USEPA, 1999). This 

simplified approach may be further refined for future applications, if more insights in the 
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physicochemical behaviour of each particular COD fraction become available.  

Finally, it should be remarked that heavy metals, such as cadmium (Cd), copper (Cu), and zinc 

(Zn), were not yet included in the speciation models. Nevertheless, heavy metals and the 

corresponding reactions are available in PHREEQC. Hence, the generic approach used for 

chemical speciation allows easy extension of the models to incorporate heavy metals for future 

applications.  

 

Step 2: Addition relevant components/species/reactions to generic geochemical databases  

To verify completeness, the generic PHREEQC (Phreeqc.dat) and Visual MINTEQ 

(minteq.v4.dat) databases were compared with each other, as well as with prior knowledge and 

with literature. Two observations were made: 1) the generic MINTEQ database is more 

complete than the PHREEQC one in view of WRRFs, 2) some important components, species, 

and reactions that can be expected in WRRFs are not included in either database. Hence, the 

generic database files were extended prior to use for speciation calculation (Table 9.3). The 

corresponding acid-base constants, ion pairing constants, solubility products, and other 

thermodynamics were taken from literature or other model libraries, as indicated in Table 9.3.  

 

Table 9.3 Extensions made to the generic PHREEQC (P; Phreeqc.dat) and/or MINTEQ (M; 
minteq.v4.dat) database files, and the reference for thermodynamic data. DOM = dissolved 
organic matter.  
Extension Name Database Reference 

Components acetate, butyrate, propionate, valerate, DOM P M, USEPA (1999) 

Species 

Ca(acetate)+, Ca(butyrate)+, CaCl+, Ca-DOM, CaNH3
2+, 

Ca(NH3)2
2+, Ca(propionate)+, Ca(valerate)+, FeH2PO4

+, 
FeNH3

2+, Fe(NH3)2
2+, H(acetate), H(butyrate), H-DOM, 

H(propionate), H(valerate), K(acetate), KCl(aq), KOH, KPO4
2-

Mg(acetate)+, Mg(butyrate)+, MgCl+, Mg-DOM, Mg(NH3)2
2+, 

Mg(propionate)+, Na(acetate), NaCl(aq), NaH2PO4(aq) P M, USEPA (1999) 

NH2COO- P + M Hafner and Bisogni (2009) 

Precipitates 

FeS(ppt), Mackinawite (FeS) P M 

AlPO4, K2NH4PO4:6H2O, (NH4)2SO4 P + M NIST (2001) 
K-struvite (MgKPO4:6H2O) P + M Chauhan et al. (2011) 

 

It should be noted that in the context of nutrient recovery from waste(water) flows as fertilizer 

products, the database extensions provided concern a fundamental contribution to the field. For 

example, K-struvite is (next to N-struvite) an interesting fertilizer (Chapter 2), though its 

precipitation reaction is not included in the standard databases. Also precipitation of aluminium 

phosphate (AlPO4) is highly important in waste(water) treatment as often Al-salts are dosed for 

sludge conditioning, whereas the precipitation reaction of ammonium sulfate ((NH4)2SO4) is 

essential for description of the scrubbing process. Noteworthy is also the clear impact of the 

omission of the species monosodium phosphate, i.e. NaH2PO4(aq), on the simulation results, 

that was found during model validation of the NRM-Prec (see Section 9.3.3.1). The generic 

extended database in view of nutrient recovery was named ‘Nutricover.dat’ and will be made 

available for inclusion in future PHREEQC and Visual MINTEQ software packages. 
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Step 3: Speciation calculation - Selection relevant species and reactions   

As mentioned above, the speciation calculation was conducted using PHREEQC 3.0.6, and 

Visual MINTEQ 3.1 was used as a control. An advantage of PHREEQC compared to most 

chemical software for water treatment is that saturation indices ( E! ’s) are calculated by 

PHREEQC with the free ions only, for instance Ca2+ instead of total Ca, which increases the 

accuracy of precipitation reaction calculations (Parkhurst and Appelo, 2013).  

The following methodology was used for selection of the relevant species and reactions:  

A. Specification of input scenarios (components + operational conditions); 

B. Run PHREEQC under the various conditions defined in A; 

C. Select relevant species and reactions based on the PHREEQC outputs;  

D. Verify the selection of species and reactions with literature. 

 

A: Specification of input scenarios   

Realistic ranges for the input component concentrations and operational conditions (pH, 

temperature, etc.) for the speciation calculations were adopted from literature and experimental 

data as described in Section 9.2.4, as well as through contact with technology providers 

(Chapter 2). The operational conditions and input streams tested for each key unit process are 

the following:   

� Anaerobic digestion: no oxygen, pH: 5-8.5, temperature: 20-55 °C, input: sludge and 

manure; 

� Precipitation unit: pH: 7-11, temperature: 20-50 °C, with and without Ca(OH)2, CaO, 

MgCl2, Mg(OH)2, or MgO dosing (0-500 mol m-3), input: digestate;   

� Stripping unit: pH: 7-11, temperature: 20-70 °C, with and without NaOH, Ca(OH)2, CaO, 

Mg(OH)2, or MgO dosing for pH-increase (0-500 mol m-3), input: digestate;   

� Air scrubber: H2SO4-solution at pH: 1-4 and temperature: 15-25 °C, input: stripped air.  

PHREEQC makes calculations using an input script in which the problem is specified via 

‘KEYWORDS’ and associated datablocks. First, all possible realistic scenarios were introduced 

using the maximum/minimum values of all operational factors and input variables for each unit 

separately. Next, for each unit the composition of 20 different possible input flows (from 

literature: Astals et al., 2013; Bhuiyan et al., 2007; Cesur and Albertson, 2005; Martin, 2003; 

Mattocks et al., 2002; Tchobanoglous et al., 2003; Vaneeckhaute et al., 2012, 2013b,c, 2014; 

Vlaco, 2012; Zaher et al., 2009) was used for simulation under variable operating conditions. To 

this end, a PHREEQC input script was developed for each unit, involving the identification of the 

input waste flows (PHREEQC data blocks: ‘SOLUTION’ and/or ‘GAS’). A batch reaction 

calculation was also coded if there is both a gas and liquid input, which is the case for the 

stripper and scrubbing unit (PHREEQC data block: ‘REACTION’). Then, one factor at a time 

was allowed to increase within its range (e.g. PHREEQC code: REACTION_TEMPERATURE 

20.0 – 70.0 in 51 steps), while the other factors were kept fixed. As such, a broad range of input 

scenarios was screened.  
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Note that contact was sought with the PHREEQC development center (Parkhurst D., personal 

communication 2014) to obtain feedback on the selection procedure presented above. However, 

currently in PHREEQC, no more feasible strategy is available for selection of the various 

simulation scenarios. Yet, the development of an adequate, but more time-efficient, procedure 

to go through a multidimensional set of factors will be aspect of further research. It is likely more 

practical to use PHREEQC coupled to another programming language, e.g. Tornado (Modelica) 

(Section 9.2.3), to go through a set of many combinations.   

 

B: Run PHREEQC  

Speciation calculations in PHREEQC/MINTEQ are made using designated thermodynamic 

databases which include a wide range of data for mineral phases and compounds. The 

calculations are based on three types of equations: 1) equilibrium relationships, 2) concentration 

conditions or mass balances (one per component), and 3) electro-neutrality conditions or charge 

balances (Chapra, 2008; Stumm and Morgan, 1996). By inclusion of oxidation/reduction 

reactions in the database, also the components’ redox states were defined in the speciation 

calculations. The pH may be defined or adjusted to achieve the charge balance. The Davies 

equation was selected for ion activity correction in the NRMs, similar to Ali and Schneider 

(2008), Galbraith et al. (2014), Lizarralde et al. (2013), and Ohlinger et al. (1998). The Davies 

ion activity correction was also recommended by Hafner and Bisogni (2009) above other 

relevant approaches, such as the Pitzer ion interaction approach. Moreover, the Peng-Robinson 

equation of state, which corrects for the nonideal behavior of gases, was used for calculating 

partial pressures [Ba and solubilities (Parkhurst and Appelo, 2013). Furthermore, the 

temperature dependency of the thermodynamic equilibrium coefficients was expressed by 

means of the Van’t Hoff relationship (Zumdahl, 2005), while the value of the water dissociation 

constant (-:) at different temperatures (other than 25 ºC) was computed using the equation of 

Harned and Hamer (1933).  

 

C/D: Selection criteria + verification  

From the speciation calculations the distribution of aqueous species (= ion activities) and 

saturation indices (E! ) for phases (= driving forces for precipitation and gas transfer) were 

obtained. Soluble species with an insignificantly low activity, i.e. less than 0.01 % of the total 

component activity, were excluded from the NRMs. Solids that may potentially precipitate (E! ≥ 

|0|) as well as gases that may volatilize (partial pressure (B) > 0) in the different units were 

selected. Conditions (pH, temperature) and rates for precipitation of the various forms of the 

selected minerals were also researched in the literature. The aim was to confirm the exclusion 

of the selected insignificant species and precipitates, while further identifying potential species 

and reactions that should be included in the database for each unit.  

The number of species and reactions that were found to be relevant according the speciation 

calculations and that were included in each NRM are presented in Table 9.4. The list of species 

involved and the transformation reactions included in each model are presented in 
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Table 9.4 Number of selected species and reactions for each key unit in the nutrient recovery 
model (NRM) library resulting from speciation calculations using PHREEQC (and Visual 
MINTEQ as control) modelling software. AD = anaerobic digestion; Prec = precipitation/ 
crystallization; Strip = stripping; Scrub = scrubbing.    

NRM-AD NRM-Prec NRM-Strip  NRM-Scrub 
No. of dissolved ionic species 80 86(87)a 80 18 
No. of reactions 

 Acid-base reactions 12 11 10 6  
Ion pairing 48 55 47 2 

Redox reactions 6 4/(5)a 7 6 
Precipitation/Dissolution 27 28 30 1 

Liquid-gas/Gas-liquid exchange  7 0/(5)a 7 7 
a Values between brackets represent the use of air instead of chemicals for pH-adjustment.  

 

Appendix 5 (Table A5.1 and Tables A5.2-5.6, respectively).   

 

Step 4: Building of a reduced model  

Knowing that the generic geochemical model databases contain more than 3,000 species 

(Allison et al., 1991), it was expected that the elimination of irrelevant species and reactions can 

have a significant impact on the simulation speed. As such, with the purpose of reducing model 

complexity and simulation times when coupling PHREEQC for NRM simulation (Section 9.2.3), 

a new PHREEQC database file including only the selected reactions and species was set up for 

each unit process. Moreover, a ‘SELECTED_OUTPUT’ data block was coded in the input script 

for each unit in order to transcribe only the appointed species and driving forces to the resulting 

outputfile. The latter is required for efficient coupling of the selected outputs to the kinetic and 

mass balance model (Section 9.2.3).  

The chemical speciation scripts developed above were run in PHREEQC using the full 

Phreeqc.dat (P) and minteq.v4.dat (M) databases, both available in the PHREEQC 3.0.6 

release. A comparison of simulation times using the full databases and the corresponding 

reduced database is presented in Table 9.5.  

 

Table 9.5 Simulation times (s) and improvement (%) using the reduced PHREEQC database as 
compared to the full Phreeqc.dat (P) / minteq.v4.dat (M) databases for simulation of the 
chemical speciation scripts developed for each key unit in the nutrient recovery model (NRM) 
library. AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = stripping; Scrub = 
scrubbing. 

Key unit Simulation time (s) 
Reduced PHREEQC 

Simulation time (s) 
Full PHREEQC (P) / MINTEQ (M) 

Improvement (%) 

NRM-AD 0.031 0.094 (P) / 0.185 (M) 67 (P) / 83 (M) 
NRM-Prec 0.047 0.094 (P) / 0.172 (M) 50 (P) / 73 (M) 
NRM-Strip 0.047 0.156 (P) / 0.172 (M) 70 (P) / 73 (M) 

 NRM-Scrub 0.020 0.066 (P) / 0.157 (M) 70 (P) / 87 (M) 
 

An average improvement of model simulation speeds of 64±10 % and 79±7 % was obtained 

using the reduced database as compared to full Phreeqc.dat and minteq.v4.dat, respectively. 

The observed deviation between PHREEQC and MINTEQ shows again the higher 
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completeness of the MINTEQ database. Note that the presented simulation times in Table 9.5 

concern the chemical speciation model only, so without the coupling to the kinetic and mass 

balance model. Yet, this model reduction is clearly relevant in terms of WRRFs, since the 

speciation model is run at every time step during NRM model simulations (Section 9.2.3.3). 

Evidently, it is important for model validation to keep in mind that a model reduction was 

performed. As such, for example, it was discovered during initial validation of the NRM-Prec 

model that the species NaH2PO4(aq) was lacking in the reduced database, though essential for 

correct prediction of P recovery (Section 9.3.3.1). 

 

9.2.2.2 Physicochemical transformation model 

Heterogeneous physicochemical reactions, such as liquid-gas transfer and precipitation, occur 

much slower than the homogeneous reactions involved in the speciation calculations presented 

above. Hence, a kinetic approach was applied in order to allow for the dynamic variation of the 

constituents.  

  

a) Liquid-gas / gas-liquid transfer   

Gas exchange processes in resource recovery systems can occur passively, i.e. without 

intensive gas bubbling (NRM-AD), or actively, i.e. with gas bubbling driven by an external air 

flow (NRM-Strip, NRM-Scrub). For both cases similar kinetic gas exchange formulations, based 

on the concentration driving force between the liquid and gas phases, apply (Eq. 9.2):  

P�,� �M L�� T���  = -7/4,� . � . [E��O,� − ��,� . B�(�,�a                                     hi. [¸. sa 

where E��O,� is the liquid phase activity of component �  �M L���, B�(�,� is the partial pressure in 

the gas phase of component �  (atm), ��,�  is the temperature-dependent Henry coefficient 

�M L�� atm��� , ��,� . B�(�,�  represents the saturation concentration of gas component �  in the 

liquid, -7/4,�  is the overall liquid-gas mass transfer coefficient �L T��� , and �  is the specific 

surface of the gas bubbles per reactor volume �L��� . Temperature dependency of �  was 

described by a Van’t Hoff relationship (Powers et al., 1987), while temperature dependency of 

-7/4,�� was described using the Arrhenius equation (Chapra, 2008). Through the coupling with 

PHREEQC (Section 9.2.3.1), both E��O,� and B�(�,� can be calculated at every time step during 

the simulations. The total gas phase pressure was computed using Dalton’s law of partial 

pressures (Stumm and Morgan, 1996).  

Furthermore, for calculation of -7/4,�� , a distinction was made between active and passive 

systems, as the values may differ significantly in practice (Chapra, 2008; Sotemann et al., 2006; 

Tchobanoglous et al., 2003). Moreover, a second distinction was made depending on the 

solubility of the gas considered, which determines whether mass transfer is liquid film controlled 

(for low to moderate soluble gases: �  > 0.55, i.e. CH4, CO2, H2, H2S, N2, O2 = all gases 

considered in the NRMs, except for NH3) or gas film controlled (for very soluble gases: � < 

0.55, e.g. NH3). If the resistance to mass transfer is on the liquid side, the overall liquid mass 

transfer coefficient, -7,� , can be perfectly adequate, while the overall gaseous mass transfer 
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coefficient, -4,�, provides a good estimation if the resistance is on the gas side. The relationship 

between the two coefficients can be represented by Equation 9.3: 

1-7,� = ��,� . C. A-4,�                                                                       hi. [¸. �a 

in which C is the universal gas law constant (0.082 L atm mol-1 K-1) and A the temperature (K). It 

should be noted that the above-mentionned overall mass transfer coefficients are actually 

derived from the individual mass transfer coefficients by Equation 9.4 (combined with Eq. 9.3 for 

-4,�):  
1-7� = 117,� + ��,�  . C. A14,�                                                              hi. [¸. ka  

in which 17,� and 14,� are the individual mass transfer coefficients that depend on the conditions 

at the interface and the bulk of the liquid and gas phase, respectively (Chapra, 2008; 

Tchobanoglous et al., 2003). Nevertheless, since the concentrations at the interface are difficult 

to measure, the overall mass transfer coefficient is generally used for practical purposes.  

As such, four potential mass transfer scenarios were considered: 

 1) Active liquid-gas/gas-liquid transfer (NRM-Strip, NRM-Scrub) of low to moderately soluble      

         gases.   

In this case, the penetration theory of Higbie (1935) was used to calculate the liquid mass 

transfer coefficient, -7� �T���. It states that diffusion is a non-steady state process and that the 

molecules of the solute are in constant random motion. Clusters of these molecules arrive at the 

interface, remain there for a fixed period of time, and some of them penetrate while the rest 

mixes back into the bulk of the phase. The transfer velocity was then formulated in terms of the 

average contact time of a gas bubble at the interface (Eq. 9.5; Chapra, 2008; Gujer, 2008):  

-7/4� =  -7� �T��� = ¹4. �� . H». � . Q�(�. 6. ·�(�¼½�. K��O                                      hi. [¸. va 

in which � is the average gas bubble diameter (default = 3 mm; Gujer, 2008), H is the rise 

velocity of the gas bubbles (default = 0.3 m s-1; Gujer, 2008),  Q�(� = ¾¿ÀÁÂ¿ÀÁ is the mean residence 

time of a gas bubble in the reactor �T�, K�(� is the volume of all bubbles in the reactor or the total 

gas volume �L�� , and ��  is the liquid phase diffusion coefficient   �L� T���. The latter was 

calculated at 298 K using the equation proposed by Schwarzenbach et al. (1993) (Eq. 9.6) 

based on the component’s molecular weight (;>, �M M���):      
��  �L� T��� = 2.7. 10�Å

;>Æ.Ç�                                                               hi. [¸. Èa 

The obtained �� values using Equation 9.6 showed good equivalence with ��  values found in 

literature for wastewater systems (Chapra, 2008; Gujer, 2008; Tchobanoglous et al., 2003).  
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 2) Active liquid-gas/gas-liquid transfer (NRM-Strip, NRM-Scrub) of very soluble gases.  

In this case, Equation 10.5 was again applied, but now the gaseous phase diffusion coefficient 

(��a was used (Arogo et al., 1999). 

 3) Passive liquid-gas/gas-liquid transfer (NRM-AD) of low to moderately soluble gases. 

In this case, the mass transfer rate needs to be calibrated based on experimental results, e.g. 

as in Tourlousse and Ahmad (2007), because the rise velocity of gas bubbles is usually not 

measurable or very difficult to measure. For convenience, the -7� is usually calculated from the 

-7� of oxygen gas (O2) as a reference compound, as rate constants for volatile solutes can be 

assumed proportional to each other (Chapra, 2008; Ikumi, 2011; Mackay and Yeun, 1983; Munz 

and Roberts, 1989; Musvoto et al., 1997). However, the use of O2 as a reference compound, as 

selected by Musvoto et al. (1997), is quite odd for anaerobic digestion, because normally no O2 

is present in such reactors. Therefore, in the NRM-AD model, H2 was used as volatile reference 

compound occurring in digesters, similar as in Pauss et al. (1990; Eq. 9.7):  

-7/4� =  -7� �T��� = -7,"# � . É ����,"#
ÊÆ.Ë                                          hi. [¸. Ìa 

 4) Passive liquid-gas/gas-liquid transfer (NRM-AD) of very soluble gases.   

In this case, the mass transfer rate should be determined independently of the low to 

moderately soluble gases above (Sotemann et al., 2005). If no experimental data are available, 

the -4� value for NH3 in anaerobic digestion is usually set to a very low value ranging from 1.92 

to 3.2 (default in NRM-AD = 3.2; Ikumi, 2011; Musvoto et al., 2000a; Sotemann et al., 2005). 

This is to ensure an extremely low loss from the liquid phase through stripping. However, as the 

transfer rate depends much on design, operating conditions, and characteristics of the waste 

flow to be treated, it is advised to determine the -4,*"Í� under actual environmental conditions, 

as e.g. in Arogo et al. (1999) and Vaddella et al. (2013).  

  

b) Liquid-solid / solid-liquid transfer 

The kinetic liquid-solid/solid-liquid transfer mechanisms described in all NRMs are nucleation (= 

birth of crystals), crystal growth, and redissolution. For the NRM-Prec, a generic approach for 

floc agglomeration and break-up as function of mixing energy was also included. All reactions 

were represented by an empirical power law (Eq. 9.8) using relative supersaturation (Î − _) 

as driving force (Ali and Schneider, 2008; Galbraith et al., 2014; Harrison et al., 2011; Nielsen, 

1984):  

ρ�,� �M L�� T��� =  1�. [E − 1aF                                                 hi. [¸. Ða 

in which E  is the saturation ratio ( = ÑÒÓÔÕÁ Ö� ×Ø
), L  refers to the stoichiometric precipitation 

coefficient which represents the total number of species involved in the precipitation reaction, 

!fÙ is the ion activity product �M L���, -� is the solubility product �M L���, 1� is the temperature 

dependent transfer coefficient �M L�� T��� , and ?  is the reaction order. The value of E  was 
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directly derived from the saturation index, E! (= log ÑÒÓÔÕÁ Ö), which is calculated by PHREEQC at 

every time step during model simulations. The temperature dependency of the reaction rate was 

modelled by means of the Arrhenius equation (Greenberg and Tomson, 1992; Nielsen, 1984). 

Using literature values for the molecular weight (MW) and density of the different precipitates, 

the total volume [K<	'&���=	'a , total mass/moles [;<	'&���=	'a,  and MW [;><	'&���=	'a of the 

recovered fertilizer product (composed of the various precipitates) was calculated at every time 

step. The time-dependent number of particles (@�('&a was then determined using the Avogadro 

constant (NA = 6.022 x 1023 mol-1). The mean particle diameter [��a of the precipitates was 

calculated assuming spherical particles using Equation 9.9:  

�� �L� = ¹K<	'&���=	'@�('& . »6
Í                                                             hi. [¸. ¸a 

The kinetic precipitation/dissolution coefficient 1� and the reaction order ? in Equation 9.8 were 

adjusted according to the liquid-solid/solid-liquid transfer mechanism occuring: 14,� and ?4 for 

growth, 12,�  and ?2  for nucleation, 13,�  and ?3  for dissolution. The prevalent mechanism 

depends on the value of E and the amount of seed material in the reactor. Hence, these values 

were checked at every time step. As such, four possible scenarios were considered:   

 1) Supersaturation occurs (E > 1; E! > 0) and seed material is available. 

In this case, the crystallization of sparingly soluble salts in WRRFs is mainly controlled by 

surface spiral growth. This means that the integration of the cations into crystal lattice positions 

at kinks in the surface is the rate-determining molecular mechanism (Galbraith et al., 2014; 

Koutsoukos et al., 1980; Musvoto et al., 2000b; Nielsen, 1984). The kinetic precipitation 

coefficient (Eq. 9.10) was then assumed to be proportional to the available seed material (cfr. 

Koutsoukos et al., 1980; Parkhurst and Appelo, 2013):  

1�  �M L�� T��� = 14,�  . ��		
 . ;�		
K��O                                          hi. [¸. _Üa 

in which 14,�  is the temperature dependent growth rate coefficient �M L�� T���,  ��		
  is the 

specific area of surface per gram of seed material before the seed crystals start to grow in the 

crystallizing solution � L� M��� (default = 600 m2 g-1; Parkhurst and Appelo, 2013), and ;�		
 is 

the time-dependent mass of seed material in the reactor �M� (default initial mass = 0.0005 kg; 

Parkhurst and Appelo, 2013). The latter is calculated at every time step by means of mass 

balances on the seed material for each precipitate (Section 9.2.2.4), taking in account the mass 

of newly formed precipitates and redissolution. The default reaction order for surface controlled 

growth ( ?4 ) was set at 2, which generally provides a good approximation to represent 

precipitation in WRRFs (Bouropoulos and Koutsoukos, 2000; Mehta and Batstone, 2013; 

Musvoto et al., 2000b; Nielsen, 1984). 

 2) Supersaturation occurs (E > 1; E! > 0), but no seed material is available and/or the crystal   

         size is not large enough to have any influence on the process, i.e. the induction time is  
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          not exceeded.  

In this case, primary nucleation occurs, which was often not accounted for in previous studies 

(Harrison et al., 2011; Nielsen, 1984; Schneider et al., 2013), though very relevant (Bhuiyan et 

al., 2008). The value of 1�  and ? in Equation 9.8 are then switched to the nucleation rate, 

12,�  (default = 106 nuclei L-1 s-1; Mehta and Batstone, 2013), and the nucleation reaction order, 

?2. The latter is usually higher for nucleation than for growth (3-4; default = 3; Tavare, 1995). 

The induction time is inversely proportional to the logarithm of E , and should be estimated 

experimentally for each precipitate (Bhuiyan et al., 2008; Mehta and Batstone, 2013).  

 3) The solution is undersaturated (E < 1; E! < 0) and precipitate is present in the system. 

In this case, the NRMs allow for precipitate redissolution until equilibrium is reached using the 

reverse reaction of Equation 9.8 (Morse and Arvidson, 2002). However, the kinetic dissolution 

rate [13,�a  and the reaction order for dissolution [?3a  may be different than those for 

precipitation. Significantly more work is needed to better understand the dissolution behaviour 

of the various precipitates in complex waste(water) matrices (Greenberg and Tomson, 1992; 

Morse and Arvidson, 2002).  

 4) Equilibrium occurs (E = 1; E! = 0).   

In this case, the liquid-solid / solid-liquid transfer rate was set at 0.  

Finally, for the NRM-Prec, a generic mechanism for agglomeration and floc break-up through 

the effect of mixing was included using the spherical particle model for macroscale flocculation 

(Crittenden et al., 2012). The net rate of floc appearance (Eq. 9.11) was written as:  

P(���  �L�� T��� =  -( . � � . @�('&K��O . K<	'&���=	'K��O  −  -% . �̅Ý                               hi. [¸. __a 

in which -(  �−� is the aggregation constant (= 4� »⁄  for laminar flow where � is the collision 

efficiency factor; default for turbulent flow = 5 x 10-4), -% .T/��. L��0 is the floc break-up constant 

(= 0 for laminar flow; default for turbulent flow = 10-7; Crittenden et al., 2012), �̅ is the root mean 

square velocity gradient �T��� which depends on the power input (Camp and Stein, 1943), and 

�  is the turbulence constant. Under turbulent conditions, the values of -(  and -%  should be 

determined empirically in laboratory or pilot-scale tests (Argaman, 1971; Parker et al., 1972). 

Note that when the �̅ value is set to 0, it is assumed that no agglomeration occurs. 

A time-dependent agglomerate number balance was also provided (Section 9.2.2.4). By division 

of the total fertilizer volume by the number of agglomerates, the agglomerate volume was 

obtained. The mean agglomerate diameter can then be computed in the same way as the 

particle diameter (Eq. 9.9).  

It should be remarked that mixing energy may also have to be included in Equation 10.8. 

Growth can be assumed surface integrated controlled when the system is well mixed, so the 

mixing effect can be neglected for the growth equations in units with proper mixing (Galbraith et 

al., 2014; Rahaman et al., 2014). However, mixing may affect the nucleation mechanism and 

induction time through microscale flocculation (Ohlinger et al., 1998). This mechanism is very 
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site and species specific, hence it was not included in the generic approach for NRM-UO I. 

However, by selecting a generic empirical equation based on E (Eq. 9.8), the models could 

easily be extended to include mixing effects (Galbraith et al., 2014; Perez et al., 2008; Vicum 

and Mazzotti, 2007), if appropriate parameter correlations are available. As mentioned above, 

future extensions may also involve particle size distributions (PSDs) (Nopens et al., 2014; Perez 

et al., 2008).  

 

9.2.2.3 Biochemical transformation model   

a) Anaerobic digestion  

Biochemical processes and state variables are clearly important for the NRM-AD model. The 

description, stoichiometry, and kinetics of biochemical transformations that may be expected in 

the NRM-AD were based on the Anaerobic Digestion Model No. 1 (ADM1; Batstone et al., 

2002). The biochemical processes involved are: 1) disintegration from homogeneous 

particulates to carbohydrates, proteins, and lipids, 2) extracellular hydrolysis of these particulate 

substrates to sugars, amino acids, and long chain fatty acids (LCFAs), 3) acidogenesis from 

sugars and amino acids to VFAs and hydrogen, 4) acetogenesis of LCFAs and VFAs to acetate, 

and 5) methanogenesis from acetate and H2/CO2 to CH4, resulting in a total of 19 processes 

(Appendix 6: Table A6.1). pH, H2, and NH3 inhibition expressions were also taken from Batstone 

et al. (2002).   

In view of nutrient recovery, three important extensions were included in the NRM-AD as 

compared to the ADM1 model (see below). The detailed stoichiometric matrix and kinetic 

transformation equations can be found in Appendix 6 (Table A6.2-A6.4).  

Extension 1: Inclusion of physicochemical-biological interactions   

At present, the only physicochemical processes included in the ADM1 are the acid-base 

systems NH4
+/NH3, CO2/HCO3

-, VFA/VFA-, and H2O/OH-/H+, and the three main gas-liquid 

exchange processes for CO2, CH4, and H2, as well as for water vapour. Hence, the model was 

extended with the physicochemical components and processes (acid-base reactions, ion 

pairing, liquid-solid transfer, liquid-gas transfer, redox transformations) selected in Section 

9.2.2.1 (Appendix 6: Table A6.1, Extension 1). Note that ion pairing of cations with VFAs was 

also accounted for.  

When including these physicochemical state variables and reactions in the biological model, 

additional relevant biochemical transformation processes had to be included as well 

(Vanrolleghem et al., 2014) (see below).   
 

Extension 2: Sulfurgenesis   

To describe the sulfur system, a set of transformations describing biological sulfate reduction (= 

sulfurgenesis) was considered based on the model proposed by Knobel and Lewis (2002) and 

thereafter used by Lizarralde et al. (2010) (Appendix 6: Table A6.1, Extension 2). Motivations for 

inclusion of biological sulfur degradation were given above (Section 9.2.1.2). It mainly concerns 

the competition of sulfate reducing bacteria (SRBs) with CH4 producing bacteria for the same 
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substrate, the toxic effect of H2S, and biogas pollution with H2S (UCT, 2007; Reiter and Piccot, 

2004). The decay of SRBs was included in the same way as the decay of other organisms 

described in the ADM1 model (Batstone et al., 2002). An inhibition term for H2S was 

incorporated in the appropriate bio-kinetics (IH2S), similar as in Lizarralde et al. (2010). Moreover, 

its transfer to the gas phase was included as described in Section 9.2.2.2.  
 

Extension 3: Biochemical P, K, and S release/uptake    

A third extension (Appendix 6: Table A6.1, Extension 3) of the ADM1 model concerns nutrient 

release from biological cells and disintegration of other biochemical components, as well as 

nutrient uptake by growing biomass.  

First, the inclusion of nutrient release from the biological cells, other than N (average 12 % on 

dry weight (DW); Tchobanoglous et al., 2003) was considered. Based on the theoretical 

composition of bacterial cells (primary and activated sludge) compared to the magnitude of the 

components in the liquid phase, it was estimated that this process may be relevant for P 

(average 2 % on DW; Tchobanoglous et al., 2003), K and S (average 1 % on DW; 

Tchobanoglous et al., 2003). Hence, the release of these components was additionally included 

in the ADM1 stoichiometric matrix, in the same way as for N. The remaining physicochemical 

state variables were supposed not to be significantly influenced by biological transformations, 

because they usually comprise less than 0.5 % of the bacterial cell (Tchobanoglous et al., 

2003). This was found to be insignificant as compared to the average composition of the mixed 

liquor. An exception is EBPR sludge for which the release of Ca and Mg, next to P and K, from 

polyphosphates should be accounted for according to Ikumi (2011). Modelling of EBPR sludge 

was considered beyond the scope of NRM-UO I (Section 9.2.1.1), but for future applications the 

NRM-AD could further be extended using equations from Ikumi (2011) (Appendix 6: Table A6.1, 

Potential extension 4).  

Secondly, N, P, K, and S uptake for biomass growth were included in line with the 

corresponding removal of organic substrates (aminoacids, acetate, butyrate, LCFAs, H2, 

propionate, monosaccharides, valerate). Finally, N and P release through disintegration of 

complex particulates, P release from lipid hydrolysis, N release from protein degradation and 

aminoacid uptake, as well as the N and P content of soluble and particulate inerts were also 

accounted for.   
 

 
 

b) Nutrient recovery key unit processes following the digester    

The biological (dead) solids leaving the digester were supposed to end up mainly in the solid 

fraction after solid-liquid separation of the digestate. Hence, in the succeeding key units for 

nutrient recovery (Fig. 9.1), it was assumed within the scope of NRM-UO I that biochemical 

particulate transformations do not play a significant role. Nevertheless, in order to allow coupling 

of NRMs to activated sludge models (ASMs) in a later stage (through return liquors, for 

instance), the biological state variables were integrated in all NRMs. Note that the 

physicochemical interactions with the remaining soluble COD components were included in all 

models (Section 9.2.2.1).     
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9.2.2.4 Reactor model    

For each unit process, a mass balance was written, not only for all components in the liquid 

phase (S), e.g. Equation 9.12, but also for all components in the gas phase (G), all precipitated 

components (P), and all particulate biological solids (X), including both a transport term (based 

on in- and outgoing flow rates) and a transformation term (involving liquid-gas/gas-liquid 

transfer, liquid-solid/solid-liquid transfer, and biochemical transformations):  

�|E��O,� . K��O��D �M T��� = E��O¼½,� . ·��O¼½ − E��O,� . ·��Oßàá + K��O . â PM . L�,MMã�:F
           hi. [¸. _sa 

where ∑ PM . L�,MMã�:F  is the summation of the specific kinetic process rates for process N  (PM , 

�M L�� T���a multiplied by the stoichiometric coefficient for component �  on process N 
[L�,M, �M M���a, ·��O¼½and ·��Oßàá are the in- and outgoing liquid flow rates �L� T���, K��O  is the bulk 

reactor volume �L��, and E��O¼½,�  and E��O,�  refer to the activities of the in- and outgoing liquid 

components �M L���. 
In addition, a mass balance for the seed material in the reactor was included, similar as 

Equation 9.12. The mass of seed material was adjusted in time according to the mass of 

precipitates present in the reactor and the liquid volume. Hence, it was assumed that newly 

formed crystals act as seed material for precipitation, similar as was experimentally discovered 

by Le Corre et al. (2007a,b) and Shimamura et al. (2003). External seed material can also be 

added.  

For the precipitation unit (NRM-Prec), also particle and agglomerate number balances were 

implemented. The number of free precipitated particles was assumed to reduce according to the 

agglomerates formed, as in Crittenden et al. (2012). Note that agglomeration was only 

accounted for when mixing is present in the reactor (Section 9.2.2.2).  

The used reactor design and the default specifications and features for each unit process are 

compiled in Table 9.6.  

 

9.2.3 Step III: Model implementation and numerical solution  

9.2.3.1 Model coding and state vector definition  

The main coding language used in this study was Modelica, which is a high-level, declarative, 

and object-oriented modelling language (Claeys et al., 2006; Elmqvist et al., 1999). It is similar 

to the model specification language (MSL), which is currently used in Tornado/WEST 

(mikebydhi.com; Vanhooren et al., 2003), one of the most common softwares used in 

waste(water) quality modelling. However, Modelica has a better readability and expressiveness, 

and because of the more important industrial use (Audi, Ford, Siemens, etc.) of Modelica 

compared to MSL, the wastewater modelling community using WEST recently decided to 

convert all conventional models for waste(water) treatment from MSL to the more powerful and 

more widely supported Modelica coding language.  
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Table 9.6 Reactor design, default specifications and features for each unit in the nutrient 
recovery model (NRM) library. AD = anaerobic digestion; AmS = ammonium sulfate; Chem = 
chemical dosing; CSTR = continuously stirred tank reactor; Heat = heater; TSS = total 
suspended solids; P = precipitates; Prec = precipitation/crystallization; Scrub = scrubber; Settle 
= settler; Store = storage tank; Strip = stripper; WRRF = water resource recovery facility; X = 
biological particulate solids.  

 a Some literature studies show that hydraulic levels and reactor design have no effect on the NH3 recovery efficiency as equilibrium  
  conditions are reached in a very small time interval (Chapter 8; Arogo et al., 1999; Collivignarelli et al., 1998; Gujer, 2008; Powers et  
  al., 1987). However, other studies believe that liquid transfer should be modelled heterogeneously, i.e. spatially dependent (Yu et al.,  
  2011). Because of this discussion, an option was included in the NRM-Strip and NRM-Scrub to calculate NH3 removal and absorption  
  for a user-selectable number of liquid layers. The Gujer (2008) model is based on homogeneous liquid transfer.  
 

As mentioned above (Section 9.2.2.1), a PHREEQC script was written for each unit process 

separately in order to include water chemistry. A ‘SELECTED_OUTPUT’ statement involving 

the selected species activities, saturation indices (E!’s), partial pressures (B’s), as well as the 

pH, temperature, alkalinity, and ionic strength was defined. The obtained E!’s and B’s are then 

used as driving forces for precipitation and gas transfer in the Modelica code describing the 

slow transformation processes (Eq. 9.2 and 9.8). 

As only small differences exist between the selected components for the different NRMs (Table 

9.2), it was decided to define one generic component state vector for each different phase. As 

such, five different NRM component state vectors were enumerated (Appendix 7: Table A7.1):  

1. Components_S1: the components in the liquid phase, i.e. the main waste flow: 

a. Components_S1_PC: soluble components involved in physicochemical 

transformations (mol-base); 

b. Components_S1_Bio: soluble components involved in biological COD 

transformations (COD-base); 

Unit Reactor design Default specifications and features 
NRM-AD CSTR  

(based on  
Gujer, 2008) 

- Constant liquid volume; 
- Sealed gas phase at atmospheric pressure; 
- Gas removed to downstream treatment/process. 

NRM-Prec CSTR   
(as generally used for 
coagulation / 
flocculation units; 
Crittenden et al., 2012) 

- Variable volume as function of retained precipitant volume; 
- Precipitate flow rate (Q_prec) extracts fraction of the precipitates continuously or at specific   
  times when selected specifications are reached, e.g. target particle diameter, purity, etc.; 
- Allows to study the effect of mixing power and reactor seeding on, e.g., the mean  
  particle/aggregate diameter; 
- Optional: use of gas flow instead of chemicals for pH-increase in the reactor; 
- Potential extension: inclusion of particle (differential) settling velocity (Crittenden et al., 2012). 

NRM-Strip Stirred tank for active 
liquid-gas exchange 
(based on  
Gujer, 2008) 

- Continuous in- and outgoing liquid and gas flows; 
- Newly formed gas bubble enters the reactor at an initial gas phase concentration; 
- Model parameters averaged over all bubbles; 
- Heterogenous gas transfer throughout the reactor height; 
- User-selectable number of liquid layers to represent spatially dependent liquid transfer.a  

NRM-Scrub Stirred tank for active 
gas-liquid exchange 
(Gujer, 2008) 

- Similar specifications as NRM-Strip, but:  
  i) Default use of sulfuric acid solution at pH 1.3 for NH3 absorption;  
  ii) AmS recycle flow (Q_rec) with extraction as fertilizer flow when user-selected AmS  
  specifications (usually 25-40 % AmS concentration) are reached (cfr. semi-batch process).  

NRM-Store Tank with gas recovery 
for digestate storing 

- Continued (non-controlled) anaerobic digestion and biogas recovery;  
- Continuously emptied to a user-specified minimum level, default = 15 % (AgriDigestore,   
  Ludlow, UK) →  Complete digestion, energy recovery ↑, digestate nutrient availability ↑. 

NRM-Settle Point settler 
 

- Simplified design based on TSS removal efficiency and TSS settleability (Hendricks, 2010), 
  default = 0.5 % non-settleable X and 10 % non-settleable P;   
- Potential extension: inclusion of particle (differential) settling velocity (Crittenden et al.,  
  2012) → No longer simplified design.  

NRM-Chem Point mixer - Closed tank to avoid NH3 emissions through pH-increase; 
- Allows addition of the most important amendments in WRRFs: i) MgCl2, Mg(OH)2, and  
  Ca(OH)2 prior to P precipitation, ii) NaOH and Ca(OH)2 prior to stripping (goal = pH ↑, CaCO3  
  scaling ↓); 
- Usually followed by NRM-Prec to allow for species precipitation and flocculation. 

NRM-Heat Point heater 
 

- Colder fluid gaining heat from a hot gas/steam flow or a hot liquid flow; 
- Generic equation based on the specific heat of the fluid, the surface area of the heat  
  exchanger, and the overall heat transfer coefficient (AIC, 2014); 
- Application prior to NRM-AD and NRM-Strip.  
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2. Components_S2: the components in the H2SO4-solution used in NRM-Scrub (mol-

base); 

3. Components_G: the components in the gas phase (mol-base); 

4. Components_P: the components in the precipitated phase (mol-base); 

5. Components_X: the particulate biological solids (COD-base). 

The Components_S1 state vector was further split into a Components_S1_PC and 

Components_S1_Bio state vector in order to describe physicochemical transformation and 

biological COD transformations separately. All state variable quantities involved in the 

physicochemical calculations (Components_Gas, Components_P, Components_S1_PC) were 

expressed on a molar base, whereas the state variables only involved in biological 

transformations (Components_X, Components_S1_Bio) were expressed on a COD-base. 

Moreover, for each model separately, a species state vector was enumerated referring to the 

PHREEQC selected output (which is different for each unit process).   

Parameters and equations for the (slow) physicochemical and biochemical transformations, and 

mass balances for all total components were implemented in Modelica using a multi-matrix 

structure. The Tableau method matrix implementation of Morel and Herring (1993) was used as 

generic method for linking total soluble component activities to species activities and total 

precipitated component concentrations to precipitate concentrations in the NRMs, whereas the 

Gujer (2008) matrix implementation was used to describe the biochemical reactions involved.  

 

9.2.3.2 Numerical solution and model execution procedure  

When combining biological and chemical reactions, numerical solution becomes a critical issue, 

because of the stiffness of the set of differential equations that arises when considering 

reactions with very different conversion rates, i.e. the range of system time constants is large 

(Chapter 8: Section 8.4.3; Batstone et al., 2012; Brouckaert et al., 2010; Garneau et al., 2009; 

Lizarralde et al., 2014; Musvoto et al., 2000a,b; Rosen and Jeppson, 2006; Sotemann et al., 

2005). To overcome this problem, the slower reactions (Sections 9.2.2.2-9.2.2.4) and mass 

balances (Section 9.2.2.5) were represented by ordinary differential equations (ODE) coded in 

Modelica, while the fast reactions (Section 9.2.2.1) were calculated algebraically by use of 

algebraic equations (AE) at each iteration step using the software tool PHREEQC (Parkhurst 

and Appelo, 2013). The models coded in the Modelica language (with invocations of the 

PHREEQC engine for speciation calculation) were then executed through the Tornado(/WEST) 

framework (mikebydhi.com; Vanhooren et al., 2003) for modelling and virtual experimentation 

on the basis of sets of complex ODEs and AEs.  

The use of a geochemical software tool to solve water chemistry was brought forward, as 

PHREEQC has a dedicated and proven solver (Newton Raphson) for the set of implicit non-

linear equilibrium equations involved. Moreover, it has a high flexibility for model extension to 

include other (case-specific) components, e.g heavy metals, and the associated species and 

equilibrium reactions. PHREEQC was preferred over other geochemical models (e.g. Visual 



 

 239 

MINTEQ, WHAM, and WATEQ4F), because of its ease of integration with diverse scripting 

languages and other model libraries, next to its apparent more suitable methodology in terms of 

precipitation calculations (Charlton and Parkhurst, 2011). Recently, a C-callable API 

(Application Programming Interface) for the PHREEQC engine has become available under the 

name IPhreeqc. It allows for easily coupling the PHREEQC engine to software developed in 

other programming languages. The API provides direct access to the geochemical processes in 

the PHREEQC library, as well as support for new PHREEQC specification keywords that allow 

for easier manipulation of PHREEQC input and output data (Charlton and Parkhurst, 2011).   

In this PhD, a generic mechanism for calling IPhreeqc (hereafter referred to as PHREEQC) from 

Modelica-specified models using Tornado has been developed (Fig. 9.5).  

 

Figure 9.5 Tight coupling of reduced PHREEQC to Modelica code  
and model execution in Tornado.  

 

It consists of a Tornado-specific PHREEQC wrapper library containing only a predefined set of 

methods to be used in Tornado, as well as a reduced PHREEQC database and a PHREEQC 

script with selected outputs (Section 9.2.2.1). Any PHREEQC code can now be run, using input 

data supplied by Tornado and providing output data to be used by Tornado, in a flexible manner 

without the need for any case-specific C/C++ code modifications by the user. The underlying 

PHREEQC-Tornado interface is further described in Section 9.2.3.3. As a result, the combined 

kinetic-equilibrium models can now be used in Tornado for simulation and other tasks such as 

parameter estimation, optimization, scenario analysis, Monte Carlo simulation, sensitivity 

analysis, and steady-state analysis (i.e. so-called virtual experiments), through the Tornado CUI 

(Command-line User Interface) tool and the user-friendly Tornado Experimenter GUI (Graphical 

User Interface) (Fig. 9.5).  

Finally, for numerical solution in Tornado, two different solvers, RK4ASC (Runge Kutta 4 

Adaptive Step size Control integration algorithm; Press et al., 1992) and VODE (Variable-

coefficient Ordinary Differential Equation solver; Brown et al., 1989), were compared. The 

RK4ASC algorithm was retained, as simulation times were much faster and results more stable. 

This is likely related to its higher ability to solve models with certain discontinuities and dynamic 

inputs/disturbances.  
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9.2.3.3 PHREEQC-Tornado interface   

In order to connect state vectors used by PHREEQC (C code) and Tornado (Modelica code), a 

PHREEQC-Tornado interface was developed (Fig. 9.6). The interface makes special use of the 

data defined by the ‘SELECTED_OUTPUT’ data blocks (Section 9.2.3.1), and allows this array 

of data to be returned to Tornado without the necessity to read or write files. Hence, the data 

can be transferred between PHREEQC and Tornado through internal computer memory. This 

method of tigth model coupling has significant merits with respect to calculation time and 

programming: a PHREEQC instance is only created once and is subsequently reused, 

preserving its internal state. In general, an order of magnitude decrease in run times is obtained 

compared to a loosely-coupled model, which requires starting PHREEQC as an external 

process for each time step (Müller et al., 2011). On top of that comes the gain in simulation time 

by using the developed reduced PHREEQC databases and scripts (with selected outputs) 

instead of full PHREEQC (Section 9.2.2.1). Hence, a reduction of execution time is obtained at 

two critical points during model simulations: i) the uploading and reading of database and input 

files, and ii) the transfer of data between PHREEQC and Tornado. As such, running a complete 

digestate treatment train (e.g. Fig. 8.1) under dynamic conditions for one year would take 

approximately 15 min (depending on the operating conditions and input characterization) using 

the reduced PHREEQC model, whereas it would take 45 min using the full PHREEQC model, 

both with tight model coupling to the kinetic model developed in Tornado.  

 

Figure 9.6 Overview of the PHREEQC-Tornado interface coupling chemical speciation 
calculations at every time step to slow physicochemical and biochemical dynamic 
transformations. AE = algebraic equations; ODE = ordinary differential equations;  

X(0) = initial state of the system; X(t) = state of the system at time t. 
 

9.2.3.4 Model verification and debugging   

After implementation, the models were subjected to a battery of tests to ensure implementation 

correctness, also referred to as model verification (Dochain and Vanrolleghem, 2001). A generic 
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six-step procedure for model verification of NRMs was developed and applied to each unit 

process separately:  

1. Verification PHREEQC-Tornado interface: Comparison of speciation calculations in 

Tornado (with tight coupling to reduced PHREEQC) with simulation results from the 

independent full PHREEQC engine; 

2. Verification physicochemical transformation model: Implementation of slow 

physicochemical transformations in Modelica code, execution in Tornado, and mass 

balance check;  

3. Verification biochemical transformation model: Implementation of slow biochemical 

reactions in Modelica code, execution in Tornado, and i) mass balance check, ii) 

check against independent implementations, e.g. ADM1 (Batstone et al., 2002) and 

model for anaerobic S degradation (Lizarralde et al., 2010); 

4. Verification(/validation) at steady state: Performance of steady state simulations 

using different initial values from literature and comparison with experimental 

literature results; 

5. Verification(/validation) of dynamics: Performance of dynamic simulations using 

realistic databases and check effect of disturbances (e.g. different loading 

scenarios) on model outputs (comparison with prior knowledge and literature); 

6. Verification of generic NRM implementation: Comparison of simulation results 

obtained with individual equation implementation and with generic compact matrix-

based implementation. Hence, two different implementations are available of each 

unit process model: one based on all separate individual equations and one based 

on vectors and matrices.  

As such, typing errors, inconsistencies, gaps, and conceptual errors were eliminated, while 

software bugs were discovered and dealt with.  

 

9.2.4 Step IV: Dataset collection and identification of data needs  

One of the issues in the development of new models is the necessity to provide data for the 

estimation of model parameters and as input variables. The different types of data required for 

each key NRM and the datasets that were used are provided in Appendix 8 (Table A8.1).  

A thorough review of literature and existing models was conducted to provide default values for 

the different parameters involved. Physicochemical stoichiometry and thermodynamic 

parameters are incorporated in the PHREEQC and Visual MINTEQ modelling softwares, where 

they are mainly taken from the National Institute of Standards and Technology (NIST, 2001) 

database. Default values for the kinetic precipitation coefficients were taken from literature, 

while default values for biomass kinetic coefficients were taken from the ADM1 model (Batstone 

et al., 2002), except for the SRB kinetics for which the parameters were taken from Knobel and 

Lewis (2002) and Lizarralde et al. (2010).  
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Next to literature studies, also new experimental data aiming at NRM validation were collected 

through lab/pilot-scale testing and contact with industry. For NRM-AD, full-scale data at steady 

state from an anaerobic reactor treating S-rich paper mill sludge located at the WRRF Holmen 

Paper, Madrid, Spain has been obtained from the Center of Studies and Technical Research 

(CEIT, San Sebastian, Spain; Appendix 8: Table A8.2). An input fractionation was conducted 

following the procedure proposed by Grau et al. (2007a).  

For validation of the NRM-Prec, lab tests were conducted for P recovery from digestate under 

different operating conditions, i.e. different Mg:P-ratios, contact time, etc. For this purpose, two 

different digestates were sampled at the full-scale biogas installations of SAP Eneco Energy,  

Houthulst, Belgium and Wittevrongel Eneco Energy, Aalter, Belgium, which both treat 

agricultural wastes, mainly manure. The experimental set-up is shown in Figure 9.7.  

F 

 

 

 

 

 

 

 

Figure 9.7 Experimental set-up: lab-scale experiment for P recovery from digestate. 

 

A detailed input characterization was performed prior to the experiment (Appendix 8: Table 

A8.3). The precipitate was separated from the effluent by means of a centrifuge (5 min at 2,000 

rpm; Heraeus megafuge 1.0, Kendro Laboratory Products, Hanau, Germany), after which both 

fractions were also physicochemically analyzed. The P recovery efficiency (%) was then 

calculated using the P recovery of a control (no Mg addition) as a reference. For detailed 

methodology and experimental results, reference is made to the MSc Thesis of De Corte 

(2012), tutored by Vaneeckhaute C.     

To obtain data for the NRM-Strip/NRM-Scrub, a technical and financial survey for a case 

treating 2,000 m3 d-1 of digestate at 200 mol NH4-N m-3 (more details: Appendix 8: Table A8.4) 

was carried out at various key suppliers in the field. As such, insights in the variability of the 

processes available today were obtained, e.g. different target ammonium sulfate concentration, 

operational pH and temperature, consumables, etc. (see also Chapter 2). These detailed data 

provided by the suppliers were used for further model refining and validation. 

Finally, it should be stated that during model development new data needs appeared for which 

to date literature references are lacking. Such data gaps were identified and recommendations 

for future experiments and data collection are provided further in this chapter (Section 9.3.5).  
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9.2.5 Step V: Model validation  

Model validation was performed in four different ways: i) validation against prior knowledge, ii) 

validation against existing models, iii) validation against literature or technical inquiries, and iv) 

validation against collected experimental results. In all cases, the default stoichiometric and 

kinetic parameter values were used as determined in Section 9.2.4. Input stream compositions, 

design data, and operational conditions were taken from the dataset involved. During the 

validation procedure, attention was given to the reduced PHREEQC database used. If required, 

an extra evaluation was conducted using the full PHREEQC and/or Visual MINTEQ database 

and missing species/reactions were additionally added to the reduced database.  

 

9.2.6 Step VI: Scenario analyses and process optimization   

To obtain more insights in the results and to further explore the model outcomes, scenario 

analyses were performed in Tornado(/WEST) (Claeys, 2008). Moreover, the applicability of the 

models for process optimization was demonstrated by running optimization experiments in 

Tornado(/WEST) (Claeys, 2008).  

   

9.3 Results and discussion    
The implementation of the models developed in Section 9.2 was verified and validated. General 

verification results and a verification example showing the correctness of the PHREEQC-

Tornado interface are given in Section 9.3.1. An example of model validation against 

experimental results, including scenario analyses and/or process optimization, is given for each 

NRM in Sections 9.3.2-9.3.4. Finally, recommendations for further research are provided in 

Section 9.3.5. 

 

9.3.1 Model verification 

9.3.1.1 General results and issues 

During model verification, various software bugs were discovered and communicated to DHI, 

Merelbeke, Belgium, who successfully resolved the issues. As such, this PhD also contributed 

to the development of the Tornado/WEST software kernel.  

Each step in the verification procedure was completed successfully. First, the PHREEQC-

Tornado interface was found to be effective (see Section 9.3.1.2). Next, the mass balance 

check provided good results for each NRM. The step-by-step comparison of the Gujer matrix 

with other digester implementations showed that the biochemical reactions were correctly 

implemented. Tests performed to check the ability of the models to realistically respond to 

model inputs, both under steady state and dynamic conditions, eliminated small implementation 

errors. Some examples of tests and effects performed for model verification/validation can be 

found in Appendix 9. Finally, simulation results obtained from the two different implementations 

of each unit process, i.e. using individual equations and using a multi-matrix structure, were 

identical.  
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Three important general issues were observed during model verification, to which future model 

developers must pay attention. First, it was found that some components, species, and 

precipitates that are highly important for modelling of WRRFs are not yet included in the generic 

PHREEQC and/or MINTEQ databases (Section 9.2.2.1: Table 9.3). Hence, for each new 

nutrient recovery model, the chemical speciation calculation should be verified with multiple 

softwares, with literature, and with prior knowledge in order to comprehensively select which 

components, species, and precipitates to be included in the model and which ones to be 

excluded.  

Secondly, if an input to PHREEQC is set to 0 or if a species is not defined or not present in the 

calculation, then a value of -999.999 is printed as output for this component’s species 

distribution and the corresponding saturation indices and partial pressures. In the Modelica 

code, these outputs are then used as driving forces for slow transformations, which makes that 

the calculations are incorrect. This issue was solved by introduction of an if-then-else statement 

in the PHREEQC-Tornado interface.  

Finally, attention should be paid to the use of units for input and output variables. Input 

concentrations in PHREEQC are expressed by default as mol m-3, whereas the outputs are 

given by default as kmol m-3. Deviations from these standard units should be declared in the 

PHREEQC script.  

 

9.3.1.2 Verification PHREEQC-Tornado interface  

When comparing simulation results using the stand-alone full PHREEQC engine and Tornado 

(with tight coupling to reduced PHREEQC), identical model outputs were obtained for all NRMs. 

As an example, the results for the NRM-Scrub are given in Table 9.7.  

 
Table 9.7 Verification PHREEQC-Tornado interface: example NRM-Scrub. Left: gas phase 
speciation (atm). Right: ammonium sulfate fertilizer speciation (mol m-3) after gas-liquid 
exchange. log(p) = logarithm of the partial pressure (p) in the gas phase.   

 

     a With tight coupling to the developed reduced PHREEQC model.  

 

An initial gas phase flow with high NH3 load (coming from the NRM-Strip) was given as input to 

the NRM-Scrub and brought into contact with a sulfuric acid solution for NH3 absorption. The 

outputs, i.e. the logarithm of the partial pressures (log(B), atm) in the purified gas phase and the 

acitivities (mol m-3) of some species in the ammonium sulfate solution after gas-liquid exchange, 

Soluble 
species 

Output  
full PHREEQC  

(mol m-3) 

Output 
Tornadoa 
(mol m-3) 

NH3 0.0361 0.0361 
NH4SO4

- 0.00179 0.00179 
NH2COO- 1.96 1.96 
NH4

+ 6.46 6.46 

Gas 
Input p 
(atm) 

Output  
full PHREEQC  

log(p) (atm) 

Output 
Tornadoa 

log(p) (atm)  

CH4 0.001 -6.12 -6.12 

CO2 0.006 -7.55 -7.55 

H2 0.001 -6.13 -6.13 

H2S 0.001 -1.43 -1.43 

H2O 0.0001 -1.50 -1.50 

N2 0.1 -0.03 -0.03 

NH3 0.8 -6.23 -6.23 

O2 0.09 -71.0 -71.0 
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obtained with both the stand-alone PHREEQC engine and Tornado-PHREEQC are presented. 

It can be concluded that the implementation of the PHREEQC-Tornado interface and the 

PHREEQC invocation in Modelica are correct. 

 

9.3.2 NRM-AD validation   

9.3.2.1 Case study anaerobic tank at Holmen Paper Madrid (Spain)  

The NRM-AD model was validated using experimental results collected under steady state 

conditions from an anaerobic digester for the treatment of S-rich paper mill sludge from a full-

scale WRRF located at Holmen Paper, Madrid, Spain. The same case was previously used for 

validation of the Lizarralde et al. (2010) model for anaerobic S reduction. The input sludge 

characteristics, design parameters, initial reactor state variables, and operating conditions are 

given in Appendix 8 (Table A8.2). Kinetic and stoichiometric parameters were set at default 

(Section 9.2.4). A comparison of experimental and simulation results using the NRM-AD and the 

model proposed by Lizarralde et al. (2010) is given in Table 9.8.  

 
Table 9.8 NRM-AD validation based on experimental results from Holmen Paper, Madrid, Spain 
at steady state and comparison with the Lizarralde et al. (2010) model for anaerobic S removal. 
ND = not determined.  

    Output Variable Unit Experiment Simulation 
NRM-AD 

Simulation  
Lizarralde et al. (2010) 

Biogas    CH4 % 80 81 70 
    CO2 % 13 15 8 
    H2S % 6 2 22 

    Digestate    pH - 7.21 7.21 7.6 
    NH4-N mol m-3 123 130.04 ND 
    PO4-P mol m-3 12.63 12.48 ND 

 Removal    
   efficiency 

   ηCOD % 61 63 62 
   ηSO4 % 78 63 81 

 

Simulation results using the NRM-AD show a good agreement with the experimental results for 

COD removal and biogas CH4 and CO2 composition at a particular pH. The model also seems 

to give a very good prediction of the digestate pH and P content, and a relatively good 

prediction for NH4-N in the digestate. The slightly higher digestate nutrient value for NH4-N 

obtained with the NRM-AD may be attributed to losses of NH3 during digestate sampling and 

analysis, although potential model deficiencies may not be excluded.   

The NRM-AD seems to underpredict the biological SO4 removal and corresponding H2S 

production by SRBs, as will be explored below. However, from a pure validation perspective, 

when comparing with the Lizarralde et al. (2010) model, overall the performance of the NRM-AD 

is significantly better, very probably due to the underlying detailed chemical speciation and the 

inclusion of multiple competing physicochemical transformation reactions.    

 

9.3.2.2 Exploration of hypothesis regarding S cycle measurements  

Through model scenario analyses, four potential explorations were brought forward for the 

underestimation of biological SO4 removal in the above case study. First, it was observed that 
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the biogas H2S concentration was very sensitivite to variations in pH (cfr. Al-Zuhair et al., 2008). 

Model simulations were carried out at the digestate pH (7.21). However, the input pH was 

significantly lower (6.66) and the digestate pH may be influenced through contact with air. 

Hence, there exists some uncertainty about the actual reactor pH.  

To further explore this hypothesis, a scenario analysis was conducted in order to evaluate the 

effect of pH (variable) on the % CH4, CO2, and H2S in the biogas at fixed waste input COD:SO4-

ratio. Assuming that the pH in the reactor ranged from 6.66 (waste input pH) to 7.21 (digestate 

pH), the biogas composition varied from 61 % CH4, 34 % CO2, 2.94 % H2S to 80 % CH4, 16 % 

CO2, 1.90 % H2S. Hence, under the present implementation, it was not possible to obtain 6 % 

H2S in the biogas at a pH in that range.  

It should be remarked that the biogas H2S content of 6 % experimentally obtained is extremely 

high compared to literature values. Typical biogas H2S values for similar concentrated sulfurous 

streams from the paper industry range between 1-2 % H2S (Reiter and Piccot, 2004). Hence, a 

second reason for the uncertainty may be related to the analysis itself conducted by the 

operators.  

A third explanation may be the exclusion of lactate in the present NRM-AD implementation. 

Lactate is a preferred substrate for sulfate reducing bacteria and would thus aid in increasing 

SO4 removal and H2S production (UCT, 2007). This may explain the slight overestimation of 

biogas CO2 production and underestimation of H2S production. In the present case, no lactate 

measurements were available, but future research should consider this component.  

Furthermore, the non-consideration of reactions (precipitation/ion pairing) with Al and Fe, due to 

lack of input Al/Fe measurements at the WRRF, may explain the lower SO4 removal found 

through simulation (cfr. Zhang et al., 2013b). This can also declare why model predictions for 

COD removal and CH4 production were good, while additional COD would be required for SO4 

removal by SRBs. Based on a similar reasoning, Lizarralde et al. (2010) assigned potential 

sulfate precipitation to the highly overestimated H2S production found with their model.  

An attempt to calibrate Al in the present case study showed that a reactor concentration of 276 

mol Al m-3 resulted in a SO4 removal of 78 % (= experimental value) and a biogas H2S 

concentration of 3 %. However, in this scenario the pH lowered to a value of 6.26. The higher 

SO4 removal found through addition of Al was likely the result of a combination of multiple 

effects. It was, for example, observed that the addition of Al impacted on the amount of Ca/Mg 

sulfates and Ca/Mg precipitates formed. The addition of Fe resulted in a lower H2S production 

because of FeS precipitation, but it did not aid in SO4 removal.  

Finally, other model gaps can of course not be ruled out and it should be beared in mind that 

the above validation is based on a one-time test.   

It can be concluded that more detailed waste(water) input characterizations, including all 

selected components for the NRM-AD unit process (Section 9.2.2.1: Table 9.2), as well as 

instantaneous pH measurements in the reactor, are required in order to correctly calibrate the 
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model for biological S removal. Nevertheless, clearly, exploration using the NRM-AD leads to 

increased insights and better understanding of the various interacting processes occurring in 

digesters. Hence, the model can meet the objectives set for NRM-UO I.   

 

9.3.3 NRM-Prec validation  

9.3.3.1 Phosphorus precipitation at different Mg:P-ratios  

For validation of the NRM-Prec model, batch experiments were carried out in the lab for P 

recovery from two different crude digestates (Section 9.2.4; Appendix 8: Table A8.3). Different 

Mg:P-ratios, obtained through addition of MgCl2:6H2O, were applied aiming at the production of 

N-struvite (MgNH4PO4:6H2O or MAP) or K-struvite (MgKPO4:6H2O or MKP) fertilizer. Initial 

simulation results showed a large deviation from the experimental results (Table 9.9). After 

evaluation using the full PHREEQC and MINTEQ databases, this deviation could be attributed 

to ion pair formation of NaH2PO4, a species that was initially not included in the reduced 

PHREEQC database, nor in the generic PHREEQC database (Table 9.3). Indeed, due to the 

high Na concentration of both digestates, Na coupled with P, making it less available for 

precipitation. When NaH2PO4 was added as species to the reduced database, a very good 

agreement between the simulation and the experimental results was obtained for P recovery at 

steady state  (after 12h; Table 9.9).  

    

Table 9.9 NRM-Prec validation based on experimental batch tests at lab-scale at steady state 
(after 12h). 
Mg:P % P recovery digestate 1  % P recovery digestate 2   

 
Experiment NRM-Prec without 

NaH2PO4 
NRM-Prec with 

NaH2PO4 
Experiment NRM-Prec with 

NaH2PO4 

1:1 41 95.60 41.32 28 27.76 
2:1 44 97.91 43.62 29 29.29 

 

This finding is in line with the results obtained by Li et al. (2012), who found a ± five times higher 

residual effluent P concentration when NaH2PO4 + MgCl2:6H2O were dosed for struvite 

precipitation, compared to the dosing of H3PO4 + MgCl2:6H2O. Moreover, recently Chauhan and 

Joshi (2014) found that at high Na:NH4-ratios, NaH2PO4 is formed instead of or next to 

NH4H2PO4, the precursor for MAP precipitation. In turn, this compound may be transformed into 

Na-struvite through the following reaction:  

NaH2PO4:2H2O + Mg(CH3COO)2:4H2O + H2O → NaMgPO4:7H2O + 2CH3COOH 

The formation of Na-struvite was not yet included in the NRM-Prec model due to lack of 

knowledge on the existence, the stoichiometry, and the kinetics of this precipitation reaction. 

However, knowing that current practice often involves the addition of NaOH for pH-increase 

prior to struvite crystallization, the case study above clearly shows the relevance of further 

research on Na-P ion pair formation and Na-struvite precipitation kinetics in waste(waters). The 

phenomenon may not only impact on the effluent quality, but also on the quality of the resulting 

recovered fertilizer product, i.e. a potential mixture of N/K- and Na-struvite may appear.  
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9.3.3.2 Exploration for process understanding and optimization   

Two questions arise from the experimental (and simulation) results presented above (Table 

9.8):  

1. Why is the P recovery efficiency rather low for both digestates? 

2. Why does increasing the Mg dose not improve the P recovery efficiency?  

The ability of the models to find an answer to such questions is presented below.   

First, it was observed experimentally and through simulations that the main precipitated 

components, next to P, were Al, Ca, Fe, K, Mg, and N(-III). Hence, the product recovered was 

definitely not pure MAP or MKP. A scenario analysis including these components was 

conducted for both digestates in order to obtain more insights in the results (Fig. 9.8). The 

digestate compositions under study are marked as stars in Figure 9.8.  

  
   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

  
Figure 9.8 P recovery efficiency (%) as function of input Mg and Ca concentration (mol m-3) for 

streams with high (A: digestate 1) and low (B: digestate 2) Fe and Al input concentrations.  
Red stars indicate the digestate compositions of the case studies. 

 

The maximum achievable P recovery as function of the input Mg and Ca content was 56.2 % for 

digestate 1 (Fig. 9.8A), whereas it amounted to 90.7 % for digestate 2 (Fig. 9.8B). This 

discrepancy can be attributed to the higher concentration of Fe and Al in digestate 1 compared 

A 

B 
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to digestate 2 (Appendix 8: Table A8.3). Indeed, at high concentrations of both Fe and Al mainly 

Hercynite (FeAl2O4) precipitation occurs, whereas at low concentrations P recovery increases 

through precipitation of AlPO4 and Vivianite (Fe3(PO4)2:8H2O). Furthermore, the inhibition of P 

precipitation due to the presence of soluble Ca is very clear for both cases (see details Fig. 9.8). 

Up to ± 110 mol m-3 of input Ca (the margin in which the digestates under study are situated), 

mainly ion pairing of CaHPO4(aq) and CaPO4
- was observed, which decreased the amount of P 

available for precipitation (cfr. Lin, 2012). Above a value of ± 110 mol m-3, calcium phosphates 

became oversaturated, precipitation occurred, and P recovery increased. This effect of Ca 

inhibition observed through model simulations is in agreement with the experimental findings of 

Huchzermeier and Wengdong (2012). The latter concluded that struvite purity decreased 

because of the formation of calcium phosphates when the Ca:P activity ratio was greater than 

0.5 to 1.  

Secondly, the fact that the P recovery in the present experiment was not much influenced by 

increasing Mg:P-ratios, can, according to the model, be attributed to the formation of dolomite 

(CaMg(CO3)2), as well as Mg(OH)2 and Mg2(CO3)(OH)2:3H2O at higher Ca and Mg 

concentrations. Indeed, higher Ca and Mg doses are associated with a pH-increase, which 

favours carbonate and hydroxide precipitation (Zumdahl, 2005). When the input Ca 

concentration would be 0, one can see an increase in P recovery with increasing Mg dose due 

to the formation of MKP (lots of K in the input) and Mg-phosphates. This competitive effect 

between Mg, Ca, and P found through NRM-Prec simulations is in agreement with the findings 

of Lin (2012), who obtained a precipitate mixture of struvite, dolomite, Mg(OH)2, calcium 

phosphates, and CaCO3 in experiments on P recovery from digested swine manure.  

Based on the above-mentionned findings, two optimizations of the process can be 

proposed if the aim would be to produce high purity struvite: 

1. Removal of CaCO3 through precipitation prior to the experiment, e.g. using a 

filtration system as in Huchzermeier and Wengdong (2012); 

2. Elimination or reduction of the use of Fe and Al in the WRRF processes upstream 

of the precipitation unit, e.g. for improved sludge dewatering. This measure could 

also be assessed by locating the struvite precipitation unit (with optional pre-

treatment; Chapter 7) upstream in the WRRF, e.g. immediately after the activated 

sludge (AS) system (cfr. combined use of the WASSTRIP and Pearl process for 

improved P release and struvite recovery; Ostara, Vancouver, British Colombia, 

Canada; Ostara, 2014). In fact, the AS system itself could also (partially) be 

replaced by a strip/scrub system.  

When applying these proposed measures in a treatment train for digestate 1, the maximum 

achievable P recovery through simulation became 91 %, consisting of MKP, Mg(OH)2, and 

Mg3(PO4)2. Hence, a pure Mg/P/K fertilizer would be obtained (Fig. 9.9). Remark that the main 

precipitate found, MKP, is not included in the generic PHREEQC/MINTEQ databases. Hence, 

the extensions provided to the database are clearly relevant (Section 9.2.2.1).  
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Figure 9.9 P recovery efficiency (%) as function of input Mg (range: 0-500 mol m-3) for digestate 

1 after CaCO3 removal (= optimization 1) and  
exclusion of Fe/Al addition in processes upstream (= optimization 2). 

 

Also note that in Figure 9.9, the Mg dose was allowed to change within the range of 0 to 500 

mol m-3 (so no point measurements). Hence, the abrupt changes in slope are related to 

changes in precipitation mechanisms. 

Moreover, an interesting observation made through model simulations was that a high P 

recovery efficiency of 72 % could be obtained without any addition of Mg. This could be 

appointed to the precipitation of K2NH4PO4:6H2O (= pure N/P/K fertilizer) due to the high 

amounts of available K in the digestate (Appendix 8: Table A8.3). In this case, an economic 

analysis is recommended to select a target fertilizer, thereby taking into account local fertilizer 

market demands, and environmental and fertilizer regulations. On the one hand, the use of 

chemical Mg may increase the operational costs of P recovery, but, on the other hand, a higher 

recovery efficiency can be obtained, while also the mean particle diameter of the recovered 

precipitates (mainly MKP) predicted with the NRM-Prec was larger. The latter generally 

increases the revenues from fertilizer sales (see Chapter 2).  

 

9.3.4 NRM-Strip/NRM-Scrub validation   

9.3.4.1 NH3 recovery at different operating conditions    

During validation of the NRM-Strip and NRM-Scrub models, NH3 stripping was found to be very 

sensitive to the total and relative input concentration of carbonates, Ca, and Na, as they 

determine the input alkalinity and pH. Since operators usually focus on the measurement of NH3 

and pH (+ sometimes total alkalinity) only, an identifiability problem arises. For example, when 

using the design parameters and input flow characterizations (S_N_min3_, pH) of Collivignarelli 

et al. (1998), a good agreement was obtained between experimental and simulation results for 

NH3 recovery (Table 9.10).  
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Table 9.10 NRM-Strip/NRM-Scrub validation based on experimental literature results 
(Collivignarelli et al., 1998) at different operating conditions at steady state (after 6h).  

a NL = normalized liter: temperature = 273.15 K, pressure = 1 atm.  
b Calculated by PHREEQC based on the (calibrated) input composition.  
c Other factors are similar as for Test 1.  
 

However, due to lack of some fundamental input flow characteristics for pH calculation using the 

NRM-Strip model, the input composition had to be chosen (i.e. calibrated) in order to 

approximate the operational pH. Evidently, there are multiple ion combinations possible to 

obtain the specified pH, but the choice of the combination may influence the model outputs. 

Hence, in order to effectively use the NRM-Strip/NRM-Scrub models for process optimization, 

the initial waste flow composition should be characterized in more detail than is usually done at 

WRRFs today. Irrespective thereof, it can be seen in Table 9.10 that the model responded 

correctly to disturbances / operational decisions, such as an increase in pH, temperature, and 

air flow rate (cfr. Collivignarelli et al., 1998). 

 
 

9.3.4.2 Treatment train for NH3 recovery    

In order to overcome the above-mentioned identifiability issue, a technical survey was sent out 

to key suppliers of strip/scrub units for the treatment of a particular digestate flow (Section 

9.2.4). Using the predefined input characteristics (Appendix 8: Table A8.4), as well as the 

dimensions, operating conditions, the effluent quality, and stripping performance offered by the 

different suppliers, the models were again validated for the different set-ups received. To this 

end, first a treatment train consisting of NRM-Chem, NRM-Strip, and NRM-Scrub was built to 

reflect a full-scale installation. Then, model simulations using the design data were conducted 

and scenario analyses were performed to check the performance guaranteed by the suppliers. 

The most detailed reply was received by company X and is presented below as an example.  

The company guaranteed an NH3 recovery efficiency of ± 90 % at 55 ºC, when increasing the 

pH to a value of 10.3 by addition of 102.5 mol m-3 NaOH d-1 under the design conditions 

provided in Appendix 8 (Table A8.4). The same results were obtained through treatment train 

simulation (Table 9.11).   

 

Test Operational  
factor 

Input Recovery  
efficiency 

Output 

 Experiment Model Experiment (6h) Model 

(6h) 1 V_liq (m3) 0.84 0.84 NH3 recovery (%) 32 34.26 

 Height (m) 2 2    

 S_N_min3_in (mol m-3) 147 147    

 
Q_air (NL L-1 h-1)a 120 120    

 
pH  8.5 8.52b 

   

 
Temperature (ºC) 293.15 293.15 

   
2c Q_air (NL L-1 h-1)a 200 200 NH3 recovery (%) 50 50.12 

 pH  12 12.03b    

3c Q_air (NL L-1 h-1)a 70 70 NH3 recovery (%) 59 58.44 

 pH 10 9.97b    

 
Temperature (ºC) 323.15 323.15 
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Table 9.11 Validation treatment train (NRM-Chem, NRM-Strip, NRM-Scrub) based on technical 
inquiry provided by company X. 

a  Ammonium sulfate (AmS) solution = output NRM-Scrub.  
b  NRM-Strip.                
 

Finally, company X also advised to remove excess input carbonate buffer capacity prior to the 

treatment, e.g. through CO2 stripping, in order to minimize NaOH consumption for pH-increase 

as well as CaCO3 precipitation in the reactor (Pérez, 2002; Technology provider X, 2014). This 

recommendation could be confirmed using the NRM-Strip model: Figure 9.10 shows the 

decreasing NH3 recovery efficiency as function of carbonate buffer capacity, if the NaOH 

consumption and other operating conditions would not be adjusted. Hence, the more carbonate 

is stripped off, the higher the reactor pH and the higher the NH3 recovery efficiency. Note that, 

based on this principle, some technology suppliers provide an integrated CO2 and NH3 stripping 

process without using NaOH for pH-increase (e.g. Anaergia, Ontario, Canada and Colsen, 

Hulst, the Netherlands; Chapter 2: Section 2.3.4).  

 

 

 

 

 

  

 

  
  
  

Figure 9.10 Simulated NH3 recovery efficiency (%) as function of  
carbonate alkalinity (S_C_4_in, mol m-3) using the NRM-Strip model.  

The red star indicates the digestate composition under study. 

  

9.3.5 Recommendations for further experimental research  

The results show that the performance of all resource recovery systems under study is very 

sensitive to the input waste stream composition, e.g. through its direct effect on the pH. In order 

to obtain good model predictions for a particular waste flow, the input flow should therefore be 

characterized in more detail than is usually done at WRRFs today. This observation is similar to 

activated sludge modelling in which influent characterization is considered as the most 

important step (Rieger et al., 2012). 

 
Variable Output  

Company X 
Output  
Model 

 

 S_NH3_out (mol m-3)a 20 19.87  
 NH3 recovery (%) ± 90 90.02  
 Operational pHb 10.3 10.30  
 Fertilizer pHa 6.3-6.8 6.33  
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It is clear that a better characterization of the input composition may help to adjust the use of 

consumables (e.g. chemical dose, air requirements, etc.) to a minimum, thereby reducing the 

operational costs. As such, the models can be used as an invaluable tool for process 

optimization (= NRM-UO I). New experimental results, including detailed input characterizations, 

are currently being collected at pilot/full-scale under dynamic conditions in order to further 

calibrate and validate the proposed NRMs. To this end, collaboration was sought with various 

companies active in the field of anaerobic digestion and nutrient recovery, including, for 

example, Ekobalans (Lund, Sweden), Greenwatt (Heverlee, Belgium), Waterleau (Leuven, 

Belgium), and NuReSys (Waregem, Belgium).  

A second issue observed is that values for the kinetic precipitation (1� ) and gas transfer 

coefficients (-7/4�) used from literature are commonly determined under ideal conditions, i.e. 

gas transfer in clean water and precipitation in a synthetic solution containing only the target 

species involved in the reaction, e.g. Mg, NH4, and P for MAP precipitation. However, the 

estimation of these parameters may be highly influenced by the complex matrix of the waste 

streams involved, e.g. through ion pairing (Section 9.3.3.1), concurrent and competing 

precipitation reactions (Section 9.3.3.2), and the presence of seed material. Studies evaluating 

kinetic rates under actual process conditions are lacking in literature, but should be the focus of 

further research in order to correctly calibrate these parameters in the NRMs. Moreover, rates 

and mechanisms for nucleation, agglomeration, and dissolution of various precipitates are still 

unknown and should be further studied. In this sense, the use of the simple empirical equation 

(Eq. 9.8) for liquid-solid/solid-liquid transfer in the NRMs is interesting compared to previously 

used approaches in wastewater treatment (e.g. Hauduc et al., 2014; Lizarralde et al., 2014; 

Mousvoto et al., 2000a,b). Indeed, in a plot of log(P�,� ) vs. log[E − 1a the intercept will be 1� and 

the slope ?. Hence, parameter estimation can be relatively easy.  

Another important complication is related to the characterization of the precipitates formed. X-

ray diffraction is the commonly used technique to characterize precipitates in pure solutions. 

However, it generally requires pure crystals of high regularity to solve the structure of a 

complicated arrangement of atoms. Also, the results usually represent a very local 

microstructure, and it requires a lot of work to obtain a certain statistical reliability on the results 

(Tanigawa et al., 2003). More research is required on the development of a generic and cost-

effective experimental method to accurately characterize the different precipitated species from 

a complex waste matrix. Such a procedure may not only be used to determine the precipitated 

species in precipitation units, but also, for example, the precipitates in the digestate leaving the 

digester. The latter is relevant as these precipitates may act as seed material for precipitation 

downstream.    

Finally, interesting model extensions have been identified. They lead to the inclusion of:  

i. Lactate as specific substrate for biological sulfate removal in the NRM-AD, e.g. as 

in UCT (2007); 
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ii. A transformer tool in the NRM-AD to allow for co-digestion of multiple input 

streams, e.g. the GISCOD tool (Zaher et al., 2009b); 

iii. Biochemical transformations of EBPR sludge in the NRM-AD, e.g. as in Ikumi 

(2011); 

iv. Sludge retention in the NRM-AD, e.g. as in Cesur and Albertson (2005); 

v. Microscale flocculation in the NRM-Prec, e.g. as in Crittenden et al. (2012); 

vi. Particle size distributions in the NRM-Prec, e.g. as in Perez et al. (2008); 

vii. Differential settling in the NRM-Settle and (if relevant) in the NRM-Prec, e.g. using 

the Stokes equation (Crittenden et al., 2012); 

viii. Heavy metals (and other contaminants) in all NRM models. 

These extensions will of course lead to further experimental data requirements.  

 

9.4 Conclusions and future perspectives  
A generic model library for nutrient recovery based on detailed chemical solution speciation and 

reaction kinetics was proposed. Four key unit process models were developed: anaerobic 

digestion (NRM-AD), precipitation/crystallization (NRM-Prec), stripping (NRM-Strip), and acidic 

air scrubbing (NRM-Scrub), as well as four ancillary units: chemical dosing (NRM-Chem), heat 

exchanger (NRM-heat), storage tank (NRM-Store), and solids settler (NRM-Settle). Each 

dynamic mathematical model was built using: i) the definition of a chemical speciation model 

using geochemical modelling software (PHREEQC/MINTEQ), ii) the description of a 

physicochemical and biochemical transformation model tailored to the models developed in the 

first step, and iii) the selection of a reactor mass balance model to describe the (time-

dependent) process conditions. 

To facilitate numerical solution, a generic methodology to allow for accurate chemical speciation 

at minimal computational effort was developed. A reduction of execution time was established 

at two critical points during model simulations: i) the uploading and reading of database and 

input files (through PHREEQC model reduction), and ii) the transfer of data between PHREEQC 

and Tornado (through tight model coupling). In this respect, a generic procedure for PHREEQC 

model reduction was proposed. An average improvement of model simulation speeds of 64±10 

% and 79±7 % was obtained using the developed reduced model as compared to full 

PHREEQC and MINTEQ databases, respectively. An important discovery involves the lack of 

fundamental physicochemical components/species/reactions occurring in WRRFs, e.g. 

potassium struvite and ammonium sulfate precipitation, in the existing generic 

PHREEQC/MINTEQ databases. Because of these flaws, an extended database with the 

purpose of nutrient recovery was created, named ‘Nutricover.dat’.  

Simulation results using default parameters showed good agreement with experimental results 

under steady state conditions. However, outputs were very sensitive to the input ionic 

composition through its direct effect on pH. For optimization of process performance and 

sustainability, a more detailed input flow characterization than is common for WRRFs today is 
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recommended. Such data are currently being collected under dynamic conditions at full-scale in 

order to further calibrate and validate the NRM kinetics. Finally, the ability of the models for 

increased process understanding and optimization was demonstrated.  

It can be concluded that the developed NRM library can and should be used by the various 

stakeholders in the field to facilitate the implementation, operation, and optimization of nutrient 

recovery technologies. This, in turn, can stimulate the transition from waste(water) treatment 

plants to more sustainable waste(water) resource recovery facilities.      

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

     

                       CHAPTER 10:   
GLOBAL SENSITIVITY ANALYSIS OF  

NUTRIENT RECOVERY MODELS (NRM):  

FACTOR PRIORITIZATION, TREATMENT TRAIN 

CONFIGURATION AND OPTIMIZATION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  

Towards the balancing of benefits and costs 

 

 

Redrafted from: 

Vaneeckhaute, C., Claeys, F.H., Belia, E., Tack, F.M.G., Meers, E., Vanrolleghem, P.A., 

submitted. Global sensitivity analysis of nutrient recovery models (NRM): Factor prioritization, 

treatment train configuration and optimization.  
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Abstract 

In order to hasten the implementation of optimal, cost-effective, and sustainable treatment trains 
for resource recovery, a nutrient recovery model (NRM) library has been developed and 
validated at steady state. The present chapter describes the use of global sensitivity analysis 
(GSA) for factor prioritization in NRM applications for (digested) manure and sludge treatment. 
The aim was to select the most important factors influencing the model outputs among: 1) input 
waste characteristics, 2) process operational factors, and 3) kinetic parameters incorporated in 
the NRMs. To this end, linear regression analyses on Monte Carlo simulation outputs were 
performed, and the impact of the standardized regression coefficients on major performance 
indicators for each NRM key unit was evaluated.  

Next to the relevance of the outcomes in terms of model validation, the GSA results allowed 
listing generic recommendations for factor prioritiziation in view of future research efforts. 
Moreover, important generic insights in the interactions between process inputs and outputs 
were obtained for the three different waste streams under study. For all unit processes, the 
variation related to the input waste composition resulted in a major effect on the output variation 
through its direct effect on the operational pH and ionic strength. Major findings involve, among 
others, the impact of Cl inhibition on ammonia removal in the stripping unit, the impact of Ca, 
Fe, and Al inhibition on P recovery in the precipitation unit, and the interaction between Fe/Al, S, 
and CH4 production in the anaerobic digester. Based on the results, it was possible to construct 
an optimal treatment train configuration for nutrient recovery aiming at the production of high-
quality fertilizers at minimal cost. Next to the input characterization, it was found that also 
local/regional fertilizer legislations may greatly influence the optimal configuration.  

Finally, the use of the NRM library to establish the operational settings of a sustainable and 
cost-effective treatment scenario with maximal resource recovery and minimal energy and 
chemical requirements was demonstrated. Under the optimized conditions and assumptions 
made, potential financial benefits for a large-scale anaerobic digestion and nutrient recovery 
project were estimated at 2.8-6.5 USD (3.5-8.1 CAD; € 2.5-5.7) m-3 manure based on net 
variable cost calculations, or an average of ± 2 USD (2.5 CAD; € 1.8) m-3 y-1, equivalent with 40 
USD (50 CAD; € 35) ton-1 total solids y-1, over 20 years in the best case when also taking into 
account capital costs. Hence, it is likely that in practice a full-scale ‘ZeroCostWRRF’ 
(waste(water) resource recovery facility at zero cost) can be constructed.  

It can be concluded that the GSA strategy and results obtained in this chapter are very valuable 
to facilitate future implementation and optimization of nutrient recovery practices. Starting from 
the results outlined in the present chapter, further elaboration on the development of a generic 
roadmap for setting up nutrient recovery strategies as function of fertilizer markets and input 
flow characteristics is suggested. This should facilitate communication and nutrient recovery 
scenario implementation. 
 
Keywords: cost optimization, waste(water) characterization, linear regression, Monte Carlo, 

nutrient recovery model validation, unit process interaction. 
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Résumé  

Pour accélérer la mise en œuvre d’une chaîne de traitement optimale, durable et rentable 
permettant la récupération des ressources, une librairie de modèles pour la récupération des 
nutriments (MRN) a récemment été développée et validée en régime permanent. Le présent 
chapitre décrit l'utilisation de l'analyse de sensibilité globale (ASG) pour identifier les facteurs 
prioritaires dans l’application des MRN à des lisiers et des boues (digérés). L'objectif était de 
sélectionner les facteurs les plus importants influençant les sorties des modèles parmi: 1) les 
caractéristiques des flux de déchets entrants, 2) les facteurs opérationnels des procédés, et 3) 
les paramètres cinétiques incorporés dans les MRN. À cette fin, des analyses de régression 
linéaire sur les résultats de simulation Monte Carlo ont été réalisées et l'impact des coefficients 
de régression standardisés sur les indicateurs de performance clés pour chaque modèle a été 
évalué.  

Suivant à la pertinence des résultats en termes de validation des modèles, les résultats de  
l’ASG ont permis de créer une liste de recommandations génériques pour la priorisation des 
facteurs dans les futurs efforts de recherche. En outre, des connaissances génériques 
importantes sur les interactions entre les entrées et sorties des procédés ont été obtenues pour 
les trois différents flux de déchets recherchés. Pour chacun des procédés unitaires, la variation 
relative à la composition des déchets entrants a entraîné un effet majeur sur la variation des 
sorties par son effet direct sur le pH opérationnel et sur la force ionique. Les principales 
conclusions portent, entre autres, sur l'impact de l'inhibition du Cl sur l'élimination de 
l'ammoniac dans l'unité de stripage, l'impact de l’inhibition du Ca, du Fe et de l’Al sur la 
récupération de P dans l'unité de précipitation et l'interaction entre Fe/Al, S et la production de 
CH4 dans le digesteur anaérobie. Basé sur les résultats, il était possible de proposer une 
configuration optimale de chaîne de traitement pour la récupération des nutriments visant à la 
production d'engrais de haute qualité à un coût minimal. En plus de la caractérisation des 
entrants, il a été constaté que les législations d'engrais locales/régionales peuvent aussi 
grandement influencer la configuration optimale.  

Enfin, l'utilisation de la librairie des MRN a été démontrée pour établir les paramètres 
opérationnels d'un scénario de traitement durable et rentable avec une récupération maximale 
des ressources et des exigences minimales d'énergie et de produits chimiques. Sous les 
conditions optimisées et des hypothèses faites, les avantages financiers potentiels d’un projet à 
grande échelle de digestion anaérobie et récupération des nutriments ont été estimés à 2.8-6.5 
USD (3.5-8.1 CAD; € 2.5-5.7) m-3 lisier sur la base des calculs de coûts variables nets, soit une 
moyenne de ± 2 USD (2.5 CAD; € 1.8) m-3 an-1, équivalent avec 40 USD (50 CAD; € 35) tonne-1 
solides totaux an-1, dans le meilleur cas prenant également en compte les coûts 
d’investissement amortisés sur 20 années. Par conséquent, il est très probable que dans la 
pratique un ‘ZeroCostWRRF’ (station de récupération des ressources de l’eau et des déchets à 
coût nul) à pleine échelle peut être construit.  

Il peut donc être conclu que la stratégie d’ASG et les résultats obtenus dans ce chapitre sont 
très utiles pour faciliter la future mise en œuvre et l'optimisation des pratiques de récupération 
des nutriments. À partir des résultats décrits dans le présent chapitre, l'élaboration d'une feuille 
de route générique pour la mise en place des stratégies de récupération des nutriments en 
fonction des marchés d'engrais et des caractéristiques des flux d'entrée est suggérée. Ces 
résultats devraient faciliter la communication et la mise en œuvre de scénarios de récupération 
des nutriments. 
 
Mots-clés: caractérisation des entrants, interaction des processus unitaires, Monte Carlo, 

optimisation des coûts, régression linéaire, validation des modèles de récupération des 

nutriments.
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10.1 Introduction 
To hasten the implementation and integration of sustainable nutrient recovery strategies and to 

adequately put together an optimal treatment train of unit processes for resource recovery, a 

generic nutrient recovery model (NRM) library has recently been developed and validated at 

steady state (Chapter 9). The proposed models are dynamic mathematical models, based on 

detailed solution speciation and reaction kinetics. To facilitate numerical solution, a highly 

efficient PHREEQC-Tornado/(WEST) (Charlton and Parkhurst, 2011; mikebydhi.com; 

Vanhooren et al., 2003) interface has been established and verified. Model simulation outputs 

were found very sensitive to input waste stream characteristics through their direct effect on pH, 

which is adequately determined by means of the integrated chemical speciation calculation. 

Moreover, new data needs appeared, especially related to the physicochemical kinetic 

precipitation/dissolution and liquid-gas/gas-liquid transfer coefficients. For optimization of 

process performance and sustainability, a more detailed physicochemical characterization of 

the input flows than is common at waste(water) resource recovery facilities (WRRFs) to date 

has been recommended. In addition, further experimental studies to adequately calibrate 

physicochemical kinetic parameters in real waste matrices have been advised. 

The present chapter describes the next logical step in model development, i.e. the 

determination of factors that are most influential on model results. To this end, a global 

sensitivity analysis (GSA) is performed, which provides information on how the model outputs 

are influenced by factor variation over the whole space of possible input factor values (Homma 

and Saltelli, 1996; Saltelli et al., 2004). Such model sensitivity analysis is not only critical to 

model validation, but also serves to guide future research efforts. Indeed, by means of GSA, 

factors can be ranked according to the relative magnitude of change of the model outputs 

caused by input factor variation. Following the findings in Chapter 9, the main objective of the 

GSA is to classify and select the most important factors (factor prioritisation) in terms of their 

impact on the model outputs, among three factor classes:  

1. Input waste characteristics at WRRFs (Objective 1);  

2. Process operational factors (Objective 2); 

3. Kinetic rate parameters specific to the NRMs (Objective 3).  

Among the different sensitivity analysis methods available, Hamby (1994) evaluated regression 

analysis as the method that provides the most comprehensive sensitivity measure. It is also the 

common method used to build response surfaces that approximate complex models related to 

waste(water) treatment and it provides accurate results in terms of factor ranking (Chen et al., 

2012a; Cosenza et al., 2013; Saltelli et al., 2008; Sin et al., 2009, 2011; Vanrolleghem et al., 

2015). Hence, the standardized regression coefficient (SRC) method will be used for factor 

prioritization in this research. One limitation of this method is its inability to detect synergistic or 

cooperative effects among factors, i.e. problems related to multicollinearity (Kutner et al., 2005; 

Saltelli et al., 2008). Due to the large number of model factors considered in the NRM library 

and the complex nature of the input waste matrices, i.e. manure and wastewater treatment plant 
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(WWTP) sludge, the model variance contribution due to multicollinearity may be significant. To 

overcome this potential problem, model quality was assessed by determination of variance 

inflation factors (VIFs), a widely accepted detection-tolerance for multicollinearity (Kutner et al., 

2005), next to common coefficients for evaluation of model linearity.   

Based on the unit process GSA results, input factors that have the highest impact on the output 

variability and that hence should become standard measurements at WRRFs, at least during 

start-up, are selected. Secondly, uncertain kinetic parameters that most urgently require 

additional experimental research for strengthening the knowledge base and for calibration are 

listed. Thirdly, the most important operational factors requiring optimization are identified. 

Finally, the use of the NRM library and GSA for treatment train configuration and optimization is 

demonstrated (Objective 4). A conceptual overview of the strategy used is presented in Figure 

10.1 and briefly described below.    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

  
  

Figure 10.1 Conceptual overview: use of the nutrient recovery model (NRM) library for 
treatment train configuration and optimization. GSA = global sensitivity analysis.  

 

Starting from the increased insights obtained through unit process GSA (Fig. 10.1: Steps 1-2), 

an optimal combination of unit processes in a treatment train for nutrient recovery was selected 

(Fig. 10.1: Step 3). Key technology providers in the field of nutrient recovery were asked to 

provide designs (and cost estimates) for a given design flow for each of the individual unit 

processes in the treatment train. Each technology provider applied its in-house design 

guidelines and safety factors. An operational envelope was compiled based on a treatment train 
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GSA (Fig. 10.1: Step 4) and the operational settings were optimized aiming at the reduction of 

net operational costs (Fig. 10.1: Step 5). Finally, an overall economic analysis was conducted 

for the optimized nutrient recovery scenario (Fig. 10.1: Step 6).  

Note that in the future the NRM library may replace the use of the in-house design guidelines 

applied now by the technology providers for design purposes in a way that is currently being 

developed for treatment plant design (Talebizadeh et al., 2014). However, such probability-

based dynamic design approaches are still under development for the activated sludge process 

and requires good assessments of the uncertainties in the processes and the waste properties 

(Talebizadeh et al., 2014). Significant research to reduce these uncertainties and assess them 

in detail is still required. Hence, at this stage, using the NRM library for sizing of nutrient 

recovery systems is considered premature.   

 

10.2 Methodology    
The overall strategy used for GSA aiming at factor prioritization, treatment train configuration, 

and optimization is presented in Figure 10.2 and further described in detail in the sections 

below.   

 
  

 
 
 
 
 

 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
  

Figure 10.2 Strategy used for global sensitivity analysis. Grey boxes indicate the research 
objectives. NRM = nutrient recovery model; R2 = determination coefficient;  

VIF = variance inflation factor. 
 

First, the NRM configuration and performance indicators under study were selected (Section 

10.2.1). Next, the scenarios for sensitivity analysis of each NRM and the corresponding factor 

distributions were chosen (Section 10.2.2). A Monte Carlo simulation and multivariate linear 
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regression were then performed (Section 10.2.3). When model quality was found to be 

sufficient, factors were ranked according to predefined selection criteria. Finally, based on the 

obtained process insights, an optimal treatment train configuration was compiled, a treatment 

train sensitivity analysis was conducted, and an optimization experiment was performed for the 

selected treatment train (Section 10.2.4).  

 

10.2.1 NRM configuration and performance indicators    

Details of the NRM unit processes are provided in Chapter 9. The GSA was performed for each 

NRM key unit, i.e. the anaerobic digester (NRM-AD), the precipitation/crystallization unit (NRM-

Prec), the stripping unit (NRM-Strip), and the acidic air scrubber (NRM-Scrub). Manure and 

WWTP sludge were used as input to the NRM-AD, whereas digestate was used as input to the 

NRM-Prec and NRM-Strip (Fig. 9.1). The output gas flow resulting from the NRM-Strip was 

used as input to the NRM-Scrub. 

For the NRM-AD and NRM-Prec units, a continuously stirred tank reactor (CSTR) design was 

assumed (Batstone et al., 2002; Crittenden et al., 2012), with continuous biogas and precipitate 

extraction, respectively (Table 9.6). The NRM-Strip and NRM-Scrub units were modelled using 

a stirred bubble tank design as in Gujer (2008). A large-scale project was considered, as 

construction of biogas systems on a large scale (~ 500 kW and more) is becoming increasingly 

important to meet the global 2020 directives (UNEP, 2013) in terms of energy production, 

organic matter valorization, and greenhouse gas emission reductions, both at farm, municipality, 

and regional scale (Thomassen and Zwart, 2008; Zwart et al., 2006).  

Realistic design parameters were obtained by distributing a technical questionnaire to key 

technology suppliers in the field, requesting a cost estimate for a design flow of 2,000 m3 d-1 

(input ranges, e.g. for N, P, chemical oxygen demand (COD), volatile suspended solids (VSS), 

total solids (TS), and alkalinity from Cesur and Albertson (2005)) as input to the anaerobic 

digester, and the resulting digestate (Cesur and Albertson, 2005) as input to the nutrient 

recovery units. The results of this questionnaire are provided in Table 10.1.  A mesophilic (35 

°C) anaerobic digestion process was assumed, while the design values for the stripper are 

based on an operational temperature of 50-55 °C, a pH > 10, and a gas to liquid ratio of ± 800 

m3 m-3.   
 

 

 

 

 

 

 

 

 

Table 10.1 Design parameters for each key unit process in the nutrient recovery model (NRM) 
library. AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = stripper; Scrub = 
scrubber.  
Key unit Parameter Symbol Design value Unit 
NRM-AD Liquid volume V_liq 40,000a m3 
NRM-AD Gas volume V_gas 3,000a m3 
NRM-Prec Liquid volume V_liq 500a m3 
NRM-Strip / NRM-Scrubb,c Reactor volume V 80a m3 
NRM-Strip / NRM-Scrubb,c Reactor height H 12        m 
a Volume reflects the total capacity. It can be divided over different units, depending on the technology provider, e.g.      

anaerobic digestion can be performed using four units of 10,000 m3.  
b  Values indicate reactor dimensions for the individual stripper and scrubber unit. Hence, both units have the same size.  
c At an operational temperature of 50-55 °C, pH > 10, and gas to liquid ratio of ± 800 m3 m-3. 
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The performance indicators evaluated for each NRM key unit are presented in Table 10.2. The 

objective functions were selected to evaluate resource recovery and process sustainability in 

accordance with the observed specifications in Chapters 2-8 and the selected model outputs in 

Section 9.2.1.2 (Chapter 9) or Table 8.1. 
 
 
 

 

 
 

Table 10.2 Performance indicators (+ symbol and unit) used as objective functions in global 
sensitivity analysis for each key unit in the nutrient recovery model (NRM) library. AD = 
anaerobic digestion; Prec = precipitation/crystallization; Strip = stripper; Scrub = scrubber. 
    NRM-AD     NRM-Prec     NRM-Strip     NRM-Scrub 

1. CH4 production 
    (p_CH4, atm)a 

1. Effluent soluble P  
    (S_P, kmol m-3) 

1. NH4-N removal efficiency  
   (%) 

1. NH3 recovery  
    (= absorption) efficiency 
    (%) 

2. Biogas production 
    (pbiogas, atm)a 

2. Fertilizer P  
    (P_P, kmol m-3) 

2. Effluent soluble NH4-N 
   (S_N_min3_, kmol m-3) 

2. Fertilizer soluble NH4-N 
    (S_N_min3_, kmol m-3), 

3. Digestate soluble COD  
    (S_COD, kmol m-3) 

3. Fertilizer particle  
    diameter  
    (dp, m) 

3. CO3 precipitation  
    (cfr. scaling)  
    (P_C_4_, kmol m-3) 

3. Fertilizer pH 

4. Digestate particulate    
    COD (X_COD, kmol m-3) 

4. Fertilizer density  
    (ρ, kg m-3) 

4. Air requirements  
    (m3 d-1) 

4. Acid requirements  
    (m3 d-1) 

5. Digestate soluble NH4-N   
    (S_N_min3_, kmol m-3) 

5. Struvite purity  
    (%) 5. Overallb 5. Overallb 

6. Digestate soluble P  
   (S_P, kmol m-3) 6. Overallb   

7. Digestate soluble K  
    (S_K, kmol m-3) 

   

8. Digestate pH    
9. Overallb    
a Overpressure leads to methane and biogas production (m3 m3 d-1; cfr. ADM1; Batstone et al., 2002).  
b Overall measure of factor sensitivity on all objective functions considered for the unit. Each output was assumed to  
   have an equal weight.  
 
For the NRM-AD unit, it is obvious that CH4 and biogas production were aimed to be high, in 

line with the amount of COD removed. Digestate soluble NH4-N, P, and K were studied in order 

to evaluate the digestate fertilizer quality and the potential of uncontrolled nutrient precipitation 

in the digester and subsequent piping. Further, the digestate pH should be neutral or slightly 

alkaline for fertilizer purposes. The latter also indicates a stable digestion process.   

For the NRM-Prec unit, a low effluent P and high fertilizer P concentration was targeted. 

Moreover, the larger the particle diameter, the higher the revenues, while an increasing fertilizer 

density reduces the costs for transportation (Chapters 2, 4). As to date struvite precipitation is 

the most convenient practice used for P recovery, also struvite purity was selected as 

performance indicator (= mass of N- and K-struvite over total recovered fertilizer mass).  

Next, for the NRM-Strip unit, low effluent NH4-N concentrations and hence high digestate NH4-N 

removal efficiencies were targeted at mimimal air consumption. Carbonate precipitation should 

also be low in order to reduce scaling on the packing material, which may reduce the stripping 

performance. For the NRM-Scrub unit, a high NH3 absorption efficiency was intended in line 

with a high fertilizer N concentration (25-40 % (NH4)2SO4 by weight), using a mimimal amount of 

acid. The interest to evaluate the pH of the recovered ammonium sulfate (AmS) fertilizer is 

related to the fact that it is often too low (3-4) for direct land application (Chapters 4-5). Hence, 

process conditions that neutralize the pH at acceptable costs may be favoured.  

Finally, for each NRM, also an overall GSA was performed, representing a global measure of 

factor sensitivity on all objective functions considered for the NRM (i.e. ‘Overall’ in Table 10.2).  
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10.2.2 Scenarios for sensitivity analysis and factor distributions  

To match the purpose of the specific model application (Section 10.1), it was decided to focus 

the sensitivity analysis on the variation related to the input waste composition (~ objective 1), 

the operational factors (~ objective 2), and the (new) kinetic parameters incorporated in the 

NRMs (~ objective 3). The different GSA scenarios, with indication of the varying and fixed 

factors, are presented in Table 10.3. Varying factors used for GSA were represented using a 

uniform distribution. The implicit assumption in selecting a uniform distribution is that every 

value in the provided range has an equal probability of occurrence. As pointed out by Freni and 

Mannina (2010; Mannina and Viviani, 2009), a uniform distribution of model factors is preferred 

whenever relevant prior factor information is unavailable, as assuming a non-uniform shape 

may lead to wrong estimations of uncertainty in modelling results. The other factors in the NRM 

library were kept fixed at the default value (see below). Their impact on the model outputs was 

thus not evaluated.  

 
Table 10.3 Scenarios for sensitivity analysis: varying factors (= uniform distribution) and fixed 
factors (= default value) considered for each key unit in the nutrient recovery model (NRM) 
library. AD = anaerobic digestion; L-G = liquid-gas; L-S = liquid-solid; Prec = precipitation/ 
crystallization; Scrub = scrubber; SRB = sulfate reducing bacteria; Strip = stripper.  

Key unit Liquid input Gas input 
Mass transfer 

(L-G, L-S) 
Physicochemical  

stoichiometry 

NRM-AD A. Uniform (large range): all applications N/Aa Uniform Default valueb 

 B. Uniform: manure rangec N/A Uniform Default value 
  C. Uniform: sludge ranged N/A Uniform Default value 

NRM-Prec A. Uniform (large range): all applications N/A Uniform Default value 

 B. Uniform: digestate 1c,e N/A Uniform Default value 
  C. Uniform: digestate 2f,e N/A Uniform Default value 
NRM-Strip A. Uniform (large range): all applications Uniform Uniform Default value 

 B. Uniform: digestate 1c,e Uniform Uniform Default value 
  C. Uniform: digestate 2f,e Uniform Uniform Default value 

NRM-Scrub Uniform (acid) Uniform Uniform Default value 

 Key unit 
(Continuation) 

Bio-kinetics SRBs Bio-kinetics (other) 
 & stoichiometry 

Operation Designg 

NRM-AD Uniform Default value, Uniform Default value 

 Uniform except for SRBs Uniform Default value 
  Uniform  Uniform Default value 
NRM-Prec N/A N/A Uniform Default value 

 N/A N/A Uniform Default value 
  N/A N/A Uniform Default value 

NRM-Strip N/A N/A Uniform Default value 

 N/A N/A Uniform Default value 
  N/A N/A Uniform Default value 

NRM-Scrub N/A N/A Uniform Default value 
a N/A = not applicable.  
b When factors are taken as fixed, they are set to their default values (Tables 10.4-10.7).  
c Data taken from Cesur and Albertson (2005).  
d Data taken from Astals et al. (2013).  
e Tested with and without the external addition of base.  
f Data taken from Vlaco (2012).  
g Design reactor dimensions based on budget proposals received from technology providers for a specified design flow of 2,000 m-3 d-1  
  (Section 10.2.1: Table 10.1).  

To cover the high variability of the input waste composition in time and for different locations, for 

all systems first a wide variation range was applied in order to cover all potential applications 

and treatment trains (= Scenario A). Secondly, for the NRM-AD, typical pig manure ranges 

(Cesur and Albertson, 2005; Scenario B) and WWTP sludge ranges (Astals et al., 2013; 
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Scenario C) were evaluated. For manure, very valuable datasets were provided by Mattocks et 

al. (2002) and Martin (2003), who collected and characterized in detail anaerobic digester input 

and output variables, and recorded system parameters and operational measurements at 26 

sampling points during one year. These datasets were used for ADM1 (Anaerobic Digestion 

Model No. 1) calibration and validation by Cesur and Albertson (2005), from where the variation 

ranges in manure composition were taken for this study.  

Next, Astals et al. (2013) evaluated the characteristics and biodegradability of seven mixed 

sewage sludges, with different ratios of primary and activated sludge (AS) from different 

WWTPs that have an anaerobic digester in operation. These data were specifically assessed in 

order to clarify the literature uncertainty with regard to sludge characteristics and 

biodegradability in particular. Hence, the dataset was very suitable for the present study. In 

order to cover high sulfate waste flows (for detection of important kinetic parameters for 

biochemical sulfate reduction), the sludge range was further adjusted by incorporating data from 

a full-scale operational anaerobic digester treating S-rich paper mill sludge located at the WRRF 

Holmen Paper, Madrid, Spain (data obtained by the Center of Studies and Technical Research, 

CEIT, San Sebastian, Spain; See also Chapter 9).  

Next, to cover the uncertainty of digestate characteristics and its variability in time (= input for 

NRM-Prec and NRM-Strip), data were obtained by Vlaco (2012), who characterized 213 

digestates from different (co-)digestion plants in Flanders (Belgium) during four years (2008-

2011; Scenario C; see Chapter 2: Section 2.2). Also, the digestate range for manure provided 

by Cesur and Albertson (2005) was used for the GSA (Scenario B), aiming at the configuration 

and optimization of a treatment train for resource recovery (Section 10.2.4). Finally, it should be 

noted that for the NRM-Prec and NRM-Strip, the GSA was performed with and without the 

possibility of external chemical addition for pH-increase. 

For all scenarios, the stoichiometric physicochemical parameters (e.g. Henry coefficients, acid-

base equilibrium constants, ion pairing constants, etc.) were determined by the coupled 

geochemical modelling software tool PHREEQC (Chapter 9: Section 9.2.4). The stoichiometric 

and kinetic biological parameters used in the NRM-AD were considered sufficiently calibrated 

by Batstone et al. (2002), while the kinetics of the added processes for sulfate reducing bacteria 

(SRBs) were assumed unknown. Hence, the focus of the analysis was on the extensions 

included in the NRM-AD as compared to ADM1 (Chapter 9: Section 9.2.2.3). This is reasonable 

as during validation of the NRM-AD, it was found that especially the calibration of biological S 

removal deserves further attention (Chapter 9: Section 9.3.2). For the physicochemical kinetics, 

the following assumptions were made: i) precipitation kinetics are equal to dissolution kinetics 

(Morse and Arvidson, 2002), ii) the reaction order for all precipitation reactions is 2, indicating 

surface controlled growth (Mehta and Batstone, 2013; Musvoto et al., 2000a,b), iii) no 

agglomeration occurs or agglomeration occurs homogeneously, i.e. using the same fixed kinetic 

rate values for each precipitate (Schneider et al., 2013).  
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Tables 10.4-10.7 summarise the symbol, description, variation range, default value, and the unit 

of the variable model factors used in the different sensitivity analysis scenarios for each NRM 

key unit. The variation ranges provided and default values were taken from literature (see 

above), existing models, expert-judgement, and contact with technology providers. For more 

details, reference is made to Chapters 2 and 9. The default values for the input waste 

characteristics were set at the average values for manure (NRM-AD: Table 10.4) and digested 

manure (all NRMs following the NRM-AD: Tables 10.5-10.7) provided by Cesur and Albertson 

(2005), as these values were used in a case study for treatment train optimization (Section 

10.2.4).  

As mentioned in the introduction of this chapter, the objective of the analysis was to use the 

NRM library and GSA for the selection (and optimization) of important operational factors for 

nutrient recovery systems, not for design purposes. In practice, the flow and characteristics of 

the waste streams available for digestion, and hence the quantity and quality of digestate may 

vary significantly (see Chapters 3-5). Therefore, flow rates were allowed to change in the GSA 

and the reactor dimensions were kept at the values of Table 10.1. The aim was to cover the 

variability in the hydraulic residence time (HRT) and solids retention time (SRT), in accordance 

with the selected reactor design parameters (Table 10.1). Typical HRTs for NRM-AD range 

between 10 and 30 d, depending on the nature of the waste material and operational 

temperature (Fleming and McAlpine, 2008; Tchobanoglous et al., 2003; Wilkie, 2000). HRTs 

and SRTs for struvite precipitation (NRM-Prec) reported in literature are very variable. The 

company Ostara (Vancouver, Canada) estimated an average HRT of 25 min (0.0174 d) for 

digested sludge based on full-scale experiences (Ostara, 2014; Seymour, 2009). However, in 

literature, HRTs up to 10 h (Schneider et al., 2013) and 1 d (Le Corre et al., 2009) have also 

been reported. SRTs usually range between 3 and 30 d (Le Corre et al., 2009). Finally, HRTs 

for the strip-scrub system range between 40 min and 4.8 h (RVTPE, 2014; Tchobanoglous et 

al., 2003), depending on the ammonium content to be removed, the operational temperature 

and pH.  

 

Table 10.4 Symbol, description, variation range, default value, and unit for each model factor 
used in the global sensitivity analysis scenarios for the NRM-AD (anaerobic digestion) key unit. 
Range A: all applications; Range B: manure (Cesur and Albertson, 2005); Range C: sludge 
(Astals et al., 2013). L-S = liquid-solid; L-G = liquid-gas.  

NRM-AD Factor symbol Description Range A Range B Range C Defaulta Unit 
Input liquidb S_Inert soluble inerts 0-100 0-1.5 0.1-4.2 0.75 kg COD m-3 

 
S_fa soluble long chain fatty acids 0-100 0-1.5 0.1-4.2 0.75 kg COD m-3 

 
S_su soluble sugars 0-100 0-1.5 0.1-4.2 0.75 kg COD m-3 

 
X_Inert particulate inerts 0-100 28.83-48.92 0-60.04 38.88 kg COD m-3 

 
X_ch carbohydrates 0-100 14.95-25.37 0.19-17.22 20.16 kg COD m-3 

 
X_li lipids 0-100 0-1.54 0.14-7.96 0.77 kg COD m-3 

 
X_pr proteins 0-100 0-1.54 0-13.54 0.77 kg COD m-3 

 
S_Acetate soluble acetate 0-100 66.74-103.69 2.89-18.35 85.22 mol m-3 

 
S_Al soluble aluminum 0-100 1.48-2.29 0.01-20 1.89 mol m-3 

 
S_Butyrate soluble butyrate 0-100 10.68-18.12 1.16-4.03 14.40 mol m-3 

 
S_C_4_ soluble carbonate (IV) 0-500 115.42-149.24 16.44-72.88 132.33 mol m-3 

 
S_C_min4_ soluble methane (-IV) 0-10 0-5 0-5 2.50 mol m-3 

 
S_Ca soluble calcium 0-100 23.02-61.38 3.85-10.25 42.20 mol m-3 

 
S_Cl soluble chloride 0-100 10-40 5.33-15.97 25 mol m-3 
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a Initial values used for treatment train optimization.  
b The solubility of gases was allowed to change with pressure and temperature.    
c The pH is calculated by PHREEQC at every time step based on the charge balance (Chapter 9).  
d Temp_liq represents the liquid temperature after the heat exchanger. Default input waste temperature prior to the heat exchanger = 20  
  °C (cfr. Khiewwijit et al., 2015; Symantec, 2014).  
e The variation related to the presence of seed material for each precipitate was included in the variation range for the corresponding 

kinetic liquid-solid transfer coefficient in order to eliminate multicollinearity problems (see Section 10.3.1.2).   
f All kLa values are derived from kLa_H2, except for NH3. For NH3, the default kLa is set to a very low value (3.2) and the Arrhenius 

coefficient theta to 0, indicating the very slow stripping of NH3 in the digester (Chapter 9: Section 9.2.2.2). The effect of calculating the 
kLa_NH3 based on the kLa_H2 (hence a varying kLa instead of a fixed one) is tested here by allowing theta > 0.   

g srb_ac = sulfate reducing bacteria using acetate; srb_bu = sulfate reducing bacteria using butyrate; srb_pro = sulfate reducing bacteria 
using propionate; srb_va = sulfate reducing bacteria using valerate. 

 

NRM-AD Factor symbol Description Range A Range B Range C Defaulta Unit 
(Continuation)        

 S_Fe soluble iron 0-100 2.91-3.87 0.01-20 3.39 mol m-3 
 S_H_0_ soluble hydrogen (0) 0-1 0-1 0-1 0.50 mol m-3 
 S_K soluble potassium 0-100 21.76-30.46 1.82-7.18 26.11 mol m-3 
 S_Mg soluble magnesium 0-100 12.65-29.53 1.52-5.60 21.09 mol m-3 
 S_N_0_ soluble nitrogen (0) 0-1 0-1 0-1 0.50 mol m-3 
 S_N_5_ soluble nitrogen (V) 0-100 0.13-0.17 0-0.2 0.15 mol m-3 
 S_N_min3_ soluble nitrogen (-III) 0-100 176.3-205 10.14-71.07 190.65 mol m-3 
 S_Na soluble sodium 0-100 17.82-35.65 7.48-23.26 26.74 mol m-3 

 
S_P soluble phosphorus 0-100 22.38-36.08 0.55-9.26 29.23 mol m-3 

 
S_Propionate soluble propionate 0-100 17.54-29.77 1.68-9.2 23.66 mol m-3 

 
S_S_6_ soluble sulfate (VI) 0-100 9.61-19.25 0.31-6.65 14.43 mol m-3 

 
S_S_min2_ soluble sulfide (-II) 0-10 0.01-1 0.01-1 0.51 mol m-3 

 
S_Valerate soluble valerate 0-100 2.87-4.88 0.85-2.96 3.88 mol m-3 

Operation pH_liqc input pH 5-8.5 7.72-8.3 5.7-7.5 8.01 - 

 
Temp_liqd liquid temperature 10-55 10-55 10-55 35 °C 

 
Q_liq liquid flow rate 1,000-3,000 1,000-3,000 1,000-3,000 2,000 m3 d-1 

L-S kineticse k_Al2O3 liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.00E-4 mol m-2 d-1 

 
k_AlPO4 liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.00E-4 mol m-2 d-1 

 
k_Anhydrite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.00E-4 mol m-2 d-1 

 
k_Aragonite liquid-solid transfer  coefficient 1E-5-100 1E-5-100 1E-5-100 0.61 mol m-2 d-1 

 
k_Boehmite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 2.80E-4 mol m-2 d-1 

 
k_Ca4H(PO4)3:3H2O liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_CaHPO4:2H2O liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 14.64 mol m-2 d-1 

 
k_CaHPO4bis liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Calcite liquid-solid transfer coefficient 1-5,000 1-5,000 1-5,000 1,080 mol m-2 d-1 

 
k_Diaspore liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Dolomite liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 11.22 mol m-2 d-1 

 
k_FeS_ppt liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.00E-4 mol m-2 d-1 

 
k_Gibbsite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.19E-4 mol m-2 d-1 

 
k_Hercynite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Hydroxyapatite liquid-solid transfer coefficient 1-5,000 1-5,000 1-5,000 986.65 mol m-2 d-1 

 
k_Kstruvite liquid-solid transfer coefficient 1E-10-1 1E-10-1 1E-10-1 4.64E-6 mol m-2 d-1 

 
k_Mackinawite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.00E-4 mol m-2 d-1 

 
k_Magnesite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 9.88E-4 mol m-2 d-1 

 
k_Mg3(PO4)2 liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_MgHPO4:3H2O liquid-solid transfer coefficient 1E-11-1 1E-11-1 1E-11-1 4.78E-7 mol m-2 d-1 

 
k_Siderite liquid-solid transfer coefficient 1E-7-10 1E-7-10 1E-7-10 0.0021 mol m-2 d-1 

 
k_Struvite liquid-solid transfer coefficient 1E-7-10 1E-7-10 1E-7-10 0.0020 mol m-2 d-1 

 
k_Vivianite liquid-solid transfer coefficient 1E-10-1 1E-10-1 1E-10-1 1.66E-6 mol m-2 d-1 

L-G kinetics kLa_H2 liquid mass transfer coefficient 0-402 0-402 0-402 223 d-1 

 
D_H2 liquid-phase diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 1.61E-4 m-2 d-1 

 
theta_CH4_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_CO2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_H2S_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_H2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_N2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
kLa_NH3_f/   
theta_NH3_g_f 

liquid mass transfer coefficient /  
Arrhenius coefficient 

3.2f  / 
1.01-1.05f 

3.2f  / 
1.01-1.05f  

3.2f  / 
1.01-1.05f 

3.2f  / 
1.01-1.05f 

d-1 / 
- 

Bio-kineticsg kdec_xsrb_ac decay rate of srb_ac 0.005-0.05 0.005-0.05 0.005-0.05 0.02 d-1 

 
kdec_xsrb_bu decay rate of srb_bu 0.005-0.05 0.005-0.05 0.005-0.05 0.02 d-1 

 kdec_xsrb_h decay rate of srb_h 0.005-0.05 0.005-0.05 0.005-0.05 0.02 d-1 
 kdec_xsrb_pro decay rate of srb_pro 0.005-0.05 0.005-0.05 0.005-0.05 0.02 d-1 
 km_srb_ac maximum specific growth rate of srb_ac 1-50 1-50 1-50 12.55 d-1 
 km_srb_bu maximum specific growth rate of srb_bu 1-50 1-50 1-50 14.51 d-1 
 km_srb_h maximum specific growth rate of srb_h 1-50 1-50 1-50 20.00 d-1 
 km_srb_pro maximum specific growth rate of srb_pro 1-50 1-50 1-50 20.00 d-1 
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Table 10.5 Symbol, description, variation range, default value, and unit for each model factor 
used in the global sensitivity analysis scenarios for the NRM-Prec (precipitation/crystallization) 
key unit. Range A: all applications; Range B: digestate from manure (Cesur and Albertson, 
2005); Range C: (co-)digestate (Vlaco, 2012). L-S = liquid-solid; L-G = liquid-gas.  

a Initial values used for treatment train optimization. 
b The solubility of gases was allowed to change with pressure and temperature.     
c Tested with and without an external dose (0-500 mol m-3) . 
d 9.85-45.77 mol m-3 for digested primary and waste activated sludge, 187-213 mol m-3 for digested sludge from enhanced biological P  
  removal (EBPR). 
e   i refers to each precipitate included in the NRM-Prec as presented in Appendix 5 (Table A5.5).  
f The default specific surface area of seed material is 600 m2 g-1 (Charlton and Parkhurst, 2011). 
g The pH is calculated by PHREEQC at every time step based on the charge balance (Chapter 9). 
h Without any chemical addition.   

 
 
 

NRM-Prec Factor symbol Description Range A Range B Range C Defaulta Unit 
Input liquidb S_Acetate soluble acetate 0-100 0.24-0.53 0-1 0.39 mol m-3 

 
S_Al soluble aluminum 0-100 1.45-2.24 1.45-100 1.85 mol m-3 

 
S_Butyrate soluble butyrate 0-100 0.17-0.36 0-1 0.27 mol m-3 

 
S_C_4_ soluble carbonate (IV) 0-500 144.0-152.9 8-109 148.45 mol m-3 

 
S_C_min4_ soluble methane (-IV) 0-10 0-1 0-1 0.50 mol m-3 

 
S_Ca soluble calcium 0-500 17.47-22.46c 28.57-98.21c 19.97 mol m-3 

 
S_Cl soluble chloride 0-100 10-40 2.5-24 25 mol m-3 

 
S_DOM dissolved organic matter 0-100 40.10-48.84 0-40 20 mol m-3 

 
S_Fe soluble iron 0-100 2.10-2.61 1.45-170 2.36 mol m-3 

 
S_K soluble potassium 0-100 25.48-29.72 21.27-37.23 27.60 mol m-3 

 
S_Mg soluble magnesium 0-500 4.11-8.23c 7.44-49.62c 6.17 mol m-3 

 
S_N_5_ soluble nitrogen (V) 0-100 0.10-0.13 0.22-0.71 0.115 mol m-3 

 
S_N_min3_ soluble nitrogen (-III) 0-500 166.7-205.6 36-243.86 186.15 mol m-3 

 
S_Na soluble sodium 0-500 26.09-39.13c 3.74-34.89c 32.64 mol m-3 

 
S_P soluble phosphorus 0-100 14.79-19.01 9.85-213d 16.90 mol m-3 

 
S_Propionate soluble propionate 0-100 0.16-0.35 0-1 0.26 mol m-3 

 
S_S_6_ soluble sulfate (VI) 0-100 9.38-12.5 0.15-9.975 10.94 mol m-3 

 
S_S_min2_ soluble sulfide (-II) 0-10 0-1 0-5 0.50 mol m-3 

 
S_Valerate soluble valerate 0-100 0.07-0.14 0-1 0.11 mol m-3 

 S_seed[i]e,f concentration of seed material  
for precipitate i 

0.0001-6 0.0001-6 0.0001-6 0.001 g m-3 

Operation pH_liqg operational pH 7-11 7-11 7-11 8.5h - 

 
Temp_liq operational temperature 20-50 20-50 20-50 20 °C 

 
Q_liq liquid flow rate 40-2,300 40-2,300 40-2,300 2,000 m3 d-1 

 
Q_prec precipitate flow rate 1-300 1-300 1-300 30 m3 d-1 

L-S kinetics k_AlPO4 liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.00E-4 mol m-2 d-1 

 
k_Aragonite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 6.12 mol m-2 d-1 

 
k_Artinite liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Boehmite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 2.80E-4 mol m-2 d-1 

 
k_Brucite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Ca3(PO4)2_am1 liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Ca3(PO4)2_am3 liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Ca3(PO4)2_beta liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Ca4H(PO4)3:3H2O liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_CaHPO4:2H2O liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 14.64 mol m-2 d-1 

 
k_CaHPO4bis liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Calcite liquid-solid transfer coefficient 1-5,000 1-5,000 1-5,000 1,080 mol m-2 d-1 

 
k_Diaspore liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Dolomite liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 11.22 mol m-2 d-1 

 
k_Dolomite_dis liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Fe(OH)2_s liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Gibbsite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 1.19E-4 mol m-2 d-1 

 
k_Hercynite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Hydroxyapatite liquid-solid transfer coefficient 1-5,000 1-5,000 1-5,000 986.65 mol m-2 d-1 

 
k_Kstruvite liquid-solid transfer coefficient 1E-10-1 1E-10-1 1E-10-1 4.64E-6 mol m-2 d-1 

 
k_Magnesite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 9.88E-4 mol m-2 d-1 

 
k_Mg3(PO4)2 liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_MgHPO4:3H2O liquid-solid transfer coefficient 1E-11-1 1E-11-1 1E-11-1 4.78E-7 mol m-2 d-1 

 
k_Mg(OH)2_act liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 k_Siderite liquid-solid transfer coefficient 1E-7-100 1E-7-100 1E-7-100 0.0020 mol m-2 d-1 
 k_Struvite liquid-solid transfer coefficient 1E-7-100 1E-7-100 1E-7-100 0.0021 mol m-2 d-1 
 k_Vaterite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Vivianite liquid-solid transfer coefficient 1E-10-1 1E-10-1 1E-10-1 1.66E-6 mol m-2 d-1 
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Table 10.6 Symbol, description, variation range, default value, and unit for each model factor 
used in the global sensitivity analysis scenarios for the NRM-Strip (stripper) key unit. Range A: 
all applications; Range B: digestate from manure (Cesur and Albertson, 2005); Range C:  
(co-)digestate (Vlaco, 2012). L-S = liquid-solid; L-G = liquid-gas.  

NRM-Strip Factor symbol Description Range A Range B Range C Defaulta Unit 
Input  liquidb S_Acetate soluble acetate 0-100 0.24-0.53 0-1 0.39 mol m-3 

 
S_Al soluble aluminum 0-100 1.45-2.24 1.45-100 1.85 mol m-3 

 
S_Butyrate soluble butyrate 0-100 0.17-0.36 0-1 0.27 mol m-3 

 
S_C_4_ soluble carbonate (IV) 0-500 144-152.9 8-109 148.45 mol m-3 

 
S_C_min4_ soluble methane (-IV) 0-10 0-1 0-1 0.50 mol m-3 

 
S_Ca soluble calcium 0-500 17.47-22.46c 28.57-98.21c 19.97 mol m-3 

 
S_Cl soluble chloride 0-100 10-40 2.5-24 25 mol m-3 

 
S_DOM dissolved organic matter 0-100 40.10-48.84 0-40 20 mol m-3 

 
S_Fe soluble iron 0-100 2.10-2.61 1.45-170 2.36 mol m-3 

 
S_H_0_ soluble hydrogen (0) 0-1 0-1 0-1 0-1 mol m-3 

 
S_K soluble potassium 0-100 25.48-29.72 21.27-37.23 27.60 mol m-3 

 
S_Mg soluble magnesium 0-500 4.11-8.23c 7.44-49.62c 6.17 mol m-3 

 
S_N_0_ soluble nitrogen (0) 0-1 0-1 0-1 0-1 mol m-3 

 
S_N_5_ soluble nitrogen (V) 0-100 0.10-0.13 0.22-0.71 0.115 mol m-3 

 
S_N_min3_ soluble nitrogen (-III) 0-500 166.7-205.6 36-243.86 186.15 mol m-3 

 
S_Na soluble sodium 0-500 26.09-39.13c 3.74-34.89c 32.64 mol m-3 

 
S_O_0_ soluble oxygen (0) 0-1 0-1 0-1 0.50 mol m-3 

 
S_P soluble phosphorus 0-100 14.79-19.01 9.85-213d 16.90 mol m-3 

 
S_Propionate soluble propionate 0-100 0.16-0.35 0-1 0.26 mol m-3 

 
S_S_6_ soluble sulfate (VI) 0-100 9.38-12.5 0.15-9.975 10.94 mol m-3 

 
S_S_min2_ soluble sulfide (-II) 0-10 0-1 0-5 0.50 mol m-3 

 
S_Valerate soluble valerate 0-100 0.07-0.14 0-1 0.11 mol m-3 

Input gase CH4_g_ methane gas 0-0.001 0-0.001 0-0.001 4.84E-6 atm 

 
CO2_g_ carbon dioxide gas 0-0.01 0-0.01 0-0.01 7.60E-4 atm 

 
H2O_g_ water vapour 0-0.001 0-0.001 0-0.001 0 atm 

 
H2S_g_ hydrogen sulfide gas 0-0.001 0-0.001 0-0.001 0 atm 

 
H2_g_ hydrogen gas 0-0.001 0-0.001 0-0.001 1.21E-6  atm 

 
N2_g_ nitrogen gas 0-5 0-5 0-5 1.89    atm 

 
NH3_g_ ammonia gas 0-0.001 0-0.001 0-0.001 0       atm 

 
O2_g_ oxygen gas 0-5 0-5 0-5 0.51 atm 

Operation d_gas diameter of the gas bubbles 0.001-0.01 0.001-0.01 0.001-0.01 0.003 m 

 
P_gas_in gas pressure 1-7 1-7 1-7 2.42 atm 

 
Temp_gas_in gas temperature 20-70 20-70 20-70 25 °C 

 
pH_liqf liquid pH 7-11 7-11 7-11 10.3 - 

 
Temp_liqg liquid temperature 20-70 20-70 20-70 55 °C 

 
Q_gas_in gas flow rate 1E6-2E6 1E6-2E6 1E6-2E6 1.56E6 m3 d-1 

 
Q_liq_in liquid flow rate 1,000-3,000 1,000-3,000 1,000-3,000 2,000 m3 d-1 

 
u upflow velocity of gas bubbles 2E4-3E4 2E4-3E4 2E4-3E4 2.59E4 m d-1 

L-S kineticsh k_Aragonite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 6.12 mol m-2 d-1 

 
k_Artinite liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Brucite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Ca3(PO4)2_am1 liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Ca3(PO4)2_am2 liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Ca3(PO4)2_beta liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Ca4H(PO4)3:3H2O liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_CaHPO4:2H2O liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 14.64 mol m-2 d-1 

 
k_CaHPO4bis liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Calcite liquid-solid transfer coefficient 1-5,000 1-5,000 1-5,000 1,080 mol m-2 d-1 

 
k_Diaspore liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Dolomite liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 11.22 mol m-2 d-1 

 
k_Dolomite_dis liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Fe(OH)2 liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Hercynite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Huntite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Hydromagnesite liquid-solid transfer coefficient 0.1-1,000 0.1-1,000 0.1-1,000 50 mol m-2 d-1 

 
k_Hydroxyapatite liquid-solid transfer coefficient 1-5,000 1-5,000 1-5,000 986.65 mol m-2 d-1 

 
k_Kstruvite liquid-solid transfer coefficient 1E-10-1 1E-10-1 1E-10-1 4.64E-6 mol m-2 d-1 

 
k_Magnesite liquid-solid transfer coefficient 1E-8-1 1E-8-1 1E-8-1 9.88E-4 mol m-2 d-1 

 
k_Mg3(PO4)2 liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_MgHPO4:3H2O liquid-solid transfer coefficient 1E-11-1 1E-11-1 1E-11-1 4.78E-7 mol m-2 d-1 

 
k_Mg(OH)2_act liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Periclase liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 
k_Portlandite liquid-solid transfer coefficient 1E-5-100 1E-5-100 1E-5-100 0.10 mol m-2 d-1 

 k_Siderite liquid-solid transfer coefficient 1E-7-100 1E-7-100 1E-7-100 0.0021 mol m-2 d-1 
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NRM-Strip Factor symbol Description Range A Range B Range C Defaulta Unit 
(Continuation)        

 k_Spinel liquid-solid transfer coefficient 1E-5-100 1E-7-100 1E-7-100 0.10 mol m-2 d-1 
 k_Struvite liquid-solid transfer coefficient 1E-7-100 1E-7-100 1E-7-100 0.0020 mol m-2 d-1 
 k_Vivianite liquid-solid transfer coefficient 1E-10-1 1E-10-1 1E-10-1 1.67E-6 mol m-2 d-1 

L-G kinetics D_CH4_g_ liquid diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 3.77E-5 m-2 d-1 

 
D_CO2_g_ liquid diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 1.56E-4 m-2 d-1 

 
D_H2S_g_ liquid diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 2.20E-5 m-2 d-1 

 
D_H2_g_ liquid diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 1.65E-4 m-2 d-1 

 
D_N2_g_ liquid diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 1.54E-4 m-2 d-1 

 
D_NH3_g_ gas diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 1.69E-4 m-2 d-1 

 
D_O2_g_ liquid diffusion coefficient 1E-6-0.001 1E-6-0.001 1E-6-0.001 1.61E-4 m-2 d-1 

 
theta_CH4_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_CO2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_H2S_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_H2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_N2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_NH3_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

 
theta_O2_g_ Arrhenius coefficient 1.01-1.05 1.01-1.05 1.01-1.05 1.024 - 

a Initial values used for treatment train optimization.  
b The solubility of gases was allowed to change with pressure and temperature.    
c Tested with and without an external dose (0-500 mol m-3).   
d 9.85-45.77 mol m-3 for digested primary and waste activated sludge, 187-213 mol m-3 for digested sludge from enhanced biological P  
  removal (EBPR).  
e Partial pressures at the default gas pressure (P_gas_in) and temperature (Temp_gas_in). Note that these values are adjusted by   
  PHREEQC according to the actual total gas pressure and temperature (Charlton and Parkhurst, 2011).  
f  The pH is calculated by PHREEQC at every time step based on the charge balance (Chapter 9). 
h Temp_liq represents the liquid temperature after the heat exchanger. Default input waste temperature prior to the heat exchanger = 20 

°C (cfr. Khiewwijit et al., 2015; Symantec, 2014). 
g The variation related to the presence of seed material for each precipitate was included in the variation range for the corresponding 

kinetic liquid-solid transfer coefficient in order to eliminate multicollinearity problems (see Section 10.3.1.2).   
 

 

Table 10.7 Symbol, description, variation range, default value, and unit for each model factor 
used in the global sensitivity analysis scenarios for the NRM-Scrub (acidic air scrubber) key 
unit. L-S = liquid-solid; L-G = liquid-gas.  

a  Initial values used for treatment train optimization. 
b  Gas phase coming from the stripper. Values represent partial pressures at the default gas pressure (P_gas_in) and temperature    
   (Temp_gas_in). Note that these values are adjusted by PHREEQC according to the actual total gas pressure and temperature   

NRM_Scrub Factor symbol Description Range Defaulta Unit 
Input gasb CH4_g_ methane gas 0-0.5 0.0024 atm 
 CO2_g_ carbon dioxide gas 0-3 0.015 atm 
 H2O_g_ water vapour 0-0.1 0.00024 atm 
 H2S_g_ hydrogen sulfide gas 0-0.5 0.0024 atm 
 H2_g_ hydrogen gas 0-0.5 0.0024 atm 
 N2_g_ nitrogen gas 0-1 0.24 atm 
 NH3_g_ ammonia gas 0-6 1.94 atm 
 O2_g_ oxygen gas 0-1 0.22 atm 

Input liquidc S_S_6_ soluble sulfate 5-20 10 mol m-3 
Operation pH_liqd liquid pH 1-4 1.3 - 
 Temp_liq liquid temperature 15-25 20 °C 
 d_gas diameter of the gas bubbles 0.001-0.01 0.003 m 
 P_gas_in gas pressure 1-7 2.42 atm 
 Temp_gas_in gas temperature 20-50 25 °C 
 u upflow velocity of gas bubbles 2E4-3E4 2.59E4 m d-1 
 Q_liq_in liquid flow rate 5-30 11.2 m3 d-1 
 Q_gas_in gas flow rate 1E6-2E6 1.95E6 m3 d-1 

L-S kineticse k_(NH4)2SO4_s liquid-solid transfer coefficient 1E-6-10 0.001 mol m-2 d-1 
L-G kinetics D_CH4_g_ liquid diffusion coefficient 1E-6-0.001 3.77E-5 m-2 d-1 
 D_CO2_g_ liquid diffusion coefficient 1E-6-0.001 1.56E-4 m-2 d-1 
 D_H2S_g_ liquid diffusion coefficient 1E-6-0.001 2.20E-5 m-2 d-1 
 D_H2_g_ liquid diffusion coefficient 1E-6-0.001 1.65E-4 m-2 d-1 
 D_N2_g_ liquid diffusion coefficient 1E-6-0.001 1.54E-4 m-2 d-1 
 D_NH3_g_ gas diffusion coefficient 1E-6-0.001 1.69E-4 m-2 d-1 
 D_O2_g_ liquid diffusion coefficient 1E-6-0.001 1.61E-4 m-2 d-1 
 theta_CH4_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
 theta_CO2_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
 theta_H2S_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
 theta_H2_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
 theta_N2_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
 theta_NH3_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
 theta_O2_g_ Arrhenius coefficient 1.01-1.05 1.024 - 
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   (Charlton and Parkhurst, 2011).     
c  H2SO4-solution to capture ammonia as ammonium sulfate (AmS).   
d  The pH is calculated by PHREEQC at every time step based on the charge balance (Chapter 9).  
e  The variation related to the presence of seed material was included in the variation range for the corresponding kinetic liquid-solid  
   transfer coefficient in order to eliminate multicollinearity problems (see Section 10.3.1.2).     

 

10.2.3 Monte Carlo simulation and linear regression  

The method used for global sensitivity analysis involves fitting a linear regression to Monte 

Carlo (MC) simulation outputs, also known as the standardized regression coefficient (SRC) 

method (Saltelli et al., 2008). Both MC and linear regression tools are available in the 

Tornado(/WEST) software package (mikebydhi.com; Vanhooren et al., 2003).  

The aim of the MC simulation is to propagate variation from model factors to outputs. The model 

factor domains used were as specified in Section 10.2.2. The Latin hypercube sampling (LHS) 

method of Iman and Conover (1982) was used for sampling the inputs, by drawing 4,000 shots 

from a uniform distribution. All GSAs were performed in duplicate and replicability of simulation 

outputs was found to be high. This can be confirmed by the fact that the number of shots (or 

simulations) was chosen so as to respect the typically required range for LHS, i.e. 40-150 times 

the number of input factors (Benedetti at al., 2011). For the most complex scenarios, 

replicability was also tested by comparison with GSA results obtained using 10,000 shots 

(Vanrolleghem et al., 2015).  

Next, the linear regression performed on the MC results describes each model output of interest 

(Table 10.2) as a multivariate linear function of the model factors. In order to use the SRC as a 

valid measurement of sensitivity, model linearity should be high, while multicollinearity should 

be low. The following criteria were used for quality assessment of the linear regression model:  

i. The model determination coefficient, R2: A value of R2 > 0.7 is generally used for 

acceptance of a linear model (Cosenza et al., 2013; Saltelli et al., 2006; Sin et al., 

2011). Also the adjusted coefficient of multiple determination, R2
adj, was evaluated, 

which corrects for the number of explanatory terms in the model relative to the number 

of data points (Kutner et al., 2005).  

ii. The F-statistic: The obtained F-statistic (= explained variance/unexplained variance or 

regression mean square (MSR)/mean square error (MSE)) was compared to F*(p-1,n-

p),0.95, where p is the number of factors and n the number of samples. If F > F*, the null 

hypothesis that the model factors have no significant effect on the objective value (i.e. 

the performance indicator) at the 5 % confidence level can be rejected (Kutner et al., 

2005).  

iii. The variance inflation factor (K!cM ): 
K!cM  = [1 − CM� a��                                                    hi. [_Ü. _)    

             where CM� is the coefficient of determination of a regression of factor N on all the other  

             factors. It measures how much the variances of the estimated regression coefficients  

             are inflated as compared to when the predictor variables are not linearly related (Kutner  

             et al., 2005). Large VIF values denote high collinearity, with a common cut-off threshold  
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             being a VIF value above 10 (Chen and Lu, 2014; Kutner et al., 2005; Tabachnick and   

             Fidell, 2001). A more conservative value of 5 has also been suggested (Menard, 1995;  

             Rogerson, 2001) and was adapted in this research.  

iv. The correlation coefficient, r: The correlation of all factors with the objective value 

should be high. However, the correlation between the predictors should be close to 0.  

If multicollinearity was high, the linear models were reduced by eliminating overlapping factors 

until acceptable VIF and R2
adj values were obtained (Kutner et al., 2005; PSU, 2014). When the 

quality of the linear model was found to be sufficient, model factors were ranked according to 

the significance of their effect on the different performance indicators. To provide an accurate 

factor selection, four different cut-off tresholds (CFT) were assumed, resulting in five classes of 

factor importance (Table 10.8).    

 

Table 10.8 Class, cut-off treshold (CFT), description, and level of importance used for factor 
ranking. SRC = standardized regression coefficient; tSRC = t-statistic of the SRC; n-p = 
degrees of freedom; n = number of samples; p = number of factors.  

Class Cut-off treshold Description Importance 
1 |SRC| > 0.1 ± 1 % fraction of total variance Very high 
2 |tSRC| > tn-p,0.95 Significant at the 5 % confidence level High 
3 |tSRC| > tn-p,0.90 Significant at the 10 % confidence level Moderate 
4 |tSRC| > tn-p,0.85 Significant at the 15 % confidence level Low 
5 |tSRC| ≤ tn-p,0.85 Not significant Very low 

 

A very high importance was attributed to factors with an |SRC| higher than 0.1, as most often 

found in literature (e.g. Cosenza et al., 2013; Mannina et al., 2012; Sin et al., 2011). This CFT 

is, however, not based on statistical reasoning. Therefore, the tSRC was also evaluated, which 

refers to the t-statistic of the SRC found. If the obtained t-statistic is higher than tn-p,1-ɑ, then the 

null hypothesis that the factor has no significant effect on the objective value, i.e. SRC = 0, can 

be rejected at the ɑ % significance level (Kutner et al., 2005).  

If R2
adj was low (= poor model quality), but VIF values were low as well (= low inter-factor 

correlation), still the same ranking methodology was applied as presented in Table 10.8. 

Cosenza et al. (2013) and Mannina et al. (2012) indeed found that, even though the SRC 

method was applied outside its range of applicability (R2 < 0.7), the ranking of important model 

factors (factor prioritisation) was very similar to the results obtained with other GSA methods, 

such as Extended-FAST. Hence, within the objectives of this study, i.e. factor ranking, the 

methodology presented above was deemed to be suitable. Nevertheless, one should bear in 

mind that quantitative estimates of the variance contributions are only valid when R2 > 0.7. 

 

10.2.4 Treatment train configuration and optimization  

Based on the increased insights in the interactions between process inputs and outputs 

obtained from the GSA results for each NRM key unit, an optimal sequence of unit processes in 

a treatment train for resource recovery was sought (Fig. 10.1: Step 3). To this end, also ancillary 

units from the NRM library were selected, i.e. a heating unit (NRM-Heat), chemical dosing unit 
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(NRM-Chem), and solid-liquid phase separation unit (NRM-Settle) (see Chapter 9). The 

treatment train was configured in Tornado(/WEST) and a treatment train GSA (Fig. 10.1: Step 

4) was performed using the strategy described in Figure 10.2. The most important operational 

factors were then optimized by means of an optimization experiment (Fig. 10.1: Step 5) in 

Tornado(/WEST) using pig manure (Scenario B) as a case study. The GN_Direct algorithm (= 

DIviding RECTangles algorithm for global optimization; Gablonsky and Kelley, 2001; Jones et 

al., 1993), available from the NLOpt solver package (Johnson, 2008) included in 

Tornado(/WEST), was used, with a tolerance of 10-8 and a maximum of 10,000 evaluations.  

The reactor dimensions of the various unit processes in the treatment train were set at the 

design values (including safety factors) provided by technology providers for the expected flows 

and composition (based on Cesur and Albertson (2005) and calculated mass balances) arriving 

at each individual unit process (Table 10.1). Based on the data obtained from the budget 

proposals, the operational envelope for optimization was compiled. The operational settings of 

the configured treatment train were optimized in order to maximize resource recovery and 

minimize energy and chemical requirements in a cost-effective way. The operational envelope 

involves (Table 10.9): i) the operational temperature, liquid flow rate, and amount of 

base/alkalinity dosing for the anaerobic digester, ii) the fraction of non-settleable precipitates 

and particulate COD for the phase separation unit, iii) the amount of base dosing, the 

concentration of seed material in the input flow, and precipitate extraction rate for the 

precipitation unit, iv) the operational temperature and gas flow rate for the stripping unit, and v) 

the acid dose and liquid recycle flow rate for the scrubbing unit.  

 
Table 10.9 Lower and upper limit and initial value used for each factor in the treatment train 
optimization experiment. For factor descriptions, see Tables 10.4-10.7. For model descriptions, 
see Section 10.2.1. AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = 
stripper; Scrub = scrubber. f_ns_P = fraction of non-settleable precipitates; f_ns_X = fraction of 
non-settleable biological particulate solids.  

Model Symbol Lower Upper Initial Unit 

NRM-Heat 1 Temp_target_AD 20 55 35 °C 

NRM-AD Q_liq_in 1,000 3,000 2,000 m-3 d-1 

NRM-AD S_Ca 42 300 92 mol m-3 

NRM-Settle f_ns_P 0 0.5 0.1 - 

NRM-Settle f_ns_X 0 0.1 0.005 - 

NRM-Dose Mg(OH)2 dose 0 3,000 1,500 kg d-1 

NRM-Prec S_Seed_KStruvite 0.000125 6.25 0.001 g m-3 

NRM-Prec S_Seed_Struvite 0.000125 6.25 0.001 g m-3 

NRM-Prec Q_prec 1 300 30 m3 d-1 

NRM-Strip Q_gas_in 1,000,000 2,000,000 1,600,000 m3 d-1 

NRM-Strip P_gas_in 1 7 2.4 atm 

NRM-Heat 2 Temp_target_Strip 40 70 55 °C 

NRM-Scrub Q_liq_in (acid) 5 30 11 m3 d-1 

NRM-Scrub Q_recycle 0 5 2 m3 d-1 
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The initial values (Table 10.9) for the optimization experiment were set at the design values 

given in the budget proposals of the technology providers. The lower and upper limits were the 

same as for the unit process GSAs described above (Section 10.2.2).  

The key performance indicators evaluated in the optimization experiment were:  

i. Net costs = chemical costs + energy costs – revenues (objective = minimize), 

where: 

a. energy cost items are related to raising the liquid temperature for anaerobic 

digestion and stripping (with potential for heat exchange, see below), as well as 

to air pumping for stripping; 

b. chemical cost items refer to the addition of alkalinity or base to the digester, of 

acid for N absorption in the scrubber, and of base for pH-increase prior to 

precipitation and stripping; 

c. revenues are related to CH4 production (energy recovery was assumed, see 

below), the marketing of mineral fertilizer N, P, and K, and the potential 

marketing of organic fertilizer.  

ii. Resource recovery (objective = maximize), which includes:  

a. methane recovery in NRM-AD; 

b. mineral N/P/K recovery in NRM-Prec; 

c. mineral N/S recovery in NRM-Strip/NRM-Scrub; 

d. organic (+ N/P/K) fertilizer recovery (settled solids) in NRM-Settle. 

iii. Use of consumables (objective = minimize), involving: 

a. net thermal energy use = heat required for stripping + heat required for 

digestion – heat recovered from CH4 production – potential heat recovered in 

heat exchangers (see below);  

b. net electricity use = blower energy (air) – electricity recovered from CH4 

production; 

c. chemical use = acid use + base/alkalinity use.    

An overview of the parameters used in the energy and cost calculations is given in Table 10.10. 

Costs are expressed in USD (1 USD = 1.14 CAD; 1 USD = € 0.80; November 2014). 

Biogas CH4 was assumed to be valorized as energy in a combined heat and power generation 

(CHP) unit, with a conversion efficiency of 40 % as heat, 38 % as electricity, and with 22 % 

losses (Verstraete and Vlaeminck, 2011). In terms of heat requirements, both a worst and best-

case scenario was considered. In the best case, 10 % heat losses in the digester (Wu and 

Bibeau, 2010; Zupancic and Ros, 2003) and 50 % internal heat recovery in the stripping system 

were assumed (Colsen, 2014; RVTPE, 2014). In the worst case, the heat requirements in the 

digester were 1.9 times higher than the theoretical heat required to heat the input flow (CDM, 

2009; Symantec, 2014; Tchobanoglous et al., 2003; Vaneeckhaute, 2009). Also, in this case, no 

internal heat recovery in the stripping system was considered.  
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Table 10.10 Parameters used to calculate energy and cost functions in the virtual optimization 
experiment. $ = USD; 1 USD = 1.14 CAD = € 0.80 (November 2014).  
Category Item Value Unit Reference 

Chemical cost H2SO4 (98 %) 0.087 $ kg-1 Icis (2014) 

 Mg(OH)2 0.204 $ kg-1 Icis (2014) 

 MgCl2:6H2O (99%) 0.066 $ kg-1 Icis (2014) 

 Ca(OH)2 0.070 $ kg-1 Icis (2014) 

 NaOH (100 %) 0.635 $ kg-1 Icis (2014) 

Energy cost Electricity 0.076 $ kWh-1 USEPA (2013) 

Energetic value Air (strip)a 0.00195 kWh m-3 air RVTPE (2014) 

 CH4
b 13.9 kWh kg-1 Tchobanoglous et al. (2003) 

 Heat capacity sludge/manure 4.2 kJ kg-1 °C-1 Tchobanoglous et al. (2003) 

Nutrient value N 1.411 $ kg-1 USEPA (2013) 

 P 2.984 $ kg-1 USEPA (2013) 

 K 0.960 $ kg-1 USEPA (2013) 
a  Internal air recycling between the stripper and scrubber system is assumed (RVTPE, 2014).   
b  Density CH4 at 25 °C = 0.656 kg m-3 (Tchobanoglous et al., 2003). 

It should be noted that only the major factors for the NRM key units were included in the cost 

and energy calculations for the optimization presented above. Nevertheless, using the 

optimized treatment train settings, an overall economic analysis (Fig. 10.1: Step 6) was also 

performed, including additional operational costs, labor, material and maintenance costs, 

revenues from CO2-emission reduction credits, as well as capital costs (see Section 10.3.4.2). 

 

10.3 Results and discussion  
Results for the individual GSAs per NRM key unit process (Fig. 10.1: Step 2) and overall 

recommendations for factor prioritization are provided and discussed in Section 10.3.1. Based 

on the findings, Section 10.3.2 discusses the configuration (Fig. 10.1: Step 3) of an optimal 

treatment train of unit processes for nutrient recovery. The results of the whole treatment train 

sensitivity analysis (Fig. 10.1: Step 4) are presented in Section 10.3.3, while results of the 

optimization case study (Fig. 10.1: Step 5), including the economic analysis (Fig. 10.1: Step 6), 

are presented in Section 10.3.4. Finally, the main limitations of the applied methodology in this 

research are listed in Section 10.3.5. 

 

10.3.1 Global sensitivity analysis of unit processes    

Detailed results of the GSAs including the model quality evaluation are provided in Appendix 10  

(Tables A10.1-A10.10). In this section, only the ten major factors are presented per 

performance indicator for each scenario analyzed and for each NRM key unit (Sections 

10.3.1.1-10.3.1.4). Based on the discussions, recommendations for factor prioritization per key 

unit are compiled in Section 10.3.1.5. Note that all results should be interpreted within the scope 

of the analysis, as outlined above (Section 10.2).  

 

10.3.1.1 NRM-AD: Factor ranking and interpretation   

Results from the GSA for the NRM-AD unit are shown in Table 10.11 (Appendix 10: Tables 

A10.1-10.3). For all cases, the R2 and R2
adj values were higher than 0.7, except for X_COD
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Table 10.11 Global sensitivity analyses for the NRM-AD unit: ten prioritized factors with standardized regression coefficient (SRC) per performance 
indicator for each scenario. Scenario A: all applications; Scenario B: manure (Cesur and Albertson, 2005); Scenario C: sludge (Astals et al., 2013). Dark 
grey = very high importance (CFT1); grey = high importance (CFT2); light grey = moderate importance (CFT3). CFT = cut-off threshold. * indicates R2

adj 
value below 0.7. Description of factor symbols can be found in Table 10.4.  

A CH4 production Biogas production Digestate S_COD Digestate  X_COD * Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall * 

 S_C_min4_ 0.924 S_C_4_ 0.704 Q_liq_in 0.851 k_Aragonite -0.061 S_N_min3_ 0.913 S_P 0.938 S_K 0.999 S_S_6_ -0.355 Q_liq_in 0.070 

 Temp_liq 0.307 Temp_liq 0.487 S_Ca 0.130 S_Butyrate -0.060 Temp_liq -0.172 S_Na 0.244 S_Al -0.020 S_Mg 0.348 k_Aragonite -0.062 

 S_Al 0.024 S_C_min4_ 0.364 S_Valerate 0.118 km_srb_bu 0.060 S_C_4_ 0.159 S_Fe 0.034 S_S_6_ -0.011 S_Ca 0.338 km_srb_bu 0.060 

 S_Propionate 0.018 S_Ca -0.127 S_Al 0.114 S_H_0_ 0.059 S_Al 0.097 S_Al 0.026 S_Ca -0.009 S_Fe 0.299 S_Butyrate -0.059 

 S_N_5_ 0.018 S_S_6_ 0.116 S_Mg 0.113 S_Propionate -0.056 S_Ca 0.093 S_Ca 0.024 S_N_5_ -0.008 S_Al 0.291 S_H_0_ 0.059 

 D_H2 0.017 S_Fe -0.113 S_S_6_ -0.102 km_srb_h 0.057 S_S_6_ -0.063 Temp_liq -0.023 S_N_min3_ -0.007 S_C_4_ -0.221 S_Propionate -0.056 

 S_Cl 0.016 S_Mg -0.079 S_Butyrate 0.100 S_Na 0.051 S_Fe 0.061 pH_liq -0.016 S_Valerate -0.007 S_P -0.192 km_srb_h 0.056 

 S_S_min2_ -0.014 S_N_5_ 0.069 S_Fe 0.071 k_Magnesite -0.048 S_Mg -0.051 S_su 0.015 Temp_liq -0.006 S_Na 0.189 S_Na 0.052 

 S_N_0_ 0.012 S_Al -0.065 S_Na 0.067 k_Ca4H(PO4)3:3H2O -0.046 S_K 0.039 theta_CH4_g_ -0.015 S_C_4_ -0.005 S_K 0.177 k_Magnesite -0.049 

 k_Struvite -0.012 S_Na -0.063 S_fa 0.063 theta_NH3_g_ 0.045 S_P -0.037 X_Inert 0.014 S_Fe -0.005 S_N_5_ -0.164 S_Inert 0.047 

B CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

 S_C_min4_ 0.928 Temp_liq 0.677 Q_liq_in 0.941 Q_liq_in 0.956 S_N_min3_ 0.820 S_P 0.898 S_K 0.984 Temp_liq -0.834 Q_liq_in 0.959 

 Temp_liq 0.309 S_C_min4_ 0.615 X_ch 0.138 X_Inert 0.151 S_Mg -0.534 S_Na 0.395 Temp_liq -0.086 S_Ca 0.410 X_Inert 0.105 

 S_Ca 0.011 S_C_4_ 0.184 S_su 0.033 k_CaHPO4bis -0.020 Temp_liq -0.159 S_Ca 0.041 S_Ca -0.068 S_N_5_ -0.202 X_ch 0.046 

 k_Mg3(PO4)2 0.010 S_Ca -0.175 X_li 0.027 S_S_min2_ -0.018 S_N_5_ -0.100 Temp_liq -0.028 S_N_5_ -0.019 S_Cl -0.164 X_li 0.019 

 Q_liq_in 0.010 S_N_0_ 0.129 S_fa 0.025 S_Propionate 0.016 S_Cl -0.078 X_li 0.015 S_Mg -0.018 S_C_4_ -0.108 S_su 0.019 

 k_Ca4H(PO4)3:3H2O 0.010 S_N_5_ 0.100 S_Inert 0.019 k_Calcite 0.015 S_Ca 0.043 S_Cl 0.014 S_N_min3_ -0.015 S_S_6_ -0.099 k_CaHPO4bis -0.016 

 S_Fe -0.010 S_H_0_ 0.097 theta_N2_g_ -0.017 X_li 0.015 S_S_6_ -0.041 kdec_xsrb_h 0.011 S_S_6_ -0.006 S_Na 0.091 S_S_min2_ -0.015 

 k_CaHPO4:2H2O 0.009 S_Cl 0.079 X_pr 0.016 k_Mackinawite 0.014 S_Na 0.027 S_Al 0.010 S_Na -0.004 S_Mg 0.088 k_Calcite 0.015 

 k_Al2O3 -0.009 S_N_min3_ -0.076 k_Calcite 0.014 S_Al 0.013 S_P -0.020 S_Acetate -0.010 S_Cl -0.004 S_N_min3_ 0.083 S_Propionate 0.015 

 S_Mg 0.008 S_S_6_ 0.046 Temp_liq -0.014 S_S_6_ -0.013 S_K 0.010 k_MgHPO4:3H2O -0.009 S_P 0.003 S_P -0.072 k_Mackinawite 0.014 

C CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

 S_C_min4_ 0.935 S_C_min4_ 0.795 Q_liq_in 0.921 Q_liq_in 0.779 S_N_min3_ 0.996 S_P 1.000 S_K 1.001 S_C_4_ -0.451 Q_liq_in 0.881 

 Temp_liq 0.305 Temp_liq 0.448 X_ch 0.191 X_Inert 0.456 S_Mg -0.058 S_Al 0.005 S_N_5_ -0.030 S_N_5_ -0.411 X_Inert 0.319 

 km_srb_pro 0.016 S_C_4_ 0.270 X_pr 0.148 theta_CO2_g_ 0.036 S_N_5_ -0.039 S_N_5_ 0.005 S_Al -0.028 S_Fe 0.375 X_ch 0.094 

 k_Boehmite -0.013 S_N_min3_ -0.173 X_li 0.089 X_ch 0.034 Temp_liq -0.028 S_N_min3_ 0.004 S_N_min3_ -0.024 S_Al 0.331 X_pr 0.071 

 kGibbsite 0.013 S_N_0_ 0.172 S_fa 0.052 S_C_min4_ -0.030 S_Cl -0.011 S_C_4_ 0.003 S_C_4_ -0.016 Temp_liq -0.196 X_li 0.050 

 S_Propionate -0.011 S_H_0_ 0.125 S_su 0.048 S_S_6_ 0.028 S_Acetate -0.011 S_Fe 0.002 S_Fe -0.015 S_Na 0.171 theta_CO2_g_ 0.028 

 k_Al2O3 0.010 S_Al -0.073 S_Inert 0.043 X_li 0.025 S_S_6_ -0.011 Temp_liq -0.002 S_S_6_ -0.009 S_Ca 0.153 S_S_6_ 0.021 

 S_N_min3_ 0.009 S_N_5_ 0.070 km_srb_h -0.018 kdec_xsrb_ac 0.025 S_C_4_ 0.010 S_Na 0.002 Temp_liq -0.008 S_Acetate -0.107 S_C_min4_ -0.021 

 k_CaHPO4:2H2O 0.009 S_Fe 0.070 S_Al -0.016 pH_liq 0.025 S_Al -0.006 S_S_6_ 0.001 S_Acetate -0.006 S_S_6_ -0.105 S_Fe -0.021 

 k_Vivianite 0.009 S_Na 0.070 k_Anhydrite 0.015 S_Butyrate -0.024 S_Na 0.006 S_Cl 0.001 S_Cl -0.006 S_Cl -0.090 pH_liq 0.020 
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(effluent particulate COD) and the overall sensitivity measure in Scenario A (Appendix 10: Table 

A10.1). Hence, overall GSA quality was high. Major factors selected (based on CFT1) were 

reasonably similar for all scenarios, but the order of importance was not always the same. 

Some fundamental differences between the substrates were also observed (see below).  

First, it should be pointed out that the bio-kinetic parameters (except for SRBs) were assumed 

to be known (Table 10.3), so these parameters were fixed and not included in the GSA. Among 

the factors studied, the variation in CH4 and biogas production was mainly attributed to the 

input soluble CH4 concentration (from storing, piping, pits, etc.), reactor temperature, and 

carbonate alkalinity (S_C_4). Noteworthy is that the sign of the SRCs is meaningful, i.e. all three 

factors are positively correlated with biogas production, which is in agreement with prior 

knowledge (Tchobanoglous et al., 2003).  

Moreover, looking at the results of S_COD and X_COD, clearly degradation of particulate to 

soluble COD takes place, except for the non-biodegradable X_Inert, as expected. Nevertheless, 

it should be noted that, because of the large variation ranges possible for the input waste 

composition in combination with the operational variability considered, the reactor pH (a major 

operating factor for anaerobic digestion) became regularly too low (< 5) for good 

methanogenesis to occur. This was especially the case for manure (Scenario B). Therefore, 

according to the analysis, adding additional COD did not always result in a higher CH4 

production because of volatile fatty acid (VFA) and/or long chain fatty acid (LCFA) accumulation 

in the digester. As a consequence, longer HRTs (reduced Q_liq_in) for manure were not 

beneficial. 

Similar findings of input stream composition on anaerobic digestion were reported by 

Ossiansson and Lidholm (2008) using the Siegrist (2002) model. Moreover, Jhong-Hwa et al. 

(2006) experimentally found that the external addition of an optimal Ca dose is essential for 

anaerobic mono-digestion of swine manure so as to overcome acid accumulation, mainly by 

improving propionate and valerate degradation and their conversion to CH4. This can explain 

the importance of Ca on CH4 production observed in the GSA for Scenario B.  

To further identify the most important model factors, a second analysis was performed for 

Scenarios B and C, using a low fixed input CH4 concentration of 0.0001 mol m-3 and a 

mesophilic temperature of 35 °C (Fig. 10.3). For manure, an external Ca dose (range S_Ca: 42-

220 mol m-3) was allowed to be applied, in line with the findings of Jhong-Hwa et al. (2006). 

Results for this second analysis clearly show that the amount of Ca added plays an important 

role for CH4 production from manure (Scenario B; Fig. 10.3A), which is in agreement with 

observations of Jhong-Hwa et al. (2006) and the findings above. Among the organics, mainly 

the input butyrate, propionate, valerate, and carbohydrates positively influence CH4 production, 

indicating that no (hindering) VFA accumulation is present now. The main precipitate negatively 

impacting CH4 production seems to be struvite. Remarkable is also the stimulating effect of 

nitrate (within the provided range) on CH4 production for both manure and sludge, similar as 

experimentally observed by Sheng et al. (2013) for digester NO3-N concentrations up to 335 mg  
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Figure 10.3 Standardized regression coefficient (SRC) for CH4 production resulting from global 
sensitivity analyses at fixed input CH4 concentration (0.0001 mol m-3) and temperature (35 °C) 

for Scenario B (A; R2 = 0.83, R2
adj = 0.83) and C (B; R2 = 0.83, R2

adj = 0.82). Scenario B: 
manure (Cesur and Albertson, 2005); Scenario C: sludge (Astals et al., 2013). Dark grey = very 

high importance (CFT1); grey = high importance (CFT2). CFT = cut-off threshold. 
 

L-1. During denitrification H+ ions are consumed, leading to a significant pH increase in the 

digester, which is favorable for methanogenic bacteria. However, too high NO3-N 

concentrations provoque NO2 accumulation in the digester and inhibition of methanogenics.   

For sludge (Scenario C; Fig. 10.3B), an important observation is the beneficial effect of Fe and 

Al on CH4 production. Indeed, in agreement with literature observations (Hoban and van den 

Berg, 1979; Jackson-Moss and Dunkan, 1991; Parc and Novak, 2013; Preeti and Seenayya, 

1994; Raju et al., 1991; Suarez et al., 2014), both Fe and Al can positively influence CH4 

production (although total biogas production may decrease). These trace metals would cause 

an increased conversion from acetate to CH4, meanwhile interacting with sulfate and sulfide. As 

such, acetate was found to be the most important input COD component to be determined for 

sludge digestion. Moreover, sulfide precipitation as amorphous FeS(ppt) and Mackinawite (FeS) 

were highly present in the reactor, thereby reducing the inhibitory effect of the presence of 

SRBs and sulfides on CH4 production. Indeed, a decrease in biogas H2S content and increase 

in CH4 content was found at increasing Fe concentrations (Fig. 10.4), although in the provided 

range the input sulfate concentration was not supposed to cause a net negative impact on CH4 

production (< 5 g SO4 L-1; Isa et al., 1986). 
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Figure 10.4 Detail Monte Carlo simulation results: biogas H2S partial pressure (atm) as function 
of precipitated FeS (mol m-3) for Scenario C (sludge; Astals et al., 2013). Red non-dashed line 

indicates the limit for corrosion risks (0.0035 atm; Deublein and Steinhauser, 2011). 
 

Note that this effect also has practical implications in terms of corrosion risks in subsequent 

biogas piping and equipment (see Fig. 10.4: limit for corrosion risks = 0.0035 atm; Deublein and 

Steinhauser, 2011). Hence, it impacts on costs related to biogas purification. This finding also 

strengthens the hypothesis made in Chapter 9 (Section 9.3.2), where the lower SO4 removal 

found with model simulations compared to experimental results was attibuted to the omission of 

interactions with Fe/Al in the model (due to the lack of Fe/Al input characterizations). Finally, Isa 

et al. (1986) observed that intensive H2S formation mainly occurs when H2 gas or a H2 

precursor is supplied. This can explain the negative influence of S_H_0_ on CH4 production 

found in the GSA for sludge (Fig. 10.3B). All these results confirm the importance of an 

accurate input characterization and chemical speciation, as well as the relevance of 

treatment train simulations in order to couple unit process interactions throughout the WRRF. 

For example, the relationship between Fe/Al dosing for sludge conditioning upstream and 

subsequent biogas production must be accounted for in the overall process/treatment train 

optimization.  

The main precipitates that require kinetic rate calibration (based on CFT2) during manure 

digestion following the GSA results (Table 10.11; Fig. 10.3) are k_Calcite (CaCO3), 

k_CaHPO4:2H2O, k_CaHPO4bis, k_Ca4H(PO4)3:3H2O, k_MgHPO4:3H2O (newberyite), 

k_Mackinawite (FeS), k_Magnesite (MgCO3), and k_Struvite (MgNH4PO4:6H2O), while for 

sludge this would be k_Anhydrite (CaSO4), k_Aragonite (CaCO3), k_Boehmite (AlOOH), 

k_CaHPO4:2H2O, k_Dolomite (CaMg(CO3)2), k_FeS_ppt, k_Siderite (FeCO3), k_Vivianite 

(Fe3(PO4)2:8H2O), and k_Mg3(PO4)2. Note that Fe and Al precipitation seems more important for 

sludge than for manure. The detected species of Fe and Al precipitates are in agreement with 

the findings of Mamais et al. (1994) and Ofverstrom et al. (2011) for digestion of Fe/Al-rich 

sludge. It should be noted that for sludge from enhanced biological P removal (EBPR), 
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containing both high Mg and P contents, and usually low Fe and Al concentrations, Mg 

precipitates are expected to be more important than Fe/Al precipitates (supersaturation 

depends on ion concentrations). Modelling of EBPR sludge was out of scope of the present 

study, but looking at Scenario A, where higher input concentrations of Mg were allowed, it can 

be seen that the main precipitate impacting CH4 production was struvite (~ importance of 

k_struvite; Table 10.11). This is in agreement with what has often been observed during 

digestion of EBPR sludge (Marti et al., 2008; Ofverstrom et al., 2011).   

Regarding the digestate quality, it can be seen that the amount of soluble mineral N is highly 

dependent on the input NH4 concentration (which is obvious) and the temperature. Higher 

temperatures cause lower soluble digestate NH4 concentrations, which can be attributed to the 

increased transfer of NH3 into the biogas. Furthermore, it should be noted that for both manure 

and sludge, higher amounts of Mg and P seem to lower the amount of digestate soluble NH4, 

which may be attributed to struvite formation. This can be confirmed by the observed increment 

in the amount of soluble N at increasing concentration of other components that may compete 

for P complexation and/or precipitation, such as Ca and Na. Also newberyite (MgHPO4:3H2O) 

seems to be a principal competitor (Scenario B) (cfr. Marti et al., 2008; Musvoto et al., 2000a,b). 

An important observation is the significant effect of Na on P solubility (Scenarios A and B). 

Indeed, as observed in Chapter 9 (Section 9.3.3.1), Na binds with soluble P to form NaH2PO4, 

making it less available for precipitation. This effect was found to be negligible for WWTP 

sludge due to the generally lower Na:P-ratio observed in the analysis for this waste source.  

Overall, it can be stated that the variation related to the physicochemical input waste 

stream characteristics for the anaerobic digester is more important than that of the 

kinetic parameters considered in the GSA. The reason is that small changes in input factors 

(mainly those selected by CFT1) have a high effect on the digester pH and/or alkalinity, which 

are, next to the temperature and liquid flow rate, the most important operational factors for 

digestion. In this context, the importance of the correct representation of the charge balance for 

determination of the digestate pH is again underlined (Table 10.11: performance indicator ‘pH’). 

 

10.3.1.2 NRM-Prec: Factor ranking and interpretation  

For the NRM-Prec unit, GSAs using all the factors provided in Table 10.5 resulted in high VIF 

values (~ 5-10) for all performance indicators, showing high multicollinearity. The most 

important correlation was found between the concentration of seed material (S_seed) and the 

kinetic solid-liquid transfer coefficients (k). To overcome this problem, the GSA was reduced by 

incorporating the variation of S_seed into the variation range of the corresponding kinetic 

transfer coefficient, which is reasonable when looking at the precipitation reaction used 

(Nielsen, 1984; Chapter 9: Eq. 9.8). As k and S_seed are multiplied in the equation, their impact 

is perfectly correlated, and hence the overall range of variation can be attributed to k only. 

Implementing this measure resulted in VIFs below 1.06, while the R2
adj value for the effluent 

S_P was higher than 0.7. Hence, the reduced GSA was valid for evaluation of P recovery based 

on the effluent S_P. However, R2
adj values for the other fertilizer quality performance indicators 
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became lower than 0.7 due to the elimination of seed material. This effect is logical as seed 

material is a major factor determining the particle diameter, density, and purity (Le Corre et al., 

2007a). As such, it should be understood that the importance of the precipitation/dissolution 

kinetics presented refers to both the kinetic transfer coefficient and seed material. Despite the 

relatively low GSA quality, the SRC may still be assumed valid for factor ranking (Section 

10.2.3; Cosenza et al., 2013). 

Results of the reduced GSA for the different scenarios can be found in Table 10.12 (Appendix 

10: Tables A10.4-10.6). For Scenarios B and C, first the sensitivity was tested within the range 

of daily input Mg variability, whereafter an external Mg dose was allowed to be applied up to 

200 and 500 mol m-3 for Scenario B and C, respectively (difference due to lower P and Ca 

contents in the input waste flow for Scenario B). When no external Mg was added, Scenario B 

showed no uncontrolled P precipitation in the NRM-Prec, due to the low digestate Mg:P-ratio 

and relatively low pH for precipitation. Note that Mg-P nucleation and/or precipitation was to be 

expected in the digester (Section 10.3.1.1) and that the range of Mg and P in the digestate was 

much lower than in the digester input (Section 10.2.2; Cesur and Albertson, 2005). Hence, it is 

likely that Mg-P precipitates were retained in the digester and/or piping prior to the digestate 

sampling location (cfr. Marti et al., 2008).  

Due to the generally higher Ca and P concentrations in Scenario C, Ca-P precipitation can be 

expected (Song et al., 2001). The observed variation in the amount of Ca-P precipitates was 

mainly caused by the liquid temperature, the input Ca concentration, and the Ca3(PO4)2:beta 

precipitation/dissolution kinetics. However, as the input Ca concentration was also positively 

correlated with the effluent soluble P concentration, Ca-P complex formation and/or 

redissolution seem to occur in concurrence with precipitation. This is reasonable since no base 

was added for pH-increase.  

When allowing the external addition of Mg, P precipitation occurred and the Mg dose became 

an important factor influencing all performance indicators, next to the amount of input S_P, 

S_Ca, and S_Na. The latter inhibits P precipitation (cfr. NRM-AD and Chapter 9: Section 

9.3.3.1). According to the hypothesis of Schulze-Rettmer (1991), the Mg:P-ratio should be 

higher than 1:1 to promote struvite precipitation. However, the amount of Mg required further 

increases with the amount of complexing agents that can bind to Mg, which is generally high in 

a digestate waste matrix (Burns et al., 2003; Moody et al., 2009; Nelson et al., 2000). As such, 

the inhibitory and competitive effect of Ca on struvite precipitation at increasing pH is clear from 

the results, as a major factor for all scenarios is the precipitation/dissolution rate of 

Ca3(PO4)2:beta. This finding is in agreement with the observations of Le Corre et al. (2005) that 

at molar ratios of Ca:Mg ∼ 1:1 and above no more crystalline struvite compound is formed, but 

a substance identified as an amorphous calcium phosphate (Ca3(PO4)2). Noteworthy is the fact 

that the mean molecular weight (MW) found for Scenario C was in more than 50 % of the cases 

around 310 g mol-1, which is the MW of Ca3(PO4)2.  
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Table 10.12 Global sensitivity analyses for the NRM-Prec unit: ten prioritized factors and standardized regression coefficient (SRC) per performance 
indicator for each scenario. Scenario A: all applications; Scenario B: digestate from manure (Cesur and Albertson, 2005); Scenario C: (co-)digestate 
(Vlaco, 2012). Dark grey = very high importance (CFT1); grey = high importance (CFT2); light grey = moderate importance (CFT3). CFT = cut-off 
threshold. * indicates R2

adj value below 0.7. Description of factor symbols can be found in Table 10.5. 

 

   

A Effluent S_P Fertilizer P_P * Particle diameter Fertilizer density * Struvite purity * Overall * 
    

 
S_P 0.934 Temp_liq -0.267 S_Na -0.572 S_Na -0.484 S_C_4_ -0.050 Temp_liq -0.267 

    
 

S_Na 0.274 S_Ca 0.259 S_P 0.552 S_P 0.448 k_Ca4H(PO4)3:3H2O -0.051 S_Ca 0.259 
    

 
S_Fe 0.037 S_Na -0.242 k_Gibbsite 0.051 pH_liq 0.054 S_S_6_ 0.050 S_Na -0.242 

    
 

S_Al 0.038 S_P 0.207 S_Ca 0.039 k_Gibbsite 0.053 k_Gibbsite -0.049 S_P 0.207 
    

 
S_S_6_ 0.034 k_Ca3(PO4)2_beta 0.192 k_Aragonite 0.036 k_Siderite 0.051 k_Calcite -0.048 k_Ca3(PO4)2_beta 0.192 

    
 

S_N_min3_ 0.028 S_Mg 0.086 k_Ca3(PO4)2_am3 -0.035 k_Aragonite 0.050 S_Ca -0.047 S_Mg 0.086 
    

 
S_Cl 0.024 k_Mg3(PO4)2 -0.069 S_Mg 0.035 k_Calcite 0.045 k_Dolomite 0.047 k_Mg3(PO4)2 -0.069 

    
 

S_Ca 0.022 k_Struvite -0.059 pH_liq 0.030 k_Ca3(PO4)2_am3 -0.044 S_Fe 0.044 k_Struvite -0.059 
    

 
S_N_5_ 0.020 S_S_6_ -0.059 k_MgHPO4:3H2O 0.029 k_Artinite 0.040 k_MgHPO4:3H2O 0.043 S_S_6_ -0.059 

    
 

S_K 0.017 S_C_4_ -0.057 S_N_min3_ -0.029 k_Fe(OH)2_s -0.040 k_Hydroxyapatite 0.043 S_C_4_ -0.057 
    

B No external Mg-addition External Mg-Addition 

 
Effluent S_P Fertilizer P_P Effluent S_P Fertilizer P_P * Particle diameter * Fertilizer density * Struvite purity * Overall * 

 
S_P 0.993 No P precipitation S_P 0.984 Temp_liq -0.368 S_P 0.615 S_P 0.255 Temp_liq 0.072 Temp_liq -0.368 

 
S_Mg 0.091 

  
S_Mg 0.074 S_Mg 0.267 S_Mg 0.091 S_Mg 0.177 S_Ca -0.069 S_Mg 0.267 

 
S_N_min3_ 0.017 

  
S_Na 0.060 S_P 0.249 S_Na -0.090 S_Valerate 0.083 S_N_min3_ 0.056 S_P 0.249 

 
S_Cl 0.015 

  
S_Cl -0.009 k_Ca3(PO4)2_beta 0.208 S_S_min2_ -0.040 k_Magnesite 0.073 S_Mg 0.051 k_Ca3(PO4)2_beta 0.208 

 
S_Ca 0.006 

  
k_Aragonite -0.008 S_K -0.046 k_Artinite -0.038 S_S_min2_ -0.063 k_AlPO4 0.047 S_K -0.046 

 
S_Na 0.005 

  
S_S_6_ -0.008 S_S_min2_ -0.039 S_Acetate -0.038 S_Na -0.063 k_Magnesite -0.046 S_S_min2_ -0.039 

 
S_S_6_ 0.004 

  
k_Mg3(PO4)2 -0.008 S_Ca 0.039 k_CaHPO4:2H2O 0.037 S_Acetate -0.050 k_Mg3(PO4)2 -0.042 S_Ca 0.039 

 
Temp_liq -0.004 

  
k_Vaterite -0.008 S_C_min4_ -0.037 k_Calcite 0.035 S_Al -0.047 k_Dolomite 0.042 S_C_min4_ -0.037 

 
S_N_5_ 0.002 

  
k_Gibbsite 0.008 S_Na -0.036 S_Ca 0.033 S_Butyrate -0.047 pH_op -0.040 S_Na -0.036 

 
S_C_min4_ -0.001 

  
Q_Prec -0.007 S_N_min3_ 0.034 k_Dolomite 0.031 S_Cl -0.047 k_CaHPO4bis -0.038 S_N_min3_ 0.034 

C No external Mg-addition External Mg-Addition 

 
Effluent S_P Fertilizer P_P * Effluent S_P Fertilizer P_P * Particle diameter * Fertilizer density * Struvite purity * Overall * 

 
S_P 0.959 Temp_liq -0.384 S_P 0.991 Temp_liq -0.551 S_P 0.370 S_P 0.367 k_Ca3(PO4)2_beta -0.160 Temp_liq -0.551 

 
S_Fe 0.125 S_Ca 0.252 S_Na 0.090 k_Ca3(PO4)2_beta 0.372 S_Na -0.164 S_Na -0.159 Temp_liq 0.089 k_Ca3(PO4)2_beta 0.372 

 
S_Na 0.089 k_Ca3(PO4)2_beta 0.247 S_Mg -0.023 S_Ca  0.254 k_Gibbsite 0.072 k_Gibbsite 0.071 S_Ca -0.088 S_P 0.254 

 
S_Ca 0.070 S_P -0.188 Temp_liq -0.009 S_P 0.234 k_CaHPO4:2H2O 0.063 k_CaHPO4:2H2O 0.066 k_Kstruvite 0.072 S_Ca 0.234 

 
S_N_min3_ -0.040 S_C_4_ -0.164 S_C_4_ 0.009 S_C_4_ -0.099 k_Kstruvite -0.053 k_Magnesite 0.048 S_Na -0.066 S_C_4_ -0.099 

 
Temp_liq -0.022 S_N_min3_ 0.110 S_N_min3_ -0.008 S_Na -0.052 Calcite 0.052 S_Fe -0.044 k_CaHPO4:2H2O 0.063 S_Na -0.052 

 
S_C_4_ 0.020 S_Al -0.096 S_Ca -0.008 S_Mg -0.038 k_Dolomite_dis -0.046 k_Dolomite_dis -0.044 S_P 0.061 S_Mg -0.038 

 
S_S_6_ -0.018 S_Fe 0.065 S_Al 0.005 S_Propionate -0.035 S_C_4_ -0.041 k_Artinite 0.043 k_Vivianite -0.058 S_Propionate -0.035 

 
S_Mg 0.016 k_Ca3(PO4)2_am3 -0.063 Q_liq_in -0.003 k_Aragonite 0.032 S_Propionate 0.036 k_Kstruvite -0.041 k_Ca3(PO4)2_am3 -0.047 k_Aragonite 0.032 

 
k_Magnesite -0.015 S_Na 0.049 k_CaHPO4bis -0.003 k_Calcite 0.031 S_C_min4_ 0.036 k_Calcite 0.036 k_Mg(OH)2_act -0.042 k_Calcite 0.031 
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Furthermore, also the variation related to the input soluble organic (S_ac, S_bu, S_pro, S_va) 

and inorganic (S_C_4) carbon concentrations significantly affected (based on CFT2) the 

fertilizer quality through complexation with Ca and Mg. Nevertheless, it was observed that an 

overdose of Mg did not aid in P recovery (see e.g. Scenario B: positive impact of Mg on effluent 

S_P). The reason is that at high Mg-dose the pH may increase to values (> 10) for which 

precipitation of carbonates, such as artinite (MgCO3:Mg(OH)2:3H2O) and dolomite 

(CaMg(CO3)2), are known to be favoured (Mamais et al., 1994). Similar observations were 

made during the lab-scale experiments for validation of the NRM-Prec model (Chapter 9: 

Section 9.3.3.2; De Corte, 2013). Moreover, this effect is in line with the findings of Jarosinski 

and Madejska (2010) who recovered these crystals from wastewater by increasing the pH. 

Indeed, struvite precipitation is known to be favoured at neutral to slightly alkaline pH (up to 9; 

Musvoto et al., 2000a), which can also be seen at the higher struvite purity found for lower 

operational pH’s within the context of the analysis (Table 10.12). 

Next to the pH, the main operational factor seems to be the liquid temperature, where P 

precipitation was found to be lower at higher temperatures, especially for Scenario C (Fig. 10.5).  

Figure 10.5 Detail Monte Carlo simulation results: P precipitation (kmol d-1)  
as function of temperature (°C) for Scenario C (Co-digestate; Vlaco, 2012).  

 

Interestingly, rather a logarithmic than a linear effect was found due to the combination of the 

Arrhenius temperature correction used for the kinetic rates and the Van’t Hoff correction used 

for the solubility products (Chapter 9: Section 9.2.2.1). The decreasing effect in this case can be 

explained by the fact that Ca3(PO4)2:beta (the main precipitate in Scenario C) is the main stable 

calcium phosphate that forms at lower temperatures (Mirhadi et al., 2011; Moghimian et al., 

2012). Nevertheless, a temperature increment positively influenced struvite purity in the GSA. 

Looking at the decreasing struvite solubility product with increasing temperature (Hanhoun et 

al., 2011), this finding seems realistic. Hence, if the aim would be to produce high purity 
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struvite, it can be recommended to work at relatively high operational temperature (e.g. 

after mesophilic digestion) and rather low pH within the considered ranges (Table 10.5). 

Knowing that high concentrations of Ca ions can reduce the yield of struvite crystals formed to 

around 15 % in full-scale operational systems for struvite recovery, thereby making the plant 

economically unfeasable (Dangaran, 2013), the reduction of Ca inhibition creates an 

important optimization challenge in nutrient recovery systems.  

According to the GSA results for all scenarios, input factors that should become standard 

measurements at WRRFs aiming at P recovery through precipitation, next to of course S_P, are 

S_Al, S_Ca, S_C_4_, S_Fe, S_Mg, S_Na, and S_N_min3_, because of their direct effect on pH 

and/or ion pair formation/precipitation with P. Precipitation kinetics that should be prioritized for 

calibration (based on CFT2), next to k_Struvite, are: k_AlPO4, k_Aragonite (CaCO3), k_Artinite 

(MgCO3:Mg(OH)2:3H2O), k_Calcite (CaCO3), k_CaHPO4:2H2O, k_Ca3(PO4)2_am3, 

k_Dolomite_dis (CaMg(CO3)2), k_Gibbsite (Al(OH)3), k_Kstruvite (MgKPO4:6H2O), k_Magnesite 

(MgCO3), k_Mg3(PO4)2, k_Vaterite (CaCO3), and k_Vivianite (Fe3(PO4)2:8H2O). For Scenario A, 

also k_Ca4H(PO4)3:3H2O, k_Fe(OH)2_s, k_Hydroxyapatite (Ca10(PO4)6(OH)5), k_Newberyite 

(MgHPO4:3H2O), and k_Siderite (FeCO3) were found to be important. Consequently, if pure 

struvite is aimed for, the removal of Ca prior to the precipitation reactor, as well as the 

implementation of struvite precipitation prior to or instead of Fe/Al dosing, is 

recommended. Noteworthy is that similar conclusions were made in Chapter 9: Section 

9.3.3.2.   

    

10.3.1.3 NRM-Strip: Factor ranking and interpretation   

GSA results for the NRM-Strip unit are provided in Table 10.13 (Appendix 10: Tables A10.7-

10.9). All R2
adj values were higher than 0.7, except for S_C_4_ precipitation in Scenarios A and 

C.  

The most important input characteristics determining NH3 removal were S_Ca, S_Cl, S_C_4_, 

S_Mg, S_Na, S_N_min3_, S_P, and S_S_6_. Indeed, these are major input characteristics 

determining the pH and ionic strength of the solution, which impact on the Henry coefficient of 

NH3 (DOE, 2014; Wickramanyake, 2009). In this respect, an important observation is that 

especially high Cl contents negatively influenced the NH3 removal efficiency in each scenario by 

decreasing the pH, while increasing the ionic strength of the solution (cfr. Yuwza, 1982). A detail 

of the MC results showing the effect of this anion for Scenario B is provided in Figure 10.6. Also 

the higher effluent NH4
+ concentration found for higher input Cl contents, and the higher air 

requirements to obtain efficient NH3 removal, provide evidence for chloride interference.  

Indeed, an increase in the ionic strength of the solution results in a decrease of the activity 

coefficients (< 1 ~ less active), which on its turn results in a decrease of the partial pressure of 

NH3 in the gas phase (Zumdahl, 2005). Moreover, higher Cl concentrations will increase the 

amount of chemicals (often caustic soda, NaOH) and/or CO2 stripping needed to increase the 

pH prior to stripping (DOE, 2014). As such, without chemical pH-increment (hence only pH-
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Table 10.13 Global sensitivity analyses for the NRM-Strip unit: ten prioritized factors and 
standardized regression coefficient (SRC) per performance indicator for each scenario. 
Scenario A: all applications; Scenario B: digestate from manure (Cesur and Albertson, 2005); 
Scenario C: (co-)digestate (Vlaco, 2012). Dark grey = very high importance (CFT1); grey = high 
importance (CFT2); light grey = moderate importance (CFT3). CFT = cut-off threshold.  
* indicates R2

adj value below 0.7. Description of factor symbols can be found in Table 10.6.  

A NH4-N removal efficiency Effluent NH4-N Precipitation CO3* Air requirementa Overall 

 
S_Cl -0.930 S_Cl 0.935 Temp_liq -0.174 Temp_liq -0.711 Temp_liq -0.733 

 
S_N_min3_ 0.508 S_Mg -0.156 S_Mg 0.171 P_gas_in 0.430 P_gas_in 0.423 

 
S_Mg 0.136 S_N_min3_ 0.106 S_Ca 0.136 Q_liq_in 0.358 Q_liq_in 0.364 

 
S_C_4_ 0.084 S_C_4_ -0.061 S_P -0.119 S_Cl 0.046 S_Cl 0.031 

 CO2_g_ -0.046 S_Ca -0.033 k_Magnesite 0.114 k_Ca3(PO4)2_am1 -0.030 k_Mg3(PO4)2 -0.021 

 k_Ca3(PO4)2_am1 0.044 S_Al -0.028 S_S_6_ -0.103 S_K 0.025 k_Mg(OH)2_act -0.022 

 
D_CH4_g_ -0.041 S_H_0_ -0.028 S_Cl -0.102 k_Aragonite -0.024 D_NH3_g_ 0.021 

 
S_H_0_ 0.038 S_S_6_ 0.027 N2_g_ 0.088 k_Hercynite 0.024 theta_CH4_g_ -0.021 

 
k_Ca3(PO4)2_beta -0.038 k_Struvite 0.026 S_Fe -0.081 Temp_gas_in 0.023 k_Kstruvite 0.020 

 
S_N_0_ -0.036 S_P 0.022 Q_liq_in -0.071 S_Butyrate -0.022 CO2_g_ 0.020 

B NH4-N removal efficiency Effluent NH4-N Precipitation CO3 Air requirementa Overall 

 S_Cl -0.922 S_Cl 0.860 Q_liq_in 0.963 Temp_liq -0.711 Temp_liq -0.711 

 
S_N_min3_ 0.244 S_N_min3_ 0.350 D_N2_g_ -0.021 P_gas_in 0.440 P_gas_in 0.440 

 S_Mg 0.175 S_Mg -0.164 S_K 0.017 Q_liq_in 0.354 Q_liq_in 0.354 

 
Temp_liq 0.153 Temp_liq -0.144 theta_CH4_g_ -0.015 S_Cl 0.121 S_Cl 0.121 

 S_Na 0.139 S_Na -0.130 k_Dolomite -0.016 S_Na -0.048 S_Na -0.048 

 
S_Ca 0.110 S_Ca -0.104 S_N_min3_ -0.014 S_N_min3_ -0.027 S_N_min3_ -0.027 

 S_S_6_ -0.058 S_S_6_ 0.054 S_C_min4_ 0.014 S_C_4_ -0.026 S_C_4_ -0.026 

 
S_K 0.047 S_P 0.043 S_Na 0.012 u -0.024 u -0.025 

 S_P -0.045 S_K -0.042 S_Propionate -0.013 S_Ca -0.024 S_Ca -0.024 

 S_N_5_ -0.038 S_N_5_ 0.034 S_Al -0.013 k_Diaspore -0.021 k_Diaspore -0.022 

C NH4-N removal efficiency Effluent NH4-N Precipitation CO3* Air requirementa Overall 

 S_C_4_ 0.513 S_N_min3_ 0.730 S_P -0.212 Temp_liq -0.630 Temp_liq -0.735 

 S_N_min3_ -0.467 S_C_4_ -0.382 S_N_min3_ -0.157 P_gas_in 0.376 P_gas_in 0.423 

 S_Mg 0.365 S_Mg -0.261 S_Ca 0.107 Q_liq_in 0.312 Q_liq_in 0.362 

 S_Cl -0.230 S_P -0.114 S_Mg 0.096 S_C_4_ -0.171 k_Mg3(PO4)2 -0.031 

 S_P 0.131 S_Cl 0.104 S_DOM -0.081 S_N_min3_ 0.153 K_Kstruvite 0.020 

 S_Al 0.046 S_DOM -0.042 S_Na 0.072 S_Mg -0.115 D_NH3_g_ 0.020 

 S_DOM 0.042 S_Al -0.036 k_Calcite 0.068 S_P 0.082 k_Dolomite -0.018 

 S_Fe 0.040 theta_CO2_g_ 0.034 S_Fe -0.064 S_Cl 0.052 theta_H2_g -0.018 

 S_Na -0.036 S_Fe -0.029 theta_O2_g_ 0.062 D_NH3_g_ 0.035 k_Portlandite -0.017 

 O2_g_ 0.035 k_Dolomite -0.028 d_gas -0.060 k_Mg3(PO4)2 -0.034 D_H2_g_ -0.017 

               
a Air needed to obtain 90 % NH3 removal.  

 

increase through CO2 removal in the stripper), the average NH3 removal efficiency for Scenario 

B (with high Cl content) was only 48.8±5.0 %, whereas it amounted to 75.4±16.2 % for Scenario 

C. This phenomenom may impact on the treatment train configuration, as often MgCl2:6H2O is 

used for P recovery through precipitation. Hence, if P recovery is to be implemented prior to 

stripping, the addition of Mg(OH)2 or MgO instead of MgCl2:6H2O may be more feasible 

(although more expensive; Table 10.10). Note that the above also underlines the fundamental 

importance of the accurate pH calculation and ion activity corrections provided by the NRMs 

(Chapter 9). 

Furthermore, it is important to notice that the input P content negatively influenced NH3 stripping 

in Scenarios A and B. This is likely due to Na-P, Ca-P, and/or Mg-P ion pair formation/ 

precipitation, thereby reducing the positive effect (basicity) of these cations on NH3 removal. 

However, in Scenario C, where much higher P concentrations were allowed (Table 10.6), the 

increasing P concentration (N:P-ratios ~ 1) seems to positively influence NH3 removal, likely 

due to the formation of struvite (see also the importance of struvite kinetics for Scenario C in the  
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Figure 10.6 Detail Monte Carlo simulation results: NH3 removal efficiency (%)  

as function of input chloride concentration (S_Cl; mol m-3)  
for Scenario B (Cesur and Albertson, 2005). 

 

stripping column; Appendix 10: Table A10.9). Besides, this can explain why Na negatively 

impacts on NH3 removal for this scenario (cfr. Na-P ion pair formation in NRM-AD and NRM-

Prec). Hence, the interest of removing P prior to stripping is clear for all scenarios, so as 

to avoid ion pairing and/or uncontrolled precipitation (scaling) of P in piping/equipment. 

The most important operational factors for process optimization based on CFT1 are the liquid 

temperature (Temp_liq), liquid flow rate (Q_liq_in) and pH (determined by the charge balance), 

as well as the gas pressure (P_gas_in). All effects (including the sign) are in agreement with 

operational practice (Wang et al., 2007). An interesting observation is that an increment in the 

operational temperature (Temp_liq) not only significantly improved NH3 removal (in line with 

prior knowledge), but also reduced air requirements. Hence, a cost optimization problem arises.  

Overall, the most important kinetic factor for calibration following CFT1 is k_Magnesite 

(MgCO3), which contributes to carbonate scaling on the packing material. The NH3 diffusion 

coefficient (D_NH3_g_) and calcite precipitation kinetics (k_Calcite) are only of secondary 

importance (CFT2) according to the GSA.  

  

10.3.1.4 NRM-Scrub: Factor ranking and interpretation  

The GSA results for the NRM-Scrub unit are provided in Table 10.14 (Appendix 10: Table 

A10.10). The R2
adj values for the NH3 recovery efficiency and the acid requirements were 

slightly below 0.7 (0.68 and 0.67, respectively), but still acceptable for factor ranking (Cosenza 

et al., 2013). The GSA quality for fertilizer N, pH, and the overall sensitivity measure was high. 
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Table 10.14 Global sensitivity analyses for the NRM-Scrub unit: ten prioritized factors and 
standardized regression coefficient (SRC) per performance indicator. Dark grey = very high 
importance (CFT1); grey = high importance (CFT2); light grey = moderate importance (CFT3); 
salmon = low importance. CFT = cut-off threshold. * indicates R2

adj value below 0.7. Description 
of factor symbols can be found in Table 10.7. 

NH3 recovery  
efficiency * 

Fertilizer S_N_min3_ Fertilizer pH Acid requirement * Overall 

NH3_g_ -0.590 NH3_g_ 0.900 NH3_g_ 0.814 NH3_g_ -0.623 NH3_g_ 0.860 
CO2_g_ 0.390 O2_g_ -0.309 CO2_g_ -0.310 CO2_g_ 0.398 CO2_g_ -0.299 
O2_g_ 0.278 S_S_6_ -0.154 O2_g_ -0.231 S_S_6_ 0.255 O2_g_ -0.271 

S_S_6_ 0.240 H2_g_ 0.072 S_S_6_ -0.175 O2_g_ 0.248 S_S_6_ -0.170 
Temp_liq -0.074 CH4_g_ 0.059 H2_g_ 0.056 H2_g_ -0.064 H2_g_ 0.069 

H2_g_ -0.073 Temp_gas_in -0.046 CH4_g_ 0.033 theta_H2_g_ -0.035 P_gas_in -0.033 
CH4_g_ -0.043 P_gas_in 0.021 Temp_liq -0.025 pH_liq 0.032 Temp_gas_in -0.027 

u -0.029 D_CH4_g_ -0.020 D_N2_g_ 0.018 theta_N2_g_ -0.029 Temp_liq -0.021 
D_O2_g_ -0.025 theta_H2_g_ 0.016 D_CO2_g_ -0.015 Temp_gas_in 0.025 Q_liq_in -0.017 

D_CH4_g_ -0.025 Temp_liq -0.015 theta_NH3_g_ -0.014 D_CO2_g_ 0.025 H2O_g_ 0.016 

 

All performance indicators were mainly sensitive to variations in the partial pressure of NH3, O2, 

and CO2 in the gas phase (coming from the stripper), as well as to the acid concentration 

(represented by input sulfate, S_S_6_). Logically, the higher the acid dose, the higher the N 

recovery efficiency. However, when sulfate concentrations are so high that ammonium sulfate 

(AmS) supersaturation occurs, then crystallization will take place and further ammonia 

absorption will be inhibited. This may explain the negative effect of input sulfate (S_S_6_) on 

the fertilizer soluble ammonium (S_N_min3_) concentration. On the other hand, 

upconcentration of AmS (usually up to 25-40 % AmS) by use of a recycle flow (Q_rec) is 

interesting so as to reduce acid requirements and transportation costs, as well as to meet 

fertilizer quality specifications. Hence, again an optimization problem arises: a fertilizer 

recycle flow should be used and retention times should be adjusted to obtain the 

targeted product quality, while avoiding AmS precipitation.  

The other operational factors and kinetic parameters tested seem to have a lower impact on the 

scrubber performance than the above-mentioned input variables. Next to the acid dose, 

important operational factors (based on CFT2) seem to be the liquid temperature (Temp_liq, i.e. 

more N absorption at lower temperature) and gas temperature (Temp_gas_in, i.e. more N 

volatilization at higher temperature), as well as the gas phase pressure (P_gas_in, i.e. more N 

absorption at higher pressure). All these effects are in agreement with prior knowledge (Crisalle, 

2013; Manuzon et al., 2007; Powers et al., 1987). Moreover, based on CFT2, the most 

important kinetic parameters for calibration are the Arrhenius temperature dependency 

coefficient theta for H2 and the diffusion coefficient of CH4.  

 

10.3.1.5 Overview of generic recommendations for factor prioritization   

From the unit process GSAs above, it can be stated that major effects of the selected factors on 

the model outputs are representative for the three different input waste substrates under study 

(Scenarios A, B, and C; Table 10.3). For example, the presence of Ca inhibits struvite purity, 

whereas the presence of Cl inhibits NH3 stripping. Based on the generic observations, an 

overview of recommended factors to be prioritized based on CFT1 is given in Table 10.15.     
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Table 10.15 Generic recommendations in terms of 1) input characterization at resource 
recovery facilities, 2) operational factors that should be prioritized for process optimization and 
control, and 3) kinetic model parameters that most urgently require calibration, for each key unit 
in the nutrient recovery model (NRM) library based on cut-off treshold 1 (CFT1 = very high 
importance). AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = stripper; 
Scrub = scrubber. 
Key unit 1. Input factors 2. Operational factors 3. Kinetic parameters 
NRM-AD Inorganic: S_Al, S_C_min4_, S_C_4_, 

S_Ca, S_Cl, S_Fe, S_Mg, S_Na, 
S_N_0_, S_N_5_, S_N_min3_, S_P, 
S_S_6_ + S_Fe and S_Al (if dosing 
upstream) 
Organic: S_acetate, S_butyrate, 
S_propionatea, S_valerate,  
X_ch, X_inert, X_pr 

Temp_liq, 
Alkalinity (S_C_4_) / pH, 
Q_liq_in (~ HRT) 

no major importance 
based on CFT1 
 

NRM-Prec S_Ala, S_Ca, S_C_4_, S_Fe, S_Mg, 
S_Na, S_N_min3_, S_P 

Temp_liq, 
Mg-dose (~ pH) 

k_Ca3(PO4)2:beta 
 

NRM-Strip S_Ca, S_Cl, S_C_4_, S_Mg, S_Na,  
S_N_min3_, S_P, S_S_6_ 

Temp_liq, pH_liq (~ base 
dose), P_gas_in, Q_liq_in 

k_Magnesite 

NRM-Scrub CO2_g_, NH3_g_, O2_g_, S_S_6_ Acid dose (S_S_6) / pH no major importance  
based on CFT1 

a Note that this component was only selected based on CFT2, but due to the frequency of its selection, measurement of  
this component is also recommended. 

 

In line with the overall objectives of the GSA (Section 10.1), recommendations are given in  

terms of:  

1) Input factors that should become standard measurements at WRRFs, at least 

during the start-up phase;  

2) Operational factors that should be prioritized for process optimization and control; 

3) Kinetic parameters that most urgently require calibration.  

It should be remarked that, especially for the NRM-AD and NRM-Scrub units, the impact of the 

kinetic parameters under study was minor compared to the daily variability in waste input 

composition and the operational decisions. Overall, it can be concluded that the input flow 

characteristics play a major role in nutrient recovery, as they directly impact on the 

operational pH and ionic strength of the solution. These findings are in line with activated 

sludge modelling, in which input characterization was also evaluated as an essential step 

(Rieger et al., 2012). 

 

 

10.3.2 Treatment train configuration 

Based on the generic insights obtained from the unit process GSA results presented in Section 

10.3.1, an optimal combination of unit processes in a treatment train for nutrient recovery can 

be derived. First, it was observed that Ca has a negative influence on both the struvite purity 

and the stripping performance (scaling on the packing column). Moreover, the occurrence of 

calcite precipitation, as well as Fe and Al precipitation, during digestion was found to be very 

probable. Hence, it is expected that the implementation of a phase separation unit after the 

digester may separate the Ca, Fe, and Al precipitates from the liquid digestate, thereby 

improving the performance of the subsequent technologies for nutrient recovery from the liquid 

digestate. The settled solids, rich in Ca and organic matter (COD), may then be valorized as a 
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soil conditioner if fertilizer quality requirements (e.g. in terms of pasteurization) can be met 

(Vaneeckhaute et al., 2012). Note that this is in agreement with the current common practice for 

digestate treatment (Chapter 2).  

Next, it was observed that Cl and P have a negative effect on the stripping performance, while 

the amount of soluble ammonium influences struvite purity in a positive way. Hence, if the aim 

would be to produce both high purity struvite and concentrated AmS, the precipitation unit 

should preferably be added prior to the stripping unit, while the use of Mg(OH)2 or MgO should 

be preferred for P precipitation instead of MgCl2:6H2O. Although these products are less 

soluble, they have the additional benefit of increasing the pH, whereas MgCl2 slightly decreases 

the pH (Burns and Moody, 2002). As such, depending on the waste stream to be treated, it may 

be possible to obtain high struvite recovery without the addition of base (NaOH) for pH-

increase. Indeed, struvite recovery is favoured at neutral to slightly alkaline pH (Section 

10.3.1.2). Hence, the combination of a phase separation unit for Ca removal and an optimized 

dose of Mg(OH)2/MgO (without addition of NaOH) may be sufficient for optimal P recovery as 

struvite. As such, Westerman et al. (2010) found high P recovery efficiencies with addition of 

Mg(OH)2 only, or with only a small addition of NaOH, i.e. raising the pH from 7.3 to 7.8, while 

digestate pH’s are generally around 8. 

Moreover, by implementing the precipitation unit prior to the stripper, it is possible that no 

additional base has to be added for stripping. Indeed, the Mg dose for precipitation in 

combination with the pH-increase obtained through CO2 stripping from the remaining digestate 

alkalinity is usually sufficient (Anaergia, 2014; Colsen, 2014). Finally, if struvite is to be 

recovered, the implementation of the precipitation unit after digestion is also beneficial as higher 

temperatures increase struvite purity (Fig. 10.5).   

The proposed treatment train configuration targeting struvite and AmS recovery is presented in 

Figure 10.7.  Note that extraction of the precipitated fertilizer is included in the NRM-Prec, so no 

additional settling tank is required. Moreover, in order to save energy, a closed air loop between 

stripper and scrubber is considered, where the ‘clean’ air from the scrubber is recycled back to 

the stripper (BEC, 2014).   

 

 

Figure 10.7 Proposed treatment train configuration targeting struvite and ammonium sulfate 
fertilizer. Red = consumable (= cost). Green = recovered resource (= revenue). AD = anaerobic 
digestion; Dose = chemical dosing; Heat = heat exchanger; Prec = precipitation/crystallization;  

p = partial pressure in the biogas; Q_liq = liquid flow rate; Scrub = scrubber; Strip = stripper.  
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Also, depending on the input P concentration, local fertilizer legislations, and operational 

conditions in the digester, pre-treatment (e.g. acidification + mechanical treatment; Chapter 7) 

of the digestate prior to solid-liquid separation may be considered in order to increase the 

amount of P in the liquid fraction (for subsequent recovery as struvite, Ca/Mg-P precipitate, or 

concentrated P-solution), as well as the local marketing potential of the (P-poor) organic thick 

fraction. However, the use of HCl for acidification is discouraged if subsequent stripping is 

supposed to occur (see above). 

If the market for calcium phosphate fertilizers would be more advantageous than the struvite 

fertilizer market, then the use of Ca(OH)2/CaO may be considered instead of Mg(OH)2/MgO for 

P precipitation, while the phase separation unit may not be needed (depending on the required 

product quality). Moreover, due to legislative constraints in some regions, it may be more 

interesting to separate N from P in order to obtain both a pure N and P fertilizer. In this case, 

NH3 stripping prior to Mg-P or Ca-P precipitation may be beneficial so as to reduce N losses 

through precipitation (and volatilization) in the precipitation unit. However, in that case P 

precipitation on the stripping column may occur (depending on the technology provider). Hence, 

a new optimization problem arises. 

It can be concluded that the unit process GSA results are very useful for configuration of an 

optimal treatment train for nutrient recovery. However, the optimal configuration also depends 

on local/regional fertilizer legislations and markets, next to the input flow characteristics, and 

should therefore be evaluated in function of these. As an example, a treatment train GSA and 

optimization experiment is presented below for pig manure (Scenario B) as a case study, 

supposing that there is a (local) market for struvite and AmS fertilizer. A generic algorithm for 

configuration of nutrient recovery facilities as function of input flow characteristics and fertilizer 

markets/legislations is presented in Chapter 11.  

 

10.3.3 Treatment train GSA: Case study pig manure  

First, a GSA was conducted for the treatment train presented in Figure 10.7 using the pig 

manure input range for the NRM-AD (Scenario B, Table 10.4) and the same factor variation 

ranges as for the individual process GSAs (Scenario B, Tables 10.4-10.7). Compared to the 

GSA on the individual unit processes, only the concentration of seed material was eliminated as 

factor (see Section 10.3.1.2). As mentioned before, a request for proposals was distributed to 

key technology providers in the field of nutrient recovery in order to obtain reactor dimensions 

(and capital costs) for each unit process (Table 10.1) in the treatment train presented above 

(Fig. 10.7). Flow rates were subject to change in order to cover the impact of a typical HRT 

range on the performance indicators. For this treatment train GSA, the model output evaluated 

was the net treatment train cost, as defined in Section 10.2.4.  

As one could expect, due to the large number of factors considered, high VIF values were 

obtained indicating a multicollinearity problem, although the R2
adj value was higher than 0.7. To 

overcome this issue, the input manure characteristics to the NRM-AD were fixed at the default 
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values (= average values for Scenario B; Table 10.4). Only the input Ca content and alkalinity 

(S_C_4_) to the digester were allowed to change, as these components are often added during 

pig manure digestion in order to control the digester pH and so augment process stability (see 

Section 10.3.1.1). The results of this second analysis showed low VIF values (< 1.06), but now 

the R2
adj was out of the range of a qualitative linear model (< 0.7). Nevertheless, as mentioned 

before, within the scope of this study, the obtained SRCs and tSRCs may still be used for factor 

prioritization. The value of the SRC itself should, however, be interpreted carefully in terms of 

quantitative estimates of the variance contributions.  

The selected factors which have an important impact on the net treatment train cost according 

to the different CFTs are shown in Table 10.16 (Details: Appendix 10: Table A10.11) and 

described below per unit process.  

 

Table 10.16 Prioritized factors for the net operational cost of the nutrient recovery treatment 
train (Fig. 10.7), including operational factors and kinetics. Grey = high importance (CFT2); light 
grey = moderate importance (CFT3); salmon = low importance (CFT 4). CFT = cut-off threshold.  
Factor SRC   Factor SRC 

NRM_Strip.k_Hydroxyapatite 0.080   NRM_AD.S_C_4_ -0.042 

NRM_Strip.k_Mg3(PO4)2 0.075   NRM_Prec.k_Calcite -0.041 

NRM_Strip.k_Calcite 0.071   NRM_Prec.k_Vaterite -0.040 

NRM_Strip1.k_Fe(OH)2 -0.070   NRM_Prec.k_Dolomite 0.039 

NRM_Strip.D_CO2_g_ -0.068   NRM_AD.kdec_xsrb_pro 0.039 

NRM_Strip.D_N2_g_ -0.066   NRM_Strip.k_Dolomite -0.039 

NRM_Scrub.Q_liq_in (acid) 0.063   NRM_Prec.k_CaHPO4:2H2O 0.038 

NRM_Prec.k_Aragonite 0.062   NRM_Prec.k_Ca3(PO4)2_beta 0.038 

NRM_AD.k_CaHPO4:2H2O 0.059   NRM_AD.k_FeS_ppt_ 0.038 

NRM_Prec.k_Vivianite 0.057   NRM_Heat_Strip.T_target -0.037 

NRM_AD.k_Mackinawite 0.057   NRM_AD.Q_liq_in -0.036 

NRM_Strip.k_Magnesite -0.056   NRM_Prec.k_Gibbsite 0.034 

NRM_Strip.k_CaHPO4:2H2O -0.055   NRM_AD.km_srb_ac -0.034 

NRM_AD.k_MgHPO4:3H2O -0.052   NRM_AD.kLa_H2 0.033 

NRM_Prec.k_Hercynite -0.048   NRM_AD.k_AlPO4 0.030 

NRM_Strip.D_NH3_g_ -0.046   NRM_Prec.k_Hydroxyapatite 0.029 

NRM_AD.k_Siderite -0.043   NRM_AD.kdec_xsrb_h 0.030 

NRM_AD.S_Ca -0.043   NRM_Scrub.D_CH4_gas 0.029 

 

From the treatment train GSA, it can be seen that, except for the stripping unit, in majority the 

same factors were selected as for the unit process GSAs above, strengthening the validity of 

the individual analyses.  

Overall, the most important factors determining the net treatment train cost seem to be related 

to the stripping unit (NRM-Strip), i.e. the precipitation/dissolution rate of hydroxyapatite 

(Ca5(PO4)3OH), Mg3(PO4)2, and calcite (CaCO3). When precipitation occurs in the stripper, 

these precipitates may cause scaling on the packing material, thereby increasing the air and 

chemical requirements for effective NH3 stripping and hence the overall net costs (cfr. Section 

10.3.1.3). The fact that the selected Ca-P and Mg-P precipitates are different than those found 

with the individual stripping unit GSA (Section 10.3.1.3) is related to the Mg dose added for P 

precipitation prior to stripping and to the fact that part of the Ca, Mg, and P is already removed 
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prior to the stripper (depending on the MC scenario). As also diffusion coefficients in the stripper 

and the stripping temperature are among the most important factors, it is likely that the heat 

requirements and possibly the air requirements in the stripper are of principal importance for 

determination of the net treatment train cost.  

Next, for the acidic air scrubber (NRM-Scrub), especially the acid dose influenced the net 

treatment cost, as it impacts both the chemical costs and the revenues obtained form 

ammonium sulfate recovery. Also the diffusion coefficient of CH4 was influential, similar as was 

observed for the unit process GSA (Table 10.14). Note that the stripping temperature (which is 

an important factor, see above) also determines the temperature of the gas flow in the scrubber, 

while the gas flow leaving the stripper determines the flow rate into the scrubber.  

For the anaerobic digester (NRM-AD), the main factors influencing the net treatment train cost 

are the amount of available Ca and the input alkalinity (= chemical cost and/or impact on CH4 

production), the precipitation/dissolution rate of P precipitates (= impact on Ca availability in the 

digester and on P recovery), and of Fe precipitates (= impact on P recovery and S removal by 

SRBs). Also, some SRB kinetic parameters were important (= competition with CH4 producers). 

An interesting observation is that the digester temperature had only a minor effect on the overall 

net treatment train cost. Hence, the increasing biogas production (and so revenues) at higher 

temperatures seems in this case not worth the increasing cost of raising the temperature of the 

large waste flow. A detail of the MC results showing the revenues obtained from CH4 production 

as function of the costs related to digester heating is shown in Figure 10.8.  

Figure 10.8 Monte Carlo simulation results for the pig manure treatment train (Fig. 10.7):  
revenues ($ d-1) from CH4 production (considering 22 % losses) as function of digester  

heating costs ($ d-1), considering that the actual digester heat requirement (including losses) is 
about 1.9 times higher than the theoretical heat required for manure heating (CDM, 2009; 

Tchobanoglous et al., 2003; USEPA, 1981; Vaneeckhaute, 2009). Reference temperature = 20 
°C. $ = USD; 1 USD = 1.14 CAD = € 0.80 (November 2014).  
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The presented situation accounts for an actual digester heat requirement (including losses) that 

is about 1.9 times higher than the theoretical heat required for manure heating, as e.g. observed 

in CDM (2009), Tchobanoglous et al. (2003), and Vaneeckhaute (2009). Also 22 % CH4 losses 

were assumed during anaerobic digestion and its conversion into energy (Section 10.2.4). The 

fact that the slope of the linear regression on the MC output is lower than 1 confirms the 

statement above, that the increasing revenues from biogas production at higher temperature 

are not worth the higher heating costs. Nevertheless, it can be seen on the basis of the variation 

of the revenues for a particular heating cost that calibration of the prioritized factors will be 

important for process and treatment train optimization. 

Finally, as expected, for the precipitation unit (NRM-Prec), mainly factors that may interfere 

with P and struvite precipitation are important, i.e. Ca, Mg, Fe, and Al precipitation/dissolution 

kinetics.  

 

10.3.4 Treatment train optimization: Case study pig manure 

The aim of this optimization experiment was to use the NRM library for optimization of the 

operational settings of the various unit processes in the proposed nutrient recovery treatment 

train (Fig. 10.7), designed using the (unknown) guidelines of the technology providers. Hence, 

as mentioned before, the reactor dimensions were fixed to the design values for each unit in the 

treatment train obtained from the various technology providers (Table 10.1), whereas the 

operational envelope (including flow rates; Table 10.9) was optimized in order to reduce net 

operational costs and to identify the true capacity of the system. The optimized scenario 

obtained is discussed in Section 10.3.4.1. The resulting economic analysis is presented in 

Section 10.3.4.2.  

 

10.3.4.1 Optimized factors and performance indicators  

The optimized values of the operational factors considered in the optimization experiment are 

compiled in Table 10.17. Key performance indicators that were calculated from the optimized 

factors are also provided.  

A first important remark is that the obtained optimal digester HRT (15 d) is low, definitely for an 

operational digester temperature of 28 °C (= lower end of the mesophilic range). It could even 

be questioned if such a scenario is realistic. A literature survey provided evidence that 

anaerobic digestion of swine manure at only 20 °C for 15-20 d can be considered promising for 

reducing indigenous performance indicators and pathogenic microorganism populations, while 

providing sufficient waste stabilization at relatively low costs (Côté et al., 2006; Kearny et al., 

Masse et al., 2004; Nasir et al., 2012). Wilkie (2000) evaluated 15 d as the lower acceptable 

limit for pig manure monodigestion in a CSTR to guarantee a stable process, especially at low 

temperature. However, optimal ranges of 5-20 d have also been reported for various operational 

temperatures (USDA, 2007). Manure has a relatively low biodegradability (see also Chapter 7)  
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Table 10.17 Value of the optimized factors in the treatment train optimization experiment and val ue 
of the resulting performance indicators. Red = impact on costs. Green = impact on revenues. 
COD = chemical oxygen demand; f_ns_P = fraction of non-settleable precipitates; f_ns_X = 
fraction of non-settleable biological particulate solids.  

 a Best case: 10 % heat losses (Wu and Bibeau, 2010; Zupancic and Ros, 2003). Worst case: heat requirement that is 
1.9 times higher than the theoretical heat required for manure heating (CDM, 2009; Tchobanoglous et al., 2003; 
USEPA, 1981; Vaneeckhaute, 2009). Waste input temperature: 20 °C (Khiewwijit et al., 2015; USEPA, 1981).  

b  First number: considering 22 % CH4 losses (see below); second number: not accounting for CH4 losses.  
c Conversion of CH4 in conventional heat and power system: 40 % thermal energy, 38 % electricity, 22 % losses   
  (Verstraete and Vlaeminck, 2011).   
d Recovered as digested solids (= particulate COD + Ca, Fe, and Al precipitates) in NRM-Settle.  
e Recovered as Mg/P fertilizer. % recovery was calculated from soluble P that enters the NRM-Prec unit. The same  
  maximal % recovery was found by Ye et al. (2010).  
f Best case: 50 % internal heat recovery in the stripping system. Worst case: no heat recovery.  
g Equal to 31.5 ton d-1 of H2SO4 at a density of 1,800 kg m-3.  
h Recovered as a 28 % ammonium sulfate (AmS) solution containing 6 % N in the NRM-Strip/NRM-Scrub units. % N  
  recovery was calculated from soluble N that enters the stripper. 
 

 

and high acidification and NH3 inhibition potential compared to other organic waste sources 

(Jhong-Hwa et al., 2006; Ossiansson and Lidholm, 2008; Section 10.3.1.1). Hence, in order to 

improve the feasibility of manure digestion, operation at low temperature and high rate is of 

increasing interest, especially in cold regions (Jhong-Hwa et al., 2006; Ossiansson and Lidholm, 

2008). Hence, the obtained lowest-cost scenario was found to be acceptable, although to date 

rather uncommon. It should be remarked that the more conventional scenario with a residence 

time of 15 d at 50 °C was competitive with the optimal scenario found above. However, in this 

case a Ca(OH)2 dose of about 21 ton d-1 was required.  

Although the optimal digester HRT was low, the optimal loading rate to the digester was about 

2.2 kg VSS m-3 d-1 (± 65 % VSS on TS content), which is an average value for an anaerobic 

CSTR (Tchobanoglous et al., 2003). The value obtained for energy recovery (≈ 52 kWh m-3 

manure ≈ 5.8 m3 CH4 m-3 or 7.4 m3 CH4 m-3 without energy losses) is at the lower end of the 

experimental range obtained by Cesur and Albertson (2005) from which the input data were 

used, i.e. 5.6-10 m3 CH4 m-3. This is evidently due to the lower residence time (15 d vs. 33-45 d) 

  OPTIMIZATION PERFORMANCE 
Unit process Optimized factor Value Indicator Value 

Anaerobic 
digester 
  
  
  
  

Temperature (°C) 28 Heat input (best/worst case; MWhth d-1)a 24-41 
Flow rate (m3 d-1) 2,700 HRT (d) 15 
Ca-dose (kg d-1) 0 COD degradation (%) 55 

  VSS degradation (%) 45 
  CH4 production (m3 m-3 manure) 5.8-7.4b  

    Heat recovery (MWhth d-1)c 72 
    Electricity recovery (MWhel d-1)c 68 

Phase separation f_ns_P  0.25 Organic fertilizer production (ton X_COD d-1)d 15 
  f_ns_X 0.05     

Precipitation unit 
  
  
  

Mg(OH)2 dose (ton d-1) 1.5 Mineral fertilizer production (ton P d-1)e 1.5 
Seeding Kstruvite (g m-3) 3.1 P recovery (%)e 99 
Seeding Struvite  (g m-3) 3.1    

Precipitate flow rate (m3 d-1) 150     

Stripper Temperature (°C) 55 Heat input (best/worst case; MWhth d-1)f 42-85 
  Gas flow rate (Mm3 d-1) 1.5 Electricity input (MWhel d-1) 2.9 
  Gas pressure (atm) 4    

Scrubber Acid flow rate (m3 d-1) 17.5g Mineral fertilizer production (ton N d-1)h 5.0 
  Liquid recycle rate (m3 d-1) 2.5 NH4-N recovery (%)h 84 
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and reactor temperature (28 vs. 35 °C) in the simulated system. As such, ± 55 % COD and ± 45 

% VSS removal were obtained in the simulated system, while at full-scale an actual average 

removal of 71 % COD and 65 % VSS was observed. The obtained % COD and VSS destruction 

are in line with the experimental findings of Elbeshbishy et al. (2010) for mesophilic anaerobic 

digestion of hog manure at a HRT of 15 d, i.e. 55-60 % and 45-50 %, respectively. Also the 

obtained CH4 production is in good agreement with full-scale values for large-scale mesophilic 

monodigestion of pig manure obtained by Lithania (2006), i.e. 7.6 m3 CH4 m-3 at a HRT of 15 d, 

and by Kasper and Peters (2012), i.e. 5.2-13 m3 CH4 m-3 pig manure. Due to the high 

acidification and NH3 inhibition potential during monodigestion of pig manure (Section 10.3.1.1), 

a higher liquid flow rate was in this case more beneficial than the addition of a high Ca dose 

(optimum = no external Ca addition).  

The reason for the relatively low digester temperature could be attributed to the fact that the 

additional gas that can be produced at higher temperature is in this case not worth the energy 

needed to raise the digester temperature (Section 10.3.3). Although the average trend of the 

MC output confirms this statement, Figure 10.8 shows that a more optimal scenario may be 

possible (only looking at the digester unit), resulting in an income of about 16,000 $ d-1 (present 

case: ± 10,500 $ d-1; see Section 10.3.4.2) at a heating cost of 6,000 $ d-1 (present case: ± 

3,500 $ d-1; Section 10.3.4.2). One explanation for this observation may be that in the MC 

analysis all operational and kinetic factors were considered variable, whereas in the 

optimization experiment, the default values were used for all factors other than the operational 

items mentioned in Table 10.17. This again underlines the importance of an accurate calibration 

of the prioritized kinetics.  

Another possible reason for both the rather low HRT and temperature is related to the 

interactions of the digester’s operating conditions with the economics of nutrient recovery 

downstream in the treatment train. As such, total revenues from mineral fertilizer production 

were in this case higher than the revenues obtained through biogas production. On top of that, 

the digested separated solids obtained may be reused as an organic fertilizer containing N, P, 

and K (from bacterial cells), as well as Ca and Mg. Depending on local legislations, important 

revenues can be obtained from organic fertilizer marketing. However, in other (often nutrient-

rich) regions, a cost is attached to the disposal of this product. Depending on the situation, 

additional costs and energy requirements may also be attributed to solids drying and/or 

pasteurization. Moreover, in regions with P saturated soils, a pre-treatment prior to solid-liquid 

separation may be implemented in order to stimulate the release of P in the liquid fraction for 

subsequent recovery as struvite, Ca/Mg-P precipitate, or concentrated P-solution, while 

increasing the local valorization potential of the (P-poor) organic thick fraction (Chapter 7).  

Furthermore, an interesting observation is that under the optimal conditions obtained an 

important amount of Ca (± 64 % of the daily digester input) was removed as CaCO3 precipitate 

with the separated solids. Hence, as expected, liquid-solid separation of digestate prior to 

struvite precipitation and NH3 stripping may provide an interesting measure to reduce Ca 
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inhibition in the downstream processes. Indeed, no Ca precipitation was detected in the 

stripping column or in the precipitation unit. However, the fraction of non-settleable precipitates 

(f_ns_P) was found to be an important factor, for which an optimal value of 25 % was found. In 

practice this value may be hard to reach without the addition of coagulants, such as lime 

(Ca(OH)2 or CaO). Excess lime may also cause Ca/P precipitation at pH > 10. Depending on 

local fertilizer markets, the latter may be interesting or not. Further research is required to 

experimentally determine the f_ns_P in the phase separation unit under different operating 

conditions and input waste flow compositions. 

Also interesting is the fact that the use of Mg(OH)2 as the only base for both P precipitation 

and N stripping (+ CO2 stripping) resulted in high recovery efficiencies for both N and P at low 

costs. As such, the inhibitory effect of Cl (from MgCl2:6H2O dosing) on N stripping and of Na 

(from NaOH dosing) on P precipitation can be reduced. The obtained electricity need for air 

pumping is relatively low, as it was assumed that air is continuously recycled between the 

stripper and scrubber unit (RVTPE, 2014). This electricity need can be completely covered by 

the recovered electricity in the conventional heat and power (CHP) system. Note that the heat 

needed for stripping was higher than that for digestion. However, internal heat recovery in the 

strip-scrub system can be achieved (recuperation from the stripped flow), resulting in total 

energy savings of more than 50 % (Colsen, 2014; RVTPE, 2014). The heat recovery potential in 

the strip-scrub system will determine whether all heat requirements can be covered by the heat 

produced by the CHP system or whether external heat has to be supplied. 

No effluent quality criteria were set for the present case as the focus was on nutrient and 

energy recovery. The final effluent resulting from the stripping unit contains very low soluble P 

concentrations (< detection limits of analytical instruments, i.e. 0.05 mg L-1 for a continuous flow 

analyzer; Chapter 6), and relatively low N concentrations, i.e. ± 350 mg L-1. This N content is 

generally too high for disposal, however, the water may be recycled as process water in the 

plant, e.g. for cleaning of the phase separation unit. If specific effluent quality criteria for N need 

to be achieved, the treatment train may be further optimized to reach these specifications. A 

low-cost final effluent treatment may also be considered (Chapter 2) or the water may be 

recycled to a nearby wastewater treatment plant (usually onsite in case of sludge digestion).  

 

11.3.4.2 Economic analysis   

An overview of the annual treatment train operational costs and revenues, as well as the capital 

costs for each unit process is presented in Table 10.18. The estimation is based on an 

operational basis of 8,000 hours per year, which is a common figure (ECN, 2014; 

Vaneeckhaute, 2009). For convenience of discussion, all costs are expressed in US dollars (1 

USD = 1.14 CAD = € 0.80; November 2014).  
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Table 10.18 Costs and revenues (k$ y-1) for the optimized nutrient recovery treatment train. $ = USD; 1 USD = 1.14 CAD = € 0.80 (November 
2014). AD = anaerobic digester; CHP = conventional heat and power system; CAPEX = capital expenditures; OPEX = operational expenditures.  

a Unit process construction + equipment costs: eight digester tanks of 5,000 m3 with floating cover, gas circulation unit, heating unit, gas safety equipment, sludge pump, and 
conventional heat and power system (ECN, 2014; Symantec, 2014; USEPA, 1981).  

b Unit process construction + equipment costs: standard gravity thickener (Symantec, 2014; USEPA, 1981). 
c Unit process construction + equipment costs: precipitation/crystallization unit and sludge pump (Technology provider X, 2014).  
d Unit process construction + equipment costs: feed pump, stripper column, stripper discharge pump, ventilator, absorption column, circulation pump, sulfuric acid dosing pump, feed 

heat exchanger, secondary heat exchanger, piping and fittings (Technology provider Y, 2014).  
e Other construction costs, such as land costs (agricultural land is assumed), legal costs, inspection costs, costs for lab and administration buildings, and miscellaneous costs 

(Symantec, 2014; USEPA, 1981).  
f Best case: 10 % heat losses (Wu and Bibeau, 2010; Zupancic and Ros, 2003). Waste input temperature: 20 °C (Symantec, 2014; USEPA, 1981).  
g Worst case: heat requirement that is 1.9 times higher than the theoretical heat required for manure heating (CDM, 2009; Tchobanoglous et al., 2003; USEPA, 1981; Vaneeckhaute, 

2009). 
h Operator labor rate: 51.5 $ h-1 (Symantec, 2014; USEPA, 1981). Maintenance labor rate: 43.5 $ h-1 (Symantec, 2014; USEPA, 1981).  
i Best case: 50 % internal heat recovery in the stripping system.  
j Worst case: no heat recovery. 
k Net CO2-equivalent emission savings through manure digestion compared to manure spreading: 0.1 ton m-3 manure (Zwart et al., 2006).   

Revenues CO2 emission reduction credits: 15 $ ton-1 CO2-equivalents (IPCC, 2007; LLC, 2012).  
 

 

 

 

 

COSTS (k$ y-1) FIXED COSTS VARIABLE COSTS REVENUES RESOURCE RECOVERY 

 
 
 
 

UNIT 

CAPEX 

OPEX Maintenance, 
material 
& laborh 

Biogas 
+ fertilizer 

Biogas 
+ fertilizer CO2 

creditsk Heat 
(best)f 

Heat 
(worst)g Electricity Chemicals besti worstj 

AD + CHPa 22,500 694 1,198 621 - 977 3,547 3,547 1,334 

Phase separationb 1,250 - - 2.5 to be evaluated 226 1,741 0 - 

Precipitationc 4,750 - - 6.3 102 48 1,468 1,468 - 

Strip/Scrubd 680 1,034 2,069 74 913 6.8 2,365 2,365 - 

Othere 2,000 - - - - - - - - 

Rounded total 31,000 1,750 3,250 700 1,000 1,250 9,100 7,400 1,350 
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First, it should be remarked that fixed and variable costs are highly influenced by the 

specifications of the applied technology (i.e. the design, the material used for construction, 

isolation, etc.), the options for recovered product valorization (e.g. biogas conversion into 

electricity, heat, fuel, or other), as well as the location (climate, market prices, land costs, 

regulations, etc.). Hence, it should be emphasized that various assumptions (see below) had to 

be made to obtain the values represented in Table 10.18. The aim of the economic analysis 

was merely to give an idea (order of magnitude) of the economic feasibility of installing a 

nutrient recovery treatment train, rather than to provide exact values.  

In this case study, the capital costs (including equipment and construction costs) for each unit 

process were obtained from the same technology providers who delivered the design reactor 

dimensions for the treatment train set-up (Table 10.1). When possible, the values were 

compared with values obtained from simulations with the CAPDET (Computer Assisted 

Procedure for the Design and Evaluation of Wastewater Treatment Systems; Symantec, 2014; 

USEPA, 1981) software to ensure that the obtained costs are realistic. The complete treatment 

train was also implemented in CAPDET in order to estimate other important direct and indirect 

construction costs, not included in the unit process cost estimations, such as land costs 

(agricultural land was assumed), legal costs, inspection costs, costs for lab and administration 

buildings, and miscellaneous costs (Symantec, 2014; USEPA, 1981). For the nutrient recovery 

systems not yet available in CAPDET, user-defined unit processes were implemented, using the 

specifications (capital costs, dimensions, etc.) obtained by the technology providers.  

Operational costs in terms of heat and chemical consumption were calculated from the 

derived data provided in Table 10.17 (red values). For the heat requirements, both a worst and 

best-case scenario were considered. In the worst case, an above-ground digester was 

assumed, with heat requirements of about 1.9 times the theoretical heat required for manure 

heating, similar as observed in CDM (2009) and Tchobanoglous et al. (2003), and assumed by 

the CAPDET software. Also, in this case, no heat recovery in the strip-scrub system was 

supposed. In the best-case scenario, a belowground anaerobic digester was assumed with heat 

losses of about 10 % of the heat required for manure heating (Wu and Bibeau, 2010; Zupancic 

and Ros, 2003). In this case, 50 % internal heat recovery in the strip-scrub system was 

considered, as is in practice most often the case (Colsen, 2014; RVTPE, 2014). In each 

scenario, an average input manure temperature of 20 °C was supposed, as e.g. in the CAPDET 

software and in Khiewwijit et al. (2015). The final effluent leaves the stripper at 25 °C 

(Technology provider Y, 2014). Hence, the temperature difference between the final effluent 

and the input manure to the digester is in this case too small for heat recovery between these 

flows (Technology provider Y, 2015). 

The estimated operational costs for air pumping were also directly calculated from the air 

requirements provided in Table 10.17. Electricity consumption related to the digester can be 

estimated at ± 24.5 MWhel d-1 or 33 MJ ton-1 manure, resulting in a cost of ± 1,850 $ d-1 (Zwart 

et al., 2006) for a farm-scale digester of similar capacity as in the present study. Electricity use 
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for the phase separation unit (gravity thickener) can be estimated at ± 100 kWh d-1 or 0.037 

kWh ton-1, resulting in a cost of about 7.5 $ d-1 (USEPA, 1981; Zwart et al., 2006). For the 

struvite precipitation unit, electricity use would be ± 250 kWh d-1 or 0.094 kWh m3, which results 

in another 19 $ d-1 (Seymour, 2009).  

Maintenance, material, and labor costs for the precipitation unit and the strip/scrub unit were 

obtained from the technology providers who delivered a proposal for this case. For the 

anaerobic digester and phase separation unit, these data were obtained by running simulations 

with the CAPDET software (Symantec, 2014; USEPA, 1981), with user-defined input of the 

design data, operational conditions, and waste flow characteristics. Maintenance costs for the 

CHP unit were also included, calculated at 0.3 $ kWh-1 produced at an operational basis of 

8,000 h y-1 (ECN, 2014). 

Revenues from biogas production and fertilizer marketing were assumed. The methane 

produced was supposed to be valorized using a conventional heat and power (CHP) system 

with a conversion efficiency of 40 % as thermal energy, 38 % as electricity, and with 22 % 

losses (Verstraete and Vlaeminck, 2011). It was supposed that a market exists for the produced 

ammonium sulfate fertilizer and Mg-P fertilizer, and that the products can be valued according 

to the current marketing value for N and P (Table 10.10). No incomes were currently considered 

for S, but in the future this macronutrient may also be of value (± € 0.75 kg-1 S; Triferto, Ghent, 

Belgium, personal communication 2014), depending on the S need of the agricultural crop 

(Chapter 2: Section 2.4.3). In the best-case scenario, also a market for the produced organic 

fertilizer was supposed according to its nutrient content, in contrast to the worst-case scenario.  

Furthermore, when digesting animal manure, a significant reduction in CO2 emissions can be 

expected. For pig manure, Zwart et al. (2006) quantified that 0.1 net tons of CO2 equivalents 

can be saved per m3 of manure when treated by anaerobic digestion as compared to land 

spreading. In the economic analysis, it was assumed that an income of 15 $ ton-1 saved CO2 

equivalents can be obtained from CO2 emission reduction credits for anaerobic digestion 

under the Clean Development Mechanism defined in the Kyoto Protocol (Ciborowski, 2001; 

IPCC, 2007; LLC, 2012). Note that this assumption is based on current (conservative) US 

carbon prices. World carbon prices today are roughly 40 $ ton-1 CO2 equivalent (LLC, 2012). 

Other potential subsidies and fees, for example, for accepting animal manure in high-nutrient 

regions (Chapter 4), were not included in the analysis.  

As depreciation costs and loan service costs vary depending on when and where the money is 

borrowed, companies are most often interested in the yearly net cash flows determined by the 

variable costs and revenues. On the basis of the optimized values obtained and all assumptions 

made in this case study, the yearly net variable cost balance can be positive. Financial benefits 

could even be obtained, estimated at about 2.8-6.5 $ m-3 manure y-1 (55-130 $ tonne-1 TS-1 y-1) 

for the large-scale project and associated assumptions in this case study. Hence, in terms of net 

variable cash flows, it is likely that in practice a ZeroCostWRRF (water resource recovery 

facility at zero cost) could be achieved. As one could be critical on the optimized digester 
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temperature and residence time used in this study (Section 10.3.4.1), the economic analysis 

was also performed for a digester operated at a temperature of 50 °C with a HRT of 15 d and a 

Ca(OH)2 dose of 21 ton d-1 (see above). The financial benefits in this scenario amounted to 2-6 

$ m-3 manure y-1, which is as stated above very competitive with the optimal scenario. Hence, if 

a high-temperature treatment is required for product hygienisation, the latter scenario may be 

targeted, though it is less sustainable in terms of consumables (heat and chemical use). At a 

HRT of 30 days, the financial benefits amounted to about 3 $ m-3 y-1 in the best case, but a loss 

of 1.5 $ m-3 y-1 was obtained in the worst case. The most important factor impacting the 

operational cost balance, next to the HRT, is the potential for heat recovery. Hence, process 

and design engineers should focus on the optimization of heat balances in the configuration of 

future nutrient recovery facilities.  

Furthermore, when considering the capital costs, one may be interested in the net present value 

(NPV), which is the sum of the present values of incoming and outgoing cash flows over a 

period of time, including the investment cost at time 0 (Eq. 10.2; Charles et al., 2014):  

@ÙK[�, @a =  â C�[1 + �a&
*

&ãÆ
− @!@K                                                                   hi. [_Ü. sa 

in which C� represents the net cash flow, i.e. cash inflow – cash outflow, at time D, @ is the total 

number of periods (y), D is the time of the cash flow, � is the discount rate, i.e. the rate of return 

that could be earned on an investment in the financial markets with similar risk, and @!@K is the 

net investment. The purpose of the NPV is to help analysts and managers decide whether or 

not new projects are financially viable. Essentially, the NPV measures the total amount of gain 

or loss that a project will produce compared to the amount that could be earned simply by 

saving the money in a bank or investing it in some other opportunity that generates a return 

equal to the discount rate. If a long-term project has a positive NPV, then it is expected to 

produce more income than what could be gained by earning the discount rate, which means the 

company should go ahead with the project. 

Assuming an average discount rate of 6 % (Harrison, 2010) and a depreciation period of 20 

years for all unit processes (Technology provider X, 2014; Symantec, 2014; USEPA, 1981), 

except for the stripping unit, for which a depreciation period of eight years was assumed 

(Technology provider Y, 2014), the nutrient recovery project presented above would have a 

positive NPV in year 7 of operation in the best case. This value is at the lower end of the range 

of payback times for existing anaerobic digestion plants without a nutrient recovery treatment 

train in the US, i.e. 6.9-8.9 years based on a survey of 24 plants (Vik, 2003). The NPV after 20 

years amounted to about 3.5 M $, resulting in average net financial benefits of ±±±± 2 $ m-3 

manure y-1 (40 $ ton-1 TS y-1) over 20 years.  

The internal rate of return (IRR), i.e. the discount rate that makes the NPV equal to zero, after 

20 years in this case was 18 %, which is about the same as the estimated best-case IRR 

(including subsidies) after 20 years for an operational full-scale WRRF in the Netherlands, i.e. 
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19-21 % (Gebrezgabher et al., 2010). In the worst-case scenario, the IRR after 20 years was 

only 5 %. Generally, the project should only be accepted if the IRR is higher than the firm’s cost 

of capital. Hence, based on the analysis (worst vs. best case), it can be stated that the feasibility 

of implementing a resource recovery project will depend a lot on the heat recovery potential, the 

marketing potential of the fertilizers, as well as the subsidies obtained. For instance, when 

accounting for an income of 40 $ ton-1 net saved CO2-equivalents (= current global market price 

of carbon; LLC, 2012) instead of the conservative US carbon prices, the IRR would be around 

26 % and 14 % in the best and worst case, respectively, resulting in a revenue of 1.3-3.4 $ m-3 

manure y-1 (25-70 $ ton-1 TS y-1) averaged over 20 years.  

Finally, it should be remarked that the benefits of nutrient recovery over the whole nutrient 

value chain may be much higher than presented above, taking into account, for instance, the 

saved nutrient emissions to air and water bodies due to spreading and storing of animal 

manure, and the saved energy and costs for mineral fertilizer production. For example, only the 

production of mineral N through the Haber Bosch process consumes 35.2-40.5 GJ ton-1 NH4, 

which is equal to about 750-850 $ ton-1 NH4 (Chapter 4; EFMA, 2014; Foged, 2011; 

Vaneeckhaute et al., 2013b). Moreover, Zwart et al. (2006) estimated that anaerobic digestion 

of animal manure could result in an overall nutrient emission (e.g. greenhouse gases, leaching, 

etc.) reduction of 95 % compared to manure spreading. Holistic life cycle analyses should be 

aspect of further research, aiming at the evaluation of the overall environmental impact of 

anaerobic digestion and nutrient recovery treatment trains for bio-based fertilizer production, as 

presented above. Such studies are currently being conducted by the Luxembourg Institute of 

Science and Technology (LIST, Esch-sur-Alzette, Luxembourg; Vázquez-Rowe et al., 

submitted), Bangor University (Gwynedd, UK; Vaneeckhaute et al., in preparation), and the 

University of Bath (Bath, UK; Adams and Vaneeckhaute, in preparation) using the data 

collected in this dissertation (see Chapter 12). Moreover, in a next stage, the NRM treatment 

train could be coupled to soil nutrient balance models, e.g. the NDICEA modelling tool (Chapter 

5), and agro-economic tools (e.g. Chapter 4) in order to optimize nutrient recovery strategies 

throughout the whole waste-nutrient-soil-plant system. The obtained information could then be 

used for further policy-making in terms of subsidies, thereby stimulating the full-scale 

implementation of nutrient recovery projects.  

 

10.3.5 Research strategy limitations  

The main limitations of the above strategy used for GSA and treatment train optimization that 

modellers should be aware of for future applications are listed below:  

• For determination of the overall sensitivity measure in the unit process GSAs, each 

performance indicator was supposed to have an equal weight. However, depending on 

the application, one may be interested in allocating specific weights to each targeted 

model output; 
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• The use of uniform distributions. It was accepted that every value in the provided 

variation ranges has an equal probability of occurrence; 

• Some factor variation ranges for GSA were estimated based on expert knowledge, 

since quantitative experimental data is lacking to date, e.g. for precipitation/dissolution 

kinetics; 

• Sometimes, the obtained R2 values for linear regression were lower than 0.7, though 

the results were assumed to be acceptable for factor ranking (Cosenza et al., 2013; 

Mannina et al., 2012). Nevertheless, in these cases, the resulting standardized 

regression coefficients can not be interpreted in terms of their quantitative contribution 

to the variance of the model outputs. Future modellers may want to use an alternative 

GSA strategy for these cases, such as variance-based sensitivity analysis methods, 

e.g. the Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) method 

(Cosenza et al., 2014), in order to adequately quantify the effects of non-linearity. The 

increased computational load of these methods has to be considered though.  

• The operational settings of the treatment train were optimized using a default (constant) 

input flow composition for pig manure as a case study. However, the composition of 

manure and other organic waste flows is very variable in time and between different 

installations (Chapters 4-5). Moreover, the GSA results showed that key performance 

indicators are highly influenced by the input waste flow composition. Hence, the use of 

other default values may result in a different optimal scenario. This means that in 

practice model-based optimization should be performed for each specific case using the 

average waste flow composition for that case. It is also recommended to frequently 

monitor the input waste composition, and, if required, to use the NRM library to adjust 

(i.e. optimize) the operational settings;  

• A list of assumptions had to be made in order to perform the economic analysis. Hence, 

also the feasibility of a nutrient recovery project should be evaluated for each specific 

case. The present study only provides an order of magnitude. Aspects as, for example,  

local legislations and subsidies will play a major role in the evaluation; 

• The NRM library itself still contains uncertainties, especially in terms of the 

precipitation/dissolution kinetics (Chapter 9);  

• Design reactor dimensions for the different unit processes were obtained from 

technology providers using their in-house design guidelines for a nominal waste flow. 

Unit sizing is usually done according to a set of experience-based rules, using safety 

factors to cope with the uncertainty related to the input waste flow composition, flow 

rates, and other factors such as equipment failures, etc. Hence, the dimensions of the 

various unit processes are likely not optimally coordinated. Application of the 

probabilistic model-based design procedure of Talebizadeh et al. (2014) using the 

existing NMR library would be the next step if the analysis presented in this chapter is 

to be used for design.   
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10.4 Conclusions and perspectives   
Global sensitivity analysis (GSA) using linear regression on Monte Carlo simulation outputs was 

found to be an appropriate tool for factor prioritization in nutrient recovery model (NRM) 

applications. In addition, for the adopted GSA method based on standardized regression 

coefficients (SRC), the use of variance inflation factors (VIF) is recommended to detect and 

resolve problems related to multicollinearity of factors in complex models. 

Using GSA for each individual NRM unit process, factor ranking was performed for: 1) input 

waste flow characteristics, 2) process operational factors, and 3) NRM kinetics. For all unit 

processes, the variation related to the variable input waste composition resulted in a major 

effect on the output variation through its direct effect on the operational pH and ionic strength. 

GSA provided valuable insights in the interactions between unit process inputs and outputs. 

Major findings involve, among others, the impact of Cl inhibition on NH3 removal in the stripping 

unit, the impact of Ca, Fe, and Al inhibition on P recovery in the precipitation unit, and the 

interaction between Fe/Al, S, and CH4 production in the anaerobic digester.  

Starting from the single process GSA results, an optimal nutrient recovery treatment train 

configuration was derived. Design reactor dimensions for each unit process in the treatment 

train (including capital cost prediction) were obtained from technology providers, given an 

expected nominal flow and composition arriving at each individual unit. The potential of the 

NRM library for optimization of the operational settings of the selected treatment train was 

presented by means of a case study for pig manure. An economic analysis indicated that in the 

best-case scenario a ZeroCostWRRF could be constructed. Under the optimized conditions and 

assumptions made, financial benefits could even be achieved. The net present value (NPV) 

after 20 years amounted to about 3.5 M USD (4.4 M CAD; 3.1 M €), resulting in average net 

financial benefits of ± 2 USD (2.5 CAD; € 1.8) m-3 manure y-1 or 40 USD (50 CAD; € 35) ton-1 

total solids y-1, over 20 years.  The internal rate of return (IRR) after 20 years was 18 %. 

Nevertheless, subsidies and heat balances were found to play a crucial role in determining the 

feasibility of resource recovery projects. Moreover, the optimal treatment train configuration and 

operating conditions were also found to be dependent on local legislations and fertilizer 

markets. Further model-based optimization studies using the NRM library based on real cases 

for various waste flow compositions are required in order to confirm the above statements. 

Experimental research to confirm new generic observations made using GSA, for example, Cl 

inhibition during NH3 stripping, is also recommended.   

Overall, it can be concluded that the NRM library and GSA strategy developed in the present 

chapter provide a valuable and cost-effective framework for increased process understanding, 

treatment train configuration, and optimization of region-specific nutrient recovery model 

applications. Based on the findings, the development of a generic algorithm for configuration of 

nutrient recovery treatment trains as function of fertilizer markets and input waste flow 

characteristics is suggested (see Chapter 11). This should facilitate communication and nutrient 

recovery scenario implementation.  
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CHAPTER 11: 
ROADMAP FOR SETTING UP  

NUTRIENT RECOVERY STRATEGIES  

 

Closing the nutrient cycle: Which way to go?  

(Picture: Flemish Knowledge Center Water, Vlakwa, Kortrijk, Belgium) 

 

  

 

 

 

 

 

Redrafted from:  

Vaneeckhaute, C., Belia, E., Tack, F.M.G., Meers, E., Vanrolleghem, P.A., in preparation. 

Roadmap for setting up nutrient recovery strategies.  
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Abstract  

This PhD research has revealed important insights in the agronomic, economic, and ecological 
value of recovered fertilizer products, in the process technological performance and operation, 
as well as in the unit process interactions that may occur in nutrient recovery treatment trains. 
Based on the results, this chapter aimed at the development of a generic roadmap for setting up 
strategies for nutrient recovery from digestate. First, guidelines were presented to set up an 
optimal bio-based fertilization strategy as function of local/region-specific fertilizer legislations. 
Next, instructions were provided to evaluate the feasibility of bio-based fertilizer production as 
function of input waste characterizations. Finally, an algorithm was developed aiming at the 
configuration and optimization of nutrient recovery treatment trains. Important input waste 
characteristics to measure and essential factors for monitoring and control were identified. As 
such, this chapter should provide useful and comprehensive guidance for waste(water) 
processing utilities aiming to implement nutrient recovery strategies. This, in turn, may stimulate 
and hasten the global transition from waste(water) treatment plants to waste(water) resource 
recovery facilities. On top of that, the proposed roadmap may aid in the economic valorization of 
bio-based recovered products, thereby speeding up the transition from a fossil-reserve based to 
a bio-based nutrient economy.  
 
Keywords: anaerobic digestion, environmental management, renewable fertilizers, resource 

recovery, sustainable agriculture, waste valorization.   
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Résumé  

Cette thèse de doctorat a révélé des informations importantes sur la valeur agronomique, 
économique et écologique des produits fertilisants récupérés, sur l'exécution et l'exploitation 
technologique des processus et sur les interactions entre les procédés unitaires qui peuvent 
survenir dans les chaînes de traitement pour la récupération des nutriments. Basé sur ces 
résultats, ce chapitre vise le développement d'une feuille de route générique pour la mise en 
place des stratégies pour la récupération des nutriments à partir des digestats. Tout d'abord, les 
lignes directrices sont présentées pour mettre en place une stratégie de bio-fertilisation en 
fonction des législations d’engrais locales ou spécifiques à la région. Ensuite, des instructions 
ont été fournies pour la détermination du potentiel de production des bio-engrais en fonction de 
la caractérisation des déchets entrants. Enfin, un algorithme a été développé visant à la 
configuration et l'optimisation des chaînes de traitement pour la récupération des nutriments. 
Les caractéristiques importantes à mesurer sur les déchets entrants et les facteurs essentiels 
pour le suivi et le contrôle ont été identifiés. En tant que tel, ce chapitre devrait guider les usines 
de traitement des déchets et eaux usées à mettre en œuvre des stratégies pour la récupération 
des nutriments. Cela peut stimuler et accélérer la transition mondiale des stations de traitement 
des déchets et eaux usées en installations de récupération des ressources en eaux et en 
déchets. En fin de compte, la feuille de route proposée peut livrer les instructions 
fondamentales pour accélérer la transition à partir d'une économie axée sur des réserves 
fossiles vers une économie axée sur l’utilisation des ressources biologiques comme source de 
nutriments. 
 
Mots-clés: agriculture durable, digestion anaérobie, engrais renouvelables, gestion de 

l’environnement, récupération des ressources, valorisation des déchets. 
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11.1 Introduction  
A review of nutrient recovery technologies for digestate treatment (Chapter 2) has highlighted 

the potential for nitrogen (N) recovery as ammonium sulfate (AmS) fertilizer, as well as for 

phosphorus (P) recovery as struvite, MgNH4PO4:6H2O (and/or calcium (Ca) / magnesium (Mg)-

P precipitates). Through a field trial (Chapter 5) and greenhouse experiment (Chapter 6), the 

agronomic potential of these fertilizers has been demonstrated. The economic and ecological 

benefits of bio-based fertilization scenarios have also been confirmed (Chapters 4-5). 

Nevertheless, implementation of nutrient recovery strategies is still limited due to legislative 

constraints, (operational) problems associated to the (variability of the) quality and quantity of 

the fertilizers produced, as well as the persisting uncertainty of fertilizer sales and inconsistency 

of marketing prices in regions where commercialization is possible (Seymour, 2009). 

To facilitate nutrient recovery process and treatment train configuration and optimization, a 

nutrient recovery model (NRM) library has been developed (Chapters 8-9). Essential insights in 

unit process interactions acquired from global sensitivity analyses allowed the set-up of an 

optimal treatment train configuration (Chapter 10). It was revealed that the optimal configuration 

and associated operational conditions also depend on local legislations and fertilizer markets, 

next to the high influence of the input waste flow characteristics. Hence, the development of an 

algorithm for configuration of nutrient recovery facilities as function of these influencing factors 

was proposed.  

Based on all results, insights, and understanding obtained throughout this PhD research, the 

present chapter aims at providing a roadmap for setting up nutrient recovery strategies as 

function of local/regional fertilizer legislations and markets, as well as waste stream 

(digestate) properties. The scope of the study includes anaerobic digestion and the selected 

best available technologies (and resulting bio-based products) applied at full-scale for the 

recovery of nutrients as marketable fertilizer commodities (Chapter 2), i.e. P 

precipitation/crystallization (struvite, Ca/Mg-P precipitates), NH3 stripping/absorption (AmS 

fertilizer), and acidic air scrubbing (AmS fertilizer). The selection of these technologies (and 

products) was made on the basis of the stage of implementation, the technical performance, 

and financial aspects, next to the fertilizer marketing potential (Chapter 2). Besides the 

information acquired in this dissertation, additional data were obtained through contact with 

technology providers. Hence, the roadmap is (partially) based on full-scale operational 

experience. Important factors for input characterization, monitoring, and control are identified. 

As such, the roadmap provided in this chapter may function as a helpful tool for waste(water) 

processing utilities considering the implementation of anaerobic digestion and subsequent 

recovery and recycling of nutrients as marketable agricultural commodities.  

 

11.2 Three-step roadmap  
Two important factors determining the optimal treatment train configuration for nutrient recovery 

are i) (local/regional) fertilizer legislations and markets, and ii) input characteristics of the waste 
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flow (digestate in this case) to be treated. A three-step roadmap for setting up nutrient recovery 

strategies as function of these determining factors is presented and discussed below.  

 

Step I: Set-up bio-based fertilization strategy as function of fertilizer 
legislations  

If one wants to install a nutrient recovery treatment train, first contact should be sought with 

local/regional agronomic agencies and/or consultants in order to obtain insights in fertilizer 

related legislation and the corresponding market demand. If no local market would exist, interest 

can be sought abroad. Depending on the targeted region, N or P can be the limiting factor for 

manure (and digestate) application as (organic/organo-mineral) base fertilizer. The latter 

determines for which fertilizers the market demand is the highest in the particular region. Figure 

11.1 gives a conceptual overview of bio-based fertilization recommendations as function of 

legislation. As is usually the case to date (e.g. MAP4, 2011), a maximum allowable fertilization 

standard is assumed for N application from organic (or organo-mineral) ‘manure’ products (= 

base fertilizer) and for N application from mineral fertilizers. Another standard is set for total P. 

Note that K application was not included in the recommendations, as currently no legislative 

standards exist for K.  

If N is the limiting factor for fertilizer application, which is the case in P-poor regions, e.g. Brazil, 

Russia, Argentina, Western Africa, Northern Germany, etc. (MacDonald et al., 2011), digestate 

may be applied to the field in its crude form (or mixed with some liquid fraction if solid-liquid 

separation would take place) up to the maximum allowable N level for base fertilizer application. 

Additional bio-based N fertilization up to the level for mineral fertilizers can and will to date most 

likely occur using AmS (high immediate N use efficiency), but struvite may also be applied for 

this purpose. The choice will depend on the crop’s nutrient demand (in time), the soil type, and 

the (local) product availability: the application of AmS is thus interesting as starter fertilizer or for 

additional fertilization of direct available N during spring or summer (Chapter 5), whereas 

struvite may provide a source of slow-release N and P (Chapter 6). If the availability of both 

products would be restricted and/or transportation costs unacceptably high, it may be required 

to additionally apply chemical N. Nevertheless, as to date air scrubbers are required at most 

farms, anaerobic digestion plants, and manure/digestate processing facilities in order to avoid 

NH3 emissions to air, future practice should focus on the maximal recovery of the resulting 

AmS. Note that the use of N/K-rich membrane filtration concentrates were not included in the 

presented fertilization recommendations (Fig. 11.1), as to date membrane filtration has not yet 

proven to be a viable technology for digestate processing (Chapters 2-3). However, in the near 

future, these products may also provide a solution (De Hoop et al., 2011; Velthof, 2011).  

In addition, Ca/Mg-P precipitates could be applied up to the maximum allowable level for P 

fertilization. Also P-rich thick fractions (locally available or imported from P-rich regions) could 

be used for this purpose. However, in this case, the N content of the thick fraction also has to be 

taken in account when setting up the fertilization strategy.  
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Figure 11.1 Bio-based fertilization recommendations as function of local/regional fertilizer legislations.  
AmS = ammonium sulfate; LF = liquid fraction. 
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In summary, in P-poor regions, among the considered best available bio-based products 

to date, the agricultural demand for digestate (base fertilizer), recovered AmS and/or 

struvite, and Ca/Mg-P fertilizers is expected to be high.   

In P saturated regions, e.g. Flanders, Quebec, Eastern China, Italy, Northern Spain, etc. 

(MacDonald et al., 2011), standards for P application are (or will become) increasingly strict due 

to historical manure and/or chemical fertilizer surpluses on the soil balance and the resulting 

environmental pollution. This means that the P supply via manure and/or mineral fertilizers 

(whether chemical or bio-based) is under pressure and that as much P as possible should be 

extracted from the soil complex. Previous chapters have shown the interest of mechanically 

separating the digestate in order to obtain a P-poor liquid fraction, so as to apply more available 

N as base fertilizer for the same amount of P. Moreover, it was observed that mixtures of 

digestate and its liquid fraction may increase the use efficiency of soil P (Chapters 5-6). 

Additional mineral fertilization up to the maximum allowable N level could then occur using 

AmS. Hence, overall, in P saturated regions, among the considered recycled products, 

the most interesting fertilizers for agricultural purposes are likely the liquid fraction of 

digestate (as base fertilizer, whether or not mixed with raw digestate) and AmS.  

Note that in this case, most of the P ends up in the organic thick fraction after solid-liquid 

separation, which is usually exported to P-poor regions because local markets are restricted 

(Chapter 2). However, in light of the depleting natural P resources and soil organic carbon 

contents, the interest is growing to maximally recover P from the liquid fraction of digestate as 

struvite, Ca/Mg-P fertilizer, or P-rich solution, meanwhile increasing the local valorization 

potential of the valuable organic matter that ends up in the thick fraction (improved C:P-ratio). 

The recovered mineral P fertilizers could also be recycled locally, e.g. for horticultural purposes 

or for specific crops that require lots of P, such as potatoes, beets, and maize. As such, pre-

treatments that stimulate P release in the liquid fraction during solid-liquid separation are 

gaining importance in P saturated regions (e.g. Chapter 7: acidification + mechanical pre-

treatment).  

 

Step 2: Evaluate feasibility of bio-based fertilizer production as function of 
input waste characterization 

An important point to consider when aiming at the implementation of nutrient recovery is the 

physicochemical characterization of the input waste stream to be treated (Chapter 10). 

Obviously, first the macronutrients, especially N and P, of the waste flow have to be measured 

in order to check whether there is effectively an interest for N and P recovery. As such, 

technology providers confirmed that P recovery is only of interest if the P-load is higher than 80 

kg d-1, whereas N recovery using air stripping and scrubbing only becomes economically 

feasible at concentrations in the range of 400-500 mg N L-1. Moreover, struvite production is 

only of interest if the waste flow has an N:P molar ratio above 1. The optimal N:P-ratio to 

maximize struvite recovery and purity would be higher than 6 (Ostara, 2014).  
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If, based on the above measurements, the recovery of N and P seems feasible, additional 

physicochemical analyses will have to be conducted in order to set up an optimal nutrient 

recovery treatment train configuration (see Step 3).  

 

Step 3: Use of conceptual algorithm for treatment train configuration and 
optimization  

Figure 11.2 provides a conceptual algorithm developed on the basis of the findings in this PhD 

dissertation and contact with technology providers. It gives an overview of guidelines for 

configuration of nutrient recovery treatment trains, taking in account input waste characteristics 

and fertilizer market demands. The various treatment train configurations per feasibility scenario 

(Step 2) are described below. Note that for privacy reasons, no company names will be given. 

 

a) N and P recovery not feasible 

Clearly, if there is no interest in N and P recovery (Step 2: waste input concentrations too low 

to be economically feasible), then no action should be taken, unless discharge regulations are 

to be met. Minor contents of N and P can be removed and recovered using a low-cost final 

effluent treatment. Ion exchange and sorption processes are of increased interest for this 

purpose (Chapter 2). Further treatment in lagoons prior to discharge may also provide a solution 

(Chapter 3). However, in this case, large areas of land can be required. Alternatively, the water 

could be reused, e.g. as irrigation water if quality requirements are met (Vaneeckhaute, 2010), 

or the water can be recycled to a nearby wastewater treatment plant (usually onsite in case of 

sludge digestion).   

 

b) P recovery not feasible, N recovery feasible  

If there is only interest in N recovery (Step 2: P-load too low), the recommended treatment 

train configuration concerns NH3 stripping and acidic air scrubbing (after anaerobic digestion), 

with optional pre- and post-treatments, depending on the nature of the waste material (Fig. 11.2: 

Configuration 1).  

Important input waste flow characteristics that may influence the configuration and 

capital/operating costs and that thus should be monitored, next to the N content, are the total 

suspended solids (TSS) and chloride (Cl) contents, as well as the input alkalinity. In general, the 

lower the input TSS and Cl contents, the better the ammonia stripping performance (Chapter 

10). Excess TSS (> 2 %; RVTPE, 2014) must usually be removed using a solid-liquid phase 

separation unit prior to stripping. However, the company Anaergia recently developed a 

strip/scrub system (without packing) that allows stripping of the raw digestate with high TSS 

content. Its performance was demonstrated at full-scale for TSS contents up to 8-9 % (Chapter 

2). Excess Cl (> 20 mol m-3 ~ 50 % NH3 removal; Fig. 10.6) removal is more complicated. It 

could potentially be achieved through ion exchange or sorption (Chapter 2), though the 

feasibility of implementing such  treatments remains to be evaluated along with the impact of the  
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Figure 11.2 Conceptual algorithm for configuration and optimization of nutrient recovery treatment trains.  
Dashed lines indicate recycle flows. AmS = ammonium sulfate; TSS = total suspended solids. 
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present chlorides on the stripping performance. Input alkalinity should be checked to determine 

whether or not the addition of base (mostly NaOH in order to minimize scaling) is required for 

pH increase in the stripper (Chapter 9). Usually the digestate alkalinity (4,000-6,000 mg L-1 as 

CaCO3) is sufficient to satisfy the pH requirements by stripping out CO2, without the use of 

chemicals. In this case, it is interesting to select a stripping process without packing column in 

order to avoid CaCO3 precipitation on the packing (Chapter 2). Overall, depending on the input 

characteristics of the waste flow (mainly TSS content and alkalinity) and market requirements 

(e.g. fertilizer pH), the most suitable stripping technology should be selected for each specific 

case. Indeed, to date, the operating conditions of the strip-scrub process and the composition of 

the recovered AmS-solution are highly dependent on the technology provider (Chapter 2).    

Next to the above (optional) pre-treatments, the main operational factors to control in the 

stripping process itself are the temperature and pH. In the scrubbing column, the AmS-solution 

can be recycled up to the preferred AmS concentration, which should be in the range of 25-40 

% (Chapter 2). Higher concentrations are not recommended because they may cause 

unwanted AmS precipitation on the stripping column (Chapter 10), whereas lower 

concentrations provoke high transportation costs (Chapter 4). Therefore, the system is usually 

operated in semi-continuous mode, where the AmS concentration is monitored (usually pH 

measurements are sufficient) and the solution is discharged when product specifications are 

met. The effluent N (and P) concentration, as well as other qualitative parameters, should then 

be checked against discharge regulations or recommended quality levels for water reuse (which 

depend on the application; Vaneeckhaute, 2010). In most cases, it will economically be more 

attractive to recover only 80-90 % of the N using the air stripping technology, and to add a more 

low-cost alternative for the final effluent treatment up to discharge/reuse levels. Reuse as 

irrigation water may provide an interesting solution. Alternatively, the water could be recycled to 

a nearby wastewater treatment plant (see above).   

 

c) P recovery feasible, N recovery feasible or not feasible  

If P recovery is of interest (Step 2: P-load of the waste stream = sufficient), one should first 

check whether there exists a market for struvite at acceptable transportation costs (see Step 1) 

and whether the N:P molar ratio is suitable for struvite precipitation (see Step 2). Hence, two 

scenarios are possible: i) struvite and AmS recovery (depending on the N content) are targeted 

(Fig. 11.2: Configuration 2), or ii) the N:P-ratio and/or fertilizer markets are not favourable for 

struvite recovery and Ca/Mg-P precipitation is targeted, whether or not in combination with AmS 

recovery (depending on the N content) (Fig. 11.2: Configurations 3-4).  

In the first case (Fig. 11.2: Configuration 2), it is recommended to implement struvite 

precipitation prior to stripping so as to avoid unwanted precipitation in the stripping unit (Chapter 

10). However, in this case, Mg(OH)2/MgO should be used as Mg source for struvite precipitation 

instead of MgCl2 in order to avoid Cl inhibition in the subsequent stripper (Chapter 10). Note 

that this configuration has as additional advantage that often no more base is required for pH 

increase in the stripper (Chapter 10). Indeed, the pH increase through Mg addition and CO2 
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stripping is usually sufficient to achieve high NH3 removal efficiencies. Prior to implementation, 

one should check whether iron (Fe) or aluminium (Al) dosing occurred upstream (e.g. for sludge 

conditioning), as these components may influence the struvite recovery potential and product 

quality (Chapters 6, 9, 10). In Chapter 6, for example, it was revealed that FePO4 sludge is not 

interesting as P fertilizer from an agronomic point of view because of Fe-P fixation. This is likely 

also the case for Al because of the comparable P binding properties of trivalent Fe and Al. 

Hence, for waste flows containing high Fe and/or Al contents, the implementation of a phase 

separation unit for precipitate removal after digestion is recommended. Indeed, it was observed 

in Chapter 10 that Fe and Al precipitation could already start in the digester. Obviously, also the 

TSS content of the waste flow (limit: 1,000 mg L-1; Ostara, 2014) will determine whether or not a 

solid-liquid separation unit has to be installed. Note that, if there is an interest in applying 

acidification as pre-treatment for improved P release during solid-liquid separation (Chapter 7), 

attention should also be paid to the impact of salts (mainly chlorides, see above) on the 

stripping performance when selecting the chemical (e.g. HCl) to be used. 

In addition, important factors to monitor are the molar N:P-, Ca:P-, and Mg:P-ratios of the input 

waste flow. Ca may seriously hinder struvite precipitation and product purity (Chapters 9-10). In 

case of high Ca contents relative to N and Mg, the addition of Ca(OH)2 in the phase separation 

unit is recommended to induce precipitation and removal of CaCO3. However, the pH should 

then be controlled at a value lower than 10 to avoid P losses through Ca-P precipitation 

(Chapter 10), unless there would be a market for the resulting separated Ca-P rich thick 

fractions (see Step 1). Next, the Mg:P-ratio should be adjusted and the pH controlled according 

to Figure 11.2 so as to obtain optimal struvite recovery. Usually the process is operated such 

that it reaches the discharge levels for P. Subsequently, AmS recovery can take place (if N 

levels are sufficiently high) as described above (Fig. 11.2: Configuration 1).  

In the second case (Fig. 11.2: Configurations 3-4), i.e. the N:P-ratio is not favourable for 

struvite recovery or local legislations do not stimulate struvite application, excess P can be 

recovered through Ca/Mg-P precipitation, whether or not in combination with AmS production 

(depending on the N content). In this case, the temperature used in the anaerobic digestion 

process may influence the overall digestate treatment train configuration. Indeed, in Chapter 10 

it was revealed that P recovery through Ca-P precipitation is maximal at low temperatures and 

high pH. Hence, if the digestate would be produced using thermophilic digestion (optimal 

temperature: 50-57 °C; Tchobanoglous et al., 2003), it is likely more feasible to implement AmS 

recovery prior to Ca-P precipitation in order to save heat requirements (Fig. 11.2: Configuration 

4). The heat can then be recovered from the effluent, thereby cooling down the input flow for the 

subsequent precipitation of P. Moreover, if the stripper is operated to achieve N:P molar ratios 

below 1, then the absence of N in the recovered P fertilizer product can somehow be 

guaranteed.  

On the other hand, if a mesophilic (optimal temperature: 30-38 °C; Tchobanoglous et al., 2003) 

or psychrophilic (optimal temperature: 12-18 °C; Tchobanoglous et al., 2003) digestion takes 
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place, then Ca-P production should preferably take place prior to stripping in order to avoid 

precipitation in the stripping unit and reduce/eliminate chemical requirements for stripping (Fig. 

11.2: Configuration 3).  

In any case, the most important operational factors for monitoring and control are the pH and 

temperature. This again underlines the fundamental importance of accurate pH and 

temperature calculations in nutrient recovery models (Chapters 8-10).  

Finally, if there is no market for neither struvite nor Ca/Mg-P precipitates, but precipitation is 

required to reach the discharge/reuse levels for P, then these mineral fertilizers can be mixed 

with the separated organic thick fraction and exported to P-poor regions after pasteurization (= 

common practice in high-nutrient regions). It should also be noted that in each of the above 

cases, the installation of an acidic air scrubber is recommended (and often obliged) in order to 

capture NH3 losses during digestate processing. The captured NH3 can then again be 

recovered as AmS solution (Chapter 2).  

An important remark for the decision tree above is that other potential recovered products (apart 

from those selected in Chapter 2, see above), such as concentrates from membrane filtration 

(Chapter 2), were not yet considered. Nevertheless, if the production of new bio-based fertilizers 

from digestate proves to be viable at a large scale, then the roadmap will have to be extended 

by inclusion of these nutrient products. Model-based optimization of promising nutrient recovery 

processes may help speeding up the implementation of new technologies for bio-based fertilizer 

production. Another remark is that in the above roadmap no particular attention was given to K 

and S fertilization. Nevertheless, the crop demand for these nutrients may additionally influence 

the optimal fertilizer choice and nutrient recovery strategy. Hence, if more bio-based products 

become available, the roadmap should also be further diversified in terms of macronutrients, 

other than N and P.  

 

11.3 Conclusions and perspectives 

A generic three-step roadmap for setting up strategies for nutrient recovery from digestate was 

presented. It involves:  

1. An overview of bio-based fertilization recommendations as function of fertilizer 

legislations;  

2. Guidelines for determining the feasibility of nutrient recovery based on operational 

experience;  

3. An algorithm for configuration and optimization of nutrient recovery treatment trains as 

function of input waste characterization and fertilizer markets.  

As such, this chapter provides useful guidance for waste(water) processing utilities considering 

the implementation of nutrient recovery practices. If the production of new bio-based fertilizers 

at a large scale proves to be feasible, the roadmap should be further extended to allow for the 
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integration of these products and technologies. In that case, it can also be important to further 

diversify the recommendations in terms of macronutrients, other than N and P.   

 



 

 

  



 

 

 

 

CHAPTER 12: 
LIFE CYCLE ASSESSMENT OF DIGESTATE 

PROCESSING AND NUTRIENT RECOVERY 

STRATEGIES: SUMMARY AND PERSPECTIVES  
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Abstract  

The present PhD dissertation has provided important evidence of the agronomic, economic, and  
ecological benefits of the application of bio-based fertilization scenarios as compared to 
conventional fertilization using animal manure and chemical fertilizers. Hence, it was concluded 
that the use of bio-based recovered products should be stimulated in environmental legislations. 
Nevertheless, one of the most important topics in global policy making, communication, and 
stimulation of recovery scenario implementation is the overall improvement of process 
sustainability. This leads to the proposition to further investigate the overall environmental 
impact of the nutrient recovery technologies and treatment trains for bio-based fertilizer 
production themselves. For this reason, the data obtained in this PhD dissertation have been 
used by the Luxembourg Institute of Science and Technology (LIST, Esch-sur-Alzette, 
Luxembourg; Vázquez-Rowe et al., submitted), Bangor University (Gwynedd, United Kingdom, 
UK; Vaneeckhaute et al., in preparation) and the University of Bath (Bath, UK; Adams and 
Vaneeckhaute, in preparation) to conduct holistic life cycle assessments (LCA).  

In Vázquez-Rowe et al. (submitted), the environmental impacts of spreading digestate directly 
to agricultural land as compared to five different treatment trains were assessed. For this 
purpose, the data resulting from the mass balance analyses in Chapter 3 were used, as well as 
the field-scale observations (Chapter 5). Results suggest relevant environmental gains when 
the digestate is treated using the examined conversion technologies prior to spreading, 
although important trade-offs between impact categories were observed and discussed.  

In Vaneeckhaute et al. (in preparation), first the fertilizer replacement value of digestates using 
the MANNER-NPK (MANure Nitrogen Evaluation Routine) tool was assessed. It concerns a 
practical software tool that provides a quick estimate of crop available nitrogen, phosphate, and 
potash supply from applications of organic/organo-mineral fertilizers. Next, LCA’s were 
performed comparing conventional fertilizer production with digestate and bio-based fertilizer 
production. Herewith, the effective fertilizer value of recovered products (as determined in the 
first step) was taken in account. Also innovative as compared to other LCA studies, in this 
assessment the effect of different organic residues (digestates, liquid fractions, and mixtures of 
these) on the soil organic carbon (SOC) content under different crop rotations has been 
investigated using the Introductory Soil Carbon Balance Model (ISCBM) and the field-scale data 
collected in this dissertation (Appendix 3). The obtained results represent a better picture of 
greenhouse gas (GHG) emissions compared to not including an assessment of SOC effects at 
all in LCA studies. A techno-economic and socio-economic study was also performed aiming to 
evaluate stakeholder perception and societal acceptance.  

Finally, in Adams and Vaneeckhaute (in preparation), an LCA was undertaken for the 
implementation of a 1.4 MW full-scale anaerobic digestion plant on farm land at Down Ampney 
Estate (Gloucestershire, UK). Substrates proposed for the digestion system consist 
predominantly of crops (both food and fodder) grown on-site (maize and grass), underpinned by 
grass silage and chicken manure imported to the site. The overall aim of the study was to 
quantify the energy, GHG emission, and resource changes compared to the existing 
conventional farm management using an LCA approach. This study uses actual farm data to 
compare LCA results on-farm both prior to and after the implementation of the anaerobic 
digestion facilities. Results are currently being collected.  

Overall, an important bottleneck observed in existing LCA studies is that the they do not 
account for the effective fertilizer value of recovered products (replacement of chemical mineral 
fertilizer production and use) and their impact on soil organic carbon. Moreover, current 
databases underestimate the depletion of natural mineral resources. Hence, the information 
obtained from the three innovative and more advanced LCA studies above may and should be 
used as basis to stimulate the use of recovered products in environmental legislations, next to 
all other results obtained in this dissertation. Moreover, the work provides fundamental 
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guidelines for improvement of LCA modelling tools for future studies. Indeed, further 
assessments will be required in order to provide sufficient quantitative evidence of the global 
environmental benefits when implementing resource recovery facilities for bio-based fertilizer 
production as compared to traditional practices for waste processing (i.e. nutrient removal), 
chemical fertilizer production, and manure spreading. Further work is also suggested on the 
coupling of the nutrient recovery model library (Chapters 9-10) to LCA modelling tools, agro-
economic tools (e.g. Chapter 4), and/or agronomic soil nutrient balance models (e.g. the 
NDICEA model used in Chapter 5). This may allow for environmental and economic 
optimization of nutrient recovery strategies throughout the entire value chain.  
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Résumé  

La présente thèse de doctorat a fourni des preuves importantes des avantages agronomiques, 
économiques et écologiques de l'application de scénarios de bio-fertilisation par rapport à une 
fertilisation conventionnelle utilisant du lisier et des engrais chimiques. Par conséquent, il a été 
conclu que l'utilisation des bio-produits récupérés devrait être stimulée dans les législations 
environnementales. Néanmoins, l'amélioration globale de la durabilité des processus reste l'un 
des sujets les plus importants dans l'élaboration de la politique mondiale, la communication et 
la stimulation de l’implantation des scénarios de récupération. Cela conduit à proposer d'étudier 
plus en détail l'impact global sur l’environnement des technologies de récupération des 
nutriments et des chaînes de traitement pour la production des bio-engrais. Pour cette raison, 
les données obtenues dans cette thèse de doctorat ont été utilisées par l'Institut 
Luxembourgeois de la Science et de la Technologie (LIST, Esch-sur-Alzette, Luxembourg) 
(Vázquez-Rowe et al., soumis), l'Université de Bangor (Gwynedd, Royaume-Uni, RU) 
(Vaneeckhaute et al., en préparation) et l'Université de Bath (Bath, RU) (Adams et 
Vaneeckhaute, en préparation) pour effectuer des analyses holistiques du cycle de vie (ACV).  

Dans Vázquez-Rowe et al. (soumis), les impacts environnementaux de l’application du digestat 
directement aux terres agricoles ont été comparés aux cinq chaînes de traitement différentes. À 
cet effet, les données résultant de l’analyse des bilans de masse dans le Chapitre 3 ont été 
utilisées, ainsi que les observations sur le terrain (Chapitre 5). Les résultats suggèrent des 
avantages environnementaux mesurables lorsque le digestat est traité par les technologies de 
conversion examinées avant l'épandage, bien que d'importants arbitrages entre les catégories 
d'impact ont été observés et discutés. 

Dans Vaneeckhaute et al. (en préparation), la valeur de remplacement des lisiers par des 
digestats à l’aide de l'outil MANURE-NPK (MANure Nitrogen Evaluation Routine) a d’abord été 
évaluée. Il s’agit d'un outil logiciel pratique qui permet d’obtenir une estimation rapide d’azote, 
de phosphate et de potasse disponible pour les plantes provenant d'applications d'engrais 
organiques/organo-minéraux. Ensuite, des ACV ont été effectuées afin de comparer la 
production d'engrais conventionnel avec la production du digestat et des bio-engrais. Ici, la 
valeur fertilisante réelle des produits récupérés (tel que déterminé dans la première étape) a été 
prise en compte. Aussi innovateur par rapport à d'autres études d’ACV, l'effet de différents 
résidus organiques (digestats, fractions liquides et mélanges de ceux-ci) sur la teneur en 
carbone organique du sol (COS) sous différentes rotations de cultures a également été étudié 
en utilisant le ‘Introductory Soil Carbon Balance Model’ (ISCBM) et les données recueillies sur 
le terrain dans cette these (Annexe 3). Les résultats obtenus offrent une meilleure mesure des 
gaz à effet de serre (GES), lorsque comparés aux ACV n’incluant pas d’évaluation du COS. 
Une étude technico-économique et socio-économique a également été effectuée, visant à 
évaluer la perception des parties prenantes et l'acceptation sociale. 

Finalement, dans Adams et Vaneeckhaute (en préparation), une ACV a été réalisée pour la 
mise en œuvre d'une usine de digestion anaérobie de 1.4 MW à pleine échelle sur les terres 
agricoles à Down Ampney Estate (Gloucestershire, RU). Les substrats proposés pour le 
système de digestion se composent principalement des cultures (à la fois alimentaires et 
fourragères) cultivées sur place (maïs et herbe), soutenues par l'ensilage d'herbe et de lisier de 
poulet importé sur le site. L'objectif général de l'étude était de quantifier les changements dans 
la consommation d'énergie, les émissions de GES, et l'utilisation des ressources par rapport à 
la gestion agricole conventionnelle existante en utilisant une approche d’ACV. Cette étude 
utilise des données agricoles réelles pour comparer les résultats d’ACV à la ferme à la fois 
avant et après la mise en œuvre des équipements de digestion anaérobie. Les résultats sont 
actuellement en production. 

Dans l'ensemble, une faille importante observée dans les études actuelles d’ACV est la non-
prise en compte de la valeur fertilisante réelle des produits récupérés (remplacement de la 
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production et l'utilisation d'engrais minéraux chimiques) et leur teneur en carbone organique. En 
outre, les bases de données actuelles sous-estiment l'épuisement des ressources minérales 
naturelles. Par conséquent, l’information obtenue à partir des trois études novatrices et plus 
poussées ci-dessus peut et doit être utilisée comme point de départ pour stimuler l'utilisation 
des produits récupérés dans les législations environnementales, en plus de tous les autres 
résultats obtenus dans cette thèse. En outre, le travail fournit des lignes directrices 
fondamentales pour l'amélioration des outils de modélisation d'ACV pour les études futures. En 
effet, d'autres ACV seront nécessaires pour fournir suffisamment de preuves quantitatives des 
avantages environnementaux globaux de la mise en œuvre des installations de récupération 
des ressources pour la production des bio-engrais par rapport aux pratiques traditionnelles pour 
le traitement des déchets (l'élimination des nutriments), la production d'engrais chimiques et 
l'épandage de lisier. Des travaux complémentaires sont aussi suggérés sur le couplage de la 
librairie de modèles de récupération des nutriments (Chapitres 9-10) à des outils de 
modélisation d'ACV, des outils agro-économiques (par exemple, le Chapitre 4) et/ou des 
modèles agronomiques de bilan des nutriments du sol (tel que le modèle NDICEA utilisé aux 
Chapitre 5). Ceci peut permettre l'optimisation environnementale et économique des stratégies 
de récupération des nutriments à travers la chaîne de valeur. 
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13.1 General conclusions 

Unless action is taken, increases in population and per capita consumption of energy and 

animal products will exacerbate nutrient losses and resource depletion, pollution levels and land 

degradation, further threatening the quality of our water, air, and soils, affecting climate and 

biodiversity. A new global effort is needed to address ‘The Nutrient Nexus’, where reduced 

nutrient losses and improved nutrient use efficiencies across all sectors simultaneously provide 

the foundation for a greener economy to produce more food and energy while reducing 

environmental pollution.  

The aim of this PhD dissertation was to stimulate the transition from a fossil reserve-based to a 

bio-based economy by providing (tools to develop) sustainable strategies for nutrient recovery 

from digestate, the remaining product after bio-energy production through anaerobic digestion 

of organic biodegradable wastes. The focus was on the valorization of the recovered products 

as sustainable and marketable fertilizers, which may even (partially) replace the use of chemical 

fertilizers in agriculture. Three complementary research phases were conducted: 1) technology 

inventory and product classification (Chapter 2), 2) product value evaluation (Chapters 3-7), and 

3) process modelling and optimization (Chapters 8-10). The fundamental knowledge obtained 

throughout this PhD has led to the proposal of a generic roadmap for setting up nutrient 

recovery strategies (Chapter 11) and can be used as information base for life cycle 

assessments (LCAs; Chapter 12). All of this should greatly enhance communication and 

nutrient recovery scenario implementation. The main conclusions from this dissertation are 

summarized below: 

 

PHASE I: Technology inventory and product classification 

From the technology inventory (Chapter 2; Fig. 1.6: Objective I.1), phosphorus (P) 

precipitation/crystallization, nitrogen (N) stripping/absorption, and acidic air scrubbing 

were found to be the best available technologies for nutrient recovery from digestate 

applied to date at full-scale. The resulting fertilizer products, i.e. struvite and ammonium 

sulfate (AmS) wastewater, can and should be classified as recovered N/P-precipitates and N/S-

solutions, respectively, in environmental and fertilizer legislations. Membrane filtration also 

showed promise. However, traditional membrane filtration systems often suffer technical 

problems in wastewater treatment, making them economically not yet viable for digestate 

treatment. All available technologies require further technical fine-tuning in order to minimize 

operational costs, produce high-quality fertilizers, and economically valorize the recovered 

nutrients. In phase III of this dissertation, first attempts were made to meet these needs by the 

use of models. 

 

PHASE II: Product value evaluation  

In order to obtain insights regarding the fate of macronutrients in digestate processing, a mass 

balance study at a full-scale digestate treatment and nutrient recovery facility was performed 
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(Chapter 3: Vaneeckhaute et al., 2012; Fig. 1.6: Objective II.1). In this case study, a potentially 

interesting alternative for traditional membrane filtration, i.e. the vibratory shear enhanced 

processing (VSEP) technology, was tested as final effluent treatment to produce both N/K-

concentrates and reusable water. The performance of the VSEP filtration system proved, 

however, not yet satisfactory from a technical and mechanical point of view to allow for 

reliable, continuous operation. Nevertheless, concentrates produced by the first VSEP 

filtration step were rich in macronutrients and could potentially be reused as sustainable 

substitute for fossil reserve-based mineral N/K fertilizers.   

Detailed physicochemical characterizations of the various derivatives produced during 

digestate processing provided insights in the composition and properties of these 

products, as well as in their potential bottlenecks for agricultural reuse (Chapters 3-4, 6: 

Vaneeckhaute et al., 2012, 2013b, 2015a,b; Fig. 1.6: Objective II.1). As such, the potential of 

the above-mentioned recovered AmS-solutions, N/K-concentrates, and struvite as sustainable 

chemical fertilizer substitutes was confirmed. Important bottlenecks for agricultural reuse of 

concentrates could be the salt content, the sodium adsorption ratio, and the potassium (K) 

content, especially for cattle farmers. Potential bottlenecks for agricultural reuse of acidic air 

scrubber water concern the pH, the salt content, and its corrosive properties. An important 

challenge in the production of struvite is the guarantee of the product’s purity. Moreover, the 

struvite recovery potential was found to be limited, since current practice of digestate 

processing (in P saturated regions) mostly involves the elimination (through export) of P-rich 

organic thick fractions from the local agricultural cycle.  

Based on the product characterizations, different fertilization scenarios were set up for use of 

recovered products in agriculture, in compliance with the Flemish manure regulation for the 

cultivation of maize on non-sandy soils (MAP4, 2011). The economic and ecological benefits of 

substituting conventional fertilization practices, using animal manure and chemical fertilizers (N, 

K), by bio-based alternative scenarios were quantified and evaluated (Chapter 4; Fig. 1.6: 

Objective II.2). The costs/benefits, energy use, and associated greenhouse gas emissions of 

fertilizer production, packing, transport, and application were taken in account. On the basis of 

the assumptions made, the substitution of chemical fertilizers by N/S-solutions and N/K-

concentrates always resulted in significant economic and ecological benefits for the 

crop farmer. The highest combined environmental and economic benefits were obtained 

through an optimal (in terms of effective N:P-ratio) combination of digestate and its liquid 

fraction, meanwhile substituting chemical N by air scrubber wastewater or membrane filtration 

concentrates. Based on the analyses, to maintain overall costs for the crop farmer, a marketing 

value of ± € 0.93 (1.31 CAD) kg-1 N and ± € 0.60 (0.85 CAD) kg-1 N, equivalent to the chemical 

fertilizer cost, could be imposed for the production of acidic air scrubber water and membrane 

filtration concentrates, respectively.   

Starting from the theoretical cultivation scenarios outlined in Chapter 4, field test validation of 

the most beneficial scenarios was performed in order to confirm the potential substitution of 
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conventional fertilizers by bio-based alternatives (Chapter 5: Vaneeckhaute et al., 2013c, 2014; 

Fig. 1.6: Objective II.3). The products under study were AmS wastewater from an acidic air 

scrubber, liquid fractions of digestate, and optimized mixtures of raw digestate and its liquid 

fraction. Based on a two-year field trial, it was revealed and confirmed that nutrient recovery and 

cradle-to-cradle reuse of these bio-digestion waste derivatives can: i) create valuable 

substitutes for chemical fertilizers with high nutrient use efficiencies (no reduction in crop yield!), 

ii) reduce nitrate (NO3) leaching and increase soil P2O5 and K2O recovery (to be confirmed on 

the long term), iii) result in economic and ecological benefits (confirmation of the findings in 

Chapter 4). No detoriating impact on soil quality was observed during the experimental period. 

As added advantages to the generation of sustainable bio-fertilizers from waste via anaerobic  

(co-)digestion, renewable energy is produced and negative environmental impacts (e.g. 

methane and odor emissions, pathogen distribution, eutrophication, and soil nutrient 

accumulation) of untreated wastes (animal manure, sludges, etc.) are reduced. Moreover, the 

use of bio-based fertilizers can result in added supply of (effective) organic carbon (next to 

various essential macro- and micronutrients) to agricultural land, thereby contributing to the 

struggle against organic carbon depletion in many soils worldwide. We therefore conclude 

that the use of bio-based fertilizers has a positive impact on the economy, agronomy, 

and ecology of intensive plant production. Best management practices for agricultural 

implementation of these products were provided. 

Interesting observations made during the field trial were further studied in detail at greenhouse 

scale. As such, the P use efficiency and bio-availability in soils, as well as the underlying 

mechanisms, were studied in depth by land-application of recovered bio-based P fertilizers, 

including struvite, iron phosphate (FePO4) sludge, digestate, and animal manure, as compared 

to fossil reserve-based mineral P fertilizer (Chapter 6: Vaneeckhaute et al., 2014b; Fig. 1.6: 

Objective II.3). Struvite was found to be interesting as starter and slow release fertilizer, 

whereas FePO4-sludge proved not useful in terms of P release for agricultural crop 

production due to its strong P binding capacity. The benefits of converting animal manure 

into digestate through anaerobic (co-)digestion in terms of nutrient use efficiency and 

environmental impact were confirmed. The additional use of Rhizon soil moisture samplers, 

next to the existing methodologies for measurement of bio-available P, is recommended for 

determination of both organic and inorganic P in the framework of environmental and fertilizer 

legislations, and the associated fertilizer application recommendations.  

Finally, if struvite or a concentrated P-solution is targeted, then a pre-treatment of the digestate 

prior to solid-liquid separation can be considered in order to increase the P release in the liquid 

fraction and hence its recovery potential as mineral fertilizer (Chapter 7). This can also improve 

the local reuse potential of the remaining organic thick fraction as valuable soil conditioner in the 

case of P saturated regions. Based on the costs and the efficiency of various potential 

mechanical and chemical pre-treatments, the combined use of acidification with hydrogen 

chloride (HCl) and orbital shaking (i.e. mixing in industrial practice) seems to be most feasible. If 

pasteurization is required for effective product marketing, then microwave treatment in 
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combination with HCl may provide a solution. However, the chemical choice can also influence 

processes downstream in the treatment train. Hence, the technically and economically most 

effective pre-treatment will have to be identified for each specific case.  

All the above-mentioned agronomic experimental results can and should be used as a source of 

valuable information to describe fertilizer quality specifications, to prove the effectiveness of 

recovered fertilizers in the context of environmental and fertilizer legislations, as well as to 

stimulate their acceptability in the farming community. 

 

PHASE III: Process modelling and optimization  

Based on the obtained insights in the technological performance, the value of recovered 

products, and their bottlenecks for agricultural reuse, a generic nutrient recovery model 

(NRM) library was developed aiming at fertilizer quality and quantity as model outputs 

(Chapters 8-9; Fig. 1.6: Objective III.1). It is one of the first implementations of a set of 

waste(water) models in the widely used Modelica language. This generic framework for 

modelling of nutrient recovery systems should greatly enhance the cost-effective 

implementation, optimization, and useful application of sustainable treatment trains for resource 

recovery. Dynamic physicochemical three-phase mathematical process models were developed 

for the nutrient recovery systems selected in Chapter 2 (see above). In addition, a compatible 

combined biological-physicochemical anaerobic digester model was constructed, including 

sulfurgenesis, biological N/P/K/S release/uptake, interactions with organics, next to other 

relevant processes, such as precipitation, ion pairing, and liquid-gas transfer.  

Each dynamic mathematical model was built using: 1) the definition of a chemical speciation 

model using geochemical modelling software (PHREEQC/MINTEQ), 2) the description of a 

physicochemical and biochemical transformation model tailored to the models developed in the 

first step, and 3) the selection of a reactor mass balance model to describe the (time-

dependent) process conditions. In order to account for accurate chemical solution speciation 

and reaction kinetics at minimal computational effort, an efficient PHREEQC-Tornado 

interface was developed. The correctness of the programming of the models was verified by 

comparison with simulation results from the stand-alone PHREEQC geochemical modelling 

software. A reduction of execution time was established at two critical points during model 

simulations: i) the uploading and reading of database and input files (through PHREEQC model 

reduction), and ii) the transfer of data between PHREEQC and Tornado/(WEST) (through tight 

model coupling). On average, a three-to-five fold improvement of model simulation speeds 

was obtained using the developed reduced models as compared to full PHREEQC and 

MINTEQ geochemical databases, respectively. Fundamental physicochemical components/ 

species/reactions occurring in resource recovery facilities, e.g. potassium struvite and 

ammonium sulfate precipitation, were found to be lacking in the existing standard geochemical 

PHREEQC/MINTEQ databases. Because of these constraints, a generic extended database in 

view of nutrient recovery was created for future applications.  
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After implementation, the models were subjected to a battery of tests to ensure implementation 

correctness, also referred to as model verification. As such, for example, two implementations 

of each model were set up and the outcomes compared: one based on all separate individual 

equations and one compact matrix-based implementation. As such, typing errors, 

inconsistencies, gaps, and conceptual errors were eliminated, while software bugs were 

discovered and dealt with. Next to verification, also model validation was performed by 

comparison of the model outcomes with experimental data. Validation is often neglected in 

mathematical modelling but is a key component of Good Modelling Practice. Simulation 

results using default parameters showed good agreement with experimental results 

under steady state conditions, providing a first sense of validity of the implemented model 

library. Moreover, the ability of the models as a tool for increased process understanding 

and optimization was successfully demonstrated (Fig. 1.6: Objective III.2). Detailed 

chemical input characterization and chemical solution speciation were found to be of prime 

importance for modelling of nutrient recovery systems. Further research in terms of 

determination of precipitation/dissolution and gas transfer kinetics in real waste matrices is 

required to accurately calibrate and validate the models under dynamic conditions.  

Following the general findings above, global sensitivity analyses (GSAs) were performed in 

order to identify the factors with the highest impact on the fundamental model outputs, i.e. the 

factors that should be prioritized in further experimental studies and for future input 

characterization at waste(water) resource recovery facilities (WRRFs; Chapter 10). GSA using 

linear regression on Monte Carlo simulation outputs was found to be an appropriate strategy for 

factor prioritization in NRM applications. For the adopted GSA method based on standardized 

regression coefficients (SRCs), the use of variance inflation factors (VIFs) is recommended to 

detect and resolve problems related to multicollinearity of factors in complex models. Factor 

ranking was performed for: 1) input waste flow characteristics at WRRFs, 2) process operational 

factors, and 3) model kinetics, within the context of the analysis.  

For all models, the variation in input waste composition resulted in major output variation 

through its direct effect on the operational pH and ionic strength. This underlines the 

fundamental importance of the accurate chemical solution speciation provided by the NRMs. 

Main impacts were found to be generalizable for different substrates, showing the wide 

relevance of the study. Moreover, valuable insights in the interactions between unit process 

inputs and outputs were obtained through the GSAs. Major findings involve, among others, the 

impact of chloride (Cl) inhibition on ammonia removal in the stripping unit, the impact of calcium 

(Ca), iron (Fe), and aluminium (Al) inhibition on P recovery in the precipitation unit, and the 

interaction between Fe/Al, S, and methane (CH4) production in the anaerobic digester. Based 

on the results, it was possible to set up an optimal treatment train configuration for 

nutrient recovery that maximizes resource recovery at minimal cost (Fig. 1.6: Objective 

III.2).  
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Finally, the valuable use of the models to select optimal operational conditions in the 

treatment train that maximize resource recovery at minimal costs and use of 

consumables was demonstrated for pig manure as a case study (Fig. 1.6: Objective III.2). 

Under the optimized conditions and assumptions made, potential financial benefits for a large-

scale anaerobic digestion and nutrient recovery project were estimated at 2.8-6.5 USD (3.5-8.1 

CAD; € 2.5-5.7) m-3 manure based on net variable cost calculations, or an average of ± 2 USD 

(2.5 CAD; € 1.8) m-3 y-1, equivalent with 40 USD (50 CAD; € 35) ton-1 total solids y-1, over 20 

years when also taking into account capital costs. Hence, it is very likely that in practice a full-

scale ZeroCostWRRF (waste(water) resource recovery facility at zero cost) can be constructed. 

Nevertheless, it was found that local legislations and fertilizer markets also play an important 

role in determining the optimal treatment train configuration and operational conditions. In 

summary, it is concluded that the NRM library and GSA strategy developed in this 

dissertation provide a valuable and cost-effective framework for increased process 

understanding, treatment train configuration, and optimization of region-specific nutrient 

recovery applications. 

 

Communication and stimulation of scenario implementation  

Based on all results, knowledge, and insights obtained throughout the PhD research, a 

roadmap for setting up strategies for nutrient recovery from digestate was established 

(Chapter 11). The focus was on the technologies and bio-based products selected in Chapter 2 

(see above). The roadmap involves: i) an overview of bio-based fertilization recommendations 

as function of fertilizer legislations, ii) guidelines for determining the feasibility of nutrient 

recovery based on operational experience, and iii) an algorithm for configuration and 

optimization of nutrient recovery treatment trains as function of input waste characterization and 

fertilizer markets. As such, the roadmap provides useful guidance for waste(water) processing 

utilities considering the implementation of nutrient recovery practices. This, in turn, should 

stimulate and hasten the global transition from traditional waste(water) treatment plants 

(WWTPs) to WRRFs.  

Finally, it is believed that holistic LCA studies aiming at the evaluation of the overall 

environmental impact of anaerobic digestion and nutrient recovery scenarios can provide 

important evidence for further policy making, communication, and stimulation of nutrient 

recovery scenario implementation. Contact has been sought by/with various research 

institutions working on this topic. As such, the results obtained in this dissertation have 

been and are currently being used for LCA studies (Chapter 12) by the Luxembourg 

Institute of Science and Technology (LIST, Esch-sur-Alzette, Luxembourg; Vázquez-Rowe et 

al., submitted), the University of Bath (Bath, UK; Adams and Vaneeckhaute, in preparation), and 

Bangor University (Gwynedd, UK; Vaneeckhaute et al., in preparation). Although preliminary 

outcomes are promising in view of anaerobic digestion and nutrient recovery, flaws in LCA 

model libraries were discovered and are currently dealt with.   
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13.2 Scientific contributions and impact   
The scientific contributions resulting from this dissertation are: i) a technology inventory (Fig. 

1.6: Paper 1), ii) a product classification (Fig. 1.6: Paper 1), iii) full-scale mass balance analyses 

and product characterizations (Fig. 1.6: Paper 2), iv) an economic and ecological nutrient 

recovery scenario evaluation (Fig. 1.6: Paper 3), v) a two-year field trial and greenhouse 

experiment for agronomic fertilizer value evaluation, as well as associated lab study on P 

recovery (Fig. 1.6: Papers 4-8), vi) a generic model library for nutrient recovery and associated 

GSA analyses (Fig. 1.6: Papers 9-11), vii) a roadmap for setting up nutrient recovery strategies 

(Fig. 1.6: Paper 12), and viii) an objective base for LCA studies (Fig. 1.6: Papers 13-15). As 

such, this PhD dissertation provides fundamental information and tools to aid and guide 

decision making, configuration, operation, and optimization of (and research into) sustainable 

nutrient recovery strategies.  

The results obtained in this dissertation should be widely spread as the expected impact is 

multi-sectorial and addresses the three pillars of sustainable development: environment, 

society, and economics. First, this research may help to better classify recovered products in 

environmental and fertilizer legislations and serve as a support to stimulate their use, 

meanwhile fostering nutrient recovery technology and scenario implementation. This, in turn, 

may improve the competitiveness of recovered products as compared to conventional fertilizers, 

thereby promoting their use and acceptability in the farming community. By providing 

sustainable and effective recovered fertilizers, the agricultural sector can reduce its 

environmental impact caused by nutrients, can become less dependent on the use of chemical 

fertilizers, and improve its social acceptance, while developing a sustainable and profitable 

agriculture.  

Over the medium to long term, there are also opportunities for the private sector to capitalize on 

this research in view of the required improvement of existing waste(water) treatment practices 

to turn them into innovative resource recovery facilities. This can lead to important economic 

benefits to companies developing and manufacturing waste(water) treatment and advanced 

treatment technologies, biogas generation technologies, and mathematical models for designing 

and optimizing recovery plants. Moreover, the governmental institutions involved, e.g. 

Agriculture and Agri-Food Canada and the European Commission, can directly profit from the 

additional knowledge provided in this dissertation regarding the efficiency of renewable 

fertilizers.  

Underlying benefits that can arise from this work over the long term are the obvious health and 

environmental benefits associated with improved agricultural practice and food supply thanks to 

resource recovery from biodegradable wastes. This may open up new opportunities for 

sustainable and more bio-based economic growth and thus create a win-win situation for both 

the environment, the society, and the economy in Belgium, Canada, and beyond.     
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13.3 Recommendations  
Based on all experiences, observations, and communications made during the PhD research 

period, the present section provides key recommendations towards the different stakeholders in 

the field of nutrient recovery.  
 

� Researchers:  

• Technological perspective:  

i. Further technical fine-tuning of nutrient recovery technologies in order to minimize 

operational costs, produce high-quality fertilizers, and economically valorize the 

recovered nutrients; 

ii. Further technical/mechanical optimization of the VSEP process in order to 

implement the system at full-scale; 

iii. Further development of novel nutrient recovery technologies with minimal energy 

and chemical consumption;   

iv. Study on the crystallization or granulation of AmS-solutions in order to increase 

their marketing value. Integration of the crystallization process in the scrubbing unit 

may provide an economic solution, though it remains questionable if this is 

technically feasible;  

v. Further substantive case studies on the economic feasibility of implementing pre-

treatments for P release from digestate at full-scale. Aspects such as improved 

COD (chemical oxygen demand) degradation and biogas production, chemical 

fertilizer replacement, local fertilizer markets, the fertilizer value of the produced 

organic thick fractions, transport costs, and pasteurization will have to be 

considered in the evaluation.  

• Agronomic perspective:  

i. Evaluation of field trials in the longer term, for different soil types, and for different 

cropping systems; 

ii. Assessment of field trials using other original combinations of recovered products; 

iii. Development of effective and sustainable fertilizer application methods for 

recovered products; 

iv. Study of the microbiological quality of recovered products and their impact on soil 

organisms. It is expected that the pathogen content after digestion is lower as 

compared to animal manure, though a thorough quantification could greatly 

stimulate the acceptance of bio-based products in environmental legislations and 

their use in the farming community. Also the degree of contamination with organic 

substances in the various bio-based products needs to be investigated; 

v. Accurate determination of the humification coefficient for the various bio-based 

fertilizers. This is required to better assess the impact on soil organic carbon (by 
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use of models or by experiments) when applying bio-based fertilization scenarios 

instead of conventional practices using animal manure and chemical fertilizers.  

• Modelling perspective: 

i. Increased use of models for process understanding, treatment train configuration 

and optimization, study of ‘what-if’ options, improved technology transfer to 

industry, and set-up of research objectives; 

ii. Development of a generic chemical analysis procedure for precipitate identification 

in order to facilitate the experiments required for kinetic model calibration and  

validation;  

iii. Further data collection for accurate calibration of the NRM kinetics, focusing on 

real waste matrices instead of synthetic solutions (on-going); 

iv. Accurate calibration and validation of the developed models under dynamic 

conditions; 

v. Improvement of the physicochemical submodel reduction procedure with a more 

time-efficient (but still adequate) method to go through a multidimensional set of 

input scenarios for selection of species and reactions to be included in new nutrient 

recovery models; 

vi. Model development of new promising nutrient recovery technologies in order to 

hasten their implementation and optimization, e.g. ion exchange, sorption, and  

alternative membrane filtration technologies; 

vii. Further extension of the model library. According to the specific model application, 

the proposed extensions involve the inclusion of:  

• Lactate as specific substrate for biological sulfate removal in the NRM-AD, e.g. 

as in UCT (2007); 

• A transformer tool in the NRM-AD to allow for co-digestion of multiple input 

streams, e.g. the general integrated solid waste co-digestion (GISCOD) 

modelling tool (Zaher et al., 2009b); 

• Biochemical transformations of sludge from enhanced biological P removal in 

the NRM-AD, e.g. as in Ikumi (2011); 

• Sludge retention in the NRM-AD, e.g. as in Cesur and Albertson (2005); 

• Microscale flocculation in the NRM-Prec, e.g. as in Crittenden et al. (2012); 

• Particle size distributions in the NRM-Prec, e.g. as in Perez et al. (2008); 

• Differential settling in the NRM-Settle and (if relevant) in the NRM-Prec, e.g. 

using the Stokes equation (Crittenden et al., 2012); 

• Heavy metals and other contaminants in all NRM models. 

viii. Coupling of the NRM library to soil nutrient balance models, e.g. the NDICEA 

(Nitrogen Dynamics In Crops rotation in Ecological Agriculture) modelling tool 

(Chapter 5), agro-economic tools (e.g. Chapter 4), and/or life cycle assessment 

(LCA) tools (Chapter 12) in order to optimize nutrient recovery strategies over the 

whole waste-nutrient-soil-plant system;  
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ix. Application of the probabilistic model-based design procedure of Talebizadeh et al. 

(2014) using the existing NMR library as an alternative to classical design 

guidelines; 

x. Further performance of holistic life cycle assessments of nutrient recovery 

strategies, which may aid in effective policy making for recovered fertilizers and 

product marketing. The existing databases will have to be updated to allow for all 

aspects of nutrient recovery, including, for example, nutrient scarcity and organic 

carbon recycling.  

 

� Policy makers:  

i. Use of the experimental results obtained in this PhD (among others) to establish a 

clearly defined and homogenized legislative framework for application of recovered 

bio-based products in agriculture, for product registration in fertilizer regulations, 

and/or for (inter)national product marketing. The legislative revisions should involve:  

• A reconsideration of the regulatory status of digestate and its derivatives 

(different than ‘animal manure’) based on their effective fertilizer properties. 

The introduction of a new category of ‘renewable’ organo-mineral and mineral 

fertilizers may be indispensable to stimulate the efficient use of these products 

for agricultural purposes;  

• Use of test data provided in this dissertation for registration of novel fertilizer 

products; 

• Improved differentiation between soils, crops, and fertilizer types in the 

recommendations given on N, P, and K fertilizer requirements, thereby 

stimulating the efficient and sustainable use of these essential nutrients in 

agriculture; 

• Additional use of Rhizon soil moisture samplers for determination of total direct 

available P, which should lead to better understanding and categorization of 

different inorganic and organic P fertilizers in environmental and fertilizer 

legislations;  

• Subsidisies for farmers for using bio-based products in agriculture;  

• Subsidisies for the conversion of animal manure, sludge, and other organic 

biodegradable waste flows through anaerobic (co-)digestion.  

 

� Agriculturists: 

i. Increased use of bio-based recovered fertilizers as sustainable substitutes for 

chemical fertilizers. The developed roadmap (Chapter 11) provides guidance for 

successful implementation of (completely) bio-based fertilization scenarios; 

ii. Valorization of (excessive) animal manure, crop residues, and/or other agricultural 

biodegradable wastes through anaerobic (co-)digestion, and application of 
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digestate (mixtures) to the field as base fertilizer in order to improve nutrient use 

efficiencies;  

iii. Increased collaboration among farmers for effective manure, digestate, and 

recovered product valorizarion at a regional scale. 

 

� Technology developers:  

i. Development of new nutrient recovery technologies with minimal energy and 

chemical requirements, and maximal product valorization potential. The focus 

should not only be on N and P recovery, but also on other essential macro- and 

micronutrients, such as K, S, Ca, Mg, and Zn, as well as organic carbon;  
ii. Increased attention to the value of the recovered end products in order to meet the 

specifications required for agricultural and/or industrial end-use; 
iii. Increased use of models for process understanding, technology development, and 

optimization. 

 

� Operators:  

i. Increased thinking in terms of product marketing and process sustainability prior to 

decision-making on operational strategies;  

ii. More detailed and accurate measurement of recommended input factors, as 

specified in Chapters 10 and 11; 

iii. Increased use of models to specify operating conditions, optimize process 

performance, for study of ‘what if’ conditions, and training of operators;  

iv. Use of the generic guidelines provided in Chapter 11 for nutrient recovery treatment 

train configuration and optimization.  

 

� Consultants (towards agriculture and waste processing facilities):  

i. Stimulation of the acceptability of recovered products in the farming community; 

ii. Increased use of bio-based products in the set-up of agronomic recommendations 

for fertilizer application;  

iii. Encouragement of the implementation of nutrient recovery strategies instead of 

nutrient removal technologies at various waste(water) processing facilities; 

iv. Use of the developed roadmap (Chapter 11) for setting up nutrient recovery 

strategies, both in terms of bio-based fertilization recommendations and nutrient 

recovery treatment train configuration;  

v. Use of models to select optimal treatment train configurations and operating 

conditions;  

vi. Dissemination towards the general public in order to increase the social acceptance 

of nutrient recovery strategies and the efficient application of recovered products.  
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� General public:  

i. Increased open-mindedness and willingness towards innovation;  

ii. Minimization of nutrient wasting, e.g. through:  

• Better collection and separation of organic biodegradable household waste; 

• Use of bio-based fertilizers for home-gardening; 

• Reduction of meat consumption. 

 

All of the above should foster the development and implementation of more sustainable, 

effective, and environmentally friendly practices for farming, waste(water) treatment, and food 

production. As such, this dissertation may contribute to the challenge of producing more food 

and energy with less environmental pollution, thereby meeting renewable energy and 

waste(water) directives across the world.   



 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

‘It is our nutrient world. We turned it into a nutrient chaos.  

Time has come to restructure.  

Solutions are there. Urgent action is required.’ 

  Céline Vaneeckhaute, February 2015.  
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Fate of micronutrients and heavy metals in water treatment of 

digestate using vibrating reversed osmosis  
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Table A1.1 Concentrations (g kg-1 FW) of aluminium (Al), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) 
in the characterized process flows (mean ± standard deviation; n = 4). Numbers 1-11 correspond with the sample locations in Chapter 3: Figure 3.1. FW 
= fresh weight; LF = liquid fraction; TF = thick fraction. 

 

 

 
Al Cd  Cu Fe 

Process flow mg kg-1 FW mg kg-1 FW mg kg-1 FW mg kg-1 FW 
1. Digestate 285 ± 132 0.013 ± 0.019 6.4 ± 3.7 1,102 ± 128 
2. TF Rotating drum 490 ± 107 0.025 ± 0.035 21 ± 4 1,977 ± 362 
3. LF Rotating drum <0.05 ± - <0.004 ± - 0.029 ± 0.032 6.0 ± 7.0 
4. Polymer solution 0.23 ± 0.33 <0.004 ± - 0.039 ± 0.012 0.64 ± 0.37 
5. TF Screw press 715 ± 6 0.038 ± 0.053 22 ± 2 2,675 ± 764 
6. LF Screw press 188 ± 240 0.27 ± 0.38 5.4 ± 5.9 553 ± 686 
7. VSEP-permeate 1st filtration 0.046 ± 0.064 <0.004 ± - <0.01 ± - 0.18 ± 0.05 
8. VSEP-concentrate 1st filtration 1.8 ± 2.5 0.007 ± 0.011 0.26 ± 0.37 32 ± 42 
9. VSEP-permeate 2nd filtration           <0.05 ± - <0.004 ± - 0.0058 ± 0.0082 0.12 ± 0.13 
10. VSEP-concentrate 2nd filtration 0.056 ± 0.079 <0.004 ± - 0.012 ± 0.007 3.3 ± 3.1 
11. Dry end product  2,368 ± 195 1.3 ± 1.5 73 ± 9 8,652 ± 1,584 

 
Mn Ni Pb Zn 

Process flow mg kg-1 FW mg kg-1 FW mg kg-1 FW mg kg-1 FW 
1. Digestate 28 ± 21 0.60 ± 0.85 0.46 ± - 16 ± 16 
2. TF Rotating drum 68 ± 14 1.0 ± 1.4 0.93 ± - 31 ± 31 
3. LF Rotating drum 0.64 ± 0.80 0.10 ± 0.07 <0.04 ± - 0.23 ± 0.23 
4. Polymer solution <0.005 ± - <0.012 ± - 0.038 ± - 5.5 ± 5.5 
5. TF Screw press 97 ± 22 1.3 ± 1.9 1.44 ± - 45 ± 45 
6. LF Screw press 22 ± 28 0.52 ± 0.74 0.29 ± - 13 ± 13 
7. VSEP-permeate 1st filtration <0.005 ± - 0.020 ± 0.028 <0.04 ± - 0.06 ± 0.06 
8. VSEP-concentrate 1st filtration 2.3 ± 2.4 0.22 ± 0.31 0.036 ± - 5.6 ± 8.0 
9. VSEP-permeate 2nd filtration <0.005 ± - <0.012 ± - <0.04 ± - <0.02 ± 0.00 
10. VSEP-concentrate 2nd filtration 0.24 ± 0.23 0.016 ± 0.023 <0.04 ± - 0.42 ± 0.40 
11. Dry end product  438 ± 29 44 ± 11 4.9 ± - 463 ± 118 
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Table A2.1 Total soil nutrient amounts (N, P2O5, K2O, S, Ca, Mg, Na; kg or ton ha-1) in 
time for the eight different fertilization scenarios (mean ± standard deviation; n = 4). p-
values and small letters refer to statistical analyses using one-way ANOVA and post-hoc 
pair-wise comparisons. * = significant difference at the 5 % level. 

Scenario Jul/11 Sep/11 Oct/11 Aug/12 Nov/12 
N (ton ha-1) p = 0.97 p = 0.89 p = 0.99 p = 0.85 p = 0.11 

1 7.2 ± 0.6 7.2 ± 0.6 7.2 ± 0.6 7.4 ± 0.9 7.3 ± 1.8 
2 7.2 ± 0.6 7.2 ± 0.6 7.4 ± 0.7 7.9 ± 0.9 6.4 ± 2.6 
3 7.0 ± 0.2 7.2 ± 0.4 7.3 ± 0.5 8.1 ± 0.8 9.5 ± 0.8 
4 7.2 ± 0.4 7.2 ± 0.6 7.3 ± 0.6 7.9 ± 1.6 9.0 ± 1.9 
5 7.0 ± 0.9 7.3 ± 0.6 7.4 ± 0.7 8.1 ± 0.9 8.8 ± 1.0 
6 7.3 ± 0.7 7.4 ± 0.2 7.5 ± 0.4 8.4 ± 0.1 9.3 ± 1.1 
7 7.1 ± 0.6 7.5 ± 0.1 7.4 ± 0.5 8.4 ± 0.4 9.7 ± 0.2 
8 6.7 ± 0.5 7.1 ± 0.5 7.2 ± 0.3 7.9 ± 0.3 9.7 ± 0.9 

P2O5 (ton ha-1) p = 0.78 p = 0.89 p = 0.99 p = 0.57 p = 0.33 
1 14 ± 2 12 ± 1 12 ± 1 12 ± 1 7.7 ± 5.3 
2 14 ± 1 11 ± 1 12 ± 1 11 ± 1 7.4 ± 5.7 
3 14 ± 2 12 ± 1 12 ± 1 12 ± 1 12 ± 2 
4 14 ± 1 12 ± 1 12 ± 1 12 ± 1 11 ± 1 
5 14 ± 1 12 ± 1 12 ± 1 12 ± 0 11 ± 2 
6 14 ± 2 11 ± 1 13 ± 1 12 ± 1 12 ± 1 
7 13 ± 1 12 ± 1 12 ± 1 12 ± 1 12 ± 1 
8 13 ± 2 12 ± 1 12 ± 1 12 ± 0 11 ± 1 

K2O (ton ha-1) p = 0.37 p = 0.10 p = 0.56 p = 1.0 p = 0.44 
1 1.7 ± 0.1 1.9 ± 0.3 2.0 ± 0.2 1.5 ± 0.6 1.6 ± 0.3 
2 1.6 ± 0.1 1.5 ± 0.1 1.9 ± 0.3 1.4 ± 0.3 1.5 ± 0.2 
3 1.8 ± 0.1 1.6 ± 0.4 2.0 ± 0.1 1.4 ± 0.1 1.7 ± 0.1 
4 1.8 ± 0.2 1.5 ± 0.3 2.1 ± 0.3 1.4 ± 0.2 1.8 ± 0.2 
5 1.8 ± 0.0 1.9 ± 0.2 1.9 ± 0.1 1.3 ± 0.4 1.7 ± 0.1 
6 1.8 ± 0.2 2.0 ± 0.3 2.2 ± 0.5 1.5 ± 0.4 1.9 ± 0.2 
7 1.8 ± 0.1 2.0 ± 0.3 2.1 ± 0.3 1.5 ± 0.2 1.8 ± 0.3 
8 1.7 ± 0.1 1.7 ± 0.4 2.1 ± 0.1 1.4 ± 0.3 1.7 ± 0.2 

S (ton ha-1) p = 0.87 p = 0.71 p = 0.70 p = 0.99 p = 0.10 
1 1.2 ± 0.1 1.2 ± 0.2 1.3 ± 0.1 1.5 ± 0.3 0.9 ± 0.2 
2 1.2 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.5 ± 0.3 0.9 ± 0.2 
3 1.2 ± 0.0 1.3 ± 0.1 1.3 ± 0.1 1.7 ± 0.3 1.2 ± 0.0 
4 1.2 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 1.5 ± 0.4 1.1 ± 0.2 
5 1.2 ± 0.2 1.2 ± 0.1 1.3 ± 0.2 1.6 ± 0.4 1.2 ± 0.2 
6 1.2 ± 0.1 1.2 ± 0.1 1.3 ± 0.1 1.6 ± 0.3 1.2 ± 0.1 
7 1.2 ± 0.1 1.2 ± 0.1 1.3 ± 0.1 1.5 ± 0.2 1.2 ± 0.0 
8 1.1 ± 0.1 1.2 ± 0.0 1.3 ± 0.1 1.5 ± 0.3 1.1 ± 0.1 

Ca (ton ha-1) p = 0.72 p = 0.98 p = 0.96 p = 0.63 p = 0.18 
1 8.7 ± 1.9 8.5 ± 1.3 8.1 ± 1.3 9.6 ± 2.6 8.6 ± 2.2 
2 8.5 ± 1.2 8.1 ± 1.1 8.3 ± 1.2 9.3 ± 1.5 9.1 ± 1.7 
3 8.6 ± 1.0 8.6 ± 0.7 8.3 ± 0.9 11 ± 1 12 ± 2 
4 8.0 ± 1.3 8.4 ± 1.5 7.9 ± 1.5 9.5 ± 2.5 9.5 ± 2.0 
5 8.6 ± 0.6 8.4 ± 1.0 8.1 ± 1.3 11 ± 2 11 ± 2 
6 8.4 ± 0.9 8.1 ± 0.6 8.5 ± 0.3 11 ± 1 11 ± 0 
7 8.5 ± 0.9 8.5 ± 1.0 8.1 ± 0.7 11 ± 1 11 ± 1 
8 7.3 ± 0.4 7.9 ± 0.8 7.6 ± 0.5 9.5 ± 0.4 10 ± 1 

Mg (ton ha-1) p = 0.54 p = 0.38 p = 0.63 p = 0.15 p = 0.10 

1 1.7 ± 0.2 1.7 ± 0.1 1.6 ± 0.2 1.4 ± 0.2 1.5 ± 0.0 
2 1.6 ± 0.2 1.6 ± 0.1 1.5 ± 0.1 1.6 ± 0.1 1.5 ± 0.2 
3 1.7 ± 0.0 1.7 ± 0.1 1.6 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 
4 1.6 ± 0.1 1.6 ± 0.2 1.6 ± 0.2 1.3 ± 0.2 1.6 ± 0.2 
5 1.6 ± 0.1 1.6 ± 0.0 1.5 ± 0.1 1.4 ± 0.1 1.6 ± 0.2 
6 1.7 ± 0.1 1.6 ± 0.0 1.7 ± 0.1 1.6 ± 0.1 1.8 ± 0.1 
7 1.7 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.8 ± 0.1 1.8 ± 0.2 
8 1.6 ± 0.1 1.7 ± 0.1 1.6 ± 0.1 1.5 ± 0.1 1.6 ± 0.1 

Na (kg ha-1) p = 0.030* p = 0.11 p = 0.38 p = 0.99 p = 0.29 

1 263 ± 72ab 214 ± 32 267 ± 20 212 ± 115 178 ± 29 
2 227 ± 41b 209 ± 56 297 ± 62 217 ± 41 187 ± 26 
3 246 ± 18b 200 ± 31 292 ± 79 211 ± 19 217 ± 26 
4 225 ± 19b 188 ± 25 287 ± 22 227 ± 66 251 ± 8 
5 335 ± 37a 264 ± 37 232 ± 31 234 ± 40 219 ± 82 
6 264 ± 39ab 233 ± 23 298 ± 28 233 ± 35 271 ± 49 
7 320 ± 76ab 225 ± 21 264 ± 10 209 ± 48 257 ± 52 
8 266 ± 36ab 238 ± 42 317 ± 46 204 ± 38 237 ± 74 
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Table A2.2 Soil concentrations (g or mg kg-1 DW) of aluminium (Al), cadmium (Cd), chrome (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), 
lead (Pb), and zinc (Zn) for the eight different fertilization scenarios during the growing season (5/07/2011, 5/09/2011) and after the harvest 
(13/10/2011) (mean ± standard deviation; n = 4). Contents of arsenic (As) and mercury (Hg) were always below the detection limit of 25 mg kg-1 DW.  
'<' indicates that the value of one or more of the repetitions was below the detection limit; in this case the maximum value obtained is presented. 
Metal Unit Date Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Al g kg-1 DW 5/07/2011 5.1 ± 1.0 4.1 ± 0.0 5.0 ± 0.1 5.1 ± 1.0 5.2 ± 0.0 5.1 ± 1.0 5.2 ± 0.1 5.0 ± 0.1 

  5/09/2011 4.0 ± 0.0 4.1 ± 0.1 4.1 ± 0.0 4.0 ± 0.0 4.1 ± 0.1 4.0 ± 0.1 5.0 ± 0.2 5.1 ± 0.2 

  13/10/2011 4.0 ± 0.1 4.0 ± 0.0 4.0 ± 0.1 5.0 ± 0.1 4.0 ± 0.0 5.1 ± 0.2 5.1 ± 0.1 5.0 ± 0.1 
Cd mg kg-1 DW 5/07/2011 <0.40 <0.39 <0.40 <0.39 <0.39 <0.39 <0.39 <0.40 

  5/09/2011 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.40 <0.39 

  13/10/2011 <0.64 0.53 ± 0.07 0.50 ± 0.09 <0.60 <0.40 0.43 ± 0.04 <0.43 <0.49 
Cr mg kg-1 DW 5/07/2011 11 ± 1 11 ± 0 11 ± 0 <12 11 ± 1 11 ± 1 11 ± 1 11 ± 1 

  5/09/2011 11 ± 1 11 ± 1 11 ± 1 10 ± 1 11 ± 0 11 ± 1 11 ± 0 11 ± 0 

  13/10/2011 11 ± 1 10 ± 1 11 ± 2 10 ± 1 10 ± 0 11 ± 0 10 ± 1 10 ± 0 
Cu mg kg-1 DW 5/07/2011 35 ± 3 33 ± 3 35 ± 1 <36 33 ± 3 35 ± 2 35 ± 2 32 ± 1 

  5/09/2011 34 ± 1 32 ± 2 33 ± 2 32 ± 2 33 ± 2 33 ± 1 34 ± 2 33 ± 1 

  13/10/2011 34 ± 2 33 ± 3 34 ± 2 33 ± 3 34 ± 3 33 ± 2 34 ± 2 31 ± 2 
Fe g kg-1 DW 5/07/2011 4.1 ± 1.0 3.0 ± 0.0 3.0 ± 0.0 4 ± 0 3.0 ± 0.0 3.0 ± 0.1 3.0 ± 0.1 3.2 ± 0.0 

  5/09/2011 3.1 ± 0.1 3.0 ± 0.0 3.0 ± 0.0 3 ± 0 3.1 ± 0.2 3.0 ± 0.2 3.1 ± 0.2 3.1 ± 0.1 
  13/10/2011 3.0 ± 0.1 3.0 ± 0.0 3.1 ± 0.1 3 ± 0 3.0 ± 0.1 3.1 ± 0.1 3.0 ± 0.1 3.0 ± 0.2 

Mn g kg-1 DW 5/07/2011 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 <0.18 0.17 ± 0.02 0.17 ± 0.01 0.16 ± 0.01 0.15 ± 0.01 

  5/09/2011 0.17 ± 0.00 0.16 ± 0.01 0.17 ± 0.01 0.15 ± 0.01 0.17 ± 0.01 0.17 ± 0.00 0.16 ± 0.01 0.15 ± 0.01 

  13/10/2011 0.17 ± 0.02 0.17 ± 0.01 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.16 ± 0.02 0.16 ± 0.01 
Ni mg kg-1 DW 5/07/2011 3.8 ± 0.1 3.5 ± 0.3 3.7 ± 0.5 <4.0 3.2 ± 0.3 3.4 ± 0.2 3.4 ± 0.1 3.4 ± 0.3 

  5/09/2011 2.6 ± 0.5 2.6 ± 0.2 3.0 ± 0.4 2.3 ± 0.4 3.1 ± 0.1 3.0 ± 0.2 3.0 ± 0.4 3.3 ± 0.4 

  13/10/2011 4.0 ± 0.3 4.0 ± 0.5 4.6 ± 0.9 4.2 ± 0.6 2.7 ± 0.5 2.3 ± 0.2 2.3 ± 0.2 2.4 ± 0.5 
Pb mg kg-1 DW 5/07/2011 16 ± 1 15 ± 1 17 ± 2 <17 31 ± 30 16 ± 0 17 ± 1 15 ± 1 

  5/09/2011 16 ± 1 16 ± 1 15 ± 1 16 ± 1 19 ± 8 15 ± 1 15 ± 0 16 ± 1 

  13/10/2011 17 ± 1 16 ± 0 18 ± 1 15 ± 2 15 ± 1 16 ± 1 15 ± 1 16 ± 2 
Zn mg kg-1 DW 5/07/2011 58 ± 4 54 ± 5 57 ± 2 <59 57 ± 3 58 ± 1 56 ± 3 53 ± 2 

  5/09/2011 56 ± 2 51 ± 3 54 ± 3 51 ± 5 54 ± 3 54 ± 1 54 ± 3 53 ± 2 

  13/10/2011 58 ± 4 57 ± 4 61 ± 6 56 ± 7 52 ± 5 58 ± 10 52 ± 3 47 ± 2 
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Table A2.3 Biomass concentrations (g or mg kg-1 DW) of aluminium (Al), cadmium (Cd), chrome (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel 
(Ni), lead (Pb), and zinc (Zn) for the eight different fertilization scenarios during the growing season (6/07/2011, 6/09/2011) and at the harvest 
(7/10/2011) (mean ± standard deviation; n = 4). Contents of arsenic (As) and mercury (Hg) were always below the detection limit of 25 mg kg-1 DW.   
'<' indicates that the value of one or more of the repetitions was below the detection limit; in this case the maximum value obtained is represented. 

 

Metal Unit Date Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

Al mg kg-1 DW 6/07/2011 <80 61 ± 60 48 ± 36 37 ± 14 32 ± 16 31 ± 6 31 ± 7 <24 

  6/09/2011 27 ± 3 26 ± 5 31 ± 16 26 ± 6 32 ± 15 26 ± 5 23 ± 7 34 ± 12 

  
7/10/2011 58 ± 13 63 ± 20 74 ± 24 68 ± 29 59 ± 8 52 ± 11 70 ± 8 73 ± 21 

Cd mg kg-1 DW 6/07/2011 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 

  6/09/2011 <0.35 <0.20 <0.21 <0.20 <0.20 <0.20 <0.20 <0.23 

  
7/10/2011 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 

Cr mg kg-1 DW 6/07/2011 <0.73 0.76 ± 0.41 0.59 ± 0.09 0.66 ± 0.04 0.51 ± 0.07 0.42 ± 0.07 0.55 ± 0.03 <1.28 

  6/09/2011 1.4 ± 0.6 1.0 ± 0.1 1.7 ± 1.3 2.6 ± 1.0 4.3 ± 3.7 2.5 ± 1.7 1.1 ± 0.4 2.4 ± 2.3 

  7/10/2011 6.9 ± 5.0 4.3 ± 1.6 3.7 ± 0.3 5.2 ± 1.3 4.5 ± 1.1 3.5 ± 0.4 11.3 ± 5.3 7.4 ± 8.7 
Cu mg kg-1 DW 6/07/2011 <7.1 7.7 ± 1.5 6.1 ± 0.7 6.5 ± 1.7 6.6 ± 1.8 5.8 ± 0.4 7.2 ± 0.5 <5.7 

  6/09/2011 4.1 ± 0.4 4.1 ± 0.2 6.8 ± 3.6 3.9 ± 0.5 5.5 ± 1.4 5.2 ± 0.8 4.8 ± 1.2 4.3 ± 0.4 

  7/10/2011 4.0 ± 0.8 4.0 ± 0.8 3.6 ± 0.4 3.9 ± 0.5 3.5 ± 1.0 2.9 ± 0.4 3.2 ± 0.3 3.7 ± 0.6 
Fe mg kg-1 DW 6/07/2011 <69 63 ± 7 61 ± 6 62 ± 4 58 ± 7 55 ± 4 60 ± 9 <55 

  6/09/2011 46 ± 6 41 ± 5 44 ± 7 48 ± 6 65 ± 18 50 ± 11 41 ± 9 50 ± 11 

  
7/10/2011 171 ± 77 191 ± 113 196 ± 80 176 ± 9 183 ± 59 158 ± 54 236 ± 101 222 ± 80 

Mn mg kg-1 DW 6/07/2011 <31 29 ± 5 30 ± 9 28 ± 6 29 ± 6 24 ± 4 28 ± 1 <21 

  6/09/2011 16 ± 3 15 ± 2 17 ± 5 13 ± 1 17 ± 1 15 ± 3 16 ± 3 13 ± 2 

  
7/10/2011 15 ± 3 403 ± 123 385 ± 77 338 ± 55 348 ± 22 284 ± 40 360 ± 9 318 ± 45 

Ni mg kg-1 DW 6/07/2011 <0.60 <0.82 <0.60 <0.87 <0.60 <0.60 <0.60 <0.60 

  6/09/2011 1.0 ± 0.6 1.0 ± 0.5 1.8 ± 1.0 2.1 ± 0.4 3.2 ± 3.0 2.1 ± 1.3 1.3 ± 0.6 1.7 ± 1.3 

  7/10/2011 2.9 ± 2.1 2.0 ± 0.6 1.6 ± 0.2 2.0 ± 0.7 2.0 ± 0.5 1.5 ± 0.2 4.7 ± 2.2 3.1 ± 3.6 
Pb mg kg-1 DW 6/07/2011 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 

  6/09/2011 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 

  7/10/2011 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 
Zn mg kg-1 DW 6/07/2011 <70 64 ± 7 70 ± 13 65 ± 12 66 ± 5 63 ± 14 70 ± 4 <66 

  6/09/2011 40 ± 8 41 ± 5 60 ± 29 35 ± 5 55 ± 26 41 ± 10 50 ± 16 33 ± 2 

  
7/10/2011 32 ± 8 27 ± 2 30 ± 5 27 ± 4 31 ± 2 27 ± 4 30 ± 3 26 ± 2 
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Materials and methods 
Based on the data from Vaneeckhaute et al. (2014; Chapter 5), the effect of different organic 
residue amendments on the soil organic carbon (SOC) content has been investigated. In order 
to calculate changes in the soil carbon content as influenced by the choice of crop rotation, the 
Introductory Soil Carbon Balance Model (ICBM) was used (Andrén and Kätterer, 1997; Kätterer 
and Andrén, 2001). The model was applied to calculate the soil carbon content according to 
carbon inputs and mineralization rates. 

All carbon from organic residue amendments enters the young carbon pool (Y). This pool has 
an outflow of carbon with a relatively high reaction coefficient of kY=0.8 (i.e. within one year 1-
exp(-0.8)=55% of the carbon leaves the young carbon pool again; Andrén and Kätterer, 1997). 
From here, only a fraction described by a humification coefficient (h) enters the old carbon pool, 
which has a much lower reaction coefficient (kO) than the young carbon pool. The humification 
coefficient describes the amount that stays in the soil in the longer term, i.e. the amount that is 
not mineralised and released as the greenhouse gas (GHG) CO2 in the first year. The 
humification coefficients used in this study are shown in Table A3.1.  
 

Table A3.1 Organic residues and the corresponding humification coefficients (h) used. 
Type of material Amendments Base case h Alternative case h Reference 

Manures Pig manure 0.27 0.34 (Kätterer et al., 2011) 

Digestates Raw digestate 

Liquid fraction 
digestate 

Digestate mixture 

 

0.41 

 

0.34 

 

(Kätterer et al., 2011) 

 

In order to adapt the ICBM to Nordic conditions (cold climate regions; Peel et al., 2007), the 
model was calibrated against data derived from the long-term soil carbon field experiment in 
Ekebo, Sweden (Kirchmann et al., 1999). The Ekebo SOC field experiment includes two 
different crop rotations (with/without fodder production)1 on a clay-rich soil. For each rotation 16 
different fertilization regimes (all combinations of four nitrogen and four phosphorus/potassium 
fertilization levels) were tested. The experiment started in 1957 and is ongoing with regular soil 
carbon content analyses2.  

The model was calibrated by using the reaction coefficient of the old carbon pool (kO) as a 
variable to fit model soil carbon predictions to the measured soil carbon data. This was done 
using crop residue data computed by the Nordic calculation method for comparison (Björnsson 
et al., 2013). 

The amount of carbon added to the soil in the different scenarios is given in Table A3.2.  

 

Table A3.2 Amount of carbon added in Scenarios 1-8 and used for modelling the soil 
organic carbon effect. 
Scenario Carbon (kg ha-1) Organic residue Carbon (kg ha-1) 

2011 / 2012 2011 / 2012 
1 807 / 220 Pig manure 1,235 / 568 
2 807 / 220 Raw digestate - / 1,514 
3 807 / 220 Liquid fraction 538 / 509 
4 847 / 963 Digestate mixture 1,187 / 1,078 
5 831 / 1,029 
6 831 / 1,029 
7 837 / 329 
8 874 / 329 

 

                                                      
1 The first crop rotation was designed for an animal production farm, with all cereal, straw, and sugar beet tops removed   
as bedding/fodder. The other crop rotation was designed for a pure plant production farm, with all straw and sugar beet 
tops left in the field. 
2 At an interval of approximately four years. 
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For modelling the SOC effect, it was assumed that each amendment was repeated for 20 years. 
The SOC effect of the different fertilization strategies (Scenarios 1-8) was calculated as 
the annual change of the total amendment-derived SOC pools averaged over the first 20 
years (IPCC, 2006). The SOC effect presented is thus the amount of carbon that is 
sequestered (or released, if negative) on average going from one system to another, i.e. going 
from a system with no soil amendments to a system with soil amendments (digestate, manure, 
etc.). For direct comparison of the different residues, the SOC effect of each residue was 
modelled for an effective nitrogen application of 150 kg ha-1.  
 

 

Results 
Of the eight different scenarios, Scenarios 4-6 result in SOC additions of between 0.34 and 0.43 
Mg ha-1 (Fig. A3.1). In Scenarios 1-3, 7, and 8, a large difference exist between years. For 
Scenarios 1-3, the SOC addition was 0.25 and 0.07 Mg ha-1 in 2011 and 2012, respectively. For 
Scenarios 7 and 8, the SOC addition was 0.27-0.29 and 0.11 Mg ha-1 in 2011 and 2012, 
respectively. This large variation was due to large differences in composition of the pig manure 
and the resulting liquid fraction of digestate. 

 

Figure A3.1 Effect of the different scenarios´ fertilization strategies on the soil  
organic carbon content (base case). 

 
When comparing each of the organic residues on an exclusive use basis at an effective nitrogen 
level of 150 kg ha-1, the raw digestate results in the highest (0.63 Mg ha-1) SOC addition (Fig. 
A3.2, left). The digestate mix optimized for a high effective N content and low P content, 
resulted in SOC additions between 0.45 and 0.49 Mg ha-1. Pig manure showed large 
differences in composition between years. When equal amounts of dry matter of the organic 
residues are applied, differences in SOC effect are less dramatic (Fig. A3.2, right).  
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Figure A3.2 Effect of the different organic residues on soil organic carbon content (base case) 
after application of an amount corresponding to 150 kg ha-1 effective N (left) and to 1 Mg ha-1 

dry matter (right), respectively. 

Sensitivity analysis  
There is a low sensitivity to changes in the humification factor for the SOC effect of the different 
organic residues (Fig. A3.3).   

 

Figure A3.3 Effect of the different organic residues on soil organic carbon content  
based on the 2012 data. 

 
Due to an additive effect, the differences between the scenarios disappear in the alternative 
case, in which equal humification factors for manure and digestate-based amendments were 
assumed (Fig. A3.4).  
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Figure A3.4 Effect of the different scenarios´ amendment strategies on the  
soil organic carbon content based on the 2011 data. 

Discussion 
Soil organic carbon (SOC) effect 
The SOC effect shown in this study relates only to the effect of the organic residue amendments 
and excludes SOC changes due to existing SOC pools and the addition from other sources, e.g. 
crop residues. Although the model was calibrated for specific conditions such as Nordic climate 
and clay soil, this does not affect the relative differences between the scenarios and between 
the organic residues. The absolute level of SOC effect is, however, dependent on the 
calibration, i.e. the mineralisation rate of the more stable SOC fraction. Therefore, reliability of 
the absolute levels of SOC effect could be improved by choosing calibration data from the same 
climate zone and similar soil conditions. 

 

Humification coefficient 
Besides the actual amount of residue applied to a soil, the humification coefficient is the main 
parameter affecting the SOC effect. The humification coefficient is an indicator for the quality of 
the added carbon and is therefore residue-specific. Choosing the appropriate humification 
coefficient is therefore crucial when comparing different amendments.  

Humification coefficients are usually derived from litter bag or 14C experiments (Andrén and 
Kätterer, 1997). Earlier studies suggested that the fraction of carbon remaining after one year 
represents the humification coefficient (Janssen, 1984), but later studies suggest a longer initial 
degradation phase of 5-10 years (Andrén and Kätterer, 1997). A more detailed analysis of the 
estimation of humification coefficients can be found in Kätterer et al. (2011). 

Often values for the humification coefficient are given for types of soil amendments such as 
straw, manure, digestate, etc. (e.g. Kätterer et al., 2011). For comparing similar organic 
residues (raw digestate, liquid fractions digestate, mixtures, etc.), this poses an 
oversimplification, but more specific data are lacking.  

 
Conclusions 
Based on the preliminary results obtained in the present study comparing digestate derivatives 
and pig manure, raw digestates showed the most beneficial SOC effect, i.e. Scenarios 4-6 in 
Vaneeckhaute et al. (2014) (Chapter 5). It should, however, be noted that the results on the 
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SOC effect are indications only in respect to their absolute levels. Differences between 
treatments are dependent on the humification coefficients chosen for the assessment. Here, 
data supporting comparison of similar organic residues (digestate-based amendments) is 
lacking. Still, the above results show the importance of including an assessment of SOC effects 
in studies evaluating the environmental impact of anaerobic digestion, nutrient recovery, and 
bio-based fertilization scenarios. It is, for example, expected that inclusion of such effects will 
represent a better picture of greenhouse gas emissions compared to not including an 
assessment of SOC effects at all in life cycle assessments (see Chapter 12).  
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FICHE TECHNIQUE 1 
 

SULFATE D’AMMONIUM (S.A.) 
PROVENANT DE L’ENLÈVEMENT D’AMMONIAC 

 
 
ORIGINE ET DÉSCRIPTION DU PRODUIT 
 
Le sulfate d’ammonium (S.A.) est un sous-produit du traitement physicochimique des eaux 
(digestats liquides) par le procédé de stripage (= élimination) et absorption (= récupération) 
d’ammoniac. Dans une première colonne, après augmentation du pH (8.5-10) et de la 
température (55-70 ºC), l’ammonium présent dans l’eau est transformé en ammoniac et 
capturé par une phase gazeuse. Dans une deuxième colonne, l’ammoniac dans la phase 
gazeuse est absorbé par l’acide sulfurique. Le produit résultant est une solution liquide 
contenant du S.A. (25-38 %).  
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VALEUR AGRONOMIQUE  
 
La valeur agronomique des S.A. (voir tableau ci-dessous) dépend beaucoup du procédé de 
stripage et du fournisseur. En général, la solution produite contient de 25 à 38 % de S.A. Selon 
les fournisseurs, le pourcentage restant serait surtout de l’eau et des traces d’acide sulfurique. 
Ces dernières peuvent influencer le continu en soufre (max.: 10 %).   

 

Source : Fournisseurs des procédés de stripage et d’absorption d’ammoniac. 
(%p) = pourcentage de poids.  
 
 

AVANTAGES  CONTRAINTES  

� Source d’azote et de soufre.  
� Engrais minéral. 
� Substitut pour les engrais chimiques. 
� L’azote et le soufre sont immédiatement 

disponibles pour les plantes = moins de 
pertes dans l’environnement. 

� Source indirecte de phosphore: l’ammonium 
libère le phosphore fixé dans le sol. 

� Engrais très pur: réaction sélective 
d’ammoniac gazeux avec l’acide sulfurique.  

� Le S.A. ne contient pas de potassium ou 
d’autres macronutriments à part l’azote et le 
soufre.  

� Selon le procédé le pH peut être bas (4-7). 
� Le contenu en soufre peut être trop élevé 

pour certaines cultures.  
� Le S.A. est en forme liquide, donc les frais 

de transport pourraient être élevés. 
Cristallisation du produit possible. 

 
 
VALEUR ÉCONOMIQUE 
 
La valeur économique du produit est estimée à 132 $ par tonne matière humide, basée 
uniquement sur le contenu en N et en supposant une valeur moyenne de 1.55 $ kg-1 N au 
Québec en 2014. Néanmoins, il est à noter que la demande de soufre au Québec est en 
augmentation, donc la valeur de cet élément nutritif pourrait aussi devenir importante dans le 
futur. En Europe, les S.A. provenant des procédés de stripage d’ammoniac sont 
présentement vendus sous forme liquide à 139-185 $ tonne-1 humide. Certaines applications 
produisent les S.A. sous forme cristallisée, ce qui augmente la valeur du produit et réduit les 
coûts de transportation.     
 
 
CLASSIFICATION DANS LA RÉGLEMENTATION SUR LES ENGRAIS 
 

Tiré du réglement sur les engrais à l’annexe 1 sous le point 1.2 page 31, le sel d’ammonium de 
l’acide sulfurique contenant au moins 20 % d’azote peut être reconnu comme engrais minéral 
(classe 1.2). La cristallisation ou le séchage des S.A. pourrait donc augmenter la valeur du 
produit. 

  

(NH4)2SO4 

(%p) 
N 

(%p) 
P 

(%p) 

 

K 
(%p) 

 

S 
(%p) 

Matière organique 
(%p) 

Teneur en eau 
(%p) 

pH 
(-)  

25-38 5.3-8 0  0  6.1-10  0   62-75  4-7  



 

396 

CLASSIFICATION C-P-O-E DES S.A.   

 
C  P  O  E  
1 1  2 ou 3  1 

 
La classification C-P-O-E du MDDEFP (2012) permet de connaître les restrictions d’utilisation 
des matières résiduelles fertilisantes (MRF) (doses d’épandage, entreposage, types d’usages 
et de cultures) pour leur recyclage en agriculture, sylviculture, horticulture, etc. 
 
Contaminants chimiques (C1)  
D’après les fournisseurs d’équipements, le S.A. ne contient aucun contaminant chimique, car le 
procédé concerne une élimination sélective d’ammoniac vers une phase gazeuse et une 
absorption sélective de l’ammoniac gazeux par l’acide sulfurique. Néanmoins, si l’acide 
sulfurique utilisé n’est pas de qualité industrielle à haute grade, il faudrait s’assurer qu’il n’y a 
pas de contaminants, p.ex. le mercure, dans l’acide.  
 
Pathogènes (P1)  
D’après les fournisseurs d’équipements, le S.A. ne contient aucun pathogène, car le procédé 
concerne une élimination sélective d’ammoniac vers une phase gazeuse et une absorption 
sélective de l’ammoniac gazeux par l’acide sulfurique. De plus, la température de réaction est 
élevée. Selon le guide MDDEFP (2012) aucune preuve d’absence des pathogènes n’est 
requise pour les résidus minéraux issus de procédés thermiques.  
 
Odeurs (O2/O3, à vérifier)  
Aucune caractérisation des odeurs n’est disponible. Car le produit contient l’ammonium et le 
soufre, ainsi des risques de volatilisation d’ammoniac et de H2S sont réels. Néanmoins, car le 
pH du produit est souvent au-dessous de 7, les émissions pourraient être minimales. La 
classification des S.A. est donc à vérifier. Présentement, il est supposé que le produit ne se 
trouve pas dans la catégorie O1.  
 
Corps étrangers (E1)  
D’après les fournisseurs d’équipements, le S.A. ne contient aucun corps étranger, car le 
procédé concerne une élimination sélective d’ammoniac vers une phase gazeuse et une 
absorption sélective de l’ammoniac gazeux par l’acide sulfurique. 
 
 
 
CONTRAINTES DE VALORISATION, ENTREPOSAGE ET RISQUES ENVIRONNEMENTAUX 
 

CONTRAINTES DE VALORISATION  RISQUES POTENTIELS  
� Contraintes O2/O3 (à vérifier): le stockage 

temporaire et l’épandage des S.A. doivent 
respecter une distance de 75 m des 
maisons d’habitation. De plus, les 
municipalités et les voisins doivent être 
avisés lors de la livraison et des activités 
d’épandage. Dans certains cas, la 
valorisation pour les aménagements en 
bordure de route est proscrite. 

� Risque de volatilisation d’ammoniac et 
d’odeurs pendant l’épandage/stockage: une 
injection du produit dans le sol est 
recommandée. 

� Risque de corrosion, surtout si le pH du 
produit est acide (selon le fournisseur).  

� Risque de brûlure pour les plantes si le 
produit est appliqué directement sur les 
plantes + risque d’acidification des sols si le 
pH n’est pas ajusté avant l’application.  

� Risques pour la santé reliés au travail avec 
un produit acide (brûlure, irritation, etc.).  
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SECTEURS POTENTIELS D’UTILISATION 
 

SECTEURS D’UTILISATION  

AGRICULTURE  

Grandes cultures (alimentation humaine)  √ 

Grandes cultures (alimentation animale)  √  

Prairies (alimentation animale)  √  

Pâturages (alimentation animale)  √ 

Cultures maraîchères et fruitières  √ 

Cultures énergétiques dédiées  √  

HORTICULTURE / USAGE URBAIN  

Horticulture ornementale (plein champ et pépinières)  √  

Espaces verts et parcs (aménagements paysagers)  1 

FORESTERIE  √  

AUTRES USAGES  

Fabrication de terreaux et engrais  √ 

Distribution aux citoyens  2 

Abords d’infrastructures routières  1 

Végétalisation de sites dégradés  √  

Paillis - cultures alimentaires  n.a. 

Paillis - cultures ornementales  n.a. 

 
Légende : 

 

 

 

 

 

1 : Une catégorie O1 est requise pour cette application. La catégorie de S.A. est à vérifier. 

2 : Une catégorie O2 est requise pour cette application. La  catégorie de S.A. est à vérifier. 

n.a. : Non applicable.  

 
Modes d’application  
 
L’injection de S.A. dans les sols est recommandée pour éviter des émissions d’ammoniac.  

Si le pH est faible (4-5), il est recommandé d’ajuster le pH du produit afin d’éviter la brûlure des 
plantes et l’acidification du sol. Le pH des S.A. peut être ajusté en ajoutant de l’urée ou de la 
chaux. Une option économiquement intéressante serait de mélanger les S.A. avec le sous-
produit base provenant du traitement d’air. Des tests sur le champs ont démontré que cette 
option est valable (Vaneeckhaute et al., 2014).  

Non 

Incertitudes 

Oui 
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FICHE TECHNIQUE 2 

 

SULFATE D’AMMONIUM (S.A.) À PH ACIDE (3) 
 PROVENANT DE L’ENLÈVEMENT D’AMMONIAC 

 
 
ORIGINE ET DESCRIPTION DU PRODUIT 
 
Le sulfate d’ammonium (S.A.) est un sous-produit du traitement physicochimique des eaux 
usées par le procédé de stripage (= élimination) et absorption (= récupération) d’ammoniac. 
L’opération s’applique à une température élevée (70-80 ºC). Ainsi l’ammonium présent dans 
l’eau est transformé en ammoniac et capturé par une phase gazeuse. Dans une deuxième 
colonne, l’ammoniac dans la phase gazeuse est absorbé par l’acide sulfurique, résultant en 
une solution liquide contenant du S.A. Pour garantir des faibles concentrations de NH3 dans 
la décharge d’air et pour réduire les dimensions des unités, certains fournisseurs visent à 
garder un pH faible (± 3) dans la colonne d’absorption. Ainsi, une solution de S.A. à pH de 3 
est obtenue. Cette pratique permet aussi d’obtenir une concentration plus élevée des S.A. de 
± 40 %. Généralement, l’alcalinité naturellement disponible dans le digestat est suffisante 
pour augmenter le pH par stripage de CO2 pendant l’opération. Ainsi, aucun ajout de produits 
chimiques n’est requis.  
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VALEUR AGRONOMIQUE  
 
La valeur agronomique des S.A. à pH 3 est présentée ci-dessous  

 

Source : Fournisseur des procédés de stripage et d’absorption d’ammoniac. 
(%p) = pourcentage de poids.  
* Note : cette valeur est une estimation basée sur la stoechiométrie. Aucune analyse n’est disponible présentement 
pour un produit à pH 3.  
 
Il a été approuvé par analyse que le produit ne contient aucun contaminant, tel que des métaux 
lourds ou des pathogènes. Néanmoins, la contamination potentielle est déterminée par la 
pureté de l’acide sulfurique utilisé.  
 

AVANTAGES  CONTRAINTES  

� Source d’azote et de soufre. 
� Engrais minéral. 
� Substitut pour les engrais chimiques.  
� L’azote et le soufre sont immédiatement 

disponibles pour les plantes = moins de 
pertes dans l’environnement. 

� Source indirecte de phosphore: l’ammonium 
libère le phosphore fixé dans le sol. 

� Engrais très pur: réaction sélective 
d’ammoniac gazeux avec l’acide sulfurique.  

� Aucune contamination détectée dans le 
produit (si l’acide sulfurique est de bonne 
qualité). 

� Le S.A. ne contient pas de potassium ou 
d’autres macronutriments à part l’azote et 
le soufre.  

� Le pH est très bas pour application directe 
sur le champ. Le mélange avec l’urée 
pourrait améliorer la commercialisation. 
Autre option: ajout de chaux ou mélange 
avec le digestat ou des fumiers. 

� Le contenu en soufre peut être trop élevé 
pour certaines cultures.  

� Le S.A. est en forme liquide, donc les frais 
de transport pourraient être élevés. 
Cristallisation du produit possible.  

 
VALEUR ÉCONOMIQUE 
 
La valeur économique du produit est estimée à 132 $ par tonne matière humide, basée 
uniquement sur le contenu en N et en supposant une valeur moyenne de 1,55 $ par kg N au 
Québec en 2014. Néanmoins, il est à noter que la demande de soufre au Québec est en 
augmentation, donc la valeur de cet élément nutritif pourrait aussi devenir importante dans le 
futur. En Europe, les S.A. provenant des procédés de stripage d’ammoniac sont 
présentement vendus sous forme liquide à 139-185 $ par tonne humide. Certaines 
applications produisent les S.A. sous forme cristallisée, ce qui augmente la valeur du produit 
et réduit les coûts de transportation.     
 
 
CLASSIFICATION DANS LA RÉGLEMENTATION SUR LES ENGRAIS 
 

Tiré du réglement sur les engrais à l’annexe 1 sous le point 1.2 page 31, le sel d’ammonium de 
l’acide sulfurique contenant au moins 20 % d’azote peut être reconnu comme engrais minéral 
(classe 1.2). La cristallisation ou le séchage des S.A. pourrait donc augmenter la valeur du 
produit.  

  

(NH4)2SO4 

(%p) 
N 

(%p) 
P 

(%p) 

 

K 
(%p) 

 

S* 
(%p) 

Matière 
organique 

(%p) 

pH 
(-)  

40 8.5 0  0  9.7-10 0   3  
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CLASSIFICATION C-P-O-E DES S.A.   

 
C  P  O  E  
1 1  1  1 

 
La classification C-P-O-E du MDDEFP (2012) permet de connaître les restrictions d’utilisation 
des matières résiduelles fertilisantes (MRF) (doses d’épandage, entreposage, types d’usages 
et de cultures) pour leur recyclage en agriculture, sylviculture, horticulture, etc. 
 
Contaminants chimiques (C1)  
Des analyses par les fournisseurs ont démontré que le S.A. à pH 3 ne contient aucun 
contaminant chimique, car le procédé concerne une élimination sélective d’ammoniac vers une 
phase gazeuse et une absorption sélective de l’ammoniac gazeux par l’acide sulfurique. 
Néanmoins, si l’acide sulfurique utilisé n’est pas de qualité industrielle à haute grade, il faudrait 
s’assurer qu’il n’y a pas de contaminants, p.ex. le mercure, dans l’acide.  
 
Pathogènes (P1)  
Des analyses par les fournisseurs ont démontré que le S.A. à pH 3 ne contient aucun 
pathogène, car le procédé concerne une élimination sélective d’ammoniac vers une phase 
gazeuse et une absorption sélective de l’ammoniac gazeux par l’acide sulfurique. De plus, la 
température de réaction est élevée. Selon le guide MDDEFP (2012) aucune preuve d’absence 
des pathogènes n’est requise pour les résidus minéraux issus de procédés thermiques.  
 
Odeurs (O1)  
Puisque le pH du produit est très faible, aucune décharge d’odeur (NH3, amines, H2S,…) est 
attendue. D’après l’expérience des fournisseurs, le produit est pratiquement inodore. Toutes les 
MRF ayant obtenu des cotes d’odeurs moyennes inférieures à celle du fumier solide de bovins 
laitiers sont considérées O1. Il est donc très raisonnable de classifier les S.A. à faible pH dans 
la catégorie O1.  
 
Corps étrangers (E1)  
D’après les fournisseurs d’équipements, le S.A. ne contient aucun corps étranger, car le 
procédé concerne une élimination sélective d’ammoniac vers une phase gazeuse et une 
absorption sélective de l’ammoniac gazeux par l’acide sulfurique. 
 
 
 
 
CONTRAINTES DE VALORISATION, ENTREPOSAGE ET RISQUES ENVIRONNEMENTAUX 
 

CONTRAINTES DE VALORISATION  RISQUES POTENTIELS  
� Faible pH.  � Risque de corrosion car le pH du produit est 

acide.  
� Risque de brûlure pour les plantes si le 

produit est appliqué directement sur les 
plantes + risque d’acidification des sols si le 
pH n’est pas ajusté avant l’application.  

� Risques pour la santé reliés au travail avec 
un produit acide (brûlure, irritation, etc.).  
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SECTEURS POTENTIELS D’UTILISATION 
 

SECTEURS D’UTILISATION  

AGRICULTURE  

Grandes cultures (alimentation humaine)  √ 

Grandes cultures (alimentation animale)  √  

Prairies (alimentation animale)  √  

Pâturages (alimentation animale)  √ 

Cultures maraîchères et fruitières  √ 

Cultures énergétiques dédiées  √  

HORTICULTURE / USAGE URBAIN  

Horticulture ornementale (plein champ et pépinières)  √  

Espaces verts et parcs (aménagements paysagers)  √ 

FORESTERIE  √  

AUTRES USAGES  

Fabrication de terreaux et engrais  √ 

Distribution aux citoyens  1 

Abords d’infrastructures routières  √ 

Végétalisation de sites dégradés  √  

Paillis - cultures alimentaires  n.a. 

Paillis - cultures ornementales  n.a. 

 
Légende : 

 

 

 

 

1 :   Incertitude relié au faible pH. Une option serait de mélanger les S.A. avec l’urée avant la  
        commercialisation.   
n.a. : Non applicable.  

 
Modes d’application  
 
Pour application comme engrais, il est recommandé d’ajuster le pH du produit afin d’éviter la 
brûlure des plantes et l’acidification du sol. Le pH des S.A. peut être ajusté en ajoutant de l’urée 
ou de la chaux. Une option économiquement intéressante serait de mélanger les S.A. avec le 
sous-produit base provenant du traitement d’air. Des tests sur le champs ont démontré que 
cette option est valable (Vaneeckhaute et al., 2014).  
 
Le produit pourrait aussi être utilisé comme matière primaire pour la fabrication des engrais 
chimiques ou pour l’industrie des pâtes et papiers.  

Non 

Incertitudes 

Oui 



 

 



 

 

APPENDIX 5:  

Physicochemical species and reactions included in the nutrient 

recovery models (NRM) 
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Table A5.1 Dissolved species included in each nutrient recovery model (NRM) (1: NRM-AD = anaerobic digestion, 2: NRM-Prec = precipitation/crystallization, 
3: NRM-Strip = stripper, 4: NRM-Scrub = scrubber) resulting from speciation calculations using PHREEQC (and Visual MINTEQ) modelling software.  

 a Values between brackets represent the use of air instead of chemicals for pH-adjustment. 

Species 1 2 3 4 Species 1 2 3 4 Species 1 2 3 4 Species 1 2 3 4 
Acetate- X X X - DOM - X X - HSO4- - - - X NaCl (aq) X X X - 
Al3+ X X X  Fe2+ X X X - H-Valerate X X X - NaCO3

- - X X - 
Al(OH)2

+ X X - - Fe3+ X X X - K+ X X X - NaHCO3 (aq) X X - - 
Al(OH)3 (aq) X X - - FeCl+ - X - - K-Acetate (aq) X X X - NaHPO4

- X X X - 
Al(OH)4

- X X X - FeCO3 X - - - KCl (aq) X X X - NaH2PO4 (aq) X X - - 
Butyrate- (aq) X X X - FeHPO4 (aq) X X - - KHPO4

- X X X - NaNO3 (aq) - X X - 
Ca2+ X X X - FeHS+ X - - - KH2PO4 X X - - NaOH - X X - 
Ca-Acetate+ X X X - Fe(HS)2 X - - - KNO3 (aq) - X X - NaPO4

2- - X - - 
Ca-Butyrate+ (aq) X X X - FeH2PO4

+ X - - - KOH (aq) - X X - NaSO4
- X X X - 

CaCl+ X X X - FeNH3
2+ X X X - KPO4

2- - X - - N2 (aq)a X (X) X X 
CaCO3 (aq) X X X - Fe(NH3)2

2+ X X X - KSO4
- X X X - NH2COO- X - - X 

Ca-DOM - X X - Fe(NH3)3
2+ - X - - Mg2+ X X X - NH3 (aq) X X X X 

CaHCO3
+ X - X - FeOH+ X X X - Mg-Acetate+ X X X - NH4

+ X X X X 
CaHPO4 (aq) X X X - Fe(OH)2 (aq) X X X - Mg-Butyrate+ X X X - NH4SO4

- X X X X 
CaH2PO4

+ X - - - Fe(OH)3
- - X X - MgCl+ X X X - NO3

- X X X X 
CaNH3

2+ X X X - FeSO4 (aq) - X - - MgCO3 (aq) X X X - OH- X X X X 
Ca(NH3)2

2+ - X - - H+ X X X X Mg2CO3
2+ - X X - O2 (aq) - X X X 

CaNO3
+ - - X - H2 (aq) X - X X Mg-DOM - X X - PO4

3- X X X - 
CaOH+ - - X - H-Acetate X X X - MgHCO3

+ X X X - Propionate- X X X - 
CaPO4

- X X X - H-Butyrate X X X - MgHPO4 (aq) X X X - SO4
2- X X X X 

Ca-Propionate+ X X X - H-DOM - X X - Mg(NH3)2
2+ X X X - Valerate- X X X - 

CaSO4 (aq) X X X - HCO3
- X X X X MgOH+ X X X -      

Ca-Valerate+ (aq) X X X - HPO4
2- X X X - MgPO4

- X X X -      
CH4 X X X X H2PO4

- X X - - Mg-Propionate+ X X X -      
Cl- X X X - HS- X - X X MgSO4 (aq) X X X -      
CO2 X X X X H2S (aq) X - X X Na+ X X X -      
CO3

2- X X X X H-Propionate X X X - Na-Acetate (aq) X X X -      
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Table A5.2 Acid-base systems and reactions (AB) included in each nutrient recovery model 
(NRM). AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = stripper; Scrub = 
scrubber; Ac = acetate; Bu = butyrate; Pro = propionate; Va = valerate.  

Acid-base system  No. Acid-base reaction AD Prec Strip Scrub 

Acetate  AB1 Ac- + H+ ↔ HAc X X X - 
Ammonia  AB2 NH3 (aq) + H+  ↔ NH4

+  X X X X 
Butyrate AB3 Bu- + H+ ↔ HBu X X X - 
Carbonate  AB4 CO3

2- + H+ ↔ HCO3
- X X X X 

 AB5 HCO3
- + H+ ↔ H2CO3 (aq) X X X X 

Phosphate  AB6 PO4
3- + H+ ↔ HPO4

2- X X X - 
 AB7 HPO4

2- + H+ ↔ H2PO4
- X X - - 

 AB8 H2PO4
- + H+ ↔ H3PO4 X X - - 

Propionate  AB9 Pro- + H+ ↔ HPro X X X - 
Sulfate  AB10 SO4

-2 + H+ ↔ HSO4
- - - - X 

Sulfide AB11 HS- + H+ ↔ H2S X - X X 
Valerate AB12 Va- + H+ ↔ HVa X X X - 
Water  AB13 H+ + OH- ↔ H2O X X X X 
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Table A5.3 Redox couples and reactions (R) included in each nutrient recovery model (NRM). 
AD = AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = stripper; Scrub = 
scrubber; Ac = acetate; Bu = butyrate; Pro = propionate; Va = valerate. 

Redox system No. Redox reaction AD Prec Strip Scrub 

C(+IV) / C(-IV) R1 CO3
2- + 10H+ + 8e- ↔ CH4 + 3H2O X X X X 

Fe(+II) / Fe(+III) R2 Fe3+ + e- ↔ Fe2+ X X X - 
H(0) / H(+I) R3 2H+ + 2e- ↔ H2 X - X X 
N(-III) / N(+V) R4 NO3

- + 10H+  + 8e- ↔ NH4
+ + 3H2O X X X X 

N(0) / N(+V) R5 2NO3
- + 12H+ + 10e- ↔ N2 + 6H2O  X  (X)a X X 

O(-II) / O(0) R6 O2 + 4H+ + 4e- ↔ 2H2O - X X X 
S(-II) / S(+VI)  R7 SO4

2- +  9H+ + 8e- ↔ HS- + 4H2O X - X X 
a Values between brackets represent the use of air instead of chemicals for pH-adjustment.  
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Table A5.4 Ion pairing reactions (IP) included in each nutrient recovery model (NRM). AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = 
stripper; Scrub = scrubber. 

No. Ion pairing reaction AD Prec Strip Scrub    No. Ion pairing reaction AD Prec Strip Scrub 

IP1 Al3+ + 2OH- ↔ Al(OH)2
+ X - - -   IP34 K+ + Cl- ↔ KCl X X X - 

IP2 Al3+ + 3OH- ↔ Al(OH)3 X X - -   IP35 K+ + HPO4
2- ↔ KHPO4

- X X X - 
IP3 Al3+ + 4OH- ↔ Al(OH)4

- X X X -   IP36 K+ + NO3
- ↔ KNO3 - X X - 

IP4 Ca2+ + Ac- ↔ CaAc+ X X X -   IP37 K+ + OH- ↔ KOH - X X - 
IP5 Ca2+ + Bu- ↔ CaBu+ X X X -   IP38 K+ + PO4

3- ↔ KPO4
2- - X - - 

IP6 Ca2+ + Cl- ↔ CaCl+ X X X -   IP39 K+ + H2PO4
- ↔ KH2PO4 X X - - 

IP7 Ca2+ + CO3
2- ↔ CaCO3 X X X -   IP40 K+ + SO4

2- ↔ KSO4
- X X X - 

IP8 Ca2+ + DOM ↔ Ca-DOM - X X -   IP41 Mg2+ + Ac- ↔ MgAc+ X X X - 
IP9 Ca2+ + HCO3

- ↔ CaHCO3
+ X - X -   IP42 Mg2+ + Bu- ↔ MgBu+ X X X - 

IP10 Ca2+ + HPO4
2- ↔ CaHPO4 X X X -   IP43 Mg2+ + Cl- ↔ MgCl+ X X X - 

IP11 Ca2+ + H2PO4
- ↔ CaH2PO4

+ X - - -   IP44 Mg2+ + CO3
2- ↔ MgCO3 X X X - 

IP12 Ca2+ + NH3 ↔ CaNH3
2+ X X X -   IP45 2Mg2+ + CO3

2- ↔ Mg2CO3
2+ - X X - 

IP13 Ca2+ + 2NH3 ↔ Ca(NH3)2
2+ - X - -   IP46 Mg2+ + DOM ↔  Mg-DOM - X X - 

IP14 Ca2+ + NO3
- ↔ CaNO3

+ - - X -   IP47 Mg2+ + HCO3
-  ↔ MgHCO3

+ X X X - 
IP15 Ca2+ + OH- ↔ CaOH+ - - X -   IP48 Mg2+ + HPO4

2- ↔ MgHPO4 X X X - 
IP16 Ca2+ + PO4

3- ↔ CaPO4
- X X X -   IP49 Mg2+ + 2NH3 ↔ Mg(NH3)2

2+ X X X - 
IP17 Ca2+ + Pro- ↔ CaPro+ X X X -   IP50 Mg2+ + OH- ↔ MgOH+ X X X - 
IP18 Ca2+ + SO4

2- ↔ CaSO4 X X X -   IP51 Mg2+ + PO4
3- ↔ MgPO4

- X X X - 
IP19 Ca2+ + Va- ↔ CaVa+ X X X -   IP52 Mg2+ + Pro- ↔ MgPro+ X X X - 
IP20 Fe2+ + Cl- ↔ FeCl+ - X - -   IP53 Mg2+ + SO4

2- ↔ MgSO4 X X X - 
IP21 Fe2+ + CO3

2- ↔ FeCO3 X - - -   IP54 Na+ + Ac- ↔ NaAc X X X - 
IP22 Fe2+ + HPO4

2- ↔ FeHPO4 X X - -   IP55 Na+ + Cl- ↔ NaCl X X X - 
IP23 Fe2+ + HS- ↔ FeHS+ X - - -   IP56 Na+ + CO3

2- ↔ NaCO3
- - X X - 

IP24 Fe2+ + 2HS- ↔ Fe(HS)2 X - - -   IP57 Na+ + HCO3
- ↔ NaHCO3 X X - - 

IP25 Fe2+ + H2PO4
- ↔ FeH2PO4

+ X - - -   IP58 Na+ + HPO4
2- ↔ NaHPO4

- X X X - 
IP26 Fe2+ + NH3 ↔ FeNH3

2+  X X X -   IP59 Na+ + H2PO4
- ↔ NaH2PO4 (aq) X X - - 

IP27 Fe2+ + 2NH3 ↔ Fe(NH3)2
2+ X X X -   IP60 Na+ + NO3

- ↔ NaNO3 - X X - 
IP28 Fe2+ + 3NH3 ↔ Fe(NH3)3

2+ - X - -   IP61 Na+ + OH- ↔ NaOH - X X - 
IP29 Fe2+ + OH- ↔ FeOH+ X X X -   IP62 Na+ + PO4

3- ↔ NaPO4
2- - X - - 

IP30 Fe2+ + 2OH- ↔ Fe(OH)2 X X X -   IP63 Na+ + SO4
2- ↔ NaSO4

- X X X - 
IP31 Fe3+ + 3OH- ↔ Fe(OH)3 - X X -   IP64 NH3 + HCO3

- ↔ NH2COO- + H2O X - - X 
IP32 Fe2+ + SO4

2- ↔ FeSO4 (aq) - X - -   IP65 NH4
+ + SO4

2- ↔ NH4SO4
- X X X X 

IP33 K+ + Ac- ↔ KAc  X X X -         
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Table A5.5 Liquid-solid/solid-liquid transfer reactions (P) included in each nutrient recovery 
model (NRM). AD = anaerobic digestion; Prec = precipitation/crystallization; P = precipitation; 
Strip = stripper; Scrub = scrubber. 

No. 
PHREEQC 
Phase name Liquid-solid / solid-liquid transfer reaction AD Prec Strip Scrub 

P1 Al2O3 (s) Al2O3(s) + 6H+ ↔ 2Al3+ + 3H2O X - - - 
P2 AlPO4 AlPO4 ↔ Al3+ + PO4

3- X X - - 
P3 Ammoniumsulfate (NH4)2SO4 ↔ 2NH4

+ + SO4
2- - - - X 

P4 Anhydrite CaSO4 ↔ Ca2+ + SO4
2- X - - - 

P5 Aragonite CaCO3 ↔ Ca2+ + CO3
2- X X X - 

P6 Artinite MgCO3:Mg(OH)2:3H2O + 2H+ ↔ 2Mg2+ + CO3
2- + 5H2O - 

 
X X - 

P7 Boehmite AlOOH + 3H+ ↔ Al3+ + 2H2O X X - - 
P8 Brucite Mg(OH)2 + 2H+ ↔ Mg2+ + 2H2O - 

 
X X - 

P9 CaHPO4 (s) CaHPO4 ↔ Ca2+ + H+ + PO4
3- X X X - 

P10 CaHPO4:2H2O (s) CaHPO4:2H2O ↔ Ca2+ + H+ + PO4
3- + 2H2O X X X - 

P11 Ca4H(PO4)3:3H2O (s) Ca4H(PO4)3:3H2O ↔ 4Ca2+ + H+ + 3PO4
3- + 3H2O X X X - 

P12 Calcite CaCO3 ↔ Ca2+ + CO3
2- X X X - 

P13 Ca3(PO4)2 (am1) Ca3(PO4)2 ↔ 3Ca2+ + 2PO4
3- X X X - 

P14 Ca3(PO4)2 (am2) Ca3(PO4)2 ↔ 3Ca2+ + 2PO4
3- X X X - 

P15 Ca3(PO4)2 (beta) Ca3(PO4)2 ↔ 3Ca2+ + 2PO4
3- X X X - 

P16 Diaspore AlOOH + 3H+ ↔ Al3+ + 2H2O X X X - 
P17 Dolomite (ordered) CaMg(CO3)2 ↔ Ca2+ + Mg2+ + 2CO3

2- X X X - 
P18 Dolomite (disordered) CaMg(CO3)2 ↔ Ca2+ + Mg2+ + 2CO3

2- X X X - 
P19 Fe(OH)2 (am) Fe(OH)2 + 2H+ ↔ Fe2+ + 2H2O - X X - 
P20 FeS(ppt) FeS + H+ ↔ Fe2+ + HS- X - - - 
P21 Gibbsite Al(OH)3 + 3H+ ↔ Al3+ + 3H2O X X - - 
P22 Hercynite FeAl2O4 + 8H+ ↔ Fe2+ + 2Al3+ + 4H2O X X X - 
P23 Huntite CaMg3(CO3)4 ↔ 3Mg2+ + Ca2+ + 4CO3

2- - - X - 
P24 Hydromagnesite Mg5(CO3)4(OH)2:4H2O + 2H+ ↔ 5Mg2+ + 4CO3

2- + 6H2O - - X - 
P25 Hydroxyapatite Ca10(PO4)6(OH)5 + 5H+

 ↔ 10Ca2+ + 6PO4
3- + 5H2O X X X - 

P26 K-struvite MgKPO4:6H2O ↔ Mg2+ + K+ + PO4
3- + 6H2O X X X - 

P27 Mackinawite FeS + H+ ↔ Fe2+ + HS- X - - - 
P28 Magnesite MgCO3 ↔ Mg2+ + CO3

2- X X X - 
P29 Mg(OH)2 (active) Mg(OH)2 + 2H+ ↔ Mg2+ + 2H2O - X X - 
P30 Mg3(PO4)2 (s) Mg3(PO4)2 ↔ 3Mg2+ + 2PO4

3- X X X - 
P31 Newberyite MgHPO4:3H2O ↔ Mg2+ + H+ + PO4

3- + 3H2O X X X - 
P32 Periclase MgO + 2H+ ↔ Mg2+ + H2O - - X - 
P33 Portlandite Ca(OH)2 + 2H+ ↔ Ca2+ + 2H2O - - X - 
P34 Siderite FeCO3 ↔ Fe2+ + CO3

2- X X X - 
P35 Spinel MgAl2O4 + 8H+ ↔ Mg2+ + 2Al3+ + 4H2O - - X - 
P36 Struvite MgNH4PO4:6H2O ↔ Mg2+ + NH4

+ + PO4
3- X X X - 

P37 Vaterite CaCO3 ↔ Ca2+ + CO3
2- - X X - 

P38 Vivianite Fe3(PO4)2:8H2O ↔ 3Fe2+ + 2PO4
3- + 8H2O X X X - 
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Table A5.6 Gas-liquid / liquid-gas exchange reactions (GL) included in each nutrient recovery 
model (NRM). AD = anaerobic digestion; Prec = precipitation/crystallization; Strip = stripper; 
Scrub = scrubber. 

No. Gas-liquid / liquid-gas exchange reaction AD Prec Strip Scrub 

GL1 CH4 (aq) → CH4 (g) X - - - 

GL2 CO2 (aq) ↔ CO2 (g) X (X)a X X 

GL3 H2 (aq) ↔ H2 (g) X - X X 

GL4 H2O (aq) ↔ H2O (g) X (X)a X X 

GL5 H2S (aq) ↔ H2S (g) X - X X 

GL6 N2 (aq) ↔ N2 (g) X (X)a X X 

GL7 NH3 (aq) ↔ NH3 (g) X (X)a X X 

GL8 O2 (aq) ↔ O2 (g) - (X)a X X 
 a Values between brackets represent the use of air instead of chemicals for pH-adjustment. 
 
 



 

 



 

 

APPENDIX 6:  

Biochemical processes and Gujer matrix included in the 

nutrient recovery model for the anaerobic digester (NRM-AD)  
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Table A6.1 Biochemical (BC) processes included in the nutrient recovery model for anaerobic digestion (NRM-AD) and extensions made as compared to the 
Anaerobic Digestion Model No. 1 (ADM1). Ac = acetate; Bu = butyrate; EBPR = enhanced biological phosphorus (P) removal; LCFA = long chain fatty acids; 
PAO = P accumulating organism; PHA = poly-hydroxy-alkanoate; PP = poly-phosphate; Pro = propionate; SRB = sulfate reducing bacteria; Va = valerate.  
 
PHYSICOCHEMICAL PROCESSES BIOCHEMICAL PROCESSES 

ADM1:  ADM1:  NRM-AD  
Extension 2: 

NRM-AD  
Extension 3: 

NRM-AD  
Potential extension 4: 

4 Acid-base systems:  
NH4+/NH3, CO2/HCO3-, VFA/VFA-, 
H2O/OH-/H+ 
 
4 Gas-liquid exchange reactions:  
CO2, CH4, H2, H2O 

 
Disintegration, hydrolysis, 

acidogenesis, acetogenesis, 
methanogenesis  

(Batstone et al., 2002)  

 
Sulfurgenesis  

(Knobel and Lewis, 2002;  
Lizarralde et al., 2010) 

 
Release/uptake of P, 
K, S from bacterial 

cells and other 
biochemical 
components 

 
EBPR sludge  
(Ikumi, 2011) 

 

            NRM-AD Extension 1:                   
 
Acid-base systems: Table A5.2 
Redox reactions: Table A5.3 
Ion pairing reactions: Table A5.4 
Solid-liquid transfer: Table A5.5 
Gas-liquid exchange: Table A5.6 

BC1. Disintegration of complex  
         particulates  
BC2. Hydrolysis of carbohydrates  
BC3. Hydrolysis of proteins  
BC4. Hydrolysis of lipids  
BC5. Uptake of monosaccharides 
BC6. Uptake of aminoacids 
BC7. Uptake of LCFA 
BC8. Uptake of Va 
BC9. Uptake of Bu 
BC10. Uptake of Pro 
BC11. Uptake of Ac 
BC12. Uptake of H2 
BC13. Decay of monosaccharide  
           degraders  
BC14. Decay of amino acid degraders  
BC15. Decay of LCFA degraders 
BC16. Decay of Va and Bu degraders 

BC17. Decay of Pro degraders  
BC18. Decay of Ac degraders 
BC19. Decay of H degraders  

BC20. Sulfate reduction on Ac 
BC21. Sulfate reduction on Bu 
BC22. Sulfate reduction on H2 
BC23. Sulfate reduction on Pro 
BC24. Decay of SRBs using Ac  
BC25. Decay of SRBs using Bu  
BC26. Decay of SRBs using H2 
BC27. Decay of SRBs using Pro 

Inclusion in 
stoichiometric  
Gujer matrix  

(Table A6.2-A6.4) 

BC28. Release of PP with  
           uptake of Ac by  
           PAOs 
BC29. Decay of PAOs 
BC30. Hydrolysis of PP +    
           release of K, Ca, Mg 
BC31. Hydrolysis of PHA 
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Table A6.2 Stoichiometry of the biochemical (BC) Gujer matrix incorporated in the nutrient recovery model for the anaerobic digester (NRM-AD). For process 
description: see Table A6.1. For nomenclature: see Table A6.4. For state variable description: see Appendix 7. 
Component S_aa S_CO2 S_HAc S_HBu 

Process kg COD m-3 kmol m-3 kg COD m-3 kg COD m-3 

BC1  C_xc - f_ch_xc.C_ch - f_si_xc.C_si - f_pr_xc.C_pr -  f_xi_xc.C_xi - f_li_xc.C_li   
BC2 

 
C_ch-C_su 

  
BC3 1 C_aa-C_pr   
BC4 

 
(f_fa_li-1).C_su -  f_fa_li.C_fa + C_li 

  
BC5  C_su - (1-Y_su).f_ac_su.C_ac - (1-Y_su).f_pro_su.C_pro - (1-Y_su).f_bu_su.C_bu - Y_su.C_biom (1-Y_su).f_ac_su (1-Y_su).f_bu_su 
BC6 -1 C_aa - (1-Y_aa).f_ac_aa.C_ac - (1-Y_aa).f_bu_aa.C_bu - (1-Y_aa).f_pro_aa.C_pro - (1-Y_aa).f_va_aa.C_va - Y_aa.C_biom (1-Y_aa).f_ac_aa (1-Y_aa).f_bu_aa 
BC7 

 C_fa - (1-Y_fa).0.7.C_ac - Y_fa.C_biom (1-Y_fa).0.7  
BC8 

 
C_va - (1-Y_c4).0.54.C_pro - Y_c4.C_biom - (1-Y_c4).0.31.C_ac (1-Y_c4).0.31 

 
BC9  C_bu - (1-Y_c4 ).0.8.C_ac - Y_c4.C_biom (1-Y_c4).0.8 -1 

   BC10 
 

C_pro - (1-Y_pro).0.57.C_ac - Y_pro.C_biom (1-Y_pro).0.57 
 

   BC11 
 C_ac - Y_ac.C_biom - (1-Y_ac).C_ch4 -1  

   BC12 
 

-Y_h2.C_biom - (1-Y_h2).C_ch4 
  

   BC13  C_biom - C_xc   
   BC14 

 
C_biom - C_xc 

  
   BC15 

 C_biom - C_xc   
   BC16 

 
C_biom - C_xc 

  
   BC17  C_biom - C_xc   
   BC18 

 
C_biom - C_xc 

  
   BC19 

 C_biom - C_xc   
   BC20 

 
f_co2_ac -1 

 
   BC21  f_co2_bu  -1 
   BC22 

 
f_co2_h 

  
   BC23 

 f_co2_pro   
   BC24 

 
C_biom - C_xc 

  
   BC25  C_biom - C_xc   
   BC26 

 
C_biom - C_xc 

  
   BC27 

 C_biom - C_xc   
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Table A6.2 Continuation: Stoichiometry of the biochemical (BC) Gujer matrix incorporated in the nutrient recovery model for the anaerobic digester (NRM-
AD). For process description: see Table A6.1. For nomenclature: see Table A6.4. For state variable description: see Appendix 7. 
Component S_HPO4

2- S_HVa S_CH4 S_fa S_H2 S_H2S S_inert S_K+ 

Process kmol m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kmol m-3 kg COD m-3 kmol m-3 

BC1 P_xc - f_xi_xc.P_xi - f_si_xc.P_si - f_li_xc.P_li 
     

f_Si_xc  
BC2 

        
BC3 

       
 

BC4 P_li   f_fa_li     
BC5 -Y_su.P_biom 

   
(1-Y_su).f_h2_su 

  
-Y_su.K_biom 

BC6 -Y_aa.P_biom (1-Y_aa).f_va_aa   (1-Y_aa).f_h2_aa   -Y_aa.K_biom 
BC7 P_fa - Y_fa.P_biom 

  
-1 (1-Y_fa).0.3 

  
-Y_fa.K_biom 

BC8 -Y_c4.P_biom -1   (1-Y_c4).0.15   -Y_c4.K_biom 
BC9 -Y_c4.P_biom 

   
(1-Y_c4).0.2 

  
-Y_c4.K_biom 

  BC10 -Y_pro.P_biom    (1-Y_pro).0.43   -Y_pro.K_biom 
  BC11 -Y_ac.P_biom 

 
1-Y_ac 

    
-Y_ac.K_biom 

  BC12 -Y_h2.P_biom  1-Y_h2  -1   -Y_h2.K_biom 
  BC13 P_biom - P_xc 

      
K_biom - K_xc 

  BC14 P_biom - P_xc       K_biom - K_xc 
  BC15 P_biom - P_xc 

      
K_biom - K_xc 

  BC16 P_biom - P_xc       K_biom - K_xc 
  BC17 P_biom - P_xc 

      
K_biom - K_xc 

  BC18 P_biom - P_xc       K_biom - K_xc 
  BC19 P_biom - P_xc 

      
K_biom - K_xc 

  BC20      f_s_ac   
  BC21 

     
f_s_bu 

 
 

  BC22 
    -1 f_s_h   

  BC23 
     

f_s_pro 
 

 
  BC24 P_biom - P_xc       K_biom - K_xc 
  BC25 P_biom - P_xc 

      
K_biom - K_xc 

  BC26 P_biom - P_xc       K_biom - K_xc 
  BC27 P_biom - P_xc 

      
K_biom - K_xc 

 

 

 

 

 



 

 415

Table A6.2 Continuation: Stoichiometry of the biochemical (BC) Gujer matrix incorporated in the nutrient recovery model for the anaerobic digester (NRM-
AD). For process description: see Table A6.1. For nomenclature: see Table A6.4. For state variable description: see Appendix 7. 
Component S_NH4

+ S_pro S_SO4
2- S_su X_aa X_ac X_c X_c4 X_ch X_fa 

Process kmol m-3 kg COD m-3 kmol m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 

BC1 N_xc - f_xi_xc.N_xi - f_si_xc.N_si - f_pr_xc.N_aa 
     

-1 
 

f_ch_xc 
 

BC2    1     -1  
BC3  

         
BC4    1-f_fa_li       
BC5 -N_biom.Y_su (1-Y_su).f_pro_su -Y_su.S_biom -1 

      
BC6 N_aa - Y_aa.N_biom (1-Y_aa).f_pro_aa -Y_aa.S_biom  Y_aa      
BC7 -N_biom.Y_fa 

 
-Y_c4.S_biom 

      
Y_fa 

BC8 -N_biom.Y_c4 (1-Y_c4).0.54 -Y_c4.S_biom     Y_c4   
BC9 -N_biom.Y_c4 

 
-Y_ac.S_biom 

    
Y_c4 

  
  BC10 -N_biom.Y_pro -1 -Y_pro.S_biom        
  BC11 -N_biom.Y_ac 

 
-Y_ac.S_biom 

  
Y_ac 

    
  BC12 -N_biom.Y_h2  -Y_h2.S_biom        
  BC13 N_biom - N_xc 

 
S_biom - S_xc 

   
1 

   
  BC14 N_biom - N_xc  S_biom - S_xc  -1  1    
  BC15 N_biom - N_xc 

 
S_biom - S_xc 

   
1 

  
-1 

  BC16 N_biom - N_xc  S_biom - S_xc    1 -1   
  BC17 N_biom - N_xc 

 
S_biom - S_xc 

   
1 

   
  BC18 N_biom - N_xc  S_biom - S_xc   -1 1    
  BC19 N_biom - N_xc 

 
S_biom - S_xc 

   
1 

   
  BC20   -f_s_ac        
  BC21  

 
-f_s_bu 

       
  BC22   -f_s_h        
  BC23  -1 -f_s_pro 

       
  BC24 N_biom - N_xc  S_biom - S_xc    1    
  BC25 N_biom - N_xc 

 
S_biom - S_xc 

   
1 

   
  BC26 N_biom - N_xc  S_biom - S_xc    1    
  BC27 N_biom - N_xc 

 
S_biom - S_xc 

   
1 
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Table A6.2 Continuation: Stoichiometry of the biochemical (BC) Gujer matrix incorporated in the nutrient recovery model for the anaerobic digester (NRM-
AD). For process description: see Table A6.1. For nomenclature: see Table A6.4. For state variable description: see Appendix 7. 
Component X_h2 X_pr X_pro X_su X_inert X_li X_srb_ac X_srb_bu X_srb_h X_srb_pro 

Process kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 kg COD m-3 

BC1 
 

f_pr_xc 
  

f_xi_xc f_li_xc 
    

BC2 
          

BC3 
 

-1 
        

BC4      -1     
BC5 

   
Y_su 

      
BC6 

          
BC7 

          
BC8           
BC9 

          
  BC10 

  Y_pro        
  BC11 

          
  BC12 Y_h2          
  BC13 

   
-1 

      
  BC14 

          
  BC15 

          
  BC16           
  BC17 

  
-1 

       
  BC18 

          
  BC19 -1 

         
  BC20       Y_srb_ac    
  BC21 

       
Y_srb_bu   

  BC22 
        Y_srb_h  

  BC23 
         Y_srb_pro 

  BC24       -1    
  BC25 

       
-1   

  BC26 
        -1  

  BC27 
         -1 
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Table A6.3 Biochemical (BC) kinetic equations of the Gujer matrix incorporated in the nutrient 
recovery model for the anaerobic digester (NRM-AD). For process description: see Table A6.1. 
For nomenclature: see Table A6.4. For state variable description: see Appendix 7. 

Process Kinetic equation (kg COD m-3 d-1) 

BC1 1
�� . ç, 
BC2 156
,èéê . ç,5 
BC3 156
,èëì . ç�' 

BC4 156
,èí¼ç�� 
BC5 1��$ . ç�$ . E�$-9�$ + E�$ . !�",%(,. !*",��+�& 
BC6 1�(( . ç(( . E((-9(( + E(( . !�",%(,. !*",��+�& 
BC7 1�<( . ç<(. E<(-9<( + E<( . !�",%(,. !*",��+�& . !5�,<( 

BC8 1�,Å. ç,Å. E"¾(-9,Å + E"¾( . E"¾( E"¾( + E"2$ . !�",%(,. !*",��+�& . !5�,,Å 

BC9 1�,Å. ç,Å. E"2$-9,Å + E"2$ . E"2$ E"2$ + E"¾( . !�",%(,. !*",��+�& . !5�,,Å 

  BC10 1��'G. ç�'G. E"Ô'G-9�'G + E"Ô'G . !�",%(,. !*",��+�& . !5�,�'G 

  BC11 1�(, . ç(, . E"Ó,-9(, + E"Ó, . !�",(, . !*"�,(,. !*",��+�& 
  BC12 1�5� . ç5�. E5�-95� + E5� . !�",5�. !*",��+�& 
  BC13 1
	,,èÁà . ç�$ 
  BC14 1
	,,èÀÀ . ç(( 

  BC15 1
	,,èîÀ . ç<( 

  BC16 1
	,,èéï . ç,Å 

  BC17 1
	,,èëìß . ç�'G 

  BC18 1
	,,èÀé. ç(, 
  BC19 1
	,,èê# . ç5� 

  BC20 1��'%,(, . ç�'%,(, . E"Ó,-9�'%,(, + E"Ó, . E)ðï-9�'%,(, + E"Ó, . !�",�'% . !"#),(,. ç�'%,(, 
  BC21 1��'%,%$ . ç�'%,%$. E"2$-9�'%,%$ + E"2$ . E)ðï-9�'%,%$ + E"2$ . !�",�'% . !"#),%$ . ç�'%,%$ 

  BC22 1��'%,5�. ç�'%,5�. E"�-9�'%,5� + E"� . E)ðï-9�'%,5� + E"� . !�",�'% . !"#),5�. ç�'%,5� 

  BC23 1��'%,�'G. ç�'%,�'G. E"Ô'G-9�'%,�'G + E"Ô'G . E)ðï-9�'%,�'G + E"Ô'G . !�",�'% . !"#),�'G. ç�'%,�'G 

  BC24 1
	,,èÁìñ,Àé . ç�'%,(, 

  BC25 1
	,,èÁìñ,ñà . ç�'%,%$ 

  BC26 1
	,,èÁìñ,ê#. ç�'%,5� 

  BC27 1
	,,èëìß . ç�'G 
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Table A6.4 Nomenclature for Tables A6.2 and A6.3.  

Symbol Description Unit 

C_i Carbon content of component i kmol C kg-1 COD 

f_product_substrate Yield (catabolism only) of product on substrate kg COD kg-1 COD 

!"#,�$%�&'(&	 Hydrogen inhibition for substrate degradation - 

!"#),�$%�&'(&	 Hydrogen sulfide inhibition for substrate degradation - 

!*",��+�& Inhibition of biomass growth due to lack of inorganic nitrogen - 

!�",%(, pH inhibition of acetogens and acidogens - 

!�",� pH inhibition of component � - 

1
	,,� First order decay rate for biomass death of component �  d-1 

1
��,� Complex particulate first order disintegration rate of component �  d-1 

156
,� First order hydrolysis rate of component �  d-1 

K_i Potassium content of component i kmol K kg-1 COD 

1+,� Specific Monod maximum uptake rate of component �  d-1 

-9� Monod half saturation constant of component �  kg COD m-3 

N_i Nitrogen content of component i kmol N kg-1 COD 

P_i Phosphorus content of component i kmol P kg-1 COD 

S_i Sulfur content of component i kmol S kg-1 COD 

Y_substrate Yield of biomass on substrate  kg COD X kg-1 COD S 
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State vectors used in the nutrient recovery model (NRM) library 
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Table A7.1 Generic state vectors used in the nutrient recovery model (NRM) library, component symbols, and descriptions.  

 

State vector Component symbol Description Component symbol Description 

Components_S1_PC 

S_Acetate 
S_Al 
S_Butyrate 
S_Ca 
S_C_4_ 
S_Cl 
S_C_min4_ 
S_DOM 
S_Fe 
S_H_0_ 
S_K 

soluble acetate 
soluble aluminium 
soluble butyrate 
soluble calcium 
soluble carbonate (C, +IV) 
soluble chloride 
soluble methane (C, -IV) 
soluble dissolved organic matter 
soluble iron 
soluble hydrogen (H, 0) 
soluble potassium 

S_Mg 
S_Na 
S_N_min3_ 
S_N_0_ 
S_N_5_  
S_O_0_ 
S_P 
S_Propionate 
S_S_min2_ 
S_S_6_ 
S_Valerate 

soluble magnesium 
soluble sodium 
soluble ammonia (N, -III) 
soluble nitrogen (N, 0) 
soluble nitrate (N, +V) 
soluble oxygen (O, 0) 
soluble phosphorus 
soluble propionate 
soluble sulfide (S, -II) 
soluble sulfate (S, +VI) 
soluble valerate 

Components_S1_Bio 
S_aa 
S_fa 

soluble aminoacids  
soluble long chain fatty acids 

S_inert  
S_su 

soluble inerts  
soluble sugars 

Components_S2 

S_C_4_ 
S_C_min4_ 
S_H_0_ 
S_N_min3_ 
S_N_0_ 

soluble carbonate (C, +IV) 
soluble methane (C, -IV) 
soluble hydrogen (H, 0) 
soluble ammonia (N, -III) 
soluble nitrogen (N, 0) 

S_N_5_ 
S_O_0_  
S_S_min2_ 
S_S_6_ 

soluble nitrate (N, +V) 
soluble oxygen (O, 0) 
soluble sulfide (S, -II) 
soluble sulfate (S, +VI) 
 

Components_G 

G_CH4 
G_CO2 
G_H2 
G_H2O 

methane gas 
carbon dioxide gas 
hydrogen gas 
water vapour 

G_H2S 
G_NH3 
G_N2 
G_O2 

hydrogen sulfide gas 
ammonia gas 
nitrogen gas 
oxygen gas 

Components_P 

P_Al 
P_Ca 
P_C_4_ 
P_Fe 
P_K 

precipitated aluminium 
precipitated calcium 
precipitated carbonate (C, +IV) 
precipitated iron 
precipitated potassium 

P_Mg 
P_N_min3_ 
P_P 
P_S_min2_ 
P_S_6_ 

precipitated magnesium 
precipitated ammonia (N, -III) 
precipitated phosphorus 
precipitated sulfide (S, -II) 
precipitated sulfate (S, +VI) 

Components_X 

X_aa 
X_ac 
X_c 
X_ch 
X_c4 
X_fa 
X_h2 
X_inert 

aminoacid degraders  
acetate degraders 
composites 
carbohydrates 
valerate and butyrate degraders  
long chain fatty acid degraders 
hydrogen reducing bacteria  
particulate inerts 

X_li 
X_pr 
X_pro 
X_su 
X_srb_ac 
X_srb_bu 
X_srb_h 
X_srb_pro  

lipids 
proteins 
propionate degraders 
sugar degraders  
sulfate reducing bacteria using acetate  
sulfate reducing bacteria using butyrate 
sulfate reducing bacteria using hydrogen 
sulfate reducing bacteria using propionate   
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Table A8.1 Types of data required and datasets available for each key unit in the nutrient recovery model (NRM) library. AD = anaerobic digestion; Prec = 
precipitation/crystallization; Strip = stripper; Scrub = scrubber; N/A = not applicable.     

 NRM-AD NRM-Prec NRM-Strip NRM-Scrub 

Input waste characteristics 

Biological components Sludge: Astals et al. (2013), 
Ikumi (2011), 

Tchobanoglous et al. (2003); 
Manure: Cesur and Albertson 

(2005), Martin (2003), 
Mattocks et al. (2002);  

Co-digestion: Zaher et al. (2009) 
+ own data 

N/A N/A N/A 

Physicochemical components  

Ali and Schneider (2008),  
Bhuiyan et al. (2007),  
Harrison et al. (2011),  
Schneider et al. (2013)  

+ own data 

Bhuiyan et al. (2007), 
Campos et al. (2013), 

Collivignarelli et al. (1998), 
Powers et al. (1987), 

Yu et al. (2011)  
+ own data 

Campos et al. (2013), 
Collivignarelli et al. (1998), 

Manuzon et al. (2007),  
Powers et al. (1987),  

Yu et al. (2011)  
+ own data 

Physicochemical stoichiometric parameters 

Acid-base / ion pairing 
equilibrium constants (-(%, -��) 

NIST (2001), PHREEQC NIST (2001), PHREEQC NIST (2001), PHREEQC NIST (2001), PHREEQC 

Water dissociation constant (-:) NIST (2001), PHREEQC NIST (2001), PHREEQC NIST (2001), PHREEQC NIST (2001), PHREEQC 

Solubility products (-�) NIST (2001), PHREEQC NIST (2001), PHREEQC NIST (2001), PHREEQC NIST (2001), PHREEQC 

Henry's law coefficients (�) Sander (1999) Sander (1999) Sander (1999) Sander (1999) 

Physicochemical kinetic parameters 

Precipitation / dissolution transfer 
coefficients and reaction order 

(1, ?) 

Bénézeth et al. (2008), 
Chauhan et al. (2011),  

Ikumi (2011), 
Inskeep and Silvertooth (1988),  

Johnson (1990), 
Musvoto et al. (1997, 2000b), 

Nielsen (1984), 
NIST (2001),  to mention a few 

Ali and Schneider (2008),  
Bhuiyan et al. (2008),  
Galbraith et al. (2014),  
Harrison et al. (2011),  

NIST (2001), 
Schneider et al. (2013), 

to mention a few 

Bénézeth et al. (2008), 
Chauhan et al. (2011), 

Ikumi (2011), 
Inskeep and Silvertooth (1988), 

Johnson (1990), 
Musvoto et al. (1997, 2000b), 

Nielsen (1984), 
NIST (2001), to mention a few 

Belcu and Turtoi (1986), 
NIST (2001) 

Liquid-gas transfer coefficients 
(-7/4�) 

Batstone et al. (2002), 
Chapra (2008), 

Lizarralde et al. (2011), 
Musvoto et al. (1997), 

Munz and Roberts (1989) 

If pH increase with aeration:  
Batstone et al.(2002), Chapra (2008), 

Lizarralde et al. (2011),  
Musvoto et al. (1997), 

Munz and Roberts (1989) 

Collivignarelli et al. (1998), 
Musvoto et al. (1997, 2000a),  

Powers et al. (1987),  
Yu et al. (2011) 

Collivignarelli et al. (1998), 
Manuzon et al. (2007),  

Yu et al. (2011) 
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Biological stoichiometric parameters 

Biomass composition 

Batstone et al. (2002), 
Ikumi (2011), 

Tchobanoglous et al. (2003), 
Zaher et al. (2009) 

N/A N/A N/A 

Pre-set fractions 
(f_product_substrate)  

Batstone et al. (2002), 
Ikumi (2011), 

Knobel and Lewis (2002),  
Lizarralde et al. (2010) 

N/A N/A N/A 

Biomass substrate yield 
(Y_substrate) 

Batstone et al. (2002),  
Ikumi (2011),  

Knobel and Lewis (2002), 
Lizarralde et al. (2010) 

N/A N/A N/A 

Biological kinetic parameters 

Uptake rates (1+), disintegration 
rates (1
��), decay rates (1
	,), 

etc.  

Batstone et al. (2002), 
Ikumi (2011), 

Knobel and Lewis (2002), 
Lizarralde et al. (2010) 

N/A N/A N/A 

Input/output data + operational factors (temperature, pH, etc.) = calibration/validation data 

 

Sludge: Astals et al. (2013); 
Manure: Cesur and Albertson 

(2005), Martin (2003), 
Mattocks et al. (2002), 

+ own data + data from industry 

Ali and Schneider (2008),  
Bhuiyan et al. (2007, 2008),  

Harrison et al. (2011),  
Schneider et al. (2013) 

+ own data + data from industry 

Campos et al. (2013), 
Collivignarelli et al. (1998), 

Powers et al. (1987), 
Yu et al. (2011) 

+ own data + data from 
industry 

Campos et al. (2013), 
Collivignarelli et al. (1998), 

Koptev (1966), 
Manuzon et al. (2007),  

Melse and Ogink (2005),  
Powers et al. (1987), 

Yu et al. (2011) 
+ own data + data from industry 
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Additional references for Table A8.1 not yet included in the generic reference list:   
Bénézeth, P., Palmer, D.A, Wesolowski, D.J., 2008. Dissolution/precipitation kinetics of    
  boehmite and gibbsite: Application of a pH-relaxation technique to study near-  
  equilibrium rates. Geochim. Cosmochim. Acta 72, 2429-2453.   

Inskeep, W.P., Silvertooth, J.C., 1988. Kinetics of hydroxyapatite precipitation at pH 7.4 to 8.4.  
  Geochim. Cosmochim. Acta 52, 1883-1893. 

Johnson, M.L., 1990. Ferrous Carbonate Precipitation Kinetics – A Temperature Ramped  
  Approach. PhD Thesis, Rice University, Houston, Texas, USA. 

Koptev, 1966. The solubility of ammonium sulphate and saturator washing conditions. Coke  
  Chem. Works 2, 32-33. 

Sander, R., 1999. Compilation of Henry’s law constants for inorganic and organic species of  
  potential importance in environmental chemistry. Report, Air Chemistry Department,  
  Max-Planck Institute of Chemistry, Mainz, USA. 
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Table A8.2 Input sludge characteristics, reactor design, initial values, and operating conditions for the anaerobic digester at Holmen Paper Madrid (Spain). 
Data used for validation of the nutrient recovery model for the anaerobic digester (NRM-AD). COD = chemical oxygen demand. COD input fractionation was 
conducted following the procedure proposed by Grau et al. (2007a). For state variable description: see Appendix 7. COD = chemical oxygen demand; HRT = 
hydraulic residence time; Q_liq = liquid flow rate; T_liq = liquid temperature; T_operational = operational temperature; V_liq = liquid volume.  

INPUT FLOW REACTOR (DESIGN + INITIAL VALUES + OPERATION) 

S_aa (kg COD m-3) 0 S_Acetate (mol m-3) 2.85 S_aa (kg COD m-3) 0.0172 S_Acetate (mol m-3) 0.0347 

S_fa (kg COD m-3) 0.217 S_Al (mol m-3) Unknown S_fa (kg COD m-3) 0.0113 S_Al (mol m-3) unknown 

S_inert (kg COD m-3) 0.170 S_Butyrate (mol m-3) 1.14 S_inert (kg COD m-3) 0.480 S_Butyrate (mol m-3) 0.322 

S_su (kg COD m-3) 1.05 S_C_4_ (mol m-3) 12.8 S_su (g COD m-3) 0.569 S_C_4_ (mol m-3) 60.1 

X_aa (kg COD m-3) 0 S_C_min4_ (mol m-3) 0 X_aa (kg COD m-3) 0.112 S_C_min4_ (mol m-3) 1.23 

X_ac (kg COD m-3) 0 S_Ca (mol m-3) 2.85 X_ac (kg COD m-3) 0.0178 S_Ca (mol m-3) 7.10 

X_c4 (kg COD m-3) 0 S_Cl (mol m-3) 0.0357 X_c4 (kg COD m-3) 1.33 S_Cl (mol m-3) 0.0357 

X_c (kg COD m-3) 0 S_Fe (mol m-3) Unknown X_c (kg COD m-3) 31.3 S_Fe (mol m-3) unknown 

X_ch (kg COD m-3) 0.187 S_H_0_ (mol m-3) 0 X_ch (kg COD m-3) 4.03 S_H_0_ (mmol m-3) 0.0344 

X_fa (kg COD m-3) 0 S_K (mol m-3) 0.0350 X_fa (kg COD m-3) 2.30 S_K (mol m-3) 6.39 

X_h2 (kg COD m-3) 0 S_Mg (mol m-3) 2.41 X_h2 (kg COD m-3) 0.127 S_Mg (mol m-3) 2.69 

X_inert (kg COD m-3) 0.0936 S_N_0_ (mol m-3) 0 X_inert (kg COD m-3) 13.8 S_N_0_ (mmol m-3) 0.000256 

X_li (kg COD m-3) 0.140 S_N_5_ (mol m-3) 0 X_li (kg COD m-3) 6.98 S_N_5_ (mmol m-3) 0.00100 

X_pr (kg COD m-3) 0 S_N_min3_ (mol m-3) 7.36 X_pr (kg COD m-3) 0.998 S_N_min3_ (mol m-3) 4.57 

X_pro (kg COD m-3) 0 S_Na (mol m-3) 0.0357 X_pro (kg COD m-3) 0.0178 S_Na (mol m-3) 0.0357 

X_srb_ac (kg COD m-3) 0 S_O_0_ (mmol m-3) 3.98 X_srb_ac (kg COD m-3) 0.469 S_O_0_ (mol m-3) 0 

X_srb_bu (kg COD m-3) 0 S_P (mol m-3) 0.309 X_srb_bu (kg COD m-3) 4.99 S_P (mol m-3) 0.245 

X_srb_h (kg COD m-3) 0 S_Propionate (mol m-3) 1.63 X_srb_h (kg COD m-3) 43.6 S_Propionate (mol m-3) 0.0451 

X_srb_pro (kg COD m-3) 0 S_S_6_ (mol m-3) 5.42 X_srb_pro (kg COD m-3) 16.6 S_S_6_ (mol m-3) 1.16 

X_su (kg COD m-3) 0 S_S_min2_ (mol m-3) 0.0106 X_su (kg COD m-3) 7.20 S_S_min2_ (mol m-3) 6.35 

  S_Valerate (mol m-3) 0.878   S_Valerate (mol m-3) 0.402 

Q_liq (m3 d-1) 15.0 T_liq (K) 28.9 Fraction of solids in effluent 0.002 V_liq (m3) 2.80 

pH (-) 6.66   T_operational (K) 302.15 HRT (h) 4.48 
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Table A8.3 Input digestate characteristics and operating conditions used for the lab-scale 
experiments on struvite precipitation. Data used for validation of the nutrient recovery model for 
the precipitation/crystallization unit (NRM-Prec). For state variable description: see Appendix 7. 

a Estimated from the soluble chemical oxygen demand (COD) content following the procedure described in Cesur and  
   Albertson (2005).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Digestate 1 Digestate 2  Variable Digestate 1 Digestate 2 

S_Acetatea (mol m-3) 0.100 0.100   S_Mg (mol m-3) 26.1 26.4 

S_Al (mol m-3) 0.0100 1.00   S_N_5_ (mol m-3) 98.0 127 

S_Butyratea (mol m-3) 0.100 0.100   S_N_min3_ (mol m-3) 362 346 

S_C_4_ (mol m-3) 10.0 10.0   S_Na (mol m-3) 100 127 

S_C_min4_a (mmol m-3) 0.100 0.100   S_P (mol m-3) 38.8 45.5 

S_Ca (mol m-3) 42.1 57.1   S_Propionatea (mol m-3) 0.0100 0.0100 

S_Cl (mol m-3) 73.3 25.0   S_S_6_ (mol m-3) 40.0 20.0 

S_Fe (mol m-3) 170 0.100   S_S_min2_ (mmol m-3) 0.100 0.100 

S_K (mol m-3) 104 122   S_Valeratea (mmol m-3) 0.100 0.100 

pH (-) 8.43 7.83   Temperature (K) 293.15 293.15 
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Table A8.4 Input flow composition and operating conditions used for validation of the treatment 
train: NRM-Chem / NRM-Strip / NRM-Scrub. Operational data were obtained from a technical 
inquiry at company X. Chem = chemical dosing unit; Strip = stripper; Scrub = scrubber. For 
state variable description: see Appendix 7. DOM = dissolved organic matter; P_gas = gas 
pressure; Q_gas = gas flow rate; Q_liq = liquid flow rate.  
Input flow (after NaOH-dose)a Operation NRM-Strip Operation NRM-Scrub 

S_Al (mol m-3) 20 Q_liq_in (m3 d-1) 2,004 H2SO4-dose (m3 d-1) 20.16 

S_C_4_ (mol m-3) 80 Q_gas_in (m3 d-1) 1,560,000 Q_gas_in (m3 d-1) = Output NRM-Strip 

S_C_min4_ (mol m-3) 0.0080 Column height (m) 11.5 Column height (m) 11.5 

S_Ca (mol m-3) 60 Temperature (ºC) 328.15 Temperature (ºC) = Output NRM-Strip 

S_Cl (mol m-3) 80 pH (-) 10.3 pH acid (-) 1.3 

S_DOM (mol m-3) 10 Vol_liq (m3) 81.3 Vol_liq (m3) 20.16 

S_Fe (mol m-3) 1.2 P_gas_in (atm) 2.42 P_gas_in (atm) = Output NRM-Strip 

S_H_0_ (mol m-3) 0.0010     

S_K (mol m-3) 33     

S_Mg (mol m-3) 43     

S_N_0_ (mol m-3) 0.10     

S_N_5_ (mol m-3) 59     

S_N_min3_ (mol m-3) 199     

S_Na (mol m-3) 102     

S_O_0_ (mol m-3) 0     

S_P (mol m-3) 33     

S_S_6_ (mol m-3) 40     

S_S_min2_ (mol m-3) 0     

Temperature (K) 293.15     
a Dose of 4.1 kg NaOH m-3 as specified by company X.  
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Table A9.1 Model verification/validation against prior knowledge: some dynamic simulation 
tests and effects. All results were found to be realistic. For state variable description: see 
Appendix 7. AD = anaerobic digestion; Prec = precipitation/crystallization; Scrub = scrubber; 
SRB = sulfate reducing bacteria; Strip = stripper; VFA = volatile fatty acids. 

NRM-AD NRM-Prec NRM-Strip NRM-Scrub 
S_C_4_in (alkalinity) ↓ ⇒  

(delayed) pH ↓,  S_C_4_out ↓,  
VFA ↑, biogas production ↓  

S_P_in ↓ ⇒  
struvite precipitation ↓ 

Reactor height ↓ ⇒ 
no influence on performance   

Reactor height ↓ ⇒  
no influence on performance  

 pH ↑ ⇒  CO3 precipitation ↑ 
pH ↓ ⇒  CO2 stripping ↑  

(not biologically mediated) 

S_Mg_in ↓ ⇒ 
 pH ↓, S_P_out ↑,   

phosphorus recovery 
efficiency ↓ 

Temperature ↑ ⇒  
S_N_min3_out ↓,  

p_NH3_out (gas phase  
partial pressure) ↑,  

NH3 recovery efficiency ↑,  
effluent pH ↓ 

p_NH3_in (gas phase  
partial pressure) ↑ ⇒  
fertilizer alkalinity ↓  

(NH2COO- formation),  
N % fertilizer ↑ 

Modification: pH-inhibition level 
SRBs = 5, other bacteria = 6 ⇒ H2S production ↑ if pH < 6 

S_P_in ↑ ⇒  
phosphorus precipitation ↑ 

(supersaturation ↑) 

Q_liq_in ↑ ⇒  
residence time ↓,  

CaCO3 precipitation ↓,  
scaling potential ↓ 

 

Temperature ↑ ⇒  
biogas production ↑ 

pH ↓ (input nutrient  
contents ↓) ⇒   

fertilizer density ↓ and 
molecular weight ↓ 

  

 

NRM-AD:  

• Reducing the input alkalinity to the digester results in a (delayed) pH decrease (less 
carbonate buffer) because of volatile fatty acid accumulation. Methanogenic bacteria 
are very sensitive to pH decreases (Vanrolleghem and Lee, 2003). Hence, a reduction 
of the biogas production is observed. Obviously, the output alkalinity decreases as well.  

• Increasing the input pH results in an increased formation of carbonate precipitates in 
the digester, whereas decreasing the pH stimulates the stripping of CO2 (see carbonate 
equilibria as function of pH; Zuhmdahl, 2005).  

• Setting the pH inhibition level of sulfate reducing bacteria (SRBs) at 5, but for the other 
bacteria at 6, leads to increased H2S production if the pH in the digester becomes lower 
than 6. Hence, the other bacteria are inhibited, whereas the SRBs still work at pH 
values lower than 6.  

• Increasing the temperature in the digester stimulates the production of biogas. The 
increased temperatures facilitate faster reaction rates, and thus more biogas can be 
produced from the organic matter in an equal amount of time (Tchobanoglous et al., 
2003).  

NRM-Prec:  

• Decreasing the P concentration in the input waste flow reduces the potential for struvite 
(MgNH4PO4:6H2O) precipitation. 

• Decreasing the Mg concentration in the input waste flow decreases the pH in the 
reactor, which is obvious as a Mg source is often added to induce P precipitation (Le 
Corre et al., 2007b). Hence, less Mg-P precipitates are formed, the effluent P 
concentration increases, while the P recovery efficiency decreases. 

• Increasing the P concentration in the input waste flow at a particular (neutral to high) pH 
increases the amount of P precipitates formed (precipitation is driven by 
supersaturation).  

• Decreasing the pH by decreasing the concentration of nutrients, such as Mg and Ca, in 
the input waste flow reduces the resulting fertilizer density and molecular weight (fewer 
and less heavy P precipitates). 

NRM-Strip:  

• Decreasing the reactor height has no influence on the N recovery efficiency because 
the NH3-NH4

+ equilibrium between a gas bubble and the surrounding water is reached 
in a very small time interval (Gujer, 2008).  

• Increasing the temperature increases the NH3 stripping performance (Wang et al., 
2007). Hence, lower effluent NH4-N concentrations and higher NH3 partial pressures in 
the gas phase are found. The more NH3 is stripped out, the lower the effluent pH.  
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• Increasing the liquid flow rate, reduces the residence time in the system. As such, the 
(slow) formation of CaCO3 precipitates in the reactor is reduced, and thus also the 
scaling potential.  

NRM-Scrub:  

• Decreasing the reactor height has no influence on the N recovery efficiency because 
the NH3-NH4

+ equilibrium between a gas bubble and the surrounding water is reached 
in a very small time interval (Gujer, 2008).  

• Increasing the partial pressure of NH3 in the incoming gas phase (coming from the 
stripper) decreases the fertilizer alkalinity (through NH2COO- formation) and increases 
the N concentration in the resulting ammonium sulfate solution. Hence, more N can be 
recovered in an equal amount of time.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



 

 

APPENDIX 10:  

Results from global sensitivity analyses of nutrient recovery 

models (NRM) 
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Table A10.1 Global sensitivity analyses for the nutrient recovery model of the anaerobic digester (NRM-AD): standardized regression coefficient (SRC) and its 
t-statistic (tSRC) per performance indicator for Scenario A (all applications). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off threshold 2 (CFT2); light 
grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.4.  

 CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

S_Inert  0.005 0.715 -0.005 -0.519 0.024 1.715 0.038 1.399 -0.002 -0.182 -0.001 -0.140 -0.002 -2.443 0.027 2.117 0.047 1.746 

S_fa    -0.005 -0.823 -0.003 -0.331 0.063 4.403 -0.025 -0.920 0.001 0.057 0.003 0.376 2.16E-04 0.252 -0.006 -0.466 -0.015 -0.557 

S_su   0.003 0.467 -4.14E-05 -0.004 0.035 2.467 0.020 0.723 -0.014 -1.333 0.015 1.981 -3.89E-04 -0.452 0.006 0.434 0.030 1.102 

X_Inert    0.007 1.068 -0.002 -0.229 -0.007 -0.453 0.033 1.234 -0.014 -1.330 0.014 1.814 -0.001 -0.821 0.020 1.577 0.034 1.249 

X_ch    -0.004 -0.584 0.011 1.136 0.039 2.738 0.022 0.798 -0.006 -0.633 0.004 0.454 4.19E-04 0.484 0.018 1.384 0.031 1.134 

X_li   0.004 0.680 0.012 1.214 0.025 1.811 0.026 0.944 0.012 1.185 -0.011 -1.438 0.001 0.941 0.005 0.388 0.033 1.215 

X_pr    -0.010 -1.604 -0.009 -0.873 0.038 2.617 -0.003 -0.105 -0.017 -1.667 0.006 0.810 4.79E-04 0.551 0.003 0.196 0.005 0.185 

S_Acetate   0.008 1.289 0.038 3.782 -0.012 -0.847 0.024 0.888 -0.026 -2.509 0.007 0.905 0.001 0.588 -0.117 -9.080 0.024 0.897 

S_Al   0.024 3.690 -0.065 -6.573 0.114 7.985 -0.029 -1.059 0.097 9.492 0.026 3.402 -0.020 -22.818 0.291 22.690 -0.029 -1.057 

S_Butyrate    -0.004 -0.649 0.035 3.514 0.100 7.050 -0.060 -2.195 -0.007 -0.714 -0.003 -0.381 -0.004 -4.454 -0.132 -10.224 -0.059 -2.172 

S_C_4_    0.001 0.158 0.704 70.913 -0.052 -3.640 -0.044 -1.609 0.159 15.642 -0.014 -1.780 -0.005 -6.224 -0.221 -17.095 -0.044 -1.616 

S_C_min4_    0.924 145.001 0.364 36.517 -0.008 -0.565 0.007 0.242 -0.010 -0.969 -0.009 -1.092 4.34E-05 0.050 0.002 0.186 0.007 0.251 

S_Ca    0.009 1.414 -0.127 -12.886 0.130 9.260 0.042 1.529 0.093 9.271 0.024 3.174 -0.009 -10.115 0.338 25.987 0.042 1.545 

S_Cl   0.016 2.551 0.057 5.789 -0.040 -2.841 -0.025 -0.926 -0.033 -3.269 0.002 0.205 -0.001 -1.010 -0.160 -12.447 -0.024 -0.905 

S_Fe   0.0015 0.235 -0.113 -11.518 0.071 5.059 -0.035 -1.289 0.061 6.074 0.034 4.457 -0.005 -5.965 0.299 23.213 -0.034 -1.271 

S_H_0_    0.010 1.507 0.039 3.967 -0.019 -1.378 0.059 2.137 4.44E-04 0.044 -0.003 -0.407 4.20E-05 0.049 -0.018 -1.401 0.059 2.162 

S_K    -0.004 -0.716 -0.038 -3.837 0.036 2.517 0.040 1.471 0.039 3.816 0.005 0.595 0.999 1163.220 0.177 13.798 0.040 1.465 

S_Mg    -0.005 -0.834 -0.079 -7.829 0.113 7.866 0.039 1.436 -0.051 -4.907 -0.009 -1.157 -0.005 -5.190 0.348 26.996 0.039 1.444 

S_N_0_    0.012 1.943 0.052 5.229 -0.015 -1.065 0.011 0.399 0.004 0.405 0.003 0.432 -9.17E-06 -0.011 -0.012 -0.966 0.011 0.413 

S_N_5_    0.018 2.839 0.069 6.938 -0.054 -3.843 -0.036 -1.297 -0.035 -3.417 4.54E-04 0.059 -0.008 -9.715 -0.164 -12.626 -0.036 -1.313 

S_N_min3_   0.006 0.876 -0.044 -4.448 -0.033 -2.345 0.004 0.137 0.913 89.965 0.010 1.309 -0.007 -7.815 -0.056 -4.379 0.004 0.131 

S_Na    0.006 0.966 -0.063 -6.394 0.067 4.721 0.051 1.890 0.031 3.045 0.244 31.368 2.13E-05 0.025 0.189 14.680 0.052 1.916 

S_P   0.008 1.190 0.062 6.289 -0.059 -4.184 -0.006 -0.236 -0.037 -3.633 0.938 121.059 0.002 2.669 -0.192 -14.959 -0.007 -0.261 

S_Propionate   0.018 2.900 0.041 4.107 0.052 3.625 -0.056 -2.072 -0.019 -1.902 0.005 0.692 -0.004 -5.046 -0.108 -8.367 -0.056 -2.069 

S_S_6_    0.011 1.818 0.116 11.679 -0.102 -7.143 -0.039 -1.455 -0.063 -6.208 -0.003 -0.342 -0.011 -12.383 -0.355 -27.631 -0.040 -1.472 

S_S_min2_   -0.014 -2.242 0.006 0.647 0.005 0.374 -0.012 -0.443 -0.008 -0.799 0.005 0.660 -1.44E-04 -0.166 -0.012 -0.960 -0.012 -0.444 

S_Valerate   0.003 0.517 0.061 6.126 0.118 8.262 -0.012 -0.442 -0.031 -3.065 0.006 0.828 -0.007 -7.509 -0.099 -7.700 -0.012 -0.435 

pH_liq   -0.004 -0.667 -0.013 -1.345 0.006 0.419 -0.005 -0.183 0.011 1.111 -0.016 -2.039 0.000 -0.533 0.017 1.316 -0.005 -0.198 

temp_liq    0.307 49.000 0.487 48.865 -0.021 -1.469 0.022 0.817 -0.172 -16.862 -0.023 -2.919 -0.006 -6.720 -0.103 -7.934 0.023 0.835 

Q_liq_in   0.009 1.397 -0.001 -0.147 0.851 60.389 0.020 0.746 0.017 1.682 -0.009 -1.189 0.001 0.670 -0.013 -1.022 0.070 2.572 

k_Al2O3    -0.006 -0.985 -0.017 -1.723 0.026 1.865 0.004 0.130 -0.019 -1.879 -0.005 -0.628 -0.001 -1.428 -0.013 -1.020 0.004 0.135 



 

 435

(Continuation) CH4 production Biogas production DIgestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

k_AlPO4   0.008 1.294 0.019 1.955 0.005 0.336 -0.012 -0.430 0.012 1.189 -0.006 -0.827 0.002 2.210 0.011 0.870 -0.012 -0.429 

k_Anhydrite   0.008 1.232 -0.001 -0.097 0.004 0.271 0.011 0.393 0.006 0.625 0.007 0.853 0.001 0.716 0.000 0.016 0.010 0.374 

k_Aragonite   -0.021 -0.285 0.004 0.443 -0.008 -0.541 -0.061 -2.220 -0.007 -0.688 -0.001 -0.086 -0.001 -0.745 -0.001 -0.064 -0.062 -2.235 

k_Boehmite   0.004 0.559 0.002 0.235 -0.010 -0.693 0.006 0.210 -0.013 -1.301 0.002 0.290 -0.001 -0.782 0.014 1.077 0.006 0.231 

k_Ca4H(PO4)3:3H2O    0.011 1.791 -0.002 -0.196 -0.023 -1.609 -0.046 -1.699 -0.012 -1.210 0.006 0.708 0.002 1.983 0.010 0.805 -0.047 -1.720 

k_CaHPO4:2H2O    0.003 0.408 0.003 0.319 0.033 2.330 0.016 0.566 0.008 0.802 0.007 0.884 3.06E-04 0.357 0.009 0.721 0.016 0.567 

k_CaHPO4bis    -0.097 -1.056 0.012 1.261 0.030 2.104 -0.041 -1.524 0.003 0.338 0.009 1.175 4.32E-04 0.506 -0.024 -1.826 -0.042 -1.541 

k_Calcite    -0.007 -1.131 -0.014 -1.393 -0.019 -1.358 -0.010 -0.377 -0.008 -0.757 -0.003 -0.401 -4.21E-04 -0.492 -0.006 -0.497 -0.009 -0.341 

k_Diaspore   -0.004 -0.649 0.004 0.379 -0.002 -0.145 0.025 0.905 0.004 0.366 -0.009 -1.118 -0.002 -1.999 0.000 0.007 0.024 0.890 

k_Dolomite    -0.010 -1.606 -0.004 -0.453 -0.014 -0.972 -0.011 -0.420 -0.021 -2.063 0.003 0.367 4.25E-04 0.496 -0.003 -0.230 -0.011 -0.415 

k_FeS_ppt  0.003 0.465 -0.007 -0.734 -0.024 -1.658 0.006 0.229 -0.005 -0.494 -0.004 -0.550 0.001 0.855 0.029 2.266 0.006 0.217 

k_Gibbsite  0.003 0.449 0.007 0.659 -0.013 -0.890 0.018 0.666 0.021 2.037 0.001 0.126 0.002 1.901 0.004 0.326 0.018 0.647 

k_Hercynite  0.002 0.269 -0.016 -1.666 0.008 0.562 -0.009 -0.320 0.024 2.387 -0.001 -0.131 -0.001 -1.192 0.008 0.595 -0.008 -0.312 

k_Hydroxyapatite  0.008 1.312 0.003 0.326 -0.002 -0.106 -0.030 -1.102 0.009 0.933 -0.001 -0.142 0.002 1.944 0.011 0.886 -0.029 -1.090 

k_Kstruvite   0.009 1.452 0.011 1.090 -0.003 -0.197 0.032 1.180 -0.007 -0.650 -0.002 -0.278 -3.32E-04 -0.384 0.012 0.952 0.031 1.158 

k_Mackinawite    -0.004 -0.622 0.002 0.163 0.008 0.559 0.024 0.888 -0.005 -0.517 0.012 1.484 0.001 0.674 0.003 0.248 0.025 0.905 

k_Magnesite   0.001 0.186 -0.007 -0.664 0.018 1.289 -0.048 -1.780 0.013 1.274 -0.007 -0.936 -1.63E-04 -0.189 -0.016 -1.208 -0.049 -1.794 

k_Mg3(PO4)2   -0.003 -0.422 0.003 0.332 -0.039 -2.733 0.008 0.304 0.015 1.437 0.012 1.591 -1.40E-04 -0.164 0.012 0.921 0.009 0.320 

k_MgHPO4:3H2O   -0.010 -1.552 0.007 0.698 0.023 1.576 0.023 0.849 0.010 0.937 -0.012 -1.527 0.001 1.574 0.003 0.208 0.023 0.845 

k_Siderite  0.002 0.360 0.018 1.791 -0.009 -0.603 -0.004 -0.140 -0.019 -1.872 -0.013 -1.636 2.50E-04 0.287 -0.001 -0.043 -0.004 -0.164 

k_Struvite    -0.012 -1.841 -0.004 -0.353 0.019 1.331 0.036 1.311 0.003 0.336 -0.008 -0.975 -0.002 -2.258 0.005 0.347 0.036 1.318 

k_Vivianite  -0.009 -1.472 0.004 0.430 0.007 0.510 -0.003 -0.112 0.000 -0.006 0.002 0.289 -1.72E-04 -0.199 -0.011 -0.852 -0.003 -0.098 

kLa_H2   0.006 0.984 -0.007 -0.734 0.020 1.378 0.012 0.441 0.001 0.138 -0.003 -0.441 -0.002 -1.783 -0.003 -0.222 0.012 0.445 

D_H2    0.017 2.720 0.015 1.470 0.004 0.296 -0.017 -0.624 -0.020 -1.933 0.008 1.013 0.001 0.914 0.003 0.228 -0.017 -0.625 

theta_CH4_g_   0.001 0.201 -0.019 -1.930 -0.020 -1.382 0.035 1.280 0.002 0.180 -0.015 -1.919 0.001 1.197 0.003 0.224 0.035 1.281 

theta_CO2_g_  0.004 0.717 -0.029 -2.960 -0.019 -1.340 0.026 0.975 0.004 0.397 0.008 0.992 -1.42E-04 -0.167 -0.013 -0.973 0.027 0.987 

theta_H2S_g_  0.004 0.591 0.004 0.394 -0.012 -0.825 -0.036 -1.333 -0.007 -0.646 -0.004 -0.486 -0.001 -1.548 -0.002 -0.140 -0.036 -1.325 

theta_H2_g_   0.005 0.770 0.007 0.657 0.007 0.485 -0.008 -0.309 0.002 0.177 0.006 0.816 -0.001 -0.848 0.001 0.046 -0.008 -0.290 

theta_N2_g_   0.008 1.319 -0.018 -1.775 0.019 1.349 -0.013 -0.461 0.012 1.220 0.004 0.568 -0.001 -0.759 -0.018 -1.397 -0.013 -0.469 

theta_NH3_g_  0.005 0.789 -0.001 -0.112 -0.034 -2.397 0.045 1.629 0.012 1.163 -0.008 -1.063 9.50E-05 0.111 0.010 0.806 0.045 1.647 

kdec_Xsrb_ac    0.006 0.914 -0.001 -0.069 -0.005 -0.356 0.016 0.581 0.004 0.424 -0.011 -1.367 0.001 1.462 0.006 0.473 0.016 0.578 

kdec_Xsrb_bu   -0.003 -0.553 -0.011 -1.100 -0.004 -0.248 0.018 0.652 0.007 0.647 -0.002 -0.195 0.001 0.733 0.010 0.818 0.018 0.680 

kdec_Xsrb_h    -0.011 -1.769 -0.002 -0.231 0.010 0.686 0.009 0.345 0.007 0.680 -0.008 -1.034 0.001 1.109 0.002 0.164 0.009 0.345 

kdec_Xsrb_pro   0.005 0.796 -0.008 -0.821 0.005 0.335 -0.044 -1.601 0.016 1.621 -0.004 -0.496 1.39E-04 0.162 -0.010 -0.795 -0.044 -1.602 
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(Continuation) CH4-production Biogas production DIgestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

km_srb_ac   0.0003 0.048 -2.62E-04 -0.026 -0.005 -0.325 0.023 0.850 0.002 0.188 -0.005 -0.660 0.001 0.662 0.008 0.608 0.024 0.876 

km_srb_bu    0.009 1.360 -0.009 -0.930 -0.028 -1.956 0.060 2.181 0.015 1.426 0.000 0.043 -0.001 -1.515 0.003 0.264 0.060 2.182 

km_srb_h    -0.005 -0.868 0.003 0.279 -0.004 -0.249 0.057 2.064 0.003 0.280 -0.003 -0.369 -1.55E-04 -0.179 0.010 0.766 0.056 2.057 

km_srb_pro  0.006 0.956 0.014 1.388 0.028 2.005 0.006 0.218 0.022 2.169 -0.001 -0.162 -0.001 -0.850 0.007 0.521 0.006 0.213 

 ∑ Îóôõsöõã_  0.96 
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Table A10.2 Global sensitivity analyses for the nutrient recovery model of the anaerobic digester (NRM-AD): standardized regression coefficient (SRC) and its 
t-statistic (tSRC) per performance indicator for Scenario B (manure; Cesur and Albertson, 2005). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off 
threshold 2 (CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.4. 

 
CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

S_Inert -0.004 -0.880 -0.003 -0.744 0.019 2.599 -0.009 -1.287 2.39E-04 0.386 -0.008 -1.444 6.16E-05 0.179 0.001 0.427 -0.001 -0.117 

S_fa 0.001 0.110 -0.001 -0.226 0.025 3.325 0.001 0.100 -3.17E-04 -0.508 0.004 0.790 5.11E-04 1.466 4.54E-04 0.230 0.008 1.132 

S_su -0.003 -0.522 -2.63E-04 -0.063 0.033 4.501 0.012 1.648 0.001 1.102 -0.001 -0.111 1.31E-04 0.376 -0.001 -0.699 0.019 2.641 

X_Inert 0.001 0.169 0.003 0.703 -0.002 -0.287 0.151 20.390 8.53E-05 0.137 -0.006 -0.993 -1.25E-04 -0.361 -0.002 -1.175 0.105 14.857 

X_ch -0.004 0.840 0.002 0.476 0.138 18.892 0.006 0.770 -0.001 -1.629 -0.002 -0.355 -0.001 -1.652 0.002 0.813 0.046 6.579 

X_li -0.001 0.240 -0.001 -0.190 0.027 3.649 0.015 2.043 0.001 1.095 0.015 2.606 1.58E-04 0.459 0.001 0.516 0.019 2.660 

X_pr -0.004 -0.807 -0.001 -0.252 0.016 2.150 0.003 0.371 2.20E-04 0.356 0.005 0.901 1.31E-04 0.382 0.003 1.819 0.007 0.956 

S_Acetate -0.002 -0.336 -4.41E-04 -0.108 0.009 1.264 0.004 0.509 -0.002 -5.734 -0.010 -1.753 9.34E-05 0.272 -0.006 -3.329 0.005 0.775 

S_Al -0.008 -1.566 -0.007 -1.619 0.012 1.638 0.013 1.791 -0.004 -0.420 0.010 1.771 -0.003 -9.231 0.010 5.085 0.013 1.833 

S_Butyrate 0.005 0.954 3.59E-04 0.087 0.009 1.204 0.008 1.143 -2.59E-04 -2.759 4.22E-05 0.008 -4.63E-04 -1.344 -0.004 -2.019 0.009 1.221 

S_C_4_ 4.25E-04 0.088 0.184 44.747 -0.006 -0.858 -0.007 -0.983 -0.002 6.085 -0.004 -0.715 3.73E-04 1.083 -0.108 -56.478 -0.007 -0.957 

S_C_min4_ 0.928 191.489 0.615 149.820 -0.005 -0.751 0.002 0.205 0.004 -0.989 -0.009 -1.539 -2.82E-04 -0.821 0.003 1.531 2.66E-04 0.038 

S_Ca 0.011 2.275 -0.175 -42.678 0.009 1.198 0.007 0.912 -0.001 69.997 0.041 7.271 -0.068 -198.442 0.410 214.466 0.007 1.019 

S_Cl 0.005 1.066 0.079 19.118 -0.009 -1.231 4.11E-04 0.056 0.043 -126.094 0.014 2.543 -0.004 -11.317 -0.164 -85.267 -0.002 -0.337 

S_Fe -0.010 -1.973 -0.009 -2.170 -0.007 -0.911 -0.005 -0.689 -0.078 3.367 0.006 1.029 -0.001 -4.014 0.010 5.076 -0.006 -0.797 

S_H_0_ 0.002 0.363 0.097 23.619 -0.004 -0.492 0.002 0.209 0.002 0.156 -0.002 -0.397 -2.13E-04 -0.617 0.001 0.453 1.18E-04 0.017 

S_K 0.006 1.136 -0.017 -4.155 -0.002 -0.216 -0.003 -0.450 9.64E-05 16.007 -0.001 -0.266 0.984 2,860.120 0.049 25.758 -0.003 -0.402 

S_Mg 0.008 1.714 0.008 2.024 0.003 0.423 0.006 0.764 0.010 -867.227 0.008 1.482 -0.018 -51.804 0.088 46.392 0.005 0.697 

S_N_0_ 0.001 0.237 0.129 31.130 -0.001 -0.170 -0.005 -0.723 -0.534 0.597 0.003 0.487 -1.38E-04 -0.397 0.003 1.401 -0.004 -0.557 

S_N_5_ 0.004 0.746 0.100 24.331 3.76E-05 0.005 -0.003 -0.461 3.71E-04 -161.417 2.19E-05 0.004 -0.019 -55.844 -0.202 -105.801 -0.002 -0.318 

S_N_min3_ 0.001 0.151 -0.076 -18.581 0.005 0.673 1.64E-04 0.022 -0.100 1,328.990 -2.41E-05 -0.004 -0.015 -43.565 0.083 43.521 0.002 0.216 

S_Na -0.003 -0.703 -0.044 -10.727 -0.008 -1.114 -0.005 -0.712 0.820 43.726 0.395 70.402 -0.004 -11.538 0.091 47.516 -0.006 -0.884 

S_P -0.006 -1.164 0.028 6.711 -0.003 -0.471 0.004 0.542 0.027 -32.956 0.898 160.177 0.003 9.630 -0.072 -37.944 0.002 0.253 

S_Propionate 0.005 1.117 0.004 1.044 0.011 1.534 0.016 2.221 -0.020 -1.607 -0.005 -0.932 2.35E-04 0.683 -0.001 -0.684 0.015 2.117 

S_S_6_ -0.002 -0.438 0.046 11.217 -0.010 -1.310 -0.013 -1.780 -0.001 -65.549 -0.001 -0.200 -0.006 -16.523 -0.099 -51.666 -0.012 -1.714 

S_S_min2_ -0.001 -0.264 0.003 0.743 -0.009 -1.246 -0.018 -2.389 -0.041 -0.314 0.003 0.483 4.64E-04 1.340 -0.002 -1.033 -0.015 -2.147 

S_Valerate -0.006 -1.175 -0.010 -2.394 0.001 0.079 0.002 0.228 -1.95E-04 -0.962 -0.002 -0.361 -0.001 -1.938 0.003 1.446 0.001 0.190 

pH_liq -0.001 -0.301 -0.001 -0.332 0.004 0.556 0.004 0.520 -0.001 0.496 0.008 1.371 -1.18E-04 -0.342 0.001 0.344 0.004 0.558 

temp_liq 0.309 63.173 0.677 163.337 -0.014 -1.872 -0.002 -0.297 3.08E-04 -255.771 -0.028 -4.912 -0.086 -248.503 -0.834 -433.202 -0.005 -0.686 

Q_liq_in 0.010 2.071 0.008 2.038 0.941 128.639 0.956 129.192 -0.159 -0.295 0.002 0.386 2.54E-07 0.001 -0.001 -0.563 0.959 135.665 

k_Al2O3 -0.009 -1.874 -0.004 -0.858 5.27E-05 0.007 0.002 0.277 -1.83E-04 -2.199 -0.007 -1.195 3.17E-04 0.913 0.001 0.318 0.001 0.205 
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(Continuation) CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

k_AlPO4 0.003 0.686 0.003 0.679 0.012 1.593 0.010 1.311 -0.001 -0.002 0.001 0.090 3.25E-04 0.945 -0.002 -0.886 0.010 1.469 

k_Anhydrite -0.002 -0.432 -0.002 -0.536 -0.004 -0.534 -0.004 -0.554 -0.001 -0.652 0.006 1.000 -1.50E-04 -0.433 0.001 0.741 -0.004 -0.577 

k_Aragonite -0.002 -0.399 -0.001 -0.237 -0.001 -0.078 -0.004 -0.558 -1.53E-06 -1.050 -0.003 -0.448 6.27E-05 0.181 0.001 0.478 -0.003 -0.434 

k_Boehmite 0.003 0.655 0.005 1.254 0.001 0.149 0.002 0.319 -4.05E-04 -1.112 2.42E-04 0.043 4.26E-05 0.124 0.002 1.219 0.002 0.282 

k_Ca4H(PO4)3:3H2O 0.010 1.981 0.007 1.769 0.011 1.539 0.009 1.183 -0.001 1.111 0.003 0.609 1.39E-04 0.402 -0.001 -0.487 0.010 1.359 

k_CaHPO4:2H2O 0.009 1.956 0.006 1.432 -0.005 -0.656 -0.008 -1.150 -0.001 -0.403 -0.005 -0.952 -1.71E-04 -0.499 3.40E-04 0.179 -0.007 -1.051 

k_CaHPO4bis -0.003 -0.521 0.001 0.340 -0.007 -1.015 -0.020 -2.734 0.001 -2.452 0.004 0.776 -2.92E-04 -0.848 0.001 0.736 -0.016 -2.327 

k_Calcite 0.007 1.363 0.002 0.541 0.014 1.916 0.015 2.062 -2.47E-04 -0.002 -0.003 -0.580 -2.78E-04 -0.793 0.001 0.429 0.015 2.122 

k_Diaspore 0.005 1.062 0.004 0.936 -8.74E-05 -0.012 0.010 1.330 -0.002 1.314 -0.003 -0.544 -1.13E-04 -0.329 -0.002 -0.926 0.007 0.972 

k_Dolomite -0.002 -0.444 -0.007 -1.804 5.50E-05 0.008 9.85E-05 0.013 -1.15E-06 0.110 -0.004 -0.647 3.57E-05 0.103 0.001 0.715 7.51E-05 0.011 

k_FeS_ppt 0.004 0.861 0.003 0.765 0.013 1.783 0.006 0.818 0.001 0.034 -0.001 -0.184 -1.99E-04 -0.568 0.001 0.587 0.008 1.168 

k_Gibbsite 3.86E-05 0.008 0.002 0.433 0.003 0.373 -0.003 -0.390 6.83E-05 1.177 0.004 0.745 -4.40E-05 -0.127 4.38E-04 0.228 -0.001 -0.167 

k_Hercynite 0.002 0.338 0.004 0.883 0.002 0.312 -0.008 -1.140 2.12E-05 0.455 -0.007 -1.296 9.15E-05 0.265 -0.002 -1.289 -0.005 -0.736 

k_Hydroxyapatite 0.001 0.171 -4.40E-04 -0.106 0.004 0.541 0.003 0.345 0.001 0.526 -0.004 -0.733 1.66E-05 0.048 1.49E-04 0.078 0.003 0.425 

k_Kstruvite -0.004 -0.744 -0.002 -0.570 -0.003 -0.447 -0.001 -0.129 2.82E-04 0.113 0.005 0.826 3.58E-04 1.039 0.002 1.106 -0.002 -0.237 

k_Mackinawite 1.43E-05 0.003 4.22E-05 0.010 0.013 1.797 0.014 1.857 3.27E-04 -0.743 -0.002 -0.312 -3.88E-04 -1.125 0.001 0.401 0.014 1.934 

k_Magnesite 0.006 1.330 0.006 1.438 0.001 0.089 -0.002 -0.281 6.95E-05 -0.362 -0.001 -0.137 3.31E-04 0.959 0.004 1.923 -0.001 -0.176 

k_Mg3(PO4)2 0.010 2.155 0.004 0.999 -0.004 -0.619 -0.006 -0.781 -4.59E-04 0.234 -0.003 -0.490 -1.42E-04 -0.413 -0.001 -0.526 -0.005 -0.768 

k_MgHPO4:3H2O 0.007 1.453 0.003 0.697 -0.001 -0.154 -0.003 -0.350 -2.24E-04 1.815 -0.009 -1.629 2.28E-04 0.659 -0.002 -1.194 -0.002 -0.305 

k_Siderite 0.008 1.545 0.007 1.671 -0.002 -0.250 2.63E-04 0.036 1.44E-04 0.025 0.002 0.433 -3.01E-04 -0.869 -0.001 -0.683 -3.68E-04 -0.052 

k_Struvite 0.007 1.435 0.006 1.438 -0.009 -1.256 -0.002 -0.260 0.001 0.433 0.002 0.364 2.42E-04 0.702 -2.77E-04 -0.145 -0.004 -0.590 

k_Vivianite -0.007 -1.496 -0.002 -0.371 0.007 0.943 0.008 1.138 1.57E-05 0.303 0.004 0.741 2.95E-04 0.856 -0.001 -0.449 0.008 1.134 

kLa_H2 0.004 0.796 -0.002 -0.390 -0.011 -1.479 -0.006 -0.833 2.68E-04 -0.952 -0.009 -1.560 -0.001 -2.041 -0.002 -1.233 -0.008 -1.082 

D_H2 -0.003 -0.607 -4.68E-05 -0.011 5.64E-05 0.008 0.006 0.779 1.87E-04 -2.751 -0.006 -1.069 -2.83E-04 -0.815 0.003 1.730 0.004 0.573 

theta_CH4_g_ -0.005 -0.961 0.001 0.194 -0.001 -0.152 0.006 0.797 3.95E-04 -2.438 -0.004 -0.684 2.95E-04 0.857 -0.001 -0.333 0.004 0.536 

theta_CO2_g_ -0.004 -0.839 -0.001 -0.250 0.004 0.593 0.002 0.303 -7.16E-05 -0.416 0.007 1.190 1.19E-05 0.034 0.002 0.990 0.003 0.411 

theta_H2S_g_ 0.008 1.588 0.004 0.886 -0.009 -1.228 -0.005 -0.630 0.001 1.588 0.007 1.267 0.001 1.511 0.001 0.684 -0.006 -0.852 

theta_H2_g_ 6.00E-05 0.012 0.003 0.816 -0.010 -1.336 -0.001 -0.118 2.84E-04 -0.699 0.005 0.806 -3.50E-04 -1.019 -0.001 -0.325 -0.004 -0.511 

theta_N2_g_ 0.004 0.884 -5.88E-05 -0.014 -0.017 -2.282 -0.010 -1.380 0.001 1.230 0.004 0.798 1.42E-04 0.411 -0.002 -1.002 -0.012 -1.738 

theta_NH3_g_ -0.002 -0.508 0.004 0.852 -0.006 -0.873 -0.008 -1.038 0.001 0.408 0.007 1.205 1.61E-04 0.467 -0.002 -1.298 -0.007 -1.038 

kdec_Xsrb_ac -0.004 -0.899 -0.005 -1.097 -0.003 -0.371 0.001 0.123 2.91E-04 0.641 0.003 0.623 -4.05E-04 -1.175 -0.001 -0.553 -2.05E-04 -0.029 

kdec_Xsrb_bu -0.005 -0.988 -0.002 -0.458 0.007 0.981 -0.002 -0.212 3.85E-04 -0.116 0.002 0.412 1.16E-04 0.338 -0.002 -0.797 0.001 0.156 

kdec_Xsrb_h 0.005 0.969 -0.002 -0.401 0.004 0.516 0.003 0.417 -0.002 1.042 0.011 1.883 -4.34E-05 -0.125 -0.002 -1.022 0.003 0.470 

kdec_Xsrb_pro -0.003 -0.714 4.25E-04 0.104 -0.005 -0.724 0.004 0.593 -2.57E-04 0.462 -0.006 -0.997 -1.05E-04 -0.305 -0.002 -1.114 0.001 0.204 

km_srb_ac 0.002 0.433 0.006 1.395 0.007 1.022 0.010 1.383 0.001 1.002 0.004 0.758 -1.76E-04 -0.508 0.003 1.368 0.009 1.341 
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(Continuation) CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

km_srb_bu -0.007 -1.452 -0.010 -2.462 0.007 0.988 0.009 1.144 -4.31E-04 1.302 0.002 0.301 2.01E-04 0.577 -0.005 -2.550 0.008 1.151 

km_srb_h 0.001 0.276 0.001 0.132 2.59E-05 0.004 0.004 0.556 0.001 0.465 0.006 0.995 1.64E-04 0.471 -0.003 -1.512 0.003 0.409 

km_srb_pro 0.002 0.387 0.002 0.539 0.001 0.076 0.001 0.145 2.52E-04 0.620 -0.004 -0.620 -8.63E-05 -0.249 -0.001 -0.617 0.001 0.131 
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Table A10.3 Global sensitivity analyses for the nutrient recovery model of the anaerobic digester (NRM-AD): standardized regression coefficient (SRC) and its 
t-statistic (tSRC) per performance indicator for Scenario C (sludge; Astals et al., 2013). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off threshold 2 
(CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.4.  

 
CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

S_Inert -0.008 -1.743 -0.005 -0.857 0.043 4.910 -0.008 -0.645 0.002 1.260 -3.60E-04 -1.205 -0.001 -0.984 -0.002 -0.172 0.010 1.030 

S_fa 0.003 0.693 0.003 0.512 0.052 5.928 -0.011 -0.891 -1.75E-04 -0.136 1.30E-05 0.043 7.36E-05 0.081 -0.016 -1.159 0.011 1.146 

S_su -0.006 -1.149 0.002 0.368 0.048 5.466 -0.011 -0.865 -0.001 -0.432 -7.56E-05 -0.252 -1.76E-04 -0.194 0.040 2.929 0.010 1.022 

X_Inert 0.005 1.083 0.008 1.218 3.24E-04 0.037 0.456 37.222 0.001 0.463 -1.76E-04 -0.584 1.21E-04 0.133 0.004 0.321 0.319 32.087 

X_ch -0.001 -0.153 3.12E-04 0.049 0.191 21.893 0.034 2.783 -9.29E-05 -0.072 1.83E-04 0.607 -3.04E-04 -0.336 0.012 0.913 0.094 9.470 

X_li -0.004 -0.752 -0.005 -0.859 0.089 10.228 0.025 2.084 0.001 1.065 -1.07E-04 -0.357 6.54E-05 0.072 0.002 0.170 0.050 5.099 

X_pr -0.001 -0.121 -0.002 -0.298 0.148 16.934 0.024 1.921 -0.001 -1.153 -2.60E-04 -0.862 -1.21E-04 -0.134 -0.022 -1.630 0.071 7.124 

S_Acetate -0.003 -0.585 0.013 2.038 -0.010 -1.151 -0.006 -0.463 -0.011 -8.428 0.001 4.094 -0.006 -7.126 -0.107 -7.889 -0.008 -0.773 

S_Al -0.003 -0.666 -0.073 -11.505 -0.016 -1.812 0.002 0.176 -0.006 -4.828 0.005 17.416 -0.028 -31.153 0.331 24.242 -0.004 -0.429 

S_Butyrate -0.005 -1.105 -0.006 -0.897 0.001 0.134 -0.024 -1.997 -0.002 -1.340 1.26E-04 0.421 -0.002 -2.627 -0.018 -1.358 -0.017 -1.679 

S_C_4_ -0.008 -1.650 0.270 42.398 -0.004 -0.502 -0.002 -0.134 0.010 7.526 0.003 9.101 -0.016 -17.987 -0.451 -33.113 -0.003 -0.265 

S_C_min4_ 0.935 191.644 0.795 125.253 -0.002 -0.205 -0.030 -2.460 0.001 0.489 -2.66E-04 -0.884 -4.85E-04 -0.536 -0.006 -0.406 -0.021 -2.098 

S_Ca 0.001 0.135 -0.017 -2.621 -0.003 -0.383 -0.019 -1.582 0.001 0.992 0.001 1.876 -0.004 -4.555 0.153 11.160 -0.015 -1.483 

S_Cl 1.12E-04 0.023 0.026 4.048 0.003 0.398 0.020 1.649 -0.011 -8.476 0.001 4.772 -0.006 -6.790 -0.090 -6.658 0.015 1.549 

S_Fe 0.003 0.689 -0.063 -9.910 -0.011 -1.278 -0.024 -1.950 0.003 2.081 0.002 7.706 -0.015 -16.310 0.375 27.697 -0.021 -2.086 

S_H_0_ -0.001 -0.182 0.125 19.649 -0.007 -0.807 -0.020 -1.619 4.34E-04 0.339 -2.29E-04 -0.763 2.75E-04 0.304 -0.021 -1.570 -0.016 -1.643 

S_K -0.001 -0.167 -0.001 -0.119 -0.001 -0.124 -0.014 -1.152 0.002 1.612 -9.73E-05 -0.323 1.001 1101.750 0.050 3.653 -0.010 -1.031 

S_Mg -0.003 -0.589 4.75E-04 0.075 0.003 0.401 -0.013 -1.047 -0.058 -45.294 8.79E-05 0.293 -0.002 -1.933 0.072 5.288 -0.008 -0.770 

S_N_0_ 0.005 0.983 0.172 27.054 0.009 1.072 0.022 1.778 1.99E-04 0.156 -3.88E-05 -0.129 3.71E-04 0.411 0.009 0.631 0.019 1.897 

S_N_5_ 0.003 0.636 0.070 10.959 -0.005 -0.620 -0.023 -1.862 -0.039 -30.363 0.005 16.987 -0.030 -33.312 -0.411 -30.266 -0.018 -1.812 

S_N_min3_ 0.009 1.845 -0.173 -27.297 0.001 0.074 0.016 1.280 0.996 779.103 0.004 13.460 -0.024 -26.291 -0.031 -2.295 0.011 1.107 

S_Na 0.005 1.075 -0.028 -4.496 -0.006 -0.672 0.005 0.405 0.006 4.567 0.002 5.064 -0.002 -1.939 0.171 12.604 0.001 0.135 

S_P 0.002 0.363 0.017 2.638 0.002 0.275 0.011 0.859 -0.001 -1.087 1.000 3,328.820 -0.001 -1.631 -0.086 -6.317 0.008 0.828 

S_Propionate -0.011 -2.216 0.002 0.378 -0.004 -0.427 -0.018 -1.456 -0.001 -0.830 2.55E-04 0.848 -0.003 -3.362 -0.058 -4.292 -0.014 -1.395 

S_S_6_ 0.002 0.435 0.023 3.639 0.005 0.570 0.028 2.294 -0.011 -8.331 0.001 4.897 -0.009 -9.618 -0.105 -7.806 0.021 2.159 

S_S_min2_ -0.002 -0.341 0.004 0.629 0.010 1.167 -0.005 -0.434 -2.02E-04 -0.158 -1.50E-04 -0.502 0.001 1.235 -0.011 -0.783 0.000 0.003 

S_Valerate 0.003 0.608 -0.010 -1.587 -0.010 -1.105 1.01E-04 -0.025 0.001 0.606 1.55E-04 0.515 -0.002 -2.151 -0.022 -1.640 -0.004 -0.381 

pH_liq 0.001 0.122 1.42E-04 0.022 0.006 0.740 0.025 2.021 -0.002 -1.212 -0.001 -2.055 -4.05E-04 -0.449 -0.001 -0.095 0.020 1.981 

temp_liq 0.305 62.604 0.448 70.760 0.010 1.163 -0.002 -0.159 -0.028 -21.730 -0.002 -6.802 -0.008 -9.349 -0.196 -14.424 0.003 0.281 

Q_liq_in -0.003 -0.701 2.29E-05 0.004 0.921 106.024 0.779 63.972 0.001 0.503 1.99E-04 0.667 2.30E-04 0.256 0.001 0.069 0.881 89.372 

k_Al2O3 -0.002 -0.334 0.003 0.487 -0.001 -0.132 -0.012 -0.994 0.001 0.542 2.58E-04 0.854 0.001 0.807 -0.005 -0.368 -0.009 -0.899 

k_AlPO4 0.001 0.294 -0.009 -1.419 0.012 1.374 -0.004 -0.315 0.001 1.117 -2.76E-04 -0.918 4.70E-04 0.519 -0.016 -1.177 0.002 0.171 

k_Anhydrite -0.003 -0.648 -0.004 -0.619 0.015 1.785 0.005 0.430 3.71E-04 0.291 -1.44E-05 -0.048 0.001 1.032 0.009 0.701 0.009 0.947 
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 CH4 production Biogas production Digestate S_COD Digestate X_COD Digestate S_N_min3_ Digestate S_P Digestate S_K Digestate pH Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

k_Aragonite -0.013 -2.702 -0.008 -1.265 -0.002 -0.250 -0.007 -0.610 -0.001 -0.883 2.17E-04 0.730 -1.74E-04 -0.195 -0.001 -0.046 -0.006 -0.608 

k_Boehmite 0.005 1.026 -0.007 -1.078 -0.015 -1.686 -0.008 -0.677 0.001 0.837 -7.24E-05 -0.241 0.001 0.827 0.006 0.434 -0.011 -1.128 

k_Ca4H(PO4)3:3H2O 0.009 1.837 0.002 0.363 0.007 0.849 0.008 0.613 -0.001 -0.687 1.50E-04 0.499 -4.67E-04 -0.515 -0.004 -0.269 0.008 0.802 

k_CaHPO4:2H2O 0.007 1.422 0.007 1.150 0.002 0.192 0.017 1.386 -0.002 -1.754 2.38E-04 0.795 -2.70E-04 -0.299 -0.034 -2.503 0.012 1.256 

k_CaHPO4bis 0.007 1.355 0.005 0.742 0.011 1.301 0.013 1.057 0.001 0.441 9.24E-05 0.307 -0.001 -1.360 0.011 0.815 0.013 1.332 

k_Calcite -0.001 -0.302 -0.008 -1.245 -0.001 -0.105 -0.001 -0.102 -0.001 -0.757 3.02E-05 0.101 0.001 1.209 -0.009 -0.686 -0.001 -0.123 

k_Diaspore -0.002 -0.513 0.004 0.662 0.006 0.704 -0.009 -0.733 -0.001 -0.440 -1.47E-05 -0.049 -0.001 -0.861 -0.011 -0.844 -0.004 -0.404 

k_Dolomite -0.008 -1.657 -0.009 -1.499 0.001 0.066 -0.007 -0.610 2.93E-04 0.229 1.30E-04 0.433 -0.002 -1.817 -0.006 -0.475 -0.005 -0.506 

k_FeS_ppt -0.005 -0.969 -0.007 -1.123 -0.008 -0.917 -0.001 -0.092 -0.003 -2.116 4.70E-04 1.559 -0.001 -1.100 -0.017 -1.222 -0.004 -0.377 

k_Gibbsite 0.013 2.575 0.016 2.505 0.004 0.458 -0.013 -1.027 2.68E-04 0.208 -4.23E-04 -1.400 0.001 0.907 0.013 0.963 -0.007 -0.735 

k_Hercynite 0.003 0.558 0.012 1.945 0.009 1.071 0.007 0.610 -0.001 -0.824 -3.09E-04 -1.025 0.001 0.869 -0.010 -0.714 0.009 0.872 

k_Hydroxyapatite -0.001 -0.266 0.001 0.111 -0.001 -0.083 0.006 0.507 -0.003 -1.971 4.02E-04 1.332 -0.001 -0.972 -0.008 -0.594 0.004 0.410 

k_Kstruvite 0.005 1.126 0.004 0.678 0.001 0.066 1.11E-04 0.009 -0.001 -0.610 -1.09E-04 -0.363 0.001 1.270 0.002 0.150 0.000 0.030 

k_Mackinawite 0.001 0.257 0.001 0.198 0.008 0.933 -0.005 -0.444 0.001 0.561 2.17E-04 0.722 -0.001 -0.865 -0.001 -0.084 -0.001 -0.081 

k_Magnesite 0.006 1.169 0.003 0.443 0.012 1.399 0.005 0.397 0.003 1.988 -1.73E-04 -0.575 4.74E-04 0.521 -0.006 -0.464 0.008 0.794 

k_Mg3(PO4)2 0.003 0.531 0.006 0.927 0.003 0.364 0.004 0.324 0.002 1.883 -2.81E-05 -0.094 0.001 1.154 0.019 1.385 0.004 0.399 

k_MgHPO4:3H2O 0.005 1.002 0.002 0.292 -0.005 -0.585 -0.008 -0.686 -0.001 -0.412 -7.30E-05 -0.242 1.30E-04 0.143 -0.001 -0.098 -0.008 -0.780 

k_Siderite -0.001 -0.122 0.001 0.130 -0.012 -1.359 -0.014 -1.130 -0.003 -2.368 3.89E-04 1.299 -0.001 -0.983 -0.017 -1.272 -0.014 -1.413 

k_Struvite -0.004 -0.724 -0.004 -0.623 -0.014 -1.552 0.001 0.070 -0.001 -0.832 1.72E-04 0.567 0.001 1.212 0.007 0.485 -0.004 -0.441 

k_Vivianite 0.009 1.766 0.003 0.512 -0.008 -0.944 0.005 0.371 0.003 2.087 1.75E-04 0.587 -0.001 -0.855 -0.014 -1.035 0.000 0.014 

kLa_H2 0.010 2.016 -0.012 -1.893 -0.010 -1.093 -0.004 -0.340 -4.23E-04 -0.329 1.38E-05 0.046 -3.41E-04 -0.376 -0.032 -2.363 -0.006 -0.649 

D_H2 -0.005 -0.990 -0.002 -0.289 -0.010 -1.197 -0.006 -0.475 1.07E-04 0.083 4.00E-05 0.133 -0.001 -1.509 0.004 0.270 -0.008 -0.796 

theta_CH4_g_ -0.004 -0.850 -0.003 -0.437 0.004 0.509 0.005 0.416 2.79E-04 0.217 4.49E-04 1.488 2.43E-04 0.268 0.003 0.187 0.005 0.523 

theta_CO2_g_ -4.11E-04 -0.085 3.54E-04 0.056 0.009 1.003 0.036 2.971 0.002 1.818 -3.90E-04 -1.304 -0.001 -0.987 0.015 1.122 0.028 2.885 

theta_H2S_g_ 0.004 0.861 3.14E-04 0.049 0.002 0.221 0.008 0.688 -0.001 -1.085 -4.61E-05 -0.153 -0.001 -1.339 0.003 0.226 0.007 0.664 

theta_H2_g_ -0.002 -0.387 0.004 0.591 0.001 0.074 -0.009 -0.741 0.001 1.161 -2.90E-04 -0.972 0.002 2.038 0.028 2.053 -0.006 -0.613 

theta_N2_g_ -0.001 -0.268 0.001 0.174 -0.001 -0.084 -0.013 -1.059 0.001 0.397 -3.07E-04 -1.026 3.00E-04 0.332 0.017 1.254 -0.009 -0.939 

kdec_Xsrb_ac -0.002 -0.316 -0.003 -0.470 1.01E-04 0.012 0.025 2.059 0.001 0.892 9.01E-06 0.030 -2.21E-04 -0.246 -0.019 -1.435 0.017 1.777 

kdec_Xsrb_bu -0.003 -0.662 0.006 0.884 0.003 0.350 -0.005 -0.408 -0.001 -0.496 -9.72E-05 -0.323 4.68E-04 0.516 0.003 0.211 -0.002 -0.238 

kdec_Xsrb_h -0.002 -0.434 -0.001 -0.133 -0.003 -0.375 0.001 0.050 0.001 0.699 -1.05E-04 -0.347 0.001 0.727 0.013 0.935 -0.001 -0.077 

kdec_Xsrb_pro 0.004 0.793 0.008 1.285 -0.006 -0.633 0.014 1.169 1.64E-04 0.127 -3.57E-04 -1.179 0.001 1.021 -0.005 -0.393 0.008 0.804 

km_srb_ac -0.002 -0.320 -0.002 -0.282 -0.004 -0.502 0.005 0.431 0.001 0.787 -9.75E-05 -0.323 0.001 0.775 0.012 0.905 0.002 0.209 

km_srb_bu 0.004 0.754 0.002 0.357 0.005 0.621 -0.005 -0.430 -0.001 -0.871 3.07E-04 1.024 0.001 0.596 -0.009 -0.637 -0.002 -0.170 

km_srb_h -0.001 -0.103 0.010 1.544 -0.018 -2.005 -0.013 1.040 -7.55E-05 -0.059 7.67E-05 0.255 2.48E-04 0.273 0.025 1.799 -0.015 -1.542 

km_srb_pro 0.016 3.344 0.010 1.544 0.014 1.576 -0.005 -0.369 0.001 0.549 -4.19E-04 -1.397 -2.22E-04 -0.246 -0.003 -0.197 0.002 0.192 
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R2 0.97  0.95  0.90  0.81  1.00  1.00  1.00  0.75  0.87  

R2adj 0.97  0.95  0.90  0.80  1.00  1.00  1.00  0.75  0.87 
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Table A10.4 Global sensitivity analyses for the nutrient recovery model of the precipitation/crystallization unit (NRM-Prec): standardized regression coefficient 
(SRC) and its t-statistic (tSRC) per performance indicator for Scenario A (digestate: all applications). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off 
threshold 2 (CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.5.  

 Effluent S_P Fertilizer P_P Particle diameter Fertilizer density Struvite purity Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
S_Acetate -0.001 -0.154 -0.039 -1.765 0.014 0.880 0.017 0.852 -0.015 -0.551 -0.039 -1.761 
S_Al 0.038 5.216 0.005 0.242 -8.32E-05 -0.005 0.019 0.971 -0.011 -0.389 0.005 0.244 
S_Butyrate -0.011 -1.474 -0.001 -0.057 -0.027 -1.752 0.008 0.410 0.007 0.255 -0.001 -0.053 
S_C_4_ 0.003 0.459 -0.057 -2.535 -0.025 -1.599 -0.013 -0.639 -0.050 -1.854 -0.057 -2.537 
S_C_min4_ -0.012 -1.738 0.035 1.584 -0.026 -1.660 0.012 0.619 0.018 0.668 0.035 1.581 
S_DOM -0.001 -0.154 -0.025 -1.133 0.013 0.879 0.016 0.851 -0.014 -0.550 -0.025 -1.133 
S_Ca 0.022 3.124 0.259 11.589 0.039 2.532 0.009 0.469 -0.047 -1.748 0.259 11.588 
S_Cl 0.024 3.353 -0.024 -1.081 -0.016 -0.999 0.002 0.094 -0.007 -0.269 -0.024 -1.082 
S_Fe 0.037 5.234 -0.006 -0.271 -0.004 -0.269 0.020 1.029 0.044 1.631 -0.006 -0.271 
S_K 0.017 2.383 0.045 1.996 -0.003 -0.184 -0.034 -1.691 0.035 1.293 0.045 1.995 
S_Mg 0.012 1.646 0.086 3.827 0.035 2.233 0.022 1.106 -0.007 -0.243 0.086 3.824 
S_N_5_ 0.020 2.734 -0.017 -0.779 -0.016 -1.019 -0.029 -1.443 0.015 0.559 -0.018 -0.782 
S_N_min3_ 0.028 3.943 0.019 0.866 -0.029 -1.859 -0.035 -1.745 0.042 1.563 0.019 0.868 
S_Na 0.274 38.280 -0.242 -10.853 -0.572 -37.099 -0.484 -24.553 -0.040 -1.465 -0.242 -10.851 
S_P 0.934 130.334 0.207 9.267 0.552 35.735 0.448 22.653 -0.030 -1.101 0.207 9.266 
S_Propionate -2.50E-04 -0.035 -0.003 -0.143 0.017 1.093 0.021 1.070 -0.018 -0.678 -0.003 -0.143 
S_S_6_ 0.034 4.728 -0.059 -2.598 -0.006 -0.393 0.020 0.979 0.050 1.828 -0.059 -2.600 
S_S_min2_ -3.64E-04 -0.051 -0.014 -0.621 -0.015 -0.973 0.001 0.056 0.020 0.730 -0.014 -0.623 
S_Valerate 0.006 0.876 0.014 0.604 0.017 1.085 0.033 1.669 -0.009 -0.318 0.014 0.604 
pH_liq -0.010 -1.343 -0.011 -0.492 0.030 1.928 0.054 2.721 0.020 0.751 -0.011 -0.490 
Temp_liq 0.003 0.480 -0.267 -11.925 -0.010 -0.637 -0.030 -1.509 -0.008 -0.308 -0.267 -11.924 
Q_liq 0.004 0.517 -0.005 -0.220 0.018 1.163 0.009 0.467 -0.035 -1.278 -0.005 -0.218 
Q_prec 0.005 0.706 -0.014 -0.623 -0.014 -0.920 -0.014 -0.730 -0.004 -0.158 -0.014 -0.618 
k_AlPO4 0.001 0.189 -0.012 -0.519 -0.023 -1.492 -0.023 -1.166 -0.012 -0.449 -0.012 -0.519 
k_Aragonite 0.006 0.822 -0.007 -0.308 0.036 2.312 0.050 2.527 0.024 0.899 -0.007 -0.303 
k_Artinite 0.008 1.135 -0.017 -0.752 0.010 0.679 0.040 2.019 -0.004 -0.156 -0.017 -0.752 
k_Boehmite 0.004 0.520 0.025 1.133 -0.013 -0.846 -0.035 -1.779 0.042 1.564 0.025 1.132 
k_Brucite 0.004 0.493 0.048 2.132 0.002 0.129 0.011 0.569 0.030 1.091 0.048 2.128 
k_Ca3(PO4)2_am1 -0.001 -0.202 -0.007 -0.291 -0.015 -0.982 -0.017 -0.844 -0.041 -1.524 -0.007 -0.292 
k_Ca3(PO4)2_am3 -0.009 -1.204 0.004 0.159 -0.035 -2.280 -0.044 -2.203 -0.021 -0.783 0.004 0.157 
k_Ca3(PO4)2_beta 0.006 0.861 0.192 8.583 0.020 1.299 0.008 0.389 0.011 0.392 0.192 8.581 
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(Continuation)  Effluent S_P Fertilizer P_P Particle diameter Fertilizer density Struvite purity Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
k_Ca4H(PO4)3:3H2O 0.007 0.920 -0.014 -0.607 -0.012 -0.747 -0.007 -0.363 -0.051 -1.852 -0.014 -0.603 
k_CaHPO4:2H2O 0.008 1.125 0.010 0.451 0.012 0.748 -0.004 -0.193 0.027 0.976 0.010 0.453 
k_CaHPO4bis 2.24E-04 0.031 0.003 0.130 -0.002 -0.124 -0.005 -0.253 -0.017 -0.640 0.003 0.128 
k_Calcite 0.009 1.199 -0.005 -0.210 0.019 1.219 0.045 2.269 -0.048 -1.762 -0.005 -0.209 
k_Diaspore -0.017 -2.340 0.053 2.385 0.008 0.502 0.012 0.592 -0.033 -1.210 0.053 2.386 
k_Dolomite -0.009 -1.276 0.008 0.338 -0.022 -1.404 -0.027 -1.345 0.047 1.718 0.008 0.339 
k_Dolomite_dis 0.002 0.285 -0.025 -1.092 0.004 0.265 -0.002 -0.080 -0.028 -1.018 -0.025 -1.092 
k_Fe(OH)2_s -0.006 -0.842 -0.041 -1.836 -0.004 -0.272 -0.040 -2.006 0.008 0.283 -0.041 -1.837 
k_Gibbsite -0.009 -1.194 0.019 0.857 0.051 3.280 0.053 2.673 -0.049 -1.806 0.019 0.857 
k_Hercynite 0.007 0.955 -0.012 -0.537 -0.005 -0.327 -0.026 -1.313 -0.025 -0.928 -0.012 -0.538 
k_Hydroxyapatite -0.004 -0.547 -0.002 -0.070 -0.003 -0.210 -0.030 -1.515 0.043 1.574 -0.002 -0.071 
k_Kstruvite -0.007 -0.921 0.006 0.285 -0.009 -0.552 -0.016 -0.797 0.043 1.568 0.006 0.286 
k_Magnesite 0.002 0.275 -0.016 -0.700 -0.002 -0.134 0.009 0.450 0.001 0.054 -0.016 -0.696 
k_Mg3(PO4)2 9.97E-06 0.001 -0.069 -3.078 -3.24E-04 -0.021 -0.033 -1.646 -0.038 -1.398 -0.069 -3.075 
k_MgHPO4:3H2O -3.90E-04 -0.054 0.013 0.578 0.029 1.876 0.016 0.817 0.043 1.605 0.013 0.578 
k_Mg(OH)2_act 0.003 0.476 -0.018 -0.802 -0.007 -0.425 0.003 0.163 -0.008 -0.284 -0.018 -0.805 
k_Siderite 0.002 0.220 0.013 0.580 0.028 1.804 0.051 2.586 -0.027 -0.993 0.013 0.578 
k_Struvite 0.009 1.237 -0.059 -2.609 -0.002 -0.141 0.018 0.931 0.006 0.217 -0.059 -2.608 
k_Vaterite 0.002 0.299 0.047 2.101 -0.021 -1.395 -0.011 -0.558 0.034 1.263 0.047 2.104 
k_Vivianite 0.009 1.278 -0.005 -0.230 0.011 0.691 0.004 0.209 0.040 1.471 -0.005 -0.227 
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Table A10.5 Global sensitivity analyses for the nutrient recovery model of the precipitation/crystallization unit (NRM-Prec): standardized regression coefficient 
(SRC) and its t-statistic (tSRC) per performance indicator for Scenario B (digested manure; Cesur and Albertson, 2005). Dark grey = cut-off threshold 1 
(CFT1); grey = cut-off threshold 2 (CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see 
Chapter 10: Table 10.5.  

 Effluent S_P Fertilizer P_P Effluent S_P Fertilizer P_P Particle diameter Fertilizer density Struvite purity Overall 
External Mg yes/no No No Yes Yes Yes Yes Yes Yes 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC Factor SRC tSRC SRC tSRC SRC tSRC SRC 
S_Acetate -1.15E-04 -0.190 No precipitation -0.006 -1.502 -0.004 -0.165 -0.038 -1.783 -0.050 -1.959 0.012 0.445 -0.004 -0.165 
S_Al 0.001 1.382 -0.006 -1.451 0.027 1.171 0.003 0.156 -0.047 -1.840 0.011 0.423 0.027 1.171 
S_Butyrate -0.001 -1.366 

  
-0.001 -0.258 -0.024 -1.034 -0.016 -0.732 -0.047 -1.822 0.019 0.716 -0.024 -1.034 

S_C_4_ 0.001 1.953 
  

-0.002 -0.544 0.003 0.146 0.001 0.068 -0.011 -0.409 -0.032 -1.197 0.003 0.146 
S_C_min4_ -0.001 -2.020 

  
0.001 0.151 -0.037 -1.643 0.003 0.150 -0.046 -1.793 -0.005 -0.181 -0.037 -1.643 

S_Ca 0.006 10.485 
  

-0.001 -0.242 0.039 1.719 0.033 1.561 0.011 0.424 -0.069 -2.559 0.039 1.719 
S_Cl 0.015 25.808 

  
-0.009 -2.124 0.009 0.391 -0.025 -1.159 -0.047 -1.816 0.018 0.662 0.009 0.391 

S_DOM -1.00E-04 -0.188   -0.005 -1.279 -0.004 -0.156 -0.016 -0.732 -0.020 -0.777 0.012 0.445 -0.007 -0.325 
S_Fe 4.63E-04 0.770 

  
0.003 0.796 0.025 1.076 0.018 0.836 0.035 1.338 0.027 0.981 0.025 1.076 

S_K 0.001 1.481 
  

-0.004 -0.943 -0.046 -2.010 0.001 0.052 0.026 0.985 0.035 1.278 -0.046 -2.010 
S_Mg 0.091 151.657 

  
0.074 18.143 0.267 11.743 0.091 4.280 0.177 6.872 0.051 1.907 0.267 11.743 

S_N_5_ 0.002 3.389 
  

-0.005 -1.279 -0.012 -0.547 -0.031 -1.461 -0.004 -0.154 -0.025 -0.936 -0.012 -0.547 
S_N_min3_ 0.017 27.593 

  
0.006 1.562 0.034 1.504 0.022 1.044 0.046 1.779 0.056 2.078 0.034 1.504 

S_Na 0.005 8.054 
  

0.060 14.532 -0.036 -1.595 -0.090 -4.260 -0.063 -2.446 -0.029 -1.063 -0.036 -1.595 
S_P 0.993 1646.550 

  
0.984 240.504 0.249 11.003 0.615 29.086 0.255 9.937 0.032 1.199 0.249 11.003 

S_Propionate 0.001 1.511 
  

-0.003 -0.807 -0.009 -0.410 0.001 0.054 -0.017 -0.666 0.026 0.977 -0.009 -0.410 
S_S_6_ 0.004 6.496 

  
-0.008 -2.002 -0.016 -0.705 -0.022 -1.037 -0.025 -0.981 0.017 0.624 -0.016 -0.705 

S_S_min2_ 1.19E-04 0.197 
  

-0.003 -0.810 -0.039 -1.722 -0.040 -1.898 -0.063 -2.466 0.008 0.291 -0.039 -1.722 
S_Valerate -6.31E-05 -0.105 

  
-0.002 -0.521 0.001 0.039 0.018 0.839 0.083 3.231 0.008 0.307 0.001 0.039 

pH_liq -0.001 -1.362 
  

0.003 0.811 0.010 0.421 0.008 0.395 -0.003 -0.109 -0.040 -1.487 0.010 0.421 
Temp_liq -0.004 -6.437 

  
-0.006 -1.495 -0.368 -16.143 0.025 1.170 -0.041 -1.600 0.072 2.679 -0.368 -16.143 

Q_liq -0.001 -1.087 
  

4.89E-04 0.119 0.008 0.345 -0.017 -0.794 -0.038 -1.473 -0.023 -0.851 0.008 0.345 
Q_prec -0.001 -0.976 

  
-0.007 -1.696 -0.016 -0.700 0.008 0.374 0.021 0.817 0.032 1.174 -0.016 -0.700 

k_AlPO4 0.001 0.972 
  

-0.001 -0.127 -0.020 -0.862 -0.009 -0.404 -0.026 -1.017 0.047 1.754 -0.020 -0.862 
k_Aragonite 3.52E-04 0.581 

  
-0.008 -2.029 -0.025 -1.111 -0.015 -0.682 -0.044 -1.706 0.038 1.390 -0.025 -1.111 

k_Artinite 5.48E-05 0.091 
  

-0.007 -1.630 0.003 0.149 -0.038 -1.799 0.004 0.160 -0.015 -0.550 0.003 0.149 
k_Boehmite -1.76E-04 -0.292 

  
-0.006 -1.362 0.011 0.483 -0.004 -0.168 -0.039 -1.525 0.013 0.474 0.011 0.483 

k_Brucite -0.001 -1.209 
  

0.006 1.346 0.025 1.113 -0.004 -0.174 0.004 0.152 0.021 0.774 0.025 1.113 
k_Ca3(PO4)2_am1 -3.75E-04 -0.624 

  
-0.002 -0.548 -0.003 -0.134 0.017 0.781 0.028 1.090 0.016 0.596 -0.003 -0.134 
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(Continuation) Effluent S_P Fertilizer P_P Effluent S_P Fertilizer P_P Particle diameter Fertilizer density Struvite purity Overall 
External Mg yes/no No No Yes Yes Yes Yes Yes Yes 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
k_Ca3(PO4)2_am3 0.001 0.871 

  
0.003 0.710 0.030 1.336 0.003 0.140 0.010 0.383 -0.001 -0.021 0.030 1.336 

k_Ca3(PO4)2_beta -3.21E-04 -0.534 
  

-0.006 -1.445 0.208 9.114 -0.018 -0.826 0.010 0.400 -0.109 -4.028 0.208 9.114 
k_Ca4H(PO4)3:3H2O 2.91E-04 0.483 

  
0.004 0.866 0.017 0.741 0.026 1.208 0.021 0.821 0.018 0.681 0.017 0.741 

k_CaHPO4:2H2O -0.001 -1.864 
  

0.001 0.237 -0.018 -0.791 0.037 1.728 0.021 0.815 0.014 0.518 -0.018 -0.791 
k_CaHPO4bis 0.001 1.529 

  
0.003 0.738 0.011 0.471 0.010 0.456 0.002 0.070 -0.038 -1.403 0.011 0.471 

k_Calcite 1.23E-07 0.000 
  

0.001 0.264 -0.024 -1.037 0.035 1.642 -0.016 -0.609 0.023 0.852 -0.024 -1.037 
k_Diaspore 1.24E-06 0.002 

  
-0.004 -0.982 0.007 0.325 0.007 0.323 0.031 1.220 0.015 0.554 0.007 0.325 

k_Dolomite -2.68E-04 -0.447 
  

0.003 0.671 0.004 0.169 0.031 1.478 0.020 0.777 0.042 1.547 0.004 0.169 
k_Dolomite_dis -2.53E-04 -0.422 

  
0.002 0.452 0.001 0.046 0.013 0.597 -0.029 -1.121 -0.013 -0.471 0.001 0.046 

k_Fe(OH)2_s -3.62E-04 -0.595 
  

0.003 0.713 0.015 0.650 0.007 0.310 0.005 0.174 -0.010 -0.349 0.015 0.650 
k_Gibbsite 3.58E-04 0.595 

  
0.008 1.835 -0.008 -0.365 0.001 0.052 0.004 0.138 -0.035 -1.301 -0.008 -0.365 

k_Hercynite 1.99E-04 0.331 
  

0.003 0.645 0.012 0.532 0.010 0.457 -0.008 -0.312 -3.98E-04 -0.015 0.012 0.532 
k_Hydroxyapatite -5.47E-05 -0.091 

  
-0.003 -0.622 0.006 0.282 -0.025 -1.205 0.002 0.073 -0.020 -0.730 0.006 0.282 

k_Kstruvite -3.27E-04 -0.545 
  

-0.001 -0.237 -3.58E-04 -0.016 -0.014 -0.643 -0.011 -0.417 -0.005 -0.204 -3.58E-04 -0.016 
k_Magnesite -0.001 -0.864 

  
-7.38E-05 -0.018 0.009 0.410 0.013 0.594 0.073 2.832 -0.046 -1.679 0.009 0.410 

k_Mg3(PO4)2 2.72E-05 0.045 
  

-0.008 -1.872 0.007 0.303 -0.022 -1.050 -0.006 -0.235 -0.042 -1.554 0.007 0.303 
k_MgHPO4:3H2O 0.001 1.004 

  
0.006 1.429 -0.026 -1.129 -0.027 -1.281 0.001 0.042 -0.033 -1.211 -0.026 -1.129 

k_Mg(OH)2_act -0.001 -1.255 
  

0.001 0.195 -0.014 -0.595 -0.021 -1.013 0.027 1.050 0.010 0.384 -0.014 -0.595 
k_Siderite 6.88E-05 0.114 

  
-0.003 -0.684 -0.025 -1.097 -0.021 -0.988 -0.038 -1.486 0.008 0.306 -0.025 -1.097 

k_Struvite -0.001 -1.187 
  

0.003 0.718 0.001 0.043 0.015 0.682 0.012 0.450 0.027 0.994 0.001 0.043 
k_Vaterite -4.25E-04 -0.710 

  
-0.008 -1.871 0.001 0.037 -0.008 -0.369 0.001 0.058 0.008 0.294 0.001 0.037 

k_Vivianite 0.001 1.784 
  

0.003 0.668 0.002 0.103 -0.011 -0.506 0.028 1.086 -0.002 -0.088 0.002 0.103 

â Îóôõs
ö

õã_
 1.00 

   
0.98 

 
0.33 

 
0.41 

 
0.15 

 
0.055 

 
0.330 

 

R2 1.00 
   

0.98 
 

0.33 
 

0.39 
 

0.14 
 

0.050 
 

0.330 
 

R2adj 1.00 
   

0.98 
 

0.30 
 

0.41 
 

0.11 
 

0.020 
 

0.300 
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Table A10.6 Global sensitivity analyses analyses for the nutrient recovery model of the precipitation/crystallization unit (NRM-Prec): standardized regression 
coefficient (SRC) and its t-statistic (tSRC) per performance indicator for Scenario C (co-digestate; Vlaco, 2012). Dark grey = cut-off threshold 1 (CFT1); grey = 
cut-off threshold 2 (CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: 
Table 10.5.  

 
Effluent S_P Fertilizer P Effluent S_P Fertilizer P_P Particle diameter Fertilizer density Struvite purity Overall 

External Mg yes/no No No Yes  Yes  Yes Yes Yes  Yes  

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
S_Acetate -0.003 -0.571 0.003 0.160 0.002 0.931 -0.010 -0.544 -0.012 -0.467 -0.007 -0.292 0.008 0.290 -0.010 -0.544 
S_Al 0.007 1.232 -0.096 -4.393 0.005 2.737 0.008 0.446 -0.013 -0.512 -0.008 -0.304 0.003 0.097 0.008 0.446 
S_Butyrate -0.004 -0.730 0.010 0.476 0.001 0.389 0.011 0.631 0.015 0.615 0.015 0.615 -0.021 -0.808 0.011 0.632 
S_C_4_ 0.020 3.286 -0.164 -7.535 0.009 4.476 -0.099 -5.575 -0.041 -1.623 -0.021 -0.838 0.018 0.693 -0.099 -5.575 
S_C_min4_ -0.001 -0.184 -0.030 -1.401 -7.20E-05 -0.037 0.024 1.350 0.036 1.440 0.026 1.056 -0.033 -1.257 0.024 1.350 
S_Ca 0.070 11.611 0.252 11.621 -0.008 -4.158 0.254 14.251 0.015 0.593 0.003 0.132 -0.088 -3.324 0.234 13.131 
S_Cl 0.002 0.323 -0.036 -1.646 0.003 1.331 -0.002 -0.133 -0.022 -0.895 -0.023 -0.930 -0.028 -1.052 -0.002 -0.133 
S_DOM -0.003 -0.570 -0.010 -0.476 -0.002 -0.931 -0.010 -0.582 -0.012 -0.467 -0.009 -0.355 -0.006 -0.214 -0.009 -0.529 
S_Fe 0.125 20.898 0.065 2.989 2.22E-04 0.115 0.006 0.328 -0.032 -1.302 -0.044 -1.780 0.041 1.571 0.006 0.328 
S_K 0.001 0.202 0.020 0.912 -0.001 -0.476 0.027 1.503 -0.001 -0.059 -0.001 -0.049 0.035 1.314 0.027 1.503 
S_Mg 0.016 2.657 0.026 1.216 -0.023 -11.887 -0.038 -2.139 0.007 0.281 0.003 0.117 -0.012 -0.468 -0.038 -2.139 
S_N_5_ 0.005 0.899 0.010 0.447 0.001 0.442 0.003 0.192 -0.021 -0.852 -0.018 -0.716 0.016 0.612 0.003 0.192 
S_N_min3_ -0.040 -6.582 0.110 5.047 -0.008 -4.284 -0.010 -0.581 0.004 0.173 0.008 0.306 -0.038 -1.421 -0.010 -0.581 
S_Na 0.089 14.812 0.049 2.269 0.090 46.353 -0.052 -2.912 -0.164 -6.617 -0.159 -6.360 -0.066 -2.484 -0.052 -2.912 
S_P 0.959 159.534 -0.188 -8.657 0.991 507.138 0.234 13.131 0.370 14.770 0.367 14.594 0.061 2.276 0.254 14.251 
S_Propionate 0.005 0.908 -0.001 -0.067 -3.05E-04 -0.156 -0.035 -1.945 0.036 1.446 0.028 1.109 0.023 0.876 -0.035 -1.945 
S_S_6_ -0.018 -2.927 0.031 1.399 -0.002 -1.003 -0.013 -0.742 -0.025 -0.994 -0.033 -1.320 -0.019 -0.703 -0.013 -0.742 
S_S_min2_ 0.004 0.732 0.004 0.195 -0.002 -1.025 -0.018 -1.041 0.011 0.441 0.011 0.444 0.032 1.222 -0.018 -1.041 
S_Valerate 0.009 1.480 0.023 1.046 -0.001 -0.711 -0.020 -1.133 -0.001 -0.044 -0.005 -0.218 0.035 1.308 -0.020 -1.133 
pH_liq -0.002 -0.256 0.013 0.604 -0.001 -0.558 -0.006 -0.354 0.007 0.288 0.012 0.487 -0.001 -0.045 -0.006 -0.354 
Temp_liq -0.022 -3.623 -0.384 -17.636 -0.009 -4.645 -0.551 -31.012 0.013 0.532 -0.012 -0.487 0.089 3.362 -0.551 -31.012 
Q_liq 0.002 0.360 0.014 0.651 -0.003 -1.642 -3.16E-04 -0.018 -0.014 -0.572 -0.011 -0.424 0.002 0.070 -3.16E-04 -0.018 
Q_prec -0.006 -0.982 0.014 0.622 -2.10E-04 -0.108 -0.003 -0.194 0.020 0.813 0.021 0.847 -0.007 -0.254 -0.003 -0.194 
k_AlPO4 0.002 0.357 0.005 0.241 -1.65E-04 -0.085 -0.002 -0.131 0.016 0.650 0.021 0.842 0.021 0.806 -0.002 -0.131 
k_Aragonite 0.007 1.231 0.013 0.595 -0.001 -0.260 0.032 1.818 0.003 0.115 0.009 0.355 0.042 1.577 0.032 1.818 
k_Artinite 0.009 1.545 0.003 0.148 0.001 0.352 -0.012 -0.685 0.036 1.432 0.043 1.689 -0.031 -1.162 -0.012 -0.685 
k_Boehmite 0.008 1.294 0.030 1.376 -4.36E-04 -0.225 0.002 0.100 0.014 0.572 0.011 0.433 -0.037 -1.416 0.002 0.100 
k_Brucite 0.001 0.144 0.031 1.422 -0.001 -0.304 -0.008 -0.467 0.010 0.401 0.016 0.617 -0.013 -0.476 -0.008 -0.467 
k_Ca3(PO4)2_am1 0.008 1.385 -0.039 -1.779 -0.002 -0.966 0.005 0.272 0.009 0.362 -0.002 -0.084 0.004 0.148 0.005 0.272 
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(Continuation) Effluent S_P Fertilizer P Effluent S_P Fertilizer P_P Particle diameter Fertilizer density Struvite purity Overall 

External Mg yes/no No No Yes  Yes  Yes Yes Yes  Yes  

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
k_Ca3(PO4)2_am3 -0.006 -0.940 -0.063 -2.908 1.94E-04 0.099 0.025 1.373 -0.001 -0.040 -0.005 -0.209 -0.047 -1.770 0.025 1.373 
k_Ca3(PO4)2_beta -0.011 -1.819 0.247 11.361 0.002 0.852 0.372 20.936 0.036 1.434 0.026 1.046 -0.160 -6.025 0.372 20.936 
k_Ca4H(PO4)3:3H2O 0.003 0.470 0.025 1.127 0.002 0.904 0.006 0.339 0.018 0.701 0.032 1.268 -0.001 -0.045 0.006 0.339 
k_CaHPO4:2H2O 0.003 0.509 0.032 1.487 -0.001 -0.554 0.004 0.245 0.063 2.518 0.066 2.641 0.063 2.394 0.004 0.245 
k_CaHPO4bis -0.004 -0.647 -0.009 -0.422 -0.003 -1.475 0.002 0.085 -0.008 -0.307 -0.003 -0.126 -0.014 -0.521 0.002 0.085 
k_Calcite 0.008 1.250 -0.008 -0.362 4,99E-05 0.026 0.031 1.737 0.052 2.071 0.036 1.457 0.021 0.795 0.031 1.737 
k_Diaspore -0.003 -0.554 -0.003 -0.117 -0.001 -0.641 0.005 0.277 0.025 1.024 0.025 1.007 -0.030 -1.131 0.005 0.277 
k_Dolomite -0.001 -0.180 -0.031 -1.406 7.73E-05 0.040 -0.022 -1.233 0.026 1.053 0.030 1.213 -0.022 -0.839 -0.022 -1.233 
k_Dolomite_dis 0.005 0.888 -0.033 -1.529 -0.002 -0.866 0.006 0.313 -0.046 -1.856 -0.044 -1.736 -0.004 -0.151 0.006 0.313 
k_Fe(OH)2_s -0.005 -0.854 0.003 0.147 -0.001 -0.709 0.010 0.582 -0.003 -0.109 -0.004 -0.169 -0.011 -0.406 0.010 0.582 
k_Gibbsite -0.003 -0.511 -0.036 -1.662 -0.001 -0.271 -0.028 -1.589 0.072 2.877 0.071 2.816 0.022 0.830 -0.028 -1.589 
k_Hercynite 0.010 1.687 0.002 0.094 0.001 0.752 -0.015 -0.828 -0.021 -0.853 -0.003 -0.104 -0.006 -0.214 -0.015 -0.828 
k_Hydroxyapatite 0.004 0.608 -0.035 -1.609 -0.001 -0.275 0.023 1.283 0.016 0.655 0.023 0.901 -0.019 -0.721 0.023 1.283 
k_Kstruvite -0.007 -1.091 0.040 1.849 -0.003 -1.467 -0.021 -1.172 -0.053 -2.111 -0.041 -1.656 0.072 2.718 -0.021 -1.172 
k_Magnesite -0.007 -1.083 0.004 0.177 -0.002 -1.119 0.003 0.161 0.021 0.824 0.048 1.928 0.007 0.271 0.003 0.161 
k_Mg3(PO4)2 -0.015 -2.529 -0.040 -1.858 -0.002 -1.001 0.009 0.529 -0.028 -1.140 -0.025 -1.015 0.014 0.521 0.009 0.529 
k_MgHPO4:3H2O -0.002 -0.293 0.020 0.907 -2.46E-04 -0.126 -0.006 -0.339 0.010 0.409 0.006 0.238 -0.002 -0.078 -0.006 -0.339 
k_Mg(OH)2_act -0.006 -1.073 0.030 1.363 0.002 1.015 4.61E-04 0.026 0.004 0.156 -0.008 -0.336 -0.042 -1.590 4.61E-04 0.026 
k_Siderite 0.002 0.318 2.08E-04 0.010 -0.003 -1.408 -0.029 -1.649 0.006 0.247 0.002 0.088 -0.003 -0.120 -0.029 -1.649 
k_Struvite -0.012 -2.004 -0.023 -1.073 -0.002 -0.831 0.005 0.277 0.002 0.060 -0.003 -0.136 -0.008 -0.318 0.005 0.277 
k_Vaterite 0.011 1.857 -0.004 -0.200 0.002 0.932 -0.010 -0.545 -0.006 -0.224 -0.001 -0.046 0.018 0.666 -0.010 -0.545 
k_Vivianite 0.001 0.194 0.001 0.048 -3.72E-04 -0.190 0.001 0.056 0.006 0.238 0.003 0.118 -0.058 -2.180 0.001 0.056 

â Îóôõs
ö

õã_
 0.95 

 
0.39 

 
0.99 

 
0.59 

 
0.20 

 
0.19 

 
0.09 

 
0.59 

 

R2 0.95 
 

0.38 
 

1.00 
 

0.59 
 

0.19 
 

0.18 
 

0.08 
 

0.59 
 

R2adj 0.95 
 

0.36 
 

1.00 
 

0.57 
 

0.16 
 

0.15 
 

0.05 
 

0.57 
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Table A10.7 Global sensitivity analyses for the nutrient recovery model of the stripping unit (NRM-Strip): standardized regression coefficient (SRC) and its t-
statistic (tSRC) per performance indicator for Scenario A (digestate: all applications). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off threshold 2 (CFT2); 
light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.6.  

  NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
 Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
 S_Acetate -0.012 -0.596 0.003 0.295 -0.002 -0.067 -0.009 -0.614 -0.012 -1.016 
 S_Al 0.030 1.434 -0.028 -2.605 -0.027 -0.775 0.020 1.336 -0.001 -0.057 
 S_Butyrate 0.023 1.104 0.019 1.834 -0.046 -1.326 -0.022 -1.503 2.84E-04 0.024 
 S_C_4_ 0.084 4.034 -0.061 -5.732 0.049 1.392 -0.020 -1.342 0.011 0.957 
 S_C_min4_ 0.029 1.366 -0.018 -1.656 0.048 1.387 -0.008 -0.520 -0.005 -0.426 
 S_Ca 0.003 0.149 -0.033 -3.083 0.136 3.919 -0.010 -0.647 -0.014 -1.207 
 S_Cl -0.930 -41.461 0.935 87.415 -0.102 -2.911 -0.025 -1.665 0.011 0.969 
 S_DOM 0.001 0.036 -0.003 -0.257 -0.002 -0.063 -0.004 -0.271 -0.007 -0.617 
 S_Fe -0.005 -0.218 -0.015 -1.354 -0.081 -2.301 -0.004 -0.248 0.019 1.586 
 S_H_0_ 0.038 1.812 -0.028 -2.582 -0.014 -0.392 0.014 0.945 -0.005 -0.440 
 S_K 0.016 0.754 -0.003 -0.278 0.036 1.009 0.046 3.073 0.005 0.456 
 S_Mg 0.136 6.427 -0.156 -14.515 0.171 4.870 -0.011 -0.759 0.003 0.296 
 S_N_0_ -0.036 -1.710 -0.004 -0.334 -0.006 -0.167 0.005 0.304 0.006 0.525 
 S_N_5_ 0.008 0.379 -0.013 -1.263 -0.045 -1.298 -0.020 -1.333 0.002 0.146 
 S_N_min3_ 0.508 23.355 0.106 9.839 0.004 0.112 0.003 0.234 0.013 1.082 
 S_Na -0.003 -0.163 0.002 0.144 0.069 1.958 -0.004 -0.241 0.004 0.307 
 S_O_0_ -0.002 -0.073 -0.011 -1.053 -0.050 -1.437 0.008 0.528 -0.009 -0.741 
 S_P 0.022 1.062 0.022 2.063 -0.119 -3.409 -0.010 -0.707 4.22E-07 3.61E-05 
 S_Propionate -0.008 -0.386 -0.005 -0.483 0.001 0.019 -0.010 -0.690 0.010 0.881 
 S_S_6_ -0.030 -1.406 0.027 2.532 -0.103 -2.944 0.017 1.141 0.002 0.153 
 S_S_min2_ -0.020 -0.964 0.009 0.842 -0.003 -0.094 0.009 0.628 0.009 0.776 
 S_Valerate 0.021 1.004 -0.005 -0.505 0.010 0.298 -0.011 -0.734 -0.003 -0.252 
 CH4_g_ -0.012 -0.603 -0.006 -0.596 -0.037 -1.061 -0.012 -0.828 0.017 1.441 
 CO2_g_ 0.001 0.031 0.006 0.605 0.032 0.924 -0.005 -0.349 0.020 1.735 
 H2O_g_ 0.024 1.144 -0.015 -1.436 -0.020 -0.556 -0.001 -0.046 -0.015 -1.313 
 H2S_g_ 0.009 0.440 0.009 0.882 -0.036 -1.025 -0.016 -1.035 0.015 1.268 
 H2_g_ 0.024 1.147 -0.015 -1.371 0.007 0.200 0.005 0.316 -2.37E-04 -0.020 
 N2_g_ 0.014 0.637 0.004 0.352 0.088 2.491 0.013 0.856 -0.013 -1.104 
 NH3_g_ 0.006 0.265 -0.004 -0.373 0.013 0.382 -0.015 -1.014 0.008 0.718 
 O2_g_ 0.001 0.044 -0.005 -0.439 -0.062 -1.758 0.004 0.288 -0.006 -0.548 
 d_gas 0.010 0.467 0.012 1.160 -0.020 -0.572 -0.011 -0.741 -0.002 -0.148 
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 (Continuation) NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
 Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
 P_gas_in 0.016 0.760 -0.013 -1.169 -0.045 -1.284 0.430 28.442 0.423 36.143 
 Temp_gas_in -0.015 -0.745 0.016 1.534 -0.014 -0.415 0.023 1.544 -0.015 -1.328 
 pH_liq 0.014 0.680 -0.015 -1.435 -0.031 -0.880 0.017 1.118 0.011 0.910 
 Temp_liq 0.001 0.009 -0.005 -0.464 -0.174 -4.886 -0.711 -47.684 -0.733 -62.531 
 Q_gas_in -0.003 -0.120 0.007 0.612 -0.028 -0.804 0.009 0.594 -0.003 -0.286 
 Q_liq_in -0.026 -1.240 -0.012 -1.133 -0.071 -2.022 0.358 24.077 0.364 31.016 
 u 0.020 0.940 -0.005 -0.437 -0.016 -0.461 -0.002 -0.109 0.009 0.785 
 k_Aragonite -0.004 -0.205 -0.002 -0.185 -0.051 -1.452 -0.024 -1.613 -0.006 -0.532 
 k_Artinite 0.023 1.126 0.006 0.611 -0.010 -0.282 -0.008 -0.512 -0.006 -0.549 
 k_Brucite -0.012 -0.553 -0.008 -0.771 -0.022 -0.629 -0.013 -0.865 0.006 0.520 
 k_Ca3(PO4)2_am1 0.044 2.099 -0.012 -1.128 -0.062 -1.767 -0.030 -2.027 0.002 0.206 
 k_Ca3(PO4)2_am2 0.006 0.263 -0.010 -0.902 -0.043 -1.241 0.001 0.056 -0.011 -0.920 
 k_Ca3(PO4)2_beta -0.038 -1.784 0.005 0.449 0.011 0.298 -0.006 -0.429 -0.005 -0.393 
 k_Ca4H(PO4)3:3H2O 0.023 1.074 -0.016 -1.493 -0.038 -1.068 -0.004 -0.245 0.012 1.031 
 k_CaHPO4:2H2O -0.014 -0.661 -0.012 -1.085 -0.045 -1.293 -0.007 -0.459 -0.008 -0.665 
 k_CaHPO4bis -0.015 -0.726 0.017 1.567 0.022 0.627 -0.009 -0.627 0.016 1.422 
 k_Calcite 0.024 1.159 -0.005 -0.488 0.037 1.062 -0.009 -0.579 0.008 0.699 
 k_Diaspore -0.001 -0.051 0.018 1.640 -0.018 -0.521 -0.008 -0.547 0.008 0.677 
 k_Dolomite 0.028 1.341 -0.009 -0.793 -0.001 -0.025 -0.010 -0.694 -0.017 -1.454 
 k_Dolomite_dis 0.021 1.002 -0.012 -1.101 -0.031 -0.889 -0.003 -0.174 -0.012 -1.051 
 k_Fe(OH)2 0.018 0.868 -0.017 -1.587 -0.002 -0.058 -0.020 -1.345 -0.011 -0.904 
 k_Hercynite 0.005 0.256 0.005 0.506 0.053 1.515 0.024 1.605 0.005 0.441 
 k_Huntite 0.015 0.715 -0.015 -1.361 0.021 0.601 -0.011 -0.687 -0.009 -0.789 
 k_Hydromagnesite 0.005 0.256 0.008 0.715 -0.035 -1.011 -0.005 -0.313 0.001 0.085 
 k_Hydroxyapatite -0.013 -0.632 -0.014 -1.350 -0.007 -0.193 -0.012 -0.792 -0.012 -1.030 
 k_Kstruvite 0.016 0.761 0.008 0.732 0.001 0.035 -0.008 -0.527 0.021 1.796 
 k_Magnesite 0.023 1.104 -0.014 -1.309 0.114 3.232 -0.014 -0.924 0.009 0.775 
 k_Mg3(PO4)2 -0.015 -0.707 -0.001 -0.082 0.027 0.779 -0.002 -0.166 -0.031 -2.693 
 k_MgHPO4:3H2O -0.009 -0.398 0.001 0.083 -0.004 -0.106 0.019 1.253 -0.009 -0.768 
 k_Mg(OH)2_act -0.015 -0.715 -0.004 -0.395 -0.070 -2.002 0.001 0.068 -0.021 -1.845 
 k_Periclase 0.001 0.053 -1.19E-04 -0.011 -0.051 -1.455 -0.015 -0.987 -0.016 -1.411 
 k_Portlandite 0.002 0.084 -0.003 -0.303 0.040 1.125 -0.019 -1.251 -0.016 -1.385 
 k_Siderite -0.002 -0.079 -0.002 -0.148 -0.002 -0.048 0.016 1.041 0.002 0.211 
 k_Spinel 0.034 1.633 -0.011 -1.027 0.018 0.502 -0.015 -1.023 -0.006 -0.510 
 k_Struvite -0.032 -1.514 0.026 2.381 0.014 0.401 -0.021 -1.439 0.013 1.102 
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 (Continuation) NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
 Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
 k_Vivianite -0.011 -0.538 0.006 0.556 -0.005 -0.137 -0.014 -0.916 0.009 0.755 
 D_CH4_g_ -0.041 -1.958 -0.001 -0.134 -3.63E-04 -0.010 0.004 0.283 0.016 1.395 
 D_CO2_g_ -0.046 -2.182 0.004 0.389 0.015 0.435 -0.013 -0.838 2.07E-04 0.018 
 D_H2S_g_ 0.011 0.512 0.008 0.773 0.057 1.627 -0.011 -0.756 -0.007 -0.572 
 D_H2_g_ -0.016 -0.764 0.020 1.888 0.003 0.096 -0.001 -0.035 -0.019 -1.594 
 D_N2_g_ 0.021 0.992 -0.003 -0.251 -0.050 -1.412 0.007 0.442 -0.011 -0.919 
 D_NH3_g_ 0.019 0.941 -0.009 -0.885 0.016 0.455 -0.016 -1.071 0.022 1.842 
 D_O2_g_ -2.28E-04 -0.011 -0.009 -0.806 -0.034 -0.965 0.003 0.177 -0.001 -0.065 
 theta_CH4_g_ 0.016 0.743 -0.013 -1.181 -3.85E-04 -0.011 -0.015 -1.024 -0.021 -1.834 
 theta_CO2_g_ 0.016 0.764 -0.017 -1.623 -0.005 -0.155 -0.004 -0.242 0.010 0.876 
 theta_H2S_g_ 0.015 0.722 0.008 0.793 -0.026 -0.747 -0.007 -0.479 -1.80E-04 -0.015 
 theta_H2_g_ 0.008 0.355 -0.012 -1.075 -0.005 -0.152 -0.016 -1.078 -0.020 -1.663 
 theta_N2_g_ 0.025 1.213 0.004 0.423 -0.003 -0.077 0.001 0.089 0.008 0.692 
 theta_NH3_g_ -0.033 -1.578 -0.003 -0.246 0.026 0.741 -0.009 -0.637 -0.001 -0.092 
 theta_O2_g_ -0.006 -0.314 -0.008 -0.728 -0.018 -0.531 0.018 1.176 -0.004 -0.318 

 â Îóôõs
ö

õã_
 1.17 

 
0.93 

 
0.22 

 
0.83 

 
0.86 

 

 R2 0.83   0.93   0.21   0.86   0.84 
  R2adj 0.80 

 
0.92 

 
0.12 

 
0.84 

 
0.83 

 
a Air needed to obtain 90 % NH3 removal. 
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Table A10.8 Global sensitivity analyses for the nutrient recovery model of the stripping unit (NRM-Strip): standardized regression coefficient (SRC) and its t-
statistic (tSRC) per performance indicator for Scenario B (digested manure; Cesur and Albertson, 2005). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off 
threshold 2 (CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.6. 

 NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
S_Acetate -7.38E-05 -0.042 0.001 1.383 0.008 1.057 -0.003 -0.287 -0.003 -0.286 
S_Al 0.027 15.104 -0.028 -73.932 -0.013 -1.627 0.007 0.637 0.007 0.630 
S_Butyrate -0.002 -1.242 3.42E-04 0.929 -0.006 -0.786 -0.003 -0.261 -0.003 -0.262 
S_C_4_ 4.63E-04 0.260 3.44E-06 0.009 -0.007 -0.862 -0.026 -2.343 -0.026 -2.339 
S_C_min4_ 0.001 0.826 -2.63E-04 -0.709 0.014 1.842 -0.001 -0.062 -0.001 -0.067 
S_Ca 0.110 63.008 -0.104 -284.349 -0.003 -0.371 -0.024 -2.166 -0.024 -2.163 
S_Cl -0.922 -521.253 0.860 2321.130 0.005 0.706 0.121 10.813 0.121 10.803 
S_DOM -0.014 -7.932 0.013 36.358 0.005 0.594 0.011 1.017 0.011 1.018 
S_Fe 0.009 4.821 -0.010 -27.589 0.006 0.799 -0.005 -0.430 -0.005 -0.433 
S_H_0_ -0.001 -0.748 -4.08E-04 -1.109 0.002 0.211 0.018 1.638 0.018 1.644 
S_K 0.047 26.561 -0.042 -114.953 0.017 2.272 -0.001 -0.076 -0.001 -0.073 
S_Mg 0.175 99.680 -0.164 -444.330 0.007 0.958 -0.015 -1.371 -0.015 -1.365 
S_N_0_ 0.001 0.581 -1.75E-04 -0.475 0.003 0.435 0.002 0.188 0.002 0.188 
S_N_5_ -0.038 -21.586 0.034 93.588 -0.001 -0.184 0.009 0.787 0.009 0.791 
S_N_min3_ 0.244 137.593 0.350 943.289 -0.014 -1.884 -0.027 -2.403 -0.027 -2.404 
S_Na 0.139 79.538 -0.130 -355.207 0.012 1.644 -0.048 -4.328 -0.048 -4.325 
S_O_0_ 0.001 0.569 8.43E-05 0.227 4.18E-04 0.054 -0.011 -0.953 -0.011 -0.958 
S_P -0.045 -25.190 0.043 115.218 0.011 1.398 0.003 0.273 0.003 0.275 
S_Propionate 0.001 0.605 -1.68E-04 -0.454 -0.013 -1.644 -0.012 -1.067 -0.012 -1.061 
S_S_6_ -0.058 -32.707 0.054 145.271 0.007 0.915 -0.004 -0.325 -0.004 -0.327 
S_S_min2_ 3.68E-04 0.209 1.06E-04 0.287 -0.004 -0.462 -0.013 -1.135 -0.013 -1.131 
S_Valerate -0.001 -0.655 2.32E-04 0.628 -0.001 -0.157 0.006 0.499 0.006 0.495 
CH4_g_ -0.002 -0.881 -1.63E-04 -0.444 -0.002 -0.294 0.008 0.745 0.008 0.739 
CO2_g_ -0.001 -0.752 -2.60E-05 -0.070 -0.001 -0.121 -0.009 -0.786 -0.009 -0.784 
H2O_g_ -0.001 -0.754 -4.61E-05 -0.126 0.000 0.065 0.004 0.381 0.004 0.387 
H2S_g_ 1.75E-04 0.099 -1.64E-04 -0.443 -0.008 -1.035 -0.005 -0.461 -0.005 -0.468 
H2_g_ -0.002 -1.333 3.44E-04 0.928 0.004 0.569 -0.004 -0.338 -0.004 -0.343 
N2_g_ -0.003 -1.909 2.01E-04 0.548 0.006 0.755 0.003 0.266 0.003 0.264 
NH3_g_ 1.14E-04 0.065 -2.11E-04 -0.571 0.005 0.688 0.002 0.186 0.002 0.193 
O2_g_ -1.47E-04 -0.083 0.001 1.801 -0.003 -0.409 -0.008 -0.748 -0.008 -0.748 
d_gas 0.001 0.794 -4.03E-04 -1.097 -0.004 -0.568 0.016 1.438 0.016 1.442 
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(Continuation) NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
P_gas_in 2.97E-04 0.169 -0.001 -1.517 -0.004 -0.536 0.440 39.480 0.440 39.485 
Temp_gas_in -0.001 -0.634 -1.81E-04 -0.490 0.006 0.845 0.004 0.388 0.004 0.389 
pH_liq 4.61E-05 0.026 3.42E-04 0.929 0.009 1.132 -0.002 -0.146 -0.002 -0.157 
Temp_liq 0.153 86.924 -0.144 -391.549 0.005 0.671 -0.711 -63.620 -0.711 -63.620 
Q_gas_in -0.001 -0.785 -2.33E-04 -0.630 -0.010 -1.338 0.015 1.326 0.015 1.325 
Q_liq_in 0.001 0.832 7.25E-05 0.197 0.963 126.562 0.354 31.789 0.354 31.793 
u -0.001 -0.674 -3.94E-04 -1.066 -0.006 -0.795 -0.025 -2.204 -0.025 -2.203 
k_Aragonite 0.001 0.671 -2.67E-04 -0.721 -0.011 -1.490 0.018 1.611 0.018 1.612 
k_Artinite 0.001 0.773 7.93E-05 0.216 0.007 0.930 0.009 0.844 0.009 0.846 
k_Brucite 0.003 1.443 2.98E-05 0.081 0.001 0.145 0.004 0.340 0.004 0.349 
k_Ca3(PO4)2_am1 0.002 1.165 -0.001 -2.583 -0.005 -0.627 -0.001 -0.096 -0.001 -0.109 
k_Ca3(PO4)2_am2 3.03E-04 0.172 -1.96E-04 -0.532 -0.011 -1.460 0.010 0.926 0.010 0.932 
k_Ca3(PO4)2_beta -0.001 -0.420 2.37E-04 0.643 -0.002 -0.204 0.016 1.430 0.016 1.430 
k_Ca4H(PO4)3:3H2O -0.001 -0.804 0.001 1.617 -0.006 -0.727 0.001 0.081 0.001 0.081 
k_CaHPO4:2H2O -0.001 -0.444 0.001 2.229 -0.005 -0.635 4.08E-04 0.037 3.57E-04 0.032 
k_CaHPO4bis -1.52E-04 -0.086 -4.34E-04 -1.165 -0.006 -0.719 0.010 0.846 0.010 0.852 
k_Calcite 0.001 0.304 1.89E-04 0.509 -0.006 -0.728 -0.013 -1.116 -0.013 -1.115 
k_Diaspore 0.002 0.861 0.001 2.022 0.008 1.022 -0.021 -1.918 -0.022 -1.921 
k_Dolomite -0.001 -0.599 -4.39E-04 -1.175 -0.016 -2.029 -0.006 -0.489 -0.006 -0.491 
k_Dolomite_dis -0.002 -0.881 -2.77E-04 -0.747 -0.007 -0.924 0.002 0.221 0.002 0.215 
k_Fe(OH)2 -0.001 -0.549 -1.75E-04 -0.478 0.008 1.050 -0.009 -0.797 -0.009 -0.792 
k_Hercynite 0.001 0.843 6.50E-05 0.176 -0.003 -0.439 -0.018 -1.619 -0.018 -1.622 
k_Huntite 0.001 0.491 -4.11E-04 -1.111 0.001 0.081 0.005 0.485 0.005 0.484 
k_Hydromagnesite 0.002 1.411 -0.001 -1.650 -0.006 -0.794 0.014 1.237 0.014 1.242 
k_Hydroxyapatite 0.003 1.850 3.14E-04 0.851 -0.002 -0.216 -0.016 -1.451 -0.016 -1.444 
k_Kstruvite -0.002 -1.329 -2.77E-04 -0.755 0.007 0.869 -0.009 -0.810 -0.009 -0.814 
k_Magnesite 0.001 0.736 -0.001 -1.816 0.001 0.163 -0.004 -0.370 -0.004 -0.371 
k_Mg3(PO4)2 -0.001 -0.568 2.40E-04 0.645 -0.002 -0.317 0.013 1.181 0.013 1.176 
k_MgHPO4:3H2O 0.002 1.285 -0.001 -1.605 0.001 0.158 0.010 0.860 0.010 0.857 
k_Mg(OH)2_act 0.001 0.772 -0.001 -1.762 -0.004 -0.526 0.008 0.710 0.008 0.707 
k_Periclase 0.002 0.962 -3.37E-04 -0.911 -3.09E-04 -0.040 0.010 0.888 0.010 0.878 
k_Portlandite -7.50E-05 -0.043 2.50E-04 0.679 0.002 0.220 0.012 1.049 0.012 1.048 
k_Siderite -0.001 -0.705 1.22E-04 0.332 0.012 1.538 -0.004 -0.334 -0.004 -0.323 
k_Spinel 0.003 1.647 -3.09E-06 -0.008 0.001 0.095 -7.13E-05 -0.006 -1.75E-04 -0.016 
k_Struvite -0.001 -0.658 2.13E-04 0.576 -4.62E-05 -0.006 0.010 0.917 0.010 0.919 
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(Continuation) NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 

Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
k_Vivianite 0.001 0.467 6.72E-05 0.182 -0.002 -0.227 -0.002 -0.214 -0.002 -0.211 
D_CH4_g_ 3.03E-04 0.173 -4.38E-04 -1.194 0.008 1.050 0.003 0.283 0.003 0.286 
D_CO2_g_ 0.003 1.629 -7.42E-05 -0.202 -3.13E-04 -0.041 -0.016 -1.446 -0.016 -1.442 
D_H2S_g_ 0.004 2.041 -2.24E-04 -0.608 -0.009 -1.239 0.010 0.918 0.010 0.916 
D_H2_g_ 0.002 1.269 1.09E-04 0.293 0.001 0.125 -0.002 -0.152 -0.002 -0.149 
D_N2_g_ -0.001 -0.790 2.68E-04 0.728 -0.021 -2.695 -4.55E-05 -0.004 -2.32E-05 -0.002 
D_NH3_g_ 9.91E-05 0.056 1.23E-04 0.332 -0.006 -0.740 0.002 0.210 0.002 0.206 
D_O2_g_ 0.002 0.882 -2.51E-04 -0.687 -0.009 -1.195 -0.001 -0.075 -0.001 -0.073 
theta_CH4_g_ -0.001 -0.555 3.69E-04 1.007 -0.015 -2.034 -0.019 -1.701 -0.019 -1.696 
theta_CO2_g_ 0.002 1.396 -0.001 -1.837 0.009 1.211 0.002 0.174 0.002 0.177 
theta_H2S_g_ 0.001 0.705 9.69E-06 0.026 -1.88E-04 -0.025 0.013 1.192 0.013 1.188 
theta_H2_g_ -1.51E-04 -0.085 -2.39E-04 -0.647 1.06E-04 0.014 0.001 0.098 0.001 0.100 
theta_N2_g_ -0.001 -0.647 1.80E-04 0.487 -0.003 -0.342 -0.015 -1.322 -0.015 -1.320 
theta_NH3_g_ 0.001 0.571 -1.91E-04 -0.518 0.004 0.532 -0.004 -0.388 -0.004 -0.377 
theta_O2_g_ 3.57E-04 0.202 -1.30E-04 -0.352 0.008 1.013 0.004 0.314 0.003 0.311 

â Îóôõs
ö

õã_
 1.01 

 
0.95 

 
0.93 

 
0.85 

 
0.85 

 

R2 1.00 
 

1.00 
 

0.93 
 

0.84 
 

0.84 
 

R2adj 1.00 
 

1.00 
 

0.92 
 

0.84 
 

0.84 
 

a Air needed to obtain 90 % NH3 removal. 
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Table A10.9 Global sensitivity analyses for the nutrient recovery model of the stripping unit (NRM-Strip): standardized regression coefficient (SRC) and its t-
statistic (tSRC) per performance indicator for Scenario C (co-digestate; Vlaco, 2012). Dark grey = cut-off threshold 1 (CFT1); grey = cut-off threshold 2 
(CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For description of factor symbols: see Chapter 10: Table 10.6.  

 NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
S_Acetate -0.020 -1.397 0.024 2.014 0.011 0.395 0.004 0.239 -0.010 -0.856 
S_Al 0.046 3.196 -0.036 -3.065 -0.060 -2.291 -0.027 -1.853 -0.005 -0.407 
S_Butyrate 0.028 1.956 -0.028 -2.367 -0.026 -0.999 -0.013 -0.874 -4.86E-04 -0.042 
S_C_4_ 0.513 35.886 -0.382 -32.331 0.057 2.168 -0.171 -11.669 0.011 1.015 
S_C_min4_ -0.002 -0.171 -0.004 -0.326 -0.032 -1.225 -0.012 -0.818 -0.007 -0.589 
S_Ca -0.025 -1.759 0.026 2.202 0.107 4.077 0.003 0.201 -0.011 -0.924 
S_Cl -0.230 -16.026 0.104 8.811 -0.039 -1.494 0.052 3.52 0.012 1.056 
S_DOM 0.042 2.925 -0.041 -3.533 -0.081 -3.137 -0.032 -2.200 -0.005 -0.406 
S_Fe 0.041 2.776 -0.029 -2.459 -0.064 -2.424 -0.003 -0.238 0.016 1.385 
S_H_0_ 0.026 1.826 -0.017 -1.426 0.025 0.938 0.002 0.165 -0.006 -0.522 
S_K -0.010 -0.721 0.007 0.564 0.005 0.188 0.011 0.738 0.004 0.313 
S_Mg 0.365 25.498 -0.261 -22.049 0.096 3.670 -0.115 -7.817 0.005 0.480 
S_N_0_ 0.010 0.723 -0.007 -0.625 0.018 0.678 -0.031 -2.095 0.006 0.496 
S_N_5_ -0.005 -0.380 0.003 0.281 0.041 1.571 0.021 1.350 0.003 0.265 
S_N_min3_ -0.467 -32.267 0.731 61.026 -0.157 -5.954 0.153 10.355 0.015 1.298 
S_Na -0.036 -2.542 0.025 2.120 0.072 2.777 0.015 1.042 0.005 0.422 
S_O_0_ 0.008 0.584 -0.001 -0.072 -0.025 -0.971 -0.001 -0.085 -0.003 -0.281 
S_P 0.131 9.186 -0.114 -9.607 -0.212 -8.110 -0.082 -5.601 -0.003 -0.274 
S_Propionate -0.014 -0.986 0.012 0.993 -0.012 -0.478 0.023 1.566 0.010 0.895 
S_S_6_ 0.024 1.672 -0.022 -1.824 -0.011 -0.422 -0.004 -0.300 0.006 0.541 
S_S_min2_ 0.011 0.759 -0.006 -0.502 -0.007 -0.278 0.004 0.271 0.004 0.331 
S_Valerate 0.007 0.512 -0.004 -0.337 0.016 0.592 -0.016 -1.096 -1.67E-04 -0.015 
CH4_g_ 0.005 0.350 -0.012 -0.992 -0.006 -0.212 0.011 0.731 0.013 1.163 
CO2_g_ -0.001 -0.075 4.23E-04 0.036 -0.011 -0.416 -0.002 -0.157 0.014 1.236 
H2O_g_ 0.006 0.442 -0.009 -0.754 -0.017 -0.636 0.006 0.387 -0.011 -0.949 
H2S_g_ 0.003 0.220 -0.007 -0.588 0.021 0.795 0.024 1.661 0.009 0.840 
H2_g_ 0.029 2.062 -0.023 -1.956 -0.008 -0.291 -0.021 -1.416 0.003 0.308 
N2_g_ 0.003 0.205 0.006 0.536 0.005 0.201 -0.019 -1.277 -0.013 -1.127 
NH3_g_ 0.004 0.266 -0.002 -0.181 0.036 1.378 -0.005 -0.334 0.008 0.672 
O2_g_ 0.036 2.491 -0.027 -2.278 -0.021 -0.778 -0.015 -1.002 -0.001 -0.062 
d_gas -0.021 -1.493 0.015 1.283 -0.061 -2.313 0.026 1.799 -0.002 -0.145 
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(Continuation) NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
P_gas_in 0.004 0.312 -0.007 -0.589 0.018 0.687 0.376 25.603 0.423 37.468 
Temp_gas_in 0.021 1.466 -0.017 -1.440 -0.015 -0.566 -0.014 -0.971 -0.014 -1.278 
pH_liq -0.002 -0.107 0.004 0.379 0.008 0.318 0.013 0.881 0.014 1.198 
Temp_liq 0.010 0.723 -0.010 -0.825 0.023 0.866 -0.630 -42.902 -0.735 -64.969 
Q_gas_in -0.002 -0.136 0.006 0.477 -0.019 -0.722 0.022 1.480 0.001 0.054 
Q_liq_in -0.024 -1.645 0.014 1.215 -0.059 -2.261 0.312 21.199 0.362 31.941 
u 0.004 0.283 0.002 0.169 -0.009 -0.363 0.013 0.904 0.009 0.759 
k_Aragonite 0.001 0.036 -0.004 -0.329 -0.002 -0.067 0.001 0.094 -9.41E-05 -0.008 
k_Artinite -0.003 -0.224 0.002 0.182 0.005 0.184 -0.013 -0.871 -0.004 -0.355 
k_Brucite -0.002 -0.116 5.68E-05 0.005 -0.023 -0.896 -0.010 -0.707 0.008 0.674 
k_Ca3(PO4)2_am1 0.010 0.673 -0.006 -0.486 -0.022 -0.828 0.007 0.475 0.008 0.688 
k_Ca3(PO4)2_am2 -0.002 -0.119 0.005 0.454 -0.025 -0.971 -0.009 -0.607 -0.011 -0.881 
k_Ca3(PO4)2_beta -0.017 -1.203 0.013 1.116 -0.030 -1.172 -0.004 -0.298 -0.008 -0.723 
k_Ca4H(PO4)3:3H2O 0.010 0.696 -0.003 -0.255 -0.010 -0.391 0.010 0.693 0.005 0.404 
k_CaHPO4:2H2O 0.013 0.879 -0.011 -0.974 0.009 0.354 -0.012 -0.840 -0.011 -0.975 
k_CaHPO4bis -0.024 -1.661 0.014 1.181 -0.011 -0.428 0.032 2.207 0.013 1.179 
k_Calcite -0.011 -0.803 0.009 0.771 0.068 2.625 0.004 0.257 0.005 0.417 
k_Diaspore 0.009 0.651 -0.008 -0.640 -0.004 -0.148 -0.003 -0.218 0.009 0.834 
k_Dolomite 0.034 2.368 -0.028 -2.387 -0.038 -1.442 -0.027 -1.850 -0.018 -1.642 
k_Dolomite_dis -0.008 -0.530 0.015 1.260 0.001 0.043 0.002 0.160 -0.011 -0.959 
k_Fe(OH)2 0.002 0.130 -0.001 -0.099 0.012 0.472 -4.43E-05 -0.003 -0.007 -0.656 
k_Hercynite 0.020 1.437 -0.021 -1.756 0.009 0.329 -2.70E-05 -0.002 0.011 0.948 
k_Huntite -0.016 -1.121 0.010 0.846 0.023 0.871 -0.004 -0.239 -0.010 -0.892 
k_Hydromagnesite -0.007 -0.498 0.003 0.285 -0.003 -0.108 0.013 0.856 0.004 0.367 
k_Hydroxyapatite 0.025 1.767 -0.024 -1.990 -0.001 -0.025 -0.024 -1.640 -0.008 -0.721 
k_Kstruvite -0.021 -1.497 0.018 1.488 -0.012 -0.449 0.018 1.252 0.020 1.800 
k_Magnesite -0.002 -0.125 0.003 0.283 -0.018 -0.670 2.29E-04 0.016 0.009 0.792 
k_Mg3(PO4)2 0.018 1.248 -0.005 -0.452 -0.020 -0.784 -0.034 -2.348 -0.031 -2.765 
k_MgHPO4:3H2O -0.004 -0.265 -0.007 -0.554 0.012 0.457 0.006 0.385 -0.008 -0.744 
k_Mg(OH)2_act 0.028 1.995 -0.020 -1.719 0.020 0.785 -0.016 -1.108 -0.016 -1.458 
k_Periclase 0.015 1.082 -0.015 -1.242 -0.007 -0.266 -0.026 -1.802 -0.013 -1.193 
k_Portlandite -0.013 -0.896 0.003 0.237 -0.005 -0.192 0.010 0.685 -0.017 -1.544 
k_Siderite 0.003 0.233 -0.003 -0.261 0.025 0.976 -0.005 -0.326 -0.003 -0.251 
k_Spinel 0.010 0.694 -0.007 -0.571 0.021 0.803 -0.014 -0.986 -0.008 -0.676 
k_Struvite 0.009 0.652 -0.023 -1.949 -0.018 -0.692 -0.006 -0.406 0.010 0.884 
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(Continuation) NH3 removal efficiency Effluent S_N_min3_ Precipitation CO3 Air requirementa Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 
k_Vivianite 0.007 0.493 -0.005 -0.456 -0.007 -0.271 0.012 0.809 0.009 0.763 
D_CH4_g_ -0.004 -0.264 0.001 0.052 0.018 0.697 0.010 0.688 0.013 1.176 
D_CO2_g_ -0.002 -0.148 -4.51E-04 -0.038 -0.007 -0.287 -0.003 -0.228 -2.27E-04 -0.020 
D_H2S_g_ 0.012 0.817 -0.003 -0.283 0.015 0.580 -0.014 -0.948 -0.005 -0.474 
D_H2_g_ 0.018 1.216 -0.013 -1.101 0.015 0.563 -0.026 -1.729 -0.017 -1.516 
D_N2_g_ 0.025 1.73 -0.019 -1.579 -0.019 -0.733 -0.029 -1.961 -0.005 -0.481 
D_NH3_g_ -0.012 -0.833 0.020 1.720 -0.044 -1.656 0.035 2.365 0.020 1.792 
D_O2_g_ 0.016 1.118 -0.006 -0.527 -0.005 -0.210 0.011 0.756 3.84E-04 0.034 
theta_CH4_g_ -0.010 -0.703 0.006 0.485 0.019 0.717 -0.013 -0.902 -0.017 -1.515 
theta_CO2_g_ -0.03 -2.104 0.034 2.910 -0.008 -0.313 0.017 1.159 0.005 0.486 
theta_H2S_g_ 0.011 0.778 -0.014 -1.225 0.054 2.079 -0.003 -0.204 0.002 0.137 
theta_H2_g_ -0.003 -0.215 0.006 0.518 -0.014 -0.522 -0.028 -1.922 -0.018 -1.571 
theta_N2_g_ -0.009 -0.611 0.005 0.449 -0.036 -1.376 0.012 0.803 0.008 0.677 
theta_NH3_g_ -0.025 -1.759 0.014 1.147 -0.022 -0.842 0.017 1.116 0.004 0.344 
theta_O2_g_ 0.001 0.050 -0.006 -0.496 0.062 2.384 -0.005 -0.320 -0.006 -0.544 ∑ Îóôõsöõã_     0.71   0.79   0.16   0.73   0.86   
R2 0.75   0.83  0.15   0.73  0.84  
R2adj 0.73   0.82   0.10   0.72   0.83   
a Air needed to obtain 90 % NH3 removal. 
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Table A10.10 Global sensitivity analyses for the nutrient recovery model of the scrubbing unit 
(NRM-Scrub): standardized regression coefficient (SRC) and its t-statistic (tSRC) per 
performance indicator. Dark grey = cut-off threshold 1 (CFT1); grey = cut-off threshold 2 
(CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). For 
description of factor symbols: see Chapter 10: Table 10.7.  
  NH3 recovery efficiency Fertilizer S_N_min3_ Fertilizer pH Acid requirement Overall 
Factor SRC tSRC SRC tSRC SRC tSRC SRC tSRC SRC tSRC 

CH4_g_ -0.043 -2.028 0.059 6.521 0.033 2.532 0.019 0.902 -0.001 -0.058 
CO2_g_ 0.390 18.580 -0.012 -1.355 -0.310 -24.051 0.398 18.767 -0.299 -24.551 
H2O_g_ -0.012 -0.563 0.007 0.740 0.007 0.537 0.006 0.276 0.016 1.312 
H2S_g_ 0.008 0.365 0.014 1.547 -0.005 -0.365 0.020 0.955 -0.001 -0.110 
H2_g_ -0.073 -3.481 0.072 7.907 0.056 4.325 -0.064 -3.004 0.069 5.658 
N2_g_ -0.007 -0.357 0.001 0.078 -0.004 -0.346 -0.022 -1.045 0.014 1.111 
NH3_g_ -0.590 -27.813 0.900 97.918 0.814 62.469 -0.623 -29.296 0.860 70.638 
O2_g_ 0.278 13.332 -0.309 -34.269 -0.231 -18.063 0.248 11.731 -0.271 -22.381 
S_S_6_ 0.240 11.482 -0.154 -16.959 -0.175 -13.643 0.255 12.036 -0.170 -14.012 
pH_liq -0.010 -0.457 -0.001 -0.163 0.002 0.189 0.032 1.486 0.006 0.474 
Temp_liq -0.074 -3.520 -0.015 -1.663 -0.025 -1.934 -0.019 -0.914 -0.021 -1.772 
d_gas -0.008 -0.361 0.002 0.235 -0.014 -1.056 -0.025 -1.173 0.013 1.089 
P_gas_in 0.007 0.358 0.021 2.356 -0.005 -0.397 0.018 0.864 -0.033 -2.735 
Temp_gas_in 0.019 0.903 -0.046 -5.146 -0.011 -0.836 0.025 1.181 -0.027 -2.265 
u -0.029 -1.367 0.003 0.301 -0.011 -0.857 0.011 0.517 0.001 0.066 
Q_liq_in -0.009 -0.451 0.001 0.117 0.005 0.405 -0.015 -0.702 -0.017 -1.432 
D_CH4_g_ -0.025 -1.192 -0.020 -2.186 0.010 0.802 -0.017 -0.790 -0.001 -0.068 
D_CO2_g_ -0.011 -0.531 0.003 0.314 -0.015 -1.181 0.025 1.175 -0.014 -1.161 
D_H2S_g_ -0.014 -0.649 2.15E-04 0.024 1.63E-04 0.013 0.012 0.586 -0.013 -1.069 
D_H2_g_ 0.014 0.650 -0.008 -0.882 0.013 1.043 -0.018 -0.849 -0.002 -0.127 
D_N2_g_ 0.006 0.306 -0.009 -1.015 0.018 1.364 0.024 1.122 -0.004 -0.349 
D_NH3_g_ 0.015 0.715 -0.005 -0.510 3.66E-04 0.028 0.012 0.565 -0.014 -1.177 
D_O2_g_ -0.025 -1.207 0.009 0.996 -0.006 -0.449 0.012 0.577 0.005 0.397 
k_(NH4)2SO4 0.006 0.282 0.001 0.073 -0.013 -1.020 0.016 0.757 0.001 0.075 
theta_CH4_g_ -0.013 -0.644 0.004 0.463 0.002 0.183 -0.023 -1.113 -0.001 -0.045 
theta_CO2_g_ -0.005 -0.241 0.003 0.359 -0.009 -0.681 -0.024 -1.137 -0.007 -0.603 
theta_H2S_g_ -0.015 -0.725 0.009 0.987 -0.001 -0.081 -0.016 -0.741 0.004 0.311 
theta_H2_g_ 0.002 0.085 0.016 1.745 0.003 0.201 -0.035 -1.663 0.003 0.267 
theta_N2_g_ -0.001 -0.060 -0.005 -0.573 0.005 0.396 -0.029 -1.379 0.013 1.090 
theta_NH3_g_ -0.007 -0.346 0.002 0.180 -0.014 -1.076 0.006 0.267 -0.005 -0.439 
theta_O2_g_ 0.011 0.516 -0.011 -1.237 0.011 0.882 0.018 0.858 -0.004 -0.328 

 ∑ Îóôõsöõã_     0.65   0.94   0.85   0.69   0.94   

R2 0.68 
 

0.94   0.88   0.67   0.89 
 

R2adj 0.66   0.94   0.87   0.65   0.89   
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Table A10.11 Global sensitivity analysis for the pig manure treatment train: standardized 
regression coefficient (SRC) and its t-statistic (tSRC) per performance indicator. Grey = cut-off 
threshold 2 (CFT2); light grey = cut-off threshold 3 (CFT3); salmon = cut-off threshold 4 (CFT4). 
For description of factor symbols: see Chapter 10: Tables 10.4-10.7.  
  Net costs     Net costs (continuation) 
Factor SRC tSRC  Factor SRC tSRC  

NRM_Heat.T_target_AD -0.011 -0.404 NRM _Prec.k_Hydroxyapatite 0.029 1.073 
NRM_AD.D_H2 -0.010 -0.359 NRM _Prec.k_Kstruvite -0.027 -0.990 
NRM_AD.S_Ca -0.043 -1.562 NRM _Prec.k_Magnesite 0.004 0.151 
NRM _AD.S_C_4_ -0.042 -1.550 NRM _Prec.k_Mg3(PO4)2 0.019 0.694 
NRM _AD.Q_liq_in -0.036 -1.317 NRM _Prec.k_MgHPO4:3H2O 0.018 0.667 
NRM _AD.kLa_H2 0.033 1.209 NRM_Prec.k_Mg(OH)2_act -0.022 -0.819 
NRM _AD.k_Al2O3 -0.023 -0.837 NRM _Prec.k_Siderite -0.004 -0.133 
NRM AD.k_AlPO4 0.030 1.104 NRM _Prec.k_Struvite 0.026 0.945 
NRM AD.k_Anhydrite 0.013 0.457 NRM _Prec.k_Vaterite -0.040 -1.484 
NRM _AD.k_Aragonite 0.005 0.187 NRM _Prec.k_Vivianite 0.057 2.088 
NRM _AD.k_Boehmite 0.006 0.215 NRM _Strip.D_CH4_g_ -0.021 -0.766 
NRM _AD.k_Ca4H(PO4)3:3H2O -0.014 -0.512 NRM _Strip.D_CO2_g_ -0.068 -2.507 
NRM _AD.k_CaHPO4:2H2O 0.059 2.161 NRM _Strip.D_H2S_g_ -0.025 -0.913 
NRM _AD.k_CaHPO4bis 0.003 0.115 NRM _Strip.D_H2_g_ 0.027 0.981 
NRM _AD.k_Calcite -0.028 -1.027 NRM _Strip.D_N2_g_ -0.066 -2.428 
NRM _AD.k_Diaspore 0.012 0.455 NRM _Strip.D_NH3_g_ -0.046 -1.676 
NRM _AD.k_Dolomite -0.020 -0.718 NRM _Strip.D_O2_g_ 0.008 0.302 
NRM _AD.k_FeS_ppt_ 0.038 1.375 NRM _Strip.Q_gas_in 0.017 0.636 
NRM _AD.k_Gibbsite 0.008 0.295 NRM _Strip.k_Aragonite 0.000 -0.016 
NRM _AD.k_Hercynite 0.003 0.121 NRM _Strip.k_Artinite 0.025 0.898 
NRM_AD.k_Hydroxyapatite 0.018 0.656 NRM _Strip.k_Brucite -0.027 -0.971 
NRM _AD.k_Kstruvite 0.026 0.952 NRM _Strip.k_Ca3(PO4)2_am1 0.016 0.578 
NRM _AD.k_Mackinawite 0.057 2.086 NRM _Strip.k_Ca3(PO4)2_am2 -0.016 -0.568 
NRM _AD.k_Magnesite -0.006 -0.207 NRM _Strip.k_Ca3(PO4)2_beta -0.014 -0.524 
NRM _AD.k_Mg3(PO4)2 0.025 0.900 NRM _Strip.k_Ca4H(PO4)3:3H2O 0.025 0.927 
NRM _AD.k_MgHPO4:3H2O -0.052 -1.914 NRM _Strip.k_CaHPO4:2H2O -0.055 -2.020 
NRM_AD.k_Siderite -0.043 -1.564 NRM _Strip.k_CaHPO4bis 0.010 0.355 
NRM _AD.k_Struvite 0.001 0.043 NRM _Strip.k_Calcite 0.071 2.618 
NRM _AD.k_Vivianite -0.004 -0.141 NRM _Strip.k_Diaspore -0.019 -0.696 
NRM _AD.kdec_xsrb_ac 0.027 0.987 NRM _Strip.k_Dolomite -0.039 -1.421 
NRM _AD.kdec_xsrb_bu 0.019 0.703 NRM _Strip.k_Dolomite_dis -0.027 -1.002 
NRM_AD.kdec_xsrb_h 0.030 1.070 NRM _Strip.k_Fe(OH)2 -0.070 -2.578 
NRM _AD.kdec_xsrb_pro 0.039 1.428 NRM _Strip.k_Hercynite -0.021 -0.781 
NRM _AD.km_srb_ac -0.034 -1.243 NRM _Strip.k_Huntite -0.024 -0.879 
NRM _AD.km_srb_bu -0.009 -0.327 NRM _Strip.k_Hydromagnesite -0.010 -0.364 
NRM  AD.km_srb_h 0.005 0.180 NRM _Strip.k_Hydroxyapatite 0.080 2.914 
NRM _AD.km_srb_pro -0.004 -0.134 NRM _Strip.k_Kstruvite 0.024 0.877 
NRM _Chem.Mg_OH_2_Dose 0.015 0.543 NRM _Strip.k_Magnesite -0.056 -2.049 
NRM _Prec.Q_prec_target 0.004 0.142 NRM _Strip.k_Mg3(PO4)2 0.075 2.750 
NRM_Prec.k_AlPO4 0.019 0.695 NRM _Strip.k_MgHPO4 :3H2O -0.019 -0.691 
NRM _Prec.k_Aragonite 0.062 2.284 NRM _Strip.k_Mg(OH)2_act 0.002 0.082 
NRM _Prec.k_Artinite 0.018 0.663 NRM _Strip.k_Periclase -0.025 -0.914 
NRM _Prec.k_Boehmite -0.013 -0.465 NRM _Strip.k_Portlandite 0.010 0.349 
NRM _Prec.k_Brucite -0.010 -0.377 NRM _Strip.k_Siderite -0.015 -0.546 
NRM _Prec.k_Ca3(PO4)2:am1 0.002 0.079 NRM _Strip.k_Spinel -0.009 -0.325 
NRM _Prec.k_Ca3(PO4)2:am2 0.018 0.653 NRM _Strip.k_Struvite 0.005 0.198 
NRM _Prec.k_Ca3(PO4)2:beta 0.038 1.384 NRM _Strip.k_Vivianite 0.006 0.229 
NRM _Prec.k_Ca4H(PO4)3:3H2O 0.005 0.176 NRM_Heat.T_target_Strip -0.037 -1.368 
NRM _Prec.k_CaHPO4:2H2O 0.038 1.390 NRM_Scrub.Q_liq_in (acid) 0.064 2.350 
NRM _Prec.k_CaHPO4bis 0.009 0.320 NRM_Scrub.k_(NH4)2SO4 0.006 0.229 
NRM _Prec.k_Calcite -0.041 -1.490 NRM_Scrub.D_CH4_gas  0.029 1.060 
NRM _Prec.k_Diaspore 0.012 0.423 NRM_Scrub.D_CO2_gas  0.015 0.540 
NRM _Prec.k_Dolomite 0.039 1.443 NRM_Scrub.D_H2S_gas  0.009 0.327 
NRM _Prec.k_Dolomite_dis -0.015 -0.540 NRM_Scrub.D_H2_gas  -0.010 -0.358 

  



 

460 

 (Continuation) Net costs     Net costs (continuation) 
Factor  SRC tSRC  Factor SRC tSRC  

NRM _Prec.k_Fe(OH)2_s -0.027 -0.972 NRM_Scrub.D_N2_gas  0.015 0.540 
NRM_Prec.k_Gibbsite 0.034 1.260 NRM_Scrub.D_NH3_gas  0.002 0.082 
NRM _Prec.k_Hercynite -0.048 -1.772 NRM_Scrub.D_O2_gas  0.020 0.717 

∑ Îóôõsöõã_     0.10         

R2 0.91     

R2adj 0.20         
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