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Chapter 1

Introduction

In the field of environmental measurements, in the last decades, one increasingly tries to imple-
ment on-line (field) measurements to replace off-line (laboratory) measurements. In an ideal
situation, the measured data should be produced in-situ, on-line, continuously in real time and
cover a wide dynamic range. The largest benefit of on-line measurements compared to off-line
measurements is undoubtedly the possibility to use such data for control purposes. For ex-
ample in wastewater treatment, on-line sensors have been demonstrated to allow considerable
savings in energy and chemical consumption [166]. On-line measurements also allow up-to-
date simulation and calibration of mathematical models of treatment systems. Consequently,
the benefits from computer simulation are e.g. savings in energy and chemical consumption
[347], a decrease of nutrient levels in the effluent [292], and an increase of capacity of the plant
[55, 56, 290]. Because the mathematical models in the field of integrated urban water system
modelling (i.e. the combined modelling of sewers, rivers and wastewater treatment plants)
become more advanced, on-line measurements become increasingly important for a better un-
derstanding of fast phenomena and to support the model building and simulation [321]. Con-
tinuous and on-line monitoring of aquatic streams (rivers, effluents, process waters,: : : ) can
also fulfil the function of alarm generation. In case of abrupt changes in the water quality, the
necessary actions (e.g. activate a bypass, take an extra sample for laboratory analysis,: : : ) can
be taken. For some application areas, on-line automated measurements are not developed or
implemented yet, but would be beneficial compared to the actually performed off-line labora-
tory analyses. An example of this is the monitoring of the nutrients nitrogen and phosphorus
in animal manure, which is one of the applications described in this work.

Despite all advantageous aspects concerning the benefits of on-line sensors, still many
difficulties and erroneous measurements are noticed during practical use of on-line sensors.
Difficulties related to on-line measurements are often underestimated, and the installed on-line
equipment does not always produce the results and profits expected [246]. The successful use
of on-line sensors does not only depend on the sensor itself, but also, and often most impor-
tantly, on the process conditions, the sample preparation, the maintenance, calibration,: : : The
sampling system is a crucial part of the measurement system. Most nutrient analyzers require
a sample stream free of suspended solids, which necessitates the use of a membrane filter sam-
pling system [250, 288]. When filtration systems are not adapted to the particular application,
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they suffer from limited lifetime or clogging problems [289]. Up to half of the investment
costs for the installation of an on-line analyzer can be due to the installation of a sampling and
filtration system [250]. Another key factor is maintenance and surveillance [291, 334]. On the
one hand, on-line analyzer companies often suggest maintenance intervals of 1 week, or even
1 month, but practical field studies show on the other hand that for complicated on-line sensors
(e.g. N and P analyzers), a daily inspection should be carried out with all on-line analyzers
[250]. Therefore, on-line sensor development is a challenging field for researchers because of
its many aspects that need to be considered.

The developed sensor in this work is based on pH measurements. The pH measurement
technology did not undergo major technical improvements in the last decades. The glass elec-
trode, which already has a lifetime of more than 50 years, is still the standard in pH measure-
ment [84]. A correctly implemented pH sensor is robust and suitable for field applications.
However, there are a number of pitfalls and particularities related to this measurement, and
there is currently no substitute for the experienced eye of a trained technician [238]. For ex-
ample, the pH analyzer accuracy in the laboratory is typically around 0.02, however, once the
device is brought to the plant floor, this kind of accuracy is often no longer realized [238].

The hardware part of the sensor developed in this work consists of a titrator unit, capable
to perform acid-base titrations of aquatic samples. A titration curve is obtained by adding
small amounts of e.g. NaOH to the sample, and measuring the pH after each addition. A
titration curve has a typical S-shape, and can be transformed into a buffer capacity profile
with an appropriate mathematical algorithm. The results of this work are based on advanced
data processing of buffer capacity profiles. Therefore, the term ‘software sensor’ originally
introduced in [25], is applicable to this work.

Methods and applications based on pH titrations are used in a wide variety of fields (aer-
obic, anaerobic and physico-chemical wastewater treatment, food and feed applications, soil
science, microbiology, aquatic chemistry,: : : ). However, these applications mostly rely on
the off-line interpretation of titration curves, and can thus not be considered ‘sensors’. Sensors
making use of pH titration curves are often referred to as titrimetric sensors. Traditionally,
titrimetry is used for the volumetric determination of a particular substance in solution by
adding a standard solution of known volume and strength until the reaction is completed, usu-
ally as indicated by a change in colour due to an indicator or by electrochemical measurements
(mostly pH). However, looking into the literature, ‘titrimetry’ also includes all methods in
which consecutive acid or base additions, followed by pH measurements, are performed.

Generally, three types of titrimetric sensors can be considered. The first category includes
sensors that are automated versions of traditional laboratory methods and that can automati-
cally perform end-point titrations. Second, titrimetric sensors can be used to record the amount
of acid and/or base required to maintain a certain pH. If these sensors are applied in bioreactors
with living cells, in which cell metabolism causes acidity changes that allow on-line determi-
nation of e.g. growth kinetics, they are named ‘titrimetric biosensors’. The third category
includes titrator based sensors that record a partial or complete titration curve. These sensors
mostly work with only a few titration points and a simplified and robust data interpretation
method. One of the main application fields in this area is the control of anaerobic digestion
where bicarbonate and/or volatile fatty acids (VFA’s) can be monitored on-line with a titrimet-
ric sensor. The buffer capacity based sensor developed in this work belongs to the last category,
but differentiates itself from the other sensors by the fact that the whole and detailed titration
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profile is used for model-based interpretation (software sensing). The developed software sen-
sor part of this work can be seen as the complete data interpretation of the recorded titration
curves, to obtain useful information related to the buffers present in the sample.

An innovative aspect related to the developed hard- and software sensor in this work is
the combined measurement of several buffering components in the sample with only one and
relatively simple hardware set-up. Due to the simplicity of the hardware, the sensor is robust
for field-use, without the necessity of a complicated sampling system (e.g. filtration unit). It is
a multipurpose sensor because on the one hand it is useful for the quantification of buffering
components (e.g. ammonium and ortho-phosphate in an effluent), and, on the other hand, it
can be used as an alarm generator (e.g. the detection of pollutant discharges in a river). The
following statement illustrates the particularities of the approach followed in this thesis: “Titra-
tion is the preferred method to discontinuously determine with a high precision relatively high
concentrations of a well-known species in a pure solution. However, in this thesis, the titration
technique is used for continuous or on-line measurement of multiple relatively low concen-
trated species with adequate precision in impure solutions” (P. Willems, Ghent University).

An important part of the research described in this thesis was performed in the framework
of research projects in which industrial partners were involved (the AQMON project in chapter
6 and the FASTNAP project in chapter 8). As a consequence, the project developments strived
for the practical implementation and the perspectives for later commercialisation. Therefore,
the research described in this thesis is interdisciplinary and practically oriented.

The outline of this thesis consists of four parts. The first part (chapters 2, 3 and 4) describes
the fundamentals and background of the research work. Chapter 2 can be seen as a summa-
rizing introduction in aquatic chemistry topics related to pH buffer capacity. In later chapters,
the described topics are of practical use for defining appropriate mathematical models, and
explaining the chemical phenomena taking place in the titration vessel of the developed sen-
sor. Chapter 3 gives a consistent overview of three different approaches of pH buffer capacity
modelling. This overview is partially based on literature research, however, major parts needed
to be adapted or further developed to fit the requirements of this work. An interesting aspect
of this chapter is that not only buffer capacity models are developed for the simplest type of
chemical reactions (acid-base equilibria), but that also more complicated buffer systems (i.e.
where complexation and/or precipitation reactions occur) are considered in the same frame-
work. Chapter 4 presents a literature review on field technologies for on-line measurement in
wastewater treatment systems, rivers and other aquatic streams. To limit the scope of this very
broad range of existing technologies, this review only highlights a number of techniques and
sensors for which the applicability is similar compared to the developed buffer capacity based
sensor. More particularly, nutrient sensors, effluent and river water monitoring equipment,
titrimetric sensors and titrimetric biosensors are reviewed.

The second part of this thesis (chapter 5) summarizes the main software developments.
Three software projects are worked out for the purpose of this work. The first project is the
development of a robust titration algorithm for constant∆pH titration. This type of titration
algorithm is not available yet in the commonly used titrators. The developed titration algorithm
is compared with a traditional end-point titration algorithm implemented in a commercial titra-
tor. The second project is the development of general purpose buffer capacity simulation soft-
ware. The innovative aspect is that buffer capacity profiles resulting from acid-base titrations
in which complexation and precipitation reactions are involved can be simulated. And the last
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but most important software project is the data processing software of experimental titration
curves. From a particular titration curve, this software extracts information about individual
buffer systems and estimates their concentrations. Further, the same software is capable to
automatically and stepwise build buffer capacity models for titrated samples. In chapter 9, the
latter feature is evaluated for use in alarm generation or problem detection (e.g. when unex-
pected buffers are found in the experimental buffer capacity profile). One can say that this
software is the brain of the developed buffer capacity based sensor.

The third part of this work (chapters 6, 7 and 8) is application oriented. Chapter 6 han-
dles the application field of wastewater treatment effluent and river water monitoring using the
buffer capacity based sensor. The first part of this chapter describes the results of preliminary
experiments with combined conductivity and pH titrations and the determination of nitrate
and BODst, while the second part of chapter 6 focusses on ammonium and ortho-phosphate
measurements in effluents and river waters. The application potential on this type of aquatic
streams has to be seen in a context of alarm generation. The second application (chapter 7)
describes buffer capacity based monitoring of tertiary algal wastewater treatment. Besides the
nutrient measurements N and P, the inorganic carbon (IC) buffer is an important buffer system
that is considered in detail. Because this buffer is the only carbon source used by the algae,
its quantification is a helpful process control input. The third application (chapter 8) considers
the on-line measurement of the nutrients N and P in destructed and diluted manure samples.
The most important difference compared with the applications described in the two previous
chapters is that the titrated sample is now free of organic interferences because of the destruc-
tion step with H2SO4 and H2O2 prior to titration. The anorganic interferences (resulting from
complexation and precipitation reactions with e.g. Ca2+ or Fe3+) are handled in software. The
driving force behind this application is the official requirement in the Netherlands to determine
N and P in each individual manure transport between 2 farms. In Flanders, this requirement
is not adopted yet. However, a taxation system on the production and surplus of nitrogen and
phosphorus has been approved (Mestdecreet, May 11th, 1999). In this framework, increas-
ing demands for analyses of N and P in animal manure and other organic streams are to be
expected in the coming years. Further, the knowledge of the nutrient concentrations in each
individual manure transport can be used for a more adequate application of manure in view of
environmental hygiene and fertilisation. The purpose of this application is that nutrient mea-
surements are performed automatically and in the field, preferentially prior to application of
the manure on the soil. The developed automatic buffer capacity based sensor is evaluated for
its potential as an alternative for the traditional laboratory analyses, of which the results are
now only available after five to ten working days.

The fourth part of this work (chapter 9) describes the automation of buffer capacity model
building. The applications of part three of this work are reevaluated with this automated mod-
elling approach. The purpose of the automation of buffer capacity model building is to ef-
ficiently find an useful and adequate buffer capacity model, tailor-made for each individual
sample. The application of such approach in a buffer capacity based sensor in the field allows
to automatically detect and characterize unexpected buffer systems in e.g. an effluent or a river
water sample. This can be useful for alarm generating purposes. Finally, chapter 10 discusses
and summarizes the results presented in this thesis.



Chapter 2

Chemical aspects of pH buffer
capacity

The topics that are treated in this chapter are based on a number of reference works [198, 263,
273] on aquatic chemistry. The aim of this chapter is to define and summarize the concepts
that will be needed in later chapters for the development of the buffer capacity sensor.

2.1 The pH measurement

2.1.1 pH fundamentals

Definition of pH

The hydrogen ion concentration in dilute aqueous solution generally lies between 10�14 and
100 mol l�1, i.e. varies over a range of several powers of ten. It is, therefore, appropriate to
express hydrogen ion concentrations on a logarithmic scale. Sørensen suggested taking the
negative logarithm of the hydrogen ion concentration values. He named this the ‘hydrogen ex-
ponent’ and introduced the term pH (pondus Hydrogenii; puissance d’Hydrog`ene). According
to present-day notation, the Sørensen scale, defined around 1909, would be expressed as

pcH =� logcH+ or cH+ = 10�pcH+
(2.1)

Later, Sørensen realized that it was not so much the concentration of the hydrogen ions
that was significant, but rather their activity. Only the activity can be determined by normal
methods, and this, therefore, forms the basis of the more recent definition of pH [84]:

pH� paH =� logaH+ (2.2)

The ratio of the activityaH+ over the concentrationcH+ is called the activity coefficient
γH+ . Since it is only possible to take logarithms of dimensionless numbers, this definition
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should be written correctly:

pH� paH =� log
aH+

a0
H+

=� log
cH+γH+

a0
H+

(2.3)

Herea0
H+ is the hydrogen ion activity 1mol l�1. The definition of pH retains the concen-

tration unitmol l�1 instead of converting tomol m�3 as is usual in analytical chemistry. The
definition of the practical pH scale was only made possible by the Debye-H¨uckel theory of
interionic interaction, developed in 1923. Some more details about this theory can be found
in section 2.2.2. Many have attempted to replace pH by other units. In 1975 it was suggested,
within the framework of the new international units, that hydrogen ion activities should be
expressed asnmol l�1 instead of in logarithmic terms. None of these suggestions has received
even limited acceptance [84]. One of the consequences of the logarithmic nature of the pH
scale is that arithmetic mean pH and many other statistical calculations lead to substantial
errors of the true H+ ion concentration [133].

The principle of the potentiometric measurement

Potentiometry is an extremely versatile analytical method that allows rapid and simple analysis
[293]. The pH measurement is a potentiometric measurement.1 The experimental set-up for
potentiometric measurements comprises a measuring and a reference electrode. An electrode
is in essence a rod of metal dipping into a solution of one of its salts. Due to the metal becom-
ing charged relatively to the solution, an electric pressure (known as an electric potential and
measured in volts) is set up between the metal and the solution [336]. The measuring electrode
provides a potential that depends on the composition of the analysis solution. The task of the
reference electrode is to supply a potential which is as independent as possible of the analysis
solution. A measuring device with as high an input resistance as possible connects the two
conductors (electrodes) and allows the chain potentialU to be measured. Due to the high re-
sistance, this quasi-nonelectrical measuring method does not alter the chemical composition of
the measuring solution. A charge exchange takes place at the interphases of the electrode of a
galvanic chain, leading to galvanic potentials. These cannot be determined separately, since at
least two interphases are present [6]. The measurable chain potentialU is composed of several
components:

Metal A j Electrolyte 1 k Electrolyte 2 j Metal B
U 0 U 00 U 000

U = U 0 + U 00 + U 000

U : potential measured between the measuring and the reference electrode
U 0 : potential of the measuring electrode
U 00 : diffusion potential
U 000 : potential of the reference electrode

1Non-potentiometric pH measurements (such as conductometric or colorimetric methods) also exist [84, 336], but
are outside the scope of this work.
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In an ideal measurement system, the potential measured between the two electrodes de-
pends only on the activity of the analyte ionai . This relationship is described by the Nernst
equation:

U =U0+
2:303RT

ziF
logai =U0+UN logai (2.4)

U : potential measured between the measuring and the reference electrode
U0 : standard potential of the electrode assembly, construction dependent
R : gas constant (8.31441J K�1 mol�1)
T : absolute temperature inK (273.15K + temperature inoC)
zi : charge of analyte ioni (including sign)
F : Faraday constant (96484.56C mol�1)
ai : activity of analyte ioni
UN : Nernst slope (V)
2.303 : conversion factor ln to log

The Nernst slopeUN specifies the theoretical electrode slope.UN corresponds to the po-
tential change caused by the change inai to the power of ten. It depends on the condition of
the electrode assembly, the temperature and the chargez of the analyte ion. It is 59.16mV at
25 oC for univalent, positively charged ions (z=+1).

In order to be able to compare the galvanic potentials of different electrodes, the standard
hydrogen electrode (SHE) was introduced as an universal reference electrode. The potential of
the SHE is by definition zero at all temperatures. The SHE consists of a platinized platinum
sheet, which is immersed in a solution ofaH+ = 1:0 and surrounded by hydrogen gas at 1 bar
[84].

The electrodes used throughout this work are all of the type ‘combined pH glass electrode’
with a built-in Ag=AgCl reference electrode. This type of electrode is commonly used in
environmental pH measurements. The measurable chain potentialU consists of several sources
of potential, which are shown in Figure 2.1.
U1 : potential on the outside of the membrane, dependent on the pH value of the measuring

solution
U2 : asymmetry potential, it is the potential on the glass membrane when the same solution

and conducting system exist on either side of the membrane.U2 is influenced by the
thickness and production method of the glass membrane

U3 : potential on the inside of the membrane, dependent on the pH value of the inner buffer
U4 : potential of the inner Ag=AgCl lead-off electrode, dependent on the Cl� activity of the

inner buffer
U5 : potential of the reference electrode, dependent on the Cl� activity of the reference elec-

trolyte
U6 : junction or diffusion potential

In order to measureU1, and assign a definite pH value to it, all other single potentials
U2�U6 have to be constant, but not necessarily known. The diffusion potential remains the
greatest cause of uncertainty in the practical measurement of pH [84].

Since pH standards are used for comparative determinations with other solutions, the mea-
sured result always contains two diffusion potentials, which compensate each other to some
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U
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U4

Figure 2.1: Different sources of potential in a combination electrode [6]

extent. The residual diffusion potential can be minimized by using calibration and sample so-
lutions of similar composition. In the case of acids and bases, in particular, calibration and
sample solutions should be of similar pH [84].

2.1.2 pH measurement cells

Reference electrodes with liquid junction

The standard hydrogen electrode has a fundamental importance as reference standard, but
ready-to-use reference electrodes are preferred for practical determinations. The standard po-
tentials of these electrodes are accurately known, so it is easy to recalculate the results in
terms of the standard hydrogen electrode. Originally the zinc amalgam electrode in saturated
zinc sulfate was used as reference electrode. In 1893 it was replaced by the mercury/calomel
electrode. Nowadays the silver/silver chloride reference system is by far the most frequently
employed because it is simple to prepare and very reproducible [84]. Even today the mer-
cury/calomel electrode still remains one of the most important of all reference electrodes. Its
standard potential is more reproducible and more accurately known than that of all other ref-
erence electrodes. An advantage of the Ag=AgCl electrode however, is its relatively small
temperature coefficient. Compared to the calomel electrode the Ag=AgCl electrode is largely
hysteresis-free and can be used even at high temperatures [6].

The junction is the critical part of the measuring chain because of the diffusion potential.
The junction between the reference electrolyte and the sample solution should always have a
resistance as low as possible, but at the same time prevent mixing of the two solutions. These
two contradictory requirements have led to the design of many pieces of apparatus in which
more or less satisfactory compromises have been made. According to different applications,
the following types of junctions are used in practice: open liquid junction, ceramic plugs,
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Figure 2.2: Cross-section through a glass membrane [6]

sleeve junctions, metallic junctions,: : : When a reference electrode is transferred from one
sample to another then, initially, the sample solution that has already diffused into the junction
still remains within it. It takes several minutes for sufficient electrolyte to flow out to displace
all of the old sample solution. This changing diffusion potential is known as a ‘memory effect’.
Reference electrodes containing thickened (gel) electrolytes are sometimes employed in order
to avoid the problem of having to supply the electrode with electrolyte solution. After some
time, however, classical gels suffer from syneresis (i.e. they demix with the exudation of water
and contraction of the gel).

None of the typical problems of classical reference electrodes, namely liquid junction
contamination, propagation resistance, stirring errors, memory effect, electrolyte bridges, and
pressure compensation, would occur if a solid-state reference electrode without a liquid junc-
tion could be used. Yet, even today there is no theory for the construction of an ideal reference
electrode without a liquid junction.

Glass electrodes

To explain the phenomenon of the development of a potential at the glass membrane of a pH
electrode, a knowledge of the structure of the gel layer is of crucial importance. The phe-
nomenon can be explained through the model depicted in Figure 2.2 and the different sources
of potentials shown in Figure 2.1

A thermodynamic equilibrium of the hydrogen ion arises at the phase boundary between
the measuring solution and the outer gel layer. If the activity of the hydrogen ions is different
in the two phases, hydrogen ion transport will occur. This leads to a charge at the phase
boundary, which prevents any further H+ transport. This resulting potential is responsible for
the different hydrogen ion activities in the solution and in the gel layer:

U1 =
2:303RT

F
log

(aH+)solution

(aH+)outer gel layer
(2.5)

The number of hydrogen ions in the gel layer is imposed by the silicic acid skeleton of the
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glass membrane and can be considered constant and independent of the measuring solution.
The potential in the outer gel layer is transmitted to the inside of the glass membrane by

the Li+ ions found in the glass membrane, where another phase boundary potential arises:

U3 =
2:303RT

F
log

(aH+)inner buffer

(aH+)inner gel layer
(2.6)

The total membrane potentialU is equal to the difference of the two phase boundary po-
tentialsU1 andU3:

U =
2:303RT

F
log

�
(aH+)solution

(aH+)outer gel layer

(aH+)inner gel layer

(aH+)inner buffer

�
(2.7)

When the H+ activity is identical in the two gel layers (the ideal case) and the H+ activity
of the inner electrolyte is kept constant, the following equation holds:

U = constant+
2:303RT

F
log(aH+)solution (2.8)

The precise composition of membrane glasses are amongst the best kept secrets of elec-
trode manufacturers. The membrane glasses in current use are always compromises for spe-
cific applications. There is no such thing as a glass of universal application, which means that
a careful selection of an appropriate electrode for each particular application is necessary.

2.1.3 Practical pH measurements

Accuracy and response time

The accuracy of the measured pH value depends on the maintenance of the electrode, the
measuring solution (extreme pH values, contamination, homogeneity, stirring,: : : ), the tem-
perature, the pressure, the choice of electrode, the calibration buffer solutions, and many other
controllable and uncontrollable factors [6]. In a well-equipped laboratory (25oC, 70 % rela-
tive humidity, no vibration), a pH analyzer accuracy of 0.02 or 0.03 can probably be reached.
However, once the device is brought to the plant floor, this kind of accuracy can no longer be
realized [238]. Basically, the accuracy and reproducibility of the measured values depend on
the frequency of calibration and maintenance of the electrode. A new electrode in a standard
buffer (e.g. pH values 4, 7 or 10) has a response time of less than 5 seconds to achieve a stable
reading to� 0.01 pH units. If a stable pH value is not reached over a longer period of time,
the cause may be one of a wide variety of possible problems [6].

It is possible to obtain accurate estimates of pH from continuous recording field equipment
[63]. In a study on an upland stream in the English Lake District, no statistically significant
difference was found between continuously recorded field data and measurements made by
taking samples and analyze them in the laboratory for pH, although, exceptionally differences
were as high as 0.16 pH [63]. There were no problems associated with long-term drift under
field conditions, and electrodes appear to perform more reproducible after long-term immer-
sion in a relatively constant medium. This study revealed that electrodes should be completely
immersed during field measurements to avoid errors associated with differences between water
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and air temperature. Exposure of part of the electrode to a fluctuating temperature appears to
increase the underlying unidirectional drift in potential, resulting in wrong measurements [63].
The leakage rate of the reference electrolyte in field situations was found to be between 1 and
3 µl h�1 [63]. Therefore a polypropylene box in an elevated location on the stream bank con-
taining saturated KCl as reference electrolyte, ensured a positive flow of electrolyte solution
irrespective of the stream level.

Calibration

Both the zero point, i.e., the point where the pH electrode delivers 0mV potential (generally
at pH 7) and the slope of the calibration line show manufacturing dependent tolerances and
will change after exposure to the measuring solutions [6]. The hydrogen ion concentration
(thus the pH value) in a solution is temperature dependent. Therefore, it is of great importance
that the temperature curve of the buffer is known. The stability of the zero point and the
slope depends on the composition of the measuring solution as well as on the temperature.
It makes little sense to make general statements regarding the calibration frequency, because
calibration needs are case dependent. The following factors directly influence the accuracy of
the calibration as well as the pH measurement:

� buffer solutions
� temperature measurement and temperature compensation (see next paragraph)
� condition of the junction and the reference system (contamination, etc.)
� working technique

In practical pH measurement the diffusion potential is present during both calibration and
pH determination. Hence, the actual determination only considers the difference between two
diffusion potentials. This residual diffusion potential is small if the buffer and sample solution
have similar chemical compositions. Thermal potentials can occur if parts in the measurement
circuit are different in temperature (Seebeck effect). If the necessary care for this interference
is not taken, errors up to 0.1 pH units can be introduced in the measurement. This implies that
a pH measurement system will need relatively long stabilization periods when moved from
one temperature to another. The measurement cell and the pH meter are often at different
temperatures so that it should be ensured that the metallic junctions in the reference and glass
electrodes are symmetrical with respect to each other and that, as is normally the case, the
leads are constructed of the same material (usually copper). A thermal diffusion potential also
develops when a temperature gradient exists within an electrolyte.

At high pH values (pH> 9), H+ ions in the gel layer are partly or completely replaced
by alkali ions which lead to a measured pH value which is too high. This effect is called
‘the alkaline error’ and can be minimized by using a special pH membrane glass [6, 336]. pH
electrode calibration deviation from linearity can eventually be corrected for by considering a
linear bias of electrode response (slope) at low and high pH values [144].

It was assumed, for the purpose of deriving the phase boundary potentials, equations (2.5)
and (2.6), that the inner and outer gel layers are equal. In reality, this is not always true, and this
effect leads to an asymmetry potential. Asymmetry potentials are eliminated by calibration so
that they do not generally enter the measurement result. However, they vary with time and have



12 Chemical aspects of pH buffer capacity

real isothermal
intersection point

theoretical isothermal
intersection point

error

+mV

-mV

147

pH

T1

T2

T2 > T1

0

Uis

Figure 2.3: Calibration lines (isothermals) for 2 different temperatures and isothermal inter-
section points [6]

nonreproducible temperature coefficients so that electrodes with large asymmetry potentials
are not stable [84].

Temperature compensation

The temperature influences the pH measurement through different dependent factors [6, 98]:

� temperature coefficient of the measured solution
� temperature dependence of the Nernst slope
� response time of the electrode
� position of the isothermal intersection

Every measuring solution has a characteristic temperature and pH behaviour (temperature
coefficient). In general, a temperature change results in a pH change (e.g. buffer/temperature
tables should be consulted when using buffer solutions for the calibration of a pH electrode).
The reason for this is the temperature dependent dissociation which causes a change in[H+].
This pH change is real, and not a measuring error.

An electrode would have an ideal temperature behaviour if its calibration lines (isother-
mals) intersect at the zero point of the electrode (pH 7= 0 mV) for different temperatures
(see Figure 2.3). The pH value is defined as� logaH+ , hence, the slope of the isothermals is
equal to�UN (see equation (2.4), Nernst equation). Thus an increasing temperature results in
a decreasing isothermal slope, as illustrated in Figure 2.3.

Since the overall potential of the pH electrode is composed of the sum of many single po-
tentials, which all have their respective temperature dependencies, the isothermal intersection
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hardly ever coincides with the zero point of the electrode.
In the last few years, the continuous development of the electrode has concentrated on

bringing the isothermal intersection and the zero point as close together as possible, since the
nearer they are to pH 7 the smaller the error in the temperature compensation is. Besides, the
measuring error increases with an increasing temperature difference between the calibration
and the actual measurement. As a rule, the errors are in the order of 0.1 pH units. Contrary to
popular belief, pH analyzers and transmitters do not compensate for the temperature effect on
the actual pH of the measured solutions, they only compensate for the temperature dependence
of the sensor. As already mentioned, the the real pH itself is temperature dependent, so that it
is useless to report pH values without mentioning the temperature [238].

New pH technologies

In industrial environments, one often finds ‘intelligent’ pH measuring systems, especially when
the importance of a correct measured value is high (e.g. costly production processes which
need an accurate pH control). This ‘intelligent’ system is typically based on backup pH mea-
surements of a voting system using multiple measuring loops. Usually three measurements,
taken under identical conditions with the inevitable risk of a common mode of failure, are
needed (2-out-of-3) [238]. The most typical mode of failure is contamination of the elec-
trodes, including malfunctioning of the reference electrode due to junction problems. As the
electrodes are in the same medium, they will all contaminate at a similar rate, and such a fault
will, hence, not be detected by the triple validation. On-line checks are by far the most im-
portant diagnostic tools for on-line pH measurement [238]. Some recent developments are
based on microprocessor technology and include glass electrode breakage detection, reference
electrode malfunctioning detection,: : : Overall, it can be stated that pH technology did not
undergo major technical improvements in the last decades.

The glass electrode already has a lifetime of more than 50 years, and is still the standard
in pH measurement. However, new technologies for pH measurements are presented in liter-
ature. Ion-selective field effect transistors (ISFETs) have been developed and applied for pH
measurement. The advent of ISFETs allows a considerable reduction in dimension and price of
sensor electrodes. However, the expectations raised by ISFETs have as yet not been fulfilled,
in spite of intensive efforts. Ideas concerning the manifold possible applications of pH ISFETs
are much further advanced than is their actual state of development [84].

Because of the possibility to miniaturize ISFET based sensors and to integrate several
ISFET sensors in 1 device, this technology seems promising in clinical analysis. An integrated
chemical sensor with multiple ion and gas sensors, composed of four ISFETs (pH, Na+, K+

and Cl�) [296] was realized on a 4�4mm2 chip. The purpose of this sensor was to measure
in real-time blood electrolytes at the bedside of seriously ill and surgical patients. All of the
ISFETs show sensitivities over 50mV per decade, and a linear range between 1� 10�4 and
5� 10�1 mol l�1. Despite the comparable selectivity and sensitivity between ISFETs and
conventional ion-selective electrodes, there are still some problems with the short lifetime and
the low reliability noticed with this type of ISFET based sensors [296].

The pressure and temperature sensitivity of silver chloride or calomel reference electrodes
as well as their reactivity towards hydrogen sulphide –the latter causes an irreversible electrode
poisoning– make sulphide bearing waters (for instance in the hypolimnion of stratified lakes,
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anoxic fjords or the Black Sea) difficult to access by direct electrochemical measurements [77].
In view of these shortcomings, a novel in-situ device for the direct potentiometric detection
of pH, pe and pH2S values was developed, in which the conventional liquid-junction type
reference cells for pH andpe measurements are avoided by using an alkali glass electrode
as a reference [77]. The probe’s main advantage lies in its high stability over large pressure,
temperature and H2S gradients.

So called AIROFs (Anodic IRidium Oxide Film) also have pH sensor properties [211].
Like ISFET they have a very fast response (< 0:5s), but they are sensitive to oxygen in the
solution, thus limiting their lifetime and accuracy. When the O2 concentration is constant
and the AIROF is connected to an instrumentation amplifier in such a way that the electrode
remains oxidized, then the use of the AIROF as an absolute pH sensor may well be possible
with an accuracy of< 0:1 pH between pH 2 and pH 11 for many hours [211]. Its small
response time, large range, high sensitivity and ease of use open the possibility of using the
sensor successfully as an equivalence point detector in acid-base titrations.

For on-line pH monitoring in fermenters, a fibre-optic fluorescence-based pH sensing de-
vice was developed [139]. A custom-built fluorometer, designed to provide broad-band exci-
tation (< 420nm) was used to monitor the emission of a pH-sensitive fluorophore 1,4-DHPN
(1,4-dihidroxyphthalonitrile) in solution at two wavelengths. The pH-monitoring system was
interfaced to the fermenter by inserting a needle connected to the optical fibre. The response
time of this sensor was slower than a standard pH measurement, and the response was affected
by changes in ionic strength and cell concentration [139]. Since there are no known existing
protocols for immobilizing 1,4-DHPN on the distal ends of optical fibres, the fluorophore was
directly dissolved in the fermentation broth. This is of course a very important drawback for
implementation in other application areas, like aquatic systems.

Custom-made or modified platinum-calomel electrode systems are also used for specific
purposes like the measurement of potential changes within(Fe2+=Fe3+) : (Cr2O2�

7 =Cr3+) so-
lution, for measurement of COD [35], or for H2O2 measurement used in an enzymatic biosen-
sor for detection of silage effluent pollution in river water [270].

Despite all technical improvements in pH measurement systems, hard- and software en-
hancements, etc. there is no substitute for the experienced eye of a trained technician, espe-
cially with the aid of the comprehensive data displays provided by the new age transmitters
[238]. The statement “pH measurement is not only science, but also art” (N. Bogaerts, Elsco-
lab). illustrates the particularities related to pH measurements.

2.2 Acid-base chemistry

The pH and the composition of natural waters is influenced by the interactions of acids and
bases. One might say that the ocean is the result of a gigantic acid-base titration; acids that
have leaked out of the interior of the earth are titrated with bases that have been set free by the
weathering of primary rock. The pH of natural waters is of great significance in all chemical
reactions associated with the formation, alteration, and dissolution of minerals [273]. The pH
exerts such a large effect on reactions which occur in water, that it can be thought of as amaster
variable, orcontrol variable, and the concentrations of most other chemical species asresponse
variables[337].
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Acid-base reactions in aqueous solutions generally proceed extremely rapidly. The half-life
of a proton transfer reaction is below the milliseconds scale [263]. An important exception is
the reaction H2CO�

3
H++HCO�
3 which will be discussed in detail in section 2.3. Equilibria

characterizing hydrogen ion transfer reactions are among the simpler type of models. Metal-
ion equilibria (section 2.4) and precipitation reactions (section 2.5) require more complicated
types of models.

2.2.1 The dynamic nature of chemical equilibrium

Let us examine the hypothetical, elementary, reversible reaction taking place at constant tem-
perature [263]:

aA+bB
 cC+dD (2.9)

ThereactantsA andB combine to form theproductsC andD. In this example,a moles of
A combine withb moles ofB to formc moles ofC andd moles ofD. If we introduceA andB
into a suitable reaction vessel, the concentrations ofA andB decrease until they reach values
that do not change with time, while the concentrations ofC andD increase from zero to time-
invariant levels. If we were to add only the products of the reaction,C andD, to the reaction
vessel under the same experimental conditions, we would observe a decrease inC andD, and
an increase inA andB. The reaction (2.9) is only at equilibrium if the ratio of concentrations
of products to reactants is the same as that attained in the previous experiment whenA andB
were initially present. The ratio is the so-called equilibrium constant,K. 2

[C]c[D]d

[A]a[B]b
= K (2.10)

The unit of concentration as indicated by[�] is usuallymol l�1. From this we conclude that the
equilibrium state can be approached from both directions.

When we investigate the rate at which the equilibrium condition is approached, we can
deduce that the equilibrium condition is a dynamic one, not a static situation. Another way
of stating this is that a chemical reaction is at equilibrium if its forward rate of reaction,vf , is
equal to the rate of the reverse reaction,vr . The equilibrium constant is thus the ratio of the rate
constants of the forward and the reverse reactions–a fact that underscores the dynamic nature
of equilibrium. Some authors prefer a fully kinetic approach for describing chemical equilibria
(e.g. acid-base equilibria) because of its advantages when coupling chemical equilibria models
with other kinetic models [203].

2.2.2 Activity corrections

The theory of ideal solutions implies that there is no interaction between individual species.
In real solutions, particularly solutions of ionic species in water, these conditions are not met.
There are electrostatic interactions between charged ions, and the ions are generally surrounded

2Strictly speaking, the equilibrium constant is defined in terms of activity, this will be discussed in section 2.2.2.
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Table 2.1: Activity coefficients (γ) of individual ions [198, 251, 273]

Approximative
applicability

Approximation Equation (Ionic Strength,M)

(1) Debye-Hückel (simplified) logγ=�Az2
p

I < 10�2:3

(2) Debye-Hückel (extended) logγ=�Az2

p
I

1+Ba
p

I
< 10�1

(3) Güntelberg logγ=�Az2

p
I

1+
p

I
< 10�1

(4) Davies logγ=�Az2

 p
I

1+
p

I
�0:3I

!
< 0:5

I : ionic strength (M), I = 1
2 ∑Ciz2

i
z : charge of the ion
a : adjustable parameter dependent on the size of the ion (Å), see Table 2.2
A= 1:82�106(εT)�3=2 whereε = dielectric constanta; A� 0:5 for water at 25oC
B= 50:3(εT)�1=2; B� 0:33 for water at 25oC
a The dielectric constant for water: 87.8 at 0oC; 78.3 at 25oC; 55.6 at 100oC [335].

by regions in which the water molecules are ordered in a structure somewhat different from
that of pure water [251]. The ratio of the activity of a species to its concentration is called the
activity coefficient. The activity coefficientγA of speciesA is:

γA =
fAg
[A]

(2.11)

In general, activity coefficients of uncharged species are near unity in dilute solutions and
rise above unity in concentrated solutions, largely because much of the water in concentrated
solutions is involved in the hydration shells of ions and less water is available to solvate un-
charged species (salting-out effect). The activity coefficients of an ion in electrolyte solution
(natural waters also) is usually smaller than one.

The Debye-H¨uckel theory is a model that allows activity coefficients to be calculated on
the basis of the effect ionic interactions should have on the free energy. Different equations
have been proposed for the estimation of individual activity coefficients, see Table 2.1.

In dilute solutions (I < 10�2 M), e.g. in fresh waters, calculations are usually based on
the infinite dilution activity convention and corresponding thermodynamic constants. In these
dilute electrolyte mixtures, deviations from ideal behaviour are primarily caused by long-range
electrostatic interactions. The Debye-H¨uckel equation or one of its extended forms (see Table
2.1) is assumed to give an adequate description of these interactions and to define the properties
of the ions. A comparative study about different equations for activity coefficients can be found
in [302]. In chapter 8, the Davies approximation is applied. However, more sophisticated
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Table 2.2: Parametera for the calculation of activity coefficients

Ion diametera (Å)
Ion (Ångström = 10�10m)

H+, Al3+, Fe3+ 9
Mg2+ 8
Ca2+, Zn2+, Cu2+, Mn2+, Fe2+ 6
Pb2+, CO2�

3 5
Na+, HCO�

3 , H2PO�
4 , CH3COO�, SO2�

4 , HPO2�
4 , PO3�

4 4
K+, Ag+, NH+

4 , OH�, Cl�, ClO�
4 , NO�

3 3

approaches also exist [198], but these are outside the scope of this work.
Within this framework, the earlier presented equation (2.10) for the equilibrium constant

K has to be written in terms of activity instead of concentrations:

K =
fCgcfDgd

fAgafBgb =
[C]c[D]d

[A]a[B]b
γc
Cγd

D

γa
Aγb

B

= cK
γc
Cγd

D

γa
Aγb

B

(2.12)

We will assume thatfH+g is the activity used in chemical equilibrium expressions for acids
and bases. It can be replaced by an activity coefficient times a concentrationγH+ [H+]. When
making a H+ measurement with a combination pH electrode and calibrating with theNational
Bureau of Standardsbuffer solutions, the measurement is closest to an activity measurement,
not a concentration. Only if one calibrates with a strong acid such as 10�3 M H2SO4 (which
has according to equation (2.1) apcH = 2:7) one measures the H+ concentration with a pH
meter [251].

For water chemistry purposes, it is usually precise enough to use an approximation of
ionic strength derived from a correlation with specific conductance or total dissolved solids
[124, 263, 281]. Two popular expressions are:

I �= 1:65�10�5EC (2.13)

I �= 2:5�10�5TDS (2.14)

I : ionic strength (M)
EC : electrical conductivity (µS cm�1)
TDS : total dissolved solids (mg l�1)
For neutral molecules, an empirical equation forγ can be used [198, 251, 263]:

log10γ= ks I (2.15)

whereks is the salting-out coefficient, to be determined experimentally, generally between 0.01
and 0.15 [263], but often set to 0.1 [198].
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2.2.3 Nature and strength of acids and bases

It is known that a hydrogen ion, that is, a proton, cannot exist as a bare ion in water solution.
Theoretical calculations show that a proton would strongly react with a water molecule to
form a hydrated proton, a hydronium or a hydroxonium ion (H3O+). Actually, the H3O+ ion
in an aqueous solution is itself associated through hydrogen bonds with a variable number of
H2O molecules:(H7O3)

+, (H9O4)
+, and so on. The formula H3O+ or H+ is generally used,

however, to denote a hydrated hydrogen ion. The hydroxide ion is also strongly hydrated in
aqueous solutions. Similarly, metal ions do not occur as bare metal ions but as aqua complexes
(see section 2.4).

The rational measure of the strength of the acid HA relative to H2O as proton acceptor is
given by the equilibrium constant for the proton transfer reaction

HA +H2O
H3O++A� K1 (2.16)

which may be represented formally by two steps:

HA 
 proton+A� K2 (2.17)

H2O+proton
 H3O+ K3 (2.18)

Because the equilibrium activity of the proton and of H3O+ are not known separately, the
thermodynamic convention sets the standard free energy change∆G0 for reaction (2.18) equal
to zero; that is,K3 = 1. In dealing with dilute solutions we can, because of this convention,
represent the aqua hydrogen ion by H+, that is,

[H+]� [H+(aq)] = [H(H2O)+x (aq)] (2.19)

and the free energy change∆G involved in the proton reaction (2.16) may be expressed in
terms of the equilibrium constant of equation (2.17), the acidity constant of the acid HA,KHA.
Ignoring activity coefficients, we have

K2 = K1 = K2K3 = KHA =
[H+][A�]

[HA]
(2.20)

which upon rearrangement gives the equation of Henderson-Hasselbach:

pH= pKHA + log
[A�]

[HA]
(2.21)

For concentrations (activities of HA and A�) in a molal (mol kg�1) �= molar (mol l�1) scale,
pKHA is commonly referred to aspKa.

Self-ionization of water Because of its amphoteric properties, water undergoes auto-
ionization, and the autoprotolysis reaction

H2O+H2O
H3O++OH� (2.22)

has to be considered in all aqueous solutions. In dilute aqueous solutions (fH2Og = 1), the
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equilibrium constant for equation (2.22) usually called the ion product of water, is

Kw = fOH�gfH3O+g � fOH�gfH+g (2.23)

At 25 oC, Kw = 1:008�10�14 or pKw = 13:997 and the pH= 7:00 corresponds to exact neu-
trality in pure water ([H+] = [OH�]). The ion product of water, thus also the pH of neutrality
is temperature dependent. Different equations forpKw in function of the absolute temperature
T have been developed [51, 273]:

pKw =
4470:99

T
�6:0875+0:01706T (2.24)

pKw =
4787:3

T
+7:1321logT +0:010365T�22:80 (2.25)

2.2.4 Equilibrium calculations

Because acid-base reactions in solution generally are so rapid, we can concern ourselves pri-
marily with the determination of species concentrations at equilibrium. In the usual approach,
we desire to know[H+], [OH�], and the concentration of the acid and its conjugate base that
result when an acid or a base is added to the solution [263]. The mathematical modelling of
acid-base equilibria (chapter 3) will use a slightly modified approach because we will desire
to know the buffer capacityβ in function of afixed pH or [H+]. Acid-base equilibrium calcu-
lations are of central importance in the chemistry of natural waters and wastewater treatment
processes. The purpose of this section is to describe a general approach to the solution of
acid-base equilibrium problems.

Let us consider for this purpose the equations that describe a solution which results when
an acid, HA, or a salt of its conjugate base, MA (where M is a cation), is added to water [263].

Mass balances

In acid-base reactions the reacting species are conserved. When HA is added to water, the acid
ionizes partially or completely.

HA +H2O
 A�+H3O+ (2.26)

Let us assume that the system is homogeneous and closed (i.e. no species containing A can
enter from, or leave to, the atmosphere, and that precipitation or dissolution of such species
cannot occur). A mass balance on all species containing A gives

Ca = [HA]+ [A�] (2.27)

whereCa is equal to the analytical concentration of HA or the number of moles of HA added
per litre. [HA] and[A�] are the molar concentrations of the acid and conjugate base in solution
at equilibrium.
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WhenC moles of the salt MA are added per litre, it dissociates

MA 
M++A� (2.28)

and the base A�, reacts with water,

A�+H2O
HA+OH� (2.29)

If we assume that M+ does not form complexes with A� or other solutes, and given that MA
dissociates completely, a mass balance on M and A yield respectively

Cm = [M+] (2.30)

Ca = [HA]+ [A�] (2.31)

whereCm =Ca =C.

When MA and HA both are added to a solution, equation (2.31) holds, whereCa = sum of
the moles of HA and MA added per litre of solution.

Equilibrium relationships

The second group of equations we need to consider describe equilibrium relationships. For the
example of HA added to pure water the following equilibria are pertinent. In aqueous solution,
we obtain for the dissociation of water:

Kw = fOH�gfH+g (2.32)

The dissociation of HA is described by its acidity constant:

Ka =
fH+gfA�g
fHAg (2.33)

or

cKa =
[H+][A�]

[HA]
= Ka

γHA

γH+γA�

(2.34)

A so-called mixed acidity constant is frequently used [273]:

K0
a =

fH+g[A�]

[HA]
= Ka

γHA

γA�

(2.35)

This convention is most useful when pH is measured according to the IUPAC convention (pH
� paH) (see section 2.1), but the conjugate acid-base pair is expressed in concentrations.
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Figure 2.4: Titration curve for 1 litre of a 0.01M acetic acid solution [28]

The charge balance or electro-neutrality equation

The basis of the charge balance is that all solutions must be electrically neutral. Ions of one
charge cannot be added to, formed in, or removed from a solution without the addition, for-
mation, or removal, of an equal number of ions of the opposite charge. In a solution the total
number of positive charges must equal the total number of negative charges.

For the example in which the salt MA is added to water, the species present are H3O+,
H2O, OH�, M+, A� and HA. The electro-neutrality equation becomes:

[M+]+ [H3O+] = [OH�]+ [A�] (2.36)

2.2.5 pH titration curve

A titration curve may be obtained by adding small amounts of a strong base to a weak acid
solution, or by adding small amounts of a strong acid to a weak base solution, and measuring
the pH after each addition. A comparative study about calculation and graphical methods to
describe titration curves is given in [190]. An example of a titration curve for 1 litre of a 0.01M
acetic acid (HA) solution is presented in Figure 2.4. The curve has an S-shape, which suggests
that the pH does not change at a constant rate with the addition of strong base. The chemical
events responsible for the shape of the titration curve can be elucidated by considering the
pointsa, b andc located on the plot in Figure 2.4.

Point a: This point represents the equilibrium pH established in a 0.01M acetic acid solu-
tion. At this point no base has been added. Furthermore, the concentration of the ionized form
is much smaller than the unionized form (4 % A� against 96 % HA), so that the unionized acid
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concentration can be considered almost equal to the initial concentration. Calculation details
of this example are given in section 3.2.1 on page 40 (e.g. initial pH, which is 3.36 in this case)

Point b: This point represents the pH established when the concentration of unionized acid
equals the concentration of the ionized acid; i.e.,

[HA] = [A�] (2.37)

The validity of equation (2.37) can be substantiated by considering the Henderson-Hasselbach
equation (equation (2.21)) for the acetate buffer. When the measured solution pH is equal to
the acidpKa value, equation (2.21) reduces to

log
[A�]

[HA]
= 0 (2.38)

which holds when[A�] = [HA]. An examination of the titration curve in the vicinity of point
b also shows that, around this point, the solution pH will show the smallest change per unit of
strong base added. In other words, the pH buffering effect is the highest at pointb. Because of
this effect, the useful range of a buffer system is practically around 1.5 pH units on either side
of its pKa value.

Point c: This point represents the pH established when the concentration of ionized acid
approaches the initial acid concentration, thus[A�]�= 0:01M. 3 In other words, the pH at this
point is the equivalence-point for a 0.01M acetate salt solution. Further addition of a strong
base past pointc will result in a continued increase in pH. The limiting pH is set by the pH of
the titrant. In Figure 2.4 it is assumed that a 0.1M NaOH (which is at pH 13) is used as the
titrant. Thus, when the effects of dilution become insignificant, the pH will approach 13.

In the previous example, only 1 monoprotic4 buffer system in an aqueous solution was
considered. A titration curve can also be obtained by adding small amounts of strong base to
a solution, containing more than 1 buffer system, including polyprotic buffers. An example of
such more complex titration curve is shown in Figure 2.5. The difference with the previous
example is that the pointsa, b andc cannot be distinguished for the individual buffers on the
graph. The mathematical aspects of this type of titration curves will be handled in chapter 3.
A graphical method to determine thepKa for simple titration curves is given in [189].

2.2.6 pH buffer capacity curve

The slope of a titration curve (pH versusCB or CA) is related to the tendency of the solution
at any point in the titration curve to change the pH upon addition of base or acid. The buffer
intensity at any point of the titration is inversely proportional to the slope of the titration curve
at that point and may be defined as [273]:

β =
dCB

dpH
=� dCA

dpH
(2.39)

3Theoretically, even at high pH values, there is always a small fraction of the unionized acid[HA].
4A monoproticconjugate acid-base pair, HA�A�, can interchange 1 proton.
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Figure 2.5: Titration curve for 1 litre of a more complex aqueous system containing 5
mgCO2 l�1, 7 mg o-PO4-Pl�1, 15mgNH+

4 -N l�1 and 0.6meq l�1 of an unspecified soap

β : buffer intensity (eq l�1 pH�1)
dCB, dCA : differential quantity of strong base or acid added (eq l�1)
dpH : differential change in pH due to addition ofdC

Note thatβ is always positive.
A graphical representation ofβ as a function of pH may be obtained by plotting the inverse

of the slope of the titration curve versus pH. The buffer capacity curve corresponding with
the titration curve in Figure 2.4 is shown in Figure 2.6. The point with the highest buffer
capacity, excluding the water buffer is pointb, the top of the buffer capacity profile. For buffer
systems withpKa values lower than 4 or higher than 10, the maximum of the bell-shaped buffer
intensity profile does not necessarily correspond with thepKa value of that buffer system,
due to the presence of the buffer capacity of the water solution (see an example in the next
paragraph).

The buffer capacity curve, corresponding with the titration curve in Figure 2.5 is shown in
Figure 2.7. The different buffer systems that contribute to the buffer capacity curve are sepa-
rately indicated on the graph. This also illustrates the additive behaviour of buffer capacities:
The overall buffer capacity of the solution is the sum of buffer capacities of the different con-
stituents to this solution. It can be noted on the graph that the maximum of the overall buffer
capacity profile around pH 9 does not exactly correspond with thepKa of ammonium, although
it is the most important buffer at that pH position. A mathematical model ofβ will enable to
simulate buffer capacities, and thus predict the buffer behaviour of solutions. This is the topic
of chapter 3.
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Figure 2.6: Buffer capacity curve for a 0.1M acetic acid solution
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2.3 Dissolved organic carbon

The most important acid-base system in water is often the carbonate buffer. The chemical
species that make up the carbonate system are gaseous CO2 (CO2(g)), aqueous or dissolved
CO2 (CO2(aq)), carbonic acid (H2CO3), bicarbonate (HCO�3 ), carbonate (CO2�3 ) and carbon-
ate containing solids. Consequently, the carbonate system is the most important buffer in
natural waters. In addition, individual species are of interest to us because they participate in
important reactions other than strictly acid-base interactions [263]. Carbon dioxide is a partic-
ipant in the biological processes of respiration (CO2 produced) and biosynthesis by autotrophs
such as nitrifiers or photosynthetic organisms (CO2 consumed). The dissolution of CO2 from
the atmosphere into water or the release of CO2 from supersaturated waters involves a hetero-
geneous reaction between gas and liquid phases. Similarly, the carbonate ion participates in
heterogeneous reactions with solids containing carbonate, notably calcium carbonate.

2.3.1 The carbonate species and their acid-base equilibria

When we are presented with a problem involving the carbonate system, we must first make a
decision concerning the nature of the system. This step is important because carbonate species
can be involved in homogeneous solution equilibria as well as heterogeneous gas/liquid and
liquid/solid equilibria [263]. The system can be treated as (ordered by increasing complexity):

� a closed system with no solid present,
� an open system with no solid present,
� a closed system with solid present, and
� an open system with solid present.

For the moment we will neglect the equilibria between carbonate species and metal ions
(see section 2.4) and the involvement of carbonate-containing solids (see section 2.5), and treat
the carbonate system as an open system with no solid present. Assuming a temperature of 25
oC, the following equilibria can be considered [263]:

CO2(g)+H2O
CO2(aq) K = KH = 10�1:5 M atm�1 (2.40)

CO2(aq)+H2O
H2CO3 Km = 10�2:8 (2.41)

H2CO3
 H++HCO�
3 K†

1 = 10�3:5 (2.42)

H2CO�
3
 H++HCO�

3 Ka1 = 10�6:3 (2.43)

HCO�
3 
H++CO2�

3 Ka2 = 10�10:3 (2.44)

KH stands for Henry’s constant. From equation (2.41) it is concluded that the concentration
of hydrated carbon dioxide, CO2(aq), predominates over the concentration of carbonic acid,
H2CO3:

Km = 10�2:8 =
[H2CO3]

[CO2(aq)]
= 1:6�10�3 (2.45)
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Table 2.3: Reaction rates within the carbonate system [198,273]

Reaction Forward ratevf Backward ratevr

CO2(g)+H2O
 CO2(aq) 6�10�9mol cm�2 s�1 a

CO2(aq)+H2O
H2CO3 0.025�0.04s�1 (20�25 oC) 10�20s�1 (20�25 oC) b

CO2(aq)+OH�

HCO�

3
c 8:5�103M�1 s�1 2�10�4s�1 d

H2CO3
 HCO�
3 +H+ 1:5�107s�1 e 4:7�1010M�1 s�1

a Calculated for the situation of a typical lake.
b The ratio ofvf andvr corresponds withKm (see equation (2.41)).
c This reaction is kinetically insignificant at pH< 8.
d The ratio ofvf andvr corresponds withKa1Kw (see equation (2.43)).
e Calculated fromvr andK†

1 (see equation (2.42)).

Thus [H2CO3] is only 0.16 % of[CO2(aq)]. Because it is difficult to distinguish between
CO2(aq) and H2CO3 by analytical procedures such as acid-base titration, a hypothetical species
H2CO�

3 is used to represent H2CO3 plus CO2(aq). The composite equilibrium constantKa1 of

equation (2.43) is a result of the product ofKm (equation (2.41)) andK†
1 (equation (2.42)). The

implications of this development are important because they point out that H2CO3 is a fairly
strong acid (K†

1 = 10�3:5), but there is very little of it in solution. This point is emphasized
becauseKa1 is 10�6:3, a value that would give the impression that carbonic acid is a very weak
acid. Carbonic acid has some of the properties of a strong acid, like the dissolution of minerals
by CO2. Throughout this text we will use the hypothetical species H2CO�

3 to represent CO2(aq)
plus H2CO3. We will treat it as a diprotic acid, but we should keep in mind its true nature.

As discussed earlier (section 2.2.1), acid-base equilibria are from a kinetical point of view
extremely rapid, except for the carbonate system equilibria, and this in open as well in closed
systems. The explanation of this behaviour lies in the slow (relatively to other deprotonation
reactions) rate of hydration of aqueous CO2. The hydratation of CO2(aq) leads to H2CO3

(equation (2.41)), but it may also yield H+ and HCO�3 [273]. The individual rate constants
cannot be experimentally resolved and are reported simply askCO2 andkH2CO3 corresponding
to the simplified scheme:

CO2(aq)+H2O
kCO2



kH2CO3

H2CO3
very fast

 H++HCO�

3 (2.46)

An overview of reported rate constants for the carbonate system is given in Table 2.3. It has
to be noted that the values in Table 2.3 are given as approximative values because they are
dependent on many different factors. For the equilibrium where H2CO�

3 is involved (equation
(2.43)), no rate constants are given, because this equation is a ‘pooled’ equation, where a very
fast proton exchange reaction, as well as a relatively slow hydratation/dehydratation reaction
are involved. More details about these reaction rates can be found in [198, 273].
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Figure 2.8: Aqueous carbonate equilibrium; atmosphericpCO2 and 25oC; pH adjusted with
strong base or acid;CT represents the sum of the solute carbonate species; point P shows
equilibrium concentrations without pH adjustments [273]

A simple system illustrating some of the characteristics of the carbonate system in natural
waters is provided by equilibrating pure water with a gas phase (e.g. the atmosphere) contain-
ing CO2 at a constant partial pressure. One may then vary the pH by the addition of strong base
or strong acid, thereby keeping the solution in equilibrium withpCO2. Figure 2.8 shows the dis-
tribution of the solute species in such a system. A partial pressure of CO2 (pCO2 = 10�3:5atm)
is representative for the atmosphere. When this is in equilibrium with CO2(aq), we obtain from
equations (2.40) and (2.45):

[H2CO�
3]
�= [CO2(aq)] = KH � pCO2 = 10�1:5�10�3:5 = 10�5 M (2.47)

2.3.2 Alkalinity and acidity

Alkalinity is a measure of the capacity of a water to neutralize strong acid. In natural waters
this capacity is attributable to bases such as HCO�

3 , CO2�
3 and OH� as well as to species often
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present in small concentrations such as silicates, borates, ammonia, phosphates, and organic
bases [263].Acidity is a measure of the capacity of a water to neutralize strong base. In natural
waters this capacity is usually attributable to acids such as H2CO�

3 and HCO�3 and sometimes
to strong acids, namely, H+ [263].

Operational definition of alkalinity

In the determination of the total alkalinity a known volume of sample is titrated with a standard
solution of a strong acid to a pH value in the approximate range of 4 to 5 and usually in the
range 4.5 to 4.8. This end-point is commonly indicated by the colour change of the indicator
methyl orange; therefore the total alkalinity is often referred to as the methyl orange alkalinity.
Alkalinity can be expressed asmeq l�1 or asmgCaCO3 l�1. In the latter case, one takes into
account that 1meqof CO2�

3 requires 2meqof H+, so that 1meql�1 = 50mgCaCO3 l�1. If we
consider first a closed system in which the alkalinity contributing species are only carbonate
and OH�, then the H+ added is the stoichiometric amount required for the following reactions:

H++OH�

 H2O (2.48)

H++HCO�
3 
H2CO�

3 (2.49)

2H++CO2�
3 
H2CO�

3 (2.50)

The pH at the true end-point of the total alkalinity titration should be that of a solution of
H2CO�

3 and H2O. We refer to the pH of such a solution as pHCO2.
For the carbonate system, we can theoretically identify two more significant pH values

that occur during the course of an alkalinity titration. These are pHHCO�

3
and pHCO2�

3
. They

represent, respectively, (1) the pH of a solution to which has been added the stoichiometric
amount of H+ required to complete5 reaction (2.48) and the following reaction:

H++CO2�
3 
 HCO�

3 (2.51)

and (2) the pH of a solution to which has been added the stoichiometric amount of H+ required
to complete only reaction (2.48). The value of pHHCO�

3
is about pH 8.3 while pHCO2�

3
is gen-

erally between pH 10 and pH 11 and varies with the amount of carbonate buffer present. The
experimental amount of acid required per litre of solution to lower the pH of this solution to
pHHCO�

3
is called the carbonate alkalinity. This end-point can be determined with a pH meter

or by a colour change of the indicator phenolphthalein so that it is often referred to as the phe-
nolphthalein alkalinity. The amount of acid required to reach pHCO2�

3
(the caustic alkalinity)

cannot be determined readily in the laboratory because of the poorly defined end-point, caused
by the masking effect of the buffering of water (i.e. the reaction H++OH�


 H2O). Caustic

5Theoretically, equilibrium reactions are never completed, however, operationally a reaction is completed when an
equivalence-point is reached. See also section 2.2.5.
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Table 2.4: End-point pH values for total alkalinity measurements [104]

Test condition End-point pH

Alkalinity 30 mgCaCO3 l�1 4.9
Alkalinity 150 mgCaCO3 l�1 4.6
Alkalinity 500 mgCaCO3 l�1 4.3
Silicates, phosphates known/suspected 4.5
Routine or automated analysis 4.5
Industrial waste or complex system 4.5

alkalinity can be determined by calculation if the carbonate and the total alkalinity are known
[263].

The actual values that correspond to pHCO2, pHHCO�

3
and pHCO2�

3
are not truly fixed values,

rather they vary with the total inorganic carbon buffer concentrationCIC in solution. If we treat
the titrations as closed systems, theCIC at the end-point will be the same as theCIC in the initial
solution. This appears to be a reasonable approach if the solution is not shaken vigorously and
if the titration is conducted rapidly. Table 2.4 shows theStandard Methods[104] values for the
total alkalinity end-points in function of the sample and itsCIC concentration.

Similar definitions and calculations concerning acidity measurements can be made. How-
ever, in the scope of this work, we will mainly work with the alkalinity and not with the acidity.

2.4 Metal ions in aqueous solution

Complex formation is important in the chemistry of natural waters and wastewaters from sev-
eral standpoints. Complexes modify metal species in solution, generally reducing the free
metal ion concentration so that effects and properties which depend on free metal ion con-
centration are altered. These effects include such things as the modification of solubility, the
toxicity and possibly the biostimulatory properties of metals [155, 263]. Complexation equi-
libria will also influence the buffer capacity, which is the reason of discussing this topic here.

In aqueous solution,free metal ions are complexed with water. The metal ions are said
to be hydrated. The interaction of these hydrated metal ions with acids and bases is a ligand
exchange reaction that is commonly called hydrolysis or protolysis. These terms describe the
general reaction in which a proton is transferred from an acid to water, or from water to a
base. This type of reaction involving hydrated metal cations occurs readily and is of extreme
importance in natural waters [263]. For example, the first step of the stepwise hydrolysis of
the hydrated ferric ion, Fe(H2O)3+

6 can be represented by the following equation:

Fe(H2O)3+
6 +OH�


 Fe(H2O)5OH2++H2O (2.52)

From this equation it is easy to visualize that the hydrolysis of metal ions is a stepwise replace-
ment of coordinated molecules of H2O by hydroxyl ions. The hydrolysis reaction depicted in
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equation (2.52) is an acid-base (proton transfer) reaction. Because of this, the pH of the solu-
tion will influence the distribution of the various species, and the presence of such reactions
will influence the buffer capacity of the water. All trivalent and most divalent metal ions are
complexed to some extent with OH� at the pH of natural waters. The alkaline earth metals
hydrolyse significantly only at high pH (pH> 9).

2.4.1 Complex formation and dissociation constants

Equilibrium constants for complexes can be written in many different ways. In literature it is
not always consistent and clear what kind of constant is used and how it has to be interpreted.
A minimal care has to be taken when using and interpreting values from literature. Some
popular different ways of expressing complex equilibria and some examples to illustrate the
confusions are presented here.

Equilibrium constants for complexes are usually stated for reactions written in the direction
of complex formation, e.g.,

Ca2++PO3�
4 
 CaPO�4 (2.53)

and

fCaPO�4 g
fCa2+gfPO3�

4 g = 10+6:5 = stability constant (2.54)

When stated for a complex formation reaction, the equilibrium constant is called aformation
or a stability constant. Conversely, if the equilibrium constant is stated for the dissociation
of the complex it is called adissociationor aninstability constant. Large values of stability
constants indicate stable complexes.

For complexes that contain more than one ligand or central metal ion, there are two ways
of writing stability constants. Stepwise formation constants are equilibrium constants for the
reactions in which the central metal ion consecutively adds one ligand (symbolK). An overall
formation constant is the equilibrium constant for the reaction in which the central metal ion
combines with all of the ligands necessary to form a specific complex (symbolβ) [263]. It is
also common to omit the H2O ligands when writing equations such as this one given here. For
example Fe(H2O)5OH2+ is usually written as FeOH2+.

Furthermore, the equation (2.52) shows hydrolysis reactions as a replacement of a water of
hydration by a hydroxyl ion. Such reactions can also be written as a transfer of protons from
waters of hydration to free water molecules to form a hydronium ion. The symbols for the
stability and overall stability constants are often represented as�K and�β respectively [273].
For example, the reaction (2.52) can be written as

Fe(H2O)3+
6 +H2O
 Fe(H2O)5OH2++H3O+ (2.55)

or as

Fe(H2O)3+
6 
 Fe(H2O)5OH2++H+ (2.56)
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with formation constants for equations (2.52) and (2.56) respectively:

K1 =
fFe(H2O)5OH2+g
fFe(H2O)3+

6 gfOH�g = 10+11:84 (2.57)

�K1 =
fFe(H2O)5OH2+gfH+g

fFe(H2O)3+
6 g = 10�2:16 (2.58)

Generally one can write that�K1 = K1�Kw. A consistent overview of the nomenclature used
for complexation constants can be found in [216].

To illustrate the confusions found in aquatic chemistry literature when looking up stability
constants for complex formation, an example of complex formation between Ca2+ and H2PO�

4
is presented. One of the popular tables found in modern aquatic chemistry textbooks is the one
originally presented by Morel and Hering [198] and taken over in other reference works like
[273] and [251]. A major issue presented by the original authors is data consistency [198]:
For example, a complex formation constant reported by one author may have been calculated
on the basis of a solubility constant that is not the same as that chosen in the compilation.
Crosschecking the methods for estimating the constants from experimental data is advised.
This can explain already some of the inconsistencies in literature, but there are also other
factors that lead to wrong interpretation. For the example given here, one can find in [273]
and [251] for the metal Ca2+ and the ligand PO3�4 (notated with L) (note that H2PO�

4 is not
presented as possible ligand) that the logarithm of the overall stability constant for formation
of the complex CaH2L equals 21.0. With the information presented above, one may wish to
write the following equation:

Ca2++H2PO�
4 
CaH2PO+

4 (2.59)

with the corresponding stability constant

K1 = β1 =
fCaH2PO+

4 g
fCa2+gfH2PO�

4 g
= 10+21:0 (2.60)

However, this is not correct, because only when consulting the table of the original authors
[198], one finds that the only correct way of writing this complexation reaction is

Ca2++2H++PO3�
4 
 CaH2PO+

4 (2.61)

with the correct corresponding stability constant

K1 = β1 =
fCaH2PO+

4 g
fCa2+gfH+g2fPO3�

4 g = 10+21:0 (2.62)

In an older reference [48] a reaction was found which corresponds with our example:

Ca2++H2PO�
4 
 CaH2PO+

4 logK = 1:08 (2.63)
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which logically corresponds to the following equation forK1

K1 = β1 =
fCaH2PO+

4 g
fCa2+gfH2PO�

4 g
= 10+1:08 (2.64)

When reaction (2.63) is summed with the 2 following reactions for the acid-base equilibria of
the ortho-phosphate buffer system:

H++HPO2�
4 
H2PO�

4 logK = 7:2 (2.65)

H++PO3�
4 
 HPO2�

4 logK = 12:35 (2.66)

one finds the same reaction as (2.61) and a logK value equal to 1:08+7:2+12:35= 20:62�
21, thus corresponding toK1 in equation (2.62).

For the same example, another aquatic chemistry book [263] gives the following reaction
(written as a dissociation instead of a formation reaction):

CaH2PO+
4 
 Ca2++H++HPO2�

4 pK =�5:6 (2.67)

The reaction can easily be transformed into a complex formation reaction:

Ca2++H++HPO2�
4 
 CaH2PO+

4 logK =�5:6 (2.68)

From this equation we can write

K1 = β1 =
fCaH2PO+

4 g
fCa2+gfH+gfHPO2�

4 g = 10�5:6 (2.69)

Summing reaction (2.68) with reaction (2.66) one finds

K1 = β1 =
fCaH2PO+

4 g
fCa2+gfH+g2fPO3�

4 g = 10�5:6+12:35= 10+6:75 (2.70)

The logK of equation (2.70) is not the same as the logK of equation (2.62), there is a difference
of approximately 14 log units in the two logK values, indicating that one of the 2 equations
is not correctly presented into the literature. Assuming the reference work [198] and also [48]
are correct, one might eventually suggest that in [263] the author presented�K values instead
of K values, but without mentioning it into the presented equation.

This illustrative example learns that there are many different ways of writing complexation
reactions, and that different notations andK values eventually represent the same complexation
reaction when using extra water or ligand dissociation reactions, and that extreme caution is
needed when using values from tables in which it is not straightforward to assess what the
tabulated values exactly mean.
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Table 2.5: Percentage distribution of complex species in average river water [263]

Complexed with (%)

Cation Concentration (M) Uncomplexed (%) OH� HCO�
3 CO2�

3 SO2�
4

Calcium 3:8�10�4 97 1 1 1
Magnesium 3:4�10�4 97 1 1 1
Sodium 2:7�10�4 100
Potassium 5:9�10�5 100

2.4.2 Complexes with inorganic ligands

Natural waters contain significant concentrations of inorganic and organic ligands in addition
to H2O and OH�. The predominant metal cations in typical fresh water are Na+, Ca2+ and
Mg2+; the major ligands are HCO�3 , Cl� and SO2�

4 . At the typical natural water pH values
between 6.5 and 8.5, these metals are no strong complex formers as Al3+ and Fe3+ [263].

For complicated systems such as natural waters it is necessary to use a computer pro-
gram/model to determine the degree of complexation of the various cations with the ligands
available. The results of a simulation study on a river water with average composition is shown
in Table 2.5 [263]. This type of calculation gives us confidence in ignoring the complexes of
Ca2+, Mg2+, Na+ and K+ with OH�, HCO�

3 , CO2�
3 , SO2�

4 and Cl�, when dealing with fresh
waters of neutral pH. Increasing the pH-value or ligand concentration (like in a titration exper-
iment), may require though that complexes of these metals be taken into consideration.

2.4.3 Complexes with organic ligands

A wide variety of organic compounds in natural waters and wastewaters can act as complex-
ing agents for metal ions. The nature and extent of metal ion complexation by natural water
organics is not well defined, probably because of the poorly defined nature of these organic
compounds and also because of the staggering complexity of these multimetal, multiligand
systems [263]. Two categories of significant organic complexes in river waters are the ‘amino
acid complex’ and ‘inert humic complex’. For the most amino acid complexes, the values of
logβ1 range from 7 to 9; values of logβ2 are in the approximate range of 14 to 16. However
there are again some exceptions, e.g. the amino acid cysteine, which contains an�SH group,
forms an extremely strong complex with cuprous ion (Cu+) with a logβ1 value of 19.5. Humic
substances are an extremely complex group of compounds. Because of this no single com-
pound can act as a true model for this group. However, phenolic (pKa 8.5�11) and carboxylic
acid (pKa 3�6) groups are common functional groups in humic substances [226].

Humic substances or humates are a mixture of poorly biodegradable decomposition prod-
ucts and by-products of natural organic matter produced by plants and animals. They are
natural constituents of surface water, especially in regions with a cold climate, since low tem-
perature is a condition for the formation of water-extractable humic substances [185]. Humic
substances have been arbitrarily divided into three diverse groups of compounds on the basis
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of their solubility in dilute acid and dilute base.Fulvic acidsare soluble in both dilute acid
(pH 1) and dilute base.Humic acidsare soluble in dilute base but are precipitated by dilute
acid (pH 1).Humin is insoluble in both dilute acid and dilute base. It is the fulvic acid frac-
tion that appears to be the predominant group of humic substances in natural waters. Fulvic
acids appear to have lower molecular weights (200 to 10000) than humic acids; they contain a
higher percentage of oxygen and the oxygen appears to be located in a greater percentage of
carboxyl groups. Fulvic acids, in particular, are good complexing agents for trace metals in
natural waters [251]. Fulvic acid binding of trace metals is complicated. Not only is fulvic acid
a distribution of a wide range of molecules, it has a variety of binding sites that are affected by
pH, ionic strength, and the chemistry of ions in solution.

When chemical equilibrium models are used to assess e.g. toxicity induced by free metal
ions, fulvic acid complexation should be taken into account [81], especially for metals with
large logK values for metal-fulvate complexes such as Hg2+, Cu2+, Pb2+ and Cd2+. Com-
plexation of metals with fulvic acid is most significant for those ions that are appreciably
complexed with CO2�3 and OH� [251]. When chemical equilibria are used for buffer capacity
modelling, it are the metal ions with the highest concentrations that have to be considered first.
Acid-base titrations of humic substances reflect the nature of the differentpKa values, hence
the ‘smeared out’ appearance of these titration curves. While no unique equivalence-points are
observed, differentpKa regions of carboxylic and phenolic groups can be discerned [273]. In
a study based on titration curves of dissolved organic carbon (DOC) in wastewater, two acid-
ity constants, 5.3 and 9.5 were found to be attributed to DOC [331]. FTIR spectra suggested
the acid sites are carboxylic and amino functional groups. In the River Vouga (Portugal), the
presence of sulphonic functional groups in the fulvic acids were found to origin from a pulp
and paper mill effluent, that was discharged in that river [247]. These results highlight the
importance of the contribution of anthropogenic sources of organic matter to the composition
of humic substances from surface waters.

For describing chemical equilibria between metal ions and e.g. fulvic acid, a conditional
stability constant approach can be used [251]:

M+FA
M�FA Kc =
[M�FA]
[M][FA]

(2.71)

whereKc is the conditional stability constant at a specified pH, ionic strength, and chemical
composition. One does not always know the stoichiometry of the reaction in natural waters, e.g.
whether 1:1 complexes (M�FA) or 1:2 complexes (FA�M�FA) are formed. The complexant
is a macromolecule of organic carbon in which there are many different sites with varying
binding energies. So, equation (2.71) simply gives a lumped-parameter conditional stability
constant, but it does allow intercomparisons of the relative importance of complexation among
different metal ions and dissolved organic carbon (DOC) at specified conditions. Conditional
stability constants for metal-fulvic acid complexes vary in natural waters because:

� There are a range of affinities for metal ions and protons in natural organic matter result-
ing in a range of stability constants.

� Conformational changes and changes in binding strength of M�FA complexes in natural
organic matter result from electrostatic charges (ionic strength), differential and compet-
itive cation binding, and, most of all, pH variations in water.



2.5 Precipitation and dissolution reactions 35

The total number of metal-titratable groups is in the range of 0.1�5 meqper gram of
carbon, and is termed the DOC complexation capacity. DOC comprises roughly 90 % of the
total organic carbon in surface waters, most of which is recalcitrant [294].

Rather than using a conditional complexation constant or a distribution of discrete com-
plexation constants, an alternative approach is to use ax-site model, withx different ligands
(sites), andx different stability constants. This approach with e.g.x = 5 can be used to de-
scribe the complexation of dissolved fulvic acid and copper ions in natural water [251]. Many
investigators have used a two site model representing fulvic acid functional groups with acidity
constantspKa1 � 3:5 andpKa2 � 5:0 [251].

In a third approach for describing chemical equilibria between metal ions and humates, the
humates can be described by a mixture of ligands with a continuous (Gaussian) distribution
of acidity or metal-binding constants [198]. Two centres ofpKa distributions in this Gaussian
approach (around pH 3 and pH 5) were found to describe the buffering capacities of humic
acids fairly well [82]. In a study of the organic contribution to alkalinity in estuarine waters,
it was found that humic substances have a buffer capacity around pH 4.5, pH 6.6 and pH 8.9
[49]. The authors suggest that the first two groups are carboxylic acids, and group three may
be phenols or amines.

2.5 Precipitation and dissolution reactions

Precipitation and dissolution reactions are important in both natural waters [263] and water
treatment processes, more particular in e.g. phosphorus removal [72, 83, 200, 346]. Dissolu-
tion of minerals is a prime factor in determining the chemical composition of natural waters.
Both equilibrium considerations and the rates of reactions are important. In many instances
the reaction rate controls the extent of reaction because insufficient time is available for equi-
librium to be achieved. This will have important drawbacks when precipitation reactions will
be considered in titration experiments. A number of caveats are in order before embarking on
the study of solubility relationships in aquatic systems [198]:

1. Many precipitation-dissolution reactions are sluggish. For example, a large supersatu-
ration of CaCO3 is often observed in natural waters before precipitation of the solids
actually occurs. Temperature, the presence of nucleating surfaces and biological activity
can all dramatically alter precipitation-dissolution kinetics.

2. The solid formed is often not the most stable solid thermodynamically. The evolution of
the solid to its more stable form (e.g. through recrystallization) is usually very slow.

3. The metastable solids that are initially precipitated are often ‘non-stoichiometric’. Many
natural solids also typically contain impurities, foreign ions incorporated in the matrix.
The equilibrium constants used for such solids have operational value, but probably
little true thermodynamic significance. There is a wide variation in the reported values
of heterogeneous equilibrium constants.

4. The formation of pure solid phases is not the only, or perhaps even the dominant, process
by which many solutes are removed from the solution. For example, surface adsorption
can remove a solute from solution much below saturation conditions for pure solids.
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Precipitation has generally been observed to occur in three steps:

� nucleation (homogeneous if nuclei are formed with the ions of the precipitate; or hetero-
geneous if foreign particles act as nuclei),

� crystal growth, and
� agglomeration and ripening of the solids.

The formation of nuclei from precipitate ions is an energy-consuming process, so solutions
have to be supersaturated, or have concentrations greater than that predicted by equilibrium
with the precipitate, before the precipitate will form from a homogeneous solution.

At the outset of any discussion on heterogeneous equilibria it is important to realize that
heterogeneous calculations only apply when there is is anexcess of the solidof interest present.
If solid is absent, the equilibrium calculations are not valid for predicting solution composition;
they may only be used to test whether saturation with a particular solid exists. Although ther-
modynamic considerations will yield the driving force for precipitation of particular phases,
their formation under a specific set of conditions may be determined much more by kinetic
factors. Metastable phases may persist in supersaturated solutions [204].

The solubility product

The solubility product is the equilibrium constant that describes the reaction by which a pre-
cipitate in excess dissolves in pure water to form its constituent ions [263],

AzBy(s)
 zAy++yBz� (2.72)

The solubility constant is defined as

Ks0 =
fAy+gzfBz�gy

fAzBy(s)g
(2.73)

The activity of the solid phase is taken as unity. The concentration product, or conventional
solubility product [273], logcKs0, has the same form as the equilibrium constant except that
concentrations of the species in solution are used instead of their activities.

log cKs0 = [Ay+]z[Bz�]y (2.74)

For the solubility of oxides and hydroxides, the symbol logc�Ks0 [273] can be used instead
of log cKs0, when the solubility equilibrium is expressed in terms of[H+] instead of[OH�].
Similar as in section 2.4.1, caution is needed when values from the literature are used.

Available compilations of solubility products illustrate that values given by different au-
thors for the same solubility products often differ markedly. Differences of a few orders of
magnitude are not uncommon [273]. There are various reasons for these discrepancies, for
example the higher complexity of solubility equilibria compared to e.g. acid-base equilibria;
and the presence of solubility influencing species not accounted for in theKs0.

In order to test whether a solution, or a natural water, is over- or undersaturated, the actual
ion activity product (IAP), may be compared withKs0 [273]. E.g. for the solidAzBy(s), the IAP
equalsfAy+gzfBz�gy The state of saturation of a solution with respect to a solid is defined as:
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� IAP > Ks0: oversaturated
� IAP = Ks0: equilibrium, saturated
� IAP < Ks0: undersaturated

2.6 Modelling tools

For finding solutions of a ‘large’, natural water system equilibrium model, having many reac-
tions and many species, hand calculations are extremely slow and essentially infeasible [273].
Computers have enabled rapid computations of equilibrium composition for multicomponent,
multiphase, multispecies systems [273].

Two approaches to the treatment of large systems have been developed: the Gibbs energy
minimization method and the equilibrium constant approach [13, 262, 273]. Both are based on
a knowledge of the chemical potentials of species under standard conditions and under actual
conditions of compositions in the chemical system. In the Gibbs energy minimization ap-
proach, one guesses a solution to the equilibrium problem (the free concentrations of species)
and proceeds to minimizeGTOT. In the equilibrium constant approach, one guesses the free
component concentrations, solves the non-linear equilibrium equations for the species concen-
trations, and verifies the total component material expressions or mass balances. If different
precipitation reactions have to be considered in one model, a thermodynamic based solution
approach is preferred, rather than an equilibrium based solution approach [177]. However, if
some free energies for particular components are missing, the free energy methods cannot be
used [13].

Chemical modelling in hydrologic systems has become an area of active research with im-
mediate opportunities for application to environmental problems [24]. There are many com-
puter models available for chemical equilibrium calculations. A number of these packages are
reviewed in [24]. New concepts in modelling which provide innovative advancements include
model sensitivities, sampling and analytical error, computational errors, redox and metastabil-
ity, thermodynamic and kinetic data advance,: : : One of the more recent models, that has
found wide use among environmental professionals is MINTEQA2 [10, 251]. It is freely
available (public domain software) and well documented. MINTEQA2 has been supported
by the U.S. Environmental Protection Agency Environmental Research Laboratory, Athens,
Georgia. This package is suitable for chemical equilibrium problems in natural water (acid-
base, precipitation-dissolution, complexation, surface complexation and redox reactions). It’s
database contains thermodynamic data for 1000 species, and can be supplemented with a user
defined thermodynamic database. Partly due to the reasons mentioned in section 2.5, precipi-
tation reactions are sometimes very difficult to model with chemical speciation programs like
MINTEQA2 [176,198]. For instance, in lead precipitation tests from aqueous solutions con-
taining sulphate, quasi equilibrium conditions between soluble and solid phases were achieved
a few hours or days after reagents blending. Significant discrepancies were found between fil-
terable lead concentrations measured in aged precipitate suspensions and solubility predictions
by MINTEQA2 [176]. Further, a flexible thermodynamic database is important to allow the
user to modify e.g.K-values, because these values are case dependent [187]. Also, it is known
that the precision of thermodynamic data values varies from excellent to poor, so such data is
subject to constant revision [85].



38 Chemical aspects of pH buffer capacity

Despite the wide experience with the MINTEQA2 thermodynamic database, this database
still contains errors that can lead to significantly erroneous results. An example of a recently
corrected significant error in reactions with organic ligands is illustrated with Cu�EDTA spe-
ciation [257]. Two typical types of errors were discovered in the thermodynamic database of
MINTEQA2 [257]:

� Errors related to expressing the reaction in terms of MINTEQA2 components: All reac-
tions in MINTEQA2 must be written as formation reactions. For solid species, the logK
and∆H0, needed in MINTEQA2, may be of the opposite sign to that reported in the lit-
erature (usually reported as a solubility product constant). Also both solid and dissolved
reactions obtained from the literature and their associated thermodynamic constants may
need to be added or subtracted from other reactions as required to reformulate the reac-
tion in terms of MINTEQA2 components. Similar findings of confusion in the literature
are also illustrated in section 2.4.1.

� Errors related to ionic strength and temperature correction of logK. All log equilibrium
constants in the database must be referenced to zero ionic strength and to 25oC.

A reactive solute transport model in streams, coupled to a chemical equilibrium model
based on MINTEQA2 was used for river water modelling [243, 244]. The equilibrium sub-
model considers the speciation and complexation of aqueous species, precipitation, dissolution
and sorption. The model provides a valuable tool for quantifying the nature and extent of pH-
dependent processes within the context of hydrologic transport [244]. Alkaline precipitation
and aging of Cu2+ in the presence of sulphate was investigated with MINTEQA2, in the frame-
work of recovery of copper from industrial wastewaters and sludges [177]. A MINTEQA2
model with 2 ammonia species, and respectively 21 copper or 18 nickel species was used to
assess the effect of these heavy metals on nitrifying bacteria [149]. Surface complexation and
precipitation modelling using MINTEQA2 was successfully applied to describe the leaching
of contaminants from weathered municipal solid waste incinerator bottom ash [187].



Chapter 3

Mathematical pH buffer capacity
modelling

3.1 Introduction

In literature, various approaches are considered to model pH buffer capacity [198, 251, 263,
273]. Depending on the aim of the modelling, a different approach can be necessary. However,
the majority of approaches focus on assessing the composition or species distribution (includ-
ing pH) of a sample under a certain set of conditions. A simple example illustrates the types of
questions asked: A solution contains 5mmolof acetic acid, we add 5ml of NaOH 0.1N to this
solution, what will be the pH at equilibrium? This we could call a single point analysis, the
situation of 1 equilibrium point only is considered. This problem can be extended, considering
consecutive small additions of NaOH to our acetic acid sample, resulting in a titration profile,
where pH is a function of the amount of base added. Some chemical aspects of pH titration
are presented in chapter 2, more particularly in section 2.2.5 on page 21 and section 2.2.6 on
page 22.

Two different approaches of titration curve modelling will be discussed in section 3.2. It
will be shown that buffer capacity curve modelling is preferred over titration curve modelling.
For this reason, in this chapter, buffer capacity modelling will be elaborated in more detail.

Three different approaches of buffer capacity modelling will be discussed in sections 3.3,
3.4 and 3.5 respectively. To present these three methods in the same framework, in function
of the objective of this work, some modifications and extensions of the methods described in
literature will be presented here. The three different approaches are:

1. the linear buffer capacity model (section 3.3),

2. the non-linear symbolic buffer capacity model (section 3.4), and

3. the non-linear tableau-method based buffer capacity model (section 3.5).

These three approaches are classified towards increasing complexity and increasing pos-
sibilities. For instance the linear method can only handle simple acid-base equilibria, the
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non-linear symbolic method can also handle complexation reactions, and the tableau-method
based model can also handle precipitation reactions. In all of the following sections, the in-
fluence of the ionic strength on the modelling will initially not be taken into account because
the incorporation of activity coefficients causes a loss of clearness in the model development.
For the buffer capacity models described in sections 3.3 and 3.5, separate subsections handle
the ionic strength corrections. The practical role and influence of the activity coefficients on
experimental buffer capacity curves is discussed in later chapters.

3.2 Modelling titration curves

A titration curve is the result of consecutive additions of a strong acid or base to a known
volume of sample, followed by a measurement of pH. Here we will assume that each pH
measurement is a result of a chemical equilibrium. In other words, the kinetic aspects of the pH
change as a result of strong acid-base addition will not be considered. This is a fair assumption,
because the kinetics of acid-base reactions are extremely fast (see chapter 2), much faster than
e.g. pH electrode kinetics. In the case we deal with non acid-base reactions, like precipitation
reactions, the kinetic aspects will have to be reconsidered. The intuitive approach of titration
curve modelling can be illustrated by the following question : “Given a sample with a known
buffer composition, what will be the pH whenx meqof strong acid or base is added?”, or in
mathematical notation: pH= f (x). This approach is commonly used in literature and works
fine for systems with only a few buffer systems. An alternative approach can be illustrated by
the following question: “Given a sample with a known buffer composition, what is the amount
x of strong acid or base to be added to alter the pH to a preset pH value?”, or in mathematical
notation: x = f (pH). The latter approach (fixed pH approach) will be shown superior from
a mathematical point of view, and will be the basis for buffer capacity modelling. In the
following two sections, the two approaches will be illustrated with a simple example.

3.2.1 Variable pH approach

Suppose that we have a weak acid in solution, acetic acid, CH3COOH, 0.01M at 25oC [251].
To this solution, an amount of a strong base, e.g. NaOH, is added. The concentration of base
in the solution is represented byCB (mol l�1 or M). Before we answer the question “What
will be the pH when we add an amount of strong base?”, we can calculate the initial pH of the
solution.

The relevant equilibrium equation is defined by the acidity constantKa or often represented
aspKa, 4.7 in this case.

HAc
 H++Ac� (3.1)

Ka =
[H+][Ac�]
[HAc]

= 10�4:7 = 2:00�10�5 (3.2)

Other relevant equations (details in section 2.2.4 on page 19) are the equilibrium equation for
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the ionization of water

Kw = [OH�][H+] = 10�14 (3.3)

the mass balance on total acetate in solution

Ca = 0:01M = [Ac�]+ [HAc] (3.4)

and the charge balance or electro-neutrality equation

[H+] = [Ac�]+ [OH�] (3.5)

Equations(3.2)�(3.5) represent everything we know about the system. We have four un-
known concentrations[H+], [OH�], [Ac�] and [HAc], so we only need these 4 equations to
solve for all the concentrations and the pH of the solution. Substitute (3.3) in (3.5):

[H+] = [Ac�]+
Kw

[H+]
(3.6)

Rearrange and substitute (3.6) in the mass balance (3.4):

[HAc] = 0:01�
�
[H+]� Kw

[H+]

�
(3.7)

Lastly, substitute (3.6) for[Ac�] and equation (3.7) into the equilibrium expression, equation
(3.2). We now have just one equation with one unknown, being[H+].

Ka =
[H+]

�
[H+]� Kw

[H+]

�
0:01�

�
[H+]� Kw

[H+]

� (3.8)

[H+]3+Ka[H+]2� (0:01Ka+Kw)[H+]�KaKw = 0 (3.9)

Equation (3.9) is a third degree polynomial. The easiest way to solve it algebraically is by trial
and error. The Newton-Raphson method can solve this iteratively using a computer. In this
particular example, the solution of equation (3.9) is[H+] = 4:37� 10�4 M or pH 3.36. The
two other solutions of equation (3.9) are negative numbers and do not have to be considered.

If we add now the strong base to the solution of which we just calculated the equilibrium
pH, we will reach a new equilibrium state. The strong base is considered to be completely
dissociated into Na+ and OH�. It is also noted that Na+ does not undergo any chemical
reaction with the species already present in the solution, so we can write that[Na+] = CB.
From the 4 equations we wrote to completely specify our system (equations(3.2)�(3.5)), only
the charge balance (3.5) has to be rewritten.

CB+[H+] = [Ac�]+ [OH�] (3.10)
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Equations (3.6), (3.7), (3.8) and (3.9) will respectively change into the following equations:

[H+] = [Ac�]+
Kw

[H+]
�CB (3.11)

[HAc] = 0:01�
�
[H+]� Kw

[H+]
+CB

�
(3.12)

Ka =
[H+]

�
[H+]� Kw

[H+]
+CB

�
0:01�

�
[H+]� Kw

[H+]
+CB

� (3.13)

[H+]3+(Ka+CB)[H
+]2� (0:01Ka+Kw+KaCB)[H

+]�KaKw = 0 (3.14)

One notices that the order of the polynomial describing the equilibrium pH does not change
when a strong base is added to the solution. A completely similar approach holds for adding a
strong acid, like HCl, to a solution containing buffering systems. The resulting equations are
not presented here. The preceding example was very simple. As one increases the number of
solutes and the number of equations, the polynomials become very large, ann-degree polyno-
mial. Trial-and-error solutions become impractical, and are the most important drawback of
this approach.

3.2.2 Fixed pH approach

Basically, the fixed pH approach follows the same path as the variable pH approach, but it
differs in the way the mathematical equations are solved. Its advantage is that it avoids the
impractical trial-and-error solution technique. Let’s retake the same example of 0.01M acetic
acid in aqueous solution, and rearrange equation (3.10):

CB = [Ac�]+ [OH�]� [H+] (3.15)

Substitute[HAc] from equation (3.4) into equation (3.2) and rearrange for[Ac�]:

[Ac�] =
Ka(0:01� [Ac�])

[H+]
(3.16)

[Ac�] =
0:01Ka

[H+]+Ka
(3.17)
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After substitution of equation (3.17) and[OH�] from equation (3.3) into equation (3.15), one
obtains an expression forCB in function of[H+].

CB =
0:01Ka

[H+]+Ka
+

10�14

[H+]
� [H+] (3.18)

From computational point of view, equation (3.18) can easily be solved forCB when[H+]
or the pH is given. There is no need for trial-and-error solutions. For more complex solutions,
containing several buffer systems (monoprotic, diprotic, triprotic buffer systems), equation
(3.18) will be expanded with more additive terms, but will never require complicated compu-
tational techniques to solve.

A particularity of both the variable and fixed pH approach is that the amount of acid or base
needed to obtain a∆pH change, is always calculated starting from a reference point which is the
equilibrium point reached before any acid or base addition. In this example, the equilibrium pH
was 3.36 (the reference point whereCB = 0). Correspondingly, e.g. for the fixed pH approach
this means that the calculation ofCB to bring the solution to a particular pH is only applicable
when the system was originally at pH 3.36. The reference point can easily be changed to any
other pH value by adding or subtracting a constant value toCB in both equations (3.14) and
(3.18). This particularity has important drawbacks for the practical use of mathematical models
that are based on a titration curve. The necessity of a reference point means that measurement
errors and pH electrode calibration errors will have a pronounced effect when evaluating the
‘fit’ between experimental and simulated titration profiles. The buffer capacity approach is not
suffering from this problem because it is based on derivative data instead of raw pH data. This
is an important reason for preferring buffer capacity models instead of titration curve models.

The effect of a small pH electrode calibration error on the experimental and corresponding
theoretical titration or buffer capacity profiles is illustrated in Figure 3.1. For this purpose, the
‘pseudo-experimental’ data was derived from the theoretical data by introducing a 0.08 pH off-
set error and a 1 % slope error on the pH measurement. The unwanted deviation between the
experimental and the theoretical buffer capacity curves (Figure 3.1(b)) can easily be corrected
for, by allowing to vary to a small extent thepKa values of the modelled buffer systems. For
the titration curves (Figure 3.1(a)), such similar correction is not straightforward. Moreover,
allowing a small variation in thepKa values of buffer systems to be modelled is also advanta-
geous to correct for other disturbing effects, like small temperature effects, small ionic strength
effects, etc.

Comparing the 2 different approaches of titration curve modelling, one can conclude that
from the experimental point of view (which is adding a fixed amount of strong acid or base to
a solution and measure the pH) the variable pH method is to be preferred, but from a compu-
tational point of view the fixed pH approach is to be preferred.

3.2.3 Generalized titration curve model

For the sake of completeness, a generalized model for a titration curve of solutions containing
monoprotic, diprotic and triprotic buffers, based on the fixed pH approach, can be written
down. The calculation details for this model are similar as for the corresponding buffer capacity
model, worked out in more detail in section 3.3. Therefore, only the titration curve model
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Figure 3.1: Illustration of the effect of a small pH electrode calibration error on the difference
between the experimental and theoretical titration (a) or buffer capacity (b) profiles

without the equation details is presented here.
The equation (3.18) for 1 monoprotic buffer can be extended forl monoprotic (H2O buffer

not included),m diprotic andn triprotic weak acids:

CB =
l

∑
i
(term1)i +

m

∑
j
(term2) j +

n

∑
k

(term3)k+
10�14

[H+]
� [H+] (3.19)

term1 =
CaKa

[H+]+Ka
(3.20)

term2 =CaKa1
[H+]+2Ka2

[H+]2+Ka1[H+]+Ka1Ka2
(3.21)

term3 =CaKa1
[H+]2+2Ka2[H+]+3Ka2Ka3

[H+]3+Ka1[H+]2+Ka1Ka2[H+]+Ka1Ka2Ka3
(3.22)

In the next 3 sections, different approaches for buffer capacity models will be presented.
The intuitive approach of a buffer capacity model can be formulated as “What is the buffer
capacity for a particular measured pH during a simulated titration experiment?”. This corre-
sponds with the ‘fixed pH approach’, which is also the preferred one for computational reasons.

3.3 Linear buffer capacity model

The term ‘linear buffer capacity model’ was chosen because in this approach the buffering
properties of the system can be represented by a set of equations which are linear in the concen-
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trations. In case one only considers acid-base chemical equilibria (either monoprotic, diprotic
or triprotic weak acids, or a combination of these), a linear buffer capacity model can always
be used. Non-linearities are the result of considering, among others, complexation or precipi-
tation reactions, e.g. reactions between Ca2+ and OH�, or between Ca2+ and HPO2�

4 . These
more complicated reactions are handled in sections 3.4 and 3.5.

If we reconsider the acetic acid example of the previous section, where a concentrationCB

of NaOH is added to the solution, we can write the general equation for the buffer capacityβ
(eq l�1 pH�1) (see also section 2.2.6 on page 22):

β =
dCB

dpH
(3.23)

The 4 basic equations completely describing the system were discussed before, and the equa-
tions (3.2), (3.3), (3.4) and (3.15) from the variable and fixed pH approach will be used as
starting point for the development of the linear buffer capacity model.

A generalization that will be introduced here is the consideration of H2O as a regular
monoprotic buffer system. This will facilitate the incorporation of the water buffer system
in later software implementations. Instead of using equation (3.3), we will use the following 2
equations, respectively for the mass balance and dissociation equation of the water buffer:

Cw = [H2O]+ [OH�]� [H2O] = 55:5mol l�1 (3.24)

K�
w =

[H+][OH�]

[H2O]
whereK�

w =
Kw

[H2O]
(3.25)

Practically, forpKw = 14 (atT = 25oC), the correspondingpK�
w = 15:74.

If we rewrite the charge balance of equation (3.15):

CB =�[H+]+ [Ac�]+ [OH�] (3.26)

then we can write for an infinitesimal addition ofCB:

dCB =�d[H+]+d[Ac�]+d[OH�] (3.27)

or in terms of buffer capacityβ:

β =
dCB

dpH
=�d[H+]

dpH
+

d[Ac�]
dpH

+
d[OH�]

dpH
(3.28)

The first right-hand term of equation (3.28) can be written as (usingd(logu) = 1
u loge du):

�d[H+]

dpH
=

d[H+]

d log[H+]
= ln(10)[H+] (3.29)
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Using equations (3.2) and (3.4), an expression for[Ac�] yields:

[Ac�] =
CaKa

[H+]+Ka
(3.30)

Further, equation (3.29) can be reorganized:

dpH=� d[H+]

ln(10)[H+]
(3.31)

Using equations (3.30), (3.31) andddx(
1
u) =� 1

u2
d
dx(u), the second right-hand term of equation

(3.28) can be written as:

d[Ac�]
dpH

=� ln(10)[H+]

d[H+]
d

�
CaKa

[H+]+Ka

�
= ln(10)[H+]

�
CaKa

([H+]+Ka)2

�
(3.32)

Using the mass balances (3.4) and (3.24), together with the equilibrium equations (3.2) and
(3.25), followed by differentiation as illustrated in equations (3.29) and (3.32), one can rewrite
(3.28):

β = 2:303

�
[H+]+CaKa

[H+]

([H+]+Ka)2 +CwK�
w

[H+]

([H+]+K�
w)

2

�
(3.33)

Due to the generalized notations of the H2O buffer, one can notice the similarities between
the terms for H2O and HAc in equation (3.33).

If different monoprotic weak acids are present in the sample, the equation forβ can be
extended with similar additional terms. For polyprotic acids the additional terms are somewhat
more complex. In the reminder of this section, a generalization of equation (3.33) will be
developed.

3.3.1 Buffer capacity model for monoprotic acids

A weak monoprotic acid (Ca mol l�1) dissolved in water will dissociate until an equilibrium
between the acid (HA) and the dissociated base (A�) form is established.

HA
 H++A� (3.34)

A mathematical representation of this chemical equilibrium after addition of a strong base with
concentration in the solutionCB mol l�1, is based on 3 equations (mass balance, dissociation
equation and charge balance) which were already introduced before.

Ca = [HA]+ [A�] (3.35)

Ka =
[H+][A�]

[HA]
pKa =� logKa (3.36)
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CB+[H+] = [OH�]+ [A�] (3.37)

As illustrated above, this set of 3 equations, together with the dissociation equation of H2O
leads to the following equation forβ:

β = 2:303[H+]

�
1+CwK�

w
1

([H+]+K�
w)

2 +CaKa
1

([H+]+Ka)2

�
(3.38)

For the development of a generalβ-model, the following notation for a monoprotic weak
acid HA with concentrationCa is introduced (index 1 stands for monoprotic):

term1 =CaKa
1

([H+]+Ka)2 (3.39)

3.3.2 Buffer capacity model for diprotic acids

A weak diprotic acid(Ca mol l�1) dissolved in water will dissociate until an equilibrium be-
tween the acid (H2A) and the dissociated base forms (HA�) and (A2�) is established.

H2A 
H++HA� (3.40)

HA�

H++A2� (3.41)

A mathematical representation of these chemical equilibria after addition of a strong base
with concentration in the solutionCB mol l�1, is based on 4 equations (mass balance, 2 disso-
ciation equations and a charge balance).

Ca = [H2A]+ [HA�]+ [A2�] (3.42)

Ka1 =
[H+][HA�]

[H2A]
pKa1 =� logKa1 (3.43)

Ka2 =
[H+][A2�]

[HA�]
pKa2 =� logKa2 (3.44)

CB+[H+] = [OH�]+ [HA�]+2[A2�] (3.45)

This set of 4 equations, together with the dissociation equation of H2O leads to the follow-
ing equation forβ:

β = 2:303[H+]

�
1+CwK�

w
1

([H+]+K�
w)

2 +CaKa1
[H+]2+4Ka2[H+]+Ka1Ka2

([H+]2+Ka1[H+]+Ka1Ka2)2

�
(3.46)

Similar as for a monoprotic acid, we introduce for a diprotic acid H2A with concentration
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Ca the following notation (index 2 stands for diprotic):

term2 =CaKa1
[H+]2+4Ka2[H+]+Ka1Ka2

([H+]2+Ka1[H+]+Ka1Ka2)2 (3.47)

3.3.3 Buffer capacity model for triprotic acids

A weak triprotic acid (Ca mol l�1) dissolved in water will dissociate until an equilibrium be-
tween the acid H3A and the dissociated base forms H2A�, HA2� and A3� is established.

H3A
 H++H2A� (3.48)

H2A�

 H++HA2� (3.49)

HA2�

 H++A3� (3.50)

A mathematical representation of these chemical equilibria after addition of a strong base
with concentration in the solutionCB mol l�1, is based on 5 equations (mass balance, 3 disso-
ciation equations and a charge balance).

Ca = [H3A]+ [H2A�]+ [HA2�]+ [A3�] (3.51)

Ka1 =
[H+][H2A�]

[H3A]
pKa1 =� logKa1 (3.52)

Ka2 =
[H+][HA2�]

[H2A�]
pKa2 =� logKa2 (3.53)

Ka3 =
[H+][A3�]

[HA2�]
pKa3 =� logKa3 (3.54)

CB+[H+] = [OH�]+ [H2A�]+2[HA2�]+3[A3�] (3.55)

This set of 5 equations, together with the dissociation equation of H2O leads to the follow-
ing equation forβ:

β = 2:303[H+]

�
1+CwK�

w
1

([H+]+K�
w)

2

+CaKa1
[H+]4+4Ka2[H+]3+(Ka1+9Ka3)Ka2[H+]2+(4[H+]+Ka2)Ka1Ka2Ka3

([H+]3+Ka1[H+]2+Ka1Ka2[H+]+Ka1Ka2Ka3)2

�
(3.56)

Similar as above, we introduce for a triprotic acid H3A with concentrationCa the following



3.3 Linear buffer capacity model 49

notation (index 3 stands for triprotic):

term3 =CaKa1
[H+]4+4Ka2[H+]3+(Ka1+9Ka3)Ka2[H+]2+(4[H+]+Ka2)Ka1Ka2Ka3

([H+]3+Ka1[H+]2+Ka1Ka2[H+]+Ka1Ka2Ka3)2

(3.57)

3.3.4 General linear buffer capacity model

In a water sample containing several buffering components, one can write that the total buffer
capacityβ is equal to the sum (hence, the linearity) of the buffer capacityβi of the different
components in the sample. Due to our general notation for the water buffer system, the H2O
buffer is considered in the same way as any other monoprotic weak acid HA. This offers an
advantage compared to mostβ models in the literature, where the H2O buffer is considered
separately from the other monoprotic buffers.

β =
n

∑
i=1

βi (3.58)

Based on this additive property ofβ, one can write a general equation for the buffer capacity
of a sample containingl monoprotic (including H2O), mdiprotic andn triprotic weak acids:

β = 2:303[H+]

 
1+

l

∑
i
(term1)i +

m

∑
j
(term2) j +

n

∑
k

(term3)k

!
(3.59)

Equation (3.59) is very convenient and easy to be implemented in a spreadsheet or computer
program. Contrary to the titration curve models (section 3.2), the general buffer capacity model
does not contain any variable referring to the amount of strong baseCB added. This means that
there is no need any more for a ‘reference point’ in the simulated buffer capacity profile, a
major advantage for implementation and accuracy. Further, the model presented in equation
(3.59) is usable for titrations with both strong acids and strong bases.

Some authors [138, 273] present the buffer capacity model (3.59) in terms of protolysis
degree(α i), being the ratio of the concentration of the species to the total concentration. This
approach does not offer computational advantages above the approach presented here. In an-
other approach [235–237], the buffer capacity is defined as a dimensionless value. The defi-
nition of buffer capacity in section 2.2.6 is an operational definition, but it is not adequate in
a mathematical treatment of e.g. ampholytes [235].1 The dimensionless definition of buffer
capacity of a weak protolyte is defined as the amount in moles of strong base (or acid) added
to the solution of the protolyte, divided by the resulting increase (or decrease) in pH caused
exclusively by the protolyte in question and by the amount in moles of the protolyte present.

β =� dz
dpH

(3.60)

1Ampholytes are substances which have both weak acid and base functional groups, e.g. amino acids.
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β : buffer capacity per mole of ampholyte; dimensionless
z : valence or mean valence with sign according to charge

This buffer capacity, which is the molar buffer capacity is consequently useful in a theoretical
treatment of individual weak protolytes. However, in practice, it is not useful since it is an in-
operational definition: it cannot be measured directly [235]. What can be measured, of course,
is the added buffer capacities of the protolyte, the solvent, and other solutes if present. This
approach offers some computational advantages for buffer systems like ampholytes, but offers
no advantage above the approach presented here for the treatment of larger buffer systems (i.e.
mixtures of different mono- and polyprotic weak acids).

3.3.5 Monoprotic approach of the general linear buffer capacity model

The general linear buffer capacity model can be written in an alternative way [74, 101, 299]
by stating that am-protonic acid with concentrationCa is mathematically equivalent withm
monoprotic acids with each a concentrationCa. However, if one replaces am-protonic acid
with dissociation constantsKa1, Ka2, : : : Kambymmonoprotic acids with dissociation constants
K†

a1, K†
a2, : : : K†

am respectively, the dissociation constants need to be altered, as presented in the
following scheme:

Ka1 =
m

∑
i=1

K†
ai

Ka1Ka2 =
m�1

∑
i=1

m

∑
j=i+1

K†
aiK

†
a j

...

Ka1Ka2 : : :Kam= K†
a1K†

a2 : : :K
†
am

(3.61)

This property can be used to study amphoteric substances with small∆pK differences, e.g.
to investigate stepwise and parallel dissociation schemes of ampholytes [272]. If all polyprotic
acids are replaced by monoprotic acids, as defined in the set of equations (3.61), then the
general mathematical model (3.59) can be rewritten as

β = 2:303[H+]

 
1+

l+2m+3n

∑
i

(term†
1)i

!
(3.62)

in which

term†
1 =CaK†

a
1

([H+]+K†
a)2

(3.63)

The computational advantage of equation (3.62) disappears when one realizes that for each
di- or triprotic weak acid, one needs to solve a non-linear set of equations (3.61) in order to
find the correspondingK†

a values. Some properties of equations (3.61) are presented in [74].
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3.3.6 Ionic interaction effects

The foregoing expressions need to be examined for the effects of nonideality. We will assume
that, during titration, activity coefficients are constant over the pH range where they exert
significant influence in the equations. The validity of this assumption will depend, of course,
on experimental conditions [101].

The most convenient way to apply ionic strength corrections is the introduction of mixed
acidity constants (see section 2.2.4 on page 19) in the models. A mixed acidity constant is
characterized by H+ written as an activityfH+g, and the other species, like A� and HA
written as concentrations[A�] and [HA]. It’s symbol isK0

a instead ofKa. A pH meter ac-
tually provides the activity of the H+ ions (see section 2.1 on page 5 and section 2.2.2 on
page 15), so subsequently instead ofβ= f ([H+]; : : : ), the model can more correctly be written
asβ= f (fH+g; : : : ). Important to note is that the mass balances and charge balance have to be
written in terms of concentrations andnotactivities. With the above information, the corrected
general equation (3.59) becomes:

β = 2:303fH+g
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l

∑
i
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∑
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!
(3.64)

The equations forterm0
1, term0

2 andterm0
3 are derived from equations (3.39), (3.47) and (3.57)

respectively.

term0
1 =CaK0

a
1

(fH+g+K0
a)

2 (3.65)
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0
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0
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(3.67)

The mixed acidity constantsK 0
a are derived from the acidity constantsKa using the activity

coefficients for the weak acids (e.g. HA) and their dissociated bases (e.g. A�).

K0
a = Ka

γHA

γA�

or pK0
a = pKa� logγHA + logγA� (3.68)

Equation (3.68) is valid for monoprotic as well for polyprotic weak acids. The activity coeffi-
cientsγH+ , γA� , : : : can be calculated with e.g. the Davies approximation (see section 2.2.2 on
page 15).
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3.4 Non-linear symbolic buffer capacity model

As already introduced in section 3.3, non-linearities are involved when reactions different from
acid-base equilibrium reactions have to be modelled. As it becomes very difficult and compli-
cated to obtain an algebraic expression for the buffer capacity, a ‘symbolic solution’ approach
will be introduced here. The example that we will consider is an aquatic solution, containing
phosphoric acid with concentrationCa and calcium with concentrationCCa. The chemical rele-
vance of which buffers and reactions that have to be considered in aquatic samples is discussed
in later chapters. The aim of this section is to develop a mathematical framework that can be
used to solve non-linear chemical equilibria.

The chemical equilibria and dissociation equations for the triprotic phosphoric acid can be
written in a similar way as presented in section 3.3:

H3PO4
 H++H2PO�
4 Ka1 =

[H+][H2PO�
4 ]

[H3PO4]
= 10�2:2 (3.69)

H2PO�
4 
H++HPO2�

4 Ka2 =
[H+][HPO2�

4 ]

[H2PO�
4 ]

= 10�7:2 (3.70)

HPO2�
4 
H++PO3�

4 Ka3 =
[H+][PO3�

4 ]

[HPO2�
4 ]

= 10�12:4 (3.71)

Up to this point, the buffer capacity of the buffer system could be described with the linear
buffer capacity equation (3.59). Now we will consider the chemical equilibria between the
Ca2+ and the different forms of phosphate that are present in the solution. It is important
at this point to consider all species in aqueous form. If precipitation reactions occur, this
mathematical framework will not suffice. The reactions we consider are the following:

CaH2PO+
4 
Ca2++H2PO�

4 KCa1=
[Ca2+][H2PO�

4 ]

[CaH2PO+
4 ]

= 10�1:4 (3.72)

CaHPO0
4
Ca2++HPO2�

4 KCa2=
[Ca2+][HPO2�

4 ]

[CaHPO0
4]

= 10�2:7 (3.73)

CaPO�4 
Ca2++PO3�
4 KCa3=

[Ca2+][PO3�
4 ]

[CaPO�4 ]
= 10�6:5 (3.74)

For this system, two mass balances have to be considered:

Ca = [H3PO4]+ [H2PO�
4 ]+ [HPO2�

4 ]+ [PO3�
4 ]

+ [CaH2PO+
4 ]+ [CaHPO0

4]+ [CaPO�4 ]
(3.75)

CCa= [Ca2+]+ [CaH2PO+
4 ]+ [CaHPO0

4]+ [CaPO�4 ] (3.76)

The dissociation equation of water (3.25) also has to be considered to completely determine
the system. After addition of a strong base with concentration in the solutionCB mol l�1, one
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can write the electro-neutrality equation or the charge balance:

CB+[H+]+2[Ca2+]+ [CaH2PO+
4 ] = [H2PO�

4 ]

+2[HPO2�
4 ]+3[PO3�

4 ]+ [CaPO�4 ]+ [OH�] (3.77)

For a givenCa andCCa, and a particular chosen pH, the 8 equations (3.69)�(3.76) con-
tain 8 unknown species concentrations, so they fully determine the system with respect to the
concentrations of the calcium and phosphate species. Further, the dissociation equation of the
water buffer (3.25) and the charge balance (3.77) can be used to calculateCB for any given
pH value. In other words, referring to section 3.2.2, we have developed a ‘fixed pH approach’
model for the titration profile. However, it is the aim to develop a buffer capacity model. For
that, we will first try to find an analytical solution forCB as a function of[H+], and then use
equation (3.23) to find an analytical solution forβ as a function of pH.

Summarized, the equations (3.25) and (3.69)�(3.77) have to be solved simultaneously,
where[H+] is a fixed value (fixed pH approach).

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

[H+][OH�] = K�
w[H2O]

[H+][H2PO�
4 ] = Ka1[H3PO4]

[H+][HPO2�
4 ] = Ka2[H2PO�

4 ]

[H+][PO3�
4 ] = Ka3[HPO2�

4 ]

[Ca2+][H2PO�
4 ] = KCa1[CaH2PO+

4 ]

[Ca2+][HPO2�
4 ] = KCa2[CaHPO0

4]

[Ca2+][PO3�
4 ] = KCa3[CaPO�4 ]

(?)
(?)
(?)

Ca = [H3PO4]+ [H2PO�
4 ]+ [HPO2�

4 ]+ [PO3�
4 ]

+[CaH2PO+
4 ]+ [CaHPO0

4]+ [CaPO�4 ]
CCa= [Ca2+]+ [CaH2PO+

4 ]+ [CaHPO0
4]+ [CaPO�4 ]

CB+[H+]+2[Ca2+]+ [CaH2PO+
4 ] = [H2PO�

4 ]

+2[HPO2�
4 ]+3[PO3�

4 ]+ [CaPO�4 ]+ [OH�]

(3.78)

The equations marked with a(?) are those introducing the non-linearities in the set of equa-
tions (3.78). Solving such a set of non-linear equations can be done with iterative techniques.
However the aim is here to find an algebraic solution for each of the unknowns in the set of
equations (3.78). Finding algebraic solutions for non-linear equations can be done with the
technique of the ‘Groebner bases’. Symbolic software packages like REDUCE [112] and Mu-
PAD [284] are equipped with the groebner package. To illustrate how this practically works,
the processing of this example in REDUCE can be done with the following syntax:

f:=part(groebner(
{h*oh=h2o*kw,
h*h2po4=h3po4*kb1,
h*hpo4=h2po4*kb2,
h*po4=hpo4*kb3,
ca*h2po4=cah2po4*kca1,
ca*hpo4=cahpo4*kca2,
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ca*po4=capo4*kca3,
c_a=h3po4+h2po4+hpo4+po4+cah2po4+cahpo4+capo4,
c_ca=ca+cah2po4+cahpo4+capo4,
c_b+h+2*ca+cah2po4=h2po4+2*hpo4+3*po4+capo4+oh},

{c_b,oh,h3po4,h2po4,hpo4,po4,ca,cah2po4,cahpo4,capo4}),1);

This command will algebraically solve the set of equations between the first pair off�g,
in which the unknown variables are listed in the second pair off�g. For the development
of the buffer capacity model, only the algebraic solution forCB is required, in this case the
first variable in the list of unknown variables. The isolation of the solution forCB from the
generated list of solutions for all unknowns is obtained with the ‘part(: : : , 1)’ command in the
example code.

The further development of the buffer capacity model from this point on is similar with the
linear buffer capacity approach of section 3.3. Equation (3.23) can be written as :

β =
dCB

dpH
=� dCB

d log[H+]
=� dCB

d[H+]
[H+] ln(10) (3.79)

As we have a symbolic solution forCB = f ([H+]), the same symbolic software package can be
used to find a symbolic solution for the first derivative ofCB towards[H+].

g:=df(f,h)

This command generates a symbolic solution forg = dCB
d[H+]

. Substitution of this solution in
equation (3.79) results in the non-linear symbolic buffer capacity model in whichβ is expressed
aseq l�1 pH�1.

β =�g[H+] ln(10) (3.80)

From a practical point of view, the solution forg will eventually need some further pro-
cessing and rearrangement before it can be automatically translated into executable program
code. The advantages of the symbolic manipulation method compared to an iterative numeri-
cal approach are twofold. First, the solution of the equation set (3.78) and the buffer capacity
calculation (3.79) is fully algebraic, so that potential convergence problems for iterative or nu-
merical solutions are avoided. Second, the computation speed of the symbolic buffer capacity
model is probably much faster than any iterative solution technique. The disadvantage of the
symbolic manipulation method is that for each other model (e.g. obtained by adding or re-
moving chemical equilibria) the complete cycle of implementing the equations in a package
like REDUCE, solving the equations with the groebner approach, transforming the solution
into programmable code, compiling and linking the code into the simulation software, has to
be repeated. The calculation time is considerable high, e.g. for the illustrated example, solved
on a ‘Sun SPARCstation SLC’ workstation with 16 MBytes RAM, it took around 1 hour to
obtain the programmable code. Further, our experience is that for more complicated examples
(e.g. incorporation of calcium hydroxides), the calculation time increased to many hours, and
the memory limits were quickly reached. Furthermore, there is no guarantee that a symbolic
solution is found for each particular problem.
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3.5 Non-linear tableau-method based buffer capacity model

Two approaches for the treatment of ‘large’ natural water systems were introduced in sec-
tion 2.6 on page 37, i.e. the Gibbs minimization method, and the equilibrium constant ap-
proach. The latter approach is most commonly used in chemical software, like MINEQL or
MINTEQA2 [10]. The equilibrium method, also called the ‘tableau-method’ will be presented
in the following two sections [198, 273]. In a further section, the tableau method will be
adapted for its use in defining a buffer capacity model.

3.5.1 The tableau method for solving chemical equilibria problems

A systematic approach to organization of aquatic chemical equilibrium problems using the
tableau format [198] will be adopted. The ‘canonical form’ entails:

1. A recipe, for example, how the system is constructed from reagents, including the molar
amounts, the imposition of phases at equilibrium and the imposition of fixed activities;

2. A list of speciesat equilibrium;

3. A list of independentreactions among the species and their associated equilibrium con-
stants.

Species are formed fromcomponents, “a set of chemical entities that permits a complete
description of the stoichiometry of the system” [198]. A compact and convenient way to
represent the relationship between components, species, formulae and mole balance equations
is to organize the stoichiometric data in the form of a ‘tableau’. In the following paragraph,
a numerical solution technique [251] for a chemical equilibrium example will be presented.
Consider the example of 0.01M acetic acid from section 3.2.1. At this point, we only consider
the chemical equilibrium of acetate in water, without any strong base or acid added to the
solution. The first thing one needs to determine in setting up a numerical solution is the number
of speciesin solution. In this case, we have four.

� Species : HAc, Ac�, OH� and H+

Second, we need to determine a minimum number of species necessary to solve the system
of equilibrium equations. These are the independent variables which are calledcomponents.
There are two equilibrium equations, the acid dissociation equation (3.2) of HAc with equi-
librium constantKa, and the ionization equation (3.3) of water with equilibrium constantKw.
These two equilibrium expressions contain the four chemical species (two equations and four
unknowns), but we also have the mass balance (3.4) for total acetate and the charge balance
(3.5), which can be substituted into equations (3.2) and (3.3) to leave us with two equations and
two unknowns. Thus, we really only need two components (independent variables) to specify
the system. In this example HAc and H+ are chosen as components.

� Components : HAc and H+

The choice of components is arbitrary as long as they are independent components. A more
formal way of writing the rules for choosing a proper component set is [198]:
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1. All species can be expressed stoichiometrically as a function of the components, the
stoichiometry being defined by the chemical reactions.

2. Each species has a unique stoichiometric expression as a function of the components.

A necessary, but not sufficient, condition to fulfil these requirements is that the number of
components be equal to the number of species minus the number of independent reactions
considered to take place in the system.

Next, we need to write chemical equations for the four species in terms of the components,
including the formation of the components themselves.

� Formation of HAc : HAc
 HAc logK1 = 0
� Formation of Ac� : HAc
 Ac�+H+ logK2 =�4:7
� Formation of OH� : H2O
OH�+H+ logK3 =�14
� Formation of H+ : H+


 H+ logK4 = 0

The formation equations of HAc and H+ are chemically not really relevant, but they are needed
as supporting equations in the matrix notation.

The chemical equations are, in reality, mass action expressions that form a set of algebraic
equations for the activity of each species in terms of the components. We will assume that all
activity coefficients are 1. For our example of 0.01M HAc in H2O, the activity corrections are
indeed negligible.

[HAc] = K1[HAc]1 (3.81)

[Ac�] = K2[HAc]1[H+]�1 (3.82)

[OH�] = K3[H+]�1 (3.83)

[H+] = K4[H+]1 (3.84)

These equations define the system completely, together with the mass balance equation for
acetate (3.4) and the charge balance (3.5). Taking the logarithm of both sides of equations
(3.81)�(3.84), we find

log[HAc] = 1 log[HAc]+ logK1 (3.85)

log[Ac�] = 1 log[HAc]�1 log[H+]+ logK2 (3.86)

log[OH�] =�1 log[H+]+ logK3 (3.87)

log[H+] = 1 log[H+]+ logK4 (3.88)

Equations (3.85)�(3.88) define a linear set of equations that can be solved using matrix
algebra. The species comprise the rows of the matrix and the components are the columns.
This information is summarized in Table 3.1. For the example being considered, equations
(3.85)�(3.88) can be written in matrix notation:2

664
log[HAc]
log[Ac�]
log[OH�]
log[H+]

3
775=

2
664

1 0
1 �1
0 �1
0 1

3
775 �
�
log[HAc]
log[H+]

�
+

2
664

0
�4:7
�14:0

0

3
775 (3.89)



3.5 Non-linear tableau-method based buffer capacity model 57

Table 3.1: Species, components and stoichiometric matrix of the HAc example

Components

Species HAc H+ logK

HAc 1 0 0
Ac� 1 �1 �4:7
OH� 0 �1 �14:0
H+ 0 1 0

10�2 10�7

There is one final step before solving the matrix equation. We must provide an initial
estimate of the[H+] to get the program started, and we must provide the mass balance equation.
The initial estimate of[H+] is in lieu of the charge balance. The manner in which we provide
this information in computer packages is to specify themodeof each component, that is,
whether the concentration specified is thetotal or freeconcentration. The total concentration
of acetate is 10�2M and we specify it at the bottom of the column, and the initial guess for H+

is 10�7 M.

The programs that implement the tableau method will recognize the concentrations speci-
fied to be the mass balance HAc+Ac� = 0:01M and pH= 7 (initial guess). We will calculate
the distribution of species as a function of pH.

In matrix notation, we will usef�g to designate one-dimensional arrays (column vectors)
and square brackets[�] for two-dimensional matrices. The stoichiometric coefficients, which
came from the exponents of the mass action expressions, equations (3.81)�(3.84), comprise
the matrix, and all the species are expressed in terms of concentration,mol l�1, orM. In matrix
notation, we can rewrite equations (3.85)�(3.88) in a general form.

fC�g= [A]fX�g+fK�g (3.90)

fC�g : column vector of log species concentrations,n dimension
[A] : matrix of stoichiometric coefficients,n�mdimension
fX�g : column vector of log component concentrations,m dimension
fK�g : column vector of log equilibrium constants,n dimension
n : the number of species
m : the number of components

The material balance equations are determined in the computer program from the modes
that were specified and the concentrations given at the bottom. There is exactly one material
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balance equation for each component.

0:01=Ca = 1 [HAc]+1 [Ac�] (3.91)

10�7 = 1 [H+] (3.92)

In general, the material balance equations can also be written in matrix notation. It is
the transpose of the[A] matrix of stoichiometric coefficients times the concentration vector
for the species, minus the total concentration of each component. This is not a logarithmic
equation as is equation (3.90). The equation is cast in terms of a differential error term that
will be calculated by the Newton-Raphson numerical solution technique until it is within an
acceptable closure tolerance.

[A]TfCg�fCTOTg= fYg (3.93)

[A]T : transposed stoichiometric coefficient matrix,m�n dimension
fCg : column vector of species concentration,n dimension
fCTOTg : column vector of component total concentrations,mdimension
fYg : column vector, which is the remaining error in the material balance equations,m

dimension

For the example being considered, equation (3.93) becomes

�
1 1 0 0
0 �1 �1 1

�
�

2
664
[HAc]
[Ac�]
[OH�]
[H+]

3
775�

�
10�2

10�7

�
=

�
y1

y2

�
(3.94)

Note that the second equation in (3.94) is the charge balance of the system. The equilibrium
problem is solved whenfYg= 0, or whenfYg< η, the acceptable closure tolerance.

In the numerical scheme, the log concentration of each species is computed from equation
(3.90) based on an initial guess for the concentration of the components. Then the error, or
remainder, is estimated from equation (3.93). An iterative technique is used to find improved
values offXg, the component concentrations, such that the value offYg is reduced. Typically,
the Newton-Raphson method is applied. Improved values forfXg, the component concentra-
tion array, are found from the matrix equation

[Z]f∆Xg= fYg (3.95)

[Z] : square matrix that is the Jacobian of Y with respect toX, ∂Y
∂X , m�mdimension

f∆Xg : column vector for the improvement in component concentrations,mdimension
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Figure 3.2: Flowchart of a typical chemical equilibrium program with the Newton-Raphson
iterative solution technique (modified from [251])

The Jacobian operator can be written in terms of the stoichiometric coefficients

Zjk =
∂Yj

∂Xk
=

n

∑
i=1

ai j aikCi

Xk

8><
>:

for all species (i = 1, : : : n)

for all components (j = 1, : : : m)

and (k= 1, : : : m) and j 6= k

(3.96)

Equation (3.95) can be solved for∆X by inversion of theZ matrix.

f∆Xg= [Z]�1fYg (3.97)

) fXgimproved= fXgoriginal� [Z]�1fYg (3.98)

SincefYg is an array of error terms that may vary widely (orders of magnitude), the con-
vergence criterion is chosen to reflect the magnitude ofYj , relative to the maximum of terms
of whichYj , is the sum [251]. Therefore, a possible criterion for convergence is

jYj j
max(Yj)

< η for all components (j = 1, : : : m) (3.99)

η : convergence parameter
When the error term is within closure limits, the program can exit and the equilibrium problem
is ‘solved’. A flowchart of a typical computer program is presented in Figure 3.2. The Newton-
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Raphson method is one of the oldest and still most widely used numerical technique for solving
a set of nonlinear equations [262].

3.5.2 Precipitation and dissolution in equilibrium models

One of the powerful features of the tableau-based method for solving chemical problems is the
possibility to include precipitation and dissolution of species. From a chemical point of view,
precipitation and dissolution reactions are conditional, they only occur if certain conditions
(solubility product) are fulfilled. From a mathematical point of view, this means that such
reactions will introduce discontinuities in e.g. an algebraic model, or from a numerical point
of view the introduction ofif : : : thenstructures in the model. As a result of this, buffer capacity
modelling approaches presented in sections 3.3 and 3.4 cannot be used when one wants to
include precipitation or dissolution reactions.

Chemical equilibrium models are quite structured in the manner that one designates precip-
itation and dissolution of species. Several models [10, 198] use a format where each chemical
species is assigned a ‘Type’ upon data entry.

� Type I species – all the aqueous chemical species designated ascomponents.
� Type II species – all other aqueous species not designated in Type I.
� Type III species – all fixed species including solids designated to be present at chemical

equilibrium and not subject to complete dissolution.
� Type IV species – all finite solids that are presumed to be present initially and have the

potential to be completely dissolved if the solution becomes undersaturated.
� Type V species – all solids that may precipitate from solution but are presently under-

saturated.
� Type VI species – all species that are excluded from mass balance calculations (e.g.

gases, electrons,: : : ).

The number of degrees of freedom of the chemical equilibrium problem is the number of
independent variables. The Gibbs’ phase rule for computer modelling purposes is

F =C�P (3.100)

F : number of degrees of freedom
C : number of chemical components
P : number of Type III + Type IV species

By specifying Type III and Type IV species, we decrease the number of degrees of free-
dom. As long asF is positive, the computer calculations will proceed. IfF is zero or less, a
diagnostic will prompt the user to restructure the problem. To understand why Type III and
Type IV species decrease the number of degrees of freedom, consider the case of CaCO3(s)
dissolution as a type IV solid.

CaCO3(s)
Ca2++CO2�
3 logKs0 =�8:42 (3.101)

As long as CaCO3(s) is present, the product of calcium ions and carbonate ions is fixed;
they are not both independent variables, therefore we loose 1 degree of freedom. If carbonate
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anion increases, calcium ion must decrease.

[Ca2+] =
10�8:42

[CO2�
3 ]

(3.102)

3.5.3 Non-linear tableau-based buffer capacity model

The tableau-based method for solving chemical equilibria can be adapted and used for the
simulation of buffer capacity profiles. However, there are some slight modifications necessary.
The available software is mainly focused on speciation calculations, and, although, the step
towards buffer capacity curve modelling is theoretically possible, it is not readily implemented
in software like MINTEQA2 [10]. The following steps will be taken in order to develop a
tableau-based buffer capacity model:

1. According to sections 3.3 and 3.4, for mathematical and computational reasons, the ap-
proach will be a ‘fixed pH approach’. Because the concentrations of thecomponentsare
iteratively changed in the tableau-based method until a certain convergence is reached,
[H+] is no longer a component, but will be treated as constant value, similar to theK
values.

2. Because[H+] is kept fixed in the equilibrium calculations, the degrees of freedom can
be decreased with 1.

3. Leaving out[H+] as a component means also that the mass balance for this component
(here, the charge balance) is not included in the iterative Newton-Raphson procedure.

4. If we assume titration with a strong base (e.g. NaOH), and the counter-ion (Na+ in this
case) is assumed not to enter in any specified chemical reaction, the concentrationCB is
present in only 1 equation, being the charge balance (cfr. example discussed in the set of
equations (3.78). For this reason, together with the previous point, it’s useless to include
the[Na+] with concentrationCB in the tableau.

5. When for a particular pH, the tableau method has found a chemical equilibrium solution,
and found the concentrations for all species, the excluded charge balance will be used
to calculate the value ofCB, because all species in the charge balance will be known,
except for[Na+] with concentrationCB.

6. OnceCB = f (pH) is established, the buffer capacityβ can be calculated. However the
approach forβ will be different from the approach in sections 3.3 and 3.4 because the
relationship betweenCB and pH will be numerical in the tableau method, while it was
algebraic or symbolic in the 2 previous approaches. In other words, the expression forβ
in equation (3.23) will be modified fromdCB

dpH to ∆CB
∆pH.

To illustrate these six different steps to build a tableau-based buffer capacity model, the
same example of a solution containing phosphoric acid and Ca2+ of section 3.4 will be re-
peated. The number of components for the approach of the conventional tableau-method would
be 3. But because we take a ‘fixed pH approach’, the number of independent components re-
duces to 2. The components which are chosen preferentially are H3PO4 and Ca2+.
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Table 3.2: Species, components and stoichiometric information of the Ca2+�H3PO4 example

Components

Species H3PO4 Ca2+ H+ flogKg
H3PO4 1 0 0 0
H2PO�

4 1 0 �1 �2:2
HPO2�

4 1 0 �2 �2:2�7:2
PO3�

4 1 0 �3 �2:2�7:2�12:4
Ca2+ 0 1 0 0
CaH2PO+

4 1 1 �1 �2:2+1:4
CaHPO0

4 1 1 �2 �2:2�7:2+2:7
CaPO�4 1 1 �3 �2:2�7:2�12:4+6:5
OH� 0 0 �1 �14

Ca CCa

The species, components and stoichiometric matrix information for this example is pre-
sented in Table 3.2. Table 3.2 summarizes the equilibria and mass balances that were presented
in equations (3.69)�(3.76) and equation (3.25). Note that in order to write the species equilib-
rium equations in function of the 2 components, substitutions of equations into other equations
was necessary in order to find the appropriateflogKg values. This is a mainly manual process,
and it appears difficult to automate this for general purposes. For example, the equilibrium
equation for CaH2PO+

4 is found by rewriting equations (3.69) and (3.72) respectively into:

log[CaH2PO+
4 ] = log[H2PO�

4 ]+ log[Ca2+]+1:4 (3.103)

log[H2PO�
4 ] = log[H3PO4]� log[H+]�2:2 (3.104)

followed by substitution of equation (3.104) into (3.103):

log[CaH2PO+
4 ] = log[H3PO4]+ log[Ca2+]� log[H+]�2:2+1:4 (3.105)

The latter equation is formulated in the stoichiometric information matrix in Table 3.2. The
general equation (3.90) of the tableau method needs to be extended here for buffer capacity
calculations with one term due to[H+] being excluded as a component:

fC�g= [A]fX�g+fBg log[H+]+fK�g (3.106)

fBg : column vector of stoichiometric H+ coefficients,n dimension
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Equation (3.106) together with equation (3.93) can now be solved for a particular chosen
pH value with the iterative Newton-Raphson numerical solution technique, as illustrated in
section 3.5.1. This will result in equilibrium concentrations for all considered species. The
buffer capacityβ at the considered pH can be calculated with equation (3.23) if we know the
concentrationCB. CB can easily be found by rearranging equation (3.77), which was not used
until this point.

CB = [H2PO�
4 ]+2[HPO2�

4 ]+3[PO3�
4 ]+ [CaPO�4 ]

+[OH�]� [H+]�2[Ca2+]� [CaH2PO+
4 ] (3.107)

Unfortunately, the analytical approach of calculatingβ by taking the first derivative ofCB

towards pH, equation(3.79), cannot be taken here because the relationship betweenCB and pH
is purely numerical in this tableau based approach. This forces us to use a numerical derivative
procedure to findβ. Because of the high numerical precision that can be reached with modern
software and computers, a simple first derivative algorithm like the Euler algorithm will mostly
suffice.

β =
dCB

dpH
� ∆CB

∆pH
=

CB(pH+∆pH)�CB(pH�∆pH)
2∆pH

(3.108)

where∆pH is a sufficiently but not too small value, in order to obtain a correct value forβ
in function of pH. The illustrated example did not contain any precipitation or dissolution
reactions. However, a similar approach can be followed for systems with this kind of chemical
reactions. An extra step at the end of each iteration loop will have to be included. This will be
illustrated with an example in section 3.5.5.

3.5.4 Ionic interaction effects

A similar ionic strength correction as presented for the general linear buffer capacity model
(section 3.3.6) can be applied here too. The introduction of mixed acidity constantsK 0

a (see
section 2.2.4 on page 19) instead of acidity constantsKa, makes that all species can be written
as concentrations, except for H+, that has to be written as an activity,fH+g. Because a pH me-
ter delivers the H+ activity (see section 2.1 on page 5 and section 2.2.2 on page 15), the buffer
capacity is expressed in function offH+g instead of[H+]. Subsequently, the stoichiometric
information can be written in terms of concentrations for all species, and in terms of activity
for H+. However, as also noted in section 3.3.6, the mass balances and charge balance should
be written in terms of concentration. Therefore, the equation (3.107) has to be corrected:

CB = [H2PO�
4 ]+2[HPO2�

4 ]+3[PO3�
4 ]+ [CaPO�4 ]

+[OH�]� fH+g
γH+

�2[Ca2+]� [CaH2PO+
4 ] (3.109)

Summarized, and in general, ionic strength effects can be introduced in the tableau method
when the following steps are taken:

� Replace[H+] by fH+g in all equations.
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� UseK0
a values instead ofKa values.

� Replace in the charge balancefH+g by fH+g
γH+

.

3.5.5 Precipitation and dissolution in the tableau-based approach

The introduction of Type IV and Type V species (see section 3.5.2) into a chemical equi-
librium model lead to mathematical discontinuities, which need a careful approach. If we
consider reaction (3.101), the corresponding equilibrium equation (3.102) is only valid as long
as CaCO3(s) is present. When the solution becomes undersaturated, the equilibrium equation
(3.102) is not valid any more and has to be eliminated from the model, for as long as the
solution stays undersaturated.

We will consider the example of section 3.5.3 of which the stoichiometric information is
presented in Table 3.2. We will consider a titration from low pH (e.g. pH= 4) until the
pH where CaHPO4(s) with pKs0 = 6:66 starts to precipitate. Because the calculation of the
buffer capacity curve is based on simulations with increasing pH-values which are defined
by the user, it is possible to verify at each simulated pH value if there is a possibility for
precipitation. This can be done by comparing the ion-product of the possible precipitate with
the solubility productKs0. In the example, Ca2+ and HPO2�

4 ions are present, so we can
consider a CaHPO4(s) precipitate.

CaHPO4(s)
Ca2++HPO2�
4 with pKs0 = 6:66 (3.110)

There will be no precipitation as long as[Ca2+] � [HPO2�
4 ] < Ks0. From the moment the ion

product exceedsKs0, we need to take into consideration a new species, being CaHPO4(s).
However, from a stoichiometric and mathematical point of view, this means that the complete
system has to be restructured.

As discussed in section 3.5.2, the number of degrees of freedom will decrease with 1 due
to the precipitate, so the amount of components also decreases with 1. Practically we will
have to set up a completely different stoichiometric matrix. The new species, components and
stoichiometric matrix is presented in Table 3.3. The chemical equilibria presented in Table
3.3 are the result of restructuring the original equations and write them all down in function
of H3PO4 and H+. The precipitated CaHPO4(s) is normally not considered as species because
we cannot write down an equation expressing the concentration of precipitate. We need to
consider the precipitate to be present as long as the IAP of Ca2+ and HPO2�

4 is higher than
Ks0. Often in chemical equilibria problems, solids are chosen as components if one wants
to calculate dissolution or precipitation amounts [251], but we didn’t need to do that for this
example. The mass balance for the H3PO4 component is not straightforward, because an
unknown concentration of HPO2�4 is precipitated with Ca2+. We can express that the amount
of Ca2+ precipitated from the pool of calcium is equal to the amount of HPO2�

4 precipitated
from the pool of phosphorus.

CCa� [Ca2+]� [CaH2PO+
4 ]� [CaHPO0

4]� [CaPO�4 ] =Ca� [H3PO4]

�[H2PO�
4 ]� [HPO2�

4 ]� [PO3�
4 ]� [CaH2PO+

4 ]� [CaHPO0
4]� [CaPO�4 ] (3.111)
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Table 3.3: Species, components and stoichiometric information of the Ca2+�H3PO4 example,
in the presence of a CaHPO4(s) precipitate

Component

Species H3PO4 H+ flogKg
H3PO4 1 0 0
H2PO�

4 1 �1 �2:2
HPO2�

4 1 �2 �2:2�7:2
PO3�

4 1 �3 �2:2�7:2�12:4
Ca2+ �1 2 �6:66+2:2+7:2
CaH2PO+

4 0 1 �6:66+1:4+7:2
CaHPO0

4 0 0 �6:66+2:7
CaPO�4 0 �1 �6:66�12:4+6:5
OH� 0 �1 �14

Ca�CCa

or after rearranging

[H3PO4]+ [H2PO�
4 ]+ [HPO2�

4 ]+ [PO3�
4 ]� [Ca2+] =Ca�CCa (3.112)

Equation (3.112) makes it possible to write a mass balance for the phosphorus component, as
included in Table 3.3.

A simulated buffer capacity profile of the Ca2+�H3PO4 example, including a precipita-
tion reaction of CaHPO4(s) is shown in Figure 3.3. The component concentrations used in the
simulation are for Ca2+: CCa= 1:25mmol l�1 and for H3PO4: Ca = 2 mmol l�1. First, a sim-
ulation without considering the precipitation reaction was performed (using the stoichiometric
information of Table 3.2). From that simulation, by comparing the IAP of Ca2+ and HPO�4
with Ks0, it was found that a precipitation of CaHPO4(s) might occur between pH 6.35 and pH
9.45. Second, a model including the CaHPO4(s) precipitate was simulated between pH 6 and
pH 10 (using the stoichiometric information of Table 3.3). Third, a combined buffer capacity
model was obtained by considering the simulation result of the first model outside the pH range
6.35�9.45, and the simulation result of the second model inside the pH range 6.35�9.45. The
species concentrations found with both models at the ‘model switching’ points (pH 6.35 and
pH 9.45) were exactly the same. The latter finding was a confirmation of the correctness of
both models and their simulations. However, the derivatives of the species concentrations to-
wards the pH at the ‘model switching’ points are very different in both models, thus explaining
the 2 discontinuities in the combined buffer capacity model. The practical question is if these
discontinuities will also appear in experimental buffer capacity measurements of such solu-
tions. A practical case-study where precipitation reactions are involved is presented in section
8.4.4 on page 195.
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Figure 3.3: Simulated buffer capacity profile of the Ca2+�H3PO4 example, including a pre-
cipitation reaction of CaHPO4(s)

To summarize the approach for non-linear modelling of buffer capacity in function of pH
for models including precipitation reactions, the following steps are taken:

� One starts with a model taking into account all species that are assumed to be present at
the considered initial pH.

� One simulates the model and finds species concentrations and the buffer capacity for
increasing pH values.

� At the end of every equilibrium calculation, one checks the ion-product (IAP) of 1 or
more possible precipitates.

� If the IAP exceeds the solubility product, one switches to another model including the
precipitate and continues the calculations for increasing pH values.

� If the IAP for a precipitate that is present in the model becomes smaller than the solubil-
ity product, then again a model switch to a model without that precipitate is necessary.

It is not always possible to guess correctly whether a given solid phase should or should
not be present at a given pH. When there are few such solids, a trial and error procedure
yields the correct answer [198]. In complex situations where there are many possible solids
involving common components, this procedure can become quite difficult and short of trying
all possibilities (which can number in the thousands), there is in fact no easy way to obtain the
correct set of solids [198].
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Table 3.4: Comparison of three types of buffer capacity models

linear buffer non-linear symbolic non-linear tableau-based
capacity model buffer capacity model buffer capacity model

acid-base yes yes yes
equilibria

complexation no yes yes

precipitation and no no yes
dissolution

calculation speed very fast fast slow

implementation very easy, e.g. difficult, moderate
spreadsheet specialized software iterative solution

like REDUCE needed technique needed

adaptation to easy, difficult, repeat the moderate,
new models supply extra symbolic manipulation change of

additive term and code compilation stoichiometric matrix

robustness very robust symbolic solution not robust, but possible
always found; however, convergence problems

the compiled code in matrix calculations
is very robust may occur

3.6 Comparison of the 3 buffer capacity model approaches

Which of the three presented buffer capacity models (sections 3.3, 3.4 and 3.5) is to be pre-
ferred for a certain case is dependent on the reactions and the equilibria that are included in
the model. Table 3.4 gives an overview of the possibilities and some specifications for buffer
capacity modelling.

If only simple acid-base equilibria have to be modelled, the linear buffer capacity model
is by far to be preferred. If complexation and/or precipitation reactions have to be considered,
the tableau-based method is a good choice, because of its flexibility and widest range of pos-
sibilities. However, if only acid-base and complexation equilibria have to be considered, and
speed and numerical robustness are important (e.g. in on-line field applications), the non-linear
symbolic model is the preferred model.

Among implementations found in literature, two spreadsheet approaches [210, 295] and
one matrix approach [20] are mentioned here. The first spreadsheet approach was developed
because in the early stage of developing a candidate compound as a new drug, its solubility
and stability in aqueous solutions have to be investigated in function of pH [210]. A number
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of methods and/or computer programs for calculation of solution pH and buffer capacity were
reviewed by the authors, but these were found to be inconvenient for use in designing a buffer
solution, since they ignore effects of ionic strength, do not involve effects of temperature, treat
acids, bases and/or ampholytes separately, and eventually do not run on Windows which is
now widely used at workplaces. The developed program in Excel is useful for identifying
appropriate buffer solutions at various temperatures and/or ionic strengths [210]. The program
is useful for prototyping, but not for simulations. One of the drawbacks for simulation appli-
cations was found to be the limited possibility of Excel to deal with computational ‘loops’.
The second spreadsheet application was developed for water conditioning purposes [295]. The
author points out that the main advantages of the use of spreadsheets for solving problems of
equilibrium chemistry are: its cheap implementation, the easy reuse, and the higher accessabil-
ity for users. The disadvantage is that spreadsheets are limited to relatively simple problems.
The developed spreadsheet could handle a number of topics related to the CO2�H2O system,
like carbonate equilibria, construction of a lime titration curve, finding pH of a blend of two
water sources, calcium carbonate precipitation, and buffer capacity curves of inorganic carbon
species [295].

For more complex problems in chemical equilibria, a set of FORTRAN routines (MAGIK)
have been developed, which perform all of the necessary arithmetic for the solution of many
types of complex equilibria [20]. It’s calculation engine is based on the Newton-Raphson
method of steepest descents (see also section 3.5), which is similar to packages presented be-
fore like MINTEQA2 [10]. The main feature of the program is that it can handle titrations,
contrary to many other programs, that can only handle single point equilibrium problems.
More particular, MAGIK calculates species concentrations in function of a stepwise added
titrant. The dynamic equilibria also include precipitation and dissolution. However, with a
chemical event such as precipitation, the concentration of one or more species will usually
suffer an abrupt change, which is ultimately reflected as a mathematical discontinuity. The
mathematical discontinuity is a situation in which not only specific variables will change dras-
tically, but entire equations will no longer be valid. To overcome this problem, a possibility
to swap between 2 sets of equations was implemented in the software. A model swap is nec-
essary when a precipitation reaction starts, or when the precipitate redissolves. These model
swaps must occur at the precise instant that both models overlap and where one supersedes
the other in order to get a smooth continuity of results [20]. The models and the model swap-
ping condition have to be entered by the user in a subroutine, so that in case there are several
possible precipitates/dissolutions, this approach will also be infeasible or impossible to im-
plement. Eventually, off-line studies with several sets of models can help to determine which
precipitation/dissolution reactions will occur first, and once the sequence of reactions is found,
this sequence can be implemented in e.g. MAGIK [20] to obtain a full titration profile of the
system. For each chemical equilibrium problem, a user-defined FORTRAN subroutine needs
to be compiled and linked with the main program MAGIK. This is a serious drawback for field
applications, or in an automatic model building approach (see chapter 9).



Chapter 4

Field technologies for aquatic
monitoring

In this chapter, a literature review on technologies, practical experiences, relevance, problems,
equipment, etc. related to the on-line measurements in activated sludge systems, rivers and
other aquatic streams is presented. Because of the very broad range of existing technologies
and applications in this area, this literature study will only highlight these techniques and
sensors for which the developed buffer capacity sensor in this work can be considered as a
possible alternative. Taking this into account, the techniques that will be considered are chosen
by the following criteria:

1. On-line or potential on-line application;

2. Application in wastewater effluent, river water, process water and other aquatic streams;

3. Measurement of chemical substances that directly or indirectly (after transformation into
another chemical) induce a pH buffer capacity in the measurable range between pH 3
and pH 11. More particular, ammonium, nitrate, phosphate, alkalinity and VFA’s are
among measurements that will be treated in this chapter;

4. Application measurement range in the order of magnitude of 0.1mmol l�1 for each
chemical substance. This is one of the main reasons that drinking water applications are
not discussed here, because in this area, the minimal measurable concentrations that are
necessary cannot be achieved with a buffer capacity based sensor.

Furthermore, the benefits of on-line measurements compared to off-line measurements is
highlighted in section 4.1. Existing sensors which are based on pH titration or buffer capacity
profiles will be discussed separately in section 4.4 because they can be of direct importance
to compare with the results obtained in this work. The goal of this chapter is to present a
framework of existing sensors/methods, in order to make a positioning of the developed buffer
capacity sensor into existing technologies.
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4.1 On-line measurement techniques

In the field of environmental measurements, in the last decades, one increasingly tries to imple-
ment on-line measurements to replace off-line measurements. However, the results obtained
with on-line measurements are sometimes unsuccessful. In cases where the expectations from
on-line measurements are high, and the difficulties related to these measurements are underesti-
mated, installed on-line equipment will probably not produce the results as they were expected.
This already highlights the difficulties and particularities related to on-line measurements.

The highest benefit of on-line measurements compared to off-line measurements is un-
doubtedly the possibility to use this data for control purposes. In the field of biotechnological
process control, better processing will come with the improvement of the biological knowl-
edge and the application of automatic control [265]. In an ideal situation, the measured data
should be produced in-situ, on-line, continuously in real time and cover a wide dynamic range
in order to exploit them for process control. Aspects related to a successful implementation of
on-line sensors are discussed widely in literature [22, 127, 159, 161, 163, 265, 271, 332]. These
aspects are related to the data reduction, database management [159, 265], data interpreta-
tion [160, 161, 163], the human interface [265], maintenance and calibration related topics
[161,332].

One of these application fields for on-line sensors that will be discussed in somewhat more
details is the activated sludge wastewater treatment. The main objective of sewage treatment
was previously to remove organic carbon compounds from the wastewater. However, the range
of demands has greatly increased nowadays. Efforts now extend to complete elimination of ni-
trogen and phosphorus [179]. At present, the most economical method for nitrogen removal
seems to be biological nitrification-denitrification [26]. Until now chemical precipitation using
aluminium and iron salts and lime has been adopted in phosphate removal. However, this has
major disadvantages (large amount of chemicals, expensive, additional sludge,: : : ) and, con-
sequently, biological phosphorus removal appears to be economically very attractive [26, 150].
Alternating anaerobic/aerobic conditions of the biomass is one of the key factors triggering
off phosphorus removal in excess of the normal assimilation (luxury uptake). The release of
o-PO4 in the anaerobic phase depends on several factors which can act separately or simulta-
neously: e.g. the concentration of organic substrates and nitrates [109]. The alternating mode
of operation involves that the concentrations of ammonium, nitrate and phosphate increase
and decrease periodically in the mixed liquor. By monitoring these dynamics with on-line
measurements, the rates of nitrification, denitrification and phosphate uptake or release can be
determined. This in turn provides valuable information for the understanding, modelling and
on-line control of this process [18, 19, 128]. Besides on-line nutrient sensors for nitrate and
ammonium, ortho-phosphate and TOC, on-line alkalinity and turbidity measurements [256]
are shown to be useful for process control purposes.

A major difficulty faced by plant operators in controlling the activated sludge process is
the inability to adequately monitor the process [271]. However, nowadays on-line sensors for
dissolved oxygen, suspended solids, pH, temperature and flow are found accurate enough for
control purposes, under the conditions of correct use, frequent maintenance and calibration
etc. Today almost all plants are equipped with some of these sensors. A more interesting
range of instruments related to this work are the on-line nutrient sensors (e.g. ammonium,
nitrate, phosphate). These sensors get a lot of attention nowadays and a lot of research and
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commercialisation efforts are focused on this category of sensors. These sensors are expensive
equipment, but the benefits of these sensors can be very high, as will be illustrated with some
examples below.

On-line analyzers to monitor the effluent levels of ammonia and phosphate have been used
for operational control of 4 nutrient removal activated sludge plants in Johannesburg [166].
Savings of 1 million US dollar per year in the purchase of phosphate precipitation chemicals
have been achieved. Other authors point out two major obstacles to be considered with on-
line nutrient sensors: First, that on-line measurements of ammonium, nitrate and phosphate
are too unstable to be used for on-line control; Second, that no efficient control strategies are
documented in the literature [291]. However, studies at several plants in Denmark have shown
that obstacle 1 is now overcome as these measurements are now used for direct control [291].
The same study also showed that a responsible maintenance and surveillance is the key factor.
Closed loop control strategies have been found efficient and robust for practical implemen-
tation, and are economically favourable at most large plants with biological nutrient removal
[291]. Another key factor is sample preparation. In order to obtain nutrient measurements in
the mixed liquor, most on-line apparatus need an extra membrane filtration step, because the
measurements would be disturbed by clogging in the small tubes of the nitrogen and phospho-
rus monitors [292].

Data of on-line analyzers allow also up-to-date simulation using mathematical models of
the treatment system [57, 213]. It is shown that computer simulation is a very powerful tool
for the optimization of the operation of wastewater treatment plants. Considering the bene-
fits of computer simulation for plant operation, it is worth its price for medium to very large
wastewater treatment plants [213]. The benefits from computer simulation are e.g. savings
in energy and chemical consumption [347], a decrease of nutrient levels in the effluent [292],
and an increase of capacity of the plant [55, 56, 290]. An important point when designing
and implementing a control system for wastewater treatment purposes is to make the control
system as simple as possible [347]. This includes the usage of simple control laws and few
sensors, which reduces the implementation and maintenance cost of the control system. The
most recent studies give promising results of upgrading treatment plants to N and/or P removal
using on-line sensors and appropriate control strategies [55, 266]. A Danish study on 14 treat-
ment plants has shown that the introduction of control systems based on on-line sensors for
ammonia, nitrate and phosphate has resulted in a more stable effluent quality and an increased
capacity [266]. This study also concludes that it may be better to incorporate a considerable
flexibility into the design, allowing the processes to be adjusted to the time-varying operational
conditions. In another study, a simulation supported scenario analysis for the upgrading of a
municipal wastewater treatment plant was used [55]. A comparison was made between extend-
ing the plant with new reactors, or re-design the existing reactors for increased performance.
It was found that the most cost-effective solution was to create optimal aerobic and anoxic
conditions within existing reactor volumes [55].

Despite all advantageous aspects concerning the benefits of on-line sensors, still many dif-
ficulties and wrong measurements are noticed in practical use of on-line sensors. Instrument
faults are to blame for many control problems and plant upsets, but the actual culprits often are
hard to identify or are completely overlooked [246]. Unfortunately, most sensor errors may
go unrecognised, particularly if those signals are used in feedback control loops. Some typical
causes of errors are: wrong sensor application, transmitter not properly calibrated, signal drift,
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electrical problems of wiring, shielding, grounding,: : : [246]. Another particularity related to
on-line measurements for control purposes is the limitation of the measurement range of the
sensors. E.g. typical values for nitrate used as set-point in the control strategy are around 1
mgN l�1. The problem with this form of control is the inaccuracy of nitrate measurements in
the lower measuring range, i.e. the range used for the controlling variable. Frequent recalibra-
tion and high maintenance efforts are required in such cases [164].

As the instrumentation systems become more complex, it becomes less satisfactory to deal
separately with designers, instrument manufacturers, information transfer specialists and oper-
ators [334]. As a consequence of this there is e.g. a lack of process knowledge with instrument
developers which can result in measurement systems which are very expensive but quickly
become non-functional and mistrusted by operators [334]. Maintenance has always been one
of the most important functions of wastewater treatment operation. The increasing complex-
ity of treatment, required standards and necessary control systems with the resultant possible
heavy costs make proper maintenance increasingly important [334]. On the one hand, on-line
analyzer companies often suggest maintenance intervals of 1 week, or even 1 month, but on
the other hand practical field studies show that for complicated on-line sensors (e.g. N and
P analyzers), a daily inspection should be carried out with all on-line analyzers [250]. This
inspection can vary from a visual inspection to a full cleaning and calibration. In general, 20
minutes per instrument and per day, including sample pre-treatment, are to be expected [250].

On-line measurements undoubtedly offer high benefits compared to off-line measurements,
however, on-line measurements may not be considered as straightforward measurements. The
successful use of on-line sensors does not only depend on the sensor itself, but also, and often
most importantly, on the process conditions, the sample preparation, the maintenance, cali-
bration,: : : On-line sensor development is a challenging field for researchers because of these
many aspects related to on-line measurements. The next section will present a number of
sensors that are related to the results of this work, being the nutrient sensors.

4.2 Nutrient sensors: State of the art

The aim of this section is to present the current situation of existing nutrient sensors for on-
line environmental applications. More particular, sensors for ammonium, nitrite/nitrate and
ortho-phosphate will be presented. Besides the measurement principle, attention will focus
on accuracy, precision, stability, maintenance requirements and common problems. Basically,
the on-line analyzers make use of known laboratory measuring principles [307]. However,
it is important to note that the measuring principles have often been modified (=simplified)
compared to the standard laboratory method when applied to on-line analyzers [87].

4.2.1 Sample filtration

Most NH+
4 , NO�

3 and PO3�
4 -analyzers require a sample stream free of suspended solids, which

necessitates the use of a membrane filter sampling system [87, 250, 288, 289, 317]. Up to 46 %
of the investment costs for the installation of an on-line analyzer can be due to the installation
of a sampling and filtration system [250].



4.2 Nutrient sensors: State of the art 73

Figure 4.1: Diagram of a typical ultrafiltration (UF) module [89]

The sampling system is a crucial part of the measurement system. An ultrafiltration cross-
filter system fed with a submerged shredding pump has been evaluated as being the most ap-
propriate filter in activated sludge (influent, reactor, effluent) applications [220, 250, 288, 289,
317]. The membrane filtration is carried out by means of a cross-flow filter in which a large
main flow (severalm3 h�1) is pumped vertically through the filter thus allowing a small sub-
flow (approximately 3l h�1 to pass horizontally through the filter membrane. The unfiltered
wastewater is returned to the plant/river. The filtered sample is distributed to the on-line meters
[288, 289]. The high flow and the resulting shear forces prevent the deposit of small particles
on the membrane surface [289].

In the past, other filter systems, like dialysis [220], a gauze filter equipped with a compres-
sor for cleaning purposes [261], or smaller filter systems [289] have been tested but they often
suffer from limited lifetime or clogging problems. Possible problems are case dependent (e.g.
influent versus effluent). A schematic presentation of a typical sampling system is given in
Figure 4.1. In practice, a set-up with two parallel ultrafiltration (UF) units (Figure 4.1) offers
the possibility to maintain a continuous sample flow to the analyzers [87, 317]. Built-in filtrate
flow meters or pressure drop meters can automatically switch off the active unit and activate the
spare one. Another filter control system consists of an electronic permeate weighing system,
for early clogging detection [105].

The self cleaning power of the filtration unit is mostly not sufficient for continuous oper-
ation. Therefore, cleaning with chemicals may be necessary at periodic intervals [250]. Au-
tomatic cleaning can be obtained by an air blow or a hypochlorite chemical treatment [317].
The manual maintenance frequency for an UF unit (e.g. manual cleaning) can vary from 1 day
for wastewater influent to 2� 6 weeks for an effluent type of water [250]. The lifetime of a
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cross filter is typically 1 year [289]. The additional response time introduced by an UF unit
can vary between 3 and 20 minutes [288,289]. Typical technical problems that occur when
on-line filtration is implemented, are discussed in [96]. The authors have based their results
on a case study of a newly developed on-line river water measurement station, and conclude
that considerable time is needed for the testing, calibrating, site-adaptation,: : : before reliable
measurements can be obtained. Similar experiences were also obtained in [41, 96].

To overcome the difficulties related to sample filtration, recently on-line colorimetric sen-
sors without need for a separate sampling and filtration unit have been developed [171]. Such
devices are constructed as completely closed small containers, that are directly placed in e.g.
the activated sludge aeration tank. The innovative part of this type of sensor is the particular
membrane that contacts the sludge. The membrane functions as an ion sieve with, in practice,
no mass transportation of water. The thickness of the membrane is 50µmand the molecular
weight cut-off of the membrane is approximately 100 Daltons. The lifetime of the membrane
is tested to be well over one month, and no fouling of the membrane was observed [171]. The
prototype sensors are believed to have a big potential for further refinement, and the authors
suggest that the use of the sensors can be extended into other areas such as monitoring of
receiving waters, sewer and drinking water systems [171]. However, no practical results in
these areas are available yet. Also, the announced commercialisation within wastewater treat-
ment operation has not been established, which make us believe the initial reports were too
optimistic.

4.2.2 Ammonium analyzers

On-line ammonium analysis is mostly performed with a potentiometric (gas electrode) or a
colorimetric method.

In the potentiometric or electrochemical method, the pH in the sample is raised above 11,
thus converting all NH+4 to NH3. The NH3 is then measured by means of an NH3 gas sen-
sitive electrode [289]. The gas electrode based ammonium analyzers are shown to have the
widest measuring range (0.1�1000mgN l�1)[250], and the shortest response time (less than
8 minutes) [175, 250, 289]. Tests in nutrient removal activated sludge plants have shown that
the electrochemical method is the more accurate and reliable [289], has the lowest reagent
expenses [289] and is free of interfering ions [175, 289, 326]. A disadvantage is that some
commercial electrode monitors lack temperature compensation capabilities [289, 326]. Some
other reported problems include air building up under the electrode tip and electrode drift-
ing [11]. Electrochemical methods perform better in effluents than in influents, because of
the lower demand of chemicals and lower maintenance needs in effluents [165]. A recent de-
velopment is the measurement of ammonia with a fibre optical analogue of the conventional
electrochemical ammonia electrode [103]. Despite that no field experiences are available yet,
the authors anticipate that many positive developments in this field are to be expected in the
years to come.

Colorimetric flow injection analysis (FIA) is most frequently applied for the analysis of
ammonia in a diverse range of liquid samples, including those using the Berthelot reaction, in
which ammonia reacts with phenol and hypochlorite to produce indophenol blue, and those us-
ing Nessler’s reagent to form a yellow azo dye [14]. The higher chemical reagent consumption
[289], the slower response time (5 to 20 minutes) [250], the sensitivity to temperature variation
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[326] and possible interferences from NO�
2 , S2�, Fe3+ and ethanolamine [326] are some of the

drawbacks noticed in these systems.
The carryover effect, this is the situation where the current measurement is affected in some

way by the previous measurement is a known problem in many FIA systems [126]. Carryover
is caused by a variety of factors, not all of which are completely understood.

A further spectrophotometric method utilises gas diffusion, in which the sample is mixed
with an alkaline stream to convert all dissolved ammonium ions to gaseous ammonia. The lat-
ter diffuses across a hydrophobic microporous membrane into an acid-base indicator stream,
and the resulting colour is detected [126,127, 220, 221]. This method is particularly well suited
to complex sample matrices since the membrane provides a physical barrier, excluding poten-
tial interferences from the measured stream [14]. Also a relatively high measurement rate and
a lower reagent consumption are reported with this method [127]. Unsatisfactory long-term
stability and unreliability of this type of analyzer were found [220], but technical improve-
ments of the system lead to more satisfactory results, especially a longer lifetime (> 6 months)
of the gas diffusion membrane [127, 221]. Alkylamines are reported as interferences for am-
monia determination with gas diffusion methods [14]. For very low NH3 levels (e.g. 1µM),
atmospheric CO2 has to be removed from the acid-base indicator solution for accurate de-
terminations [14]. Despite all improvements and efforts, such type of sensors cannot be left
unattended for more than 1 week [14, 221].

A few measurement systems that do not require sample filtration are reported. First, an
optical-chemical sensor based on a flow-through cell with a microporous PTFE membrane
with immobilized pH indicator was optimized to analyze wastewater without pre-treatment of
the sample [255]. The long term stability of this type of sensor is better than 6 months, and the
response time depends on the ammonium concentration and ranges between 1 and 60 minutes.
Second, a FIA based auto-calibrating colorimetric NH+

4 analyzer is reported, with a response
time of less than 5 minutes [171]. The response time could be limited, on the one hand be-
cause the analyzer could immediately be placed in the mixed liquor, on the other hand because
colour reactions did not have to complete for a reliable concentration estimation. Although
the analyzer is operated continuously, reagent consumption is limited to less than 3 litres per
month through use of semi-micro continuous flow analysis (µCFA). For comparison reasons, a
conventional FIA system as presented before consumes around 20 litres of reagents per month
[127]. The most innovative part of this system is the choice of the membrane, as tests show
very little, if any, fouling problems due to the membrane materials used. Third, an ammonium
meter based on gas diffusion, and coupled to a hydroxide electrode was developed for on-line
monitoring of a pilot-scale trickling filter [339]. The ammonium meter consists of a beaker, a
stirrer, a hydroxide sensor, a temperature sensor and a slope pump. The slope pump continu-
ously pumps the sample, together with a strong NaOH solution, into the beaker. Because of
the sodium hydroxide, the ammonium entering the beaker turns into ammonia, which, due to
differences in partial pressure, diffuses through a membrane into an electrolyte surrounding the
hydroxide sensor. Because the electrolyte has a high and approximately constant concentration
of ammonium chloride, the hydroxide sensor gives a measurement of the ammonia concentra-
tion in the electrolyte through an equilibrium relation, and hence, the ammonium concentration
in the beaker [339]. The step response time is rather slow (around 50 minutes before the meter
reaches 90 % of the end-value), and the author indicates that some information about the efflu-
ent transients is hidden by the dynamics of the ammonium meter. Results on long-term field
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Table 4.1: Comparison of different on-line ammonium analyzers

Principle Ref. Detection Range Accuracy R.s.d. Maintenance Response
limit interval time

(mgNH+
4 -N l�1) (%) (%) (weeks) (min.)

NH3 sensitive [289] 0.5�10 +4 8 1 10�15
electrode [11] > 1 �28 to+178 40�120 1 10�15

[288] 0�12 �4 to�20 12�33 1
[165] 0�100 < 1
[326] 0.05�0.2 0�20000 1�14 1 6�12

FIA [288] 0�10 �7 to+3 2�32 1
[165] 0�80 1�4
[326] 0.17�0.9 0�100 0.7�18 1�4 2�21

FIA + GD unit [126] 0.5�50 1
[14] 0.6 1�100 �15 1�5 1 30

optical/chemical [255] 0.01 0�14 9 1�60
(no filtration)
µCFA [171] 0.1 0�25 �5 3 4 < 5

experience of this type of sensor are not reported yet.
Alternative methods for ammonium measurement, but at this moment only used in labora-

tory off-line analysis include a multi-component determination in which chloride and ammonia
are determined in the same sample with a single FIA system [306]; a centrifugal ammonia an-
alyzer [186]; laboratory FIA systems based on the Berthelot reaction [232]; salicylate and
enzymatic methods [143]. Typically these methods have low detection limits in the order of
magnitude 1�50µgN l�1, but are not (yet) suited for on-line applications.

Comparison results of field studies with different types of ammonium sensors are presented
in Table 4.1. It can be seen that the reported values for detection limit, range, accuracy and re-
peatability vary very much depending on measurement principle and the particular case study.

A detailed field test with 9 commercial ammonium sensors on the same location reported
differences of more than 200 % between measurements performed by the different sensors
under test [326]. This is illustrated in Figure 4.2. An important offset difference between
different sensors was noticed. The main concern was that some monitors often failed and
needed extra intervention and cleaning, multiple trials of calibration, changing of plastic pipes
or other parts,: : : This field test has shown that every detail is important when installing and
running a monitor. Particularly the filtration unit and piping are among the high maintenance
parts.

4.2.3 Nitrate analyzers

Numerous methods have been proposed for the determination of nitrate. Commercial on-
line nitrate sensors are mainly based on ion-selective electrodes, colorimetric reactions or UV
absorption. Due to many interferences of other chemical species, alternative systems have been
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Figure 4.2: Field test of NH+4 monitors [326]

developed for specific purposes. However the latter are often not commercialised as on-line
sensor. Some of these ‘alternatives’ will be discussed here too.

The analyzers based on UV absorption are considered to be the best choice for field-use
[87, 261, 289]. The advantages of this type of sensor are: A short response time (10 sec-
onds), low maintenance needs and no need for chemicals [261,289]. Due to interference of
particles with the UV absorption measurement, an ultra filter is needed for reliable operation
[261]. Nitrate and nitrite are measured together, as they both absorb UV at 210nm [269]. A
calibration frequency of only once in 6 months can be sufficient [261], but in some applica-
tions UV absorption NO�3 analyzers were reported to have a moving baseline, which could
be solved by a frequent automatic zero calibration [11]. In some applications, interferences
of UV-absorbing organic matter (e.g. aromatic compounds) may influence the measurements
[11, 165, 269, 288, 289]. A possible solution is the dual wavelength approach, where the strong
absorbance of nitrate in the 210nm region is measured relative to the absorbance in a region
where nitrate does not absorb. The wavelength 275nmcan be used to compensate for mainly
organic interferences [104,269].

The electrochemical meters based on an ion-selective NO�
3 -electrode are good because

of their low pre-treatment demand resulting in a short response time (less than 10 minutes),
and their low chemical consumption [250, 289]. However the nitrate electrode is sensitive to
electrode drift [221], disturbing ions (e.g. HCO�3 ) and fouling of the electrode [261]. Chloride
and bicarbonate ions interfere when their weight ratios to NO�

3 -N are> 10 or> 5, respectively
[104]. Erratic responses have been noted when the pH and ionic strength are not held constant
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in all samples and standards [104]. Another drawback of this system is the limited lifetime
(2�3 months) of the expensive electrodes [261]. Sample pre-treatment, frequent automatic
calibration (including pH and ionic strength corrections) and availability of a spare electrode
can partly alleviate such problems [87].

Colorimetric NO�3 analyzers are considered to be the most accurate [165], but also have the
highest maintenance needs, making them less favourable for field-use. Some studies illustrate
that these sensors are sometimes too unreliable for use as process equipment in situations where
several days unsupervised operation is necessary [220, 289]. Colorimetric sensors first convert
NO�

3 to NO�
2 . This reduction step can either be done with a Cd column [126, 220, 288, 289]

or with hydrazine [104, 171, 288]. In the following step, a yellow or red azo-dye which can be
measured optically is formed with NO�2 . In such a way NO�2 eventually present in the sample
is measured together with NO�3 . The installation of two injection valves, one before and one
after the Cd column, results in a double peak, which can be associated with nitrate and the
sum of nitrate and nitrite [165, 221]. In order to minimize the analyzer complexity, it is not
worthwhile to include this extra step in cases where NO�

2 is normally quite low [126]. Some of
the problems of the unreliability in the field can be related to the Cd column. Suspended matter
can restrict the sample flow, oil and grease will coat the Cd column, reducing its efficiency
[104]. A reliable sensor, without filtration needs was realised by placing the analyzer directly
in the measurement stream (e.g. mixed liquor) and using a membrane device that functions as
an ion sieve [171] (see also section 4.2.1).

Another type of NO�3 analyzer is a flow-injection analysis system with an amperometric
detection system [269]. Nitrate is determined as nitrite after reduction in a Cd column. The
working electrode is glassy carbon modified with a crosslinked redox polymer. Its main ad-
vantages are twofold; first of all no sample pre-treatment is needed and fast sample throughput
is possible. Secondly, with this measurement technique the effect of interferences is reduced
considerably since only species with an appropriate redox potential are detected with these
polymer modified electrodes. Only nitrite and iron could possibly interfere in the reduction
process [269]. At this stage the sensor has been designed for the laboratory environment only.

Other continuous flow methods, but so far only used off-line, use titanium(III)chloride as
reducing agent for NO�3 [9, 15]. Nitrate can be reduced to nitrite with TiCl3, and determined
spectrophotometrically as usual [9], or it can be reduced to ammonia in alkaline medium by
TiCl3 [15]. In the latter method, the interference of nitrite initially present in the sample can be
masked with sulfonilic acid. A NH3 determination before and after the reduction step makes
a simultaneous determination of nitrate and ammonium possible. The detection limits of these
methods are between 3 and 20µgNO�

3 -N l�1. Despite the fact that from a technical point of
view, these methods are not more complicated than e.g. the Cd reduction method, no examples
were found where this principle is implemented as on-line sensor.

The usual reducing agents for NO�3 are not sufficiently specific and it is normally difficult
to obtain a quantitative reduction of nitrate to nitrite [34]. Methods based on enzymatic or
bacterial reduction of nitrate are assumed to be more specific [34] and free from interferences
[136]. However, a possible drawback and reason why these methods are not found in com-
mercial sensors, is the necessity to have specialised personnel for the preparation/handling and
use of enzymatic or bacterial suspensions. Consequently, such methods are typically found
in laboratory environments instead of in the field. Although in special cases (e.g. carboniza-
tion wastewater), where commercial available on-line nitrate sensors were not suitable due
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to interferences, an on-line FIA system including a biological nitrate to nitrite reduction us-
ing immobilizedE. coli cells combined with selective nitrite determination was implemented
[196].

Basically there are two different approaches to the biological conversion of nitrate. First,
there are the enzymatic methods, where the enzyme is used in purified or unpurified form (in-
cluding other cell material); the enzyme can be immobilised in pellets or kept in suspension.
Second, living cell methods exist where the biological nitrate conversion is mostly obtained
with a specific bacterial strain. The latter method offers some advantages like: an increased
electrode lifetime, regeneration of electrode response, and the elimination of tedious, time-
consuming enzyme isolation and purification steps [140]. The use of bacteria would be par-
ticularly superior for systems in which more than one enzymatic step along with cofactors are
required to produce the measured product [140]. A disadvantage of living cell sensors is their
higher sensitivity for toxic substances in the measurement solution.

Enzymatic methods which reduce nitrate into nitrite using nitrate reductase were reported
by [34, 137, 167, 196, 342]. The nitrite formed can be measured by a standard diazoting colori-
metric method [34, 167, 196] or by fluorometric detection in which NADH is used as electron
donor [137]. In these methods special care has to be taken that NO�

2 is not further reduced
to N2O etc. [167]. The detection limit of these methods is around 10�50 µgNO�

3 -N l�1 in
laboratory conditions [137, 167]. An on-line sensor using this method [196], in which bacterial
E. coli cells were immobilized in spherical alginate beads with diameter 4�5 mmobtained a
lower sensitivity compared to other commercial available instruments. The detection limit was
around 1mgNO�

3 -N l�1, which is still sufficient for most monitoring purposes. The sensor
used a built-in continuous data correction to compensate for activity loss of the biologically
catalysed reduction process [196].

An enzymatic sensor in which nitrate was reduced to nitrite (using nitrate reductase), fol-
lowed by a second reduction step to ammonia (using nitrite reductase) overcame the problem
that the colorimetric NO�2 measurement method is rather complicated [136]. The ammonia
produced is monitored, using an air-gap ion-selective electrode. A measurement range be-
tween 0.7 and 140mgNO�

3 -N l�1 was obtained [136].
A novel approach to the development of bioselective sensors has been the use of intact bac-

terial cells in place of isolated enzymes at the surface of a membrane electrode [140]. A poten-
tiometric sensor has been devised for nitrate by coupling the bacteriumAzotobacter vinelandii
with an ammonia gas sensing electrode [140]. The response of this sensor was found to be
linear over the concentration range 0.1 to 10mgNO�

3 -N l�1. The electrode was useful for a
period up to two weeks. The bacterial electrode must be stored in growth medium when not in
use. Another type of microbial NO�3 -electrode consists of immobilisedPseudomonas aerugi-
nosaand a carbon dioxide gas-sensing probe [114]. In this system nitrate was determined by
measuring carbon dioxide with a gas sensing probe under anaerobic conditions accompanying
an excess carbon source, ethanol in this case [114]. As carbonate interfered with the determi-
nation, pre-treatment was made to remove CO2 by adjusting the pH of the sample at 4.0 and
bubbling with nitrogen gas for 1 minute. The electrode was tested on samples from a wastew-
ater treatment plant. The cycle time for 1 measurement was 30 minutes and the response was
linear between 5 and 50mgNO�

3 -N l�1.
On-line analyzers for total nitrogen also become available [73, 141, 250]. The measurement

principle of these sensors can be based on the hot catalytic conversion of bonded nitrogen to
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Table 4.2: Comparison of different on-line and semi on-line‡ nitrate analyzers

Principle Ref. Detection Range Accuracy R.s.d. Maintenance Response
limit interval time

(mgNO�

3 -N l�1) (%) (%) (weeks) (min.)

UV absorption [250] 0.1�100 < 5
[288] 0�5 �3 to+260 5�20 1
[165] 0�50
[289] 1�7 < 0:5 4 4 3�9
[11] +47 32 1

[269]‡ 0.4 0.4�30 2�4 1.7
NO�

3 selective [288] 0�10 �1 15 1
electrode
Colorimetric [288] 0.5�7 �10 20�24 1
with Cd [165] 0�50 1 20

[126] 0.5�20 1
[218] 0.1 0�4 �3 < 1
[156] 1 0�25

Colorimetric [22, 171] 0.07 0�10 �10 5 4 5
with hydrazine
Enzymatic [196] 1
NO�

3 ! NO�

2

nitrogen monoxide [250] or on in-line UV catalysed oxidation of organic nitrogen to nitrate,
which is measured colorimetrically [73]. The latter method found recoveries of different ni-
trogen forms between 90 and 100 %. However comprehensive practical experience is not yet
available [250].

A comparative literature review on different nitrate analyzers is presented in Table 4.2.

4.2.4 Phosphate analyzers

The majority of on-line phosphate sensors are colorimetric methods, thus requiring a filtra-
tion unit prior to the analyzer unit. As a consequence of the fact that no phosphate selective
electrode is available, often FIA methods are chosen for this measurement [221]. Phosphate
can either be determined as ortho-phosphate or as total phosphate. Total phosphate analysis
requires more manipulations because phosphorus compounds must be decomposed into ortho-
phosphate.

Two colorimetric ortho-phosphate analysis methods are employed: the molybdenum blue
method and the vanado-molybdate method [250]. The molybdenum blue complex is formed
by the reduction of the reaction product between ortho-phosphate and ammonium molyb-
date. The reducing agents that can be used include ascorbic acid [288] and stannous chloride
(Tin(II)chloride) [32]. Some reducing agents are reported to have a limited lifetime so that the
reagent autonomy is reduced to maximum 1 week [220]. Tin(II)chloride as reductant makes
that the wavelength maxima of the blue complex are at 690�700nmcompared with 882nm
for ascorbic acid. This offers the advantage of greater sensitivity when a solid state detector
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which uses a red light-emitting diode light source (λmax� 635nm) is used [32]. Similar to the
molybdenum blue method, the vanado-molybdate method also starts with a reaction between
ortho-phosphate and ammonium molybdate to form molybdophosphoric acid. In the pres-
ence of vanadium, yellow vanado-molybdophosphoric acid is formed [104]. This compound
is measured photometrically at a wavelength of usually 470nm.

Field studies have shown that automatic ortho-phosphate analyzers are more stable and
reliable than ammonium or nitrate analyzers, mainly because no membranes and columns are
needed [220]. The chemical expenses for ortho-phosphate determinations are very high which
is, however, to some degree balanced by a low purchase price [289]. More recent studies [288]
show that phosphate analyzers have been optimized in the last 5 years, so that its operating
cost is nowadays comparable with the operating costs of ammonium and nitrate analyzers.

Despite all technical improvements and longer autonomy of the analyzers noticed in the
last years, the weakest part of the measurement chain remains the filter system [33]. Further,
the molybdenum blue colour complex can give precipitation problems on the inner walls of the
transport tubes and on the detector’s flow cell windows [126]. In such situations more frequent
manual cleaning (e.g. 0.5M HCl) is advised. The use of ascorbic acid as reductant for the
molybdenum blue complex was found to be unaffected by the presence of organic phosphates,
pyrophosphates and polyphosphates [39].

Besides colorimetric measurement systems, other methods are available too, like the com-
bined enzymatic and amperometric FIA biosensor system [174]. This sensor contains two
immobilised enzymes (nucleoside phosphorylase and xanthine oxidase). In a laboratory set-
up, response times were less than 6 minutes. However, no on-line results with this sensor are
available [174].

In water and wastewater systems, total phosphorus (TP) concentration is commonly used
as an indicator of water quality and as control parameter in wastewater treatment processes.
On-line techniques for TP are available [30, 73, 141]. They are based on a colorimetric mea-
surement of ortho-phosphate after a destruction of TP into ortho-P. The methods differ in the
way the on-line destruction step is performed. Polyphosphates can be hydrolysed with acid and
heat, while organophosphates can be digested with UV-catalysed persulfate oxidation [73].
Others use nitric-sulphuric acid, perchloric acid or potassium peroxodisulphate as oxidising
agent [31, 141], eventually at high temperature and pressure. Other on-line digestion systems
include a flow-through reactor in a modified microwave oven [30] or a combined UV/thermal
induced digestion [31, 73]. The latter method can be used without sample pre-treatment prior
to analysis. For separate determinations of ortho- and polyphosphates, no on-line method is re-
ported, but rapid laboratory methods like anion exchange chromatography are available [132].

A comparative study of different phosphate analyzers is presented in Table 4.3. The ac-
curacy and repeatability of phosphate analyzers is better than for ammonium and nitrate ana-
lyzers. This can possibly be due to less interferences in the phosphate colorimetric reactions.

4.3 Developments in effluent and river water monitoring

The detection of accidental discharges of pollutants in effluents and river waters is important
to get more insight in the sources of pollution and take the necessary control actions. In this
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Table 4.3: Comparison of different on-line phosphate analyzers

Principle Ref. Detection Range Accuracy R.s.d. Maintenance Response
limit interval time

(mgPl�1) (%) (%) (weeks) (min.)

Colorimetric [22, 171] 0.2 0�10 �5 3 4 5
molybdenum [126, 220] 0.5�50 1
blue [250] 0.01�5 < 12

[288] 0.2�4 �1 to+23 5 1
[165] variable 1 20

[32, 33] 0.05 0�25 �2:5 0.4 > 1
Colorimetric [289] 0.05�1 �1 4 1 8�13
vanado- [11] 3 9 1
molybdate [250] 0.1�20 <12

[288] 0�4 �4 to+40 8�13 1
[165] 0�15 > 1
[156] 0.3 0�25

TP (including [30] 0.09 0�18 �(1�30) 2
digestion step) [31] 0.15 0�18 �(1�20) 1

section, a number of methods and sensors are presented that can be used for alarm generating
purposes. Most of the presented sensors are on-line systems, measuring non-specific sub-
stances. Special attention is given to UV based sensors, because their application area is most
similar to the developed buffer capacity based sensor in this work.

A number of specific techniques for evaluating the biological quality of river waters have
been developed in the past 15 years. Two categories of methods can be distinguished: First,
off-line methods based, among others, on quality indices. For example, in Belgium, the BBI
(Belgian Biotic Index) [193,313] is used, while in the United Kingdom, the microcomputer-
based system RIVPACS (River InVertebrate Prediction And Classification System) [343,344]
is used to evaluate the biological quality of rivers. Indices are useful for long-term evaluations
(e.g. over a period of years), but are not suitable for on-line problem detection. The second
category is more interesting in the framework of this work and considers on-line biosensor
methods for environmental biomonitoring and especially for the detection of water pollutants.
These systems are developed in view of continuous and real-time analysis. A review and state
of the art of biosensors for environmental monitoring is given in [212]. Three categories can be
defined: biosensors using aquatic vertebrates and invertebrates (fish, microcrustacea, bivalves),
cellular sensors (bacteria, yeast, microalgae [297],: : : ) and biosensors measuring an ‘affinity’
response and a specific binding between enzyme/substrate or antibody/antigen [212]. These
biosensors can be very sensitive to specific or non-specific toxicants in low concentrations
(µg l�1). Some interesting examples in the framework of this work are the following [212]:

� Ammonium sensitivity (110µgN l�1) of the fishOncorhynchus mykiss, detected by
ventilation after 17 minutes of exposure.

� Phosphate sensitivity (16µgPl�1) of the fishGnathonemus petersii, detected by emis-
sion of electrical signals after 15 minutes of exposure.
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� Nitrate sensitivity (2mgN l�1) of immobilized bacteriaPseudomonas aeruginosa, de-
tected by CO2 respiration after 15 minutes of exposure.

It should be mentioned that the first two examples are non-specific, because these fish are sen-
sitive to a range of toxicants. Taking into account the sensitivity of the mentioned biosensors,
they are only applicable in low-polluted rivers. Practical experiences with an automatic biosen-
sor measurement station on a river in Flanders used for drinking water intake are described in
[172].

On-line physico-chemical river water quality can be assessed with automated measurement
stations. Dissolved oxygen, ammonia, pH, electrical conductivity, turbidity, temperature and
flow were among the first determinants to be included in automatic measurements relating to
the quality of the water [274]. Although a high degree of automation can nowadays be imple-
mented at the levels of measurement, maintenance, data communication and data management,
the resulting data series easily inherit errors and uncertainties [41, 96].

Sensors based on UV absorption were already discussed in section 4.2.3 for the purpose of
nitrate measurement. However, this type of sensors is also used for the monitoring of organic
material in wastewaters and river waters. Useful correlations have been established between
the COD in various types of waters and the UV absorbance at 254nm[201]. Absorbance mea-
surement in the UV spectrum range is very rapid and a sufficiently precise method permitting
a simple automatic indication of the organic pollution extent in some types of surface waters
[201]. However, some compounds (especially saturated hydrocarbons and carbohydrates), and
also urea, either do not absorb or only absorb below 200nm, and thus cannot be considered
with UV spectrophotometry [287]. The UV absorption spectrum is dependent both on the
chemical nature and concentration of their absorbing dissolved components and on the physi-
cal characteristics and concentration of particulate material that induces light scattering. Thus,
the UV spectrum is related to the total suspended solids and a part of the dissolved components
(organic and mineral) [287]. The negative influence of particulate material on the correlation
between e.g. the absorbance at 254nm and the COD or TOC can be reduced with the help
of measurements at a second wavelength (e.g. 380nm) [182]. A deterministic deconvolution
method has been applied on UV spectra [287]. In short, an UV spectrum can be considered
as a linear combination of defined spectra (reference spectra) of compounds in the water. The
acquisition of the reference spectra must be carefully carried out for a given type of water.
The deconvolution method consists in finding a linear combination of reference spectra that
restitute the real spectrum. The presence of an unknown pollutant in a sample can easily be
detected through a poor restitution, corresponding to an unusual spectrum for a wastewater or
a surface water sample. The application of the latter described technique has to be seen in the
survey of discharges in rivers and the control of wastewater treatment plants. However, note
that the spectrophotometric developments are waiting for the design of a simple field portable
device [287].

Fluorometry-based sensors have found useful applications in the monitoring of activated
sludge processes [125, 282]. The principle of the measurement is based on the exposure of
a sample to light at a certain wavelength and subsequently the registration of resulting fluo-
roscent light at another wavelength. The application in [125] is based on the property that
intracellular reduced NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) fluoresces at
460nmwhen the cells are irradiated by 366nm light. In a case study with an alternating ac-
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tivated sludge process, an abrupt rise in the fluorescence signal was found to occur upon the
transition from anoxic to anaerobic conditions [125]. In the same activated sludge applica-
tion area, a multiple excitation–multiple emission fluorometry technique was tested [282]. A
correlation was developed between COD-removal rate and the fluorescence signals. Stepwise
multiple regression and principal component analysis were employed for the data analysis.
In another study, BOD measurements in river and effluent samples were compared with ab-
sorbance and fluorescence determinations on the same samples [58]. Absorbance at 650nm
showed a moderately high, positive correlation with BOD (R2 = 0:48) for sewage effluent
samples. The use of absorbance measurements in the development of a relatively inexpensive
on-line monitor would provide an early warning system of deteriorating quality in a sewage
effluent discharge [58]. No clear association was found between the BOD of industrial ef-
fluents or river waters with absorbance values at 4 wavelengths (250, 350, 400 and 650nm).
Similarly, no clear association between fluorescence and BOD was observed for all samples.
The only benefit of the use of fluorescence is that measurements are less influenced by sample
turbidity than are absorbance data [58]. In a recent study, effluents from sewage wastewater
treatment plants showed characteristic fluorescence signatures when excited by UV light in the
240�300nmwavelength band [7]. A nice correlation between the BOD and the normalized
fluorescence intensity at 340nm (excitation wavelength 248nm) was obtained (R2 = 0:94).
However, the results were obtained on only 1 selected domestic wastewater treatment plant,
and the measurement conditions were optimized for that plant, which prohibits comparisons
with e.g. the results described in [58]. The authors conclude that the fluorescence technique
has potential for use in noninvasive continuous water quality monitoring. However, the neces-
sary equipment is still very expensive and bulky, and further research is still necessary before
commercial applications are to be expected.

4.4 Titrimetric sensors and applications

Nowadays, the term ‘titrimetry’ is used in a much broader sense than it was initially defined for
analytical chemistry purposes. Originally titrimetry was used for ‘end-point’ titration methods
only, but in the current literature one can notice that the criterion for a titrimetric sensor in-
cludes all kinds of systems where consecutive acid or base additions to a sample, followed
by a pH measurement, are performed. In the following paragraphs the presented sensors are
selected on this broad criterion.

A titrimetric sensor basically consists of two different parts. First, there is a ‘wet’ part,
including sample preparation, pH adjustment and titration. A major advantage of these systems
is that filtration of the sample is mostly not necessary. Despite the fact that this technology is
well suited for field applications, most of the titrimetric systems found in literature are based
on laboratory set-ups. Second, there is a ‘data processing’ part, the most important and diverse
part. In the literature that was found on this topic, often the ‘wet part’ is limited to a few lines
describing which titrator and which conditions were used.

It is straightforward that the data analysis of a titration experiment is the real heart of a
titrimetric sensor. Some publications only discuss chemical and mathematical aspects of titra-
tion data, without pointing to a specific application field. The application fields for titrimetric
sensors are twofold. First, there are the on-line applications, used for process control purposes.
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These titrimeters often work with only a few titration points and a simplified and robust data
interpretation. One of the major application fields in this area is the control of anaerobic di-
gestion where bicarbonate and/or volatile fatty acids (VFA’s) can be monitored on-line with a
titrimetric sensor. Second, there are the off-line applications, where the data processing often
is more complicated. Some of the applications like analysis of wine, cheese whey, milk, toma-
toes,: : : are uniquely lab applications. However, many of these data processing techniques
discussed as off-line systems can possibly be adopted to field-use in other application areas.

4.4.1 Data interpretation of a few specific points of a titration profile

The determination of bicarbonate and total volatile acid concentration in anaerobic digesters
is a popular application area for this type of titration sensors. These methods are based on the
physico-chemical equilibria in anaerobic digestors, which are summarized and mathematically
modelled in [239]. The pH in a normally functioning digester is close to neutral and controlled
by a buffering system that consists of bicarbonate and volatile fatty acids (VFA). Because
fluctuations of organic loading rate or other operational conditions may often cause variation
of VFA concentration, VFA is a useful parameter for digester control [12]. Organic or toxic
overload in anaerobic digestors can lead to a higher acid production or to a reduced production
of methane from acetic acid. Both situations lead to an increase of VFA concentration in the
reactor. Consequently, a decrease of bicarbonate alkalinity and of pH and an increase of CO2

partial pressure in the gas [241]. Depending on the buffer capacity in the digestor, the drift in
pH values could be negligible until the operating conditions of the digestor are appreciably out
of balance, while the variation of bicarbonate concentration becomes readily apparent at any
buffer concentration. Therefore, the potential of bicarbonate concentration both as stability
indicator and control variable was found to be as good or better than the pH [241].

To maintain a quasi-constant pH, sufficient buffering capacity should be provided. Tradi-
tionally, the alkalinity measurement (determined by titrating a sample to a pH of 4.3) is used to
estimate the buffering capacity in an anaerobic digester. However, the total alkalinity includes
all the bicarbonate and approximately 80 % of the volatile fatty acids [12]. Because only
bicarbonate is usable for neutralising VFA’s, total alkalinity does not represent the available
buffering capacity in a digester. A simple, alkalimetric method is described that can be used
to determine bicarbonate and total volatile fatty acid concentrations in anaerobic digesters by
a two-stage titration [12]. The sample is titrated through two stages (first to pH 5.1, then from
pH 5.1 to pH 3.5), and the VFA and bicarbonate are calculated by means of equations (4.1)
and (4.2) that were derived from the acid-base equilibrium equations and mass balances [12].

A1=
[HCO�

3 ]([H
+]2� [H+]1)

[H+]2+K1
+

[VFA]([H+]2� [H+]1)

[H+]2+K2
(4.1)

A2=
[HCO�

3 ]([H
+]3� [H+]1)

[H+]3+K1
+

[VFA]([H+]3� [H+]1)

[H+]3+K2
(4.2)

A1 andA2 : molar equivalents of acid consumed to the first and second end-points (M)
[HCO�

3 ] : bicarbonate concentration (M)
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[VFA] : volatile fatty acid concentration (M)
[H+]1;2;3 : hydrogen ion concentrations of the original sample and at the first and the second

end-points (M)
K1 : first dissociation constant of carbonic acid (6:6 10�7)
K2 : combined dissociation constant of the volatile fatty acids (2:4 10�5)
It was found that the experimentalpKa’s for bicarbonate and VFA (considered as acetic acid)
were 0.14 pH units lower than the corresponding thermodynamic dissociation constants. The
ionic strength in anaerobic digestors that have a total alkalinity of 1000 to 1500mgCaCO3 l�1,
is typically around 25mmol l�1. The authors indicate that this ionic strength largely explains
the difference between the experimental and thermodynamic dissociation constants. This
method was evaluated in standard solutions of mixtures of bicarbonate and volatile fatty acids.
The average recovery in all of the measurements is more than 96 % [12].

A further refinement of this method uses 5 pH points instead of 3 [197]. The titrimetric
method incorporates a computer program to calculate the necessary results from a 5 pH point
acid titration experiment. The 5 pH points include the initial pH, a pH pair (pH1, pH2) located
symmetrically around the first dissociation constant of the inorganic carbon buffer, and a pH
pair (pH3, pH4) located symmetrically around the dissociation constant of the acetate buffer.
An extra benefit of this method is that errors in pH due to the residual liquid junction effects or
poor calibration can be determined and corrected. This was achieved by including an asymmet-
rical pH pair as set-points around the theoreticalpKa (e.g. pH pair (pH1, pH3) located around
the first dissociation constant of the inorganic carbon buffer). An average standard deviation
on the estimates of 5�8 % around the expected values were found [197]. The authors point out
that in anaerobic systems, weak acids/bases other than bicarbonate and VFA may be present,
e.g. phosphate, ammonium, sulfide, etc. which influence the estimates derived from the 5 pH
point titration described above. However, if their total species concentrations are measured by
wet chemical methods, their presence can be taken into account readily, and their effect can be
eliminated. This method was tested for measurement of HCO�

3 and VFA’s in primary sludge,
settled sewage and anaerobic digester sludge (under process failure conditions) [65]. Compar-
isons were made between this titrimetric method, a colorimetric method and an HPLC method
for VFA determination [65]. The titrimetric method was found to over-predict the VFA con-
tent of failed anaerobic digester samples by approximately 15 %, relative to the colorimetric
method. No immediate explanation was found. Good recovery of VFA from spiked samples
of settled sewage in the range of 40 to 80mg l�1 as acetic acid was obtained. Using pure
solutions of carbonate and acetate, the detection limits for the titrimetric method were found
to be 10mg l�1 as CaCO3 and 5mg l�1 as acetic acid [65]. Scrupulous attention to pH probe
maintenance and calibration was found to be very important, particularly at low concentrations
when the systematic pH error estimate by the computer program cannot be relied upon.

A recent study compares the 5 pH point method described above with a new 4 pH method
[46]. It is shown that both methods have similar accuracy for VFA determination. The 5 pH
point method does make an estimation of the carbonate alkalinity, whereas the 4 pH point
method doesn’t. From a practical point of view the 5 pH point method does not require reach-
ing target pH points exactly, but allows a tolerance of� 0.1 pH units. A disadvantage of the
latter method is its necessity to handle both a strong base and a strong acid. The initial pH of
the samples is frequently below pH 6.7 (= first target pH point in the 5 pH point procedure);
thus the procedure requires a pH increase to begin with. The first target point of the 4 pH point



4.4 Titrimetric sensors and applications 87

method is at pH 5, which is so low that a base is actually never in demand [46]. In this respect
the 4 pH point method is regarded as superior, but whenever there is interest in the specification
of the carbonate alkalinity, the 5 pH point procedure is recommended.

In the same application area of anaerobic digestion, an automatic on-line titration unit for
routine or event-initiated monitoring of alkalinity, buffer capacity and VFA levels is presented
[228]. The acid and base additions to the titration vessel are performed with a pump but for
accuracy reasons the amount of titrant added to the vessel is recorded by the change in weight
of the titration vessel. A sequence of pH adjustment to pH> 11, acid titration, sparging and an
alkali backtitration are performed during which the pH and weight are recorded continuously
and a titration curve constructed. From the acid titration curve, 4 characteristic points are used
in the calculation model for the total carbonate concentration (2 points) and the total bicar-
bonate concentration (2 points). From the alkali titration curve, well chosen titration points
are used for the VFA determination. The titrations are performed fast, because the dosing of
acid or base is done continuously and no equilibrium time is allowed for the pH measurement.
A typical titration cycle takes about 15 minutes, of which 9 minutes is spent sparging. The
application of this sensor has to be seen as an early warning system of digester perturbations,
indicating possible reactor failure. If the alkalinity is subsequently found to be below a critical
value, or VFA’s above a critical value, more sophisticated monitoring equipment, like hydrogen
level monitoring, is suggested to automatically switched in [228].

If only bicarbonate has to be monitored, a number of alternatives for the described titration
methods are available. They are based on the application of physico-chemical equilibria in gas-
liquid systems. A review of the methods which can be used to determine bicarbonate alkalinity
in solutions where weak acid-base couples other than the inorganic carbon buffer are present
is given in [219]. The methods which seem to be promising for automation are discussed in
[240]. Bicarbonate from the sample is decomposed to carbon dioxide by strong acid addition
and measured as CO2. The CO2 can be measured as a flow rate with a sensitive gas meter
[108, 110, 111] or as a pressure build-up [71].

A further simplification of determination of VFA’s was realized by 1 single pH measure-
ment [298]. 1 For this purpose, a fundamental relationship between pH, VFA concentration
and alkalinity in prefermenters was used. The relationship can be used to monitor prefermenter
performance (with respect to VFA production rates) from pH measurements alone, without the
need to measure VFA concentrations. The model used was based on a number of rather dan-
gerous assumptions (e.g. the governing acid-base equilibrium of the system is determined by
the CO2=HCO�

3 buffer only, total alkalinity in the system remains constant,: : : ). In 4 prefer-
menters studied, 70 % of the variability of VFA (as HAc) could be explained by the pH [298].

Some applications make use of Gran functions or modified Gran functions for the interpre-
tation of titrimetric data [162,197, 273]. The Gran functions represent one of the first attempts
to linearize titration curves, thereby making it possible to calculate the equivalence volumes by
using several points on the titration curve instead of only the inflection point [222]. The Gran
functions for titrations of weak acids with strong base are given in equations (4.3) and (4.4).
Equation (4.3) is used on the acid side of the equivalence-point, whereas equation (4.4) is used
on the alkaline side of the equivalence-point [222].

1The application of a VFA-pH model is not considered as a titrimetric method, because no addition of acid/base is
involved.
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Figure 4.3: Titration curve for 1 litre of a 0.01M acetic acid solution (a) and corresponding
Gran functions with graphical determination of the equivalence-pointVe (b)

V10(k�pH) = f (V) (4.3)

(V0+V)10(pH�k0) = f (V) (4.4)

V : volume of titrant added
V0 : volume of the sample solution before the titration is started
k andk0 : arbitrarily chosen constants
Similar functions exist for the titration of strong acids with strong bases [222]. The use of
Gran functions is illustrated in Figure 4.3 with a simple example that was introduced before
(Figure 2.4 on page 21). Figure 4.3(a) shows a simulated titration curve, but with a low mea-
surement point density. Figure 4.3(b) shows the calculated points with the two Gran functions
of equations (4.3) and (4.4). To make the scale of the two Gran functions in the same order of
magnitude, the arbitrarily chosen constantsk andk0 are set to 4 and 13 respectively. Further, a
straight line through the linear part of the Gran function values is constructed to find the inter-
section with theV-axis atV =Ve, with Ve the equivalence volume. The Gran functions given
in equations (4.3) and (4.4) will not give a straight line for any acid. However, for moderately
weak acids, havingpKa values in the range 5.0�8.5, more than 50 % of the function will lie
on a straight line intersecting theV-axis atVe (assuming concentrations of the order of 0.01
M). There is a range of acids between strong and moderately weak acids within which neither
of these simple Gran functions will yield satisfactory results and this has not been generally
recognized [222].

The great advantage of the Gran functions is that it is not necessary to determine abso-
lute [H+] values; it suffices to determine values proportional to[H+] which means that it is
not necessary to calibrate the electrode system [222]. In a publication about the use of Gran
functions on titration profiles of mixtures of two acids [223], it was found that the two acids
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can be separated provided the stability constants (Ka’s) of the acids differ enough. As a rule of
thumb, a difference of 4 logarithmic units is considered satisfactory for instrumental detection
of the end-point. In case theKa values of both acids are known precisely, a difference inKa of
2 logarithmic units is considered minimal for separation of the 2 acids [223]. Later, by using
more sophisticated data interpretation techniques (see section 4.4.2), a separation of 2 acids
with differences inKa much smaller than 2 logarithmic units can be obtained correctly.

Gran (1950) proposed a method for the determination of alkalinity/acidity, in which he
formulated a function based on equilibrium and stoichiometric considerations, which allows
accurate determination of the proton accepting capacity of a solution without the need of titrat-
ing to an end-point [162]. This method was successfully applied for low COD determinations,
where titrimetric colour end-point detection was totally inadequate [162]. The method hinges
on the utilisation of a modified Gran function coupled with a potentiometric titration of di-
gested test solutions with ferrous ammonium sulphate (FAS) titrant. The detection limit was
found to be 3mgCODl�1. A possible drawback of applying this method to more complex
situations is that the stoichiometry of the buffer systems must be known and that the method is
not reliable when several buffer systems are present. Further, the Gran plot method has limited
accuracy when the dissociation constants are low or high [36, 222]. It is possible to correct
for this problem using trial and error or an iterative technique, but this becomes computation-
ally unwieldy [36]. Further, when the Gran function analysis is applied to titration data from
typical acidified surface waters, the strong acid acidity is almost always overestimated and the
weak acid acidity is underestimated. When CO2 contamination of the titrant is present, total
acidity will be overestimated [23].

4.4.2 Data interpretation of the complete titration profile

The interpretation of the complete titration or buffer capacity profile is performed in a wide va-
riety of systems, especially environmental systems. Applications are found in sanitary landfill
leachate [94, 248], micro-organisms growth media [305], cheese wheys [115] and cheese ho-
mogenates [169], canned vegetables [66], cattle slurry [124], anaerobic digester liquid [36, 38],
: : : However, most of these applications are limited to a qualitative approach, to find or to il-
lustrate the most important buffer systems in the titrated sample. Mathematical modelling of
the titration or buffer capacity curve in order to find the concentrations of the buffer systems
present is rather limited compared to the qualitative approach, e.g. [36, 38]. The most advanced
data interpretation of buffer capacity profiles found in literature is a stepwise model building
approach to construct a suitable mathematical model for an unknown solution [101, 102]. The
last mentioned category is important in the framework of this work. The following paragraphs
will go into some more details on the above mentioned applications.

Sanitary landfill leachate is an important source of pollution to both surface and ground
waters [94]. More particularly, the pH of leachate determines the solubility, predominant ionic
species, complex formation and toxicity in the aqueous solution. A simplified buffer capacity
model was used to predict pH changes in the leachate. The model took into account: or-
ganic acids (lumped together as acetic acid because the dissociation constants for the organic
acids present are grouped within a∆pK of 0.1), ammonia, hydrogen sulfide and carbonic
acids. Because leachate samples cannot be considered as dilute solutions, the dissociation
constants were corrected for ionic strength using the Davies equation. Off-line concentration
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measurements of the buffering components were introduced in the mathematical model and
the simulated buffer capacity curves were compared with the experimental curves. The model
was found to be an adequate predictor of the buffer capacity in the pH range 3�10. The lack
of agreement between the model and the actual buffer capacity at pH> 10 can possibly be
explained by e.g. the presence of phosphate species, precipitation of metal hydroxides, the
presence of other organic compounds like phenol,: : : The maximum buffer capacity pH was
predicted with the model within a∆pH = 0:35, and the magnitude of the buffer capacity at
this pH value was underestimated with 16 %. These results were found to be acceptable for
this application. In a similar study on titration of landfill leachate, a multicomponent chemi-
cal equilibrium program SURFEQL was used to predict buffer capacity curves [248]. It was
found that ferrous hydroxide buffering caused a sharp peak in the simulated and experimental
buffer capacity profile. However, the quantitative agreement was inadequate and two observed
buffering systems were not predicted. Although these findings have increased the fundamen-
tal understanding of leachate chemistry, the buffering capacity analysis needs to be refined in
order to improve these results [248].

Another application of the use of the complete titration profile is the buffer capacity of
cheese and cheese wheys [115, 169]. For the cheese wheys, an equation was developed to de-
fine whey pH as a function of the pH at dipping (i.e. the pH at which curd is separated from
whey), and the concentration and level of HCl or NaOH added [115]. The buffer capacity of
whey is mainly determined by the contents of lactate and phosphate. Titration curves of 24
experimental units were defined by 14�16 volumes of titrant for a total of 400 observations.
A regression model was used for the whey pH in function of pH at dipping, % solids and
titrant added. A multiple linear regression model failed for this purpose, but a cubic regression
model gave satisfying results. At alkaline pH, the equilibration time after base addition ranged
up to 1 hour, pointing to precipitation phenomena. The buffering capacity curves were not
modelled with an acid-base equilibrium model, which probably would reveal more informa-
tion than a simple regression model. In the same application area, titrations were performed
on Emmental cheese homogenate, to investigate the changes in acid-base buffering properties
during ripening [169]. The buffer capacity curves were interpreted in a qualitative way but
were not modelled. The maximum buffering occurred at pH 5 which was probably due to
solubilisation of colloidal calcium phosphate. Again the same remark holds that a more math-
ematical oriented approach, e.g. with software like MINTEQA2 to incorporate precipitation
phenomena, would, eventually combined with advanced data interpretation like PCA, reveal
more information than a visual interpretation of the data only.

The role of the buffer system in the ammonia loss from cattle slurry by the use of acidifying
additives was investigated by interpretation of titration and buffer capacity curves [124]. The
major buffer components were found to be ammonium, bicarbonate and a solid phase of car-
bonates. A deterministic model that simulated the slurry as an ammonium bicarbonate solution
plus a solid phase of calcium carbonate was used to fit the experimental data. Although cat-
tle slurry is a complex mixture of various dissolved and solid compounds, the buffer capacity
model described the experimental data fairly well. The model, combined with experimental
data, was used to investigate the pH stability of the slurry in response to addition of increasing
levels of additives like HCl, superphosphate, FeCl3, Ca(NO3)2 and CaCl2 [124].

A numerical method for the determination of VFA’s using all available titration data could
resolve acetic and propionic acid components in anaerobic digester samples [36]. A titration
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curve linear model that includes acetate (pKa = 4:75), propionate (pKa = 4:87) and bicarbon-
ate (pKa1 = 6:35; pKa2 = 10:25) was used. The set of 4 equations were simultaneously solved
using a Gauss-Jordan matrix elimination procedure. This method was chosen because it is rela-
tively efficient and not susceptible to ill-conditioned matrices. The authors point to the problem
that ill-conditioned matrices are often encountered when logarithmic data (e.g. pH) are used.
Another numerical problem that must be dealt with to ensure robustness of the procedure is
negative equivalent volumes. A further computational problem arises due to the closeness of
the dissociation constants for acetic and propionic acids. In cases where the concentration of
one or the other of these acids is relatively small, the procedure distributes the smaller acid
concentration into the larger acid concentration. For these cases, the distribution of the VFA
components is incorrect, but total VFA concentration is accurate. In a recent paper [38] the
authors have modified their procedure to make it more accurate by introducing the effect of
ionic strength and combining the acetic and propionic acid component into a composite buffer.
The latter modification simplified the total calculation procedure and resulted in a more robust
method with less computational problems. The influence of ionic strength was found to be
significant and should be considered to yield accurate results [38]. Complications introduced
by not knowing the ionic strengthI of an unknown sample, were dealt with byswampingthe
sample with an indifferent electrolyte at a high enough concentration to make the original sam-
ple’s ionic strength and the contribution to ionic strength from the added titrant negligible. KCl
in a concentration of 0.1�0.2M was used for this purpose. Accurate results were obtained for
all of the swamped samples, but without swamping, poor results were obtained for a number of
samples. VFA concentrations determined with this method yielded estimates that had a mean
absolute error of 6�10 % compared to the more accurate chromatographic procedure [38].
These errors were still within the acceptable range for anaerobic digester analysis. Despite
the positive results obtained with this method, a possible shortcoming of this procedure is that
the authors do not include a model validation step (e.g. based on residual analysis on the dif-
ferences between simulated and experimental data) to verify if no extra buffering components
need to be considered when an unknown sample is analyzed with this method.

An advanced mathematical modelling approach for titration data can be found in two pub-
lications [101, 102]. The major difference with previously mentioned methods is that without
a priori information about the buffering components present in a sample, a titration or buffer
capacity model is constructed for an unknown solution. The method is based on a monoprotic
approach, in which titration of a polyprotic acid can be rigorously represented as a mixture of
monoprotic acids, by replacing the thermodynamic constants with fictitious titration constants
(see also section 3.3.5 on page 50). In the proposed method, titration points are fitted to a
one component model, a two component model, and so on; and this is carried to the point
where further resolution becomes meaningless. The curve fitting is performed with linear
least-squares analysis, and the linear equations are solved with the Gauss-Newton method. A
major advantage of Gauss-Newton is that it readily yields statistical measures of confidence in
the estimates (standard deviations and covariances). The curve fitting is performed on the first
derivative data (buffer capacity curve) rather than on the titration data (titration curve). The
criterion to stop the model building process is based on an indicator that detects when the fitted
curve falls within the scatter range of the data. Two indicators were used: First a ‘randomness’
index, that is related to the randomness in sign of the deviations of the first derivative data
points from the fitted curve. The second index, called ‘relativeσ’, is the standard deviation of
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Figure 4.4: Curve-fitting analysis of buffer capacity data for a five-component system. Data
points are from titration of a mixture of phosphoric and succinic acids with KOH. The solid
line is the fitted curve obtained by superposition of the dashed curves for the individual com-
ponents. Peaks P1, P2 and P3 are due to phosphoric acid; S1 and S2, to succinic acid [101]

the derivative data points, expressed as a relative percentage. The main reasons for using the
derivative function as a basis for the search analysis are (1) a simple rule can be used to esti-
matepK starting values, and (2) the two indices, randomness index and relativeσ, when used
in conjunction, provide the basis for a reliable termination criterion. The main reason these
indices provide more reliable criteria for termination than standard deviation of pH (from the
primary data analysis) is that differentiation virtually eliminates the effect of systematic errors.

An example of curve-fitting analysis of buffer capacity data for a five-component system
is shown in Figure 4.4. A consequence of the monoprotic approach is that the protonicity type
of an unknown acid cannot be determined by a curve-fitting analysis, except by inference from
finding that two or more concentrations are not significantly different.

A limit obviously exists in the ability to resolve components in a solution by least-squares
analysis. This will be imposed, on the one hand, by imprecision in the measurements, and,
on the other, by characteristics of the solution [101]. The failure to resolve two components
present in a solution by curve-fitting of the composite buffer capacity curve, may be due to
a smallpK separation, to a small concentration of one component relative to the other, or, in
general, to a combination of both factors to some degree. It was shown that data imprecision,
relative concentration andpK separation are interrelated. They were used to define a criterion
for the limit of resolution, given by:

X2∆pK2� 4σpH (4.5)

X2 : the fraction of the minor component
∆pK : the pK separation
σpH : the standard deviation of pH for the primary data points (titration curve)
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Using this formula and practical examples, the authors concluded that apK separation of
0.1�0.2 is borderline for most applications. On the other hand, apK separation of 0.5 or more
should permit resolution of a component below the 10 % level of the total buffer capacity,
even when experimental precision is just average [101]. In a later publication [102] the author
applies the proposed stepwise modelling system to titration curves of different types of wine.
Titrations of undiluted wine showed sluggish response and evidence that the electrode was
being fouled. Therefore the samples were diluted with a ‘buffered diluent’, i.e. a diluent
solution of 0.002M with respect to phosphoric, acetic, and boric acids. The reason for the use
of ‘buffered diluent’ was related to the adjustment period for a glass electrode which should
be kept as constant as possible during the stepwise titration. Further optimizations of the
titration conditions were ionic strength adjustment to 0.1M by addition of KCl and headspace
flushing with water saturated nitrogen in a thermostatic titration cell. Further, the titration data
were corrected for the presence of 2.7 % carbonate in the titrant by using hypothetical data
subtracted from the measured data. The buffers present in the wine samples were carboxylic
acids (between pH 3 and pH 6) and tannins (or phenolics) in the region between pH 9 and pH
11. The contribution of the buffers from the diluent were deleted from the experimental data
by subtracting these buffer capacities from the experimental data. Models ranging from 1 to 8
buffering components were fitted to the data. At each step, the level of the residuals decreased,
as illustrated in Figure 4.5.

Introducing an eight-component model (not shown in Figure 4.5) resulted in only an in-
significant further reduction in the residuals. Thus, both the seven- and eight-component mod-
els fit the data about equally well, and the fit is much better for these two models than for
those with fewer than seven components. From these data, suggested species were proposed
(amino acids, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid and phenolics).
Moreover, the values of the different buffers appeared to correlate with the ‘quality of wine’,
but further work would be needed to support a firm conclusion to this effect. Unfortunately, the
methods described in [101,102] were developed 15 years ago, and no recent literature based
on this approach was found.

4.4.3 Titrimetric biosensors

Titrimetric biosensors include sensors in which the amount of titrant required to maintain a
certain pH is recorded. In these systems, cell metabolism causes acidity changes that allow on-
line determination of growth kinetics [129], nitrification rate [88, 92, 180, 231], denitrification
rate [40], VFA [242], ammonium [88, 180] and nitrate [40]. A biological reactor, in which
the pH is kept constant, and the titrant used is acid, base or growth medium, is called a ‘pH-
auxostat’. In spite of its simplicity and general applicability, the information obtainable from
titrant measurements does not seem to be widely used to obtain information about growth
kinetics in batch culture [129]. However several recent sensor developments in wastewater
treatment nitrogen control [91, 181] illustrate that a ‘pH auxostat’ is a useful system to obtain
very ‘rich’ process information. These instruments open new perspectives for efficient on-line
monitoring of wastewater treatment plants.

During the last two decades, more stringent effluent standards for nutrients (N and P)
imposed by legislation have in many countries led to the development of more complicated
activated sludge process configurations specifically designed to achieve biological nutrient re-
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Figure 4.5: Buffer capacity data for a French wine (top) and residuals generated in the search
analysis. Points have been omitted from all except the last 2 figures [102]. (note changes in
scale)
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moval [91]. Biological nitrogen removal includes hydrolysis and degradation of N-containing
organic compounds, nitrification (biological oxidation of NH+

4 to NO�
3 ) and denitrification

(NO�
3 reduction to N2). Monitoring the reaction rates of these processes is possible with regu-

lar sampling and laboratory analyses. These measurements are expensive, time consuming and
often not usable for on-line control. In activated sludge systems with highly varying process
conditions, such as for instance in sequencing batch reactors or alternating activated sludge
plants, on-line estimation of in-situ nitrification and denitrification rates is possible based on
the data provided by on-line NH+4 and NO�3 analyzers [171] (see also section 4.2). For contin-
uous flow activated sludge systems, however, batch experiments are needed to obtain similar
information on the sludge characteristics because continuous input of influent results in data
with very little dynamics so that no clear interpretation can be made [316]. Therefore, the con-
cept of adaptive in-sensor-experiments was developed [315,316]. An in-sensor-experiment is
typically performed in a down-scaled bioreactor in which the full-scale process is simulated in
hardware, and to which specific manipulations such as substrate additions are performed to ob-
serve the dynamic response of the biological process. The experimental conditions for which
an in-sensor-experiment provides the most interesting data may vary as the conditions in the
full-scale process change. It is therefore an essential feature of measuring systems operating
according to the in-sensor-experiment principle to be capable to automatically adjust the exper-
imental conditions in the sensor. This automated adaptation leads to the concept of the adaptive
sensor [316]. Some applications based on the principle of (adaptive) in-sensor-experiments are
presented in the next paragraphs.

In similar sensors (BRAM: Biological Residual Ammonium Measuring system; ANITA:
Ammonium NITrification Analyzer) the stoichiometric conversion of NH+

4 into NO�
3 produc-

ing H+ is used to measure the residual ammonium concentration and the activity of the nitrifiers
in an activated sludge sample [88, 92, 180]. The biosensor is made of a reactor vessel and a pH
titration unit. Activated sludge, taken from a WWTP, is transferred to the vessel. Acid or base
is added to adjust the pH to a chosen set-point. After this phase, cumulative alkali addition is
recorded to maintain the set-point pH. The slope of the linear part of the alkali addition profile
is closely related to the actual NH+4 -N removal velocity, unless aerobic acidifying microbial
populations other than nitrifiers are present [181]. The total amount of base needed is related
to the NH+4 present. Recovery experiments in which a range of concentrations from 0.5 to 4
mg NH+

4 -N l�1 was added to mixed liquors free of ammonium resulted in errors from 1 to 8
% [181]. Further refinement of the sensor consisted in a pulse dosing of approximately 1.3 mg
NH+

4 -N l�1 at the beginning of each measurement cycle. This enabled to measure the nitrifica-
tion rate of an activated sludge sample even when almost no NH+

4 -N was initially present in the
sludge sample [88]. Theoretically, the calculation of the results could be simplified by choosing
the pH set-point exactly the same as the equilibrium pH. Eventually the equilibrium pH could
be changed by adjusting the % CO2 in the gas phase of the aeration air, but this would make
the titration system more complicated and more expensive to operate [88]. The influence of
changes in operational factors such as pH, temperature and bicarbonate alkalinity on the NH+

4
measurements has been examined [180]. An increase in the amount of bicarbonate buffer in
the mixed liquor had a considerable effect on the accuracy of the results, even for a variation of
1 meq l�1, because the increase in the amount of bicarbonate buffer decreased the sensitivity
of the pH sensor and therefore the accuracy of the titration. A decrease in total ammonium
with increasing bicarbonate concentration was observed [180]. This error can be overcome by
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independent determinations of the alkalinity, allowing variable quantities of strong acid in the
reaction vessel to be added. In this way, the titration system is operated at constant alkalinity
[180]. With the same sensor, it was possible to estimate the volumetric nitrification capacity
of the mixed liquor and the Monod half-saturation coefficient for theNitrosomonasbacteria
in the sludge. These kinetic parameters are determined with an existing parameter estimation
procedure on the basis of information provided by a titration in-sensor-experiment using a ni-
trifying activated sludge sample [92]. The same method was also used to quantify the effect
of low concentrations of a toxic compound on the kinetic parameters of ammonium oxidizing
bacteria [90]. The experimental results showed that two sludge samples reacted completely
different in the presence of a certain concentration of the same toxic compound.

DECADOS (DEnitrification CArbon source DOsage System) is a biosensor for denitrifi-
cation control in activated sludge WWTP [40, 91, 181, 312]. It is based on two simple and
robust probes (pH and ORP). The sensor provides relevant information concerning the kinetics
and stoichiometry of the denitrification process and, under some conditions of the in-sensor-
experiment, the concentration of nitrate [91]. The sensor is equipped with 3 pumps: acid, base
and carbon source dosage pumps. A sample of activated sludge mixed liquor is pumped into
a 1 litre vessel and the titration with the carbon source is started. The titration end-point is
detected by monitoring the Oxidation Reduction Potential (ORP) of the mixed liquor, based on
a particular pattern when all nitrate is consumed (nitrate knee) [181]. The proton consumption
is measured via the acid/base addition rate of a pH controller that keeps the pH at a set-point. A
pH controller is used, rather than a mere pH measurement, because this excludes the influence
of buffering components and simplifies the theoretical background of the sensor [40]. From
the volume of carbon source solution added, the nitrate concentration and denitrification rate
can be calculated. In case a readily biodegradable substrate is used as titrant, the volume of
that carbon source of unknown composition that is needed per volume unit mixed liquor to
completely remove the nitrate present can also be measured with the DECADOS.

Another denitrification based sensor is the DENICON (DENItrification CONtroller). It is
based on a titration unit similar to the one described for the BRAM system [181]. DECADOS
is a closed system, while DENICON is an open system with N2 and CO2 sparging. The infor-
mation provided by the DENICON is similar to that of DECADOS [181]. In the DENICON,
anoxic conditions are created with a mixture of N2 and CO2 bubbled through the measuring
vessel. Nitrate and sodium acetate are added to the mixed liquor in excess to the assumed max-
imum required nitrate concentration in the ratio of 1 : 5 (N : CH3COO�). A modified version
of the DENICON was used to measure VFA concentration in digested anaerobic liquors as
readily biodegradable COD. A sample of the digested effluent is mixed to denitrifying micro-
organisms in the presence of excess nitrate. The concentration of readily biodegradable COD
is then derived from the consumption of nitrates, as measured by titration [242]. This sensor
might allow for a better process control of the majority of the anaerobic reactors, which are fed
on variable feed both as flow and concentration [242].



Chapter 5

Software developments

5.1 pH titration algorithms

Commercial automatic titrators have built-in algorithms for the control of a titration exper-
iment. A complete titrator set-up consists of a dosing unit for the titrant, a pH meter and
titration algorithms. These titration algorithms perform tasks like

� pH measurement and pH stabilization detection,
� calculation of the amount of titrant to be dosed during the titration course, and
� end-point detection.

The details of titration algorithms are kept secret by the titrator developers, because of their
commercial value. Two similar titrator set-ups, with and without built-in titration algorithms
have a purchase price difference of minimume3000. In the framework of this research, only a
limited number of functionalities out of the wide range of possibilities that commercial titration
algorithms offer, are needed. Therefore the objective of this section is to develop a titration
algorithm, capable of performing just the titration task as is needed for this work.1

The commercial titrator used throughout this work is the Metrohm Titrino 716 [168], how-
ever other commercial titrators (Orion 960 Titrator Plus System and Mettler DL70 Titrator)
were also evaluated and found similar concerning the capabilities of the titration algorithms.

In the following sections, first the built-in algorithms of the Titrino 716 will be presented
and discussed; then three sections follow describing alternative titration algorithms developed
in the framework of this research. These alternatives will be classified into a data-based ap-
proach, a model-based approach and a combined data- and model-based approach.

1It should be mentioned that the research results described in this thesis are based on titrations performed with a
commercial titrator with built-in titration algorithms. The alternative titration algorithm developed in this chapter has
been implemented in a prototype sensor, however, only at the end of this Ph.D. study.
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5.1.1 The Dynamic Equivalence-point Titration (DET) algorithm

The Metrohm Titrino 716 is an advanced titrator system for laboratory use. The titration mode
determines the manner in which the titration is performed. The following titration modes can
be selected on the Titrino 716 [168]:
DET : Dynamic Equivalence-point Titration. With this type of titration, the titrant is added

in differently sized volume increments: In the flat part of the curve, the increments are
large, whereas in the steep part small increments are added. This mode is suitable for
most titrations. However, the algorithm for reagent dispensing functions perfectly only
if the curve does not deviate too much from an S-shaped profile.

MET : Monotonic Equivalence-point Titration. With this type of titration, the titrant is added
in volume increments whose size does not change throughout the entire titration. This
mode is suitable for slow titration reactions (e.g. diazotisations, coupling reactions) or
for titrations with asymmetrical curves.

SET : Set Endpoint Titration. This mode is suitable for very fast routine determinations, and
dispenses continuously until the stop criterion is reached.

Throughout this work, titration curves were taken with the DET algorithm. The choice for
this algorithm was straightforward, because of the following reasons:

� The DET algorithm tends to ensure a constant measurement point density and ensures a
constant weight of all pH regions for further data processing.

� The SET algorithm does not take into account electrode kinetics and equilibration times;
therefore it is not useful in the framework of this research.

� The MET algorithm with a medium volume step works too slow in the pH regions where
the buffer capacity is high (e.g. pH< 4 or pH> 10) and works too fast in the low buffer
capacity regions (e.g. pH 7), with as consequence a lack of data points in the low buffer
capacity regions.

The technical details of the DET algorithm are not available for the end-user, except that
the algorithm is sensitive to deviations from the S-shape: : : However, the available titration
parameters that can be tuned by the user illustrate the basic functioning of the algorithm. The
most important titration parameters of the DET algorithm are:

� Measurement point density (0�9): 0 is the highest density. For a value of 4 (default),
experimental results show a point density that typically varies between 2 and 20 mea-
surement points per pH unit. An example of a titration, with the lowest and highest
possible measurement point density in the DET algorithm, is shown in Figure 5.1.

� Minimum increment: Minimum volume to be dispensed between 2 successive titration
points. The DET algorithm always dispenses 3 times this volume at the beginning of the
titration.

� Titration rate: Dosing rate for increments (default = maximum).
� Signal drift: Drift criterion for measured value acquisition (default 1mV min�1).
� Equilibration time: Waiting time for measured pH value acquisition. It is used in com-

bination with the signal drift. The algorithm proceeds to the next point when the signal
drift criterion or the equilibration time criterion is reached (default = 60s).

� Stop pH: End pH value. The algorithm stops when the stop pH or the stop volume is
reached.
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Figure 5.1: Lowest (a) and highest (b) measurement point density with the DET [168] algo-
rithm for a titration of 10ml oxalic acid 0.1N in 150ml water with NaOH 0.1N as titrant

� Stop volume: Maximum allowed titrant volume for a complete titration.

Besides the titration parameters, there are also parameters related to equivalence-point eval-
uation. In the framework of this research, equivalence-point determination was only used for
titrations of e.g. oxalic acid, for the calculation of the exact normality of the NaOH titrant.

Despite the fact that the DET algorithm gave satisfactory results throughout this work, a
number of remarks about this algorithm are given below. First, the measurement point density
controls only partially what we want to realize, i.e. a constant∆pH step, or in other words
a constant number of measurement points per pH unit. This equidistant measurement point
density is advantageous for the further data processing, more particularly for the calculation
of the buffer capacity from the titration profile, because this calculation is based on a moving
window parabolic regression on the raw titration data. The DET algorithm gives a high or
low measurement point density in regions with respectively high or low buffer capacities. This
often results in too low measurement point densities in these parts of the titration curve that
are very important for the later data processing part, e.g the region around pH 7. This is
clearly illustrated in Figure 5.1. Plot (a) with the lowest measurement point density realizes
a density of 9 points between pH 3 and 4 (a high buffer capacity region), and only 5 points
between pH 6 and 7 (a low buffer capacity region). Plot (b) with the highest measurement
point density, realizes for the same pH regions 16 and 7 points respectively. The minimum
realized volume increment between pH 6 and pH 7 was 60µl, which is still above the minimum
increment volume, that was set to 10µl in this example. Based on this, one can conclude
that the measurement point density parameter mainly controls the number of points in the high
buffer capacity region (often the less interesting part of the curve), but does not highly influence
the number of points in the low buffer capacity region. Further it is not possible with the DET
algorithm to obtain a titration curve with a constant, and user-adjustable∆pH step.

Second, the successively realized∆pH steps during the course of a titration show slow and
fast changes which cannot be controlled by the user. This is illustrated in Figure 5.2. Plot
(a) shows a titration curve of oxalic acid, titrated with a measurement point density of 4, the
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default value. Plot (b) are the calculated successive∆pH values from plot (a). The titration
curve was taken with a well maintained pH electrode and under the best possible laboratory
conditions. The first 3 steps are steps of 10µl, the minimum dispensable volume, which is one
of the DET titration parameters presented before. Based on these 3 steps, a first relevant∆pH
of 0.03 is realized. Then the titration algorithm slowly increases the∆pH to 0.1, and keeps this
pH step for a number of points. After this, the titration algorithm slowly increases its pH step
size to about 0.2 units, until the point where the equivalence-point is almost reached. Around
the equivalence-point, the∆pH is not stable and varies between 0.2 and 0.45. In that region,
the titrator controller also reaches two times its saturation value for the minimal increment
volume (10µl, indicated with an arrow). From this∆pH analysis, it can be concluded that
the titration algorithm uses other rules for the titration advancement than a constant∆pH. The
primary function of the DET algorithm is to detect and quantify end-points, and relatedKa

values (inflection points) of simple buffer systems.
From Figure 5.2(b) it can be suggested that the DET titration algorithm initially proceeds

with a constant, and positive second derivative, followed by a region with second derivative
equal to 0 (in particular the region that starts after the inflection point of the oxalic acid buffer,
indicated with a filled symbol on the plot). The∆pH’s in the final part of the titration curve
are more irregular, and more difficult to interpret in function of the titration algorithm. Further
the ‘Instructions guide’ [168] mentions also something about the second derivative approach,
but without any details: “The evaluation of EP’s is based on the zero crossing of the second
derivative with a Metrohm correction for the distortion of the curve from superimposed jumps”.
Both the end-point andpKa value are inflection points on the titration curve, which points to
the necessity of a second derivative analysis of the titration data. From this, one can conclude
that the DET algorithm is based on a second derivative analysis, in function of inflection point
determination, but that for the purpose of this work, a first derivative approach (constant∆pH)
would be sufficient. Further, a second derivative analysis is very sensitive to data taken under
unideal circumstances (e.g. noisy data). This will be illustrated in the next point.

Third, some remarks can be made when the DET titration algorithm is used in situations
where the recorded titration curve differs from an ideal smooth, S-shaped titration curve. Sit-
uations where the titration curve deviates from the ideal case are manifold:

� pH electrode related: fouled diaphragm, electrolyte level too low, electrode too slow,: : :
� pH amplifier related: electrical interferences, noisy amplification, ground loops,: : :
� Titrant related: contamination with e.g. CO2 in NaOH titrant.
� Dosing unit related: air bubbles in the tubings,: : :
� Sample related: Slow chemical reactions, exchanges with atmosphere,: : :

Two such examples are given in Figure 5.3. In this particular case, some problems existed
with the pH electrode, where the electrolyte level was no longer high enough to ensure the
necessary positive outflow of electrolyte to the solution. At first sight the electrode seemed to
work correctly, so the problem related to the low electrolyte level was not noticed immediately.
The plots (a)+(c) and corresponding plots for∆pH (b)+(d) illustrate 2 noisy titration curves
of oxalic acid. The DET algorithm was set to find 1 equivalence-point, and then stop the
titration (as only oxalic acid was present, it was considered that the algorithm would find only
1 equivalence-point, similar as in Figure 5.2). However in both cases the algorithm stopped too
early, far before the real equivalence-point. Plots (c) and (d) shows a situation where the∆pH



5.1 pH titration algorithms 101

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12

pH

ml NaOH 0.1 N added

(a)

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45 50 55

∆p
H

Measurement point

(b)

Figure 5.2: Titration curve (a) and corresponding steps in pH for successive titration points (b)
for a titration of 10ml oxalic acid 0.1N in 150ml water with NaOH 0.1N as titrant (the arrows
indicate that the minimum allowable volume was dosed; the filled symbol on the titration curve
corresponds with thepKa value of oxalic acid as determined by the DET algorithm)

is even negative. From a theoretical point of view this is not possible, because consecutive
alkali additions should result in a pH increase. This phenomenon is e.g. also noticed when an
air bubble from the titrant tubing is brought into the titration vessel, or when the pH electrode
is not stable yet when the pH measurement is already performed. In such cases, the DET
algorithm typically will give a too high titrant step volume for the next point in the titration
curve. Data as shown in Figure 5.3 also create difficulties in further data processing, e.g. for
the calculation of the buffer capacity, which is based on the first derivative of the titration data.
A typical problem in the calculation of derivatives is the amplification of noise present in the
original raw data. From these findings one can conclude that the DET algorithm is not a very
robust algorithm for our purpose, and it can possibly fail in situations deviating from the ideal
situation. This is justified by the fact that the algorithm was developed for a titrator that is used
in a laboratory environment, under perfect measurement conditions, and for equivalence-point
detection only.

It was mentioned before that the majority of the titration curves in this research were taken
in the lab with the Titrino 716 titrator and with the DET algorithm, because this titration system
was readily available in the lab and generally gave good results. Titrations where the DET
algorithm failed were repeated again until an acceptable titration curve was obtained. How
the DET algorithm performs on more complex samples is illustrated in Figure 5.4, which is a
titration curve of a destructed and diluted manure sample, containing at least carbonate, ortho-
phosphate and ammonium (see chapter 8). The DET algorithm realizes∆pH steps that vary
between 0.02 and 0.4 pH units.

The aim of this work includes the development of a field applicable on-line measuring sys-
tem, and therefore alternative, tailor-made algorithms are worked out in the next three sections.
Three different approaches are taken: First, an approach is proposed where the titration algo-
rithm only relies on the titration points (data) which are already collected (this corresponds
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Figure 5.3: Titration curves (a)+(c) and corresponding steps in pH for successive titration
points (b)+(d) for a titration of 10ml oxalic acid 0.1N in 150ml water with NaOH 0.1N as
titrant (an arrow indicates that even negative∆pH’s can be found in real curves)
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Figure 5.4: Titration curve (a) and corresponding steps in pH for successive titration points (b)
for a titration of a destructed and diluted animal manure with NaOH as titrant
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with the DET algorithm, so no a priori knowledge about the sample is used). This is the data-
based approach. In the second approach, a priori knowledge about the buffer systems that
are to be expected is introduced in the titration algorithm. This approach is the model-based
approach. The third approach is a combined data- and model-based approach. The two most
important criteria that were used for the algorithm development are:

� a user-defined set-point for∆pH, and
� a robust algorithm that will not give irregular jumps in∆pH when the titration is not

performed under ideal conditions.

5.1.2 Data-based titration algorithm

In its simplest form the data-based approach is an algorithm that can predict the consecutive
titrant volume steps to be dispensed, in order to change the pH with the set-point∆pH. It is
based on an extrapolation of the titration curve based on the titration points realized thus far.
Two approaches are presented in this section: First, a moving window regression approach,
and second, a proportional-integral (PI) controller approach.

In the first approach, practically, a moving window containing thex last titration points
is used to predict the next point. An initial titration sequence to initiate such extrapolation
algorithm is a necessity (e.g. in a similar approach the DET algorithm uses the first 3 titration
points that are a result of dispensing 3 times the minimal incremental volume). Two further
questions need to be answered in this framework:

� What is the number of titration points that will be used in the moving window?
� Which mathematical algorithm will be used for the prediction of the next point?

Experimental analysis of typical titration curves has shown that in a situation in which each
titration step is around 0:2�0:5 pH units, the ideal number of points in the moving window is
more than 2, but less than 5. Thus 3 or 4 points make a good compromise between robustness
or smoothness of the prediction (more points = more robust) and the actual dynamical response
of the pH signal (less points = better pH dynamics). In the following examples 3 points will be
used for the window width.

If 3 points are used for the window width, the possible choices for the mathematical model
that can be used for the prediction of the next point are rather limited. A linear or parabolic
regression model are reasonable choices that will be further discussed. Two examples with
both a linear and parabolic regression model are given in Figure 5.5. Under ideal measurement
conditions, i.e. a smooth S-shaped titration curve, the parabolic regression is superior to the
linear regression, especially in the low and high pH regions. This is illustrated in Figure 5.5(a),
and can be interpreted as follows: Assume that one has titrated until point 3, and we want
to predict the next titrant volume step∆V for a chosen set-point∆pH = 0:2. The predicted
volume steps with respectively the linear and the parabolic regression are∆V1 and∆V2. It can
be seen that the linear regression line predicts a too high volume step∆V1 for the desired set-
point ∆pH, whereas the parabolic regression line predicts an almost perfect volume step∆V2.
In the high pH range (not shown on the figure), the linear regression predicts too small volume
steps, whereas the parabolic regression predicts correct volume steps. In the pH range 5�8,
both regression types give similar results. Thus, in an ideal case, the parabolic regression is
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Figure 5.5: Illustration of linear and parabolic regression used for the data-based titration algo-
rithm. Plot (a): titration curve taken under ideal circumstances. Plot (b): non-ideal situation.
Points 1, 2 and 3 are used in the regressions

the best choice. The situation is, however, completely different when titrations are performed
under non-ideal circumstances (see also section 5.1.1). Such example is given in Figure 5.5(b).
Assume again that one has titrated until point 3, and we want to predict the next titrant volume
step∆V for a chosen set-point∆pH = 0:2. For the illustrated example, the titrant volume
step needed to increase the pH with the set-point∆pH cannot be predicted with the parabolic
curve. This is explained by the noisy data in that part of the titration curve, and consequently a
calculated parabolic regression curve that completely fails to represent the shape of the titration
profile. On the other hand, the linear regression over-predicts with a factor 2 the volume step
to be dispensed. Therefore, algorithms based on extrapolation of titration points fail in case
the titration curve differs from ideality. In other words these algorithms are not very robust,
a disadvantage for e.g. field-use of such algorithm. This finding corresponds with what was
illustrated in section 5.1.1, because the DET algorithm is also a data-based algorithm.

In the second approach, a PI-controller is evaluated for the purpose of constant∆pH titra-
tion. The PI-model in discrete notation is shown in equation (5.1).

∆V(k+1) = ∆V(k)+KC ε(k)+
KC

τI

k

∑
i=1

ε(i) (5.1)

k : titration point number
∆V(k) : volume pulse to be dispensed at titration pointk
KC : proportional control constant
τI : integral control constant
ε : ∆pHrealized�∆pHset-point

The performance of this PI-controller was evaluated with simulation examples, and optimum
values forKC andτI were searched. However, no optimum values were found, and no decent
control was realized. The non-linear behaviour of the pH in function of the volume steps of
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titrant added is pointed to be the reason why this type of control was not working. Thus it
was concluded that PI-control is not suited for the purpose of constant∆pH titration. This is in
correspondence with literature findings, that pH control by conventional means is very difficult
because of the highly non-linear response of the pH value to the addition of acid or base [188].
A more advanced and adaptive pH controller was successfully implemented for a pH wastew-
ater neutralisation process [135]. The controller is based on a neural network, and both the
network structure and the related parameters (weights) are updated on-line. Another success-
ful pH controller, based on fuzzy logic was found useful for pH control of laboratory reactors,
waste streams,: : : [188]. The pH controller is based on fuzzy logic because it permits the
inclusion of subjective knowledge, often based on experience and not on a theoretical model.
The knowledge supplied to the control system includes e.g. prior experimental results. How-
ever, for the purpose of titration algorithm development, there is theoretical knowledge about
the system available. Therefore it should be worthwhile to include this a priori knowledge in
the algorithm. Such type of titration algorithm is the topic of the next section.

5.1.3 Model-based titration algorithm

Up to this point, no a priori knowledge about the sample was used in the titration algorithm.
However, in most cases, quite a lot of information about the sample to be titrated is available.
Useful information can be a list of buffer systems that are to be expected, as well as a first,
rough, estimation of their concentrations. As all titrations in this work are in aqueous solution,
we know that the water buffer system will be the most significant buffer when the pH< 4 or
pH> 10.

Therefore, in this approach, the prediction of the volume step that has to be dispensed in
order to have a change in pH equal to the desired∆pH, will be based on a mathematical model
(called titration model) of a hypothetical titration curve calculated with the a priori knowledge
that is available about the sample (expected concentrations andpKa values of buffers). A major
concern of this approach is the effect incomplete a priori information has on the titration curve
that is being recorded. For instance one may lack information concerning the buffers that are
present, or the expected concentrations may be deviating too much from the real concentra-
tions.

A specific computer program (dyntit) was developed to simulate a model-based titration
based on 2 input files, containing a ‘real’ titration curve and a ‘titration model’ curve respec-
tively. The first input file contains the data of a titration experiment conducted with the labo-
ratory titrator and the DET algorithm. The second input file contains simulated titration data,
based on the assumed composition of the sample to be titrated. With this software, it was
possible to investigate the effect of the ‘titration model’ on a recorded titration curve, but with-
out having to conduct the model-based titration experimentally. The principle implemented in
dyntit is illustrated in Figure 5.6. A two-step sequence is needed for the calculation of each
titration point withdyntit. Assume that one has titrated until pH 4, and we want to simulate
the next titrant volume step for a chosen set-point∆pH= 0:8. 2 First, the actual pH and the
set-point pH (which is 4.8) are needed to calculate with the titration model curve the volume
∆V to be dispensed (points (1) and (2) on Figure 5.6(a)). Second, this volume step is used to

2A more realistic set-point would be∆pH= 0:1�0:2, however, for illustration purposes a higher set-point is taken.
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Figure 5.6: Illustration of model-based titration as implemented in the softwaredyntit. Plot
(a): ‘titration model’ curve. Plot (b): ‘real’ titration curve. The numbers (1)�(4) indicate the
consecutive steps in the algorithm

calculate with the real titration curve the realized∆pH (points (3) and (4) on Figure 5.6(b)).
As illustrated, linear interpolation between the real experimental data points is used for this
purpose. In this example the realized∆pH = 1:27, thus the model-based titration algorithm
has overpredicted the required titrant volume step at pH 4. The new actual pH value is now
5.27, and the two-step sequence can be repeated to calculate the next point of the hypothetical
recorded titration curve. Summarized,dyntit generates a hypothetical model-based recorded
titration curve, based on a titration model and a real experimental titration curve. Two exam-
ples below will illustrate the model-based titration approach usingdyntit.

A first example is a study based on a simulated titration curve that was introduced in sec-
tion 2.2.5 on page 21. This titration curve (here the ‘reality model’ because it represents the
‘real’ titration curve indyntit) represents an aquatic sample containing some carbonate, ortho-
phosphate, ammonium and an organic acid buffer. A simulation study was set up to investigate
the effect of a wrongly defined ‘titration model’ in terms of the model versus the real buffer
concentrations. For the simulation study, two titration models were tested: Model 1 incor-
porates all buffers that are present in the ‘reality model’, but with concentrations equal to 50
% of the real concentrations (except the water buffer concentration, which is always 55.5M).
Model 2 is a similar model, but with concentrations equal to 200 % of the real concentrations.
With these 2 titration models, and the ‘reality model’, the model-based titration algorithm was
tested. The pH interval was chosen between pH 3 and pH 11, and the set-point∆pH was cho-
sen at 0.1 pH units. Thus, for each simulated titration step, model 1 or model 2 were used
to predict the volume needed to increase the pH with 0.1 units, and the ‘reality model’ was
used to find the realized∆pH. The obtained simulation results are shown in Figure 5.7. At
the beginning and at the end of the titration experiment, the model-based titration algorithm is
able to maintain the set-point∆pH of 0.1 units. This is due to the water buffer which is the
main buffer in the pH regions outside the pH interval 4�10, and which is correctly defined in
the titration model (55.5M). Inside the pH interval 4�10, it can be seen that if the titration
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Figure 5.7: Realized∆pH values in a simulated titration experiment using a model-based titra-
tion algorithm. Plot (a): Titration model 1, concentrations 50 % of real concentrations. Plot
(b): Titration model 2, concentrations 200 % of real concentrations

model underestimates (model 1) or overestimates (model 2) the real buffer concentrations, the
realized∆pH steps are smaller or bigger than the set-point∆pH respectively. Further, the ratio
between realized and set-point∆pH equals the ratio between the titration model concentrations
and the real concentrations. For example for model 1, the realized∆pH is 0.05, compared to
the set-point 0.1; and the model 1 buffer concentrations are 50 % of the real concentrations.
However, it would be dangerous to generalize the latter remark for all practical cases, because
the ‘real’ titration curve in this example is in fact also the result of a simulation. Therefore a
second example, using experimental titration curves will be presented below.

The second example is a more realistic approach, based on experimental titration data of
destructed animal manure samples (see chapter 8) obtained with the Metrohm 716 automatic
titrator. This example will illustrate the usefulness of model-based titration using a ‘titration
model’ obtained with the mean composition of destructed animal manure samples. 19 different
manure samples were used for this study, originating from cattle or pig farms. The destructed
and 6.6 times diluted manure samples were titrated with 0.1N NaOH from pH 3 to pH 11. The
titrated sample volume was 165ml. The mean concentrations of NH+4 ando-PO4 calculated
on the 19 samples were used to define the ‘titration model’. This titration model was then used
as an input for the programdyntit, and 19 ‘new’ hypothetical titration curves were generated
using the model-based titration algorithm. The concentrations of 3 selected samples, together
with the mean concentrations of ammonium and ortho-phosphate, are presented in Table 5.1.
Figure 5.8 shows the pH steps obtained with the model-based titration algorithm, with a set-
point∆pH equal to 0.1. Plot (a) shows the result of Sample 1, which is a sample with one of the
highest concentrations for both ammonium and phosphate. Because the concentrations of the
‘real’ curve are significantly higher than the ‘titration model’ concentrations, the realized∆pH
values are up to a factor 3 lower than the set-point 0.1. Plot (b) shows the results of Sample
2, which is the lowest loaded sample in the study. Consequently, the realized∆pH values are
continuously higher than the set-point, up to a factor 5. In all cases, the realized∆pH values
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Table 5.1: Concentrations of ammonium and ortho-phosphate of three selected manure sam-
ples and the concentrations used in the titration model used for the evaluation of the model-
based titration algorithm

Concentrations in destructed Model-based
and diluted manure samples titration results

mgNH+
4 -N l�1 mg o-PO4-Pl�1

Sample 1 36.0 9.7 Figure 5.8(a)
Sample 2 7.6 0.5 Figure 5.8(b)
Sample 3 21.4 9.4 Figure 5.9(d)
Titration Model 18.7 5.9

varied between 0.03 and 0.5, which are still acceptable in the framework of buffer capacity
modelling. When these results are compared with the results that were obtained with the DET
algorithm (see e.g. Figure 5.4), one notices that the model-based∆pH results are less noisy
than the DET results.

5.1.4 Combined data- and model-based titration algorithm

A data- and a model-based titration algorithm were presented in sections 5.1.2 and 5.1.3 re-
spectively. It was already suggested that the data-based algorithm is sensitive to fail when
noise or irregular jumps are encountered in the titration data. The model-based algorithm is
suggested to be much more robust on this point, because the titration data that are already ob-
tained arenot used for the prediction of the volume to be dispensed for a next titration point.
On the other hand, the data-based algorithm is expected to keep the realized∆pH close to the
set-point∆pH in different types of samples (low and high loaded samples), compared to the
model-based approach where the realized∆pH is only close to the set-point∆pH when the
titration model does not deviate too much from the ‘real’ titration curve. The question is now
if it is worthwhile to combine the 2 approaches and thus use a combined data- and model-based
titration algorithm.

An example introduced in section 5.1.3 (Table 5.1, Sample 3) was evaluated for this pur-
pose, and the results are shown in Figure 5.9. Plots (a) and (b) show the experimental titration
curve and the corresponding pH steps as obtained with the automatic titrator in the lab, using
the DET algorithm. Plot (c) is the application of a linear and parabolic regression method for
the data-driven prediction of the next point of the titration curve with a∆pH set-point of 0.1
(see also section 5.1.2). A moving window width of 3 points gave the best results, and is shown
on the graph. The parabolic regression method keeps the∆pH very close to the set-point, ex-
cept for 2 peaks in the beginning and in the middle of the curve. The linear regression line
overpredicts the volume to be dispensed in the beginning of the titration, and underpredicts the
volume to be dispensed in the last part of the titration. Similar to Figure 5.8, plot (d) represents
the ∆pH values realized when the model-based titration algorithm is used. Because the real
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Figure 5.8: Realized∆pH values in a simulated titration experiment using a model-based titra-
tion algorithm. Plot (a): Based on an experimental titration curve of Sample 1 (high concen-
trations). Plot (b): Based on an experimental titration curve of Sample 2 (low concentrations).

buffer concentrations of manure sample 3 are higher than the mean concentrations used in the
titration model, the∆pH values in plot (d) are somewhat lower than the set-point 0.1.

Based on this example, and the results from the previous sections, it can be concluded that:

� Both the data-based and the model-based algorithm give satisfying results.
� The parabolic algorithm is superior to the linear one for maintaining the desired∆pH.
� The model-based algorithm is less sensitive to irregular jumps in the realized∆pH.

Therefore a combined data- and model-based algorithm is suggested for a robust and accurate
titration algorithm with constant∆pH steps and with a user-defined set-point for∆pH. The
idea is to have a dual algorithm that predicts the volume to be dispensed with both approaches,
and a built-in selector that can select from point to point which of the two calculated volumes
will be dispensed. A flowchart of such dual algorithm is presented at the left side of Figure
5.10. The algorithm is proposed for field-use, thus it starts with some diagnostics test to verify
if the titration system is ‘ready for use’. These diagnostics can include a liquid level check
in the titration vessel, an electrode check, etc. The selector algorithm needs to be chosen in
function of the particular application. The selector can either strictly select to dispense the
volume calculated with the model-based or with the data-based approach; or it can select a
weighted average of the calculated volumes obtained with both approaches. A high weight for
the model-based approach can be chosen if robustness or fail-safety are important, or a high
weight for the data-based approach can be chosen if it is uncertain that the titration model is
representative for the titrated sample. A more complicated selector would, for instance, include
a detection of a possible irregular jump for a data-based volume step, thus resulting in a lower
weight factor for the data-based approach.

A possible alternative for the selector algorithm is a sequential algorithm, with a model-
based volume step, supplemented with a data-driven factor to correct the model-based volume
for previously realized∆pH’s. Such correction factor approach is illustrated at the right side of
Figure 5.10. An example is worked out in the next paragraph.
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algorithm based on the experimental titration curve
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Figure 5.10: Flowcharts of a combined (left side) and sequential (right side) model- and data-
based titration algorithm for constant∆pH titration

A discrete first-order correction factorζ was applied to the model-based calculated volumes
in order to keep the realized∆pH’s closer to the set-point∆pH.

ζ(k+1) = ζ(k)�λ ε(k) andζ(0) = 1 (5.2)

∆V(k) = ∆V(k)model� ζ(k) (5.3)

k : titration point number
ζ : correction factor
λ : first order constant
ε : ∆pHrealized�∆pHset-point

∆V(k) : volume pulse to be dispensed at titration pointk
∆V(k)model : volume to be dispensed as calculated with the titration model

In equation (5.3), it can be seen that the volume pulse to be dispensed depends on a model-
driven term∆V(k)model and a data-driven termζ(k). Equations (5.2) and (5.3) were imple-
mented in the programdyntit (introduced in section 5.1.3) to simulate a model-based titration.
The example that is presented in section 5.1.3 (Table 5.1, Sample 3) was evaluated again, and
some results are shown in Figure 5.11. The effect of the algorithm tuning parameterλ was
evaluated and for this particular example a value ofλ between 2 and 15 gave significantly
better results compared to the results obtained without the correction factor, presented in Fig-
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Figure 5.11: Realized∆pH values in a simulated titration experiment using a model-based
titration algorithm with a first-order correction factorζ. Plot (a)λ = 4. Plot (b)λ = 10

ure 5.9(d). For higherλ values the algorithm became unstable due to an overcompensating
effect of the data-driven correction factorζ, resulting in a heavily oscillating∆pH around its
set-point.

The 19 different manure samples that were used to define the titration model (section 5.1.3),
were evaluated for the effect ofλ and it was found thatλ = 4 is a safe value, in terms of stability
of the algorithm, giving satisfying∆pH steps around the set-point∆pH. The results forλ = 4
for 2 selected samples are shown in Figure 5.12. This figure can be compared with Figure 5.8,
that presents the same examples, but without the correction factorζ.

The combined data- and model-based algorithm includes at least the following user-defined
titration parameters:

� Set-point∆pH: The desired increment in pH between 2 successive titration points.
� Minimum increment, signal drift, equilibration time, stop volume and stop pH. These

parameters are explained in section 5.1.1.
� For the model-based approach: A list of buffers, theirpKa(’s) and concentration(s).
� For the data-based approach: Moving window width for the regressions.
� For the selector: depending on the user-defined selector algorithm.
� For the data-driven correction: First order constantλ.

5.1.5 Validation of the combined titration algorithm

The sequential model- and data-based titration algorithm developed in section 5.1.4 was eval-
uated for its usefulness under more realistic conditions. A preliminary set-up for field-use was
realized with a titration vessel, a computer controlled NaOH dosing unit, a high impedance
pH amplifier and an industrial PC with the titration algorithm. Thirty destructed and diluted
manure samples (10 pig, 10 cattle, 10 poultry) were used for the validation experiment. The
mathematical titration curve model used in the titration algorithm was based on the mean com-
position of respectively pig, cattle and poultry manure (see also chapter 8).
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Figure 5.12: Realized∆pH values in a simulated titration experiment using a model-based titra-
tion algorithm with a first-order correction factorζ. Plot (a): Sample 1 (high concentrations).
Plot (b): Sample 2 (low concentrations).

The titration curve and the corresponding∆pH steps for 1 selected sample are shown in
Figure 5.13. The results for the other samples are comparable. Despite the fact that the pH
measurement was not very stable yet (signal noise of 3mV or 0.05 pH units), the titration
algorithm succeeded within acceptable deviations to maintain the set-point∆pH of 0.2 during
the complete titration, and for the 30 different tested samples. Based on these results, it is
concluded that the developed titration algorithm is sufficiently robust for field-use.

5.2 Tableau-method based simulation software

5.2.1 Software objectives

The programbctabis an acronym for “Buffer Capacity simulation using the chemical equilib-
rium Tableau method”. A compact and convenient way to represent stoichiometric data of a
chemical equilibrium problem is in the form of a ‘tableau’ [198]. This tableau representation
is treated in section 3.5 on page 55. The tableau method is used to solve chemical equilibrium
problems, including complexation and precipitation reactions. In section 3.5.3 on page 61, it is
illustrated that, with some slight modifications of the original tableau concept (e.g. excluding
H+ as a component), it is possible to adapt this method for buffer capacity simulation. Exten-
sions to also include ionic activity corrections and precipitation reactions in the buffer capacity
simulation are presented respectively in sections 3.5.4 on page 63 and 3.5.5 on page 64.

From literature, it was found that several software programs exist for chemical equilibrium
problems. Two of them were evaluated in more detail for the purpose of buffer capacity mod-
elling. The first program is MINTEQA2 [10], which has found wide use in environmental
application areas (see section 2.6 on page 37). The second program is MAGIK [20], which is
a set of mathematical routines to solve complex chemical equilibria problems. This software
uses similar matrix concepts as in the tableau method (see section 3.6 on page 67).
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Figure 5.13: Experimental titration curve (a) and corresponding steps in pH for successive
titration points (b) obtained with the combined model- and data-based titration algorithm and
with a preliminary titration set-up for field-use

The program MINTEQA2 [10] is a speciation program. For a particular set of chemi-
cal components specified by the user, MINTEQA2 will equilibrate the chemical solution to a
specified pH and/orEh, to the partial pressure of a gas phase and/or to a specified solid phase
composition. The molality and activity of the free ions and aqueous complexes are calculated.
In addition, the percent distribution of each component among the aqueous species is deter-
mined. Metal adsorption submodels and the calculation of saturation indices of solid phases
are also included in the package. The program consists of a number of FORTRAN routines, of
which the source code is freely available for the user. The interaction with the user is via in-
and output files. The problem should be entered in a specific format file, and this file is then
processed by the main program. The results enter in an output file. For a beginning user, it was
experienced that it is difficult to understand and use the program when one is not very familiar
with the chemical background of the included processes. Even for a small chemical problem,
one should consider all possible phenomena, even if one is not interested in those phenom-
ena. The simulation of a titration experiment and the related calculation of buffer capacities is
not readily implemented. However, it should be possible to add this functionalities with some
modifications in the source code by an experienced user. It was concluded that MINTEQA2 is
a very powerful program, with many features, but not well suited for the purpose of simulation
of buffer capacity curves in the framework of this work.

The program MAGIK [20] is less extensive in possibilities compared to MINTEQA2.
However, it can simulate titration curves for complex chemical equilibrium systems. The pro-
gram is written in FORTRAN, and the source code is also available. The chemical equilibrium
problem should be entered by the user in the form of a FORTRAN subroutine. This user-
defined subroutine contains the chemical equilibrium equations and the mass balances. In
case of possible precipitation reactions, a set ofif : : : thenstatements should be entered by
the user. The organization of the chemical problem in a set of FORTRAN commands is not
well-structured, compared to the tableau method. As a consequence, it is difficult to overview,
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modify, extend or correct a chemical problem that is entered as a FORTRAN subroutine. The
main program is an implementation of what is described in section 3.5.1 on page 55, i.e. the
Newton-Raphson method of steepest descents and partial derivative calculations to construct
a Jacobian matrix. Buffer capacity calculations are not readily implemented in the software.
A major disadvantage of this program is that for each equilibrium problem, the user-defined
source code needs to be modified, and recompiled with a FORTRAN compiler.

Based on the experiences mentioned above, it was concluded that in the framework of this
research, the best option was to develop a new program,bctab, to simulate acid-base titrations
and calculate buffer capacity curves. The objectives for this software are:

� A representation of the chemical problem in a tableau, which can easily be modified.
� A direct output of buffer capacities in function of a user-defined pH range.
� The availability of a facility to recognize pH intervals where precipitation can occur,

based on a user-defined list with possible precipitates and their solubility products.
� User interaction with in- and output files only, to keep the program simple, easy-to-use

and hardware platform independent.
� A possibility to integrate this software in the softwarebomb, presented in section 5.3.

Similar to the programs discussed above,bctabis based on equilibrium models. Therefore,
it is assumed that the chemical system is at equilibrium at each point of the titration. This
equilibrium assumption is important to remember because natural systems can be kinetically
constrained.

5.2.2 Software implementation

The programbctabis developed in C++, and can be compiled on different computer platforms.
For this research, a C++ compiler (GNU project C++ compiler, v2.7) on a unix workstation
(SGI Origin 200) was used for the development ofbctab. The algorithm for matrix inversion
was adopted from the library ‘Numerical Recipes in C’ [229]. A PC version ofbctab(compiled
with DJGPP, DJ’s GNU Programming Platform, free C++ compiler) and a set of illustrative
examples is also made available for other users.

The methodology ofbctabis based on an implementation of the tableau method, described
in section 3.5.3 on page 61. The criterion for convergence was slightly modified compared to
the criterion found in [251], and earlier presented in equation (3.99):

jYj j
Cj

< η for all components (j = 1, : : : m) (5.4)

Yj : remaining error in the material balance for componentj
Cj : total concentration for componentj
η : convergence parameter
The buffer capacityβ is calculated from the species concentrations found with the tableau
method, as illustrated in equation (3.108). It was first investigated and then concluded that
the relatively simple Euler approach for the calculation of the first derivative was sufficiently
accurate. The step value∆pH in the Euler algorithm is a user-defined value. Ionic interaction
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effects were implemented as described in section 3.5.4 on page 63. Therefore, an extra user-
defined activity coefficientγH+ is included in the software.

5.2.3 Functionalities description

The programbctabhas an elementary user interface and is command-line driven. The neces-
sary input data is supplied to the program by a specific format input file, with a fixed name
‘intab’. An illustrative example of a valid ‘intab’ file is given below.

# bctab input file version 3.0
2 # number of components (H+ is NOT a component)
9 # number of species
1 # number of solubility products to be tested
1 # 0 or 1 for log-file function off or on
1 # activity coefficient for H+
1e-07 # convergence criterion for Newton-Raphson algorithm
3 # simulation start pH
11 # simulation stop pH
.1 # simulation step pH
0.05 # internal delta pH for Euler algorithm

H3PO4 Ca(2+) H+ log_K e- CaHPO4(s)
0.0019 0.0012

H3PO4 1 0 0 0 0 0
Ca(2+) 0 1 0 0 2 1
H2PO4- 1 0 -1 -2.2 -1 0
HPO4(2-) 1 0 -2 -9.4 -2 1
PO4(3-) 1 0 -3 -21.8 -3 0
CaH2PO4+ 1 1 -1 -0.8 1 0
CaHPO4(aq) 1 1 -2 -6.7 0 0
CaPO4- 1 1 -3 -15.3 -1 0
OH- 0 0 -1 -14 -1 0

0.002 0.00125 -6.66

The 10 user-defined parameters are explained in the ‘intab’ file, to make editing convenient
for the user. Lines or parts of lines starting with # are considered as comment. The tableau
information is entered in the ‘intab’ file in a format as illustrated above. Fields can be separated
by spaces or tabs. The first column contains the labels of the species. The next columns
contain the information of the components. More particularly, in each component column,
the following information is supplied: a component label, an initial value for the component
concentration (mol l�1) used in the Newton-Raphson algorithm, the stoichiometric coefficients
and the total concentration (mol l�1). If m components are defined, then the firstm species
should be in the same order as the components. The tableau information finishes with a column
for the stoichiometric coefficients in H+, and the logK values for each species. A following
column with the labele�, contains the charge of each species. This information is needed
in equation (3.109), for the calculation of the buffer capacity. The next columns are optional
columns, that contain the precipitation conditions to be tested at each pH value. In the example,
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the last column should read as: Precipitation of CaHPO4(s) will occur if

1 log[Ca2+]+1log[HPO2�
4 ]>�6:66 (5.5)

The command

bctab myfile

will read the ‘intab’ file, and will generate 2 or 3 new files, with the following names:
myfile.sim : A two-column file with the simulation results. The first column contains the

pH values, and the second column contains the corresponding buffer capacitiesβ
(meq l�1 pH�1).

myfile.spc : A multi-column file with the species concentrations and precipitation information.
The first column contains the pH values, and for each species, a column with the
concentration (mol l�1) is added. And last, for each precipitate to be tested, a
column is foreseen for the message ‘precip’, if precipitation is expected at the
corresponding pH.

myfile.log : This file is only generated when the corresponding parameter in the ‘intab’ file is
set to 1. This file contains detailed iteration information of the Newton-Raphson
algorithm and can be consulted in cases where convergence or numerical prob-
lems are noticed.

Throughout this work, several illustrative stoichiometric tableaus have been developed, as
input for the programbctab. They are given in Tables 3.1, 3.2, 3.3, 8.11 and 8.13.

5.3 Buffer capacity optimal model builder

5.3.1 Software objectives

The programbombis an acronym for “Buffer capacity optimal model builder”. The three main
objectives for this software are:

� Calculate buffer capacity curves from titration curves.
� Fit mathematical models to experimental buffer capacity curves with a non-linear least

squares optimization routine. The optimized parameters are concentrations and/orpKa

values of selected buffer systems included in the mathematical buffer capacity model.
� Stepwisely and automatically construct the optimal buffer capacity model for samples

with a lack of a priori knowledge about the buffers that are expected in the sample.

A literature research on advanced buffer capacity modelling software yielded rather poor
results. Some software implementations and their related applications are described in more
detail in chapters 3 and 4. The majority of available software programs were developed for one
specific application, e.g. the determination of VFA and HCO�

3 in anaerobic digesters (more
examples in section 4.4.2 on page 89). Such programs are not portable to other application
areas for other types of buffer systems. One important exception is the software described in
[101, 102], which is also discussed in section 4.4.2 on page 89. This computer program (TI-
TAN) analyzes titration data for an unknown solution, and is developed for ‘general purpose’
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use. However, no references more recent than 1982 about this program, its applications, or
similar programs were found.

In two research projects related to this work (AQMON and FASTNAP, described in re-
spectively chapters 6 and 8), the final goal is to develop an on-line, robust and field-usable
buffer capacity based sensor. The central part of this sensor is the data processing, which is the
softwarebomb. Both projects are driven by commercial final goals, and need specific require-
ment or criteria for the developed software, such as stability, fail-safety, reusability, robustness,
: : : Therefore it was chosen throughout the software development to use only techniques and
methods that have proven to be stable and robust.

5.3.2 Buffer capacity calculation

The buffer capacityβ as a function of pH may be obtained by plotting the inverse of the slope
of the titration curve versus pH (see section 2.2.6 on page 22). Several numerical algorithms
for derivative calculations were tested on their accuracy and robustness. These algorithms are
based on a moving window, that progresses over the experimental data points (ml, pH), and
then calculates the first derivative in the middle or midpoint of the window. A compromise
had to be found between the smoothness and the dynamical response of the first derivative.
Titration curves can be considered as relatively smooth signals, thus derivative calculations are
expected to be easily done. First, a geometrical algorithm for differentiation of an experimental
function at a point [148] was evaluated for the purpose of this work. The approach is based
on the existence of an arc of circle through any three experimental points. It was found that
a window width of 3 points is not enough to obtain smooth derivative results. Two other ap-
proaches, based on least squares regression of experimental data points in the moving window,
were evaluated. These approaches are a linear and parabolic regression throughn experimen-
tal points, withn a user-defined window width. Both methods are implemented inbomb. The
parabolic regression with a window width of 5 points was found to give the best results. The
S-shaped titration curve is very well suited for fitting parabolic functions through a moving
window containingn points of the experimental titration curve. This is illustrated in Figure
5.14, where some examples of parabolic functions fitted to the raw titration data are shown.

For a set of data points (xi , yi), i = 1, 2,: : : n, a parabola of the form

y= a+bx+cx2 (5.6)

is fitted by the least squares method. The regression coefficientsa, b, andc are calculated by
solving the following system of linear algebraic equations:2

4 n ∑xi ∑x2
i

∑xi ∑x2
i ∑x3

i
∑x2

i ∑x3
i ∑x4

i

3
5 �
2
4a

b
c

3
5=

2
4 ∑yi

∑xiyi

∑x2
i yi

3
5 (5.7)

The first implemented solution for equation (5.7) was an analytical approach (the so-called
method of Cramer). A symbolic solution for equation (5.7) can easily be written down and
implemented. However, accumulated roundoff errors in the solution process swamped the true
solution. This problem typically arises when a set of linear algebraic equations is almost singu-
lar, or when the number of equations is too large [229]. However, in this application, the major
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Figure 5.14: Four selected parabolic regression functions fitted to experimental titration points
in a moving window withn = 5, with the purpose of buffer capacity calculation. The filled
symbols are the midpoints of each window

cause for numerical failures was none of the two above mentioned reasons. Rather, the differ-
ences in the order of magnitude of the equation coefficients (e.g.n versus∑x4

i ) was the culprit.
The numerical procedure does not fail algorithmically, however, it returns a wrong solution, as
can be discovered by direct substitution back into the original equations. Therefore, another
solution technique, which is more robust for roundoff errors, was implemented. A routine for
Gauss-Jordan elimination with full pivoting was adopted from the library ‘Numerical Recipes
in C’ [229]. The full pivoting is important, because Gauss-Jordan elimination without pivoting
is numerically unstable in the presence of roundoff errors [229].

In the programbomb, the buffer capacities are calculated as function of equidistant pH
values. Consequently, an equally distributed weight for the buffer capacities as function of the
pH is realized in the further non-linear parameter optimization. Often, in experimental titration
curves, the less interesting pH ranges (mostly at low and high pH) contain most titration points
as function of pH (see two examples in Figure 5.1). If no special care is taken, the parameter
optimization procedure will put more weight on the less interesting pH ranges, because those
pH ranges contain more titration points.

Practically, the buffer capacity at a particular pH is calculated by searching the nearestn
neighbouring points in the titration profile, followed by the calculation of the regression coef-
ficientsa, b andc with equation (5.7). Taking into account the definition of the buffer capacity
(see section 2.2.6 on page 22) and the first derivativedy

dx of equation (5.6), the calculation
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formula forβ becomes

β =
N
V

���� 1
b+2cx

���� (5.8)

β : buffer capacity at a particular pH (meq l�1 pH�1)
b, c : parabolic regression coefficients
x : titrant volume, calculated as function of pH with equation (5.6) (ml)
N : normality of the titrant (eq l�1)
V : sample volume in the titration vessel (l )
Note that the absolute sign in equation (5.8) ensures a correctβ for both acid and base titrations.
A number of diagnostics are calculated for each buffer capacity point, including the coefficient
of determination of the parabolic regression and a singular matrix detection in the Gauss-
Jordan elimination method. If numerical problems are detected, an automatic and temporary
switch from the parabolic regression algorithm to the more robust, but less accurate linear
regression algorithm is included in the softwarebomb.

5.3.3 Non-linear function minimization

Finding the minimum of a multivariate functionf is a common problem in many research
fields. For example, fitting a model to a set of data points involves minimizing the deviation of
the model’s predictions from the data points [86]. In this particular case, a mathematical buffer
capacity model is fitted to a set of calculated buffer capacity data points. The sum of squared
errors define the cost function value, which is mathematically written as follows:

f (θ) =
N

∑
i=1

(βi � β̂i(θ))2 (5.9)

f (θ) : error function or cost function to be minimized
θ : parameters in the buffer capacity model that are allowed to vary (concentrations and/or

pKa values of selected buffers)
N : number of buffer capacity points
βi : experimental buffer capacity at pointi
β̂i(θ) : simulated buffer capacity at pointi
The purpose is to find as efficiently as possible estimations ofθ that makef (θ) minimal. How-
ever, the minimum can either beglobal (truly the lowest function value) orlocal (the lowest
function value in a finite neighbourhood and not on the boundary of that neighbourhood) [229].
Unfortunately, there is no perfect non-linear optimization algorithm, and consequently, finding
the global minimum for non-linear problems cannot be guaranteed [229]. A helpful visualiza-
tion of a non-linear cost function is a landscape with hills and valleys [318]. The minimization
algorithm should search now the lowest point in this landscape, but can eventually end up in
a local minimum instead of the global minimum. Related to this, a property of non-linear
function minimization is that the minimum found by the algorithm (global or local) can be
influenced by the choice of the starting values for the parametersθ [318].
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For linear problems (e.g. linear regression using least squares), the parameter estimates are
easily found by differentiating the error function with respect to each of the parameters, set
these derivatives to 0, and solve the resulting system of equations for the unknown parameters.
This standard recipe, however, fails in many cases when the model function is more compli-
cated. In those cases we have to resort to numerical methods that search the parameter space
in a systematic way [86].

The most intuitive minimization technique is the method of steepest descent. The main
idea is to change the current parameter estimates in the direction of the largest decrease inf
with respect to the parameters. However, this method has some serious drawbacks, making it
slow and inefficient [86, 229]. The only search directions used in this procedure are the ones
orthogonal to the gradient at the starting point. In the case where the minimum is not located in
one of those directions from the current point, the procedure typically meanders in small steps
along a valley, instead of making large steps in the direction of the minimum. To improve
convergence, one can make use of the fact that most functions are fairly well approximated by
a quadratic function near their minima. Algorithms with this property are calledquadratically
convergent. These algorithms can be classified by the kind of information they use to find the
minimum. The first class of methods are the derivative methods. They use information on
the partial derivatives of the function. Typically, during one iteration, the matrix of second
partial derivatives is built up and used to solve for the minimum of the quadratic function.
The second class of methods are the ‘direction-set’ methods. They minimizef along a set of
directions chosen to make the algorithm quadratically convergent. This approach is taken in
Brent’s method [44], and implemented as PRAXIS [86], as will be described further in this
section. Derivative methods are generally more efficient than the direction-set methods. On
the other hand, the direction-set methods are more general and work even when derivatives are
not available. The roundoff errors involved in the calculation of derivatives are significant, and
diminish the efficiency advantage. Furthermore, methods using derivatives do have problems
in certain cases, which makes the derivative-free methods appear more stable and robust [86].

As mentioned previously, PRAXIS is an algorithm for minimization of multi-dimensional
functions. It is based on a ‘direction set’ method by Powell (1964) with some modifications
by Brent [44]. Direction-set methods consist of prescriptions for updating the set of directions
as the method proceeds, attempting to come up with a set which either (i) includes some very
good directions that will take us far along narrow valleys, or else (ii) includes some number
of ‘non-interfering’ directions with the special property that minimization along one is not
‘spoiled’ by subsequent minimization along another, so that interminable cycling through the
set of directions can be avoided [229].

This concept of ‘non-interfering’ directions, more conventionally calledconjugate direc-
tions, is worth making mathematically explicit [229]. Take some particular pointP in the
p-dimensional space, as the origin of the coordinate system with coordinatesx. Then, any
function f can be approximated by a quadratic form using Taylor series

f (x) = f (P)+∑
i

∂ f
∂xi

����
P

xi +
1
2 ∑

i; j

∂2 f
∂xi∂xj

����
P

xixj + � � �

� c�b �x+ 1
2

x �A �x
(5.10)
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where

c� f (P) b� �∇ f jP [A]i j � ∂2 f
∂xi∂xj

����
P

(5.11)

The matrixA whose components are the second partial derivative matrix of the function is
called theHessian matrixof the function atP. In the approximation of equation (5.10), the
gradient off is easily calculated as:

∇ f = A �x�b (5.12)

This implies that the gradient will vanish –the function will be at an extremum– at a value ofx
obtained by solvingA �x = b.

Moving along some directionu, the gradient∇ f will change according toδ(∇ f ) =A �(δx).
Suppose that we have moved along some directionu to a minimum and now propose to move
along some new directionv. The condition that motion alongv does not spoil our minimization
alongu is just that the change in the gradient stays perpendicular tou:

0= u �δ(∇ f ) = u �A �v (5.13)

When equation (5.13) holds for two vectorsu andv, they are said to beconjugate. Mini-
mization alongp linearly independent, mutually conjugate directions will exactly provide the
minimum of the quadratic form (5.10). For functionsf which are not exactly quadratic forms,
this will not exactly be the minimum off ; but repeated cycles ofp line minimizations will, in
due course,quadraticallyconverge to the minimum off [229]. A detailed discussion of the
praxis algorithm used in this work is given in [44, 86]. Interesting to mention is that Brent also
incorporated some random steps into the procedure to avoid ‘local minima’ problems.

It should be noted that PRAXIS does not allow one to specify constraints on the problem.
For example, it could be useful to restrict the range of values for a parameter to be optimized
(e.g. all buffer concentrations should be positive, or apKa value should be between a mini-
mum and maximum value). This is not a big problem, however, since constrained problems can
usually be converted into unconstrained ones by parameter transformations or simple penalty
functions [86]. An example of a useful parameter transformation is the scaled tan function (cor-
rected from [233]): The parameterpi within the interval betweenpmin,i andpmax,i is mapped
to the whole real axis by the transformation:

p0i = tan

�
π
2

2pi � pmax,i � pmin,i

pmax,i � pmin,i

�
(5.14)

The minimization with the unconstrained algorithm as described before is performed in the
coordinatesp0i and the solution in the original coordinates is obtained by the inverse transfor-
mation:

pi =
1
2
(pmax,i + pmin,i)+(pmax,i � pmin,i)

arctan(p0i)
π

(5.15)
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which maps the real axis to the interval betweenpmin,i and pmax,i. The other approach, the
penalty or barrier function method [205], considers inequality constraints by returning an ex-
tremely high cost function value for parameter values not fulfilling the constraints. Practical
experiences showed, however, that this algorithm had problems to proceed a descending direc-
tion along a constraint [233]. To overcome this problem, it is suggested to linearly increase
the ‘high cost function value’ in function of the distance that a constrained parameter drifts
away outside its boundaries. In other words, the high cost function plateau suggested in [205]
is replaced by a high cost function steep hill with a positive slope. The latter method is imple-
mented inbomband was found to perform without any problems.

The PRAXIS algorithm does not yield estimates of the standard deviations and the correla-
tions of the optimized parameters, although this information is very useful for the interpretation
of the optimized results. Confidence information of parameter estimates from measured data is
an important aspect of practical identifiability of highly non-linear models [50, 158, 322, 338].
In a first approach, it was attempted to use the internal matrix of search directions, which is
built up by PRAXIS, and calculate from this Hessian matrix the variance-covariance matrix of
the parameter estimates.3 However, the implementation of this method was not successful,
sometimes yielding unrealistic results. The reason for this can possibly be found in the way the
Hessian matrix is built up in PRAXIS. Direction-set methods, like PRAXIS, do not compute
the Hessian but rather compute a matrix that begins as an identity matrix and is updated on
each iteration. This matrixeventuallyconverges to the inverse of the Hessian [76]. Especially
for constrained problems, it is expected that this approach yields problems for the calculation
of the confidence information.

In a second approach, the variance-covariance matrix was calculated separately from the
parameter optimization routine PRAXIS. A method proposed by [268], and extended by Nelder
and Mead [205] was adopted to calculate the variance-covariance matrix around the minimum.
The technique is again based on the construction of a quadratic surface around the minimum of
the cost functionf . If (p+1) points inp dimensions are given byP0, P1, : : : Pp, then ‘half-way
points’ Pi j = (Pi +Pj)=2, i 6= j are calculated, and a quadratic surface to the combined set of
(p+1)(p+2)=2 points is fitted. The pointsPi may be taken as:

P0 = (θ̂1, θ̂2, : : : θ̂p)

P1 = (θ̂1+δ1, θ̂2, : : : θ̂p)

P2 = (θ̂1, θ̂2+δ2, : : : θ̂p)

...

Pp = (θ̂1, θ̂2, : : : θ̂p+δp)

(5.16)

θ̂i : the estimated optimum parameter value
δi : stepsize, a user-defined small step or a step automatically chosen as function of the ma-

chine precision. In order not to exceed the parameter boundaries (constrained optimiza-
tion), the step may be chosen positive or negative.

3The relationship between the Hessian matrix and the variance-covariance matrix is illustrated in the second ap-
proach starting in the next paragraph.
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A matrix with the step sizesδi is called the direction matrixQ.

Q =

2
6664

δ1 0 � � � 0
0 δ2 � � � 0
...

...
...

...
0 0 � � � δp

3
7775 (5.17)

The quadratic approximation to the function in the neighbourhood of the minimum is used
again, see equation (5.10). The coefficients of the Hessian matrixA are estimated as:

aii = 2(yi +y0�2y0i) i = 1; : : : p (5.18)

ai j = 2(yi j +y0�y0i�y0 j) i 6= j (5.19)

whereyi is the function value atPi andyi j that atPi j . The Hessian or information matrix in the
original coordinate system is given by4

2(Q�1)0 �A �Q�1 (5.20)

so that the variance-covariance matrix is given by

1
2

Q �A�1 �Q0 (5.21)

In our case, the sum of squares of residuals is minimized, and normal equal-variance inde-
pendent errors are assumed, thus this matrix must be multiplied by 2σ2 [205]. As usualσ2

is estimated by SSE=(N� p), N being the total number of observations, andp the number of
parameters fitted.

The latter method was implemented inbomb. The effect of the step sizesδi was investi-
gated, and it was found that the final results were not much influenced for different choices
of the δi ’s. This points to the robustness of the algorithm. In the programbomb, a stepsize
δi = 10�5 θ̂i was implemented. The choice of the stepsize should also depend on the rounding
errors, and it is advised in [205] that the stepsize would be at least 103 times that rounding error.
Further, for a number of buffer capacity models, a comparison was made between our imple-
mentation and the non-linear regression algorithm of SPSS (Statistical Product and Service
Solutions, version 7.5). The results (i.e. the optimized parameter values and the variance-
covariance matrix) were, except for some small rounding errors, exactly the same. One of the
drawbacks of the implemented method from [205] is that it requires a considerable number of
additional function evaluations [233]. However, in our particular case, the extra calculation
time necessary to run this extra algorithm is negligible compared to the overall data processing
time.

Besides PRAXIS, other optimization packages were evaluated too. Among them, the com-
mercial OPTIM module within the M++ Class Library [76] was tested within thebomben-
vironment. This library contains 8 well-known algorithms for parameter optimization (e.g.
Newton-Raphson, conjugate gradient, steepest descent, Brent’s,: : : ). The M++ Class Library

4Note that in the original paper [205], the factor 2 was erroneously omitted [206].
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needs to be linked with self-written software in C++. An attractive feature of this package is
that it allows algorithm switching during optimization. E.g. the steepest descent algorithm
is insensitive to poor start values but can be slow to converge, whereas the Newton-Raphson
method may converge quickly but often requires good start values. This suggests that a useful
optimization strategy might be to start with the steepest descent method, and at some point in
the optimization switch to the Newton-Raphson method. This software was performing satis-
factory, and was found very flexible due to the many included features. However, M++ was
rejected for possible use in the field, because it was not robust enough. In approximately 1
% of the optimization trials, the program completely crashed within the optimization module,
from which it was impossible to recover and proceed with the main program. In those cases, it
was mostly sufficient to slightly change the initial conditions or some other parameter settings,
to obtain a correct optimization. For field-use, however, this cannot be tolerated. User-support
was not available to solve the problem, despite numerous attempts.

A comparative study of linear, non-linear and combined parameter optimization techniques
for the purpose of buffer capacity optimization problems is described in [340]. A neural net
based optimization technique was found to be very performing, however, is strictly limited to
linear problems. For the linear buffer capacity model presented in equation (3.59) on page
49, this neural net based technique was successfully used for problems in which only buffer
concentrations had to be estimated. However, in practical situations, it is also necessary to have
the option to estimateKa values, and those are highly non-linear parameters in the model. The
Levenberg-Marquardt algorithm [214] has the property that it separately estimates the linear
and non-linear parameters. The linear parameters are estimated by linear regression, and the
non-linear parameters are estimated with a second derivative technique. In an example where
4 concentrations and 1Ka value had to be estimated, the Levenberg-Marquardt algorithm was
very performing, as only 1 parameter needed to be estimated with an iterative technique. The
other 4 parameters were estimated afterwards with linear regression. However, there are a
number of drawbacks for this algorithm. First, the choice of the initial values is quite important
not to end up in a local minimum. Thus, the algorithm is not so robust. Second, the method is
not suited for constrained optimization. And third, the separation of the linear and non-linear
parameters requires extra model manipulations, and is only possible for simple buffer capacity
models (see section 3.3 on page 44). It is not applicable for the more complicated approaches
in section 3.4 on page 52 and section 3.5 on page 55. Therefore, for the above mentioned
reasons, the PRAXIS algorithm was found to be the best choice for our purposes.

5.3.4 Automatic buffer capacity model building

If there is a lack of a priori knowledge about the buffer systems that are to be expected in
a titrated sample, it is not straightforward to construct and end up with a ‘satisfying’ buffer
capacity model. In the initial phase of this work, the model building process was performed
manually. The fit between the experimental and the simulated buffer capacity curves was
evaluated visually, and buffer systems were added, shifted,: : : until a satisfying model was
found. In a later phase, an automatic model building algorithm has been developed [299]
and evaluated. Buffer capacity models of a large amount of experimental titration files were
automatically built, and a number of shortcomings in the algorithm were found. Based on these
results, the model building algorithm was modified and further developed. The final algorithm
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is implemented inbomband used as such in this work (see results in chapter 9). There are
major differences between our algorithm and the algorithm described by Gordon in [101,102]
(see also section 4.4.2 on page 89). First, the Gordon algorithm does not allow variation on the
pKa values, except for the lastly introducedpKa value and its closest neighbouringpKa value.
Second, the Gordon algorithm uses a priori information about the buffers to be expected in the
sample only to a minor extent. Third, the Gordon algorithm is only considering monoprotic
buffer systems. And fourth, the Gordon algorithm does not use advanced model selection
criteria.

To describe efficiently the automatic buffer capacity model building algorithm, it is neces-
sary to introduce a specific terminology:

Automatic model building: Procedure in which an initial model or zero model is stepwisely
modified. This is generally a sequence of model extensions and/or model tunings.

B-buffer: A candidate buffer for model extension. Each B-buffer has a ranking number indi-
cating its priority for incorporation in the buffer capacity model. It can be a known or a
blind buffer.

Blank buffer: A known buffer, but without a particular attributed name.

Blind buffer: A monoprotic unknown buffer used for model extension, of which the acidity
constantKa is automatically determined in the automatic model building procedure.

Final model: Automatically selected best model using a model selection criterion.

Known buffer: A buffer of which the acidity constant(s) are exactly known or known within
a minimum-maximum interval. It can be a named or a blank buffer.

Model extension: Model building subprocess in which the first ranked B-buffer is incorpo-
rated in the buffer capacity model.

Model tuning: Model building subprocess in which the minimum and/or maximum bound-
aries of the acidity constant of a blind buffer are modified.

Named buffer: A known buffer, with an attributed name, e.g. phosphate, ammonium,: : :

Optimization: Non-linear parameter estimation with the PRAXIS algorithm to fit the buffer
capacity model to the experimental buffer capacity curve. Which concentrations and/or
acidity constants of known and/or blind buffers that are to be estimated is user-defined.

Residual: Difference between the experimental and the simulated buffer capacity for a partic-
ular pH value (symbolε).

Run: A sequence of consecutive positive or negative residuals in function of the pH.

Zero model: The user-defined buffer capacity model containing the a priori information of
the buffer systems to be expected in the titrated sample. More particularly, this a priori
information includes the concentration range(s) and the acidity constant(s) range(s) of
one or more buffer systems.
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Figure 5.15: Flowchart of the automatic model building algorithm

Model building algorithm

The model building algorithm is designed for an automatic, stepwise and robust buffer capacity
model development. The objective of the algorithm is to combine a priori information of the
sample buffer composition with lack of fit information to build buffer capacity models, fit those
models to the experimental data and obtain concentrations of known and unknown buffers. An
overview of the different steps in the algorithm is given in Figure 5.15.

The algorithm starts with the optimization of the zero model. If automatic model building is
requested by the user, the residuals and runs obtained with the zero model are calculated. This
information is then used to define the candidate pH ranges for model extension. A number
of criteria to define the best position for model extension in the buffer capacity profile are
described and investigated in [299]. Among them are the number of points per run, the mean,
median, mode, minimum, maximum, sum and standard deviation of the residuals within each
run. The selection of the pH for model extension based on the highest mean or median of
the residuals within each run gave acceptable results. However, it was experienced that a
high number of points within each run is also important for an appropriate position for model
extension. The criterion ‘sum of residuals’ within each run combines the above mentioned
criteria. Therefore, the best candidate pH (and correspondingpKa) for model extension was
obtained when the run with the highest positive sum of residuals was selected, and within that
run the pH with the maximum residual value [299]. This is illustrated in Figure 5.16.
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Figure 5.16: Experimental and simulated buffer capacity curves (a) and calculated residuals
(b), with indication of the runs, the best candidate run for model extension, and the best candi-
date pH within that run

The runs are classified towards their priority as candidate positions for model extension.
Then, the algorithm will evaluate for the best ranked run if model extension is possible at
that pH position (e.g. check if that position and its neighbourhood is not occupied by other
buffers). If model extension is not possible at the first ranked pH position, the algorithm
proceeds to the second ranked run for model extension, etc. A number of rules for model
extension are described below. When an extended model is optimized, the algorithm proceeds,
if necessary, with one or several model tuning cycles. Model tuning is the process in which
the boundaries (minimum and maximum) for acidity constants of blind buffers that have been
estimated, are moved if the estimated value is too close to one of its boundaries. The rules
for model tuning are described and illustrated below. After each model tuning cycle, the tuned
model is optimized again, and the tuning cycle is eventually repeated several times. Finally,
after each tuning session, the model building stop criteria are calculated and evaluated. Such
criterion can simply be to enter a maximum defined number of buffers in the model, or a more
advanced model selection criterion based on e.g. a statistical test. These criteria are presented
in section 5.3.5.

Model extension

The basic idea of model extension is that the ranges (defined by their minimum and maximum
boundaries) of all acidity constants to be estimated may never overlap with each other. Ini-
tially, this ‘limitation’ was not set [299]. However, it was found that the optimization routine
ran sometimes into difficulties (e.g. local minima), and the final results could not always be
interpreted. A number of possible scenarios for model extension are illustrated in Figure 5.17.
In short, the rules for model extension that are implemented inbombare the following:

� The blind buffers have a user-defined maximum and minimum width for their acidity
constant range. This is illustrated in scenarios 1�3 in Figure 5.17.



5.3 Buffer capacity optimal model builder 129

pH
Selected run for model extension

maximum
residual

(1)

(6)

(5)

(4)

(3)

(2)

model extension not possible

known known

blindknown

blindblind

blind blind

Figure 5.17: Six different scenarios for buffer capacity model extension in the neighbourhood
of the candidate pH value. Each scenario shows the situation before and after model extension.
The double arrow intervals indicate the optimization boundaries, the filled circles indicate the
position of an estimatedpKa value and the cross marks with their interval indicate the position
of the new blind buffer
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Figure 5.18: Three different scenarios for buffer capacity model tuning. Each scenario shows
the situation before and after model tuning. The double arrow intervals indicate the optimiza-
tion boundaries, the filled circles indicate the position of an estimatedpKa value and the cross
marks with their interval indicate the boundary problem and its solution

� A known buffer in the buffer capacity model always has a user-defined range which is
never changed during the automatic model building process. For example, when the user
defines an ammonium buffer with acidity constant between 9.0 and 9.4, no blind buffer
with an acidity constant in that range will enter in the model.

� If model extension with a blind buffer is suggested at a position where another blind
buffer is already present in the model, the acidity constant range of the latter blind buffer
is symmetrically narrowed with a user-defined factor. However, the estimatedpKa value
of the latter blind buffer should always stay included in the narrowed interval. There-
fore, the algorithm will eventually narrow the interval asymmetrically or not narrow the
interval at all. This is illustrated in scenarios 4�6 in Figure 5.17.

� The initial value for the concentration of a blind buffer is calculated as the mean of the
minimum and maximum concentration defined by the user.

� If model extension with a blind buffer is not possible at the position of the first ranked
candidate run, then the algorithm proceeds with the other candidate runs. The algorithm
stops if the model building stop criterion is reached, or if no more runs are available for
model extension.

Model tuning

A buffer capacity model has to be tuned when the estimated acidity constant of a blind buffer is
too close to one of its boundaries. The minimal needed boundary distance is user-defined, as a
fraction of the actual range of the blind buffer. As mentioned before, the boundaries of known
buffers are never changed by the automatic model building algorithm. A number of possible
scenarios for model tuning are illustrated in Figure 5.18. In short, the rules for model tuning
that are implemented inbombare the following:
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� If the estimated acidity constant of a blind buffer ‘touches’ one of its boundaries, the
range is shifted (tuned) until the estimated value is centralized (if possible) within the
allowed range. As mentioned earlier, it is not allowed that ranges of acidity constants
overlap with each other. This is illustrated in scenarios 1 and 2 in Figure 5.18.

� If the range of a blind buffer cannot be shifted because it is restricted by another blind
buffer, then a new boundary value is calculated for both blind buffers. More particularly,
the mean of the two estimated acidity constants is used as respectively the maximum
and the minimum boundary for the two blind buffers. This is illustrated in scenario 3 in
Figure 5.18.

� Several blind buffers can be tuned together in one tuning cycle. Each tuning cycle is
followed by a parameter estimation of the tuned model. Several tuning cycles can be
performed before the algorithm proceeds to the next stage.

A specific model coding system is used to make the distinction between model extension
and model tuning within a model building process. The zero model is coded as model 0.0, and
the first model extension results in model 1.0. If model tuning cycles are performed, this will
result in model 1.1, 1.2, etc. The next model extension will result in model 2.0 etc.

5.3.5 Optimal buffer capacity model selection

When the automatic model building algorithm described in section 5.3.4 is applied, one ends up
with a set of mathematical models that have all been fitted to the experimental buffer capacity
data. The next logical step is a selection of the most appropriate model for the purpose the
model will be used for. Model structure selection techniques, also called model structure
characterization, are widely available from literature [107, 157, 264, 319].

Choosing the best possible model for a particular problem, always induces an error that has
two components [319]: The first component, thebias error, is due to the error between the true
model structure and the model structure chosen from the set of candidate models with restricted
complexity. The second component, thevariance error, is caused by the particular realization
of the noise in the limited number of data used in the modelling process. The variance error
also includes the effect of overparametrization: the more parameters included in the model,
the more uncertain their values will be. IfN is the number of data points andp the number of
parameters in the model, the variance error typically decreases like1

N , but increases likep. The
bias error, on the other hand, will decrease asp increases, but is independent fromN [99, 319].
The goal of model structure characterization will be to find the compromise between bias error
and variance error. An important principle in this framework is theparsimony principle, that
says that out of two or more competing models which all explain the data well, the model with
the smallest number of independent parameters should be chosen [264].

The techniques and considerations that can be used for structure characterization can be
split into different categories [157]:

� A priori considerations: Certain aspects are independent of the data set and can be evalu-
ated a priori, before the data have been measured. For example, the need for a carbonate
buffer in any buffer capacity model can be justified by the fact that there is always some
CO2 in the titrant or headspace entering the sample during titration.
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� Techniques based on preliminary data analysis: These techniques are also termeda pri-
ori structure characterization, and can be classified into two groups of methods. One
type of methods is generally applicable (e.g. pattern recognition using neural networks
[217]), while the other type of methods take advantage of specific features of the model
structures present in the set of candidate models [322, 323, 325]. A major difficulty of
feature-based methods is finding appropriate features, therefore only limited successful
applications are found.

� Comparing different model structures: These techniques are also termeda posteriori
structure characterization. If the computational demand for parameter estimation is high,
it is clearly advantageous to apply a priori methods, since they only require estimation
of the parameters of the selected model. However, if a posteriori methods show good
selection results (as is most often the case), a combined strategy can be devised in which
a priori methods are used to make up a first ranking of the different structures, after which
a posteriori methods are used to make the final selection among the model structures with
highest ranking [315].

In the framework of this research, the promising idea to use a priori structure characteriza-
tion for the selection of the best buffer capacity model was investigated in more detail in [217].
A pattern recognition algorithm, successfully used for e.g. the recognition of hand written
characters, was adapted for the recognition of the number of buffers present in a titrated sam-
ple. A set of titration curves resulting from prepared samples with exact known composition
were used to test the feature-based pattern recognition algorithm, however, without satisfying
results. Two major conclusions could be drawn: First, it is very difficult to find appropri-
ate features to distinguish titration or buffer capacity curves containing 1, 2 or more buffers
with varying concentrations. Second, for the majority of the ‘field’ samples used through-
out this work, the a priori available information about the samples (e.g. presence of carbon,
ortho-phosphate, ammonium, etc.) was mostly so ‘rich’ that the tested a priori structure char-
acterization technique could not bring extra information. For the above mentioned reasons,
it was chosen to implement inbombonly a posteriori structure characterization techniques.
As mentioned earlier, a posteriori techniques require more calculation time, however, for the
purpose of this work, this aspect is not so important because the calculation requirements are
much lower than e.g. for the non-linear differential equation models described in [315].

A number of a posteriori structure characterization techniques found in literature were
evaluated for buffer capacity model selection in [299]. Seven useful model selection criteria
are implemented inbomband are presented below. The first two criteria are statistical tests,
the four next criteria include information about the model ‘complexity’ and the last criterion is
a robust criterion taking into account the limitations of the parameter estimation routine.

The Run-test or testing changes of sign

Let R be the number of changes of sign in the residual sequenceε(1), ε(2), : : : ε(N), with N
the number of data points. E.g. for the illustrated example in Figure 5.16,R is equal to 6.
Under the assumption of the null hypothesisH0: ε(t) is a zero mean white noise, a test statistic
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can be constructed [264]:

u=
R�N=2p

N=2
�!N (0, 1) (5.22)

If the residual sequence is a zero mean white noise, the test statistic is distributed as a standard
normal distribution. Hence a 95 % confidence interval foru is given byjuj � 1:96 forα = 0:05.
If several models have to be compared with each other, the model with the lowest number of
parameters for whichjuj is lower thanuα is selected. A particular remark about the use of
the number of runs for model selection, is that this method can be applied only if the process
description is nearly perfect [320].

The F-test for comparison of model structures

Let M1 andM2 be two model structures, such thatM1 � M2 (for exampleM1 corresponds
to a lower-order model thanM2). In such a case they are called hierarchical model structures
[264]. Further, let SSEi denote the sum of squared errors (or residuals) in the structureMi

(i = 1, 2) and letMi havepi parameters. Although the concept is applicable for different loss
functions, the presented F-test is based on the least squares approach. The test statistic

Fw =
(SSE1�SSE2)=(p2� p1)

SSE2=(N� p2)
(5.23)

is used to compare the model structuresM1 andM2. If Fw is ‘large’, one concludes that the
decrease in loss function from SSE1 to SSE2 is significant and, hence, that the model structure
M2 is significantly better thanM1. On the other hand, whenFw is ‘small’, the conclusion is that
M1 andM2 are almost equivalent and according to the parsimony principle the smaller model
structureM1 should be chosen as the more appropriate one. The selection criterion becomes:

Fw > Fα; p2�p1; N�p2 �!M2 is selected

Fw < Fα; p2�p1; N�p2 �!M1 is selected
(5.24)

Akaike’s information criterion (AIC)

Another approach to model structure selection consists of using a criterion that in some way
penalizes the decrease of the loss function with increasing model complexity. A widely used
criterion is Akaike’s information criterion [264, 319]:

AIC = N log

�
SSE
N

�
+2p (5.25)

with SSE the sum of squared errors, andN andp as defined before. The first term in equation
(5.25) decreases with increasingp (increasing complexity) while the second term penalizes
too complex (overparametrized) models. The model structure with the smallest criterion value
is selected. This selection criterion was designed for models fitted by least squares. However,
Akaike-type criteria applicable to a wide variety of loss functions are also available [47].
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Final Prediction Error (FPE)

The FPE criterion is similar to the AIC criterion, but with a different penalizing term [264,
319]:

FPE=
SSE
N

�
1+

2p
N� p

�
(5.26)

The FPE criterion only holds for selection among model structures which are flexible enough
to include the true system. In a model structure selection application one will also have to
consider underparametrized model structures. For such structures, equation (5.26) loses its in-
terpretation as an estimate of the ‘final prediction error’. Nevertheless, equation (5.26) can still
be used to assess the difference between the prediction ability of various underparametrized
model structures [264]. FPE and AIC have been proven not to be consistent (i.e., do not guar-
antee that the probability of selecting the wrong model tends to zero as the number of data
points tends to infinity) [264]. For example, if in particularp2� p1 = 1, the risk of choosing
the larger structureM2 whenM1 is more appropriate, will asymptotically be 15.7 % [264].

Schwarz or Bayesian Information Criterion (SIC or BIC)

An example of a consistent criterion is the Schwarz Information Criterion [123, 319]:

SIC= N log

�
SSE
N

�
+ plog(N) (5.27)

If p� 8, it can easily be seen that SIC will tend to favour models of lower complexity than
those chosen by AIC. Discussions between the original authors of both criteria [8, 253] learn
that it is not possible as such to point to one criterion being superior to the other one. Both
criteria are based on different assumptions, making comparisons difficult.

Corrected Akaike’s information criterion (AICC)

The AIC criterion is a biased criterion, leading to overfitting or the selection of overdimen-
sioned models. Therefore, a bias corrected form of the AIC criterion was introduced [121,
122]:

AICC = N log

�
SSE
N

�
+N

1+ p=N
1� (p+2)=N

(5.28)

The bias correction is of particular use when the sample size is small, or when the number of
parametersp is a moderate to large fraction of the sample sizeN [122].

Smallest SSE criterion

This very simple criterion favours the model with the lowest SSE as such. Theoretically spo-
ken, this is not an equilibrated structure characterization criterion, because it does not include
any penalization term for the model complexity. However, practical experiences have learned
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that for models with increasing complexity, the parameter estimation routine can run into dif-
ficulties to find the real minimum of the cost function. Therefore, it can happen that a simple
model structureM1, which is a subset of a more complex modelM2 (M1�M2), does fit better
(lower SSE) than the more complex model. If such a problem remains unnoticed, it is a danger-
ous situation to proceed with the automatic model building, because new blind buffers could
be added at wrongly chosen pH values. Thus, when the smallest SSE criterion is selected, the
automatic model building process will continue until the parameter estimation routine returns
a higher SSE for a more complex model compared to a previous and simpler model. Even if
another model selection criterion is chosen inbomb, the user will always be warned if the SSE
of a more complex model is higher than the previous model, but the model building cycle will
eventually proceed until the selected criterion is fulfilled.

5.3.6 Software implementation

The programbombis developed in C++, and can be compiled on different computer platforms.
For this research, a C++ compiler (GNU project C++ Compiler, v2.7) on a unix workstation
(SGI Origin 200) was used for the development ofbomb. The algorithm for Gauss-Jordan
elimination was adopted from the library ‘Numerical Recipes in C’ [229] and the PRAXIS
algorithm in C is available from the author at no cost [86]. A PC version ofbomb(compiled
with DJGPP, DJ’s GNU Programming Platform, free C++ compiler) is also available.

5.3.7 Functionalities description

The programbombhas an elementary user interface and is command-line driven. The param-
eter settings and the mathematical model descriptions are supplied to the program through a
specific format input file, with a fixed name ‘in’. The titration data (ml, pH) should be stored
in a file with extension ‘.dat’. An illustrative example of a valid ‘in’ file is given below.

############### BOMB version 8.0 parameter and model input file ##############
# * The settings are in a predefined order: do not change the order !! #
# * A line of comment should start with a ’#’ (FIRST character on the line) #
# Comments can also be added at the end of each line, starting with ’#’ #
# * Values can be separated by tabs or spaces #
#=============================================================================
# Software related settings
#
8 # software version number
#=============================================================================
# Installation related settings
#
0.15 # volume titration vessel (l)
#=============================================================================
# Experimental data related settings
#
0.1015 # calculation factor ml -> meq for the raw titration data
1 # algorithm for buffer capacity calculation (0: linear, 1: parabolic)
5 # window width for the calculation of the buffer capacity (ODD !)
1 # Ionic strength correction: Activity coefficient for H+
#=============================================================================
# General settings for simulation and optimization
#
1 # 0: simulate, 1: optimize, 2: only buffer capacity calculation
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0 # optimization routine (0: PRAXIS, 1: not available)
3 # minimum of the pH simulation interval
11 # maximum of the pH simulation interval
.1 # pH simulation step
1 # model to be used (0: not available, 1: linear model)
0 # info from optimizer (0: to screen, 1: to file)
10 # minimum correctly ended trials for optimizer
20 # maximum allowed trials for optimizer (if NaN values are returned!)
#=============================================================================
# Optimization control settings
#
0 # controls the quantity of iteration info (0: none, 1, 2, 3: most)
1.0e-8 # tolerance for precision solution
4 # number of times tolerance criterion should be fulfilled to stop
0.01 # steplength
1 # PRAXIS internal scaling parameter (1: no scaling)
1 # is the optimization problem illconditioned? (0: no, 1: yes)
10000 # max number of function calls for optimization
1 # confidence information calculation (0: no, 1: yes)
#=============================================================================
# Automatic model building settings
#
1 # Automatic model building (0: off, 1: on)
1 # How to stop model building (0: add all B-buffers, 1: model selection)
7 # Selection criterion: 1..7: AIC, AICc, SIC, FPE, Run-test, F-test, SSE
0.05 # Alpha for Run-test and F-test
0.005 # Boundary touch condition: touch if distance from boundary < x * range
2 # Symmetrical narrowing factor for blind buffers ; should be > 1
4 # Maximum number of optimization cycles within 1 model building cycle
0.25 # Minimum width for pKa-interval of BLIND-buffers
2 # Initial and maximum width for pKa-interval of BLIND-buffers
#
##############################################################################
# Model descriptions for simulation, optimization and model extension
# A line contains 7 items for each model component:
# * Name (MAX 15 chars), it is advised not to edit the names
# * Initial value for optimization or fixed value for simulation
# * Minimum: minimum boundary condition for optimization
# * Maximum: maximum boundary condition for optimization
# * Molecular weight: only for concentrations!
# If = 0 : the concentration values are expressed as mol/l
# If < > 0 : the concentration values are expressed as mg/l
# * Ranking number for B-buffers that will be used for model extension
# * Optimization settings for the zero model (0: fixed, 1: optimize)
#
# NAME--------> INITIAL MIN MAX MOLW B- OPT # comments
PKA_WATER 15.744 15.62 15.82 0 0 0 # water
PKA1_CARBON 6.3 6.2 6.5 0 0 1 # carbonate
PKA2_CARBON 10.3 9.5 10.5 0 0 0 # carbonate
PKA1_PHOS 2.15 2.1 2.2 0 0 0 # phosphate
PKA2_PHOS 6.7 6.3 6.9 0 0 1 # phosphate
PKA3_PHOS 12.35 11.5 12.5 0 0 0 # phosphate
PKA_AMMON 9.25 9.15 9.35 0 0 1 # ammonium
PKA_SOAP 3.8 3.0 4.0 0 0 1 # soap
PKA_SULPHATE 1.99 1.98 2.0 0 0 0 # sulphate
PKA_BLANK1 8 7 8 0 0 0 # monoprotic
PKA_BLANK2 5 5 6 0 0 0 # monoprotic
PKA_BLANK3 7 0 0 0 0 0 # monoprotic
PKA1_BLANK4 0 0 0 0 0 0 # diprotic
PKA2_BLANK4 0 0 0 0 0 0 # diprotic
PKA1_BLANK5 0 0 0 0 0 0 # diprotic
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PKA2_BLANK5 0 0 0 0 0 0 # diprotic
PKA1_BLANK6 0 0 0 0 0 0 # triprotic
PKA2_BLANK6 0 0 0 0 0 0 # triprotic
PKA3_BLANK6 0 0 0 0 0 0 # triprotic
PKA_BLIND1 6 2 11 0 1 0 # blind 1
PKA_BLIND2 8 2 11 0 2 0 # blind 2
PKA_BLIND3 7 2 12 0 3 0 # blind 3
PKA_BLIND4 7 2 12 0 4 0 # blind 4
PKA_BLIND5 7 2 12 0 5 0 # blind 5
PKA_BLIND6 7 2 12 0 6 0 # blind 6
PKA_BLIND7 7 2 12 0 0 0 # blind 7
PKA_BLIND8 7 2 12 0 0 0 # blind 8
CONC_WATER 55.5 0 0 0 0 0 # water! in mol/l
CONC_CARBON 1.0 0.75 5.5 44 0 1 # carbonate
CONC_PHOS 10 0 25 31 0 1 # phosphate
CONC_AMMON 20 0 45 14 0 1 # ammonium
CONC_SOAP 0.0001 0 0.005 0 0 1 # soap
CONC_SULPHATE 0.0 0 0 0 0 0 # sulphate
CONC_BLANK1 0.0 0 0 0 0 0 # monoprotic
CONC_BLANK2 0.0 0 0.001 0 0 0 # monoprotic
CONC_BLANK3 0.0 0 0.001 0 0 0 # monoprotic
CONC_BLANK4 0.0 0 0 0 0 0 # diprotic
CONC_BLANK5 0.0 0 0 0 0 0 # diprotic
CONC_BLANK6 0.0 0 0 0 0 0 # triprotic
CONC_BLIND1 0.0 0 0.001 0 1 0 # monoprotic
CONC_BLIND2 0.0 0 0.001 0 2 0 # monoprotic
CONC_BLIND3 0.0 0 0.001 0 3 0 # monoprotic
CONC_BLIND4 0.0 0 0.001 0 4 0 # monoprotic
CONC_BLIND5 0.0 0 0.001 0 5 0 # monoprotic
CONC_BLIND6 0.0 0 0.001 0 6 0 # monoprotic
CONC_BLIND7 0.0 0 0.001 0 0 0 # monoprotic
CONC_BLIND8 0.0 0 0.001 0 0 0 # monoprotic
##############################################################################

The user-defined settings in the ‘in’ file are explained in the file itself, to make editing
convenient for the user. The command

bomb myfile.dat

will read the file ‘myfile.dat’ with the experimental titration data, and ‘in’ with the user-defined
settings. The programbombwill generate a number of new files, with the following names:
myfile.bc : A two-column file with the calculated buffer capacities from the experimental

titration data. The first column contains the pH values, and the second column
contains the corresponding buffer capacitiesβ (meq l�1 pH�1).

myfile.sim : A similar two-column file with simulated buffer capacities. If optimization is
requested, then this file contains the simulated buffer capacities obtained with
the optimized model. If automatic model building is requested, then this file
contains the simulated buffer capacities of the final or selected model.

myfile.sim?? : These files are only generated when automatic model building is requested.
?? equals 00, 01, 02,: : : These files contain the simulated buffer capacities of
the different models that are created and optimized during the model building
process.

myfile.log : This file contains detailed information about the simulation, optimization and
model building processes. More particularly, it contains information about the
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titration data quality, simulation model summary and results, confidence in-
formation, optimizer information, model building summary, model selection
criteria, error messages, detailed warnings and final results.

myfile.lg : Short result file. For each optimization, 1 line with the optimized concentra-
tions and/orpKa values is added to this file. If automatic model building is
requested, this file will contain the optimization results of the different models
that have been fitted to the data. If model selection is requested, the last line
entered in the .lg file are the optimization results of the final or selected model.

Throughout this work, the softwarebombwas modified, adapted, extended and made robust
for field-use. It was tested intensively, and used for all buffer capacity calculations, simulations
and optimization exercises in this work.5 In chapters 6, 7 and 8,bombis used to optimize
user-defined models. In chapter 9,bombis used and evaluated for automatic model building
and model selection.

5The programbombhas been used to solve around 106 parameter estimation problems, or an equivalent of around
100 days processor occupation.



Chapter 6

On-line effluent and river water
monitoring

Some of the results described in this chapter were also published in [89, 310, 311].

6.1 The AQMON project

6.1.1 Project identification

The AQMON acronym stands for “Aquatic monitor”. This project was a cooperation between
three partners:

� Hemmis N.V., Kortrijk
� Ghent University, BIOMATH department, Gent
� Ghent University, Department for biochemical and microbial technology, Gent

The aim of the project was to develop an automated on-line sensor for use in water quality
monitoring. The end-result should be applicable for the control and monitoring of effluents
of wastewater treatment plants, surface waters and internally recycled process waters within
e.g. textile or food production plants. Due to the principles that are used, the methodology
is not applicable for heavily loaded waters (influents), neither for very low loaded waters like
drinking waters. The developed methodology is designed for alarm generating purposes, rather
than for precision analytical purposes.

6.1.2 Background of the project

The Flemish physico-chemical surface water quality does not meet the required surface wa-
ter quality criteria on around 90 % of around 1000 sampling points in Flanders [193]. The
chemical oxygen demand (COD), nitrogen (mainly nitrate in winter times) and phosphorus are
the most alarming parameters, as they exceed the desired criteria in 50 to 90 % of the cases.
The main sources of river water pollution are summarized in Table 6.1. It is concluded that
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Table 6.1: Percentage distribution of the main river water pollutants among three types of
activities in 1998 [192]

industry agriculture households

COD 31 - 69
nitrogen 14 46 40
phosphorus 18 26 56

households are the major source of river water pollution, however, industrial activities and
agriculture are important as well. Particularly threatening for river water quality are accidental
discharges from industrial and agricultural activities, malfunctioning of wastewater treatment
plants and discharges of untreated wastewaters [191]. Continuous monitoring of surface waters
and potentially polluting river inputs (e.g. effluents) is a promising supporting tool for a better
supervision and control of surface water quality.

Wastewater treatment plants do not always reach the effluent discharge requirements [193].
This is, among others, due to the lack of reliable on-line measurements and related adequate
automatic control. Some particularities and difficulties related to on-line measurements are
presented in section 4.1 on page 70. In the last decade, increased research towards reliable,
robust, on-line measurement systems was performed, of which an overview is presented in
chapter 4.

Since 1991, the quality of surface waters and effluents is expressed in ‘polluting units’.
The mathematical expression for the calculation of the ‘polluting units’ considers three cat-
egories of pollutants: First, the oxygen binding substances (COD and BOD) and suspended
solids; second, the nutrients nitrogen and phosphorus; and third, the heavy metals. Within this
framework, the goal of the AQMON project is twofold. First, the development of an on-line
sensor that can be used to assess several components of the ‘polluting units’. And second,
the development of an automatic sensor that can be integrated in an automatic measurement
network, e.g. to monitor a river network.

The central idea is to develop a new instrument based on simple, reliable and robust mea-
surements, with minimal maintenance requirements, with a high measurement frequency and
usable in the field. The followed approach is holistic, e.g. the production of new polluting
substances (waste) during the measurements should be avoided.

A new idea originating from the AQMON project is ‘quality proportional sampling’. This
is proposed as an alternative for time or flow proportional sampling, and allows to economize
on the amount of samples that should be analyzed in the laboratory. For instance, suppose
that an on-line automatic sensor is continuously monitoring an aquatic stream (river, effluent,
process water), and yields a more or less general ‘fingerprint’ of the water quality at every
measurement cycle. Further, suppose that an automatic sampler, that takes samples for labo-
ratory analyses, is coupled to the sensor, and can receive an activation signal from the sensor.
Then a sampling strategy can be implemented, that no samples are collected if the water qual-
ity ‘fingerprint’ is not significantly changing. Only if the sensor detects a change in the water
quality ‘fingerprint’, a sample is taken for laboratory analysis. In those cases where the water
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Figure 6.1: Scheme of the research set-up used in the initial phase of the AQMON project.
From left to right: pretreatment reactor, bioreactor and titration vessel

quality changes are slow or not frequent, the quality proportional sampling strategy is expected
to be economically advantageous compared to time or flow proportional sampling, leading to
a significantly lower number of laboratory analyses to be performed.

6.2 Sensor methodologies

In the initial phase of the AQMON project, a research set-up was realized, with the aim of de-
veloping a sensor for ammonium, ortho-phosphate and short-term biological oxygen demand
(BODst). The basic idea is a combined and advanced interpretation of relatively simple and
robust measurements (e.g. pH and conductivity) to obtain more ‘upgraded’ information com-
pared to the interpretation of the single measurements alone. A scheme of this set-up is shown
in Figure 6.1. This set-up provided the following functionalities:

� A pretreatment reactor for pH adjustments and CO2 stripping of the raw water sample;
� A bioreactor with poly-urethane foam as carrier material, with the possibility for pH

adjustments and automatic pH control;
� A titration vessel for pH and conductometric acid and base titrations.

The basic measurements used in the AQMON research set-up are pH and conductivity. The
information that can be extracted from acid-base titrations is more or less complementary for
pH and conductivity titrations. For example, sulphate can theoretically be estimated from the
conductivity profile, but not from the pH buffer capacity profile. On the other hand, some ions
like ortho-phosphate can theoretically be estimated from both types of profiles which will en-
hance the reliability of the final result. For example, conductometric acid-base titration based
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Figure 6.2: Simultaneous conductivity and pH titration curves of a river water sample, and the
sample supplemented with ortho-phosphate or ammonium: plots (a) and (c). Corresponding
buffer capacities shown in function of the pH: plots (b) and (d). The legend in (b), (c) and (d)
is the same as in (a)

sensors are available for the determination of alkalinity and acidity [254], or the indirect as-
sessment of microbial populations by the absorption of metabolic CO2 in an alkaline absorbant
solution whose conductance is monitored [215], or to monitor a well-known waste stream [60].
However, none of the mentioned sensor applications apply mathematical modelling for the in-
terpretation of the conductometric titration curves.

It was found to be very difficult to find a realistic mathematical model for the conduc-
tometric titration profiles obtained from aquatic samples like river waters. An example of a
combined pH and conductivity titration is shown in Figure 6.2. A heavily loaded river water
was made CO2 free at low pH and titrated to high pH. The raw signals of pH and conductiv-
ity, and the calculated pH and conductivity buffer capacities (respectively meq l�1 pH�1 and
meq l�1 mS�1) in function of the pH are given in Figure 6.2. The pH buffer capacity profiles
clearly illustrate an increased buffer capacity around pH 7 and pH 9.5 for respectively ortho-
phosphate and ammonium standard additions to the river water sample. This buffer capacity
effect could not clearly be deducted from the conductivity signal and corresponding conduc-
tivity buffer capacity profile. Because the pH buffer capacity profiles were more ‘ rich’ for our
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purposes, and very suitable for mathematical modelling, it was decided to focus on the pH
titration profiles alone.

The initial research performed in the AQMON project was exploratory, and rather ambi-
tious. An overview of the research subjects and the most relevant results are given below. In
further stages of the project, the attention was focussed towards those topics that had the best
potential value for field application and possible commercialisation, and of which the nec-
essary research aspects could be finished within the scope of the project. These results are
presented in more detail from section 6.3 onwards.

6.2.1 Ammonium and ortho-phosphate measurement

Experiments with the research set-up given in Figure 6.1 showed good perspectives for am-
monium and ortho-phosphate assessment from the buffer capacity profile. The acid and base
dosing system consisted of a peristaltic pump that was continuously dispensing acid or base
into the titration vessel. While the titration was running, the dosing speed could not be changed.
A difficult compromise between dosing speed and satisfactory accuracy in the low buffer ca-
pacity regions of the titration profile had to be found. The dosing accuracy of the peristaltic
pump was also found to be less than what should be expected from the specifications of the
pump manufacturer. Despite the fact that 1 titration from pH 3 to pH 11 took around 30 min-
utes, the dynamics of the pH electrode response in the low buffer capacity regions could not
be neglected, and the corresponding buffer capacity curves were not closely following the the-
oretical buffer capacity model. An exception can be made for the heaviest loaded waters, that
had the best reproducibility, and were also easier to model. Illustrative buffer capacity curves
of three different Flemish surface waters (sampled in October, 1992) with various loads of
ammonium and ortho-phosphate are given in Figure 6.3. The illustrated titration curves were
collected with the research set-up discussed above, and were thus not very useful for mod-
elling purposes. Ortho-phosphate buffers around pH 7, while the ammonium buffer can be
found around pH 9.25.

Based on the difficulties described above, it was decided that for ortho-phosphate and am-
monium assessment from the buffer capacity profile, a more accurate and reproducible titration
system would be necessary. Therefore it was chosen to proceed the research with a commer-
cial titrator (Metrohm Titrino 716 [168]). As a consequence, automatic and on-line validations
with this new titrator set-up were no longer possible and all field samples to be analyzed were
thus brought to the laboratory.

6.2.2 Short-term BOD measurement

Overviews of available techniques for the measurement of BOD in aquatic streams are given
in [61, 79]. The most important drawback of the classical laboratory method for BOD20

5 is
that 5 measurement days are necessary before the result is available. On-line BOD methods
have been developed, but they are mostly limited to the monitoring of rather heavily loaded
waste streams, like influents. It was noticed in [61, 79] that there is a lack of on-line biosensor
methods for quick determination of the BODst in low loaded waters like effluents or river
waters. Thus, this particular niche was explored with the AQMON sensor set-up illustrated in
Figure 6.1 [61, 79].
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The principle developed for the BODst measurement starts with the removal of the inor-
ganic carbon (IC) buffer, by strong agitation of the sample at low pH. Next, the sample is
adjusted to a pH suitable for bioreactions (e.g. pH 8) and transferred into a bioreactor filled
with poly-urethane foam colonized with a bacterial biofilm. Two complementary principles
for BODst determination were investigated in detail. The first principle is to record the acid
and/or base consumption by a pH controller while the pH is kept as constant as possible as the
bioreactions proceed [61]. This work was the initiation of further research that has resulted
in a number of successful sensor implementations for the monitoring of nitrification and deni-
trification processes, such as BRAM and DECADOS [40, 87, 88, 91, 92, 180, 181, 312]. These
sensors are described in more detail in section 4.4.3 on page 93. The second principle is to
record a titration curve of the sample before and after the bioreaction. This titration curve is
then transformed into a buffer capacity curve and interpreted. The disappearance of buffers,
and the formation of new buffers (e.g. IC buffer) is then correlated with the BODst present
in the sample [79]. The latter principle is illustrated in Figure 6.4. 1 A complete measure-
ment cycle typically needs 1 hour. A mathematical model that describes the CO2 evolution in
bioreactors, related to acid-base additions is given in [208].

The most important conclusions from this study on BODst measurement can be summa-
rized as follows:

1Note that the buffer capacity curves in Figure 6.4 are obtained from titration curves recorded with the new labo-
ratory titrator set-up, mentioned in section 6.2.1.
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� If a readily biodegradable substrate like acetate or sugar is added to the bioreactor, the
calculated amount of CO2 that is theoretically formed corresponds quantitatively with
the IC buffer found in the buffer capacity profile. This is also illustrated in Figure 6.4.

� Effluent BOD is only partially degraded in the bioreactor due to the slow biodegradation
kinetics. Thus, for practical purposes, calibrations are necessary.

� The biomass in the bioreactor requires an adaptation period of 1 to 2 weeks to a particu-
lar water. Despite the fast, accurate and reproducible laboratory results with e.g. acetate
additions, the biomass response to an effluent feed pulse under field conditions is not
very reproducible. If the biomass is exposed to a high pulse load (e.g. accidental dis-
charge), it takes several measurement cycles (or, equivalently, several hours) before the
biomass is at its background response level in absence of substrate, and sometimes the
background response level is not reached at all.

� Technical problems with the research set-up (electrical, mechanical, hydraulical, : : : )
made that a considerable part of the project time was used to deal with hardware prob-
lems. Especially for the measurements in the field, the research set-up often failed.

In a later phase of the project, the experimental set-up was extended with an unit for UV ir-
radiation of aquatic samples [79, 202]. The central idea of those experiments was that increases
and decreases of buffer systems due to the photocatalytic UV destruction of the organic ma-
terial in aquatic samples would correlate with the COD or BOD. The conclusions that were
obtained from a number of experiments described in [79, 202] can be summarized as follows:

� The photocatalyst TiO2 favours the destruction of organic material with UV light, and is



146 On-line effluent and river water monitoring

not an interfering compound in the buffer capacity profile.
� UV irradiation of organic components with buffer capacity (e.g. malonic acid, acetic

acid, : : : ) generates new buffering components, including IC.
� Stoichiometrically, it was not possible to find an useful relationship between the original

COD of a sample and the IC measured from the buffer capacity profile of the UV irradi-
ated sample. It should be noted that the reactor set-up was not completely closed, thus
CO2 exchanges with the atmosphere could not be avoided.

� The two different low-pressure mercury vapour lamps that were used (monochromatic
peaks at respectively 254 and 370 nm) were not sufficiently destructive to transform e.g.
effluent COD into CO2.

� Optimized conditions for UV destruction were 1 gTiO2 l�1, pH 1.5�2, 60 minutes irra-
diation time and the 254 nmlamp.

� Measurements of COD in effluent samples before and after UV irradiation (in optimized
conditions) found only 10�20 % COD removal due to the UV treatment.

Combined treatments with UV and biotransformations were also investigated, albeit not in
detail [79]. Despite the poor results obtained in [79, 202], the idea of using UV treatment com-
bined with buffer capacity measurements in various types of aquatic samples is still suggested
to be promising, provided a high-pressure mercury vapour lamp in a completely closed reactor
would be used.

Measuring the BODst in low loaded waters, with the technology presented above, seems
possible. However, more research is required before this technology is ready for field-use.

6.2.3 Nitrate measurement

As described in section 6.1.2, also nitrate is an important component that contributes in the
‘polluting units’ formula. However, nitrate as such does not have an observable effect on the pH
buffer capacity profile. A number of possible strategies for nitrate measurement based on pH
buffer capacity profiles were worked out [61, 70]. The central idea is to include an extra sample
pretreatment step in the current sensor approach. This pretreatment step should transform the
nitrate quantitatively into a component with measurable buffer capacity. This extra facility
should make it possible to measure ammonium, ortho-phosphate and nitrate together from a
single buffer capacity profile.

Two reduction strategies were tested and evaluated in detail. The first strategy was based
on the reduction of NO�

3 into NH+
4 . This was performed with TiCl3 in alkaline medium (based

on [15]) and with Fe0 at low pH (based on [120, 304]). The second strategy was based on a
reduction of NO�

3 into NO�
2 . This was investigated with a microbiological method described

in [196]. Among the methods and procedures tested [61, 70], the best results were obtained
when nitrate was reduced to nitrite, followed by direct determination of nitrite (pKa = 3:4)
from the buffer capacity profile, or indirect determination of nitrite with a selective nitrite
reacting chemical with a measurable buffer capacity. Good results for the nitrate reduction
were obtained with a microbiological method [61] adopted from [196]. The organism E. Coli
K12 DSM 498has a high nitrate to nitrite reducing activity, but possesses no nitrite reducing
activity (see also section 4.2.3 on page 76 for more details about this method). Aniline was
found to have an accurately measurable buffer capacity (pKa = 4:5), and having the property to
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bind nitrite more or less selectively, with the formation of benzenediazohydroxide (pKa = 6�
7) or phenol (pKa = 9:9). Figure 6.5 shows buffer capacity curves of an effluent supplemented
with nitrite and/or aniline. Around pH 4, it can be seen that nitrite itself has a measurable
buffer capacity, and that aniline reacts with nitrite with a new buffer formation. Further and
more detailed investigations are described in [70].

The nitrate measurement principle, with the technology presented above, gave acceptable
results on a number of samples. For example, nitrite standard addition experiments in effluent
samples and its measurement through aniline buffer capacity decrease yielded nitrite recoveries
between 70 and 110 % [70]. However, the method suffers from interferences which are not
fully understood at this moment. Certainly more research is necessary before this technique
is ready for field implementation. Further, the extra investments (bioreactor for E. Coli cells,
aniline dosing system, : : : ) and the use of hazardous chemicals (aniline), make this rather
complicated method less attractive.

6.3 Automatic buffer capacity based sensor

Based on the research results presented in section 6.2, it was decided in the framework of
the AQMON project, to narrow the scope of the research towards the detailed interpretation
of pH buffer capacity curves only. The ammonium and ortho-phosphate assessment from the
buffer capacity profile showed good potentials for field-use, and it was expected that the buffer
capacity curve itself could serve as a sort of ‘fi ngerprint’ of the water quality. The AQMON
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sensor is thus proposed as an automatic buffer capacity based hard- and software sensor. The
AQMON measurement principle and the research results with river waters and effluents are
presented in the following sections.

6.3.1 Principle of the device

The elementary measurement used in this sensor is a pH measurement. Successive measure-
ments of pH in function of stepwise acid or base addition (with known concentration) to the
sample is called a titration curve. In this application, only stepwise base addition is used.
From this measured titration curve (typically around 30 to 50 points), the buffer capacity in
each point is calculated as the derivative of the amount of base needed (in meq l�1) for a pH
increase of one pH unit. The function obtained as the buffer capacity (meq l�1 pH�1) in func-
tion of the pH is called the buffer capacity profile. The pH(’s) at which a certain component
gives its maximum buffer capacity is (are) called the pKa(’s) of that component. For samples
containing several pH buffering components, the buffer capacity curve consists of the sum of
the buffer capacities of each individual component. From the buffer capacity curve, estimates
of the different buffering components can be computed using a mathematical model. The prin-
ciple of the decomposition of a complex buffer capacity curve into its components is illustrated
in section 2.2.6 on page 22.

The principle of the sensor is illustrated in Figure 6.6. In the wet part, the first step is the
sampling (typically 100 � 200 ml) and a pH adjustment to pH 3, followed by a short aeration
of 5 minutes to strip the dissolved CO2. In the second step a dynamic titration is effected from
pH 3 to pH 11. The data processing part is performed in a computer connected to the titration
apparatus. First, the titration data are filtered (smoothed, outliers removed) if necessary. Sec-
ond, the buffer capacity in each point of the titration curve is calculated as the derivative of the
amount of base needed for a pH increase of one pH unit. The next step is the mathematical
model selection followed by parameter estimation. The candidate models differ in the number
of buffering components they include. After the parameter estimation, the concentrations and
eventually corresponding pKa values for the buffering components defined in the model, are
obtained. Eventually, a different model can be selected if the fit is not satisfying. The mathe-
matical models used describe the chemical equilibria taking place in the reaction vessel during
titration. Models were built using different chemical reaction equilibria described in chapter 2
and mathematically worked out in chapter 3.

In the final output of the sensor, a list of concentrations of buffering components is given.
If certain preset values are exceeded an alarm is given and/or an automatic sampler is activated
to take a sample for further laboratory analysis. The time for 1 complete run is approximately
30 minutes.

6.3.2 Titrator reproducibility and accuracy

The reproducibility of the ammonium and ortho-phosphate measurement with the research
set-up shown in Figure 6.1 was unsatisfactory (see also section 6.2.1). Therefore, the new
titration system (based on the laboratory titrator Metrohm Titrino 716 [168]) was evaluated for
its reproducibility and accuracy for the assessment of ammonium and ortho-phosphate from
buffer capacity curves.
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Table 6.2: Standard addition experiment with the means and standard deviations of the con-
centrations ammonium and ortho-phosphate estimated from the buffer capacity profiles

Ammonium (mgN l�1) Ortho-phosphate (mgP l�1)

Addition Mean Std. dev. Addition Mean Std. dev.

0 0.03 0.06 0 0.05 0.10
50 50.2 0.37 12.5 11.8 0.79
75 76.3 1.83 18.75 18.1 0.93

100 101 2.19 25 24.6 0.92

A two-factorial standard addition experiment was designed in which known amounts of
ammonium and/or ortho-phosphate were added in 150 ml demineralized water. Samples were
adjusted to pH 3 with HCl 1 N, agitated open to the air for 20 minutes to strip off CO2 and
titrated from pH 3 to pH 11. Four different concentrations of ammonium (NH4Cl) and ortho-
phosphate (KH2PO4) were used, thus resulting in 16 treatments. Each treatment was replicated
in threefold. Summarized results are given in Table 6.2. The different sources of variability
in this experiment included: Prepared stock solution variability, manual pipetting and volume
adjustment, titrator variability and data processing variability.

Concluded from Table 6.2, the recovery for ammonium is around 101 %, or in other words,
1 % overestimation compared to the amount of ammonium added. For ortho-phosphate, a re-
covery around 95 % was obtained. The reproducibility or precision can be expressed as a
relative standard deviation (r.s.d.), and is found around 2 and 5 % for ammonium and ortho-
phosphate respectively. This standard addition experiment was performed with rather high
concentrations of ammonium and ortho-phosphate. Other, less extensive experiments, with
lower concentrations of N and P were also performed, with similar results for accuracy and re-
producibility (results not shown). Ortho-phosphate estimations are generally found to be less
accurate and less reproducible compared to ammonium estimations. This is possibly due to
higher amounts of interferences present in the buffer capacity region where ortho-phosphate is
buffering. Also, ortho-phosphate is more sensitive to complexation reactions with other com-
ponents, masking its buffer capacity effect. However, this should not be the case in standard
addition experiments in demineralized water.

Additions of ammonium and ortho-phosphate were also performed in river waters and
effluents. It was experimentally found that the minimum amount of ammonium and ortho-
phosphate that can be successfully recovered with the titration method is respectively around
0.5 mgN l�1 and 0.5 mgP l�1. These values are only indicative, because they are case de-
pendent. Further, if a number of interferences related to the NaOH titrant (see section 8.5.2 on
page 220) would have been better controlled in these experiments, the accuracy, reproducibility
and detection limits can be expected to be better than reported in this section.
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6.3.3 Effluent and surface water monitoring

Materials and methods

The experiments to evaluate the performance of the buffer capacity sensor were first performed
on the effluents of 26 different domestic wastewater treatment plants. Two to eleven different
samples were analyzed per plant. The samples were collected in October 1993 and June 1994.
Second, the effluent of an industrial activated sludge wastewater treatment plant of a food
company was monitored for 3 months (February to May 1994), with a sampling frequency of
3 to 5 samples per week. This plant was in a start-up phase, so that the effluent concentrations,
especially of ammonium, showed a large variation (200 to 500 mgNH+

4 -N l�1 in the beginning
and between 10 and 20 mgNH+

4 -N l�1 at the end of the measurement period). Third, 118
different surface waters in Flanders were sampled in September 1993. From each sample, two
or more titration curves were recorded.

All titration curves were obtained with a laboratory construction of the titration sensor.
This experimental set-up consisted of a pH adjustment unit to lower the pH of the sample
to pH 2�3; an aeration unit, to strip off the carbonate buffer; and an automatic titration unit
(Metrohm Titrino 716 [168]). The titration algorithm used was DET (dynamic equivalence-
point titration), but in order to obtain the complete titration curve, no end-points were defined
in the algorithm. Details about the titrator and its titration algorithms are given in section 5.1
on page 97. A PC-XT was coupled to the titrator via RS-232 for data acquisition.

The off-line laboratory analyses of ammonium, ortho-phosphate and COD were performed
by two independent, certified laboratories, respectively referred to as laboratory A and B.

The data processing of the collected titration data was performed off-line, using a unix
workstation (HP Apollo 425e or SGI Origin 200). The software bomb, described in section 5.3
on page 117, was used for the titration data processing.

A mathematical buffer capacity model containing the following components was used for
the validation: water, IC, ortho-phosphate, ammonium and an undefined component (called
soap, expressed as mol l�1) with a pKa between 4.0 and 6.0. The latter component stands for a
range of substances (e.g. organic acids) that all have a buffer capacity in the range around pH
5. The detailed model specifications of the buffer capacity model are given in Table 6.3.

The aim of the performed experiments was twofold. First, it is investigated how accurate
and reliable the ammonium and ortho-phosphate concentrations in effluents and surface waters
can be estimated with the titrimetric sensor. Second, it is evaluated whether the buffer capacity
profiles contain particular buffers that can be used to assess e.g. the organic load of the sample,
or that can be used as a functional water quality fingerprint.

Domestic wastewater effluent results and discussion

The average ammonium concentration in the domestic wastewater effluents was 11.8 � 9.1
mgN l�1 for laboratory A; 11.2 � 7.8 mgN l�1 for laboratory B and 26.7 � 10.9 mgN l�1

with the titration based sensor. The average concentration for ortho-phosphate in the domestic
wastewater effluents was 2.2 � 1.6 mgP l�1 for laboratory A; 2.4 � 1.6 mgP l�1 for labora-
tory B and 5.6 � 3.8 mgP l�1 with the titration based sensor. Hence, for both ammonium and
ortho-phosphate, the titration based sensor overestimates the mean concentrations with a factor
2 to 3 in comparison with the laboratory results. This can be explained by the fact that other
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Table 6.3: Model specifications for a simulation interval between pH 4 and pH 10

Buffer Variable Initial guess or value Estimated? Lower limit Upper limit

Water pka water 15.74 No
conc water 55.5 mol l�1 No

IC pka1 carbon 6.37 No
pka2 carbon 10.25 No
conc carbon 2 mgCO2 l�1 Yes 0 5

o-PO4 pka1 phos 2.15 No
pka2 phos 7.21 Yes 6.5 7.4
pka3 phos 12.35 No
conc phos 5 mgP l�1 Yes 0 200

NH+
4 pka ammon 9.25 Yes 9 9.75

conc ammon 20 mgN l�1 Yes 0 600
Soap pka soap 5 Yes 4 6

conc soap 5 10�4 mol l�1 Yes 0 0.02

buffering components than ammonium and phosphate are present in the effluents, and they
are modelled as ammonium or phosphate in the buffer capacity model. Figure 6.7 presents
scatterplots with the concentrations of ammonium and ortho-phosphate obtained with the lab-
oratories A and B analyses and with the titrimetric sensor. Comparisons are made between
the two laboratories and between the titrimetric sensor and laboratory A or B respectively. The
differences between the two laboratories are remarkable (see Figure 6.7 plots (a) and (d)). Typ-
ical differences between 2 and 10 mgN l�1 are noticed for ammonium, and between 0.5 and
2 mgP l�1 for ortho-phosphate. This is not surprising when taking into account other studies
in which different laboratories are compared with each other [69]. Even under ideal controlled
circumstances, differences of� 10 % between laboratories for measurements in environmental
samples of e.g. ortho-phosphate are still very acceptable. Recent so-called Aquacheck tests
[62, 301] have found that the relative standard deviation (r.s.d.) of measurements of 1 sample
in several laboratories is 6 % and 5 % for ammonium and ortho-phosphate respectively.

The least squares linear regression equations (see Figure 6.7 plots (b), (c), (e) and (f)) are
given by equations (6.1)�(6.4):

NAQMON = 10:7+1:16 Nlab A (6.1)

NAQMON = 11:5+1:30 Nlab B (6.2)

PAQMON = 1:20+0:78 Plab A (6.3)

PAQMON = 1:22+0:92 Plab B (6.4)

Each regression equation has a very significant (α = 0:01) intercept and slope. The positive in-
tercept is interpreted as a consequence of interfering unknown buffering components present in
the effluent samples, and estimated as respectively ammonium or ortho-phosphate. However,
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Figure 6.7: Concentrations of ammonium (plots (a), (b) and (c)) and ortho-phosphate (plots
(d), (e) and (f)) in 26 domestic wastewater effluents determined with standard methods in
laboratories A and B, and estimated with the titrimetric sensor. Bisection lines are plotted on
top of scatterplots (a) and (d). Linear regression lines with their 95 % model confidence and
prediction intervals are plotted on top of scatterplots (b), (c), (e) and (f)
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there is a different interpretation of the regression slopes for ammonium and ortho-phosphate:
For ammonium, the slope is significantly (α = 0:05) higher than 1 in both regressions (labo-
ratory A and B). This points to increasing concentrations of interfering buffering components
with increasing ammonium concentrations. On the other hand, the slope for ortho-phosphate
is not significantly different from 1 in the regression equation of laboratory B, but significantly
lower than 1 in the regression equation of laboratory A (α = 0:05). Two possible explana-
tions for this phenomenon can be formulated: First, interfering buffering components around
the pKa2 value of ortho-phosphate are not changing or even decrease in concentration with
increasing ortho-phosphate concentrations. Second, in samples with higher ortho-phosphate
concentrations, it is plausible that a considerable quantity of ortho-phosphate is complexed
with other substances, thus masking the ortho-phosphate buffer capacity effect around pH 7.
The latter explanation or a combination of the two explanations are considered most realistic.

Nevertheless, an useful correlation between the laboratory results and the titration sensor
was obtained, as illustrated in Figure 6.7. Taking into account the residual standard deviations
of the linear regressions (4 to 5 mgN l�1 and 0.7 to 1.2 mgP l�1), compared to the standard
deviation of the paired differences between the laboratories A and B (2.8 mgN l �1 and 0.25
mgP l�1), one can conclude that the variability between the two laboratories is comparable to
the variability between the titrimetric sensor and each of the laboratories. The obtained results
show that the buffer capacity sensor is a useful measurement system for on-line monitoring
of ammonium and ortho-phosphate in domestic wastewater effluents. Because the titrimetric
measurement methodology is undoubtedly sensitive to interferences, the sensor application
has in the first place to be seen in the context of an alarm generator. Field research with an
automatic and on-line titration system would be very useful to validate and work out the latter
statement.

The relationship between the ‘ soap’ buffer (see Table 6.3) and the COD in the domestic
wastewater effluents is illustrated in Figure 6.8. An useful determination coefficient R2 = 0:75
was found between the COD and the ‘ soap’ buffer concentration. In the domestic wastewater
effluents, the COD varied between 30 and 300 mgl�1, and the ‘ soap’ buffer concentration is in-
terpreted as a potentially useful alarm generating criterion in case of e.g. accidental discharges
in a river. It is also expected that for one particular wastewater treatment plant, the correla-
tion between the ‘ soap’ buffer (or eventually more extra buffers) and the COD can be more
significant than this global approach including 26 treatment plants. The latter statement was
evaluated with the industrial effluent that was monitored for a consecutive period of 3 months.
These results are presented in the next section.

Industrial wastewater effluent results and discussion

The average ammonium concentration in the effluent of the industrial wastewater treatment
plant was 115 � 92 mgN l�1 for laboratory A; 108 � 117 mgN l�1 for laboratory B and 141
� 110 mgN l�1 with the titration sensor. The average concentration for ortho-phosphate in the
industrial effluent was 3.9� 1.8 mgP l�1 for laboratory A; 5.8� 2.0 mgP l�1 for laboratory B
and 10.8� 4.9 mgP l�1 with the titration based sensor. A comparison of the three independent
ammonium analyses during the measurement period is shown in Figure 6.9. In the beginning
of the measurement period the ammonium concentrations were very high because of the start-
up phase of the plant. At the end of the measurement period, the ammonium concentration
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Figure 6.8: Experimental and simulated buffer capacity curves of respectively a low (1.8
mg o-PO4-P l�1; 5.9 mgNH+

4 -N l�1; 33 mgCOD l�1) and a heavily (2.7 mg o-PO4-P l�1; 23
mgNH+

4 -N l�1; 287 mgCOD l�1) loaded domestic wastewater effluent (a); Scatterplot of the
COD of 26 domestic effluents versus the concentration of the ‘ soap’ buffer obtained with the
buffer capacity sensor

decreased below 10 mgNH+
4 -N l�1. Over the whole period the titration sensor was able to

estimate the ammonium concentration in the effluent. The determination coefficient between
the titration sensor and the laboratory measurements was R2 = 0:92, almost the same value as
the determination coefficient of the ammonium concentration measured in the two independent
laboratories (R2 = 0:94).

The ortho-phosphate concentrations in the industrial effluent samples were rather low com-
pared to the ammonium and COD concentrations (around 4 mgP l �1). Further, the ortho-
phosphate concentrations measured in laboratories A and B showed a bad agreement (results
not shown, R2 = 0:65). The titrimetric estimations of ortho-phosphate did not show an use-
ful correlation with the laboratory measurements. This can possibly be explained by the high
COD load in the effluent (between 150 and 1500 mgl�1), causing too many interferences with
the ortho-phosphate buffer capacity effect.

The determination coefficient between the concentration of the undefined buffering com-
ponent between pH 4 and 5 (assumed to be the ‘ soap’ component) and the COD in the effluent
was R2 = 0:69. This buffering component was consequently evaluated as an indicator of sud-
den organic loads in the effluent, as illustrated in Figure 6.10. Figure 6.10(a) shows the buffer
capacity curves of the effluent during normal operation (200 mgCOD l �1), and two unexpected
peak loadings (800 and 1500 mgCOD l�1 respectively). The buffering components between
pH 4 and 5 were not identified conclusively. Figure 6.10(b) illustrates the correlation between
the effluent COD and the ‘ soap’ buffer concentration (R2 = 0:69). The two unexpected COD
peak loadings in the effluent were perfectly recognized by the increasing ‘ soap’ buffer concen-
tration. This illustrates that for this particular industrial effluent, the AQMON sensor is suited
for alarm generating purposes in case of unexpected effluent COD discharge peaks.
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Surface water results and discussion

The average ammonium concentration in the sampled surface waters was 6.7 � 8.2 mgN l �1

for laboratory A; 6.6 � 8.6 mgN l�1 for laboratory B and 14.3 � 10.7 mgN l�1 with the titra-
tion based sensor. The average concentration for ortho-phosphate in the surface waters was 2.5
� 3.8 mgP l�1 for laboratory A; 3.0� 4.4 mgP l�1 for laboratory B and 3.4� 4.0 mgP l�1 with
the titration based sensor. Hence, for both ortho-phosphate and ammonium, the titration based
sensor overestimates the mean concentrations with respectively 20�30 % and 100 % in com-
parison with the laboratory results. This overestimation is clearly lower than the 200�300 %
overestimation in the effluent samples. This points to possibly less interferences of unmodelled
buffer components in surface waters compared to effluents. Figure 6.11 presents scatterplots
of the concentrations of ammonium and ortho-phosphate obtained with the laboratories A and
B analyses and with the titrimetric sensor. Comparisons are made between the two laboratories
and between the titrimetric sensor and laboratory A or B respectively. The analyses differences
between the two laboratories are similar as observed for the effluents.

The least squares linear regression equations (see Figure 6.11 plots (b), (c), (e) and (f)) are
given by equations (6.5)�(6.8):

NAQMON = 5:95+1:24 Nlab A (6.5)

NAQMON = 6:64+1:16 Nlab B (6.6)

PAQMON = 0:87+0:99 Plab A (6.7)

PAQMON = 0:86+0:84 Plab B (6.8)

Each regression equation has a very significant (α = 0:01) intercept and slope. Similarly to the
effluents, the positive intercept is interpreted as a consequence of interfering unknown buffer-
ing components present in the surface water samples, and estimated as respectively ammonium
or ortho-phosphate. However, these interferences are clearly lower than in the effluent sam-
ples. For ammonium, the slope is significantly (α = 0:05) higher than 1 in both regressions
(laboratory A and B). The slope for ortho-phosphate is not significantly different from 1 in the
regression equation of laboratory A, but significantly lower than 1 in the regression equation
of laboratory B (α = 0:05). These findings lead to the same conclusions as formulated for the
domestic wastewater effluents.

Again, an useful correlation between the laboratory results and the titration sensor was
obtained, as illustrated in Figure 6.11. Taking into account the residual standard deviations
of the linear regressions (3 to 4 mgN l�1 and 1.5 to 1.7 mgP l�1), compared to the standard
deviation of the paired differences between the laboratories A and B (1.8 mgN l �1 and 0.95
mgP l�1), one can conclude that the variability between the two laboratories is comparable to
the variability between the titrimetric sensor and each of the laboratories. The results obtained
show that the buffer capacity sensor is a potentially useful measurement system for on-line
monitoring of ammonium and ortho-phosphate in surface waters. It is expected that in case an
AQMON buffer capacity sensor would be installed on-line at a particular sampling point in a
river, even better results can be obtained if local model adjustments or extra local calibrations
would be implemented. However, up to now the latter statement was not validated in the field.

Figure 6.12 illustrates the correlations between the concentration of the ‘ soap’ component
found with the titration sensor and the COD and the BOD respectively. Both correlations are
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Figure 6.11: Concentrations of ammonium (plots (a), (b) and (c)) and ortho-phosphate (plots
(d), (e) and (f)) in 118 Flemish surface waters determined with standard methods in laborato-
ries A and B, and estimated with the titrimetric sensor. Bisection lines are plotted on top of
scatterplots (a) and (d). Linear regression lines with their 95 % model confidence and predic-
tion intervals are plotted on top of scatterplots (b), (c), (e) and (f)
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Figure 6.12: Scatterplot of the COD (a) and BOD (b) of 118 Flemish surface waters versus the
concentration of the ‘ soap’ component obtained with the buffer capacity sensor

statistically significant (α = 0:01), and the amount of ‘ soap’ buffer correlates better with the
COD than with the BOD of surface water samples. It should be mentioned that the variability
of BOD measurements between and within laboratories is much higher compared to COD
measurements [69]. On theoretical basis, there should not be a strict relationship between
buffer capacities and COD (e.g. sugars have no buffer capacity, but a high COD). Nevertheless,
a useful correlation between the ‘ soap’ signal and the organic load of a river is established. As
discussed above, it is again expected that for one particular sampling point, better correlations
can be obtained when the buffer capacity model is ‘ tuned’ for that location.

Buffer capacity model evaluation

A detailed study of the buffer capacity curves of the effluents and surface waters in relationship
with their ammonium and ortho-phosphate concentrations was performed, and some observed
phenomena were related to the selected buffer capacity model and the model fit. The buffer
capacity model of which the model specifications are given in Table 6.3 was fitted to all ex-
perimental buffer capacity curves. The experimental and the best-fit simulated buffer capacity
curves of 6 selected surface water samples are given in Figure 6.13. The ammonium and
ortho-phosphate concentrations found in laboratories A and B, and with the AQMON set-up
respectively are given in Table 6.4.

Example (a) in Figure 6.13 illustrates a typical example of an almost perfect model fit,
with a good estimation of ortho-phosphate, but around 80 % overestimation of ammonium.
The most probable explanation is the presence of one or more extra buffer systems around pH
9�10, that are modelled as ammonium.

Example (b) shows a heavily loaded river water, with a good model fit, and reliable es-
timations of ammonium and ortho-phosphate. Some other heavily loaded waters (results not
shown) showed a bad model fit, sometimes coupled to wrong estimations mostly of ortho-
phosphate (e.g. one dark brown river water with a COD of 2500 mg l�1, had a seven times
overestimation of ortho-phosphate compared to the laboratory measurements; this particularly
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Figure 6.13: Experimental and simulated buffer capacity curves of 6 selected Flemish surface
waters: Bassin Smedenstraat, Roeselare (a); Vuile beek, Ieper (b); Uyttenhovebeek, Roeselare
(c); Zwinnevaart, Knokke-Heist (d); Scherpenbergbeek, Poperinge (e); Zarrenbeek, Staden (f).
Note the remarkable differences in buffer capacity scale.
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Table 6.4: Ammonium and ortho-phosphate concentrations of 6 selected Flemish surface wa-
ters determined in laboratories A and B, and with the titrimetric sensor

Figure 6.13 Ammonium (mgN l�1) Ortho-phosphate (mgP l�1)

Subplot Code a lab. A lab. B AQMON lab. A lab. B AQMON

(a) 6260 12.0 9.7 19.3 3.0 2.2 2.4
(b) 9740 58.6 65.4 76.7 8.2 8.7 7.7
(c) 6230 3.3 3.1 16.9 10.2 11.6 11.8
(d) 260 4.5 8.1 15.2 7.2 8.8 2.6
(e) 9750 0.4 0.3 1.2 0.2 0.2 0.6
(f) 9270 3.0 2.6 9.0 2.8 3.7 6.2

a Identification number of the sampling point, attributed by the VMM.

extreme case corresponds with the two high outlier points in Figure 6.11(e) and (f).
Example (c) illustrates a surface water with difficulties for the ammonium estimation. The

buffer capacity around the ammonium buffer had a typical unstable behaviour and the esti-
mated ammonium concentration is 5 times too high compared to the laboratory results. Re-
markable for this surface water is the high concentration of chlorides (> 500 mgCl l �1). Sim-
ilar phenomena were observed in some other samples with high chloride concentrations.

The surface water in example (d) is located near the Northsea and has a very high amount
of chlorides (2005 mgCl l�1). The concentration of ortho-phosphate estimated from the buffer
capacity profile is rather exceptional because it is three times lower than the laboratory results;
this particular case can easily be located as an outlier point in Figure 6.11(e) and (f). Moreover,
this sample contained 260 mgCOD l�1, which was one of the highest values in the study. Pos-
sibly, some ortho-phosphate remained complexed with other components during titration, and
was thus not available as a buffer around pH 7. One could suggest to introduce ionic strength
corrections in the buffer capacity model. However, from the graph it can be concluded that it
is unlikely that this would have a significant improving effect on the estimated buffer concen-
trations, due to the presence of interfering buffers in the neighbourhood of ortho-phosphate.

Example (e) is obtained from a clean river water. The laboratory results indicate that both
ammonium and ortho-phosphate are below 1 mg l�1. The model fit is satisfying, except that
that there is probably an extra buffer present at pH 5.5 which is not accounted for in the buffer
capacity model. A typical phenomenon observed in low loaded waters is a relatively large over-
estimation of ammonium and ortho-phosphate (a factor 3 in this particular case). This could
be explained by the higher relative amount of interferences, that are modelled as ammonium
or ortho-phosphate.

Example (f) is the most extreme example where the model fit is not satisfying. The exper-
imental buffer capacity profile indicates that more buffer systems are distributed in the con-
sidered pH interval, compared to the theoretical buffers included in the buffer capacity model
specified in Table 6.3. As a consequence, the estimated concentrations of ortho-phosphate and
ammonium cannot be trusted.
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From detailed visual explorations of the experimental and corresponding simulated buffer
capacity profiles of effluents and river waters in relationship with their laboratory analyses, a
number of conclusions can be drawn:

� There is no strict relationship between the goodness of fit and the agreement between
the ammonium and ortho-phosphate laboratory analyses and the titrimetric results.

� Examples with a perfect model fit have often good estimations for ammonium and ortho-
phosphate, but sometimes suffer from interferences present at the same pKa value of the
modelled buffer systems.

� Estimated concentrations of samples with a bad model fit should be interpreted very
carefully. They are mostly suffering from extra interferences compared to well fitting
examples. It could be suggested to use a modified or extended mathematical buffer
capacity model in those cases.

Among different evaluated mathematical models (i.e. fixed or variable pKa values, fixed or
variable amount of IC buffer, wide or small simulation interval), the model specified in Table
6.3 was found to be the best ‘general purpose’ model. This is an important aspect for field im-
plementations, because it is not always possible or realistic to set up preliminary experiments
to define the best site-specific buffer capacity model. In this framework, it was also investigated
whether it is advantageous with respect to ammonium and ortho-phosphate assessment, to im-
plement an automatic buffer capacity model builder (available in the software bombdescribed
in section 5.3 on page 117). These results are presented in chapter 9.

6.4 Conclusions

The proposed titration sensor can be used for effluent and surface water monitoring of pH
buffering substances. Experiences with different types of samples have shown that the accu-
racy and precision are affected by the composition of the sample. The sensor is capable of
giving an indication of the ammonium and ortho-phosphate level in the tested effluents and
surface waters. The results in Figures 6.7 and 6.11 illustrate that the variability between the
laboratory analyses and the titrimetric estimations is comparable to the variability between the
two independent laboratory results.

The buffer capacity at certain pKa’s is suggested to give an indication of the organic load.
More particularly, the buffer capacity around pH 5 (named the ‘ soap’ buffer) was found to have
an useful correlation with the COD of the sample, both for surface waters and effluents.

Due to possible interferences of buffering components and the presence of unmodelled
buffering components in the effluent, this titration sensor cannot be proposed for use as an
analytical instrument. Rather it should be used as an effluent or surface water quality indicator
and detector of possible changes in the sample composition. The titration sensor is suitable for
integration in a robust and reliable automated instrument. An important advantage of the sensor
is that no filtration is required. The model database can be easily extended and fully adjusted
to particular requirements. The proposed buffer capacity model has been shown to be useful
for general purposes. However, it is suggested that a site-specific tuning of the mathematical
model could offer some perspectives for better and more specific predictions.



6.4 Conclusions 163

The sensor can be used for alarm triggering when the buffer capacity profile changes.
However, this should be further investigated and validated with field experiments. This sensor
coupled to an automatic sampler can be used for quality dependent sampling. In this case
the buffer capacity profile is used as a fingerprint for the water composition, and when the
fingerprint is changing, a sample is taken for further laboratory analysis. The quality dependent
sampling is superior to the time- or flow proportional sampling if such sampling strategy would
lead to a significantly lower number of laboratory analyses to be performed.
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Chapter 7

Tertiary algal wastewater
treatment monitoring

The results of this chapter were also published in [308].

7.1 Introduction

7.1.1 Algal wastewater treatment

Traditionally, the aims of wastewater treatment have been to reduce the concentration of or-
ganic matter and the number of pathogens. However, in many treatment plants typical primary
and secondary treatments cannot meet the increasingly stringent requirements of water pollu-
tion control. Although secondary effluents may contain low levels of BOD and COD, they still
contain high levels of inorganic nutrients (NH+

4 , NO�
3 , PO3�

4 ). These nutrients are primarily
responsible for eutrophication of the receiving waters [147, 230].

Nowadays more and more plants adapt and/or extend their secondary treatment facilities
towards ‘nutrient removal capacity’ [18, 128, 220], but even effluents with low concentrations
of these pollutants can have a negative impact on the environment if they are discharged in high
volume, especially if the receiving water is a rather small river. Tertiary treatment is becoming
a necessity to minimize the harmful impact of effluents on the environment.

Besides biological nitrogen and phosphorus removal, numerous physico-chemical treat-
ments such as chemical coagulation, breakpoint chlorination, NH3-stripping, reverse osmosis
and filtration have been proposed for removing nitrogen and phosphorus. However, due to costs
and operational practices, these technologies are not implementable for municipal wastewater
treatment of small communities [151].

As an alternative, tertiary treatment involving micro-algae or cyanobacteria is shown to
be effective in nitrogen and phosphorus removal [147, 151]. The process is quite attractive
because of its capacity to transform wastes into useful biomass using sunlight as an energy
source. However these algal treatment systems also have some drawbacks: The generation
time of the organisms involved is long compared to bacteria; there is a necessity for sunlight;
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the active part of the biomass is small and harvesting of biomass is difficult [67, 230].
In recent years, research has been conducted to overcome the problems related to algal

tertiary wastewater treatment, and to optimize the treatment process [68, 146, 151, 275, 280].
The harvesting problem of the algal biomass has been solved by using organisms like the
cyanobacterium Phormidium bohneri, which has the ability to form flocks that settle, thus
facilitating harvest [258].

Algal wastewater treatment processes often are discontinuous, of SBR (sequencing batch
reactor) type, where one treatment cycle consists of a filling phase, an aeration phase, a settling
phase and an effluent discharge phase. Such processes need continuous monitoring of the most
important process variables, in order to obtain an optimal nutrient removal capacity at minimal
costs. Especially when one realizes that nutrient removal processes are often related to phases
of luxury uptake (e.g. phosphates) and phases of nutrient release, the usefulness of on-line
measurements is obvious.

7.1.2 Alkalinity related to algal processes

The alkalinity of a water sample is defined as the amount of acid necessary to decrease the pH
to a predefined end value. Two end values are considered [104]:

� End value 8.3 (only relevant if the sample pH is higher than 8.3): this is called the
phenolphtalein or carbonate alkalinity (symbol C), and is a measure of the amount of
strong bases, carbonates and alkali present in the sample.

� End value 4.5 (only relevant if the sample pH is higher than 4.5): this is called the total
alkalinity (symbol T), and is a measure of the amount of strong and weak bases (like
bicarbonates).

The alkalinity can be measured in the laboratory using a recipient of known volume of
sample and a burette containing a strong acid (e.g. HCl 0.02 N). It can be expressed in meql�1

or in mgCaCO3 l�1.
Alkalinity is a popular measurement used in the process control of diverse water treat-

ment processes, e.g. in activated sludge treatment [249, 256, 283] or in anaerobic wastewater
treatment [46, 71]. In practice alkalinity is often used as a practical measure of the amount of
carbonates and bicarbonates in the water. There are some particular remarks concerning the
use of alkalinity as ‘ (bi)carbonate’ estimator:

� In cases the sample is loaded with weak acid buffering systems other than the CO2

subsystem (like ammonium, phosphates and VFA’s), these components will be included
in the alkalinity and will suggest that more (bi)carbonates are present than in reality [65].

� For the pH meter method, it is advised to choose the end value in function of the alka-
linity (end-value ranging from pH 4.3 to pH 4.9 for high to low alkalinity respectively)
[281]. For colour indicator methods, like the bromcresol method, the pH value 4.5 cor-
responds with the inflection point on the titration curve where the colour indicator will
switch to its other state. In case the inflection point is not so sharp, or the solution
contains strong colouring substances, the colour switch will be difficult to observe. For
this reasons, the pH meter method is mostly preferred above the older colour indicator
methods.
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In the application area of wastewater treatment, modified or extended methods of the alka-
linity measurement have been developed. Examples of extended methods where more than 1
end value in the titration profile are considered are a three-point method [12] and a five-point
method [197] for the determination of bicarbonate and VFA. Methods using more than 5 points
for bicarbonate and VFA estimation have also been developed [36, 228]. To eliminate the ef-
fect of interfering pH buffers when one is only interested in bicarbonate content, a method
was developed where the CO2 is stripped from the sample by addition of strong acid. The
stripped CO2 can be directly measured by the volumetric [108, 111] or pressure [71] build-up
of CO2. The described methods have been used in the application area of anaerobic treatment,
where high concentrations of both bicarbonate and VFA’s are present [46, 65]. An overview of
measurement methods for CO2 and bicarbonate is given in [75, 219].

Alkalinity related techniques for bicarbonate estimation are well developed in applications
where CO2 is continuously generated by micro-organisms degrading organics. In these areas
possible interferences with other pH buffering components are negligible. In the area of algal
treatment, on the other hand, CO2 is consumed by the algae, resulting in relatively low or even
limiting concentrations of bicarbonate in the water samples. Inorganic carbon (IC) is of major
importance, because it is the only carbon source used by algae. Among the different forms of
IC (CO2(aq), HCO�

3 and CO2�
3 ), only the two first ones are taken up by the algal biomass, and

thus useful as a carbon substrate [80, 97, 278]. The preference for CO2(aq) or HCO�
3 uptake

is pH dependent [286] and an adaptation period to switch between the CO2(aq) and HCO�
3

transport system may be required [80]. The importance of the IC buffer system in relation to
photosynthetic algal growth is widely described in literature [199, 259, 277, 279]. Therefore,
the usefulness of quantifying the IC buffer for algal wastewater treatment is twofold. First,
a precise knowledge of the inorganic carbon content can indicate whether the IC becomes
limiting [199], and whether IC supply is needed [259, 279]. Second, because IC is the only
carbon source used by the algae, the rate of IC consumption under light conditions can be used
as a process and control variable, e.g. indicating a possible reactor failure if the IC consumption
is too low.

7.1.3 Objectives

The objective of this chapter is to develop a pH buffer capacity based sensor, capable of extract-
ing concentrations of pH buffering components from on-line measured titration curves coming
from the influent, effluent and reactor content of an algal pilot plant. The information that
can be extracted from the buffer capacity profiles using mathematical modelling is evaluated
towards its usefulness related to tertiary algal treatment processes. The relationship between
the alkalinity and the IC buffer capacity will be discussed, as well as the ammonium and ortho-
phosphate assessment from the buffer capacity profile. In the latter case, IC, NH+

4 and o-PO4

will be incorporated in equation (3.59) on page 49 as diprotic, monoprotic and triprotic weak
acids respectively. The results obtained with the buffer capacity sensor seem promising as
input to develop a control strategy, although this is not the objective of this chapter.
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7.2 Materials and Methods

7.2.1 The algal pilot plant

A pilot reactor with algal biomass, installed at the outlet of the activated sludge plant Valcartier
near Quebec city (Canada), was used for the sample collection between July 22 and August
12, 1997. The activated sludge plant was treating domestic wastewater of the military base
Valcartier, and received an influent flow of around 2500 m3d�1. The plant was operating in
partially nitrifying mode and the secondary effluent nitrogen was present in two forms, NH+

4
and NO�

3 .
The algal bioreactor with a triangular cross-section had a volume of 6 m3 and combined

aeration and mixing was obtained by means of a perforated flexible tube at the bottom of the
reactor. This pilot reactor was in use for 2 years and its function was to further decrease the
nutrient concentrations of the secondary effluent. The reactor was used in batch mode, in cycles
of 1 or 2 days. A cycle consisted of a filling phase (in the morning), an aeration phase of 12 or
36 hours, a sedimentation phase (at night) to allow the algae to settle down, and a decantation
phase (in the morning) to remove an upper liquid layer of around 75 % of the total reactor
volume. The biomass concentration in the reactor was kept between 100 and 600 mg DW l�1.

7.2.2 Sampling and laboratory measurements

Light, pH, DO and temperature were monitored continuously in the algal pilot plant. Three
different kinds of samples were taken for further analysis in the laboratory:

� The Effluent of the ValCartier plant (sample code EVC), being the influent of the algal
pilot reactor;

� The content of the Algal Pilot (sample code AP), 3 hours after the reactor was filled and
completely mixed by the aeration;

� The Effluent of the Algal Pilot plant (sample code EAP).

The EVC and EAP samples were taken with a peristaltic pump in the inlet and outlet of the
pilot plant during filling and decantation phases respectively. The AP samples were taken as
manual grab samples. All samples were stored immediately in the fridge (4 oC) and processed
in the laboratory within 1 day.

Prior to the laboratory analyses (NH+
4 , NO�

3 , o-PO4), all samples were filtered on a What-
man 934 AH filter, with a pore size of 1.5 µm. The analyses were conducted according to
Standard Methods [104]. For the total alkalinity measurements in the laboratory, the pH meter
method was used [104].

7.2.3 Titration curves

Titrations were performed with a laboratory titrator (Metrohm Titrino 716 [168]). Data ac-
quisition was performed with a 386 PC connected to the titrator. The titrated sample volume
was 100 ml, and titration took place in a completely closed magnetically stirred titration vessel
containing a CO2 scrubber (bowed glass tube with soda lime pellets) to prevent entrance of
CO2 from the air. The headspace of the titration vessel was 150 ml. Prior to titration, the
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refrigerated samples were equilibrated to 25 oC with a warm water bath, and they were imme-
diately titrated at room temperature, which varied between 20 and 25 oC. Two different types
of titration profiles were collected:

Down titration profile: The sample as such was titrated with 0.1 N HCl from the actual pH
to pH 2.5 using a monotonic end-point titration (MET) method [168], with fixed steps
of 0.05 ml. This type of titration was used for the determination of the IC buffer.

Up titration profile: The down titrated sample was strongly agitated with a magnetic stirrer
for 15 minutes to remove all CO2, while the titration vessel was open to the air. Next,
the vessel was closed and the sample was titrated with 0.1 N NaOH to pH 11 using a
dynamic end-point titration (DET) method [168]. The difference with the MET method
is that the DET method does not take fixed volume steps, but variable volume steps
(small versus big steps when the buffer capacity is low or high respectively). This type
of titration was used for the determination of ammonium and ortho-phosphate.

7.2.4 Data processing software

The software bomb, described in section 5.3 on page 117, was used for the calculation of the
buffer capacity profiles. Such a profile is the inverse of the first derivative of the titration pro-
file. The calculation of the derivative was performed using a parabolic regression in a moving
window of 5 experimental data points of the titration curve. No further smoothing algorithms
were necessary to obtain a smooth buffer capacity profile. The same software was used to
fit several mathematical models to the calculated buffer capacity curve. The mathematical
model specifications were defined in a special input file, read by the program. The software
was running on an INDIGO workstation (Silicon Graphics, U.S.) and the data processing of 1
experimental data file needed approximately 1 minute.

7.2.5 Mathematical models

The mathematical models used were all based on the general buffer capacity equation (3.59)
on page 49. For each model used, the following considerations were taken into account:

� The pH interval used for data processing.
� Which pH buffering components to be included in the model.
� The initial guesses for the concentrations and pKa values.
� Which concentrations and pKa values had to be adjusted in order to fit the simulation

model to the experimental data. The parameters that are to be estimated are specified
with a lower and upper limit (constrained optimization). The reason for optimizing pKa

values instead of keeping them fixed at the pK0
a or another value is to take into account

the residual effects of temperature, ionic strength and possible electrode errors on the
position of the pKa values in the experimental buffer capacity curve.

For the down titrations a simulation interval between pH 4 and pH 7.3 was taken. Even
if the initial pH of the sample was much higher than 7.3, it was not worthwhile to extend
the simulation interval and incorporate ortho-phosphate or ammonium in the model, because
the magnitude of the IC buffer would interfere with the other smaller buffer systems. For
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Table 7.1: Down titration model specifications for a simulation between pH 7.3 and pH 4

Buffer Variable Initial guess or value Estimated? Lower limit Upper limit

Water pka water 15.74 No
conc water 55.5 mol l�1 No

IC pka1 carbon 6.37 Yes 6 7
pka2 carbon 10.25 No
conc carbon 1 meqIC l�1 Yes 0 2.5

Soap pka soap 4.8 Yes 4 5.5
conc soap 5 10�5 mol l�1 Yes 0 1 10�3

the up titrations, a simulation interval between pH 4 and pH 10 was chosen. In the software,
concentrations can be specified in mol l�1 or mg l�1. More detailed model specifications for
the down and up titrations are shown in Table 7.1 and Table 7.2 respectively. The ‘ soap’
term in the models stands for a range of components that all have a buffer capacity in the
range between pH 4 an pH 5.5, e.g. numerous organic acids. The ‘blank1’ term represents
an unknown buffering component around pH 10, found to be present in almost all samples
analyzed. The reason for incorporating the ‘carbon’ component in the up titration model,
despite the fact that the sample is made CO2 free, is that during up titration the CO2 initially
present in the headspace above the vessel, or small amounts of CO2 present in the titrant, can
enter the sample and typically account for 0.07 meqIC l�1.

Furthermore, once the total concentration CIC (which is [CO2�
3 ]+ [HCO�

3 ]+ [CO2(aq)]) is
determined using the simulation model, the partitioning of these 3 forms can be calculated as
function of the actual pH [281]. Using the mass balance and the 3 equilibrium equations for
IC, the concentrations [CO2(aq)], [HCO�

3 ] and [CO2�
3 ] are given by equations (7.1), (7.2) and

(7.3) respectively. Details on obtaining these equations can be found in [273, 281].

[CO2(aq)] =
10�2pH

10�2pH+10�(pH+pKa1)+10�(pKa1+pKa2)
CIC (7.1)

[HCO�
3 ] =

 
1� 10�2pH +10�(pKa1+pKa2)

10�2pH+10�(pH+pKa1)+10�(pKa1+pKa2)

!
CIC (7.2)

[CO2�
3 ] =

 
1� 10�2pH+10�(pH+pKa1)

10�2pH+10�(pH+pKa1)+10�(pKa1+pKa2)

!
CIC (7.3)

It is important to remark that the latter 3 equations are valid only in a completely closed and
equilibrated system. As the algal reactor is an open system, the concentration of CO2(aq) is
also driven by Henry’s law [260]:
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Table 7.2: Up titration model specifications for a simulation between pH 4 and pH 10

Buffer Variable Initial guess or value Estimated? Lower limit Upper limit

Water pka water 15.74 No
conc water 55.5 mol l�1 No

IC pka1 carbon 6.37 No
pka2 carbon 10.25 No
conc carbon 0.07 meqIC l�1 Yes 0 0.25

o-PO4 pka1 phos 2.15 No
pka2 phos 7.21 Yes 7 7.8
pka3 phos 12.35 No
conc phos 3 mgP l�1 Yes 0 30

NH+
4 pka ammon 9.25 Yes 9 9.5

conc ammon 2 mgN l�1 Yes 0 30
Soap pka soap 4.8 Yes 4 5.5

conc soap 5 10�5 mol l�1 Yes 0 1 10�3

Blank1 pka blank1 9.6 Yes 9.4 11.5
conc blank1 5 10�5 mol l�1 Yes 0 1 10�3

[CO2(aq)] = KH � pCO2(air)
(7.4)

With KH = 3:4 10�2 M atm�1 (at T = 25 oC) and pCO2(air)
= 3 10�4 atm, equation (7.4) leads

to an air/liquid equilibrium concentration of [CO2(aq)] = 10�5M or 0.01 meq l�1, which is a
very low value. Furthermore, one has to take into account that a biological active system like
and algal system is quite seldom in equilibrium with the atmosphere [37], so careful use of
equation (7.4) is advised.

7.3 Results and Discussion

7.3.1 Alkalinity and IC buffer capacity

A random sample from the algal pilot reactor AP, taken in the morning of a sunny day was
analyzed with the titrator and in the laboratory. A filtered and an unfiltered sample were titrated
from the actual pH to pH 2.5 (Figure 7.1). Both samples were also analyzed on the total
alkalinity with two standard methods. From the titration curves, the corresponding buffer
capacity curves (Figure 7.2) were calculated and the simulation model (equation (3.59) on
page 49 and Table 7.1) was used to quantify the concentration of the IC buffer. The best fit
simulation result for the unfiltered and filtered sample is given in Figure 7.2.

For the total alkalinity determination, the end-point pH value for the pH meter method was
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Figure 7.2: Measured (points) and simulated (lines) buffer capacity curves of an unfiltered and
filtered AP sample
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Table 7.3: Alkalinity measurements and IC simulation results

Filtered sample Unfiltered sample
meq l�1 meq l�1

Total alkalinity (pH meter method [104]) 1.09 1.17

Total alkalinity from titration curve (T) 1.11 1.20
Carbonate alkalinity from titration curve (C) 0.15 0.15
(T�C) alkalinity from titration curve 0.96 1.05
(T�2C) alkalinity from titration curve 0.81 0.90

Simulated CIC from titration curve 0.80 0.85
Simulated [HCO�

3 ] using equation (7.2) 0.75 0.80

set at pH 4.5, according to the standard method [104]. This method was also applied to the
titration curves of Figure 7.1, where an interpolation between 2 successive data points was used
to make a reading of the amount of acid necessary to bring the pH to 8.3 and 4.5 respectively.
For comparison reasons, the simulation results to quantify the IC buffer were also expressed
as meq l�1.

The results of the alkalinity measurements and the simulation results for IC are presented
in Table 7.3. The precision of the total alkalinity measurements (both the pH meter method and
from the titration curve), expressed as relative standard deviation (r.s.d.), was between 1 and 2
%. The r.s.d. of the simulated IC concentration based on down titration profiles was 2 %. One
can notice that the results for the filtered sample are only about 7 % lower than the unfiltered
sample. This means that the alkalinity or IC buffer capacity is mainly related to the soluble
phase and not to the algal biomass phase. The total alkalinity with the standard pH meter
method was not significantly different from the total alkalinity calculated from the titration
curves in Figure 7.1 (t-test; α = 0:05). An interesting feature of this experiment is found when
comparing the IC content found with the modelled buffer capacity curves and the alkalinity
calculated from the same experimental titration curve. From Table 7.3, it can be seen that the
total alkalinity is about 40 % higher than the corresponding simulated IC concentration and
that the (T�C) alkalinity is still more than 20 % higher than the simulated IC concentration.
This is the case in both the filtered and unfiltered sample. This indicates that the alkalinity of
the sample is mainly, but not completely determined by the amount of IC.

To make a further interpretation of the different results in Table 7.3, a summarizing ta-
ble with the buffers that are included in these results is presented in Table 7.4. None of the
measurements in Table 7.4 exactly represents the amount of CO2(aq) or HCO�

3 in the water,
which are the only two IC species that are available to the algae. The IC obtained with the
simulation model will be the closest to the real amount of IC because interferences in the pH
range 7 or higher (ammonium, ortho-phosphate) and in the pH range of 5.5 and lower (organic
acids, detergents) are excluded in the simulation method. For the sample studied, the initial
pH was 9.1, and the partitioning between the 3 different carbon species was 0.2 % CO2(aq),
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Table 7.4: Different buffers that are included in the alkalinity measurements and IC simulation
results (assuming actual pH of sample > 8.3)

Measurement Buffers that are included in the measurement

Total alkalinity (T) 2CO2�
3 +HCO�

3 + other buffers between actual pH and pH 4.5
Carbonate alkalinity (C) CO2�

3 + other buffers between actual pH and pH 8.3
(T�C) alkalinity CO2�

3 +HCO�
3 + other buffers between pH 8.3 and pH 4.5

(T�2C) alkalinity HCO�
3 + other buffers between pH 8.3 and pH 4.5

� other buffers between actual pH and pH 8.3

Simulated CIC CO2�
3 +HCO�

3 +CO2(aq) + buffers with pKa: � pKa: of IC
Simulated [HCO�

3 ] HCO�
3 + other buffers with pKa: � pKa1 of IC

93.9 % HCO�
3 and 5.9 % CO2�

3 , calculated with equations (7.1), (7.2) and (7.3) respectively.
From this, it is concluded that the algal available carbon was mainly in the bicarbonate form.
From Table 7.4, it can be concluded, that in case the only buffer in the sample is the IC buffer,
then both (T�2C) and the simulated [HCO�

3 ] represent exactly the bicarbonate content. If also
other buffer systems (ammonium, ortho-phosphate, organic acids, : : : ) are present in the sam-
ple, the situation is different. On the one hand, the simulated [HCO�

3 ] will overestimate the
real bicarbonate content when extra buffers with the same pKa: as the pKa1 of IC are present.
On the other hand, the bicarbonate assessment from the (T�2C) measurement will be influ-
enced by a much wider range of buffers. All extra buffers between pH 8.3 and pH 4.5 (e.g.
ortho-phosphate, organic acids) will lead to an overestimation of the bicarbonate content, and
all extra buffers between the actual pH and pH 8.3 (e.g. ammonium) will lead to an underes-
timation of the bicarbonate content. Practically, in this example, when comparing the (T�2C)
to the simulated [HCO�

3 ] for bicarbonate estimation, an overestimation of the real amount of
bicarbonate by (T�2C) is minimal 8 and 12 % for the filtered and unfiltered samples respec-
tively (concluded from Tables 7.3 and 7.4 together). From 36 unfiltered samples (pH between
7.1 and 9.1) taken at various times in the algal reactor, it was found that the (T�2C) mea-
surement always gave 4 to 22 % overestimation of the bicarbonate content compared to the
[HCO�

3 ] from the simulation method. In case the IC would become more limiting in the algal
reactor, or the interfering buffers would become more pronounced, the simulation method is
to be preferred by far for the determination of available bicarbonate for the algae. Besides, the
result of the simulation method does not depend on the choice of the end-point (pH 4.3 to 4.9,
depending on the method and alkalinity range).

For this particular case-study, an automated alkalinity measurement possibly would reveal
similar process information as the IC determination with the buffer capacity sensor. However,
because the hardware and the hardware related practical difficulties (maintenance, calibration,
: : : ) of an automated alkalinity measurement are very similar to this buffer capacity sensor,
the main advantage of the buffer capacity sensor is that more parameters are obtained with a
single measurement device.
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7.3.2 Ammonium and ortho-phosphate evaluation in grab samples

During a period of 14 days, samples were taken in the influent of the algal pilot reactor (EVC),
in the reactor itself (AP) and in the effluent of the algal pilot plant (EAP). These samples were
analyzed in the laboratory for NH+

4 and o-PO4. Subsamples of 100 ml were used to perform up
titrations to obtain the buffer capacity profiles. For the AP samples, containing algal biomass,
2 different titration experiments were performed:

� Titration of the raw sample as such (including 100 to 600 mg DW l�1 of the algae);
� Titration of the supernatant after the algae were settled.

After the titration data were collected, the data processing was performed. The repro-
ducibility for repeated sampling, titrating and optimization, expressed as relative standard de-
viation (r.s.d.), was less than 2 % for the ammonium concentration and less than 5 % for the
ortho-phosphate concentration. The results of the AP samples with or without biomass were
comparable for the ammonium prediction but different for the ortho-phosphate prediction. For
the o-PO4, the samples with biomass gave 50 to 100 % higher values than the samples without
the biomass. This might indicate that a considerable amount of phosphate is related to the
biomass fraction, or that this biomass fraction contains other weak acid buffering systems that
interfere with the titrimetric ortho-phosphate determination. The validity range of the measure-
ments using this approach is case dependent (e.g. presence or absence of interfering buffers)
and depends on the titration conditions (e.g. sample volume, titrant normality, measurement
point density). Based on the experience for this particular case, the minimum validity values
are considered around 1 mgN l�1 and 1 mgP l�1.

Using the mathematical model (equation (3.59) on page 49) and Table 7.2), a perfect fit be-
tween the experimental and simulated buffer capacity curves was obtained for all experimental
data. An illustration of the experimental data and the model fitting for 3 selected EAP samples
taken at different days is illustrated in Figure 7.3. On the graph, one can easily distinguish
the profiles of samples that are high or low in ammonium and/or phosphate concentration. For
the samples shown in Figure 7.3, together with the other grab samples, the laboratory mea-
surements of NH+

4 and o-PO4 and the concentrations estimated with the model (titrator) are
presented in Table 7.5. For the AP samples, only the results of the titration experiments without
the algal biomass are shown, because they correspond most closely to the laboratory procedure
where all samples were filtered prior to analysis. Overall, the linear relationship between lab-
oratory and titrator results is shown in Figures 7.4 and 7.5. The constructed linear regression
lines with their 95 % confidence intervals are comparable to the results obtained in chapter 6
on secondary effluents with a similar buffer capacity sensor.

7.3.3 Dynamic nutrient evolution in a 48 hour batch experiment

A 48 hour batch experiment was set up to monitor the nutrient removal in the algal pilot plant.
The experiment started with a filling phase with EVC water at 08:00 in the morning. In the first
36 hours of the experiment, the aeration was activated, ensuring a completely mixed reactor.
During the last 12 hours, the aeration was stopped. An automatic time-proportional sampler
was used to obtain combined samples every 3 hours. During this experiment, 19 samples were
titrated, among which the first 11 were samples from a completely mixed system (when aera-
tion was activated). The last 8 samples were taken during the second night of the experiment,
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Figure 7.3: Measured (points) and simulated (lines) buffer capacity curves for 3 selected EAP
samples

Table 7.5: Laboratory measurements and simulation results for all grab samples

NH+
4 (mgN l�1) o-PO4 (mgP l�1)

Sample Date laboratory titrator laboratory titrator

EVC July 30, 1997 4.6 9.0 3.4 3.2
August 5, 1997 21 23 3.7 3.1
August 6, 1997 19.6 21 3.9 3.4
August 8, 1997 15.2 18.6 4.3 3.5

EAP July 30, 1997 0.6 0.8 3.8 2.1
August 5, 1997 0.8 1.0 1.2 1.2
August 6, 1997 9.4 10.8 4.2 3.4
August 8, 1997 12 13.4 3.9 2.9

AP August 4, 1997 2.8 2.7 3.3 2.7
August 5, 1997 13.2 14.6 4.6 3.9
August 6, 1997 16.9 19.5 4.3 3.6
August 8, 1997 14.3 16.9 4.1 3.6
August 12, 1997 13 9.3 3.2 3.0
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when the aeration was stopped and the algae had settled to the bottom of the reactor (4 sam-
ples close to the surface and 4 samples at the bottom). Based on the results of the grab samples
mentioned above, it was decided to take titration curves of samples without algae only (titration
of the supernatant after the algae were settled to the bottom of the sampling vessel).

For each sample, a down titration was performed to estimate the IC buffer capacity, fol-
lowed by a 15 minutes stirring at pH 2.5 to remove the IC. Subsequently an up titration to pH
11 was performed to estimate the ortho-phosphate and ammonium. The specifications of the
buffer capacity model in equation (3.59) on page 49 for the down and up titrations are given
in Tables 7.1 and 7.2 respectively. In Figure 7.6 the results are given for the laboratory and
titrator analyses of NH+

4 and o-PO4, and for the laboratory measurements of pH and NO�
3 .

Ammonium was mainly removed in the first day, dropping from around 9 to less than 1
mgN l�1 during the first 24 hours. The fit between the experimental and simulated buffer
capacity was very good for all samples, indicating that an adequate model was used. The
ammonium concentrations determined in the laboratory showed good correspondence with the
titrator results in the first 18 hours, but from 18 hours onward, the concentrations resulting
from the titrator showed an overestimation with 0 to 1.5 mgN l�1. This might be explained
by the fact that a rather strong buffer is present between pH 9.8 and pH 10.3 in all samples,
possibly giving some interference with the ammonium buffer only. This extra unknown buffer
was modelled and its concentration was estimated at 0.3 mmol l�1. If this buffer was ignored
in the model, the fit between experimental and simulated buffer capacity profiles was poor,
and the estimation of the ammonium concentration was 2 mgN l�1 higher than the laboratory
result. The nature of the interfering compound remains, however, unknown.

The ortho-phosphate concentration did not change very much during this 48 hour batch
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experiment, and both the laboratory results and the titrator results varied between 2 and 3
mgP l�1. Again, a small systematic deviation between the results of the 2 measurement meth-
ods was observed. This time, the titration results were lower than the laboratory results. A pos-
sible explanation can be found in the complex equilibria that exist between the different forms
of phosphorus [285]. These different forms of phosphorus play the role of ‘PO 4 reservoir’
through chemical exchanges. It is reported [285] that standard methods, like the molybdenum
blue method used here, can give a significant overestimation of o-PO4 under such conditions.
The standard molybdenum blue method can potentially hydrolyze organic P compounds or
displace P from colloids, and thus the level of ortho-phosphate ions present may be severely
overestimated [21].

The results show that o-PO4 is not removed from the secondary effluent by this pilot reactor.
On the other hand NH+

4 is almost completely removed after 1 day of treatment. From the
viewpoint of nutrient removal process control, the batch cycle time could have been shortened
to 1 day. An exact comparison of the laboratory results and the titrator results is difficult,
because the titrator used the samples as such (or in case algae were present, only the upper part
without the algal biomass), while the laboratory analyses were preceded by a filtration.

In Figure 7.7 the results are shown for the titrator based determinations of the IC present
in the AP samples. As discussed above the estimated IC concentration with the titration sys-
tem corresponds most closely to the amount of carbon available to the algal biomass. The IC
concentration at the beginning of the experiment was around 1.6 meq l�1. During day 1, this
concentration decreased to 0.9 meql�1. During night 1 the concentration of IC increased a bit,
pointing to algal respiration. During day 2, the IC further decreased to around 0.7 meq l�1.
During night 2, in the upper part of the reactor, where no algae were present, no further de-
crease in concentration could be observed. At the bottom of the reactor, where the algae were
settled, one notices a higher IC concentration in the first 3 hours, decreasing to the same level
as the upper part of the reactor. An explanation for this can be found when looking at the
oxygen concentration at the bottom of the reactor during night 2. In the first 3 hours after
the aeration was stopped, the concentrated algal biomass consumed all oxygen for their res-
piration, resulting in a high IC concentration. In the remaining part of night 2, under anoxic
conditions, an equilibrium in IC concentration between the upper and lower part of the reactor
was established.

In order to make an interpretation of the changes in NH+
4 , o-PO4 and IC, at least 2 different

biological processes may be considered to be responsible for the observed phenomena. First,
there is algal photosynthesis and respiration, with a consumption and release of inorganic car-
bon respectively. During photosynthesis nitrogen (NH+

4 or NO�
3 ) and phosphorus are taken up

together with inorganic carbon (CO2 or HCO�
3 ) in the proportion C : N : P� 106 : 16 : 1 [273].

Second, there is the bacterial autotrophic nitrification, with a transformation of NH+
4 into NO�

3
with a small consumption of IC, in the proportion NH+

4 -N : NO�
3 -N : C� 1 : 1 : 0:08 [91]. The

IC consumed for the formation of new nitrifying biomass is too low to be used to quantify the
nitrification rate accurately. This nitrification process is in accordance with the NO�

3 evolution
measured with off-line laboratory analysis, where an increase in NO�

3 from 10 to 16 mgN l�1

was observed in the first 24 hours of the experiment. The next 48 hours, almost no further
changes in NO�

3 occurred because NH+
4 became limiting. Besides the biological consumption

of the inorganic carbon for assimilation into new biomass, the decrease of the IC buffer can
also be partially explained by the H+ production by both biological processes, resulting in an
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Figure 7.7: Titrator concentrations for inorganic carbon

alkalinity decrease [273]. On the other hand, the algal uptake of dissolved CO2 during day-
time, resulted in a net pH increase from pH 7.3 to pH 8.7, as observed during the first 12 hours.
The pH of all samples was between pH 7.1 and pH 8.7, meaning that the bio-available carbon
was always higher than 95 % of the quantified IC buffer system (equations (7.1) and (7.2)). In
this case study, the IC never dropped below 0.7 meql�1, which is a rather safe value compared
to the 0.5 meq l�1 reported to be needed [199] for normal operation. From an industrial point
of view, this algal wastewater treatment appears to be a viable alternative for small communi-
ties [151]. However, the pilot-plant experiments in this study have shown that especially for
the phosphate removal, the % P removed (by precipitation and/or biologically) is lower than
previous, smaller-scale studies [146, 230]. In the viewpoint of possible eutrophication of the
receiving waters, further insights in the phosphorus removal mechanisms and further process
optimization are necessary. The role of phosphorus in the eutrophication of receiving waters is
complex because phosphorus is a very dynamic, biologically active element [54, 59].

As the results of the titration method can be influenced by interfering buffering compo-
nents, this measurement method cannot be considered to be an analytical device, replacing the
standard laboratory methods. As illustrated above, the application of this titration method has
to be seen in the context of process monitoring and alarm generation. An innovative aspect of
the presented buffer capacity sensor, is that it gives a multivariate response (IC, NH+

4 , o-PO4)
supplemented with extra information, e.g. the appearance or disappearance of extra buffer
systems, that are useful for process monitoring.

Further research will focus on the implementation of a fully automatic sensor, including
automatic buffer model selection to accommodate for (dis)appearing buffer systems. Further,
an appropriate control strategy will be developed in which this device is providing the neces-
sary data in due time. The time needed to perform a full measurement cycle was approximately
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1 hour (down titration, up titration and data interpretation). Further optimization of the titra-
tion parameters can reduce this cycle time with 10�20 minutes. The cycle time can be further
decreased to 20� 25 minutes if the down and up titrations are performed in parallel titration
vessels. Electrode problems were never observed during the performed experiments. The
maintenance of the titration vessel and electrode is comparable to the maintenance of a pH
meter.

7.4 Conclusions

The proposed methodology of a pH buffer capacity based measurement system was evaluated
for its usefulness for multivariate monitoring of tertiary wastewater treatment with algae. In
waters which are low or even limiting in IC buffer capacity (like in algal treatment plants),
standard alkalinity measurements can give an overestimation of the IC buffer system, because
the alkalinity is a general composite measurement, including all pH buffering components
in the considered pH interval. For the samples analyzed, the (T�C) alkalinity was around
20 % higher than the IC concentration obtained with the buffer capacity sensor, explaining
that other buffering components than IC are included in the (T�C) alkalinity (o-PO4, NH+

4 ,
organic acids, : : : ). It is concluded that the HCO�

3 concentration assessed with the simulation
method is preferred, rather than the (T�2C) alkalinity, when one wants to quantify the available
bicarbonate.

The NH+
4 and o-PO4 assessment from the up titration profiles were comparable with the

laboratory measurements. An exact comparison of the laboratory results and titration results
was difficult, because of the filtration step preceding laboratory analyses, and possible inter-
ferences by buffer systems not accounted for in the model.

During a 48 hours batch experiment, the measured IC concentration reflected the day/night
difference in activity of the algal biomass fairly well. The data of the titrimetric sensor showed
that there was no carbon limitation and that the treatment cycle could have been halved to 24
hours, still allowing complete NH+

4 -removal. The IC reduction rate during daytime was an
indicator of the biological activity.

The application of the sensor developed here has to be seen in the context of process mon-
itoring and alarm generation. The developed methodology can be realistically implemented in
an on-line automatic measurement system. The sensor does not need any sample filtration, a
major advantage for field-use. The chemicals used are environment friendly and inexpensive.
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Chapter 8

Automatic titrimetric sensor for
manure nutrients

Some of the results of this chapter were registered in a patent [78].

8.1 The FASTNAP project

8.1.1 Project identification

The FASTNAP acronym stands for “FAST titrimetric Nitrogen And Phosphorus determination
in animal manure and other organic slurries” . The project was a cooperation between 3 Flemish
and 2 Dutch partners:

� Hemmis N.V., Kortrijk
� Flemish Land Agency (V.L.M.), manure bank department, Brussel
� Ghent University, BIOMATH department, Gent
� Eijkelkamp Agrisearch Equipment b.v., Giesbeek, The Netherlands
� DLO Institute of Agricultural and Environmental Engineering (IMAG-DLO), manure

technology department, Wageningen, the Netherlands

The aim of the project was the development of an automated on-line sensor, that can be
used to quantify the total amounts of nitrogen and phosphorus in animal manure and other
organic slurries. The innovative aspect of this project is that, eventually, these measurements
should be conducted on a driving transport vehicle for animal manure, and the results should
be available within 1 hour after loading the transport vehicle.

This project could only be realized with an interdisciplinary approach. Physico-chemical
analytical and destruction techniques are combined with mathematical simulation techniques
and resulted in a combined hard- and software sensor, capable of extracting upgraded infor-
mation from a pH titration profile. The use of such intelligent sensor in the application area of
animal manure measurements is a new research topic.
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8.1.2 Background of the project

Due to an increase of the livestock population in Flanders and the Netherlands during the
last decades, the production of animal manure has increased. Especially the number of pigs
increased drastically in the past 40 years (in the Netherlands from 3 million pigs in 1960
to 14.4 million pigs in 1996) [330]. The application of large quantities of animal manure to
agricultural soils created environmental problems such as leaching of nitrate to the groundwater
and eutrophication of surface waters due to surface runoff of phosphate [330].

On the first of January 1998, a mineral accounting system (MINAS) was introduced in the
Netherlands to reduce excess mineral losses to the environment. MINAS obliges farmers to
balance the in- and output of nitrogen and phosphorus in manure. The introduction of MINAS
created a need for rapid and accurate determination of the nitrogen and phosphorus content in
animal manure on site [330]. In Flanders, a similar legislation exists, but it is less intensive
as the Dutch MINAS system. Some important differences between the Flemish and Dutch
situation are:

� In the Netherlands, all organic and inorganic mass flows containing nitrogen and/or
phosphorus should be included accurately in the mineral bookkeeping. Mass flows con-
taining nitrogen and/or phosphorus are amongst others animals, roughage, feed stuff,
crops, animal products and manure. In Flanders (Mestdecreet, December 20th, 1995),
the farmers have to make a bookkeeping of the volumina of manure that is transported
and they should announce beforehand to the Flemish authorities (Mestbank) each quan-
tity of manure that is going to be transported from and to the farm.

� In the Netherlands, for each manure transport between 2 farms, the concentrations of ni-
trogen and phosphorus need to be determined in the laboratory with official methods. In
Flanders, the farmer has the choice between two declaration systems: a system where no
laboratory analyses are needed (fixed mean values for nitrogen and phosphorus content
of animal manure are used); or a system where exact concentrations, measured in the
laboratory, are used for the declaration.

� The Dutch authorities make up the accounts at the end of each year. For each surplus of
a kilogram phosphorus (as P2O5) and nitrogen, farmers have to pay e 5.00 and e 0.75
respectively. In Flanders, a taxation system on the production and the surplus of ni-
trogen and phosphorus has been adopted (Mestdecreet, May 11th, 1999). All nitrogen
and phosphorus, originating from production of animal manure, other organic sources
(compost, sludge) and chemical fertilizers is levied with e 0.022 for 1 kg of N or P2O5.
Further, a supertax is imposed for each kilogram of N and P2O5 that is produced above
a production quota allotted to each individual farmer (dependent on the manure produc-
tion of the farm in the past). The supertax is set to e 0.25 for 1999 and 2000, increasing
to e 0.5 in 2001 and 2002, and further increasing to e 1.0 after 2002.

Depending on the farming system, manure is an important input/output flow of nitrogen
and phosphorus. Livestock producers, for example, produce manure (output) and arable farm-
ers use manure as fertiliser (input). To create a balanced situation, livestock producers with
mineral surpluses on their own farm, have to transport animal manure to arable land of other
farms.

Accurate determination of the quantity of transported nitrogen and phosphorus requires
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Figure 8.1: Representative sampling with the side tube technique [330]

weighing and sampling of each individual load [330]. Representative samples can be taken
with the side tube technique [119]. The principle of this sampling system is illustrated in Figure
8.1. During loading or unloading of the manure-transporting vehicles, five samples of about
150 ml each are taken and collected in a sample bottle. A completely automated version of this
technique is on sale. The operator cannot influence the time of sampling nor the composition of
the sample. This increases the tamperproofness of the technique. After sampling, the samples
are sent to the laboratory for analyses. After five to ten working days, the analytical results are
available [330]. In case of direct transport and use of manure (e.g. fertilisation), farmers cannot
take the results of the analyses into account for e.g. adjusting the quantity of manure applied
per unit of soil surface. This complicates an adequate use of manure in view of environmental
hygiene and fertilisation. Practice shows that farmers with arable land are not eager to use
manure from livestock producers when the mineral composition is unknown. The reason for
this is that fertilisation of arable land with a shortage of nitrogen and phosphorus can result
in poor crop yields, whereas an overuse is punished by levies because of the imbalance in the
mineral accounting system [330].

Summarized, in the framework described above, there is a necessity for a robust and au-
tomatic sensor, that can measure the most important manure nutrients N and P. The sensor
should have the ability to be placed or mounted near the place where the manure is loaded
(eventually mounted on the driving vehicle itself). Preferentially, the analyses results should
be available for the receiving farmer prior to the application of the transported manure on his
arable land. The measurement principle should be accurate, reliable and susceptible to official
acceptance and certification.
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Figure 8.2: Methodology of the FASTNAP sensor

8.1.3 Sensor perspectives

A market study revealed that the needed capacity for Flanders is around 70�100 automatic
measuring units. In Flanders, there are about 50 big manure transportation companies, who
transport each more than 10.000 tons per year. These 50 (from a total of 500) transporters
together realize 62.000 transports or 1.900.000 tons per year. The needed capacity for the
Netherlands is about 150 automatic measuring units for 75 transporting companies with a total
of 350 vehicles for ‘ long distance’ manure transport. In the Netherlands, a total of 800.000
transports of manure are registered per year.

The end-user-price for such automatic sensor is estimated to be around e 25.000. The
price for a laboratory analysis (N and P) is around e 50, so that approximately 500 analyses
per instrument are needed to pay back the investment cost.

8.1.4 Measurement principles

The sensor methodology is presented in Figure 8.2. The aim of the project is the on-line
measurement of nitrogen and phosphorus in manure samples and this can be realized in four
consecutive steps. Steps one and two (left side of Figure 8.2) are developed by the Dutch
partners in the project, and steps three and four (right side of Figure 8.2) are developed by the
Flemish partners. In the sequel, an overview of the presented topics in this chapter is given.

The sampling of manure, with the side tube technique, is existing technology. The sub-
sampling consists of a homogenization of the sample in the sample bottle (750 ml), followed
by a subsampling for further analyses. Several techniques for subsampling were investigated,
including pipetting arms, dispensers and pumps [328]. The sample destruction is discussed in
section 8.2, where a number of techniques are summarized and compared. It was chosen to
use microwave digestion with H2SO4 and H2O2 [329]. Possible techniques for on-line mea-
surement of nitrogen and phosphorus in manure are presented in section 8.3. A similar titri-
metric method, as presented in chapters 6 and 7, was adopted for the measurement of nitrogen
and phosphorus in destructed manure samples. Ammonium and ortho-phosphate both have
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a measurable pH buffer capacity, and they can be quantified from the buffer capacity profile.
However, because different buffer systems are present in the sample, a conventional end-point
titration cannot be used, so advanced data processing is necessary to find the concentrations of
nitrogen and phosphorus. The development of the titrimetric part of the sensor is worked out
in section 8.4. In the final part of this chapter, a validation and statistical data analysis of the
developed methods are presented in section 8.5.

8.2 Destruction of manure samples

Prior to analytical determination of the nutrients N and P in animal manure, it is necessary
to digest the manure sample, thus bringing nitrogen and phosphorus in solution. For this
purpose, two possible methods that can be automated, were investigated: microwave and UV
destruction. The first method was studied experimentally, while the latter was mainly evaluated
on the basis of a literature review.

8.2.1 On-line microwave destruction of manure samples

For the microwave destruction, 2 different systems were tested and evaluated in the framework
of the FASTNAP project [329]: an open microwave system (Microdigest 3 , Prolabo) and a
closed microwave system (Mega 1200, Milestone). The chemicals added to the manure sample
prior to the destruction step are based on a reference laboratory destruction method for animal
manure and related products (NEN 7433) [1]. They are H2SO4, H2O2 and CuSO4 �5H2O. The
reference method demands a certain temperature profile of which the highest needed tempera-
ture is 330 oC.

Destruction of animal manure samples in an open microwave system gave results (within
� 5 %) that are comparable with destruction in the lab using a conventional destruction block.
Also in other application fields, microwave digestion methods for total nitrogen and phospho-
rus in natural waters [131] and COD in wastewater effluents [130] gave promising results as
compared with the conventional laboratory methods. A destruction time of 30�50 minutes
with the open microwave results in a nitrogen recovery of 95�99 %. However, the results with
the closed microwave showed a nitrogen recovery of maximum 90 %. This can probably be
explained by the fact that the closed microwave could only heat until 220 oC (due to teflon com-
ponents), which is below the boiling point of the sulphuric acid. In both microwave systems,
the phosphorus recovery is around 100 %. It was also found that the catalyst CuSO4 � 5H2O
could be omitted for the same destruction result. The open microwave has facilities for au-
tomatic reagent addition and a reflux system for vapour, which are advantageous aspects for
automation. The lower nitrogen recovery and the difficulties to automate the closed microwave
system are the two most important reasons why the open microwave was chosen for further
optimization in the framework of the project [329].

An automated destruction of animal manure is possible with an open microwave system
within 1 hour and with a combination of sulphuric acid and hydrogen peroxide. However, some
disadvantages of this method for field application are: very high apparatus cost (e 15.000); ex-
treme working conditions (330 oC and pH< 1) and high, expensive consumption of dangerous
chemicals, with associated safety problems for application in the field. Because of these limi-
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tations, an alternative destruction method based on UV-light was investigated for the purpose
of manure destruction.

8.2.2 On-line UV destruction of manure samples

Literature overview of UV photodegradation applications UV destruction of organic ma-
terial is applied for many different purposes: disinfection of water or wastewater [3, 154, 303],
destruction of recalcitrant chemical substances (often aromatic structures) [52, 134, 245], mea-
surement of nitrogen, phosphorus, : : : in water or soil solutions by photochemical decompo-
sition [16, 113], etc. Photo-oxidation can enhance the biodegradability of wastewaters due
to removal of toxic pollutants [106, 153, 224], however a possible consequence of ultraviolet
photo-oxidation can also be the induction of biotoxicity (e.g. algicidal effect) in treated waters
[95, 252].

UV lamps can be classified by their radiation spectrum. This spectrum can be very nar-
row, e.g. a monochromatic radiation at 254 nm, realized with a low-pressure mercury vapour
lamp [29], or the spectrum can be very broad, e.g. a strong emission over the entire region
between 190 and 400 nm, realized with a high-pressure mercury vapour lamp [227]. Oxida-
tion of chemicals by the UV process using low and medium pressure mercury vapour lamps
hinges on the generation of hydroxyl radicals [227]. Hydrogen peroxide (H2O2) is often used
in combination with low or medium pressure lamps, because the quantum yield of hydroxyl
radicals from hydrogen peroxide is almost 1 when the wavelength of UV light approaches 254
nm. Applications based on this type of process are manyfold: UV/H2O2 treatment of indus-
trial wastewater [117, 134, 194] or groundwater [152]. Sometimes the UV/H2O2 process is
accelerated by adding Fe2+ [245, 345] or ferrioxalate [245]. It is also possible to use H2O2 in
combination with a catalyst (iron, graphite, activated carbon) without UV for the degradation
of e.g. phenolic compounds [170]. For groundwater contaminated with volatile organic com-
pounds (VOC’s), the Ultrox process (UV/H2O2/ozon) achieved VOC removals greater than 90
% [152]. The oxidation of organic material with a combined persulphate/UV treatment is a
common technique used in TOC analyzers [42, 45]. A high-pressure mercury vapour lamp is
effective not only at generating hydroxyl radicals from H2O2 but also causing electronic tran-
sitions in many organic molecules. Thus, this type of lamp is potentially capable of degrading
organics without the presence of a hydroxyl radical source [178, 227].

Titanium dioxide powder in aqueous solution is a well-known photocatalyst for the degra-
dation of organics with solar or near-UV irradiation [27, 106, 142, 153, 195, 225]. A typical
concentration for chemicals that can be mineralized with such treatment is around 1 mmol l�1,
in a time period of 1�3 hours [184]. Full mineralization is not always possible, e.g. photocat-
alytic degradation of atrazine [224]. The possible use of solar-illuminated TiO2 for the disin-
fection of water is suggested [183]. By photocatalytic degradation with TiO2, dissolved organic
nitrogens (DON’s) in natural waters are converted to inorganic nitrogens such as ammonium,
nitrate and nitrite [276]. Other photocatalysts include magnetite and aluminium oxide [52],
dyes like riboflavin [5, 333] and methylene blue [4, 5, 53], or naturally occurring substances
like proteins [116]. Experiments with magnetite and a high-pressure mercury lamp [52] have
shown that it is possible to reduce the COD of a shale dry distillation wastewater from 2500
ppmCOD to 1500 ppmCOD in 1 hour illumination time.

Photochemical decomposition of organic and inorganic phosphorus compounds into ortho-
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phosphate has been developed for the determination of total phosphorus in natural and sewage
water [100, 209, 324, 348]. These methods rely on a combined strong acid (e.g. sulphuric acid)
and strong UV treatment (e.g. 1000 W high pressure mercury lamp). This method is typically
used in a range from 1�5000 µgP l�1. The determination of total nitrogen in water using on-
line UV digestion is a possible alternative for the Kjeldahl method, especially for wastewater
samples with high nitrate content [145]. In this method, the organic and inorganic nitrogen is
converted into nitrate by potassium peroxodisulphate. In some cases (e.g. in the presence of
H2O2), nitrate acts like a filter and reduces the UV light intensity in the photoreactor [267].
Without the addition of photocatalysts, it was found that organic nitrogen compounds are first
oxidized almost completely to nitrate which is then slowly reduced to nitrite on further irradi-
ation [17].

Potential use of UV for manure destruction Based on the literature review presented above
and some preliminary experiments, a comparative evaluation between UV and microwave de-
struction of animal manure samples was made. The advantages of UV compared to microwave
digestion are:

� UV treatment can be done with cheaper equipment (e 3.000 for an UV reactor compared
to e 15.000 for a microwave oven).

� The technical construction of an UV photoreactor is more suited for automation com-
pared to a microwave oven.

The disadvantages of UV compared to microwave digestion are:

� Organic nitrogen compounds are transformed into nitrate/nitrite with photo-oxidation.
An oxidizing reagent (e.g. hydrogen peroxide or persulphate) is needed to transform all
nitrogen containing organics (e.g. ureum) into nitrate/nitrite. It is uncertain if ammo-
nium is also transformed into nitrate/nitrite.

� Organic phosphorus compounds are transformed into ortho-phosphate. However, ex-
tra addition of oxidizing reagent is necessary to transform all phosphorus (including
polyphosphates) into ortho-phosphate. Further, preliminary experiments showed that
even without UV treatment, almost 100 % recovery of phosphorus compounds from an-
imal manure was realized when only sulphuric acid was added to the sample (personal
communication, N. Walraven).

� Particulate materials are decreasing the efficiency of UV destruction due to light scat-
tering. Therefore, perfect homogenization of the manure sample prior to destruction is
necessary. Also, the nutrient concentrations in animal manure are very high compared
to wastewaters and natural waters, so that a high dilution factor is required for the UV
treatment. However, this will consequently result in a lower accuracy of the N and P
measurements, due to the high heterogeneity of (even homogenized) animal manure.

Based on these points, it can be concluded that UV destruction is not a very strong alterna-
tive for microwave digestion in the framework of this project. Especially if titrimetry is used in
a further stage as measurement technique for nitrogen and phosphorus (see section 8.4), nitro-
gen should be in the ammonium form for accurate quantification from a buffer capacity profile.
Further, some preliminary experiments with a low pressure UV system were not very promis-
ing, because of a low nitrogen recovery (personal communication, N. Walraven). Experiments
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with a high pressure UV system could not be performed until now. In the framework of the
FASTNAP project, further developments and optimizations were only based on the microwave
digestion.

8.3 Automatic nitrogen and phosphorus measurements

Before deciding on titration as the most adequate measurement technique for the automatic
manure sensor in the FASTNAP project, an exploratory study has been done to determine
potential techniques for automatic nitrogen and phosphorus determinations in manure [330,
341]. In this study, the following techniques were evaluated:

� inductively coupled plasma - atomic emission spectroscopy (ICP-AES),
� X-ray fluorescence (XRF),
� near infrared spectroscopy (NIR), and
� titrimetry.

All techniques show both advantages and disadvantages. Test measurements with an ICP-
AES indicated that the phosphorus content in manure could be determined accurately [341].
However, an ICP-AES is not capable of quantifying nitrogen [341]. In addition, it is a massive
device and it is labour-intensive to operate. Further, samples must be digested before analysis.
With XRF it is also impossible to quantify nitrogen. However, it should be able to measure
phosphorus without sample pretreatment. NIR and titrimetry are non-proven technologies with
respect to the determination of nitrogen and phosphorus in manure. NIR has the advantage that
it is non-destructive and does not require digestion. There are examples in which nitrogen and
phosphorus content in forage, food and beverage is determined with NIR [330]. Titrimetry was
successfully used for the determination of phosphate and ammonia in effluents, river waters and
algal treatment systems (see chapters 6 and 7). However, a disadvantage of titrimetry is that
manure samples must be digested. The measuring time with NIR is much shorter than with
titrimetry (minutes compared to 1 hour). This puts NIR in favour of titrimetry with respect to
speed.

Based on:

� the possibility to analyze both nitrogen and phosphorus in a short amount of time, and
� the successful analytical results in related research fields,

it is concluded that NIR and titrimetry are promising techniques for automatic measurement
of nitrogen and phosphorus in manure samples [327, 330]. Because of the positive experi-
ences with the pH buffer capacity based measurement method (see chapters 6 and 7), the latter
technique was chosen for the further developments, which are presented in the next sections.

8.4 Development of the titrimetric part of the sensor

In this section, the different stages in the development of the titrimetric method for manure
samples are presented. First, the destruction method and its relation with the titration procedure
is highlighted in sections 8.4.1, 8.4.2 and 8.4.3. A detailed simulation study with comparisons
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Figure 8.3: Scheme of the different steps in the animal manure destruction method

of different mathematical buffer capacity models is performed in section 8.4.4. The influence
of the dilution factor and the first experimental validation experiments are described in respec-
tively sections 8.4.5 and 8.4.6. Finally, an adequate buffer capacity model is developed, and
evaluated with a measurement campaign in section 8.4.7.

8.4.1 Introduction to animal manure destruction

In 1998, official NEN (Nederlands normalisatie-instituut, Dutch normalization institute) meth-
ods for diverse measurements in manure were adopted [1]. These methods include NEN 7430
for the sample pre-treatment and homogenization, and NEN 7433 for the sample destruction
with sulphuric acid, hydrogen peroxide and copper sulphate. The determination of nitrogen
(NEN 7434) is a distillation/titration method, and the phosphate determination (NEN 7435) is
based on the colorimetric molybdenum blue method. The official procedures adopted in Flan-
ders [93] are also the Dutch NEN methods, however, for some methods (e.g. total nitrogen)
minor modifications are introduced. Other methods like ISO 7150 for the determination of am-
monium, or an alternative method for total phosphorus based on a complete destruction into
ash with an oven at 550 oC are also accepted methods in Flanders [93]. For the development of
the titrimetric part in the FASTNAP project, animal manure samples were destructed with the
NEN 7433 method, then diluted and titrated.

Without going into the technical details of the destruction method, it is necessary to know
the different steps of the destruction procedure. These steps are illustrated with a scheme in
Figure 8.3. First, approximately 5 g of homogenized wet sample is transferred into a destruc-
tion tube. Second, 20 ml 18 M H2SO4, 15 ml 9.8 M H2O2 and 1 ml 0.4 M CuSO4 � 5H2O
are added (stepwisely or not). Third, a destruction at 330 oC is performed, until the sample is
colourless or light-blue. In the automatic version, where the visual inspection of the destruc-
tion tube is no longer possible, a sufficiently long enough destruction time should be chosen.
Finally, after cooling down the destructed sample, the sample volume is adjusted with water
to a total volume of 250 ml. The organic and inorganic nitrogen compounds from the origi-
nal manure sample are now transformed into ammonium and the phosphorus compounds are
transformed into ortho-phosphate. Untreated animal manure does normally not contain nitrate.
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Figure 8.4: Calculated buffer capacity points and corresponding simulation curve of a destruc-
ted and 10 times diluted manure sample

However, if nitrate is present due to extra additions or treatments (e.g. aeration), a modified
destruction method should be adopted [1, 173]. The concentrations of the added chemicals
(except for H2O2 which is completely disintegrated) in the final destructed sample can be cal-
culated and are 1.5 M sulphuric acid and 0.0016 M copper sulphate.

8.4.2 Titration of destructed manure samples

Experimental versus simulated buffer capacities In a first preliminary experiment, titra-
tion curves of a destructed and 10 times diluted sample were recorded and interpreted. A
mathematical model was used to simulate the buffer capacity curves. Prior to titration, the di-
luted sample was adjusted to a pH 3 with NaOH 10 N. Figure 8.4 shows the calculated buffer
capacity points from a recorded titration profile and the corresponding simulated buffer capac-
ity profile. The simulation model contained: a water buffer, an IC buffer (to take into account
the IC present in the titrant, or the headspace CO2 that eventually enters the sample during
titration), an ortho-phosphate buffer, an ammonium buffer and a buffer around pH 3.7. A first
comparison between laboratory and simulated concentrations is shown in Table 8.1. Figure 8.4
illustrates that the simulated buffer capacity does not follow the experimental points around pH
6. When additional buffers were added to the model, a better fit could not be obtained (results
not shown). This points to a possible phenomenon (e.g. precipitation) that is not included in
the simulation model. Further, from Table 8.1 it can be concluded that the phosphate in the
titrated sample was not found back as ortho-phosphate with the simulation model. Also, the
simulated concentration for IC is four times more than expected from calculations and previous
experiments. The extra buffer at pH 3.7 could not be explained at this stage.
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Table 8.1: Laboratory and simulated concentrations of a destructed and 10 times diluted sample

Component Unit Laboratory Simulated

NH+
4 mgN l�1 9.1 7.3

o-PO4 mgP l�1 3.2 0.003
IC meq l�1 0.41
extra buffer pH 3.7 meq l�1 0.9

The influence of the copper catalyst In a second preliminary experiment, the influence of
phosphate in the titration profile was investigated. To this end, the same destructed sample
was used, but with a dilution factor 2 instead of 10. Based on the laboratory analysis, 16
mg o-PO4-P l�1 was to be expected as titration result. A standard addition experiment with
KH2PO4 was performed, and the results of extra additions of 4 and 10 mgP l �1 are shown in
Figure 8.5. The phosphate that was added to the sample was found back in the titration profile
as buffer capacity around pH 6, but could not be modelled with a simple buffer capacity model
(same findings as illustrated in Figure 8.4). Further, a precipitation formation was observed
during the titration at pH > 6. It was investigated which precipitate was formed and what its
influence was on the titration profile. A destructed and undiluted sample was brought to pH
6�7 and kept at that pH during 30 minutes. Then, the blue-white precipitate was removed by
filtration on a Schleicher & Schuell folded filter nr. 595. The resulting filtrate was diluted 2
times, put at pH 3 with HCl and then titrated as before. The same was repeated for a destructed
and undiluted sample that was brought to pH 12 instead of 6�7. The precipitate was yellow-
brown instead of blue-white. The resulting titration curves are also shown in Figure 8.5. It can
be concluded that the precipitate plays a very important role in the pH ranges 5�7 and 9�11.

Laboratory analysis with ICP-MS (Inductively coupled plasma - mass spectrometry) in-
dicated the following cations in the precipitates, in order of importance: Cu (15�34 %), Ca
(1�14 %), P (2�10 %), Na (3�5 %), Mg (3 %) and Fe (1 %). The Cu mainly originated from
the added CuSO4 � 5H2O as catalyst in the destruction step. More specific, 102 mgCu2+ l�1

destructed sample was added, which is at least 30 times higher than Cu2+ concentrations orig-
inating from the manure itself. Details on concentrations are given in section 8.4.4, Tables
8.2�8.5.

From the results of the second preliminary experiment, it is concluded that Cu2+ is an
important interfering component for the determination of N and P from the titration profile.
Therefore, 2 possible actions to avoid interference of Cu2+ were considered:

� The influence of the Cu2+-precipitates should be accounted for in the simulation model.
This is not straightforward, as discussed earlier in chapters 2 and 3 and illustrated further
in section 8.4.4.

� The Cu2+ from the catalyst should not be present in the destructed samples to be titrated.
This is discussed in the next section.
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Figure 8.5: Experimental buffer capacity curves of a destructed and 2 times diluted manure
sample. Titration of the sample as such, the sample with standard additions of o-PO4, and
filtrates obtained at pH 6 and pH 12

8.4.3 Modification of the destruction procedure

A separate study by the Dutch partners in the FASTNAP project showed that the catalyst
CuSO4 �5H2O (NEN 7433) is not really necessary to obtain complete destruction. There were
no significant differences between laboratory measurements of nitrogen and phosphorus in
destructed samples obtained with or without the catalyst. Therefore, it was decided to sim-
plify the destruction procedure and perform all further destructions in the framework of the
FASTNAP project without the copper catalyst (modified NEN 7433).

The consequences for the titrimetric measurement of the destructed manure samples with-
out Cu2+ addition were twofold. First, precipitation during titration was not observed any
more (results not shown), and second, the sharp peak in the buffer capacity around pH 6 was
no longer present. When experimental buffer capacity curves were modelled with the same
model as presented in section 8.4.2, a good fit between the experimental and simulated buffer
capacity curves was obtained, but still differences between laboratory and titrimetric results in
the order of magnitude 20 % for ammonium and 100 % for phosphate were found (results not
shown). Therefore, a more detailed study of the factors influencing the titrimetric nitrogen and
phosphorus determination was performed, and is presented in the following sections.
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Table 8.2: The composition of pig manure, based on 379 samples [118]

Component Unit Mean Minimum Maximum

Nitrogen mgN l�1 130 50 212
Phosphorus mgP l�1 17 1 52
Potassium mgK l�1 56 20 90
Calcium mgCa l�1 50 7 217
Magnesium mgMg l�1 18 2 36
Chlorine mgCl l�1 34 12 88
Sodium mgNa l�1 7 ND a 24
Sulfur mgS l�1 13 ND a 25
Boron mgB l�1 0.088 ND a 0.17
Cadmium mgCd l�1 0.0006 ND a 0.0036
Copper mgCu l�1 1.0 ND a 2.4
Zinc mgZn l�1 1.0 ND a 3.5
a ND: not detectable

8.4.4 Mathematical model analysis

Composition of destructed manure samples

To study which chemical phenomena influence the recorded titration curves, an insight in the
complete composition of the destructed manure samples is necessary. With this information,
and using mathematical models, a simulation study can be used to assess which reactions have
to be considered when modelling buffer capacity profiles. It should be mentioned that the main
purpose of the buffer capacity modelling is to estimate the ammonium and ortho-phosphate
concentrations in the destructed manure samples.

A Dutch study [118] about animal manure composition was used to tabulate the mean, min-
imum and maximum concentrations of measured components in animal manure. The original
results are expressed as mg kg�1 manure, but for the purpose of this work, all values are ex-
pressed as mgl�1 destructed and undiluted manure. Tables 8.2, 8.3 and 8.4 show the results for
respectively pigs, poultry and cattle. 1 Note that the concentration of sulfur originating from
the H2SO4 added prior to the destruction step, is not included in the tables. This concentration
in the destructed samples is 1.5 M H2SO4.

A second study considered 19 different manure samples, originating from 2 mixed (pigs
and cattle) farms in Flanders, taken in May 1998. The samples were analyzed for the same
elements as in the first study [118] (except for chlorine and sulfur), but supplemented with
50 extra, mainly minor elements, all measured, except for nitrogen, with ICP-MS. Only the
components with a mean concentration higher than 0.1 mg l�1 and Cd are listed in Table 8.5.

1To convert values from l�1 destructed sample to kg�1 manure, the tabulated values should be multiplied with 50.
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Table 8.3: The composition of poultry manure, based on 436 samples [118]

Component Unit Mean Minimum Maximum

Nitrogen mgN l�1 212 112 412
Phosphorus mgP l�1 34 6 88
Potassium mgK l�1 51 27 115
Calcium mgCa l�1 244 47 617
Magnesium mgMg l�1 24 4 54
Chlorine mgCl l�1 32 16 68
Sodium mgNa l�1 8 4 18
Sulfur mgS l�1 18 6 42
Boron mgB l�1 0.11 0.046 0.22
Cadmium mgCd l�1 0.001 0.0002 0.0046
Copper mgCu l�1 0.28 0.09 1.3
Zinc mgZn l�1 1.5 0.48 3.5

Table 8.4: The composition of cattle manure, based on 429 samples [118]

Component Unit Mean Minimum Maximum

Nitrogen mgN l�1 98 48 156
Phosphorus mgP l�1 9 3 34
Potassium mgK l�1 51 10 76
Calcium mgCa l�1 44 7 507
Magnesium mgMg l�1 17 7 33
Chlorine mgCl l�1 34 6 64
Sodium mgNa l�1 7 1 16
Sulfur mgS l�1 14 5 23
Boron mgB l�1 0.06 0.02 0.14
Cadmium mgCd l�1 0.0006 ND a 0.0016
Copper mgCu l�1 0.14 0.032 1.7
Zinc mgZn l�1 0.5 0.12 3.4
a ND: not detectable
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Table 8.5: The composition of 19 manure samples from Flemish pigs and cattle

Component Unit Mean Minimum Maximum

Nitrogen mgN l�1 128 53 241
Phosphorus mgP l�1 40 4 102
Potassium mgK l�1 94 42 137
Calcium mgCa l�1 52 7 152
Magnesium mgMg l�1 29 1 63
Sodium mgNa l�1 16 3 32
Boron mgB l�1 0.13 0.06 0.26
Cadmium mgCd l�1 0.001 0.0003 0.002
Copper mgCu l�1 0.75 0.06 4.3
Zinc mgZn l�1 5 0.21 38
Aluminum mgAl l�1 3 0.07 10
Titanium mgTi l�1 0.11 0.004 0.3
Manganese mgMn l�1 0.8 0.03 1.7
Iron mgFe l�1 7 0.7 22
Strontium mgSr l�1 0.14 0.02 0.4
Barium mgBa l�1 0.13 ND a 0.8
a ND: not detectable
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Table 8.6: Ionic strength calculations in destructed manure samples for different dilution fac-
tors and the corresponding corrections for pKa and γH+ to be included in buffer capacity models

Dilution factor

undiluted 2 times 6.6 times 10 times

SO2�
4 (M) 1.5 0.75 0.227 0.15

Na+ (M) 3 1.5 0.454 0.3
I (M) 4.5 2.25 0.68 0.45
∆pKa H3PO4=H2PO�

4 �0:12 �0:13
∆pKa H2PO�

4 =HPO2�
4 �0:37 �0:4

∆pKa HPO2�
4 =PO3�

4 �0:62 �0:67
∆pKa H2CO�

3=HCO�
3 �0:12 �0:13

∆pKa HCO�
3 =CO2�

3 �0:37 �0:4
∆pKa NH+

4 =NH3 +0:12 +0:13
∆pKa H2O=OH� �0:12 �0:13
∆pKa HSO�

4 =SO2�
4 �0:37 �0:4

γH+ 0.75 0.74

Ionic strength influence

The ionic strength of the destructed manure mainly originates from the quantity of H2SO4

added to the manure prior to the destruction step, and the quantity of strong NaOH added to
the destructed sample to bring it to pH 3, prior to the titration. All other ionic substances
(e.g. NH+

4 , HPO2�
4 , Ca2+) are mostly far below 15 mmol l�1, before as well as during the

titration. These quantities are negligible compared to the quantities of SO2�
4 and Na+ which

are respectively 1.5 and 3 M in the destructed and undiluted manure sample.
Table 8.6 reports the ionic strength in function of different dilution factors. The ionic

strength is calculated with the formula for I given in Table 2.1 on page 16. Next, the activity
coefficients γ were calculated for a number of ions that need to be considered in the mathe-
matical models for buffer capacity. However, only the Davies approximation (see Table 2.1
on page 16) is useful, because its applicability reaches an ionic strength upper level of 0.5
M. Next, the necessary calculations were done to correct the mathematical models for the
influence of ionic strength (see section 3.3.6 on page 51 and section 3.5.4 on page 63). The
symbol ∆pKa is used for the difference between the pK0

a (taking into account the effect of ionic
strength) and the pKa (assuming no influence of ionic strength). A ∆pKa value can be positive
or negative, depending on the considered buffer system. The ∆pKa values for some important
buffer systems in the destructed samples, and the activity coefficient of H+ are also given in Ta-
ble 8.6. Note that the latter calculations are only performed for the two highest dilution factors,
because for the lower dilution factors, the ionic strength is too high for reliable calculations,
even with the Davies approximation. The dilution factor 6.6 is included because this factor was
experimentally found as the optimal dilution factor (see section 8.4.5). Therefore, the further
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Figure 8.6: Simulated buffer capacity curves of a destructed and 6.6 times diluted manure
sample, with and without ionic strength correction in the model

simulation examples in this section are performed with this particular dilution factor.
The effect of the ionic strength correction is illustrated in Figure 8.6. The buffer capacity

curve of a destructed and 6.6 times diluted manure sample with mean concentrations for am-
monium and ortho-phosphate, was simulated. A small amount of inorganic carbon (IC) (0.11
mmol l�1) was also included in the model. The simulation was performed with and without
the ionic strength correction. No complexation or precipitation reactions were included in this
model. It can be concluded that the ionic strength correction has a significant effect on the
buffer capacity profile, and should be considered in the mathematical models.

Complexation and precipitation

Based on the complete analysis of 19 manure samples (see Table 8.5), it was investigated
which complexation and precipitation reactions might have an influence on the buffer capacity
profile in the pH range between pH 3 and pH 11. This is a difficult task, in the first place
because of the caveats related to precipitation and dissolution reactions, formulated in section
2.5 on page 35. Experimental findings have shown that buffer capacity curves are not very
reproducible when precipitation reactions are involved. Further, in section 3.5.5 on page 64, it
was discussed that in systems where different possible solids involving common components
exist, it is not straightforward to obtain the correct set of solids to be included in the math-
ematical model. These aspects make the modelling of precipitation phenomena difficult and
unwieldy. Complexation reactions (see section 2.4 on page 29) are equilibrium reactions that
from a kinetic point of view are in most cases fast or very fast. They are easy to incorporate
in mathematical models for buffer capacity (e.g. with the tableau-method discussed in section
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Table 8.7: Concentrations of different components included in the buffer capacity model with
the purpose to evaluate precipitation and complexation reactions

Component Concentration

SO2�
4 0.227 mol l�1

NH+
4 2.6 mmol l�1

o-PO4 0.5 mmol l�1

Ca2+ 0.58 mmol l�1

Fe3+ 0.06 mmol l�1

3.5 on page 55). However, the difficulty is that there are possibly hundreds of complexation
reactions that can be considered in destructed manure. Based on the composition of destruc-
ted manure (see Table 8.5), the metal cations known as complex formers are Ca2+, Mg2+,
Fe3+, Al3+, Zn2+ and Cu2+. Rare complex formers, but present in high concentrations are K+

and Na+. Possible ligands in destructed manure are H2O, OH�, SO2�
4 , NH3, PO3�

4 , HPO2�
4 ,

H2PO�
4 . During titration, some CO2 can enter in the titration vessel, thus at high pH, also

CO2�
3 can be considered as a possible ligand.

With preliminary simulation tests, using the software bctab(see section 5.2 on page 113),
a number of complexation and precipitation reactions were investigated for their effect on the
buffer capacity profile. With the above mentioned cations and ligands, hundreds of possible
complexation or precipitation reactions must be considered. Therefore, more detailed simula-
tion studies were restricted to a choice of 2 cations, Ca2+ and Fe3+, that are present in rather
high concentrations, and that are considered to have an important influence on the buffer ca-
pacity profile between pH 4 and pH 11. It was also chosen not to include carbonate equilibria
at this stage. The concentrations of the different components included in the buffer capacity
model, for the purpose of complexation and precipitation modelling, are tabulated in Table 8.7.
The concentrations are chosen as the maximum values from Table 8.5, and take into account a
6.6 times dilution.

First, a number of simple chemical equilibrium reactions were considered in the mathemat-
ical model, given in Table 8.8. The logK values are given at 25 oC [273], and the logK 0 values
(mixed acidity constants, see section 2.2.4 on page 19) were calculated to account for ionic
activities in the model. Contrary to preliminary simulation experiments (see section 8.4.2), the
sulphuric acid buffer was now included in the model. Despite the fact that H2SO4 is a strong
acid, its influence on the buffer capacity is considered significant due to its high concentration
in the destructed manure. Second, also complexation reactions were included in the model.
Table 8.9 summarizes the complex formation reactions and corresponding logβ values (logβ
values were taken from [273] at 25 oC). Because some reactions involve the binding of more
than 1 ligand anion, overall formation constants (symbols β and β0) and not stepwise forma-
tion constants (symbol K) were used (see also section 2.4.1 on page 30). Third, a number
of precipitation reactions were investigated with the bctabsoftware. They are summarized in
Table 8.10 (logKs0 were taken from [263, 273] at 25 oC). The concentration product log cKs0
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Table 8.8: Simple chemical equilibrium reactions included in the mathematical model

Chemical reaction logK logK0

H++H2PO�
4 
 H3PO4 2.15 2.03

H++HPO2�
4 
 H2PO�

4 7.2 6.83
H++PO3�

4 
 HPO2�
4 12.35 11.73

H++NH3 
 NH+
4 9.24 9.36

H++SO2�
4 
 HSO�

4 1.99 1.62
H++OH�


 H2O 14 13.88

Table 8.9: Complex chemical equilibrium reactions included in the mathematical model

Chemical reaction logβ logβ0

Ca2++H2PO�
4 
 CaH2PO+

4 1.45 0.96
Ca2++HPO2�

4 
 CaHPO0
4 2.75 1.76

Ca2++PO3�
4 
 CaPO�

4 6.5 5.01
Ca2++OH�


 CaOH+ 1.15 0.66
Ca2++SO2�

4 
 CaSO0
4 2.31 1.32

Fe3++H2PO�
4 
 FeH2PO2+

4 4.35 3.61
Fe3++HPO2�

4 
 FeHPO+
4 10.15 8.66

Fe3++OH�

 FeOH2+ 11.8 11.1

Fe3++2OH�

 Fe(OH)+2 22.3 21.07

Fe3++4OH�

 Fe(OH)�4 34.4 32.9

Fe3++SO2�
4 
 FeSO+

4 4.0 2.51
Fe3++2SO2�

4 
 Fe(SO4)
�
2 5.4 3.42

(introduced in equation (2.74) on page 36) is used for the ionic activity corrected logKs0 value,
where concentrations instead of activities can be used.

Note that hydroxy-apatite (Ca5(PO4)3OH(s)) is a precipitate that is typically found in ani-
mal manure. However, this reaction proceeds very slowly to an equilibrium, i.e. the solution
can highly, and for a long time, be supersaturated before any precipitation starts (unless there
are already crystal seeds present in the solution) [263].

In a first stage, the simulation study only considered the simple and the complex chemical
equilibria. In a later phase, the precipitation reactions were evaluated. The chemical reactions
in Tables 8.8 and 8.9 need to be organized into a stoichiometric matrix and a corresponding
input file for the program bctab. This process is described and illustrated with an example
in section 3.5.3 on page 61. The species, components and stoichiometric information, repre-
senting the reactions presented in Tables 8.8 and 8.9, is organized in a tableau in Table 8.11.
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Table 8.10: Precipitation and dissolution reactions included in the mathematical model

Chemical reaction logKs0 log cKs0

Ca2++HPO2�
4 
 CaHPO4(s) �6:65 �5:66

Ca2++2H2PO�
4 
 Ca(H2PO4)2(s) �1:14 �0:40

Ca2++2OH�

 Ca(OH)2(s) �5:19 �4:45

Ca2++SO2�
4 
 CaSO4(s) �4:62 �3:63

Fe3++PO3�
4 
 FePO4(s) �(21:9�26:4) �(19:7�24:2)

Fe3++3OH�

 Fe(OH)3(s) �(38:8�42:7) �(37:3�41:2)

5Ca2++3PO3�
4 +OH�


 Ca5(PO4)3OH(s) �55:9 �50:0

The simulation results of 2 models, with and without the complex formation reactions, are
shown in Figure 8.7. There are 3 regions in the buffer capacity profile that are influenced by
the complex formation reactions from Table 8.9. They are indicated with arrows on the graph.
Extra simulations, where complex formation reactions were evaluated separately or in smaller
groups, revealed the responsible reactions for the buffer capacity increases. Region (1), around
pH 5.5, is related to iron and phosphate; region (2), around pH 8, is related to iron hydroxides;
and region (3), around pH 10, is originating from calcium and phosphate. It should be noted
that, in the simulation study, the maximum concentrations of Ca2+ and Fe3+ found in a set
of manure samples (see Table 8.5) were used. Thus, in real situations, the influences of the
complex formation reactions are probably lower than illustrated in Figure 8.7.

The final purpose of the buffer capacity modelling in this application is to make an es-
timation of the ortho-phosphate and ammonium concentrations in the destructed and diluted
manure samples. Therefore, an interesting conclusion from this simulation study is that the
buffer capacities around pH 6.7 and pH 9�9.5 are influenced only to a minor extent by the
complex formation reactions. As a consequence, a reliable estimation of ortho-phosphate and
ammonium is still possible, even if the exact concentrations of calcium and iron are unknown.

In a second stage, the simulation study evaluated the precipitation reactions in Table 8.10
on their occurrence between pH 2 and pH 11 during the simulation of the model shown in Table
8.11. The program bctabhas a built-in facility to calculate the ionic concentration product of
2 or more species that can form a possible precipitate at each pH value. This concentration
product is then compared with the log cKs0 value, to find the state of saturation of the solution
with respect to that solid. If the solution is oversaturated, a message for that solid is logged
in a file. The precipitates that are theoretically formed and their corresponding pH ranges, are
tabulated in Table 8.12. Three possible precipitates were found under the modelled conditions.
As mentioned before, the precipitation of hydroxy-apatite is most uncertain, and will not be
further considered. An interesting point is that there are no calcium precipitates formed, but
only two iron precipitates. The precipitate that is theoretically formed at first during a pH
increase is iron hydroxide. The consequences for the simulated buffer capacity profile when
Fe(OH)3(s) precipitation is considered, are presented in the following paragraphs.
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Table 8.11: Species, components and stoichiometric information for simple and complex
chemical equilibrium reactions in destructed and diluted manure

Components

Species H3PO4 NH+
4 HSO�

4 Ca2+ Fe3+ H+ flogKg
H3PO4 1 0 0 0 0 0 0
NH+

4 0 1 0 0 0 0 0
HSO�

4 0 0 1 0 0 0 0
Ca2+ 0 0 0 1 0 0 0
Fe3+ 0 0 0 0 1 0 0
H2PO�

4 1 0 0 0 0 �1 �2:03
HPO2�

4 1 0 0 0 0 �2 �8:86
PO3�

4 1 0 0 0 0 �3 �20:6
NH3 0 1 0 0 0 �1 �9:36
SO2�

4 0 0 1 0 0 �1 �1:62
CaH2PO+

4 1 0 0 1 0 �1 �1:08
CaHPO0

4 1 0 0 1 0 �2 �7:1
CaPO�

4 1 0 0 1 0 �3 �15:6
CaOH� 0 0 0 1 0 �1 �13:23
CaSO0

4 0 0 1 1 0 �1 �0:3
FeH2PO2+

4 1 0 0 0 1 �1 1.58
FeHPO+

4 1 0 0 0 1 �2 �0:2
FeOH2+ 0 0 0 0 1 �1 �2:82
Fe(OH)+2 0 0 0 0 1 �2 �6:69
Fe(OH)�4 0 0 0 0 1 �4 �22:6
FeSO+

4 0 0 1 0 1 �1 0.89
Fe(SO4)

�
2 0 0 2 0 1 �2 0.18

OH� 0 0 0 0 0 �1 �13:88

C (mol l�1) 0.0005 0.0026 0.227 0.00058 6 10�5

Table 8.12: Theoretical precipitations found with the simulation model for destructed and
diluted manure between pH 2 and pH 11

Precipitate Precipitation in pH interval

FePO4(s) 3.35�8.45
Fe(OH)3(s) 2.75�11
Ca5(PO4)3OH(s) 7.35�11
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Figure 8.7: Simulated buffer capacity curves of a destructed and diluted manure sample, with
and without complex formation reactions in the model. Three arrows indicate a buffer capacity
increase due to the complex formation reactions

When considering precipitation reactions, the stoichiometric information has to be rewrit-
ten in function of the precipitates that are considered. An example that illustrates how a pre-
cipitation reaction has to be included in the stoichiometric information is given in section 3.5.5
on page 64. It is mentioned there, that if more than one precipitation reaction needs to be con-
sidered, a trial and error procedure may be necessary to find the correct stoichiometric matrix.
And further, for each simulation pH step, the stoichiometric matrix should be reconsidered
for its validity, because the set of precipitates can change along increasing pH values. This is
unwieldy for practical purposes, and therefore, it is advised to consider only a minimal number
of precipitates (1 or 2 precipitates) for buffer capacity simulation purposes. Also, as described
in section 2.5 on page 35, precipitation reactions are sluggish, slow, non-stoichiometric, : : :
Thus, mathematical modelling results of such reactions during a relatively ‘ fast’ titration pro-
cess (from pH 3 to pH 11 in around 30 minutes), should be interpreted with carefulness.

The Fe(OH)3(s) is considered as a type IV solid (see section 3.5.2 on page 60) in this
example. Its presence decreases the number of degrees of freedom for solving this equilibrium
problem. More particularly, the concentration of free iron [Fe3+] is directly linked to the pH
by the following reaction:

[Fe3+][OH�]3 = 10�40 or log[Fe3+] = 1:64+3log[H+] (8.1)

Thus, the stoichiometric information in Table 8.11 needs to be adjusted when Fe(OH)3(s) is
involved. Fe3+ is not considered any more as a component, and species including Fe3+ need
to be rewritten using equation (8.1). The new stoichiometric matrix is presented in Table 8.13.
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The simulation with the model from Table 8.13 learns that in the presence of Fe(OH)3(s),
the complex formation reactions involving iron are not influencing the buffer capacity profile
any more. In other words, the iron is practically unavailable for other reactions due to the
solid phase of iron. This can also be logically deducted when interpreting equation (8.1):
The free iron concentration decreases with 3 log units for each increase of 1 pH unit. The
resulting buffer capacity profile (figure not shown) is similar as in Figure 8.7, except that the
increased buffer capacities in regions (1) and (2) disappear when precipitation is included in
the model. However, as mentioned above, it should also be noticed that the occurrence and
completelyness of this precipitation reaction is uncertain, thus strong conclusions cannot be
made from this simulation result.

Conclusions

Simulation experiments have learned that ionic strength corrections should be taken into ac-
count for the simulation of buffer capacity curves of destructed and diluted manure samples.
Further, it is illustrated that the ortho-phosphate and ammonium buffers can be modelled with
a simple chemical equilibrium model, because the buffer capacities around pH 7 and pH 9
are only slightly influenced by the considered complex formations. Only complex forma-
tion reactions with Ca2+ and Fe3+ are investigated, because these cations are present in the
highest concentrations, and considered to have a noticeable influence on the buffer capacity
between pH 4 and pH 11. Other cations, like Mg2+ and Al3+, however, can eventually also
have minor influences on the buffer capacity profile. Some precipitation reactions with Ca2+

and Fe3+ were investigated, and it was found that iron hydroxide is a possible candidate for
‘mathematical’ precipitation. Its influence on the buffer capacity profile is positive rather than
negative, because the iron precipitate immobilises the iron for complex formation reactions.
It is uncertain if in real situations, the competition between complex formation and precipi-
tation will occur. It should be noted that the simulation experiments are based on maximum
concentrations found in real samples. Thus, the practical influence of complex formation and
precipitation is to be expected lower than what is illustrated.

With the final aim of field application, it is chosen for the practical model development (see
section 8.4.7) to start the modelling exercise with a simple model without complex formation
and precipitation reactions. The reason for this is threefold. First, in field situations, the con-
centrations of complexing cations are not known, and they should be estimated (e.g. by using
the mean values in Tables 8.2�8.5). Second, if the influence of the complex formation and
precipitation reactions is not significant on the end result (the estimation of ortho-phosphate
and ammonium), there is no need to consider those reactions. Third, from a mathematical point
of view, the complex formation reactions can approximately be modelled as extra monoprotic
buffers. This simplifies the modelling because the underlying complexation reactions do not
have to be known in detail for incorporating their influence in the model. If it is found that
these extra buffers are needed in the model to obtain reliable end results, then the underlying
complexation reactions can eventually be taken into account in a later modelling phase as real
complexation reactions.
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Table 8.13: Species, components and stoichiometric information for simple and complex
chemical equilibrium reactions in destructed and diluted manure, in the presence of iron hy-
droxide precipitate. The bold items mark the differences with Table 8.11

Components

Species H3PO4 NH+
4 HSO�

4 Ca2+ H+ flogKg
H3PO4 1 0 0 0 0 0
NH+

4 0 1 0 0 0 0
HSO�

4 0 0 1 0 0 0
Ca2+ 0 0 0 1 0 0
Fe3+ 0 0 0 0 3 1.64
H2PO�

4 1 0 0 0 �1 �2:03
HPO2�

4 1 0 0 0 �2 �8:86
PO3�

4 1 0 0 0 �3 �20:6
NH3 0 1 0 0 �1 �9:36
SO2�

4 0 0 1 0 �1 �1:62
CaH2PO+

4 1 0 0 1 �1 �1:08
CaHPO0

4 1 0 0 1 �2 �7:1
CaPO�

4 1 0 0 1 �3 �15:6
CaOH� 0 0 0 1 �1 �13:23
CaSO0

4 0 0 1 1 �1 �0:3
FeH2PO2+

4 1 0 0 0 2 3.22
FeHPO+

4 1 0 0 0 1 1.44
FeOH2+ 0 0 0 0 2 �1.18
Fe(OH)+2 0 0 0 0 1 �5.05
Fe(OH)�4 0 0 0 0 �1 �20.96
FeSO+

4 0 0 1 0 2 2.53
Fe(SO4)

�
2 0 0 2 0 1 1.82

OH� 0 0 0 0 �1 �13:88

C (mol l�1) 0.0005 0.0026 0.227 0.00058
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Table 8.14: Titrimetric nitrogen and phosphorus determination in destructed manure for dif-
ferent dilution factors. The concentrations are expressed as mg l�1 in the undiluted destructed
sample

NH+
4 (mgN l�1) o-PO4 (mgP l�1)

Dilution factor Mean Std. dev. Mean Std. dev.

Undiluted 208 4.6 77 4.9
2 � 202 3.6 71 2.7
3 � 197 5.6 74 4.4
6 � 191 6.3 74 4.4
15� 182 14.2 77 13.2

Laboratory 171 76

8.4.5 The influence of the dilution factor

Destructed manure samples contain 1:5 M H2SO4, and have an extremely low pH value. Prior
to titration, the pH needs to be adjusted with a strong alkaline solution (e.g. NaOH 1.5 N) to
bring the pH around 3. Next, a titration with NaOH 0.1 N is performed until pH 11 is reached.
If destructed manure samples are titrated without dilution, a number of problems can arise.
First, the alkaline consumption, NaOH 1.5 and 0.1 N in this case, would be very high. Second,
the ionic strength would be very high and its effect on the activities of ions cannot be predicted
any more by approximate formulas (see Table 8.6). Third, unwanted chemical reactions, like
precipitation, can interfere with the buffer capacity measurement. On the other hand, when
destructed samples are diluted too much, the concentrations of phosphate and ammonium in
the solution become too low, and the effect of measurement noise and interferences of e.g. in-
organic carbon become too large. Consequently, the variability and accuracy of the final result
would be negatively influenced. An experiment was set up to test different dilution factors and
evaluate their effects on the estimates of ortho-phosphate and ammonium concentrations.

A destructed manure sample was used to prepare 5 different dilutions, ranging from undi-
luted to 15 times diluted. Each diluted series was titrated in fourfold. The laboratory analy-
ses of the nitrogen and phosphorus concentrations of that sample were 171 mgN l �1 and 76
mgP l�1. The ammonium and the ortho-phosphate concentrations were also estimated from the
experimental buffer capacity curves, and the results are tabulated in Table 8.14. Two examples
of experimental and corresponding simulated buffer capacity curves for respectively undiluted
and 15 times diluted sample are shown in Figure 8.8.

For the undiluted samples, the experimental buffer capacity curves became irregular for pH
values higher than 9, as illustrated in Figure 8.8(a). This can possibly be explained by slow
reactions like precipitation reactions. This was also observed in the 2 times diluted sample, but
no longer for the higher dilutions. Despite the irregular buffer capacity curves for the undiluted
and two times diluted sample, the estimates for N and P are still reproducible, as can be seen in
the rather low standard deviations on the N and P estimates in Table 8.14. The simulated buffer
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Figure 8.8: Experimental and simulated buffer capacity curves of destructed manure. Plot (a)
undiluted sample. Plot (b) 15 � diluted sample. Note the difference in scale

capacity curves for the highest dilution factor (see Figure 8.8(b)) fit much better in the high pH
range, compared to the fit of the undiluted samples. However, the standard deviations obtained
through the 4 replicate concentration values, become too high for the highest dilution factor
compared to the lower dilution factors (see Table 8.14). The dilution factors 3 and 6 gave
the best results, because unwanted precipitations or other reactions were avoided, and still
reproducible results were obtained. Because of the corresponding lowest chemical demands,
factor 6 was chosen as the ideal dilution factor for further experiments.

8.4.6 Experimental method validation

A number of experiments were set up to experimentally study some anticipated phenomena
that were already investigated with simulations in section 8.4.4. In a first stage, the influence
of sulphuric acid, ionic strength and Ca2+ were investigated. In a second stage, a standard
addition experiment with o-PO4 was performed to validate the followed approach.

Without going into the details of the the first stage experiments (full results in [300]), there
are some important conclusions to be made from these experiments. Despite the fact that sul-
phuric acid is a strong acid, its influence on the buffer capacity in destructed and diluted manure
samples (e.g. 0.23 M in 6.6 times diluted sample) is clearly felt up to pH 6.5. Therefore, the
HSO�

4 
 H++SO2�
4 reaction needs to be incorporated in the buffer capacity model. Addi-

tion experiments with NaCl (up to 0.3 M) to change the ionic strength of titrated samples have
illustrated that the ∆pKa’s predicted by the Davies approximation fairly well correspond with
the observations in the buffer capacity profiles (see also Table 8.6). Addition experiments with
CaCl2 (up to 150 mgCa2+ l�1) have shown that the Ca2+ did not have a significant effect on
the buffer capacity profile of destructed and diluted manure. This confirms that a simple math-
ematical model (without complexation and precipitation) may be sufficient for the modelling
of the buffer capacity curves of destructed manure samples.

In the second stage, a standard addition experiment with KH2PO4 on a destructed manure
sample was performed. The concentrations in the sample were 117 mgN l�1 and 25 mgP l�1.
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Table 8.15: Titrimetric nitrogen and phosphorus determination in destructed manure for dif-
ferent standard additions of ortho-phosphate. The concentrations are expressed as mg l�1 in
destructed and undiluted sample

Standard addition NH+
4 (mgN l�1) o-PO4 (mgP l�1) o-PO4 recovery

(mgP l�1) Mean Std. dev. Mean Std. dev. (mgP l�1) (%)

0 118.9 0.57 23.2 0.61
4.76 119.2 0.22 27.6 0.50 4.37 92
9.52 119.0 0.26 31.6 0.21 8.35 88
19.0 119.4 0.25 40.3 0.55 17.1 90
28.6 119.4 0.55 49.2 0.31 26.0 91
38.1 120.0 0.13 57.9 0.57 34.7 91
47.6 120.5 0.63 67.1 0.58 43.9 92

The stock solution of KH2PO4 was tested on its concentration with a colorimetric method
(Cuvette test LCK049, Dr. Lange ). Subsamples were prepared as follows: 25 ml from the
destructed manure sample was diluted with 100 ml water. Around 70 ml of NaOH 1 N was
added manually to bring the pH of the sample to pH 3. Thus, the total sample volume was
around 195 ml and therefore, the dilution factor was 7.8. The titrations were performed with
a laboratory titrator (Metrohm Titrino 716) with the DET titration mode (details of the DET
titration algorithm can be found in section 5.1.1 on page 98). The normality of the titrant was
0.1 N and the end pH value was 11. Around 10 ml of titrant was added during the titration. The
temperature of the samples was the same as the room temperature during the experiment (24
to 25 oC). Seven series of samples (blank and standard additions between 5 and 50 mgP l�1

destructed and undiluted sample, see Table 8.15) were titrated in fivefold. Contrary to the
previous and following experiments reported in this section, the NaOH stock solutions 1 N
and 0.1 N were not prepared in the laboratory with NaOH pellets and demineralized water, but
were bought as 10 litre, completely closed, plastic bags (Titripack , Merck). The reason for
this is described in detail in section 8.5.2.

The mathematical modelling of the experimental buffer capacity curves was performed
in two steps. First, the ‘blank’ curves (without extra ortho-phosphate addition) were modelled
and it was found that besides the ortho-phosphate and ammonium buffers, two additional small
buffers around pH 5.1 and pH 8.4 were present. These 2 buffers were quantified as respectively
0.060 and 0.095 mmol l�1 in the diluted samples. Second, another model was used, in which
the 2 extra buffers were included as fixed buffer capacities. The second model was applied to
other experimental buffer capacity curves and the amount of ortho-phosphate and ammonium
was estimated.

The results of this standard addition experiment are given in Table 8.15. The ammonium
and ortho-phosphate concentrations estimated from the buffer capacity profiles showed a good
reproducibility, with a standard deviation around 0.5 mgl�1 for both N and P. The ammonium
concentrations estimated from the buffer capacity profiles increased with increasing additions



210 Automatic titrimetric sensor for manure nutrients

of ortho-phosphate. This increase was small (< 2 mgN l�1), however, statistically significant
(p< 0:001). The recovery of ortho-phosphate for the different standard additions was in all
cases around 90 %. With a paired t-test, it was concluded that the recovered concentrations of
ortho-phosphate were significantly different (p< 0:001) from the added concentrations. This
could point to possible other chemical reactions with ortho-phosphate, which are not included
in the model, e.g. complexation reactions. The small increases in the estimated ammonium
concentration with increasing ortho-phosphate standard additions points to possible formation
of ortho-phosphate complexes that are buffering around pH 9, and being modelled as ammo-
nium instead of ortho-phosphate (see also arrow (3) in Figure 8.7).

8.4.7 Development of an adequate buffer capacity model

A measurement campaign was organized to evaluate different mathematical buffer capacity
models. The estimated ammonium and ortho-phosphate concentrations from the buffer capac-
ity profile were compared with the laboratory analyses. A most adequate model is formulated,
that will be proposed for further validations and later field-use.

The manure samples were collected in May 1998 on two mixed farms (pigs and cattle) in
Flanders. At very different places on both farms, 19 samples were taken. All samples were
destructed with the modified NEN 7433 method (see section 8.4.3) and analyzed in the lab for
N and P. The destructed samples were titrated as follows: 25 ml of destructed sample was
diluted with 100 ml water. Around 40 ml of NaOH 1.5 N was added manually to bring the
pH of the sample to pH 3. Thus, the total sample volume was around 165 ml, corresponding
with a dilution factor 6.6. This dilution factor was chosen in correspondence with the results
of section 8.4.5. Between the manual pH adjustment and the titration, the samples were stirred
for 20 minutes at pH 3 with a magnetic stirrer at high speed, to remove inorganic carbon
(CO2) originating from the NaOH 1.5 N stock solution. The titrations were performed with
a laboratory titrator (Metrohm Titrino 716) with the DET titration mode (details of the DET
titration algorithm can be found in section 5.1.1 on page 98). The normality of the titrant was
0.1 N and the end pH value was 11. Around 10 ml of titrant was added during the titration.
The temperature of the samples was the same as the room temperature (around 20 oC), but no
extra temperature control was used during the titrations. All samples were diluted and titrated
in threefold.

Two criteria were used to interpret the results obtained with different buffer capacity mod-
els. First, the fit between the experimental and the simulated buffer capacity data was visu-
alized and interpreted. Second, tables and scatterplots with the laboratory measurements of
nitrogen and phosphorus against the estimated concentrations from the titrimetric measure-
ments were interpreted. Different mathematical models were fitted to the experimental data.
The software bomb(see section 5.3 on page 117) was used for the buffer capacity calculation
and modelling. An overview of the model specifications of 4 selected models is given in Table
8.16. The results of 1 selected manure sample for the different models are tabulated in Ta-
ble 8.17 and the corresponding experimental and simulated buffer capacity curves are shown
Figure 8.9.

Model 1 is the initial model, containing the main buffer components to be expected in the
destructed and diluted manure samples. Ionic activity corrections as calculated theoretically in
section 8.4.4 were applied to the zero ionic strength pKa values at 25 oC. All pKa values were
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Table 8.16: Model specifications of 4 selected models used during the development of the most
adequate model for destructed and 6.6 times diluted manure samples. The concentrations are
expressed per volume of destructed and diluted sample. The bold items mark the differences
with the previous model

Unit Model 1 Model 2 Model 3 Model 4

pKa H2O 15.62 15.62�15.82 15.62�15.82 15.62�15.82
pKa1 IC 6.25 6.1 6.1 6.1
pKa2 IC 9.88 9.85 9.85 9.85
pKa1 o-PO4 2.0 1.9 1.9 1.9
pKa2 o-PO4 6.84 6.7 6.7 6.7
pKa3 o-PO4 12.05 11.9 11.9 11.9
pKa SO2�

4 1.52 1.1 1.1 1.1

pKa NH+
4 9.2�9.5 9.25�9.75 9.25�9.75 9.25�9.75

pKa blank1 4.5�5.5
pKa blank2 7.5�8.4
CIC mgCO2 l�1 0.75�2.2 0.75�2.2 0.75�2.2 0.75�2.2
Co-PO4 mgP l�1 0�25 0�25 0�25 0�25
CSO2�

4
mol l�1 0.227 0.227 0.227 0.227

CNH+
4

mgN l�1 0�45 0�45 0�45 0�45

Cblank1 mmol l�1 0�1
Cblank2 mmol l�1 0�1

γH+ 0.75 0.75 0.75 0.75
pH interval 5.6�10.5 5.6�10.5 4�10.5 5.6�10.5

Table 8.17: Simulation results of 1 selected sample for the 4 different models. The concentra-
tions are expressed as mg l�1 or mmol l�1 in destructed and diluted sample

Unit Laboratory Model 1 Model 2 Model 3 Model 4

pKa H2O 15.72 15.72 15.72
pKa NH+

4 9.5 9.74 9.74 9.75
pKa blank1 5.18
pKa blank2 7.88
CIC mgCO2 l�1 1.08 2.2 0.75 2.15
Co-PO4 mgP l�1 9.82 8.56 9.32 9.18 8.14
CNH+

4
mgN l�1 36.5 35.9 38.3 38.8 38.3

Cblank1 mmol l�1 0.12
Cblank2 mmol l�1 0.063
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Figure 8.9: Experimental and simulated buffer capacity curves of 1 selected sample. Plots (a),
(b), (c) and (d) for models 1, 2, 3 and 4 respectively. The arrows in plot (b) indicate the 2 pH
ranges where extra buffer capacity was observed. The arrows in plots (c) and (d) indicate the
positions where this extra buffer was incorporated in the model
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kept fixed, except for the pKa of the ammonium buffer, which was allowed to vary between a
value 9.2 and 9.5. A fixed or variable pKa value for ammonium did not make much difference
in the estimates of the concentrations, but a variable pKa for ammonium gave a better fit
between the experimental and simulated buffer capacity profiles. When the pKa2 value for
ortho-phosphate allowed to vary, the estimations of phosphate became worse. Therefore, it
was chosen to set the pKa of ammonium as a parameter to be optimized and to keep the other
pKa’s fixed. It was experienced in chapters 6 and 7 that a small amount of inorganic carbon
(IC) is found back in the buffer capacity profile. Initially, a variable amount of IC between 0
and 5 mgCO2 l�1 was included in the buffer capacity model. Later, it was found, generally,
that a more narrow range gives somewhat more realistic results, especially in the samples with
a low phosphate concentration (< 10 mgP l�1). This can be explained by the fact that the
IC buffer is located near the ortho-phosphate buffer in the buffer capacity profile, thus those
two buffers are more or less exchangeable with each other. Therefore, the amount of IC was
allowed to vary between 0.75 and 2.2 mgCO2 l�1 only. On the experimental buffer capacity
curves, it was noticed that some buffer capacity around pH 5 was present, which could not
originate from the buffer components included in model 1. Because at this stage, this buffer
capacity was not of interest, it was chosen to limit the pH range for the simulation from pH 5.6
to pH 10.5. Generally spoken, the estimated concentrations of N and P obtained with model
1 were acceptable. However, the experimental and simulated buffer capacity curves did not fit
very well. This is illustrated in Figure 8.9(a).

Model 2 is the result of manual adjustments of the ‘fi xed’ pKa values in the model, in order
to obtain a better fit and a more accurate prediction of the concentrations. The adjustments
that were made can be read from Table 8.16 when comparing model 1 with model 2. It can
be noticed that for all buffers (except for H2O), the adjustments of the fixed pKa values are in
the same direction as if the samples would have a higher ionic strength than the values used
for a 6.6 times diluted sample in Table 8.6. More particular, all pKa values were decreased
a little bit, except for the NH+

4 and the H2O buffer, where the pKa’s were increased. It was
found that the pKa of the H2O buffer influenced the quality of the NH+

4 prediction and the fit
around pH 10. The best value for the pKa of H2O was 15.69. However, because this pKa value
was so determining for the estimated ammonium concentration, it was investigated if the result
was still acceptable if the pKa of water was allowed to vary instead of being a fixed value. The
conclusion was that a variable pKa for water gives similar results as a fixed pKa. The advantage
of a variable pKa is that biased pH measurements (e.g. due to calibration errors) and deviations
of the real pKa compared to the theoretical pKa (e.g. ionic interaction effects) can slightly be
‘corrected’ in the model by allowing some extra flexibility on the considered pKa in the model.
Therefore, for robustness reasons, a variable pKa was preferred. There are several explanations
possible why the theoretical pKa values did not correspond with the practical observations.
There could be a calibration error or an alkaline error in the pH measurement (see section
2.1.3 on page 10). Also, there can be an effect of the temperature, which was not kept at 25 oC.
The pH meter did not have automatic temperature compensation, and internally kept the Nernst
slope always as if the temperature of the solution was 25 oC. The theoretical pKa values that
were used, were those tabulated at 25 oC. Finally, due to the high ionic strength in the samples
(even at 6.6 times diluted), the formulas for the activity corrections (Davies approximation
in this case) are at their limit of applicability. Therefore, the real ∆pKa’s can differ from the
values calculated in Table 8.6.
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Considering the results of the selected manure sample (see Table 8.17) and the other 18
manure samples in the study (results not shown), model 2 was found to be better than model 1.
The estimated concentrations CIC for the different samples varied between the minimum and
maximum boundary values (respectively 0.75 and 2.2 mgCO2 l�1). However, in around 50 %
of the samples, the estimated IC concentration equalled the maximum boundary value (see also
the example in Table 8.17). Increasing the boundary value resulted in a worse estimation of
ortho-phosphate. This points to the important interfering property of IC for the quantification
of ortho-phosphate. In Figure 8.9(b), one notices that in the experimental data, some buffer
capacity exists around pH 5 and pH 8 (indicated with arrows) which can not be modelled
with model 2, because no buffer systems around these pH ranges are included in the model.
This phenomenon was noticed in most samples. Therefore, the two next models respectively
incorporated an extra buffer in those two pH ranges.

Model 3 is an extension of model 2, with the incorporation of an extra monoprotic buffer
in the model, whose pKa may vary between pH 4.5 and pH 5.5. The pKa and the concentration
of that buffer are estimated by fitting the model to the experimental data. The simulation pH
interval was extended, and set from pH 4 to pH 10.5. The typical result is a better fit in the
pH range 4 to 7, as illustrated with the selected example in Figure 8.9(c). The estimations of
NH+

4 did not change in model 3 compared to model 2. However, the estimations of o-PO4

were slightly worse in model 3 compared to model 2. The extra buffer in model 3 was at most
0.17 mmol l�1. There is a remarkable difference in the concentration of IC found with model
2 compared to model 3 (see Table 8.17). In model 2, the estimated IC is at its upper limit
(2.2 mgCO2 l�1), whereas in model 3, the estimated IC is at its lower limit (0.75 mgCO2 l�1).
This suggests that the extra monoprotic buffer in model 3 is interfering to some extent with
the IC buffer. Also, in Figure 8.9(c), it can be noticed that around pH 8, there is some extra
experimental buffer capacity, not accounted for in the simulated buffer capacity profile.

Model 4 is an alternative extension of model 2, with an extra monoprotic buffer whose
pKa may vary between pH 7.5 and pH 8.4. Again, the fit between the experimental and the
simulated data was better than in model 2, illustrated for the selected sample in Figure 8.9(d).
The extra buffer in model 4 was at most 0.16 mmol l�1. The estimations of o-PO4 were sys-
tematically underestimated and with a higher variability (not shown in Table 8.17) in model 4
compared to model 2. Unfortunately, this extra buffering component is thus interfering with
the ortho-phosphate buffer estimations at pH 6.7.

To get more insight in the origin of the two extra buffers around pH 5 and pH 8, a correlation
analysis was performed between the data obtained with ICP-MS on those samples (see section
8.4.4 and Table 8.5) and the concentrations of ‘blank1’ and ‘blank2’ obtained with models
3 and 4 respectively. The Pearson correlation coefficients with their significance level are
tabulated in Table 8.18. From these correlations, it can be concluded that Ca2+, Mg2+, N and
P correlate best with ‘blank1’ at pH 5, and that Cu2+ and Zn2+ correlate best with ‘blank2’
at pH 8. Fe3+ and Al3+ correlate very significant with both blank buffers. This is fairly well
in correspondence with the findings of the simulation study in section 8.4.4, more particularly
with what is illustrated in Figure 8.7. The ‘blank1’ and ‘blank2’ buffers exactly correspond
with the 2 regions in the buffer capacity profile influenced by complex formation reactions
with Ca2+ and Fe3+. In the simulation study, it was found that the buffer capacity in ‘blank1’
was originating from iron and phosphate. In this correlation study, iron and phosphate are both
correlating very significant with ‘blank1’ . Further, the simulation study also revealed that the
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Table 8.18: Pearson correlation coefficients between the concentrations of the ‘blank1’ and
‘blank2’ buffers and the most important components in destructed manure

Blank1 Blank2
pH 5 pH 8

Blank1 1.000 0.59��

Blank2 0.59�� 1.000
Nitrogen 0.30� 0.08
Phosphorus 0.37�� 0.16
Potassium 0.26 0.19
Calcium 0.33� 0.11
Magnesium 0.43�� 0.20
Sodium 0.05 0.03
Copper 0.18 0.53��

Zinc 0.18 0.61��

Aluminum 0.75�� 0.78��

Iron 0.40�� 0.45��

� : Significant at α = 0:05
�� : Significant at α = 0:01

buffer capacity around pH 8 was originating from iron hydroxides, which is also confirmed
by the very significant correlation between iron and ‘blank2’ . In a following step, it was
investigated if the incorporation of this knowledge in the mathematical model would result in
better estimations of ortho-phosphate and ammonium. This is discussed in the next paragraph.

Due to the clear interpretation of the 2 extra buffers around pH 5 and pH 8, it was de-
cided to validate a number of extra models incorporating this supplementary knowledge. The
experimental results with model 3 and model 4 suggested already that the incorporation of
just an extra blank buffer around pH 5 or pH 8 does not ameliorate the final results. Also the
simultaneous incorporation of the same 2 extra buffers (results not shown) did not have the
desired effect. The knowledge of the exact concentration of Fe3+ for each individual sample
would be helpful, because both buffers were earlier suggested to depend on the concentration
of iron. However, in field situations, this concentration is unknown. Therefore, a first attempt
was made to include 2 extra monoprotic buffers at pH 5.3 and pH 8.0, with a fixed concen-
tration 0.08 mmol l�1. This concentration represents the ‘mean interference’ , obtained from
the simulation results with models 3 and 4. The obtained fit was good, however, the estimated
ortho-phosphate concentrations were not better than the results with model 2. It can also be
remarked that the real Fe3+ concentration in animal manure is quite variable (see Table 8.5),
thus being a disadvantage for this approach. In a second attempt, the knowledge that the con-
centrations of the 2 extra buffers are coupled (high correlation between ‘Blank1’ and ‘Blank2’ ,
see Table 8.18) and the finding that those buffers have variable concentrations among samples,
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were implemented in a new model. The model contained again the 2 extra buffers at pH 5.3
and pH 8.0, but with concentrations that were allowed to vary, however, with the restriction
that both concentrations must be equal within 1 sample. The minimum boundary for the sim-
ulation interval was also slightly modified from pH 5.6 to pH 5.3. The fit of this model was
excellent, but the estimated ortho-phosphate concentrations were again systematically under-
estimated. From all the studied models considering the extra buffers around pH 5 and/or pH 8,
this model was found to perform the best when comparing the estimated concentrations with
the laboratory concentrations.

Besides the buffer capacity models described above, some more mathematical models were
evaluated. The other models that were studied contained the same buffer systems as described
in models 1 to 4. However, they contained different boundary values on the pKa values and
concentrations (e.g. CIC) that were allowed to vary. It was also investigated if the pKa’s
of sulphate, IC and ortho-phosphate are best kept fixed or allowed to vary. Finally, model
2 was found to be the most adequate model for further validations and possible field-use.
A scatterplot of the laboratory analyses against the titrimetric estimations with model 2 for
respectively ammonium and ortho-phosphate are presented in Figure 8.10(a) and (b). Further,
a relative error (%) was calculated to express the difference between the titrimetric and the
laboratory concentrations.

relative error (%) =
Ctitrimetric�Claboratory

Claboratory
�100 (8.2)

The corresponding graphs with the relative errors for ammonium and ortho-phosphate are pre-
sented in Figure 8.10(c) and (d).

Figure 8.10(a) and (b) illustrates that the linearity between the 2 measurement techniques
is very good. However, the ammonium concentrations estimated from the buffer capacity
profile were in most cases overestimated compared to the corresponding laboratory measure-
ments. For ortho-phosphate, only one, very low loaded sample (3.5 mgP l �1, measured in
the laboratory) was overestimated with more than 25 %. All other samples were within rel-
ative differences between �2 % and +18 % for ammonium and between �15 % and +30 %
for ortho-phosphate, as illustrated in Figure 8.10. Based on these results, a new experiment
was set up, to validate the ‘most adequate model’ with completely new manure samples. This
validation experiment is described in the following section.

8.5 Laboratory validation and statistical data analysis

8.5.1 Validation experiment

A second measurement campaign was organized to validate the results and the most adequate
model described in section 8.4.7. Fifty-three samples were collected in April 1999, at farms
randomly selected in the Netherlands and Flanders. More particularly, several manure trans-
portation companies have cooperated to collect samples at the most diverse places. Each sam-
ple was homogenized, and two subsamples (duplo A and B) were taken. Each subsample was
destructed and analyzed in the laboratory for N and P. All destructed samples were 6.6 times
diluted and titrated in threefold, with the same procedures as described in section 8.4.7. In
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Figure 8.10: Laboratory and titrimetric analyses of ammonium (a) and ortho-phosphate (b)
with the corresponding relative error of the titrimetric analyses of ammonium (c) and ortho-
phosphate (d) for 19 different manure samples and using the most adequate buffer capacity
model. The concentrations are expressed as mg l�1 destructed and undiluted sample
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total, 318 titration curves (53 samples, 2 subsamples and 3 replicates) were recorded, in a pe-
riod of 14 days. The sequence of those 318 titrations was split in 12 blocks, of which 1 block
contained 27 different manure samples of 1 subsample (duplo A or B) and 1 replicate. Each
block corresponded with one measurement day. With such experimental design, eventual un-
controllable effects (e.g. of temperature, electrode, titrant, : : : ) could be determined with an
analysis of variance, including a block effect. The temperature in the laboratory was around
22 oC, and fairly well constant due to the isolated location of the laboratory. No extra measures
were taken to keep the temperature as constant as possible, and the minimum and maximum
temperature recorded in the lab during the complete experiment was respectively 20 and 24 oC.

During this experiment, the stock solutions of NaOH 0.1 N and 1.5 N had to be prepared
several times (6 times 1 litre for the stock of NaOH 0.1 N and at least 10 times 1 litre for
the stock of NaOH 1.5 N). These stocks were prepared with pro analyse NaOH pellets, and
the exact titre was determined with oxalic acid dihydrate ((COOH)2 � 2H2O) titrations. The
pro analyse pellets were taken from two different pots (an almost empty one and a new one)
that were in use in the lab at that moment. The stock solutions were stored in dark brown
glass bottles, equipped with a bowed CO2 absorption tube. Contrary to the first measurement
campaign (see section 8.4.7), the majority of destructed samples were brought to pH 3 with
the automatic titrator. Only a few samples were manually brought to pH 3, for which an older
NaOH 1.5 N stock that was standing in the lab, was used. The above rather detailed description
of stock solution origin, storage, etc. is necessary to introduce a prior unnoticed problem of
interferences in the buffer capacity profiles. It was found that for almost 50 % of the samples,
the reproducibility of the 3 replicates (recorded at different days, with different stock solutions)
was worse than in previous experiments. The problems were related to the stock solutions, and
are described and investigated in section 8.5.2. For this reason, a number of titration curves
were eliminated for further data analysis. A total of 253 titration curves were considered as
acceptable and were further processed with the software bomb.

A number of mathematical models were fitted to the experimental buffer capacity curves
of this data set, and comparisons between laboratory and titrimetric measurements were made.
The same methodology as applied in section 8.4.7 was used here, i.e. first trying with a simple,
basic model, then extending the model with extra buffers, while at the same time also eval-
uating the pKa values, i.e. whether they are best kept fixed or allowed to vary, etc. It was
concluded that the most adequate model found in section 8.4.7 also applied as such for the
new data set. This points to the robustness of this model in different situations. A scatterplot
of the laboratory analyses against the titrimetric estimations with the most adequate model for
respectively ammonium and ortho-phosphate are presented in Figure 8.11(a) and (b). The cor-
responding graphs with the relative errors for ammonium and ortho-phosphate are presented
in Figure 8.11(c) and (d).

The titrimetric ammonium estimations are all lying between �7 % and +8 % relative er-
ror compared to the laboratory measurements. This result is even better than what was found
in the first measurement campaign, used for the model development. The results of the titri-
metric ortho-phosphate estimation are similar as in the previous experiment. For the samples
with a laboratory ortho-phosphate concentration higher than 10 mgP l �1, a relative error be-
tween �15 % and +45 % was found. However, the relative errors of the samples with a low
laboratory ortho-phosphate concentration are unexpectedly high. More particularly, the titri-
metric concentrations are systematically higher than the laboratory concentrations. The origin
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Figure 8.11: Laboratory and titrimetric analyses of ammonium (a) and ortho-phosphate (b)
with the corresponding relative error of the titrimetric analyses of ammonium (c) and ortho-
phosphate (d) using the buffer capacity model developed in section 8.4.7 (53 different manure
samples). The concentrations are expressed as mg l�1 destructed and undiluted sample
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of these rather bad results was pointed out to be interferences originating from the NaOH stock
solutions. These are described and further investigated in section 8.5.2.

From the samples with a laboratory ortho-phosphate concentration lower than 10 mgP l �1

(12 samples from the 53), duplo A and B were titrated again. New NaOH stock solutions 0.1
and 1.5 N with pellets from an almost new pot NaOH ‘pro analyse’ , were prepared at the same
day of the titrations. The other experimental conditions were the same as before. The same
mathematical model was used, with one small modification. In the original model, the min-
imum and maximum boundaries for the amount of inorganic carbon were respectively set to
0.75 and 2.2 mgCO2 l�1. For the newly recorded titration curves, the amount of inorganic car-
bon was found to be more constant than before, around 1.6 mgCO2 l�1. Therefore, the range
for the concentration of CO2 in the model, was set between 1.3 and 1.8 mgCO2 l�1. A simi-
lar scatterplot with the laboratory analyses against the titrimetric estimations for respectively
ammonium and ortho-phosphate are presented in Figure 8.12(a) and (b). The corresponding
graphs with the relative errors for ammonium and ortho-phosphate are presented in Figure
8.12(c) and(d).

On the one hand, the differences between the titrimetric and laboratory ammonium con-
centrations are in a similar range as noticed in the first data set of the validation experiment
(compare Figure 8.12(a) and (c) with respectively Figure 8.11(a) and (c)). However, there is
a tendency that in the samples containing less phosphorus, the estimations of ammonium are
systematically around 5 % lower than the corresponding laboratory values. On the other hand,
a very significant increase in accuracy was reached for the titrimetric ortho-phosphate esti-
mation (compare Figure 8.12(b) and (d) with respectively Figure 8.11(b) and (d) in the range
between 0 and 10 mgP l�1). The relative errors on P of the 12 repeated low-loaded samples
are now in the same order as the relative errors of the high-loaded samples.

A first conclusion that can be drawn from this validation experiment is that the estimated
concentrations for N and P with the titrimetric method are in a practical useful and acceptable
range compared to the official laboratory methods. However, a more detailed statistical anal-
ysis of the variability and measurement errors is necessary to formulate a more statistically
supported conclusion. This statistical analysis is described in section 8.5.3. A second conclu-
sion resulting from this validation experiment is that important interferences are originating
from the NaOH stock solutions. Especially in the low loaded samples, the ‘quality’ of the
stock solutions is of major importance for the accuracy of the P estimations. The interferences
originating from the NaOH are presented and discussed in section 8.5.2.

8.5.2 Influences of alkaline stock solutions

During the validation experiment described in section 8.5.1, it was found that the reproducibil-
ity of the buffer capacity profiles of several destructed and diluted manure samples, titrated
with different NaOH stock solutions, was poor. When putting all the measurement results to-
gether, it was quickly recognized that the poor reproducibility was originating from the NaOH
stock solutions, and not from temperature effects, calibration errors, etc. A detailed descrip-
tion on how the alkaline stock solutions were prepared and stored was already given in section
8.5.1.

A series of new experiments were set up, to investigate and define the origin of the poor
reproducibility. A pool of 6 different destructed manure samples was made, to be able to



8.5 Laboratory validation and statistical data analysis 221

0

50

100

150

0 50 100 150

A
m

m
on

iu
m

 (
m

g 
N

 l-1
, t

itr
im

et
ric

)

Ammonium (mg N l-1, laboratory)

(a)

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150

R
el

at
iv

e 
er

ro
r 

(%
)

Ammonium (mg N l-1, laboratory)

(c)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

O
rt

ho
-p

ho
sp

ha
te

 (
m

g 
P

 l-1
, t

itr
im

et
ric

)

Ortho-phosphate (mg P l-1, laboratory)

(b)

-50

-25

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e 
er

ro
r 

(%
)

Ortho-phosphate (mg P l-1, laboratory)

(d)

Figure 8.12: Laboratory and titrimetric analyses of ammonium (a) and ortho-phosphate (b)
with the corresponding relative error of the titrimetric analyses of ammonium (c) and ortho-
phosphate (d) using the buffer capacity model developed in section 8.4.7 (12 repeated manure
samples). The concentrations are expressed as mg l�1 destructed and undiluted sample
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titrate the same sample under varying conditions. The sample preparations and titrations were
performed as described in section 8.4.7. In short, a destructed and diluted manure sample was
first set to pH 3 with around 40 ml of a 1.5 N NaOH stock solution. Next, the sample was
stirred for 20 minutes to remove CO2 originating from the alkaline stock solution. Last, the
sample was titrated to pH 11 with around 10 ml of a 0.1 N NaOH stock solution.

The following 4 stock solutions of NaOH were used in a first series of experiments:
Stock 1.5(a) : Stock solution of 1.5 N, prepared in the laboratory at the day of the measure-

ments, with pellets from a new pot ‘NaOH pro analyse’ . The solution was kept
in a dark brown glass bottle, equipped with a CO2 scrubber (bowed glass tube
with soda lime pellets).

Stock 1.5(b) : Two months old stock solution of 1.5 N, kept in a closed dark brown glass
bottle, but without a CO2 scrubber. This solution was earlier used for manual
pH adjustments of destructed manure samples. When not in use, the bottle
was kept closed. It is noteworthy that during this period of 2 months, a brown
precipitate was formed at the bottom of the bottle.

Stock 0.1(a) : Stock solution of 0.1 N, prepared in the laboratory at the day of the measure-
ments, with pellets from a new pot ‘NaOH pro analyse’ . The solution was kept
in a dark brown glass bottle, equipped with a CO2 scrubber.

Stock 0.1(b) : Nine days old stock solution of 0.1 N, prepared with pellets from an older,
almost empty pot ‘NaOH pro analyse’ . The solution was kept in a dark brown
glass bottle, equipped with a CO2 scrubber.

In the following paragraphs, first, problems related to the 1.5 N stock solution will be pre-
sented. Second, the interferences originating from the 0.1 N stock solutions will be illustrated.
Third, an extra validation experiment with a new pool of destructed samples, and a possible
alternative stock solution will be discussed. And last, a number of conclusions and precautions
will be formulated.

Interferences from the 1.5 N NaOH stock solution

A comparison was made between the stock solutions 1.5(a) and 1.5(b). Three samples from the
pool were prepared and titrated identically, except that for one sample, the old stock solution
1.5(b) was used, and for the other two samples, the new stock solution 1.5(a) was used. The
sample pretreatment included the CO2 scrubbing prior to titration, except for one of the two
latter samples, which was not made CO2 free. The titration itself was performed with the new
stock solution 0.1(a). The three corresponding buffer capacity curves are shown in Figure 8.13.

Very important differences between the buffer capacity profiles can be noticed in Figure
8.13. The buffer capacity profile of the sample prepared with the old stock solution 1.5(b)
is much higher than the corresponding curve with the new stock solution. It is concluded
that the extra buffer capacity is originating from the old stock solution 1.5(b). This extra
buffer capacity was modelled, and buffer concentrations of 0.16 mmol l�1 around pH 4.8,
0.11 mmol l�1 around pH 8.4 and 1.1 mmol l�1 around pH 10 were found. The latter buffer
concentration is so important that under these conditions, a reliable estimation of the NH+

4
buffer is impossible.

It was investigated in more detail where these extra buffer capacities could originate from.
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Figure 8.13: Experimental buffer capacity curves of 1 sample, prepared with an old and new
NaOH 1.5 N stock solution, with (1) and without (2) CO2 scrubbing prior to titration

The small amount of brown precipitate at the bottom of the stock solution was a first indicator
that the glass of the bottle could be the source of extra buffer capacity. The dissolution rate of
quartz (SiO2) is reported to be 10�9 mol m�2 h�1 at pH 6, and 10�7 mol m�2 h�1 at pH 11 [273].
At high pH, where Si�OH surface sites are deprotonated and therefore carry negative charge,
detachment of silicon appears to control overall silicate dissolution rates [43]. There is a
direct proportionality between the dissolution rate of quartz and the concentration of negatively
charged surface sites at high pH. However, above pH 12, the quartz dissolution rate decreases,
reflecting the saturation of all Si�O� sites [43]. The 1.5 N stock solution has a theoretical pH
of more than 14, but no exact values for the dissolution rate of quartz were found for this pH.
If SiO2 from the glass is entering in the stock solution, it influences the buffer capacity through
the two following silicate weak acid/base proton exchange reactions [198]:

H2SiO3 
H++HSiO�
3 logK =�9:61 (8.3)

HSiO�
3 
H++SiO2�

3 logK =�12:71 (8.4)

It is a fair assumption that the first dissociation step of silicic acid (equation (8.3)) is responsible
for the high buffer capacity observed around pH 10. Taking into account the volume of the
titration vessel, and the amount of stock solution 1.5(b) needed for one titration, it is calculated
that the stock solution 1.5(b) would contain around 3 mmolSi l�1. Taking into account the
dimensions of the bottle (0.04 m2 liquid-glass contact surface and 0.8 l titrant) and the standing
period (60 days), it is calculated, under the hypothesis that only Si4+ is responsible for the extra
buffer capacity around pH 10, that the dissolution rate of SiO2 would be 4 10�5 mol m�2 h�1.
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This value is a factor 100 higher than the value at pH 11, reported above. The two other smaller
extra buffers, around pH 4.8 and pH 8.4, could eventually originate from iron, aluminum or
other components used in the production of the glass, and also set free during the dissolution
of SiO2. Iron complexes with phosphate and hydroxide (see also Figure 8.7) are introducing
extra buffer capacities at those pH values. However, more experimental analyses are needed
to confirm the latter hypothesis. With simulation experiments using bctab, it was investigated
whether complex formations with SiO2�

3 and e.g. Ca2+ or Fe3+ should be considered. It was
found that Si-complexes do not have a significant effect on the buffer capacity between pH 4
and pH 11.

Further, another important difference was noticed between the buffer capacity curves of the
two samples prepared with the new stock solution 1.5(a), but with and without CO2 scrubbing
prior to titration (see Figure 8.13). The extra buffer capacity was modelled, and found to orig-
inate solely from the inorganic carbon (IC) buffer, representing 4 mgCO2 l�1. Despite the fact
that the stock solution 1.5(a) was freshly prepared in the laboratory, with a new pot of NaOH
pellets, an important interfering amount of IC was entering in the sample to be titrated. Such
amount of IC in the titration vessel makes the estimation of phosphorus unreliable, especially
in destructed manure samples with phosphate concentrations lower than 10 mgP l�1. This in-
organic carbon cannot originate from the destructed sample itself (very low pH), neither can it
enter during sample preparation because the pH is lower than 3. Thus, it is concluded that this
IC is originating from the stock solution 1.5(a). Taking into account the volume of the titration
vessel, and the amount of stock solution 1.5(a) needed for one titration, it can be calculated that
the stock solution 1.5(a) contains at least 15 mgCO2 l�1. The latter experiment illustrates that
CO2 scrubbing of the sample after addition of 1.5 N NaOH, and prior to titration, is necessary
to obtain reliable results.

In another similar experiment, part of the 1.5(a) stock solution was strongly agitated for
30 minutes with a magnetic stirrer in an open beaker. The aim was to absorb as much CO2

as possible from the air into the stock solution. As usual, the sample at pH 3 was stirred for
20 minutes prior to titration. There was no change in the buffer capacity profile of destructed
manure samples that were set to pH 3 with this IC-rich 1.5 N stock solution compared to
samples that were set to pH 3 with the ‘untreated’ 1.5(a) stock solution. This illustrates that 20
minutes CO2 scrubbing of the sample at pH 3, prior to titration, is sufficient to remove the IC
originating from the 1.5 N NaOH stock solution.

Interferences from the 0.1 N NaOH stock solution

Six samples were prepared from the pool and titrated identically. The samples were set to pH
3 with the new stock solution 1.5(a). Three samples were titrated with the new stock 0.1(a)
and three samples were titrated with the old stock 0.1(b). The resulting buffer capacity curves
are presented in Figure 8.14. The reproducibility of the buffer capacity curves, illustrated by
plotting 3 replicates of each treatment on the graph, is very good. The buffer capacity curves
were modelled and the increased buffer capacities with the stock solution 0.1(b) versus the
stock solution 0.1(a) are given in Table 8.19. The differences in buffer capacity between the
stock solutions 0.1(b) and 0.1(a) are found to be very significant. Increases in buffer capacities
were noticed at the same pH values as found before in stock solution 1.5(b). It was realized that
the modelling of IC entering the titration vessel via the titrant is a simplification of the reality,
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Table 8.19: Means, standard deviations and statistical significance of the differences in buffer
capacity in a destructed and diluted sample, titrated with the old 0.1(b) and the new 0.1(a)
NaOH stock solution

Difference 0.1(b)�0.1(a)

Buffer Mean Std. dev. Significance
component (mmol l�1) (mmol l�1) (p-value)

IC 0.13 0.003 <0.001
pH 4.8 0.019 0.002 <0.001
pH 8.3 0.017 0.004 0.008
pH 10.3 0.28 0.003 <0.001

i.e. the amount of IC buffer capacity entering the titration vessel increases along the titration,
while in the mathematical model, the IC is considered constant during the complete titration.
An example of the titrant consumption and the related interfering amount of IC entering in the
titration vessel in function of the pH is illustrated in Figure 8.15. Around 60 % of the titrant is
dispensed in the pH range pH < 6, and it is considered that only in the mentioned pH range, the
CO2 can be stripped from the solution during titration. Thus, it may be assumed that the real
amount of IC present around pH 10.3 is maximally 40 % more than the modelled amount of
IC under the above mentioned simulation conditions. Consequently, using the values given in
Table 8.19, around 0.05 mmol l�1 of the 0.28 mmol l�1 extra buffer concentration found around
pH 10.3 can possibly be explained by IC. If similar calculations as before are performed, it is
found that if the non IC buffer capacity around pH 10.3 (0.23 mmol l�1) is originating from
silicates in the stock solution 0.1(b), the concentration in the stock solution would be at least
4.2 mmolSi l�1. This is a similar value as found in the experiment with the 1.5 N stock
solution. This is rather surprising, because the normality is lower (0.1 N instead of 1.5 N) and
the standing time in the laboratory is also lower (9 days instead of 60 days). An explanation
could be that the dissolution rate of SiO2 at pH 13 (0.1 N NaOH) is possibly higher than at pH
14.2 (1.5 N NaOH) [43]. However, it should also be mentioned that both stock solutions were
kept in different types of brown glass bottles, thus making comparisons difficult. Further, the
bottle of stock 0.1(b) was already a long time in use with NaOH 0.1 N, without cleaning the
bottle prior to filling with fresh NaOH solution when the bottle was almost empty. This may
eventually have lead to a concentrating effect of silicates.

A particular problem related to the 0.1 N stock solutions is the interference of inorganic
carbon. As described before, IC present in the 1.5 N stock solutions does not really introduce
interferences in the buffer capacity profile, due to the CO2 scrubbing prior to titration. How-
ever, the situation is different for the 0.1 N stock solution. All IC present in the 0.1 N stock
solution enters the titration vessel during the titration, and causes a direct interference. More
particularly, as illustrated in section 8.5.1, the accuracy of the phosphate estimation is nega-
tively influenced by the presence of a bicarbonate buffer system. The amount of IC present
in the buffer capacity profile of the samples titrated with the freshly prepared stock solution
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0.1(a) was modelled to be around 1:5�2 mgCO2 l�1. In a following experiment, it is verified
if this modelled IC buffer capacity is indeed originating from CO2.

Six new titration curves were recorded with the 0.1(a) stock solution. As in the previous
experiment, all samples were prepared with the 1.5(a) stock solution, and stirred for 20 minutes
prior to titration. Three different treatments, each with 2 replicates, were compared with each
other. First, a titration was performed as usual, with a closed titration vessel. Second, a titration
curve was obtained with the titration vessel open to the air (a circular opening with a diameter
of 1 cm). Third, a titration profile was recorded while N2 was continuously bubbled through the
sample. There was no significant difference between the mean concentrations of IC obtained
with the first two treatments. This indicates that it is not strictly necessary to keep the titration
vessel airtight. The amount of IC with treatment 1 and 2 was estimated to be 1.8 mgCO2 l�1.
A very significant difference (p = 0:01) in IC was found between treatment 3 and the first
two treatments. The estimated amount of IC in treatment 3 was 1.0 mgCO2 l�1. Thus, 0.8
mgCO2 l�1 from the 1.8 mgCO2 l�1 is removed by the N2 bubbling, and is considered as IC.
It is uncertain if the remaining amount of buffer capacity (1 mgCO2 l�1) is originating from
IC, or resulting from other buffer systems in the same pH range of IC.

The discussed interferences (IC and non-IC) are directly related to the accuracy and pre-
cision of the ammonium and ortho-phosphate estimations from the buffer capacity profile.
Therefore, they should be kept as low as possible. To get more insight in these interferences
and to find possible solutions or alternatives, further experiments are presented in the next
paragraph.

Validation and alternatives

A new experiment was designed to confirm and extend the findings of the experiments previ-
ously described in this section. More particularly, the objectives of this experiment are to:

� Validate whether silicate dissolution from the glass bottle containing the 0.1 N NaOH
titrant is responsible for the interfering buffer capacity found around pH 10.

� Determine whether the IC found in the buffer capacity profiles (estimated 0.8 mgCO2 l�1

in the previous experiment) is originating from the NaOH 0.1 N stock solution, or rather
originating from the CO2 in the headspace of the titration vessel.

� Evaluate the performance of commercially prepared NaOH solutions, stored in com-
pletely closed, headspace free plastic bags (Titripack , Merck).

A new pool of destructed manure samples was made, to be able to titrate the same sample
under varying conditions. Sample preparations and titrations were performed as before. To
bring the sample to pH 3, NaOH 1 N (Titripack ) was used. Three different stock solutions
NaOH 0.1 N were used for the titrations from pH 3 to pH 11:
Stock 0.1(c) : One litre of NaOH solution was prepared with NaOH pellets from an almost

empty pot ‘NaOH pro analyse’ (the same pot as used in the previous experi-
ment for solution 0.1(b)). Half of this freshly prepared solution was kept in a
completely closed glass bottle for 9 days at room temperature. After this ‘ in-
cubation period’ , the bottle was connected as usual to the titrator (with CO2

scrubber) and used for the titrations.
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Stock 0.1(d) : The other half litre of the freshly prepared NaOH was kept in a completely
closed plastic bottle for 9 days prior to titration.

Stock 0.1(e) : A commercial NaOH 0.1 N 10 litre stock solution (Titripack , Merck).
With each of these stock solutions, three different treatments, each in threefold, were ap-

plied for titrations of destructed and diluted manure samples from the pool:

� titration as usual, in a closed titration vessel,
� titration while bubbling N2 through the liquid, and
� titration while flowing N2 through the headspace of the vessel.

The exact titres of the stock solutions were determined with oxalic acid titrations. Despite
the fact that solution 0.1(c) and 0.1(d) should theoretically have the same titre, the normality
of solution 0.1(c) after nine days incubation in the glass bottle was 0.7 % lower than the nor-
mality of the same solution kept in the plastic bottle. This difference is small, but was found
to be statistically significant (p < 0:001). Further, the buffer capacity curves obtained with
the 3 different titrant solutions were compared to confirm the hypothesis that silicates or other
substances enter the stock solution kept in the glass bottle. Rather surprisingly, the extra buffer
capacity expected around pH 10 or elsewhere was not found in the titration curves obtained
with solution 0.1(c). When using the most adequate mathematical model (see section 8.4.7)
on the titration curves obtained with N2 bubbling in the liquid, no significant differences were
found in the estimated N and P concentrations resulting from titrations with the 3 different
NaOH stock solutions (on the α = 0:01 level). This means that the earlier formulated hypoth-
esis of the silicate interference is not valid here. A possible explanation could be that in the
previous experiment, stock solution 0.1(b) was the result of a longer than 9 days ‘aging period’
due to the bottle refilling method used in many previous experiments. When the glass bottle
of the titrant solution 0.1 N was almost empty (e.g. 10 % of the volume left), the bottle was
refilled (without emptying and cleaning) with freshly prepared NaOH solution. Thus, stock
solution 0.1(b) was kept in a glass bottle that was continuously exposed to NaOH for at least
3 weeks. It was also noticed in the past that titration curves obtained with titrant of an almost
empty titrant bottle are often ‘noisy’ and not very reproducible. This points to possible con-
centrating interferences at the bottom of bottle. Extra results, from longer ‘ incubation’ times,
are presented further in this section.

To evaluate the origin of IC in the buffer capacity profiles, the effect of the 3 different treat-
ments on the IC was investigated with an analysis of variance (GLM). First, the buffer capacity
curves of the samples with N2 bubbling in the liquid were modelled with the most adequate
mathematical model (see section 8.4.7). As mentioned above, no significant differences were
found in N and P estimations obtained with the 3 different NaOH titrant solutions. Second,
the estimated concentrations of N and P were kept fixed in a new model, that was fitted to the
27 buffer capacity curves (3 titrant solutions, 3 treatments, 3 replicates), with the purpose of a
more correct estimation of the IC. The mean IC concentrations found with this model are tab-
ulated in Table 8.20. The residual standard deviation on the IC concentrations, obtained from
the GLM analysis, was 0.15 mgCO2 l�1. From pairwise comparisons in the GLM analysis,
it was concluded that there is no significant difference in IC between titrant 0.1(c) and 0.1(d).
The IC found with titrant 0.1(e) was found to be significantly different from the 2 other NaOH
solutions. There was no significant interaction between the effect of the titrant solution and
the effect of the treatments. Further, among the 3 treatments, all were found to be significantly
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Table 8.20: Mean concentrations of IC (mgCO2 l�1) obtained in the validation experiment
with 3 titrant solutions and 3 treatments. The estimated standard deviation is 0.15 mgCO2 l�1

normal N2 bubbling N2 flowing
titration in the liquid in the headspace

Titrant 0.1(c) 1.33 0.26 0.94
Titrant 0.1(d) 1.33 0.45 0.94
Titrant 0.1(e) 0.85 0.11 0.71

different from each other. Their effects are interpreted in more detail in the next paragraphs.
For the titration curves obtained without N2 bubbling or flowing, the IC found with the

titrant solutions 0.1(c) and 0.1(d) are similar as in previous experiments, 1.33 mgCO2 l�1 in
this case. As described earlier in this section, this amount of CO2 is an interfering substance
for the ortho-phosphate determination from the buffer capacity profile, and should be kept as
low as possible. The IC found with solution 0.1(e) is significantly lower than the IC found
with the two other solutions. Further, scrubbing of CO2 in the headspace of the titration vessel
results in a 0.1�0.4 mgCO2 l�1 reduction of IC in the buffer capacity profile, compared to the
normal titration. This value was compared with a theoretical calculated value, based on the
ideal gas law:

pV = nRT (8.5)

p : gas partial pressure (atm)
V : volume (l )
n : moles of gas (mol)
R : gas constant (0.082 l atm K�1 mol�1)
T : absolute temperature in K (273.15 K + temperature in oC)
With pCO2 = 3 10�4 atmand 0.1 l headspace volume, the amount of CO2 in the headspace at
room temperature is 1:2 10�6 M, or 0.05 mgCO2. If this quantity of CO2 enters the titration
vessel during titration, its concentration in the vessel is 0.3 mgCO2 l�1. This corresponds with
the experimental values that were found, and it can be concluded that the headspace CO2 can
be completely absorbed into the sample during titration of that solution. Note also that the
sample is strongly stirred during titration, thus enhancing gas-liquid exchange processes.

A following point to be discussed is the quantity of IC that originates from the NaOH stock
solution itself, and enters the titration vessel during titration of the sample. This amount of
CO2 can be deducted from Table 8.20 when subtracting the IC found when N2 is injected in
the headspace with the IC found when N2 was bubbled in the solution. This amount is for
the 3 titrant solutions 0.5�0.6 mgCO2 l�1. The latter calculation is made with the assumption
that the headspace flushing with N2 does only strip the CO2 from the headspace and does not
induce extra stripping of IC from the liquid. If the latter assumption is not true, and taking into
account the 0.1�0.4 mgCO2 l�1 reduction of IC when flushing the headspace only, the amount
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of IC originating from the titrant is estimated to be between 0.6 and 1 mgCO2 l�1.
Another finding of this experiment is that the modelled amount of IC with titrant solutions

0.1(c) and 0.1(d) is always higher than the concentration found with solution 0.1(e). Especially
from the treatment with N2 bubbling in the liquid, it can be concluded that higher amounts
of buffering interferences, not stripped off by N2 bubbling, are originating from the NaOH
solutions 0.1(c) and 0.1(d) compared to solution 0.1(e).

From the results described above, it can be concluded that the NaOH solution 0.1(e), i.e. the
commercial Titripack NaOH solution gives more reliable and more accurate titration results
compared to NaOH 0.1 N solutions prepared in the lab. Because the Titripack plastic bags
are completely closed and headspace free, it is also expected that interferences are smaller and
more constant in function of time, making it easier to incorporate them in the mathematical
buffer capacity models. There are two more advantages of this Titripack  solutions that were
not mentioned before. First, these solutions have an exact titre (deviation from 0.1 N is maxi-
mum 0.02 %), which eliminates the necessity to determine the normality with e.g. oxalic acid
titrations. Second, these solutions are degassed, and consequently, no air bubbles are formed
on the moving piston of the titrator burette. Such air bubbles appear quickly when self prepared
NaOH solutions are used (NaOH pellets and demineralized water). When such an air bubble
releases the piston, it induces a titrant dosing error. There is, however, a major price difference
between Titripack solutions (e 8.5 per litre NaOH 0.1 N) and self prepared NaOH 0.1 N solu-
tion (e 0.05 for NaOH pro analyse pellets and e 0.5 for demineralized water per litre of NaOH
0.1 N). Taking into account the extra products and working hours necessary to prepare stock
solutions and determine the exact titre with e.g. oxalic acid titrations, the price difference is
not an obstruction any more. For example, to prepare 1 litre of NaOH 0.1 N and determine
the exact titre with an oxalic acid end-point titration in 4 replicates, it costs 15 minutes labour
(e6) and 2 hours occupation of an automatic laboratory titrator with sample carousel (roughly
estimated at e 4).

Because it was considered important to validate the hypothesis of the silicate dissolution
in the NaOH titrant, the validation experiment was extended, and a longer incubation period
(20 days) was tested with solution 0.1(c). Also, the SiO2 dissolution rate is highly temperature
dependent [43], thus part of the 0.1(d) stock solution, previously not in contact with glass,
was kept at 45 oC in a closed glass bottle for 4 days. Summarizing, extra titration curves were
obtained with

� Stock 0.1(c), kept for 20 days in a closed brown glass bottle at room temperature.
� Stock 0.1(d), kept for 16 days in a closed plastic bottle at room temperature, and then

transferred into a completely closed brown glass bottle at 45 oC for 4 days.

With these stock solutions, destructed and diluted samples from the pool were titrated once
normally and in threefold while bubbling N2 in the liquid. Buffer capacity curves obtained
with titrant solutions 0.1(e) and 0.1(d) are given in Figure 8.16. The curves obtained with
solution 0.1(c) are very similar to the curves obtained with solution 0.1(d) and are therefore
not shown in Figure 8.16.

The results were compared with the previous titration experiments, and similar buffer ca-
pacity increases around pH 10 were found with both stock solutions 0.1(c) and 0.1(d). Thus, it
was concluded that an aging period of 20 days, or an aging period of 4 days at elevated temper-
ature, introduces significant amounts of extra buffers into the stock solution. These increases
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Figure 8.16: Experimental buffer capacity curves of 1 sample, titrated with a Titripack  and
self prepared NaOH 0.1 N stock solution, with (1) and without (2) CO2 scrubbing during
titration. For the treatments (1), three replicates with each stock solution are plotted on top of
each other

were quantified to be around 9 10�5 M. As discussed before, part of this extra buffer capacity
can originates from IC entering continuously in the titration vessel, and not completely ac-
counted for in the mathematical model. If this extra buffer capacity is originating from SiO2

dissolution, the concentration in the stock solution would be maximally 1.9 mmolSi l�1 or
54 mgSi l�1. Taking into account the dimensions of the bottle (0.02 m2 liquid-glass contact
surface and 0.2 l titrant) and the standing period (20 days), it is calculated that the dissolution
rate of SiO2 would be 3:8 10�5 mol m�2 h�1. This is again the same value as found before.
Finally, laboratory analyses of the amount of silicates in both stock solutions at the end of all
experiments were performed (molybdenum blue colorimetric method). These found respec-
tively 52 and 67 mgSi l�1 in stock solutions 0.1(c) and 0.1(d). As an extra verification, the
quantity of Si in stock solution 0.1(e) (Titripack ) was also determined, and found to be less
than 0.5 mgSi l�1. The high quantity of Si in stock solutions 0.1(c) and 0.1(d) clearly confirms
the hypothesis of the silicate dissolution and its interference in the buffer capacity profiles.

Conclusions

A number of conclusions and precautions with respect to the stock solutions 1.5 and 0.1 N
NaOH can be summarized as follows:

� Inorganic carbon present in the NaOH stock solution 1.5 N does not interfere with the
N and P estimations from the buffer capacity profile, as long as the sample is made CO2

free at pH 3 by stirring, prior to titration with NaOH 0.1 N.
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� Very important interferences were found in ‘aged’ stock solutions 1.5 N (2 months old)
and 0.1 N (9 days old, however in a bottle that was a couple of weeks in use with NaOH,
without completely emptying and cleaning). The main interfering buffer was found
around pH 10 and was quantified as 1.5�5 mmol l�1 of an extra monoprotic buffer. It is
hypothesized that this extra buffer is a silicate buffer originating from SiO2 dissolution
of the glass bottle. An extra validation experiment under similar conditions, as well as
laboratory analyses of Si in ‘aged’ stock solutions clearly confirmed this hypothesis.

� Inorganic carbon buffer capacity interferes with the ortho-phosphate determination, and
should be kept as low as possible. Under normal titration conditions, the amount of IC
that can enter the solution via a 100 ml headspace is 0.3 mgCO2 l�1. The amount of IC
that enters the titration vessel via the titrant solution is around 0.5�0.6 mgCO2 l�1.

� If the interfering amount of IC would be constant, its influence can easily be corrected by
accounting this amount of IC in the mathematical buffer capacity model. Otherwise, the
ortho-phosphate overestimation error from the buffer capacity profile could be around
0.4 mgP l�1 diluted sample or 3 mgP l�1 undiluted destructed sample.

� The titration vessel does not have to be completely closed to obtain reliable results. No
significant differences were found between buffer capacity profiles obtained in a closed
vessel, and in an open to the air vessel (opening of 1 cm2).

� The commercial NaOH 0.1 N solution (Titripack , Merck) was evaluated and found
more reliable (less sensitive to possible contaminations), more accurate and containing
less interferences than self prepared NaOH stock solutions. A price comparison was
made, and it was concluded that Titripack solutions are not necessarily more expensive
than self prepared stock solutions.

8.5.3 Statistical data analysis

The results of the validation experiment described in section 8.5.1 were statistically evalu-
ated, and the different sources of variability were quantified and interpreted. The investigated
sources of variability are the method variability (laboratory versus titrimetric result), the du-
plo variability (2 subsamples from each raw manure sample are analyzed) and the residual
variability (uncontrolled variability due to sample preparation, titration, data analysis, : : : ).

The available data for this study originates from 53 different manure samples. From each
manure sample, 2 subsamples (or duplos) of approximately 5 g were taken. The exact weight
of each subsample was recorded, because this weight factor is needed to transform the ana-
lytical results from mg l�1 destructed sample to mg kg�1 manure, in which the final results
should be expressed. The subsample weight typically varies between 4 and 6 g, and the duplo
variability can only be investigated when this weight factor is included in the statistical anal-
yses. Therefore, the statistics are performed on data expressed as mg kg�1. Each subsample
was analyzed once in the laboratory for N and P with the official NEN methods. Further, each
destructed subsample was diluted and titrated in threefold, thus resulting in 3 independently
estimated N and P concentrations for each subsample. Later, 20 subsamples (originating from
12 samples with P < 10 mg l�1 in destructed, undiluted sample) were repeated because of the
interferences discussed in section 8.5.2. There was not enough sample left to include replicate
titrations, thus each of the 20 repeated subsamples was titrated only once.

An introductory remark that should be made prior to statistical interpretations, is that the
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Table 8.21: Duplo and residual variability analysis obtained with two GLM’s for respectively
the laboratory and the titrimetric data

Source of Significance Mean X Std. dev. sX r.s.d.
Variable variation Method (p-value) (mg kg�1) (mg kg�1) (%)

N53 duplo laboratory 0.007 4941 14 0.3
N53 duplo titrimetric 0.01 4898 21 0.4
P41 duplo laboratory 0.09 1361 3.7 0.3
P41 duplo titrimetric 0.001 1318 30 2.3
P12 duplo laboratory 0.008 246 2.4 1.0
P12 duplo titrimetric 0.13 247 15 6.1
N53 residual titrimetric 4898 64 1.3
P41 residual titrimetric 1318 54 4.1
P12 residual titrimetric 247 37 15

data set is highly unbalanced, because no replicate analyses were available for the laboratory
measurements compared to the threefold titrimetric measurements. Therefore, it was chosen
in a first stage to assess the duplo variability on the laboratory data, and the duplo plus residual
variability on the titrimetric measurements, with two separate GLM studies. The variables that
were investigated are
N53 : Ammonium on all of the 53 samples
P41 : Ortho-phosphate on 41 samples with P > 10 mg l�1

P12 : Ortho-phosphate on 12 repeated samples with P < 10 mg l�1

The duplo effect and the sample effect were included as two random factors in the GLM.
For the titrimetric data, an interaction effect sample�duplo was also included in the GLM.
Summarized results are given in Table 8.21. The duplo variability, expressed as a standard
deviation, can be interpreted as follows: If many subsamples originating from 1 sample are
analyzed either in the laboratory or with the titrimeter, 95 % of the results are expected in
the interval X� 2sduplo. 2 Similarly, for the residual variability of the titrimetric measure-
ment: If one subsample is titrated many times, 95 % of the results are expected in the interval
X�2sresid. Theoretically, the duplo variability is expected to be the same with both measure-
ment methods. This is fairly well the case, except for P41 and P12, where the duplo standard
deviations are found to be higher in the titrimetric method. The duplo variability, expressed
as r.s.d., is between 0.3 and 1 % for the laboratory measurements, which confirms that the
subsampling is a reproducible process. The titrimetric reproducibility was evaluated, and it
was found that the titrimetric variability is homogeneous along the range from low loaded to
high loaded samples (homoscedasticity). This is also reflected when comparing the residual
standard deviation of P41 and P12. As a logical consequence, the relative error in the low
loaded P samples is higher (15 %) compared to the high loaded P samples (4.1 %). The re-

2The latter statement is somewhat simplified, because the effect of the residual variability should also be
considered.
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Table 8.22: Method variability analysis obtained with paired t-tests for laboratory versus titri-
metric analyses results

Paired differences (lab. � titrimetric) (mg kg�1)

Variable Nbr. of pairs Sign. Mean d Std. dev. sd 95 % conf. interval of d

N53 106 <0.001 43 95 25�61
P41 82 0.001 43 115 18�68
P12 20 0.91 �0:97 37 �18�16

producibility of the ammonium estimation with the titrimeter is very good, 1.3 %. Such low
residual error indicates that further optimization of the titrimetric reproducibility is not needed
for the ammonium measurement. However, the situation is different for the ortho-phosphate
reproducibility. This is in correspondence with earlier experimental findings, that the buffer
capacity of ortho-phosphate is much more influenced by external uncontrolled factors, in the
first place the inorganic carbon. A quick calculation learns that a residual ortho-phosphate
standard deviation of 37 mg kg�1 manure corresponds with an ortho-phosphate concentration
in the titration vessel of 0.11 mgP l�1, or 0.004 mmol l�1. A typical amount of IC entering the
titration vessel via the headspace and the titrant is 1 mgCO2 l�1, or 0.02 mmol l�1. Hence, the
molar amount of interfering IC is 5 times higher than the amount of phosphate representing the
residual standard deviation. Thus, further optimization of the titrimetric procedure, to keep the
IC as low and as constant as possible, is the strategy to be followed to decrease the variability
of the titrimetric P measurement.

In a second stage, the method variability (laboratory versus titrimetric) was investigated.
Therefore, in the second stage, it was chosen to aggregate the replicate titrimetric measure-
ments and calculate their means as values for a new data set. The aggregated and thus balanced
data set contains 53 samples, each with 2 subsamples (duplos), and each subsample has one
laboratory and one titrimetric N and P measurement. A GLM with 1 fixed factor (method) and
2 random factors (sample and duplo) was constructed. Three main effects and three two-way
interactions were included in the model and could be interpreted. Only for P12, the interpre-
tation is simple and straightforward: None of the interactions are significant, and there are no
significant effects of duplo and method. In other words, the P12 results of the laboratory are not
statistically different from the titrimetric results. For N53 and P41, the interpretation is more
complicated. The interactions method�sample and method�duplo are very significant, thus
masking possible interpretation of the main effect ‘method’ . The method effect should be in-
terpreted as significant through its interactions with the two random factors. In other words, it
is concluded that this GLM study cannot be used to give a simple and clear answer to the ques-
tion whether the laboratory and titrimetric results are significantly different from each other
for N53 and P41.

In a third stage, another approach was followed to specifically interpret the method effect.
Based on the results of the previous stage, a paired t-test was chosen as the best option to eval-
uate the method effect. The summarized results of these tests are given in Table 8.22. From
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Table 8.23: Official accreditation requirements for the measurement of nitrogen and phospho-
rus in animal manure [1] compared with the obtained results

Required Obtained

Minimum measurable concentration N 150 mg kg�1 190 mg kg�1

Minimum measurable concentration P 40 mg kg�1 110 mg kg�1

Reproducibility N (0�2500 mgNkg�1) 150 mg kg�1 67 mg kg�1

Reproducibility N (> 2500 mgNkg�1) 6 % relative 1.4 % relative
Reproducibility P (0�500 mgPkg�1) 40 mg kg�1 40 mg kg�1

Reproducibility P (> 500 mgPkg�1) 8 % relative 3.6 % relative

these results, it is concluded that there is a significant difference between the laboratory and
titrimetric measurements for N53 and P41. In both cases, the mean laboratory values are higher
than the titrimetric results. For the repeated samples, P12 is not significantly different for both
methods. This can partially be explained because in the low loaded samples, the mean concen-
tration for P is much lower compared to the high loaded samples, thus for the same residual
variability, it is statistically more difficult to find significant differences in the lower range. The
confidence intervals in Table 8.22 are best suitable to interpret the difference in results between
the laboratory and the titrimetric measurement. E.g. if many samples are analyzed in the lab-
oratory and with the titrimeter, the mean difference in ammonium concentration (laboratory�
titrimetric) will be with 95 % confidence between 25 and 61 mg kg�1.

Finally, the obtained statistical results were compared with the requirements for an official
accreditation in the Netherlands [1] for nitrogen and phosphorus measurement in animal ma-
nure. These requirements include the minimum measurable concentration (expressed as three
times the residual standard deviation sX) and the reproducibility (including the subsampling or
duplo effect and the analysis effect). The obtained results are calculated from Table 8.21. The
accreditation requirements and the obtained results are summarized in Table 8.23.

The obtained minimum measurable concentrations N and P, calculated from the residual
standard deviations of the titrimetric measurements are still higher than the required values. Es-
pecially for P, the results are not fully acceptable yet. However, it should be taken into account
that the titrimetric data used in this validation study (see section 8.5.1) were obtained without
appropriate control and minimizations of the interferences discovered afterwards (silicates and
IC). Therefore, taken into account the results obtained in section 8.5.2, it is expected that by
taking care of the described interferences, the minimum measurable concentrations for N and
P will be within the requirements for accreditation. The obtained reproducibility (including
the effects of subsampling and analysis) is already within the requirements.

A recent but unofficial comparative study among 8 different Dutch laboratories for N and
P measurement in one pig manure sample has been organized by a pig farmers association [2].
This small scale study showed differences between the minimum and maximum reported anal-
ysis results of 24 % and 87 % for respectively N and P. A similar comparative test in Flanders
(called ‘ ringtest’ ) [64] in which 30 laboratories were involved, found differences between the
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minimum and maximum reported analysis results of 54 % and 39 % for respectively N and
P. This official test was also used in an accreditation procedure to select the laboratories that
are officially allowed to perform these measurements. From these two recent studies, one can
conclude that nutrient measurements in manure are sensitive to many sources of error which
are in some of the tested laboratories not completely under control yet.

8.6 Conclusions

The final goal of the FASTNAP project is to build a functional model of the device. This
hardware model should be able to demonstrate the functionality of an automatic and on-line
N and P measurement in manure samples. In the current stage of the project, the functional
model will be constructed on a non-driving vehicle. However, in a further post-project stage,
the aim is to have measurements conducted on a driving vehicle. Within this framework, the
techniques used in the project were chosen in function of this ultimate goal. The followed
methodology can be summarized in four consecutive steps. First, a representative manure
sample is taken from a transporting vehicle during loading or unloading of the vehicle. This
is existing technology, and available on the market. This sample is homogenized and a sub-
sample is taken (5 ml out of 750 ml manure). Second, the sample is destructed with the aid of
chemicals and heat (microwave oven). Third, a titration curve is recorded from pH 3 to pH 11.
And last, an advanced data-processing step, based on buffer capacity modelling, is performed.
The development of the latter two steps was the main topic of this chapter.

The official NEN 7433 manure destruction procedure includes the addition of CuSO4 �
5H2O as a catalyst. However, this high amount of Cu2+ caused an interfering precipitation
reaction with o-PO4 during titration, such that it was investigated if this catalyst is really nec-
essary to obtain a complete destruction of the animal manure. It was found that this catalyst
could be omitted, and therefore, all further destructions in the framework of this project were
performed without the Cu catalyst.

Destructed manure samples contain in order of importance: sulphuric acid, ammonium,
ortho-phosphate, calcium, potassium, iron, and a whole range of minor elements. The effect
of ionic strength on the buffer capacity is important, and ionic activity corrections should be
included in the mathematical models. The effect of dilution of the destructed manure sample
prior to titration was investigated. Undiluted or too much diluted destructed manure samples
give unreliable titration results, and a dilution factor between 3 and 6 was experimentally
found to give the best results. The effect of simple chemical equilibrium reactions can easily
be modelled, and it is also straightforward to include complexation reactions in a mathematical
model for buffer capacity of destructed manure. Complexation reactions with Ca2+ and Fe3+

were investigated in more detail, and it was found that iron and calcium complexes could
be responsible for buffer capacities around pH 5, pH 8 and pH 10. It was also found that
the buffer capacities of o-PO4 and NH+

4 (the buffers of main interest) are only influenced by
the complex formation reactions to a limited extent. Possible precipitation reactions during
titration were also investigated with simulation studies, and a number of potential precipitates
were found. However, literature research learned that precipitation reactions are sluggish, slow,
non-stoichiometric, incomplete, : : : Simulation studies with precipitation reactions included
learned that their effect is negligible for ammonium and ortho-phosphate estimation. It was
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chosen for the further model developments to exclude precipitation reactions from the models.
A first measurement campaign was organized for the development of an adequate buffer

capacity model. Titrimetric N and P estimations were compared with laboratory results using
standard NEN methods. Four selected mathematical models were compared with each other,
and it was found that the best N and P estimations are obtained with a rather simple model,
only including buffer capacities originating from H2O, H2SO4, IC, o-PO4 and NH+

4 . With this
model, a lack of fit was observed due to extra experimental buffer capacity found around pH 5.5
and pH 8. Referring to the simulation study, these extra buffer capacities could be attributed to
the complex formation reactions. With another model, that took those 2 extra buffers into ac-
count, the estimations of o-PO4 were, however, slightly worse compared to the most adequate
model. A correlation study between the concentrations of these extra two buffers and the con-
centrations of the most important components in destructed manure confirmed the hypothesis
of the complexation reactions at these two pH ranges.

A second measurement campaign (53 samples, 2 subsamples, 3 replicates) was organized
to validate the most adequate buffer capacity model. Also for the new data set the developed
model was optimal. This points to the robustness of this model in different situations. The
ammonium concentrations found with the titrimetric analyses are all between �7 and +8 %
relative error compared to the laboratory measurements. The relative errors for the titrimetric
ortho-phosphate concentrations are between �25 and +200 % compared to the laboratory
measurements. The highest deviations were noticed for the 20 % lowest loaded P samples
(or P < 10 mg l�1). A number of interferences originating from the NaOH stock solutions
were found to be the reason of the high relative errors particularly for P. The low loaded P
samples were titrated again, using freshly prepared NaOH stock solutions, and the relative
errors became in an acceptable range between �15 and +25 % compared to the laboratory
results.

The influences of the alkaline stock solutions were investigated in more detail with separate
experiments to characterize and quantify the interfering buffers in the NaOH stock solutions.
There are two different interfering substances that should be kept as low and constant as pos-
sible. The first one is IC, found to originate from the stock solution 0.1 N and the headspace
of the titration vessel. Its quantity is typically around 1 mgCO2 l�1, and causes an impor-
tant interference for the ortho-phosphate determination in case it is not known or not constant.
The second interfering substance is found to originate from SiO2 dissolution from the glass
bottle where the alkaline stock solution was kept. Its quantity is around 1.5 mmol l�1 in 20
days old stock solutions of NaOH 0.1 N. This interfering amount of silicates interferes with
the ammonium estimation. It is concluded that commercially prepared NaOH stock solutions
(Titripack , Merck) are a strong and reliable alternative to avoid interferences, both from IC
and silicates. These solutions are stored in completely closed, headspace free plastic bags of
10 l , and are not necessarily more expensive than self prepared stock solutions.

A detailed statistical analysis of the data obtained with the second measurement campaign
was performed to quantify and interpret the different sources of variability. It was found that
the duplo or subsampling variability is low, pointing to reproducible subsampling. The relative
residual standard deviation obtained with the titrimetric measurements is 1.3 % for ammonium,
and between 4 and 15 % for ortho-phosphate. This indicates that further optimization of the
titrimetric reproducibility for ortho-phosphate should be considered. Especially when the inter-
ferences discussed in the previous paragraph are avoided, it is expected that the reproducibility
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and accuracy will still become better.
The goal of the project was to develop an automatic technique for N and P measurements

in animal manure in the field. Taking into account some further optimizations discussed above,
the analysis results with this titrimetric sensor are expected to be as reliable as the laboratory
results. A first comparison between the obtained results and the requirements for accredita-
tion was performed, and it was concluded that the developed methodology is promising for
official acceptance. Thus, it can even be suggested to implement the titrimetric measurement
technique in the laboratory, with a laboratory titrator, coupled to a computer, as a reliable al-
ternative for the classical laboratory methods. The strongest points of the titrimetric method
are: simultaneous N and P measurement with 1 method, minor sample manipulations, N and
P results within 30 minutes, low and inexpensive chemical consumption, consumption of only
one and non-hazardous reagent (NaOH) and the possibility to measure continuously in the lab
with a sample carousel coupled to the titrating unit.



Chapter 9

Automatic pH buffer capacity
model building

Some of the results of this chapter are submitted for the conference “Watermatex 2000” [309].

9.1 Introduction

In the previous chapters, user-defined buffer capacity models were fitted to various experimen-
tal buffer capacity data, with the aim to quantify the concentration of known buffer systems
defined in the mathematical buffer capacity model. At that stage, the interpretation of the
goodness of fit of the model still was a manual process. If necessary, the mathematical model
was extended or modified and refitted to the data. In each chapter, an adequate field-usable
model was developed. More particularly, models were formulated for river and effluent sam-
ples (chapter 6), samples from algal wastewater treatment systems (chapter 7) and destructed
and diluted animal manure samples (chapter 8).

The aim of this chapter is to automate the process of buffer capacity model building, and
find an useful and adequate buffer capacity model, tailor-made for each individual sample.
Such approach is expected to yield useful information in the framework of alarm generation,
because for example, the appearance of unexpected buffers (e.g. pollutants) in the buffer ca-
pacity profile would be automatically detected and their characteristics quantified. In situations
with a lack of a priori knowledge about the buffers present in a titrated sample, an automatic
buffer capacity model building environment can be useful to find an appropriate model for that
sample.

The tools needed for the automatic buffer capacity model development are implemented
in the software bomb, which is described in detail in section 5.3 on page 117. In this context,
the automatic model building algorithm (see section 5.3.4 on page 125) and the implemented
buffer capacity model selection criteria (see section 5.3.5 on page 131) are of prior importance.

In section 9.2, a number of titration curves of samples with well-known composition will
be used to evaluate the model building algorithm and the model selection criteria. Based on
these results, a model building strategy will be formulated. In sections 9.3, 9.4 and 9.5, the
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Table 9.1: Chemicals for the preparation of samples of which titration curves were collected

Chemical Code Protonicity pKa1 pKa2 pKa3

Oxalic acid oxa 2 1.23 4.19
Sodium acetate ace 1 4.75
Ammoniumchloride amm 1 9.20
Malonic acid mal 2 2.83 5.69
Sodium tripolyphosphate pho 3 2.12 a 7.21 a 12.67 a

Citric acid cit 3 3.14 4.77 6.39
a Values of ortho-phosphate. The real values have to be determined experimentally.

automatic model building environment will be evaluated with titration curves presented earlier
in chapters 6, 7 and 8 respectively. An important aspect that will be investigated and discussed
in this chapter is the benefit of automatic model building compared to the use of fixed buffer
capacity models.

9.2 Buffer capacity modelling of well-known samples

9.2.1 Materials and methods

A number of titration curves with known composition were collected in the framework of ad-
equate buffer capacity model development. The titration data collection is described in [202].
Initially, a manual model building algorithm was evaluated in [202]. The goodness of fit was
interpreted visually and the ‘best’ model was compared with the ‘ theoretical’ model. Later, this
model building algorithm was modified and automated in [299]. Also, automatic model selec-
tion criteria were introduced in [299]. Finally, based on the experiences in [202, 299], some
further modifications to the algorithm were proposed and finally implemented in the software
bomb, presented in section 5.3 on page 117.

The database contains 146 titration curves, originating from 66 different samples, each
titrated in two- or threefold. The chemicals that were used to prepare the samples are presented
in Table 9.1. Four different concentrations of each chemical were used for the preparation of
the samples: 0.5, 1, 2 and 5 meq l�1. First, samples were prepared with only 1 component,
and with each of the concentrations mentioned above (in total 24 samples). Second, com-
binations of 2 components were made: being oxa�amm, amm�ace, oxa�ace, pho�amm,
pho�ace, oxa�mal, cit�ace, pho�mal and cit�mal. Each combination was prepared in the
concentrations 1�1, 0.5�1 and 1�0.5 meq l�1 (in total 27 samples). Third, combinations
of 3 components were formed: being oxa�amm�ace and pho�amm�cit in the concentra-
tions 0.5�1�0.5, 0.5�0.5�1, 1�0.5�0.5 and 1�1�1 meq l�1 (in total 8 samples). Fourth,
the combination oxa�pho�amm�ace was prepared in the concentrations 1�0.5�0.5�0.5,
0.5�1�0.5�0.5, 0.5�0.5�1�0.5, 0.5�0.5�0.5�1 and 1�1�1�1 meq l�1 (in total 5 sam-
ples). Fifth, the combination oxa�pho�amm�ace�cit was prepared in the concentration 0.5
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meq l�1 for each component. Sixth, the combination oxa�pho�amm�ace�cit�mal was pre-
pared in the concentration 0.5 meq l�1 for each component.

Prior to titration, the samples were adjusted to pH 2�3 with HCl 1 N, and made CO2 free
by strong agitation with a magnetic stirrer during 10 minutes. The titrated sample volume was
100 ml, and the samples were titrated with NaOH 0.1 N from pH 2�3 to pH 11. The titration
curves were obtained with a laboratory titrator (Metrohm Titrino 716 [168]). The details about
the titration algorithm are described in section 5.1.1 on page 98. The titration data was later
processed with the software bomb, described in section 5.3 on page 117.

9.2.2 Evaluation of two modelling approaches with a testcase

One of the samples cit�ace with concentrations 1�0.5 meq l�1 was selected as testcase to
compare two modelling approaches. The first approach is based on the availability of a priori
knowledge about the buffers present in the sample, while in the second approach, it is assumed
that no information about the composition of the sample is available. These two approaches
are presented and compared in the following paragraphs.

A priori knowledge based buffer capacity model

The buffer capacity model that was fitted to the experimental data included the water buffer,
an inorganic carbon buffer, a citric acid buffer and an acetate buffer. In the previous chapters,
it was found that it can be useful to allow some flexibility on the pKa values of the considered
buffer systems. Such flexibility corrects for small deviations of the real pKa compared to the
experimental pKa, due to measurement errors, ionic strength effects, temperature effects, : : :
Therefore, the buffer capacity model was fitted twice to the experimental data, without and
with extra flexibility on the theoretical pKa values. The model specifications are summarized
in Table 9.2.

The experimental and simulated buffer capacity curves of the selected sample, respectively
without and with the extra flexibility on the pKa values are shown in Figure 9.1. The corre-
sponding results for the estimations of the pKa values and the concentrations together with
their standard deviations (calculated with the method of Nelder and Mead (1964), see section
5.3.3 on page 120) are given in Table 9.3.

The applied buffer capacity models (a) and (b) have respectively 4 and 8 parameters to be
estimated. Both models succeeded in a satisfying estimation of the concentrations of respec-
tively the citric and the acetic acid buffer. As can be expected, the fit of the simulated to the
experimental buffer capacities, however, is worse for model (a) compared to model (b) (see
Figure 9.1). With model (b) the pKa1 value of the blank6 buffer and the pKa value of the
blank1 buffer are estimated respectively at their maximum and minimum allowed boundary
value. Allowing a wider flexibility range for these pKa values resulted in slightly worse es-
timated concentrations of these two buffers (results not shown). An advantage of the flexible
pKa approach compared to the fixed pKa approach is that the flexible pKa approach allows to
detect more easily extra unexpected buffers (e.g. interferences) in the buffer capacity profile.
E.g. for this particular example in the situation (b), it can be seen that the fitted mathematical
model describes the experimental data fairly well, except that between pH 8 and pH 9, there is
probably a buffer present, not accounted for in the model. On the other hand in the situation
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Table 9.2: Model specifications for a simulation interval between pH 3.5 and pH 10.5

Buffer Variable Initial guess or value Estimated? Lower limit Upper limit

Water pka water 15.74 Yes 15.70 15.82
conc water 55.5 mol l�1 No

IC pka1 carbon 6.37 No
pka2 carbon 10.25 No
conc carbon 0.5 mgCO2 l�1 Yes 0 5.5

Citric pka1 blank6 3.14 No/Yes a 3.01 3.27
acid pka2 blank6 4.77 No/Yes a 4.6 4.9

pka3 blank6 6.39 No/Yes a 6.2 6.52
conc blank6 0.1 mmol l�1 Yes 0 1

Acetic pka blank1 4.75 No/Yes a 4.6 4.9
acid conc blank1 0.1 mmol l�1 Yes 0 1
a ‘Yes’ for the incorporation of extra flexibility on the considered pKa.
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Figure 9.1: Experimental and simulated buffer capacity curves of a sample with well-known
composition. Results are shown for the buffer capacity model without (a) and with (b) extra
flexibility on the pKa values of the citric and acetic acid buffer
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Table 9.3: Simulation results of the selected and well-known sample for the buffer capacity
model without (a) and with (b) extra flexibility on the pKa values of the citric and the acetic
acid buffer

Unit Model (a) Model (b) Expected

Estimate Std. dev. Estimate Std. dev.

pKa H2O 15.79 0.012 15.81 0.0078
pKa1 blank6 3.27 0.11 3.14
pKa2 blank6 4.88 0.09 4.77
pKa3 blank6 6.25 0.03 6.39
pKa blank1 4.60 0.07 4.75
CIC mgCO2 l�1 1.69 0.72 3.03 0.49
Cblank6 mmol l�1 0.35 0.016 0.33 0.014 0.33
Cblank1 mmol l�1 0.56 0.023 0.55 0.039 0.5

(a), it is not clear whether extra buffers are necessary and at what pH they should be included
in order to fit the experimental buffer capacity profile more closely. Therefore, the extra buffer
between pH 8 and pH 9 in situation (a) remains unnoticed due to the overall lack of fit. There
is a notable difference in the estimated IC concentration (see Table 9.3). However, considering
the standard deviations on these estimates, the difference is statistically not significant. Despite
the fact that model (b) has more degrees of freedom compared to model (a), there is not more
uncertainty in the estimates of the concentrations with model (b) (the standard deviations on
the concentrations are similar for model (a) compared to model (b)). This aspect will further
be investigated with other examples and more complicated models.

The above presented approach is based on the a priori knowledge that the selected sample
contains at least a monoprotic and a triprotic acid (respectively acetic and citric acid). In the
next approach, it is considered that this a priori information is not available.

Automatic model building in absence of a priori knowledge

The second modelling approach is based on the automatic model building algorithm included
in the software bomb. The selected and well-known sample is considered again, and the step-
wise model building process is initiated, starting from a zero model that only contains the water
buffer. As described in chapter 5, the stepwise model building algorithm will systematically
add new buffers at pH values near the run with the highest sum of residuals. When the model
building process is finished, a list of blind buffers with their pKa values and concentrations
has to be interpreted by the user. 1 At this stage, an appropriate model selection criterion
(e.g. AIC, Run-test, : : : ) is not considered yet. The model building process will continue until
all available blind buffers are incorporated in the model (bombcan include at most 8 blind

1For the specific automatic model building terminology, the reader is referred to section 5.3.4 on page 125.
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Table 9.4: Simulation results of a well-known sample for the automatically built buffer capac-
ity models illustrated in Figure 9.2, plots (b) until (f). The concentrations are expressed as
mmol l�1 and the table entries are estimate � standard deviation

Model 1.0 Model 2.0 Model 3.0 Model 4.0 Model 5.0
Plot (b) Plot (c) Plot (d) Plot (e) Plot (f)

pKa blind1 4:78�0:06 4:51�0:03 4:50�0:02 4:74�0:01 4:74�0:007
pKa blind2 6:08�0:06 6:08�0:05 6:24�0:01 6:22�0:008
pKa blind3 9:88�0:21 9:90�0:04 9:99�0:03
pKa blind4 3:50�0:05 3:50�0:03
pKa blind5 8:21�0:13
Cblind1 1:00�0:05 0:93�0:02 0:93�0:02 0:83�0:008 0:83�0:006
Cblind2 0:47�0:02 0:47�0:02 0:40�0:004 0:40�0:003
Cblind3 0:08�0:02 0:08�0:003 0:08�0:002
Cblind4 0:32�0:007 0:32�0:005
Cblind5 0:02�0:002

buffers) or until the situation that the algorithm cannot further extend the model (e.g. due to
the restriction in the model building algorithm that pKa ranges may never overlap with each
other, it is possible that no runs are available any more for model extension).

The stepwise model building process with the testcase is illustrated in Figure 9.2. The
pH simulation interval was set between pH 3.5 and pH 10.5 and the pKa of the water buffer
was set to 15.81, based on previous models where the pKa of water was allowed to vary. At
the last modelling step (i.e. a sixth model extension at pH 7.1 of the fitted model shown in
Figure 9.2(f)), the parameter estimation routine PRAXIS ran into a local minimum problem
because it did not find a cost function value that was lower than the previous model (which is
theoretically not possible in case of correct optimization, because the less complicated model
is always a subset of the more complicated model). Apparently, the optimization problem
became overparametrized, and thus it was not useful to proceed the model building process.
The simulation results with the models illustrated in Figure 9.2(b)�(f) are summarized in Table
9.4.

The interpretation of the results of this example is straightforward. In the first modelling
step, a buffer with pKa = 4:78 is introduced in the model. Its final concentration is 0.83
mmol l�1 (with only a small modification of the pKa to 4.74), and represents the dissociation
of acetic acid. Of course, but this cannot be determined by the algorithm, it falls together with
the second dissociation step of citric acid (the theoretical concentration can be calculated as
0:5+0:33= 0:83 mmol l�1). In the second step, a buffer with pKa = 6:08 is introduced, with
an estimated concentration of 0.40 mmol l�1. This buffer represents the third dissociation step
of citric acid (0.33 mmol l�1) together with some extra buffer (0.07 mmol l�1, probably IC).
The third buffer that is entered in the model has an estimated pKa = 9:99 and a concentration
of 0.08 mmol l�1. This is an unexpected buffer, however, with the experiences described in
section 8.5.2 on page 220, it is a fair assumption that this buffer originates from interfering sil-
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Figure 9.2: Experimental and simulated buffer capacity curves of a well-known sample. The
stepwise model building process starts with plot (a) (the zero model) and ends with plot (f)
(the final model). The arrows indicate the automatically proposed pKa positions for model
extension



246 Automatic pH buffer capacity model building

Table 9.5: Model selection criteria calculated for the consecutive models in the automatic
model building process of the well-known testcase. The bold items mark the selected models
based on each considered criterion. For the last two criteria, the significance level α = 0:0001
was chosen

Model 1.0 Model 2.0 Model 3.0 Model 4.0 Model 5.0 Model 6.0

AIC �330 �479 �502 �736 �782 �729
AICC �256 �405 �428 �660 �705 �649
FPE 0.0096 0.0012 0.00085 0.000031 0.000016 0.000035
SIC �325 �470 �489 �718 �760 �701
Run-test (p) < 10�6 < 10�6 0.000001 0.00013 0.00047 0.00047
F-test (p) < 10�6 < 10�6 0.000003 < 10�6 < 10�6 1.00000 a

a An insignificant p-value for model 6.0 means that model 5.0 is selected.

icates entering the titration vessel through the NaOH titrant. The fourth buffer has an estimated
pKa = 3:5 and a concentration of 0.32 mmol l�1. This pKa value equals the minimum pH value
of the considered pH interval, and the model building algorithm does not allow to introduce
buffers with pKa values outside the simulation interval. Therefore, the real pKa value of that
buffer could be lower than 3.5. Its concentration indicates that this buffer is most probably
the first dissociation step of citric acid (theoretically pKa = 3:1 and 0.33 mmol l�1). The last
buffer entered in the model is located at pH 8.21, with a very low concentration 0.02 mmol l�1.
Probably, it is again a small interfering buffer, but with unknown origin. The latter buffer is
not considered very important. However, taking into account the standard deviation on the es-
timate, the concentration is still significantly different from 0 (t-test, α = 0:01). As mentioned
before, the model building process has finally tried to introduce a next buffer with pKa = 7:1
(model 6.0, results not shown), but then the optimization problem became overparametrized,
and the optimization algorithm failed to find an acceptable solution. Such optimization failure
mostly ends up with an SSE of the current model that is higher than the SSE of the previ-
ous model (which is theoretically not possible in case of correct optimization, because the
less complicated model is always a subset of the more complicated model). An appropriate
message is foreseen in the software when this happens. Further, if the optimization algorithm
doesn’ t find a correct solution, often the calculation of the variance-covariance matrix after-
wards also ends up in numerical problems (e.g. Not-a-Number or NaN values). Such problems
are also logged to the user.

Although the evaluation of model selection criteria is the topic of section 9.2.3, it is useful
at this stage to summarize and interpret the different model selection criteria calculated at
each model building step for the selected testcase. More particularly, it is interesting to know
whether the model selection criteria would stop the model building process earlier than model
6.0 (which is the model that resulted in an optimization failure). The 6 model selection criteria,
applied to the testcase, are summarized in Table 9.5.

If the automatic model selection was activated, all criteria would select model 5.0 as the
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final model, except for the Run-test, that would favour model 4.0. Of course, the latter finding
completely depends on the choice of the critical significance level α. Also, model 6.0 ended
up in a wrong optimization result, thus forcing all criteria (including the F-test) to select the
simpler model 5.0. The first four criteria (AIC, AICC, FPE and SIC) show their highest de-
crease in value from model 1.0 to 2.0 and from model 3.0 to 4.0. This points to very important
increases in model adequacy at those two stages. This is also nicely reflected in Figure 9.2. A
more detailed evaluation of the 6 model selection criteria on each of the 146 titration curves of
the samples with well-known composition is described in section 9.2.3.

Conclusions

At this stage, a number of conclusions related to the automatic buffer capacity model building
algorithm can be formulated. First, the algorithm succeeds in a stepwise construction of a
buffer capacity model in which the buffer systems are incorporated in order of importance.
It was straightforward to relate the final result to the available a priori knowledge. Second,
the results of the automatic model building revealed extra information on top of the available
a priori knowledge. More particularly, prior unknown interfering buffers at pH 8 and pH 10
were detected and quantified.

Third, the standard deviations on the pKa and concentration estimates are very important
for the interpretation. On the one hand, they are useful to statistically test if certain small
concentrations of e.g. interfering buffers are significant; or to calculate confidence intervals on
the estimates. On the other hand, if the standard deviation becomes too high, it indicates that
the optimization problem is overparametrized. In the testcase, the standard deviations became
systematically lower for increasing model complexity. This strongly points to the validity of
the more complex models. The latter conclusion was also reflected in the model selection
criteria, that pointed to the model with 5 blind buffers as the most appropriate one. In the next
section, the three formulated conclusions will be further evaluated with the other samples with
well-known composition.

9.2.3 Evaluation of six model selection criteria

The titration curves of the samples with well-known composition were classified in 4 groups,
that are discussed separately in this section:
Group 1 : 27 titration curves with 1 monoprotic buffer (oxalic acid is also considered in this

group, because of its very low pKa1 value)
Group 2 : 27 titration curves with 1 di- or triprotic buffer
Group 3 : 60 titration curves with 2 buffers (mono-, di- or triprotic)
Group 4 : 32 titration curves with more than 2 buffers
All titration curves were used as input data to the automatic model building environment in the
software bomb. It was assumed that no a priori knowledge about the buffers to be expected in
the samples was available. Consequently, the zero model only contained the water buffer. The
model building process was repeated for each of the 6 model selection criteria. The significance
level for the Run-test and the F-test was set to α = 0:0001.
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Summarizing frequency tables for each of the 4 groups of titration curves, with the counts
of titration curves corresponding with the final (or selected) model degree 2 are given in Table
9.6 for each of the 6 model selection criteria. In general, the first four criteria (AIC, AICC, PFE
and SIC) select the same model as final model. However, large differences in the selected final
model are noticed for the Run-test and the F-test. A more detailed analysis of the selected final
model as function of the selected criterion, and for each of the 4 considered groups of titration
curves is given in the next paragraphs.

In group 1, the automatic model building algorithm perfectly detects the single monoprotic
buffer in the experimental buffer capacity profile, and in all cases incorporates this buffer as the
first blind buffer in the model. The estimated concentrations were not significantly different
from the theoretically expected concentrations. However, the model building process does not
stop at this stage in most cases, but continues with the incorporation of new blind buffers. In
order of importance, first a buffer around pH 10 with a typical concentration of 0.1 mmol l�1,
and second a buffer around pH 6.5 with a typical concentration between 0.05 and 0.1 mmol l�1

are added to the model. As discussed before, these two buffers are assumed to be silicate and
inorganic carbon respectively. Their concentrations are mostly found significantly different
from 0. The Run-test and F-test generally stop at this stage. However, the AIC and related
criteria mostly extend the model with 1 or even 2 extra buffers of unknown origin (around
pH 7 and pH 4). The concentrations of these extra buffers are very low, and sometimes not
significantly different from 0. Practically, it is concluded that the AIC and related criteria go
rather far in the model building process. In 7 out of the 27 cases, the F-test selected the model
with only 1 buffer as the final model, thus not recognizing the silicate and/or the IC buffer.
This behaviour could be attributed to an optimization problem. It was noticed that for some
‘uncomplete’ models (thus models still deviating a lot from the final model), the parameter
estimation routine ended in a local minimum (5 cases out of the 27) at the second modelling
step, i.e. the model with 2 blind buffers, with an SSE of the more complex model higher than
the SSE of the simpler model. Consequently, the simpler model was selected by the F-test.
The AIC and related criteria too suffered from this flaw, and as a result selected in 4 (AIC,
AICC and FPE) or 5 (SIC) cases the model with 1 buffer as the final model. Only the Run-test
was not influenced by local minima problems, because this test examines only the randomness
of the residuals. As a first preliminary conclusion, the Run-test was found to perform most
‘ realistically’ for this group of titration curves.

For the titration curves of group 2, similar findings as for group 1 can be formulated.
The final models mostly contain, as expected, 1 or 2 supplementary buffers compared to the
finals models of group 1. For example, in 17 out of 27 cases, the Run-test selects the model
with 4 blind buffers. These 4 buffers include 2 or 3 buffers from the added di- or triprotic
component, and 1 or 2 interfering buffers, like silicates or IC. The AIC and related criteria
often select a model with 5 or 6 blind buffers. This is again a higher model degree than
what should be considered practically. Further, these high degree models illustrate certain
weaknesses in the model building algorithm. More particularly, sometimes buffers are added in
the model (interfering buffers, in small but significant concentrations), that in a later modelling
stage become insignificant, because a neighbouring buffer takes over the buffer capacity of the
previously introduced buffer. The model building algorithm does not allow to remove a buffer

2The degree of a model is here defined as the number of blind buffers incorporated in the model.
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Table 9.6: Frequency tables per group of titration curves, classified towards the final model
degree and the applied model selection criterion

Group Final model Criterion for model selection

degree AIC AICC FPE SIC Run-test F-test

1 1 4 4 4 5 1 7
1 2 2 2 2 4 7 5
1 3 2 2 2 4 19 9
1 4 14 14 14 11 0 6
1 5 5 5 5 3 0 0

2 1 1 1 1 1 0 4
2 2 0 0 0 2 0 10
2 3 1 1 1 2 5 2
2 4 7 7 7 7 17 2
2 5 11 11 11 9 5 6
2 6 7 7 7 6 0 3

3 1 0 0 0 0 0 3
3 2 0 0 0 1 1 5
3 3 2 2 2 2 14 1
3 4 13 13 13 16 19 23
3 5 36 36 36 34 17 26
3 6 9 9 9 7 3 2
3 7 0 0 0 0 0 0
3 8 0 0 0 0 6 0

4 3 0 0 0 0 1 0
4 4 3 3 3 3 7 6
4 5 9 9 9 10 16 10
4 6 16 16 16 15 8 16
4 7 4 4 4 4 0 0
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from the model in case the concentration of this buffer is not significantly different from 0.
It could be suggested to include this feature in the model building algorithm of the software
bomb(e.g. based on a similar F-test based method that is also implemented in stepwise linear
regression algorithms). This is further discussed in section 9.2.4. Local minima problems
with ‘uncomplete models’ , as described earlier, did occur less frequently (only 1 out of the 27
cases). In groups 3 and 4, this particular problem was no longer noticed. Thus it is concluded
that only the simplest type of titration curves sometimes lead to a too low final model degree
due to an optimization problem. Again, the Run-test was found to select the most realistic final
model.

The titration curves of group 3 have an increased complexity, and should theoretically
contain at least between 2 (e.g. amm�ace) and 5 (e.g. cit�mal) pKa values. For the simplest
type of combinations (e.g. the combination of a monoprotic and a diprotic buffer), the final
model could be interpreted perfectly: The quantified buffers corresponded with the buffers
present, both for the pKa positions, and the respective concentrations. Again, supplementary
buffers were sometimes found around pH 10 (silicates) or elsewhere. A typical example of
one of these titration curves was described earlier in section 9.2.2. At this stage, another
particularity related to the model building algorithm was discovered. In the example cit�mal,
the pKa2 = 5:69 of malonic acid is only 0.7 different from the pKa3 = 6:39 of citric acid. In
most examples of this type, a blind buffer was incorporated in the model somewhere between
these 2 theoretical pKa values, and was accounting for both buffer systems. This points to a
certain ‘ limit of resolution’ which is further discussed in the next paragraph. For the simplest
type of curves in group 3, the Run-test was slightly favoured for practical purposes. However,
for the more complicated titration curves, the performance of the Run-test was not found most
appropriate in a number of situations. More particularly, for 6 out of 60 titration curves, the
Run-test selected a final model with 8 blind buffers, whereas all other criteria considered only
6 blind buffers as the maximum number of buffers needed in the final model. There is a
clear explanation for this behaviour. The maximum number of buffers that are available in
the automatic model building algorithm is 8. Therefore, in those cases where the Run-test
selected 8 blind buffers, the necessary Run-test criterion was never reached. This phenomenon
occurred only in examples with polyphosphate as one of the buffers. It can be pointed that the
uncertain position of the pKa2 value of polyphosphate could be the reason why an acceptable
fit was not found with the Run-test criterion. By lowering the significance level α, this problem
would partially be solved. However, this is an important limitation for field applications. An
illustrative titration example of pho�mal is given in Figure 9.3. The fitted buffer capacity
model contains 4 blind buffers (with respectively the pKa values in order of importance 5.7,
9.3, 3.5 and 6.8). A further model extension proposed at pH 8.1 results in an insignificant
F-test result (p= 0:26), whereas the Run-test result is still very significant (u= �4:5 or p=
0:000007). Further model extensions do not make the fit better than what is illustrated in
Figure 9.3. When 6 or more blind buffers are included in the model, the optimization problem
becomes overparametrized, and the parameter estimation algorithm ends up in local minima.
Thus, when the Run-test criterion is selected for this particular example (with α = 0:0001), the
model building algorithm will proceed until all available blind buffers are incorporated in the
model, and will finally not find any model that fulfils the requested criterion.

The final model results of the easiest type of titration curves in group 4 (e.g. the combina-
tion of 2 monoprotic buffers and a diprotic buffer) could easily be related with the buffers to be
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Figure 9.3: Experimental and simulated buffer capacity curves (a) and calculated residuals (b)
of a sample pho�mal

expected. The F-test criterion mostly selected the same model as the AIC and related criteria.
The Run-test criterion often selected models of lower complexity. The results obtained with
the F-test criterion were found to correspond most closely to the reality. The interfering buffer
at pH 10 (silicates) was still detected and quantified in most cases. The ‘ limit of resolution’
mentioned in the previous paragraph, was further investigated. Again, it was found that 2
buffers with neighbouring pKa values are pooled together in the model building algorithm. It
was found that the practical limit of resolution for the considered examples is between 0.5 and
1 pH units. This can be related with two parameter settings of the model building algorithm
(see chapter 5): The initial range 3 of a blind pKa value is chosen 1.5, and the minimal range of
a blind pKa value is set to 0.2. The intervals of the pKa values are not allowed to overlap, thus
this automatically limits the number of buffers that can enter in the model around the same
pKa. However, detailed analysis of the pKa ranges that were automatically narrowed during
the model building process showed that only in a few cases, the minimal range was used by
the algorithm. This indicates that the model building algorithm did not request to enter new
blind buffers with a pKa separation of 0.5 or less compared to pKa values of previously incor-
porated buffers in the model. A comparison with the Gordon algorithm described in [101, 102]
was made, and the defined criterion for the limit of resolution (see equation (4.5) on page 92)
was compared with the obtained results. The authors found that a minimal pKa separation
of 0.1�0.2 is borderline for most applications, whereas 0.5 is a common value. However, it
should be noted that the Gordon algorithm only allows variation on the pKa value that is lastly
entered in the model, together with the neighbouring pKa value, whereas in the bombalgo-
rithm, variation may be allowed on any pKa. As mentioned and illustrated in section 4.4.2 on
page 89, such approach is only useful under well controlled laboratory conditions. It can be
concluded that the limit of resolution obtained here is somewhat lower than what is described

3The range is defined as the difference between the maximum and minimum boundary value set as an interval in
which the considered pKa value is allowed to vary.
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in [101, 102], but still in an acceptable range. It is also expected that our approach is more
robust, because of the higher flexibility on the pKa values, the built-in model ‘ tuning’ in case
an estimated pKa value touches one of its boundary values, and the use of model selection
criteria.

Based on the results presented and discussed here, some generalizations and a proposed
model building strategy are presented in the next section.

9.2.4 Model building strategy

In the previous section, no a priori knowledge was used for the buffer capacity model devel-
opment of a number of samples with well-known composition. The approach followed has
illustrated that it is possible to extract and interpret correctly at least 3 or 4 different buffer
systems in a concentration around 1 mmol l�1 and 1, 2 or 3 mostly smaller and interfering
buffers (IC, silicates, : : : ) from an experimental buffer capacity profile. One of the limitations
of the approach was found to be that two experimental buffers with a pKa separation less than
0.5 are pooled together in the model as one buffer.

The application of this modelling approach is suggested for samples in which an unbiased 4

characterization of different buffer systems is required. An example could be the evaluation of
the correctness of end-point titrations used in many analytical laboratory methods. Automatic
titrators search for an equivalence-point, and the corresponding equivalence titrant volume
is attributed to the expected buffer. However, such algorithms are not able to detect small
interferences like IC, silicates, : : : Therefore, automatic buffer capacity modelling can be used
to find out if there is indeed one buffer system present, or if other (interfering) buffers are
present as well.

For the majority of environmental samples (river waters, effluents, : : : ) a priori knowl-
edge is available about (some of) the buffer systems to be expected in an experimental buffer
capacity profile. The expected buffers that need to be quantified, are best incorporated as
known buffers in the zero model (in the first place to avoid ‘pooling’ of the expected buffers
to be quantified and the neighbouring buffers). The range in which the theoretical pKa of such
known buffer is allowed to vary should be considered carefully. If the pKa position is known
rather precisely, then a small range can be used (e.g. 0.2), so that neighbouring blind buffers
are allowed to approach the known buffer quite closely. If the exact pKa position is unknown
or if it is preferred that blind buffers do not approach the known buffer too closely (e.g. to
avoid that the buffer capacity of the known buffer is partially modelled as the neighbouring
blind buffer), it is suggested to choose a wider range for the known buffer (e.g. 1).

At the previous stages, no ‘best’ model selection criterion was found. The AIC, AICC,
FPE and SIC criteria mostly selected the same model. The Run-test criterion performed best
for the simplest type of buffer capacity curves, whereas the F-test was better for the more
complicated type of curves. The AIC and related criteria tend to select highly parametrized
(almost overparametrized) models. In another field, the same model selection criteria were
compared for the selection of oxygen uptake rate (OUR) models fitted to respirometric data
[315]. It was found that traditional information criteria (AIC, AICC, FPE and SIC) result in

4The term ‘unbiased’ is used here in a non-statistical sense to indicate that the user does not impose his knowledge
about the sample into the buffer capacity model.
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overfitting of the model compared to the ‘human expert advice’ . In particular, some small
oscillations in the data were accounted for to a significant extent by flexible, more complex
models. To the human expert, however, these phenomena seemed not essential [315]. The
latter statement also applies to the results obtained in this work. In the next sections, only
three model selection criteria will further be considered and evaluated, being AIC, Run-test
and F-test.

If the F-test criterion is selected, an useful comparison can be made with multiple linear
regression search procedures for the selection of independent variables in a multiple linear
regression model. There is, however, a fundamental difference in approach between the au-
tomatic buffer capacity model building procedure and multiple linear regression. In linear
regression problems, the independent or exploratory variables Xi are known in advance, and a
subset from the pool of a priori known Xi variables is included in the final or ‘best’ regression
model. With the buffer capacity model building algorithm, the buffers that are entered in the
model (cfr. the Xi) are not a priori known, but determined as function of the residual pattern of
the previous model. The different procedures for multiple linear regression [207] are shortly
reviewed and discussed in relation with stepwise buffer capacity modelling.

� All-possible-regressions: This procedure calls for considering all possible subsets of
the pool of potential Xi variables and identifies for detailed examination a few ‘good’
subsets according to some criterion. For example with 4 exploratory variables, there are
altogether 16 subset regression models that can be formed. First, there is the regression
model with no Xi variables, then with one Xi variable, with two Xi variables, etc. Due to
the fundamental difference mentioned above, such approach would not be feasible for
automatic buffer capacity modelling.

� Forward stepwise regression: Essentially, this search method develops a sequence of re-
gression models, at each step adding or deleting an Xi variable. It is probably the most
widely used method and it was developed to economize on computational efforts, as
compared with the all-possible-regressions procedure. The criterion for adding or delet-
ing an Xi variable is mostly an F-test. Further, two critical significance levels need to
be chosen: a minimum significance level to enter, and a maximum significance level to
remove. Note that the stepwise regression algorithm allows an Xi variable, brought in
the model at an earlier stage, to be dropped subsequently if it is no longer helpful in
conjunction with variables added at later stages. The current algorithm in bombdoes
not allow to remove buffers from the buffer capacity model once they are incorporated.
However, as described in section 9.2.3, it happens that the concentration of a buffer in-
troduced at an earlier stage becomes insignificant at later stages. Consequently, an useful
extension of the current algorithm would be to allow the removal of insignificant buffers
from the model. On the other hand, this would make the algorithm more complicated,
and certainly would require extra research to make it robust enough for field-use.

� Forward selection: This search method is a simplified version of forward stepwise re-
gression, omitting the test whether a variable once entered into the model should be
dropped. This corresponds best with the current algorithm in the program bomb.

� Backward elimination: The backward elimination search procedure is the opposite of
forward selection. It begins with the model containing all potential Xi variables and
identifies the one with the smallest F-test value. If the significance of this value exceeds
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a maximum significance level to remove, that Xi variable is dropped. Such procedure
is not foreseen in the current version of bomb, however, it should be possible in further
research to extend the algorithm with a backward elimination method. Because the
elimination method is simpler than the stepwise method mentioned above, it is expected
that the robustness of the new algorithm would be similar as the current algorithm. Some
statisticians argue for backward methods over forward methods because it is useful as a
first step to look at each Xi in the regression function adjusted for all the other Xi variables
in the pool [207]. For buffer capacity modelling purposes, a backward algorithm would
not suffer from a particular problem described in section 9.2.3, being the selection of
a too low degree model caused by local minima problems in still very ‘uncomplete’
models.

9.3 Surface water and effluent applications

9.3.1 Materials and methods

The titration curves that were used for the evaluation of the automatic buffer capacity modelling
are described earlier in chapter 6, more particularly in section 6.3.3 on page 151. Summarized,
421 titration curves were analyzed, originating from

� domestic wastewater effluents (26 different plants),
� an industrial effluent sampled during three months, and
� 118 Flemish surface waters.

The a priori knowledge that holds for all titration curves is that an ortho-phosphate buffer,
an ammonium buffer and an IC buffer are to be expected. As discussed in section 9.2.4,
it is considered important to use such a priori knowledge in the automatic buffer capacity
model development. Therefore, the zero model or starting model is chosen in correspondence
with the model specifications given in Table 6.3 on page 152, except for the following two
modifications:

� The ‘soap’ buffer is not included any more. The automatic modelling algorithm has
now the flexibility to include no, one, two or more buffer systems that account for the
previously used ‘ soap’ buffer between pH 4 and pH 6.

� The simulation interval (between pH 4 and pH 10 in the work presented in chapter 6)
is now extended to an interval between pH 3.5 and pH 10.5. This offers the possibility
to take into account more potentially present buffer systems. A further extension of the
simulation interval is not advised, for two reasons. First, outside the above mentioned
interval, the water buffer capacity is masking all other buffers, and thus it is not worth-
while to search for extra buffers with such low or high pKa values. Second, it was found
that the optimization algorithm easily ends up in local minima when the simulation inter-
val is set very wide, e.g. between pH 3 and pH 11. The most probable reason is that the
buffer capacities at pH 3 and pH 11 are approximately ten times higher than the buffer
capacities at pH 5�7. Therefore, the optimization algorithm will focus too much on the
goodness of fit at the lowest and highest pH values, and neglect the goodness of fit in the
central part of the buffer capacity profile, which is undoubtedly the most important part
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of the profile. For future versions of the program bomb, it is suggested to implement a
relative weighing option in the cost function to overcome this problem. More particu-
larly, it is proposed to use a high cost function weight in the low buffer capacity regions,
and vice versa.

Based on the above described zero model, the automatic model building algorithm may
stepwise enter blind buffers in the model, but not with pKa’s in the 2 pH ranges 6:5� 7:4
and 9�9:75, which are the lower and upper limits for the variable pKa values of respectively
ortho-phosphate and ammonium. Other important settings for the automatic model building
algorithm in bombare: α = 0:0001 as the critical significance level for the Run-test and F-test,
and 0.2 as the minimal range for a pKa of a blind buffer. In section 9.2.3, it was found that the
AIC, AICC, FPE and SIC model selection criteria performed very similar. Therefore, in this
section, only AIC, Run-test and F-test will be evaluated and compared with each other.

In the next section, the following points will be investigated:

� What are the differences in the final model results when considering the different model
selection criteria?

� Is the automatic model building algorithm able to detect and quantify other buffers than
ammonium and ortho-phosphate, and does this reveal extra information about the titrated
sample?

� Is the automatic model building advantageous for ammonium and ortho-phosphate as-
sessment, compared to the fixed model approach that was used in chapter 6?

9.3.2 Automatic model building results

Evaluation of three model selection criteria

Summarizing frequency tables for the surface waters (259 titration curves) and effluents (162
titration curves), with the counts of titration curves corresponding with the final model degree
for each of the three model selection criteria are given in Table 9.7.

For most surface waters and effluent samples, the three model selection gave satisfying
results. A strict comparison between the ‘ selected’ model degree and the ‘ real’ model degree is
not possible, because the ‘ real’ model degree is unknown, and differs from sample to sample.
Therefore, an ‘expert judgement’ was needed for each titrated sample. The AIC criterion
again tends to select higher degree models. Two typical problems were noticed. First, the
Run-test criterion is not reached in 33 % of the cases, resulting in a final model in which the
maximum allowable (6) blind buffers are entered in the model, whereas the other criteria have
selected a final model of lower degree. In most of these cases, the optimization algorithm
ends up in local minima and the variance-covariance calculation is not correctly finished due
to numerical problems. This is a serious limitation for field-use, and thus the Run-test criterion
as such is found not very robust. Second, in 20 % of the cases the F-test criterion concludes
that model 1.x (zero model plus 1 blind buffer) is not significantly different from model 0.0
(zero model), and therefore selects the zero model as the final model. Visual inspection of the
experimental versus the simulated buffer capacity curve shows in most of these cases that there
is still unmodelled experimental buffer capacity, and thus the F-test has selected a final model
with a too low degree. Moreover, when the further model building steps (e.g. model 2.x or
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Table 9.7: Frequency tables of surface water and effluent samples, classified towards the final
model degree and the applied model selection criterion

Final model 259 surface water samples 162 effluent samples

degree AIC Run-test F-test AIC Run-test F-test

0 14 0 41 2 3 44
1 28 4 93 15 8 53
2 49 10 71 36 15 34
3 116 61 38 64 38 22
4 47 55 15 40 22 9
5 5 40 1 5 25 0
6 0 89 0 0 51 0

3.x) are performed anyway, it can happen that the F-test criterion again becomes significant for
these higher degree models. The origin of this problem can be found in the way the automatic
model building algorithm proceeds, i.e. the algorithm can only introduce one blind buffer at a
time. If the model fit of the zero model is bad at several positions of the buffer capacity profile,
then the algorithm can increase the fit at only one position of the profile. Consequently, it is
possible that such a ‘ small’ increase in fit by adding one blind buffer is not significant due
to lack of fit of the other positions in the buffer capacity profile, despite that a blind buffer is
always introduced at the pKa position that suits best for a model extension. 5 This particular
problem automatically disappears for more complicated models with several blind buffers.
Note that the backward elimination suggestion formulated in section 9.2.4 would automatically
solve this problem.

From this analysis, it can be concluded that the three model selection criteria have a clearly
different behaviour. At this moment, none of the three criteria can be proposed as the ‘best’
criterion, which was also concluded in section 9.2.4. In the next paragraphs, a number of
case studies will be presented in detail for further evaluation and interpretation of the model
selection criteria and their corresponding final models.

Surface waters

Four selected Flemish surface waters samples, that were introduced and discussed earlier (see
Table 6.4 on page 161 and Figure 6.13 on page 160), are reconsidered for detailed analysis
of the automatic model building results. Summarized results are presented in Table 9.8, and
the corresponding graphs are shown in Figures 9.4, 9.5, 9.6 and 9.7. Note that the standard
deviations of the concentration estimates are calculated with the Nelder and Mead method (see
section 5.3.3 on page 120), and not from replicate samples.

The first case, shown in Figure 9.4, illustrates the two above mentioned problems with

5How this pKa position for model extension is determined is illustrated in Figure 5.16 on page 128.
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Figure 9.4: Experimental and simulated buffer capacity curves of the surface water Bassin
Smedenstraat, Roeselare. The stepwise model building process starts with plot (a) (the zero
model) and ends with plot (d). The final model for each model selection criterion is indi-
cated on the graph. The arrows indicate the automatically proposed pKa positions for model
extension
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Figure 9.5: Experimental and simulated buffer capacity curves of the surface water Vuile beek,
Ieper. The stepwise model building process starts with plot (a) (the zero model) and ends with
plot (e). The final model for each model selection criterion is indicated on the graph. The
arrows indicate the automatically proposed pKa positions for model extension
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Figure 9.6: Experimental and simulated buffer capacity curves of the surface water Scherpen-
bergbeek, Poperinge. The stepwise model building process starts with plot (a) (the zero model)
and ends with plot (d). The final model for each model selection criterion is indicated on the
graph. The arrows indicate the automatically proposed pKa positions for model extension
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Figure 9.7: Experimental and simulated buffer capacity curves of the surface water Zarrenbeek,
Staden. The stepwise model building process starts with plot (a) (the zero model) and ends
with plot (f). The final model for each model selection criterion is indicated on the graph. The
arrows indicate the automatically proposed pKa positions for model extension
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Table 9.8: Ammonium and ortho-phosphate model building results for 4 selected Flemish
surface waters, compared with results previously described in chapter 6. The concentrations
are expressed as mgN l�1 or mgP l�1 and the table entries are estimate � standard deviation

Automatic model building results Results of chapter 6

Buffer Figure AIC Run-test F-test laboratorya AQMON Figure

NH+4 9.4 17:8�0:61 � 19:7�0:48 10:9�1:63 19:3�0:12 6.13(a)
NH+4 9.5 72:7�1:54 72:7�1:54 77:3�0:77 62:0�4:81 76:7�0:68 6.13(b)
NH+4 9.6 1:08�1:20 1:15�0:07 1:32�0:08 0:33�0:06 1:22�0:04 6.13(e)
NH+4 9.7 6:29�0:44 6:34�0:37 9:82�0:79 2:80�0:28 8:98�0:40 6.13(f)

o-PO4 9.4 4:03�3:67 � 2:68�0:91 2:60�0:57 2:36�0:30 6.13(a)
o-PO4 9.5 8:65�2:89 8:65�2:89 8:17�2:10 8:45�0:35 7:73�2:13 6.13(b)
o-PO4 9.6 0:70�0:35 0:48�0:18 0:79�0:13 0:19�0:04 0:62�0:08 6.13(e)
o-PO4 9.7 4:84�1:06 4:19�0:93 6:52�0:96 3:25�0:64 6:17�0:60 6.13(f)

a Mean and standard deviation of the laboratory A and B results in Table 6.4 on page 161.

respectively the F-test and the Run-test. The F-test selects the zero-model as the final model,
although there is a clear extra buffer present at pH 4.5 (estimated in further models as a sig-
nificant concentration of 0.05 mmol l�1). The second problem is the Run-test criterion, which
was never fulfilled in this case. For models 1.x, 2.x and 3.x the test statistic for the Run-test is
still very significant (u= �4:5 or p= 0:000007), and becomes even more significant for the
higher degree models (theoretically this is not possible, however as described earlier, optimiza-
tion problems are the origin of this behaviour). The AIC criterion selects model 2.0, which is
probably the best choice. A comparison of the titrimetric ammonium and ortho-phosphate es-
timations with the laboratory analysis (see Table 9.8) does not clearly indicate which model
selection criterion gave the best estimations of N and P. The incorporation of an extra buffer
at pH 10.5 has a positive influence on the estimated concentration of ammonium. However,
the ortho-phosphate concentration estimated with model 2.0 is less reliable (very high stan-
dard deviation) and less accurate than the estimate with model 0.0. Even in the model with
the highest degree, i.e. model 3.2 in Figure 9.4(d), still a visible lack of fit between pH 9 and
pH 10 is noticed. This is caused by the ammonium buffer in the model, which is not perfectly
fitted, together with the restriction that the model building algorithm may not introduce blind
buffers at the pKa positions reserved for known buffers, like ammonium.

In the second example, illustrated in Figure 9.5, the F-test selects model 1.1. This is an
acceptable result, because the model fit for model 2.2 is only slightly better than model 1.1.
The AIC and Run-test criterion select the model with 4 blind buffers as the final model. The
two blind buffers at pH 8.9 and 10.2 make that the ammonium estimation is around 5 mgN l �1

lower than in e.g. model 1.1. In this particular case, this has as a result that the ammonium
estimation is closer to the laboratory value for model 4.1 compared to the result for model
1.1. The estimated ortho-phosphate concentrations differ only slightly when comparing the
consecutive fitted models.
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The third selected sample, shown in Figure 9.6, is an example of a clean surface water, with
laboratory concentrations of N and P far below 1 mg l�1. The F-test and AIC criterion select
model 2.0 and model 3.1 respectively, which can be considered realistic models. However, the
Run-test criterion selects model 1.0, which, from a practical point of view, is a model of too low
degree. Earlier interpretations (see e.g. Figure 6.13(e)) have illustrated that at least two buffers
are present in the pH range lower than 6. With the AIC and F-test criteria, two buffers in that
range are detected, with pKa’s respectively equal to 3.5 and 5.3. The behaviour of the Run-test
criterion in this example is rather exceptional, because the Run-test more often selects models
of too high degree (or the criterion is never reached). The final estimated concentrations of
N and P are slightly influenced by the automatically built models compared to the previously
obtained AQMON results.

The last selected sample, illustrated in Figure 9.7, was earlier described as the most extreme
example for which the previously obtained model fit was unacceptable (see Figure 6.13(f)).
Therefore, the earlier estimated concentrations of N and P could not be trusted. The automati-
cally built models need at least 4 blind buffers for a reasonable model fit. This time, the F-test
criterion fails because it selects a model of too low degree. The AIC and Run-test criteria se-
lect respectively model 4.1 and model 5.1, which are both considered realistic models. The N
and P concentrations estimated with the latter two mentioned models are more closely to the
laboratory data compared to the previously obtained AQMON results. This clearly illustrates
the advantage of the automatic model building in this particular case.

At the current stage, for samples of the type ‘ surface water’ , it might be concluded that the
AIC criterion is superior to the Run-test and F-test criterion. Although the AIC criterion some-
times tends to select high degree models, it does not suffer from the two major disadvantages
of respectively the Run-test (i.e. that the criterion sometimes never fulfils) and the F-test (i.e.
the selection of a too low degree model).

The ammonium and ortho-phosphate estimations resulting from automatically built buffer
capacity models based on the AIC selection criterion were compared with the laboratory de-
termined concentrations. This was performed for the 118 Flemish surface waters, similarly to
what is illustrated in Figure 6.11 on page 158. The only but important difference is that the
results of chapter 6 were obtained with a fixed buffer capacity model, whereas in this chapter,
the results are derived from automatically built models, custom-made for each individual sam-
ple. Despite the significantly better results for a number of individual samples (see also some
of the selected samples above) with the automatic modelling approach, the overall comparison
between laboratory and titrimetric results via scatterplots was only slightly different from the
results described in chapter 6 (results not shown). In about 5 % of the samples, it was found
that the automatically built final model did not fit sufficiently to the experimental data, due to
the selection of a model with a too low degree. This problem was already described in section
9.2.3 and originates from a local minimum problem of the parameter estimation algorithm.
Fortunately, the problem is well-defined, and a suggestion for an alternative algorithm (back-
ward elimination) that doesn’ t suffer from this shortcoming was formulated in section 9.2.4.
Also the Run-test is a reasonable alternative for these problematic cases.
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Table 9.9: Ammonium and ortho-phosphate model building results for 3 selected effluent sam-
ples, compared with prior obtained results in chapter 6. The concentrations are expressed as
mgN l�1 or mgP l�1 and the table entries are estimate � standard deviation

Automatic model building results Previously obtained results

Buffer Figure AIC laboratory a AQMON

NH+
4 9.8(a1)�(a2) 10:8�0:42 5:89�0:02 14:9�0:19

NH+
4 9.8(b1)�(b2) 17:0�0:82 16:4�3:68 23:1�0:60

NH+
4 9.8(c1)�(c2) 4:87�0:94 2.03 b 8:03�0:33

o-PO4 9.8(a1)�(a2) 2:89�2:38 1:79�0:02 2:36�0:30
o-PO4 9.8(b1)�(b2) 5:95�7:07 5:75�2:62 9:43�1:41
o-PO4 9.8(c1)�(c2) 6:43�4:79 6:55�1:06 14:7�0:87
a Mean and standard deviation of the laboratory A and B results.
b There is only 1 laboratory result.

Effluents

The automatic buffer capacity model building of effluent samples gives results similar to the
surface waters. However, some new interesting phenomena were observed for the industrial
effluent samples. One domestic wastewater effluent (Hofstade, sampled at October 19, 1993)
and two industrial effluent samples (sampled respectively at April 20 and 27, 1994) are selected
for more detailed analysis and discussion. The summarized results of the selected samples are
given in Table 9.9, and the corresponding graphs are shown in Figure 9.8.

The first example, illustrated in Figure 9.8(a) is a typical case of buffers interfering with
the ammonium estimation. Without automatic model building, the estimated ammonium con-
centration was about three times higher than the measured laboratory concentration. With
automatic model building, two interfering buffers at pH 9 and 10.5 of respectively 0.1 and 0.6
mmol l�1 are recognized. As a consequence, the ammonium estimation becomes lower than
before, but the estimation is still almost two times higher than the laboratory concentration.
This indicates that other interferences could be present at the same pKa as ammonium. No
interfering buffers around the ortho-phosphate pKa2 are found, and, thus the estimated ortho-
phosphate concentration is not significantly different compared to the previously obtained re-
sults. The standard deviations on the estimates of ortho-phosphate are rather high, indicating
a high uncertainty of the estimated values. The presence of the IC buffer and blind buffers in
the neighbourhood of the ortho-phosphate buffer is pointed to as a reason for this.

The second and third example represent industrial effluent samples that were both taken in
the third month of the measurement period. As mentioned in section 6.3.3 on page 151, the
wastewater treatment plant was in a start-up phase, with very high ammonium concentrations
(> 200 mgN l�1) in the first two months and lower concentrations (< 20 mgN l�1) in the last
month of the measurement period. For the samples taken in the first two months, the fixed
model approach (chapter 6) resulted already in an acceptable agreement between the exper-
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Figure 9.8: Experimental and simulated buffer capacity curves of a domestic wastewater ef-
fluent (a) and an industrial effluent (b) and (c). Two plots per sample show respectively the
zero model (1) and the AIC selected final model (2). The arrows indicate the automatically
proposed pKa positions for model extension
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imental and simulated data, and the automatic modelling approach produced similar results
(results not shown). However, in the third month, extra buffer systems on top of the expected
buffers appeared in the buffer capacity profiles, resulting in the bad fixed model fit reported in
chapter 6. It is in the latter period that the automatically built models are found superior com-
pared to the previously used fixed model with only water, ammonium, ortho-phosphate, IC and
a ‘ soap’ buffer. The extra added blind buffers were not always found at the same pKa positions
for the different samples, as illustrated in Figure 9.8(b1) and (c1). Consequently, it was found
that the ortho-phosphate and ammonium concentrations estimated with the automatically built
models are much closer to the laboratory data compared to the previously obtained results (see
Table 9.9).

9.3.3 Conclusions

It has been illustrated that the application of automatically built buffer capacity models mostly
results in similar or better estimations of ammonium and ortho-phosphate compared to fixed
buffer capacity models. For a number of selected samples (e.g. the industrial effluent samples
in the last weeks of the measurement period), the estimations with automatically built models
are highly superior to the fixed model approach.

In general, for all samples, the agreement or correlation between the estimated ammonium
and ortho-phosphate concentrations and the laboratory concentrations was found similar for the
fixed model approach compared to the automatic modelling approach. This can be explained
by the following reasons. First, buffers with pKa values that differ less than 0.5 from the pKa

value of ammonium or the pKa2 value of ortho-phosphate are modelled as respectively ammo-
nium or ortho-phosphate. Both the fixed and the automatic modelling approach are influenced
by such interfering buffer systems. Second, the uncertainty on the laboratory measurements
is reflected by the residual variance that was noticed between the two laboratories (see e.g.
differences between laboratories A and B on Figure 6.11 on page 158). Consequently, it is not
expected that for any buffer capacity modelling approach, the obtained results would be much
better than what was previously illustrated.

The benefits of the automatic buffer capacity model building compared to the fixed buffer
capacity modelling can be summarized as follows:

� With the automatic modelling approach, it is possible to use a wider simulation pH range
(e.g. between pH 3 and pH 11), whereas with the fixed model approach, one attempts
to choose an as small as possible interval, to avoid problems of interfering buffers out-
side the strict pH range of interest. A larger simulation interval allows to detect more
interfering buffers, without a negative influence on the ammonium and ortho-phosphate
estimations.

� An automatic modelling approach allows to adapt the model quickly and efficiently to
changing sample compositions. In the case of the industrial effluent, it has been shown
that the most adequate buffer capacity model at the end of the measurement period was
different from the best model at the beginning of the measurement period.

� If detailed a priori knowledge about the sample composition is available, one can define
this buffer information in a ‘ rich’ zero model. If the automatic model building environ-
ment does select this zero model as the final model, it ensures that the zero model is
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still valid as an adequate model. If the final model is different from the zero model, it
points to changing buffer compositions in the sample. Further, the concentrations of am-
monium and ortho-phosphate estimated with the zero and final model can be compared.
If there are notable differences, it points to possible interferences in the neighbourhood
of the buffers of interest. Consequently, the estimated ammonium and ortho-phosphate
concentrations should be considered uncertain.

� Automatic buffer capacity modelling is useful for alarm generating purposes in case
there are extra buffers detected and quantified on top of the expected buffers defined
in the zero model. The model building algorithm will add blind buffers in order of
importance, and therefore the interpretation of the sequentially added buffers ‘blind1’ ,
‘blind2’ , : : : is automatically performed in order of importance. The corresponding stan-
dard deviations on the estimates can be used to statistically test whether the reported
concentrations are significantly different from 0.

9.4 Algal wastewater treatment applications

9.4.1 Materials and methods

The titration curves described in chapter 7 are reconsidered for automatic buffer capacity mod-
elling. The up titration profiles (from pH 2.5 to pH 11) of the algal reactor influent (sample
code EVC), the content of the algal bioreactor (sample code AP) and the effluent of the algal
pilot plant (EAP) were used to validate and extend the findings of the previous section. The
details about the sampling, the data collection and the applied mathematical models are given
in section 7.2 on page 168.

The applied methodology is very similar to the methodology described in section 9.3.1.
The zero model or starting model is chosen in correspondence with the model specifications
given in Table 7.2 on page 171, except for the following modifications:

� The ‘soap’ buffer and the ‘blank1’ buffer are not included in the zero model.
� The simulation interval (between pH 4 and pH 10 in chapter 7) is now extended to an

interval between pH 3.5 and pH 10.5.

Based on the above description, the automatic model building algorithm may stepwise enter
blind buffers in the model, but not with pKa’s in the pH ranges 7� 7:8 and 9� 9:5, which
are the lower and upper limits for the variable pKa values of respectively ortho-phosphate and
ammonium. All other settings for the automatic model building algorithm in bombare the
same as used in section 9.3.

There is an important particularity about the previously introduced fixed buffer capacity
model (specifications in Table 7.2 on page 171). This model contains a ‘blank1’ buffer with
pKa between 9.4 and 11.5. In the first stage of the model development, this buffer was not
included in the model, and the ammonium estimations were systematically too high (the es-
timated NH+

4 concentration was 2 mgN l�1 higher than the laboratory result). After careful
manual interpretation of the goodness of fit on different samples, it was recognized that there
was probably an unknown buffer present with a higher pKa than the pKa of ammonium. In
a later stage, the ‘blank1’ buffer was added in the model, and the minimum and maximum
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Table 9.10: Frequency table of 37 algal pilot plant samples, classified towards the final model
degree and the applied model selection criterion

Final model degree AIC Run-test F-test

0 13 0 22
1 12 13 8
2 7 18 7
3 5 2 0
4 0 2 0
5 0 1 0
6 0 1 0

allowable value for its pKa were chosen on the basis of the obtained results with a number
of samples. Finally, the extended model was tested with all available titration curves, and the
estimated ammonium concentrations were found to correspond significantly better with the
laboratory determined concentrations. Later, the interfering buffer around pH 10 was sug-
gested to originate from silicates, however, this was not analytically validated. Summarized,
it can be concluded that quite some ‘expert’ time and knowledge were necessary to define
an useful fixed buffer capacity model for the algal pilot plant application. Consequently, an
interesting point that will be investigated in the next section is whether the automatic buffer
capacity modelling algorithm will be able to automatically detect and quantify the interfering
buffer around pH 10, without influencing the correctness of the ammonium estimation.

9.4.2 Automatic model building results

The three model selection criteria, being AIC, Run-test and F-test, were evaluated on all avail-
able titration curves. Summarizing frequency tables with the counts of titration curves corre-
sponding with final model degree for each of the three model selection criteria are given in
Table 9.10. The interpretation of these results is similar as in section 9.3.2. In many cases,
the F-test criterion selects a too low degree model, whereas in the majority of the samples the
Run-test criterion yields the most realistic final model.

The simulation results previously obtained with the fixed buffer capacity model, and the
automatic model building results of one selected AP sample (August 4, 1997) are illustrated
in Figure 9.9. The summarized results for the ortho-phosphate and ammonium estimations
with the different models are presented in Table 9.11. The automatic model building process
proceeds as expected, i.e. it detects and quantifies a number of buffers which were not included
in the zero model. The first blind buffer is located at pH 5.1 and quantified as 0.1 mmol l�1.
The second blind buffer is located at pH 10.5 (which is the upper limit for pKa values of blind
buffers, thus the real pKa of this buffer could be higher) and is quantified as 0.3 mmol l�1. The
third blind buffer at pH 7.8 has a concentration of 0.09 mmol l�1, which is not significantly
different from 0. Thus, the model with 3 blind buffers can be considered ‘overparametrized’
for this particular case.
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Figure 9.9: Experimental and simulated buffer capacity curves of an AP sample. Plot (a)
shows the previously obtained results (chapter 7) and plots (b)�(f) show the results obtained
with the stepwise model building process. The arrows indicate the automatically proposed pKa

positions for model extension
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Table 9.11: Ammonium and ortho-phosphate model building results for the selected AP sam-
ple, compared with results previously obtained in chapter 7. The concentrations are expressed
as mgN l�1 or mgP l�1 and the table entries are estimate � standard deviation

Automatic model building results Previously obtained results

Buffer AIC Run-test F-test laboratory AQMON

NH+
4 5:07�0:45 4:80�0:47 6:53�0:43 2.8 3:74�0:66

o-PO4 0:79�1:87 3:38�0:22 2:57�0:83 3.3 3:45�0:66

When comparing the final model degree for the different model selection criteria, one can
conclude that the F-test selects a too low model degree (see also the previously described
problem typically related to the F-test), whereas the AIC criterion selects a too high model
degree. In this example, the Run-test practically selects the most appropriate model. Figure
9.9(f) illustrates a parameter estimation problem when 4 blind buffers are entered in the model.
The fitted model has a higher SSE compared to the model with only 3 blind buffers. This is
theoretically not possible because the simpler model is a subset of the more complex model.
In the software bomb, the user is warned for such problem.

The effect of the selected model on the ammonium and ortho-phosphate estimation is il-
lustrated in Table 9.11. The ammonium estimates of the automatically built models are all
higher than the laboratory and previously obtained results. For model 0.0 (final model, F-test),
the highly overestimated ammonium concentration can easily be explained because this model
does not include the interfering buffer around pH 10. For both other final models, the estimated
ammonium is also higher than the previously obtained results, however, this could be due to
the wider simulation interval (the upper limit for simulation is pH 10.5 and not pH 10 as be-
fore). The AIC selected final model completely fails to properly estimate the ortho-phosphate
concentration, because the neighbouring and insignificant blind3 buffer at pH 7.8 is interfering
with ortho-phosphate. A wider interval for the variable pKa2 of ortho-phosphate, in which no
blind buffers are allowed to enter would partially solve this problem. The Run-test selected
model and the original fixed model produce the best estimates of ortho-phosphate.

9.4.3 Conclusions

Generally, the ammonium and ortho-phosphate concentrations estimated with the automati-
cally built buffer capacity models were not very different from the results previously obtained
with the fixed buffer capacity model. This points to the correctness and usefulness of the fixed
buffer capacity model. On top of the a priori expected buffers IC, ortho-phosphate and ammo-
nium, the automatic modelling algorithm introduces two significant extra buffers around pH 5
and pH 10.5. This corresponds with the two blank buffers that were already foreseen in the
fixed buffer capacity model. The Run-test criterion selected in most cases the model with these
2 blind buffers, which agreed best with the practical observations.

The most important benefit of the automatic modelling approach is that the algorithm de-
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tects and quantifies a priori unexpected buffers, without direct negative influence on the accu-
racy of the estimated concentrations of the a priori known buffers. More particularly, the spec-
ifications of the fixed buffer capacity model (chapter 7) are the result of manual interpretations
of experimental buffer capacity profiles, followed by trial and error simulation experiments
with various ranges for the simulation interval and the pKa values that are allowed to vary.
The optimal settings for the fixed buffer capacity model were obtained by comparison of the
estimated concentrations of ammonium and ortho-phosphate with their respective laboratory
concentrations. This is a manual and labour intensive process, that can only be performed by
an expert user. Therefore, the automatic modelling approach can take over some of the efforts
needed in the fixed model development phase. Consequently, the automatic modelling can
adapt quickly to new situations or new types of samples. The task of the expert user in the
model development phase is then limited to the interpretation of the final models and eventu-
ally modify a number of settings like the simulation interval, the buffers to be included in the
zero model and the selection of an appropriate model selection criterion.

9.5 Destructed manure applications

9.5.1 Materials and methods

The collection and modelling of buffer capacity curves originating from destructed and diluted
manure samples is described in chapter 8. In the framework of automatic buffer capacity model
building the model development results described in section 8.4.7 on page 210 are important
to consider. A number of specific particularities about the modelling of destructed manure
samples can be summarized as follows:

� The a priori knowledge about the destructed manure samples is much higher compared
to e.g. effluent or surface water samples. The main buffers that are expected in the
experimental buffer capacity profiles are ortho-phosphate and ammonium. Inorganic
carbon and silicates are two known interfering buffers, and a number of complexation
reactions with e.g. Fe3+ are responsible for extra buffer capacities around pH 5 and pH
8. This a priori knowledge was intensively used in the development phase of an adequate
fixed buffer capacity model in chapter 8.

� The fixed buffer capacity models that incorporated the extra buffers around pH 5 and/or
pH 8 resulted in a better model fit compared to the models without these extra buffers.
However, the estimated N and P were best in the simpler type of buffer capacity models
(see e.g. Table 8.17 on page 211 and Figure 8.9 on page 212). This illustrates that
the goodness of fit for this application is not the best criterion for accurately estimated
concentrations of ammonium and ortho-phosphate.

With the information presented above, it is doubtful whether automatically built models
will be the preferred models for practical use in the framework of accurate N and P estimations.
Therefore, the benefit of automatic model building has to be seen in the context of finding
‘extra’ knowledge and information on top of the estimated N and P concentrations. Therefore,
the following topics will be investigated in more detail in the next section:
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Table 9.12: Frequency table of 253 destructed manure samples, classified towards the final
model degree and the applied model selection criterion

Final model degree AIC Run-test F-test

0 2 29 3
1 59 162 113
2 42 53 91
3 52 8 38
4 98 1 8

� Can the automatic model development detect and quantify at least the two known inter-
fering buffers at pH 5 and 8?

� Are the automatically built models useful to obtain confidence information on the esti-
mates of N and P (e.g. interfering buffers close to ammonium or ortho-phosphate can
induce a higher standard deviation on the N and P estimates)?

� Can the automatically built final model be used for the detection of problems related to
the experimental titration conditions (e.g. the appearance of unexpected buffer systems)?

The applied model building methodology is similar as described in the previous sections.
The zero model is based on the model specifications of model 2 in Table 8.16 on page 211,
except for the following modifications:

� The fixed pKa2 of ortho-phosphate (which was 6.7) is now allowed to vary between 6.3
and 7.1. This ensures that no blind buffers are entering in that pH range.

� The simulation interval (between pH 5.6 and pH 10.5 in chapter 8) is now between pH
4 and pH 10.5.

The settings of the automatic model building algorithm are the same as used in section 9.3,
except that the maximum number of blind buffers that may stepwise enter in the model is 4
instead of 6. The experimental data (53 manure samples, 253 titration curves) used for the
evaluation of three model selection criteria is described in section 8.5 on page 216.

9.5.2 Automatic model building results

The model selection criteria AIC, Run-test and F-test were tested with the 253 titration curves.
Summarizing frequency tables with the counts of titration curves corresponding with the final
model degree for each of the three model selection criteria are given in Table 9.12. These
results are different compared to the interpretations described in previous sections. The F-test
criterion does not wrongly select the zero model as final model any more, and the Run-test no
longer suffers from the problem that this criterion never becomes fulfilled. However, especially
the Run-test and also the F-test tend to select a too low final model degree. This problem and
its possible solution are discussed later in this section. In the cases where 4 blind buffers are



272 Automatic pH buffer capacity model building

0

0.4

0.8

1.2

1.6

2

3 4 5 6 7 8 9 10 11

B
uf

fe
r 

ca
pa

ci
ty

 (
m

eq
 l-1

 p
H

-1
)

pH

(a)

model 0.0
SSE=0.06687

measured
simulated

0

0.4

0.8

1.2

1.6

2

3 4 5 6 7 8 9 10 11

B
uf

fe
r 

ca
pa

ci
ty

 (
m

eq
 l-1

 p
H

-1
)

pH

(b)

model 1.0
SSE=0.01480

final model, Run-test

measured
simulated

0

0.4

0.8

1.2

1.6

2

3 4 5 6 7 8 9 10 11

B
uf

fe
r 

ca
pa

ci
ty

 (
m

eq
 l-1

 p
H

-1
)

pH

(c)

model 2.1
SSE=0.01011

final model, AIC & F-test

measured
simulated

0

0.4

0.8

1.2

1.6

2

3 4 5 6 7 8 9 10 11

B
uf

fe
r 

ca
pa

ci
ty

 (
m

eq
 l-1

 p
H

-1
)

pH

(d)

model 3.0
SSE=0.00974

measured
simulated

Figure 9.10: Experimental and simulated buffer capacity curves of one selected manure sam-
ple. The stepwise model building process starts with plot (a) (the zero model) and ends with
plot (d). The final model for each model selection criterion is indicated on the graph. The
arrows indicate the automatically proposed pKa positions for model extension

entered in the final model (mostly the case with AIC), their pKa values are around 4, 5, 8 and
10.

The selected sample that illustrated the buffer capacity model development in section 8.4.7
on page 210 is reconsidered for the illustration of the automatic model building process. The
stepwise model building results are illustrated in Figure 9.10 and the corresponding estimated
concentrations of ammonium and ortho-phosphate are presented in Table 9.13. First, it can
be remarked that the zero model gives the best estimates, especially of ortho-phosphate. This
is in correspondence with the results previously obtained in chapter 8. Second, the two known
interfering buffers around pH 5 and 8 are correctly introduced in the buffer capacity model in
order of importance (model 1.0 and model 2.1). Third, the fit of the model with 1 blind buffer
is already acceptable, such that the Run-test criterion is fulfilled (u= �2:96 or p= 0:003) at
the model 1.0 stage. The AIC and F-test criterion both select the model with 2 blind buffers,
which is the most realistic choice, because the buffer at pH 8 is to be expected from a theo-
retical point of view, and this buffer has an estimated concentration which is still significantly
different from zero (α = 0:05). For this type of destructed manure samples, a better choice
for the critical significance level in the Run-test and the F-test would be α = 0:001 instead
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Table 9.13: Ammonium and ortho-phosphate model building results for the selected manure
sample. The concentrations are expressed as mgN l�1 or mgP l�1 and the table entries are
estimate � standard deviation

Buffer Model 0.0 Model 1.0 Model 2.1 Model 3.0 laboratory

NH+
4 38:3�0:41 38:4�1:52 38:4�0:89 30:9�? a 36.5

o-PO4 9:62�0:52 8:11�1:47 6:83�1:33 7:44�1:34 9.82
a Standard deviation cannot be calculated (NaN detected in variance-covariance matrix).

of the previously used α = 0:0001. This modification would allow that both the Run-test and
the F-test select model 2.1. Fourth, the model 3.0 is considered as an ‘overfitted’ model. The
estimated ammonium concentration is much lower and worse than with the previous models,
because of the blind3 buffer introduced at pH 9.8. Fifth, the standard deviations on the param-
eter estimates of ammonium and ortho-phosphate with model 2.1 (the most realistic model) are
twice the respective standard deviations with model 0.0 (the most adequate model for accurate
estimation of N and P). However, it is considered ‘ safer’ and more realistically to use the stan-
dard deviations on the estimates with model 2.1 instead of the standard deviations with model
0.0. The latter statement is justified by the fact that the most adequate fixed model neglects the
influence of the two interfering buffers around pH 5 and pH 8 because these buffers are a priori
excluded from the model (the only reason for this was to obtain better estimates of N and P),
whereas in chapter 8 it was found that these two interfering buffers are indeed present in reality.
The automatically built models incorporate these two ‘ real’ buffers and are thus considered to
represent the real number of buffers more closely compared to the fixed model.

Another aspect that was investigated is the possibility of the automatic model development
to detect unexpected buffer capacity changes caused by e.g. the experimental titration condi-
tions. A randomly selected example for this purpose is a manure sample for which a number
of replicate titration curves were recorded under various conditions. 6 Three replicates of 1
sample, illustrated in Figure 9.11(a), were prepared and titrated under various conditions:
Replicate 1 : Correct experimental conditions
Replicate 2 : The NaOH 0.1 N titrant solution was contaminated with IC and silicates
Replicate 3 : A stirring problem prior to titration introduced extra IC in the buffer capacity

profile, originating from the NaOH 1.5 N stock solution
Each of these replicate buffer capacity profiles was used for automatic model building with a
slightly modified zero model, because the IC buffer was no longer incorporated. This allowed
to investigate whether the automatic model building algorithm is able to separate the IC buffer
from the ortho-phosphate buffer as two individual buffers. The results of the final model (with
the AIC criterion) for each of the replicates are illustrated in respectively Figure 9.11(b)�(d).
Replicate 1 is modelled with 2 extra blind buffers around pH 5 and pH 8, which was earlier

6Titrant related problems (see section 8.5 on page 216) caused a bad reproducibility of the experimental buffer
capacity profiles. Consequently, a number of titration curves were omitted from the validation experiment described
in chapter 8.
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Figure 9.11: Plot (a): Experimental buffer capacity profiles of three replicates of one destructed
and diluted manure sample, under various conditions. Plots (b)�(d): The experimental and
final model simulated buffer capacity curves of each replicate of Plot (a) respectively. The
arrows indicate the positions of the incorporated blind buffers
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described as the most appropriate model for this type of samples. However, the same model
building algorithm applied to replicate 2 and 3 results in final models of a higher degree (re-
spectively 3 and 4 blind buffers were added). The extra modelled buffers have an estimated
concentration significantly different from 0, except the buffer at pH 9.1 added in replicate 3.
This example illustrates that extra information about the sample can potentially be obtained by
applying the automatic buffer capacity model building algorithm to the experimental data. If
the selected final model contains extra blind buffers between pH 9 and pH 10.5, this is a first
indication that additional interfering buffers could be present. The extra IC buffer capacity
around pH 6 in replicate 2 and 3 (first dissociation step of H2CO�

3) is not recognized as an
extra buffer at that pH, but spread out over the ortho-phosphate buffer and the other neighbour-
ing blind buffer. The latter finding points to an important aspect related to the interfering IC
around pH 6, i.e. the impossibility of automatic separation of the interfering IC buffer from the
neighbouring ortho-phosphate buffer (the pKa separation between both buffers is only between
0.1 and 1).

9.5.3 Conclusions

Due to the ample a priori knowledge that is available about the destructed manure samples,
and the earlier finding (chapter 8) that the best fitting model does not yield the best N and P
estimates, the automatic model building benefits have to originate from the extra information
that can be generated.

The automatic model building algorithm easily detects and quantifies the two most impor-
tant interferences originating from complexation reactions around pH 5 and pH 8. Despite the
fact that the zero model often results in the most accurate estimates of ammonium and ortho-
phosphate (see results in chapter 8), it is suggested that for confidence calculations on these
estimates, it is safer to use the standard deviations from the automatically built final model. In
most cases such final model includes one or more blind buffers compared to the zero model.

It has also been demonstrated with a randomly selected example that a potential benefit
of the automatic modelling approach is the detection of problems related to the experimental
titration conditions. If there is e.g. a titrant contamination with IC or silicates, this is reflected
in the number of blind buffers incorporated in the final model. This is an interesting property
for robustness and verification of the produced results in later field-use.

It was experienced that no simple model selection criterion can be considered as the ‘best’
criterion. The AIC criterion was experienced most useful. However, a well-chosen modifica-
tion of the critical significance level α for the Run-test and F-test would make the performance
of these tests more realistic. The α was earlier equal to 0.0001, but for this particular manure
application it is proposed that 0.001 is a better choice.

9.6 Summarizing conclusions

The automatic model building algorithm that is implemented in the software bombhas been
applied to many titration curves of diverse samples, with the objective to develop tailor-made
buffer capacity models. A number of shortcomings that were detected and described in the first
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development stage of this algorithm [299] are now completely solved. At present, the model
building algorithm has been evaluated as robust and fail-safe.

Six different model selection criteria were evaluated for the purpose of selecting the most
appropriate model from the pool of automatically built models for each individual sample. The
AIC, AICC, FPE and SIC criteria were found to perform very similar. The Run-test and F-test
criteria often have a different behaviour compared to each other and compared to the AIC
and related criteria. There is no ‘best’ criterion for general purposes, because all criteria have
their advantages and disadvantages. On the one hand, the AIC and related criteria sometimes
select overparametrized models, but on the other hand, they have the advantage of generally
satisfying performance, and being independent of a user-defined critical significance level α.
The Run-test sometimes suffers from the problem that its solution criterion is not fulfilled for
any of all models built, whereas the F-test sometimes selects a model with a too low model
degree. The necessity of a user-defined α for the Run-test and the F-test has advantages and
disadvantages. The advantage is that the user has an extra tuning facility, by choosing a critical
significance level that best suits the practical purposes. The disadvantage is that the best choice
for α is case dependent and should be tuned in function of the application. An interesting
perspective for further research could be to use a combination of the final model results with
the different model selection criteria. The final model selected by each of the criteria could be
introduced in an ‘expert system’ that can make a choice based on the pro’s and contra’s known
for each criterion.

The benefits of automatic model building compared to a fixed model approach are different
for various applications. In situations where the a priori knowledge about the sample is already
high (e.g. the algal and manure samples), the main benefit of the automatic model building
is that extra information about the sample can be obtained. This includes the detection of
unexpected or interfering buffers (e.g. silicates) and the detection of experimental problems in
the titration system. The estimates of ammonium and ortho-phosphate with a fixed modelling
approach are often better compared to the automatic modelling results. However, the calculated
standard deviations on the concentration estimates with the automatically built models are
suggested to be superior compared to the standard deviations obtained with a fixed model. In
the other situations, where the a priori knowledge is not high (e.g. many river and effluent
samples), some spectacular increases in the accuracy of the estimated ammonium and ortho-
phosphate concentrations occurred with the automatically built models compared to a fixed
model. For some applications (e.g. the industrial effluent), a fixed model approach is not useful
because the buffer composition of the effluent stream can continuously change. The automatic
modelling approach is also advantageous for alarm generating purposes on e.g. river waters,
because unexpected buffers are are easily detected and can be added in the buffer capacity
model. The list of blind buffers with their respective concentrations and standard deviations
can then be used to report extra buffer systems on top of the a priori expected buffers defined
in the zero model. Again, a small ‘ expert system’ could be implemented to interpret these
automatic model building results, with the purpose of alarm triggering.

For fixed model implementations, mostly a narrow simulation pH interval is chosen, in
function of the buffers to be quantified and to avoid the influences of neighbouring interfering
buffers (e.g. for the manure samples fixed model, a simulation interval between pH 5.6 and pH
10.5 was chosen for this purpose). The automatic model building environment can be applied
by an expert user as a supporting tool for a quick characterisation of unknown buffer capacity
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profiles. In practical situations where a fixed buffer capacity model has to be developed, apply-
ing the automatic modelling approach on a number of preliminary samples can help the expert
user to define the most appropriate fixed model. The automatic modelling approach allows the
user to choose a wider pH simulation interval (e.g. from pH 3 to pH 11) in order to detect and
quantify more buffer systems.

A final, concluding remark can be made about the results obtained in this chapter. The
automatic model building approach was investigated and evaluated at the end of this Ph.D.
study. More particularly, the data collected for various applications described in the previous
chapters were reconsidered here for possible new applications such as alarm generation, titrator
problem detection, expert user support, etc. The obtained results point to certain benefits
resulting from the automatic model building approach, however, further research should be
performed in order to validate and confirm the preliminary results obtained in this chapter. As
an example, it would be very useful to incorporate a buffer capacity based sensor in a river
monitoring network, while measuring other water quality variables at the same site and time.
Under such conditions, the interpretation of continuously collected buffer capacity profiles
would allow a more thorough evaluation of the new ideas presented in this chapter.
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Chapter 10

General discussion and conclusions

In this work, a multipurpose titrimetric sensor was developed. Initially, the aim was to de-
velop an automated on-line sensor for use in water quality monitoring of rivers and effluents
(AQMON project, see chapter 6). Since 1991, the quality of surface waters and effluents in
Flanders is expressed in ‘polluting units’ . The mathematical expression for the calculation of
the ‘polluting units’ considers oxygen binding substances (COD and BOD), suspended solids,
nitrogen, phosphorus and heavy metals. Within this framework, the primary goal was to de-
velop a sensor that is capable to quantify several components of the ‘polluting units’ with one
measurement principle. The application of such a sensor was seen in the context of an au-
tomatic measurement network (e.g. to monitor a river network). Continuous monitoring of
surface waters and potentially polluting river inputs (e.g. effluents) is a promising support tool
for a better supervision and control of surface water quality. The initial research performed
in the AQMON project was exploratory, and rather ambitious. With appropriate sample pre-
treatments, research was performed to measure BODst, NO�

3 , NH+
4 and o-PO4 from buffer

capacity profiles. In further stages of the project, the ambition was tuned down and the atten-
tion was focussed towards those topics that had the best potential value for field application.
The ammonium and ortho-phosphate assessment from the buffer capacity profile showed the
best potentials for field-use, and it was expected that the buffer capacity curve itself could serve
as a kind of ‘fi ngerprint’ of the water quality. The AQMON sensor was thus proposed as an
automatic buffer capacity based multipurpose hard- and software sensor.

In a later phase, the same methodology was implemented for the monitoring of an algal ter-
tiary wastewater treatment plant (see chapter 7). Besides the ortho-phosphate and ammonium
measurements, a new and interesting aspect was that the monitoring of the inorganic carbon
buffer with the same buffer capacity based sensor offered extra information that is useful for
control purposes.

With the obtained experiences on rivers, effluents and the algal treatment plant, a new ap-
plication area was explored and investigated, being the automatic and in the field monitoring
of ortho-phosphate and ammonium in animal manure (FASTNAP project, chapter 8). The de-
veloped methodology is innovative because in this application area, automatic nutrient sensors
are not available yet. The developed automatic buffer capacity based sensor was evaluated for
its potential as an alternative to the traditional laboratory analyses, of which the results are only
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available after five to ten working days.
In this concluding chapter, a general discussion of the obtained results in relation to the

literature is given. Also, the most important conclusions with their perspectives will be pre-
sented. First, the various buffer capacity simulation approaches will be discussed. Second, the
developed multipurpose hard- and software sensor will be discussed. The third section deals
with the realized application results, whereas the fourth section describes the applications in
the framework of alarm generation. The fifth section discusses the possibilities of automatic
buffer capacity model building. At last, a list of important conclusions is summarized.

10.1 Various buffer capacity simulation approaches

In literature, various approaches are considered to model pH buffer capacity [198, 251, 263,
273]. Depending on the aim of the modelling, different approaches should be selected. How-
ever, the majority of approaches focuses on assessing the composition or species distribution
(including pH) of a sample under a certain set of conditions. This work, on the contrary, is
focussed on buffer capacity modelling. Therefore, some models and methods described in the
literature needed to be modified or extended for the purpose of this work. An example is the
‘ tableau method’ [273] used for speciation calculations which was adopted and extended for
buffer capacity modelling. Also, the literature contains many different ways of handling buffer
capacities. Some authors [138, 273] present buffer capacities in terms of protolysis degree
(αi), being the ratio of the concentration of the species to the total concentration. In another
approach [235–237], the buffer capacity is defined as a dimensionless value. As a consequence,
parts of chapter 3 are redevelopments of a number of existing models, however, presented in a
consistent framework.

In chapter 3, three different approaches of buffer capacity modelling are presented in a
single framework. The mathematical models and related methods were presented for the sim-
ulation of titrations of aquatic samples with a strong acid or base. The three approaches are
described in a consistent framework in which simple as well as more complicated chemical
equilibria are handled. If only simple acid-base equilibria have to be modelled, the linear
buffer capacity model is by far to be preferred. If complexation and/or precipitation reactions
have to be considered, the tableau-based method is a good choice, because of its flexibility and
widest range of possibilities. However, if only acid-base and complexation equilibria have to
be considered, and speed and numerical robustness are important (e.g. in on-line field applica-
tions), the non-linear symbolic model is the preferred model.

The constructive approach followed in chapter 3, illustrated with didactic examples, and
supported with the chemical background of chapter 2, should allow the reader to obtain a solid
introduction and a consistent overview of pH buffer capacity modelling. This overview was
partially based on literature research, however, major parts were adapted or further developed
to fit the requirements of this work. Furthermore, a number of pitfalls and serious confusions
related to this subject were encountered in the literature. An important source of errors that
was experienced is related to the many different ways equilibrium constants are presented in
the literature (K, β, �K, K0, cK, : : : ). Caution is needed when using values from tables in
which it is not straightforward to assess what the tabulated values exactly mean. Some exam-
ples in chapter 2 illustrate that popular aquatic chemistry textbooks like [263] or widely used
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software packages like MINTEQA2 [257] are sensitive to such type of errors. Consequently,
when wrongly used K-values are implemented for simulation purposes, they can have a very
significant influence on the simulation result.

Based on a literature research of existing chemical equilibrium software, it was found that
the freely available and well documented program MINTEQA2 [10] is very popular among
environmental professionals. The package is suitable for equilibrium problems in natural wa-
ters (acid-base, precipitation-dissolution, complexation, surface complexation and redox reac-
tions). However, this package is meant as a speciation program and is not well-suited for the
simulation of buffer capacity curves resulting from titration experiments. In view of the later
field applications, some other packages [20, 210, 295] were evaluated too, but these packages
were not found suitable for our purposes. Therefore, specific software was developed for each
of the described modelling approaches, discussed in the next paragraph.

The linear buffer capacity modelling approach was implemented in the software bomb(see
chapter 5). This software was further extended as a complete data processing tool for ex-
perimental titration curves, and can be considered the brain of the developed buffer capacity
based hard- and software sensor of this work. Therefore, it is further discussed in section
10.2. The non-linear symbolic model approach was evaluated with some prototype software
programs, and found not appropriate for research purposes, however, having good potentials
for robust field applications. The non-linear tableau-based method was implemented in the
software bctab, and was found very convenient for research purposes. In bctab, the chem-
ical equilibrium problem has to be structured in a stoichiometric matrix and supplied to the
simulation program by means of an input file. This might require extra work to write down
in advance all the equilibrium equations in function of the chosen components, however, this
structural approach is less sensitive to conceptual errors, compared to e.g. the non-linear sym-
bolic model approach. An important advantage compared to e.g. the program MAGIK [20]
found in literature, is that the simulation program bctabdoesn’ t need to be compiled again
for each particular problem. The application of the developed software program bctabcan be
situated as a supporting tool for students and researchers who need more insight in the buffer
capacity behaviour as function of pH for simple and complicated chemical equilibrium prob-
lems. A further perspective is to integrate the simulation software bctabinto the complete data
processing software bomb. This would allow to fit complex chemical equilibrium buffer capac-
ity models to experimental data and stepwise build adequate buffer capacity models including
complexation and precipitation reactions.

Despite the fact that complexation and precipitation reactions can be integrated success-
fully into buffer capacity models and simulated with bctab, their practical influence on the
experimental buffer capacity is not always as the models predict. More particularly, precipita-
tion reactions may be determined much more by kinetic and other factors, which are not taken
into account in the equilibrium based approach that is followed in this work [198]. Indeed, it
was practically experienced in the destructed manure samples, that precipitation reactions are
sluggish and non-reproducible, making it impractical to model their effect on the experimental
buffer capacity.
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10.2 Buffer capacity based hard- and software sensor

In the titrimetric sensor developed in this work, a sample is titrated with a strong base and/or
acid (hardware part of the sensor), followed by the calculation of experimental buffer capac-
ities, and subsequently the fitting of mathematical models to the data (software part of the
sensor). An important difference compared to most existing titrimetric sensors is that no end-
point detection methods are applied, and that the whole and detailed titration curve is used for
mathematical modelling purposes. Similar sensors found in literature mostly work with only a
few titration points and a simplified data interpretation e.g. in [46, 65, 197]. The interpretation
of the complete titration or buffer capacity profile is performed in a wide variety of systems,
especially environmental systems, e.g. in [38, 66, 115, 124, 169, 248, 305]. However, most of
these applications are limited to a qualitative approach, to find or to illustrate the most impor-
tant buffer systems in the titrated sample. The approach developed in this work is undoubtedly
more advanced than the applications mentioned above, because of the incorporation of an extra
and automatic mathematical modelling step of the complete buffer capacity profile.

The developed methodology can be realistically implemented in an on-line automatic mea-
surement system. Literature research showed that sampling systems and more particularly
filtration systems are among the weakest parts of on-line environmental sensors, especially
nutrient sensors. Most NH+

4 , NO�
3 and PO3�

4 -analyzers require a sample stream free of sus-
pended solids, which necessitates the use of a membrane filter sampling system [87, 250, 288,
289, 317]. Up to 46 % of the investment costs for the installation of an on-line analyzer can be
due to the installation of a sampling and filtration system [250]. In the past, other filter systems,
like dialysis [220], a gauze filter equipped with a compressor for cleaning purposes [261], or
smaller filter systems [289] have been tested but they often suffer from limited lifetime or
clogging problems. The sensor developed in this work does not need any sample filtration, a
major advantage for field-use. Also, maintenance and surveillance are key factors in on-line
measurements. On the one hand, on-line analyzer companies often suggest maintenance inter-
vals of 1 week, or even 1 month, but practical field studies, on the other hand, show that for
complicated on-line sensors (e.g. N and P analyzers), a daily inspection should be carried out
with all on-line analyzers [250]. This inspection can vary from a visual inspection to a full
cleaning and calibration. In general, 20 minutes per instrument and per day, including sample
pre-treatment, are to be expected [250]. For the applications resulting from this research, the
maintenance requirements of the titration vessel and the electrode are comparable to the main-
tenance of an on-line pH sensor. The chemicals used (NaOH and HCl) are environmentally
friendly and inexpensive.

Because of the necessity of accurately recording a complete titration profile, the maximum
measurement frequency is only around 2 measurements per hour. However, one measurement
cycle results in the estimation of several variables (e.g. ammonium and ortho-phosphate),
which is an important advantage compared to existing sensors. Another aspect of the developed
sensor is its multipurpose functionality. On the one hand, if the sample matrix is exactly known
(e.g. the destructed manure samples), the sensor has an analyzer function, capable of making
accurate estimations of e.g. ammonium and ortho-phosphate. On the other hand, if the sample
matrix is not exactly known (e.g. river waters), the sensor has to be seen in the context of
alarm generation. The latter functionality can be compared with other non-specific sensors
like UV absorbance based sensors [58, 201, 287]. Useful correlations have been established
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between the COD or BOD in various types of waters and the UV absorbance at 254 nm[201]
or the absorbance at 650 nm[58]. The results obtained in chapter 6 show that the correlations
between the ‘ soap’ buffer capacity and the BOD and/or COD in effluents and river waters are
comparable to the correlations found in similar samples between UV absorbances at various
wavelengths and the BOD and/or COD. The advantage of the absorbance measurements is that
they are very rapid, however, the spectrophotometric developments are waiting for the design
of a simple field portable device [287].

Commercial automatic titrators have expensive built-in dynamic algorithms for the control
of a titration experiment. The details of titration algorithms are kept secret by the titrator
developers, because of their commercial value. In the framework of this research, only a
limited number of functionalities that commercial titration algorithms offer, are needed. The
DET algorithm of Metrohm [168] was used for the collection of titration curves throughout
this work. However, a disadvantage that was encountered is that the DET algorithm results in
unnecessarily high measurement point density in the less interesting pH regions (pH < 5 and
pH > 9), and a too low measurement point density in parts of the titration curve that contain the
most useful information for data processing (e.g. the pH region around pH 7). An equidistant
measurement point density is advantageous for the further data processing, more particularly
for the calculation of the buffer capacities from the titration profile. In the literature, it was
found that pH control by conventional means (e.g. PI control) is very difficult because of
the highly non-linear response of the pH value to the addition of acid or base [188]. An
innovative and combined data- and model-driven titration algorithm was developed, capable
of performing the titration task as needed for the purpose of this work. The algorithm has a
user-defined set-point for ∆pH and was developed to obtain an equidistant measurement point
density. The algorithm was implemented and validated, and was found sufficiently robust for
field-use.

The complete data processing part of the titrimetric sensor is implemented in the software
bomb. During the development phase of this software, strong emphasis was put on the ro-
bustness for field-use. For example, the parabolic regression algorithm for the calculation of
the experimental buffer capacity switches automatically to a linear algorithm in case numeri-
cal problems are detected. Further, the public domain parameter estimation routine PRAXIS
was preferred over the commercial mathematical function library M++ for robustness reasons,
despite the attractive features of the M++ package. Further, the variance-covariance calcula-
tion of the parameter estimates is performed with a well-proven robust method developed by
Nelder and Mead (1964). And last, the automatic buffer capacity model building algorithm
was modified several times throughout this work in function of its later use in the field. The
software bombwas tested intensively, and was used for all buffer capacity calculations, sim-
ulations and optimization exercises in this work. In the literature, only one similar stepwise
approach for building buffer capacity models for unknown solutions was found, named the
Gordon algorithm [101, 102]. Unfortunately, this method was developed 15 years ago, and no
recent literature based on this approach was found. In this work, important progress was real-
ized compared to the above mentioned older method. The old method should be considered as
an off-line laboratory research tool rather than a functional part of an on-line sensor. Also, the
Gordon algorithm uses a priori information about the buffers to be expected in the sample only
to a minor extent and does not use advanced model selection criteria as in the new method. For
the Gordon algorithm, the limit of resolution for a minimal pKa separation of two buffers is
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reported to be between 0.1 and 0.5 [101, 102]. In this study (chapter 9), it was experienced that
two buffers with a pKa separation less than 0.5 are pooled together in the model as one buffer.

The developed buffer capacity based sensor also offers new perspectives for use in the
laboratory as an alternative to traditional end-point titrators. As mentioned above, these com-
mercial titrators are expensive if they are equipped with a dynamic equivalence-point titration
algorithm. However, with the methodology developed in this work, it is possible to replace
such advanced titrator with a simple and less expensive dosing unit, coupled to a computer
and using the constant ∆pH titration algorithm. As a consequence, the concentration of the
titrated species would no longer be calculated from the titrant volume required to reach an
equivalence-point, but would be the result of buffer capacity modelling, in which the complete
titration curve is used rather than only a few points around the equivalence-point. Further re-
search should investigate what the consequences are for the accuracy and precision for such
applications.

10.3 Nutrient measurements from buffer capacities

Standard addition experiments of ammonium and ortho-phosphate in various types of samples
showed that the minimum amount of ammonium and ortho-phosphate that can be successfully
recovered with the buffer capacity based sensor is around 0.5 mgN l �1 and 0.5 mgP l�1 respec-
tively. These values are only indicative, because they are case dependent. In a literature review
on a wide variety of nutrient sensors (chapter 4), it was found that the detection limit of on-line
ammonium sensors is mostly lower than reported with the buffer capacity based sensor (e.g. an
NH3 sensitive electrode has a detection limit of 0.05 mgN l�1). Similarly, the detection limit of
on-line ortho-phosphate analyzers was found to be lower than reported with the buffer capacity
based sensor (e.g. ortho-phosphate sensors based on the colorimetric principle typically have
a detection limit between 0.05 and 0.2 mgP l�1). Based on these findings, it is concluded that
buffer capacity based measurements of N and P are not well-suited for analytical purposes in
low concentrated samples. The reproducibility or precision of the buffer capacity based mea-
surements of N and P can be expressed as a relative standard deviation (r.s.d.), and is around
2 and 5 % for ammonium and ortho-phosphate respectively (chapter 6). Ortho-phosphate esti-
mations are generally found to be less accurate and less reproducible compared to ammonium
estimations. This is possibly due to a higher number of interferences present in the buffer ca-
pacity region where ortho-phosphate is buffering. Also, ortho-phosphate is more sensitive to
complexation reactions with other components, potentially masking its buffer capacity effect.
The reported reproducibility values (expressed as r.s.d.) in the literature of on-line ammonium
and ortho-phosphate analyzers (chapter 4) show very high variability, depending on the study
and the measurement technique. For example, r.s.d. values ranging from 0.7�120 and 1�32
% are reported for ammonium and ortho-phosphate respectively. Generally spoken, the repro-
ducibility obtained with the buffer capacity based sensor is very acceptable compared to the
reported literature values. If a number of interferences related to the NaOH titrant (silicates and
inorganic carbon) would have been better controlled in most of the experiments 1, the accuracy,
reproducibility and detection limits would possibly be better than reported. A detailed com-

1Indeed, the finding of the interferences occurred only at the end of the Ph.D. study.
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parison between self prepared NaOH titrant stock solutions and commercially prepared NaOH
stock solutions was made. It was concluded that commercially prepared NaOH stock solutions
(e.g. Titripack , Merck) are a strong and reliable alternative to avoid interferences, both from
inorganic carbon and silicates. These solutions are stored in completely closed, headspace free
plastic bags of 10 l , and are not necessarily more expensive than self prepared stock solutions.

Generally, for the discussion of nutrient measurements (N and P) in environmental sam-
ples, an important distinction has to be made between raw titrated samples (e.g. river water
and effluent samples) and destructed samples (e.g. destructed manure samples). For the first
category, a useful correlation was obtained between laboratory analyses and titration based
estimations of ammonium and ortho-phosphate. The results obtained show that the buffer ca-
pacity based sensor is an useful measurement system for on-line monitoring of ammonium
and ortho-phosphate in effluents, river waters and algal treatment systems. For a better inter-
pretation, the obtained results were compared with the between-laboratory variability and the
experiences with on-line sensors found in the literature. First, based on the river water and
effluent results in chapter 6, it was concluded that the variability between the two laboratories
for the same sample is comparable to the variability between the titrimetric sensor and each
of the laboratories. This conclusion is also in correspondence with recent Aquacheck tests
[62, 301], where it was found that the relative standard deviation (r.s.d.) of measurements of
1 sample in several laboratories is 6 % and 5 % for ammonium and ortho-phosphate respec-
tively. Although the reported accuracy of commercial sensors is mostly acceptable, one should
realize that these specifications are not always reached in the field. A detailed field test with
9 commercial ammonium sensors on the same location reported differences of more than 200
% between measurements performed by the different sensors under test [326]. An important
offset difference between different sensors was noticed. The main concern was that some
monitors often failed and needed extra intervention and cleaning, multiple trials of calibration,
changing of plastic pipes or other parts, : : : This field test has shown that every detail is im-
portant when installing and running a monitor. Particularly the filtration unit and piping are
among the high maintenance parts. As presented earlier in this discussion, the buffer capacity
based sensor is not very sensitive to this type of particular problems.

For applications, like anaerobic wastewater treatment [12, 46, 71] and algal wastewater
treatment [199, 259, 277, 279], the inorganic carbon (IC) buffer is an interesting process control
parameter. In waters which are low or even limiting in IC buffer capacity (like in algal treat-
ment plants), standard alkalinity measurements can give an overestimation of the IC buffer
system, because the alkalinity is a general composite measurement, including all pH buffer-
ing components in the considered pH interval. In the case study with the algal pilot plant,
the alkalinity measurement (T�2C) could overestimate the [HCO�

3 ] buffer with up to 22 %
compared to the IC from the buffer capacity based approach. For this particular case study, an
automated alkalinity measurement possibly would reveal similar process information as the IC
determination with the buffer capacity sensor. However, because the hardware and the hard-
ware related practical difficulties (maintenance, calibration, : : : ) of an automated alkalinity
measurement are very similar to this buffer capacity sensor, the main advantage of the devel-
oped sensor is that ammonium, ortho-phosphate and inorganic carbon are obtained with one
single measurement device.

For the destructed manure samples, the interpretations of the results are different because
organic interferences in the samples are absent due to the destruction step prior to titration.
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The effect of ionic strength on the buffer capacity had to be taken into account, however, and
a dilution factor between 3 and 6 was experimentally found to give the best results. Com-
plexation reactions with Ca2+ and Fe3+ were investigated in more detail, and it was found
that iron and calcium complexes could be responsible for buffer capacities around pH 5, pH
8 and pH 10. It was also found that the buffer capacities of o-PO4 and NH+

4 (the buffers of
main interest) are only influenced to a limited extent by the complex formation reactions. The
ammonium concentrations found with the titrimetric analyses are all between �7 and +8 %
relative error compared to the laboratory measurements. The relative errors for the titrimet-
ric ortho-phosphate concentrations are between �15 and +25 % compared to the laboratory
results, after eliminating some important interferences that were found to originate from the
NaOH stock solutions. On-line manure nutrient sensors were not found in the literature or on
the market, thus making comparisons with other systems impossible. However, a recent small
scale study [2] showed differences between the minimum and maximum reported laboratory
analysis results of 24 % and 87 % for respectively N and P measurements in 1 pig manure
sample. A similar comparative test in Flanders (called ‘ ringtest’ ) [64] in which 30 laborato-
ries were involved, found differences between the minimum and maximum reported analysis
results of 54 % and 39 % for respectively N and P. This official test was also used in an
accreditation procedure to select the laboratories that are officially allowed to perform these
measurements. From these two recent studies, one can conclude that nutrient measurements
in manure are sensitive to many sources of error which are not completely under control yet in
some of the tested laboratories. Finally, the obtained statistical results with the buffer capacity
based method were compared with the requirements for an official accreditation in the Nether-
lands [1] for nitrogen and phosphorus measurement in animal manure. These requirements
include the minimum measurable concentration (expressed as three times the residual standard
deviation sX) and the reproducibility (including the subsampling or duplo effect and the anal-
ysis effect). The obtained minimum measurable concentrations N and P, calculated from the
residual standard deviations of the titrimetric measurements are still higher than the required
values. Especially for P, the results are not fully acceptable yet. However, it should be taken
into account that the titrimetric data used in this validation study (see chapter 8) were obtained
without appropriate control and minimizations of the interferences discovered afterwards (sil-
icates and IC). Therefore, it is expected that by taking care of the described interferences, the
minimum measurable concentrations for N and P will be within the requirements for accred-
itation. The obtained reproducibility (including the effects of subsampling and analysis) is
already within the requirements.

From detailed analysis of the experimental and corresponding simulated buffer capacity
profiles and their relationship with laboratory analyses, a number of conclusions could be
drawn. For the undestructed samples (river waters and effluents) it is concluded that no strict
relationship exists between the goodness of fit and the agreement between the titrimetric results
and the ammonium, respectively ortho-phosphate laboratory analyses. Examples with a perfect
model fit often show good estimates for ammonium and ortho-phosphate, but sometimes suf-
fer from interferences present at the same pKa value of the modelled buffer systems. Among
different evaluated mathematical models (i.e. fixed or variable pKa values, fixed or variable
amount of IC buffer, wide or small simulation interval), a best ‘general purpose’ model useful
for domestic effluents and river waters was formulated. Similarly, for the destructed manure
samples an adequate model useful for all manure samples was developed. Remarkable is that
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the best N and P estimations are obtained with a rather simple model, that did not take into
account known interferences around pH 5 and pH 8. The use of a fixed model is an important
aspect for field implementations, because it is not always possible or realistic to set up prelimi-
nary experiments to define the best site-specific buffer capacity model. For the tested industrial
effluent, the ‘general purpose’ buffer capacity model of domestic effluents was not successful
for N and P estimations, because of too many interferences present in the time-varying effluent.
In this framework, it was also investigated whether it is advantageous for ammonium and ortho-
phosphate assessment, to use the automatic buffer capacity model builder algorithm (available
in the software bomb). In situations where the a priori knowledge about the sample is already
high (e.g. the algal and manure samples), the estimates of ammonium and ortho-phosphate ob-
tained with a fixed modelling approach are often better compared to the automatic modelling
results. In the other situations, where the a priori knowledge is not high (e.g. many river and
effluent samples), some spectacular increases in the accuracy of the estimated ammonium and
ortho-phosphate concentrations were achieved with the automatically built models compared
to the fixed model. For some applications (e.g. the industrial effluent), a fixed model approach
is certainly not useful because the buffer composition of the effluent stream can continuously
change.

The results obtained show that the buffer capacity sensor is a useful measurement system
for on-line monitoring of ammonium and ortho-phosphate in effluents and river waters. Be-
cause the titrimetric measurement methodology is undoubtedly sensitive to interferences, the
sensor application should in the first place be seen in the context of alarm generation. This
aspect is further discussed in section 10.4. Interesting perspectives for the buffer capacity
based sensor for the quantification of the IC buffer are noticed in recent literature, because this
particular measurement becomes increasingly important for assessing stoichiometric carbon
balances in e.g. river water modelling [234] or trickling filter modelling and control [314].
The perspectives for nutrient measurements in manure are twofold. First, increasing demands
for nutrient measurements in animal manure (e.g. in the framework of MINAS in the Nether-
lands) are to be expected in the coming years. Due to the benefit for the receiving farmer to
have the measurements available prior to application of the manure on soil, a market potential
for on-line manure sensors is expected. Second, taking into account some further optimiza-
tions discussed in this work, the analysis results with this titrimetric sensor are expected to be
as reliable as the laboratory results. A first comparison between the results obtained and the
requirements for accreditation was performed, and it could be concluded that the developed
methodology is promising for official acceptance. Moreover, the developed titrimetric mea-
surement technique can be implemented in the laboratory, with a laboratory titrator coupled to
a computer, and act as a reliable alternative for the classical laboratory methods. The strongest
points of the titrimetric method are: simultaneous N and P measurement with 1 method, minor
sample manipulations, N and P results within 30 minutes, low and inexpensive chemical con-
sumption, consumption of only one and non-hazardous reagent (NaOH) and the possibility to
measure continuously in the lab with a sample carousel coupled to the titrating unit.
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10.4 Buffer capacity based alarm generation

A first possible alarm indicator found in effluents and river waters is the ‘ soap’ buffer around
pH 5. The concentration of this buffer showed an useful correlation with the COD of the sam-
ple. In the industrial effluent, two unexpected COD peak loadings were perfectly recognized by
the increasing ‘ soap’ buffer concentration. This illustrates that the buffer capacity based sensor
is suited for alarm generating purposes in case of unexpected COD discharge peaks. However,
on theoretical basis a strict relationship may not exist between buffer capacities and COD (e.g.
sugars have no buffer capacity, but a high COD). The approach followed for COD estima-
tion can therefore be compared with other non-specific measurement techniques for similar
purposes, like UV absorbance based sensors [201, 287] (see also discussion in section 10.2).

A new idea developed in this work is ‘quality proportional sampling’ in effluents and river
waters. This is proposed as an alternative to time or flow proportional sampling. It is suggested
that the buffer capacity profile is used as a fingerprint for the water composition. When the fin-
gerprint is changing, an alarm is triggered and a sample is automatically taken for further lab-
oratory analysis. The quality dependent sampling is superior to the time- or flow proportional
sampling if such sampling strategy would lead to a significantly lower number of laboratory
analyses to be performed. The alarm triggering function was developed by means of the au-
tomatic buffer capacity model building approach in chapter 9. The model building algorithm
will add ‘blind’ buffers in order of importance. The corresponding standard deviations on
the estimated concentrations can be used to test statistically if the reported concentrations are
significantly different from previous concentrations or significantly different from 0. The de-
veloped ‘alarm triggering’ methodology was only developed and validated with titration curves
obtained off-line. The practical implementation should be further investigated and validated
with field experiments.

10.5 Automatic pH buffer capacity model building

Besides the application of alarm generation, the automatic buffer capacity model building ap-
proach also offers a number of interesting perspectives compared to the use of fixed buffer
capacity models. The approach can be applied by an expert user as a support tool for char-
acterisation of unknown buffer capacity profiles or to develop an appropriate fixed model for
a specific application. For a number of selected samples (e.g. the industrial effluent samples
in the last weeks of the measurement period), the estimations with automatically built models
were highly superior to the fixed model approach, because the buffer composition was dras-
tically changing during the measurement period. In retrospect a lot of time could have been
gained if the automatic modeller would have been available for the development of adequate
models for the various applications investigated in this work. Another benefit of the automatic
modelling approach is the detection of problems related to experimental titration conditions.
For example, in the destructed manure titration curves, it was found that a titrant contamination
with IC or silicates is directly reflected in the number of blind buffers incorporated in the final
model. This is an interesting property for robustness and verification of the produced results in
later field-use. A new application for automatic model building is the evaluation of the correct-
ness of end-point titrations used in many analytical laboratory methods. Automatic titrators
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search for an equivalence-point, and the corresponding equivalence titrant volume is attributed
to the expected buffer. However, such algorithms are not able to detect small interferences like
IC, silicates, : : : . Therefore, automatic buffer capacity modelling can be used to find out if
there is indeed only one buffer system present, or if other (interfering) buffers are present as
well. However, further research is necessary for a practical validation of this new application.

A number of suggestions for further research suggestions on the automatic buffer capacity
model building approach were also formulated in this work. The investigated model selection
criteria (AIC, AICC, SIC, FPE, Run-test, F-test) all have advantages and disadvantages. There
appeared no ‘best’ criterion for general purposes. In another field, the same model selection
criteria were compared for the selection of oxygen uptake rate (OUR) models fitted to respiro-
metric data [315]. It was found that traditional information criteria (AIC, AICC, FPE and
SIC) result in overfitting of the model compared to the ‘human expert advice’ . An interesting
perspective for further research could be to use a combination of the different model selection
criteria. The final model selected with each of the criteria could be introduced in an ‘expert sys-
tem’ that can make a choice based on the pro’s and contra’s known for each criterion. It was
also experienced that automatically added buffers in the model sometimes lead to estimated
concentrations which are not significantly different from 0. A stepwise modelling approach as
used in multiple linear regression would allow to remove a buffer from the model if the con-
centration of this buffer is not significantly different from 0. Finally, although the parameter
estimation routine PRAXIS is very robust, it was noticed in the automatic modelling approach
that it sometimes returns local minima solutions. Further research could add supplementary
optimization techniques to further increase the automatic model building robustness.

10.6 Summarized conclusions

Based on the discussion presented in this chapter, the following main realisations of this study
can be summarized:

� Three different approaches of buffer capacity modelling are developed and evaluated in a
single and consistent framework. This framework allows the simulation of the effects of
simple (acid-base) as well as more complicated (complexation, precipitation) chemical
equilibria on the pH buffer capacity. Appropriate software was developed, to support the
implementation of an automatic, field-usable buffer capacity based sensor.

� A multipurpose titrimetric sensor has been developed, which can realistically be imple-
mented in a robust and on-line automatic measurement system, which does not need
complicated sample pretreatments such as filtration. An important difference compared
to most existing titrimetric sensors is that no end-point detection methods are applied,
and that the whole and detailed titration curve is interpreted using mathematical models.

� Most titration curves in this work were successfully collected with a commercial titrator
with a built-in dynamic titration algorithm. However, for the purpose of the implemen-
tation of the developed methodology in an automatic sensor, an innovative combined
data- and model-driven titration algorithm was developed, implemented and validated.
The added value of this new titration algorithm is that it generates an equidistant pH
measurement density, which is expected to be advantageous for the data processing.
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� An automatic and robust model building algorithm was developed and implemented, of
which the purpose is to efficiently find an useful and adequate buffer capacity model,
tailor-made for each individual sample. The two most important benefits of the au-
tomatic model approach compared to the fixed model approach were: First, new and
useful buffer information about the titrated sample became available, and second, for a
number of samples, the concentration estimations with automatically built models were
highly superior to the fixed model approach.

� The first developed application is the effluent and surface water monitoring of pH buffer-
ing substances. The sensor is capable to give an indication of the ammonium and ortho-
phosphate level in the tested effluents and surface waters. Experiences with different
types of samples have shown that the accuracy and precision are affected by the com-
position of the sample. Due to possible interferences of buffering components and the
presence of unmodelled buffering components in the effluent, this titration sensor cannot
be proposed for use as an analytical instrument. Rather it should be used as an effluent
or surface water quality indicator and detector of possible changes in the sample com-
position. The sensor can be used for alarm triggering when the buffer capacity profile
changes. However, this should be further investigated with field experiments.

� The second developed application is the monitoring of tertiary wastewater treatment
with algae. This application has to be seen in the context of process monitoring and
alarm generation. An innovative aspect of the presented buffer capacity sensor, is that
it gives a multivariate response (IC, NH+

4 , o-PO4) supplemented with extra information,
e.g. the appearance or disappearance of extra buffer systems, that are useful for process
monitoring.

� The third developed application concerns the N and P measurements in destructed ani-
mal manure. The most important difference compared to the previous applications is that
the titrated sample is now free of extra buffer capacities because of the destruction step
prior to titration. Inorganic complexation reactions only influenced the buffer capacities
of ammonium and ortho-phosphate to a limited extent. Taking into account some further
optimizations discussed in this work, the analysis results with this titrimetric sensor are
expected to be comparable with the laboratory results.

On the whole, this work has introduced a number of new concepts, for instance, the on-line
measurement of animal manure nutrients and quality proportional sampling of e.g. effluents
and river waters. However, the major benefits of this work are undoubtedly the result of the
interdisciplinary approach of existing methods, technologies and necessities. More particu-
larly, the traditional and well-proven titration technique was revisited and upgraded for use in
advanced mathematical modelling. This has created a number of interesting perspectives, of
which some new applications were developed in the field of on-line environmental measure-
ments.
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[182] N. Matsché and Stumwöhrer. UV absorption as control-parameter for biological treat-
ment plants. Wat. Sci. Tech., 33(12):211–218, 1996.

[183] R.W. Matthews. Photo-oxidation of organic material in aqueous suspensions of titanium
dioxide. Wat. Res., 20(5):569–578, 1986.

[184] R.W. Matthews. Purification of water near-UV illuminated suspensions of titanium
dioxide. Wat. Res., 24(5):653–660, 1990.

[185] M.M. Mazet, J. Ayele, and I. Rigaudie. Elimination des acides humiques contenus dans
l’ eau par les celluloses greffées. Wat. Res., 26(4):409–417, 1992.

[186] R.F. McCurdy, R. Boss, and J. Dale. Determination of ammonia in water by centrifugal
analysis. Wat. Res., 23(6):779–784, 1989.

[187] J.A. Meima and R.N.J. Comans. Application of surface complexation/precipitation
modeling to contaminant leaching from weathered municipal solid waste incinerator
bottom ash. Environ. Sci. Technol., 32(5):688–693, 1998.

[188] S. Menzl, M. Stühler, and R. Benz. A self adaptive computer-based pH measurement
and fuzzy-control system. Wat. Res., 30(4):981–991, 1996.

[189] W. Mertens. Aktiviteit / evenwichtsconstanten: Bepaal zelf de pKa en maak de aktiviteit
zichtbaar. KVCV-Tijdingen, 16(1):24–35, 1989.

[190] W. Mertens. Vergelijkende studie over de verschillende methodes om de zuurgraad
(pH) te berekenen en titratiecurven theoretisch te volgen. KVCV-Tijdingen, 16(3):49–
65, 1989.

[191] Vlaamse Milieumaatschappij. Jaarverslag meetnet oppervlaktewater. Technical report,
Bestuur Meetnetten en Onderzoek, Dienst Water, 1993.

[192] Vlaamse Milieumaatschappij. VMM Aktiviteitenverslag. Technical report, 1998.

[193] Vlaamse Milieumaatschappij. Waterkwaliteit – Lozingen in het water. Technical report,
1998.

[194] M. Miller, G.M. Singer, J.D. Rosen, and R. Bartha. Sequential degradation of chlorophe-
nols by photolytic and microbial treatment. Environ. Sci. Technol., 22(10):1215–1219,
1988.



Bibliography 305

[195] C. Minero, V. Maurino, L. Campanella, C. Morgia, and E. Pelizzetti. Photodegradation
of 2-ethoxy- and 2-butoxyethanol in the presence of semiconductor particles or organic
conducting polymer. Environ. Technol. Lett., 10:301–310, 1989.

[196] W. Moerman. Improvement of the effluent quality of activated sludge treated carboniza-
tion wastewater. PhD thesis, Universiteit Gent, Coupure links 653, B-9000 Gent, 1994.

[197] R.E. Moosbrugger, M.C. Wentzel, G.A. Ekama, and G.v.R. Marais. A 5 pH point titra-
tion method for determining the carbonate and SCFA weak acid/bases in anaerobic sys-
tems. Wat. Sci. Tech., 28(2):237–245, 1993.

[198] F.M.M. Morel and J.G. Hering. Principles and Applications of Aquatic Chemistry. John
Wiley & Sons, New York, 1993.

[199] J.-L. Mouget, A. Dakhama, M.C. Lavoie, and J. de la Noüe. Algal growth enhancement
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Summary

In this work, a multipurpose titrimetric sensor was developed. The hardware part of the sen-
sor developed in this work consists of a titrator unit, capable to perform acid-base titrations
of aquatic samples. A titration curve has a typical S-shape, and can be transformed into a
buffer capacity profile with an appropriate mathematical algorithm. The software sensor part
of this work can be seen as the complete data interpretation of the recorded titration curves.
The developed hard- and software sensor differentiates itself from most existing sensors by the
fact that the whole and detailed titration profile is used for model-based interpretation. It is a
multipurpose sensor because, on the one hand, it is useful for the quantification of buffering
components (e.g. ammonium and ortho-phosphate in effluents or in destructed animal ma-
nure samples), and, on the other hand, it can be used as an alarm generator or early warning
system (e.g. the detection of accidental pollutant discharges in rivers). An important part of
the research described in this thesis was performed in the framework of research projects in
which industrial partners were involved. Therefore, the research described in this thesis is
interdisciplinary and practically oriented.

The first part of the thesis describes the fundamentals and the background of the research
work. The constructive approach, illustrated with didactic examples should allow the reader
to obtain a solid introduction and a consistent overview of pH buffer capacity modelling. This
overview was partially based on literature research, however, major parts were adapted or fur-
ther developed to fit the requirements of this work. Furthermore, in the literature a number of
pitfalls and serious confusions related to this subject were pointed out. An interesting aspect is
that not only buffer capacity models were developed for the simplest type of chemical reactions
(acid-base equilibria), but that also more complicated buffer systems (i.e. where complexation
and/or precipitation reactions occur) could be considered in the same framework. Appropriate
simulation software was developed for each of the presented approaches. Further, a literature
review on field technologies for on-line measurement in wastewater treatment systems, rivers
and other aquatic streams is presented.

The second part of the thesis summarizes the main software developments. A commercial
automatic titrator with a built-in dynamic titration algorithm was used to collect the experimen-
tal titration curves. Using this algorithm, some disadvantages were encountered, and therefore
a combined data- and model-driven titration algorithm was developed, capable of performing
the titration task as needed for the purpose of this work. A dosing system, coupled to a com-
puter and using the developed algorithm also offers perspectives for use in the laboratory as an
alternative for traditional end-point titrators. The complete data processing part of the titrimet-
ric sensor is implemented in the software bomb(buffer capacity optimal model builder), with
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strong emphasis on the robustness for field-use. From a particular titration curve, this soft-
ware extracts information about individual buffer systems and estimates their concentrations.
Further, the same software is capable to automatically build buffer capacity models.

The third part of this work is application oriented. Three on-line (field) application areas
for the developed sensor were investigated in detail: effluent and river water monitoring, algal
wastewater treatment monitoring and animal manure nutrient measurements. The minimum
amount of ammonium and ortho-phosphate that can be successfully recovered with the buffer
capacity based sensor is around 0.5 mgN l�1 and 0.5 mgP l�1 respectively. These values are
only indicative, because they are case dependent. The results obtained show that the buffer
capacity based sensor is an useful measurement system for on-line monitoring of ammonium
and ortho-phosphate in effluents, river waters and algal wastewater treatment systems. Because
the titrimetric measurement methodology is undoubtedly sensitive to interferences, the sensor
application should in the first place be seen in the context of alarm generation. In an algal
wastewater treatment plant, the inorganic carbon buffer could accurately be assessed with the
developed sensor, and this measurement was interpreted as an useful control input. The simul-
taneous measurement of ammonium, ortho-phosphate and inorganic carbon with one single
device was experienced as an important advantage of the developed methodology.

The on-line measurement of nitrogen and phosphorus in animal manure is a new applica-
tion area, for which the developed sensor was evaluated. In Flanders, a taxation system on
the production and surplus of nitrogen and phosphorus has been approved (Mestdecreet, May
11th, 1999). In this framework, increasing demands for analyses of N and P in animal ma-
nure and other organic streams are to be expected in the coming years. The most important
difference compared to the other applications is that the titrated sample is now free of organic
interferences because of a destruction step with H2SO4 and H2O2 prior to titration. Complex-
ation reactions with Ca2+ and Fe3+ were modelled and pointed to be responsible for extra
buffer capacities around pH 5, pH 8 and pH 10. It was also found that the buffer capacities
of o-PO4 and NH+

4 (the buffers of main interest) are only influenced to a limited extent by the
complex formation reactions. Taking into account some further optimizations discussed in this
work, the analysis results with this titrimetric sensor are expected to be comparable with the
laboratory results. The strongest points of the titrimetric method are: Simultaneous N and P
measurement with one method, minor sample manipulations, N and P results within 30 min-
utes, low and inexpensive chemical consumption, consumption of only one and non-hazardous
reagent (NaOH).

The fourth part of this work describes the automation of buffer capacity model building, of
which the purpose is to efficiently find an useful and adequate buffer capacity model, tailor-
made for each individual sample. This methodology supports a new idea developed in this
work, being ‘quality proportional sampling’ in effluents and river waters. This is proposed as
an alternative to time or flow proportional sampling. It is suggested that the buffer capacity
profile is used as a fingerprint for the water composition. When the fingerprint is changing,
an alarm is triggered and a sample is automatically taken for further laboratory analysis. For
a number of selected samples (e.g. industrial effluent samples), the estimations with auto-
matically built models were highly superior to the fixed model approach, because the buffer
composition was drastically changing during the measurement period. Other benefits of the au-
tomatic modelling approach are its usefulness for titrator problem detection and its application
as a support tool for the characterization of unknown buffer capacity profiles.



Samenvatting
In dit werk werd een multifunctionele titrimetrische sensor ontwikkeld. De hardware van
deze sensor bestaat uit een titratie-eenheid, die zuur-base titraties van aquatische stalen kan
verrichten. Een titratiecurve heeft een typische S-vorm, en kan mits een gepast mathema-
tisch algoritme omgezet worden in een buffercapaciteitsprofiel. Het softwaregedeelte van dit
werk omhelst de volledige data-interpretatie van de opgenomen titratiecurves. De ontwikkelde
hard- en softwaresensor differentieert zich van bestaande sensoren doordat het volledige en
gedetailleerde titratieprofiel geı̈nterpreteerd wordt met een modelgebaseerde aanpak. Het is
een multifunctionele sensor omdat hij ten eerste nuttig is voor het quantificeren van bufferende
componenten (bv. ammonium en ortho-fosfaat in effluenten of gedestrueerde dierlijke mest),
en ten tweede, omdat hij gebruikt kan worden als een alarmgenerator (bv. het detecteren van
accidentele lozingen in rivieren). Een aanzienlijk deel van het onderzoek is uitgevoerd in func-
tie van onderzoeksprojecten waarin industriële partners betrokken waren. Als gevolg hiervan
is het in dit werk beschreven onderzoek interdisciplinair en praktisch georiënteerd.

Het eerste deel van dit proefschrift beschrijft de fundamenten en de achtergrond van het
onderzoekswerk. De opbouwende aanpak, geı̈llustreerd met didactische voorbeelden, stelt de
lezer in staat een degelijke introductie en een consistent overzicht van het modelleren van
pH-buffercapaciteit te verwerven. Dit overzicht is gedeeltelijk opgebouwd rond literatuuron-
derzoek, doch er moesten belangrijke gedeeltes gemodifieerd of verder ontwikkeld worden
teneinde te voldoen aan de vereisten van dit werk. Tevens werden er in de literatuur hier-
omtrent een aantal verwarringen ontrafeld. Een interessant aspect is dat niet alleen buffer-
capaciteitsmodellen voor eenvoudige systemen (zuur-base evenwichten) ontwikkeld werden,
maar dat ook meer gecompliceerde systemen (complexaties en/of neerslagreacties) in dit raam-
werk behandeld konden worden. Voor elk van de beschreven methodes werd aangepaste si-
mulatiesoftware ontwikkeld. Er wordt ook een literatuuroverzicht van on-line meettechnieken
gegeven voor afvalwaterbehandelingssystemen, rivieren en andere aquatische stromen.

Het tweede deel van dit proefschrift vat de belangrijkste software-ontwikkelingen samen.
Er werd een commerciële titrator met een ingebouwd dynamisch titratie-algoritme gebruikt
om de experimentele titratiecurves op te nemen. Met deze opstelling werden een aantal nade-
len vastgesteld, en daarom werd een gecombineerd data- en modelgebaseerd algoritme ont-
wikkeld, dat beter geschikt was in functie van dit werk. Een doseereenheid, gekoppeld aan een
computer, en gebruik makend van het ontwikkelde titratie-algoritme biedt ook interessante mo-
gelijkheden tot gebruik in het laboratorium als alternatief voor de traditionele eindpuntstitra-
toren. Het volledige dataverwerkingsgedeelte van de titrimetrische sensor is geı̈mplementeerd
in de software bomb(optimaal buffercapaciteitsmodel bouwer), met een sterke nadruk op de
robuustheid voor gebruik in het veld. Deze software kan uit een titratiecurve informatie extra-
heren over de individuele buffersystemen, en hun respectievelijke concentraties schatten. Met
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dezelfde software kunnen ook automatisch buffercapaciteitsmodellen gebouwd worden.
Het derde deel van dit proefschrift is toepassingsgericht. Er werden drie on-line (ten velde)

toepassingen voor de ontwikkelde sensor in detail bestudeerd: het bewaken van effluenten
en rivierwaters, het meten van nutriënten in tertiaire waterzuiveringssystemen gebaseerd op
algen, en het meten van nutriënten in gedestrueerde dierlijke mest. De kleinste concentraties
aan ammonium en ortho-fosfaat die succesvol konden bepaald worden, liggen respectievelijk
rond 0.5 mgN l�1 en 0.5 mgP l�1. Deze waarden zijn slechts indicatief, omdat ze sterk situatie-
afhankelijk zijn. De resultaten toonden aan dat de op buffercapaciteit gebaseerde sensor een
nuttig meetsysteem is voor het on-line bewaken van ammonium en ortho-fosfaat in effluenten,
rivieren en op algen gebaseerde waterzuiveringssystemen. Omdat de gebruikte meetmethodo-
logie ongetwijfeld gevoelig is aan interferenties, kadert het toepassingsdomein van deze sensor
in de eerste plaats binnen de context van alarmgeneratie. In een pilootreactor met algen kon
de concentratie aan inorganische koolstof accuraat geschat worden met de ontwikkelde sensor,
en deze meting werd nuttig beschouwd voor controledoeleinden. De simultane meting van
ammonium, ortho-fosfaat en inorganische koolstof met één en hetzelfde apparaat werd als een
belangrijk voordeel voor de ontwikkelde methodologie bevonden.

De on-line meting van stikstof en fosfor in dierlijke mest is een nieuw toepassingsdomein
waarvoor de ontwikkelde sensor geëvalueerd werd. In Vlaanderen werd een taxatiesysteem
op de produktie en overschotten van stikstof en fosfor ingevoerd (Mestdecreet, 11 mei 1999).
In dit raamwerk worden toenemende behoeften voor analyses van N en P in dierlijke mest
en andere organische stromen verwacht. Het belangrijkste verschil vergeleken met de vorige
toepassingen is dat het getitreerde staal vrij is van organische interferenties wegens de destruc-
tiestap met H2SO4 en H2O2 vóór de titratie. Complexatiereacties met Ca2+ en Fe3+ werden
gemodelleerd en verantwoordelijk geacht voor extra buffercapaciteiten rond pH 5, pH 8 en pH
10. Er werd ook gevonden dat de buffercapaciteiten van o-PO4 en NH+

4 (de buffers van be-
lang) slechts miniem beı̈nvloed werden door deze complexatiereacties. Rekening houdend met
een aantal verdere optimalisaties besproken in dit werk, wordt verwacht dat de titrimetrische
metingen de vergelijking met de laboratoriumresultaten kunnen doorstaan. De sterkste pun-
ten van de titrimetrische methode zijn: simultane N- en P-meting met één methode, weinig
manipulaties van de stalen, N- en P-metingen binnen de 30 minuten, een laag en goedkoop
chemicaliënverbruik, en het gebruik van slechts één en vrij ongevaarlijk reagens (NaOH).

Het vierde deel van dit proefschrift tenslotte beschrijft de automatisering van het bouwen
van buffercapaciteitsmodellen. De doelstelling hierbij is om op efficiënte wijze een bruikbaar
en adequaat buffercapaciteitsmodel te bouwen, dat aangepast is aan een individueel staal. Deze
methodologie onderbouwt een nieuw idee dat ontwikkeld werd in de werk, nl. ‘kwaliteits-
afhankelijke staalname’ in rivieren en effluenten. Dit wordt voorgesteld als een alternatief voor
tijds- of debietsproportionele monstername. Er wordt hierbij aangenomen dat een bufferca-
paciteitsprofiel gebruikt kan worden als een soort van vingerafdruk van de waterkwaliteit. Als
de vingerafdruk wijzigt, wordt een alarm geactiveerd, en wordt automatisch een staal genomen
voor verdere analyse in het laboratorium. Voor een aantal geselekteerde stalen (bv. indus-
trieel effluent) waren de schattingen met de automatisch gebouwde buffercapaciteitsmodellen
duidelijk superieur vergeleken met de schattingen via een vast model, omdat de buffersamen-
stelling drastisch wijzigde tijdens de uitgevoerde meetcampagne. Andere voordelen van de
automatische modelaanpak zijn de mogelijkheid om titratorproblemen te detecteren en de on-
dersteuning bij het karakteriseren van onbekende buffercapaciteitsprofielen.
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