
 

UNIVERSITEIT
GENT  

  
 

FACULTEIT LANDBOUWKUNDIGE EN 
TOEGEPASTE BIOLOGISCHE 

WETENSCHAPPEN 

 

 
   

Academiejaar 2002-2003   
 
 
 
 
 
 
 
 

GEO-REFERENCED 
PROBABILISTIC ECOLOGICAL RISK ASSESSMENT 

 
GEOGRAFISCH GEREFEREERDE  

PROBABILISTISCHE ECOLOGISCHE RISICOANALYSE 
 
 
 
 
 

door 
 

ir. Frederik VERDONCK 
 
 
 
 

Thesis submitted in fulfillment of the requirements 
for the degree of Doctor (Ph.D) in Applied Biological Sciences: Environmental Technology 

 
Proefschrift voorgedragen tot het bekomen van de graad 

van Doctor in de Toegepaste Biologische Wetenschappen: Milieutechnologie 
 
 
 
 

op gezag van  
 

Rector: Prof. Dr. A. De Leenheer 
 

Decaan: Promotoren: 
 

Prof. Dr. ir. H. VAN LANGENHOVE Prof. Dr. ir. P. VANROLLEGHEM 
Dr. ir. J. JAWORSKA 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

GEO-REFERENCED PROBABILISTIC 
ECOLOGICAL RISK ASSESSMENT 

 
 
 

by 
 

ir. Frederik VERDONCK 
 
 
 
 
 
 
 
 
 

 
PhD supervision committee Other Jury members 
Prof. Dr. ir. P. VANROLLEGHEM (UGent) Prof. Dr. ir. J. VIAENE (chair, UGent) 
Dr. ir. J. JAWORSKA (P&G) Drs. T. ALDENBERG (RIVM, NL) 
Dr. ir. O. THAS (UGent) Dr. A. HART (CSL, UK) 
Prof. Dr. C. JANSSEN (UGent) Prof. Dr. B. GOVAERTS (UCL) 
 Prof. Dr. ir. W. STEURBAUT (UGent) 
 Prof. Dr. ir. M. VANMEIRVENNE (UGent)

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The research reported in this dissertation was conducted at the Department of Applied Mathematics, 
Biometrics and Process Control (BIOMATH) of Ghent University, Belgium. This research has been 
funded by a scholarship from the Flemish Institute for the Improvement of Scientific-Technological 
Research in the Industry (IWT).  

 



Gent, 17 April 2003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
De auteur en de promotoren geven de toelating dit doctoraatswerk voor consultatie beschikbaar te 
stellen, en delen ervan te copiëren voor persoonlijk gebruik.  Elk ander gebruik valt onder de 
beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk 
de bron te vermelden bij het aanhalen van de resultaten van dit werk. 
 
The author and the promoters give the authorization to consult and to copy parts of this work for 
personal use only.  Any other use is limited by the Laws of Copyright.  Permission to reproduce any 
material contained in this work should be obtained from the author. 
 
 
 
De promotoren:        De auteur: 
 
Prof. Dr. ir. Peter Vanrolleghem      ir. Frederik Verdonck 
Dr. ir. Joanna Jaworska       

 



 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"The greatest risk in life is to not take any risk at all" 
 

Author Unknown 

 



 

 



 
 
 
 
 
 
 
 
 
 

Voorwoord 
 
 
Tijdens het schrijven van mijn eindejaarsthesis aan Biomath in 1999 profileerden mijn 
perspectieven zich sterk in de richting van de onderzoekswereld. Hierbij was de 
combinatie toegepaste wiskunde en praktijkgerichte milieutechnologie voor mij een 
onontbeerlijke component. Mede dankzij mijn kort verblijf bij Procter & Gamble 
slaagde ik erin een IWT-specialisatiebeurs binnen te halen. Tijdens mijn 
doctoraatsonderzoek heb ik altijd getracht een evenwicht te handhaven tussen 
toegepaste statistiek/modellering en praktijkgerichte milieurisicoanalyse. Via 
networking op nationale en internationale bijeenkomsten probeerde ik me te verrijken 
in de verschillende disciplines, belangen en perspectieven van de academische wereld, 
de overheid (maatschappij) en de industrie. De realisatie van dit doctoraat is dan ook 
te danken aan honderden kleine discussies en gedachtenwisselingen met vele mensen. 
 
Mijn grootste dankwoord gaat naar mijn promoter Peter Vanrolleghem en aan de 
andere leden van mijn doctoraatbegeleidingscommissie: Joanna Jaworska (Procter & 
Gamble), Olivier Thas (UGent) en Colin Janssen (UGent) voor het vertrouwen, de 
waardering, de begeleiding en het sturen van de lange termijnvisie. 
 
Bedankt ook aan mijn thesisstudenten Frederik De Laender en Sofie Vincke, externe 
contacten Tom Aldenberg (RIVM, Nederland) en Patrick Van Sprang (EURAS) voor 
hun bijdrage en inzichten. Verder moet ik nog een hele reeks mensen bedanken: 
Diederik Rousseau, Karel Deschamphelaere, Andy Hart, Bernadette Govaerts, Ad 
Ragas, Aquafin NV, VMM, EURAS, ... 
Al mijn bureaugenoten en collega’s van Biomath zijn bedankt voor de aangename, 
sociale en gemoedelijke sfeer die de vakgroep typeren. 
 
Tenslotte een hartelijke bedankt aan mijn ouders, mijn zus Beatrice, mijn toekomstige 
schoonfamilie en bovenal mijn verloofde Greet voor de steun en het vertrouwen in 
mij. 
 
 

Frederik Verdonck 
Gent, 24 juni 2003 



 



 
Contents 
 
 
 
 
Voorwoord 
 
List of symbols and abbreviations 
 
 

1. Introduction 
 
 

2. State-of-the-Art & Proposal for Improved PERA Framework 
 
2.1. SCOPE...........................................................................................................................5 

2.1.1. Hazard and Risk Assessment ....................................................................................... 5 
2.1.2. Ecological Risk Assessment (ERA) ............................................................................. 6 
2.1.3. Probabilistic Ecological Risk Assessment (PERA)...................................................... 6 

2.2. CONVENTIONAL ECOLOGICAL RISK ASSESSMENT........................................7 
2.2.1. General ......................................................................................................................... 7 
2.2.2. Derivation of PEC and PNEC in Exposure and Effects Assessment ........................... 8 
2.2.3. Drawbacks .................................................................................................................... 9 

2.3. PROBABILISTIC ECOLOGICAL RISK ASSESSMENT........................................10 
2.3.1. Probabilistic Exposure Assessment: State-of-the-Art ................................................ 12 
2.3.2. Probabilistic Effects Assessment: State-of-the-Art .................................................... 15 
2.3.3. Probabilistic Risk Characterisation: State-of-the-Art................................................. 20 
2.3.4. Refining the PERA in Space (and Time) ................................................................... 24 

2.4. PROPOSAL IMPROVED PROBABILISTIC ECOLOGICAL RISK ASSESSMENT 
FRAMEWORK & OUTLINE OF THIS THESIS......................................................26 

 
 

3. Uncertainty and Variability Propagation and Estimation 
 
3.1. Uncertainty and Variability Propagation 
 
3.1.1. SELECTION OF THE PROPAGATION TECHNIQUE ...........................................29 
3.1.2. FIRST ORDER MONTE CARLO SIMULATION....................................................31 

3.1.2.1. Introduction ............................................................................................................... 31 

 i



3.1.2.2. Monte Carlo Simulation............................................................................................ 31 
3.1.2.3. Case Studies .............................................................................................................. 43 
3.1.2.4. Discussion ................................................................................................................. 50 

3.1.3. SECOND ORDER (OR TWO-DIMENSIONAL) MONTE CARLO SIMULATION51 
3.1.3.1. Introduction ............................................................................................................... 51 
3.1.3.2. Second Order Monte Carlo Simulation..................................................................... 51 
3.1.3.3. Case Study................................................................................................................. 53 

3.1.4. CONCLUSIONS & FURTHER RESEARCH............................................................55 
 
 

3.2. Uncertainty and Variability Estimation: Comparison of Several 
Techniques 

 
3.2.1. INTRODUCTION.......................................................................................................57 
3.2.2. METHODS FOR VARIABILITY ESTIMATION (ONE-DIMENSIONAL) ...........59 

3.2.2.1. Parametric Methods .................................................................................................. 60 
3.2.2.2. Non-Parametric Methods .......................................................................................... 62 

3.2.3. METHODS FOR VARIABILITY AND SAMPLING UNCERTAINTY 
ESTIMATION (TWO-DIMENSIONAL)...................................................................65 
3.2.3.1. Bootstrapping ............................................................................................................ 66 
3.2.3.2. Methods from Classical Statistics ............................................................................. 69 
3.2.3.3. Bayesian Inference Methods ..................................................................................... 69 

3.2.4. SIMULATION STUDY..............................................................................................70 
3.2.5. CASE STUDIES .........................................................................................................73 

3.2.5.1. Species Sensitivity Distribution for LAS and Cu ..................................................... 73 
3.2.5.2. Species Sensitivity Distribution for Cd and a Hypothetical Chemical X ................. 76 
3.2.5.3. Species Sensitivity Distribution FOR Zn.................................................................. 78 

3.2.6. CONCLUSIONS & FURTHER RESEARCH............................................................81 
 
 

3.3. Uncertainty and Variability Estimation: Sample Size Issues 
 
3.3.1. INTRODUCTION.......................................................................................................83 
3.3.2. TERMINOLOGY, SIMULATION AND CASE STUDIES ......................................84 
3.3.3. COMMENTS ON EXISTING SAMPLE SIZE DETERMINATIONS .....................87 

3.3.3.1. Comments on Subsampling for Sample Size Plots ................................................... 87 
3.3.3.2. Comments on Bootstrap Resampling Strategy Based on Newman et al. (2000)...... 88 

3.3.4. SAMPLE SIZE CONSIDERATIONS........................................................................91 
3.3.4.1. Level of Reliability ................................................................................................... 92 
3.3.4.2. Level of Precision ..................................................................................................... 97 
3.3.4.3. Determination of Minimum Sample Size ................................................................. 99 

3.3.5. CONCLUSIONS & FURTHER RESEARCH..........................................................100 
 
 
 

 ii



3.4. Hierarchical Uncertainty and Variability Estimation 
 
3.4.1. INTRODUCTION.....................................................................................................101 
3.4.2. DESCRIPTION OF HIERARCHICAL VARIABILITY AND UNCERTAINTY..103 
3.4.3. METHODS................................................................................................................105 

3.4.3.1. Assigning Weights to the Data................................................................................ 106 
3.4.3.2. The Conventional Method for SSD Building.......................................................... 107 
3.4.3.3. Alternative Method 1: Hierarchical Method (Weighted Hierarchical Bootstrap)... 108 
3.4.3.4. Alternative Method 2: Non-Hierarchical Method (Data Also Weighted)............... 109 

3.4.4. SIMULATION STUDY............................................................................................111 
3.4.4.1. Description .............................................................................................................. 111 
3.4.4.2. Comparison of the Methods .................................................................................... 112 
3.4.4.3. Parametric Versus Nonparametric .......................................................................... 113 

3.4.5. CASE STUDY ..........................................................................................................113 
3.4.5.1. Description of the Data Sets.................................................................................... 113 
3.4.5.2. Results and Discussion............................................................................................ 114 

3.4.6. CONCLUSIONS.......................................................................................................116 
 
 
 

4. Probabilistic Risk Characterisation 
 

4.1. Probabilistic Risk Quotient Method 
 
4.1.1. INTRODUCTION.....................................................................................................118 
4.1.2. PROBABILISTIC RISK QUOTIENT METHOD....................................................120 

4.1.2.1. When Only Variability is Considered: Probabilistic Risk ...................................... 120 
4.1.2.2. When Variability and Uncertainty is Considered: Probabilistic Risk and its 

Uncertainty Interval.................................................................................................. 123 
4.1.3. CASE STUDIES .......................................................................................................124 

4.1.3.1. Probabilistic Risk of Zn in The Netherlands........................................................... 125 
4.1.3.2. Probabilistic Risk of Atrazine at two Monitoring Locations in Belgium ............... 130 

4.1.4. DISCUSSION ...........................................................................................................130 
4.1.5. CONCLUSIONS.......................................................................................................131 
 
 

4.2. Limitations of Current Probabilistic Risk Characterisation 
Techniques 

 
4.2.1. INTRODUCTION.....................................................................................................133 
4.2.2. THEORETICAL CONSIDERATIONS....................................................................134 
4.2.3. HYPOTHETICAL CASE STUDY...........................................................................135 
4.2.4. CONCLUSIONS.......................................................................................................141 

 iii



 

5. Geo- (and Time-)Referenced PERA 
 

5.1. Geo-Referenced PERA 
 
5.1.1. INTRODUCTION.....................................................................................................145 
5.1.2. GEO-REFERENCED FRAMEWORK.....................................................................147 

5.1.2.1. Geo-Referenced Probabilistic Exposure Assessment (geo-ECD)........................... 147 
5.1.2.2. Geo-Referenced Probabilistic Effects Assessment (geo-SSD) ............................... 148 
5.1.2.3. Geo-Referenced Probabilistic Risk Characterisation.............................................. 149 

5.1.3. CASE STUDIES .......................................................................................................151 
5.1.3.1. Case Study on the geo-referenced risk of a detergent in the Rupel basin............... 152 
5.1.3.2. Case Study on the geo-referenced risk of atrazine in Flemish surface waters........ 156 
5.1.3.3. Case Study on the geo-referenced risk of Cu in surface waters of Sweden............ 159 

5.1.4. CONCLUSIONS.......................................................................................................163 
 

 

5.2. Towards Time-Referenced PERA 
 
5.2.1. INTRODUCTION.....................................................................................................166 
5.2.2. METHODOLOGY....................................................................................................167 

5.2.2.1. Probabilistic Method (Based on Probability Distributions) .................................... 167 
5.2.2.2. Time-Referenced Method (Based on Concentration-Duration-Frequency Curves)168 

5.2.3. CASE STUDY ..........................................................................................................171 
5.2.3.1. Problem Formulation .............................................................................................. 171 
5.2.3.2. Dynamic Waste Water Treatment Plant (WWTP) Simulation and Dilution Model + 

Uncertainty Analysis ................................................................................................ 173 
5.2.3.3. Probabilistic Ecological Risk Assessment .............................................................. 173 
5.2.3.4. Time-Referenced Risk Assessment (Based on Concentration-Duration-Frequency 

Curves) ..................................................................................................................... 176 
5.2.4. CONCLUSIONS AND FURTHER RESEARCH ....................................................180 
 
 
 
 

6. General Conclusions and Further Research 
 
6.1. PROBABILISTIC ECOLOGICAL RISK ASSESSMENT FRAMEWORK...........182 

6.1.1. Correct Application of the Probabilistic Method ..................................................... 183 
6.1.2. Importance of Interpretation..................................................................................... 183 
6.1.3. Comparison and Validity of Several Probabilistic Estimation Techniques ............. 184 
6.1.4. Parametric (Threshold or Non-Threshold) or Non-Parametric Methods ................. 184 
6.1.5. ‘Clarifications’ of Particular Issues.......................................................................... 185 
6.1.6. Probabilistic Ecological Risk Characterisation ........................................................ 187 

 iv



6.2. GEO- (AND TIME-)REFERENCING OF PROBABILISTIC ECOLOGICAL RISK 
ASSESSMENT .........................................................................................................188 

6.3. VALIDATION ..........................................................................................................190 
6.4. CONCLUDING THOUGHT ....................................................................................191 
 
 

Bibliography 
 

Summary 
 

Samenvatting 
 

Curriculum Vitae 
 

 v



 



List of Symbols and Abbreviations 
 
 
 
AUC Area Under the Curve 
BCa Bias Corrected and Accelerated 
BLM Biotic Ligand Model 
COD Chemical Oxygen Demand 
cov(X,Y) Covariance between variables X and Y 
CPP Cumulative Profile Plot 
DOC Dissolved Organic Carbon 
E[x] Expected value of x 
EC Exposure/Environmental Concentration 
ECD Exposure/Environmental Concentration Distribution 
ECx Effect Concentration at x % 
EDF Empirical Distribution Function 
EQS Environmental Quality Standards 
ERA Ecological Risk Assessment 
EPP Exceedence Profile Plot 
EU European Union 
F or F(x) Target (cumulative) distribution function 
F̂  or  ( )xF̂ Estimated target (cumulative) distribution function 

f(x) Density function of random variable x 
Geo- Geo-referenced 
GIS Geographical Information System 
GREAT-ER Geo-referenced Regional Exposure Assessment Tool for European 

Rivers 
HCp Hazardous Concentration at p % 
i Rank 
JPC Joint Probability Curve 
L Likelihood function 
LN Lognormal distribution 
LAS Linear Alkylbenzene Sulfonate 
LCx Lethal Concentration at x % 
MLE Maximum Likelihood Estimation 
N Normal distribution 
n The number of observations or data points in a sample 
NOEC No Effect Concentration 
PEC Predicted Exposure Concentration 
PERA Probabilistic Ecological Risk Assessment 
PNEC Predicted No Effect Concentration 



QSAR Quantitative Structure Activity Relationships 
r Correlation coefficient 
RQ Risk Quotient 
s Sample standard deviation 
sw Weighted standard deviation 
SS Species Sensitivity 
SSD Species Sensitivity Distribution 
θ Parameter of a distribution function 
TAN Total Ammoniacal Nitrogen 
TGD Technical Guidance Document 
TOC Total Organic Carbon 
wi Weight i 
WWTP Waste Water Treatment Plant 
X A random variable 
x  Sample mean 

wx  Weighted sample mean 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Part 1 

- 
Introduction 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 





 

 
 
Part 1 
 
Introduction 
 
 
 
 
Human pressure on the environment has increased considerably over the twentieth century, mainly 
due to the rapid growth of human population and its activities. The pollution of the environment 
with toxic substances has risen to unprecedented levels. Today, according to the World Health 
Organisation (WHO), there are over 100.000 different man-made chemicals present on the 
worldwide market. Chemicals are used in all sorts of products in households, industry and 
agriculture: pesticides, detergents, shampoos, paints, lubricants, medication, cosmetics, batteries… 
All these chemicals eventually end up, totally or partly, in the environment through a variety of 
exposure routes. The negative consequences of these developments have become apparent in the 
deterioration of ecosystems, the extinction of species and numerous human health hazards (e.g. the 
crisis of dioxin and PCB contamination in chicken products in Belgium in 1999). 
 
This has led governments to develop new laws and regulation that puts constraints on these 
chemical emissions. These are based on environmental quality standards and 
environmental/ecological risk assessment. The key question to be answered is:  “What is the 
likelihood (i.e. probability) of adverse effects occurring to exposed ecological systems due to 
exceedance of a toxicity level by an environmental concentration?”. The goal of ecological risk 
assessment is to estimate the likelihood and the extent of adverse effects occurring to humans and 
ecological systems due to exposure(s) to substances. It is based on the comparison of a predicted or 
measured exposure/environmental concentration with a ‘no effect concentration’ based on a set of 
(acute or chronic) toxicity test results (i.e. testing species sensitivity).  
 
In the current, deterministic framework, inputs to the exposure and effect prediction models are 
single values and the risk is calculated as a simple ratio of exposure concentration and effects (see 
Figure 1). Consequently, there are only two possible answers to the key question: (1) yes, there is 
potential risk or (2) no risk. Such answers may mislead stakeholders to think that ecological risks 
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are simple black or white issues. This conventional, empirical approach does insufficiently account 
for the inherent variability and uncertainty of the environmental concentration and the species 
sensitivity. While both being represented by distributions, it is important to separate variability and 
uncertainty. Variability represents inherent heterogeneity or diversity in a well-characterised 
population. Fundamentally a property of nature, variability is usually not reducible through further 
measurement or study. Uncertainty represents partial ignorance or lack of perfect information about 
poorly characterised phenomena or models (e.g. sampling or measurement error), and can partly be 
reduced through further research. 
 

Predicted Exposure 
Concentration (PEC)

Exposure Effects

Erosion
& Runoff

Atmospheric
Deposition

Risk analysis: YES, potential risk

Laboratory and field studies
(toxicity tests)

Treated
Discharge
Treated
Discharge

WWTP

Untreated discharges

Predicted No Effect 
Concentration (PNEC)

 

Figure 1: Ecological Risk Assessment 

 
This led to the development of more quantitative and scientifically better funded techniques to 
estimate probabilistic risks. In a Probabilistic Ecological Risk Assessment (PERA), the exposure 
concentration and species sensitivity are treated as random variables taken from probability 
distributions (respectively Exposure Concentration Distribution (ECD) and Species Sensitivity 
Distribution (SSD)) which are combined to give a risk probability.  Probabilistic risk assessment 
therefore delivers a more transparent, realistic and non-conservative approach to estimate risks. 
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Introduction 

This area is currently a hot topic in the scientific and regulatory field. This is illustrated by the 
number of recent international meetings on this topic in Table 1. The workshop in 2001 on 
probabilistic risk assessment for pesticides in Europe (EUPRA) concluded that probabilistic 
methods would improve the environmental evaluation of plant protection products under Directive 
91/414/EEC, if appropriate action is taken to address their potential weaknesses. 
 

Table 1: Recent workshops on probabilistic ecological risk assessment illustrating the increasing 
attention and use of such techniques 

Date Place Topic Funded by 
1999 US ECOFRAM EPA 
2001 The Netherlands Probabilistic risk assessment for pesticides in Europe 

(EUPRA) 
EU 

2002 London, UK Statistical extrapolation techniques for environmental 
effects assessments 

ECB 

2002 Pensacola, US Application of uncertainty analysis to ecological risks of 
pesticides 

SETAC 

2003 several EUFRAM EU 
 
Some of these current (mainly statistical) weaknesses in probabilistic ecological risk assessment are 
addressed in this dissertation. Most of them deal with misuse of existing techniques (e.g. Monte 
Carlo analysis, bootstrap), reliability of statistical techniques at small sample size, the lack of 
consensus on which method or distribution type or what sample size to use, misinterpretation of 
probability distributions (e.g. output of Monte Carlo analysis), inappropriately or insufficiently 
dealing with uncertainty or variability (e.g. one- versus two-dimensional Monte Carlo analysis), 
discussions on how to calculate probabilistic risk… Moreover, all the spatial (and temporal) 
variability and dependencies is lumped into one probability distribution. Explicitly accounting for 
these spatial and temporal differences in a respectively geo- and/or time-referenced analysis (or 
spatial-temporal analysis) could make the risk characterisation more realistic. 
 
The overall objective of this doctoral research is to answer the key question above (“What is the 
likelihood (i.e. probability) of adverse effects occurring to exposed ecological systems due to 
exceedance of a toxicity level by an environmental concentration?”) with a risk probability and an 
uncertainty or confidence interval. For this, several statistical methods need to be assessed, 
implemented and applied in order to characterise or propagate both the inherent variability and 
uncertainty of the exposure, effects and risk assessment. Note that most of the methodologies 
presented here are also applicable in other areas (food contamination, agriculture…). In addition, 
geo-referencing the risk assessment in order to answer the key question more realistically will refine 
the probabilistic risk assessment. Several case studies are discussed to illustrate all methodologies 
presented. 

3 
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The complete outline of this dissertation and the proposal of a geo-referenced probabilistic 
ecological risk assessment framework can be found at the end of Part 2. This chapter also describes 
the scope and the state-of-the-art of (probabilistic) ecological risk assessment. The results of this 
work consist of three major parts: Part 3 describes uncertainty and variability estimation and 
propagation issues in exposure and effects assessment, Part 4 describes risk characterisation issues 
and Part 5 describes the geo- (and time-) referencing of risk assessment. 
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A condensed version of the proposal of an improved probabilistic ecological risk assessment 
framework was published in: 
 
Verdonck F. A. M., Jaworska J., Janssen C. R. & Vanrolleghem P. A. 2002. Probabilistic ecological 

risk assessment for chemical substances. Proceedings iEMSs 2002, Integrated Assessment 
and Decision Support 1, 144-149. Lugano, Switzerland. 24-27 June 2002. 

 





 

 
 
Part 2 
 
State-of-the-art   &   Proposal for Improved Probabilistic 
Ecological Risk Assessment Framework 
 
 
 
 
After defining the scope of this dissertation, a short overview is given of existing frameworks to 
perform an Ecological Risk Assessment (ERA). Next, the state-of-the-art of the current 
Probabilistic Ecological Risk Assessment (PERA) is presented. Finally, an improved proposal will 
be made on how to perform a PERA. This proposal is partly based on the literature study but is a 
development of the PhD research. This proposal also determined the outline of this whole 
dissertation. 
 
 

2.1. Scope 
 
In this section, the scope of this dissertation, along with some (general) concepts and definitions of 
risk assessment, will be defined. 
 

2.1.1. Hazard and Risk Assessment 
 
Hazard is defined as that object that has the potential for creating undesirable adverse 
consequences, exposure is the situation of vulnerability to hazards, and risk is the probability or 
likelihood of an adverse effect due to some hazardous situation. In fact, it is the likelihood to harm 
as a result of exposure to a hazard, which distinguishes risk from hazard. For example, a toxic 
chemical that is hazardous to a fish species does not constitute a risk unless fish 
receptors/populations are exposed to such a substance. Potential risks are estimated by considering 
the probability or likelihood of occurrence of harm, the intrinsic harmful features or properties of 
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specified hazards, the population at risk, the exposure scenarios and the extent of expected harm 
and potential effects (Asante-Duah, 1998). 
 

2.1.2. Ecological Risk Assessment (ERA) 
 
The main application area of risk assessment in this dissertation is “ecology” related. Note that most 
of the methodologies presented here may also be applicable in other areas. Ecological Risk 
Assessment (ERA) evaluates the likelihood that adverse ecological effects may occur or are 
occurring as a result of exposure to one or more agents (Posthuma et al., 2002). In this dissertation, 
only the effect of one agent at a time will be studied. We believe that the proposed probabilistic 
framework is flexible enough to extend it for multiple agents. 
 
Ecology is affected by physical changes (such as e.g. channelling of rivers, hydraulic constructions 
in hydrological systems…) or by chemical changes (i.e. inorganic or organic compounds). Only the 
effects of these chemical agents are discussed in this dissertation. In practice, protecting ecology 
against adverse effects of chemical agents often boils down to protect a restricted set of species, 
mainly because of practical reasons. It is after all not feasible to perform extended ecological 
studies for thousands and thousands of chemicals that affect the very large number of species that 
typically constitute an ecosystem. As a result, “ecological” is still often (mis-) used by the scientific 
community for assessing narrow-minded endpoints (lethality of a set of species). This is also 
justifiably stressed in literature, e.g. by Forbes et al. (2001). Nevertheless, the term ERA is used 
here because of its common use in literature. In addition, the presented methodologies of this thesis 
will also hold for other, more relevant endpoints such as demography (i.e. statistical, and 
mathematical study of ecological populations). 
 
Any risk assessment should be preceded by a problem formulation. This provides a foundation for 
the entire risk assessment and includes the specification of risk management goals, the selection of 
assessment endpoints, and the development of a sampling and analysis plan to collect data on 
measurement endpoints that are needed to support the ERA. However, this phase of defining the 
problem formulation is not covered in this dissertation. 
 

2.1.3. Probabilistic Ecological Risk Assessment (PERA) 
 
Probabilistic Ecological Risk Assessment (PERA) is an extension of ERA. Several statistical 
techniques and probability distributions are used to more quantitatively estimate exposure, effects 
and finally risk. The scope of this dissertation is mainly situated in the use, reliability and 
improvement of existing techniques and the development of new techniques. For this, a trade-off 
had continuously to be made between accurate, good but usually more complex statistical 

6 
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techniques and easy-to-use, -understand and -apply but usually less good statistical techniques. Note 
that this thesis does not provide guidance on how to decide whether to use probabilistic methods in 
a particular risk assessment, how to define the outputs that would be required from the probabilistic 
assessment (before starting it) or how to combine a probabilistic output with other lines of evidence 
such as field studies. 
 
 

2.2. Conventional Ecological Risk Assessment 
 

2.2.1. General 
 
Ecological Risk Assessment (ERA) for chemicals seeks to determine whether species, populations, 
and/or ecosystems are likely to be damaged by chemical inputs from anthropogenic sources. 
Conventional ERA involves the comparison of a Predicted Exposure Concentration (PEC) with a 
Predicted No-Effect concentration (PNEC) for a chemical (see Figure 1). 
 

Predicted Exposure 
Concentration (PEC)

Exposure Effects

Erosion
& Runoff

Atmospheric
Deposition

Risk analysis: YES, potential risk

Laboratory and field studies
(toxicity tests)

Treated
Discharge
Treated
Discharge

WWTP

Untreated discharges

Predicted No Effect 
Concentration (PNEC)

 

Figure 1: Conventional Ecological Risk Assessment (ERA) framework 
consisting of an exposure and effects analysis 
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The risk quotient is defined as the PEC/PNEC ratio. A risk quotient larger or equal to one signifies 
that there is a potential risk of effects occurring and a large quotient is likely to indicate a high level 
of risk. A risk quotient smaller than one signifies no risk (considering the conservative assumptions 
made during the assessments). The need to obtain valid PEC and PNEC values for a particular 
chemical is therefore fundamental to risk assessment. Much work has taken place over the past few 
years with the aim of developing procedures that are appropriate for incorporation into risk 
assessment legislation (Girling et al., 2000). 
 
 

2.2.2. Derivation of PEC and PNEC in Exposure and Effects Assessment 
 
On the exposure side, a prediction is made of the chemical concentrations in the environmental 
compartments of concern. Hence, chemical emissions and releases have to be estimated, as well as 
chemical fate and distribution (see left part of Figure 1). Derivation of a PEC for risk assessment 
can be subject to different levels of complexity. Further guidance on this matter can be found in, for 
example, the Technical Guidance Document (TGD) on risk assessment produced by the European 
Union in support of Commission Directive 93/67/EC on risk assessment for new notified substances 
and commission regulation (EC) No. 1488/94 on risk assessment for existing substances (EEC, 
1996). 
 
On the effects side, selected species are tested on their sensitivity to chemicals (see right part of 
Figure 1). Several individuals of the same species typically have different sensitivities towards a 
chemical. This is called intra-species variability. The results are shown in an EC-curve (effect-
concentration or dose-response curve). An example is shown in Figure 2. The cumulative 
probability represents the percentage of individuals affected by the chemical (mortality, 
reproduction effects, growth effects…). 
 
Next, either the xth-percentile of the EC-curve is taken, resulting in an Effective Concentration ECx 
(e.g. EC50 for the median) or a No Observed Effect Concentration (NOEC) is calculated based on a 
significant difference with the lowest observed test concentration. These are the two current 
approaches mostly used to analyse ecotoxicity test results. In literature, many papers deal with the 
question whether to use NOEC or ECx (e.g. Crane & Newman (2000), Scholze et al. (2001), Isnard 
et al. (2001), Smit et al. (2001), Shieh et al. (2001)). The methodologies proposed here can be used 
both for NOEC or ECx values and even for other endpoint criteria. 
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Figure 2: Example of EC-curve (Effect-Concentration curve) and NOEC (No 
Observed Effect Concentration) 

 
Other species are also tested and they typically have different sensitivities towards a chemical. This 
is called inter-species variability or species sensitivity. The PNEC is then determined by dividing 
the single lowest toxicity measure (such as EC50 or NOEC values) obtained from single-species 
tests by an appropriate assessment or safety factor. This method assumes that the assessment factor 
will be sufficient to ensure that the derived PNEC will protect all species present in a community 
(i.e. the assessment factor is an arbitrary figure intended to account for extrapolation from single-
species laboratory data to natural communities). Assessment factors to derive a PNEC from 
laboratory test data range from 10 to 1000 depending on the number and kind of data (Girling et al., 
2000). 
 
 

2.2.3. Drawbacks 
 
This conventional method has been criticized many times. The main drawbacks are (based on Hart 
(2001), EPA (2001), Warren-Hicks & Moore (1995)): 

• In the conventional approach, PEC and PNEC are considered as single, crisp values whereas 
in reality they are characterised by uncertainty and variability (definitions see section 2.3). 
Accounting for this would avoid problems associated with using worst-case assumptions 
(e.g. lack of consensus in defining the worst case, and the generation of unrealistically 
extreme assessments by combining multiple worst case assumptions). 
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• Results are often viewed as “the answer”; importance of uncertainty is sometimes lost. 
• The conventional methods do not efficiently use all available data. For example in the 

PNEC derivation, only the toxicity to the most sensitive species is used rather than using all 
available toxicity data to quantify variation between species (inter-species variability). 

• The methods also do not encourage further research because uncertainty is inappropriately 
considered. 

• Risk is not expressed as a probability (as it should be, see general risk definition above). 
Instead, risk is expressed as a ratio, basically a “yes/no risk”-statement. 

In short, the conventional methods make use of conservative and insufficiently transparent, realistic, 
scientific assumptions. 
 
However, these conventional methods are likely to remain the primary tool for lower tiers of risk 
assessment because they are simple and rapid, and are appropriate for use as screening tool 
provided they are sufficiently conservative (i.e. over-protective) (Hart, 2001). 
 
 

2.3. Probabilistic Ecological Risk Assessment 
 
The drawbacks of the conventional, deterministic ecological risk assessment have led to the 
development of more probabilistic techniques in this area (Hart, 2001). The importance and 
usefulness of a more probabilistic approach is often stressed in literature (Burmaster, 1997), 
(Campbell et al., 2000), (Cullen & Frey, 1999), (Jager et al., 2001), (Warren-Hicks & Moore, 
1995), (EPA, 2001), (ECOFRAM, 1999). In a Probabilistic Ecological Risk Assessment (PERA), 
the Exposure Concentration (EC) and Species Sensitivity (SS) are treated as random variables taken 
from probability distributions (respectively Exposure Concentration Distribution (ECD) and 
Species Sensitivity Distribution (SSD)) which are combined to give a risk probability (see Figure 
3). Note in Figure 3 that the interpretation of the cumulative probability is different for the ECD and 
SSD (how to interpret them will be discussed later). 
 
In these probabilistic types of ecological (and human) risk assessments, the distinction between data 
uncertainty and variability should be made (Hoffman & Hammonds, 1994), (Cullen & Frey, 1999), 
(Burmaster & Wilson, 1996), (Rai et al., 1996), (EPA, 2001), (Hart, 2001). The National Academy 
of Sciences (NRC, 1983) has recommended that the distinction between variability and uncertainty 
should be maintained rigorously at the level of individual components of a risk assessment (e.g. 
emissions characterisation, exposure assessment) as well as at the level of an integrated risk 
assessment. A workshop sponsored by the US Environmental Protection Agency provided 
recommendations regarding the use of two-dimensional simulations, which were incorporated into a 
1997 agency policy document (EPA, 1997). 
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Variability represents inherent heterogeneity or diversity in a well-characterised population. 
Fundamentally a property of nature, variability is not reducible through further measurement or 
study. Temporal and spatial variations of chemical concentrations can be captured in a variability 
distribution, called ECD. Various species sensitivities towards a chemical can also be captured in a 
variability distribution called SSD. In Figure 3, the variability distributions are shown by a black 
line. Uncertainty represents partial ignorance or lack of perfect information about poorly 
characterised phenomena or models (e.g. sampling or measurement error), and can partly be 
reduced through further research (Cullen & Frey, 1999). In Figure 3, the uncertainty is shown as a 
grey band around the cumulative variability distribution function. For each percentile of the 
variability distribution, an uncertainty or confidence interval can be calculated (i.e. the uncertainty 
distribution). 

 

ECD SSD 

Figure 3: Probabilistic Ecological Risk Assessment (PERA) framework based on Exposure 
Concentration Distribution (ECD on the left) and Species Sensitivity Distribution (SSD on the 

right) along with their uncertainty band 

 
Not every assessment requires or warrants a quantitative characterization of variability and 
uncertainty. For example, it may be unnecessary to perform a probabilistic analysis when screening 
calculations show exposures or risks to be clearly below levels of concern (and the screening 
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technique is known to significantly over-estimate exposure). As another example, it may be 
unnecessary to perform a probabilistic analysis when the costs of remediation are low. 
Often, a "tiered approach" may be helpful in deciding whether PERA can add value to the 
assessment and decision. In a tiered approach, one begins with a simple screening level model and 
progresses to more sophisticated and realistic (and usually more complex) models only as warranted 
by the findings and value added to the decision. Throughout each of the steps of a tiered approach, 
soliciting input from each of the interested parties is recommended (EPA, 1997). PERA can be 
considered as such a higher tier approach. 
 
Probabilistic methods also have their weaknesses: more complex assessment, requirement of more 
data, difficult to communicate with stakeholders, difficult to validate… A large part of these 
weaknesses is surmountable. Another part is difficult to overcome, but also hold for conventional 
risk assessment. Probabilistic methods are not the only tool, but should be used in conjunction with 
other tools and other lines of evidence, such as field studies and incident data (Hart, 2001). 
 
This section depicts the state of the art on the first (probabilistic) steps towards a full PERA. It is 
divided into four parts: the current state-of-the art of probabilistic exposure, effects and risk 
assessment and how these can be refined in space (and time). This structure is application-driven. 
The state-of-the art on statistical, modelling and simulation techniques is not discussed here. Rather, 
they are spread out over all subsequent chapters (mostly the methods sections) where needed. 
Because the goals of this thesis are methodological, the structure of the dissertation is methodology-
driven. 
 
 

2.3.1. Probabilistic Exposure Assessment: State-of-the-Art 
 
Probabilistic exposure assessment tries to predict or measure the environmental or exposure 
concentration of a chemical under study (see Figure 1 left and Figure 3 left) by using probabilistic 
techniques. The exposure assessment field is mainly characterised by prediction models. 
Consequently, uncertainty and/or variability propagation simulation techniques are more common 
in a probabilistic assessment. Exception is for example the uncertainty and variability estimation 
based on a large monitoring database in Govaerts et al. (2001). 
 
There are no real methodological developments since most propagation techniques are already well 
studied and common in other fields. In a propagation method, information on the input is passed on 
through an exposure model to the output. The two most popular techniques are the Monte Carlo 
analysis and the (rather recent) probability bounds analysis. Probability bounds analysis is a 
combination of probability theory and interval analysis. Every variable is specified by a lower and 
upper bound instead of a probability distribution as in Monte Carlo analysis. Technical details on 
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how the techniques work can be found in Chapter 3.1. Several examples are given in Table 1. For 
each study, it is shown whether uncertainty and/or variability and correlations were considered. 
Below, some examples are discussed in more detail. 
 
A first example is the Monte Carlo engine used in GREAT-ER (Geo-referenced Regional Exposure 
Assessment Tool for European Rivers). GREAT-ER is a (aquatic) chemical exposure prediction 
tool for use within environmental risk assessment schemes (Feijtel et al., 1997). GREAT-ER 1.0 
calculates the ECDs of consumer “down-the-drain-chemicals” in surface waters, for individual river 
stretches as well as for entire catchments. The system uses a Geographical Information System 
(GIS) for data storage and visualisation, combined with simple mathematical steady-state models 
for prediction of chemical fate (Schowanek et al., 2001). The Monte Carlo takes into account 
seasonality of the determinants and parameter uncertainty (Boeije et al., 1997). Seasonality deals 
with major environmental variation throughout the year(s). Parameter uncertainty deals with the 
difficulties to estimate model parameters, and with the inherent variability of specific processes. 
Unfortunately, these variability and uncertainty are not treated separately in the Monte Carlo 
analysis making the ECD output difficult to interpret. 
 

Table 1: Examples of case studies in probabilistic environmental exposure assessment 

Reference Technique Varia-
bility? 
(ECD) 

Corre-
lations? 

Uncer-
tainty? 

Second 
order? 

(Boeije et al., 1997) Monte Carlo Yes Yes Partly* No 
(Ritter et al., 2000) ‘Joint probability method’ Yes No No No 
(Matthies & 
Berding, 2001) 

Monte Carlo Yes Unknown Partly* No 

(Giri et al., 2001) Monte Carlo Partly No Partly* No 
(Pawlisz et al., 
2001) 

- Monte Carlo 
- Probability bounds 

analysis 

Yes Unknown Yes Yes 

(Regan et al., 2002) - Monte Carlo 
- Probability bounds 

analysis 

Yes No Only 
Bounds 

Only for 
prob. 
bounds 
analysis 

(MacLeod et al., 
2002) 

- Monte Carlo 
- First order analysis 

Partly No Partly* No 

(Warren-Hicks et 
al., 2002a) 

Monte Carlo Yes Yes Partly* No 

* Partly means the uncertainty of some input parameters was not considered  
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Probability bounds analysis and second order Monte Carlo, both uncertainty and variability 
propagation techniques, were used in a case study on Blue Tits exposed to chlorpyrifos in apple 
orchards by Pawlisz et al. (2001). The case study application indicated that the major strengths of 
both techniques are their ability to identify the most important and reducible sources of uncertainty 
and to express analyst confidence about risk predictions. 
 
Regan et al. (2002) investigated the exposure uncertainty using Monte Carlo analysis and 
probability bounds analysis. Unfortunately, they compared apples with oranges: a one-dimensional 
Monte Carlo (describing variability) with a two-dimensional probability bounds analysis 
(describing variability and uncertainty). They believe that probability bounds analysis is most useful 
as a tool to identify the extent of uncertainty in model application. However, they did not compare 
this with a two-dimensional Monte Carlo analysis. 
 
There is, clearly, an increasing trend in the use of ECDs. Nevertheless, there are still some 
drawbacks related to the use of uncertainty and variability propagation methods: 

• Not all Monte Carlo simulations examples in Table 1 separate uncertainty and variability. 
Some recognize the need to distinguish both but eventually do not do it. A first order or one-
dimensional Monte Carlo simulation can only propagate variability or uncertainty, but not 
both at the same time without having difficulties with interpreting the output distribution. For 
this, a second order or two-dimensional Monte Carlo simulation is needed. 

• Not all propagation methods account for the correlations between the inputs (see Table 1). 
Vose's (1996) 'cardinal rule of risk analysis modelling' is "Every iteration of a risk analysis 
model must be a scenario that could physically occur". If e.g. a high river flow is selected ad 
random, then a low temperature will be more likely than a large one if the river flow is 
highly negatively correlated with the temperature. Therefore, one of the restrictions to be 
placed on the model is to recognise inter-dependencies between its uncertain components. It 
is possible to simulate jointly distributed random variables in which correlations may exist. 

• In practice, Monte Carlo is sometimes wrongly applied or the output is insufficiently 
interpreted. Let us take GREAT-ER, an exposure model with a Monte Carlo engine, as an 
example. GREAT-ER predicts ECDs. These distributions are difficult to interpret because 
probability distributions cannot be assigned to all input variables and parameters (even very 
sensitive parameters as the chemical consumption rate) due to software limitations and 
mixing up of uncertainty and variability. This makes the output distribution difficult to 
interpret. 

These issues are addressed in Chapter 3.1. 
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2.3.2. Probabilistic Effects Assessment: State-of-the-Art 
 
Effect models or ecotoxicity data can be used to construct a Species Sensitivity Distribution (SSD). 
Some examples of effect models are Debtox (Kooijman & Bedaux, 1996), QSARs (Quantitative 
Structure Activity Relationships), BLM (Di Toro et al., 2001) … Only few developments can be 
found on the use of propagation techniques and effect models in order to determine SSDs. One 
example is Fuchsman et al. (1999). They developed a probabilistic model to predict effects 
threshold concentrations for chlorinated benzenes in sediment. 
 
However, this domain is mainly data driven and consequently characterised by statistical 
developments and applications in the estimation of the variability and uncertainty based on toxicity 
data. This section only focuses on the statistical developments. Numerous applications can be found 
in literature (e.g. Posthuma et al. (2002)). 
 
Since SSDs were originally proposed to derive environmental quality standards in the late 1970s 
and mid-1980s in the United States and Europe, respectively, their importance in ecotoxicity 
evaluations has steadily grown. Since its origin, intensive discussions have taken place on 
principles, statistics, assumptions, data limitations, and applications (Posthuma et al., 2002). The 
history of SSD approaches can be found in Van Straalen & van Leeuwen (2002) and Suter II 
(2002). 
 
The basic assumption of the SSD concept is that the sensitivities of a set of species can be described 
by some statistical distribution. The available ecotoxicological data are seen as a sample from this 
distribution and are used to estimate the parameters of the SSD. In parametric methods, the mean 
and variance among the test species are used to calculate a concentration expected to be safe for 
most species of interest, which can be used to set an environmental quality criterion. A more recent 
application is the use of SSDs in ERA. 
 
A SSD can be visualised as a cumulative distribution function (see Figure 4 and Figure 3 right). 
This is the integral of an associated probability density function. The cumulative distribution 
function curve follows the distribution of the sensitivity data obtained from ecotoxicological testing, 
plotting effect concentrations derived from acute or chronic toxicity tests, for example LC50 values 
and No Observed Effect Concentrations (NOECs), respectively. The number of data to construct 
SSDs varies widely, between few data at all (for many chemicals) to more than 50 or 100 sensitivity 
values (for a few chemicals). It is evident that the number of data is highly important for the 
derivation of the SSD, and for conclusions based on them. 
 
The most common current approach is to derive the Predicted No Effect Concentration (PNEC) 
from the 5th percentile of SSD (EU-TGD, 1995) as shown in Figure 4. Historically that value is 
known as Hazardous Concentration at p-protection level or HCp.  A cut-off percentage p is chosen 
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(to protect 1-p percent of species), and the desired “safe” concentration HCp is calculated. The 5th 
percentile of a chronic toxicity distribution has been chosen in the earliest methods as a 
concentration that is protective for most species in a community (namely 1-p %), but the value of p 
is a policy decision, not science. In popular use of the method, the complementary value of p has 
become known as the 95% (100-p) protection criterion. 
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Several techniques exist to estimate variability and (sampling) uncertainty in a data set. An 
overview of uncertainty and (inter-species) variability estimation techniques applied in the 
ecotoxicology field is given in Table 2.  
 

Table 2: Literature overview of SSD case studies with sampling uncertainty in probabilistic 
ecological effects assessment 

Reference Method for confidence 
interval estimation 

SSD 
Distribution** 

Plotting 
position
*** 

(Kooijman, 1987) Not found Loglogistic  
(Erickson & Stephan, 1988) Not found Triangular (on log-

transformed data) 
 

(Van Straalen & Denneman, 1989) Not found Loglogistic  
(Wagner & Løkke, 1991) Not found Lognormal  
(Aldenberg & Slob, 1993) Classical statistics Loglogistic  
(Jagoe & Newman, 1997) Nonparametric 

bootstrapping (resampling)
 Mean 

(Aldenberg & Jaworska, 2000) Classical and Bayesian 
approaches 

Lognormal Hazen 

(Newman et al., 2000) Classical statistics Gompertz = 
Weibull 

 

(Newman et al., 2000) Nonparametric 
bootstrapping (resampling)

 Mean 

(Shao, 2000) Bootstrapping and 
maximum likelihood 
method 

Burr type III  

(Van Der Hoeven, 2001) Nonparametric method  Mean 
(Grist et al., 2002) Nonparametric 

bootstrapping (resampling) 
with BC(a) CI* 

 i/n 

(Grist et al., 2002) Bootstrap regression Loglogistic i/n 
* BC(a) CI: Bias Corrected (and accelerated) Confidence Interval 
** SSD Distribution: this is the assumed probability distribution for parametric 
*** Plotting position refers to the way cumulative probabilities are calculated (will be discussed in 
detail in Chapter 3.2) 
 
This area of quantitative risk analysis is currently an active area of research, but mainly methods 
from classical statistics, such as bootstrap (Davison & Hinkley, 1997) (Frey & Rhodes, 1998) or 
maximum likelihood estimation (Frey & Burmaster, 1997), have been applied so far, with an 
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emphasis on parametric analyses. Parametric bootstrapping and maximum likelihood methods were 
found to produce similar results (for sample sizes 5, 10 and 20) (Frey & Rhodes, 1998). Aldenberg 
& Jaworska (2000) compared Bayesian and classical approaches for the Gaussian (normal) 
distribution (for several sample sizes). Despite largely different numerical schemes, both 
approaches lead to identical answers. Jagoe & Newman (1997) compared the nonparametric 
bootstrapping (resampling) with the maximum likelihood method (assuming lognormal distributed 
data). The parametric method was found to be superior to the resampling, however only in the case 
of lognormally distributed data. As stated by Newman et al. (2000), clear advantages are to be 
gained by using the non-parametric bootstrap methodology to generate HCp estimates, because no 
assumptions have to be made on underlying distributions. However, their insightful article only 
used the basic bootstrap technique (for sample sizes larger than 20). Grist et al. (2002) describe a 
hybrid bootstrap regression approach. They found that this method can yield a substantially 
different estimate for the SSD when compared with both the basic nonparametric bootstrap by 
Newman et al. (2000) and the more frequently used parametric approaches. So far, not all 
techniques have been compared for small data sets (e.g. sample size = 20 or less). 
 
There is, clearly, an increasing trend in the use of SSDs and their methods to estimate uncertainty. 
This is already a large improvement compared with the deterministic effects assessment, which can 
still be a useful, screening tool. Nevertheless, the current methods for estimation of uncertainty and 
inter-species variability still have statistically related drawbacks. Note that only the drawbacks 
relevant for this thesis are listed and most of them were also described by Hart (2001): 

• As is clear from Table 2, several techniques can be used to estimate variability and 
uncertainty: bootstrapping, classical and Bayesian approaches. Most of these techniques or 
their properties are asymptotic, i.e. they are valid if the sample size tends to infinity. In 
practice, data sets on toxicity tests are scarce and if available often only at small sample 
sizes. Consequently, this raises the question: “Given small sample sizes, which techniques 
are most suitable and should be used for estimating the 5th percentile (or HC5) from SSDs?” 

• As is clear from Table 2, both parametric and nonparametric methods have been proposed 
and used. Both types give different results for the same estimator (HC5 in this case). This 
raises the question: “Should parametric (and if so which distribution type) or nonparametric 
techniques be used for SSDs at small sample sizes?” 

• In addition, none of the papers in Table 2 (except Jagoe & Newman (1997) and Shao 
(2000)) performed a simulation study in which important concepts as coverage and bias 
were tested to assess the reliability of their proposed method (both concepts will be 
explained in Chapter 3.2). 

• Both mean and Hazen plotting have been proposed and used (see Table 2). Again, both give 
different results. Which plotting is the most accurate and should be used? 

• In Table 2, only inter-species variability and sampling uncertainty due to selecting species 
from a community is considered. There are more sources of uncertainty and variability. 
Until now, no real proposals are made in literature to include inter-laboratory variability, 
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intra- and inter-species variability into one single SSD reflecting all inherent natural 
heterogeneities (i.e. hierarchical variability). In addition, one might be interested in an 
uncertainty estimate as well. For this, all sources of sampling error need to be included in an 
uncertainty band around the SSD. 

These issues are addressed in Chapter 3.2 and 3.4. Not all drawbacks of the use of SSDs are 
described here. Only the more statistically related problems are dealt with. Other drawbacks can be 
found in e.g. Forbes et al. (2001) and Posthuma et al. (2002). 
 
One of the other remaining issues in SSD determination is the choice of sample size. The choice of 
an appropriate sample size is an essential component of any experimental design. Two important 
considerations need to be made to determine the appropriate sample size. First, the accuracy and 
scientific reliability of the method to estimate the 5th percentile should be assessed (relevance of 
parameters, sampling strategies, availability and representativeness of toxicity data both in terms of 
number and kind of species and taxonomic groups). Some methods cannot be applied at small 
sample sizes (say < 20). Second, the desired level of precision should be defined and assessed. 
Several papers (see Table 3) have already been published on the determination of a minimum or 
optimal sample size for SSDs. However, each researcher uses his/her own considerations. 
 

Table 3: Overview of proposals on minimum or optimal sample size for SSDs (Species Sensitivity 
Distributions), together with the criterion considered to obtain that size (consideration 1: the level 
of scientific reliability, consideration 2: the desired level of precision in the estimation) 

Reference Consideration Minimum/optimal sample size 
(Stephan et al., 1985) Unknown 8 
(van Leeuwen, 1990) 2 5 
(Baker, 1994) Unknown 4-8 
(Cowan et al., 1995) 1 20 
(Solomon, 1996) 1 9 
(Roman et al., 1999) Both No proposal 
(Vega et al., 1999) 1 10 
(Newman et al., 2000) 2 15-55 
(Van Der Hoeven, 2001) 2 No proposal 
(Wheeler et al., 2002) 1 10 
 
Consequently, different sample sizes are proposed depending on the used criterion and method (in 
an often incomplete analysis). This makes it extremely difficult to compare several proposals on 
sample size. In addition, a whole range of the minimum/optimal sample sizes is proposed for SSDs 
(see Table 3). There is a need for a proper, standardised and scientifically sound procedure to 
determine a minimum sample size. This issue is addressed in Chapter 3.3. 
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2.3.3. Probabilistic Risk Characterisation: State-of-the-Art 
 
First, the methodological developments of probabilistic risk characterisation in literature will be 
discussed. Second, some applications in literature will be mentioned. Finally, the drawbacks of the 
current methodological and practical developments are discussed. 
 

2.3.3.1. Probabilistic Risk Characterisation Methods: State-of-the-Art 
 
The characterisation of the risk of toxicants to species, when both EC and SS are uncertain and 
variable is the central issue in PERA (Aldenberg et al., 2002). The methodology focuses on 
cumulative distribution function-type probability plots of both the ECD and the SSD and is well 
developed (Cardwell et al., 1999), (Solomon et al., 1996), (Solomon et al., 2000), (Solomon & 
Takacs, 2002), (Giesy et al., 1999), (Giddings et al., 2000), (Warren-Hicks et al., 2002). The 
calculation of a probabilistic risk can be done in many ways. The overlap between the EC and SS 
probability density functions, as well as between the respective cumulative distribution functions, 
have both been suggested as a measure of this risk (cf. Solomon et al. (2000)). However, such 
graphical measures of risk can be defined exactly. 
 
Cardwell et al. (1993) plotted cumulative distribution functions of the ECD and of SSD for chronic 
and acute toxicity over log concentration. The cumulative probability of the SSD expresses the 
percentage of species affected, and the cumulative probabilities of the ECD are converted to 
probabilities (%) of exceeding certain log concentrations. An example of an ECD and a SSD is 
shown in the left panel of Figure 5. 
 
Because risk assessment considers both likelihood of EC and likelihood of SS, risk can be 
expressed as a joint probability, for example, that n% of species will be affected x% of the time or 
in y% of the locations, depending on the type of exposure data collected. These probabilities can be 
expressed as the probability of exceeding a fixed criterion on the SSD, such as, for example, the 
10th percentile of the distribution of all species or a distribution of inherently more sensitive species. 
Another method of presenting these joint probabilities is in the form of a Joint Probability Curve 
(JPC). This format was suggested in the AERA program (The Cadmus Group, 1996), recommended 
for displaying risks by the Aquatic Working Group of ECOFRAM (ECOFRAM, 1999). The 
derivation of the JPC is relatively simple and offers a useful tool for communication of risks as it 
allows what-if questions to be addressed and gives the risk assessor and risk manager a method for 
assessing the effects of changes in assumptions, such as the choice of a different percentile from the 
species affected. 
The plotting of joint probabilities come in graphs called risk distributions or risk distribution 
functions (Warren-Hicks et al., 2002), and joint probability curves, namely exceedance profile plots 
(ECOFRAM, 1999), (Giesy et al., 1999), (Solomon et al., 2000), (Giddings et al., 2000), (Solomon 
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& Takacs, 2002) or cumulative profile plots (Aldenberg et al., 2002). Therefore, JPCs come in two 
forms: either as a graph of ECD exceedance against fraction of species affected (i.e. cumulative 
probabilities of SS), or as a graph of fraction of species affected against cumulative probabilities of 
EC. The first is called an Exceedance Profile Plot (EPP) (Giesy et al., 1999), and involves plotting 
one minus the cumulative probability of the ECD against the cumulative probability of the SSD for 
any given concentration. The second JPC curve results from plotting the cumulative probability of 
the SSD on the ordinate against the cumulative probability of the ECD on the abscissa for any given 
concentration. The latter JPC plots are called Cumulative Profile Plots (CPP). Both JPCs represent 
the same risk curves; they are just different ways of visualisation. The EPP is more common but the 
CPP is probably easier to draw and interpret than the EPP, since it only involves cumulative 
probabilities (Aldenberg et al., 2002). An example of a JPC - CPP is plotted in the right panel of 
Figure 5. 
 
 

 

Figure 5: Exposure C
and Joint Probability C

 
The Area Under the Curv
toxicant to species (Solom
to minimise. 
 
There are also other met
methods mathematically
Cardwell et al. (1999), 
distribution curves in th
2002), as well as the AU
of some log EC to excee
reliability engineering. T
ECD
oncentration D
urve (JPC) (ty

e (AUC) of a 
on et al., 200

hods for risk c
 and conclude
Van Straalen’s
e WERF meth
C of JPCs are 
d some log SS
he graphical i
SSD
 

 

istribution (ECD), Species Sen
pe EPP: Exceedance Profile P

Curve (AUC) 

JPC is considered as a numer
0), (Solomon & Takacs, 2002

haracterisation. Aldenberg et 
d that the discrete summati
 ecological risk (1990), the 
odology (Solomon & Takacs
all numerically equal to, and m
, as originally implemented b
nterpretation of this risk is th

21 
JPC
sitivity Distribution (SSD) 
lot) with its Area Under the 

ical measure of the risk of the 
), which a risk manager wants 

al. (2002) compared different 
on for the expected risk of 
numerical integration of risk 
, 2002) (Warren-Hicks et al., 

ay be interpreted as, the risk 
y the probability of failure in 
e AUC of the product of the 



Part 2 

ECD cumulative distribution with the SSD probability density function, or alternatively, the AUC 
of the product of the ECD probability density function with the SSD cumulative function. 
 
In addition, Aldenberg et al. (2002) developed a probabilistic risk look-up table when both ECDs 
and SSDs are (log)normally distributed (Table 5.3 in Aldenberg et al. (2002)). To avoid tabulating 
four parameters to determine the probabilistic risk (mean and standard deviation of EC and SS), the 
SSD can be standardised and the ECD can be scaled to the SSD. In this way, a two-parameter 
dependent probabilistic risk is obtained. 
 

2.3.3.2. Some Probabilistic Risk Characterisation Applications 
 
The above developments in PERA increase in attention and are more frequently used. To illustrate 
this, Table 4 gives an overview of some applications found in literature. For each case study, it was 
checked what kind of risk characterisation method is used and if an uncertainty or confidence 
interval is calculated. In studies where multiple methods/tiers are presented or used, the most 
advanced one is described. Note that in most references it was not the main purpose to assess the 
risk characterisation method itself. 
 

Table 4: Non-exhaustive literature overview of PERA case studies 

Reference Risk characterisation method Risk Uncertainty? 
(Van Straalen, 1990) Quantitative risk calculation No 
(Warren-Hicks & Moore, 1995) Semi-quantitative Semi-quantitative 
(Solomon et al., 1996) Quantitative overlap No 
(Manz et al., 1999) Quantitative overlap No 
(ECOFRAM, 1999) JPC No 
(Cardwell et al., 1999) Some type of JPC Qualitative 
(Moore et al., 1999a/b) Risk function Qualitative 
(Giddings et al., 2000) JPC Qualitative 
(Campbell et al., 2000) Probabilistic risk quotient No 
(Solomon, 2000) JPC No 
(Duvall & Barron, 2000) Probabilistic risk quotient Semi-quantitative 
(EPA, 2001) Probabilistic risk quotient/ JPC Yes 
(Maund et al., 2001) Probabilistic risk quotient but based on 

SSD and an ECD point estimate 
No 

(Aldenberg et al., 2002) Mathematical Risk framework Qualitative 
(Poletika et al., 2002) Qualitative overlap No 
(Regan et al., 2002) Probabilistic hazard quotient but based 

on ECD and a ‘SSD’ point estimate 
Only bounds 

(Schwacke et al., 2002) Risk = P(EC) * P(SS|EC) Yes 
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2.3.3.3. Drawbacks of the Current Probabilistic Risk Characterisation Methods 
 
There is, clearly, an increasing trend in the use of more quantitative, realistic risk characterisation 
methods. This is already a large improvement compared to the deterministic risk quotient method, 
which is still a useful screening tool. Nevertheless, the current probabilistic risk characterisation 
methods still have drawbacks. 

• Sometimes (especially in human health risk assessment), only ECD (or only SSD) is 
considered and both the variability of the EC and SS are not accounted for fully. 

• The probabilistic risk lookup table of Aldenberg et al. (2002) is, unfortunately, only valid 
for (log)normal distributions. It is shown above that other distribution types (such as Pareto) 
may be needed for risk assessment purposes. 

• Nonparametric methods have not yet been used in the risk characterisation although it is 
shown above that they can be useful as well. Moreover, not all risk characterisation methods 
presented above are capable of dealing with nonparametric distributions. 

• The JPC and AUC methodology, developed in ECOFRAM (1999) can be applied to many 
types of distributions but is unfortunately, although relatively easy to construct and 
calculate, sometimes difficult to understand and interpret by decision-makers and risk 
managers. This was my personal experience at a SETAC Pellston workshop on the 
application of uncertainty analysis to ecological risks of pesticides (24 February until 1 
March 2002, Pensacola, Florida, USA). 

• Some attempt to calculate a probabilistic risk quotient. In short, a probabilistic risk quotient 
is (as in the conventional risk quotient) the ratio of the EC and SS, but EC and SS are now 
treated as probability distributions. Maund et al. (2001), for example, only consider the SS 
as a probability distribution in the probabilistic risk quotient. Although available, the EC is 
reduced to a point estimate. Campbell et al. (2000) and EPA (2001) on the other hand 
successfully calculated a complete probabilistic risk quotient. 

• Almost no literature sources calculate an uncertainty or confidence interval on their risk 
estimate although many acknowledge the need to distinguish between uncertainty and 
variability. 

• Consequently, little attention is given to the visualisation of the risk and its uncertainty 
interval. 

 
Note that only the drawbacks relevant for this thesis are listed. A solution for these problems will be 
investigated in Part 4. 
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2.3.4. Refining the PERA in Space (and Time) 
 
Currently, risk assessments, especially those for regulatory decisions are done for generic situations 
determined by a set of default values. However, the spatial and temporal variability of exposure and 
effect, for instance, can be quite high. Spatial variability in chemical concentrations arises from 
many factors, including the mechanism of contamination, physical and chemical dilution and 
transformation processes, and physical characteristics of the site (Cullen & Frey, 1999). Temporal 
variability in chemical concentrations may arise from for example wind erosion, leaching and 
bioaccumulation, which may result in concentrations in predatory fish that increase with time. For 
example in Belgium alone, atrazine concentrations in surface water range from 50 ng/l (detection 
limit) to more than 1 mg/l (Vandenbroele et al., 2000). This is a range of five orders of magnitude.  
The temporal variation of atrazine in Susquehanna River fall line (USA) is ranging from about 20 to 
250 ng/l (Foster et al., 2000). This can already be very high for some narrow tolerance range of 
aquatic organisms. Both diurnal and seasonal variability of Linear Alkylbenzenesulfonates (LAS) 
concentrations in river basins in Japan are well documented from previous studies (Takada et al., 
1992), (Takada et al., 1994). The lowest concentration (at noon) in the river Nogawa was a factor 4 
lower than the highest concentration (in the early morning). Similarly, LAS concentrations in the 
river Tamagawa in winter months are about 10 times higher than those in summer are. 
 
Contamination of surface waters from pesticide typically occurs in single or repeated pulses due to 
agricultural runoff, spray drift, or intermittent urban and domestic use. These input patterns 
typically result in a period of high concentration followed by a decline in concentration due to 
hydrological dilution, degradation, or partitioning from water to air or sediments. A second pulse 
may follow the first in a matter of days, or pulses may be separated by as much as a year or more. 
Standard laboratory toxicity tests using constant exposure concentration typically do not investigate 
the toxicity of time-varying or repeated exposures. The difficulty of estimating effects of realistic 
time-varying exposures from measurements made under constant exposure is often an important 
source of uncertainty in ecological risk assessment of pesticides (ECOFRAM, 1999). 
 
Consequently, incorporating spatial and temporal characteristics of the receiving environment could 
further increase realism. Geographical Information Systems (GIS) and dynamic assessments are 
useful tools to account for the spatial and temporal variability of the ECD and SSD. 
 
In literature, several examples can be found on exposure, effects and/or risk characterisation 
combined with GIS and/or dynamic analysis. GREAT-ER, for example, has already built in the idea 
of refining the exposure assessment by explicitly accounting for the spatial variability (geo-
referencing the ECD) (Feijtel et al., 1997). Instead of having one lumped ECD for an entire 
catchment (representing spatial and temporal variability), each river stretch has its own ECD (only 
representing temporal variability). A Monte Carlo analysis propagates the temporal variability of 
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the input parameters (such as the river flow). Other examples on GIS applications can be found in 
Röpke et al. (2002), Di Mauro et al. (2000), Giri et al. (2001), Havens et al. (1998)… 
For dynamic exposure modelling and monitoring, examples are given in Deksissa & Vanrolleghem 
(2001), Karman & Reerink (1998), ECOFRAM (1999). Examples on effects monitoring are given 
in Mancini (1983), Reinert et al. (2002), ECOFRAM (1999), Bonnomet et al. (2002), Milne et al. 
(2000), Karman & Reerink (1998) and examples on effects modelling can be found in Kooijman & 
Bedaux (1996), ECOFRAM (1999). 
 
Clearly, there is an increasing trend in the use of more GIS and dynamic tools in the risk assessment 
area. Nevertheless, these developments are just the first steps towards a full geo- or time-referenced 
PERA. 

• No study was found that presented a lumped exposure or effects distribution and then 
actually refined the spatial component of that distribution by geo-referencing the analysis. 
Nevertheless, many studies were found that include GIS in their exposure or effects 
analysis, albeit without this purpose of refinement.  

• Geo-referencing exposure, as in the above GREAT-ER example, is already a refinement of 
the exposure estimate. However, the real benefit of geo-referencing would be to geo-
reference the effects as well. In this way, risk will be geo-referenced and should therefore be 
more refined and realistic. 

• While GIS systems provide powerful tools for spatial analysis, their capabilities for complex 
and dynamic analysis are limited. Traditional models, on the other hand, are powerful tools 
for complex and dynamic situations but they often lack the intuitive visualisation and spatial 
analysis functions that GIS offers. Obviously, the integration of GIS and simulation models, 
together with the necessary databases and expert systems should make more powerful, easy-
to-use and easy-to-understand risk information systems (Fedra, 1998). 

The main focus in this thesis is to prove the usefulness of refining the PERA by explicitly 
accounting for the spatial (and temporal) characteristic of the exposure, effects and risk. This idea is 
further explored in Part 5. 
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2.4. Proposal Improved Probabilistic Ecological Risk Assessment 
Framework & Outline of this Thesis 

 
Based on the conventional ERA and the first developments in the PERA, new overviews of geo-
referenced PERA are proposed in this section. This section is also the guide that links all chapters of 
this dissertation. First, an overview of the PERA framework is given. Second, geo-referenced 
PERA is situated as one particular level of detail in a tiered framework. These overviews are 
developed to provide clarity and structure in the current set of several statistical methods and 
mathematical models in PERA literature. 
 
Two different approaches can be used to determine the Exposure Concentration Distribution (ECD) 
and the Species Sensitivity Distribution (SSD). Data from either measurements in the environment 
or toxicity tests can be used directly (see Figure 6, right side). The alternative is to use prediction or 
extrapolation models, especially in case of new chemicals (see Figure 6, left side). Examples of 
exposure models are GREAT-ER (model for point-source emissions), PRZM-EXAMS (model for 
pesticide fate), E-USES… Examples of effect models are QSARs (Quantitative Structure Activity 
Relationships), DebTox, BLM (predicts toxicity based on bioavailability)… In practice, exposure 
models are more common for ECD determination and effect data are more common for SSD 
determination. Obviously, this may shift in the future. 
 
A distinction is made between statistical methods for 

• Propagating uncertainty and variability through mathematical models (open arrows in Figure 
6): used in the effects and exposure modelling (discussed in Chapter 3.1) but also in the risk 
characterisation (discussed in Chapter 4.1). 

• Characterising data uncertainty and variability (full arrows in Figure 6): used in the ECD 
and SSD estimation based on measured data (discussed in Chapters 3.2, 3.3 and 3.4) but also 
for estimating variability and uncertainty of input parameters and variables needed for 
exposure and effect modelling. 

 
In literature, researchers focus too much on either ECD or SSD determination in a PERA. This is 
also reflected by the structure of the previous sections. However, the same statistical techniques are 
used in the ECD or SSD determination. Therefore, the structure of this dissertation will be 
methodology driven. It is true, however, that most studies on probabilistic exposure assessment deal 
with uncertainty and variability propagation because models are used more often (see Figure 6, top 
left). And most studies on probabilistic effects assessment deal with uncertainty and variability 
estimation (see Figure 6, bottom right). 
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Figure 6: Proposed framework of probabilistic ecological risk assessment (EC: Exposure 
Concentration, SS: Species Sensitivity) 

 
To provide clarity and structure, Figure 7 shows an overview of several tiers (of different level of 
detail) of PERA. In the top panel, the conventional ERA is shown. A random variable (be it the 
exposure concentration or the species sensitivity) is considered as a crisp value. Uncertainty is 
partly ignored, partly considered through safety or assessment factors. The second panel represents 
the PERA. PERA is an extension of the conventional approach since both the inherent variability 
and uncertainty (shown as a grey band) is explicitly quantified and assessed. However, all types of 
variability are eventually lumped in a single distribution. 
 
In the next panel/tier, the spatial variability is explicitly accounted for. The random variable X is 
considered for every spatial location (called here geo-referencing). As a result, the variability 
distribution no longer includes spatial variability but only temporal and other types of variability. 
This leads to a large number of geo-referenced distributions but with smaller variances. The geo-
referencing tier is dealt with in Chapter 5.1.  
 
Time-referencing would further increase the level of detail and realism, as time-specific information 
would be accounted for. This is represented in the lower panel of Figure 7. Time related information 
could be formatted in two ways in an attempt to capture the temporal variability. First, time series 
can be used as such or, second time series can be summarised into concentration-duration-frequency 
surfaces. These surfaces are three-dimensional plots with on the three axes the concentration, the 
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duration of an exceedance above a particular concentration and the frequency of an exceedance 
above a particular concentration with a particular duration. Time-referencing or dynamic ERA is 
not part of the aim of this thesis. Rather, some preliminary developments are discussed and 
explored in Chapter 5.2. 
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Figure 7: Different tiers in ERA (Ecological Risk Assessment), (EC: Exposure Concentration, SS: 
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Chapter 3.1 
 
Uncertainty & Variability Propagation 
 
 
 
In Probabilistic Ecological Risk Assessment (PERA), propagation of uncertainty and variability is 
needed when modelling is part of the assessment. The open arrows in Figure 6 of Part 2 indicate 
where propagation is needed: to model the Exposure Concentration Distribution (ECD) and Species 
Sensitivity Distribution (SSD) and also for risk characterisation. In a propagation method, 
information on the input uncertainty and variability is passed on through a model to the output. 
 

3.1.1.  Selection of the Propagation Technique 
 
There are a variety of ways to propagate information about variability or uncertainty through a 
model. Here, three main analytical and simulation (approximation) methods are given: first-order 
error analysis, probability bounds analysis and Monte Carlo analysis. A good reference with an 
extensive overview of techniques is Cullen & Frey (1999). 
 
First-order error analysis is a method for propagating uncertainty or variability in the random 
parameters of a model into the model predictions. The method is based on first (and higher) order 
approximations of the model by Taylor series expansions of the model's equations. These methods 
are also called methods of moments because they utilise the mean, variance and higher moments of 
probability distributions. Moment methods, especially the first-order kind, are well suited to simple 
linear models, or ones that can be linearised around operating points without substantial errors. The 
accuracy of the method decreases as the model becomes more nonlinear. Complicated models that 
consist of a large number of equations (like large exposure models) cannot be evaluated using first-
order error analysis. 
The advantage of using first-order error analysis is that the relative contribution of each uncertain 
variable to the output uncertainty is known. This relative contribution can be used to prioritise data 
collection efforts to reduce uncertainty in the parameter. Another advantage is that the exact input 
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distribution is not required by statistical theory. The variances are combined through the equation, 
regardless of the input distribution. Therefore, the investigator does not need to spend much time 
worrying about the exact input distribution. The investigator only needs to know the variance of the 
random parameter (in the proper units), for the underlying theory to hold. However, the fact that 
only information regarding central moments is considered is also a drawback of these methods. 
Information regarding the tails of each input distribution, for example, is not specifically 
considered. Therefore, the selection of a probability distribution based upon the moments of the 
model output may not properly capture effects at the tails of the distribution, although it may be 
adequate for characterization of the central tendencies Cullen & Frey (1999). 
 
Probability bounds analysis is a related strategy for making probabilistic inferences in the face of 
uncertainty. It is a method for computing bounds on the distribution of a sum, product, or arbitrary 
mathematical expression, given only bounds on the distributions. Probability bounds analysis gives 
the same answer as interval analysis does when only range information is available. It also gives the 
same answers as Monte Carlo simulation does when information is abundant enough to precisely 
specify input distributions and their dependencies. Thus, it is a generalization of both interval 
analysis and probability theory (Ferson et al., in press). 
It is often possible to obtain bounds on a quantity. Moreover, bounds are often easier to compute 
than approximate estimates, which, in contrast, routinely require the solving of integrals. This 
simplicity of calculation extends to the combination of bounds. Some limitations of probability 
bounds analysis are that (1) bounds on a distribution cannot show what distribution is most likely 
within the bounds, (2) maintaining the optimality of answers may be hard when there are repeated 
variables or when there is a lot of empirical information about complex dependencies among the 
variables and (3) all outputs must be expressed in terms of cumulative probability (Ferson et al., in 
press). 
 
Finally, sampling methods are a good alternative. A very common sampling method for propagating 
variability or uncertainty is Monte Carlo simulation, in which random samples of parameters are 
selected according to their respective assigned distributions. Sampling methods have a high 
computational effort; but, with computers being more sophisticated and more easily affordable 
nowadays, this is hardly a critical issue anymore. The Monte Carlo method has distinct advantages 
because it is not limited to any particular set of assumptions about the nature of errors or their 
magnitude. The Monte Carlo simulation may not always be an efficient method for estimating error 
bounds on a prediction, but it may well be the most effective approach for exploring the 
mechanisms involved in propagating uncertainty and the factors involved in minimizing and 
controlling these uncertainties. Depending on whether variability, uncertainty or both variability 
and uncertainty need to be propagated, a first or respectively second order Monte Carlo simulation 
will be used. In this chapter, both techniques will be discussed and applied to some cases in the 
environmental risk assessment field. Since Monte Carlo is a well-known and studied technique, the 
innovating aspect will be the specific applications. 

30 



Uncertainty and Variability Propagation 

 

3.1.2.  First Order Monte Carlo Simulation 
 
In this first section, the first order or one-dimensional Monte Carlo is discussed. It propagates either 
uncertainty or variability if interpretation problems need to be avoided. 
 

3.1.2.1. Introduction 
 
Not all current exposure and effect modelling account for uncertainty or variability. The added 
value of accounting for uncertainty and variability is discussed in detail in Part 2. Sometimes, 
Monte Carlo analysis is used to propagate uncertainty or variability. In practice, Monte Carlo is 
sometimes wrongly applied or the output is insufficiently interpreted. Let us take GREAT-ER, an 
exposure model with a Monte Carlo engine, as an example. More information on the GREAT-ER 
model and its applications can be found in Part 2 and Chapter 5.1. GREAT-ER predicts exposure 
concentration distributions (ECDs). These distributions are difficult to interpret because in the 
software, probability distributions cannot be assigned to all input variables and parameters (even 
very sensitive parameters as the chemical consumption rate) due to software limitations. 
Furthermore, uncertainty and variability are mixed up. This last issue is further discussed in 3.1.3. 
 
In this chapter, two case studies were performed that illustrate Monte Carlo applications in the risk 
assessment field. The first one can be situated on the exposure side, more in particular modelling of 
the uncertainty of the ECD of the effluent of a Waste Water Treatment Plant (WWTP). Here, there 
is a need to determine a confidence interval on the probability of exceeding the legal effluent 
standards of a WWTP. The second one can be situated at the effects side, more in particular on the 
modelling of the temporal variability of the bioavailability of a metal determining the species 
sensitivity. 
 
The goal of this section is two-fold. First, the Monte Carlo technique needs to be programmed into a 
usable set of flexible software tools. For this, a proper methodology to account for correlations and 
a proper sampling technique needs to be selected. And second, the tool needs to be applied to the 
two discussed case studies. For this, it will also be shown how to correctly interpret the Monte 
Carlo output. 
 

3.1.2.2. Monte Carlo Simulation 
 
In the next paragraphs, the Monte Carlo methodology is described in detail. Specific attention is 
given to the pseudorandom number generator, how to simulate the probability distributions, several 
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sampling schemes and several ways of modelling correlations. The Monte Carlo was programmed 
in C++. 
 
Note that this general Monte Carlo methodology is in essence also the basis for other simulation 
techniques such as the bootstrap (this technique estimates uncertainty and variability in a data set) 
that will be discussed in upcoming chapters. 
 

3.1.2.2.1. The Monte Carlo Simulation Technique 
 
The Monte Carlo approach was developed by Stanislaw Ulam and John von Neumann to simulate 
probabilistic events for military purposes in 1946 (Frey & Li, 2001). The Monte Carlo principle is 
illustrated in Figure 1. The method has been extensively described in literature ((Cullen & Frey, 
1999), (Vose, 1996), (Hammersley & Morton, 1964)). For each model input that is considered to be 
a random variable, a probability distribution is specified. One random sample from each input 
distribution is selected, and the set of samples is entered into the deterministic model. The model is 
then solved, as it would be for any deterministic analysis. The model results are stored and the 
process is repeated until the specified number of model iterations (called here shots) is completed. 
Using Monte Carlo techniques, it is therefore possible to represent uncertainty in the output of a 
model by generating sample values for the model inputs, and running the model repetitively. Instead 
of obtaining a discrete number for model outputs as in a deterministic simulation, a set of output 
samples is obtained (Cullen & Frey, 1999). 
 

Monte Carlo
Simulation

Deterministic
Model

Deterministic

Input
Distributions

Results
Distributions

Discrete
‘Shot’

Discrete
Result

...

... Statistical
Results
Analysis

 
Probabilistic

Figure 1: Principle of Monte Carlo simulation 

 
Some guiding principles of good practice for use of the Monte Carlo simulation can be found in 
Vose (1996), Burmaster & Anderson (1994) and EPA (1997). 
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3.1.2.2.2. Pseudorandom Number Generator 
 
Simulation methods for dealing with uncertainty are often based upon the use of a random number 
generator. The random number generator should come as close as possible to the ideal of generating 
a series of truly independent random numbers, i.e. there must not be any correlation between 
successive random numbers. Computers essentially generate "pseudo"- random numbers, which 
explains why we would be able to predict a random number if given the preceding random 
numbers. In reality, therefore, these computer-generated pseudo-random numbers are not truly 
random, but they can be treated as such. 
 
Pseudorandom number generators typically have a 'random seed' or 'starting value' as an input. By 
changing the seed, one can change the sequence of random numbers obtained. However, if the same 
seed is used in two or more analyses, then the same set and sequence of random numbers would be 
obtained. This is particularly useful for checking the implementation of the Monte Carlo and the 
model output. 
 
The random number generator of Law & Kelton (1991) will be used here. Law & Kelton describe 
several tests to which a random number generator can be subjected to ascertain how well the 
generated numbers do (or can) resemble values of true independent and identically uniformly 
distributed random variates (between zero and one). There are two quite different kinds of tests. 
Empirical tests are the usual kinds of statistical tests and are based on the actual numbers produced 
by a generator. Theoretical tests are not tests in the statistical sense, but use the numerical 
parameters of a generator to assess it globally without actually generating any numbers at all. 
 

3.1.2.2.3. Simulating Probability Distributions 
 
Random samples of model input parameters are selected according to their respective assigned 
probability distributions. This can be done using various methods. Here, the inverse transform 
method was used. Monte Carlo simulation requires the generation of uniformly distributed random 
numbers between 0 and 1. This uniform distribution must be transformed into the assigned 
probability distribution of the input parameter. This is achieved by using an inverse cumulative 
distribution function. Indeed, for any given probability distribution (as in the top left plot in Figure 
2), it is possible to construct a cumulative distribution function (as in the top right plot in Figure 2). 
The inverse cumulative distribution function (as in the bottom right plot in Figure 2) has an abscissa 
with values ranging from zero to one, and an ordinate with values representing possible outcomes 
for the random variable of interest. Thus, uniformly distributed random numbers may be used to 
represent the percentile of the random variable for which a sample is to be generated. The sample 
values for the random variables are calculated using the inverse cumulative distribution function 
transformations based on the randomly generated samples. For the developed C++ tool, inverse 
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cumulative distribution functions were programmed for the uniform, triangular and the generalised 
extreme value distribution. 
 

 

Figure 2: Sampling probability distributions using the inverse transform (Cullen & Frey, 1999) 

 
Another method was used to generate random numbers for the normal distribution. The method can 
be found in Milton & Stegun (1970). Random samples of a lognormal distribution are obtained by 
transforming the lognormal distribution to the corresponding normal distribution, taking a normal 
sample from the latter, and then converting the obtained value back to the lognormal distribution. 
The transformation formulas between the parameters of a normal and a lognormal distribution are: 
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where  meanlog the mean of the (lognormally distributed) data 
 stdevlog  the standard deviation of the (lognormally distributed) data 
 µ  the mean of the log-transformed data 

σ  the standard deviation of the log-transformed data 
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Most statistical software packages have built in random number generators for a number of 
distribution types. 
 

3.1.2.2.4. Sampling Schemes 
 
A short overview of the most frequent sampling techniques is given here ((Cullen & Frey, 1999); 
(Vose, 1996)): crude Monte Carlo sampling, Latin hypercube stratified sampling, directional 
simulation with importance sampling and quasi-Monte Carlo sampling. 
 
Crude Monte Carlo sampling 
 
Crude Monte Carlo simulation is based on random sampling from the joint frequency distribution of 
the input variables as described in 3.1.2.2.3. To obtain a relatively close approximation of the 
theoretical frequency distribution, it is therefore necessary to take a large (huge) number of shots 
(e.g. 10000) from the input distribution. This technique results in very inefficient computations but 
if the number of shots is large enough, this technique will give accurate results. 
 
 
Latin Hypercube stratified sampling 
 
 
To reduce the number of Monte Carlo 
simulations, so-called stratified sampling 
techniques have been developed. These 
methods allow for a more efficient 
exploration of the input parameter space by 
dividing the input distributions into 
intervals, and sampling from these intervals 
rather than from the whole frequency 
distribution (see Figure 3). The most 
commonly used technique is known as the 
Latin Hypercube sampling. A much lower 
number of shots are needed to obtain the 
same accuracy as the crude Monte Carlo.  

Figure 3: Latin Hypercube Sampling 

But as with crude Monte Carlo sampling, the accuracy of the output is a function of the number of 
samples and no rules are available for choosing the number of shots. Only some suggestions (e.g. 
number of shots equal to 4/3 or twice the number of uncertain input parameters) are available and, 
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therefore, each modeller must check for convergence for the model and problem in question 
(Melching, 1995) (see also 3.1.2.2.6). 
 
Directional simulation with importance sampling 
 
Directional simulation with importance sampling, sometimes called weighted sampling, is mainly 
used when one is interested in a particular part of the distribution, for instance long tails (see e.g. 
Portielje et al. (2000)). In probabilistic risk assessment, distribution tails are very important. The 
main idea is to execute a heavier sampling in the regions that draw particular attention. This can be 
done in several ways. One way is to use Latin hypercube sampling with equiprobable intervals but 
to take a large number of samples from intervals of interest (e.g. intervals that represent the high 
percentiles of the input frequency distribution). After doing so the output distribution has to be 
corrected with a weight factor, but the prediction of the part of interest in the distribution is much 
more accurate. 
 
Quasi-Monte Carlo sampling 
 
Quasi-Monte Carlo techniques replace pseudo-random sequences with low-discrepancy sequences 
which have a more uniform behaviour (Fox, 1999). In a certain sense, Quasi-Monte Carlo methods 
combine the advantages of Monte Carlo and uniform lattice methods. In particular, fewer quasi-
random samples are needed to achieve a similar level of accuracy as obtained by using pseudo-
random sequences. 
 

 

Figure 4: Pseudo-Random Monte Carlo sampling (left) 
versus Quasi Monte Carlo sampling (right) 

 

3.1.2.2.5. Simulation of Correlations 
 
Vose's (1996) 'cardinal rule of risk analysis modelling' is "Every iteration of a risk analysis model 
must be a scenario that could physically occur". If e.g. a high river flow is selected ad random, then 
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a low temperature will be more likely than a large one if the river flow is highly negatively 
correlated with the temperature. Therefore, one of the restrictions that must be placed on the model 
is to recognise inter-dependencies between its uncertain components. It is possible to simulate 
jointly distributed random variables in which correlations may exist. 
 
Before going any further, it is worth explaining dependency, correlation and regression (Vose, 
1996). Consider X and Y as two correlated random variables. 
 

A dependency relationship in risk analysis modelling is where the sampled value from one variable 
(called the independent) has a statistical relationship that approximately determines the value that 
will be generated for the other variable (called the dependent). Its chief difference to correlation is 
that it presumes a causal relationship. 
 

Correlation is a statistic used to describe the degree to which one variable is related to another. 
Pearson's correlation coefficient is given by: 
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where cov(X,Y) is the covariance between random variables X and Y and s(X) and s(Y) are the 
sample standard deviations. Correlation can be considered to be a normalised covariance between 
the two data sets: dividing by the standard deviation of each data set produces an unitless index 
between -1 and 1. Correlation is frequently used alongside a regression analysis to measure how 
well the regression line explains the observed variations of the dependent variable. 
This correlation statistic should not be confused with Spearman's rank order correlation coefficient 
also used in this context. It uses the ranking of the data, i.e. what position (rank) the data points take 
in an ordered list from the minimum to the maximum values, rather than the actual data themselves. 
It is therefore independent of the distribution shapes of the data sets and allows the integrity of the 
input distributions to be maintained. This makes the Spearman's rank order correlation more 
interesting than Pearson's correlation. Thus, rank correlation is a measure of the strength of the 
monotonic relationship between two variables. Spearman's r is calculated as: 
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where n is the number of data pairs and ∆R is the difference in the ranks between data within a pair. 
A disadvantage of rank order correlations is the difficulty in selecting the appropriate correlation 
coefficient in case no observations are available. 
There are mathematical constraints associated with correlations. For instance, one variable cannot 
be strongly positively correlated with each of two variables that are themselves strongly negatively 
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correlated. Such constraints can be summarised by saying the matrix of correlations must always be 
a positive (semi) definite matrix. Many homegrown and even some commercially available 
software packages for Monte Carlo simulation do not check that the user's input satisfies this 
condition. If the correlations entered are the result of coherent empirical studies, this will not be a 
problem though. However, if results from different studies are mixed or hypothetical values for 
correlations are used, it may be important to check that the input corresponds to a feasible 
correlation matrix (Warren-Hicks & Moore, 1995). 
 

Regression is a mathematical technique used to determine the equation that relates the independent 
and dependent variables with the least margin of error. A line that passes as closely as possible 
through the data points represents a regression equation. The most common technique is that of 
least squares linear regression. This objectively determines the straight line (Y = aX + b) such that 
the sum of the squares of the vertical deviations of the data points from the line is a minimum. 
 
 
The presence of moderate to strong correlations will have little effect on the central portions of the 
output distributions but may have larger effects on the tails of the output distributions (Burmaster & 
Anderson, 1994). In probabilistic risk assessment, distribution tails are very important. Therefore, a 
proper methodology to account for correlations needs to be selected. Several techniques exist for 
modelling correlations in Monte Carlo simulation. Three of them were investigated in more detail. 
Method 1 is an exact correlation corrected sampling method. Method 2 is based on rank order 
correlation and correlation matrices and is an approximation technique. The third method offers 
more accurate but correspondingly more time-consuming and data-consuming techniques for 
dependency modelling. An example will be used to illustrate the 3 methods. Two variables Y and X 
are normally distributed with a mean and a standard deviation of respectively 200 and 160 for 
variable Y, and 5 and 2 for variable X. X and Y are linearly correlated according to the regression 
equation Y = 80*X - 200 with a correlation coefficient r of 80% (r2 = 0.64). 
 
Method 1: Restricted Pairing Techniques (Cullen & Frey, 1999) 
 
Conditional distributions are important in many model applications to environmental systems. 
Sampling of a dependent input variable Y from a conditional distribution is based on the Rosenblatt-
transformation. First, the independent variable is sampled. From a realization X' of the independent 
variable X, the conditional distribution function (given that X = X') of a dependent variable Y is 
calculated. From this conditional distribution function, the dependent variable is now sampled. 
Conditional distribution functions can be estimated from subsets of data of the dependent variable 
for each of a number of classes of the independent variable. 
 
If the marginal distribution of X is normally distributed, then the conditional distribution of Y has a 
mean (expected value) and a standard deviation of Cullen & Frey (1999): 
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where E(Y|x) is the expected value of Y conditional on x 
 µY is the mean of Y 
 r is the correlation coefficient 
 σY is the standard deviation of Y 
 σX is the standard deviation of X 
 σY|x is the standard deviation of Y conditional on x 
 
In the example, a random shot for X is 7.2528. This is the 87th percentile. The conditional 
distribution of Y has a mean (expected value) and a standard deviation: 
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A random sample from this conditional distribution with mean E(Y|x) and standard deviation σY|x is 
then 317.3632. 
 
Note that this exact method can easily be generalized to three or more normal variables X, Y, Z, … 
The correlated random variables are then found as: 
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where V are the eigenvectors of the variance-covariance matrix 

Λ is a diagonal matrix containing the eigenvalues of the variance-covariance matrix 
Q is a vector of standard normal random numbers (Q ~ N(0,I)) 

 
Method 2: Method of Iman & Conover (1982) 
 
This method of Iman & Conover (1982), used to generate rank order correlated input distributions, 
is often applied in literature (Cullen & Frey, 1999), (Janssens et al., 1992), (Vose, 1996), (Warren-
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Hicks & Moore, 1995). It is not an exact but an approximative method. The main advantage of this 
method is that a combination of several distribution types can be used. The technique is a two-step 
process. First of all, a set of n 'scores' is generated for each distribution to be correlated, where n is 
the number of shots that are to be run. Then these 'scores' are rearranged together so their ranks 
produce the desired rank order correlation. In the second step, the distributions to be correlated are 
all sampled n times and these sampled values are ranked. The ranks are then matched to the 'score' 
ranks from the first step to produce the sets of values that will be used for each shot in the 
simulation. Random samples are not determined per shot, but as a whole set. 
 
For the example, since random samples are not determined per shot, a number of Monte Carlo shots 
have to be specified, let's say 5. Several technical steps need to be followed (not discussed here in 
detail): sampling N values randomly from the standard multivariate normal distribution 
(uncorrelated) 

T
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53.282.152.142.385.3
39.069.199.029.00

, 

transform these uncorrelated multivariate normal samples to correlated samples by multiplying with 
the transformation-matrix found from a Cholesky-decomposition of the correlation matrix  

T
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8,01

6,00
8,01

18,0
8,01
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resulting in 
T









−
−−

83.126.070.182.131.2
37.069.199.029.00

, 

replacing the samples by their rankings, i.e. the smallest value gets rank 1, the largest gets rank N 
etc resulting in (this matrix is in fact part of an N x N permutation matrix) 

T









41235
41523

, 

sampling N values randomly from the uniform distribution (uncorrelated) 

  
T









98.087.073.027.025.0
96.088.079.052.017.0

and rearrange the sorted uniform samples, on basis of the random permutation matrix  
T









88.025.027.074.098.0
88.017.096.052.079.0

. 

These are 5 random shots from a uniform distribution, corrected according to their correlation. 
Following the cumulative normal distribution of X and Y, the 5 random correlated samples for X and 
Y can now be calculated by taking the inverse cumulative function of X for the first row and the 
inverse cumulative function of Y for the second row (as discussed in 3.1.2.2.3). 
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Method 3: The Envelope Method (Vose, 1996) 
 
The envelope method offers a more flexible way to model dependencies that is both intuitive and 
easy to control. It models the logic that the value of the independent variable is actually statistically 
determining the value of the dependent variable (see Figure 5). Its shortfall is that it requires 
considerably more effort than the two previous methods and is, therefore, only really used when the 
dependency relationship is going to produce a significant effect on the outcome of the model. 
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the bottom of the tree. 
 
The possibility of implementing a causal relationship is an advantage when a particular well-known 
relation exists between two variables. But, when the relationship is not causal or when the 
relationship is difficult to determine, samples below the minimum or above the maximum 
(extrapolation) can induce severe errors. In this case, it would be safer just to use a rank correlation 
coefficient as in method 1 and 2 instead of a doubtful regression equation. 
 
In the example, a random sample for X is 7.2528. A sample for Y is now determined as a random 
sample from a normal distribution with mean 7.2528*80 - 200 = 380.224 and standard deviation 
120. The sample is 263.050. 
 
Methods comparison 
 
1000 shots were generated for each method. The results are shown in Figure 7. All methods result 
in about the same scatter band. Method 2 will be used in the second case study and method 3 will be 
used in the first case study. 
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Figure 7: 1000 shots for two correlated variables according to 3 correlation 
sampling methods (r = 0.80) 
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3.1.2.2.6. Verification of the Necessary Number of Monte Carlo Shots 
 
There are a number of approaches that can be used to select the number of shots to reach certain 
accuracy. One approach is to plot the Monte Carlo output versus the number of shots. Figure 8 
shows such a graph for a Monte Carlo output (in this case the total number of exceedances of a 
standard). Only 100 shots are needed to stabilise the simulation outputs. The small instabilities at 
larger shots have a numerical cause. 
 

 

Figure 8: Convergence of the Monte Carlo output (for the 
exceedance frequency of the first case study) 

 
These plots were made in each Monte Carlo study of this PhD dissertation to assess the minimum 
number of shots. 
 
 

3.1.2.3. Case Studies 
 
In this section, two case studies demonstrate the use of uncertainty or variability propagation using 
Monte Carlo simulation. The first case study on uncertainty propagation was part of a project 
funded by Aquafin NV, the company responsible for the design, construction, operation and 
financing of the necessary infrastructure for sewage treatment in Flanders (Belgium). The second 
case study on variability propagation was part of the MSc. thesis of De Laender (2003). 
 
The main focus in both case studies is to illustrate the Monte Carlo simulation and the interpretation 
of the output. Minor attention is given to the accuracy of the model and its input parameters or 
variables. 
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3.1.2.3.1. Uncertainty Propagation in Waste Water Treatment Plant Modelling 
 
River water quality in Flanders (Belgium) has been dramatically bad during the past decades, 
because of the high degree of urbanisation, the industrial and agricultural pollution and insufficient 
basic treatment infrastructure. Almost no watercourses even met the lowest criteria set out in river 
master plans. One of the challenges Aquafin was facing is to upgrade the patrimonium of old 
municipal Waste Water Treatment Plants (WWTPs). These plants need to be retrofitted towards 
strict phosphorus and nitrogen removal consents. In 1991, when the European Directive for urban 
waste water treatment 271/91 for sensitive areas to eutrophication was introduced, only one-quarter 
of the Flemish waste water was treated in a WWTP. Moreover, the existing WWTPs did not comply 
with the present norms. 
 
Within the currently followed design/retrofit-procedure, deterministic dynamic models are used to 
evaluate different renovation scenarios on their merits. One of the remaining issues when dealing 
with these deterministic models is the degree of uncertainty linked to their predictions. In other 
words to what extent can model predictions be taken for reality? The combination of probabilistic 
modelling techniques with the currently available deterministic models (steady state or dynamic 
models) could provide the answer needed. By building a probabilistic shell around the deterministic 
models one could quantify the output uncertainty due to input uncertainty. 
 
The concrete goal of this case study is to determine the probability of exceeding the legal effluent 
standards of a WWTP. This percentage of exceedance should be accompanied by a confidence 
interval indicating the inherent uncertainty of influent characteristics and model parameters. 
Estimation of uncertainty allows WWTP managers (and operators) to choose whether to actively 
take measures or to conduct additional research. 
 
In literature, others also reported on the design of WWTP by combining a Monte Carlo simulation 
with a WWTP model. An overview is given in Table 1. Most authors don’t distinguish uncertainty 
and variability or account insufficiently for correlations. 
 
In this case study, the model consists of two parts (see Figure 9). The first part is a WWTP model. 
A denitrifying WWTP model inspired by the benchmark model described by Spanjers et al. (1998) 
was implemented in the WEST modelling and simulation software (Vanhooren et al., 2003). A 
more detailed description of the WWTP design can be found in Rousseau et al. (2001) and 
Rousseau et al. (2000). The biological treatment was simulated by means of the Activated Sludge 
Model N° 1 (ASM1) of Henze et al. (1987). Secondary sedimentation was simulated by a 
pointsettler. The second part of the model is a statistical analysis system in which the time series 
output of the WWTP model is interpreted. The statistical analysis results in concentration-duration-
frequency curves from which the time percentage of effluent standard exceedance is derived. This 
will be further discussed in Chapter 5.2. 
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Table 1: Literature overview of Monte Carlo applications on WWTP modelling 

Reference Type WWTP Type model Correlations 
based on: 

Distinction 
uncertainty/
variability? 

(von Sperling, 1996) Facultative 
ponds 

Steady-state/ ‘grey box’ Not 
mentioned 

No 

(Kops & 
Vanrolleghem, 1996) 

For use in 
activated sludge 
plant 

Dynamic but 
incomplete model 
(“only Monod growth”) 

Not 
mentioned 

Yes* 

(Dunn et al., 1998) Sewage 
treatment works 

Steady-state/ ’black 
box’ 

Rank 
coefficients 

No 

(Haas & Trussell, 
1998) 

Water 
reclamation 
plant 

Steady-state/ ‘grey box’ Correlation 
coefficients 

No 

(Cox, 2000) Activated sludge 
plant 

Steady-state/ ‘grey box’ Correlation 
coefficients 

No 

This case study Activated sludge 
plant 

Dynamic/ 
‘white box’ 

Regression 
relationships 

Yes* 

* because temporal variability is captured by the dynamic model and uncertainty is captured by 
Monte Carlo 
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Figure 9: Uncertainty propagation in waste water treatment plant modelling 

 
There are two input types: variables and parameters that are both uncertain (see Figure 9). The 
uncertainty distributions were estimated based on expert knowledge and literature data. 
 
Parameters are constant during one deterministic simulation. All parameters (heterotrophic and 
autotrophic growth rates and decay constants, hydrolysis rate, half saturation coefficient for 
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hydrolysis of slowly biodegradable substrate…) were described by a distribution (mostly triangular 
and truncated normal distributions). The truncation was necessary to avoid unrealistic negative 
values and was set at 0.00001. More details can be found in Rousseau et al. (2001). The 
distributions are based on Reichert (1997). The question may arise whether these parameter 
distributions should be interpreted as uncertainty or variability. They cannot be interpreted as spatial 
variability because the case study is performed at one particular WWTP. They cannot be interpreted 
as temporal variability because if the parameter’s variations were temporal, then this parameter 
should not be constant in the dynamic simulation. Instead, it should then be considered as a 
variable. Consequently, the parameter distributions should be considered as uncertainty. Therefore, 
there is no need for a second order Monte Carlo that would simulate variability and uncertainty in 
two loops, as illustrated in Grum & Aalderink (1999) and section 3.1.3. 
 
Variables change during one simulation. Here, the variables are time series. The variables were 
correlated with the influent flow as this was the only variable for which sufficiently detailed time 
series were available to feed the deterministic model. Aquafin provided an extensive dataset on 
influent water quality measurements of several WWTPs from which relationships between input 
variables could be derived. The regression equations for medium-strength waste water are shown in 
Table 2. One relationship for COD (Chemical Oxygen Demand) versus flow is shown in Figure 10. 
 

Table 2: Relationships between inputs (flow Q is expressed as m³/day, COD: Chemical Oxygen 
Demand) 

 Minimum Average Maximum 
COD (g COD/m³) y = 22066 Q-0.6838 y = 135478 Q-0.8199 y = 3.33E+06 Q-1.0994 
Kjeldahl N (g N/m³) y = 103791 Q-1.0836 y = 34100 Q-0.9071 y = 54032 Q-0.9045 
Nitrate N (g N/m³) y = 3E-05 Q - 0.3266 y = 0.00013 Q + 3.3301 y = 0.0001 Q + 0.1388

 
For every component, a triangular distribution was imposed between the minimum, maximum and 
average values calculated according to the regression in Table 2. In every Monte Carlo shot, time 
series of e.g. COD were generated based on a given flow time series. The 6-month flow series was 
generated based on the work of Bauwens et al. (1996), after rescaling. 
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Figure 10: Relation between influent COD-concentrations and flow for medium strength waste 
water + indication of minimum and maximum concentrations as given in Table 2 

 
In order to cover the entire temperature range in one year, simulations were done over a period of 
180 days, starting in the winter period and ending in the summer period. For this case study, 300 
Monte Carlo shots were simulated on a Pentium III - 650 MHz based PC. The effluent series were 
analysed for nitrate-N, ammonium-N and total-N with the effluent standards set to 10 mg N/L, 4 mg 
N/L and 18 mg N/L respectively. Concentrations were first time-averaged over a two-hour period as 
imposed by environmental legislations in several countries. 
 
The most important model output is the time percentage of effluent standard exceedance. The 
Monte Carlo simulation propagated the inherent uncertainty of the inputs and results in a confidence 
interval or statement for the output. For ammonium-N for instance, the conclusion is that there is 
95% certainty that the effluent limit will be exceeded less than 19% of the time. The nitrate-N limit 
will be exceeded less than 48% of the time (95% certainty) and the total-N limit will be exceeded 
less than 50% of the time (95% certainty). The European legal standards state that an installation 
may not exceed the effluent standards more than 5% of the time. Interpreting the output distribution 
in another way, we are only 43%, 25% and 5% certain that the effluent concentrations of 
respectively NH4-N, NO3-N and TotN comply with this standard. The uncertainty distribution of the 
effluent standard exceedance for nitrate-N is given in Figure 11. Other than 95% certainty levels 
can be derived from this distribution. For nitrate-N, the distribution has a lognormal shape. 
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Figure 11: Uncertainty distribution of effluent standard 
time exceedance for nitrate-N 

 
The developed Monte Carlo software tool is already being used in practice by the private company 
Aquafin in the retrofitting of old municipal WWTPs in order to comply towards strict phosphorus 
and nitrogen removal consents (Rousseau et al., 2001), (Bixio et al., 2001a), (Bixio et al., 2001b), 
(Bixio et al., 2001c). The results show that the decision-making process can be supported under 
uncertainty conditions and enhance the likelihood of meeting effluent standards not entailing above-
normal capital investments. For a particular treatment plant upgrade, the analysis led to reducing the 
capital investment by 43%, producing savings of more than 1,2 million € (Bixio et al., 2001b). 
 

3.1.2.3.2. Variability Propagation in Biotic Ligand Model 
 
Until recently, environmental water quality standards and risk assessment procedures for metals in 
surface waters were predominantly based on total and/or dissolved metal concentrations (Janssen et 
al., 2000). However, the importance of bioavailability and toxicity modifying factors like pH, 
hardness and Dissolved Organic Carbon (DOC), is increasingly being recognized and is a major 
contribution to geo-referencing Species Sensitivity (SS). The development of Biotic Ligand Models 
(BLMs) that predict toxicity of metals to fish, invertebrates and algae (e.g. Di Toro et al. (2001), De 
Schamphelaere et al. (2002), Heijerick et al. (2002)) can be considered as an important step towards 
a scientifically sound protection of freshwater environments. Hence, the possible use of these 
models for regulatory purposes is gaining increased interest in both the scientific and the regulatory 
community. 
 
It is however still unclear how to deal with the temporal variability of the toxicity modifying 
factors. This input variability also leads to temporal variability of the metal toxicity. If the yearly 
average of all input parameters is taken, then the resulting output, the NOEC, will not be the most 
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conservative estimate i.e. about half of the time, the NOEC will be lower. The use of averages is 
therefore less interesting from a risk assessment point of view. A lower percentile of the temporal 
variation of the NOEC is more useful, but it is not straightforward which combinations of inputs 
lead to a lower percentile in the output. 
 
A Monte Carlo analysis could propagate the temporal variability of the input parameters of the 
BLM to the output of the BLM. This is also the goal of this case study. 
 
For the simulation of the BLM, several input parameters are needed: total or dissolved organic 
carbon (TOC or DOC), pH, alkalinity, temperature, Ca, Mg, Na, K, Cl and SO4-concentrations. 
Databases of Swedish surface water characteristics, which fulfill these requirements, were obtained 
from the Institute of Environmental Analysis of the Swedish University of Agricultural Sciences 
(SLU, http://info1.ma.slu.se). Here, the Daphnia magna-BLM (the most advanced chronic BLM, 
De Schamphelaere and Janssen, unpublished) for Copper was used. The most important outputs of 
the BLM are No Observed Effect Concentrations (NOECs) for Daphnia magna. A schematic 
overview of the Monte Carlo simulation can be found in Figure 12. 
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Figure 12: Variability propagation in Biotic Ligand Model (BLM) 

 
Only those parameters that are subject to temporal variability were considered in the Monte Carlo 
simulation. These input parameters (Total or Dissolved Organic Carbon (TOC or DOC), pH, 
alkalinity, temperature, Ca, Mg, Na, K, Cl and SO4) were described by normal and lognormal 
distributions. More details can be found in De Laender (2003). The correlations between the input 
parameters were described by means of their correlation coefficient and simulated according to the 
method of Iman & Conover (1982). The most significant relationships were those involving the Ca 
concentration. DOC, one of the most sensitive input parameters, was not correlated with any of the 
other input parameters. 
 
The resulting NOEC output distribution is shown in Figure 13. This distribution represents the 
temporal variability of the NOEC. Point A in Figure 13 indicates that the NOEC in a particular 
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Swedish lake will exceed 75 µg/l for 80% of the time. Note that the interpretation does not contain 
an uncertainty statement. The output distribution given here is only due to variability. 
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Figure 13: Temporal variability distribution of NOEC for Cu and Daphnia Magna 

 

3.1.2.4. Discussion 
 
A first order Monte Carlo simulation was developed in flexible software tools. First order Monte 
Carlo is an accurate and easy-to-use technique to propagate variability or uncertainty. Specific 
attention needs to be devoted to the correlations between inputs, and the interpretation of the output 
uncertainty or variability. 
 
The case studies illustrated the first order Monte Carlo simulation for uncertainty or variability 
propagation. The correlations were explicitly considered and the crude Monte Carlo sampling 
scheme was sufficiently accurate. 
 
In the first case study, the probability of exceeding the effluent limits of a WWTP is accompanied 
with a confidence interval resulting from the inherent uncertainty of influent characteristics and 
model parameters as propagated by the Monte Carlo simulation. This uncertainty or confidence 
interval allows decision-makers to choose whether to adjust the proposed design or to decide on 
another scenario. 
In the second case study, the temporal variability of the NOEC of a heavy metal is estimated by 
propagating the temporal variability of the compounds that determine its bioavailability. From this 
variability distribution, some lower percentile may be derived as a protective standard for most of 
the time. 
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3.1.3.  Second Order (or Two-Dimensional) Monte Carlo Simulation 
 

3.1.3.1. Introduction 
 
A first order or one-dimensional Monte Carlo simulation can only propagate variability or 
uncertainty, but not both at the same time without having difficulties with interpreting the output 
distribution. Variability represents heterogeneity or diversity, which is not reducible through further 
measurement or study. Uncertainty represents ignorance about a poorly characterised phenomenon, 
which is sometimes reducible through further measurement or study. It is already shown in Part 2 
that variability and uncertainty should be treated separately. For this, among other propagation 
techniques, a second order or two-dimensional Monte Carlo simulation could be applied. The goal of 
this section is to present and apply second order Monte Carlo simulation in a case study. 
 

3.1.3.2. Second Order Monte Carlo Simulation 
 
In this section, the actual second order Monte Carlo methodology and the sampling of the second 
order random variables and the simulation of correlations will be discussed. The random number 
generation and the verification of the Monte Carlo output is the same as in the previous section on 
first order Monte Carlo simulation. 
 

3.1.3.2.1. The Second Order Monte Carlo Simulation Technique 
 
Let X1, X2, Xi…, Xn be n random input variables of a mathematical model. Here, the n random 
variables are all describing true heterogeneities of environmental processes and can thus be 
interpreted as variability. Each random variable can therefore be characterised by a distribution and 
depends on some set of parameters θ. This is noted as Xi ~ F(θi). Often, the parameters θi  cannot be 
estimated accurately because for instance, only a limited data set is available. This leads to 
uncertainty of the parameters θ. Random variables that are uncertain and variable at the same time 
are called second order random variables (Burmaster & Wilson, 1996). They are also referred to as 
"distributions of distributions" or as confidence intervals on distribution parameters θ. The 
distribution of the parameters θi is noted as θi ∼ F(γi). 
 
The most straightforward method to obtain results in the form of second order variables is called 
second order or 2-dimensional or embedded Monte Carlo simulation (Cullen & Frey, 1999). It 
consists simply in two Monte Carlo loops nested one inside the other. The inner one deals with the 
variability of the input variables, while the outer one deals with uncertainty. For each shot of a 
(uncertain) parameter value in the outer loop a whole distribution is created in the inner loop based 
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only on variability. In this way changes in variability-dependent frequency distributions under the 
influence of parameter uncertainty can be quantified. This is graphically shown in Figure 14. 
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Estimate uncertainty and variability of all inputs i.e. Xi ~ F(θi) and with θi ∼ F(γi) 
 

Begin outer loop to simulate uncertainty (e.g. 1000 shots) 
 

For each input variable Xi, take a random value from its uncertain parameters θi ∼ F(γi) 
(if needed, account for correlations) 

 
 Begin inner loop to simulate variability (e.g. 1000 shots) 
 

For each input variable Xi, take a random value from its variability
distribution Xi ~ F(θi) (if needed, account for correlations) 

  Run the deterministic model 
  Save the output 

 

 End inner loop 
 

Estimate the variability distribution based on all saved outputs of the inner loop 
 

End outer loop 
 

Figure 14: Simulation algorithm of a second order Monte Carlo simulation 

.3.2.2. Estimation of Second Order Probability Distributions 

veral techniques can be used to characterise a second order random variable or to estimate 
certainty and variability in a data set: expert judgement or data-driven techniques like 
otstrapping, classical or Bayesian approaches… These will be discussed in Chapter 3.2. Figure 15 
es an example of a second order random variable. The cumulative distribution function itself is a 

riability distribution e.g. reflecting the increasing effect of increasing concentrations on a set of 
ecies. For each percentile of the variability distribution, a confidence or uncertainty interval can 
 calculated (i.e. an uncertainty distribution). 
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Figure 15: Example of a cumulative distribution function of a second order random variable 

 

3.1.3.2.3. Simulation of correlations 
 
In the example shown in Figure 15, the mean and standard deviation were allowed to vary 
independently. Thus, a distribution could be defined by a combination of a low mean and a high 
standard deviation, high mean and low standard deviation, or any other combination in between. 
The assumption of independence of parameters may not be valid in all cases. It may be 
unreasonable to assume that for example a high mean soil concentration would occur with a low 
standard deviation. An alternative assumption would be that the standard deviation of the mean is a 
constant proportion of the mean (i.e. a constant coefficient of variation). Hence, correlations 
between parameters should be considered in the design of the probabilistic ecological risk 
assessment. 
 
A common approach for correlating two parameters of e.g. the normal distribution is to specify a 
bivariate normal distribution. A bivariate normal distribution allows for the distribution of one 
parameter to be sampled conditional on the other. This is a special case of a joint distribution in 
which both x and y are random variables and normally distributed (as the conditional distribution of 
x or of y is always normal) (EPA, 2001). For more information on handling dependencies and 
correlations, see section 3.1.2.2.5. Resampling the observations (as in bootstrapping, see Chapter 
3.2) is a useful, simulation method to assess the relationship between the parameters of a 
distribution. 
 

3.1.3.3. Case Study 
 
The Exposure Concentration Distribution (ECD) and the Species Sensitivity Distribution (SSD) are 
characterised by both uncertainty and variability. The resulting risk quotient will also be 
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characterised by both uncertainty and variability. The main focus of this case study is to show how 
second order Monte Carlo can propagate the uncertainty and variability to a variable and uncertain 
risk quotient. No attention was given here to the risk quotient model or EC and SS distribution 
selection or potential autocorrelation within the EC data set, as these will be discussed in Chapter 
3.2 and 4.1. Here, the model is very simple; it only consists of a quotient of two input variables (see 
Figure 16). The quotient is the risk quotient. 
Note that for simple models like this one, it may be possible to calculate the risk quotient 
analytically as e.g. in case of two lognormal input distributions (see Chapter 4.1). 
 

X

FX
DATA

X

FXDATA
X

FXRisk Quotient =
EC / SS

Model

 

Figure 16:Variability AND uncertainty propagation in risk quotient modelling 

 
The two input variables are variable and uncertain. The first input, the ECD, represents the spatial 
and temporal variability of Zn-concentrations for the Netherlands in 1998 extracted from RIZA and 
CIW databases. A regional Zn background concentration was also subtracted from the monitoring 
data. More details can be found in Van Sprang et al. (2002). A lognormal distribution was fitted to 
the data. Since the data set is very large (number of data points = 2183), the sampling uncertainty 
(shown as the grey band in Figure 17 left) is very small for the ECD. A nonparametric model is 
perhaps more suitable because enough data are available, but this is not important considering the 
goals of this case study. 
The second input, the SSD, represents several species sensitivities towards Zn. Long term 
ecotoxicity data on Zn for the aquatic organisms belonging to the different trophic levels were 
gathered from the Zn risk assessment report. A Pareto distribution was fitted to the data (selection 
of Pareto, see Chapter 3.2). Since the data set is rather small (number of data points is 21), the 
sampling uncertainty is larger (see Figure 17 left). 
 
The uncertainty and variability of these second order random variables were estimated based on 
their respective data sets using the parametric bootstrap technique (see Chapter 3.2). A second order 
Monte Carlo simulation was performed. Both inputs (ECD and SSD) were assumed to be 
independent of each other. As a consequence, no correlations had to be considered in the inner 
Monte Carlo loop of variability. Potential correlations between the parameters of each distribution 
type of the ECD and SSD (in the outer Monte Carlo loop of uncertainty) were indirectly modelled 
because they were based on earlier parameter resample estimates of the parametric bootstrap 
technique. 
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Figure 17: EC and SS input distributions (left) and resulting Risk quotient distribution with 
uncertainty band simulated by means of second order Monte Carlo simulation (right) 

 
The output, the risk quotient distribution and its uncertainty band, is shown in Figure 17 right. The 
risk quotient variability distribution can be interpreted as all possible combinations of quotients of 
EC and SS. The uncertainty band represents the sampling uncertainty of the risk quotient due to the 
sampling uncertainty of the EC and SS. 
 
 

3.1.4.  Conclusions & Further Research 
 
This chapter demonstrated the possibilities and usefulness of the propagation technique Monte 
Carlo simulation. The major advantages of simulation techniques are that it can accommodate a 
wide variety of assumptions regarding model inputs and can be used with a wide variety of models. 
Simulation methods are also available to evaluate the effect of correlations and dependencies 
among model inputs, as described. The accuracy of simulation methods can be improved by 
increasing the number of shots, but this also points to the weakness of the method, its computational 
burden. However, in our studies, the models were either sufficiently simple or the required number 
of shots for the derived accuracy was small. 
 
It was stressed and illustrated that separation of uncertainty and variability and the correct 
application of Monte Carlo analysis simplify the interpretation of a model’s output distribution of 
interest. 
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Chapter 3.2 
 
Uncertainty and Variability Estimation: 
Comparison of Different Techniques 
 
 
 
In Probabilistic Ecological Risk Assessment (PERA), estimation of uncertainty and variability of 
existing monitoring data and ecotoxicity tests is needed to determine the Exposure Concentration 
Distribution (ECD) and Species Sensitivity Distribution (SSD) or to determine input distributions of 
exposure or effects models (see filled arrows in Figure 6 of Part 2). 
 
Research priorities on estimating variability and uncertainty are mainly situated on the effects side 
of the risk assessment in the determination of a SSD. More specifically, many such estimation 
methods have been proposed (see Part 2) but only few explicitly consider small sample sizes (i.e. 
smaller than or equal to 20). In practice, this is very relevant as small ecotoxicity data sets are 
common for many chemicals; especially tests based on chronic or population level endpoints. On 
the exposure side of the risk assessment, data sets typically have larger sample sizes. Typical issues 
for the ECD determination are presence of an upper bound (e.g. the water solubility of an aquatic 
concentration) or the presence of censored data (e.g. due to a detection limit). No case studies on the 
estimation of variability and uncertainty of the ECD are given here, but some examples can be 
found in Chapter 4.1 and 5.1. Note also that the methodologies presented here are valid for 
estimating uncertainty and variability of any small data set. 
 
 

3.2.1.  Introduction 
 
The basic assumption of the SSD concept is that the sensitivities of a set of species (or inter-species 
sensitivity/variability) can be described by some statistical distribution. The available 
ecotoxicological data are seen as a sample from this distribution and are used to estimate the 
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parameters of the SSD. An SSD can be visualised as a cumulative distribution function (see Figure 
1). This is the integral of an associated probability density function. The cumulative distribution 
function curve follows the distribution of the sensitivity data obtained from ecotoxicological testing; 
plotting effect concentrations derived from acute or chronic toxicity tests.  
 
The most common current approach is to derive the Predicted No Effect Concentration (PNEC) 
from the 5th percentile of the SSD (EU-TGD, 1995) as shown in Figure 1 (for the moment, do not 
mind the uncertainty bands). Historically that value is known as the Hazardous Concentration at p-
protection level or HCp.  The 5th percentile of a chronic toxicity distribution has most often been 
chosen as a concentration that is protective for most species in a community (namely 95%). 
Researchers also started to determine a confidence or uncertainty interval on the HC5 (see Figure 1). 
This was mainly done because the median HC5 is a conservative estimate of the HC5 calculated 
without uncertainty (Aldenberg & Slob, 1993). Until now, unfortunately, only few studies report 
confidence intervals. A confidence or uncertainty interval can quantify the sampling error in the 
HC5 estimate. Sampling error is due to the fact that only a limited sample is collected. In theory, 
one would need to collect an infinite number of sample points to obtain the correct estimate of the 
HC5. 
 

 
 

Figure 1: Example of a SSD (Species Sensitivity Distribution) with uncertainty band 
and HC5 (Hazardous Concentration at 5%) 
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Several statistical techniques exist to estimate (inter-species) variability and (sampling) uncertainty 
in a data set. An overview of uncertainty and variability estimation techniques applied in the 
ecotoxicology field is given in Part 2. This area of quantitative risk analysis is currently an active 
area of research, but all different techniques for estimating variability and uncertainty and all 
different parametric distributions for estimating the 5th percentile (or HC5) from SSDs have not 
been compared for small data sets (i.e. sample size = 20 or less). In addition, nobody (except Jagoe 
& Newman (1997) and Shao (2000)) performed a simulation study in which important statistical 
concepts as coverage and bias were tested to assess the reliability of their proposed method. In 
statistics, an estimate is unbiased if the mathematical expectation of the estimator is equal to the 
true value of the parameter. Similarly, a method has accurate coverage if the probability p that a 
confidence interval does not cover the true parameter is equal to the probability level used to 
construct the confidence interval. Confidence intervals are expected to enclose a true but unknown 
parameter according to a specified probability, such as 90% or 95%. This is the expected coverage 
of the confidence interval, given a specified significance level. The difference between the expected 
coverage and the actual coverage is one metric for evaluating statistical methods that yield different 
confidence intervals. 
 
Therefore, the goal of this chapter is to compare and assess the reliability of most of these 
uncertainty and variability estimation methods at sample size 20 by means of simulation studies and 
case studies. 
 
 

3.2.2.  Methods for Variability Estimation (One-Dimensional) 
 
There exist several statistical methods to characterise the distribution of a random variable. Focus of 
this section is on how to estimate the probability distribution and its percentiles. This probability 
distribution is mostly interpreted as variability but note that also uncertainty (other than sampling 
uncertainty, e.g. measurement uncertainty) is a possible interpretation. Estimating both uncertainty 
and variability at the same time is the topic of 3.2.3. A distinction is made between parametric and 
nonparametric methods for characterising a random variable. 
 
Let x1, x2, …, xn be an independent and identically distributed random sample from x. This variable 
has distribution function F(x), density function f(x) and depends on some parameters θ1, θ2, …, θm. 
The sample mean is x  and the standard deviation is s. 
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3.2.2.1. Parametric Methods 
 

3.2.2.1.1. Distribution Fitting 
 
Three of the most common approaches to estimate the parameters of a distribution are the method 
of (matching) moments, the Maximum Likelihood Estimation (MLE) method and the method of 
least squares (Cullen & Frey, 1999), (EPA, 2001). 
 
In the method of (matching) moments, the parameters of a probability distribution are selected such 
that the moments of the model match the moments of the data set. The number of moments that are 
used in this process corresponds to the number of parameters to be estimated. This approach is 
usually the most straightforward to implement. Therefore, it typically satisfies the criteria of 
practicality. However, it may not fully satisfy other criteria like consistency, efficiency, bias, and 
robustness (Cullen & Frey, 1999). 
 
The maximum likelihood estimation method involves selecting values of the distribution parameters 
θ1, θ2, … θm that are most likely to yield the observed data set. To do this, a likelihood function is 
defined. For a continuous random variable for which independent sample points have been 
obtained, the likelihood function L is: 
 

 ( ) ( )∏
=

=
m

i
mim xfL

1
2121 ,...,,,...,, θθθθθθ  

 
where the likelihood function L is evaluated based upon the product of the probability density 
function evaluated for each sample. The parameters of the probability distribution are selected so as 
to maximise the value of the likelihood function. Thus, this is an optimisation problem in which the 
first derivative of the likelihood function with respect to each of the distribution parameters is set to 
the distribution parameters. For small sample sizes, the maximum likelihood estimates do not 
always yield minimum variance or unbiased estimates. However, for larger sample sizes, the 
maximum likelihood method tends to better satisfy the criteria for statistical estimators: 
consistency, efficiency, bias and robustness. However, it is often much more difficult to implement 
than the method of moments. Analysts should not feel the method of maximum likelihood is always 
ideal (Cullen & Frey, 1999). 
 
In some cases, both methods yield the same estimators, e.g. for the normal distribution (Cullen & 
Frey, 1999). For this reason, the method of moments was selected to estimate the parameters of a 
normal distribution. 
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The least squares method is a third distribution-fitting tool. This technique involves finding a 
probability and data scale that plots the cumulative probabilities of a hypothesized distribution as a 
straight line. The corresponding linearity provides a measure of the goodness-of-fit of the 
hypothesized distribution. The species are ranked in order of decreasing sensitivity; the rank of each 
species is converted to a cumulative probability (i/(n+1)), where i is the species rank and n is the 
total number of species for which data are available, and transformed to a probability using e.g. the 
normal distribution. The relationship between the normalized rank and the species sensitivity (effect 
concentration) is determined by least squares regression (ECOFRAM, 1999). Many statisticians feel 
that maximum likelihood is more rigorous on statistical grounds than the regression approach. 
However, maximum likelihood would require special computer programs to perform the iterative, 
numerical optimisations that such an approach requires. Used judiciously, the simple calculations 
required for lognormal regression will ordinarily prove to be practical. These calculations can be 
readily implemented in spreadsheets. However, with all of these approaches, biases in the selection 
of data or lack of availability of data can result in incorrect estimations (ECOFRAM, 1999). Cullen 
& Frey (1999) point out that probability plotting may not be a primary choice for selecting and 
fitting distributions because the method violates an important assumption of least squares regression 
i.e. independence of the observations. This is because the rank-ordered data are no longer 
independent. 
 

3.2.2.1.2. Distribution Selection 
 
After fitting the distribution to the data using one of the techniques above, the goodness-of-fit 
should be assessed. For this, several criteria should be considered. More information on selecting 
and fitting distributions can be found in Cullen & Frey (1999), Vose (1996), EPA (2001) and EPA 
(1999). 
 
First, graphical methods can provide valuable insights and generally should be used in conjunction 
with exploratory data analysis. They reveal important characteristics of a data set, including 
skewness (asymmetry), number of peaks (multi-modality), behaviour in the tails, and data outliers. 
Examples of graphical methods are frequency distributions (i.e. histograms), dot plots, line plots for 
discrete distributions, box-and-whisker plots and scatter plots. In a QQ-plot, observed values of a 
single numeric variable are plotted against the values that would be obtained if the sample were 
from a normal distribution. If the sample is from a normal distribution, points will cluster around a 
straight line. Here, the line is plotted through the first and third quartile of the data. The QQ-plot 
also depends on plotting positions and those are calculated according to Hazen as discussed in 
section 3.2.2.2.1. 
 
Second, expert judgement refers to inferential opinion of a specialist or group of specialists within 
an area of their expertise. When there is uncertainty or variability associated with an input variable, 
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such as a data gap, expert judgement may be appropriate for obtaining distributions. Distributions 
based on expert judgement can serve as Bayesian priors in a decision-analytic framework. The 
distributions and Bayesian priors can be modified as new empirical data become available. 
 
Third, goodness-of-fit tests exam how well (or poorly) a sample of data can be described by a 
hypothesized probability distribution for the population. Goodness-of-fit tests are formal statistical 
tests of the hypothesis that the data represent an independent sample from an assumed distribution. 
These tests involve a comparison between the actual data and the theoretical distribution under 
consideration. However, goodness-of-fit tests have low statistical power and often provide 
acceptable fits to multiple distributions. Thus, goodness-of-fit tests are better used to reject poorly 
fitting distributions than for ranking good fits. For small n, goodness-of-fit tests will often fail to 
reject many of the hypothesized probability distributions. 
 

3.2.2.1.3. Percentile estimation 
 
In parametric methods, a percentile can be calculated based on the inverse cumulative distribution 
function according to the following equation: 
 
 ( )m

th xFpercentile θθθα ˆ,...,ˆ,ˆ, 21
1−=−  

 
with x  the population random variable 

  mθθθ ˆ,...,ˆ,ˆ
21  the estimated parameters of the distribution 

F-1   the inverse cumulative distribution function 
 
 

3.2.2.2. Non-parametric Methods 
 

3.2.2.2.1. Distribution ‘Fitting’ 
 
Cullen & Frey (1999) summarise several possible methods for constructing a (nonparametric) 
Empirical Distribution Function (EDF) of an observed data set. These methods are referred to as 
"plotting positions". The plotting position is an estimate of the cumulative probability of a data 
point. First, rank ordering the data is needed. Then, the calculation of the cumulative probabilities 
can be done according to several methods (see Table 1). In the formulas, F(xi) denotes the 
probability that the random value X will have values less than that of the sample point xi. The 
sample points are ranked in ascending order, the index i refers to the rank of each sample point, and 
n is the number of data points in the data set. 
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Table 1: Overview of some plotting positions of the cumulative probability of a data point 

Name Formulae β Reference 

General 12
)(

+−
−

=
β
β

n
ixF i  β (Blom, 1958) 

Mean plotting position 
1

)(
+

=
n

ixF i  0 
(Gumbel, 1958) 
(Davison & Hinkley, 1997) 

Modal plotting position 
1
1)(

−
−

=
n
ixF i  1 (Cullen & Frey, 1999) 

Hazen's plotting position 
n

ixF i
5.0)( −

=  0.5 (Hazen, 1914) 

Standard plotting position 
for EDF n

ixF i =)(  -  

 
Hazen's plotting position, with β = 0.5, appears to be a compromise between the mean plotting 
position (β = 0) and the modal plotting position (β = 1). A consequence of using the quantity (n-1) 
in the denominator in the modal plotting is that the smallest and largest values in the sample are 
given percentiles of 0 and 1, respectively. Some plotting positions have known deficiencies. For 
example, for small sample sizes the mean plotting position leads to overestimates of the standard 
deviation, while the Hazen plotting position leads to underestimation of the standard deviation. As 
the sample size increases, the various plotting positions tend to approach each other and, therefore, 
differences between them become less important. As to risk assessment, data are often scarce so the 
importance of an accurate plotting position may not be underestimated. Many investigators use 
either the mean or Hazen plotting positions (Cullen & Frey, 1999). Cullen & Frey (1999) described 
that the mean plotting system gives erratic results for small sample sizes. Nevertheless, in the 
ecotoxicity field, the mean plotting is still often used (e.g. Jagoe & Newman (1997), Van Der 
Hoeven (2001)). More information on order statistics and plotting positions can be found in section 
5.6.4 of Aldenberg et al. (2002). 
 

3.2.2.2.2. Percentile estimation 
 
Once the observed data set is plotted, percentiles can be calculated taking the inverse interpolated 
empirical distribution function. A percentile is then calculated nonparametrically according to the 
following steps (Cullen & Frey, 1999) (see also Figure 2): 
First, the data are rank ordered (COL1 and COL2  COL3 and COL4). 
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Then, the Hazen plotting system calculates the cumulative probabilities of a point xi as follows: 

n
ixF i

5.0)( −
=   (COL 3  COL 5) where i is the rank number and n is the total number of data 

points. 
Once the data are plotted, percentiles can be calculated taking the inverse (interpolated) empirical 
distribution function (see Figure 2). One can easily derive that the 20th percentile is 0.6 and the 80th 
percentile is then 1.75. 
 
COL1 COL2 COL3 COL4 COL5 
Shot 
number 

xi 
Ranked 
number i  

xi 
(sorted) 

F(xi) 

3 1 1 0.5 10% 
1 0.5 2 0.7 30% 
5 2 3 1 50% 
4 1.5 4 1.5 70% 
2 0.7 5 2 90% 

0%

20%

40%

60%

80%

100%

0 0.5 1 1.5 2 2.5
xi

F(
xi

)
 

Figure 2: Example of nonparametrically percentile estimation 

 
One of the main shortcomings of nonparametrically determining a percentile of a data set is that the 
minimum and maximum values obtained are limited by the minimum and maximum values within 
the data set. Zero is sometimes considered as a minimum. When only small data sets are available, 
this can lead to biases in the representation of a given model input (e.g. failure to consider possible 
large, or small values that are not present in the limited data set). 
 
One can even calculate the minimum sample size needed to estimate a 5th-percentile without having 
to extrapolate (below the smallest data point). The rank order i for the smallest point is 1, F(xi) is 
0.05 (=5 %) and n is unknown. The calculations for different plotting systems are then: 
 
Mean plotting system: 19

1
105.0

1
)( =⇔

+
=⇔

+
= n

nn
ixF i

  

 
Hazen plotting system: 105.0105.05.0)( =⇔

−
=⇔

−
= n

nn
ixF i

  

 
Other plotting system: 20105.0)( =⇔=⇔= n

nn
ixF i

 

 
The minimum n=19 for the mean plotting position corresponds to earlier findings in literature (e.g. 
Van Der Hoeven (2001), Grist et al. (2002)). 
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3.2.3.  Methods for Variability and Sampling Uncertainty Estimation (Two-
Dimensional) 

 
In this section, an overview is given of methods estimating both uncertainty and variability at the 
same time in a two-dimensional analysis. The distinction in structure is here made between several 
methods and not between parametric and nonparametric methods as in the previous section. 
 
The terminology to be used is shown in Figure 3.  The vertical bar represents a 90% uncertainty or 
confidence interval of the 5th-variability percentile. This bar is the 90 degrees left rotation of the 
horizontal bar in Figure 1. This uncertainty interval has an upper 90% confidence or uncertainty 
limit (equal to the 95th percentile of the uncertainty distribution) and a lower 90% confidence or 
uncertainty limit (equal to the 5th percentile of the uncertainty distribution). The line in the 
uncertainty bar is the estimate of the 5th variability percentile or HC5. It is estimated by the median 
of the uncertainty distribution. For ease of use, this will here be named the 5th percentile in a 
statistical context and HC5 in a risk assessment context. 
 
 
 

 upper 90% confidence or uncertainty limit  = 95th- uncertainty percentile  
       

 true 5th-(variability) percentile = true HC5 
 

 median 5th-variability percentile = median 5th-percentile of the variability 
distribution = 50th-percentile (median) of uncertainty of the 5th-percentile of variability 
= median 90 % confidence limit = estimate of HC5 (Hazardous Concentration 5%) 
 

 lower 90% confidence or uncertainty limit  = 5th- uncertainty percentile 
 

Figure 3: Terminology and visualisation 

 
The distinction between a target population (represented by distribution F) and an estimated target 
population (represented by distribution F̂ ) should be considered carefully (Figure 4). The target 
population is often considered to be the “population of concern” or the real, unknown distribution. 
A risk assessor is often interested in quantifying specific attributes of the population (e.g. exposure 
mean or HC5). Distributions are generated from representative sample populations to make 
inferences about the target population. Ideally, a sample should be a subset of the target population 
and should be selected for measurement to provide accurate and representative information about 
the variable being studied. However, defining representative samples is a matter of interpretation. 
 

90
 %
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Figure 4: Example of target distribution F and an estimated target 
distribution F̂ based on a sample of 20 data points 

 

3.2.3.1. Bootstrapping 
 
A detailed description of the bootstrapping method can be found in literature (Cullen & Frey, 1999), 
(Davison & Hinkley, 1997), (Efron & Tibshirani, 1993). Different types of bootstrapping were 
studied: two non-parametric techniques, each with two different plotting systems for constructing 
an Empirical Distribution Function (EDF), and one parametric technique (assuming the lognormal 
distribution). 
 
Given a sample of size n, the general approach in bootstrap simulation is to assume F̂ , to perform r 
replications (e.g. r = 5000) of the original data set by randomly drawing, with replacement, n values 
from F̂ , and then calculate r values of the statistic of interest. These can be used to determine the 
uncertainty distribution of the statistic of interest. Note that the properties of the bootstrap are 
asymptotic. 
 
One approach is to use the actual data set itself and to randomly select, with replacement, the actual 
values of the data set. This is sometimes referred to as resampling. The data can be represented via 
an EDF F̂ . Another approach to achieve the same is to first calculate n random samples of a 
uniform distribution between 0 and 1. The random samples are then found as the inverse cumulative 
EDF of these random uniform samples. This can be noted as ( )( )1,0ˆ 1 UF − . The solid dark line in 

Figure 5 gives an EDF for a given data set. Basically, resampling is done from that step function. F̂  
is assumed to be a good estimate of the real, unknown target distribution F. 
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But, F̂  can be of any distribution type (nonparametric or parametric (e.g. lognormal, triangular…)) 
and will determine the type of bootstrapping. From F̂  the statistic of interest can be calculated 
(here the 5th percentile). 
 
An interpolated empirical distribution function F̂  (interpolated EDF ≠ EDF) can be fitted to the 
data. The broken, grey line in Figure 5 shows an interpolated EDF. In this approach, samples are 
taken from the interpolated EDF instead of the EDF. Such a distribution has minimum and 
maximum values, which can be constrained by the minimum and maximum values in the data set, 
or have to be determined explicitly. Here, zero was considered as the minimum and a very large 
number was taken as the maximum. These minimum and maximum values were only used to 
extrapolate below the smallest and above the largest data point. The minimum and maximum values 
were not used as two additional data points. As introduced earlier, there are several "plotting 
positions" to construct an EDF and an interpolated EDF: mean and Hazen plotting. 
 
F̂  can also be a parametric distribution. This approach is called parametric bootstrapping. The 
broken, black line in Figure 5 represents a fitted normal distribution for a given data set. 
F̂  can also be a smoothed distribution. This approach is called smoothed bootstrapping. However, 
this technique was not considered here because it is a more complex method and it has to deal with 
additional issues like selection of an optimal bandwidth. 
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Figure 5: EDF (Empirical Distribution Function), interpolated EDF and a 
parametric fit (normal in this case) for a given data set 
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Each approach will lead to a different estimate of the confidence interval of the 5th percentile. 
Nonparametric or distribution-free approaches do not require assumptions regarding the probability 
distribution for the underlying population distribution. However, they also tend to yield wider 
confidence intervals than parametric methods do. 
 
Note that F̂  can be a nonparametric or parametric distribution and that the statistic of interest (5th 
percentile (HC5) in this case) can be calculated nonparametrically or parametrically. In this study, 
when a parametric F̂  was assumed, the 5th percentile (HC5) was also calculated parametrically. 
And analogously, when F̂  was considered to be nonparametric, the 5th percentile was also 
calculated nonparametrically. In literature, some use hybrid versions of the bootstrap. Grist et al. 
(2002), for example, consider the nonparametric EDF as F̂ , but calculate the 5th percentile 
parametrically (by means of linear regression). These hybrid bootstrap versions were not considered 
here because we felt that consistency in the method is more important: either a full parametric or a 
full nonparametric bootstrap. 
 
The most commonly used method to give confidence intervals for the statistics of interest is the 
percentile method, which simply consists of taking the inverse of the cumulative distribution 
function of the bootstrap sample (as described above). But, there are better ways to construct 
bootstrap confidence intervals. Grist et al. (2002) describe these improvements based on Davison & 
Hinkley (1997) and Efron & Tibshirani (1993). The two most frequently applied nonparametric 
transformations produce bias-corrected (BC) and bias-corrected and accelerated (BCa) percentile 
confidence intervals. Bias correction is actually a centering adjustment that corrects for median 
bias. It ensures that the resulting bias-corrected confidence interval is median unbiased in the sense 
that the proportion of bootstrap estimates less than or equal to the sample statistic contained is equal 
to 50%. The coverage accuracy of the BC confidence interval is improved further by a correction 
for skewness achieved by employing the quantity referred to as the acceleration constant. Efron 
(1982) discussed these different methods. The percentile method gives somewhat erratic results, 
both in terms of the length of the intervals and of their skewness. The BCa percentiles require more 
computation but are more accurate. Grist et al. (2002) showed indeed an expected improvement of 
the HC5 estimate and its confidence interval for some examples on potassium dichromate and 
lindane with sample size of 97 and 79 respectively. However, BC and BCa confidence intervals did 
not improve for examples on ammonia, benzene and endosulfan with sample size of 27, 28 and 76 
respectively. This suggests that for small sample sizes, the BC and BCa confidence intervals fail to 
improve the basic confidence intervals. Therefore, these improvements were not considered here 
and the simplest method, the percentile method, will be used. 
 
In order to construct uncertainty bands on the SSD as in Figure 1, one simply needs to calculate and 
plot the 1st, 2nd, 3rd, … 99th percentile (instead of only the 5th percentile or HC5) of the SSD and their 
respective 90% confidence intervals. 
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3.2.3.2. Methods from Classical Statistics 
 
In classical statistics, reasoning often refers to properties of infinitely repeated samples. For this 
method, simple formulae and lookup tables from literature for specific parametric distributions are 
used. A 5th-percentile can be calculated according to the following equation (depending on the 
lognormal or loglogistic distribution): 
 

sKxpercentileth ⋅−=−α  
 

with x  the mean of the log-transformed data set 
s  the standard deviation of the log-transformed data set 
K  a tabulated extrapolation factor depending on the sample size n 

 
There are now not only K-values for calculating the 5th-percentile but also for calculating the lower 
and upper 90% confidence limit. These are tabulated in Aldenberg & Jaworska (2000) for the 
lognormal distribution and in Aldenberg & Slob (1993) for the loglogistic distribution. 
 
For example, let 2=x  and 3=s  be the sample mean and sample standard variation of a log-
transformed sample of 5 data points. The 5th-percentile and its lower and upper 90% Confidence 
Interval (CI) are calculated as: 
 

0.0355HC3.337937793.125 3379.3
5 ==⇔−=⋅−=− −epercentileth  

0.0000247HC10.608132027.42.5 10.6081
5 ==⇔−=⋅−=− −eofCIlowerpercofCIlower th

0.635HC0.453438178.02.5 0.4534
5 ==⇔−=⋅−=− −eofCIupperpercofCIupper th  

 
 

3.2.3.3. Bayesian Inference Methods 
 
Bayesian statistical methods reverse the role of sample and distribution: the sample is fixed and 
unique, and the distribution itself is uncertain. This statistical viewpoint corresponds better to the 
practical situation the individual researcher is facing: there is only one sample and there are doubts 
what distribution to use, or, if the distribution is chosen, what values the parameters will take. The 
uncertainty of the distribution is modelled by assuming that the parameters of the distribution are 
distributed (Aldenberg & Jaworska, 2000). 
If one assumes parameter values to be distributed, one has to presuppose a so-called (in this case a 
non-informative) prior distribution for the parameters, to specify the initial state of knowledge about 
them, before the data are used. The prior distribution is transformed into the so-called posterior 
distribution by multiplication with the classical likelihood function, by which the information in the 
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data is introduced. This is essentially Bayes' theorem. The posterior distribution summarises our 
increase in knowledge about the parameters due to observing the data. A Bayesian simulation 
focuses on the evaluation of the joint posterior distribution of the parameters. For further technical 
details the reader is referred to Box & Tiao (1973). 
 
This Bayesian method for confidence interval estimation was not programmed or used as such. 
Instead, K-values are found from a lookup table from Aldenberg & Jaworska (2000) for the 
lognormal distribution. Again, the bounds of the uncertainty or confidence interval are calculated as 
in 3.2.3.2. Note that the correct term for the intervals is actually credibility intervals but these will 
be named here as Bayesian confidence intervals.  
 
 

3.2.4.  Simulation Study 
 
When comparing alternative approaches for quantifying parameter uncertainty, criteria that are 
important to consider include the variance of the original data set, and the bias and coverage of the 
confidence intervals generated by each method. In a simulation study, the bias of the HC5 estimate 
and the coverage of its uncertainty interval are found by repetitively taking random samples of the 
presupposed target distribution F. For risk assessment, the most desirable estimation method is one 
that deals well with high variance, yields confidence intervals that are sufficiently wide (i.e., the 
confidence interval does not underestimate the probability of enclosing the population parameter), 
and, more specifically, yields upper confidence limits that are not biased low. The choice of the 
most appropriate method will depend on the characteristics of the data set and a balance between 
two objectives: (1) the desire to be ecologically protective and, therefore, have a low probability of 
underestimating the mean, and (2) a desire to be accurate, in the sense of choosing a method whose 
expected coverage equals the true coverage. As a general principle for quantitative uncertainty 
analysis, if alternative methods yield very different answers, it is helpful to explore the reasons for 
the differences (EPA, 2001). 
 
In this simulation study, a target distribution F was assumed: a lognormal distribution (exp[N(µ,σ)] 
with µ = 2 and σ = 1). The arithmetic mean of the target distribution equals exp[µ + 0.5σ2] = 12.2. 
Next, 20 positive values (see Table 2) were randomly drawn from F. These form the estimated 
target distribution F̂ . The arithmetic mean of this sample equals 14, exactly. The target 
distribution, the sample and its estimated target distribution are shown in Figure 4. 
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Table 2: The hypothetical data set of 20 sample points, data values drawn from a 
lognormal distribution of the form exp[N(µ,σ)] with µ = 2 and σ = 1 (true HC5 = 1.42639) 

0.832858 2.573425 3.724999 9.227466 14.99063 
0.903766 2.602635 4.258860 10.80821 15.05903 
1.821690 2.659332 6.221531 10.85469 18.03431 
2.463967 3.689074 8.331888 14.64650 24.97989 

 
Figure 6 gives the 90% uncertainty intervals of the 5th percentile (HC5) obtained with all methods 
tested on the hypothetical data set. First, the parametric methods are discussed. The method from 
classical statistics and the Bayesian approach lead to the same results, as Aldenberg & Jaworska 
(2000) already concluded. The parametric bootstrap results are similar to the Bayesian analysis 
results, although with slightly wider confidence intervals. The true HC5 (1.42639) lies within the 
90%-uncertainty interval of all parametric methods. This is to be expected, as the data set is 
lognormally distributed. The methods are good, given the correct assumption of the distribution. 
 

 

Figure 6: 90% uncertainty or confidence intervals of the HC5 following various methods for 20 data 
points of the hypothetical lognormal data set (thick line = true 5th-variability percentile)  

 
Second, the nonparametric methods were evaluated. The lower 90% uncertainty limit and the HC5 
percentile are (almost) equal for the resampling procedure (nonpar bootstrap EDF in Figure 6). In 
case of small data sets, the 5th-percentile has to be estimated between zero and the first point. If the 
empirical distribution function (see Figure 5) is used, the 5th-percentile is the first point itself.  In 
other words, the uncertainty interval is bounded by the first (and smallest) data point (namely 
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0.832858). As a result, the first data point is selected many times. When linear interpolation 
between zero and the first point is used (as in the interpolated empirical distribution function, see 
Figure 5), the lower 90% uncertainty limit is not bounded by the first point and as a result linear 
interpolation accounts for the possibility that the lower 90% uncertainty limit can be smaller than 
the first data point. The mean and Hazen plotting system (in case of nonparametric bootstrapping 
with interpolated EDF) show significant differences. A factor of 4 was observed between the 
minimum and the maximum of the estimated lower 90% uncertainty limit. 
 
Note that Figure 6 is only one possible realisation of confidence intervals. Therefore, as a validation 
exercise, 20 new data points from the same hypothetical lognormal target distribution were 
sampled. The uncertainty interval of the HC5 was again estimated. The coverage of the true HC5 
over the uncertainty interval was checked for every method. If this process is repeated 1000 times, 
the uncertainty interval should cover the HC5 percentile 900 times, i.e. the method with coverage 
closest to 90% should be considered as the most suitable method. The results of this simulation 
study are shown in Table 3. 
 

Table 3: Coverage, or percentage (%) of the samples that the actual HC5 value is included in the 
90% confidence interval, calculated for different methods and distributions 

Method "Distribution"  Coverage (%) 
1) Method from classical statistics Lognormal  90.6 
2) Bayesian statistics Lognormal  90.6 
3) Bootstrapping:    
    - Parametric Lognormal  88.9 
    - Nonparametric (resampling) EDF Mean 58.6 
 EDF Hazen 63.6 
    - Nonparametric Interpolated EDF Mean 93.7 
 Interpolated EDF Hazen 94.5 

 
Differences between methods are mostly determined by the choice of the probability distribution. 
The three parametric methods assuming lognormal distribution give similar results. The results 
show that these parametric methods also give the best results. This is to be expected as the 
hypothetical data set is lognormally distributed. The nonparametric bootstrapping, based on an 
interpolated EDF, overestimates the uncertainty interval, which is expected as nonparametric 
techniques tend to have larger uncertainty estimates. All in all, the coverage is sufficiently accurate. 
 
The nonparametric resampling procedure, on the other hand, clearly underestimates the uncertainty. 
In conclusion, the assumption that the EDF F̂  is assumed to be a good estimate of the real, 
unknown target distribution F does not seem to hold. It can even be shown theoretically that the 
basic bootstrap interval will not in general achieve this coverage (Efron & Tibshirani, 1993). 
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3.2.5.  Case Studies 
 
Three case studies on the use of several techniques for uncertainty and variability estimation are 
discussed here. The focus in the first case study (on LAS and Cu) is on estimating HC5 and its 
uncertainty interval using several parametric and nonparametric techniques. The second case study 
(on Cd and a hypothetical chemical) focused on the influence of upper and lower outliers on the 
HC5 and its uncertainty interval using parametric and nonparametric techniques. The third case 
study (on Zn) in collaboration with EURAS bvba (Ghent, Belgium) focused on the comparison 
between several parametric distribution distributions, more in particular the difference between 
threshold and non-threshold distributions. 
 

3.2.5.1. Species Sensitivity Distribution for LAS and Cu 
 
These data sets come from laboratory and field measurements reported in literature. They consist of 
a toxicity database of Cu (Copper - 20 data points) and LAS (Linear Alkylbenzene Sulfonate - 17 
data points), which can be found in Versteeg et al. (1999).  
 
Distribution Selection 
 
Both data sets are lognormal distributed according to the Kolmogorov Smirnov statistic for 
lognormality. To explore lognormality, normal QQ-charts or probability plots of the log-
transformed data were plotted (see Figure 7). 
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Figure 7: QQ-plots for log Cu (left) and log LAS (right) 

 
The QQ-plots indicate that the data are lognormal distributed around the mean, but tend to deviate 
at the tails, especially the upper tail for the Cu data set (Figure 7 left). A better fitting distribution 
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could be selected for the Cu data set especially because the lognormal distribution can lead to 
protection levels (PNEC) below normal background levels, particularly for metals. For example, 
Hopkin (1993) showed that use of SSDs could lead to supposedly toxic PNECs for essential metals 
below those that are a physiological requirement for beneficial soil arthropods. Other distribution 
types will be investigated in the third case study. Attention in this case study was focused on the 
difference between parametric and nonparametric methods. 
 
Uncertainty estimation 
 
All previously discussed methods were assessed for their performance in calculating the HC5 and its 
uncertainty/confidence estimates. 
 
An illustration of the results for LAS is shown in Figure 8. One can conclude that there is a distinct 
difference in shape between the parametric and nonparametric distributions estimated from the data. 
The parametric methods tend to produce smoother and smaller uncertainty or confidence bands 
compared to the non-parametric methods.  Nonparametric techniques follow more the data. This 
clearly demonstrates that the choice of distribution is an important, general problem. In order to 
select a lower bound, it is necessary to specify both the desired percentiles of variability and 
uncertainty. For example, one point estimate would be the 5th-percentile of uncertainty for the 10th-
percentile of variability (point A in Figure 8). 
 

Figure 8: SSD and its 90%-uncertainty band for the LAS data set based on non-parametric 
bootstrapping (Interpolated EDF and Hazen plotting method) (left) and parametric bootstrapping 

(lognormal distribution) (right) 

 
For LAS, a possible HC5 could be identified (median of all methods is around 200 µg/l) that could 
be situated within the 90%-uncertainty intervals of all methods (see Figure 9). However for Cu, no 
possible HC5 could be identified that would lie within the 90%-uncertainty intervals of all methods, 
since these do not overlap (see Figure 10). For LAS, a factor of 2.4 and for Cu, a factor of almost 5 
was found between the minimum and the maximum of the HC5 estimated by the various methods. 
 

A A 
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Figure 9: 90% uncertainty or confidence intervals of the HC5 following various 
methods for 17 data points of the LAS data set (concentration in µg/l) 

 
From Figure 10, it can be seen that the results are very sensitive to the choice of the assumed 
distribution (parametric or non-parametric). Furthermore, as already outlined above, the influence 
of potential outliers may not be underestimated. A detailed outlier study should be performed. 
 

 

Figure 10: 90% uncertainty or confidence intervals of the HC5 following various 
methods for 20 data points of the Cu data set (concentration in µg/l) 
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3.2.5.2. Species Sensitivity Distribution for Cd and a Hypothetical Chemical X 
 
The Cd data set (Cadmium - 19 data points) comes from laboratory measurements, which were 
compiled from literature databases and Janssen (2001). The hypothetical chemical X (18 data 
points) was also compiled based on realistic ecotoxicity tests found in literature. This second case 
study focuses on the influence of outliers or extreme values on the HC5 and its uncertainty interval 
using parametric and nonparametric methods. 
 
Distribution Selection 
 
To explore lognormality, normal QQ-plots of the log-transformed data were again made (see Figure 
11). 
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Figure 11: QQ-plots for log Cd (left) and log X (right) 

 
Only the X data set is lognormal distributed according to the Kolmogorov Smirnov statistic for 
lognormality. The QQ-plots also indicate that the data are lognormal distributed around the mean, 
but tend to deviate at the tails, especially the upper tail for the Cd data set (Figure 11 left). The bad 
fit at the tail could be caused by outliers. Several objective criteria exist to detect an outlier. These 
will not be used here. Outliers were detected based on visual inspection of cumulative distribution 
plots and QQ-plots. If a certain point deviates too much from the others, it is regarded as a potential 
outlier. This criterion is obviously very subjective, but this case study should be regarded as a 
sensitivity analysis of extremely low or high values rather than an outlier study. The Cd data set has 
two potential upper outliers whereas the X data does not have any outliers based on its QQ-plot 
although it has two extreme low data points. 
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Uncertainty estimation with and without outliers or extreme values 
 
The influence of outliers was investigated by removing or adding a potential outlier. The parametric 
and nonparametric bootstrap (using the interpolated EDF and Hazen plotting) were assessed for 
their performance in calculating the HC5 and its uncertainty/confidence estimates. 
 
The results of the influence of the two upper outliers in the Cd data set are shown in Figure 12 for 
nonparametric and parametric bootstrapping. The numeric values for the HC5 and the PNEC are 
presented in Table 4. 
 

Figure 12: SSD-curves + uncertainty band of the Cd-toxicity data set according to nonparametric 
and parametric bootstrapping with and without upper outliers or extreme values 

 
For calculating HC5, the nonparametric methods are almost insensitive to two upper outliers in 
contrast with the parametric methods (for the Cd data set; a factor 2.5 was observed for HC5). The 
data with outliers are not lognormally distributed according to a Kolmogorov Smirnov (KS) test, 
while the data set without the outliers is consistent with a lognormal distribution according to the 
KS test, i.e. removing the outliers improves the parametric fit. Removing an upper outlier only 
affects the uncertainty band at the upper tail for the nonparametric methods, while the uncertainty 
bands calculated using parametric methods are affected at both the upper and lower tail. 
 
The results of the influence of two lower extreme values in the X data set are shown in Figure 13 
for nonparametric and for parametric bootstrapping.  For calculating HC5, the nonparametric 
methods appear to be very sensitive to lower outliers (for the X data set, a factor 7.2 was observed 
for HC5). This can be expected as the lowest data points are used for HC5 calculation. In the 
examples, the parametric methods result in similar sensitivities to upper and lower outliers or 
extreme values. 
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Figure 13: SSD-curves + uncertainty band of the X-toxicity data set according to nonparametric 
and parametric bootstrapping with and without lower outliers  

 

Table 4: Influence of upper (for Cd) and lower outliers or extreme values (for X) on HC5 

   With outliers Without 
outliers 

Factor 

Cd Lognormal distribution?  No Yes  
 Parametric HC5 0.25 0.59 2.4 
  Lower CI* 0.17 0.47 2.8 
 Nonparametric HC5 0.60 0.58 0.97 
  Lower CI* 0.44 0.40 0.91 
X Lognormal distribution?  Yes Yes  
 Parametric HC5 5.97 17.97 3.0 
  Lower CI* 4.12 13.46 3.3 
 Nonparametric HC5 4.07 29.33 7.2 
  Lower CI* 2.65 19.46 7.3 

* 25th-perc of HC5 (= lower limit of a 50% confidence interval) 
 
 

3.2.5.3. Species Sensitivity Distribution for Zn 
 
In the framework of the European new and existing chemicals policy, an overall risk assessment for 
zinc (Zn) is being prepared. Traditionally, risk assessments in the European framework are 
performed according to the methodology laid down in the Technical Guidance Document (EU-
TGD, 1996). The potential risks are typically estimated in a deterministic way using point 
estimates.  Currently, overly conservative assumptions are used in an attempt to account for the 
uncertainty. Recently, the use of probabilistic approaches for characterizing effects in SSDs has 
been suggested (Van Straalen & van Leeuwen, 2002).  
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The main objective of this case study is to address the ongoing discussion in the European Union 
Zn Risk Assessment Report (EU-Zn RAR) and use its Zn data in a probabilistic way in order to 
provide a quantifiable and improved effects assessment. For this, several parametric (and 
nonparametric) distributions will be assessed to model the Zn ecotoxicity data. This study was part 
of collaboration with EURAS. More details of the study can be found in Van Sprang et al. (2002). 
 
Distribution Selection 
 
Selection of the most appropriate distribution was based on several criteria: goodness-of-fit 
statistics, expert knowledge and graphical exploration (e.g. QQ-plots or normal probability plots). 
Goodness-of-fit statistics (Anderson-Darling test statistic) were generated and compared among the 
different distributions. The smaller the discrepancy between the hypothesized and the observed 
distribution, the better the fit. Lognormality was explored using normal QQ-plots of the log-
transformed data (see Figure 14). The investigated Zn data set was not lognormal distributed 
according to the Kolmogorov-Smirnov and Anderson-Darling test statistics. The QQ-plot also 
indicates that the data deviates from lognormal at the lower tail (see Figure 14). As a consequence, 
the HC5 derived from a lognormal distribution is expected to be an underestimation. Similar 
conclusions were drawn for the other investigated parametric non-threshold distributions (i.e. 
distributions going through zero such as lognormal, extreme value, Pearson, Weibull, loglogistic). 
Results not shown here but can be found in Van Sprang et al. (2002). Among all non-threshold 
distributions, the best fit was obtained with the lognormal distribution (both based on graphical 
inspection and statistical tests). The lognormal fit is shown in Figure 15. 
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Figure 14: QQ-plot for the log-transformed Zn data 
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Parametric threshold distributions such as the Pareto, Beta and Triangular distribution do not force 
the lower tail of the SSD to go through zero. They were fit to the log-transformed Zn data (only 
Pareto fit is shown here in Figure 15 but others can be found in Van Sprang et al. (2002)). 
Threshold distributions are justified if there is an underlying interpretation of the threshold. Because 
Zn is an essential metal, there is a certain concentration range of that metal required for normal 
metabolic functioning of the organism. Except for the triangular distribution, threshold distributions 
fitted the chronic Zn NOEC data more properly, especially in the lower tail. While the triangular 
distribution tends to underestimate toxicity in the lower tail, better fits were achieved with the 
Pareto, Beta and sigmoidal distributions. The best fit at the lower tail was achieved by the Pareto 
distribution on the log-transformed data (Figure 15). 
 
Note that only for this case study, all distribution types (Pareto, Beta, extreme value, normal, …) 
except the lognormal distribution were fitted to log-transformed data. This means that these 
distribution types are not invoked as such but for ease of use, their names are not changed in this 
case study.  
 

 

Figure 15: Lognormal (dark grey) and Pareto (light grey) species sensitivity distribution with 
uncertainty band on the Zn ecotoxicity data set (arrows indicate 5th percentile or HC5) 
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Uncertainty estimation 
 
In this study, bootstrap simulations are used to estimate the uncertainty due to sampling error. For 
each resampling run, 21 random resample points (i.e. the sample size of the chronic NOEC database 
for Zn) were taken from the estimated distribution (parametric or nonparametric). The number of 
resampling runs was set at 2000. Doubling the number of resampling runs to 4000 did not change 
the uncertainty estimates (data not shown). 
 
Discussion 
 
The estimated HC5 values derived from non-threshold distributions ranged between 14 and 24 µg/l 
and were consistently lower than the better fitting threshold distributions. The fit of these latter 
distributions resulted in HC5 estimates ranging between 27 and 35 µg/l. Threshold distributions 
produced smaller 90% confidence bounds compared to the non-threshold distributions, especially 
on the lower confidence limits, which are bound by the threshold value. 
 
According to the Zn risk assessment report, an additional assessment factor of 2 on the HC5 was 
applied. This is argued by the presence of 2 high quality chronic NOEC values for the cladoceran 
Ceriodaphnia dubia (i.e. 14 µg/l and 17 µg/l), which fall below the estimated HC5 of 17.2 µg/l. 
However, the validity of the application of this additional assessment factor of 2 in the EU Zn risk 
assessment report for the protection of very sensitive species can be questioned when environmental 
risks are characterised using probabilistic techniques. In the effects assessment of a PERA, the 
entire SSD is considered instead of reducing the available information to a point estimate (as HC5) 
prior to risk characterisation. The very sensitive organisms (i.e. those with NOEC < HC5) will also 
be covered in the risk characterisation (see Chapter 4.1). Thus, the argument to introduce such 
additional assessment factor in order to be sufficiently protective for the most sensitive species in a 
risk assessment can be overruled. 
 
 

3.2.6.  Conclusions & Further Research 
 
The reliability of several uncertainty and variability estimation methods at sample size 20 was 
compared and assessed by means of simulation and case studies. 
 
The considered methods display varying robustness and accuracy in determining lower confidence 
limits of the HC5. The most suitable methods to estimate lower end percentiles such as the 5th-
percentile were found to be the method from classical statistics, Bayesian analysis and 
nonparametric bootstrapping (using interpolated empirical distribution function and the Hazen 
plotting system). 
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At this stage, there is no direct reason to prefer parametric or nonparametric methods. However, the 
results are very sensitive to the choice of the method (a factor of 5 difference was observed when 
results from different methods were compared). Differences between methods are for a large part 
determined by the choice of the probability distribution: parametric or nonparametric, threshold or 
non-threshold distributions. Consequently, the proper use of distribution selection methods should 
not be underestimated. Statistical tests, graphical exploration and expert knowledge can help in 
identifying the appropriate distribution. 
 
Some nonparametric methods should not be used for estimating low percentiles given a small 
sample size. All resampling techniques showed they were rather arbitrary and inaccurate because 
they are bounded by the smallest data point.  
 
For estimating 5th-percentiles of small sample sizes, the Hazen plotting and the mean plotting 
system are used in literature but one should be aware that both systems give different results (a 
factor of 2 was observed here) at low sample sizes (see also Aldenberg & Jaworska (2000) and 
Chapter 3.3). 
 
Further research on the influence of sample size may reveal more information. This is the topic of 
Chapter 3.3. 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Chapter 3.3 

- 
Uncertainty & Variability Estimation: 

Sample Size Issues 
 

 

 
 
 
 
 
 
 
 
 
 





 

 

 
 
Chapter 3.3 
 
Uncertainty & Variability Estimation: 
Sample Size Issues 
 
 
 
 
 
After introduction of Species Sensitivity Distributions (SSDs) to assess effects on the ecosystems 
and to derive environmental quality criteria, the method has been extensively debated. The most 
common current approach is to derive Predicted No Effect Concentration (PNEC) from the 
(median) 5th percentile of the SSD (EU-TGD, 1995). One of the remaining issues in SSD 
determination is the choice of sample size. This issue is less important for the Exposure 
Concentration Distribution (ECD) determination because usually, either enough monitoring data are 
available or exposure models are used. Therefore, this chapter, that reviews different criteria for 
determination of an appropriate sample size, will focus on SSDs. 
 
 

3.3.1.  Introduction 
 
One of the other remaining issues in SSD determination is the choice of sample size. The choice of 
an appropriate sample size is an essential component of any experimental design. Two important 
considerations need to be made to determine the appropriate sample size. First, the accuracy and 
scientific reliability of the method to estimate the 5th percentile should be assessed. Some methods 
cannot be applied at small sample sizes (say < 20). Second, the desired level of precision should be 
defined and assessed. Several papers (see Table 1) have already been published on the 
determination of a minimum or optimal sample size for SSDs. However, each researcher uses 
his/her own considerations to estimate the 5th percentile. 
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Table 1: Overview of proposals on minimum or optimal sample size for SSDs (Species Sensitivity 
Distributions), together with the criterion considered to obtain that size (consideration 1: the level 
of scientific reliability, consideration 2: the desired level of precision in the estimation) 

Reference Consideration Minimum/optimal sample size 
(Stephan et al., 1985) Unknown 8 
(van Leeuwen, 1990) 2 5 
(Baker, 1994) Unknown 4-8 
(Cowan et al., 1995) 1 20 
(Solomon, 1996) 1 9 
(Roman et al., 1999) Both No proposal 
(Vega et al., 1999) 1 10 
(Newman et al., 2000) 2 15-55 
(Van Der Hoeven, 2001) 2 No proposal 
(Wheeler et al., 2002) 1 10 
 
Consequently, different sample sizes for SSDs are proposed depending on the criterion and method 
used (in an often incomplete analysis) (see Table 1). Therefore, there is a need for a proper, 
standardised and scientifically sound procedure to determine a minimum sample size. 
 
This chapter has two main objectives. First, some studies and methods in literature on sample size 
determination will be reviewed in detail. Second, this chapter aims to clarify and illustrate these two 
important considerations for sample size determination. This will be done via a combination of a 
literature study and own simulation results. 
 
 

3.3.2.  Terminology, Simulation and Case Studies 
 
Several methods for estimating variability and uncertainty can be used (more information can be 
found in Chapter 3.2). 
 
Let x1, x2, …, xn be an independent and identically distributed random sample from x. This variable 
has distribution function F(x), density function f(x) and depends on some parameters θ1, θ2, …, θm. 
The sample mean is x  and the sample standard deviation is s. The 5th percentile of x or the HC5 of 
SS (Species Sensitivity) is the estimator of interest. 
 
The terminology to be used remains the same as in Chapter 3.2 and is shown in Figure 1.  The 
vertical bar represents a 90% uncertainty or confidence interval of the 5th percentile or HC5 taken 
from the SSD. This uncertainty interval has an upper 90% confidence or uncertainty limit (equal to 
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the 95th percentile of the uncertainty distribution of the HC5) and a lower 90% confidence or 
uncertainty limit (equal to the 5th percentile of the uncertainty distribution of the HC5). The line in 
the uncertainty bar is the estimate of the 5th (variability) percentile or HC5. It is estimated as the 
median of the uncertainty distribution. For ease of use, this will here be named the 5th percentile in a 
statistical context and HC5 in a risk assessment context. 
 
 
 

 upper 90% confidence or uncertainty limit  = 95th- uncertainty percentile  
       
 

 true 5th-variability percentile 
 

 median 5th-variability percentile = median 5th-percentile of the variability 
distribution = 50th-percentile (median) of uncertainty of the 5th-percentile of variability 

= median 90 % confidence limit = estimate of HC5 (Hazardous Concentration 5%) 
 

 lower 90% confidence or uncertainty limit  = 5th- uncertainty percentile 
 

Figure 1: Terminology and visualisation 

 
The distinction between a target population (represented by distribution F) and an estimated target 
population (represented by distribution F̂ ) should be considered carefully as described in Chapter 
3.2. In the following sections, some hypothetical target distributions will be assumed for some 
simulation studies. The first hypothetical target distribution F is a lognormal distribution with 
parameters mean µ = 2 and standard deviation σ = 1 (X ~ exp[N(µ,σ)]). The second hypothetical 
target distribution F is also a lognormal distribution but with parameters µ = 5 and σ = 2.82 (X ~ 
exp[N(µ,σ)]). Both distributions have the same 5th-percentile (namely 1.43). Other lognormal 
distributions, like the standard lognormal distribution (exp[N(µ,σ)] with µ = 0 and σ = 1), could 
also be studied but will give similar results as every lognormal distribution can be transformed into 
another one. The third hypothetical target distribution F is a transformed lognormal distribution (X 
~ exp[N(5,2.82)]+100). The idea behind this third hypothetical distribution is to create a 
"lognormal-like" data set with bad fit at the lower tail. To explore lognormality, normal QQ-plots of 
the log-transformed data were plotted. The normal QQ-plot for this last data set is shown in Figure 
10a.  
 
These target distributions can be used for simulation studies to assess the bias and coverage of the 
confidence intervals. In statistics, an estimate is unbiased if the expected value of a statistic as the 
mean or 5th percentile of the estimated target distribution F̂  is equal to the true value of the 
parameter:  

trueHCHCEbias ,5

^

5 −



=  

90
 %
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Similarly, a method has accurate coverage if the probability p that a confidence interval does not 
cover the true parameter is equal to the probability level used to construct the confidence interval. 
Confidence intervals are expected to enclose a true but unknown parameter according to that 
specified probability, such as 90% or 95%. This is the expected coverage of the confidence interval, 
given a specified significance level. The difference between the expected coverage and the actual 
coverage is one metric for evaluating statistical methods that yield different confidence intervals. In 
a simulation study, these coverage and bias can be found by repetitively taking random samples of 
the target distribution F. For risk assessment, the most desirable estimation method is one that deals 
well with high variance, yields confidence intervals that are sufficiently wide (i.e. the confidence 
interval does not underestimate the probability of enclosing the population parameter), and, more 
specifically, yields upper confidence limits that are not biased low. The choice of the most 
appropriate method will depend on the characteristics of the data set and a balance between two 
objectives: (1) the desire to be ecologically protective and, therefore, have a low probability of 
underestimating the mean, and (2) a desire to be accurate, in the sense of choosing a method whose 
expected coverage equals the true coverage. 
 
The other data sets discussed in this chapter consist of real toxicity databases (NOECs) of 
respectively Cu (Copper) and LAS (Linear Alkylbenzene Sulfonate), which can be found in 
Versteeg et al. (1999). For the Cu data set, the lognormal distribution fits well around the mean, but 
it fits badly at the tails (see QQ-plot in Figure 2 left). For the LAS data set on the other hand, the 
lognormal distribution fits very well (see QQ-plot in Figure 2 right). 
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Figure 2: QQ-plots for Cu (left) and LAS (right) 
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3.3.3.  Comments on Existing Sample Size Determinations for the SSD 
 
Each researcher uses his/her own method and criteria to determine a minimum or optimal sample 
size. This makes it extremely difficult to compare several sample size studies. Unfortunately, some 
of these sample size derivation methods are, in our opinion, wrong or could be significantly 
improved. In this section, two of such methods are reviewed in detail and criticised. Both deal with 
resampling and its underlying theory. 
 

3.3.3.1. Comments on Subsampling for Sample Size Plots 
 
In sample size determination problems, plots are often made showing the sample size on the abscis 
and some parameter estimate (HC5 in this case) and its uncertainty interval on the ordinate (e.g. see 
Figure 3b). Given a data set of n data points, the construction of these plots can be done in many 
ways. For every sample size smaller than or equal to n, the HC5 and its uncertainty interval needs to 
be calculated. Next, it is discussed whether to subsample with or without replacement from the 
original data set in order to construct these sample size plots. 
 
The "without replacement"- sampling sequence strategy takes random subsamples from the original 
data set without replacement. This corresponds with the practical point of view in risk assessment. 
A particular species sensitivity can only be observed once (e.g. a species can only die once). 
Unfortunately, only a limited number of sampling sequences are possible. For sample size m given 

a data set of size n (with m < n), the number of combinations is 
)!(!

!
mnm

n
−

. Many sampling 

sequences are needed because by investigating only a few selected sampling sequences, only a few 
possible realisations of many possible sequences are evaluated and consequently they are highly 
dependent on coincidence. Therefore, the sampling needs to be repeated many times in order to 
study all possible combinations. For the “without replacement”- sampling sequence strategy, the 
HC5 and its uncertainty interval should only be calculated for sample sizes less than or equal to n/2 
because the number of combinations is too small when the sample size is larger than n/2 (Bros & 
Cowell, 1987). Roman et al. (1999), Bros & Cowell (1987), Van Der Hoeven (2001), Vega et al. 
(1999) and Wheeler et al. (2002) used the "without replacement"- sampling sequence strategy. 
 
In the other case, the "with replacement"- sampling sequence strategy, replacement is allowed when 
subsampling. This corresponds better with the theoretical point of view that always starts with a 
new sample. This strategy is more general compared to the previous one. This strategy is used by 
Newman et al. (2000), Bros & Cowell (1987), Manly (1992)… 
 
The effect of different sampling sequence strategies was illustrated for the LAS data set. The results 
are shown in Figure 3. The uncertainty intervals are smaller in case no replacement is used. This is 
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due to the fact that only a limited number of sampling sequences is possible for this strategy. In the 
example of Figure 3a, results should not be interpreted from sample size 9 (=18/2) onwards as 
described above. Because of the limitations of the “without replacement”- sampling sequence, only 
the "with replacement"- sampling sequence should be and was used for further simulations. 
 

(a) (b) 

Figure 3: Sample size figures for LAS, (a) "without replacement"- sampling sequence, (b) "with 
replacement"- sampling sequence 

 
 

3.3.3.2. Comments on Bootstrap Resampling Strategy Based on Newman et al. 
(2000) 
 

3.3.3.2.1. Introduction 
 
In this commentary the recent approach of Newman et al. (2000) is analysed to find optimal sample 
size and only the statistical considerations pertaining to accuracy of the prediction of the pth-
percentile are focused on.  
 
Among other topics, Newman et al. (2000) describe a method for determining a sufficient number 
of species in SSDs using a modified version of bootstrapping. The novel modification concerns the 
use of a resample size bigger than the actual sample. Their results are: "Approximate optimal 
sample sizes for HC5 estimation ranged from 15 to 55 with a median of 30 species-sensitivity 
values. Similar sample sizes were needed for HC10 and HC20 estimation: estimates ranged from 10 
to 75. …These sample sizes are much higher than those recommended as acceptable for regulatory 
purposes". Since indeed these numbers are rather high and different from existing recommendations 
of 5-8 depending on the source, Newman’s approach was investigated both theoretically and 
numerically. 
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3.3.3.2.2. Theoretical Considerations of Bootstrapping 
 
The general approach in bootstrap simulation is to consider the empirical distribution function or to 
assume a distribution which describes the quantity of interest, to perform x replications of the data 
set of n by randomly drawing, with replacement, m = n or smaller values, and then calculate x 
values of the statistic of interest (Efron & Tibshirani, 1993). However Manly (1992) writes: "… One 
of the key aspects of bootstrapping is that samples are taken with replacement rather than without 
replacement. Hence, a pilot sample of size P (here named n) can be bootstrap-sampled to produce 
samples of any size, including sizes that are > P (here named m) (Bickel & Freedman, 1981).…". 
This is somewhat misleading as Bickel & Freedman (1981) only make a statement on bootstrapping 
statistics when m and n are varied separately under the condition that both m and n have to tend to 
infinity i.e. they study the asymptotic properties only. 
 

3.3.3.2.3. Newman et al. (2000) Approach 
 
Newman et al. (2000) modified the bootstrap by taking more resample points m than the actual, 
original data set size n. In Newman's (2000) study, the resample size varied between 5 and 100 in 
increments of 5. For each resample size, the HC5, HC10 and HC20 and their 95% confidence interval 
were calculated and plotted (Figure 4 for HC20). Logically, the confidence interval around the HCp 

estimate decreased as resample size increased. The resample size where no further visual 
improvement was found in narrowing of a confidence interval (note the subjectivity) was taken as 
the optimal m. Newman et al. (2000) set the optimal sample size n equal to the optimal resample 
size m found from such bootstrap study. 
 

3.3.3.2.4. Simulation Examples 
 
The Newman et al. (2000) procedure was investigated in two ways: first, for the convergence of the 
confidence intervals, as the resample size increases; second, for the consistency of the method by 
varying the initial sample size n. 
 
First, the procedure was repeated for 60 data points for a Zn toxicity data set. The data only serve as 
an example, data quality and other SSD issues are not discussed here. The resample size varied 
from 5 to 1000 in order to investigate the convergence of the confidence intervals (Figure 4). The 
optimal resample size of 65 was selected as Newman (2000) did by a visual assessment.  
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Figure 4: Curves for estimating sample size (HC20 as illustrated with the Zn data (60 points). The 
symbols indicate the HCp values ranked at the 50% (□), 5% (∆), and 95% (X) of the 10,000 values 

generated by bootstrapping 

 
Simulations show that as the resample size increases (becomes 1000), the confidence intervals 
converge to zero (Figure 5). In other words, the ideal resample size m would be infinity because the 
uncertainty would become zero and since these are simulations, it is no issue to resample as much 
as possible. This is in conflict with confidence interval theory that shows that there is always 
uncertainty at finite sample size. 
 
Second, suppose the original data set contained 30 sample points instead of 60 (30 sample points 
were ad random removed), and the entire procedure was repeated, what would then be the optimal 
(re)sample size? Using the same criteria as above 40 is a good sample size (Figure 5). So, starting 
with 60 data points leads to an optimal sample size of 65, whereas starting from half of these data 
leads to an optimal sample size of 40. This indicates that the method for optimal sample size 
determination is not consistent and starting from different initial conditions leads to different 
conclusions. This is not due to lack of a statistical criterion for a cutoff. Using a possible criterion of 
HC20

95/HC20
50 < 2 the recommended numbers would be 39 for 30 points and 360 for 60 points. 
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Figure 5: Curves for estimating sample size for (HC20) illustrated with the limited Zn data 
(sample size is 30) 

 

3.3.3.2.5. Conclusions 
 
No theoretical background was found to support the approach of Newman et al. (2000). Further, 
simulation examples show that when the resample size exceeds the sample size logical and 
statistical inconsistencies arise. Indeed, one cannot get more information from a data set than the 
data itself contains. After this analysis we feel that Newman’s et al. (2000) recommendations on 
sample size should not be considered. 
 
This was later also confirmed by Grist et al. (2002) in their paper. The theory of the m out of n 
bootstrap is currently not well understood (Bickel et al., 1997). Although the m out of n bootstrap 
percentile confidence intervals of Newman et al. (2000) generally converged with increasing m, 
there are no theoretical grounds for assuming that their deviation away from convergence provides 
information on minimum sample size. In particular, analysis of the situation in which resamples are 
generated with m > n (in other words, where the bootstrap resamples contain more elements than 
the original sample) currently remains largely unexplored (e.g. Sakov & Bickel (2000)). 
 
 

3.3.4.  Sample Size Considerations 
 
Two important considerations need to be made to determine the appropriate sample size. First, the 
accuracy and scientific reliability of the method to estimate the 5th percentile need to be assessed 
(relevance of parameters, representativeness of toxicity data both in terms of number and kind of 
species and taxonomic groups (which were not discussed here)). Some methods cannot be applied 
at small sample sizes (say < 20). Second, the desired level of precision needs to be defined and 
assessed. A minimum sample size can then be determined based on this desired level of precision. 



Chapter 3.3 

92 

 
 

3.3.4.1. Level of Reliability 
 
First, an appropriate method needs to be selected to estimate the 5th percentile or HC5. Every 
estimation method has its own properties and is based on its own assumptions (see Chapter 3.2). 
However, some of these properties or assumptions may not be valid at small sample sizes (say < 
20). Therefore, it should always first be checked if a HC5 estimation method is reliable and accurate 
enough at small sample sizes. This can be done by investigating the underlying theory or by 
performing some simulation studies. This last one will be illustrated in this section. 
 

3.3.4.1.1. Reliability of the Sample: Representativeness 
 
All statistical techniques used for estimating uncertainty and variability in SSDs depend on the 
assumption that the data set is a randomly drawn sample from the real, target SSD. The EDF, 
constructed on the basis of the sample, will converge to the real, target SSD when the sample size 
increases. The experimental setup must provide the guarantee that the sample is a random selected 
one. Unfortunately, a lot of practical problems still need to be solved to guarantee this.  From a 
statistical point of view, it is very difficult to quantify and investigate "representativeness". From an 
ecological point of view, it is also important to assess the representativeness of several taxonomic 
groups in a SSD. This is not discussed in this dissertation, as this issue needs a different (i.e. not 
statistically related) approach. Examples are given in e.g. Stephan et al. (1985).  
 

3.3.4.1.2. Reliability of the Estimation Method 
 
Simulation studies are a way to assess the reliability and accuracy of the statistical methods for 
small sample sizes. The bias and the variance of the HC5 estimate and the coverage of the estimated 
uncertainty interval are then assessed for several sample sizes. Definitions of these concepts can be 
found above in section 3.3.2. Here, a simulation study of 1000 replications was performed on the 
first hypothetical target distribution. The bias and coverage will be exact for all sample sizes when 
the number of replications becomes infinity. 
 
The results for the classical approach (according to Aldenberg & Jaworska (2000)) can be found in 
Figure 6. Based on the bias and coverage, a sample size of two is already sufficient provided the 
data were lognormally distributed and provided an average bias of 1.4 µg/l and a HC5 variance of 
14.7 µg/l is acceptable to the policy-maker. How acceptable a particular HC5 bias or variance 
should be, is the main issue in the next consideration. The HC5 bias and variance decrease as the 
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sample size increases. This corresponds with statistical estimation theory. The results also show that 
the coverage of the 90%-confidence interval varies around 90%, which was expected as these 
methods are based on this coverage concept (Aldenberg & Slob, 1993). This corresponds to earlier 
findings in literature (Aldenberg & Slob, 1993), (Kooijman, 1987): parametric approaches can 
result in very small sample sizes but these techniques are valid only if the assumption of the 
underlying distribution is correct. Hence, if the selected distribution assumption does not hold, 
parametric methods should not be used to obtain confidence intervals. 
 

 

Figure 6: Bias, variance and coverage of the uncertainty intervals of HC5 for the 
bootstrapping method (Classical approach, Hazen plotting, 1000 repetitions) 

 
If an underlying distribution cannot be specified, a nonparametric technique should be used. The 
results of the simulation study for the nonparametric method using Hazen plotting and interpolated 
EDF are shown in Figure 7. The HC5 bias and variance are less dependent on the sample size 
compared to the parametric methods. The bias even decreases when the sample size decreases 
below sample size 10. This is apparent because it is inconsistent with what is expected from a 
theoretical point of view i.e. increase of bias at increasing sample size. The coverage varies between 
95 and 100%. Hence, the uncertainty intervals are always overestimated, but this is acceptable from 
a conservative point of view in a risk assessment. 
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Figure 7: Bias, variance and coverage of the uncertainty intervals of HC5 for the bootstrapping 
method (interpolated EDF, Hazen plotting, 1000 repetitions) 

 
Such simulation studies are not often found in the ecotoxicological literature. Instead, some 
researchers investigate the “stability” or convergence of the HC5 in function of the sample size. A 
consistent estimator (e.g. for calculating the 5th percentile) converges to the "true" value as the 
sample size increases. The result given by the method should not depend on the number of species 
tested (Roman et al., 1999). Although this is a rather qualitative and subjective assessment, this 
criterion is also explored, illustrated and compared here for several methods estimating uncertainty 
and variability. Special attention was given to the difference between parametric and nonparametric 
methods. Examples of parametric results are shown in Figure 12, Figure 3, Figure 10b, Figure 8 left 
and Figure 9 left for several hypothetical and real data sets. The results of the nonparametric 
techniques are shown in Figure 8 right and Figure 9 right for the LAS and Cu data set respectively. 
 
The 5th percentile (or HC5) should not depend on the sample size. Instead, it should be constant. In 
case of LAS, parametric and nonparametric methods do not show instable HC5 estimations (Figure 
8). The stability of HC5 in parametric methods is even independent of the sample size, indicating 
that even very small sample sizes (of 5 data points) are accurate enough, provided the assumed 
distribution is right. However, the uncertainty intervals for the nonparametric method do not show 
the expected “trumpet”-shape, indicating an estimation problem below sample size 10. 
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Figure 8: Influence of sample size on the 5th-percentile using (left) parametric method (Aldenberg 
& Jaworska, 2000) and (right) nonparametric bootstrapping (Interpolated EDF - Hazen plotting) 

for the LAS data set 

 

Figure 9: Influence of sample size on the 5th-percentile using (left) parametric method (Aldenberg 
& Jaworska, 2000) and (right) nonparametric bootstrapping (Interpolated EDF - Hazen plotting) 

for the Cu data set 

 
In case of Cu, the HC5-estimates seem to converge above sample size 8 for the parametric methods 
(Figure 9). Note that the lognormal assumption may be less fulfilled considering its QQ-plot in 
Figure 2 and the large difference between parametric and nonparametric HC5s. 
 
For nonparametric methods below sample size 10, the HC5 gradually drops with decreasing sample 
size and the confidence intervals are not steadily increasing, as one would expect from a theoretical 
point of view (less data points, more uncertainty). This number 10 is not a coincidence and can be 
explained by analytical calculations. Recall the formulae from Chapter 3.2 to calculate a percentile 
nonparametrically. Based on these, one can calculate the minimum sample size needed to estimate a 
5th-percentile (HC5) without having to extrapolate below the smallest data point. The rank order i 
for the smallest point is 1, F(xi) is 0.05 (=5 %) and n is unknown. The calculations are: 
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The minimum n=19 for the mean plotting position corresponds to earlier findings in literature (e.g. 
Van Der Hoeven (2001)). The minimum n=10 for the Hazen plotting position corresponds to the 
simulation results found here. Similarly, such a minimum sample size can also be calculated for the 
20th-percentile (HC20): 
 
Mean plotting system:  4

1
120.0

1
)( =⇔

+
=⇔

+
= n

nn
ixF ix

  

 
Hazen plotting system: 35,25.0120.05.0)( =⇒=⇔

−
=⇔

−
= nn

nn
ixF ix

  

 
 
To further investigate the relevance of the distribution type, twenty-five random sample points were 
drawn from the third hypothetical target distribution. The QQ-plot for checking lognormality is 
shown in Figure 10a. In this example, it is clear that the lower data points are deviating from the 
lognormality assumption and that these data points are not outliers. It is now investigated how such 
deviations from the lognormal assumption influence the sample size problem. 
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Figure 10: Hypothetical "lognormal-like" data set (a) QQ-plot, (b) sample size plot for the 
parametric method (Aldenberg & Jaworska, 2000) 

 
The result in Figure 10b shows that the usage of the wrong statistical distribution in the first place 
results in error or bias. The bias is the difference between the estimated HC5 and the true HC5. The 

deviations from 
lognormality

true 
HC5 bias
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thin, black line in Figure 10b represents the true HC5. The conceptual problem is that this value is 
only known when a hypothetical distribution is used in practice. The bias, being the difference 
between the thin line and the middle, black bar, will in practice not be known. It does not affect the 
sample size determination problem according consideration 2 (level of precision, see below), nor 
does it affect most other criteria of consideration 1 (e.g. no apparent divergence was observed). Of 
course, if it is clear from the QQ-plot and the data that they are not lognormal distributed, the 
lognormal distribution should not be used to determine the minimum sample size. 
 
Based on the results above, it can be summarised that sample size 2 is the absolute minimum for all 
parametric methods and sample size 10 is the absolute minimum for the nonparametric bootstrap 
based on Hazen plotting and the interpolated EDF. In Chapter 3.2, it is already shown that the 
minimum sample size for nonparametric bootstrap based on EDF (resampling) is much larger than 
25. Such findings should be considered when the HC5 estimation method is selected. 
 
 

3.3.4.2. Level of Precision 
 
Once an appropriate method is selected, the level of precision can be specified and the 5th percentile 
or HC5 can be estimated for several sample sizes. The minimum sample size can then be 
determined. The level of precision can be specified in many ways. 
 
Most papers on sample size determination use this criterion (e.g. Roman et al. (1999), Newman et 
al. (2000), Van Der Hoeven (2001) and Manly (1992)). The uncertainty intervals as a function of 
sample size typically have a "trumpet"-shape: uncertainty intervals become smaller as the number 
of data points increases because more information becomes available. The optimal sample size is 
then selected as the sample size where a small increase in sample size only results in a small 
increase in precision (i.e. a slight decrease in confidence intervals). For example in Figure 12a, 18 
could be selected as a minimum sample size. However, these assessments are very qualitative and 
subjective. As a consequence, different scientists propose their own minimum sample size based on 
their own level of precision. It is, in our opinion, up to the policy-maker to decide and quantify how 
large uncertainty intervals may be. For example for Figure 12b, if the policy-maker is already 
confident with a 90% confidence interval width of 7 µg/l, then a sample size of 19 would be 
sufficient for this criterion. Another approach is to select the optimal sample size by balancing the 
cost of obtaining additional data points versus precision statements (as e.g. in Bros & Cowell 
(1987)). 
 
The level of precision can be specified on an absolute or a relative scale. This is explained by means 
of the two first hypothetical target distributions. Twenty data points were drawn from each 
distribution. Both SSDs have different means and variances but the same 5th-percentile (i.e. HC5) 
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and are shown in Figure 11. A parametric method was used to construct the uncertainty band and 
intervals. Chemical (a) only has a narrow range of species sensitivities (i.e. a small variance = 1). 
All species have more or less the same sensitivity. Chemical (b) on the other hand has a wide range 
of species sensitivities (i.e. larger variance = 2.05). As can be seen from Figure 11, the larger the 
variability (i.e. variance of the SSD), the larger the uncertainty or confidence intervals for the HC5 
(for the same sample size). 
 

 

Figure 11: Two SSDs with different means and variance but the same 5th-
percentile (uncertainty bands are also shown) 

 
The results for different sample sizes are presented in Figure 12. There is clearly a distinct 
difference in the width of the confidence intervals. It is clear that more data points are needed for 
chemical (b) to achieve the same precision (i.e. uncertainty interval width) as chemical (a). 
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Figure 12: Influence of the level of variability on the sample size - uncertainty interval relation for 
the 5th-percentile using a parametric method Aldenberg & Jaworska (2000) (for two hypothetical 

lognormal data sets (a) and (b)) 
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The SSD can be standardised to put the level of precision on a relative scale as illustrated by Roman 
et al. (1999). Standardising is obtained by subtracting the data points by the mean and dividing the 
result by the standard deviation. On this relative scale, both chemicals (a) and (b) will have the 
same width of uncertainty intervals because the uncertainty intervals for scale location distributions 
are independent of the data. They only depend on the sample size.  
 
However, it is suggested here that it is up to the policy-maker to decide whether to put the level of 
precision on a standardised or a non-standardised SSD. In case the SSD is standardised, the policy-
maker feels there is no need to have an equally precise HC5 estimate of a chemical with a wide 
range of species sensitivities (as chemical (b) in the example) compared to an HC5 estimate of a 
chemical with a small range of species sensitivities (as chemical (a) in the example). Therefore, it is 
more important to obtain a precise HC5 estimate because of the narrow range of species 
sensitivities. In case the SSD is not standardised, the policy-maker feels HC5 estimates should be 
precise independent of the wide or small range of species sensitivities. 
 
 

3.3.4.3. Determination of Minimum Sample Size 
 
The minimum sample size was determined here for the Cu and LAS data set as an illustration. The 
data sets were considered to be representative of all species sensitivities. For the LAS data set, a 
parametric method (assuming lognormal distribution) was selected. Given this method selection, it 
was derived from the reliability assessment above that sample sizes from 2 onwards can be 
considered. For the Cu data set, a nonparametric method (with interpolated EDF and Hazen 
plotting) was selected since its QQ-plot indicates potential deviations from lognormality and since 
essential metals can be characterised by a threshold (see Chapter 3.2). Given this method selection, 
it was derived from the reliability assessment above that sample sizes from 10 onwards can be 
considered. 
 
For consideration 2, the policy-maker should specify the level of precision (on absolute or relative 
scale).  In this example, the policy-maker decided to specify the level of precision as the ratio of 
HC5 and its lower 90% confidence limit to be smaller than 5 on the absolute scale, i.e. the policy-
maker feels HC5 estimates should be precise independent of the wide or small range of species 
sensitivities. Ecological considerations also needs to be specified but are not considered here. Based 
on this level of precision, the minimum sample size for the LAS and Cu data set is respectively 10 
and 14. 
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3.3.5.  Conclusions & Further Research 
 
First, a review was made of existing minimum or optimal sample size derivation procedures. No 
theoretical background was found to support the approach of Newman et al. (2000). Further, 
simulation examples show that when the resample size exceeds the sample size logical and 
statistical inconsistencies arise. Indeed, one cannot get more information from a data set than the 
data itself contains. After this analysis it is felt that Newman’s et al. (2000) recommendations on 
sample size should not be adopted. 
 
Next, this chapter has illustrated two important considerations needed for sample size 
determination. The general methodology is first to determine the scientific reliability and accuracy 
of the HC5 estimation method, representativeness of the data set and second to specify the desired 
level of precision needed, by the policy-maker or risk manager. 
 
Based on simulation studies to assess the reliability and accuracy of the statistical methods for small 
sample sizes, it can be summarised that sample size 2 is the absolute minimum for all parametric 
methods and sample size 10 is the absolute minimum for the nonparametric bootstrap based on 
Hazen plotting and the interpolated EDF. In Chapter 3.2, it is already shown that the minimum 
sample size for nonparametric bootstrap based on EDF (resampling) is much larger than 25. The 
findings should be considered when the HC5 estimation method is selected. Once an appropriate 
method is selected, the level of precision can be specified on an absolute or relative scale by the 
decision-maker and the minimum sample size can then be determined. 
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Chapter 3.4 
 
Hierarchical Uncertainty and Variability Estimation 
 
 
 
 
The Exposure/Environmental Concentration (EC) and the Species Sensitivity (SS) are characterised 
by uncertainty and variability. The uncertainty and variability of the EC and SS can be separated in 
different hierarchical levels. For example, the hierarchical variability of the EC of a chemical in 
European rivers can be separated in a spatial variability level (different monitoring locations 
throughout Europe) and a temporal variability level (different time measurements per monitoring 
location). Govaerts et al. (2001) and Lecoutre (2001) discussed several hierarchical approaches for 
the EC estimation. One of their main issues was to deal with censoring. But their case study dealt 
with large data sets (range 1000-25000). For the SS, unfortunately, only small data sets are 
available (range 10-100). The main focus of this chapter will therefore be on SS. 
 
 

3.4.1.  Introduction 
 
Several organisms have different sensitivities towards a certain chemical. Species sensitivities are 
based on ecotoxicity data to assess effects on ecosystems in ecological risk assessment and to derive 
environmental quality standards. After Species Sensitivity Distributions (SSDs) were introduced by 
Van Straalen & Denneman (1989), the method has been extensively debated. The most common 
current approach is to derive Predicted No Effect Concentration (PNEC) from the 5th percentile of 
the SSD (EU-TGD, 1995). Historically, that value is known as the Hazardous Concentration at p-
protection level, HCp (in this case p = 5). 
 
In the derivation process of this HC5, a lot of information (sources of variability and uncertainty) is 
currently discarded because summary statistics (e.g. averages) are taken in each step of the HC5 
derivation process. Currently, in the conventional method, only inter-species variability is modelled 
in the SSD characterisation. Sometimes, sampling uncertainty of selecting species from a 
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community is modelled as in e.g. Aldenberg & Slob (1993) or Aldenberg & Jaworska (2000) and 
Chapter 3.2. In this way, other information like the variability of intra-species sensitivity (i.e. 
differences in sensitivity between several individuals of the same species towards a toxicant) and 
inter-laboratory variability (i.e. differences due to laboratory test populations and/or test conditions) 
is discarded. 
 
Consider for example in Figure 1 the two cumulative probability distributions. These could either 
represent inter-laboratory variability, intra-species or inter-species sensitivity. Both curves have the 
same 20th percentile but different means and variances. The location and shape of the distribution 
(which contain information on the sensitivities and variations) are not accounted for if only the 20th 
percentile is taken for further analysis. 
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Figure 1: Two cumulative distribution functions with different mean and variation but 
the same 20th percentile 

 
There are many statistical methods that can account for this hierarchical variability and uncertainty 
on the contrary to what Wheeler et al. (2002) claims. It is however still unclear in the chemical risk 
assessment field how to account for this hierarchical structure because of its case-specific nature 
and whether it is worthwhile to account for all these extra hierarchical levels of information. 
 
The goal of this chapter is twofold: (1) understand how to account for hierarchical variability and 
uncertainty in a SSD and (2) evaluate which methods should be used. To address the first question, 
the conventional method and two (alternative) methodologies will be evaluated. To address the 
second question, all methods will be compared with each other. Simulation studies as well as case 
studies of SSDs for some organic and inorganic chemicals will be given. 
 



Hierarchical Uncertainty and Variability Estimation 

103 

Note that next to these extra forms of hierarchical uncertainty and variability, there are also other 
sources of uncertainty (e.g. lab to field extrapolation, mixture toxicity…). These are not dealt with 
here nor are other (dis-)advantages of the use of SSDs. Rather, this chapter should be viewed as a 
step forward in revealing, quantifying and propagating more sources of uncertainty and variability 
in a scientifically defendable manner. The more sources are quantified; the better the decision-
maker can assess the reliability of a risk assessment outcome. 
 
 

3.4.2.  Description of Hierarchical Variability and Uncertainty 
 
The left panel of Figure 2 shows a community of n species. Each species i was investigated by mi 
laboratories and each laboratory j performed a toxicity test for lij individuals. An overview of all 
hierarchical variability and uncertainty levels in the HC5 derivation process is given in Figure 2 and 
Table 1 (partly based on Forbes et al. (2001), Moore et al. (2000), Janssen et al. (2000), Hart 
(2001)). 
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Figure 2: Procedure for deriving a SSD where information is lost due to (1) sampling uncertainty 
per individual, (2) taking the xth-percentile for EC (e.g. 50th-percentile for EC50) or calculating a 

significant difference for NOEC, (3) sampling error per lab, (4) averaging, (5) sampling error per 
species, (6) taking the 5th-percentile for HC5. The distributions represent (A) intra-species 

variability (EC-curve), (B) inter-laboratory variability (C) SSD (variation due to inter-species 
variability) 
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Table 1: Overview of several types of (hierarchical) uncertainty and variability 

N Type Description How discarded? 
1 Sampling 

uncertainty*  
Due to selecting individuals from a particular species Not considered 

2 Intra-
species 
variability 

The selected individuals of the same population 
typically have different sensitivities towards a 
chemical. The results are shown in an EC-curve 
(effect-concentration or dose-response curves as e.g. 
A in Figure 2). Smit et al. (2001) concluded on the 
basis of the evaluation of more than 300 EC-curves, 
that the intra-species variability is considerable. 

Either the xth-percentile 
of the EC-curve is taken, 
resulting in an Effective 
Concentration ECx (e.g. 
EC50 for the median) or a 
No Observed Effect 
Concentration (NOEC) 
is calculated based on a 
significant difference 
with the lowest observed 
test concentration. 

3 Sampling 
uncertainty* 

Due to selection of several references (laboratories) 
for a particular species in a literature search of 
toxicity tests 

Not considered 

4 Inter-
laboratory 
variability 
(and 
uncertainty) 

Here, inter-laboratory variations are mainly 
contributed by variability although by several 
sources**: 
• variability in different testing methods in 

different labs (test-type, test-component (e.g. 
ZnSO4, ZnO, ZnCl2 …), experimental time, test-
water (artificial, river, lake, … resulting in 
different physico-chemical properties as pH, 
hardness, DOC, suspended solids…)); 

• variability in endpoint criteria (growth, 
maturation, reproduction, survival…); 

• variability due to acclimatisation (a species can 
adapt to higher or lower concentrations); 

• variability due to different life-stages of the 
species (e.g. larvae, adults…); 

• uncertainty due to measurement error… 
Inter- (and intra-)laboratory variations can be quite 
high despite the use of standardised toxicity test 
protocols and species (Moore et al., 2000). 

The mean (Janssen et al., 
2000), (Stephan et al., 
1985) (Wheeler et al., 
2002) or the lowest value 
(Forbes et al., 2001) 
(Wheeler et al., 2002) of 
all NOECs or ECxs 
observed for several 
laboratories of each 
species is taken. 
 
Some sources of 
variability are accounted 
for by standardising the 
toxicity endpoints to 
equal physico-chemical 
test conditions. 
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Table 1 (continued): Overview of several types of (hierarchical) uncertainty and variability 

N Type Description How discarded? 
5 Sampling 

uncertainty*  
Due to species selection in a community (i.e. in 
theory, a random, representative sample of species in 
the environment is taken, in practice this often boils 
down to the species toxicity tests taken from 
literature). 

Sometimes simulated as 
in e.g. Aldenberg & Slob 
(1993). Usually, the 
resulting confidence 
interval is not considered 
for further analysis. 

6 Inter-
species 
variability 

The averages of all available NOECs or ECxs of each 
species are combined into a SSD representing the 
different sensitivities the different species have 
towards a chemical. 

The SSD is often 
determined, but usually 
the 5th percentile (HC5) 
of the SSD is taken. 

* Sampling uncertainty is due to the random process of sample selection. One sample (e.g. a set of 
species sensitivities) is only one possible realisation of a random process. If this analysis would be 
repeated independently from the previous one, other samples might be taken and different toxicity 
results would be obtained. 
** Inter-laboratory variations were considered to be mainly due to either variability because in our 
opinion, collecting more results from more laboratories will hardly result in smaller inter-laboratory 
variations. And this reflects better the definition of variability than the definition of uncertainty. 
 
All levels of variability (inter-laboratory variability, intra- and inter-species variability) could be 
aggregated into one single SSD reflecting all inherent natural heterogeneities. All sources of 
sampling uncertainty could be included in an aggregated uncertainty band around the SSD. 
 
 

3.4.3.  Methods 
 
Next to the conventional, two alternative methods are proposed and discussed. An overview of the 
properties of each method is given in Table 2. 
 
The conventional method is based on summary statistics provided by several laboratories, which in 
their turn are based on ecotoxicity summary statistics of several individuals. Consequently, only the 
inter-species variability is determined (step 6 in Table 1 and Figure 2). Sometimes, sampling 
uncertainty of selecting species from a community is modelled (step 5 in Table 1 and Figure 2). The 
other sources of hierarchical variability are not considered in the effects analysis. The first 
(alternative) method considers the hierarchical structure of the data in a hierarchical method. The 
second method ignores the hierarchical structure and considers all raw data points on the same 
level. Both are based on all (raw) data and are therefore designed to include the hierarchical 
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variability and uncertainty. Recently, the non-hierarchical method (but without weighting) was also 
studied by Wheeler et al. (2002). 
 

Table 2: Overview of the properties of all methods discussed 
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Conventional Summary data 
Not 

relevant 
6 5 Easy 

Hierarchical 
All (raw) 

hierarchical data 
Yes 2,4,6 1,3,5 

More effort 
needed 

Non-hierarchical All (raw) data Yes 2,4,6 
1,3,5 but no 

interpretation 
Easy 

* Number refers to N in Table 1 and Figure 2 
 
Weighting the ecotoxicity data can be done for several reasons and correspondingly according to 
several methods. Weighting according to the reasons outlined in 3.4.3.1 was only relevant for the 
two alternative methods. 
 
For the “practical use”-property, putting summary or all raw data into one distribution is easier and 
can be easily done in spreadsheet software compared to applying a less easy method like a 
hierarchical method. 

 
 

3.4.3.1. Assigning Weights to the Data 
 
Weighting the ecotoxicity data can be done for several reasons and correspondingly according to 
several methods. First, some species may play a more dominant or suppressive role in an ecosystem 
and should for this reason be assigned a larger or smaller weight. Second, one of the important 
assumptions in the SSD methodology is that the selected species should be representative for an 
ecological community (which is often mentioned in literature e.g. Forbes et al. (2001), Fuchsman et 
al. (1999)). Weights could resolve the overrepresentativeness of e.g. a taxonomic group in the SSD. 
These two reasons are not considered any further because they are ecologically inspired. Third, a lot 
of literature data can be available for one particular species (e.g. because the species is well studied 
or easy to cultivate), leading to this species being overrepresented in the SSD. This reason is not 
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relevant for the conventional approach because averages are taken for each species and 
consequently, each species is equally represented in the SSD. But when considering all raw data, 
some species will be overrepresented if a lot of laboratory data for that species are available. 
 
Weighting the data is a possible solution but unfortunately not often applied (as e.g. in Wheeler et 
al. (2002)). Weighting would not complicate the interpretation of the SSD since each species would 
be equally represented. One possible option for assigning weights is presented here: Weights are 
assigned to each data point such that all data for one particular species only counts as one species 
despite for example its abundant lab data. In the general case, the weights are calculated as 

 

nml
w

iij
ijk ⋅⋅

=
1 , 

 
where 
wijk is the weight for individual k for laboratory j and for species i where 1=∑ ijkw  

lij is the number of individuals for laboratory j and for species i 
mi is the number of laboratories for species i 
n is the number of species 

 
In this way, every particular laboratory and species (which was over- or underrepresented in the raw 
data set) will now be equally treated compared to the other laboratories or species. 

In case intra-species variability is not considered (k = 0), a simplified formula 
nm

w
i

ij ⋅
=

1  is used. 

This formula is more applicable in practice, as data-availability on intra-species sensitivity is often 
problematic. Also in the case studies presented below, intra-species variability is not considered and 
therefore, it was also excluded from the simulation study. 
 
 

3.4.3.2. The Conventional Method for SSD Building 
 
Sampling error or uncertainty can be modelled in many ways. Here, the bootstrap technique was 
selected. Given a sample of size n, the general approach in bootstrap simulation is to assume F̂ , to 
perform r replications (e.g. r = 5000) of the original data set by randomly drawing, with 
replacement, n values from F̂ , and then calculate r values of the statistic of interest. These can be 
used to determine the uncertainty distribution of the statistic of interest. Note that the properties of 
the bootstrap are asymptotic. One approach is to use the actual data set itself and to randomly select, 
with replacement, the actual values of the data set. This is sometimes referred to as resampling. 
The data can be represented via an Empirical Distribution Function (EDF) F̂ . Another approach to 



Chapter 3.4 

108 

achieve the same is to first calculate random samples of a uniform distribution between 0 and 1. The 
random samples are then found as the inverse cumulative distribution function of these random 
uniform samples. This can be noted as ( )( )1,0ˆ 1 UF − . Basically, resampling is done from that step 

function. F̂  is assumed to be a good estimate of the real, unknown distribution F. But, F̂  can be 
any distribution type (nonparametric or parametric (e.g. lognormal, triangular,…) distribution) and 
determines the type of bootstrapping. From F̂  the statistic of interest can be calculated (here the 5th 
percentile). The reader is referred to Chapter 3.2 for more information on the bootstrap technique. 
 
 

3.4.3.3. Alternative Method 1: Hierarchical Method (“Weighted Hierarchical 
Bootstrap”) 
 
Hierarchical methods can be separated into several classes. Parametric methods assume a certain 
underlying distribution or model (e.g. a random effects model (Warren-Hicks et al., 2000)) whereas 
a nonparametric method relies on the data themselves. The parametric methods are most often used 
in literature. There are frequentist and Bayesian viewpoints of how to deal with hierarchical data 
sets (Warren-Hicks et al., 2002). Bayesians like to add prior knowledge in the analysis and have a 
different interpretation of uncertainty. There are numerical, simulation and analytical techniques. 
These different classes of methods have their advantages and disadvantages. These different 
methods will not be discussed here. The main focus is to discuss the difference between a 
hierarchical and a non-hierarchical method. 
 
Here, a hierarchical bootstrap technique was selected. The bootstrap is easy to understand and 
implement (see Chapter 3.2). In a bootstrap, the data (or a specified distribution F̂ ) are resampled 
as if the analysis was completely repeated. In the hierarchical bootstrap, this principle remains the 
same (see Figure 3). The entire data generation process of Figure 2 is repeated several times. 
 
First a species is randomly selected. Second, for that species, a laboratory is randomly selected. And 
third, for the selected species and laboratory, an individual is randomly selected. In particular, the 
species are resampled n times. For each selected species, the laboratories are resampled mi times. 
For each selected species and laboratory, this resampling of individuals is repeated lij times. 
Basically, these are three embedded loops. In each resample, there are lij x mi x n number of data 
points on which a nonparametric and parametric distribution is fitted and the HC5 is calculated. 
Repeating this resampling procedure a large number of times (e.g. 500 times) results in an 
integrated variability distribution with an uncertainty band aggregating all sampling uncertainties. 
The weights of each randomly selected species, laboratory or individual are accounted for as 
described above. A similar procedure was applied by Lecoutre (2001). 
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Figure 3: Principle of hierarchical bootstrap 

 
There is however a substantial practical drawback to this method. Often, the data sets are too small 
to apply nonparametric HC5 calculation. For example, the number of laboratories per species is 
mostly very small (range of 1-5). Therefore, only parametric HC5 calculations were performed. 
 
 

3.4.3.4. Alternative Method 2: Non-Hierarchical Method (Data Also Weighted) 
 
The bootstrap was again selected for the estimation of uncertainty and variability, but it had to be 
extended in order to incorporate weighting. In the next paragraph, it is explained how the estimated 
target distribution F̂  was modified for the nonparametric and parametric bootstrap. 
 
In the nonparametric bootstrap, the weighted interpolated Empirical Distribution Function (EDF) is 
constructed by plotting the sorted data ( )nxxx ≤≤≤ ...21  against the cumulative probability 

calculated as 
n

ixF i
5.0)( −

=  (here i represents the rank of the data point). Figure 4 illustrates how 

the EDF changes when the data points are weighted. The values of the data points (the X-values) 
remain the same but their cumulative probability changes according to their assigned weights 
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Calculate HC5 by fitting a 
parametric distribution
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because the cumulative probabilities are now calculated as ∑
=

=
i

i
ii wxF

1
)(  (cumulated weights after 

ranking). In the bootstrap technique, samples are now taken from the weighted interpolated EDF 
instead of the interpolated EDF. 
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Figure 4: Hypothetical example of an empirical distribution function (EDF) and a weighted 
empirical distribution function (weighted EDF) 

 
For the weighted parametric bootstrap, the weighted mean and variance need to be calculated. They 
are calculated using the following formulas (NIST, 2001): 
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where xi the ith observation 
wi the weight of the ith observation 
n the number of observations 

wx  the weighted mean of the observations 

sw
2 the weighted variance of the observations 
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3.4.4.  Simulation Study 
 

3.4.4.1. Description 
 

The distinction between a target population (represented by distribution F) and an estimated target 
population (represented by distribution F̂ ) should be considered carefully as discussed in Chapter 
3.2. In statistics, an estimate is unbiased if the expected value of a statistic as the mean or 5th 
percentile of the estimated target distribution F̂  is equal to the true value of the parameter. The bias 
is therefore a measure for the accuracy of the HC5 estimation of each method. The variation of the 
HC5 and is a measure for the precision of the HC5 estimation. Similarly, a method has accurate 
coverage if the probability p that a confidence interval does not cover the true parameter is equal to 
the probability level used to construct the confidence interval. In a simulation study, these coverage 
and bias can be found by repetitively taking random samples of the target distribution F. 
Furthermore, a good method has a small bias and a small variation of the HC5. In this simulation 
study, it was assumed that a community consisted of 30 species. Each species was tested in a 
number of laboratories. An overview of the species and their inter-laboratory variation (lognormal 
distributions were assumed) can be found in Table 3. 
 

Table 3: Assumptions for the simulation study (Mean and standard variation of the lognormal 
distribution representing inter-laboratory variability (true HC5 = 4.77)) 

Species Mean* 
Standard 

deviation* 
Number of 
laboratories 

Species Mean* 
Standard 

deviation* 
Number of 
laboratories 

1 2.08 0.1 2 16 2.5 0.7 10 
2 2.94 0.74 4 17 2.66 0.23 4 
3 2.2 0.69 4 18 4.34 0.42 1 
4 2.66 0.73 10 19 2.35 0.3 4 
5 4.01 0.42 5 20 5.17 0.4 5 
6 2.65 0.6 1 21 2.2 0.47 1 
7 5.67 0.5 1 22 2.76 1.53 1 
8 2.9 0.27 3 23 4.27 0.3 3 
9 2.46 1.53 3 24 2.58 1.23 1 
10 4.27 0.5 1 25 2.32 0.34 2 
11 2.88 1.13 4 26 3.9 0.35 3 
12 2.82 0.24 3 27 4.17 0.4 1 
13 3.8 0.2 1 28 2.78 1.13 3 
14 2 0.2 3 29 2.22 0.14 3 
15 3 0.7 4 30 3 0.2 1 

* Mean and standard deviation of the corresponding normal distribution 
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Based on this hypothetical, but realistic data set, the true HC5 can be determined (also in Table 3). 
In the simulation study, samples are taken from that true, target distribution F. In this study, 5 and 
10 species were randomly selected. Next, a number of samples were taken from each species inter-
laboratory variability distribution (as in practice many laboratories test the same species). Based on 
this set of data, the HC5 was estimated according to all three methods discussed above. Repeating 
this process many times allows to estimate the bias, the HC5 variation and the coverage for every 
method. Here, the process was repeated only 100 times (due to computational limitations) but this 
number appeared to be sufficient. The results of the simulation study are summarised in Table 4. 
 

Table 4: Comparison of the ‘conventional’ method based on summary statistics versus the 
alternative methods (hierarchical or non-hierarchical) based on raw data (number of trials = 100) 

Summary data Raw/all data 
Conventional 

Method 
Hierarchical 

Method 
Non-hierarchical 

Method 

Sample 
size 

Parametric 
Non-

parametric Parametric
Non-

parametric 
Para-
metric 

Non-
para-
metric 

Mean bias 5 0.67 - 0.47 0.39 - 0.17 - 0.02 
 10 - 0.12 2.36 - 0.54 - 0.81 - 0.18 

Std. Dev. HC5 5 3.23 2.12 2.41 2.58 2.98 
 10 1.91 2.15 1.36 1.44 2.00 

90%- coverage 5 89% 87% 91% 80% 85% 
 10 92% 100% 92% U
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80% 82% 
 
 

3.4.4.2. Comparison of the Methods 
 
It is important to clearly differentiate the statistical and environmental interpretation of each of the 
methods. In the alternative methods, the SSD does not only stand for inter-species sensitivity but 
also for inter-laboratory variability (and if data obtained with different test results obtained for the 
same species within the same laboratory were also included, also intra-species sensitivity). In the 
hierarchical method, the uncertainty band represents an aggregated/integrated sampling error of 
selecting individuals of a species, selecting laboratory test results from literature and selecting 
species from a community (1, 3 & 5 in Figure 2). This sampling uncertainty is larger since more 
uncertainties are considered and quantified. For the non-hierarchical method, treating all forms of 
variability on the same level results in a smaller uncertainty band around the SSD, but this band has 
no real interpretation, mainly because the hierarchy of the data set was ignored.  



Hierarchical Uncertainty and Variability Estimation 

113 

 
The smaller the bias, the more accurate the HC5 estimation is. A negative bias is preferred over a 
positive one for conservative reasons (it is better to overestimate the effect). Based on these two 
criteria, the (nonparametric) non-hierarchical method seems to be the best method (especially for 
small sample sizes). However, only small differences were found between all considered methods. 
The smaller the variation of the HC5, the more precise the HC5 estimation is. Based on this 
criterion, the alternative methods perform better than the conventional method. 
The closer the coverage is to 90%, the better the confidence interval is estimated. The coverage is 
close to 90% for the hierarchical method. The non-hierarchical method underestimates the sampling 
uncertainty but this was expected, as the non-hierarchical method does not simulate the hierarchical 
structure of the SS. It basically has no interpretation. It is peculiar, however, that the conventional 
method can have a good coverage. There appears to be some kind of compensating mechanism that 
makes its coverage accurate. On one hand, smaller data sets (as is the case with the summary data in 
the conventional method) result in larger confidence intervals. On the other hand, ignoring some 
types of uncertainty results in smaller confidence intervals (only sampling uncertainty at the top 
level is considered). Both opposing driving forces seem to compensate each other. 
 
 

3.4.4.3. Parametric versus Nonparametric 
 
Since the comparison between parametric and non-parametric methods was not part of this study, 
the advantages and disadvantages will only be described in short. There are no real differences nor 
preferences found for parametric or non-parametric methods based on bias, the variation of the bias 
or the sample size. The coverage is larger for the non-parametric methods, as is commonly 
experienced in literature (see Chapter 3.2). Nonparametric methods cannot be applied for very small 
sample sizes (smaller than 10, see Chapter 3.3). 
 
 

3.4.5.  Case Study 
 

3.4.5.1. Description of the Data Sets 
 
For the case study in this paper, NOECs of 4 chemicals for different species analysed in different 
laboratories have been investigated, namely Cu, Zn, LAS (Linear Alkylbenzene Sulphonate) and 
atrazine. As previously mentioned, only inter-laboratory variability and inter-species variability, but 
no intra-species variability will be assessed. The data sets consisted of compiled databases from 
literature (based on Versteeg et al. (1999) and Janssen (2001)). The data sets are only used for 
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illustrative purposes. No discussion is made on data quality as this hardly influences the evaluation 
of the methodology. More information on the number of species and laboratories can be found in 
Table 5. 
 

Table 5: Overview of the data sets of the case study (# is the number of) 

 
# species with 

abundant data (7-11 
labs) 

# species with few 
data (2-6 labs) 

# species analysed 
in one lab 

Total # species 

LAS 2 1 15 18 
Zn* 3 3 12 18 
Cu 1 8 8 17 

Atrazine 0 4 13 17 
* Two very sensitive species 
 
The LAS data set is characterised by the fact that a lot of lab data (individuals from different 
laboratories) are available for two species namely Daphnia and Pimephales. Most other organisms 
only have one toxicity value. The Zn data set is characterised by two very sensitive species: 
Ephydatia fluviatilis and Epeorus latifolium. However, both are represented by only one lab data 
point. As a result, they will be assigned a large weight in the alternative methods. The Cu data set is 
characterised by the fact that there are many species and the individuals are equally distributed over 
all species. The atrazine data set is characterised by 4 species for which more than one lab data 
point is available: Selenastrum (4), Lemna (3), Chlorella (6) and Chlamydomonas (4). For all other 
species only one lab data point is available. 
 
 

3.4.5.2. Results and Discussion 
 
The results of the practical case study are summarised in Table 6 and shown for LAS in Figure 5. In 
the first row of this figure, results of nonparametric bootstrapping (with interpolated EDF) are 
presented. In the second row, the parametric bootstrapping results (with assumed lognormal 
distribution) are shown. The first column presents the conventional method, the second column 
alternative method 1 and the third column alternative method 2. 
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Table 6: HC5’s and its lower 90% confidence limit (in µg/l) for all methods discussed and for all 
chemicals (3000 - 10000 shots) 

Summary data (17-18) Raw/all data (30-55) 
Conventional 

Method 
Hierarchical 

Method 
Non-hierarchical 

Method 

 

Parametric 
Non-

parametric Parametric
Non-

parametric 
Parametr

ic 

Non-
parametr

ic 
Cu Lognormal?° No  Yes 
 HC5 5.4 8.2 4.7 4.5 4.9 
 Lower 90% CI 3.1 3.4 3.0 3.0 1.9 
Zn Lognormal?° No  No 
 HC5 6.0 4.1 5.8 5.4 2.7 
 Lower 90% CI 2.4 1.3 2.3 3.2 1.0 
LAS Lognormal?° Yes  Yes 
 HC5 239 203 243 232 153 
 Lower 90% CI 106 67 122 134 46 
Atra
-zine 

Lognormal?° No  Yes 

 HC5 0.77 0.99 0.93 0.84 0.20 
 Lower 90% CI 0.20 0.10 0.23 

U
nr

el
ia

bl
e 

at
 su

ch
 sm

al
l s

am
pl

e 
si

ze
s 

0.34 0.15 
° According to Kolmogorov-Smirnov of the 5% level of significance 
 
The case study shows that in case of chemicals like LAS and Zn with a number of species with 
abundant lab data and the rest almost no lab data, the conventional method is close to the 
hierarchical method and therefore can be considered sufficiently accurate (see Table 4 and Table 6), 
i.e. there is no need for a hierarchical method. In case there are no species with abundant lab data, 
i.e. the case of Cu and atrazine, the non-hierarchical method is closer to the hierarchical method in 
comparison with the conventional method (see Table 4 and Table 6). 
 
Weighting induces a change in the shape of the SSD. For the non-parametric methods, the 
uncertainty band becomes smaller at some places and broadens at other places depending on the 
weights of the lab data points (see Figure 5). When all lab data are equally distributed over all 
species, weighting becomes less important (as in the Cu data set), but when some species are 
represented by a lot of individuals, weighting has a large influence on the results and therefore 
becomes important (as in the LAS data set). The individual sensitivity distribution curves of the two 
abundant species in the LAS data set, namely Daphnia (range 210-4900 mg/l) and Pimephales 
(range 350-2500 mg/l), cannot be recognised in the shape of the SSD, since the individual range of 
each of these species is largely overlapping with the sensitivities of the other species. 
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Conventional method 
Alternative method 1 
Hierarchical method 

Alternative method 2 
Non-hierarchical method 

 

 

Figure 5: LAS-SSDs with 90%-uncertainty band for a nonparametric (first row) and parametric 
bootstrap (second row), and for the conventional method (1st column), alternative method 1 (2nd 

column) and alternative method 2 (3rd column) 

 
 

3.4.6.  Conclusions 
 
Several (statistical) methods were proposed to account for hierarchical variability (i.e. inter-
laboratory variability, inter- and intra-species sensitivity) and hierarchical uncertainty (mainly 
sampling uncertainty). There are three conclusions for the simulated data sets. First, of all the 
studied methods, the hierarchical method was found to be the most accurate and precise method and 
the only method with a scientifically reliable interpretation. Second, all methods were found to 
produce similar results. This indicates that the conventional method does not perform as bad as one 
would expect based on the fact that it is ignoring underlying information. Third, the non-
hierarchical method seems to be most conservative for the simulations performed here, but should 
not be used for confidence interval estimation. Further testing and research on (non-)hierarchical 
methods is however needed to generalise these conclusions. 
 
The resulting SSD can then be used entirely (instead of taking the 5th percentile) for the 
probabilistic risk characterisation (see Chapter 4.1). 
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Chapter 4.1 
 
Probabilistic Risk Quotient Method 
 
 
 
 
 
Once the Exposure Concentration Distribution (ECD) and the Species Sensitivity Distribution 
(SSD) are determined and characterised by variability and uncertainty (see Part 3), all elements are 
available for the actual risk characterisation (see Figure 6 in Part 2). Conventionally, the 
deterministic risk characterisation is a yes/no statement (see Part 2).  
 
Consider Figure 1 where three hypothetical ECDs are shown with the same 95th percentile 
(considered as PEC (Predicted Exposure Concentration) in the conventional risk assessment) and 
three hypothetical SSDs with the same 5th percentile (considered as PNEC (Predicted No Effect 
Concentration) in the conventional risk assessment). These different combinations of ECDs and 
SSDs lead to the same deterministic risk quotient PEC/PNEC of 10. These different environmental 
situations are considered under risk of adverse effects although some combinations will be worse 
than others. Clearly, other risk characterisations are needed that can differentiate such 
environmental situations. 
 
In this chapter, risk will be characterised as a probability accompanied with an uncertainty or 
confidence interval. In this way, both the variability and uncertainty of the EC (Exposure 
Concentration) and SS (Species Sensitivity) will be accounted for. The chapter both contains 
methodological developments and practical case studies. 
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Figure 1: 3 ECDs (Exposure Concentration Distributions) with same PEC as 95th percentile 
(Predicted Exposure Concentration) and 3 SSDs (Species Sensitivity Distributions) with same 

PNEC as 5th percentile (Predicted No Effect Concentration) 

 
 

4.1.1.  Introduction 
 
The calculation of a probabilistic risk can be done in many ways (see Part 2). Both the overlap 
between the EC and SS probability density functions or between the respective cumulative 
distribution functions have been suggested as a measure of risk (cf. Solomon et al. (2000)). 
However, such graphical measures of risk are mathematically not correct. How to specifically 
calculate this overlap can be implemented in various ways, as well. 
 
Aldenberg et al. (2002) compared different methods mathematically and concluded that the discrete 
summation for the expected risk of Cardwell et al. (1999), Van Straalen’s ecological risk (Van 
Straalen, 1990), the numerical integration of risk distribution curves in the WERF methodology 
(Solomon & Takacs, 2002) (Warren-Hicks et al., 2002), as well as the area under the curve (AUC) 
of Joint Probability Curves (JPCs) are all numerically equal to, and may be interpreted as, the risk 
of some log EC to exceed some log SS, as originally implemented by the probability of failure in 
reliability engineering. The graphical interpretation of this risk is the Area Under the Curve (AUC) 
of the product of the ECD cumulative distribution with the SSD probability density function, or 
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alternatively, the AUC of the product of the ECD probability density function with the SSD 
cumulative distribution function. The reader is referred to Figures 5.10 and 5.11 in Aldenberg et al. 
(2002). 
 
The two most common methods used are the AUC of Joint Probability Curves (JPCs) of Solomon 
& Takacs (2002) and the risk lookup tables proposed by Aldenberg et al. (2002). More information 
on these methods can be found in Part 2. 
JPCs come in two forms: either as a graph of ECD exceedance against fraction of species affected 
(cumulative probabilities of SS), or as a graph of fraction of species affected against cumulative 
probabilities of EC. The first is called an Exceedance Profile Plot (EPP) (Giesy et al., 1999), and 
involves plotting one minus the cumulative probability of the ECD against the cumulative 
probability of the SSD for any given concentration. The second JPC curve results from plotting the 
cumulative probability of the SSD on the ordinate against the cumulative probability of the ECD on 
the abscissa for any given concentration. The latter JPC plots are called Cumulative Profile Plots 
(CPP) (Aldenberg et al., 2002). CPP JPCs are somewhat easier to draw and interpret, since they 
only involve cumulative distribution functions. However, each represents the same risk curve, only 
visualised in a different way. Both EPP and CPP are shown in this chapter. An example of an EPP 
and CPP is given in Figure 8. The AUC of either JPC can also be considered as a measure of risk. 
Mathematically, it can be shown that JPC AUCs are equal to the AUCs in the overlap plots of the 
ECD with the SSD. Hence, the AUC of a JPC expresses the same risk of a random EC to exceed a 
random SS (Aldenberg et al., 2002). 
Aldenberg et al., (2002) tabulates probabilistic risk for two independent normal distributions (table 
5.3 on p. 73). By scaling the ECD to the SSD, a two-parameter dependent risk is obtained, by only 
varying the mean and the standard deviation of the ECD (log ECD) relative to the SSD (log SSD) 
(see also Part 2). 
 
Not all of the above methods or the other risk characterisation methods described in the literature 
study in Part 2 are capable of handling all types of parametric and nonparametric EC or SS 
distributions. The probabilistic risk lookup table of Aldenberg et al., (2002) for example is, 
unfortunately, only for (log)normal distributions and can only be extended for parametric 
distributions. Not all methods are easy to use and interpret at the same time. The JPC and AUC 
methodology, developed in ECOFRAM (1999) for example, is unfortunately, although relatively 
easy to construct and calculate, sometimes difficult to understand and interpret by decision-makers 
and risk managers. This was experienced at a SETAC Pellston workshop on the application of 
uncertainty analysis to ecological risks of pesticides (from 24 February till 1 March 2002, 
Pensacola, Florida, USA). Almost all literature sources investigated in Part 2, do not calculate an 
uncertainty or confidence interval on their risk estimate although many acknowledge the need to 
distinguish between uncertainty and variability. As a consequence, little attention is given to the 
visualisation of the risk and its uncertainty interval. A good risk visualisation would especially be 
useful when geo-referenced probabilistic risks need to be displayed on a map because displaying 
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more than one value for each location in a Geographical Information System (GIS) is often 
cluttered. 
 
The goals of this chapter are three-fold. First, the goal is to mathematically describe a general, easy-
to-use risk characterisation tool that can handle all types of parametric and nonparametric 
distributions based on the conventional deterministic risk quotient (for easy understanding by risk 
managers and decision-makers as they are familiar with the risk quotient concept). The second goal 
is to calculate an uncertainty or confidence interval for this risk. And the third goal is to investigate 
how a probabilistic risk and its uncertainty interval can be visualised and communicated. Two case 
studies will be described to illustrate and further discuss the applicability of the methods developed. 
The results are discussed in the subsequent sections. 
 
 

4.1.2.  Probabilistic Risk Quotient Method 
 
The estimation of the probabilistic risk and its uncertainty or confidence interval according to the 
risk quotient method is done in two steps. First, the probabilistic risk is determined. In this way, 
only variability is considered. Second, its uncertainty interval is estimated. 
 

4.1.2.1. When Only Variability is Considered: Probabilistic Risk 
 
The probability of some randomly selected EC exceeding some randomly selected SS has been 
demonstrated to be a common measure of risk (Aldenberg et al., 2002). This can be written as: 
 
Equation 1: ( )SSECPRisk >=   where P( ) denotes “the probability of” 
 
As described above, several probabilistic risk calculation methods are available. Here, it will be 
shown that the probabilistic risk fits well into the paradigm of the deterministic quotient method 
broadly used in chemical management (EU-TGD, 1995). The risk quotient (RQ) is an index of risk 
calculated by dividing an exposure estimate (EC) by a toxicity value (SS). Its properties have been 
well described in literature (Burmaster & Bloomfield, 1996) (Rai et al., 1996) (Campbell et al., 
2000) and in Part 2.2. The ecological quotient estimates are used to define risks to selected species 
representing an ecosystem. A critical value of the risk quotient may form the basis for regulatory 
action, including possible collection of more information or performing a more refined analysis 
(Warren-Hicks & Moore, 1995). 
 
In a probabilistic framework, however, EC and SS are regarded as random variables having 
probability distributions rather than point estimates. As a result, the quotient will also have a 
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probability distribution. The probability of EC exceeding SS (this probability can be considered as a 
measure of risk of adverse effects) is equal to the probability that the quotient EC/SS becomes 
larger than one or that log10(EC/SS) becomes larger than zero since: 
 

Equation 2: 
( )

( )0)SS(log)EC(logP0
SS
EClogP

1
SS
ECPSSECPRisk

101010 >−=







>






=







 >=>=

 

 
The random variables EC and SS in Equation 2 can be described by a parametric or nonparametric 
distribution. If EC or SS is described by a nonparametric distribution, the risk has to be calculated 
numerically or by means of simulation, e.g. a Monte Carlo analysis. In case EC and SS are 
described by parametric distributions (e.g. lognormal for EC and Pareto for SS), the risk can be 
calculated numerically or sometimes also analytically. Simulations will be demonstrated in the first 
case study. 
 
Logarithmic transformations were made in Equation 2 because the risk can be easily calculated 
analytically when lognormal distributions are assumed for the ECD and the SSD. The result of a 
quotient of two lognormal distributions (EC and SS) is again a lognormal distribution. But it is 
much easier to work with the difference of two normal distributions (log10(EC) and log10(SS)) 
because its parameters can easily be calculated. The difference of two independent normal 
distributions is also a normal distribution with parameters (based on Burmaster & Bloomfield 
(1996), see also Figure 2): 
 
Equation 3: log(SS)log(EC)log(SS)- log(EC)log(EC/SS) µµµµ −==  

 

Equation 4: 2
log(SS)

2
log(EC)log(SS)- log(EC)log(EC/SS) σσσσ +==  

 
with µ and σ respectively the mean and standard deviation of the log10-transformed data 
 
Note that µlog(EC/SS) is not the risk. It is the mean of the log(RQ) distribution (see Figure 2). Rather, 
the risk of some randomly selected EC exceeding some randomly selected SS (see Equation 2) is 
given by the probability of log10(EC/SS) exceeding 0. This is equal to one minus the cumulative 
probability of the above log(RQ) distribution for log10(EC/SS) = 0 or EC/SS = 1 (see Equation 2 
and also shown graphically in Figure 2). This calculated risk is equal to the AUC of a JPC. 
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Figure 2: Calculation of the Probabilistic Risk Quotient distribution and the risk (right panel) 
based on the Exposure Concentration Distribution (ECD) and the Species Sensitivity Distribution 
(SSD) (left panel on log scale), The risk is found as one minus the cumulative probability for the 

ratio = 1 (here: 9%) 

 
The formula for the probabilistic risk in the case of two normal distributions (because log-
transformed) is described by: 
 

Equation 5:  ( ) 
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where (x)Φm,s  is the cumulative normal distribution of x with mean m and standard deviation s 

 
This is a consequence of Equation 3 and Equation 4 given earlier. In the second panel of Figure 2, 
the cumulative log risk quotient distribution RQ)Φ( log  is shown. The exceedance (reverse 
cumulative) log risk quotient distribution is RQ)Φ( log1− . 
 
Two comments should be made at this point. First, an important condition for using these formulae 
is that the EC and SS are independent variables. This is generally considered to be the case. Second, 
in order to assess the quotient of EC and SS, both sets of values have to be compatible (Aldenberg 
et al., 2002). One should not compare 96h toxicity tests endpoints with hourly fluctuating 
concentrations at a discharge point (see Chapter 5.2). The resulting probabilistic risk cannot be 
interpreted. Instead, either one hour toxicity tests should be used or e.g. weekly fluctuating 
concentrations should be used. The time interval of EC measurements or simulation results should 
be equal to (or larger than) the time interval of SS toxicity testing. 
 

ECD SSD 
Risk Quotient
Distribution 

Risk = Probability that EC exceeds SS



Probabilistic Risk Quotient Method 

123 

4.1.2.2. When Variability and Uncertainty is Considered: Probabilistic Risk and its 
Uncertainty Interval 

 
In the previous section, only the variability of the ECD and SSD was considered. This resulted in a 
probabilistic risk quotient (variability) distribution. The ECD and SSD are also uncertain because of 
sampling error. Adding a Monte Carlo sampling loop to the risk calculation can capture this 
uncertainty. In each run, an ECD and SSD will be selected from their respective uncertainty bands 
and the risk quotient distribution will be calculated. After many runs, the risk quotient distribution 
will also have an uncertainty band and consequently, the probabilistic risk will be accompanied 
with an uncertainty interval (see Figure 3 for lognormal ECD and SSD). More details can be found 
in Chapter 3.1. 
 
Note that other sources of uncertainty than sampling uncertainty, such as SS lab to field 
extrapolation uncertainties, the representativeness of the species in an SSD, model uncertainty and 
others, are not dealt with here but the generality of the methodology should make it relatively easy 
to include these as well in the future. 
 
 
 

 
Figure 3: Calculation of the probabilistic risk and its uncertainty interval based on a lognormal 

ECD and a lognormal SSD 

 
When data are collected sequentially, there is often a tendency for those taken close together (in 
time or space) to be more alike than those taken farther apart. Hourly ECs may show great variation 
over a long period of time, while ECs 1 hour apart are very similar. This tendency to be alike is 
called serial dependence or autocorrelation. The distance between the observations that are 
examined for correlation is called the lag. One method to detect serial dependence is the 
autocorrelation function. This is a plot of correlation coefficients for different lags (Berthouex & 
Brown, 1994). If the ECs are autocorrelated, than the assumption of independent observations in 
confidence interval theory is violated and the resulting uncertainty estimates may be underestimated 

ECD SSD 

Risk Quotient 
Distribution 

Probability that EC exceeds 
SS + confidence interval
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(in case of positive autocorrelation). Further research should be undertaken to account for the 
autocorrelation in the uncertainty and variability estimation (e.g. block resampling (Davison & 
Hinkley, 1997)). 
 
A proposal will be made on how to visualise the probabilistic risk and its uncertainty or confidence 
interval. The probabilistic risk visualised as a column chart in the right panel in Figure 3 can also be 
visualised as a pie chart as in Figure 4. The entire pie represents 100%. The grey shades indicate 
how large the probabilistic risk is with a pre-defined certainty. The larger the white slice, the lower 
the risk is. The more black, the larger the risk is. The larger the grey slices are, the more uncertainty 
there is on the risk. The example shows that the median risk is 23% (50% certainty) and there is 
95% certainty that the risk is smaller than 45%. The 90% uncertainty interval is then 9-45%. This 
Figure 4 is one possible (new) way of visualising probabilistic risk and its uncertainty interval. The 
possibility of plotting many of these pie charts on geographical maps is potentially useful and will 
be further explored in Chapter 5.1. 
 

 

 

 
0% risk probability 
 

5% certainty that risk < 9% 
 

50% certainty that risk < 23% 
 

95% certainty that risk < 45% 
 

 
 
 
 
 
90% uncertainty 

interval 

 

Figure 4: Visualisation of the risk of 23% and its 90%-uncertainty interval 

 
 
 

4.1.3.  Case Studies 
 
Two case studies were accomplished. The first deals with the probabilistic risk of a heavy metal, 
namely Zn, in The Netherlands and was part of a collaboration with EURAS. The main focus was 
on the risk quotient method and its potential. The second case study deals with the probabilistic risk 
of the pesticide atrazine in two monitoring locations in Flanders, Belgium. The main focus here was 
on the uncertainty intervals and their visualisation. 
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4.1.3.1. Probabilistic risk of Zn in The Netherlands 
 
In the framework of the European new and existing chemicals policy, an overall risk assessment for 
zinc (Zn) is being prepared. Traditionally, risk assessments in the European framework are 
performed according to the methodology laid down in the Technical Guidance Document (EU-
TGD, 1995). The potential risks are typically estimated in a deterministic way using point estimates 
for both exposure (EC) and effects (SS). Currently, overly conservative assumptions are used in an 
attempt to account for the uncertainty (see also conventional deterministic risk assessment in Part 
2.2). 
 
The goal of this case study for Zn in The Netherlands was two-fold: first, to illustrate how a 
probabilistic risk characterisation is more realistic compared to the conventional deterministic risk 
assessment and second, the risk quotient method is illustrated. 
 
Long term ecotoxicity data on Zn for the aquatic organisms belonging to different trophic levels 
were collected from the EU Zn risk assessment report and can be found in Van Sprang et al. (2002). 
The ecotoxicity data were corrected for background Zn concentrations in the ecotoxicity tests. Two 
distributions were fitted to the data: the lognormal distribution (a non-threshold distribution, i.e. a 
distribution going through zero) and the Pareto distribution (a threshold distribution, i.e. a 
distribution not going through zero). Note that the Pareto distribution was fitted on the log-
transformed data (but for ease of use, the Pareto distribution name will further be used). These 
SSDs with uncertainty bands can be found on the right side of Figure 5. Clearly, there is a large 
difference between the two distributions at the lower tail. In Chapter 3.2, it was found that the 
Pareto distribution was the best fitting distribution. The question which distribution type is the best 
is not addressed here again. Instead, focus is made on the influence of different (good and bad 
fitting) distribution types on the resulting probabilistic risk. More information on fitting 
distributions to the Zn data can be found in Chapter 3.2 and Van Sprang et al. (2002). 
 
The Dutch (exposure) monitoring data originate from RIZA and CIW databases. Total Zn 
concentrations were compiled for the year 1998 and were considered as representative for the whole 
Dutch region. A lognormal distribution was fitted to the data (see left side of Figure 5). Further 
details can be found in Van Sprang et al. (2002). The serial spatial autocorrelation function could 
not be determined because there was not sufficient geographical information available. Some 
monitoring stations indicated a (positive) temporal autocorrelation. To conclude, one can expect 
that the estimated uncertainty band on the ECD (see left side of Figure 5) is most probably 
underestimated. 
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Figure 5: ECD (Exposure Concentration Distribution) of Zn in the Netherlands (left) and 
lognormal (dark grey) and Pareto distributed (light grey) SSD (Species Sensitivity Distribution) 

(right) 

 
The conventional deterministic approach revealed a potential risk associated with Zn for the Dutch 
surface waters. A risk quotient PEC/PNEC (ratio of 90th percentile of ECD and 5th percentile of 
SSD) of 1.1 and 0.6 is obtained respectively for the lognormal and Pareto SSD. A probabilistic risk 
characterisation, on the other hand, revealed small probabilistic risks, defined as the probability that 
a randomly selected EC exceeds a randomly selected SS, of 2.2% and 0.5% for the lognormal and 
Pareto SSD respectively. Their risk quotient distributions are shown in Figure 6. The probabilistic 
risk characterisation considers the quantitative information of the full range of the ECD and SSD 
instead of only considering the upper tail of the ECD and the lower tail of the SSD. Therefore, the 
probabilistic risk characterisation is more realistic and refined. 
 
In addition, the uncertainty on this probabilistic risk was estimated. There is 95% certainty that the 
probabilistic risk is smaller than 5.3% and 0.9% for respectively the lognormal and Pareto 
distributed SS. Or alternatively stated, 0.7 - 5.3% and 0.1 - 0.9% are 90% confidence intervals of 
the probabilistic risks for respectively the lognormal and Pareto distributed SS. The uncertainty 
interval for the risk based on Pareto distributed SS is clearly smaller. This is also reflected in the 
uncertainty band (see Figure 6) and is due to the small uncertainty in the lower tail of the Pareto 
distribution. Note again that both uncertainty intervals may be underestimated because the 
uncertainty on the ECD can be underestimated due to serial dependence of the EC data. 
 

ECD SSD
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Figure 6: Zn risk quotient distributions based on lognormal ECD (Exposure Concentration 
Distribution) and lognormal SSD (Species Sensitivity Distribution) (left) or Pareto distributed SSD 

(right) 

 
 

4.1.3.2. Probabilistic risk of atrazine at two monitoring locations in Belgium 
 
In this case study, probabilistic risks and their 90%-uncertainty intervals were predicted for the 
pesticide atrazine in two monitoring locations in the river catchments of Flanders in Belgium. Since 
atrazine is such a widely used herbicide and persistent compound, it is considered a great potential 
for groundwater and surface water contamination. Therefore, it is frequently detected (Lipishan & 
Lee, 1996). 
The focus of this case study is two-fold. First, attention is paid to the uncertainty intervals of the 
resulting probabilistic risks. Second, several possible visualisations of probabilistic risk and its 
uncertainty interval are tested and discussed. 
 
The data set for the atrazine SSD consists of chronic ecotoxicity values (NOECs: No Observed 
Effect Concentrations) and can be found in Versteeg et al. (1999). A lognormal distribution was 
assumed and fitted to the data. The fit was satisfactory. More information on fitting distributions to 
data can be found in Chapter 3.2. 
 
The exposure concentrations (EC) were obtained from the Flemish environmental agency (VMM, 
2001). Atrazine was (mostly monthly) measured from 1991 till 2000. Only the reliable data from 
the years 1997 till 2000 were considered. 
 
Two monitoring stations in the “Westsluisbeek” in Alveringem (VMM nr. 914012) and in the 
“kanaal van Gent naar Oostende” in Aalter (VMM nr.777000) were selected for a probabilistic risk 
characterisation. Their ECD and SSD (lognormal fit and uncertainty band) is shown in Figure 7. 
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Figure 7: Atrazine ECD (Exposure Concentration Distribution) and SSD (Species Sensitivity 
Distribution) for the monitoring points in Alveringem (left) and Aalter (right) 

 
Note that the lognormal distribution may not be the most appropriate distribution for the ECD in 
Alveringem. Nevertheless, the lognormal distribution was selected because it is the most suitable 
distribution for most other monitoring points and because the distribution choice will not affect the 
goals of this case study. Moreover, the effect of selecting another distribution is discussed in the 
previous case study. Autocorrelations (temporal dependence) were not observed for these two 
monitoring locations although serial dependence could be expected from a theoretical point of view. 
 
All the results are shown from Figure 8 to Figure 10. Figure 8 shows the AUC of the EPP-JPC and 
CPP-JPC for the two monitoring stations. The AUC of the JPC is an estimate of the (probabilistic) 
risk. The AUC of the uncertainty bands of the JPC is an estimate of the uncertainty interval of the 
risk. Figure 9 shows the probabilistic risk quotient distribution for the two monitoring stations. One 
minus the cumulative probability at risk quotient equal to one is then an estimate of the 
(probabilistic) risk. One minus the cumulative probabilities of the uncertainty band at risk quotient 
equal to one are then estimates of the uncertainty interval of the risk. The risk and its uncertainty 
interval are shown at the bottom of Figure 10. The uncertainty distribution of the risk is shown at 
the top of Figure 10. It can be derived from this figure that the uncertainty distribution of the 
probabilistic risk can have different shapes. For the Alveringem location, it has the shape of a 
normal distribution whereas for the Aalter location, it has the shape of a lognormal distribution. The 
numerical values of the estimated probabilistic risk and its uncertainty interval are shown in Table 
1. 
 

ECD SSD ECD SSD 
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Figure 8: Atrazine JPC (Joint Probability Curve): EPP (Exceedance Profile Plot) on top and CPP 
(Cumulative Profile Plot) on bottom for the monitoring points in Alveringem (left) and in Aalter 

(right) 

 

 

Figure 9: Atrazine probabilistic risk quotient distributions for Alveringem (left) and Aalter (right) 
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Figure 10: Atrazine risk and its uncertainty distribution (top) and interval as pie diagram (bottom) 
for the monitoring points in Alveringem (left) and Aalter (right) 

 

Table 1:Probabilistic risks and their uncertainty estimates according to several methods 

 Alveringem Aalter 
Lookup table 5.3 in Aldenberg et al. (2002) 15 (-) - (-) 
AUC in JPC 14 (5-30) 6 (1-33) 
Probabilistic risk quotient method 14 (5-30) 6 (1-33) 
 
 

4.1.4.  Discussion 
 
In the previous two sections, methodological and practical case study results were presented. Here, 
a discussion is made on the risk characterisation methods and their interpretation. 
 
Consider the example in Figure 1, where the deterministic risk quotients for all different 
environmental situations are equal to 10 indicating potential risk (since larger than 1). On the other 
hand, probabilistic risks for the same environmental situations range from low to high risks: 7 to 
94% depending on the location and shape of the ECD and the SSD. Both the hypothetical example 
in Figure 1 and the two case studies illustrate that the probabilistic risk characterisation considers 
the quantitative information of the full range of the ECD and SSD (including lower SS than HC5 
and higher ECs than the 90th percentile) instead of only considering the upper tail of the ECD and 
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the lower tail of the SSD. Probabilistic Ecological Risk Assessment (PERA) is capable of 
differentiating the different environmental situations in Figure 1. The PERA is more realistic and 
therefore more refined. 
 
The probabilistic risk quotient method takes less time to apply compared to the other methods 
because it is easy to use and understand. The case studies show it can handle different types of 
parametric distributions but the methodology can easily be extended for non-parametric 
distributions as well. 
 
The distribution types of the ECD and SSD determine the shape and location of the probabilistic 
risk quotient distribution. In the first case study, two distribution types were tested for the SSD. 
Both distributions had a similar central tendency but differed in the tails, especially in the lower tail 
(see Figure 5). As a result, the probabilistic risk quotient distributions have the same central 
tendency but differ in the tails (see Figure 6). So, as long as the probabilistic risk quotient = 1 is 
around the central tendency of the probabilistic risk quotient distribution, the choice of the 
distribution type for the SSD (and ECD) is less important. When the probabilistic risk quotient = 1 
is situated in the tail of the probabilistic risk quotient distribution, the choice of distribution for the 
SSD (and ECD) becomes more important. 
 
In the second case study, the monitoring stations in Alveringem and Aalter show that the width of 
the uncertainty interval on the risk heavily depends on the uncertainty of the ECD. The lack of more 
EC information results in a larger uncertainty interval for the risk. The first case study shows the 
same for the SSD. The uncertainty of the lower tail of the Pareto fitted SSD is smaller than the 
uncertainty of the lower tail of the lognormal fitted SSD. In short, reducing the largest uncertainty 
source (ECD or SSD) will have most effect on decreasing the uncertainty of the probabilistic risk. 
 
There exist many possibilities to visualise probabilistic risk and its uncertainty distribution/interval: 
as the AUC in CPP or EPP JPC, as a probabilistic risk quotient distribution, as a histogram or as a 
pie chart. All have their advantages and disadvantages. The probabilistic risk quotient distribution 
communicates the underlying idea of the method, being an extension of the deterministic risk 
quotient method, very well known by risk managers and decision-makers. The pie chart has 
opportunities for display on geographical maps. The advantages of the JPC will be further explored 
in Chapter 4.2. 
 
 

4.1.5.  Conclusions 
 
The probabilistic risk quotient method is a probabilistic extension of the well-known and familiar 
deterministic risk quotient and is capable of estimating a probabilistic risk, defined as the 
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probability of a randomly selected EC exceeding a randomly selected SS (i.e. a probability instead 
of a ratio >1/<1) and is in addition, capable of estimating an uncertainty interval representing the 
sampling error that exists because of the practical inability to collect an infinite number of data. The 
method can handle all types of parametric and nonparametric distributions and is easy to use and 
interpret at the same time. Attention was also given to the visualisation of the probabilistic risk and 
its uncertainty interval. A proposal to present probabilistic risk in the form of a pie chart was made 
and could be useful when geo-referenced probabilistic risks need to be displayed on a map. 
 
The next chapter will show that, although all current risk characterisation methods are a large 
improvement compared to the conventional deterministic risk characterisation, the current methods 
still have some limitations that need further research. 
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Chapter 4.2 
 
Limitations of Current Probabilistic Risk Characterisation 
Methods 
 
 
 
 
In the previous chapter, it was shown that the calculation of a probabilistic risk can be done in many 
ways (e.g. Area Under the Curve (AUC) in Joint Probability Curves (JPCs)). However, in this 
chapter, it will be shown by means of several (hypothetical) examples and some theoretical 
considerations that the current risk characterisation methods have an integrative character and they 
focus on the statistical comparison of two distributions without properly considering the underlying 
interpretation of these distributions. Therefore, a clear environmental interpretation is needed. 
 
 

4.2.1.  Introduction 
 
The goal of Probabilistic Ecological Risk Assessment (PERA) is to estimate the likelihood and the 
extent of adverse effects occurring in ecological systems due to exposure(s) to substances. It is 
based on the comparison of an Exposure/Environmental Concentration Distribution (ECD) with a 
Species Sensitivity Distribution (SSD) derived from toxicity data. The calculation of a probabilistic 
risk can be done in many ways (see previous chapter and Aldenberg et al. (2002)). 
 
In this chapter we focus on Joint Probability Curves (JPCs) (Solomon & Takacs, 2002). JPCs come 
in two forms (see Chapter 4.1): either as a graph of ECD Exceedence against fraction of species 
affected (cumulative probabilities of SS) called Exceedence Profile Plot (EPP), or as a graph of 
fraction of species affected against cumulative probabilities of EC called Cumulative Profile Plot 
(CPP). Both JPCs represent the same risk curves, they are just different ways of visualisation. The 
first is more common and is therefore shown here. 
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An example of the construction of an EPP based on ECD and SSD is given in Figure 1. The dashed 
curves in the right panel represent thresholds between different types of decisions. These thresholds 
have to be determined by decision-makers and their position or shape may move depending on the 
decision to be made. However, currently no quantitative measures exist for these JPC-thresholds. 
 

Figure 1: Joint Probability Curve (JPC): an example of an Exceedence Profile Plot (EPP) and 
thresholds for acceptance 

 
Every data point on the JPC can be easily interpreted (e.g. in Figure 1: for 50% of the time (or in 
50% of the locations), 25% of the species will be affected (e.g. a chronic effect on reproduction)), 
but interpreting and quantifying the entire JPC seems to be more difficult (e.g. in Figure 1, how 
acceptable or unacceptable is this particular JPC?). Sometimes, the AUC is calculated as a measure 
of probabilistic risk (see Chapter 4.1). 
 
In this chapter, it will be shown that these current risk characterisation methods have the drawback 
that they focus on the statistical comparison of two distributions without interpretation of the 
underlying distributions. Important environmental information and interpretation is lost when only 
the integrative risk is calculated. Theoretical considerations and simulation studies with 
hypothetical scenarios will illustrate these shortcomings and show that interpretation of the resulting 
risks should also be carefully made. Depending on the interpretation of the ECD and the SSD, the 
interpretation of the resulting risk can be totally different. 
 
 

4.2.2.  Theoretical Considerations 
 
As described above, several probabilistic risk calculation methods are available. The probability of 
some randomly selected EC exceeding some randomly selected SS has been demonstrated to be a 
common measure of risk (Aldenberg et al., 2002). This probability of EC exceeding SS is equal to 
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the probability that the Risk Quotient (RQ = EC/SS) becomes larger than one or that log10(EC/SS) 
becomes larger than zero since: 
 

Equation 1: ( ) ( )0)SS(log)EC(logP1
SS
ECPSSECPRisk 1010 >−=






 >=>=  

 
Logarithmic transformations were made because the risk can be easily calculated analytically when 
lognormal distributions are assumed for the ECD and the SSD. The result of a quotient of two 
lognormal distributions (EC and SS) is again a lognormal distribution. The calculation of the 
parameters of the risk quotient distribution and the resulting risk is already discussed in Chapter 4.1. 
The formula for the probabilistic risk in the case of two normal distributions is: 
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where (x)Φm,s  is the cumulative normal distribution of x with mean m and standard deviation s 

 
In the second panel of Figure 2 in Chapter 4.1, the cumulative log risk quotient distribution 

RQ)Φ( log  is shown. The exceedance (reverse cumulative) log risk quotient distribution is 
RQ)Φ( log1− . 

 
This risk formula clearly illustrates the limitations discussed in the introduction. When the 
difference between the mean EC and the mean SS is fixed, then interchanging the two standard 
deviations does not change the risk. In other words, a small ECD variance and a SSD variance yield 
the same risk as that found after exchanging the variances but keeping the same means. However, 
the interpretation of this could differ, as discussed below. 
 
The RQ method has the advantage of being easy to calculate for lognormal distributions. If the ECD 
or SSD have a probability distribution that differs from the lognormal one, the risk has to be 
calculated numerically or by means of simulation, e.g. a Monte Carlo analysis. This is not dealt with 
here since this will not influence the conclusions. 
 
 

4.2.3.  Hypothetical Case Study 
 
An overview of the hypothetical scenarios studied below can be found in Table 1. In each scenario, 
the statistical and environmental interpretations are described. 
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Table 1: Overview of the scenarios for the simulation studies 

Scena
rio 

ECD* SSD* Statistical interpretation Environmental interpretation 

1 LN(0,1) LN(0,1) 
• same mean for EC & SS 
• same variances for EC 

& SS   ECD = SSD 

• same distribution for 
environmental 
concentrations and species 
sensitivity 

2 LN(0,1) LN(0,5) 
• same mean for EC & SS 
• small variance for EC 
• large variance for SS 

• small range in temporal or 
spatial environmental 
concentrations 

• very sensitive and very 
insensitive species (broad 
range) 

3 LN(0,5) LN(0,1) 
• same mean for EC & SS 
• large variance for EC 
• small variance for SS 

• large range in temporal or 
spatial environmental 
concentrations 

• all species have more or less 
the same sensitivity 

4 LN(0,1) LN(8,5) 
• mean EC << mean SS 
• small variance for EC 
• large variance for SS 

• low risk is expected as EC 
<< SS 

• small range in temporal or 
spatial environmental 
concentrations 

• very sensitive and very 
insensitive species (broad 
range) 

5 LN(0,5) LN(8,1) 
• mean EC << mean SS 
• large variance for EC 
• small variance for SS 

• low risk is expected as EC 
<< SS 

• large range in temporal or 
spatial environmental 
concentrations 

• all species have more or less 
the same sensitivity 

* Lognormal distribution with parameters mean and standard deviation of the log-transformed data 
 
The three rows in Figure 2 show the ECD, SSD and JPC for the first three scenarios. In each 
scenario, the risk is an identical 50%. The same results are obtained when using Table 5.3 from 
Aldenberg et al. (2002), which tabulates probabilistic risks by only varying the mean and standard 
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deviation of the log(ECD) relative to the log(SSD). Clearly, the three scenarios represent different 
environmental situations and one would expect that they lead to different managerial decisions. This 
is because environmental effects may differ substantially depending on the interpretation of the 
ECD or SSD. 
 

Figure 2: Simulation results: first column shows the ECD (Exposure Concentration Distribution) 
and SSD (Species Sensitivity Distribution) (on log scale), second column shows the JPC - EPP 

(Joint Probability Curve – Exceedance Profile Plot); first row: scenario 1, second row: scenario 2; 
third row: scenario 3 
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To illustrate this dependence on interpretation, a distinction can, for example, be made between an 
ECD representing temporal variability or an ECD representing spatial variability. When the ECD 
represents the temporal variation at one monitoring location, scenario 2 (small temporal EC 
variance, large SS variance) produces a better environmental outcome than scenario 3 (large 
temporal EC variance, small SS variance) because in scenario 3 almost all species will die 
approximately 50% of the time. Now, to assess the effect on the ecosystem, a lot will depend on the 
recovery time of the organisms. In scenario 2, approximately 50% of the species will die all of the 
time but the other 50% might survive. When the ECD represents the spatial variation of a chemical, 
scenario 3 (large spatial EC variance, small SS variance) will arguably lead to a better 
environmental outcome than scenario 2 (small spatial EC variance, large SS variance) because in 
scenario 3 all species will die in approximately 50% of the geographical locations while in the other 
50% geographical locations, no species are likely to die. This results in more biodiversity. In 
scenario 2, approximately 50% of all species will die at all locations, leading to lower overall 
biodiversity. 
To further illustrate this dependence on interpretation, a distinction can, for example, also be made 
between a SSD representing acute toxicity and a SSD representing chronic toxicity. In both 
interpretations, scenario 2 (small temporal EC variance, large SS variance) produces a better 
environmental outcome than scenario 3 (large temporal EC variance, small SS variance) because in 
scenario 3 almost all species will suffer adverse effects (either acute or chronic) approximately 50% 
of the time. In scenario 2, approximately 50% of the species will suffer adverse effects (either acute 
or chronic) all of the time but the other 50% will not. 
 
This difference in interpretation of the risk in the different scenarios is also reflected in the shape of 
the JPC (right column of Figure 2). Probabilistic risks are, like deterministic risks, only comparative 
measures. Information on the type of risk and the underlying data needs to be considered for proper 
interpretation. This may be an advantage of probabilistic methods when compared to deterministic 
risk calculation since probabilistic methods are more transparent and realistic. 
 
Similar results were obtained with scenarios 4 and 5. These results are shown in Figure 3. They 
both result in an expected risk of 5.8%. 
 
In Figure 4, five JPCs are shown resulting in the same risk (12%). However, it is not 
straightforward to put thresholds of acceptability. It is shown above that, depending on the 
interpretation of the ECD (and SSD), one JPC may be concluded to be better or worse than the 
others (even though they have the same risk). Because of the integrative nature of risk calculation, 
information leading to interpretation is lost. 
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Figure 3: Simulation results of the hypothetical data sets; first column shows the ECD (Exposure 
Concentration Distribution) and SSD (Species Sensitivity Distribution), second column shows the 

joint probability curve; first row: scenario 4, second row: scenario 5 
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Figure 4: Several JPCs – EPPs (Joint Probability Curves – 
Exceedance Profiles Plots) all resulting in the same risk (12%) 
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Clearly, risk is a summary statistic, an integrative measure of the JPC that does not capture all 
aspects of the shape of the JPC. A potential solution would be to include additional JPC shape 
parameters. Those may be able to differentiate between several scenarios resulting in the same risk 
as discussed above. Just as the mean and variance are enough to characterise a normal distribution, 
means and variances of both ECD and SSD must be sufficient to calculate any shape parameter to 
characterise the entire JPC. One proposal for such shape parameter is made here. The gravity point 
of the AUC was calculated for each of the first three scenarios of Table 1. Its x- and y-coordinates 
(called xg and yg) were determined by discretising the AUC and using following formulae: 
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where ∆x is an interval of the fraction of species affected 
 ∆y is an interval of the exceedance exposure distribution 
 
The ratio of its yg- and xg-coordinate is proposed as shape parameter: 
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=
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The probabilistic risk and the risk shape parameter for the first three scenarios of Table 1 are shown 
in Table 2. 
 

Table 2: Probabilistic risks and risk shape parameters (based on the ratio of the coordinates of the 
gravity point of the area under the curve) for the first three scenarios of Table 1 

Scenario Probabilistic risk (%) Risk shape parameter 
1 50 1 
2 50 1.6 
3 50 0.6 

 
It is clear from Table 2 that the shape parameter can differentiate the different scenarios. A risk 
shape parameter equal to one indicates a symmetrical JPC. The closer to one, the more the JPC is 
symmetrical. If the shape parameter is larger than one, then the AUC is located most in the left part 
of the JPC. If the shape parameter is smaller than one, then the AUC is located most in the bottom 
part of the JPC. The corresponding environmental interpretations are described above. In order to 
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answer the question “how acceptable or unacceptable is the JPC in Figure 1”, ranges for these shape 
parameters will need to be determined by decision-makers based on the underlying interpretation of 
the ECD and SSD. 
 
 

4.2.4.  Conclusions 
 
Current risk measures, such as the Area Under The Curve (AUC) of a Joint Probability Curve 
(JPC), contain insufficient information to account for different environmental circumstances (i.e. 
different interpretations of the ECD and SSD) and to assess potential adverse effects on ecological 
communities. Therefore, it is recommended to always interpret the risk ecologically. This will force 
the environmental community to compare SSDs with adequate ECDs. Further research is needed on 
measures additional to the calculated risk that characterise the shape of the Joint Probability Curve 
and that has an environmental interpretation (depending on the interpretation of the EC and SS) to 
help to quantify and manage the risk. A first proposal was made for a risk shape parameter based on 
the ratio of the coordinates of the gravity point of the JPC. 
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Part 5 
 
Spatio-Temporal 
Probabilistic Ecological Risk Assessment 
 
 
 
 
Different levels of complexity to deal with uncertainty and several types of variability in the 
exposure and effects assessment can be distinguished. To provide clarity and structure, Figure 1 
shows an overview of several tiers (of different level of detail) of Probabilistic Ecological Risk 
Assessment (PERA). 
 
 
In the top panel of Figure 1, the deterministic ecological risk assessment is shown. A (random) 
variable (be it the Exposure Concentration (EC) or the Species Sensitivity (SS)) is considered as a 
crisp value. Uncertainty is partly ignored, partly considered in assessment or safety factors. The 
well-known environmental quality standard would fit in this tier (on the effects side). The second 
panel presents the PERA. It is an extension of the deterministic approach since both the inherent 
variability and uncertainty (shown as a grey band) is explicitly quantified and assessed (see Parts 3 
and 4). However, all types of variability are lumped in a single distribution. 
 
In the next panel/tier, the spatial variability is explicitly accounted for. The random variable (be it 
the exposure concentration or the species sensitivity) is considered for every spatial location (called 
here geo-referencing). As a result, the variability distribution no longer represents spatial variability 
but only lumps temporal and other types of variability. This leads to a large number of geo-
referenced distributions but with smaller variances. This tier will be explored in Chapter 5.1. 
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Figure 1: Several tiers of probabilistic environmental risk assessment of chemicals: top: 
deterministic analysis, below top: probabilistic analysis, above bottom: geo-referenced 

probabilistic analysis, bottom: time- and geo-referenced probabilistic analysis (EC: Exposure 
Concentration, SS: Species Sensitivity) 

 
Time-referencing would further increase the level of detail and realism as time-specific information 
would be accounted for. This is represented in the lower panel of Figure 1. Time related information 
can be formatted in two ways in an attempt to capture the temporal variability. First, time series can 
be used as such or second, time series can be summarised into concentration-duration-frequency 
surfaces. These surfaces are three-dimensional plots with on the three axes the concentration, the 
duration of an exceedance above a particular concentration and the frequency of an exceedance 
above a particular concentration with a particular duration. The first developments on this tier are 
explored in Chapter 5.2. 
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Chapter 5.1 
 
Geo-Referencing 
Probabilistic Ecological Risk Characterisation 
 
 
 
 
Once the Environmental/Exposure Concentration Distribution (ECD), the Species Sensitivity 
Distribution (SSD) and the resulting probabilistic risk are determined and characterised by 
variability and uncertainty (see Parts 3 and 4), all elements are available for a geographically geo-
referenced Probabilistic Ecological Risk Assessment (PERA). 
 
 

5.1.1. Introduction 
 
Currently, the deterministic risk assessment insufficiently accounts for the inherent variability and 
uncertainty of the Environmental/Exposure Concentration (EC) and the Species Sensitivity (SS). In 
this respect, it is important to separate variability and uncertainty (see Part 2). Variability represents 
inherent heterogeneity or diversity in a well-characterised population and is not reducible through 
further measurement or study. The two most important sources of variability for the EC are spatial 
and temporal variability. Spatial and temporal variations of chemical concentrations can be captured 
in a variability distribution, called Exposure Concentration Distribution (ECD). Various SS towards 
a chemical (i.e. inter-species sensitivity/variability) can also be captured in a variability distribution 
called Species Sensitivity Distribution (SSD). In Figure 1, the variability distributions are shown as 
cumulative distribution functions by the black line. Uncertainty represents partial ignorance or lack 
of perfect information (e.g. sampling or measurement error), and can partly be reduced through 
further research (Cullen & Frey, 1999). In Figure 1, the uncertainty is shown as a grey band around 
the variability distribution function. For each percentile of the variability distribution, an uncertainty 
or confidence interval can be calculated (see Chapter 3.2). 
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The characterisation of the risk of toxicants to species, when both EC and SS are variable and 
uncertain, is the central issue in PERA. The resulting risk is no longer a simple ratio of crisp 
exposure and effects measures but rather a probability (see Chapter 4.1). In addition, the risk 
probability can be accompanied with a confidence or uncertainty interval (see Figure 1). 
 

  

Figure 1: Probabilistic Ecological Risk Assessment (PERA) is based on the comparison of an 
Exposure Concentration Distribution (ECD) and a Species Sensitivity Distribution (SSD), the grey 

bands represent 90%-uncertainty bands 

 
Currently, risk assessments, especially those for regulatory decisions, are done for generic situations 
determined by a set of default values. However for instance, the exposure spatial variability can be 
quite high. For example in Belgium alone, atrazine concentrations in surface water range from 50 
ng/l (detection limit) to more than 1 mg/l (Vandenbroele et al., 2000). This is a range of five orders 
of magnitude. Also the effects spatial variability can be considerable e.g. because of spatial 
variations in ecological communities. Until now, the EC and the SS were considered to be 
independent (see Part 4). However, the spatial variability of the EC and the SS can be such that in 
some locations, for instance, high SS are more likely to occur if the EC is high (e.g. because of 
species adaptation). Consequently, incorporating spatial characteristics and potential correlation 
between EC and SS of the receiving environment could further increase realism of a risk 
assessment. 
 
The goals of this chapter are two-fold: first, some methodological developments are made to 
specifically account for the spatial information in the PERA and second, to show the usefulness, 
feasibility and potential of geo-referenced probabilistic risk for new and existing individual 
chemicals in several case studies. 
 
 

(European) 
risk = 13% 

+ 
90% confidence 
interval: 5-22% 

ECD SSD
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5.1.2.  Geo-Referenced Framework 
 
The PERA methodology introduced above is well described and further developed in previous 
chapters. Evidently, it requires that variability distributions (and their uncertainty) are determined. 
Two different approaches can be used to determine the ECD and the SSD (see proposal framework 
in Part 2). Data from either measurements in the environment or toxicity tests can be used directly. 
The alternative is to use prediction or extrapolation models (especially in case of new chemicals). 
However, these models also need (other) data, which can again be characterised by uncertainty and 
variability. As a consequence, a distinction should be made between statistical methods for 
estimating data uncertainty and variability (see Chapter 3.2, 3.3 and 3.4), and methods for 
propagating uncertainty and variability through mathematical models (such as Monte Carlo 
analysis, see Chapter 3.1). 
 
In Chapter 4.1, it was discussed how to calculate a probabilistic risk and its uncertainty interval. 
Among all risk calculation techniques available, one method was selected for all case studies 
reported here: the probabilistic risk quotient method. The probability of some randomly selected EC 
exceeding some randomly selected SS can be regarded as a measure of risk (Aldenberg et al., 
2002). It can be written as:  
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If a geo-referenced risk assessment is to be obtained, each component of the risk assessment should 
be geo-referenced. Therefore, the three steps in a risk assessment are discussed in a geo-referenced 
framework: exposure assessment, effects assessment and finally risk characterisation. 
 

5.1.2.1. Geo-Referenced Probabilistic Exposure Assessment (geo-ECD) 
 
Spatial heterogeneities in chemical emission, release, dilution and degradation result in spatially 
different or geo-referenced ECDs. The ECD can be determined either through monitoring or 
through modelling. 
 
Monitoring data will be used for case studies 2 and 3. Geo-referenced probabilistic exposure 
monitoring is more straightforward than modelling. Typically, environmental agencies collect 
exposure data on a range of chemicals in a number of monitoring locations. 
 
When new, unreleased individual chemicals are assessed as in case study 1, prediction models are 
the only possibility to determine an ECD. GREAT-ER is such a (aquatic) chemical exposure 
prediction tool (Feijtel et al., 1997). The system uses a Geographical Information System (GIS) for 
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data storage and visualisation, combined with simple mathematical models for prediction of 
chemical fate. GREAT-ER has already built in the idea of refining the exposure assessment by 
explicitly accounting for the spatial variability (geo-referencing the ECD). Instead of having one 
lumped ECD for an entire catchment (representing spatial and temporal variability), each river 
stretch has its own ECD (only representing temporal variability). In other words, the ECD for an 
entire catchment (ECDtot in the example of Figure 2) has been unlumped into several ECDs (ECD 
1, 2 & 3 in the example of Figure 2). A Monte Carlo analysis propagates the temporal variability of 
the input parameters (such as the river flow). 
 

5.1.2.2. Geo-Referenced Probabilistic Effects Assessment (geo-SSD) 
 
Geo-referenced risk is only useful when both exposure (ECD) and effects (SSD) are geo-referenced 
(unless the SSD is the same everywhere). Instead of having one SSD for an entire catchment 
(representing spatial and other types of variability, SSDtot in the example of Figure 2), each river 
stretch can have its own SSD (SSD A & B in the example of Figure 2). Geo-referencing 
effects/SSD is still a large, unexplored area. 
 
Many factors influence a geo-SSD. First, several physico-chemical environmental circumstances 
create ecological niches. These result in different communities and biodiversity. Consequently, 
different locations have different communities and species presence and determine the geo-SSD. 
Examples of such trends will be elucidated here using the river continuum theory (Vannote et al., 1980). 
This theory suggests that the community functions associated with different reaches of a river will differ 
due to physical changes in the river from headwaters to mouth. For example, in the headwaters (stream 
orders 1 to 3) with its considerable shading and input of allochtonous material, the productivity to 
respiration ratio can be less than 1. However, this ratio can increase above 1 in the middle reaches of the 
river (stream order 4 to 6) where shading is reduced and ample nutrients are present. In the lower 
reaches, turbidity and depth can limit productivity and the ratio can drop below 1 again. Similarly, the 
macroinvertebrate functional groups (detritus shredders, collectors, scrapers and predators) shift with the 
availability of associated resources. Shredders will be prominent in headwaters where there is an 
abundance of coarse organic particulate matter such as leaves. They will decrease with distance 
downriver. Grazers will be most abundant in the middle regions where productivity is high. Collectors 
will be most abundant in the lower reaches. These very general patterns along the gradient from first 
order to higher order channels are modified in areas of confluence with lower order tributaries. 
Second, physico-chemical characteristics are also determining the bioavailability and toxicity of, for 
instance, metals (Janssen et al., 2000) and other chemicals. Consequently, different locations have 
different species sensitivities. Note that the same communities can be present at these different 
locations. 
Third, depending on the metal background concentration, biological communities in these different 
systems may have differentially acclimated/adapted to the natural presence of metal concentrations 
resulting in varying community sensitivities (Janssen et al., 2000). 
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Depending on the chemical, one factor will be more important than the other. It is not the goal of 
this thesis to determine and quantify the most important factors or to propose a framework of how 
to determine a geo-SSD. Geo-referenced effects are only used here to illustrate the usefulness of a 
geo-referenced risk. This may lead to more research in this area. 
 
The SSD can be determined either through monitoring or through modelling. In case studies 1 and 
3, modelling tools are used. There is no geo-SSD determined in case study 2 due to a lack of data. 
Field studies are the major source of geo-referenced ecotoxicity data. Unfortunately, these field 
studies are scarce and expensive. Therefore, effects monitoring is not (yet) a possible source of 
information. 
 

5.1.2.3. Geo-Referenced Probabilistic Risk Characterisation 
 
Finally, once both a geo-ECD and a geo-SSD are determined, a geo-referenced risk can be 
calculated for every river stretch in a river basin. Figure 2 shows an example. ECDtot and SSDtot 
are the lumped, non-geo-referenced exposure and effect distributions (reflecting spatial and other 
types of variability). By geo-referencing the exposure (ECD 1, 2 & 3 in Figure 2), effects (SSD A & 
B in Figure 2) and the resulting risk assessment, the spatial variability is explicitly accounted for in 
each local risk assessment and as a result the risk assessment will be more realistic. The 
combinations of ECD 1 & SSD A and ECD 2 & SSD B give smaller risks (in comparison with the 
risk from ECDtot and SSDtot) whereas ECD 3 & SSD A will give a higher risk (in comparison with 
the risk from ECDtot and SSDtot). 
 

 

Figure 2: Split up of the lumped ECD and SSD into local ECDs and SSDs 
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Moreover, such a geo-referenced assessment may reveal a potential dependency between the EC 
and SS. Until now, the EC and the SS were expected and considered to be independent (see Part 4). 
However, there are reasons to believe that the spatial variability of the EC and the SS can be such 
that in some locations, for instance, high SS are more likely to occur if the EC is high. A 
dependency between EC and SS will influence the probabilistic risk calculation and is therefore 
important to consider. A geo-referenced assessment automatically solves this potential issue. 
 
In addition, a geo-referenced assessment may also resolve spatial dependencies and autocorrelations 
of the EC or the SS. The EC at a monitoring location, for example, is influenced by the upstream 
ECs (measured at upstream monitoring locations). A spatial dependency of the EC or the SS will 
influence the uncertainty analysis as most variability and uncertainty estimation techniques from 
Chapter 3.2 assume independent observations. Note that a geo-referenced analysis cannot resolve 
temporal dependencies but a time-referenced analysis can (see Chapter 5.2). 
 
If needed, these local risks can afterwards again be aggregated to a lumped probabilistic risk, for a 
catchment for instance. There are two pathways to obtain an aggregated total risk (see Figure 3): 
either the ECDs and SSDs are first aggregated and then the probabilistic risk is calculated (see 
pathway 1 in Figure 3) or either the probabilistic risk is calculated in each location and then 
aggregated (pathway 2). 
 

ECD1 – SSDA 

ECD2 – SSDB 

ECD3 – SSDA 

… 

 
 

Risk characterisation 

Risk1A 

Risk2B 

Risk3A 
… 

 
Aggregation 

 
 

  
Aggregation 

 
 

 
ECDtot – SSDtot 

 

 
Risk characterisation Risktot 

Figure 3: Two pathways to obtain an aggregated total risk 
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The two pathways give different outcomes because the probabilistic risk calculation is a non-linear 
operation (see Part 4): the lumped probabilistic risk (right term in the equation below, pathway 2) is 
not equal to the non-geo-referenced probabilistic risk based on the same spatial information (left 
term in the equation below, pathway 1). 
 

( ) ( ) ( ) ...,,...,... 2121 ++≠++++ BABA SSDECDRiskSSDECDRiskSSDSSDECDECDRisk  
 
It is preferred to first calculate the probabilistic risk and then aggregate (pathway 2) because this is 
closer to reality. 
 
 
 

5.1.3.  Case Studies 
 
Three case studies are discussed here to illustrate the potential and usefulness of a geo-referenced 
PERA. Not all case studies illustrate a “full” geo-referenced PERA. Some do not have a geo-
referenced SSD. Others do not consider uncertainty. An overview is summarised in Table 1. The 
case studies include different regions (Belgium, Sweden) and different chemicals (a detergent 
chemical, a pesticide and a heavy metal). The ECD or the SSD are sometimes modelled, in other 
cases determined through monitoring. 
 

Table 1: Overview of Case Studies 

Exposure (ECD) Effects (SSD) 
Probabilistic 
Risk Chemical Region 

Model/ 
Monitoring 

Geo? Model/ 
Monitoring 

Geo? + uncertainty? 

1. Hypothetical 
     detergent 

Rupel basin 
(B) 

Model Yes Monitoring Yes No 

2. Atrazine Flanders (B) Monitoring Yes Monitoring No Yes 
3. Cu Sweden Monitoring Yes Model but only 1 

species 
Yes No 
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5.1.3.1. Case Study on the geo-referenced risk of a detergent chemical in the 
Rupel basin (Belgium) 
 

5.1.3.1.1. Introduction 
 
The goal of this case study is to show the usefulness, feasibility and potential of geo-referenced 
probabilistic risk for a new individual chemical in a river basin. The Rupel basin in Belgium was 
selected as case study area. The Rupel is a tributary to the river Scheldt. The area is 6700 km² large 
and contains the capital city of Belgium, Brussels (Figure 4). The chemical under study is a new, 
hypothetical anionic surfactant (to be used in detergents) for widespread use, once regulated. 
Degradation rates, chronic toxicity values and other parameters were chosen as realistic as possible 
(based on existing literature information of similar chemicals). 
 

5.1.3.1.2. Determination of geo-ECD 
 
When new, unreleased individual chemicals are assessed, prediction models are the only possibility 
to determine an ECD. Here, the (aquatic) chemical exposure prediction tool GREAT-ER was used. 
GREAT-ER 1.0 (Geo-referenced Regional Exposure Assessment Tool for European Rivers) 
calculates ECDs of consumer “down-the-drain-chemicals” in surface waters, for individual river 
stretches as well as for entire catchments. 
 
The GREAT-ER project has been approached in a modular way, as previously described in detail in 
Feijtel et al. (1997). In the GIS data manipulation module, input data sourced from several 
databases and from the hydrology module are transformed into appropriate GIS formats. 
Geographical segmentation is also performed in this module. The hydrology module combines 
several hydrological databases with a hydrological model. It provides the GREAT-ER system with 
the required river flow distributions, flow velocities and river characteristics. The size of the 
Belgian study area did not allow to apply an advanced hydrological model that needs a lot of input 
parameters and effort. Therefore, an empirical hydrological model was developed. The applicability 
of a power function relating flow to the sum of the lengths of all upstream rivers has been 
demonstrated to be sufficiently accurate (Verdonck et al., 2000).  
The waste pathway and river modelling module is used for the prediction of chemical emission, of 
chemical removal/transformation during conveyance and treatment, and of chemical fate in rivers 
(Boeije et al., 1997). Chemical fate in wastewater treatment plants and in rivers is described 
deterministically, with several levels of complexity being available to reflect the available 
information concerning both the chemical and the environment. For example, removal during 
sewage treatment can be either on a simple percentage removal basis, or alternatively it can be 
predicted using the SimpleTreat model (which is currently also used in EUSES (1997)). 
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An extensive monitoring programme for boron and for Linear Alkylbenzene Sulfonate (LAS) in six 
European pilot study areas has been performed in order to validate the system. The results illustrate 
that GREAT-ER can deliver very accurate predictions of chemical concentrations in a river basin, 
provided reliable input datasets and accurate hydrological and chemical fate models are used 
(Schowanek et al., 2001). 
A Monte Carlo analysis propagates the temporal variability of the input parameters (such as the 
river flow). Note that the input uncertainty is not considered here. For this, a second order or two-
dimensional Monte Carlo would be needed (as demonstrated in Chapter 3.1). Geo-ECDs were 
predicted using GREAT-ER 1.0 for the Rupel basin (situation wastewater treatment plant 
infrastructure 1999) as reported in Verdonck et al. (2000). 
 

5.1.3.1.3. Determination of “geo-SSD” 
 
In the case study, an empirical approach based on considerable and arguable assumptions is used to 
determine a geo-SSD to study the environmental effect of a new chemical. The underlying idea of 
this approach is that a difference should be made between heavily polluted rivers (with small 
biodiversity) and rivers with a good water quality and large biodiversity. A heavily polluted river is 
assumed not to contain sensitive species. As a result, the SSD of a heavily polluted river will only 
contain more resistant species. Consequently, the risk of a new chemical affecting the species 
present in a heavily polluted river will be lower compared to a river with large biodiversity and 
sensitive species. This approach was only selected to illustrate geo-risk. Naturally, in the long term, 
the philosophy may be adhered that all species in all rivers (also the currently polluted ones) should 
be protected and a large biodiversity should be achieved and maintained. 
Geo-SSDs were determined based on the empirical biodiversity approach described above. The 
Belgian biotic index, expressing species sensitivity and biodiversity of macro-invertebrates and 
ranging from 0 to 10 (De Pauw et al., 1986), was used as an indicator of the overall biodiversity in 
the rivers. The biological monitoring network is rather dense (around 300 monitoring points). Only 
three categories of SS and biodiversity were determined: (1) moderate-good biodiversity (all species 
were selected in the SSD), (2) moderate-poor biodiversity (the 30% most sensitive species were 
removed from the SSD, see also graphically SSD A in Figure 2) and (3) poor-very poor biodiversity 
(the 50% most sensitive species were removed from the SSD, see SSD B in Figure 2). A lognormal 
distribution was fitted to these three SS data sets. 
 

5.1.3.1.4. Results and discussion 
 
Three tiers were simulated to assess the usefulness of a geo-referenced analysis. In the first tier, a 
non-geo-referenced PERA was performed (ECDtot & SSDtot of Figure 2). In the second tier, the 



Chapter 5.1 

154 

ECD was geo-referenced but the SSD was not (ECD 1, 2, 3 … & SSDtot). And in the third tier, 
both the ECD and SSD were geo-referenced (ECD 1, 2, 3 … & SSD A, B …). 
 
In the first tier, a non-geo-referenced PERA of the new chemical was performed on the entire Rupel 
basin. The resulting risk is 27%. This can be interpreted as the probability that an Exposure 
Concentration (EC) from a randomly selected river stretch and a randomly selected day in the year 
will be larger than a randomly selected Species Sensitivity (SS) from a randomly selected river 
stretch (with large or small biodiversity). There was no confidence/uncertainty interval calculated 
for this risk probability. 
 
The results of the geo-referenced PERA of the new, hypothetical but realistic, chemical on the 
Rupel basin (tier 3) are shown in Figure 4 (without uncertainty intervals). The colour pattern 
indicates how large the risk is. It can be derived from Figure 4 that spatial risks or geo-risks can 
vary from 0% to larger than 90%. However, the interpretation of these geo-risks is slightly different. 
They can be interpreted as the probability (for a particular location) that an Exposure Concentration 
(EC) from a randomly selected day in the year will be larger than a randomly selected Species 
Sensitivity (SS). For a particular river stretch, the spatial component is no longer needed in the 
interpretation because the risks are geo-referenced. Consequently, the risk assessment is more 
refined compared to the single number (27% in this case study) from a non-geo-referenced 
approach. Some rivers have higher risk probabilities of affecting the species, others have lower 
probabilities. These local risks could again be aggregated to a lumped probabilistic risk. Here, the 
aggregated risk of only the polluted stretches was weighted by the length of each river stretch to 
resolve any scale-dependencies (methodology, see Boeije et al. (2000)) and resulted in a risk 
probability of 9%. 
 
The rivers under risk can also be studied in more detail to find the underlying causes of higher risks: 
is wastewater treatment plant infrastructure insufficient, under construction or to be improved, are 
the rivers under risk of high ecological importance, etc…? Such an analysis may help the decision-
maker to avoid approving unsafe chemicals or rejecting safe chemicals. For example, the Nete basin 
(i.e. the Northern subbasin) has in general a very good wastewater treatment plant infrastructure, 
good water quality (large biodiversity) and low risks although there are some hot spots with large 
risks. In the Zenne river (i.e. downstream from Brussels, with bad water quality and low 
biodiversity), large risks were predicted even when the most sensitive species were already 
eliminated. 
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Figure 4: Geo-referenced probabilistic risk in % (no uncertainty intervals visualised) for a new, 
hypothetical but realistic, chemical on the Rupel basin in Belgium 

 
This can also be seen in risk river profile plots (see Figure 5) where probabilistic risk is plotted 
against the distance in the river. The three tiers are shown in Figure 5. In the first tier, a PERA is 
performed on catchment level. The calculated risk is 27% (see above) and can therefore be 
visualised as a straight line (independent of the location in the river). In the second tier, the geo-risk 
is calculated based on a geo-ECD and a non-geo-SSD (as in GREAT-ER 1.0). In the last tier, a geo-
risk is calculated based on both a geo-ECD and a geo-SSD. 
 
The river profile could be separated into three categories for geo-SSD determination. In the most 
upstream 35 km of the river, water quality objectives aim for sustainable fish populations. For this, 
all sensitive and insensitive species were used in the SSD (category 1). Consequently, tier 2 and 3 
give the same risk profile. However after 35 km from the source, the biodiversity is moderate to 
poor (category 2) and as a result, the risks for tier 3 are smaller than for tier 2. The peak at 90 km is 
caused by a large untreated discharge. But since in the downstream part of the river (last 40 km, 
almost near the mouth), water quality is so bad resulting in small biodiversity (category 3), adding 
an additional, new chemical will have less/no effect to the sensitive species since they are not 
present. Of course, the new chemical will impose additional stress on the existing insensitive 
species. It must be clear that the factor that was selected in this contribution to determine a geo-SSD 
should be regarded as an illustration of the methodology and points to the need of further 
development of a geo-referenced effect analysis (SSD). 
 



Chapter 5.1 

156 

 

Figure 5: Probabilistic risk (of adding a new chemical) river length profile plot starting in the 
‘Grote Gete’, ‘Demer’, ‘Dijle’ and ending in the ‘Rupel’ in the Rupel basin (Belgium) 

 
An additional bottleneck for geo-referenced PERA may be data availability. The more information 
one wants to incorporate (to make the PERA more realistic), the more data will be needed. Data 
acquisition and management is however improving rapidly and will warrant the future application 
of the proposed methodology. 
 
 

5.1.3.2. Case Study on the geo-referenced risk of atrazine (a pesticide) in Flemish 
surface waters (Belgium) 
 

5.1.3.2.1. Introduction 
 
Atrazine is a widely used persistent herbicide. Consequently, it is considered a great potential for 
groundwater and surface water contamination. Therefore, it is frequently detected. The greatest risk 
of atrazine runoff occurs shortly after the application because it hasn’t had time to adhere to the soil 
particles and is still at the surface of the soil (Lipishan & Lee, 1996). Probabilistic risks and their 
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90%-uncertainty intervals were predicted for the pesticide atrazine in the river catchments of 
Flanders in Belgium. 
 

5.1.3.2.2. Determination of geo-ECD 
 
The ECs were obtained from the Flemish environmental agency (VMM, 2001). Atrazine was 
(mostly monthly) measured at 134 locations from 1991 till 2000. Only the reliable data from the 
years 1997 till 2000 were considered. It is assumed that this monitoring network is representative 
for all rivers in Flanders. The spatially aggregated cumulative empirical distribution function of all 
ECs is shown in Figure 6. A lognormal distribution was assumed and fitted to all data but the 
distribution did not fit very well to the data (see grey curve in Figure 6) because the data are left 
censored i.e. the value 50 ng/l is frequently observed. This value corresponds with the detection 
limit of atrazine. Censored data can be handled in different ways. Replacing every value below the 
detection limit with a random number between zero and the detection limit (here 50) is better 
compared with the detection limit or half of the detection limit (Govaerts et al., 2001). After such 
correction for censoring, the lognormal distribution now fits very well to the data (see black curve 
in Figure 6). 
 
The lognormality was also checked for several individual monitoring stations. The ECs were 
lognormally distributed for most of the monitoring stations based on Kolmogorov-Smirnov 
statistics, expert knowledge and graphical inspection of normal QQ plots. For each station, a 
lognormal distribution was fitted to the data. This resulting ECD represents the variation of the 
concentration (mostly temporal) at that station. 
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Figure 6: Cumulative probability distribution of atrazine 
measurements in surface waters in Flanders 
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5.1.3.2.3. Determination of (non-geo-)SSD 
 
The data set for the atrazine SSD consists of chronic toxicity values (NOEC: No Observed Effect 
Concentrations) and can be found in Versteeg et al. (1999). A lognormal distribution was assumed 
and fitted to the data. The fit was satisfactory. 
 

5.1.3.2.4. Results and Discussion 
 
In Chapter 4.1, the probabilistic risk was presented as a pie chart as in Figure 7. The entire pie 
represents 100%. The grey shades indicate how large the probabilistic risk is with a pre-defined 
certainty. The larger the white slice, the lower the risk is. The more black, the larger the risk is. The 
larger the grey slices are, the more uncertainty exists on the risk. The example shows that the 
median risk is 23% (50% certainty) and there is 95% certainty that the risk is smaller than 45%. It 
can be derived from Figure 8 that visualisation of the probabilistic risk as pie chart promises to be a 
good communication tool. 
 

 

0% risk probability 
 
5% certainty that risk < 9% 
 
50% certainty that risk < 23% 
 
95% certainty that risk < 45% 

 

Figure 7: Visualisation of the risk of 23% and its 90%-uncertainty interval 

 
The results of the local PERA of atrazine for all monitoring stations in the river networks of 
Flanders are shown in Figure 8. The geo-risks can be interpreted as the probability (for a particular 
location) that an Exposure Concentration (EC) from a randomly selected month in the year will be 
larger than a randomly selected Species Sensitivity (SS). 
 
The results of the local PERA of atrazine in the basins of Flanders indicate that the predicted 
atrazine risks are around 1.6% for many monitoring locations. Most of the median risks are smaller 
than 5% and most of the upper risk 90% uncertainty intervals are smaller than 15%. 
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Figure 8: Probabilistic atrazine risk in the catchments of Flanders (Belgium) 

 
Note that geo-referencing the risk is most useful when both the ECD and the SSD are geo-
referenced. Here, only the ECD was geo-referenced and the SSD was considered to be the same for 
every location. But in this case, hot spots could also be located based on the geo-referenced ECDs 
alone. Moreover in reality, spatial differences lead to different local SSDs (e.g. Janssen et al. 
(2000)). 
 
 

5.1.3.3. Case Study on the geo-referenced risk of Cu (a metal) in surface waters of 
Sweden 
 
The third case study illustrates a geo-referenced PERA for Copper (Cu) in the surface waters of 
Sweden. More information can be found in the MSc. Thesis of De Laender (2003). 
 

5.1.3.3.1. Introduction 
 
Cu is a natural element. It is a vital trace element in our daily diet, helping to ensure the health of 
body and brain. Like us, animals and plants could not thrive without it. Copper also has many 
applications: conductor of electricity and heat among non-precious metals, water piping, inhibitor of 
the growth of bacteria, viruses and fungi, roofing, etc… Because of its diverse applications, it may 
also increase the natural background concentration in the environment. 
 
Until recently, environmental water quality standards and risk assessment procedures for metals in 
surface waters were predominantly based on total and/or dissolved metal concentrations (Janssen et 
al., 2000). However, the importance of bioavailability and toxicity modifying factors like pH, 
hardness and Dissolved Organic Carbon (DOC), is increasingly being recognized and is a major 
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contribution to geo-referencing Species Sensitivity (SS). The development of Biotic Ligand Models 
(BLM) that predict toxicity of metals to fish, invertebrates and algae (e.g. Di Toro et al. (2001); De 
Schamphelaere et al. (2002), Heijerick et al. (2002)) can be considered as an important step towards 
a scientifically sound protection of freshwater environments. Hence, the possible use of these 
models for regulatory purposes is gaining increased interest in both the scientific and the regulatory 
community. 
 
In this case study, a geo-referenced SS is determined and the powerful combination of GIS and 
copper bioavailability models (BLM) is demonstrated. The Swedish surface waters were selected 
because of their large spatial variability in bioavailability modifying factors. The main focus will be 
on the Daphnia magna-BLM (the most advanced chronic BLM, De Schamphelaere and Janssen, 
unpublished). As Daphnia magna is very sensitive to copper, it may be a good model organism for 
the initial identification of possible environmental risks. 
 

5.1.3.3.2. Determination of geo-ECD 
 
The ECs for Cu were obtained from the Institute of Environmental Analysis of the Swedish 
University of Agricultural Sciences (SLU, http://info1.ma.slu.se). A lognormal distribution was 
fitted to the ECs of each location. Consequently, the ECD at each location reflects mostly the 
temporal variability of the Cu-concentration at that location. More information on the determination 
of the geo-ECD can be found in De Laender (2003). 
 

5.1.3.3.3. Determination of geo-SS 
 
The main assumption of the BLM is that metal toxicity occurs as the result of free metal ions 
reacting with binding sites at the organism-water interface (either physiologically active sites, 
leading to a direct biological response, or transport sites, leading to metal transport into the cell 
followed by a subsequent, indirect biological response), which is represented as the formation of a 
metal-biotic ligand complex. The concentration of this metal-biotic ligand complex directly 
determines the magnitude of the toxic effect, independent of the physical-chemical water 
characteristics of the test medium (De Schamphelaere et al., 2002). 
 
For the simulation of the BLM, several input parameters are needed: total or dissolved organic 
carbon (TOC or DOC), pH, alkalinity, temperature, Ca, Mg, Na, K, Cl and SO4-concentrations. 
Databases of Swedish surface water characteristics, which fulfil these requirements, were also 
obtained from the Institute of Environmental Analysis of the Swedish University of Agricultural 
Sciences (SLU, http://info1.ma.slu.se). Input parameters are monitored in the ‘Riksinventeringar’ 
database (about 5000 lakes).  The most important outputs of the BLM are No Observed Effect 
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Concentrations (NOECs) for Daphnia magna. These Daphnia magna NOECs could, along with 
NOECs of other species, determine a SSD. The implementation of BLMs for other species is 
currently under development at Ghent University. This would enable the determination of a geo-
referenced SSD. Here, only the sensitivity of one species was assessed (Daphnia magna). 
 
The BLM model was then linked to the GIS in order to determine a geo-referenced bioavailability 
and consequently a geo-referenced SS (De Laender, 2003). Figure 9 shows the spatial variability of 
the BLM-predicted NOEC values for Daphnia magna in Swedish lakes and rivers. It is clear that 
the SSs are not equal for all sites. BLM-predicted NOEC values were mainly between 60 and 200 
µg Cu/L. Typically, differences in SS can be a factor 3 large. 
 
 

 

Figure 9: NOECs (No Observed Effect Concentrations) (µg/l) for 
Daphnia magna in Swedish surface waters 

 
The BLM input parameters are characterised by temporal variability. In Figure 9, average BLM-
predicted NOEC values are shown. These are based on average input parameters and variables. But, 
this temporal variability of the input results in temporally varying bioavailability conditions and 
consequently temporally varying NOECs. This temporal variability was captured by means of a 
Monte Carlo simulation. Further details can be found in the second case study of Chapter 3.1. The 
effects assessment therefore results in a probability distribution of SS for Daphnia magna. Note that 
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this distribution does not reflect inter-species sensitivities as the SSDs in the previous two case 
studies. This will affect the interpretation of the resulting probabilistic risk. It was not possible to 
perform Monte Carlo simulations for all Swedish sites in Figure 9 for practical limitations since this 
would increase the number of manual interventions (i.e. need for additional programming effort). 
Instead, a subarea around Stockholm was selected. The resulting average NOECs are shown in 
Figure 10. Some lower percentile (e.g. the 5th percentile) can also be visualized. This lower 
percentile could be used for environmental quality standard setting. However, it is up to the policy-
maker how protective the standards should be. 
 
 

 

Figure 10: (Average) NOECs (No Observed Effect Concentrations) (µg/l) 
(from Monte Carlo analysis) for Daphnia magna in the Swedish surface 

waters around Stockholm 

 

5.1.3.3.4. Determination of Geo-Referenced Probabilistic Risks 
 
Geo-referenced probabilistic risks were determined for Cu on Daphnia magna for all monitoring 
stations in the river networks of Sweden. All locations resulted in a negligible probabilistic risk 
smaller than 0.002%. Therefore, the results are not shown. The geo-risks are interpreted as the 
probability (for a particular location) that an Exposure Concentration (EC) from a randomly 
selected moment in the year will be larger than a Species Sensitivity (SS) from a randomly selected 
moment in the year. Extending this case study to larger or other parts of Sweden may better 
illustrate the usefulness of this geo-referenced analysis. 
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5.1.4.  Conclusions 
 
A geo-referenced probabilistic ecological risk assessment framework was developed and illustrated 
with case studies. Geo-referencing makes the risk assessment more realistic as spatial variability 
and dependencies of the EC and SS are explicitly accounted for, i.e. less spatial variability is 
lumped in the probabilistic ecological risk assessment and therefore, this is useful for assessing risk 
of individual chemicals. 
 
In addition, it was highlighted that geo-referencing effects (species sensitivity distribution) is now 
still a largely unexplored area but has important potential to further improve probabilistic ecological 
risk assessments. Geo-referencing PNECs and/or SSDs (in a GIS environment) and incorporating 
different levels of uncertainty results in a more realistic risk assessment which is preferable to the 
current practice of using a single (lumped) PNEC or SSD, representing an entire region or country. 
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Chapter 5.2 
 
Towards 
Time-referencing Probabilistic Ecological Risk Assessment 
 
 
 
 
As discussed earlier in the introduction of Part 5, different levels of complexity (several tiers of 
different level of detail in risk assessment) can be distinguished to deal with uncertainty and several 
types of variability in the exposure and effects assessment. Figure 1 shows a part of that overview. 
In the top panel, the deterministic ecological risk assessment is shown. The second panel represents 
the Probabilistic Ecological Risk Assessment (PERA). Time-referencing is represented in the lower 
panel of Figure 1. Time related information on effects and exposure can be formatted in two ways 
in an attempt to capture the temporal variability. First, exposure time series can be used as such or 
second, time series can be transformed into concentration-duration-frequency surfaces. These 
surfaces are three-dimensional plots with on the three axes the concentration, the duration of an 
exceedance above a particular concentration and the frequency of an exceedance above a particular 
concentration with a particular duration. Geo-referencing is not considered in this chapter. 
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Figure 1: Several tiers of ecological risk assessment of chemicals: top: 
deterministic risk assessment, below top: probabilistic risk assessment, 
bottom: time-referenced risk assessment (EC: Exposure Concentration, 

SS: Species Sensitivity, grey band: 90% uncertainty band) 

 
 

5.2.1.  Introduction 
 
This chapter presents some preliminary, exploratory steps of a time-referenced or dynamic 
ecological risk assessment. For this, knowledge and information from two converging fields will be 
used. 
 
First, in the ecological risk assessment of specific chemicals, there is a trend to move from simple, 
empirical and deterministic approaches to more realistic, complex and also dynamic methods (see 
Part 2). For example, Milne et al. (2000) investigated the influences of exposure duration and 
frequency on the toxicity of short-term pulses of ammonia to rainbow trout and brown trout. Their 
results suggest that exposure duration and frequency are both important factors influencing the 
severity of effects in fish exposed to short-term ammonia peaks. The duration and exceedance of the 
exposure is presented in e.g. ECOFRAM (1999). But, there are only few developments on the level 
of the risk characterisation with such concentration-duration-frequency surfaces. 
 
Second, in Urban Pollution Management (UPM): the urban waste water system (sewers, Waste 
Water Treatment Plant (WWTP) and receiving water) is treated as a single entity in which a change 
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in one part has implications for the other parts. Compliance with environmental standards is the 
main objective in UPM (FWR, 1998). For river planning purposes, two approaches are followed: 

• River quality standards based on a percentile approach (~ probabilistic approach) 
• Fundamental intermittent standards (~ time-referenced approach) 

The percentile approach states that the pollutant concentration in the river should, for instance, 
comply with the given standard for at least 99% of the time (99th percentile). The fundamental 
intermittent standards are concentration/duration values for a given pollutant that should not be 
violated more frequently than a specified value. In this way, temporal information is considered.  
Only few developments are made on how to combine the exposure with effects assessment to 
eventually come up with a risk measure. 
 
The goals of this chapter are to explore the possibility and usefulness of concentration-duration-
frequency surfaces in a time-referenced ecological risk assessment and to compare them with the 
less detailed probabilistic methods in a Probabilistic Ecological Risk Assessment (PERA). In 
addition, it will be illustrated how this method can be used as a decision-support tool in risk 
assessment practice. The comparison between the two will be done by means of a case study on the 
effluent of a WWTP.  
 
 

5.2.2.  Methodology 
 
The methodological background of PERA and concentration-duration-frequency surfaces are 
discussed in this section. 
 

5.2.2.1. Probabilistic Method (Based on Probability Distributions) 
 
Characterisation of the risk of toxicants towards species, when both exposure and effects are 
variable and uncertain, is the central issue in PERA. The resulting risk is a probability and can be 
calculated mathematically (see Chapter 4.1). In addition, the risk probability can be accompanied 
with a confidence or uncertainty interval (e.g. mean risk of 23% and its 90% confidence or 
uncertainty interval is 15-30%). 
 
In PERA, the two most important sources of variability for the exposure concentration are spatial 
and temporal variability. Spatial and temporal variations of chemical concentrations in a river or 
WWTP effluent can be captured in a variability distribution, called Exposure Concentration 
Distribution (ECD). Various species sensitivities towards a chemical (i.e. inter-species 
sensitivity/variability) can also be captured in a variability distribution called Species Sensitivity 
Distribution (SSD). The reader is referred to previous chapters for more background. 
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5.2.2.2. Time-Referenced Method (Based on Concentration-Duration-Frequency 
Curves) 
 
In this method, (spatial and) temporal variations of the exposure concentration (in the exposure 
analysis) and the ecotoxicity data (in the effects analysis) are not summarized into a probability 
distribution. Instead, the temporal variations are explicitly considered and summarized in 
concentration-duration-frequency surfaces. Let us consider no spatial variability for simplicity. A 
concentration-duration-frequency surface is based on a time series analysis and can be determined 
for both exposure and effects. 
 

5.2.2.2.1. Exposure assessment 
 
A concentration-duration-frequency surface is based on a time series analysis (FWR, 1998). These 
surfaces are basically histograms of the durations of exceedance of a set of (predefined) 
concentrations. This results in three-dimensional plots with on the three axes the concentration, the 
duration of an exceedance above a particular concentration and the frequency of an exceedance 
above a particular concentration with a particular duration. However in practice, only two-
dimensional plots are more frequently used. Here, duration-frequency curves are used because 
current legislation is still mainly based on standards, i.e. the concentration is constant. For ease of 
use, we shall continue to use the term concentration-duration-frequency curve. In return period 
analysis of combined sewer overflows, “concentration”-frequency curves are often used for design 
decisions in urban storm water management. The return period of the exceedance of a variable is 
found as the reciprocal of its probability of exceedance and the mean number of events per year 
(Grum & Aalderink, 1999). For water quality objectives, this approach seems less useful since the 
duration of an exceedance is not taken into account.  
 
The theoretical example of Figure 2 shows two 
exceedances of the standard. The first and the 
second exceedance both last 6 hours. The 
duration of each exceedance is determined and 
then counted (to obtain a frequency of each 
exceedance with a particular duration).  
 
Typically, a graph like Figure 3 is then obtained. 
Each duration interval is represented by its mean 
duration. From Figure 3, it can be seen that a 
large number of short exceedances occur 
(around 3 hours), next to a number of long-
lasting exceedances (around 12 hours). 
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Figure 2: Illustrative effluent time series 



Time-referenced PERA 

169 

It is clear that these long-lasting exceedances could represent a higher environmental impact.  
However, this is only an indicative interpretation since these two-dimensional concentration-
duration-frequency-curves do not give the severeness of the exceedance. If, for instance, the 
standard was set at 4 mg/L, an exceedance of 6 mg/L above the standard (as in the first peak of 10 
mg/L in Figure 2) has the same weight as an exceedance of e.g. 60 mg/L above the standard would 
have. 
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Figure 3: Example of an uncumulated concentration-duration-frequency curve 

 
Concentration-duration-frequency curves are mostly given as cumulative curves. Such cumulative 
curve is obtained by adding up all exceedances from right to left. The interpretation of these curves 
changes slightly: instead of looking at the frequency of occurrence of exceedances with length 
between A and B hours, it now becomes the frequency of occurrence of exceedances lasting longer 
than A hours. Typically, a curve like Figure 4 is then obtained. The interpretation is as follows: 560 
exceedances last two hours or longer while only 170 exceedances last 6 hours or longer. More 
information can be found in Rousseau et al. (2000). Such concentration-duration-frequency curve 
will be expressed as exposure concentration-duration-frequency curve. 
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Figure 4: Cumulative concentration-duration-frequency curve 

 

5.2.2.2.2. Effects assessment 
 
Similarly as in the exposure assessment, concentration-duration-frequency curves can be 
constructed based on ecotoxicity tests for an effects assessment. Such concentration-duration-
frequency curve will be expressed as effect concentration-duration-frequency curve. In ecological 
risk assessment, duration or frequency of an exposure event of a certain chemical is not often used. 
Usually, a concentration-duration curve is determined (e.g. Karman & Reerink (1998), Bonnomet et 
al. (2002)). An example is given in Figure 5. 
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Figure 5: Concentration-duration curve for Daphnia magna exposed 
to cadmium chloride (based on Bonnomet et al. (2002)) 
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The duration of a toxicity test is typically determined at the duration above, which the toxic 
concentration (LC50 in Figure 5) does not change anymore. In this way, the effect of duration is not 
explicitly considered but is dealt with in a conservative way. 
 
Frequency-Duration curves and other concentration-duration-frequency curve variants are also 
explored in ECOFRAM (1999). 
 

5.2.2.2.3. Risk Assessment 
 
Finally, the exposure and effect concentration-duration-frequency curves are overlaid on the same 
graph. There is no risk if the effect concentration-duration-frequency curve is situated above the 
exposure concentration-duration-frequency curve. There is potential risk if the effect concentration-
duration-frequency curve is situated below the exposure concentration-duration-frequency curve. 
We are not aware of any quantitative risk measures that integrate the exposure and effect 
concentration-duration-frequency curves. 
 
 

5.2.3.  Case Study 
 
First, a short description of the case study is given. Then, the determination of the probabilistic 
ECD and SSD is discussed. Finally, the determination of the exposure and effect concentration-
duration-frequency curves is discussed. 
 

5.2.3.1. Problem Formulation 
 
One of the challenges Aquafin NV, the company responsible 
for Waste Water Treatment Plant (WWTP) infrastructure in 
Flanders (Belgium), is now facing is to upgrade the 
patrimonium of old municipal WWTPs. These plants need to 
be retrofitted towards strict phosphorus and nitrogen removal 
consents. With this aim, a risk assessment procedure was 
developed based on a dynamic WWTP model with an 
uncertainty analysis module (see Chapter 3.1 and Rousseau et 
al. (2001)). The procedure has in practice already proven that 
capital investment can be reduced by up to 43%, producing 
savings of more than 1,2 million € (Bixio et al., 2001).  

 

Figure 6: Situation sketch 
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The two main outputs of the procedure are a probabilistic Exposure Concentration Distribution 
(ECD) and an exposure concentration-duration-frequency curve. Both are accompanied with an 
uncertainty or confidence band. 
 
In this perspective, a simplified case study is worked out here. The effect of total ammonia in the 
effluent of the WWTP in Hove (Belgium) (Bixio et al., 2002) on the aquatic salmonid community 
in the receiving river “Bautersembeek” is studied (see Figure 6). Only the direct, acute toxic effects 
on salmonid fish populations are studied while indirect effects as eutrophication and chronic effects 
are not dealt with. Note that there are no combined sewer overflows considered either. The choice 
of this case study was driven by the need to illustrate the time-referenced concept for a realistic 
WWTP for which a model was available. 
 
A key factor is the chemical speciation of ammonia. In aqueous solution, ammonia primarily exists 
in two forms, un-ionised ammonia (NH3) and ammonium ion (NH4

+), which are in equilibrium with 
each other according to: 
 
 ++ +↔ HNHNH 34  
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The individual fractions of un-ionised ammonia and ammonium vary markedly with temperature 
and pH. The mechanisms of the effects are poorly understood, but the pH dependence strongly 
suggests that joint toxicity of un-ionised ammonia and ammonium ion is an important component 
(EPA, 1999). Un-ionised ammonia is much more toxic than the ammonium ion. This is not 
surprising because it is a neutral molecule and thus is able to diffuse across the epithelial 
membranes of aquatic organisms much more readily than the charged ammonium ion. Ammonia is 
unique among regulated pollutants because it is an endogenously produced toxicant that organisms 
have developed various strategies to excrete, which is in large part by passive diffusion of un-
ionised ammonia from the gills. High external un-ionised ammonia concentrations reduce or reverse 
diffusive gradients and cause the build-up of ammonia in gill tissue and blood (EPA, 1999). 
 
Because of the importance of un-ionised ammonia, it became a convention in the scientific 
literature to express ammonia toxicity in terms of un-ionised ammonia concentrations, and water 
quality criteria and standards followed this convention. However, there are reasons to believe that 
the ammonium ion can also contribute significantly to ammonia toxicity under some conditions 
(especially pH) (EPA, 1999). Therefore, all concentrations will here be expressed as Total 
Ammoniacal Nitrogen (TAN). 
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5.2.3.2. Dynamic Waste Water Treatment Plant (WWTP) Simulation and Dilution 
Model + Uncertainty Analysis 
 
The total ammonia ECD and concentration-duration-frequency curves in the river are both based on 
the effluent time series of the WWTP Hove. These effluent time series are predicted by means of a 
dynamic WWTP simulation model (activated sludge model No 1 and Tackacs model for 
clarification). More details can be found in Bixio et al. (2002). No dilution is assumed to convert 
the total ammonia probability distribution and concentration-duration-frequency curve of the 
WWTP effluent to the river. This assumption was made because the river flow is mainly determined 
by the effluent discharge flow of the WWTP and for conservative reasons. Obviously, a more 
realistic approach would be to account for the upstream river flow and total ammonia concentration 
time series, and as a result to obtain time series of dilution factors. Nevertheless, the main goal of 
this paper is to show the possibilities and potential of both proposed applications. This assumption 
is therefore acceptable in this perspective. 
 
The Monte Carlo simulation takes into account both parameter and input uncertainty, in this way 
dealing with the difficulties to estimate model parameters and taking into account the inherent 
uncertainty in specific processes. As a consequence, an uncertainty or confidence band expressing 
the prediction uncertainty due to the uncertainty of the input variables and parameters will 
accompany the two resulting model outputs, namely the effluent ECD and concentration-duration-
frequency curves. More information on this can be found in Chapter 3.1, Rousseau et al. (2001) and 
Rousseau et al. (2000). 
 
 

5.2.3.3. Probabilistic Ecological Risk Assessment 
 

5.2.3.3.1. Probabilistic Exposure Assessment 
 
The probabilistic ECD was determined based on a time series analysis. It can simply be done by 
summarizing the time series as shown in Figure 7. The effluent ECD is then interpreted as the 
temporal variability of the effluent concentration of the chemical under study. 
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Figure 7: Aggregation of an uncertain time series into an uncertain Exposure Concentration 
Distribution (ECD) 

 
In the left part of Figure 8, the total ammonia ECD in the river (predicted by the simulation model) 
is shown as a cumulative distribution function by the black line. The 90% uncertainty band 
(resulting from the Monte Carlo analysis) is shown in Figure 8 as a grey band around the ECD. 
Point A in Figure 8 (indicated by arrow) on this distribution can be interpreted as follows: 60% of 
the total ammonia concentrations are lower than 10 mg TAN/l. A 90% confidence or uncertainty 
interval on that is 8-13.2 mg TAN/l. 
 

 

Figure 8: The Exposure Concentration Distribution (ECD) and the salmonid acute Species 
Sensitivity Distribution (SSD) of Total Ammonia Nitrogen (TAN) downstream of the waste water 

treatment plant of Hove 
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5.2.3.3.2. Probabilistic Effects Assessment 
 
Acute ecotoxicity data were collected from EPA (1999). The assessment endpoints are LC50s, 
which are Lethal Concentrations at which 50% of the organisms will die. Only data on salmonid 
species were considered: Salvelinus fontinalis (Brook trout), Salmo trutta (Brown trout), 
Oncorchynchus aquabonita (Golden trout), Oncorchynchus clarki (Cutthroat trout), Oncorchynchus 
gorbuscha (Pink salmon), Oncorchynchus kisutch (Coho salmon), Oncorchynchus mykiss (Rainbow 
trout) and Oncorchynchus tshawytscha (Chinook salmon). The LC50s were expressed as Total 
Ammonia Nitrogen (TAN) at pH 8 (equivalent to EPA (1999)). 
 
Various species have different sensitivities towards a chemical (i.e. inter-species 
sensitivity/variability). These differences are captured in a variability distribution called a Species 
Sensitivity Distribution (SSD). In the right part of Figure 8, the (salmonid) SSD is shown as a 
cumulative distribution function (black line). The sampling uncertainty is shown as a 90% 
confidence band and was determined by a parametric bootstrap method (see Chapter 3.2). Point B 
in Figure 8 (indicated by arrow) can be interpreted as follows: there is 95% certainty that 80% of 
the fish species will not be affected (50% lethality) at a total ammonia concentration lower than 
12.6 mg TAN/l. 
 

5.2.3.3.3. Probabilistic Ecological Risk Assessment 
 
For this case study, a PERA was conducted based on the ECD obtained from dynamic model 
predictions and the SSD of salmonid species (with LC50 endpoints) in Figure 8. The resulting 
probabilistic risk is 8.4%, and may be interpreted as the probability that a randomly selected 
exposure concentration exceeds a randomly selected species sensitivity. This may not be acceptable 
for a water manager. This is especially true when its accompanying 90% uncertainty interval, based 
on parameter and input uncertainty in the WWTP model and sampling uncertainty of the ecotoxicity 
tests, is also considered. Risk is expected to range between 0.3-28%. This means that a water 
manager is 95% certain that the risk is smaller than 28%. This may not be accepted, especially 
because the LC50 endpoints are not suitable for sustainable salmonid fishery. 
 
There are two possibilities to refine this risk assessment. First, the uncertainty could be reduced by 
either performing more toxicity tests that will result in a smaller uncertainty band on the SSD. Or, 
the uncertainty on the input parameters of the WWTP model could be reduced by collecting more 
samples or knowledge. This could be a reasonable option if the risk of 8.4% is around an acceptable 
level. Indeed, reducing uncertainty does not make the risk decrease. Second, one could make the 
risk assessment more realistic by explicitly considering duration and frequency of an exposure 
exceedance into the analysis. This is discussed in the next section. 
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5.2.3.4. Time-Referenced Risk Assessment (Based on Concentration-Duration-
Frequency-curves) 
 
In this method, temporal variations of the exposure concentration (in the exposure assessment) and 
the ecotoxicity data (in the effects assessment) are not summarized in probability distributions. 
Instead, the temporal variations are integrated into concentration-duration-frequency curves. A 
concentration-duration-frequency curve is based on a time series analysis and can be determined for 
both exposure and effects. 
 

5.2.3.4.1. Concentration-Duration-Frequency Exposure Assessment 
 
Concentration-duration-frequency curves result in three-dimensional plots with on the three axes 
the concentration, the duration of an exceedance above a particular concentration and the frequency 
of an exceedance above a particular concentration with a particular duration. However in practice, 
two-dimensional duration-frequency curves are more frequently used (see methods section). The 
considered critical concentration was set at 4 mg TAN/l. 
 
The dynamic model and successive time series analysis resulted in an exposure concentration-
duration-frequency curve as shown in Figure 10. The small uncertainty band indicates that input 
uncertainty had a small effect on the output curve. Point A in Figure 10 can be interpreted as 
follows: there is 95% certainty that there are 7.2% of the total time exceedances of a total ammonia 
concentration of 4 mg TAN/l lasting for 2 hours or longer. 
 

5.2.3.4.2. Concentration-Duration-Frequency Effects Assessment 
 
Similarly to the exposure assessment, concentration-duration-frequency curves can be constructed 
for an effects assessment based on ecotoxicity tests. Such concentration-duration-frequency curve 
will be named an effect concentration-duration-frequency curve. Such curves for sustainable 
salmonid fishery were given in the urban pollution management manual (FWR, 1998). The data can 
also be found in Table 1. The return period, the duration (expressed in hours) and the concentration 
(expressed as mg NH3-N/l) are shown. A three-dimensional representation is shown in Figure 9. 
 
The return period was expressed as a monthly frequency (in percent). A return period of three 
months means every three months an exceedance or four times an exceedance in 12 months (4/12 = 
33.33%). The choice of calculating the frequency based on months is justified by the fact that the 
resolution of the data is only one month. 
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Table 1: Concentration-frequency-duration data for un-ionised ammonia (mg TAN/l) for an 
ecosystem suitable for sustainable salmonid fishery (FWR, 1998) 

Duration (h) Return period Frequency by month 
(%) 1 6 24 

1 month 100 3.25 1.25 0.90 
3 months 33.333 4.75 1.75 1.25 

1 year 8.333 5.25 2.00 1.50 
 
Since the effect is assessed in terms of total ammonia, these un-ionised ammonia concentrations 
need to be transformed into Total Ammoniacal Concentration (TAN) values using the ammonia 
equilibrium equation. However, the equilibrium constant is dependent on the temperature. The 
temperature was set at 11°C. This is the average river water temperature in the Bautersembeek. 
 

 

Figure 9: Effect concentration-duration-frequency surface for sustainable salmonid fishery 

 
Equivalent to the exposure assessment, two-dimensional duration-frequency curves were derived 
from this three-dimensional effect concentration-duration-frequency surface. The concentration 
was, as in the exposure concentration-duration-frequency determination, set at 4 TAN mg/l (= 0.08 
mg NH3-N/l). This curve is a slice from that three-dimensional plot and can be determined through 
linear interpolation (Figure 9). The resulting curve is shown in Figure 10. Note that no 90%-
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uncertainty band could be determined because of an insufficient number of data points. Point B can 
be interpreted as follows: there are no adverse effects for salmonid species if the total ammonia 
concentration of 4 mg TAN /l is exceeded with a frequency of less than 33.3% and with a duration 
of 2.25 hours or longer. 
 

5.2.3.4.3. Time-Referenced Risk Assessment 
 
Finally, the exposure and effect concentration-duration-frequency curves are overlaid on the same 
graph in Figure 10. 
 

 

Figure 10: Concentration-duration-frequency exposure and effects curves (the exposure curve also 
has an 90%-uncertainty band) 

 
This analysis shows that there is no risk involved in the situations of exceedances shorter than 3 
hours. The salmonid species can even stand more frequent exceedances (again for durations shorter 
than 3 hours). This conclusion is very useful for the operation of the WWTP. It stimulates the 
operator to fix a problem at the plant within three hours. Or more general, short-lasting calamities 
that occur for example daily are less important in comparison with long-lasting calamities that occur 
only once. Unfortunately, no assessment can be made for durations longer than 3 hours because no 
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ecotoxicity data are available. Such situations could occur in cases of equipment failure that take 
relatively long to repair. 
 
This time-referenced method is expected to be more realistic and refined compared to the 
probabilistic method. However, this assessment only partly confirms this. The presented two-
dimensional analysis insufficiently supports this statement because the critical concentration was 
only set at one value (namely 4 mg TAN/l). More concentrations and their corresponding duration-
frequency curves should be constructed. This could not be accomplished due to a lack of more 
effect concentration-duration-frequency data and simulations. Figure 11 shows how the exposure 
and effects concentration-duration-frequency curves would shift in case the critical concentration 
would increase. The effect concentration-duration-frequency curve would shift to lower durations 
and lower frequencies if one extrapolates Figure 9. The exposure concentration-duration-frequency 
curve would shift to higher frequencies for short-lasting durations and to lower frequencies for 
long-lasting durations. This can easily be shown in the example of Figure 2 when the concentration 
(effluent limit) is increased for instance from 4 to 6 mg/L in Figure 2. 
 

 

Figure 11: Shift in exposure and effect concentration-duration-frequency curves when the critical 
concentration increases 
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5.2.4.  Conclusions and Further Research 
 
The risk of a chemical was determined using two methods: a purely probabilistic method in which 
exposure and effects are considered as overall time-lumped probability distributions and a time-
referenced method in which the duration and frequency of exceeding a standard of exposure and 
effects are considered. The probabilistic method resulted in a risk of 8.4% (0.3-28% is a 90% 
confidence interval). No quantitative risk measure could be calculated for the time-referenced 
method. There is no risk for exceedances lasting smaller than 3 hours at a concentration level of 4 
mg TAN/l. Both methods can be used for decision-support in risk assessment practice. 
 
The time-referenced method is expected to be more realistic and refined compared to the 
probabilistic method. However, this assessment only partly confirms this. The comparison of both 
methods by means of a case study mainly indicated that (1) further research should be undertaken to 
collect more data to build more extensive three-dimensional effects and exposure concentration-
duration-frequency surfaces. (2) The three-dimensional concentration-duration-frequency surfaces 
should be compared and assessed (instead of the duration-frequency curves alone). This is 
illustrated in a fictitious example of Figure 12. In this way, the magnitude of an exceedance would 
also be considered. (3) There is also a need for quantitative measures to characterise time-
referenced risks from such three-dimensional concentration-duration-frequency surfaces. 
 

 

Figure 12:Fictitious example of exposure and effects 
concentration-duration-frequency surfaces 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Part 6 

- 
General Conclusions & Further Research 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 





 

 
 
Part 6 
 
General Conclusions & Further Research 
 
 
 
 
Environmental pollution due to release of chemicals has led governments to develop new laws and 
regulation that puts constraints on chemical emissions. These are based on environmental quality 
standards and environmental/ecological risk assessment. The key question to be answered is:  
“What is the likelihood (i.e. probability) of adverse effects occurring to exposed ecological systems 
due to exceedance of a toxicity level by an environmental concentration?”. This dissertation studied 
and developed a range of statistical techniques needed to answer this question with a risk 
probability and an uncertainty or confidence interval rather than with the current black white “yes, 
maybe / no” answer which the conventional risk assessments provide. For this, a trade-off had 
continuously to be made between accurate, good but usually more complex statistical techniques 
and easy-to-use, -understand and -apply but usually less good statistical techniques.  
 
After all, in a Probabilistic Ecological Risk Assessment (PERA), the exposure concentration and 
species sensitivity are treated as random variables taken from probability distributions (respectively 
Exposure Concentration Distribution (ECD) and Species Sensitivity Distribution (SSD)) which are 
combined to give a risk probability. In environmental quality standard setting, a 5th percentile is 
calculated from the SSD. This concentration is also known as the HC5 (Hazardous Concentration at 
5%). 
 
Next, the conclusions and further research topics are discussed in more detail in two sections: 
PERA and geo- (and time-)referencing of PERA. 
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6.1. Probabilistic Ecological Risk Assessment Framework 
 
A PERA framework was proposed and is repeated in Figure 1. Two different approaches can be 
used to determine the ECD and the SSD. Data from either measurements in the environment or 
toxicity tests can be used directly (see Figure 1, right side). The alternative is to use prediction or 
extrapolation models, especially in case of new chemicals (see Figure 1, left side). In practice, 
exposure models are more common for ECD determination and effect data are more common for 
SSD determination. Obviously, this may shift in the future. 
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Figure 1:Proposed framework of Probabilistic Ecological Risk Assessment (PERA) with EC: 
Exposure Concentration and SS: Species Sensitivity 

 
Several statistical methods are needed to obtain a probabilistic risk. A distinction was made 
between methods for: 

• Propagating uncertainty and variability through mathematical models (open arrows in Figure 
1, used in the effects and exposure modelling but also in the risk characterisation): Monte 
Carlo simulation, first order analysis, probability bounds analysis or analytical techniques. 

• Estimating data uncertainty and variability (full arrows in Figure 1, used in the ECD and 
SSD estimation based on measured data but also for estimating variability and uncertainty of 
input parameters and variables needed for exposure and effect modelling): Bootstrap, 
methods from classical and Bayesian statistics, maximum likelihood estimation. 
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Mainly statistical weaknesses of the current approaches in PERA were addressed in this 
dissertation. An overview of the solutions provided is given below. 
 

6.1.1. Correct Application of Probabilistic Methods 
 
It was shown that some existing probabilistic methods were applied wrongly or insufficiently 
correct. In a bootstrap analysis, the resample size should not exceed the sample size. No theoretical 
background was found that supports this and simulation examples showed that when the resample 
size exceeds the sample size logical and statistical inconsistencies arise. 
In Monte Carlo analysis, any correlations between the inputs should be considered. Vose's (1996) 
'cardinal rule of risk analysis modelling' is "Every iteration of a risk analysis model must be a 
scenario that could physically occur". If uncertainty and/or variability is considered in a Monte 
Carlo analysis, probability distributions should be assigned to all relevant input variables and 
parameters, or at least to the most sensitive ones. If not, the output distribution will be more difficult 
to interpret. 
 

6.1.2. Importance of Interpretation 
 
It was shown that interpretation of all probability distributions in a PERA framework should be 
made carefully. Insufficient or wrong interpretations often lead to confusion, misleading results, 
incomprehension and make PERA an unattractive technique for policy-makers.  
 
In Monte Carlo simulations, separation of uncertainty and variability and the correct application of 
Monte Carlo analysis simplify the interpretation of a model’s output distribution of interest. A case 
study showed that the NOEC (No Observed Effect Concentration) of Cu will be larger than 75 µg/l 
for 80% of the time for a lake in Sweden. This is a quite different result than being 80% certain that 
the NOEC will be larger than 75 µg/l. A first order or one-dimensional Monte Carlo simulation can 
only propagate variability or uncertainty, but not both at the same time without having difficulties with 
interpreting the output distribution. For this, a second order or two-dimensional Monte Carlo simulation 
is needed.  
 
A probabilistic risk should be interpreted as the probability that a random selected exposure or 
environmental concentration will exceed a species sensitivity. Examples have shown that the same 
risk probability can represent different environmental conditions (e.g. depending on whether the 
ECD represents spatial or temporal variability).  Therefore, it is suggested to always include as 
much information as possible in the answer to the key question described above: indicate what type 
of variability the ECD or the SSD represents (geo- or time-referenced), what endpoint was used … 
For example, there is 14% probability that the environmental/exposure concentration of atrazine 
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randomly selected from a day in the year at the “Westsluisbeek” in Alveringem will exceed the 
chronic threshold NOEC of a randomly selected aquatic species. A 90% uncertainty or confidence 
interval for this risk is 5-30%. 
 

6.1.3. Comparison and Validity of Several Probabilistic Estimation Techniques 
 
The reliability of several uncertainty and variability estimation methods at sample size 20 and 
smaller was compared and assessed by means of simulation and case studies. The considered 
methods display varying robustness and accuracy in determining lower confidence limits of the 
HC5. Differences between methods are for a large part determined by the choice of the probability 
distribution: parametric or nonparametric, threshold or non-threshold distributions (see 6.1.4). The 
most suitable methods to estimate lower end percentiles such as the 5th-percentile were found to be 
the parametric approaches from classical and Bayesian statistics, and nonparametric bootstrapping 
(using the interpolated empirical distribution function and the Hazen plotting system). 
 
Some nonparametric methods should not be used for estimating low percentiles given a small 
sample size. All resampling techniques (basic bootstrap) showed they were rather arbitrary and 
inaccurate because they are bounded by the smallest data point.  
 
For estimating 5th-percentiles of small sample sizes, the Hazen plotting and the mean plotting are 
both used in literature but one should be aware that both plottings give different results (a factor of 
2 was observed here) at low sample sizes. 
 
Further research on robust estimation techniques will be needed to reduce the influence of outliers 
as these were observed to have a large influence on the HC5 (in the case studies, a factor of 4 and 7 
was observed for respectively parametric and nonparametric methods). 
And more research is also needed to deal with spatial and temporal autocorrelations of 
environmental concentration observations in uncertainty and variability estimation techniques. 
 

6.1.4. Parametric (Threshold or Non-Threshold) or Nonparametric Methods 
 
Throughout this dissertation, parametric and nonparametric methods were often used in parallel. 
Results are very sensitive to the choice of the method (for the HC5 estimation, a factor of 5 
difference was observed when results from different methods were compared). Consequently, the 
importance of a proper use of distribution selection methods should not be underestimated. 
Statistical tests, graphical exploration and expert knowledge can help in identifying the appropriate 
distribution. 
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Parametric methods assume that the data come from a fixed form underlying distribution. This 
assumption enables them to work with smaller sample sizes. Nonparametric methods rely on the 
data points themselves. This makes them less vulnerable to deviations from certain distribution 
assumptions but more vulnerable to deviations in the data points since for calculating HC5, the 
nonparametric methods are almost insensitive to upper outliers and very sensitive to lower outliers. 
For calculating HC5, parametric methods are more sensitive to upper outliers but less sensitive to 
lower outliers compared with the nonparametric methods.  
 
As described above, the two approaches have their advantages and disadvantages and their use 
depends on the expert’s opinion, the problem formulation, the goals and the sample size. For 
calculating the HC5, it was found that preference should be given to parametric methods when the 
sample size is below 10 and preference should be given to nonparametric methods when the sample 
size is very large (e.g. 50). For the intermediate sample sizes, either parametric or nonparametric 
techniques can be used or maybe a combination of the two could be used as demonstrated in Figure 
2. The 5th percentile could be calculated as a weighted sum of the 5th percentiles calculated 
parametrically and nonparametrically. The weights can be assigned based on expert knowledge or 
as demonstrated in Figure 2. 
 

Sample
size

Preference

2 10 50

1

Parametric method
Non-parametric method

 

Figure 2: Potential user’s preference to parametric or 
nonparametric methods based on sample size 

 

6.1.5. ‘Clarifications’ of Particular Issues 
 
Several chapters and sections in this dissertation tried to clarify particular issues that are in literature 
often presented incompletely or confusing. The two most important issues for this were the sample 
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size determination problem and how to deal with several (hierarchical) levels of variability and 
uncertainty. 
 
Two important considerations were illustrated needed for sample size determination. The general 
methodology is first to determine the scientific reliability and accuracy of the HC5 estimation 
method, representativeness of the data set and second to specify the desired level of precision 
needed, by the policy-maker or risk manager. 
 
Based on simulation studies to assess the reliability and accuracy of the statistical methods for small 
sample sizes, it can be summarised that sample size 2 is the absolute minimum for all parametric 
methods and sample size 10 is the absolute minimum for the nonparametric bootstrap based on 
Hazen plotting and the interpolated EDF. It was also shown that the minimum sample size for 
nonparametric bootstrap based on EDF (resampling) is much larger than 25. The findings should be 
considered when the HC5 estimation method is selected. Once an appropriate method is selected, the 
level of precision can be specified on an absolute or relative scale by the decision-maker and the 
minimum sample size can then be determined. 
 
Several (statistical) methods were proposed to account for hierarchical variability (i.e. inter-
laboratory variability, inter- and intra-species sensitivity) and hierarchical uncertainty (mainly 
sampling uncertainty). Their analysis by means of simulation and case studies led to three 
conclusions. First, of all studied techniques, the hierarchical bootstrap method was found to be the 
most accurate and precise method and the only method with a scientifically reliable interpretation. 
Second, hierarchical, non-hierarchical and conventional methods were found to produce similar 
results. This indicates that the conventional method does not perform as bad as one would expect 
based on the fact that it is ignoring underlying information. Third, the non-hierarchical method 
seems to be most conservative for the simulations performed here, but should not be used for 
confidence interval estimation. Further testing and research on (non-)hierarchical methods is 
however needed to generalise these conclusions. 
 
Note that not all sources of variability and uncertainty were considered. Rather, this should be 
viewed as a step forward in revealing, quantifying and propagating more sources of uncertainty and 
variability in a scientifically defendable manner. The more sources are quantified; the better the 
decision-maker can assess the reliability of a risk assessment outcome. 
 
Among all the sources of uncertainty in risk assessment, sampling uncertainty was considered and 
quantified most. It might be useful to also include other sources of uncertainty in order to obtain a 
more complete uncertainty analysis. Two important sources were not discussed here but could be 
studied in further research. First, the extrapolation from laboratory to field ecotoxicity effects is 
currently considered in an assessment or safety factor. Either, these assessment factors could be 
considered as an uncertain random variable as initiated by Roelofs (2001) and Monte Carlo 
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simulations could propagate the uncertainty. Or, the change in location and shape or type of the 
SSD could be studied in more detail. 
Second, the model structure uncertainty of exposure and effect models but also the distribution type 
uncertainty of the SS or EC was not quantified and assessed. There are currently no statistical 
techniques that are able to quantify model uncertainty. Typically, validation studies or 
quantification of model complexities can help comparing several models but no absolute measures 
exist that would allow the integration of the model uncertainty with, for example, the parameter 
uncertainty into a total output uncertainty interval. 
 

6.1.6. Probabilistic Ecological Risk Characterisation 
 
The probabilistic risk quotient method is a probabilistic extension of the well-known and familiar 
deterministic risk quotient and is capable of estimating a probabilistic risk, defined as the 
probability of a randomly selected EC exceeding a randomly selected SS (i.e. a probability instead 
of a ratio >1/<1) and is in addition, capable of estimating an uncertainty interval representing the 
sampling error that exists because of the practical inability to collect an infinite number of data. The 
method can handle all types of parametric and nonparametric distributions and is easy to use and 
interpret at the same time. 
 
Several examples and case studies have proven that the probabilistic risk characterisation considers 
the quantitative information of the full range of the ECD and SSD (including lower SS than HC5 
and higher ECs than the 90th percentile) instead of only considering the upper tail of the ECD and 
the lower tail of the SSD. Consequently, several issues on calculating tail percentiles (such as HC5) 
can be omitted because they are no longer needed in the risk characterisation.  
 
The current risk measures, such as the Area Under The Curve (AUC) of a Joint Probability Curve 
(JPC), contain insufficient information to account for different environmental circumstances (i.e. 
different interpretations of the ECD and SSD) and to assess potential adverse effects on ecological 
communities. Therefore, it is recommended to always interpret the risk ecologically. This will force 
the environmental community to compare SSDs with adequate ECDs. 
Further research is needed on measures additional to the calculated risk that characterise the shape 
of the JPC and that have an environmental interpretation (depending on the interpretation of the EC 
and SS) to help to quantify and manage the risk. Only a first proposal was made for a risk shape 
parameter based on the ratio of the coordinates of the gravity point of the JPC. 
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6.2. Geo- (and Time-)Referencing of Probabilistic Ecological Risk 
Assessment 
 
The PERA can be considered as a part of a tiered framework. Figure 3 shows an overview of 
several tiers (of different level of detail) of PERA. PERA (represented in the second panel) is an 
extension of the conventional ERA (in top panel) since both the inherent variability and uncertainty 
(shown as a grey band) is explicitly quantified and assessed. However, all sources of variability are 
eventually lumped in one single distribution. 
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Figure 3: Different tiers in ERA (Ecological Risk Assessment), (EC: Exposure Concentration, SS: 
Species Sensitivity) 

 
A geo-referenced PERA framework was developed and illustrated with case studies (represented in 
the third panel of Figure 3). Geo-referencing makes the risk assessment more realistic as spatial 
variability and dependencies of the EC and SS are explicitly accounted for, i.e. less spatial 
variability is lumped in the probabilistic ecological risk assessment and therefore, this is useful for 
assessing risk of individual chemicals. Probabilistic risk assessment therefore delivers a more 
transparent, realistic and non-conservative approach to estimate risks. 
 
In addition, it was highlighted that geo-referencing effects (SSD) is now still a largely unexplored 
area but that it has important potential to further improve probabilistic ecological risk assessments. 
Geo-referencing PNECs (Predicted No Effect Concentration) and/or SSDs (in a GIS environment) 
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and incorporating different levels of uncertainty results in a more realistic risk assessment which is 
preferable to the current practice of using a single (lumped) PNEC or SSD, representing an entire 
region or country. 
 
Time-referencing could further increase the level of detail and realism, as time-specific information 
would be accounted for. This is represented in the lower panel of Figure 3. Time related information 
can be formatted in two ways in an attempt to capture the temporal variability. First, time-series can 
be used as such or second, time-series can be translated into concentration-duration-frequency 
surfaces. These surfaces are three-dimensional plots with on the three axes the concentration, the 
duration of an exceedance above a particular concentration and the frequency of an exceedance 
above a particular concentration with a particular duration. However, the case study (based on 
duration-frequency curves) here only partly confirms the improvement. Further research should be 
undertaken to collect more data to build more extensive three-dimensional effects and exposure 
concentration-duration-frequency surfaces. The three-dimensional should be compared and assessed 
(instead of the duration-frequency curves alone as in this dissertation). In this way, the magnitude of 
an exceedance would also be considered. There is also a need for quantitative measures to 
characterise time-referenced risks. 
 
In the presented tiered framework and many modelling studies, it is always important to balance the 
model complexity and model accuracy. Figure 4 shows the conceptual relationship between the 
accuracy and the model/framework complexity. The more complex the model, the more accurate 
predictions will be up to a certain complexity. After that, the accuracy does not increase anymore 
with increasing complexity. It remains constant or may even decrease. Three (or four) zones can be 
distinguished depending on the slope or rate of increase in realism versus increase in complexity. In 
zone I, this slope is high. In zone II, this is slope is still positive although smaller compared to zone 
I. In zone III, the slope is zero (in a fourth zone, the rate may be negative). 
 
In order to assess the added-value of this work, all tiers were added to the conceptual relationship in 
Figure 4. The PERA was proven to be more complex but also more realistic and accurate compared 
to the conventional, deterministic risk assessment (in one of the case studies, conventional ERA 
resulted in risk whereas PERA resulted in negligible risk). The geo-referenced PERA was also 
proven to be more complex and realistic compared to the non-geo-referenced PERA although the 
slope is smaller (in one case study, risk dropped by a factor 3). A time-referenced PERA could not 
be situated exactly in this conceptual relationship. Further research will have to show whether the 
increase in accuracy is worthwhile compared to the increase in complexity. 
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Figure 4: Conceptual complexity-accuracy relationship and the location of the conventional ERA 
(Risk Assessment), PERA (Probabilistic Ecological Risk Assessment), Geo-PERA and Time-PERA 

 
 

6.3. Validation 
 
The proposed geo-referenced PERA can not be validated because there exists no ‘instrument’ that 
can measure probabilistic risk. Note that the same can be said about the conventional, deterministic 
risk assessment. However, it is possible to validate components/steps of the geo-referenced PERA. 
The ECD, for example, could be validated. But since the main goal of this thesis is to evaluate 
statistical techniques, only the techniques were validated by means of several simulation studies. 
The underlying risk assessments principles as for example, using the SSD as a way to set 
environmental standards and protect ecological communities is not studied here. 
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6.4. Concluding Thought 
 
“The greatest risk in life is to not take any risk at all”. The time has come that policy-makers realise 
that chemicals will always induce a certain risk as probabilistic ecological risk assessments tells this 
to the policy-makers in contrast to the current conventional methods, which conceal this because 
they only provide a “yes/no” risk answer. The key question for the policy maker now becomes: 
“what level of risk is acceptable?”. This more complex assessment will not simplify the decision but 
at least, it will be closer to reality. 
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Summary 
 
 
 
Environmental pollution of toxic substances has led governments to develop new laws and 
regulation that puts constraints on these chemical emissions. These are based on environmental 
quality standards and environmental/ecological risk assessment. The key question to be answered 
is: “What is the likelihood (i.e. probability) of adverse effects occurring to exposed ecological 
systems due to exceedance of a toxicity level by an environmental concentration?”. The goal of 
ecological risk assessment is to estimate this likelihood. It is based on the comparison of a predicted 
or measured exposure/environmental concentration with a ‘no effect concentration’ based on a set 
of (acute or chronic) toxicity test results (i.e. testing species sensitivity).  
 
This PhD dissertation studied and developed a range of statistical techniques needed to answer the 
key question with a risk probability and an uncertainty or confidence interval rather than with the 
current black white “yes, there is potential risk / no risk” answer which the conventional risk 
assessments provide. Such answers may mislead stakeholders to think that ecological risks are 
simple black and white issues.  
 
After all, in a Probabilistic Ecological Risk Assessment (PERA), the exposure concentration and 
species sensitivity are treated as random variables taken from probability distributions (respectively 
Exposure Concentration Distribution (ECD) and Species Sensitivity Distribution (SSD)) which are 
combined to give a risk probability. In this way, the inherent variability and uncertainty of the 
environmental concentration and the species sensitivity is accounted for. Variability represents 
inherent heterogeneity or diversity in a well-characterised population. Uncertainty represents partial 
ignorance or lack of perfect information about poorly characterised phenomena or models (e.g. 
sampling or measurement error). PERA therefore delivers a more transparent, realistic and non-
conservative approach to estimate risks. It is recognised in literature that probabilistic methods 
would improve the environmental evaluation of chemicals, if appropriate action is taken to address 
their potential weaknesses. 
 
Some of these current (mainly statistical) weaknesses in probabilistic ecological risk assessment are 
addressed in this PhD dissertation. Most of them deal with misuse of existing techniques (e.g. 
Monte Carlo analysis, bootstrap), reliability of statistical techniques at small sample size, the lack of 
consensus on which method or model or what sample size to use, misinterpretation of probability 
distributions (e.g. output of Monte Carlo analysis), inappropriately or insufficiently dealing with 
uncertainty or variability (e.g. one- versus two-dimensional Monte Carlo analysis), discussions on 
how to calculate probabilistic risk… 
 



It was shown that interpretation of all probability distributions in a PERA framework should be 
made carefully. In Monte Carlo simulations, separation of uncertainty and variability and the 
correct application of Monte Carlo analysis simplify the interpretation of a model’s output 
distribution of interest. A case study showed that the exposure concentration of total ammonia 
nitrogen in a Flemish river will be larger than 10 mg/l for 40% of the time. This is a quite different 
result than being 40% certain that the exposure concentration will be larger than 10 mg/l. 
 
A probabilistic risk should be interpreted as the probability that a random selected exposure or 
environmental concentration will exceed a species sensitivity. Examples were developed that show 
that the same risk probability can represent different environmental conditions (e.g. depending on 
whether the ECD represents spatial or temporal variability).  Therefore, it is suggested to always 
include as much information as possible in the answer to the key question described above: indicate 
what type of variability the ECD or the SSD represents (geo- or time-referenced), what endpoint 
was used …  
 
Throughout this dissertation, parametric and nonparametric methods were often compared. The 
results appear to be very sensitive to the chosen method. The proper use of distribution selection 
methods was stressed as well. Statistical tests, graphical exploration and expert knowledge can help 
in identifying the appropriate distribution. To calculate a lower percentile (e.g. the 5th percentile), it 
was found that preference should be given to parametric methods when the sample size is below 10 
while preference should be given to nonparametric methods when the sample size is large (e.g. 50). 
For the intermediate sample sizes, either parametric or nonparametric techniques can be used or 
maybe a combination of the two could be used. 
 
Several examples and case studies have proven that the probabilistic risk characterisation considers 
the quantitative information of the full range of the ECD and SSD (including lower SS than its 5th 
percentile and higher ECs than the 90th percentile) instead of only considering the upper tail of the 
ECD and the lower tail of the SSD as in traditional risk assessment. Consequently, several issues on 
calculating tail percentiles can be omitted because they are no longer needed in the risk 
characterisation.  
 
Finally, attention was focused on the fact that the probability distributions in probabilistic risk 
assessment can be wide due to large spatial (and temporal) variability. Instead of lumping all the 
sources of variability into one probability distribution, spatial and/or temporal differences and 
dependencies between EC and SS can be explicitly accounted for in a respectively geo- and/or time-
referenced analysis (or spatial-temporal analysis). In this way, the risk assessment becomes more 
realistic as more information is taken into account. This was confirmed by several case studies. 



Samenvatting 
 
 
Milieuverontreiniging van chemische stoffen heeft ertoe geleid dat overheidsinstanties nieuwe 
wetten hebben ingevoerd die restricties leggen op deze chemische emissies. Deze restricties zijn 
gebaseerd op milieunormen en milieu-/ecologische risicoanalyse. De te beantwoorden hamvraag is: 
“Wat is de kans op nadelige effecten op blootgestelde organismen of ecologische systemen door 
overschrijding van een toxiciteitsniveau door een milieuconcentratrie?”. De doelstelling van 
ecologische risicoanalyse is deze kans in te schatten. Risicoanalyse is gebaseerd op de vergelijking 
van een voorspelde of gemeten milieu- of blootstellingsconcentratie met een ‘geen effect 
concentratie’ gebaseerd op een set van (acute of chronische) toxiciteitstestresultaten (d.i. het testen 
van soortengevoeligheid). 
 
Deze thesis bestudeerde en ontwikkelde verschillende statistische technieken die nodig zijn om de 
hamvraag te kunnen beantwoorden met een kans en een onzekerheids- of betrouwbaarheidsinterval 
i.p.v. het huidige zwart-wit antwoord “ja, er is een potentieel risico / geen risico” dat door de 
conventionele risicoanalyses wordt gegeven. Dergelijke antwoorden kunnen beleidsbeslissers of 
risicomanagers doen misleiden door hen te doen denken dat ecologische risico’s eenvoudige zwart-
wit problemen zijn. 
 
Immers, in een Probabilistische Ecologische RisicoAnalyse (PERA) worden de blootstellings-
concentratie en de soortengevoeligheid behandeld als random variabelen en voorgesteld door 
probabiliteitsdistributies (in het vakjargon respectievelijk Exposure Concentration Distribution 
(ECD) en Species Sensitivity Distribution (SSD) genoemd) die gecombineerd in een risico-
probabiliteit of -kans resulteren. Op deze manier wordt de intrinsieke variabiliteit en onzekerheid 
van de blootstellingsconcentratie en de soortengevoeligheid in rekening gebracht. Variabiliteit stelt 
de instrinsieke heterogeniteit of diversiteit voor in een goed karakteriseerde populatie. Onzekerheid 
stelt de gedeeltelijke onwetenheid of het gebrek aan perfecte informatie over weinig gekende 
fenomenen of modellen voor (bvb. meetfouten). Daarom is PERA een meer transparante, 
realistische en niet-conservatieve manier om risico’s te schatten. Het is ook erkend in de literatuur 
dat probabilistische methoden de milieurisicoanalyse van chemicaliën zou verbeteren, indien 
geschikte actie wordt ondernomen om hun potentiële zwakheden aan te pakken. 
 
Sommige van deze huidige (voornamelijk statistische) zwakheden in PERA worden behandeld in 
deze scriptie. Het merendeel van hen handelen over verkeerd gebruik van bestaande technieken 
(bvb. Monte Carlo analyse, bootstrap), de betrouwbaarheid van statistische technieken voor kleine 
datasets, het gebrek aan consensus over welke methode of model of welke datasetgrootte te 
gebruiken, verkeerde interpretatie van probabiliteitsdistributies (bvb. de uitkomst van een Monte 
Carlo analyse), onjuist of onvoldoende aanpakken van variabiliteit en onzekerheid (bvb. één- versus 
twee-dimensionele Monte Carlo analyse), discussies over de berekeningswijze van een 
probabilistisch risico, … 



 
Het is aangetoond dat interpretatie van alle probabiliteitsdistributies in een PERA framework met 
de nodige voorzichtigheid dient te gebeuren. In de correcte toepassing van Monte Carlo simulaties 
vereenvoudigt de scheiding van onzekerheid en variabiliteit de interpretatie de output distributie van 
een model. Een gevallenstudie toonde aan dat de blootstellingsconcentratie van totale ammonium 
stikstof in een Vlaamse rivier groter zal zijn dan 10 mg/l gedurende 40% van de tijd. Dit is een vrij 
verschillend resultaat in vergelijking met het resultaat dat men meer dan 40% zeker is dat de 
blootstellingsconcentratie groter zal zijn 10 mg/l. 
 
Een probabilistisch risico wordt geïnterpreteerd als de kans dat een random geselecteerde 
blootstellings- of milieuconcentratie een random geselecteerde soortengevoeligheid zal 
overschrijden. Voorbeelden werden echter ontwikkeld die aantonen dat hetzelfde probabilistisch 
risico verschillende milieusituaties kan voorstellen (bvb. afhankelijk of de blootstellingsdistributie 
ruimtelijke of temporele variabiliteit voorstelt). Daarom wordt er gesuggereerd om altijd zoveel 
mogelijk informatie toe te voegen bij het antwoord op de hierboven beschreven hamvraag: aan-
duiden welk type van variabiliteit de blootstelling en effecten voorstellen (al dan niet geografisch of 
tijdsgerelateerd), …  
 
Doorheen de scriptie werden parametrische en niet-parametrische methoden vaak met elkaar 
vergeleken. De resultaten bleken sterk afhankelijk te zijn van de gebruikte methode. Het juiste 
gebruik van distributieselectiemethoden werd dan ook benadrukt. Statistische testen, grafische 
verkenning en expertkennis kunnen helpen om de geschikte distributie te identificeren. Er werd 
gevonden dat, om een staartpercentiel te berekenen (bvb. de 5de percentiel), voorkeur zou moeten 
gaan naar parametrische methoden wanneer de datasetgrootte lager is dan 10 terwijl voorkeur zou 
moeten gaan naar niet-parametrische methoden wanneer de datasetgrootte groot is (bvb. 50). Voor 
de tussenliggende datasetgroottes kunnen ofwel parametrische of niet-parametrische technieken 
gebruikt worden ofwel misschien een combinatie van de twee. 
 
Verschillende voorbeelden en gevallenstudies hebben bewezen dat probabilistische risico-
karakterisatie de kwantitatieve informatie van het volledige bereik van de ECD en SSD beschouwt 
(inclusief soortengevoeligheden kleiner dan de 5de percentiel en blootstellingsconcentraties groter 
dan de 90ste percentiel). Bijgevolg kunnen verschillende problemen bij het berekenen van staart-
percentielen worden weggelaten omdat ze niet langer nodig zijn in de risicokarakterisatie.  
 
Tenslotte werd aandacht besteed aan het feit dat de probabiliteitsdistributies in PERA grote 
varianties kunnen hebben door een grote ruimtelijke (of temporele) variabiliteit. In plaats van alle 
bronnen van variabiliteit samen te gooien in één distributie, kunnen ruimtelijke en/of tijdelijke 
verschillen en mogelijke afhankelijkheden tussen blootstelling en effecten expliciet in rekening 
gebracht worden in een respectievelijk geografisch- en/of tijdsgerelateerde analyse. Op deze manier 
wordt de risicoanalyse realistischer aangezien meer informatie mee in rekening wordt gebracht. Dit 
werd bevestigd door verschillende gevallenstudies. 
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