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SUMMARY 

This paper presents the application of optimal control theory in determining the optimal feed rate profile 
for the penicillin G fed-batch fermentation, using a mathematical model based on balancing methods. 
Since this model does not fulfil all requisites for standard optimal control, we propose a sequence of new 
models - that converges to the original one in a smooth way - to which the standard techniques are 
applicable. The unusual optimization of some initial conditions is included. We then state the conjecture 
that allows us to obtain the optimal control for the original model. The enormous gains in production 
and the vanishing of the characteristic biphasic behaviour through feed rate profile optimization raise 
some questions concerning the validity of this model. In this way this optimal control study can prove 
to be very useful for model discrimination purposes. Furthermore, mathematical and microbial insights 
lead to the construction of a suboptimal heuristic strategy - which we show to be a limiting case of the 
optimal scheme - that can serve as a basis for the development of robust, model-independent, optimal 
adaptive control schemes. 

KEY WORDS Optimal control Non-linear systems Fed-batch fermentation processes 
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1. INTRODUCTION 

The design of high-performance model-based control algorithms for biotechnological 
processes is hampered by two major problems which call for adequate engineering solutions. 
First, the process kinetics are most often poorly understood non-linear functions, while the 
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corresponding parameters are in general time-varying. Secondly, up till now there is a lack of 
reliable sensors suited to real-time monitoring of process variables which are needed in 
advanced control algorithms. Therefore the earliest attempts at control of a biotechnological 
process used no model at all. Successful state trajectories from previous runs which had been 
stored in the process computer were tracked using open-loop control. Many industrial 
fermentations are still operated using this method. 

During the last two decades, two trends for the design of monitoring and control algorithms 
for fermentation processes have emerged. ' In a j r s t  approach the difficulties in obtaining an 
accurate mathematical process model are ignored. In numerous papers classical methods (e.g. 
Kalman filtering, optimal control theory, etc.) are applied under the assumption that the model 
is perfectly known. Owing to this oversimplification, it is very unlikely that a real-life 
implementation of such controllers - very often this implementation is already hampered by 
e.g. monitoring problems - would result in the predicted simulation results. In a second 
approach the aim is to design specific monitoring and control algorithms without the need for 
a complete knowledge of the process model, using concepts from e.g. adaptive control and 
non-linear linearizing control. A comprehensive treatment of these ideas can be found in 
Reference 2 and the references cited therein. 

We have shown how to combine the best of both trends into one unifying methodology for 
optimization of biotechnological processes: optimal adaptive control. 3*4  This is motivated as 
follows. Model-based optimal control studies provide a theoretical realizable optimum. 
However, the real-life implementation will fail in the first place owing to modelling 
uncertainties. On the other hand, model-independent adaptive controllers can be designed, but 
there is a priori no guarantee for at least suboptimality of the results obtained. The gap 
between the two approaches is bridged in two steps. First, heuristic control strategies are 
developed with nearly optimal performance under all conditions. These suboptimal controllers 
are based on biochemical knowledge concerning the process and on a careful mathematical 
analysis of the optimal control solution. In a second step, implementation of these profiles in 
an adaptive model-independent way combines excellent robustness properties with nearly 
optimal performance. 

As an example, we consider in this paper the development of a heuristic substrate feed rate 
controller for the penicillin G fed-batch fermentation process, based on mathematical and 
microbial insights. There are at least two unstructured models available in the literature that 
allow for the optimization of the final penicillin amount with respect to the glucose feeding 
rate: the model of Heijnen et al. and the model of Bajpai and ReuD. The latter has been 
analysed in References 4 and 7. The analysis in this paper is based on the unstructured 
mathematical model proposed by Heijnen et al. ' For the second step of the above approach, 
i.e. the adaptive implementation, we refer to References 3 and 4. 

Nowadays penicillin G is an almost common antibiotic; nevertheless the fermentation 
technology and the mathematical description of the production process are still subjects of 
interest. The optimization of product formation during fed-batch fermentation as a part of 
total process control has gained renewed attention. * 

The category of secondary metabolites includes a large number of extremely valuable 
compounds whose mass production has revolutionized public health in modern society. In this 
paper the example of penicillin G fed-batch fermentation is only used as a vehicle for 
presenting the basic ideas, methodology and results obtained. This fermentation process can 
be considered representative for the whole class of processes with secondary  metabolite^.^ 

The paper is organized as follows. Section 2 presents the original model of Heijnen et al. 
and the modifications to make it suitable for standard optimal control, together with the 
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statement of the complete optimization problem. We also formulate the basic conjecture of 
this paper. In Section 3 we develop for the first time the optimal feed rate profile maximizing 
the final amount of product, in verifying the statement by Heijnen et al. that the glucose feed 
scheme is of crucial importance in obtaining high penicillin yields. Section 4 presents a physical 
interpretation of singular control, based on a mathematical analysis of the optimal control 
solution. In Section 5 we derive a suboptimal strategy based on mathematical and microbial 
knowledge, that is found to be a useful alternative for the optimal open-loop feed rate profile. 
It opens perspectives for more reliable, adaptive, model-independent control schemes. Some 
conclusions are formulated in Section 6. 

Apart from the derivation of optimal control profiles for this model - which are important 
on their own - we believe that the most important contributions of this paper are the 
following. The realizable gain due to feed profile optimization is in the region of several 
hundred per cent. Furthermore, the model is very sensitive towards different feeding policies. 
These results, together with the fact that the commonly observed biphasic behaviour of the 
penicillin fed-batch fermentation has disappeared after optimization, raise some questions 
concerning the validity of this model. In this way this optimal control study can prove to be 
very useful for model discrimination purposes: optimization for model discrimination. For 
more details see Reference 4. Secondly, the heuristic controllers introduced in Section 5 have 
an excellent performance in all cases. Moreover, since the control objective (namely to keep 
the specific growth rate constant during the production phase) is obtained independently of the 
exact analytical expressions for the specific rates, these controllers can serve indeed as a basis 
for the development of model-independent control algorithms. This is elaborated in detail in 
References 3 and 4: optimal adaptive control. 

2. THE MODEL OF HEIJNEN ETAL. 

2.1. The original model equations 

Heijnen et al. used the following steps in the construction of a simple unstructured model 
for the penicillin G fed-batch fermentation process: (i) definition of relevant compounds in the 
penicillin fermentation, (ii) specification of chemical composition and specific enthalpies, (iii) 
formulation of elemental balances and the enthalpy balance (one of the most interesting 
features of this approach), (iv) formulation of mass balances for individual compounds, (v) 
formulation of the weight balance and (vi) selection of the kinetic equations (in this case based 
on a literature survey). Their research resulted in the following continuous-time model which 
they believe to be of great possible help in the optimization of the process: 

-= dP ? rx -khP  d X  - = p x ,  dS -= - u x + u ,  
d t  d t  dt 

(1) -=- dG u - 0-OOO8G - O-044rc + 0*068rn + 0*392rs, + 0-032r0 + 0.687rX 
dt Cs,in 

with 

S 
X 
P 
G total broth weight (kg) 

amount of substrate (glucose) in broth (mol) 
amount of cell mass in broth (mol dry weight) 
amount of product (penicillin) in broth (mol) 
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substrate feed rate (mol h-') 
glucose concentration in feed stream (mol kg-') 
specific substrate consumption rate (mol (mol dry weight)-' h- ') 
specific growth rate (h-') 
specific production rate (mol (mol dry weight)-' h-') 
penicillin hydrolysis constant (h- ' ) 
net rate of C02 conversion (mol h-') 
net rate of nitrogen source conversion (mol h-') 
net rate of oxygen conversion (mol h-') 
net rate of sulphate source conversion (mol h-'). 

Observe that this model is written in a (mol, kg) unit system: concentrations of substrate, 
biomass and product (denoted Cs, Cx and C, respectively) are expressed with respect to total 
broth weight G. In the last equation, terms with a positive sign are due to the input of glucose, 
nitrogen source, sulphate source, oxygen and precursor respectively. Terms with a negative 
sign represent evaporation and carbon dioxide production respectively. For more details see 
Reference 5 .  The specific rates u, p and u are modelled as follows. 

1. 

2. 

3. 

The specific substrate consumption rate u is modelled using a Monod-type relationship9 

with 

Qs,max maximum specific sugar uptake rate (mol (mol dry weight)-' h-') 
Ks Monod constant for sugar uptake (mol kg-'). 

The specific production rate u is assumed to be directly coupled with the specific growth 
rate p, following a Blackman-type relation' 

with 

Qp,m= maximum specific production rate (mol (mol dry weight)-' h-') 
bfit  critical specific growth rate (h-'). 

The (overall) specific growth rate p is given by 

p = Y d u  - m - u/ Yp~s) 
with 

m 
Yds 
YPls 

overall specific maintenance demand (mol (mol dry weight)- ' h-') 
biomass-on-substrate yield coefficient (mol dry weight mol- ' ) 
product-on-substrate yield coefficient (mol mol- ' ) 

(3) 

(4) 

which represents an endogenous metabolism viewpoint. This means that the energy 
supply for maintenance of living biomass and for product synthesis is assumed to be due 
to combustion of part of the biomass. 

Table I shows the parameters and initial conditions used in all simulations; a is the total 
amount of substrate available for fermentation. The expressions for the rates r,, rn, r,, and r,, 
can be found in Reference 5 .  
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Table I .  Parameters and initial conditions used in simulations 

Parameters Initial conditions 

Qs,mar 0.0245 QpVmox 3 .3  XO 4000 SO To be specified 

YX/S 3.67 k h  0.002 t0 o a  205500 

m 0.0034 

KS 0.0056 /~c"t  0.01 Po 0 GO 98020+So/Cs,in 

YP/$ 0.46 Cs,in 1/0.36 

The specific substrate consumption rate u in (2) is a function of C, only. Substitution of 
model equations (2) and (3) in model equation (4) delivers an implicit relationship between p 
and Cs, the solution for p of which can be used in equation (3). We conclude that the three 
specijc rates u, p and T are functions of Cs only. Figure 1 shows the results of these 
manipulations. Since T has a discontinuity in the derivative with respect to p at p = krit, it is 
quite clear that T as a function of Cs exhibits a corner at the corresponding value of Cs, say 
CS,=rit. Notice that both the (overall) specific growth rate p and the specific production rate ?r 

become zero at a positive value of substrate concentration Cs. Obviously, this is due to the 
endogenous metabolism assumption. As a result, these kinetics represent a degenerate version 
of a fermentation process characterized by a monotonic specijc growth rate p and a non- 
monotonic specijcproduction rate ?r.4*10 They can also be interpreted as a degenerate case of 
a fermentation process with growth-associated product formation. 

2.2. A simpl&d weight balance 

We now show that on the right-hand side of differential equation (1) for total broth weight 
G all terms except the first one (which represents the input of glucose) have negligible influence 
on the dynamics and final value of the product P. This can be seen as follows. Since all specific 
rates are functions of Cs only, it is useful to derive the differential equation for Cs: 

dCs 1 dS Cs dG 
dt G dt G dt 

For T out of saturation, typical orders of magnitude are C, = 0(10-3), p = 0(10-3) and 

0.08, I 

0 0.02 0.M 0.06 0.08 0.1 0.12 0.14 
a I~ lne l  

Figure I .  Specific rates u. p and r as functions of C, 



18 J .  F. VAN IMPE ETAL.  

~ = o ( l O - ~ ) .  Using the exact expressions for the specific rates r,, r,, r, and r,, (see 
Reference5) on the right-hand side of equation(l), it can be verified that under these 
conditions the second most important contribution comes from the term representing 
evaporation. Thus the above dynamic equation for C, can be written as 

+ O*OOOSC, + lower-order terms 
dt 

With u of the order of magnitude of 1OOO mol h-', the term 0-OOOSC, has negligible influence 
on the dynamics of C, and thus on the dynamics of all specific rates. 

Thus, in optimizing the final product amount P(tf) with respect to the glucose feeding 
policy, we will omit all these terms to simplify the analytical developments. The original model 
then reduces to 

( 5 )  
dG 1 _- -- d P  -==X-khP, d X  - = pX, 

dt dt dt G , i n  

dS -= - a X + u ,  
dt 

Another advantage of this model structure is that we can take care of an isoperimetric 
constraint on the input without introducing an additional state equation. 

As an example, using SO = 5500 mol and a constant input u = 1OOO mol h-' for 200 h, we 
obtain P(tf) = 3001 - 12 mol on using the complete equation for G in (l), but a value which is 
only 0.03% smaller on using only the first term as in (5) .  The simulation results using the 
simplified model are shown in Figure 2. Some comments are in order here. 

1. Up to now the penicillin fermentation - when operated in fed-batch mode - is most 
often classified in the group of product formation processes of the non-growth-associated 
type. In agreement with the experimentally observed behaviour, the process is assumed 
to consist of two phases: a phase of rapid growth with almost no product formation 
(trophophase) and a phase with limited growth in which the product is formed 
(idiophase). The simulation results for C,(t), Cx(t) and P(t) are obviously in agreement 
with this biphasic description. However, Heijnen et al. obtained these results on the 
assumption of a direct coupling between specific growth rate and specific rate of product 
formation (see equation (3)). The p- and ?r-profiles in Figure 2 illustrate some of these 
ideas. Heijnen et al. therefore concluded that the apparent separation between 

0 20 40 60 80 100 170 140 160 180 200 
'lime [h] 

Figure 2. Constant glucose feed rate and corresponding cell, glucose, product, p- and *-profiles. Scaling: C, x 10, 
c, x 2, p/103, c/105, x 40, x 10' 
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production and growth phases does not necessarily mean that penicillin production is of 
the non-gro wth-associated type. 

2. Another feature of the simulation results is an apparent lag phase in the penicillin 
production curve of about 20 h. Observe that this was not introduced a priori in the 
model. Heijnen et al. concluded that it remains possible that there is in reality no real 
lag in the beginning of penicillin production. 

3. Another modelling approach that has been followed is the assumption of a relationship 
between mycelial age and its productivity. Most often the product activity is assumed to 
decrease at high mycelial age. '' In this way the decreasing ?r-curve (Figure 2) during the 
production phase can be modelled. However, Heijnen et al. did not model such an age 
dependence. In their viewpoint the decreasing ?r-profile may very well be explained either 
by dilution due to increasing broth weight or by hydrolysis of penicillin to penicilloic 
acid. 

Heijnen et al. concluded that with their growth-coupled penicillin production most of the 
phenomena observed in practice - which have often led to the assumption of non-growth- 
associated or age-dependent penicillin productivity - can be adequately described. We wilI 
come back to these interpretations in subsequent sections. However, from the mathematical 
point of view the commonly observed separation between growth and production phases is 
quite a useful feature in optimizing the process. 

2.3. Statement of the optimization problem 

Heijnen et al. used their model to illustrate that the feed rate projile during fermentation 
is of vital importance in the realization of a high production rate throughout the duration of 
the fermentation. This statement was based on the following set of controls for 200 h: (i) a 
constant input u( t )  = loo0 mol h-' (the results of which are shown in Figure 2), (ii) a linearly 
increasing input u( t )  = 500 + 5t mol h- ' and (iii) a linearly decreasing input 
u( t )  = 1500 - 5t mol h-'. The initial substrate amount was fixed at SO = 5500 mol. Using the 
simplified model, we obtain P(tf) = 3001, 5883 and 89 mol respectively. Although Heijnen 
et al. did not consider other feeding strategies in an attempt to obtain the optimal substrate 
feeding profile, the above results indicate that the present model allows indeed for the 
optimization of the final amount of product, P(tf), with respect to the glucose feed rate 
scheme. 

We now formulate the problem of optimizing the final product amount as an optimal 
control problem. With the definitions (superscript T denotes the transpose of a vector) 

x = (XI xz ~3 ~ 4 ) ' s  (S X P G)' 
f = (fi f z  f3 f4)T 4 (-OX h x  ?rx- khP 0)' 

b =  (bl bt b3 b4)' 4 (1 0 0 l/CS,in)' 

we obtain the following state space model linear in the control u: 

-= dx f(x)+ bu 
dt 

Numerical values for the initial conditions are given in Table I. xz(0) and x3(0) are given; the 
initial amount of substrate, x1(0), is free. xi(0) and xq(0) are related by 

X4(0) = G* + Xi (O)/Cs,in (7) 
where G* denotes the given initial weight without substrate (G* = 98020 kg (Table I)). 
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The optimization problem is to determine for the given set of differential equations (6) the 
optimal initial state xo* and the optimal feed rate profile u*( t )  that minimize the performance 
index 

J[u,xol = g [ X ( t f ) l  2 -x3(tf) (8) 
i.e. maximize the final amount of product, subject to the following constraints. 

(i) to = 0, tf  is free. 
(ii) All variables have to be kept positive: 

W E  [ O , t f ] :  X i ( t )  2 0  for i =  1, ..., 4 A u( t )  20 
(iii) The total amount of substrate available, a, is fixed, i.e. 

x1(0) + 1" u(t) dt = a 
to 

(9) 

The last isoperimetric constraint on the input is equivalent to a physical constraint of the form 
(see the simplified differential equation for total broth weight G in ( 5 ) )  

x4(tf) = G ( t f )  = Gf,  Gf fixed (10) 

2.4. The basic conjecture 

As can be easily seen from mode1,equation (3) and Figure 1, the specific production rate a 
exhibits a corner at p = pcrit or equivalently at C, = Cs,crit. As a result, some partial derivatives 
a fi/axj are not continuous. Thus we cannot apply standard optimal control theory. To 
circumvent this problem, we replace the piecewise smooth Blackman-type kinetics r b )  in (3) 
by a family of completely smooth curves that converges as a function of one parameter to the 
original kinetics. This is basically inspired by the following conjecture. 

Conjecture I 

Suppose we have a convergent sequence of models ( A ( p ) )  , where p is a set of parameters 

lim ~ ( p )  e 4 

Suppose that for every model A ( p )  with p # PO we can determine the optimal control u(p, t )  
that minimizes some cost index J[ul with standard optimal control theory. Then the sequence 
of optimal controls (u(p, t)) is convergent: 

lim u ( p , t )  2 uo(t) 

P + Pa 

P + Pa 

Moreover, this limit uo(t) is the optimal control for model Jtlo minimizing J[u] .  

It can be easily illustrated that proving Conjecture 1 in general is not possible. In 
Reference 4 we give an outline of the proof if some additional assumptions are satisfied. 
However, it may be very difficult in practice to verify all these assumptions. 

Because at this time more general results are still lacking, we can proceed as follows for a 
particular optimal control problem characterized by a model 4. We assume a priori that 
Conjecture 1 holds. Then we select a model &(pa) suficiently close to the limit model &, 
i.e. we choose n sufficiently large. If we are able to determine the optimal control solution 



PENICILLIN G FED-BATCH FERMENTATION 21 

using model ufl(pn), then this solution will be at least an excellent approximation for the 
optimal control to the limit model &. In the following it will be illustrated that the validity 
of Conjecture 1 can always be verified a posteriori. 

2.5. A modified model 

parameters A and B: 
Consider the following relationship between p and T ,  a Dabes-type kinetics,’ with 

BT 
Qp.max - T 

p = A ’ R +  

or, in another way, 

AT’ - (Qp,maxA + B + p)* + Qp,maxfi = 0 

Solving this quadratic equation for a and taking the root with negative sign - we want T = 0 
at p = 0 as in the original kinetics (3) - leads to 

Qp,maxA + B + p - J[(Qp.maxA + B + p)2 - 4 A Q p . m a x p I  

2A ..or) = 

We now eliminate one parameter, say A, by solving 

which imposes that the derivative of T at p = 0 must be equal to the value derived from 
equation (3). The solution is 

pcrit - B A=------- 
Qpmax 

and thus we obtain 

(12) 

which is the desired family of smooth curves, where B, which must lie in the range 
0 < B c krit, is the only parameter. 

Let us consider now the boundaries for the parameter B. For B -+ bcrit, A tends to zero and 
the above equation becomes undetermined. However, solving the original relation (1 1) for a 
with A = 0 delivers the Monod-type law 

P + firit  - J[b + pcrit)2 - 4tpcr i t  - B)PI 
2(pcrit - B )  aOt) = Qp,max 

which is of course also a completely smooth relationship. On the other hand, as B + 0, 
equation (12) reduces to 

which is in fact another form of the original model (3). Thus we can refine the boundaries for 

We conclude that we have constructed a one dimensional family of curves - and thus a 
B to 0 < B Q b r i t .  
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XIO-4 
3.5 

3 .  

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 

PIlhl  

Figure 3. Dabes-type kinetics rh) for various values of parameter B 

family of models - that is completely smooth within the given boundaries of the parameter 
B, thus assuring the continuity of afi/ax, for all i and j. Moreover, as B Z O ,  we come 
arbitrarily close to the original model. In Figure 3 we show some members of the family (12) 
for different values of B. From the numerical point of view, setting B = lo-" in equation (12) 
is a very accurate approximation in simulating the original Blackman-type kinetics (3). 

Obviously, we can now determine the optimal control u*(B, t )  for every B within the given 
boundaries ]O,pcrit] using standard optimal control theory. For the original model - 
corresponding to B = 0 - we will make use of Conjecture 1. 

Observe that from a mathematical point of view the approximation of the piecewise smooth 
Blackman-type kinetics (3) can be done by any family of completely smooth curves that 
converges to the original kinetics. Clearly, the optimal control solution for the original kinetics 
is independent of this choice. However, from a biochemical point of view a sharp corner in 
7 at p = pcrit must be considered as a first approximation of real-life fermentation conditions. 
By using Dabes-type kinetics, each model of the sequence (.An) can be assigned a meaningful 
interpretation. 

3. OPTIMAL CONTROL USING THE MODIFIED MODEL 

3.1. Solution of the two-point boundary value problem 

The given optimization problem can be formulated within the frame of the minimum 
principle l 2 * I 3  as a two-point boundary value problem (TPBVP). The Hamiltonian X f o r  this 
problem is 

The adjoint vector X satisfies the following system of differential equations: 
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can be obtained by substituting equation (12) in equation (4) and calculating the implicit 
partial derivatives with respect to XI and x4 respectively. 

The state equations (6) together with the costate equations (15) constitute a set of 2 x 4 first- 
order differential equations. The required boundary conditions are as follows. 

(i) x ~ ( 0 )  and x3(0) are given. 
(ii) XI (0) and xq(0) are interrelated by equation (7). 

(iii) Since xl(0) and n(0) are not given explicitly, it can be shown that the following 
condition must be ~atisfied:~ 

XI@) + h(O)/Cs,in $(O) = 0 

(iv) xq(tf) is given by equation (10). 
(v) X;(tf),  i = 1, ..., 3, are given by 

or, using (8), 

(Xl(tf)  XZ(tf) Xdtr) ) '=(O 0 -1)' (16) 

As stated in the minimum principle, an extremal control follows from the minimization of the 
Hamiltonian .34? in (14) over all admissible control functions while satisfying the given TPBVP: 

min N(X*, A*, u )  = s ( x * ,  A*, u * )  
all admissible u 

Note that since all conditions are necessary conditions, we can only obtain extremol solutions 
(x*, X*, u * )  which must be checked for optimality. Because the state equations (6) and the cost 
index (8) are time-invariant , the Hamiltonian .X' remains constant along an extremal 
trajectory. Since the final time tf  is free, we know that a'= 0. 
As already mentioned, the original kinetics (2)-(4) represent a degenerate case of a 

fermentation process with monotonic specific growth rate p and non-monotonic specific 
production rate ?r - the corner point is a degenerate maximum - for which an efficient 
computational algorithm yielding the optimal control has been derived in Reference 4. 
However, the original model is only piecewise smooth, so this algorithm cannot be used 
directly because it requires the computation of the partial derivatives (up to second order) of 
the right-hand side of model equations (6) with respect to the state. 

We verify now that the computational algorithm can be used for any model with a specific 
production rate kinetics within the family of completely smooth curves (12). The optimal 
solution using the original model is then obtained by considering the limit 

Iim u*@, t )  4 U * ( B  = 0, t )  
B>,O 

as stated in Conjecture 1. 

Because the Hamiltonian .34? is linear in the control input u, the minimum principle fails to 
provide the solution on any singular interval [ t i ,  t i + l ]  where the function I,L remains zero. It 
has been shown4 that this problem is a singular problem of order two. In that case the singular 
control can be calculated by solving 
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for the control input u. We obtain 

with 

af  
ax 

d k  - - b  

It can be verified that for all kinetics (12) the denominator of the singular control uri,(t) is 
different from zero. Since both the numerator and the denominator are linear in the costate 
variables X and there exist three linear homogeneous equations between them, we know that 
the optimal control along a singular arc is a non-linear feedback law of the state variables x 
only. These three equations are 

3 zz Xfd = 0, 

For this problem it can be seen that XS has disappeared from U s i w ( t ) ,  since fs = 0. Thus the 
first equation can be omitted and the last two can be solved as 

$t = X'b = 0, 6 = X'f = 0 
dt 

(" 01 f 2 )  0 2  (XI) Xz = - (;)A3 

a f i  a f i  pi bl - + b4 -, i = 1, ..., 3 
ax, ax4 

Consider the case of an unbounded input u and an unconstrained state vector x. As shown in 
Reference 4, the problem then reduces to the two-dimensional optimization of the initial 
amount of substrate SO and the time instant t2 at which the switch from batch to singular 
control occurs, the optimal control sequence being batch-singular arc-batch. The following 
straightforward computational algorithm has been p r ~ p o s e d . ~ * ' ~  

Algorithm 

Step I .  Make a guess of SO or, equivalently, determine the amount of substrate, CYgmwth, 

consumed during the growth phase. 

Step 2. Make a guess of 22. Integrate the state equations (6) from t = 0 to t = t 2  with u ( t )  = 0. 
This completes the growth phase. 

Step 3.  Integrate the state equations (6) using the above-determined singular control (17) 
until all substrate available, a in (9), is added or, equivalently, until the bioreactor is 
completely filled (equation (10)) at time t = 23.  

Step 4. Complete the integration with u( t )  = 0 until the stopping condition - depending on 
the cost index - is satisfied at time t = Cf. This completes the production phase. Store the value 
of the cost index J[u ,xo]  in (8) .  

Step 5 .  Repeat Steps 2-4 considering t2,new = t2,old 2 62, with 6t as small as required. Save 
the time f 2  at which the cost index J[u ,xo]  in (8)  reaches its minimum. 
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Step 6. Repeat Steps 1-5 with a new guess of SO in order to minimize J [ u ,  XO]. 

For the performance measure under consideration, equation (8), it can be easily shown (by 
using (14) and (16)) that the stopping condition for this case is dP/dt( tr)=O, as could be 
expected. In the case of a constraint on the control u and/or the state vector x, only some 
minor modifications are required, the algorithm itself remaining a two-dimensional search. A 
detailed analysis of this algorithm in comparison with the algorithm proposed by Lim et al. l5 
together with a verification of all necessary conditions for optimality can be found in 
Reference 4. The main difference from the algorithm of Lim et al. is that we do not make use 
of the costate variables, whatever the performance index under consideration. 

3.2. Simulation results 

We now present some results obtained with the above computational algorithm. We 
concentrate on two specific values of the parameter B (i) B = lo-" as an approximation of 
the original Blackman-type kinetics (3) and (ii) the other extremal value B = krit = lo-', where 
~ ( p )  reduces to the Monod-type law (13). 

3.2.1. B = 10-". In the left plot of Figure 4 we have visualized the actions taken by the 
computational algorithm for B =  lo-''. For every SO the optimal switch time t2 has been 
calculated. As a consequence, we obtain the corresponding values for P(tr) and tr. Clearly, the 
optimal couple (&*, t;) is the one which maximizes P(tr). Observe the quadratic behaviour of 
P(tr) as a function of SO, so that there exists a unique optimal solution to this problem. 

Observe that there exists a lower limit Smin on the possible values for SO, corresponding to 
tz = 0. In that case the complete initial state xo is on the singular hyperplane, so singular 
control starts immediately. Note that SO = a corresponds to a complete batch fermentation: 
tr = t3 = tz, with u(t)  = 0 for ali t .  Even for values of SO in the neighbourhood of a, the 
condition dP/dt = 0 is never met before t = t2. As a result, we can indeed apply the proposed 
computational algorithm to the whole possible range SO E [Smin, a]. A derived benefit is of 
course that a good starting value for SO is not required for the algorithm to converge. Some 
numerical values for the optimal control are summarized in Table 11. The right plot of Figure 4 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
s(w Id1 .LO+ 

10 

Time [h] 

Figure 4. B =  lo-". Left plot: extremal values for P(tf) ,  t 2  and tf as functions of SO. Scaling: tJSO, r f /500 ,  
(P(tr) - 8150)/180. Right plot. optimal glucose feed rate and corresponding cell, glucose, product, T-  and p-profiles. 

Scaling: c, x 300, c, x 5 ,  q103, p x 100, r x 2 x lo4, u/300 
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Table 11. Optimal and suboptimal control results 

B = 

Optimal control Optimal 3000 22.321 349-987 350.101 8319.461 1-oooO 
Heuristic control pcrit 3000 22.337 350.037 350.151 8319.239 0.9999 

B =  lo-* 

Optimal control Optimal 326 0 277.205 277.320 4564.455 1.ooOO 
Heuristic control Optimal 1000 12.225 304.665 304.792 4553.437 0 * 9976 
Heuristic control kLcdt 7000 29.573 292-890 292.995 4399.589 0.9639 

1 .  

2. 

3. 

4. 

5 .  

From Table11 we note that the optimal initial substrate amount SO is rather low as 
compared with the total amount available, (Y = 205 500 mol, resulting in a small first 
batch phase [0, t ~ ]  of 22-32 h. In fact, the singular interval [t2, t3] takes most of total 
fermentation time tf. The terminating batch phase [ t 3 ,  t f ]  is negligibly small. 
From the profiles for Cx( t )  and P ( t )  (Figure 4) we conclude that although the optimal 
control algorithm is based on the conjecture of a biphasic process, this biphasic 
behaviour has disappeared almost completely as compared with e.g. the results for the 
constant strategy of Figure 2. Principally this is due to the structure of the specific 
production rate 7r in (3), which represents a direct coupling between product synthesis and 
biomass growth. 
On the singular arc [t2, t3] the optimal control seems to maintain p at the lowest possible 
value ( p  = brit) which still guarantees the maximum possible value for 7r. We have shown 
in Reference 4 that during singular control C,(t) (and thus p ( t )  and a(t)) is time-varying, 
since kh # 0. However, kh is so small that the resulting variations in C, (and thus in p 
and a) are in fact negligible, so that they cannot be detected on this plot. 
It is important to see that the optimal control keeps ?r on its maximum value for all t < l 3 .  

This will be at the basis of suboptimal profiles presented in Section 5. 
In order to evaluate the performance of the optimal control u * ( t ) ,  we need some 
reference. Since we do not penalize the total fermentation time t f  in the cost index J [ u ,  xo] 
in (8), a good choice might be the outcome of a constant control with tf = t; r:denoting 
the optimal fermentation time. For convenience we take So,,f = 0 mol. Then we define 
the gain F3 (Yo) as 

For B =  lo-'' a constant control for 350.101 h with SO= 0 produces 1981.283 mol 
penicillin. Thus for the optimal control u * ( t )  E u*(B= 0, t) we obtain a gain 
% = 319-9070. Consider now a constant feed rate strategy. Optimizing the initial substrate 
amount SO and the final time tf leads to SO= 90.156 mol, tf= 129.688 h and 
Pf= 3779.012 mol. Observe that this optimal final amount is still far away from the 
optimal control result. From this simple parametric optimization we can conclude that 
this model is very sensitive to wards diflerent feeding policies. 

shows the corresponding time profiles. Let us make the following remarks. 

Observe the enormous increase in the final product amount P(tf), which may suggest some 
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questions concerning the validity of the model of Heijnen et al. under conditions imposed by 
applying the optimal feed rate. Since up to now the penicillin fermentation has been recognized 
through all experiments as an intrinsically biphasic process, it seems unlikely that the obtained 
control put into practice would result in a quasi-monophasic fermentation while producing 
such a high gain. We conclude that the results obtained using optimal control theory suggest 
some possible shortcomings in this model: optimization for model discrimination. A deeper 
study of this model in comparison with the model of Bajpai and R e d 6  can be found in 
Reference 4. 

3.2.2. B = b r i f =  ZO-'. We now give the analogous results for the other extremal value 
B = perit = lo-' in order to demonstrate that the computational algorithm can be applied to 
every model with 0 < B < h r i t .  The left plot of Figure 5 shows the evolution of tz and thus 
P ( t r )  and tf as functions of SO. Observe that the optimal couple (S:, t?) corresponds to tz = 0; 
in other words, the optimal initial state lies on the singular hyperplane itself. As a consequence, 
the separation between growth and production phases has disappeared completely. This is also 
illustrated by the time profiles of the right plot of Figure 5 .  In this case both u and ?r are of 
Monod type: the corner point in ?r has disappeared completely (see Figure 3). However, the 
optimal solution does not consist of adding all substrate available at t = 0 followed by a batch 
phase as could be expected at first sight. The main reason is the following. Combining 
equations (2) and (4) with (13). we can verify that the resulting expression for u as a function 
of C, does not satisfy an equation of the form 

u(Cs) = Yp/xp(C,) 

In other words, this is not a case of completely growth-associated production. 
For this value of B the lower limit &in is equal to the optimal value $. Note again that the 

condition dP/dt = 0 is never met before t = tt, so we can indeed apply the proposed algorithm 
to the whole interval So€ [Smin,a] .  Some numerical values for the optimal control are 
summarized in Table 11. 

Observe that on the singular arc the variations in u and p (and thus in C,) with respect to 
time are more pronounced than in the case of B = lo-", although k h  has not been changed. 
We conclude that the model structure itself also plays an important role in the amplitude of 
these variations. 

1, , 10, 

0 0.5 1 1.5 1 1.5 3 3.5 
YW Imdl xi04 

Figure 5. B =  peril = lo-'. Left plot: extremal values for P(tr), 12 and tr as functions of So. Scaling: 12/50, rf/300, 
(P( t r )  - 430O)/280. Right plot: optimal glucose feed rate and corresponding cell, glucose, product, P and pprofiles. 

Scaling: C, x 2 x lo3, C, x 2, q103, p x 200, ?r x 4 x lo4, u/300 
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Figure 6. Optimal production P( t f )  as a function of B 

A constant strategy for 277-320 h with SO = 0 mol produces 1978.425 mol penicillin, so the 
gain using the optimal control is S= 130.7%. 

3.2.3. 0 < B Q pcrjt. As already mentioned, we can repeat these calculations for every B 
within the given boundaries. The result for the optimal production P( t f )  as a function of 
parameter B is shown in Figure 6 as an illustration of Conjecture 1. From this plot we conclude 
that the sequence of optimal controls u*(B,t) is indeed convergent. Note also that for 
B < the cost has almost reached its limit value. 

4. PHYSICAL INTERPRETATION OF SINGULAR CONTROL 

In Reference 4 the following theorem is proven for the performance index (8): if the specgc 
rates a, p, and a are functions of substrate concentration Cs only, with continuous derivatives 
up to second order, then during singular control the substrate concentration remains constant 
i f  and only i f  the product decay constant k h  equals zero. This constant value maximizes the 
ratio TI.. 

We have already pointed out that the three specific rates u in (2), a in (3) and p in (4) are 
functions of substrate concentration Cs only. However, owing to the corner point in a, these 
kinetics are not continuously differentiable for every value of C,. As a result, the above 
theorem cannot be used to characterize the singular control arc when using the original 
Heijnen et al. model. 

On the other hand, the family of production kinetics (12) is sufficiently smooth to guarantee 
the applicability of this theorem. For the original model we prove the following theorem. 

Theorem I 

Consider the minimization of performance index (8) subject to the dynamic constraint (6). 
Suppose that the specific rates are modelled by equations (2)-(4) which are continuous 
piecewise smooth functions of the substrate concentration. Then during singular control the 
substrate concentration remains constant if and only if the hydrolysis constant k h  = 0 and is 
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determined by the equation 
p = k r i t  

This constant value maximizes the yield r / a .  

Proof. In the following a prime denotes derivation with respect to substrate concentration 
C,. For every value of the parameter B in the half open interval 10, p d  the specific rates (21, 
(4) and (12) are smooth functions of the substrate concentration Cs only. In this case we know 
that on the singular interval Cs remains constant if and only if &h = 0.‘ Cs satisfies 

r ’ u - u ’ r = O  (18) 

We have 
d r  d r  dp -=-- 
dCs dp dCs 

By using equation (4) in the form 

we obtain a relation between r’ and u’ which can be written as 
T ’  = F&, B)u’ 

with 

R(cl, B )  P J[ol. + kritI2 - 4(pcrit - B)pl 

Substituting (19) in (18) and noting that u’ # 0, we obtain 

We now follow a similar line of reasoning (based on Conjecture 1) as used in the determination 
of the optimal control for the model involving the original kinetics (3) starting from a model 
with smooth kinetics (12). Thus we consider the limit for B + 0 on both sides of the above 
equation to obtain 

1 ( p  + krit - I P - k r i t  1) Q p m U  
Y x / s [ I ~ - ~ r i t I -  (p-kridl -+m+ (As 2 Yp/skrit  

( 2 Yp/skrit 

Yx/sQp,rnax 
= ( p  + b r i t  - 1 p - k r i t  1) I p - pcrit I + [I p - krit 1 - ( P  - pcrit)] 

Solving for p obviously leads to 

CC = Pcrit 

Using equation (4), the substrate concentration during singular control is 

perit/ Yx/s + m + Qp,max/ Yp/s 

Qs,max - ( k r i t /  Yx/s + m + Qp,max/ Yp/s) 
Cs,siU = Ks = cs.crit 
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Figure 7. Left plot: T / U  as a function of C, for various values of B. Right plot: optimal switch values for p and C, 
as a function of B with kh = 0 

The left plot of Figure 7 shows values of K / U  as a function of C, for different values of B. We 
0 

Observe that for B = brit = lo-', K / U  exhibits a (very smooth) maximum, corresponding to 
a finite value of Cs,switch. This is an additional verification that the optimal control in this case 
is not a simple batch process while adding all available substrate (r at t = 0 as might have been 
expected. In the right plot of Figure 7 we show the optimal value for p and the corresponding 
value of C, (calculated using (18)) at which to switch from batch to singular control for 
different values of B with kh = 0. Observe the convergence to p + brit and C, + Cs,crit when 
B 0 as indicated by Theorem 1. These plots illustrate again that setting B = lo-" in (12) is 
a very accurate approximation of the original kinetics (3). 

In general, hydrolysis k h  # 0, so we do not know the switch time tz in closed-loop form, i.e. 
as function of state variables only. However, the above theorem provides a good initial guess 
for tz if k h  is sufficiently small. It also indicates that during singular control the substrate 
concentration will be time-varying. Obviously, for kh small the variations in C, with respect 
to t will also be small, as illustrated by the simulation results presented earlier. 

conclude that for B = 0, T / U  takes on its maximum value at C, = Cs.crit. 

5.  HEURISTIC CONTROL STRATEGIES 

5.1. Suboptimal control strategies 

In this section we propose heuristic control strategies based on microbial and mathematical 
knowledge. We also indicate the conditions under which the suboptimal solution coincides 
with the optimal one. 

In contrast with the optimal control approach, there will be no need for partial derivatives. 
Thus the original model (B = 0) can be handled directly without any difficulty: as a matter of 
fact, the presence of a corner in the production kinetics (3) facilitates the design of a 
suboptimal controller. 

From the microbiological and experimental point of view the construction of a suboptimal 
profile can be based on the concept of a biphasic fermentation process. 

5.2.1. Growth phase [O, tz]. During the growth phase we focus on the specific growth rate 
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p in (4). For the control needed we refer to the optimal control results: in the case of an 
unbounded input and an unconstrained state vector the growth phase is a batch phase. All 
substrate consumed for growth is added all at once at time t = 0 in order to obtain the highest 
possible value of p. Note that for the original specific production rate (3) this results in 
maximizing ?F also. In the case of a constraint on the input and/or the state some minor 
modifications are required. 

5.1.2. Production phase [ t z ,  1 3 1 .  During production we focus on the specific production 
rate T.  

(0 

(ii) 

Original model. Equation ( 3 )  indicates that the lowest value of p which still guarantees 
the maximum value of ?r is p = pcrit .  Note that this is equivalent to Cs = Cs,crit, so the 
control during production is of the form 

maintaining Cs and thus p at their critical values. This choice can also be motivated from 
the analysis of the optimal control result (see Figure4). As a consequence, the 
conjunction point t 2  of growth and production follows from the condition: 

Cs(tz) = Cs.crit or p ( f 2 )  = b r i t  

The control (20) is stopped at t = t 3  when all substrate is used (see (9) and (10)). As in 
the optimal case, the final batch phase [ t 3 ,  t f]  is stopped when dP/dt = 0. Note that the 
complete suboptimal control is obtained in closed loop for a given initial substrate 
amount SO. As a result, the optimization problem is reduced to the one-dimensional 
optimization of SO. 
Modifed model. For values of B in the interval 0 < B < pcrit it is less clear how to 
determine a heuristic control during production, since the specific production rate ?F in 
(12) no longer has a corner point. However, we will verify that keeping Cs and thus p 
constant using a control of the form (20) is an appropriate choice for this case also. The 
switch from growth to production can be determined as follows. As a first guess we can 
still switch on Cs = and thus p = brit. However, we know from Section 4 and 
Figure 7 that this guess is only appropriate for B near zero. For B near pcrit we will 
simply optimize the switch time t z .  As in the optimal control case, we obtain a two 
dimensional Optimization of SO and 12 .  

As a mathematical justijcation, it follows immediately from Theorem 1 that the suboptimal 
control profile for the original model reduces to the optimal profile if (and only if) B = 0 and 
kh= 0. 

Before giving some simulation results, some advantages of these suboptimal profiles are 
mentioned. It is well known that putting an optimal control into practice may be hampered 
by a lot of problems. Since optimal control is a very model-sensitive technique, a feedforward 
will not generate the predicted simulation results. As long as a sufficiently accurate model for 
the penicillin fermentation is not available, the determined optimal control profiles can be used 
only to obtain a greater qualitative insight to the process. 
On the other hand, the suboptimal profiles we present here are the translation of a more 

realistic control objective, namely setpoint control, for which even adaptive control algorithms 
can be developed. It is illustrated in References 3 and 4 that we could keep the specific growth 
rate p constant without the knowledge of an exact analytic expression for it, so the controller 
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Figure 8. B = l(crir = lo-’. Suboptimal glucose feed rate and corresponding cell, glucose, product, T-  and p-profiles. 
Left plot: p s w i t c h  = kit. Scaling: C, x lo2, C, x 2, P/750, p x 100, T x 3 x lo4, u/220. Right plot: p s w i t c h  free. Scaling: 

c, x lo3, c, x 2, P/750, x 100, x 3 x lo4, u/300. 

becomes model-independent. Furthermore, there would be no need for a complete 
measurement of the state, a problem which has not been solved completely up to now. 

5.2. Simulation results 

5.2.1. B = ZO-”. Some numerical values are summarized in Table 11. From these we 
conclude that for the original model the suboptimal control results almost coincide with the 
optimal values thanks to the low value of kh. 

5.2.2. B = krit = ZO-’. For A&) modelled by the Monod-type kinetics (13) the results are 
summarized in Table I1 and Figure 8. We have done the optimization with pswitch = pcrit (left 
plot) and pswitch considered free (right plot). Note that - in contrast with the optimal profiles 
shown in Figure 5 - for both suboptimal profiles there is still an initial batch phase. For 
pswitch = pcrit the final amount Pf reaches 96.39% of the optimal value. For pswitch considered 
free we obtain as much as 99.77% of the optimal value. These results sufficiently illustrate the 
performance of the suboptimal profiles over the whole range of parameter B. 

Remark. Although the only model reported in the literature is the one with B = 0, we also 
presented some simulation results for other values of B. This can be motivated as follows. First 
of all, from the biochemical point of view a sharp corner in A at p = pcrit is of course only a 
first approximation of real-life fermentation conditions. Thus a value for B different from zero 
seems more realistic. Secondly, these results make it possible to illustrate the convergence of 
the controls to the desired one following the basic Conjecture 1; see e.g. Figure 6. Finally, they 
confirm the use of the developed algorithms for optimal and suboptimal control not only for 
the original models but also for the whole class of models considered. 

6. CONCLUSIONS 

We can extract the following results from the application of optimal control theory to the 
penicillin G fed-batch fermentation process by using the unstructured mathematical model of 
Heijnen et al.5 and a newly developed modified version. 
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1. We verified and confirmed the statement by Heijnen et al. that the glucose feed scheme 
is of crucial importance in obtaining high penicillin yields. In order to do so, we 
determined for the first time the optimal control profile for a well-defined optimization 
problem using their model and the modified version. We have shown that the obtained 
control generates the global optimum of the performance measure under consideration, 
using a straightforward computational algorithm. Simulation results indicated a possible 
gain of several hundred per cent as compared with the outcome of a constant control 
input with zero initial substrate amount for the same time. Furthermore, this model is 
very sensitive towards different feeding policies. 

2. From the mathematical point of view we presented the application of a new, elegant 
conjecture that allows for the determination of optimal control profiles for a class of 
piecewise smooth models that cannot be handled using standard optimal control theory. 
Since this kind of model is not limited to the biotechnological field itself, this procedure 
can be of great use in a lot of other scientific domains also. Furthermore, we were able 
to include the optimization of some initial states in the resulting two-point boundary 
value problem. 

3. In the field of model building, the results obtained using optimal control theory indicated 
some possible shortcomings in the model used, without carrying out any costly and time- 
consuming experiments. The combination of the enormous gains in production and the 
vanishing of the characteristic biphasic behaviour through optimization led us to 
conclude that the present model might be less useful for advanced control purposes than 
suggested by Heijnen et aL5 In this way this optimal control study can prove to be very 
useful for model discrimination purposes: optimization for  model discrimination. This 
motivates a deeper study of this model presented in Reference 4. 

4. We have shown that the heuristic control algorithms developed in Section 5 are a 
successful alternative for the optimal control using essentially the same computational 
algorithm for the whole family of models considered. From the characterization of the 
singular arc in the optimal control solution, we derived conditions under which this 
heuristic strategy coincides with the optimal control. It is shown in References 3 and 4 
that these suboptimal controllers can serve indeed as a basis for the development of 
model-independent control algorithms: optimal adaptive control. 
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