
Building Blocks for Wastewater Treatment Process Control: a Review

Wastewater treatment processes can be considered as the largest industry in terms of treated mass of

raw materials. In the European Community, for instance, a daily wastewater volume of approx. 40.106

m3 has to be processed (Lens & Verstraete, 1992). While this has only been achieved by important

investments in the last few decades, studies have shown that even well attended plants are ’out of spec’

(not meeting the effluent quality standards) for 8 to 9 % of operation time (Berthouex & Fan, 1986),

not including short upsets lasting less than one day. The U.S. Environmental Protection Agency

estimated that 1 in 3 treatment works are in non-compliance with discharge limitations (Ossenbruggen

et al., 1987) and in Germany and the Netherlands clarification problems were found to occur in almost

half of the evaluated treatment plants (Chambers & Tomlinson, 1982). Besides faulty design, overload -

ing and inadequately trained operators, a lack of process control leading to excessive effluent quality

variations, was reported as main cause.

A closer look at the current operation of wastewater treatment plants learns that automation, while

introduced in the late sixties (Buhr et al., 1974), can still be considered minimal. Few plants are

equipped with more than some elementary sensing elements and control loops, mostly concerning flow

metering and control. Since the early seventies, when a major leap forward was made by the widespread

introduction of dissolved oxygen control, little progress has been made.

A number of reasons for this lack of instrumentation, control and automation (ICA) have been put

forth (Buhr et al., 1974; Holmberg, 1982; Beck, 1986; Olsson, 1993):

• Understanding: Insight in the treatment processes is still insufficient

• Inadequate instrumentation: Non-existing or insufficiently reliable technology

• Plant constraints: Inapt and insufficient possibilities to act on the processes

• Economic motivation: There exists a lack of fundamental knowledge concerning benefits vs. costs

of automated treatment processes. In addition, wastewater treatment processes are not produc-

tive and automation can only contribute to a decrease of operating costs but does not directly

lead to increased profit

• Education/Training:  Operators are not always adequately trained to operate advanced sensor

and control equipment and most environmental engineers would need more basic understanding

of process dynamics and control in order to appreciate the potential of ICA

• Communication:  The interaction between operators, designers, equipment suppliers, re-

searchers and government regulatory agents is often unsatisfactory and leads to poorly designed

plants

It is worthwhile to confront these constraints with the potential benefits of the use of dynamic models

and control systems as put forth by Andrews (1974) some 20 years ago:

• Performance: Maintaining plant efficiency nearer to its maximum by improved operation

• Productivity: Increasing the amount of waste that can be treated per unit process capacity

• Reliability: Decreasing the frequency of gross process failures with concommitant wastewater

bypassing
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• Process Stability: While appearingly highly stable processes, occasional upsets may have import-

ant consequences that could be avoided by increased process control

• Operating Personnel: Run plants with less skilled personnel or decrease time devoted to plant

management

• Operational Costs: Reducing chemical and power consumption

• Start-up Procedures: Fastening of the start-up of treatment plants

• Manual with Operational Guidelines: making up procedures/control charts for manual operation

that summarize the experience from the use of dynamic models

• Dynamic Operation: Improving performance by taking advantage of the process dynamics

• Variable Efficiency Operation: Integrating the dynamics of the receiving waters within the control

of the treatment plant so as to match the assimilative capacity of the receiving waters

NEW DRIVING FORCES FOR INCREASED ICA

While the list of potential benefits given above still holds, the increased public awareness as reflected

in more stringent regulations, has considerably increased the requirements imposed on treatment

plants compared to the time this list was compiled. Not only the organic carbon pollution of a

wastewater must be eliminated, but to this has been added the removal of nutrients (nitrogen and

phosphorous). With biological nutrient removal being the most economic way of treatment in most

cases, rather complex process configurations have resulted. The numerous interactions that occur

among the different unit processes and the fact that the biological potential is taken to its limits make

that nutrient removal plants are rather vulnerable to external disturbances or erroneous manipulations.

Hence, the increased complexity is another driving force for the introduction of advanced instrumen -

tation that can provide the necessary information on the process condition. Moreover, as process

complexity increases more possibilities are required to act upon the process to guarantee satisfying

treatment performance. Finally, the increasing number of measured and manipulable variables gives

rise to more complex control systems that take advantage of the new possibilities.

A closely related driving force for the introduction of more ICA follows from the need to upgrade

existing plants for handling increased loads or extension with nutrient removal capability. The alterna-

tive upgrade path via physical size increase (additional reactor volumes) is still preferred in many cases

notwithstanding the considerably higher capital investments. Clearly, with a few exceptions (e.g.

Aspegren et al., 1993), there is a lack of full-scale demonstrations of the potential of advanced ICA.

Hence, designers remain rather conservative, maintaining large safety margins in the plants (Olsson,

1993). At the same time, however, too little flexibility and controllability is built into these plants which

will be a set-back for future upgrades.

Finally, in some countries recent evolution of the legislation concerning surface or groundwater use is

such that total recycling of process water has become an issue in certain industries, e.g. textile industry.

Hence, the wastewater treatment becomes part of the production process and consequently, quality

control of the effluent will be very important since failure of the treatment process may lead to

important production losses. The very stringent effluent standards that will be imposed by the

production processes in which the water reuse is taking place, will enforce the introduction of ICA in

plant operation. Note that this new development means that wastewater treatment can no longer be

regarded as non-profit.

- ACEB.94/pvr.I.2 -



CURRENT POTENTIAL AND PROBLEMS OF INCREASED ICA

The purpose of what follows is to give a concise overview of the insights that have been acquired during

the last two decades with respect to ICA and the new possibilities for improved performance that they

offer.

Control of wastewater treatment plants relies on four building blocks (Figure 1): 1) insight in the plant

operation as summarized in a proper process model; 2) sensors that provide on-line data on some of

the output variables of the process and disturbances acting upon it; 3) adequate control strategies which

try to minimize deviations ε from the objectives and 4) actuators which implement the controller

outputs on the plant.

Building Block 1: Process Models

The central building block of the control chain is the treatment process itself. Important is that one can

dispose of an adequate mathematical description of process behaviour for the design of control

algorithms. The different steps in model building and the current status of mathematical modelling of

wastewater treatment processes is given below. First, however, the advantages of models in controller

design are presented.

Use of models in control
Classical PID control systems assume that a second order process model is a sufficiently accurate

description of plant behaviour. In order to tune the parameters of the controller, it is necessary to gain

insights in the dynamics of the process. This information is typically obtained by experimentation on

the real plant. However this may endanger process performance since important disturbances may be

required to obtain the necessary data (Dunn et al., 1992). As an alternative one can use a reliable

process model to simulate plant behaviour under a wide range of disturbances and concomitantly tune

the controller (Vaccari et al., 1988, Heinzle et al., 1993).

More important, once process models are available the design of model-based control algorithms is

possible. Since this type of controllers incorporates the process model into the control algorithm, the

nonlinear nature of the bioprocesses can therefore be integrated within the control system and, as a

result, improved control performance can be expected (Bastin & Dochain, 1990). 

Another use for process models within the control chain stems from the lack of adequate sensor

Figure 1. Structure of the control chain of a wastewater treatment plant.
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technology. As a result, a control algorithm may be deprived of such essential information as substrate

concentrations or process parameters, e.g. mass transfer coefficients, growth rates. A methodology that

is proposed to cope with this are the so-called "software sensors" which combine a mathematical

description of the treatment plant with easily accessible measurements to estimate state variables and

parameters which cannot be measured directly (Bastin & Dochain, 1990). The data produced by these

software sensors are then used in the same manner as the other data to feed the control algorithm with

the necessary information.

The model building exercise
The diagram of Figure 2 states the aspects and stages in model building. Three sources of information

can be used to infer a model:

• a priori knowledge: general laws, principles and previous investigation

• experimental data: information obtained from experiments performed to study the underlying

phenomena

• goal: information which is the result of requirements and specifications that have been set

Before a model can be applied, four steps have to be taken:

• frame definition: choice of the system boundaries, input and output variables, type of models

considered (e.g. linear/nonlinear, input-output/state-space, ...)

• structure characterization: infer the level of model complexity (dimension of state vector, degrees

of polynomials, ...) and determine the functional relationships between variables

• parameter estimation: find numerical values for the constants in the functional relationships

• validation: confront the resulting model performance with the purpose it was built for

Figure 2. Scheme of the modelling exercise (after Vansteenkiste & Spriet, 1982).
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For most physical and chemical applications, the a priori knowledge is of such high quality that the

system framework and most of the model structure can be deduced from it. The modelling methodology

developed for these systems is adequate to estimate the parameters and solve the minor uncertainties

in the model structure by using final validation experiments and eventually iterating a small number of

times through the procedure.

In contrast with this, the inherent characteristics of bioprocesses, i.e. their nonlinearity and nonstation-

arity, coupled with the lack of adequate measuring techniques, make that this mathematical modelling

methodology cannot be applied without modification (Vansteenkiste & Spriet, 1982): more emphasis

must be given to inductive reasoning to infer a larger part of the model structure from the scarce (or

harder to obtain) experimental data. Consequently, structure characterization methods become a more

important tool, because the chance of obtaining an invalid model is much larger and, hence, the number

of modelling iterations may increase substantially. 

The data scarcity also induces an important problem in the parameter estimation step. Identifiability

of model parameters, i.e. the possibility to give a unique value to each parameter of a mathematical

model, is a general concern in current wastewater treatment modelling efforts (Ayesa et al., 1993;

Jeppsson & Olsson, 1993). This problem is however more pronounced in on-line identification because

one is relying much more on real-time information to perform the parameter estimation whereas

off-line model calibration can take more advantage of the off-line data.

Modelling: State of the art
In general two approaches can be discerned for the mathematical description of wastewater treatment

processes (Beck, 1976):

• Black box (or input/output) models that describe the dependency of the system output y at time

tk on past and present inputs u(ti):

y(tk) =  
B(q)
A(q)  u(tk) (1)

where A(q) and B(q) are polynomials in the backward shift operator q, i.e.

q− j y(ti)  =  y(ti− j) (2)

A(q) =  1 +  a1 q− 1 +  a2 q− 2 +  … +  an q− n (3)

B(q) =  b0 +  b1 q− 1 +  b2 q− 2 +  … +  bm  q− m (4)

The ai and bi and the order of the polynomials n and m  are to be determined from a set of

input-output data.

Time series models as the example given above have been developed for description of dynamic

input-output relations between feeding pattern and anaerobic digester methane production

rates, air flow rate and dissolved oxygen, flow rates and effluent suspended solids, carbon source

dosage and denitrification rate, etc. (Beck, 1976; Berthouex et al., 1978; Novotny et al., 1992;

Olsson, 1992). The essential feature of these models is that it assumes no knowledge of physical

or internal relationships between the system’s inputs and output other than that the inputs should

produce observable responses in the output. Hence, the system is considered ’black box’ and no

use is made of the available a priori knowledge.
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• Mechanistic models have found wider acceptance due to the possibility to incorporate the

increasing a priori knowledge of the bioprocesses into these mathematical descriptions. The

dynamics of the variables considered important for the adequate description of the process can

be described by the following state-space model:

dx
dt

 =  A  x +  B u (5)

and the output observations y  are given by

y =  C x (6)

In this model A , B and C are matrices containing the characteristic (possibily time varying)

parameters of the system, u is the vector of system inputs or forcing functions and the state vector

x of the system contains such variables as the heterotrophic biomass, readily biodegradable

substrate, volatile fatty acids, nitrate, etc.

The nonlinearities of the bioprocesses involved however ask for another representation than the

linear one given above. A more general model for wastewater treatment processes is therefore:

dx
dt

 =  f x , u , t , θ  (7)

y =  h x , t , θ  (8)

One can observe the nonlinear relations f and h between the state variables, inputs and outputs

and the model parameters  θ.

Since the early fifties when the first dynamic models were proposed (Goodman & Englande,

1974), the increasing insights have steadily been incorporated in the mathematical models of

wastewater treatment processes. Lawrence and McCarty (1970) introduced the rather important

nonlinear Monod relationship to describe the saturation of degradative capacity at high waste

concentrations. The first structured models were presented by Andrews and coworkers (Busby

& Andrews, 1975): biomass was structured in active, stored and inert compartments. The

research efforts in South Africa to elucidate the effect of different wastewater fractions on

treatment performance led to the structuring of substrates in the models (Dold et al., 1980).

These insights and the increased interest in nutrient removal -in a first stage only nitrogen

removal- eventually culminated in the IAWQ model n˚ 1 (Henze et al., 1987). Subsequently,

important efforts have been made to model the complex mechanisms of biological phosphorous

removal. While the IAWQ model n˚ 2 is being prepared, the model currently considered to be

state-of-the-art is the nitrification-denitrification-biological enhanced phosphorous removal

(NDBEPR) model of Wentzel et al. (1992). The state vector of this model contains 19 com-

pounds and some 25 processes are included to describe the behaviour of heterotroph non-poly-

phosphate, autotroph and polyphosphate organisms under aerobic, anoxic and anaerobic

conditions. The identification of this model is a tremendous task since no less than 19 kinetic and

24 stoichiometric parameters have to be identified to complete the model (Demuynck et al.,

1993).

A remarkable parallellism in the timing of model developments can be found when reviewing

the models of two other important unit processes of wastewater treatment plants, namely

anaerobic digestion and final clarification. 
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For the sedimentation process the first models describing solid flux theory were presented in the

late sixties (Dick & Young, 1972) and were based on the Kynch theory of flocculent suspensions

(Kynch, 1952). The partial differential equations necessary to describe the phenomena have

often been neglected in favour of empirical rules (Lech et al., 1978; Marsili-Libelli, 1989) or have

been approximated by dividing the clarifier in a number of layers, typically 10, through which the

suspended solids subside. Tracy and Keinath (1974) were the first to introduce this approach

which has been adopted increasingly in the last few years (Laikari, 1989; Diehl et al., 1990;

Ossenbruggen & McIntire, 1990; Takacs et al., 1991; Otterpohl & Freund, 1992). New develop-

ments in sedimentation modelling are mainly concerned with the numerical problems inherent

to the proposed models (Diehl et al., 1990; Ossenbruggen & McIntire, 1990), the modelling of

the  gravity settling velocity of the suspension (Takacs et al., 1991) and the improved description

of the clarification and compression processes (Takacs et al., 1991; Härtel & Pöpel, 1992;

Otterpohl & Freund, 1992). While the layered models are already rather involved to treat,

complexity increased even more when two-dimensional models were introduced (Krebs, 1991).

Several hours of computation, even on supercomputers, are necessary to calculate concentration

profiles for settlers in which not only vertical but also horizontal phenomena are described

(Krebs, personal communication). Another difficulty with such 2D models is the increased need

for experimental data for model calibration.

In anaerobic digestion, the structure and complexity of the models also followed developments

in the level of understanding of the process at the microbiological level. For this type of

wastewater treatment Andrews (1969) was again one of the pioneers in the mathematical

modelling of the process. Soon the original model was extended with the interactions between

volatile acids, pH, alkalinity, gas production rate and composition (Andrews, 1974). The struc-

ture of the model which defined these interactions formed the basis for many later models of the

process. Structuring of anaerobic biomass in acid-forming and methanogenic bacterial groups

was first introduced by Hill and Barth (1977). To accomodate the insights that the anaerobic

degradation process could be described by the activity of acid-formers, acetogens, acetoclastic

methanogens and hydrogen-utilizaing methanogens, Mosey (1983) formulated the four popula-

tion model. Rozzi et al. (1985) combined the kinetic equations of Mosey with the mathematical

description of the chemical and physical interactions of Andrews into a comprehensive model

that can be regarded as the state of the art anaerobic digestion model. Costello et al. (1991) made

an extension to include the reactions resulting in the possible accumulation of lactic acid in the

system.

Research topics:
Current research in the area of process models is concerned with the following items (Henze et al.,

1993; Olsson, 1993):

• Incorporation of latest insights in the different processes:  important efforts are made to model 1)

the phosphate removal processes as exemplified by the current preparation of the IAWQ model

n˚ 2; 2) hydrolyisis of substrates; 3) the fate of biopolymers and 4) the sedimentation process

with special emphasis on the interaction between the biological phenomena such as filament

growth and the settling properties of the sludge,

• Identifiability: A discrepancy has grown between the amount of data needed to identify the

increasingly complex models and the amount of information that can be obtained on behalf of
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the process. Especially if only on-line data can be used for model identification, serious problems

may occur in finding unique parameter estimates. Even combined on-line and off-line data may

be insufficient for accurate modelling. Current research is therefore directed towards the

development of new monitoring equipment and new off-line methodologies adapted to the

information need of the new models (Vanrolleghem & Van Impe, 1992),

• Verifiability:  The models that have been introduced recently are the result of considerable

fundamental studies aimed at elucidating the mechanisms of certain microbial processes. In

order to more precisely explain the detailed experimental findings, state variables and par-

ameters have been introduced in the models which are not directly measurable, e.g. active

heterotrophs (Ayesa et al., 1991, Jeppsson, 1993). Hence, since verification of a model requires

that all model predictions of the states can be compared with experimental data, current models

have become intrinsically unverifiable. Here too, new experimental methods are being studied

to cope with this problem,

• Model reduction for process control: The identifiability and verifiability problems mentioned

above ask for considerable efforts devoted to the development of new sensor technology and ex-

perimental methods so that the new  process models can be used in adaptive model-based control

systems. An alternative approach which attracts a lot of attention is directed at the reduction of

the complexity of existing mechanistic models to such a level that on-line identification with

existing technology is feasible, at the same time maintaining the necessary predictive capabilities

of the major phenomena (Marsili-Libelli, 1989; Olsson, 1992; Jeppsson & Olsson, 1993).

Building Block 2: Monitoring Equipment

A comprehensive review of existing and new sensor technology was recently presented by Vanroll-

eghem and Verstraete (1993). Developments are many and increasingly sophisticated devices are

proposed in an attempt to provide the necessary information on the complex processes needed to meet

effluent standards. Table 1 summarizes the available sensor technology, the processes in which they

can be implemented and the range of applicability, i.e. the extent to which they are considered proven

technology.

Some new measuring principles have been introduced in recent years. To observe the metabolic state

of the microorganisms the fluorescence of the intracellular NAD(P)H or F420 electron carriers is

measured on-line. Practical experience with implementations of common measuring principles has

allowed to improve their design and to promote the confidence in the sensors. A typical example are

turbidimetric suspended solids meters that were on the market some 20 years ago (Buhr et al., 1974)

but were not considered sufficiently reliable until recently.

Two significant trends in the recent developments of new on-line monitoring equipment are the

application of ultrafiltration systems to bring automated wet chemistry methods to the plant on the one

hand and the combination of robust, proven sensor technology with extended data interpretation on

the other hand.

• Ultrafiltration/wet chemistry: Since the advent of reliable sample preparation units based on

cross-flow UF modules in the last 5 years, a lot of efforts have been devoted to the automation

of typical laboratory wet chemistry methods for on-line use. Typical applications include the

analysis of the nutrients NH4
+ , NO3

- and PO4
3-. The practical implementation of UF modules

is illustrated in Figure 3.
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Table 1. On-line monitoring equipment for wastewater treatment processes 
(Vanrolleghem & Verstraete, 1993).

Physical Measurements
Physico-Chemical

Measurements
(Bio-)Chemical Measurements

Variable          Applicability1

                                   Process2
Variable           Applicability

                                   Process

Variable           Applicability

                                   Process
Temperature G ∀ pH G ∀ Respiration Rate 2,3 ∀

Pressure G ∀ Conductivity G ∀ stBOD 4
2,3 ∀

Liquid Level G ∀ Oxygen Toxicity 2,3 ∀

Flow Rates - Liquid 2,3 ∀ Sludge Activity 2,3 ∀

- Liquid G ∀ - Gas 2,3 ∀ COD 1,2,3 Ο

- Gas 1,2,3 ∀ Digester Gas TOC 1,2,3 Ο

Suspended Solids - CH4 1 ∀ NH4 +
3 ∃

-   0.0 -    0.1 g/l 4 ∃ - H2S 1 ∀ NO 3
-

3 ∃

-   1.0 -  10.0 g/l 1,2,3 ∃ - H2 1 ∀ PO 4
3-

3 ∃

- 10.0 -100.0 g/l 4 ∃ CO2 1,2,3 ∀ Bicarbonate 1,3 Ο

Sludge Blanket 4 ∃ Fluorescence Volatile Fatty Acids 1,3 Ο

Sludge Volume 4 ∃ - NAD(P)H 2,3 ∃

Settling Velocity 4 Ο - F420 1 Ο

Sludge Morphology G Ο Redox 1,3 ∀

Heat Generation 1,2,3 Ο NH 4
+  (ISE3) 3 ∃

UV absorption G ∃ NO 3
- 

- ISE 3 Ο

- UV absorbance 3 ∃
1Applicability Range: ∀  : State of Technology; ∃  Applicable in certain cases: ; 

                             Ο : Requires development work
2Process: Unit process in the wastewater treatment plant where the sensor can be implemented:

1: Anaerobic Digestion; 2: Activated Sludge; 3: Nutrient Removal; 4: Sedimentation; G: All
3ISE: Ion selective electrode
4stBOD: short term biochemical oxygen demand
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• Robust sensors/advanced interpretation: Some sensors like dissolved oxygen, pH and redox

electrodes have proven their robustness, reliability and limited demand for maintenance. Recent

efforts have therefore been directed towards the extraction of as much information as possible

from the primary data these sensors provide. The approach taken is to combine process

knowledge with these data to produce upgraded information.

Two simple examples of the coupling between robust sensors and process knowledge are given

in Figures 4 and 5. The dynamics of the redox potential contain the necessary information to

detect the disappearance of nitrate under denitrifying conditions: in Figure 4 typical "nitrate

knees" can be observed during the unaerated periods reflecting the complete removal of the

nitrate that was formed during the previous aerated period.

As another example the potential of interpretation of the dissolved oxygen (DO) data is

illustrated. The fast dynamics of the DO in Figure 5 are due to the type of controller used, i.e.

an on/off control with dead-band. The decrease in frequency of switching the aeration on and

off can be used as a measure of the oxygen demand. With the upgraded information, it is possible

to detect the time when the oxygen consumption drops to the endogenous level and hence, when

nitrification is completed. Alternatively, the oxygen uptake rate can readily be calculated from

the DO data during the unaerated period, providing a direct measure of metabolic activity.

The examples given illustrate the potential of this approach in providing information concerning

nitrification and denitrification processes, allowing the development of more advanced control

strategies (Demuynck et al., 1993).

The combination of robust sensor and mathematical model is termed "software sensor", "ob-

server" (if variables are calculated) or "estimator" (if model parameters are estimated) (Bastin

& Dochain, 1990). The more advanced software sensors incorporate the process model as an

essential element and are designed in different ways. Some currently available design methods

are given below.

Taking Eq. 5 as the process model, the basic concept of a state observer can be illustrated.

On-line estimates of the states x̂ are obtained from the following observer equation in which a

Figure 3. Diagram of a typical ultrafiltration
module with cleaning procedure and standby unit.

Figure 4. Nitrate knees (indicated by the arrows)
in an intermittently aerated nutrient removal plant

(hatched boxes indicate aerated periods).
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driving term is included aimed at minimizing the "observation error" between measured values

y and model predictions ŷ =  C x̂ :

dx̂
dt

 =  A  x̂ +  B u +  K (y −  ŷ ) (9)

Estimates of the states are therefore obtained by simply integrating Eq. 9 on the supervisory

computer on the basis of the experimental data. Remark that it is assumed in this example that

all parameters, A , B and C and the input u are known. The design of the observer reduces to the

adequate choice of the matrix K, known as the "gain matrix". The two approaches that have

become standard, i.e. the Luenberger and Kalman observers, both start from the desire to

minimize the observation error e. The dynamics of the observation error are readily obtained by

subtracting the observer equation (9) from the process model (5):

de
dt

 =  
d (x −  x̂ )

dt
 =  A  (x −  x̂ ) −  K C (x −  x̂ )

de
dt

 =   A  −  K C  e (10)

The aim is now reduced to the problem of designing the gain matrix in such a way that the

observation error decreases in a desirable way. In the case of Luenberger observers, the

eigenvalues of [A-KC]  and, hence, the elements of K are chosen in a rather heuristic way, taking

into account some constraints to guarantee stability and convergence (Bastin & Dochain, 1990).

The gain matrix of Kalman observers on the other hand is the solution of a quadratic optimization

problem where the mean square observation error is minimized. The solution considers knowl-

edge of measuring errors as summarized in the covariance matrix. The expressions of the Kalman

observer can be found in numerous works, e.g. Stephanopoulos and Park (1991). The multirate

Kalman Filter is an interesting extension for bioprocesses since it allows to accomodate the use

of a combination of sensors with multiple sampling rates (Gudi & Shah, 1993).

Figure 5. Dissolved oxygen (lines) and deduced oxygen uptake rate (symbols) profiles in a sequencing
batch reactor with on/off DO control with dead-band. Completion of nitrification is indicated

(Demuynck et al., 1993) .
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The design of state observers as given below holds for linear models like the one of Eq. 5. For

the nonlinear models, as found for many biological systems, approximate observers have been

proposed. These so-called extended Kalman (EKF) and Luenberger filters are based on

linearization of the nonlinear model of Eq. 7 into the formalism of Eq. 5, for instance:

A(x̂) =  




∂f(x)
∂x



 x =  x̂

                 C(x̂) =  




∂h(x)
∂x



 x =  x̂

(11)

The gain matrix is designed in a similar way as in the linear case (Jones et al., 1989; Bastin &

Dochain, 1990; Stephanopoulos & Park, 1991).

The second type of software sensors are the parameter estimators. A number of techniques have

been proposed to incorporate the process model as well. 

In the "observer-based parameter estimator", the model (with the unknown parameters) is used

to predict the states which are compared with the measured states. Subsequently this observation

error, which is considered to reflect the mismatch between the true parameter values and the

estimates, is used as the driving force in a parameter update model (Bastin & Dochain, 1990).

In addition to the observer gain, the user must also supply the gain matrix of the parameter

updating law.

A second approach consists of rewriting the process model in a linear form from which the

parameters are readily estimated (Bastin & Dochain, 1990). This algorithm can be transformed

into a standard recursive least squares algorithm for on-line use. A number of user supplied

tuning parameters must be chosen, typically by trial and error. Rather important is the forgetting

factor. Conceptually it determines the amount of old information retained for parameter

estimation. Improper choice of this factor may lead to identifiability problems if the dynamics

of the process are insufficient to provide the necessary richness of information. When the data

horizon is too small it may occur that only steady-state process behaviour is observed, with the

result that some parameters are unidentifiable. This may lead to considerable problems known

as covariance blow up or parameter burst (Gendron et al., 1993; Yung & Man, 1993). When the

forgetting factor is set to one, all collected data is retained for parameter estimation. Hence, a

new observation will have a diminishing contribution on the update of the parameters. On-line

variation of the forgetting factor by a recursive algorithm has been presented by Yung and Man

(1993) as an elegant solution to these problems.

Extended Kalman filters have also been applied for parameter estimation. The basic idea is to

consider the unknown parameter as an additional state behaving with unknown dynamics. Unless

the parameter estimates are well initialized, problems of divergence and biased estimates can

be expected (Bastin & Dochain, 1990).

The dual problem of estimating both unmeasurable states and parameters is a matter of intense

research. Such software sensors have been termed adaptive observers because they are state

observers which are adaptive by introduction of a parameter updating law. Extended Luenberger

and Kalman adaptive observers have been proposed. Properties and tuning prerequisites are a

combination of the characteristics of the parameter estimator and state observer algorithms. 

The divergence and stability problems noticed when dealing with an EKF for parameter

estimation have led to the Sequential State/Parameter Estimation (SSPE) algorithm (Stepha-

nopoulos & Park, 1991). In SSPE the advantages of the EKF for state observation is combined

with an independent parameter estimator with desirable properties. The operation of this
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software sensor is as follows: first, the parameter vector is determined so as to minimize

prediction errors and, subsequently, the states are estimated on the basis of the measurements

and the updated model. Stephanopoulos and Park (1991) also adressed the problems of the

proper choice of forgetting factors to maintain the desired convergence and tracking capabilities

of the parameter update algorithm.

Research topics
Main emphasis in current research is given to the following topics (Henze et al., 1993; Olsson, 1993):

• Development of new measuring principles: Optic techniques to determine chemical composition

of influents and effluents are a main research topic, another being the development of techniques

that measure biological characteristics such as metabolic activity (respirometry) or biomass

morphology (image analysis).

• Improvement of the reliability of sensors by incorporation of automated cleaning systems, auto-

calibration and autodiagnosis,

• Decrease of the maintenance requirements by adapting the design to deal with the harsh conditions

the sensors have to operate in,

• Increase of the information content of the data by combination of proven sensor technology with

new process insights. It is studied how the advances in modelling methodology can be incorpor -

ated in the design of new software sensors,

Building Block 3: Actuators

A relatively limited choice of control actions exists in wastewater treatment processes. Confronting the

list of manipulable variables presented 20 years ago (Buhr et al., 1974) with current practice (Table 2)

shows that the possibilities have not increased although the complexity of the processes has increased

significantly. 

Table 2. Variables available for manipulation of a wastewater treatment process.

Manipulable Variable Process Applicability

Bypass/Overflow 1,2,3 ∀

Equalization/Buffering/Calamity Basin 1,2,3 ∃

Feeding Point/Step Feed 2,3 ∃

Aeration Intensity 2,3 ∀

External Carbon Source 3 ∃

Internal Recycle Flow Rates 1,3 ∀

Chemical Dosage 1,3,4 ∃

Return Sludge Flow Rate G ∀

Waste Sludge Flow Rate G ∀

Sludge Storage G ∃
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Some advances have been made in the area of chemical additions. As an example new polyelectrolytes

and filament burning agents (peroxide) have been introduced to improve settling properties (Switzen-

baum et al., 1992). With respect to nutrient removal systems, chemical dosage of phosphorous

precipitants and external carbon sources for increased denitrification capacity have reached wide-

spread full-scale application (Wedi & Niedermeyer, 1992; Aspegren et al., 1993; Lötter & Pitman,

1993).

Research topics
New possibilities to act upon the wastewater treatment processes are mainly situated in the area of a

more pronounced integration of all systems from the sewer to the receiving water (Henze et al., 1993;

Olsson, 1993).

• Sewer system: While currently almost no integration of operation exists between the sewer

systems and the wastewater treament plants, new possibilities are being studied, for instance in

storm water flow management by manipulating pumping stations on the basis of rainfall forecasts

from weather radar images (Aspegren et al., 1993). Dynamic sewer operation can be used to

buffer the loading of the plant to a higher extent than achievable with installed equalization

basins. Sewer operation has to consider how much load the plant can receive and bypass

decisions have to be made, based on on-line calculations both in the sewer and treatment plant

(Lijklema et al., 1993).

• Sludge treatment effluents: Recycle streams from sludge treatment may contain high nitrogen and

phosphate loads. Manipulation of the recycle flows is central to overall plant management and

enables the optimum use of available treatment capacity, e.g. by buffering sludge treatment

effluents in highly loaded periods (Grulois et al., 1993). Another potential use of the sludge

treatment facilities in control of the wastewater treatment process is the application of hydro-

lysed sludge as a carbon source for denitrification (Kristensen et al., 1992).

Building Block 4: Control Systems

Control strategies currently employed in wastewater treatment processes are mainly conventional

controllers such as on-off and PID-type feedback control systems. While feedforward control has found

some applications, other advanced control strategies, adaptive control systems in particular, have been

evaluated only at pilot-scale and in a few full-scale installations for limited periods. As far as known,

no regular use is made of the latter control systems in full scale treatment plants. The obstacles to be

overcome by control systems are considerable, however:

• Large disturbances in influent flow, load and composition (toxicity),

• Adaptation of the sludge, making the process time varying,

• Although the available sensors and actuators are limited, multiple-input multiple-output

(MIMO) systems should be considered.

The following section will revise some advances made in recent years and address some open questions.

Conventional feedback control
Although optimal control performance cannot be expected from conventional PID or on-off controllers

for the timevarying, nonlinear processes considered, their widespread use in industry and the resulting

familiarity with their properties and concepts for design, have made that these regulators are the most
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widely applied in wastewater treatment processes and this already for a long time (Andrews, 1974;

Marsili-Libelli, 1989; Heinzle et al., 1993). Such controllers essentially calculate a control action on the

basis of a process output which is continuously compared with a desired value or setpoint (Dunn et al.

1992). In a PID-controller the error ε between actual and desired value is used in the following way to

produce the controller output:

u(t) =  Kp 




ε(t) +  
1
τi

 ∫ ε
0
 t (σ) dσ +  τd  

dε(t)
dt





(12)

The three coefficients Kp, τi  and τd  are weights given to the proportional, integral and derivative action

respectively and must be tuned for optimum performance of the regulator. To this end either

experiments on the plant must be performed or, alternatively, simulations with an accurate process

model can be used (Vaccari et al., 1988; Dunn et al., 1992; Marsili-Libelli, 1992; Heinzle et al, 1993).

These values depend on the process characteristics and are therefore subject to change in the

nonstationary case. Moreover, since PID controllers assume a second order process model, any

deviation of plant behaviour from this process model must be compensated by adaptation of the control

parameters. The self-tuning PID regulators that have been developed are discussed below.

Another important remark is that while multiple inputs and outputs should be considered for the

description and control of the process, the wide span of response times (time constants range from

minutes to days) makes it possible to decouple many unit processes (Olsson, 1992; Lessard & Beck,

1993). Hence, separate local controllers of the conventional type can provide reasonable control

performance, explaining why such SISO (single input/single output) controllers have been succesful in

wastewater treatment. For instance, the fast dynamics of the dissolved oxygen concentration can be

controlled independently of the control of the sludge concentration or sludge age.

Optimal control
While experimentation is required for the tuning of the abovementioned regulators, either on the plant

itself or within a simulation environment, design techniques have been developed that allow to devise

the optimal controller for a particular process model and performance index. Certain constraints

imposed on the control action, such as a minimization of the control effort, can be accomodated during

design.

In case linear (or linearized) models are considered, optimal feedback controller design has become a

generally accepted technique (Marsili-Libelli, 1989). Linearization around the desired operating point

was used by Fan et al. (1973) to derive an (approximative) optimal feedback control of the flow rate

on the basis of effluent substrate concentration measurements. Other examples for sludge recycle and

dissolved oxygen control are reported in Marsili-Libelli (1989).

For nonlinear models, only a few results of an analytical solution of the optimal control law have been

published (d’Ans et al., 1971). Most results, however, have been obtained by numerical solution of the

optimization problem (Sincic & Bailey, 1978; Yeung et al., 1980; Marsili-Libelli, 1982; Kabouris et al.,

1992; Demuynck et al., 1993).

Problems with some of the resulting control strategies are that they are not stated as a closed-loop

solution and rely on the (unrealistic) assumption of a perfect process model with fixed model structure

and parameters. The results of von Jeszensky and Dunn (1976) and Yeung et al. (1980) are well-known

examples of the dependency of optimal control actions on the model structure. In view of the

uncertainty on the correct model and the inherent nonstationarity of the process, it is advisable to be

cautious with the implementation of such control systems. However, as has been shown in Van Impe
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et al. (1992) the theoretical results may indicate some process features, e.g. an optimal operating point,

that could have remained unnoticed if the exercise wouldn’t have been done. Results as these may lead

to so-called heuristic control laws that exploit such an operating point for instance. These control laws

may be less sensitive to deviations of process behaviour and may therefore give reliable control

performance. 

Another useful result of such optimization studies is that models can be put into jeopardy, in other

words, the models are strained to their limits (Boyle & Berthouex, 1974). Model inadequacies or

differences in model behaviour may stand out and, with these new insights in model behaviour, specific

experiments may be designed to discriminate between the candidate models.

Advanced control
The potential of advanced control systems has been claimed for a long time, but so far only a few

advanced control laws have been applied in full-scale wastewater treatment plants. Control strategies

that have been studied rather well are feedforward and ratio controllers, linear and nonlinear adaptive

control laws, and MIMO control systems. Recently, intensive research is going on in the field of neural

net and fuzzy control. These different research themes and the potential of the resulting techniques

are reviewed below.

• Feedforward and ratio control:  One of the disadvantages of feedback control is that an error must

exist before any control action is exerted. This can be a serious disadvantage for processes with

a slow response to changes because considerable time may elapse before the change is detected.

An extreme example is the effect of a toxic pulse where feedback action may be initiated when

the plant is already down. While modifications of the traditional feedback controllers exist in

which significant dead time can be compensated, their effectiveness and stability depend to a

large extent on the exact knowledge of the dead time and process model (Stephanopoulos, 1984;

Gendron et al., 1993).

In feedforward control laws, on the contrary, the disturbance is measured directly and the

controller tries to anticipate the effect it will have on the process output. A disadvantage of

feedforward controllers, similar to the drawback of a dead time compensation solution, is the

sensitivity to modelling errors. Uncertainty in the process model will therefore probably necessi-

tate a feedback controller to adjust feedforward action (von Jeszenszky & Dunn, 1976). Ratio

control is a special case of feedforward control in which a control variable is maintained

proportional to a measured input value. An early example of ratio control is the strategy in which

the sludge recycle flow rate is maintained proportional to the influent flow rate (Brett et al., 1973;

Andrews, 1974).

• MIMO control systems: As mentioned above, the large differences in time constants of the

different unit processes allow to decouple their control to a certain extent. Still, performance

improvements can be expected by considering the MIMO nature of the process during controller

design. One of the problems of designing MIMO controllers is that the number of feasible,

alternative configurations of control loops can be very high (Stephanopoulos, 1984). Also,

interactions between control loops may lead to instability of the controlled system (Lech et al.,

1978). Minimization or complete elimination of the interaction between loops is the goal of

different design techniques that have been proposed (Stephanopoulos, 1984).

• Control of nonlinear processes: The standard methodology to design control systems for nonlinear

processes consists of linearizing the process model around a certain operating point and then
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design a linear controller for this approximate model. While controller design is much facilitated

in this way, actual closed loop behaviour will remain nonlinear. Hence, one can only guarantee

stability in the neighbourhood of the operating point where the approximation was made. In an

alternative design technique, termed linearizing control, a nonlinear controller is devised which

is precisely designed so as to achieve linear closed loop behaviour for all operating points

considered by the nonlinear process model (Ko et al., 1982; Bastin & Dochain, 1990).

The design procedure is as follows. Consider a nonlinear process model with one input and

measurements or estimates of all states:

dx
dt

 =  f x , t , θ   +  b u (13)

Suppose that the aim is to track a certain reference behaviour x∗ (t), then a control law is to be

devised for manipulation of u. To impose linear behaviour of the closed loop system, a stable

linear reference model is imposed on the tracking error ε =  ( x −  x∗  ):

dε
dt

 =  − λε (14)

Rewriting this in x gives:

dx
dt

 =  − λ(x −  x∗  ) +  
dx∗

dt
(15)

The linearizing control law is obtained by elimination of 
dx
dt

  between (13) and (15), yielding:

u =  
− λ(x −  x∗  ) +  

dx∗

dt
 −  f (x , t , θ )

b
(16)

One should remark that the nonlinear process model f is incorporated into the control law. The

extension of linearizing control towards MIMO models was presented by Dochain (1991).

• Adaptive Control:  Since the early sixties (Elgerd, 1967) one of the most intense fields of research

in control theory is the development of adaptive regulators. Adaptation of the controller may

be necessary for two reasons. First, the linearized models used to design a controller depend on

the operating point where linearization took place. Hence, if an operating point moves away

from the design point, the controller’s parameters need ajustment so as to maintain optimal

performance in the new operating conditions.

A second need for adaptation of the control law is due to the inherent nonstationarity of

processes like the biotechnological systems considered in this work. Since the regulators are

designed on the basis of nominal values of the process model, the need exists to adapt the

controller’s parameters.

Before adaptive control systems are discussed in some more detail, it is worthwhile to mention

a more recent, alternative approach to deal with systems with time-varying or uncertain dy-

namics.  In this methodology, model uncertainty is taken into account and fixed, linear time-in-

variant robust designs are used that are based on the minimization of the infinite-norm of a

sensitivity function, hence the term H∞or robust control theory. A main disadvantage of these

control systems is that their performance in terms of conventional performance criteria is
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sacrificed to ensure robustness (Gendron et al., 1993).

Within this research field two schools of thought have grown on the way model uncertainty should

be described (Goodwin et al., 1992). The hard bounding approach considers worst case beha-

viour, leading to overly conservative error bounds on the models and considering in fact that all

values, even the worst cases, are as likely as the others. In the soft bounding school, stochastic

distributions of the modelling errors are considered, leading to confidence regions of the process

behaviour rather than hard bounds. Hence, in this approach an engineering tradeoff is sought

between uncertainty and performance.

While in the approach mentioned above, a fixed controller is designed based on a fixed model,

adaptive control systems on the other hand, will introduce a time-varying control system whose

parameters are updated as process behaviour changes, for instance by a change of operating

point or by the inherent time-variancy of the process characteristics. In an adaptive control loop

three functions must be performed (Elgerd, 1967): 1) Identification of plant dynamics, 2)

Decision on the proper control strategy and 3) Adjustment of the controller parameters. 

In the case of the linearizing control mentioned above, adaptivity is simply introduced by

replacing the model parameters θ in the control law (16) by their estimates obtained from an

on-line parameter estimator. The resulting control scheme is schematized in Figure 6. Applica-

tions of adaptive linearizing control have been presented for anaerobic digestion and activated

sludge systems (Renard et al., 1988; Dochain & Perrier, 1992).

An adaptive modification of the conventional PID controller, the self-tuning regulator (Figure

7), has found widespread application in the process industry, but, so far only some examples have

been reported in wastewater treatment processes (Marsili-Libelli, 1978; Olsson et al., 1985;

Marsili-Libelli, 1990). The adaptation of the PID parameters is essentially based on the on-line

identification of a simple linear model that gives a local description of process dynamics. From

this model, the optimal controller parameters are readily calculated using one or another control

design criterion (Stephanopoulos, 1984). One should remark the three components in the

Figure 6.  Adaptive control loop with on-line state and parameter estimation 
(M: measuring device, X: State, A: System dynamics, U: input, Y: output).
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adaptation procedure as mentioned above. A well studied application of self-tuning PID

regulators is the control of dissolved oxygen in activated sludge plants. Such controllers have

been shown to be able to deal with changes in mass transfer efficiencies and important variations

in oxygen demand (Olsson et al., 1985; Marsili-Libelli, 1990).

An important problem with adaptive control systems is the necessity for on-line identification of

the process model while the plant is in closed-loop operation. To illustrate the nature of this

problem, the example of Figure 8 is given. Suppose one wants to control the substrate concen-

tration in an activated sludge aeration tank. In a process model, the degradation kinetics can

take different functional forms. In this example the dependence of the degradation rate on the

substrate concentration is considered to be either according to the Monod or Haldane kinetic

laws. However, if the plant is well controlled, it may be that measured substrate concentrations

Figure 7. Self-tuning regulator.

Figure 8. Closed-loop identifiability problem when considering Haldane or Monod descriptions
for substrate degradation kinetics.
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range only between 1 and 4 mg/l. With such (noisy) measurements it will hardly be possible to

make a decision on the correct model. Hence, if an important disturbance affects the plant such

that the substrate concentration rises above the normal concentration range, a suboptimal

controller action may result because the wrong model was identified. Clearly, the substrate

concentration range over which data are available should be extended to the range needed for

proper identification. 

This simple example illustrates that a conflict arises between control performance, which should

result in very smooth operation, and need for informative data on the process for model

identification, which requires sufficient variations in the measured variables. These contrasting

requirements can, however, be reconciled if a probing or excitation signal is superimposed on

the control action (Box & MacGregor, 1974; Aström & Hägglund, 1984; Partanen & Bitmead,

1993). Examples of this solution are found in adaptive control designs for the dissolved oxygen

concentration (Holmberg, 1982; Howell & Sodipo, 1985; Holmberg et al., 1989; Marsili-Libelli,

1990; Vanrolleghem & Verstraete, 1993). 

Another approach to deal with the identification problem is to include special numerical

procedures, such as time-varying forgetting factors that make sure that sufficient information is

retained to allow reliable estimation of model parameters (Shah & Cluett, 1991; Yung & Man,

1993).

Certain identification problems cannot be solved in this way, for instance, the estimation of

dead-times in a model (Gendron et al., 1993). A novel approach consists of considering that the

process model belongs to a bounded class of possible models with fixed parameters. The

identification is then reduced to the choice of the correct model, or, as in the Model Weighting

Adaptive Control (MWAC) approach (Gendron et al., 1993), by weighting the different models

into a composite process model. Hence, the identification is simplified as only the weights need

to be estimated. Weighting can be performed on the basis of the probabilities that a certain

model is the true model, for instance by consideration of their respective prediction errors. The

resulting identified model is then used to adjust the parameters of the adaptive controller.

Gendron et al. (1993) confront this approach with the older multi-model adaptive control

approach (MMAC) (Lainiotis, 1976; Athans et al., 1977). In MMAC, a number of N models,

each with corresponding Kalman filters and optimal controllers are run in parallel. For each

model the probability is calculated that it is a correct model. The probabilities are subsequently

used to bind the control actions of the N controllers to form the control action that is applied to

the process.

Neural and Fuzzy control
Application of neural networks and fuzzy logic is a recent but very intense research area. Both

approaches are fit to deal with ill-defined systems, for instance, the nonlinear time-varying biotechno -

logical processes considered in this work.

Neural networks are based on a black box approach, but in contrast to time series analysis, the internal

structure of neural nets is adapted to nonlinear systems. An essential characteristic of the use of neural

nets is the learning stage that precedes the application. During this stage, examples of desired behaviour

are applied to the net and with a learning algorithm the parameters of the network are adjusted. Once

trained, neural nets can be applied for different tasks, such as process control (Miller et al., 1990; Hunt

et al., 1992). In a neural net for a control application, the inputs to the network consist of measurements

- ACEB.94/pvr.I.20 -



of the process. A control action is then obtained as the network output. The neural net is previously

being trained with measurement/desired output learning data. Adaptive neural nets can also be

proposed, i.e. by initiating a renewed training. While neural control is being used in other applications

and has been evaluated in biotechnological applications (Thibault & Van Breusegem, 1991; Chtourou

et al., 1993), it has, as far as known, not been implemented in wastewater treatment plants yet. However,

other applications are studied. For instance Tyagi and Du (1992) applied a neural net for operational

prediction. Increasing attention is given to neural nets as pattern recognizers (Capodaglio et al., 1991).

Vermeersch et al. (1992) proposed to use a neural net to differentiate among candidate bioprocess

models on the basis of characteristic features contained in data records.

Fuzzy sets are a means of representing qualitative knowledge ("good", "much", "small") in mathematical

terms. In view of the considerable uncertainty which surround wastewater treatment processes, it is not

surprising that this methodology has also found widespread and increasing attention. These last few

years an increasing number of applications have been studied and the first experimental results are

presented in the literature. Fuzzy control systems have been designed for the different unit processes

of wastewater treatment, e.g. controlling the influent pumping rate in a sewer system (Fukano, 1993),

anaerobic digestion regulation (Boscolo et al., 1993), ammonium control in a combined nitrifica-

tion/denitrification reactor (Aoi et al., 1992), the supervision of local PID controllers in an activated

sludge process (Couillard & Zhu, 1992) and the recycle flow rate of a final clarifier (Marsili-Libelli,

1992).

Research topics
Current research is mainly concerned with:

• The study of the interaction between on-line model identification and adaptive control. Optimal

choice of the excitation signals needed for on-line identification is one of the topics of interest.

In addition, the influence of plant design on the quality of measured data is investigated. For

example, treatment plants characterized by alternating operation or sequencing batch reactors

have a clear edge in information quality due to their inherently dynamic operation.

• Another problem gaining a lot of attention is the improvement of the control system while the

plant is in closed-loop operation. Different design methods have recently evolved in which

successive iterations of closed-loop model identification and controller design are conducted.

Problems currently adressed are the search for guaranteed closed loop stability during sub-

sequent iterations, reduction of model and controller complexity, convergence rate of the design

methodology and optimal experimental design procedures (Bitmead, 1993)

• New applications of fuzzy control and neural networks are proposed and validation of the

theoretical results is emphasized in current studies

• From the theoretical point of view, main attention is focussed on the development of design

techniques for robust control. The interaction with model identification receives fundamental

study

• Hierarchical control systems have been developed in the past but are increasingly applied.

Hierarchical or multi-level control consists of a set of local controllers that each act on a specific

unit process, e.g. dissolved oxygen or sludge blanket control, and a supervisory control system

which provides the setpoints for the local controllers in order to guarantee optimal performance

of the whole plant
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CONCLUSIONS

In this paper the current state of process control in wastewater treatment plants was reviewed. The

four building blocks of a control loop were considered, i.e. process modelling, sensor technology,

actuators and control laws. 

Current research in these four areas was summarized. It was indicated that attention was mainly

focussed at keeping up with the progress in understanding of the biological processes occurring in

current treatment plants. 

It is evident from the discussion that the nonlinear and time-varying nature of these systems strains

current system theoretical insights to their limits and stimulates research in the different areas. These

efforts will eventually culminate in new process models dedicated to control, highly informative

measuring systems, specialized actuators and advanced control laws.
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