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MODELS CONSIDERED IN THISSTUDY:

express the dependence of OURex on the biodegradation of k substrates S :

d ,
OURex= - S(1-Yi) d? (pe 1)
i=1

Different model complexities. 4 types of wastewater/sludge interaction:

Type 1 (Exponential): One pollutant, first order degradation (k=1)

dS1 _  Hmaxt X
dt Y1

Type 2 (Single Monod): One pollutant, Monod type of degradation (k=1)
dS1 _ pmaxt X  S1

S1 (pe 2)

d = Y1 Kmi+tSt (pe 3)
Type 3 (Double Monod): Two pollutants, both Monod type (k=2)
dS1 _ pmaxt X  S1
dt Y1 Kmit$S:
ds acX
= M (pe 4)

d Y2 Km2+$S

Type 4 (Modified IAWQ model n°1): Three pollutants, two hydrolyse into the
first substrate which is used for growth according to Monod (k=1)

dS1 _ pmaa X &1

d YT Kmi+$Sz + KeXr + ksXs

dXx

gt = ke

dXx

dts = - ks Xs (pe 5)

In this model OURex should be rewritten as:

S
OURex= - (1-Y1) % — keXr - ksXs% (pe 6)
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Theoretical background of OED/PE

Question addressed:
"with the given experimental data, can the parameters be given unique values'

or: “if a small deviation in the parameter set occurs,
doesthis have a considerable decrease of the fit asa consequence”.

THEMATHEMATICS:

Consider the quadratic objective functional ("sum of squared errors'):

N
J6) =__ZL(yRe> - %) Qi (8 - ¥i) (pe 7)

in which y; and yf\(e) are vectors of N measured values and model predictions

Qi isasguare matrix with user-supplied weighting coefficients.

Parameter estimation can be formulated as:
minimization of J by optimal choice of the parameters®6.

The effect of a small deviation of the parameters 6 on the model fit:
y(t, 8+ 00)= y(t, 6) + %(t)@bé% y(t, 6) + Yo(t) 06 (e 8)

where Yg(t) : output sensitivity functions with respect to parameter variations
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Expected value of Jfor a parameter set dightly different from the optimal one:

EH)(6+ 56H= 69T§ %(Ye(ti))TQi Yoti) %m %u@c. QH (pe9)
i=1

in which Cj represents the

-1 second term reducesto Nm,

m = dimension of measurement vector)

(Qi istypically chosen as C;

To optimize practical identifiability
maximize difference between J(6 + 06) and J(6)
maximize term between brackets= Fisher Information Matrix

N
F= > (Yo(t))'Qi Ya(t) (pe 10)

i=1

expresses the information content of the experiment

= inverse of the ‘

1
V=F 1= % %(Ye(ti))TQi Ye(ti)g (pe 11)

i=1

Parameter variance

use the parameter estimation error covariance matrix V
and the residua mean sgquare &

_ JO
Sz_N—p (pe12)

Approximate standard errors for the parameters:
a(8) = sVVii (pe 13)

optimistic due to linear approximation of the nonlinear model

IMPORTANT:

Parameter variance can be reduced through decreased s (= increase N)
or by reduced Vii ( by OED/PE)
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Confidenceregion of the parameters

J as function of pmax and Km

Crecrive Ffirmrce/ion

3.00

Minimum value Jopt at (Dmax, Km ) within a"valley" in J(Umax, Km ).

(1-d) Confidence region isthe area delimited by
the confidence contour line = set of parameter combinations with functional:

Jopt OHL + NEpFa;p,N— o] (pe 14)

F is the value of the F-distribution with p and N-p d.f. and confidence level a

0.70

0.60 *
0.50 7
0.40 7
0.30 7

0.20

OURex (mg O2/l.min)

0.00

Time (min)
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An Example (2 parameters aand 3 measurement of Sand X)

Output sensitivities deduced from the model equations:

Sa(ti) = %ﬁi; Sp(ti) = %ﬁﬁi; Xa(ti) = @éﬁi; Xp(ti) = %ﬁﬁ (pe 15)

Measurement error covariance matrix C(ti):

Clty) = 1(ti) o%z(ti)E 16
) %mi) (i) (pe 19
and the corresponding weighting matrix Q(tj) = C '1(ti)

The Fisher Information Matrix:

(ti) Xa(ti) 52R11(t) Q2(ti) 5=Sa(ti) Sp(t;
(ti) Xp(ti) %Mtu) Q22(t) ERX a(ti) XMt.)é (pe 17)

whose elements are (tj are omitted for ease of reading):

N
F11= Z Q1155 + 2Q12SaXa + Q22X5
i=1

N
Fi2=F21= z Q11SaS + Q12SaXp + Q1258Xa + Q22XaXp

i=1

N
Fo2 = z Qllsﬁ + 2Q125Xp + szxﬁ (pe 18)

i=1
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Sensitivity Functions for Monod/M odified lAWQ nr 1

OURex measurements as only source of information

The sensitivity of OURex with respect to pmax1 IS (output sensitivity function):

dOUR 0 dS1

dIJmax(:eLX - durnaxlé (1-Y1) % (pe 19a)
_ dg 0S1
=-(1-Y) JtEPHm axl% (pe 19b)

: : e 0S1 | . : :
in which the state sensitivity BW;LKL Is obtained by integration of:

dge 051 5 4 HmaxaX  S1
dt Hmaxlé_ OPmax1 Y1 Kmi+ Slé (pe 202)
K 0S1
__xp s Hmed P oumaal oo
YiEKma + S1 (Km1 + S1)° g
where S1 is calculated by integration of:
dSy _Hmaa X 31 (pe 21)

dt Y1 Kmi+tSt

One can proceed similarly for the sensitivity of OURex with respect to Km1.
The following relations are obtained:

aOURex_ d 681
Kl (1-Y1) dt%rmlé (pe 22)

0S1

K —
dg oS _ _Hmaxa X ™ OKm1 > (e 23)
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Output sengitivities of the IAWQ model as modified by Sollfrank & Gujer,
1991

AOURex _ ds1
ks (l Y ) ks %‘ + keXy + ks)(sé (pe 24a)

_ S1
=(1- Y1)§><r+ Kr =, " dt%q% (pe 24b)

IOURex . Xs  dBps:
ks U Yl)é’(“ KS Ok dté@ks% (pe 25)

State senditivities needed, are:

dEXH o X

gt krri_ aer—kr Xr H: —%(ﬁ krakrré (pe 26)
d BoxsH oX

dt kssi_ ‘%Wf ksak:§ (pe 27)

Output and state sensitivitiesfor pmaxi and Kmi are asfor the Monod model
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dOUR/dKm

Properties
Sensitivity functions indicate conditions where the dependence is the largest
which conditions provide most information on the parameters.
The (state and output) sensitivities are dependent on the parameter values.
a general characteristic of nonlinear models
the Fisher Information Matrix is dependent on the parameter values
which hasimportant implications for the OED/PE
If sensitivity functions are linearly dependent
=> Fisher Information Matrix singular = > Non-informative experiment
Calculation of the rank of the Fisher Information Matrix
If no linear dependency exists, it should be full rank
Condition number of the Fisher matrix (ratio of largest to smallest eigenvalue)
indicates whether the sengitivities are nearly linearly dependent
the higher the condition number, the lower the practical identifiability.
SINGLE MONOD MODIFIED [IAWQ
85 0:30 r AN 16 E sg i‘g
& o207 N 10 § E g
8 Substrate  \ E 2 (S
0.10 N 16 § o %
fime (min 0 5 10 . 15 . 20 25 30
Time (min)
0.250 | Km 1 5.0E+03 080 ks ze0
0.125 1 2.5E+03 0.125 |; AN \/ Km 1 1250
0.000 0.0E+00 3 g | — \ ]
Time(min) Time(min)
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Practical | dentifiability of the Initial conditions

For the Single Monod model:

0OURex o d8 0S1
as0) - LY dt%&(@%

o MmaxiX 0 S1
= =YDy 0S1(0) FKm1 + Slé (pe25)
Introducing the initial condition:
JloURem)dr
S1(t) = S1(0) - 1- Y1 (pe 29)
yielding:
0OURex _ (1-Y1) tmaxt X @ (1-Y1) 510 - | JOURex(D)dT
0S1(0) Y1 0510) 51 - Y1) FKm1 + SHOF- J{OURex®)r
(pe 30)
and the final equation:
OOURex(7)
— _ |t Re )
0OURex _ (1—Y1)2 Hmax1 X Km1 (1=Y1) 'ro 0S1(0) ar
0S1(0) Y1 2
§(1 ~Y1) Hm1 + S1(0)H- I(;OU Rex(T)dt ﬁ

(pe 31)
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Optimal Experimental Design for Parameter Estimation

Fisher Information Matrix (= covariance matrix) = corner-stone of OED/PE

these matrices summarize the information content of an experiment
or the preciseness of the parameter estimates.

Different scalar measures of these matrices can be optimized:

A-optimal design criterion: min tr(F'l)
modified A-optimal design criterion: max tr(F)
D-optimal design criterion: max det(F)
E-optimal design criterion: max Amin(F)
F
modified E-optimal design criterion: min m

in which Amin(F) and Amax(F) are the smallest and largest eigenvalue of F

| nter pretation

A- and D-optimal designs
minimize the arithmetic and geometric mean of the identification errors

E-criterion

minimize the largest error.
maximize the distance from the singular (non-informative) case

Modified E criterion
optimize objective functional shape (ratio of largest to smallest eigenvalue)

Modified A-criterion

No interpretation
may give rise to non-informative and unidentifiable experiments'!!
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EXAMPLES OF OED/PE FOR SINGLE MONOD MODEL

Degrees of Freedom for OED/PE

- Optima initia substrate

- Optimal additional pulse with fixed initial substrate
- Optimal additional pulse and initial substrate

- Optimal design with multiple additional pulses

and Constraintsfor OED/PE

Experiment time (hard bound)

-NPE: 11 -




Theordtical Example 1. initial subgtrate

Modified E:
substrate concentration 10 times lower than reference

shape has improved (ratio has decreased by 3.3)

at expense of parameter estimation quality: confidence regions have increased
for umax1 by an order of magnitude
for Kma with a factor 3

——0

Other four criteria

experiments with the highest possible information content
from the sensitivity functions:
experiment where exogenous oxygen uptake rate isdifferent from zero
for the longest possible time
the substrate isalmost completely oxidized by the end of the experiment

confidences in estimates of pmax1 and Km1 improve with a factor 2.4 and 1.25

-NPE: 12 -
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Theoretical Example 2: Oneadditional pulse

initial substrate concentration is fixed identical to the base case

0.70 25
0.80
£ 120
0.50
0.40 -
0.30 -

0.20 -

OURex (mg 02/1.min)

0.10

-
]
Substrate Coneentration (mg/1)

0.00

0 5 10 15 20 25 30 35 49 0 5 10 15 20 25 30 35 40

Time (min) Time (min)

Differences among the design criteria are considerable.

A- and modified A:
prolong experimental conditions with maximal substrate degradation
= > the most important improvement for pmaxi

D- and E-criteria
substrate isinjected only after exogenousrespiration dropped completely
substrate for alonger period of timeat S= Km1

Modified E-criterion:
design in between both approaches

confidence interval for the pmax1 only decreased with 10 %,
the Km1 accuracy increased with more than 50 %

covariance between pmax1 and Kmz1 isreduced to the same extent
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Two-dimensional optimization problem

Theoretical Example 3: Additional pulse+ Initial subgsrate

In example below: fixed tpuls at 18.2 min; optimize S1(0)

1.5E-01

8mallest Elgenvalus of F

0.0E+0C

1.0E-08

Trace{F")

0.0E+00

Lambda

A modA

5.0E+10 ‘
4.0E+10 -
3.0E+10
2.0E+10

1.0E+10

E

0.0E+00

1.0E-01

5.0E-02 -

7.5E-07 [

5.0E-07 [

2.5E-07 [

100

8,(1=0) (mg/1)

modE E D A modA
20 40 80 80 100

8,(t=0) (mg/1)

Det(F)

Trace(F)

2.5E+08

2.0E+08 [

1.5E+08 -

1.0E+08 -

5.0E+07

D.0E+D0

1.0E+09

7.5E+08

5.0E+08 [

2.56E+08

©.0E+00

80 100

80 100
§,(=0) (mg/y
mo‘dE T D\A\;}d&\
mod
. |
. |
. |
. |
|
100

8,(t=0) (mg/¥)
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Discussion

Optimal experimental designs depend significantly on criterion

Local extrema (e.g. E-optimal)
corresponding to conditions optimal for some other criteria

Modified E has rather different behaviour
probably due to the different underlying objective

For tpuls=18.2 min (= the optimum pulse time for S1(0) =23) :

S1(0) = 23 isthe minimum (E-criterion)
S1(0) =23 remainsalocal minimum (mod E; A)

Presence of local extrema may cause convergence problems

3D-plots:

"Ripple" on the surface
correspondsto conditionsin which the pulse isadded
at the time the substrate initially present in the reactor is
depleted

"ripple" moves further as S1(0) increases

- NPE : 16 -
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Theoretical Example 4: Multiple Pulses

6.0E+09

5

5.0E+08

4.0E+08

3.0E+08

Lambda

2.0E+08

1.0E+08

OnOE+OQ | | | | | |

Number of pulses

Benefit of adding another degree of freedom to the design becomes marginal.

Design canoccur sequentially

=> computational burden is considerably lower
only one-dimensional optimization problems must be solved

0.70 35
0.60 - OCUBRex 41 30 .
—~  0.50 25
C
E 5
= 0.40 20 5
o =
@ 0.30 15 8
E =
y 8
g 0.20 10 9
2 @
© 610 5 2
o]
=
(723
0.00 0
| | | | | | |

Time (min)
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NOMENCLATURE

Ci

F

J

Jopt
Kmi

Kr

Ks
Amax
Amin

m
Hmaxi
N
OED/PE
OURex

y (8i)
Yo

: Measurement error covariance matrix

. Fisher information matrix

. Objective functional

: Minimal value of the objective functional

: Monod half-saturation coefficient for substrate i
: Rapid hydrolysis rate constant

: Slow hydrolysis rate constant

. Largest eigenvalue of F (in absolute values)

. Smallest eigenvalue of F (in absolute values)

: Dimension of measurement vector

: Maximum specific growth rate on substrate i

: Number of measurements

: Optimal experimental design for parameter estimation )
. Exogenous oxygen uptake rate

: Weighting matrix

: Residual mean square

. Concentration of substrate i

. Standard error of parameter i

: Time of pulse addition

. Parameter |

. Parameter estimation covariance matrix

. Concentration of biomass

: Rapidly hydrolyzable substrate concentration

: Slowly hydrolyzable substrate concentration

. Yield coefficient on substrate i

: Measurement vector

: Model prediction vector

: Output sensitivities with respect to parameters 0

)

)

)

)
(mg COD/I)
(/min)
(/min)
)

)

)
(/min)
)

(mg O2/l.min)
)

)

(mg COD/I)
)

(min)

)

)

(mg COD/I)
(mg COD/I)
(mg COD/I)
(mg CODx/mg CODs))
)

)

)
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Why Experimental Desgn ?

LIMITED RESOURCES:
Time

Expensive Equipment
INCREASED DEGREES OF FREEDOM FOR EXPERIMENTATION

QUALITY OF INFORMATION W.R.T. PURSUED GOAL

What arethe Pursued Goals ?

Two basic purposes:

Establish the form of an adequate mathematical model of the process

Estimating precisely the values of its parameters
History
Not anewtheory -> alreadyin 1922 -> Fisher -> MPN-test for bacteriology

Most of the work on Static Models (regressions, ...)
Onlyin the last 15 years. Dynamic Models -> Parameter estimation

Initial Work: Non-sequential Design:
Parallel experimentation (e.g. agriculture, screening)
Reason: long experimentation time

Later: Sequential Dedgn :
Take advantage of previoudy acquired insights

-NPE:1-
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Three Steps

Definition of Objective Function
(= Mathematical Trandation of the Objective)
Enumeration of Degrees of Freedom and Constraints

Extremization of the Objective Function

Some Degyress of Freadom to consder:

What to measure --> System Définition isimportant (Variables,...)
Where to measure  --> Problem of Sensor Location
When to measure --> Sampling Strategy

Which manipulations --> Excitation Signal Design (snhe-wave, pulse)

What datatreatment --> Noise rejection, Outlier detection/removal
Elimination of uninteresting dynamics

Some Advice

"While several different design variables associated with models and methods
can be tried out on the computer, the experimental data can be changed only
by a new experiment, which could be a costly and time-consuming procedure.

Therefore it isworthwhile to design the experiment thoughtfully so as togenerate
data that are sufficiently informative"

"It iswise to let the experiment resemble the situation under which the model
isto be used"

" Careful experiment design yielding data with good information is the basis of
a succesful identification application”

-NPE: 2-
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A simple example: Structure selection/Parameter estimation

REGRESSION Y= bX+ a or Y= cX%+ bX + a

Degrees of Freedom: Choice of the values of the independent variables X

Congraints: Number of values= 14

Standard Deviation of b:
o
> Bxi-X

Structure selection based on ANOVA:

q:):

Variance Sum of Squared
Errors
explained by Y=bX+c SSR1
explained in addition by X2-term SSR2-SSR1
Residual Error SSE2
Total Error SSTOT

Depending on the a priori knowledge on
Model Structure different designs result:

Design Degrees of Freedom % Number
SSR2-SSR1  SSE2 of sites

a 12 0 0.43 14

b 5 7 0.4 7

c 3 9 0.33 5

d 2 10 0.31 4

e 1 11 0.32 3

f 1 11 0.29 3

g 0 12 0.27 2

® 0 06 0 068 00 0008 0 00
-1 1

[ [ . L] ° L] »
[ J [ ] ® ® ® [ ] *
-1 0 1
L] ®
L} [ )
L 3 [ [ ® [ ]
L ] [ [ [ [
-1 0 1
L J L
. ®
L ] L
* [ ] .
* [ [ *
-1 1
[ ]
[ ] ] [ ]
[ ] [ ] [ ]
[ ] d [ 2 L]
[ ] [ [
-1 0 1
] [ )
L ] L
L] [ ]
] [ ]
[ ] L ] ®
(] L ®
-1 0 1
[ ] *
L] [ ]
[} [ )
[ ] [ ]
[ L ]
L ] [
[ [
-1 1
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Theoretical Background of OED/SD

Problem Statement:
Design an Experiment to Discriminate between rival Models M1 and M2

Hunter-Reiner Approach (1965)

Choose Experimental Conditions ¥ such that Eﬁ/ll()q) - f\\/lz()q)H2 IS max.

2 x)

N

X2

Concentration of Py

Here: take x2 for its max. Discriminative Power

x1 will tell us nothing !!

BUT: the uncertai g\ty on the model
predictions M(k)()q) must be

taken into account
Example

Discriminate between
Y=bX+ a and Y= bX

-NPE:1-
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The Box-Hill Approach (1977)

with n Experiments performed, design the (n+1)th Experiment

Divergence between m rival Models Mgt Experimental Conditions ¥:

omd _ Fik - Fij _ %m/l(k)()ﬁ)—l\l\/'(j)()ﬁ)g@
P00 = kzzl j:glnk’n i E%szzik%)zmziié 1 L

ERERANE NS

where ozik isgiven by:

Fic= VMoo= o B xd]

or for nonlinear models approximated by:

S Bl P B

and lNkn is the Probability that Model k is adequate after n Experiments
Mk, is calculated according to:

Pk Mkn-1

m

2 i Min-1

=1

where pk is the probability of the nth observation, (yn ) under Model k:

2
- - 1 x 1 VIGON
Pk = Pk (Yn) = %zﬂ%ﬁozn,k%me p% 2%)2+02n,ké%/ M % E

Mkn=

and

1
Mkn=0= m
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Example
- Model 1:
- Model 2:
- Model 3
- Model 4
Initiolly
After n =z 5
Preliminory

Observations

nn

o ~N

vir 3
u o
o uw

Y1(X) = 611 X

Y2(x) = 621 + B2 X

Y3(X) = 631 + B32 X+ 833 °
Ya(X) = 641 X + 642

II|°=.25 n20 =.25 1'I30=.25 H4O =.25%
| { 1 |
Model | 2 3 4
II -.66
35
Tg=00 Tg=.01 Mg =33
; A
i 2 3 4
1'136 =.88
II“..: 00 nzs =.00 M, =12
| 2 3 4
“37 =.75
II”:.oo i, =.o_o I, =.25
" 1
| 2 3 4
U
Hse =.90
18 =.00 HZB =.00 48 =.|10
| 2 3 4-
I
1'[3 =.97
Mg=.00 T,y=.00 ] T4 =.03
! 2 3 4
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The Munack Approaches (1992)

Discrimination between 2 Dynamic Models

Two approaches to discriminate between 2 models:
Maximize the difference in responses (trajectory)

Look for dependence of parameters on experimental conditions

+
o AP, 112
initial ~| AP , I
experiment
Ident. ident. || [ Simui. - e T”e T
Model 1 P1 (u‘) . 2 Model 1 P, (u2) Model 1 + J 1 4
e e *
1 My! M2
- System [— yhu) second [—4+ System you)
experi- .
ment \ ] Y2(Pau?)
ident. | P2(u") ident. | P2(v") [ Simul, * [T 2 1 .
Model 2 Model 27T | Model 2 o, Olleél dt ),
i 2
E
"'}\ APy
& aP1?
+ Je,

Parameter distancewhich takes the estimation accuracy into account
is calculated by the Minimal M ahalanobis Distance:

Py —

Distance in Traectory should also take into account that Model complexity
should be minimal:

Penalty term for model complexity: AlC= f(Fit)+ g(number of parameters)
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Propose Experiment

OPTIMIZATION LOOP

Munack Method 1: Maximize Trajectory Difference

Perform hypothetical experiments through simulation with the 2 models
and do the analysisasif these data are originating from the real process.

1) consider Model 1 correct -> Fit model 1 and 2to Model 1 generated data
2) consider M odel 2 correct -> Fit model 1 and 2to Model 2 generated data

Calculate Difference between the (simulated) Trajectories
Maximize the smallest of the two Differences obtained

Jiz T
Jeoem ——
yi (P57
Py
Ident, ] simul. ident. | Pi? [ Simut.
Model 1 = Model 1 Model 1 Model 1
_?N
1 Mt :;;" u?
4 System [— yi) c
E
é 5
Ident. L] simut. ident. | P2°.[ Simul.
Model 2 Model 277 - Model 2 Mode! 2
y2(P2',u%)
P,
T o P2 )2
T Y2 (P24,u9)
I J el e dt

identification based on
the first experiment

design of the second experiment
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Munack Method 2: Maximize Parameer Change
Perform hypothetical experiments through simulation with the 2 models
and do the analysisasif these data are originating from the real process.
OPTIMIZATION LOOP
Propose Experiment
1) consider Model 1 correct -> Fit model 1 and 2to Model 1 generated data
2) consider M odel 2 correct -> Fit model 1 and 2to Model 2 generated data
Compare parameter sets for the first (real) experiment
and the second (smulated) experiment
Maximize the smallest of the Mahalanobis Distances
P11 __l Plz VT2
f : Y1 u?)
T e p PR
1 Myl ;?“ 2
u System |- ') Q?F 4
=
£
dert, | Vo' | &2 Simu, ident.
Model 2 Model 2[— Model 2
¥2(P2' u?)
P,'
- P2 \74
i
| identification based on i design of the second experiment 1
the first experiment
- J

-NPE: 6-



Heuristic Discrimination
Define a criterion function based on experience

Example:

Design mixture of BOD and NH4Cl to guarantee reliable discrimination
between Single Monod and Double Monod models

Objective Function: Reliability of Inflection Point Determination
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Dual Problem of Modd discrimination/Parameter estimation

Very few results

Standard approach:
experiments for Model Discrimination

Experiments for Parameter Estimation

Hill, Hunter and Wichern (1968):

Choose experimental conditions ¥ to maximize:

T +E1-WH§ﬂj,n 2
=1

Dmax Emax
where Dmax and Emax are the maximum attainable values
of D and Ej over the allowed x-region
Mj,n isthe probability of model j after n experiments
the weighting W attached to Discrimination is suggested to be:

rnd

in which MNpn is the largest of the IMjn

the positive power A givesthe experimenter a flexible control over
the rate at which interest shiftsfrom OED/SD to OED/PE

-NPE: 8-




-
OED/PE for Choice of measured Variable and Sensor Location

Application: Tower-loop reactor

Available Sensor Technology:
DO probe

Off-gas O2 analysis

Turbidimeter -> Biomass Concentration

?Px Ue Uﬁ
» x+d . . .
A 747 %//// ; g Fisher Information Matrix
, N
v

34Xl

. lgldet F|
>
%
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Sampling Frequency

Sampling inevitably leadsto information losses --> Minimize the Loss

"Sampleasfrequently aspossible’
- ldentification to large data-sets may be numerically senstive
- The high-frequency dynamics may dominate the identification process
- RESAMPLING isalways possible, not the other way round !

Constant or Time-varying Sample Interval
Equidistant sampling is more convenient (automation)
Changing interval can be advantageous, e.g. when designed

Example (Vialas et a., 1983): measure when sensitivity to a parameter
is high, e.g. a the end of a batch experiment when S= Km

Relation to Time Constants of the Process
Tmin

10’
Experiment Length (==> N) > 10@max

Sampling Interval <

Example
First order system with time constant t

dx _ 1
a = T X(t) + U(t) variance

y(t) = x(t) + V()

$0

Too high sampling interval is
far worse than too low interval ! ' 2\

at high sampling frequency:
numerical problems
model fitsin high-frequency bands 0
poor return for extra work 0 Tz T
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Data Pretreatment

Before Model Identification starts
Aim: to increase the quality of the output of the identification stage

Outlie Deection and Removal

Diagnostic checking : Plot your raw data -> Inspection for deficiencies
Removing data is a kind of cheating and may be dangerous

Example: Respirometer with OUR sampling interval of 1 minute
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b
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Respirometer with OUR sampling interval of 10 seconds
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Elimination of Uninteresting Dynamics

High-frequency disturbances

occur for instance when sampling rate is too high
-> Solution: Resample the data (picking every sth data point)

Slow disturbances

Examples. off-sets, drifts, periodic variations

Typicaly < externa sources that we are not interested in for modelling
e.g. temperature effects (day/night -> conductivity)

Example:

Respirometer -> OUR-data: Due to the use of derivativesthe small
oscillation present in the DO-data isemphasized

0.75
0.50

0.25

OUR (mg O,/l.min)

0.00

0.04 I Model 3

AMI\/\ f//\w\/i\./\/“\./\/\..r\/\l\n'

0.00 \wvy \/ AR ARV ARVAN A WA,

-0.04 B 1 1 | 1 1 |

Time (min)
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Experimental Design under Closed-loop Conditions

Hot topic in Control Engineering Research

noise v

REGULATOR

extra

input u

W SYSTEM ot
1

noise W, or
set paint w,

[Hlustrative Example:

First order system:

y(t) + ay(t—-1) = bu(t—-1) + €(t)
controlled by a proportional regulator:

u(t) = fy(t)
Closed-loop system dynamics:

yt) + Fa— bfHy(t-1) = bu(t-1) + &(t)

Conclusion:any model parameters subject to:
a=a+ yf
6=b+y
will yield adequate description of system dynamics => Non-identifiability !!

Solutions:
Temporarily open the loop

Modify the controller, e.g. make f timevarying
= => breaking the dependency
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Nonlinear Parameter Estimation without Derivatives

Problem statement:
Algorithms using first and second order derivatives of the objective function
to the variables to be optimized (e.g. parameter values or the design criterion)

= => involved mathematicsto evaluate sendtivity functions
prone to analytical errors!
numerical approximation --> dangerousdue to numerical errors

Nonlinearity in the Parameters. what trouble doesit cause?

4 0 Line
4 ] Search

0 (Global minimum}

)

==> Senditivity Functions
involve the Parameters

==> QObjective Function Shape
depends on Parameter Values

LOCAL MINIMA
==> No guaranteed Convergence

Parameter estimate, b

Solution:
Start from widely varying starting values 6

Perturn alocal minimum --> Jump away from it
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Linear Approximation Approach

. choose an initial value

- caculate linear approximation of the objective function (Jacobian)

. find minimum

- return to step 1

9, l’u

Eventual
goal @
]

SS{6) contour

passes through

Solution of
o initial point 0,

linearized
first iteration

N\

6o

passes through @,

b,

S{®) contour that

5(8) contour which

Disadvantage: you easily get stuck in alocal minimum
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Random Search

"Randomly jump around in Parameter Space"
Exhaustive Search --> VERY INEFFICIENT

S mplex (Ndder & Mead, 1965)

Not very efficient, but easy to implement
Robust against local minima

Algorithm:
Choose initial Simplex = Number of (n+1) sets of n parameters B&_L 92...315

Evaluate the objective function at al simplex points
Replace the worst point by a new one using four basic steps:

(1) reflection (2) reflection and expansion
hi \
low

(4) contraction in all dimensions

hi P Ia!E

T 3!\

=

low low
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Direction Set (Powdl, 1964; Brent, 1973)

Steepest Decent:
Direction of parameter adjustment is based on the gradient information

If no gradients are calculated (derivative-free algorithms)
--> propose a set of search directions to be modified as minimization proceeds

1) No modification of directions
Direction Set = Unit Vectorsr eo...enHwith 6 = H000..010...0

Line minimization along successive directions, cycling through
the whole set of directions until objective function stops decreasing
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Powd|/Brent’s Conjugate Directions

Find the directions Huz u2...un H

where the improvement in objective function is maximal

But: After aline minimization along a direction uij
==> Thisdirection isnot interesting anymore (gradient = 0 !!)
==> Another direction isto be chosen

General _procedure:

Save starting position 6

Perform n minimizations along the directionsHuy u2...un H-> 6,
discard direction u1 and rename u; to uj- 1, iI=2,n

un=6h— 6o

move 6n to minimum along un --> new 6
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Dealingwith Congraints

e.g. Affinity constants > 0; Experiment Length < 2 hr

Easest way --> Penalty added to the Objective Functional
may lead to convergence problems...
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