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The General Procedure for Experimental Design



MODELS CONSIDERED IN THIS STUDY: 

express the dependence of OURex on the biodegradation of k substrates Si :

OURex =  −  ∑(
i= 1

k
1−Yi ) 

dSi

dt
(pe 1)

Different model complexities: 4 types of wastewater/sludge interaction:

Type 1 (Exponential): One pollutant, first order degradation (k=1) 

dS1

dt
 =  −

µmax1 X
Y1

 S1 (pe 2)

Type 2 (Single Monod): One pollutant, Monod type of degradation (k=1)

dS1

dt
 =  −

µmax1 X
Y1

 
S1

Km1+S1
 (pe 3)

Type 3 (Double Monod): Two pollutants, both Monod type (k=2)

dS1

dt
 =  −

µmax1 X
Y1

 
S1

Km1+S1

dS2

dt
 =  −

µmax2 X
Y2

 
S2

Km2+S2
(pe 4)

Type 4 (Modified IAWQ model n˚1): Three pollutants, two hydrolyse into the
first substrate which is used for growth according to Monod (k=1)

dS1

dt
 =  −

µmax1 X
Y1

 
S1

Km1+S1
 +  krXr +  ksXs

dXr

dt
 =  −  kr Xr

dXs

dt
 =  −  ks Xs (pe 5)

In this model OURex  should be rewritten as:

OURex =  −  (1−Y1 ) 






dS1

dt
 −  krXr −  ksXs 





 (pe 6)
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Theoretical background of OED/PE

Question addressed: 

"with the given experimental data, can the parameters be given unique values"

or:        "if a small deviation in the parameter set occurs, 
               does this have a considerable decrease of the fit as a consequence".

 THE MATHEMATICS :

Consider the quadratic objective functional ("sum of squared errors"):

J(θ) =  ∑ 
i= 1

N
(yi(θ)^  −  yi )TQi (yi(θ)^  −  yi ) (pe 7)

in which yi and yi(θ)^  are vectors of N measured values and model predictions

              Qi   is a square matrix with user-supplied weighting coefficients.

Parameter estimation can be formulated as: 

               minimization of  J by optimal choice of the parameters θ.

The effect of a small deviation of the parameters δθ on the model fit:

y(t, θ +  δθ) =  y(t, θ) +  



∂y
∂θ(t)



 θ
δθ =  y(t, θ) +  Yθ(t) δθ (pe 8)

where Yθ(t) : output sensitivity functions with respect to parameter variations
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Expected value of J for a parameter set slightly different from the optimal one:

E J(θ+δθ)  ≈  δθT 





   ∑ 

i= 1

N
(Yθ(ti))TQi Yθ(ti)






 δθ +  ∑ 

i= 1

N
 tr Ci Qi  (pe 9)

in which Ci represents the measurement error covariance matrix 

               (Qi  is typically chosen as Ci
− 1    = >   second term reduces to Nm ,

                                                              m  =  dimension of measurement vector)

To optimize practical identifiability 
             =  maximize difference between J(θ +  δθ) and J(θ)
             =  maximize term between brackets =  Fisher Information Matrix

F =  ∑ 
i= 1

N
(Yθ(ti))TQi Yθ(ti) (pe 10)

expresses the information content of the experiment

              =  inverse of the parameter estimation error covariance matrix

V =  F− 1 =  





   ∑ 

i= 1

N
(Yθ(ti))TQi Yθ(ti)








− 1

(pe 11)

Parameter variance

use the parameter estimation error covariance matrix V 

and the residual mean square s2:

                                        s2 =  
J(θ)

N −  p
(pe 12)

Approximate standard errors for the parameters:

σ(θi) =  s √Vii (pe 13)

optimistic due to  linear approximation of the nonlinear model

IMPORTANT: 

Parameter variance can be reduced through decreased s  (=  increase N)
                                                                  or by reduced Vii ( by OED/PE)
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Confidence region of the parameters

J as function of µmax and Km  

Minimum value Jopt  at (µ̂max, K̂m  ) within a "valley" in J(µmax, Km ).

(1−α)  Confidence region is the area delimited by 
the confidence contour line = set of parameter combinations with functional:

 Jopt ∗   1 +  
p

N−p
Fα;p,N− p (pe 14)

F is the value of the F-distribution with p and N-p d.f. and confidence level α

 µmax

Km  
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An Example (2 parameters α and β, measurement of S and X)

Output  sensitivities deduced from the model equations:

            Sα(ti) =  



∂S
∂α



 ti

; Sβ(ti) =  



∂S
∂β


 ti

; Xα(ti) =  



∂X
∂α



 ti

; Xβ(ti) =  



∂X
∂β



 ti

(pe 15)

Measurement error covariance matrix C(ti):

C(ti) =  






σ11

2 (ti)
σ12

2 (ti)
   
σ12

2 (ti)
σ22

2 (ti)






 (pe 16)

                               and the corresponding weighting matrix Q(ti) =  C -1(ti)

The Fisher Information Matrix:

F =  ∑ 
i= 1

N 





Sα(ti)
Sβ(ti)

 
Xα(ti)
Xβ(ti)












Q11(ti)
Q12(ti)

 
Q12(ti)
Q22(ti)












Sα(ti)
Xα(ti)

 
Sβ(ti)
Xβ(ti)





 (pe 17)

whose elements are (ti are omitted for ease of reading):

F11 =  ∑ 
i= 1

N
  Q11Sα

2 +  2Q12SαXα +  Q22Xα
2

F12 =  F21 =  ∑ 
i= 1

N
  Q11SαSβ +  Q12SαXβ +  Q12SβXα +  Q22XαXβ

F22 =  ∑ 
i= 1

N
  Q11Sβ

2 +  2Q12SβXβ +  Q22Xβ
2 (pe 18)
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Sensitivity Functions for Monod/Modified IAWQ nr 1

OURex measurements as only source of information

The sensitivity of OURex  with respect to µmax1 is (output sensitivity function):

∂OURex
∂µmax1

 =  
∂

∂µmax1





 − (1−Y1) 

dS1

dt





 (pe 19a)

              =  − (1−Y1) 
d
dt







∂S1
∂µmax1





 (pe 19b)

in which the state sensitivity 
∂S1

∂µmax1
 is obtained by integration of: 

d
dt







∂S1
∂µmax1





  =  

∂
∂µmax1





 −

µmax1X
Y1

 
S1

Km1 +  S1





 (pe 20a)

                    =  − X
Y1










S1

Km1 +  S1
 +  

µmax1 Km1 
∂S1

∂µmax1

(Km1 +  S1)2










(pe 20b)

where S1 is calculated by integration of:

dS1

dt
 =  −

µmax1 X
Y1

 
S1

Km1+S1
 (pe 21)

One can proceed similarly for the sensitivity of OURex  with respect to Km1.
The following relations are obtained:

∂OURex

∂Km1
 =  − (1−Y1) 

d
dt






∂S1

∂Km1





 (pe 22)

d
dt






∂S1

∂Km1





  =  −

µmax1 X
Y1










 Km1 
∂S1

∂Km1
 −  S1

(Km1 +  S1)2










(pe 23)
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Output sensitivities of the IAWQ model as modified by Sollfrank & Gujer,
1991:

∂OURex

∂kr
 =  (1 −  Y1) 

∂
∂kr





 −

dS1

dt
 +  krXr +  ksXs





 (pe 24a)

               =  (1 −  Y1)




 Xr +  kr 

∂Xr

∂kr
 −  

d
dt






∂S1

∂kr










 (pe 24b)

∂OURex

∂ks
 =  (1 −  Y1)





 Xs +  ks 

∂Xs

∂ks
 −  

d
dt






∂S1

∂ks










 (pe 25)

State sensitivities needed, are:

d
dt






∂Xr

∂kr 





  =  

∂
∂kr

 −kr Xr   =  −




 Xr +  kr 

∂Xr

∂kr 





 (pe 26)

d
dt






∂Xs

∂ks 





  =  −





 Xs +  ks 

∂Xs

∂ks 





 (pe 27)

Output and state sensitivities for  µmax1 and  Km1 are as for the Monod model
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Properties

Sensitivity functions indicate conditions where the dependence is the largest
                   which conditions provide most information on the parameters.

The (state and output) sensitivities are dependent on the parameter values. 

            a general characteristic of nonlinear models 

            the Fisher Information Matrix is dependent on the parameter values
                  which has important implications for the OED/PE

If sensitivity functions are linearly dependent 
        = >  Fisher Information Matrix singular = >  Non-informative experiment

              Calculation of the rank of the Fisher Information Matrix
                      If no linear dependency exists, it should be full rank

Condition number of the Fisher matrix (ratio of largest to smallest eigenvalue)
           indicates whether the sensitivities are nearly linearly dependent
            the higher the condition number, the lower the practical identifiability.

MODIFIED IAWQSINGLE MONOD
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Practical Identifiability of the Initial conditions

 For the Single Monod model:

∂OURex

∂S1(0)
 =  − (1−Y1) 

d
dt







∂S1

∂S1(0)






              =  (1−Y1) 
µmax1X

Y1
 

∂
∂S1(0)







S1

Km1 +  S1 





 (pe 28)

Introducing the initial condition:

S1(t) =  S1(0) −  
∫ OURex0
 t (τ)dτ

1 −  Y1
(pe 29)

yielding:

∂OURex

∂S1(0)
 =  

(1−Y1) µmax1 X
Y1

 
∂

∂S1(0)








(1 −Y1) S1(0) −  ∫ OURex0
 t (τ)dτ

(1 −Y1)  Km1 +  S1(0)  −  ∫ OURex0
 t (τ)dτ 








(pe 30)

and the final equation:

∂OURex

∂S1(0)
 =  

(1−Y1)2 µmax1 X Km1

Y1
 










(1 −Y1) −  ∫  0
 t ∂OURex(τ)

∂S1(0)
dτ

 (1 −Y1)  Km1 +  S1(0)  −  ∫ OURex0
 t (τ)dτ 

2










(pe 31)
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Optimal Experimental Design for Parameter Estimation

Fisher Information Matrix (≈  covariance matrix) = corner-stone of OED/PE

these matrices summarize the information content of an experiment
                                        or the preciseness of the parameter estimates. 

Different scalar measures of these matrices can be optimized:

• A-optimal design criterion: min tr(F -1)

• modified A-optimal design criterion: max tr(F)

• D-optimal design criterion: max det(F)

• E-optimal design criterion: max λmin(F)

• modified E-optimal design criterion: min  
λmax(F )
λmin(F )

in which λmin(F) and λmax(F) are the smallest and largest eigenvalue of F

Interpretation

A- and D-optimal designs

minimize the arithmetic and geometric mean of the identification errors

E-criterion 

minimize the largest error. 
maximize the distance from the singular (non-informative) case

Modified E criterion 

optimize objective functional shape (ratio of largest to smallest eigenvalue)

Modified A-criterion

No interpretation
may give rise to non-informative and unidentifiable experiments‘!!

- NPE : 10 -



EXAMPLES OF OED/PE FOR SINGLE MONOD MODEL

Degrees of Freedom for OED/PE

• Optimal initial substrate

• Optimal additional pulse with fixed initial substrate

• Optimal additional pulse and initial substrate

• Optimal design with multiple additional pulses

and Constraints for OED/PE

• Experiment time (hard bound)
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Theoretical Example 1: initial substrate

Modified E: 

substrate concentration 10 times lower than reference

shape has improved (ratio has decreased by 3.3)
at expense of parameter estimation quality: confidence regions have increased
                 for µmax1 by an order of magnitude
                 for Km1 with a factor 3

Other four criteria:

experiments with the highest possible information content
from the sensitivity functions: 
          experiment where exogenous oxygen uptake rate is different from zero
                    for the longest possible time 
           the substrate is almost completely oxidized by the end of the experiment

confidences in estimates of µmax1 and Km1 improve with a factor 2.4 and 1.25
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Theoretical Example 2: One additional pulse

initial substrate concentration is fixed identical to the base case

Differences among the design criteria are considerable. 

A- and modified A:

      prolong experimental conditions with maximal substrate degradation

      = >  the most important improvement for µmax1 

D- and E-criteria: 

      substrate is injected only after exogenous respiration dropped completely

      substrate for a longer period of time at S ≈  Km1 

Modified E-criterion:

       design in between both approaches

       confidence interval for the µmax1 only decreased with 10 %,
                                               the Km1 accuracy increased with more than 50 %

       covariance between µmax1 and Km1 is reduced to the same extent
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Theoretical Example 3: Additional pulse +  Initial substrate

Two-dimensional optimization problem

In example below: fixed tpuls at 18.2 min; optimize S1(0)
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The
Two-Dimensional

Problem
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Discussion

Optimal experimental designs depend significantly on criterion

Local extrema (e.g. E-optimal)
               corresponding to conditions optimal for some other criteria

Modified E has rather different behaviour 

              probably due to the different underlying objective

For tpuls=18.2 min (= the optimum pulse time for S1(0) =23) : 

          S1(0) = 23  is the minimum (E-criterion)
          S1(0) = 23  remains a local minimum (mod E; A)

Presence of local extrema may cause convergence problems

3D-plots:

"Ripple" on the surface
              corresponds to conditions in which the pulse is added
                        at the time the substrate initially present in the reactor is
depleted

               "ripple" moves further as  S1(0) increases
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Theoretical Example 4: Multiple Pulses

Benefit of adding another degree of freedom to the design becomes marginal.

Design canoccur sequentially 

           = >  computational burden is considerably lower
                          only one-dimensional optimization problems must be solved
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NOMENCLATURE

Ci : Measurement error covariance matrix (-)

F : Fisher information matrix (-)

J : Objective functional (-)

Jopt : Minimal value of the objective functional (-)

Kmi : Monod half-saturation coefficient for substrate i (mg COD/l)

kr : Rapid hydrolysis rate constant (/min)

ks : Slow hydrolysis rate constant (/min)

λmax : Largest eigenvalue of F (in absolute values) (-)

λmin : Smallest eigenvalue of F (in absolute values) (-)

m : Dimension of measurement vector (-)

µmaxi : Maximum specific growth rate on substrate i (/min)

N : Number of measurements (-)

OED/PE : Optimal experimental design for parameter estimation (-)

OURex : Exogenous oxygen uptake rate (mg O2/l.min)

Qi : Weighting matrix (-)

s2 : Residual mean square (-)

Si : Concentration of substrate i (mg COD/l)

σ(θi) : Standard error of parameter i (-)

tpuls : Time of pulse addition (min)

θi : Parameter i (-)

V : Parameter estimation covariance matrix (-)

X : Concentration of biomass (mg COD/l)

Xr : Rapidly hydrolyzable substrate concentration (mg COD/l)

Xs : Slowly hydrolyzable substrate concentration (mg COD/l)

Yi : Yield coefficient on substrate i (mg CODX/mg CODSi)

y : Measurement vector (-)

ŷ (θi) : Model prediction vector (-)

Y θ : Output sensitivities with respect to parameters θ (-)
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Why Experimental Design ?

LIMITED RESOURCES:

• Time

• Expensive Equipment

INCREASED DEGREES OF FREEDOM FOR EXPERIMENTATION

QUALITY OF INFORMATION W.R.T. PURSUED GOAL

What are the Pursued Goals ?

Two basic purposes:

• Establish the form of an adequate mathematical model  of the process

• Estimating precisely the values of its parameters

History

Not a new theory  ->   already in 1922  ->  Fisher  ->  MPN-test for bacteriology

    Most of the work on Static Models (regressions, ...)

    Only in the last 15 years: Dynamic Models   ->  Parameter estimation

Initial Work: Non-sequential Design: 
                                   Parallel experimentation (e.g. agriculture, screening)
                                   Reason: long experimentation time

Later:            Sequential Design : 
                                   Take advantage of previously acquired insights
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Three Steps

• Definition of Objective Function 
                      (=  Mathematical Translation of the Objective)

• Enumeration of Degrees of Freedom and Constraints

• Extremization of the Objective Function

Some Degrees of Freedom to consider:

• What to measure         -->  System Definition is important (Variables,...)

• Where to measure       -->  Problem of Sensor Location

• When to measure        -->  Sampling Strategy

• Which manipulations  -->  Excitation  Signal Design (sine-wave, pulse)

• What data treatment   -->  Noise rejection, Outlier detection/removal
                                                     Elimination of uninteresting dynamics

Some Advice:

"While several different design variables associated with models and methods 
can be tried out on the computer, the experimental data can be changed only 
by a new experiment, which could be a costly and time-consuming procedure.

Therefore it is worthwhile to design the experiment thoughtfully so as togenerate
data that are sufficiently informative" 

"It is wise to let the experiment resemble the situation under which the model 
is to be used"

" Careful experiment design yielding data with good information is the basis of 
a succesful identification application"
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A simple example: Structure selection/Parameter estimation

REGRESSION    Y =  bX +  a   or    Y=  cX2 +  bX +  a

Degrees of Freedom: Choice of the values of the independent variables X

Constraints:                Number of values =  14

Standard Deviation of b:

               σb =  
σ

 ∑  Xi−X
__

 
2

 Structure selection based on ANOVA:

Variance
Sum of Squared

Errors

explained by Y=bX+c SSR1

explained in addition by X2-term SSR2-SSR1

Residual Error SSE2

Total Error SSTOT

Depending on the a priori knowledge on
 Model Structure different designs result:

Design
Degrees of Freedom σb

σ
Number
of sitesSSR2-SSR1 SSE2

a 12 0 0.43 14

b 5 7 0.4 7

c 3 9 0.33 5

d 2 10 0.31 4

e 1 11 0.32 3

f 1 11 0.29 3

g 0 12 0.27 2
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Theoretical Background of OED/SD

Problem Statement:

Design an Experiment to Discriminate between rival Models M1 and M2

Hunter-Reiner Approach (1965)

Choose Experimental Conditions χi such that  M̂1(χi) −  M̂2(χi)
2
 is max.

 Here:  take x2 for its max. Discriminative Power    

            x1 will tell us nothing !!

BUT:  the uncertainty on the model

            predictions M
^ (k)(χi) must be

           taken into account

Example

Discriminate between

   Y=  bX +  a    and    Y =  bX
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The Box-Hill Approach (1977)

with n Experiments performed, design the (n+1)th Experiment

Divergence between m  rival Models M(k)at Experimental Conditions χi:

D(χi) =    ∑ 
k= 1

m− 1
      ∑ 

j= k+ 1

m
   Πk,n Πj,n  








σ2
ik  −   σ2

ij
 σ

2+σ2
ik

 σ

2+σ2
ij


  −   
 M

^ (k)(χi)−M
^ (j)(χi)


2

1

σ2+σ2
ik

 +  
1

σ2+σ2
ij








where σ2
ik is given by:

                                  σ2
ik =  V

 M
^ (k)(χi)

  =   χi
T 
 Xk

T Xk

− 1

χi

or for nonlinear models approximated by:

                                  σ2
ik =  V

 M
^ (k)(χi)

  =   





∂M(k)

∂θ





χi

T

 
 Xk

T Xk

− 1

 





∂M(k)

∂θ





χi

and Πk,n is the Probability that Model k is adequate after n Experiments

Πk,n is calculated according to:

                                                                Πk,n =  
pk  Πk,n− 1

∑ 
j= 1

m
  pj  Πj,n− 1

where pk is the probability of the nth observation, (yn ) under Model k:

          pk =  pk (yn) =  
1

 2π σ
2+σ2

n,k



0.5
 exp







− 1

2
 σ

2+σ2
n,k


 
 yn −  M

^ (k)
n


2 






and

                                                                Πk,n= 0 =  
1
m
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Example

• Model 1:            Y1(x) =  θ11 x

• Model 2:            Y2(x) =  θ21 +  θ22 x

• Model 3:            Y3(x) =  θ31 +  θ32 x +  θ33 x2

• Model 4:            Y4(x) =  θ41 x +  θ42 x2
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The Munack Approaches (1992)

Discrimination between 2 Dynamic Models

Two approaches to discriminate between 2 models:

• Maximize the difference in responses (trajectory)

• Look for dependence of parameters on experimental conditions

Parameter distancewhich takes the estimation accuracy into account
                             is calculated by the Minimal Mahalanobis Distance:

Distance in Trajectory should also take into account that Model complexity
should be minimal:

Penalty term for model complexity:   AIC= f(Fit)+ g(number of parameters)
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Munack Method 1: Maximize Trajectory Difference

Perform hypothetical experiments through simulation with the 2 models

      and do the analysis as if these data are originating from the real process.

OPTIMIZATION LOOP

Propose Experiment

1) consider Model 1 correct  ->  Fit model 1 and 2 to Model 1 generated data

2) consider Model 2 correct  ->  Fit model 1 and 2 to Model 2 generated data

Calculate Difference between the (simulated) Trajectories

Maximize the smallest of the two Differences obtained
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Munack Method 2: Maximize Parameter Change

Perform hypothetical experiments through simulation with the 2 models

      and do the analysis as if these data are originating from the real process.

OPTIMIZATION LOOP

Propose Experiment

1) consider Model 1 correct  ->  Fit model 1 and 2 to Model 1 generated data

2) consider Model 2 correct  ->  Fit model 1 and 2 to Model 2 generated data

Compare parameter sets for the first (real) experiment 
                                                 and the second (simulated) experiment

Maximize the smallest of the Mahalanobis Distances
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Heuristic Discrimination

Define a criterion function based on experience

Example:

Design mixture of BOD and NH4Cl to guarantee reliable discrimination
between Single Monod and Double Monod models

Objective Function:        Reliability of Inflection Point Determination
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Dual Problem of Model discrimination/Parameter estimation

Very few results

Standard approach: 

•  experiments for Model Discrimination

• Experiments for Parameter Estimation

Hill, Hunter and Wichern (1968):

Choose experimental conditions χi to maximize:

W 
D

Dmax
 +   1−W   ∑ 

j= 1

m
 Πj,n 

Ej

Emax

where Dmax and Emax are the maximum attainable values 
                                             of D and Ej over the allowed χ-region

          Πj,n is the probability of model j after n experiments

the weighting W attached to Discrimination is suggested to be:







m
m−1

 1−Πb,n






λ

in which Πb,n is the largest of the Πj,n 

              the positive power λ gives the experimenter a flexible control over 
                              the rate at which interest shifts from OED/SD to OED/PE
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OED/PE for Choice of measured Variable and Sensor Location

Application: Tower-loop reactor

Available Sensor Technology:

• DO probe

• Off-gas O2  analysis

• Turbidimeter -> Biomass Concentration

Fisher Information Matrix
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Sampling Frequency

Sampling inevitably leads to information losses  -->  Minimize the Loss 

"Sample as frequently as possible"

     -  Identification to large data-sets may be numerically sensitive

     -  The high-frequency dynamics may dominate the identification process

     -  RESAMPLING is always possible, not the other way round !

Constant or Time-varying Sample Interval

• Equidistant sampling is more convenient (automation)

• Changing interval can be advantageous, e.g. when designed
Example  (Vialas et al., 1983): measure when sensitivity to a parameter
is high, e.g. at the end of a batch experiment when S ≈  Km

Relation to Time Constants of the Process

Sampling Interval  <   
τmin

10
;      

Experiment Length (==> N) > 10∗τ max

Example

First order system with time constant τ

dx
dt

 =  
1
τ  x(t) +  u(t)

y(t) =  x(t) +  v(t)

Too high sampling interval is 
     far worse than too low interval  !

at high sampling frequency:
       numerical problems
        model fits in high-frequency bands
       poor return for extra work
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Data Pretreatment

Before Model Identification starts

Aim: to increase the quality of the output of the identification stage

Outlier Detection and Removal

Diagnostic checking : Plot your raw data -> Inspection for deficiencies

Removing data is a kind of cheating and may be dangerous

Example:      Respirometer with OUR sampling interval of 1 minute

                  Respirometer with OUR sampling interval of 10 seconds
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Elimination of Uninteresting Dynamics

High-frequency disturbances

occur for instance when sampling rate is too high

   ->   Solution: Resample the data (picking every sth data point)

Slow  disturbances

Examples: off-sets, drifts, periodic variations

Typically < external sources that we are not interested in for modelling

                        e.g. temperature effects (day/night  ->  conductivity)

Example:  

Respirometer  ->  OUR-data:  Due to the use of derivatives the small
                                           oscillation present in the DO-data is emphasized

- NPE : 3 -



Experimental Design under Closed-loop Conditions

Hot topic in Control Engineering Research

Illustrative Example:

First order system:

y(t) +  a y(t−1) =  b u(t−1) +  e(t)

controlled by a proportional regulator:

u(t) =  f y(t)

Closed-loop system dynamics:

y(t) +   a −  b f   y(t−1) =  b u(t−1) +  e(t)

Conclusion:any model parameters subject to:

â =  a +  γ f

b̂ =  b +  γ

will yield adequate description of system dynamics => Non-identifiability !!

Solutions:

• Temporarily open the loop

• Modify the controller, e.g. make f timevarying 
                                                           = = >  breaking the dependency
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Nonlinear Parameter Estimation without Derivatives

Problem statement:

Algorithms using first and second order derivatives of the objective function
to the variables to be optimized (e.g. parameter values or the design criterion)

  = = >  involved mathematics to evaluate sensitivity functions
                              prone to analytical errors !
            numerical approximation  -->   dangerous due to numerical errors

Nonlinearity in the Parameters: what trouble does it cause?

==> Sensitivity Functions
             involve the Parameters

==> Objective Function Shape

             depends on Parameter Values

LOCAL MINIMA

     = = >  No guaranteed Convergence

Solution:

• Start from widely varying starting values θ0

• Perturn a local minimum  -->   Jump away from it

Line
 Search
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Linear Approximation Approach

• choose an initial value

• calculate linear approximation of the objective function (Jacobian)

• find minimum

• return to step 1

Disadvantage:  you easily get stuck in a local minimum
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Random Search

"Randomly jump around in Parameter Space"

       Exhaustive Search  -->  VERY INEFFICIENT

Si mplex (Nelder & Mead, 1965)

Not very efficient, but easy to implement

Robust against local minima

Algorithm:

Choose initial Simplex = Number of (n+1) sets of n parameters  θ1 θ2…θn

Evaluate the objective function at all simplex points

Replace the worst point by a new one using four basic steps:
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Direction Set (Powell, 1964; Brent, 1973)

Steepest Decent: 

Direction of parameter adjustment is based on the gradient information

If no gradients are calculated (derivative-free algorithms)

--> propose a set of search directions to be modified as minimization proceeds

1) No modification of directions

     Direction Set =  Unit Vectors  e1 e2…en  with ei =    0 0 0...0 1 0…0 

Line minimization along successive directions, cycling through
            the whole set of directions until objective function stops decreasing
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Powell/Brent’s Conjugate Directions

Find the directions   u1 u2…un 
                         where the improvement in objective function is maximal

But:  After a line minimization along a direction ui

            = = >  This direction is not interesting anymore (gradient =  0  !!)

            = = >  Another direction is to be chosen

General procedure:

• Save starting position θ0

• Perform n minimizations along the directions  u1 u2…un  --> θn

• discard direction u1 and rename ui to ui− 1, i=2,n

•  un =  θn −  θ0

• move θn to minimum along un  -->  new θ0
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Dealing with Constraints

e.g. Affinity constants > 0; Experiment Length < 2 hr

Easiest way   -->  Penalty added to the Objective Functional
                            may lead to convergence problems...
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