
Abstract
Important features of biological wastewater treatment pro-
cesses such as their nonlinear and time-varying nature impose
considerable strains on control systems required for their opti-
mal performance: time-varying parameters in the process
models integrated in the control systems should be updated
and the nonlinearity requires that either adaptive linear con-
trollers are applied (with additional adjustment needed to cope
with changing operating points) or that nonlinear controllers
are devised. Sensors play a key role in such control loops:
Monitoring equipment is not only needed to indicate deviations
from desired behaviour to the regulator, but they must also
provide the necessary data for adjustment of the control laws
to the changing process conditions. 

The main goal of the work presented in this paper was to
develop sensor technology capable of providing this informa-
tion. Special attention was paid to make sure that this informa-
tion would be easy to incorporate in the models on which the
control system is based. A methodology was sought that would
facilitate the on-line modelling of the interaction between
wastewater and activated sludge. 

Because it is relatively hard to obtain sufficiently rich informa-
tion from a plant that operates in closed-loop, a new approach
is introduced consisting of what has been termed ’In-Sensor-
Experiments’. The main characteristic of this approach is that
the information on process behaviour is no longer obtained
directly from the plant, but from a sidestream sensor in which
small-scale experiments are performed which are relevant to
the behaviour of the full-scale process. In such sensing device,
the excitation signals can be chosen without restriction and,
consequently, process behaviour can be characterized under
much wider conditions than possible in the treatment plant
itself. Hence, if model-based interpretation of the sensor data
is applied, rather sophisticated nonlinear models can be ident-
ified allowing to devise more elaborate control strategies.

Because the changes in wastewater composition are rather
important, not only the parameters but also the structure of
the models describing the wastewater/sludge interaction are
subject to change. Therefore the model identification encom-
passes both model structure characterization and parameter
estimation.

The hardware of the sensor allows to adjust the In-Sensor-Ex-
periments in such a way that the highest possible information
content is obtained under the time-varying conditions the sen-
sor is confronted with. The on-line optimal experimental design
(OED) methods that will be presented are the heart of the

’Adaptive Sensor Concept’. It will be shown that optimal ex-
periments can be proposed for structure characterization
(OED/SC) and parameter estimation (OED/PE). A very im-
portant part of the development work was due to the need to
fulfill the real-time requirement imposed by the on-line oper-
ation of the adaptive sensor. Real-life experimental results will
illustrate the potential of the adaptive sensor concept for the
control of activated sludge wastewater treatment plants.
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1. Introduction
Important features of biological wastewater treatment pro-
cesses such as their nonlinear and time-varying nature impose
considerable strains on the control systems required for their
optimal performance. First, the time-varying parameters in the
process models integrated in the control systems need con-
tinuous update. Second, the nonlinearity requires that either
adaptive linear controllers are applied (with additional adjust-
ments needed to cope with changing operating points) or that
nonlinear controllers are devised. Sensors play a key role in
such control loops (Fig. 1). They are not only needed to indicate
deviations from desired behaviour to the regulator, but they
must also provide the necessary data for adjustment of the
control laws to the changing process conditions. 

In case model-based control systems are applied to time-va-
rying processes as the one considered here, it is essential to be
able to perform on-line modelling in order to track the biopro-
cess model and maintain the controller’s efficiency. "Modell-
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Figure 1. Building blocks of an adaptive
control chain.



ing" is used here in the broad sense, i.e. both model structure
and parameters are to be identified. To achieve this, large
amounts of on-line information are required. Two problems
have been identified in this respect:

• Although considerable research has focussed on the devel-
opment of new ’bio’sensing technologies [1], a lack of
reliable monitoring equipment is still recognized [2].

• The information content of the data is often insufficient to
identify the increasingly complex models required for ade-
quate description of the bioprocess [3].

To tackle these problems, new sensor technology was de-
veloped to characterize the main disturbance to the treatment
process, i.e. the wastewater composition. In addition, a new
approach was sought to obtain highly informative data. 

Indeed, except for some process configurations that inherently
yield important transients [4-5], it is relatively hard to obtain
sufficiently rich information from a plant that operates under
closed-loop control. A possible approach is to loosen the con-
trol by introduction of some excitation signals superimposed
on the control action. This approach induces transients in the
state variables and has been proven succesful (e.g. [6]). Still,
restrictions must be imposed on the excitation to keep the plant
within its operating limits. Hence, a lack of information may
remain. In the next section an alternative way to obtain the
necessary information is proposed.

In-Sensor-Experiments
The new approach introduced in this work consists of what has
been termed ’In-Sensor-Experiments’. The main characteristic
of this approach is that the information on process behaviour
is no longer obtained directly from the plant, but from a
sidestream sensor in which small-scale experiments are per-
formed. Because the behaviour of the process in these experi-
ments is very similar to the one at full-scale, relevant
information can be provided by such sensor. Moreover, in such
sensing device excitation signals can be chosen without restric-
tion and, consequently, process behaviour can be characterized
under much wider conditions than possible in the treatment
plant itself. Hence, if model-based interpretation of the sensor
data is applied, rather sophisticated nonlinear models can be
identified, allowing to devise more elaborate control strate-
gies.

In this paper attention is focussed on a first application of this
principle in a new sensing device. The In-Sensor-Experiments
performed within the device allow to characterize the interac-
tion between the wastewater and the activated sludge [7]. This
characterization is performed by identification of biodegrada-
tion models on the basis of the raw data obtained from the
In-Sensor-Experiments. Details are developed in the sequel.

The Adaptive Sensor Concept
If the hardware of such sensor allows to adjust the In-Sensor-
Experiments performed in it, one may aim to adjust the way
the experiments are done. This makes it possible to maintain
the quality of the sensor’s outputs under the time-varying
conditions the sensor is confronted with. 
To achieve this, each experiment is designed using optimal
experimental design (OED) procedures. These procedures
take advantage of previously acquired process knowledge (in
the form of process models) to maximize the information
content of the next In-Sensor-Experiment.

A sensor that is based on a combination of In-Sensor-Experi-
ments and OED that is performed on-line has been termed an
’Adaptive Sensor’ (Fig. 2).

2. A Respirographic Biosensor as Case Study
of the Adaptive Sensor Concept

All research on the adaptive sensor concept has been tightly
coupled with the development of a sensor that operates on the
basis of In-Sensor-Experiments. The experiments in this new
device consist of pulse injections of wastewater to activated
sludge residing in the bioreactor integrated in the sensor (for
more details, see [7]). Biodegradation of the injected waste
results in an oxygen uptake rate (OUR) profile (also term-ed
respirogram) that represents the impulse response of the bio-
system to the injected wastewater. Some typical impulse re-
sponses are given in Fig. 3.

The central goal of the study was to identify process models on
the basis of these impulse responses. In the work, it was found
that most OUR profiles could be adequately described by three
candidate models (Fig. 3): a first order, a single Monod and a
double Monod model. Each of these models describes the
degradation of a wastewater component S by a biocatalyst X
according to some degradation kinetics rs. The OUR  is propor-
tional to the degradation rate of the substrate(s). The yield
coefficient Y is the fraction of S which is not oxidized but
incorporated in the biomass X. The biokinetic parameters µ
and Ks describe the dependency of the degradation rate on S.

Modelling these OUR  data means finding the best model struc-
ture and the associated parameters.

Figure 2. Flowchart of the operation of 
an adaptive sensor.



3. Structure Characterization (SC)

Parameter estimation and model structure selection are two
closely related stages in any modelling exercise. In fact, the
sequence in which these stages are performed is chosen by the
model builder. The structure characterization methods are
termed a posteriori SC if the choice among the candidate
models is postponed until all model candidates are fitted to the
data, i.e. their parameters are estimated. A priori SC methods,
on the contrary, can precede the parameter estimation stage
since they don’t rely on fitting results to select among the
different models. An evaluation of different SC methods was
reported in [8]. Here, the main conclusions of this study are
summarized.

a priori SC
In real-time applications (as the one presented here), a priori
SC methods have a distinct advantage over a posteriori
methods because the computing-intensive parameter identifi-
cation stage has to be performed only once, i.e. only with the
selected model. To discriminate between candidates, model-
specific features must be extracted from the data. 

Two approaches were developed for the OUR profiles. One is
an ad hoc method based on the number of inflection points in
the impulse response (see Fig. 1: the first order model has none,
the Single Monod has one and the double Monod model has
three inflection points). The other method is intrinsically more
general and is based on the pattern recognizing ability of neural
networks. Training of the neural net was performed by applying
a set of 750 Monte Carlo simulations with the candidate
models.

a posteriori SC
Different a posteriori methods were evaluated. Traditional
model selection criteria are based on a decision criterion that
looks for the optimal trade-off between model complexity and
fit. However, due to some unmodelled dynamics in the raw
data, these methods proved unsuccesful, except for the GIC-
approach in which an explicit quantification of ’undermodell-
ing’ is performed. Minimization of the undermodelling allowed
to point to the most appropriate model. Methods based on the
analysis of the statistical properties of the residuals also pro-
vided a good means of a posteriori model selection.

4. Optimal Experimental Design for SC
In view of the noisy data, a good experimental design may be
an invaluable tool to increase the discriminative power of the
data [9]. Optimal experimental design (OED) procedures are
aimed at designing experiments in which the difference among
the structure characterization criterions for the different
models is maximized.

Vanrolleghem & Van Daele [10] describe procedures for
OED/SC in case the a priori SC method based on the number
of inflection points is used for model selection. Figure 4 is
illustrative of the case in which the experimental design consists
of finding the optimal ratio between two substrates in the
sample. In Fig. 4a, the OUR profile of the ’worst case’ mixture
is given, i.e. although biology tells that Double Monod kinetics
prevail, the experimental conditions are such that a Single
Monod model would be selected because only one inflection
point can be detected. The respirogram of Fig. 4b is a good
example of data that allows reliable structure characterization.

Figure 3. Model equations of candidate models and typical raw oxygen uptake rate data



In Fig. 4c reliability is even somewhat higher, but the experi-
ment takes prohibitively long, endangering the real-time con-
straint of the sensor’s operation. This example illustrates that
a compromise must be sought between modelling accuracy and
real-time operation. The same constraint prohibited the use of
a posteriori SC methods as a basis for OED. 

5. Parameter Estimation (PE)

Estimating nonlinear parameters of a model poses both the-
oretical and practical identifiability problems. Vanrolleghem
[11] studied the identifiability of the candidate models of Fig.
3, both in case of perfect, i.e. noiseless, OUR data (the theore-
tical identifiability) and in case of a real-life finite data-set with
a particular realization of the noise (the practical identifi-
ability).

Theoretical Identifiability
Although the Monod model has been subject to intense re-
search regarding its theoretical identifiability (e.g. see [12]),
these studies were always initiated on the assumption that both
biomass X and substrate S were measured. In this application,
however, the aim is to estimate biokinetic parameters on the
basis of OUR data only. 
Hence, a new study was required to evaluate if it is possible at
all to find unique estimates of the model parameters on the
basis of perfect data, or alternatively, that only some parameter
combinations are identifiable. The tools for evaluation of the

theoretical identifiability are however rather restricted. There
exists no generally applicable methodology that guarantees the
solution of a nonlinear identifiability problem [13]. The ap-
proach taken for this application is to transform the model into
a linear regression form from which the parameter identifi-
ability can be deduced. 

Table 1 summarizes the results of Vanrolleghem [11]. It is
observed that only a number of combinations of parameters
can be attributed unique values. Not surprisingly these combi-
nations always include the yield coefficient Y since this par-
ameter quantifies the fraction of substrate which is not
oxidized, i.e. no observations can be made on this fraction using
oxygen uptake measurements only.

Practical Identifiability
The practical identifiability is concerned with the problem of
evaluating whether the (combinations of) parameters can be
estimated reliably considering the measurement noise. 

Quantification of the estimation accuracy is based on an evalu-
ation of the Fisher Information Matrix, which corresponds to
the inverse of the parameter covariance matrix [14]. The out-
put sensitivity equations are central to the calculation of this
matrix. These equations quantify the sensitivity of the model
predictions on the parameter values. The elements of the
information matrix are calculated on the basis of the sensiti-
vities of the measured variable(s) evaluated at the different
measuring instants. 

When the sensitivity equations are (nearly) linearly dependent,
the Fisher matrix becomes ill-conditioned or even singular,
indicating practical identifiability problems with the available
experimental data. As shown in the sequel, a good experimen-
tal design may eliminate such problems. 

6. Optimal Experimental Design for PE 

On the basis of the Fisher Information Matrix the value of a
particular experimental design can be assessed. Consequently,
it is possible to initiate an optimization procedure in order to
maximize the information content of a forthcoming experi-
ment. different objective criteria have been proposed that can
be traced back to Fisher Matrix characteristics [14]. All except
one are directly concerned with the parameter variances.

Figure 4. OUR profiles obtained for different
experimental designs of the sample mixture.

Table 1. Identifiable parameter combinations of
different biodegradation models if only OUR

measurements are available.

Exponential Double Monod

(1− Y1) S1(0) (1− Y1) S1(0)

µmax1X(1 −  Y1)
Y1

µmax1X(1 −  Y1)
Y1

Single Monod (1− Y1) Km1

(1− Y1) S1(0) (1− Y2) S2(0)

µmax1X(1 −  Y1)
Y1

µmax2X(1 −  Y2)
Y2

(1− Y1) Km1 (1− Y2) Km2



Either the largest variance is minimized (E-criterion), or the
arithmetic or geometric mean of the parameter variances (D-
and A-criterion respectively). The exception is the modified E
criterion which allows to maximize the numerical stability of the
parameter estimation problem (by improving the condition
number of the Fisher Matrix). To complete the list of criteria,
the modified A criterion has to be mentioned. Here the sum of
variances is minimized. 

Vanrolleghem [11] evaluated the optimal experimental designs
for these different criteria in case of the Monod model and an
additional pulse of sample during the experiment as a design
variable. Figure 5 illustrates the evolution of the substrate
concentration  in the sensor’s reactor and the resulting OUR
predictions. The proposed experiments diverge for the differ-
ent OED/PE criteria. While for the A- and modified A criteria
experiments are proposed that prolong the phase in which the
maximum degradation rate is observed (so as to minimize the
variance of µmax1), the D- and E-criteria focus on the estimation
of Km1 by allowing the substrate to evolve three times through
the concentration range in the neighbourhood of this par-
ameter. The modified E criterion is an intermediate design by
which the numerical properties of the identification problem
are addressed.

Validation of these experimental design procedures was per-
formed for the modified E-criterion. In Fig. 6 both the refer-
ence (top) and optimized (middle) experimental data and the
corresponding model fit are summarized. The change in shape
of the objective functional is apparent from the contour plots
and is indicative of the improved conditioning: the valley has
become more cone-like. Table 2 shows that considerable im-
provements in parameter variance can be obtained (50 %) at
the expense of little experimental effort.

7. Control Applications
The In-Sensor-Experiment application presented in this paper
allows a rather detailed characterization of the main disturb-
ance of the process, i.e. the wastewater composition. Hence,
feedforward control strategies can be devised that take advant-
age of this information. 

An important feature of feedforward schemes is their reliance
on a proper process model for optimum performance. As the
considered process is highly time-varying, not only in model
parameters but also in model structure, it is essential that
on-line modelling of the process is performed. In-Sensor-Ex-
periments as described above may provide an important part
of the necessary information. Evidently, as the wastewater
treatment process does not only consist of biodegradation of
waste components but also involves settling and thickening of
the biocatalysts, other sensors are required to complete the
on-line modelling of the system. 

Figure 6. Reference experiment (top) and optimal
experiment with additional pulse addition after 

14.1 min (middle). Contour plots of the sum of squared
errors as function of the Monod biokinetic parameters

for both designs  (bottom, left: reference; right: optimal).

Figure 5. Substrate (top) and OUR trajectories
(bottom) of simulated experiments with 

additional pulse injections at different times
as proposed by different OED/PE criteria.



Van Impe et al. [15] studied a control system as summarized
in Fig. 7. It consists of a combination of an adaptive linearizing
controller and an Extended Luenberger software sensor. Infor-
mation to adjust the control law and feed the state and par-
ameter estimator is obtained from the respirographic
biosensor presented in this paper and turbi- dimetric measure-
ments of biomass concentration. A simulation study indicated
good convergence and tracking properties of the observer and
the linearizing controller.

The adaptive sensor concept as proposed in this contribution
guarantees that the In-Sensor-Experiments are adjusted to
ensure the highest possible quality of the sensor outputs, an
important assett for model-based controllers that rely on its
data.
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Figure 7. Structure of an adaptive model-based control
system with adaptive and software sensors.

Table 2. DependencY of modified E criterion and parameter variances on the time of pulse addition.
Results are relative to the reference validation experiment.

tpuls (min) Modified E Var( µmax1) Var( Km1) Covariance

No pulse 1 1 1 1

13.0 0.676 0.411 0.422 0.381

14.1 0.624 0.535 0.465 0.468

14.6 0.619 0.480 0.409 0.417


