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ABSTRACT

In this paper a number of nonlinear parameter estimation methods are evaluated with respect to their ability
to identify biodegradation models from "real-world" data. Important aspects are then the sensitivity to local
minima, rate of convergence, required prior knowledge and direct or indirect availability of parameter
estimates uncertainty. Furthermore, it is important whether a method is robust against invalid assumptions. In
addition to the final parameter values, covariance and correlation matrices, confidence intervals and residual
sequences are presented to obtain information about the validity of the models and noise assumptions.
Finally, recommendations on the method's applicability range are provided. Copyright © 1996 IAWQ.
Published by Elsevier Science Ltd
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INTRODUCTION

Wastewater treatment process models have become a major tool to increase the understanding of the
underlying biodegradation mechanisms, to communicate using it as a common ground, in the design of
treatment plants, control and operating strategies, for training of operators and process engineers, and so
forth. In these examples the mathematical model can only be applied successfully if it is a proper
description, in terms of both model structure and model parameters, of the underlying process. Hence,
theoretical modelling is most often not enough. There is also a need for identification of the model from
experimental data.

However, in practice the identification exercises are often hampered by small data sets, questionable
normality assumptions, possible heteroscedascity of the error variance, the occurrence of outliers and the
effects of the nonlinearity of the models describing a biodegradation process. In many cases standard non-
recursive parameter estimation tools are utilized to accomplish the identification of wastewater treatment
models (Coté et al., 1995; Reichert et al., 1995; Schmidt & Isaacs, 1995). However, these methods rely on
certain assumptions that are often violated by the specific data used. While methods have been proposed that
impose less stringent requirements, application of these new methods in the area of wastewater treatment
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modelling has been rare. The intention of this paper is to evaluate some robust identification methods and
provide recommendations on their applicability range. Special attention will be focused on the application of
these methods for fast tracking of transient events via on-line model identification.

Strikingly, uncertainty analysis has, in contrast to sewer system and water quality modelling, drawn little
attention so far in the area of wastewater treatment systems (Beck and Chen, 1994). It must be appreciated,
however, that input, model and parameter uncertainty are ubiquitous for these systems. Some of the issues of
parameter uncertainty will be addressed.

The application used in the study is the identification of biodegradation models on the basis of respirometric
data. Recently, a clear increase can be observed in the efforts directed at the use of (on-line) respirometers
for monitoring, modelling and control of wastewater treatment plants (Spanjers & Keesman, 1994,
Vanrolleghem et al., 1995). Hence, the identification tools used will also partly determine the quality of the
results obtained in such studies.

IDENTIFICATION OF BIODEGRADATION MODELS

Model structures

The general model structure for biodegradation as the result of the addition of k pollutants in an activated
sludge process in a batch reactor and assuming Monod kinetics is given by:

a0
_ Ba X S 2
I8 = Y, K, +50 @
k
OUR, (0 =Y. (1 - Yorg® 3)
i=1

where it is assumed that X, the biomass concentration remains constant during the batch experiment due to
the low S/X ratio. Notice that in the output equation (3) the effect of the endogenous respiration rates has
already been subtracted from the oxygen uptake rate. Hence, OUR,, only represents the exogenous or
substrate induced oxygen uptake rate. In the given model structure there are a number of unknown
parameters such as Yj, max i X, Kpy ; and the initial conditions S;(0). From a theoretical identifiability study
(also indicated as structural or a priori identifiability) one can deduce that for a single Monod model only
three parameter combinations can be identified from given OUR,, data (Dochain ef al., 1995):

6, - B X(1 - ¥)

Y, 1

Unlike the identification of biodegradation parameters from batch experiments, the parameters can also be
estimated from CSTR experiments with continuous input of biodegradable matter. Eqn (1) for one pollutant
is then expanded to,

8, = (1 - ¥)5,0 6, = (1 - Y)K,, )

as(s
E0 - - rw + Dis,0 - sw) ©)
In one of our applications we model the degradation of readily biodegradable matter in industrial influent in
an on-line respiration meter (see Spanjers and Klapwijk, 1990). Then, Eqn (5) is rewritten as:
dse) QW , TwXO) Q)
— - XL B (S () + 22 (1 - NS
Z Vv K, + 50 (1) V( s, 6)

where Sg is the substrate concentration expressed as short-term BOD in mg O/l i.e. Sg=(1-Y)S, and S, is
the substrate concentration of the influent in mg COD/1. Furthermore, the actual respiration rate, expressed
inmg Oy/Lh, is
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S0

racl(t = rm__sf_'—

K, + 840

the unknown parameters are now: maximum specific oxygen consumption rate ry,,,, Monod constant for
substrate (K), specific decay rate (b) and yield coefficient (Y).

X(@®) + bX(») 9

For the identification from discrete-time measurements it is significant to express the finite-dimensional,
continuous-discrete time systems in a more or less general nonlinear state-space model structure which
includes a measurement equation with output-error term:

dx(¢,0)/dt = {(x(1,0), u(t), t; &) (8a)
y(t,0) = g(x(6,0), u(t), t; 6) (8b)
z(t) = h(x(,0), u(t), t; 6) + et,) for k=1,....N (8¢c)

in which we distinguish a state, output and discrete-time measurement equation. In what follows, we assume
that 6e DyycR™, which implies that the parameter vector belongs to a prespecified set Dy, in the parameter
space R™,

It should be realized that the output-error € contains errors from both the modelling and the measurement
process. In the next section, nonlinear parameter estimation methods for the identification of the unknown
parameters from given data will be presented. However, since both the model structures and the
measurements contain errors, it is of paramount importance to have at least an indication of the uncertainties
in the estimates as a result of uncertainty propagation through the parameter estimation methods. Therefore,
also attention will be given to the processing of estimate uncertainties and the prior information needed for
this.

Nonlin meter esti jon (NP

In essence, a parameter estimation method is a mapping from a given data set ZN to the set Dyy:

Z8 >0, € Dy )

(see, for instance, Ljung, 1987). Before being able to further specify this mapping, assumptions about the
error characteristics must be made. Conventionally, one assumes that e is a serially uncorrelated sequence
with zero mean and constant variance, also indicated as the statistical approach. We will first present some
methods which are essentially based on this kind of assumption. Then, a natural way of parameter estimation
is to choose Oy such that there is a small misfit between data and model output. Formally speaking, and
selecting a 2-norm that measures the misfit, the estimate can be found from,

8, = arg min Je® ],

VT Mbe, (10
where the residual vector contains elements £(0,t)=z(t,)_z(t f 0) and the criterion function
J(8.ZN)= | €(8) |2 = X (6,4 )2. The predicted systems response, given parameter vector q and input/output
data, takes the general form

ut,|0) = $(t,Z"":6) 11
in which Z%-1 denotes the set of input and output measurements available at t,. The function 1(.,.;.) can be

viewed as the result of a black-box or mechanistic-based modelling procedure with or without filtering; in
the latter case of straightforward simulation from time instant t; Z%-1 contains only available input measure-
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ments. Clearly, in the case studied here, the prediction z(tkl 6) can be constructed by evaluating the model
Eqns (8a-b) up to t for given (measured) input u(t) and parameter vector 6. Hence, (8) can be written as a
nonlinear regression model, relating the measured output to the parameter vector

z(ty) = P(t,Z2%7%0) + e(t) (12)

Herein, e(t) can be considered now as the multi-step-ahead prediction error. This regression model forms
then the starting point for our further discussions on parameter estimation methods.

N n-li h

Many methods for unconstrained minimization, i.e. Dy=R™, but also for constrained optimization problems
as e.g. the SQP (Sequential Quadratic Programming) method, are derived from a quadratic model of the
criterion function. In Fletcher (1987) a large number of practical algorithms based on this quadratic model
have been described and discussed. A quadratic model can be obtained from a truncated Taylor series
expansion of J(8)=J(8,ZN) about 81, the estimate for iteration i,

J@O+8) = J° + 9V + 13" I 8 (13)

where 3=0-6 and J®, ¥ G® are zero, first and second derivatives of J(). Define the Jacobian matrix:
A(8) =[Vg[, Ve,, ..., Veg], the columns of which are the first derivative vectors of ¥(8) and

Since (@) = 2AAT + 27 ¢ Vzek with £,=€(t;.,8) and g is small for a least-squares estimate
of 0, a good approximation of * might be given by

['@) = 2AA" (14)
This approximation is essential for the class of Gauss-Newton methods, so that
0(i+l| = e(i) + [A(i) A(i)'l'] -1 A(i) (_.(em) (15)

To avoid a number of problems encountered in the Gauss-Newton methods and to ensure progress in
reducing J(0) an alternative class of methods based on a line search procedure has been developed, where
the direction of search is given by

sV = —IG)—1y" (16)

that is the local downhill gradient direction, so that gty = gV — as® (17)

Methods which include a line search and a direct approximation of I'-1 are called guasi-Newton methods.
The well-known BFGS (Brovden, Fletcher, Goldfarb and Shanno) method (see Fletcher, 1987) is a member
of this class, and it approximates the inverse of I'(i) by a symmetric positive definite matrix H® (the so-
called Hessian), which is updated from iteration to iteration. Once the matrix I'(8) or H(8) is known, it is
relatively easy to calculate the covariance matrix of the estimates X(8) from these. That is, 2(8) = 202
[T(8)]-! or £(6) = 202 [H(B)] L.

Directi hod

An interesting nonlinear least-squares algorithm which avoids computing the first derivatives is Brent's
method (Brent, 1973). This method basically contains a finite difference approach of the gradncnts
Furthermore, it is an example of a direction set method in which a set of independent directions s(1), s@), ..

s is maintained, and successive line searches are taken along s{) in a cyclical manner. The directions are
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chosen to be conjugate to make the search as efficient as possible. In the absence of any explicit derivative
information the parallel subspace property is applied to generate conjugate directions. The set of conjugate
directions are the principal directions of the Hessian matrix H. This set of directions can be found without an
explicit evaluation of H because the terms s®OT H s® are available from the line search along s®. Essentially
their calculation involves an eigenvalue decomposition. Subsequently, the Hessian obtained after conver-
gence can be used to calculate the covariance matrix as given above.

implex meth:

Another no-derivative method is the simplex search method of Nelder and Mead (1964). A (regular) simplex
is a set of m+1 (equidistant) points in RM, also called vertices. This method for minimizing a function of m
variables depends then on the comparison of function values at the (m+1) vertices of a general simplex,
followed by the replacement of the vertex with the highest value by another point. This new point is found
by reflection, contraction or expansion with respect to the previous simplex. As in all NPE methods, the
search is stopped when a certain stopping criterion is satisfied. Since there are no gradients of the criterion
function with respect to the parameters involved in the computation, this search method is rather easy to
implement. And, because in practice derivatives are not conveniently available most of the time, it is also
very popular. In order to obtain the estimate uncertainties the Hessian matrix of second derivatives at the
minimum is approximated numerically by fitting a quadratic surface through a number of well-chosen
points.

B Mon! 1o meth

If we are really interested in an interval estimate of © associated with a prescribed probability, then
knowledge about the distribution of the parameter estimates must be available. In practice, most often a
normal distribution is assumed, but this assumption is only valid if the errors e(ty) for k=1,...,N originate
from a stochastic process with normal distribution, the model is exact and it is linear in the parameters.
Clearly, under the normality assumption the parameter estimation error covariance matrices obtained from
the preceding methods and resulting uncertainty intervals only give a rough approximation of the uncertainty
in the estimates. The idea of using an empirical distribution of the parameters is therefore attractive. In this
study, two approaches were used to estimate such a distribution.

One is based on an extensive number of Monte Carlo simulations. The procedure is to draw random numbers
from an appropriately chosen distribution (typically a uniform distribution) around the best parameter
estimates and evaluate the objective function for each of these new parameter vectors. Rather than present
all details of the obtained probability distributions, one normally summarizes the results in the form of
confidence regions. Such regions can be described as a hypervolume bound by a hypersurface in the
parameter space. According to Beale (1960), the (1-7) confidence region corresponds with the set of
parameter vectors for which the objective function MSE (mean square error, Jp;/(N-m)) is below the
threshold given by

MSE * (1 + m/(N-m) * F ) (18)

in which F is the value of the F-distribution with m and N-m degrees of freedom at a confidence level a.. It is
evident that the approach is very computer intensive because the number of evaluations increases as a power
function of m (Lobry & Flandrois, 1991).

In the second approach an empirical distribution is obtained from resampling methods such as the bootstrap
(Roy, 1994). The resampling strategy applied here is the regular or exact jackknife procedure (Fox et al.,
1980). The procedure is as follows:

1) Estimate the parameter vector 8, using all available measurement data
2) Perform N estimations of the parameter vector 0 using all data except the ith data point
3) Calculate the pseudo-values as the vectors satisfying: ; = N@y-(N-1) 6;
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With these N pseudo-values the jackknife estimate of the parameter set and its covariance matrix can be
calculated: :
;] =

. IN 19
30 = 19)

3.0,

2 % (6,-6)(0,—6)/N/(N—1)

With these two methods, empirical distributions of the parameter estimates are obtained that are insensitive
to both the error distribution specification and linearizing approximations.

Maximum likelihood method

Recall that the basis equation for all these optimization methods is the nonlinear regression model (12). For
the model structures Eqn. (1)-(3) or (5)-(6) the predictor (1) can simply be evaluated by simulation for given
parameter vector 0. However, this implicitly assumes that the biodegradation model structures are exact,
since S(t) is reconstructed as a function of 6. Conversely, for the single Monod model (1)-(3) with i
restricted to 1, S(t) could also have been estimated from measured OUR or r,, data. This approach has been
followed by Spanjers and Keesman (1994) for the selection of a wastewater biodegradation kinetics model.
Since S(t) contains errors, due to both measurement and modelling uncertainty, the problem turns into an
“error-in-variables" problem. Hence, two kinds of residuals can be distinguished, which are adjoined in one
residual vector,

€OS(t) = leg 6,)' . 20)
= Is(tk)_s (tk) rg(tk) _f(s (tk);a) IT

where S*(t,) denotes the true value at time instant t,. Consequently, on the basis of maximum likelihood
estimation theory (Bard, 1974), the parameter estimation problem can be formulated as,

[8 SI" = arg min 3, €(0,5())" V()" €@,5(t,) @n

where S = [S(t), S(tp), ...., S(tN_l)]T and V() is the covariance matrix of the residuals at t,, which basically
depends on the integration time interval. The uncertainty in the parameter estimates can be estimated from

2O = [ Z, Bty V(t,)" Bty | (22)

where the elements of the matrix B are defined as:

Set-membership method

So far, it has been assumed that the errors are of random nature, and thus can be described in terms of
statistical properties as mean, variance and probability density functions. If, however, such detailed
characterization of the errors is not possible due to a limited length of the data records, or if the error has
non-random components as a result of model inadequacy or systematic measurement errors, a statistical
approach will give unreliable results. Under these circumstances, a deterministic error characterization in
terms of lower and upper bounds only will be a good alternative. Overviews of (nonlinear) time-domain
estimation methods within the so-called set-membership or bounded-error context can be found in Norton
(1987), Walter et al. (1991) and Milanese and Vicino (1991). The basic assumption for symmetric bounds
within this bounded-error approach is that

lel. = max, le(t)| <7 23

It should be noted that symmetry is usually assumed due to lack of more detailed information. On the basis
of this error interval model we define the behaviour set as:
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Q = Uy, { 21€R™ z = z() - e(t); et)EQ(E) } 24

where Q,(1;), the error set, contains all errors which fulfil the condition of Eqn. (23). Thus, the effect of
model uncertainty is directly taken into account in the error term. In addition to this behaviour set we define
the prior parameter set Dy, which contains a priori parametric information from, for instance, preceding
estimation procedures or literature. The ultimate aim is then to identify the set of parameter vectors Qg
which is consistent with model, behaviour set and prior parameter set. This set with feasible parameter
vectors, which explicitly represents the parametric uncertainty, is called the posterior or feasible parameter
set.

Q, = {0 € B™ z(t) - hlx(t,O)u@®) ;0] € Q(,); 0 € Q, k = L,...,N} (25)

The MCSM (Monte Carlo Set-Membership) algorithm (Keesman, 1990; Keesman and van Straten, 1990)
can handle this nonlinear parameter estimation problem. The key idea behind this algorithm is that randomly
selected parameter vectors which result in a model response consistent with the behaviour set belong to the
feasible set. By choosing an appropriate error bound, the feasible parameter set can be reduced to a
singleton. This so-called min-max estimate is found from:

Oy = arg min |€(0)|.. (26)
6€D,,

| i n i i ki

To evaluate the model quality, the assumed properties of the noise have been compared with those of the
calculated residual sequences. Two tests were applied to test whether the residuals could be assumed to be a
realization of independent random variables with zero mean. The autocorrelation test (Soderstrom & Stoica,
1989) evaluates whether the covariance function for a white noise sequence €:
N-T
r(t) = Y e(k-v)e®) @n

k=1

is zero except for 7=0. To make objective decisions on the whiteness of the residuals, one compares the
covariance for each lag with the limit value N(0,1)/VN. For =0.03, five percent of the covariances may be
larger than 1.96/VN. Another residuals test applied was the runs test (Soderstrém & Stoica, 1989). It is a
non-parametric test in which the number of sign changes R in the residuals sequence is compared with the
expected number of runs, E(R)=N/2.

RESULTS

General

The parameter estimation methods were applied to identify corresponding models (Eqn 1-3 or Egn 6-7) to
OUR,, and 1, data sets (the maximum likelihood method was only applied to the single Monod data). As
Figures 1, 2 and 3 illustrate the fit of the models as identified by the different methods are nearly identical.
Before focusing on the parameter values, the model adequacies are checked. The figures show that the
residual sequences have rather constant variance but can hardly be considered to correspond to a white noise
sequence. The autocorrelation function in Figure 1 confirms this for the Single Monod data set as more than
five percent of the correlations exceeds the critical value of 0.134. Similar results were obtained for the
other data-sets (results not shown). The results of the runs test (Tables 1, 4 and 7) also deviate significantly
from the expected value. Hence, information is still left in the residual sequence. From this point one can
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choose either adjustment of the system dynamics or modelling of the noise, but these steps are out of the
scope of this paper.

The parameter sets obtained with the different. methods are summarized in Tables 1, 4 and 7 for the
respective models, data-sets and NPE methods. For the Monte Carlo method only a confidence region is
obtained and not an unique "best" parameter set. In case of the Set-Membership method, one observes from
(26) that the min-max estimate is in fact the parameter vector for which the largest residual is minimized, i.e.
a minmax solution is pursued instead of a minimal MSE as in (10). For the Single Monod and Double
Monod OUR,, data-set, these min-max error bounds are 0.0383 and 0.0476 mg O,/L.min. In case of the
CSTR r,,, data, the min-max error bound is 18.973 mg O,/Lh. One observes that these bounds correspond
with the extreme values found in the residuals sequences of Fig. 1-3.

The r,, data-set proved, however, to be insufficiently informative to allow simultaneous estimation of the
four parameters of the model described by Eqn (6-7). It appears that only the combination of rp,, and Ky
can be identified. This is also apparent from the nearly constant ratio ry,,/K=15 found in Table 7.
Consequently, the correlations between the other parameters in Table 8 cannot be considered as accurate. A
particularity of our study was that for the Brent, Simplex and Jackknife methods bounds were imposed on
the rp., parameter based on physical reasoning. The upper bound was set at 200 mg Oy/mg.h. The
consequences of this choice will be discussed below.

Table 1. NPE results for single Monod model to OUR,, data-set (N=284, m=3)

Hean K., S,(0) MSE Runs
(74 mghy  (mg/l)  (*10°)

BFGS 0.409 0.649 17.017 196.907 24
Brent 0.405 0.574 17.281 115.141 28
Simplex 0.413 0.674 17.394 124.587 24
Jackknife 0.423 0.729 17.514 168.211 24
Set-Memb 0.401 0.552 17.179 11B8.338 28
ML 0.397 0.446 17.017 166.469 24

Table 2 Correlation matrix and standard deviations of parameters obtained from BFGS

Haaxt Ko 5,(0)
T 1.0000
Kt 0.8331 1.0000
$,{0) 0.5665 0.2214 1.0000
S.D. 0.0022 0.0214 0.0584

Table 3. Correlation matrix and standard deviationsof parameters obtained by the Jack knife technique

Hraxt Kot $,(0)
Hoax1 1.0000
Ko 0.8644 1.0000
$,{0) 0.4346 0.2179 1.0000

s.D. 0.0023 0.0398 0.0660
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Table 4. NPE results for double Monod model to OUR,, data-set (N=323, m=6)

Hpgy K Hyay Kz 5,(0) S.(0) MSE Runs
Jdy gy T8 g (ma/l)  (mg/1)  (¥10%
BFGS 0.344 0.449 0.173 1.414 17.8659 31.984 92.01 39
Brent 0.340 0.385 0.172 1.419  17.930 32.051 74,22 37
Simplex 0.358 0.603 0.171 1.423 18,387 31.771 111.86 26
Jackknife 0.337 0.358 0.171 1.361 17.823 31.948 75.59 37
Set-Memb 0.413 0.860 0.148 1.215 20.940 28.723 729.06 8
0.80
0.70 r -—— BFGS
= ——  Brent
(3 X
E 0.60 . -——  Simplex
-‘-; o8 0 % e Jaockknite
o o (R Set-Memb
o 04 ML
5 0.80 |-
mg i
8 0.20 :
0.10
€
-]
b
x
1.25 —- S —————
F -—— BFGS
] 100~ - Brent
p=S E -—  Simplex
= 0TS - NN e Jackknife
o FoONON. e Set-Memb
o .80 -
S 0.50 :
E 0.25 |
5 N
£ 0.00 [
|°- -
2 oasf R
080 vl u b Lo
0 5 10 15 20

Lag

Figure 1. Results of Single Monod type dataset identification with 6 estimation methods (top). Residual sequence
(middle) and autocorrelation function (bottom) allow diagnostic checking.
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Figure 2. Results of identification of Double Monod model to OUR , dataset with 5 estimation methods (top). The
residual sequence is given for diagnostic checking (bottom).
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Figure 3. Results of identification of CSTR model 1o r,, dataset with 5 estimation methods (top). The residual
sequence is given for diagnostic checking (bottom).

Table 5. Correlation matrix and standard deviations of parameters obtained from BFGS

Huoxi Kay Hpaxz Ko $,(0) S,(0)
Hay 1.0000
Ko 0.7813 1.0000
oo ~0.4047  -0.1465 1.0000
K. -0.2822  -0.1024 0.8345 1.0000
S,(0) 0.9077 0.5061  -0.5321 -0.3686 1.0000
s,(0) -0.3622 -0.1310 0.7854 0.4424  -0.4784 1.0000
S.D. 0.0017 0.0138 0.0008 0.0397 0.0668 0.0892
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Table 6. Correlation matrix and standard deviation of parameters obtained by Jackknife technique

Hnax) Kt Hmsxz K $,(0) S,(0)
U,  1.0000
K, 0.6346  1.0000
Moo -0.3162  -0.0477  1.0000
K. -0.2151 -0.0342 0.5055 1.0000
S$,(0) 0.7789 0.1963 -0.3858 -0.2459 1.0000
S,(0) -0.3240 -0.0558 0.7609 0.2282 -0.3777 1.0000
S.D. 0.0017 0.0186 0.0003 0.0133 0.0748 0.0435
Table 7. NPE results for CSTR model to 1, dataset (N=289, m=4)
Fax K¢ Y b MSE Runs
(mg/mg .h) (mg/1) (mg/mg)  (/h)
BFGS 57.03 10° 3.60 10° 0.194 4,780 45.577 67
Brent 199.690 13.823 0.194 4.791 46.325 65
Simplex 99.826 6.859 0.196 4.612 47.114 57
Jackknife 191.581 12.933 0.194 4.850 46.365 59
Set-Memb 65.125 4,000 0.192 5.000 47.733 59

Table 8. Correlation matrix and standard deviations of parameters obtained from BFGS

Y ax K Y b
Frax 1.0000
K, 1.0000 1.0000
Y 0.1543 0.1543 1.0000
b -0.1672  -0.1672  -0.9419 1.0000
S.D. 2.87 10" 1.81 10°  0.0033 0.3060

Table 9. Correlation matrix and standard deviations of parameters obtained by the Jackknife technique

Tyax K, Y b
oo 1.0000
K, 0.8945 1.0000
Y 0.7069 0.8253 1.0000
b -0.7199 -0.8270  -0.9974 1.0000
S.D. 220.7974  27.8286 0.0249 2.3752
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Figure 4. Set membership parameter estimation results from 2000 evaluations of the Single Monod model and the
OUR,, dataset. The error bound on OUR,, was set to 0.1 mg O,/L.min. The spot in the 2D-figures is the 95 percent
parameter confidence region obtained from the Monte Carlo study.

Differences among NPE methods

Although the similar parameter estimates obtained give the impression that the performance of all evalvuated
methods is similar, clear differences were noticed. These differences will be classified according to the
sensitivity to local minima and the rate of convergence of the methods.

nsitivi 1 minim

Tables 1,4 and 7 show that the estimates are close but not equal to each other. These differences also surface
in the minimal MSE's found by the different methods. It appears that the Brent algorithm converges to the
lowest MSE. This is not the case for the r,, data-set where a parameter bound of 200 mg/mg.h was imposed
0N I'y,y in case of the Brent parameter estimation.

For the three data-sets tested, but also from previous studies, it was obvious that the BFGS method was the
most sensitive to local minima. Only with the values of the other estimation routines, good initial values for
the parameters could be given which allowed it to converge close to the set obtained with the other methods.
The simplex method was substantially less sensitive to the initial parameter estimate while the Brent method
was most robust in this respect. Still, careful inspection of the residual sequence is advisable as local minima
can clearly not always be avoided. Evidently, the Jackknife method is also sensitive to local minima as it
uses non-linear parameter estimation to calculate the pseudo-values. The Set-membership and Monte Carlo
methods are not sensitive to local minima from a numerical point of view, but are clearly dependent on the
user-specified initial parameter bounds which may affect the outcome of the estimation procedure.

Rate of convergence

While the robustness against local minima is a more important trait of an estimation method, the rate of
convergence is important as it determines the time necessary to complete an identification task. Especially in
more complex modelling exercises (such as model selection where parameter estimation may be a necessary
subtask) or in case an on-line requirement is set (Vanrolleghem et al., 1994), it may become the most
important feature of a method.
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Figure 5. Monte Carlo based 95 % confidence region for the biokinetic parameters of the degradation of the first

substrate in the Double Monod model.
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Figure 6. Set-membership method: measurement set (dots), bebaviour set (outer full lines), feasible model output
set (dashed line) and min-max trajectory (center full line).

The identification studies performed showed that the BFGS method was more efficient than the Brent
method (typically for a Double Monod model: 150 (BFGS) and 250 (Brent) evaluations needed). The
Simplex method typically required a threefold number of function evaluations than the latter to converge.
The Jackknife, Set-Membership and Monte Carlo methods require substantially more computations. The
Jackknife requires (N+1) parameter estimations so that the amount of simulations increases equally.

However, if the estimation is started from the estimates obtained on the basis of the whole data-set, an
important reduction in necessary computations can be achieved (typically for a Double Monod case: 30000
evaluations). Probably further reductions can be obtained if a robust method (e.g. Brent) is used for the first
NPE, while a more efficient NPE (e.g. BFGS) is applied for the estimation of the N subsequent pseudo-
values. The methods based on random sampling require a large number of evaluations to allow sufficient
details in the parameter confidence region (for the Monte Carlo method) or the feasible parameter set (for
the Set-Membership method: 2000 evaluations with approx. 650 feasible vectors for 1=0.2 mg O2/l.min).
Fig. 4 illustrates the results of both random sampling methods for the Single Monod case with OUR,, data.
One thousand Monte Carlo simulations were sufficient to determine the 95 percent confidence region. For
the Double Monod case this has increased to 50000 evaluations to obtain the confidence region depicted in
Fig. 5.

p id . | comelat

The correlation matrices and the standard deviations given in Tables 2-3, 5-6 and 8-9 are a concise summary
of the parameter confidence regions. Tables 2, 5 and 8 are based on a linear approximation of the objective
function in the neighbourhood of the optimal parameter estimates. In Tables 3, 6 and 9 on the other hand
more reliable confidence regions are calculated using the Jackknife technique. Comparison shows that for
the case studies of this paper little difference exists between the approaches. Finally, the Monte Carlo
approach is illustrated in Figs 4 and 5. Here too, it appears that the parameter confidence regions obtained in
this way are close to the ones obtained using the other methods. As an example, consider the 95%
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confidence region of W, in both the Single Monod (Fig. 4) and the Double Monod case (Fig. 5), which
are nearly 0.1 /d large. This corresponds to a 4*S.D. interval, making an estimate for the standard deviation
from the Monte Carlo situation to be approximately 0.025 /d. This compares favourably with the S.D.-values
obtained from the linearization and Jackknife approaches.

The correlation between parameters in case of Monod-type models is known to be problematic
(Vanrolleghem et al., 1995). The high correlation between the maximum growth rate  p,, and the affinity
constant K, are confirmed in the batch experiments (Tables 2-3 and 5-6). In the CSTR experiment, it is
found that these parameters are completely correlated so that the model is not identifiable. This makes the
evaluation of the parameter confidence region difficult as the Hessian is singular and can therefore not be
inverted to yield the covariance matrix. The Jackknife method does allow this as it calculates the matrix
directly. A peculiarity of the study was that the 200 mg/mg.h boundary imposed on the ry,,, in the Jackknife
estimation made the correlation appear "broken” so that the correlation between rp,, and Ky was not
complete. Finally, an important correlation between Y and b is observed for this model. It is evident that the
data are not sufficiently informative for the model that is to be identified.

Model uncertainty

The residual sequences given in Fig. 1 to 3 allow one to point to periods in which the model is not able to
describe the behaviour of the system. In Fig. 1 and 2 it is apparent that the models used do not allow one to
describe the important transients observed between 8 and 13 minutes after injection of the substrate in the
batch reactor.

For the CSTR experimental data, the usefulness of the set-membership method for model adequacy testing
can be illustrated. To this end one can examine the relation between the data and the feasible output set (Fig.
6). If all data are contained within the output set obtained with realistic values for the error bounds, one can
state that the model is an adequate description of the process. Data that are not within the output set can be
considered outliers, or, if a series of such data exist, the corresponding behaviour cannot be described by the
applied model. Hence, the model is inadequate to describe this particular process behaviour. In Fig. 6 almost
all data are contained in the output set obtained with an error on r,, of 25 mg O4/Lh, except for the data
associated with the large transients (t=3 and 4 hours). Here, a delay between model predictions and data is
observed. Careful inspection showed that a calculation error was made for the input data (S;;), explaining
the modelling error found.

CONCLUSIONS

In practice, the identification of biodegradation models with Monod type kinetics is mostly hampered by
badly identifiable or even unidentifiable model components. In the Monod type limitation function, for
instance, the parameters Wp,,, and K, are strongly correlated. Furthermore, the residual sequences most
often contain a structural component indicating model inadequacy. This notion is important when evaluating
parameter estimation methods, since it implies that the assumptions, such as errors independent and
identically distributed, are violated. This violation has some effect on the bias of the estimates, but its effect
is more pronounced in the evaluation of the estimation uncertainties.

From the viewpoint of efficiency the following ordering for the estimation of model parameters is suggested:
BFGS, Brent's and Simplex search method. It appeared, on the contrary, that BFGS is the most sensitive to
local minima. To avoid the negative implications of wrong noise assumptions on the estimate uncertainty the
bootstrap (jackknife) or Monte Carlo method can be applied. Furthermore, a maximum likelihood estimation
procedure explicitly takes into account the measurement and modelling uncertainty in the predictor,
resulting in an “error-in-variables' problem. Finally, a set-membership approach completely releases the
statistical assumptions and is solely based on a deterministic characterization of the errors in terms of
bounds. The effect of this is that not a single “optimal' parameter vector is found but a set of feasible
parameter vectors, which directly represents the estimate uncertainty.
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It appears that a systematic analysis of model, input and parameter uncertainty analysis is needed and can
benefit from the interdisciplinary exchanges currently stimulated by the recent interest in integrated studies
of sewer systems, wastewater treatment plants and receiving water bodies. In particular for uncertainty
analysis it is felt that knowledge on the different techniques will be shared.
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